
Feasibility Analysis of MPEG decoding
on reconfigurable hardware

Master’s Thesis

by

Albert Molderink

Committee:
Prof. dr. ir. G.J.M. Smit

Ir. G.K. Rauwerda (Recore Systems)
Ir. P.T. Wolkotte

Dr. ir. L.T. Smit (Recore Systems)

University of Twente, Enschede, The Netherlands
29th March 2007

Abstract

This thesis describes the advantages and disadvantages of using an architecture con-
sisting of different (types of) processors. These architectures are called heterogeneous
architectures. We focus on advantages and disadvantages in processing power and
energy-efficiency. We examined these by mapping MPEG-4 on a heterogeneous ar-
chitecture consisting of an General Purpose Processor (GPP) and a reconfigurable
processor architecture. The used GPP is an ARM and the reconfigurable architec-
ture a M. We analysed the MPEG-4 algorithms and the characteristics of
multi-processor architectures to decide on what processor type the algorithms can be
executed best.

The analysis shows that two of the four parts (processes) of MPEG-4 can best
be executed on the M: the inverse quantization (iQT) and the color space
conversion (CS). The other two parts, variable length coding (VLC) and Motion Com-
pensation (MC), can not be implemented on the M efficiently and are therefore
implemented on the ARM. It is possible to implement the MC on a FPGA.

Our MPEG-4 implementation is based on the GPP implementation of the Smart
Chips for Smart Surrounding (4S) project. The used hardware is the Basic Concept
Verification Platform (BCVP) of the 4S project. The BCVP consists, next to other not
used hardware, of two ARMs (an ARM946 and an ARM920) and three M. We
only used the ARM946. The used Operating Systems (OS) on the ARM is BOS, an
OS developed at the University of Twente. The 4S MPEG-4 implementation is adapted
to run on BOS. The mapping of the algorithms on the M is described in this
thesis.

To implement an application consisting of multiple processes, communication
between processes is required. These processes can run on the same processor or on
different processors. Furthermore, for an energy-efficient heterogeneous architecture
it should be possible to remap processes to other processors on run-time. Therefore, a
communication system is developed that supports communication between processes
on the BCVP and run-time remapping. For easy usage, a C is developed
that initiates the communication between processes and processors and configures
the M.

Comparison of the MPEG-4 implementation with the original 4S implementation

iii

shows that the communication and operating system overhead is smaller for BOS.
Executing MPEG-4 using the M increases the performance in both processing
power and energy-efficiency. To investigate the performance of the M, the
energy-efficiency and processing power of the M executing the inverse Discrete
Cosine Transform (iDCT) algorithm of MPEG-4 are presented. These results are
compared with the iDCT implementation on an ARM, TI DSP and an ASIC.

iv

Contents

Abstract iii

Acknowledgements ix

Introduction 1

1 MPEG overview 3
1.1 Compression principles . 3

1.1.1 Conversion between RGB, YUV and YCbCr 5
1.1.2 Interlaced and Progressive . 7

1.2 MPEG versions . 7
1.3 Coding process . 10

1.3.1 Motion Compensation . 11
1.3.2 Discrete Cosine Transformation 13
1.3.3 Quantization . 14
1.3.4 AC/DC Prediction . 15
1.3.5 Scan methods, Event decoding en VLE 17
1.3.6 Headers . 18
1.3.7 Color conversion . 19

2 Reconfigurable and Heterogeneous Architectures 21
2.1 Algorithm properties . 21

2.1.1 Streaming algorithms . 22
2.1.2 Parallelism . 22
2.1.3 Algorithm characteristics . 24

2.2 Reconfigurable Architectures . 24
2.2.1 Introduction . 25
2.2.2 Reconfigurable Architecture properties 27

2.3 Heterogeneous architectures . 28
2.3.1 Heterogeneous architectures . 29

2.4 Network on Chip . 29

v

2.5 Used architecture: BCVP . 30
2.5.1 Layout . 30
2.5.2 Montium . 31

3 MPEG-4 implementation on the BCVP 35
3.1 MPEG-4 processes . 35
3.2 Inverse Quantization on the Montium 36

3.2.1 Inverse Quantization . 37
3.2.2 Inverse Discrete Cosine Transform 38
3.2.3 Dataflow . 39

3.3 Color Space Conversion on the Montium 41
3.3.1 Mapping the algorithm . 41
3.3.2 Dataflow . 41

3.4 Motion Compensation . 42
3.5 Conclusion . 44

4 Interprocess communication on the BCVP 47
4.1 Requirements . 47
4.2 Implementation . 48

4.2.1 Basic idea . 48
4.2.2 Processes . 49
4.2.3 Pipes . 50
4.2.4 Signals . 51
4.2.5 Run-time remapping . 52
4.2.6 Controller . 53

4.3 Usage of the Controller . 55
4.3.1 Layout of the application file . 55
4.3.2 Specification . 56
4.3.3 Processes . 56

4.4 Conclusion . 57

5 Results 59
5.1 Method . 59
5.2 Results . 60

5.2.1 Implementations on different processors 60
5.2.2 Differences between ARM implementations 62
5.2.3 Advantage and overhead using the Montium 63
5.2.4 Optimizations for the BasOS implementation 64
5.2.5 Energy performance . 65

6 Conclusions and Recommendations 71
6.1 Conclusions . 71
6.2 Recommendations . 72

6.2.1 Change MPEG-4 implementation 72
6.2.2 Implement run-time remapping 72

Bibliography 73

vi

A Chen’s iDCT algorithm on the Montium 77

B Configuration specification 79

C Convert a process graph to a configuration 83

D Configuration structure Controller 85

E Layout file Controller 87

vii

List of Figures

1.1 MPEG Group of Pictures . 4
1.2 Original picture, RGB values and the luminance and chrominance values 5
1.3 Position of the chrominance samples with respect to the luminance

samples in 4:2:0 video format . 6
1.4 MPEG versions . 8
1.5 Segmentation of a picture onto VOP’s 9
1.6 Basic block diagram of MPEG-4 Video Coder [2] 10
1.7 Texture encoding: DCT, AC/DC prediction, Quantization, scan (zig-

zag), Event encoding and VLE . 11
1.8 Motion estimation . 12
1.9 Difference between an I and a P frame after a DCT 13
1.10 Inverse Quantization process [10] . 15
1.11 AC/DC prediction based on adjacent blocks 16
1.12 Scan methods . 17
1.13 Location of YCrCb samples in a macroblock 19

2.1 Streaming Process Graph . 22
2.2 Temporal and spatial parallelism . 23
2.3 Parallelism in the process graph . 23
2.4 Von Neumann and Harvard architecture [16] 25
2.5 FPGA architecture [16] . 26
2.6 Tradeoff between flexibility and performance 27
2.7 Basic Concept Verification Platform architecture 30
2.8 Montium architecture [16] . 31
2.9 Montium configuration hierarchy [16] 32
2.10 Montium ALU [16] . 33

3.1 Data rate between MPEG-4 processes in bytes per frame 36
3.2 iQT mapping on the M, arrows represent data dependencies . . 37
3.3 Flow graph Chen’s iDCT algorithm . 39
3.4 Scheduling iDCT algorithm on the M 40

ix

3.5 Mapping CS algorithm on the M 42
3.6 Possible MC implementation on a FPGA 43
3.7 Possible MC implementation on a FPGA, also suitable for B-frames . . 44
3.8 Possible MC implementation on a FPGA, also suitable for non integer

MVs . 45

4.1 Signals generated by pipes . 50
4.2 Channel layout of the bridge . 51
4.3 Run-time supplant a process . 54

5.1 Calculation time per process per frame 61
5.2 Total execution time per frame . 61
5.3 Execution time of ARM implementations split in calculation, commu-

nication and rest . 62
5.4 Time to read or write a pipe . 63
5.5 Benchmarks of a 2D 8x8 iDCT on different processor architectures . . . 70

A.1 Flow graph iDCT . 78

C.1 Example process graph . 83

D.1 Configuration structure . 85

x

Acknowledgements

This thesis concludes my Master study Computer Science, track embedded systems,
on the University Twente. I performed this thesis on the Computer Architecture
Design & Test for Embedded Systems (CADTES) chair. This thesis is carried out for
the FP6 Smart ChipS for Smart Surroundings (4S) project(IST-001908) supported by
the European Commission.

Gerard Smit offered this assignment with a lot of enthusiasm. During the thesis
he provided constant enthusiasm and ideas.

I also want to thank Marcel van de Burgwal, Gerard Rauwerda and Pascal
Wolkotte for their insights in how to map the iDCT on a M. This was very
difficult for me to do because I did not have very much experience with the concept
of mapping algorithms and registers on parallel processors manually.

Furthermore, I learned a lot about streaming processing and LATEX by the discus-
sions with Pascal Wolkotte and Philip Hölzenspies.

I want to thank Lodewijk Smit for his introduction into the energy consumption,
performance analysis and writing a scientific paper.

My graduation committee provided me with guidance, reviews and understand-
ing for my difficult private situation, for which I am grateful.

I would not have been able to finish this thesis without the support of my friends
and family. Especially, I want to thank my parents for the support during my study.
The last tough year my mother supported me, despite her own problems, even more,
for which I am very grateful.

Enschede, April 2007
Albert Molderink

xi

Introduction

Fifty years ago a mobile phone was something from the future. Today, more mobile
phones are sold every year than there live people in the Netherlands. Next to mobile
phones much more mobile technology is available like PDAs, MP3 players and mul-
timedia players. All these devices get more functionality that require more energy,
while the battery has to last for at least a week. This requires more energy-efficient
processors.

We see a continuous increase in the provided processing power of mobile technol-
ogy. It is possible to play games and listen to music on your mobile phone. Nowadays,
this processing power is mainly provided by General Purpose Processors (GPP) and
Application-Specific Integrated Circuits(ASICs), but more and more reconfigurable
processors become available for mobile technology. These two types of processors
are sometimes combined in one architecture. Such an architecture consisting of dif-
ferent types of architectures is called a heterogeneous architecture. An architecture
consisting of a GPP and a reconfigurable processor may be the solution for both the
performance requirement and the energy-efficiency problem.

Many applications on mobile devices have common characteristics. Almost all
of them are streaming applications like Moving Picture Expert Group (MPEG), Digital
Radio Mondiale (DRM) and Universal Mobile Telecommunication System (UMTS).
By analysing one of the algorithms in detail and study the different characteristics
(like processing time, memory usage and throughput) between the applications one
can make an estimation of analogous applications.

We see a trend that the MPEG-4 standard requires lower bit rates than previous
MPEG standards and wireless connections get more and more bandwidth, so it is
possible to send a MPEG-4 stream over a state-of-the-art licensed spectrum wireless
connection (i.e. a mobile phone network). However, the decreasing bit rates of MPEG-
4 are caused by higher compression ratios because the user’s experience may not drop.
These higher compression ratios require more processing power for decoding. With
the increasing processing power of mobile devices it is possible to watch video on
these devices.

In this master thesis it is analysed what the characteristics of the different parts
of the video decoding of the MPEG-4 standard are. Next is examined if it is possible

1

to perform these tasks on reconfigurable hardware and which advantages and disad-
vantages this gives in terms of processing time and energy-efficiency. The feasibility
study investigates the required memory, processing power, communication band-
width and communication overhead. The required memory and processing power
are compared with the available resources of the reconfigurable hardware. In this
way we validate whether the tasks can be done in real time. The required bandwidth
is compared with the bandwidth of the communication link between the GPP and the
reconfigurable hardware and the interfaces of both architectures. Finally, the commu-
nication overhead for the GPP is compared with the reduction of required processing
time of the GPP caused by outsourcing the tasks to the reconfigurable hardware. After
the analysis the results are verified by building a prototype. Therefore, it is necessary
to implement MPEG-4 on a heterogeneous architecture that consists of a GPP and
reconfigurable processing tiles. This implementation is realized on real hardware to
demonstrate the results of the project. The hardware is the Basic Concept Verifica-
tion Platform (BCVP) of the 4S project [1] consisting of 2 ARMs connected with 3
M (emulated in a FPGA) through a bus and a Network-on-Chip (NoC). A
M is a word-level reconfigurable processor architecture. The MPEG-4 version
that is implemented is the Simple profile of MPEG-4, QCIF format.

Next to the MPEG-4 implementation there is also a C implemented.
This C initiates the communication between the processes on the ARM,
the reconfigurable hardware and the PC (over an USB connection). The C
also configures the reconfigurable hardware and starts the application. Before the
C is implemented, it is analysed what functionality the controller requires,
what the requirements are and how this can be implemented.

The first chapter of this report gives an description of the MPEG-4 decoding
and the required algorithms. The second chapter describes the different available
architectures and for which type of algorithms they are suitable. The third chapter
analyses which parts of MPEG-4 are the most computational intensive and which
parts can be implemented efficiently on the different processors of the BCVP. Chapter
four gives a description of the implementation of the C. In the fifth chapter
the test results are presented. We end up with a conclusion in chapter six.

2

CHAPTER 1

MPEG overview

MPEG is a frequently used compression technique for audio and video. In 1988 the
Moving Picture Expert Group (MPEG) was established as a cooperation of academics
and business people. MPEG is a working group of the International Organization for
Standardization (ISO) [2]. The official title for the group is: Coding of moving pictures
and audio. Their assignment is developing international standards for compression,
decompression, processing and coding representation of moving pictures, audio and
their combination, in order to satisfy a wide variety of applications [2].

Video consists of a stream of pictures. Each picture slightly differs from the
previous one and by showing many pictures in a short time (about 15 to 30 per
second) it appears like a moving scene. Such a picture in a video stream is called a
frame.

Compression of video is necessary to reduce the bandwidth of the video stream.
For mobile applications a resolution of 352 x 288 pixels is often used. Video usually
consists of 25 frames per second. When 8 bits (one byte) per pixel are used for each
color (red, green and blue), it would require 3 x 352 x 288 x 25 ≈ 7 MB per second. This
requires a very high bandwidth to stream video without any form of compression,
especially for a mobile connection. Beside the bandwidth limitation, the data traffic is
expensive for mobile connections, so it would also be expensive without compression.
MPEG-4 compresses the date with a ratio between 1:50 and 1:100.

This chapter gives a description of MPEG-4. In the first section a number of
compression techniques and principles are pointed out and standard techniques used
for digital video are explained. The next section gives a short introduction into the
different MPEG versions. Section three provides an overview and a description of the
different steps in the encoding and why these steps are included.

1.1 Compression principles

MPEG is a lossy way of data compression. The decompressed data differs from the

3

4 MPEG overview Ch. 1

original data; information is lost, so the quality decreases. The idea of this way of
compression is that only the information of the (for human eyes) less-visible part of
video is lost (and for audio the less-hearable part).

MPEG only standardizes the format of the bitstream and the decoder. So the
encoder is not standardized at all, only the format of the output it has to generate and
how the original data has to be retrieved. This means that an arbitrary decoder can
decode all MPEG streams, independent of the encoder [3].

Since a video stream consists of frames, video compression is in fact compression
of a stream of pictures. The compression is based on two principles: spatial redun-
dancy and temporal redundancy. In a picture, pixels next to each other do not differ
much. When you divide an image in little blocks of pixels (in MPEG 8x8), the values
of the 64 pixels are almost the same. This is called spatial redundancy [4].

In a video stream, two successive frames are almost the same. This gives the
impression of the movement in a scene. The direction of the movement is depicted by
the Motion Vector (MV). When you subtract two successive frames (the first original
and the second moved along the inversed MV), most of the pixel values are zero, only
a few pixels have a value, which is the difference. This is called temporal redundancy [4].

The compression is done in two ways: a small part of the frames are just com-
pressed using spatial redundancy, these frames can be decoded without further in-
formation. These frames are called Independent frames (I-frames). The other frames are
compressed based on the differences with other frames. To decompress these frames,
the frame on which the compression is based is needed. These frames are called Pre-
dicted frame (P-frames) and Bidirectional frames (B-frames). P-frames are only based on a
previous I- or P-frame, B-frames are based on a previous and successor I- or P-frame
(frames are only based on I- or P-frames, not on B-frames). The compression ratio of
the P and B frames is much higher than the compression ratio of I-frames.

A video stream is split in sequences of frames. Such a sequence is called a Group
Of Pictures (GOP) and consists of one I-frame, multiple P-frames and an optional
number of B-frames (see Figure 1.1). Because all the frames are dependent of each
other, a video stream can only be started at the beginning of a GOP. The number
of frames in a GOP is a trade off: more P- and B-frames in a GOP leads to a higher
compression. But because all frames are dependent an error in one of the frames gives
errors in all successive frames [4].

Figure 1.1: MPEG Group of Pictures

Sec. 1.1 Compression principles 5

1.1.1 Conversion between RGB, YUV and YCbCr

Colors are in most digital systems represented by their RGB value. That means, the
color is represented by its amount of Red, Green and Blue. In this way significant
range of the colors of the visible spectrum can be depicted.

The first televisions were only able to show grayscale video. For showing
grayscale video, only the amount of brightness is necessary. So, the television stan-
dard only implemented the (8-bit) brightness, called the luminance. When color
televisions became available, another standard had to be defined.

Figure 1.2: Original picture, RGB values and the luminance and chrominance values

The standard had to be able to represent colors and was supposed to be backward
compatible: grayscale televisions must be able to read the standard. So, a RGB value
was not the solution.

A YUV representation was developed. The Y factor is the luminance and the
U and V are the hue (frequency) and saturation (amount of black) in the color. The
luminance factor (Y) is equal to the luminance factor in the old standard and is
calculated as the weighted sum of the RGB values (depending on the light intensity
of the color for the human eye). Old grayscale televisions only use this factor to show
grayscale video.

The U and V factors are also calculated as the weighted sum of the RGB values.
The factors are encoded into the video signal using a subcarrier. In this way the
grayscale televisions are not aware of these signals.

For MPEG a slightly different way of pixel representation is used, called YCrCb.
This is often confused with the YUV standard. The Y is again the luminance factor,

6 MPEG overview Ch. 1

the Cr and Cb are the chrominance factors (amount of blue and amount of red in the
color). The range of the R, G and B samples is 0 to 255, the range of the Y sample 16 to
235 and the range of the Cr and Cb samples 16 to 240. The formulas to calculate the
YCbCr values from RGB and vice-versa are the following:

Y = 0.257 · R + 0.504 · G + 0.098 · B + 16

Cr = 0.439 · R − 0.368 · G − 0.071 · B + 128

Cb = −0.148 · R − 0.291 · G + 0.439 · B + 128

R = 1.164 · (Y − 16) + 1.596 · (Cr − 128)

G = 1.164 · (Y − 16) − 0.813 · (Cr − 128) − 0.392 · (Cb − 128)

B = 1.164 · (Y − 16) + 2.017 · (Cb − 128)

The first compression is performed by the conversion from RGB to YCbCr. The human
eye is much more sensitive for luminance than for chrominance. This is shown in
Figure 1.2. Figure 1.2A shows the original image, 1.2B the image divided in its R, G and
B components and 1.2C the image divided in its Y, Cr and Cb components. Therefore
MPEG uses not all chrominance values, only a quarter of the chrominance samples are
kept (but all luminance samples!). So, for every four luminance values, there is one Cr
and one Cb value. This is called the 4:2:0 video format. The format gives the relation
between the number of luminance and chrominance values. The first number is the
number of luminance samples, the second the number of chrominance samples in the
odd lines of pixels and the third number gives the number of chrominance samples
in the even lines (see Figure 1.3). So the 4:4:4 format is the format without any down
sampling.

Figure 1.3 shows the exact location of the chrominance samples with respect to the
luminance samples. Down sampling the chrominance values saves already half the
bandwidth and storage capacity. The stored chrominance sample after down sampling
is the average of the original chrominance pixels. In Figure 1.3 the chrominance sample
is the average of the original four in a one box. When all chrominance samples are
required (i.e. when the colorspace is converted to RGB) the stored sample is used for
all pixels in one box. [5]

Figure 1.3: Position of the chrominance samples with respect to the luminance samples
in 4:2:0 video format

Sec. 1.2 MPEG versions 7

1.1.2 Interlaced and Progressive

There are two ways of video transmission: progressive and interlaced. With a pro-
gressive transmission, each picture is entirely sent. It is scanned line by line (one
horizontal line of pixels) and then compressed. Interlaced sends only half a picture.
In the first frame the odd lines are send, in the second frame the even. Such half a
picture is called a field. In this way the refresh rate is doubled without any extra
bandwidth.

The afterglow of the phosphor of CRT tubes and the limitations of the human
eye results in two fields being appeared as a complete image. This allows the viewing
of full horizontal detail with half the bandwidth which would be required for a full
progressive scan while maintaining the necessary CRT refresh rate to prevent flicker.
Because of the afterglow of the phosphor is important for this principle, interlaced
video does not work in other (new) technologies, e.g. TFT monitors. MPEG mostly
uses a progressive transmission, but it supports also interlaced. [5]

1.2 MPEG versions

The information in this section is a summary from [2] [3].
The first goal for the workgroup was developing a standard for coding of moving

pictures and associated audio for digital storage media at up to about 1.5 Mbit/s. In
practice this meant a standard for efficient storage and retrieval of audio and video
on Compact Disc (CD). The standard consists of three parts: System, Video and Audio
(the MPEG standards are divided in parts, every part describes a part of the standard,
like video, audio and storage format). The multiplexing and synchronization of the
elementary Audio and Video streams is provided by the System Part. The Video
part provides an efficient encoding of non-interlaced pictures. The encoding of stereo
audio with transparency is provided by the Audio part. The encoding can be done in
three different bitrates. These three bitrates have a different level on encoding, such a
level within a part is called a Layer.

These parts of the MPEG-1 standard where approved in 1992. A couple of years
later two more parts where added to the standard: Conformance Testing and Software
simulation. Conformance Testing provides methods and reference bit streams that
can be used to asses conformance. Software simulation provides implementations of
the System part and of the video and audio encoders and decoders.

The full MPEG-1 standard was used for Video CD decoding. Several hundreds
million hardware Video CD (VCD) decoders have been sold worldwide. MPEG-1
Audio Layer III, better known as MP3, is a worldwide spread standard for storing
audio.

In 1990 the Moving Picture Expert Group started to develop the second standard
(MPEG-2) called “Generic coding of Moving Pictures and Associated Audio”. The
first three parts (System, Video and Audio) where approved in 1994. The system part
provides two different versions, the Transport Stream version and the Program Stream
version. The Transport Stream version provides support for efficient transmission
over error-prone delivery systems. The Program Stream version is similar to the
MPEG-1 version and is more useful for digital storage media. The improvement
of the Video part is the efficient coding of interlaced pictures and different spatial

8 MPEG overview Ch. 1

resolutions. The improvement of the Audio part is the support of encoding multi-
channel audio.

MPEG-2 defines more parts than MPEG-1. There are several parts providing
session and network protocols. Part 7 is the Advanced Audio Coding. This part
provides multichannel audio coding and is not backward compatible with MPEG-1.
In total there are 11 parts.

The System, Video and Audio parts (part 1, 2 and 3) of MPEG-2 are used for
DVD decoding.

Developing the MPEG-4 standard started in 1993 and the first version was ap-
proved in 1998. The MPEG-4 standard is called “Coding of audio-visual objects”.

In 1999 a major extension (called version 2) was approved. After these two
versions more functionality was added that could be qualified as version. All the
versions are backwards compatible. But, recognizing the different versions is not too
important, it is more important to distinguish the different profiles. Because there is
so much functionality available for MPEG, not all functionality is necessary for some
implementation. But, if you do not implement everything then you do not follow
the standard, so it is not a MPEG decoder anymore. Therefore, the functionality
is divided into different boxes, called profiles. In the simplest profile only little
functionality has to be implemented, in the most complex profile all functionality
has to be implemented. The official definition of a profile is “a defined subset of the
syntax of the specification”. Examples of profiles within MPEG-4 and their application
domain are: the Simple Profile for Internet, the Advanced Simple Profile for video on
demand and the Studio profile for studio applications.

Figure 1.4: MPEG versions

MPEG-4 is a much broader standard than MPEG-1 and MPEG-2. MPEG-1 was
only developed for video CD, MPEG-2 for DVD. Because the standard is divided
in different profiles, there are profiles suitable for mobile connections and profiles
suitable for studio quality video (see figure 1.4).

Within the profiles there are levels defined. The formal definition of a level is
“a defined set of constraints on the values which may be taken by the parameters
of the specification within a particular profile”. An example of such a constraint is
the bounds of the image size. A combination of a profile and a level is depicted like
Profile@Level.

Sec. 1.3 MPEG versions 9

The name of the first 5 parts corresponds with MPEG-2, but there are a number
of significant differences between MPEG-1/MPEG-2 and MPEG-4.

The first major difference is that MPEG-4 enables the coding of individual objects
within frames. Each object of a video stream can be encoded individually, even if it
does not have a rectangular shape. Each part of the original picture is called a Video
Object Plane (VOP). So a video can consist of different video streams, e.g. one for the
background, and one for the person in the front (see figure 1.5). Also different audio
objects can be encoded individually. This provides the ability to encode the different
audio streams at different rates and with different functionalities.

Because of the individual objects, the system part contains the “composition”
function. Another difference is that the system part contains a standard technology
to represent time-varying synthetic 3D information. Also a framework to deal with
rights protection is provided. The last difference with MPEG-1 and MPEG-2 is that
the file format is standardized.

MPEG-4 Video is seen as the standard for the next generation mobile communi-
cation. It is also utilized to develop solutions for video on demand.

Figure 1.5: Segmentation of a picture onto VOP’s

Next to MPEG-1, MPEG-2 and MPEG-4 there are a number of other standards
that the Motion Picture Expert Group is working on. MPEG-7 “Multimedia Content
Description Interface” is a standard that represents not the audio and video informa-
tion itself but defines how this information has to be stored in XML format.

The MPEG-21 “Multimedia Framework” standard provides a multimedia frame-
work. It sets out a vision for the future where different users can use content in multiple
application domains.

Finally, there are a number of additional standards defined. For these standards
only a list of parts is available, no description: the MPEG-A “Multimedia Application
Formats”, the MPEG-B “MPEG Systems Technologies”, the MPEG-C “MPEG Video
Technologies”, the MPEG-D “MPEG Audio Technologies” and the MPEG-E “MPEG
Multimedia Middleware” standards.

10 MPEG overview Ch. 1

1.3 Coding process

In this section an overview of the steps within the MPEG-4 encoding process is given.
It is easier to describe the encoding process because all the steps origin in compressing
the data. So, in the encoding process the steps have a logical order. The decoding
process is taking the inverse steps in reverse order.

Figure 1.6 depicts an overview of the MPEG-4 encoding process. The shape
coding is not taken into account because the Simple profile used in this thesis does
not support this.

Figure 1.6: Basic block diagram of MPEG-4 Video Coder [2]

The basic block of a MPEG frame is 16x16 pixel Macroblock (MB). Such a MB con-
sists of 6 8x8 pixel blocks. There are 4 luminance blocks (for each pixel one luminance
value), one Cb block and one Cr block (see 1.1.1). For every four chrominance values
(Cb and Cr) there is only one weighted value stored. This is done by dividing the MB
in groups of 2x2 pixels, the average chrominance value of this four pixels is stored.

These 6 pixel blocks are the basic units for the encoding and decoding. On
each block the following steps are performed: A Discrete Cosine Transform (DCT),
AC/DC prediction, Quantization, scan, Event encoding and variable length encoding
(VLE) (Figure 1.7). Coding with this steps is called texture coding. On blocks of P-
and B-frames also motion estimation is performed to take advantage of the temporal
redundancy. [4] [6]

1.3.1 Motion Compensation

For the P-frames the encoding starts with motion estimation. Motion estimation is a
way of describing the difference between consecutive frames in terms of where each

Sec. 1.3 Coding process 11

Figure 1.7: Texture encoding: DCT, AC/DC prediction, Quantization, scan (zig-zag),
Event encoding and VLE

section of the former frame has moved to. For each MB a MV is calculated. This MV
gives the general direction of the motion from that MB; the vector points to a 16x16
block from the reference frame that matches the best (see figure 1.8). The process of
finding the best MV is called motion estimation. This process is a very intensive task.

A MV is pointing to a relative point in the previous frames. All pixels are
shifted along this vector, so the block is mapped on 8x8 pixels in the previous frame
(prediction block). The prediction block is not necessary a single block, it can for
example consist of two half blocks. The prediction block can contain samples from
at most four blocks. A MV consists of two values, one for the horizontal movement
and one for the vertical movement. So, when a sample in a block has coordinate X,Y
(coordinate in the whole frame) and the MV is (3,-2) the predicted value is the sample
in the previous frame at coordinate X+3,Y-2.

In MPEG-4 it is also possible to use a global MV. The local MVs are relative to
the global MV. The global MV can be used when the whole frame moves in the same
direction, e.g. when the camera moves.

One, two or four MV(s) may be used per MB. The number of MVs used is set in
the header. When one MV is used, all 6 blocks uses this vector. When two vectors are
used, for all blocks the average of these vectors is used. In the case that four vectors
are used, each vector is used for one luminance block. The chrominance blocks uses
the average of the four vectors.

MVs can have three different accuracies: integer accuracy, half-pixel accuracy
(in the middle between two pixels) and quarter-pixel accuracy. When a non-integer
accuracy is used, the predicted value is calculated by a linear interpolation of the
surrounding pixels.

When an integer MV is used this is called INTRA prediction, when non-integer
MVs are used this is called INTER prediction. Whether inter or intra prediction is used
is decided in the encoder based on a formula.

If INTER prediction is used, the MVs are coded differentially by performing
prediction based on the three MVs of the neighboring MBs: the left, the top and the

12 MPEG overview Ch. 1

right-top neighbors. The prediction is the average of this three neighboring vectors.
If one neighbor is outside the VOP, that vector is set to zero. If two neighbors are
outside the VOP, the value of the third is used as prediction. When all three neighbors
are outside the VOP, the prediction is set to zero.

The difference between the prediction and the original frame is subtracted. This
result is called the prediction error. This prediction error is calculated per 8x8 block
(for each 6 blocks per MB). This prediction error is encoded in the same way as I-
frames. So, for an I-frame there are 6 pixel blocks (with a lot of information) to be
encoded and for a P-frame there are 6 pixel blocks (with only the difference) and the
MV to be encoded. The pixel blocks are texture encoded (see the following steps), the
MV is directly encoded in the video stream. [4] [7] [8]

Decoding

The decoder uses the MVs encoded in the headers to obtain the prediction. In the
previous steps (the texture encoding) the prediction error is calculated. When the
prediction is added to the prediction error the original frame is decoded. The pre-
diction is acquired by calculating the values where the MV is pointing to for every
MB. [4] [9] [7] [10]

Figure 1.8: Motion estimation

1.3.2 Discrete Cosine Transformation

Next, the pixel blocks are encoded using a Discrete Cosine Transformation (DCT).
This transformation transforms the data from the spatial domain to the frequency
domain. This gives advantages because images have a strong ”energy compaction”

Sec. 1.3 Coding process 13

property: most of the signal information tends to be concentrated in a few low-
frequency components of the DCT that is located at the left-top values of the resulting
matrix (see figure 1.7). A P-frame will only contain the prediction error. This results
in an even stronger energy compaction and compression (see figure 1.9). [11]

(a) I-frame (11 EVENT codes)

(b) P-frame (3 EVENT codes)

Figure 1.9: Difference between an I and a P frame after a DCT

Decoding

In the decoder the 8x8 blocks are inverse cosine transformed. The blocks are trans-
formed from the frequency domain back to the spatial domain. The definition for the
MPEG-4 iDCT is (there are four slightly different definitions for iDCTs) [10]:

f [x][y] =
2
8

7∑
u=0

7∑
v=0

C(u) × C(v) × F[u][v] × cos
(

(2x + 1)uπ
16

)
× cos

(
(2y + 1)vπ

16

)
Where F[u][v] are the input samples, f[x][y] the output samples and C(u) en C(v) are
defined as follows:

C(u),C(v)
{ 1
√

2
, f or u, v = 0

1 , otherwise

1.3.3 Quantization

After the DCT the 8x8 pixels matrices are quantized. MPEG-4 quantization introduces
a weighting factor into the process. The purpose of this is to exploit properties of the

14 MPEG overview Ch. 1

human visual system. Since human eyes are less sensitive to some frequencies, these
frequencies can be quantized with a coarser step-size then more important frequencies.
This results in a matrix with as many as possible zeros with a minimal distortion in
the picture (see Figure 1.7). [4, 12]

Quantization is done by dividing the DCT matrix by a fixed quantization ma-
trix. Higer coefficients of the quantization matrix results in a coarser step-size of the
quantization which will give higher compression. So, the quantization determines
the trade-off between compression and loss of information. Quantization is the only
lossy step in MPEG-4 encoding (RGB to YCbCr conversion loses data when not all
chrominance samples are stored, but is officially not part of the standard).

Decoding

The inverse quantization consists of three different steps: the inverse quantization
itself, the saturation and mismatch control (see Figure 1.10). In this figure QF[v][u]
is the quantized input matrix value, the quant scale code is the scaler, W[v][u] is the
value of the quantization matrix, F”[v][u] is the non-saturated value, F’[v][u] is the
saturated value and F[v][u] is the output value.

There are two forms of inverse quantization used, the H.263 method and the
MPEG-4 method. Which method is used is a parameter of the MPEG-4 header.
Inverse quantization is different for DC and AC coefficients. For H.263 iQT the DC
coefficient of a block in a I-frame is reconstructed as follows:

F′′[0][0] = 8 ×QF[0][0]

And the rest of the coefficients:

F′′[v][u] =


0 , i f QF[v][u] = 0
2 ×QP ×QF[v][u] +QP + 1 , i f QF[v][u] , 0, QP is odd
2 ×QP ×QF[v][u] +QP − 1 , i f QF[v][u] , 0, QP is even

MPEG-4 inverse quantization is also different for I- and P-frames. The DC coefficient
of the blocks of I-frames is obtained by multiplying it with a scaler. This scaler can
be different for every MB and is encoded in the header. The non-saturated values are
computed as follows:

F′′[0][0] = scaler ×QF[0][0]

To reconstruct the other coefficients for both block of I- and P-frames (the AC coeffi-
cients and the DC coefficient from the blocks of P-frames) the following equation is
used:

F′′[v][u] =
2 × (QF[v][u] + k) ×W[v][u] × scaler

32
Where k is 1 for blocks of I-frames and k = sign(QF[v][u]) for blocks of P-frames:
negative samples stay negative. Samples of an I-frame are always positive, the P-
frame contains the error and can therefore contain negative values. For P-frames
another quantization matrix is used than for I-frames.

Next, the coefficients (both DC and AC) are saturated. The coefficients have to be
in the range [-2048,2047]. So, the coefficients are saturated in the following manner:

F′[v][u]


2047 F′′[v][u] > 2047
F′′[v][u] − 2048 ≤ F′′[v][u] ≥ 2047
−2048 F′′[v][u] < −2048

Sec. 1.3 Coding process 15

Finally, the mismatch control is carried out to compensate the mismatch between DCT
and iDCT. Only coefficient F[7][7] is compensated if necessary. First the sum of all
coefficients from the block is calculated. If the sum is even, the coefficient at 7,7 is
corrected in the following manner:

F[7][7]
{

F′[7][7] − 1 , i f F′[7][7] is odd
F′[7][7] + 1 , i f F′[7][7] is even

The rest of the coefficients are not changed. [10]
The result after the inverse quantization is an 8x8 matrix with coefficients in the

range [-2048,2047].

Figure 1.10: Inverse Quantization process [10]

1.3.4 AC/DC Prediction

A new feature in MPEG-4 encoding is the AC/DC prediction. All other steps described
here are also used in the previous MPEG versions. To gain more compression, some of
the values of the transformed matrix are predicted. The DC coefficient is the coefficient
at position 0,0, the rest of the values are AC coefficients. There exists a statistical
dependency between some of the AC and DC coefficients. Therefore, the value of one
can by predicted from coefficients of neighboring blocks (see Figure 1.11). Prediction
is only carried out on the first row or the first column of AC coefficients and the DC
coefficient of each block. The prediction is alway based on the above or left neighbors.
This is because in the decoding process these neighbors are already decoded, so the
values are available. Luminance blocks are predicted based on luminance blocks and
chrominance block predictions on chrominance blocks. These blocks can be in the
same MB or in another MB. The Cr and Cb blocks are always predicted based on the
Cr and Cb blocks from the previous MBs (see figure 1.11). [3] [9] [10]

Whether DC prediction is enabled is a parameter of the MB header. The predicted
DC value is as follows obtained:

DCX’ =
{

DCC , i f |DCA −DCB| < |DCB −DCC|

DCA , otherwise

16 MPEG overview Ch. 1

(a) luminance blocks (b) chrominance blocks

Figure 1.11: AC/DC prediction based on adjacent blocks

Where DCA is the DC value of the horizontal adjacent block (see Figure 1.11), DCB

the DC value of the left-top adjacent block, DCC the DC value of the vertical adjacent
block and DCX’ is the predicted value. The differential value, DCX – DCX’, is stored.
When an adjacent block is outside the frame the DC value of that block (for prediction)
is set to zero.

Decoding

The decoding process is similar. The prediction value is obtained in the same way.
The original value is the prediction value added to the differential (stored) value.

The AC prediction is also based on the horizontal or vertical adjacent blocks.
The direction of the DC prediction (horizontal or vertical) is also used for the AC
prediction. Because of that, AC prediction can only be enabled when DC prediction
is also enabled. Besides, AC prediction is only used for intra frames (I-frames).

When the horizontal direction is used, only the first column is predicted, with
vertical direction only the first row (accept the coefficient at 0,0, the DC coefficient).

The predicted values are calculated with the following formula:

horizontal vertical

QAC[i][0]X′ =
QAC[i][0]A ×QPA

QPX
QAC[0][j]X′ =

QAC[0][j]C ×QPC

QPX

Where QAC[i][j]A is the AC coefficient, QPA is the AC quantifier of block A and
QAC[i][j]X’ is the predicted value. When an adjacent block is outside the frame, the
corresponding AC values are set to 0 and the QP value is assumed to be equal to QPX.

The differential values (original value minus predicted value) are stored. The
decoder obtains the original value by adding the predicted value to the differential
value.

The decision to enable or disable the AC prediction is based on criterion S. For
horizontal prediction the criterion is calculated as follows:

S =
7∑

i=1

|QACi0X| −

7∑
i=0

|QACi0X′ |

Sec. 1.3 Coding process 17

For vertical prediction the criterion is done in the same way but instead of prediction
based on block A prediction based on block C is used.

For all blocks in the MB a common decision is to be made, so the sum of all
criterions S is calculated and the AC prediction decision is made on the rules below:{

enable AC prediction , i f
∑

S > 0
disable AC prediction , otherwise

A flag in the header indicates whether AC prediction is enabled or disabled.

1.3.5 Scan methods, Event decoding en VLE

To store or transport the matrix it has to be mapped from an 8x8 matrix to a 1x64
vector. For some cases there are different scan methods (depending on the AC/DC
prediction). In the end of the vector are long runs of zeros.

There are 3 scan methods employed to transform the 8x8 matrix to a 1x64 vector
(see figure 1.12). The used method depends on the DC prediction direction. P- and
B-frames always use the zig-zag scan. For I-frames, if the AC prediction is disabled,
the zig-zag scan is selected. If AC prediction is enabled and the DC prediction is
from the horizontal adjacent block the vertical-alternate scan is used, otherwise the
horizontal-alternate scan is used. Which prediction mode and direction is used can
be calculated from the preceding blocks (see previous section). [4]

(a) Alternate-horizontal scan (b) Alternate-vertical scan (c) Zig-zag scan

Figure 1.12: Scan methods

The 64 coefficients are EVENT encoded. Because of the scan, there are long runs
of zeros. The length of zero runs together with a non-zero coefficient and a flag if it is
the last non-zero coefficient are encoded as a triple (last, run, level):

LAST 0: there are more nonzero coefficients in the block, 1: This is

the last nonzero coefficient

RUN Number of zero coefficients preceding the current nonzero

coefficient

LEVEL The coefficient itself

In most cases, this reduces the number of coefficients.

18 MPEG overview Ch. 1

Finally, the most common events are variable length encoded using a special
type of Huffman coding. Variable length encoding means that not all data items are
encoded using the same amount of bits. More common data items are encoded with
fewer bits than the ones that occur less frequently. The table with codes is a fixed
table, so there are fixed variable length codes. The rare events that are not variable
length encoded are just encoded with 22 bits with special escape bits, starting with an
escape sequence [4, 10, 11]:

ESCAPE 7 bit escape sequence

LAST 1 bit

RUN 6 bit

LEVEL 8 bit

1.3.6 Headers

The video bitstream of MPEG4 is arranged in a structured composition of four layers:
Picture Layer, Group of Blocks Layer (the MBs in a picture are divided in blocks),
Macroblock Layer and Block Layer. Each layer has its own header. Some headers
are optional and when there is a header some parts of the header are also optional.
The most important parts of the headers are discussed in this paragraph, a complete
description can be found in [4].

Each picture in the video bitstream has its own header. The header provides
information about the size (QCIF, CIF, enz.), the type (I,B,P) and a couple of other
defines like the type of MV and the prediction modes coded in the PTYPE field. The
quantizer is defined in the PQUANT field. The data, the Marcroblocks, are in the
GOB LAYER field. The EOS field is a flag that is used when all picture of a stream are
send [9].

The Group of Blocks Header is not send for the first group of blocks in each
picture. For the other GOBs, the header may be empty.

In the MB header is again defined to which kind of frame this MB belongs (I,
P or B). There is also a differential quantizer coded (coding the difference in the
multiplication factor). This differential quantizer indicates four possible changes in
the quantizer (-1, -2, 1, 2). The MVs are also defined in this header.

The Block Layer does not contain a real header. This layer consists of two fields,
the IntraDC field and the TOOEFF field. The IntraDC field contains the DC value in
case of an I-frame and is otherwise empty. In an I-frame the DC value is not entropy
encoded and quantized separately. The TOOEFF field contains the rest of the (coded)
coefficients [9].

1.3.7 Color conversion

To convert the YCrCb values to RGB values a whole MB is required. For converting
a luminance block to its RGB values, a quarter of a Cr block and a quarter of a Cb
block are used (because only one-fourth of the chrominance samples were stored,
see section 1.1.1). Converting the YCrCb values to RGB is done with the formulas
mentioned in the first paragraph of this chapter:

Sec. 1.3 Coding process 19

R = 1.164 · (Y − 16) + 1.596 · (Cr − 128)

G = 1.164 · (Y − 16) − 0.813 · (Cr − 128) − 0.392 · (Cb − 128)

B = 1.164 · (Y − 16) + 2.017 · (Cb − 128)

As mentioned above, for every coordinate there is an luminance sample avail-
able, but not for every chrominance vector. Because of there are one-fourth of the
chrominance samples, every chrominance sample is used four times (1.13).

Figure 1.13: Location of YCrCb samples in a macroblock

CHAPTER 2

Reconfigurable and Heterogeneous Architectures

Modern day’s embedded systems have a large variety of requirements like high
performance, energy-efficiency, real time behavior, reliability and flexibility. The
set of requirements for a specific system is quite often contradictory. For example,
mobile devices like mobile phones, multimedia players and PDAs require both high
performance and high energy-efficiency. The major opportunity to deal with those
problems is the domain specific application of an embedded system.

In this chapter we start with a list of algorithm properties that are important
for the architecture. The next two sections give an introduction into two special
(often used) architectures in embedded systems: reconfigurable and heterogeneous
architectures. The fourth paragraph gives a short introduction into the communication
between different architectures. The chapter ends with a description of the used
architecture for this project, the BCVP.

2.1 Algorithm properties

There are many different types of algorithms, each with their own properties. Algo-
rithms can be computational intensive, memory intensive, control intensive, etc. For
a good performance it is important to map an algorithm on a processor that is capable
of executing an algorithm efficient. With efficient executing we mean that the proces-
sor is able to execute the algorithm in a energy-efficient way. For example, mapping
an memory intensive algorithm on an architecture that has a high memory access
time and/or a small memory gives a miserable performance [13]. One property that
many algorithms have in common in mobile applications is that they are streaming
DSP applications. Examples of streaming algorithms are HiperLAN/2, WiMaX, DAB,
DRM, DVB, UMTS and multimedia processing like MPEG [14].

21

22 Reconfigurable and Heterogeneous Architectures Ch. 2

2.1.1 Streaming algorithms

Streaming DSP algorithms express computation as a data flow graph with streams
of data items (the edges) flowing between computation kernels (the nodes) [14]. An
example of such a flow graph is shown in Figure 2.1. The nodes represent the processes
and perform the actual computation, the edges represent the communication lines.
The data streams through the graph from node to node over the edges. In this thesis
we assume that the graph is deterministic.

Figure 2.1: Streaming Process Graph

In a deterministic process graph, the data flows always in the same way through
the nodes in a pipelined fashion. This gives a predictable temporal and spatial be-
havior, which can be used to map the algorithm on parallel processors. The local
processing in the nodes is relatively simple, but there is an huge amount of data. The
data rate (IO) can be very high in streaming applications. Therefore, the communica-
tion will dominate the energy costs rather than the processing. [14]

2.1.2 Parallelism

Parallelism means doing multiple things at the same time, or pretend to do multiple
things at the same time. Personal Computers are pretending to handle multiple
processes in parallel. In fact they do not really do two things at the same time. They
divide the single processor in small time slices and the different processes can use
alternately the CPU. This form of parallelism is called functional parallelism. When
there are actual multiple processing units and there are really multiple processes
running at the same time, this is called architectural parallelism.

For streaming algorithms parallelism means doing the calculation of multiple
nodes at the same time, so architectural parallelism. There are two forms of architec-
tural parallelism: spatial and temporal (Figure 2.2).

Temporal parallelism

Temporal parallelism looks like pipelining. There are multiple processing units, the
first processing unit starts the calculation on a sample and sends the result to the next
processing unit. While the next processing unit performs the calculation on the first
sample (the result of unit one) the first processing unit can start the calculation on the
next sample (Figure 2.2a). This form of parallelism can be used for every multiple
node algorithm by mapping the successive nodes on successive processing units.

Another form of temporal parallelism is to implement the application twice.
Mapping the process graph (or only the slowest part) twice on the architecture results

Sec. 2.1 Algorithm properties 23

(a) Temporal parallelism (b) Spatial parallelism

Figure 2.2: Temporal and spatial parallelism

in two implementations that can process a sample in parallel. This form of paral-
lelism can be used for every algorithm when there are no data dependencies and the
processes are stateless.

Temporal parallelism does not decrease the latency of an algorithm, every pro-
cessing step is done successive in time, just like it is done on only one processing unit.
The gain is an increasing throughput.

Spatial parallelism

Spatial parallelism means that there are several calculation done on the same data item
on the same time (Figure 2.2b). Spatial parallelism is not possible for all algorithms.
The input of the different processes (nodes) has to be independent of each other, i.e.
if an process uses the result of another process as input, these processes can not be
calculated at the same time. Figure 2.3 shows a process graph, the processes in a box
in the graph can be calculated at the same time. Spatial parallelism does not only
increase the throughput, but also decrease the latency because several steps of the
algorithm are calculated at the same time.

Figure 2.3: Parallelism in the process graph

24 Reconfigurable and Heterogeneous Architectures Ch. 2

2.1.3 Algorithm characteristics

There are four areas of specializations in a processor: the data paths that perform
the actual operations, the memory architecture, the interconnect architecture and the
control architecture [13].

In [15] a set of properties for algorithm characterization is proposed. The prop-
erties of this set required to elect the most suitable architecture for an algorithm are:

• Size depicts the number of nodes in the flow graph of a process, the bit width,
the number of i/o operations, the number of memory accesses and the required
amount of memory.

• Concurrency measures the number of operations that can be executed at the same
time.

• Temporality captures information about the lifetimes of variables.

• Spatial locality characterizes the degree of natural clusters of computations in the
algorithm, where amounts of computation can be done independently.

• Regularity is the amount of common patterns within the algorithm.

• Control flow properties determines the structure of the control flow and interaction
between loops, e.g. the number of (conditional) jumps.

Important algorithm properties for the data path are concurrency and size. To
exploit the concurrency, the data path must support computation of multiple opera-
tions at the same time. The size covers the bit width of the operations. Furthermore,
the complexity of the operations and the support for complex operations by the data
path are important (e.g. multiplications and division).

The size and temporality determine the requirements for the memory architec-
ture. The lifetimes of the variables determine the requirements for the registers (num-
ber of registers) and caches. There must be enough memory available and the number
of memory accesses determines the requirements for the memory architecture.

The concurrency, regularity and size determine the preferences for the inter-
connect. To exploit the concurrency the interconnect architecture must support the
concurrent interconnect operations. The regularity determine how often the intercon-
nect has to be reconfigured and how many configurations are required. The number
of i/o operations determine requirements for the interconnect architecture to the i/o
devices (e.g. speed).

Important for the control architecture are the size (number of different oper-
ations), regularity and control flow properties. The last two properties determine
the flexibility and amount of control. The spatial locality is a degree for the spatial
parallelism.

2.2 Reconfigurable Architectures

With a reconfigurable architecture we mean an architecture with a reconfigurable
instruction set. The available instruction set after configuring is a subset of the total
instructions that can be performed by the architecture. This results in an architecture
which adapts to the algorithm.

Sec. 2.2 Reconfigurable Architectures 25

2.2.1 Introduction

The four most common processor architectures are the General Purpose Processor
(GPP), the Field Programmable Gate Array (FPGA), the Digital Signal Processor (DSP)
and the Application Specific Integrated Circuit (ASIC). All these architectures have
their own advantages and disadvantages.

Classic Architectures

A GPP is the most flexible architecture. The GPP is used in all personal computers.
It can be programmed to compute any algorithm, which is its major advantage. It
has a simple instruction set available, but a sequence of instructions make complex
operations possible. Because the instructions are stored in the main memory, there is
in practice no limitation on the number of instructions used. Because this architecture
is so often used, there are a lot of compilers available. Implementing an algorithm
on such an architecture can be done very fast in a wide variety of languages. The
disadvantages of the GPP are its poor performance and its energy-inefficiency.

Originally, GPPs where designed according to the Von Neumann architecture
(Figure 2.4a). In a Von Neumann architecture the data and the instruction are in
a single memory. Only one memory read can be done in one cycle on a memory.
Therefore, in every memory clock cycle only a data item or an instruction can be read.
The speed of the GPP has become many times faster than the speed of memory, so
the memory is the bottleneck in the speed of the GPP. This bottleneck is called the Von
Neumann bottleneck. One way to relieve this bottleneck is split memory into a data
memory and an instruction memory. This is called the Harvard architecture (Figure
2.4b). The second way is to use a memory hierarchy with fast caches. [16]

(a) Von Neumann architecture (b) Harvard architecture

Figure 2.4: Von Neumann and Harvard architecture [16]

A DSP architecture resembles a GPP, but is optimized for digital signal processing
operations. DSPs have a larger instruction set than an GPP, but the instruction set of an
DSP is specialised on DSP algorithms. The DSP has more combinatorial hardware and
less control hardware. DSPs are more energy-efficient and have a better performance
than a GPP when they are used for digital signal processing [16].

26 Reconfigurable and Heterogeneous Architectures Ch. 2

An FPGA consists of a two dimensional array of Logical Cells (LC). An LC is the
processing unit of an FPGA, which can perform simple operations. In some FPGAs
there are also memory components available in the LCs. The LCs can be connected
via a configurable matrix of wires (see Figure 2.5). By configuring the interconnects
between the LCs and the LCs itself, the FPGA performs a particular function after
configuration. A configuration can be seen as an instruction. Therefore, FPGAs have
an unlimited instruction set, but there is only one instruction stored.

Because the FPGA has to be configured for every wire and every LC, the amount
of configuration information is considerable (order of Mb) and loading the configu-
ration into an FPGA is slow. When another algorithm has to be computed, the whole
FPGA has to be reconfigured, even if there is only a slight adjustment in the algorithm
(some FPGAs support partially reconfiguration). So, an FPGA is not very flexible.
Developing an algorithm for an FPGA is not very easy, because Hardware Description
Languages (HDL) are used to describe the functionality. These languages are much
more complicated than high level languages. Furthermore, compilation of HDL to
configurations requires more time. Because of the architecture of the FPGA its capable
of exploiting a lot of parallelism. An FPGA has a good performance for algorithms
matching the hardware: algorithm that manipulate bits and have a lot of parallelism.
An advantage of the FPGA is that its much more energy-efficient than a DSP [16].

Figure 2.5: FPGA architecture [16]

An ASIC is an integrated circuit designed for a specific algorithm. An ASIC
implementation of an algorithm is the fastest compared to the other architectures. But
once an ASIC is produced, it can not be changed anymore. So, for every algorithm
another ASIC has to be designed and produced, even for an update. Designing an
ASIC is also done in HDL. Next to that an ASIC is very fast, it is also the most
energy-efficient choice [16].

Reconfigurable Architectures

The conclusion is that a GPP is the most flexible architecture, but with the worst per-
formance and energy-efficiency characteristics and an ASIC is not flexible at all but

Sec. 2.2 Reconfigurable Architectures 27

has the best performance and energy-efficiency. So, a trade off is possible between
flexibility, performance and energy-efficiency (Figure 2.6). However, for many ap-
plications both flexibility and energy-efficiency are required, for example for mobile
devices [13].

There is a gap between the flexible, not so energy-efficient DSP and the energy-
efficient, not flexible ASIC (see Figure 2.6). This gap is filled by reconfigurable ar-
chitectures. One of these architectures is the FPGA, but the FPGA is optimized for
certain algorithms.

Figure 2.6: Tradeoff between flexibility and performance

So, the demands for a reconfigurable architectures are: flexibility, good perfor-
mance, energy-efficiency and re-usability. Reconfigurable architectures try to find a
compromise between these requirements. Developing an universal reconfigurable
architecture is an illusion. To satisfy the requirements, domain specific reconfigurable
architectures are used. These architecture are flexible, have a good performance and
are energy-efficient within a particular algorithm domain. [17]

2.2.2 Reconfigurable Architecture properties

Reconfigurable architectures have specific properties. The most important properties
are discussed below. [16]

Dynamic versus Static reconfiguration

Infrequent reconfiguration (e.g. once an hour or once a week) is known as static
reconfiguration. Frequent reconfiguration is known as dynamic reconfiguration. For
dynamic reconfiguration (e.g. once a second) the configuration information has to be
small. There are some architectures that use two configuration spaces [16]. In this
way the offline configuration space can be reconfigured while the online configuration
space is used and when needed it can swap to the other configuration instantly.
Dynamic configuration also allows time-sharing of hardware. When for example an

28 Reconfigurable and Heterogeneous Architectures Ch. 2

algorithm computes two multiplications, both multiplication could be done on one
multiplier (when it fits in time).

Fine grained versus Coarse grained

The granularity of an architecture is defined as the width of its components in the
datapath. We define a datapath of four bits or less as fine grained. Fine grained
architectures need more configuration information and configuration overhead, be-
cause it can be configured on detailed level. Word-level operations in a fine grained
architecture gives a lot of overhead, because for each word operation multiple bit
configurations have to be set. Coarse grained architectures need less configuration
information than fine grained architectures. However, bit manipulating algorithms
can be done much more efficient on fine grained architectures.

Levels of reconfigurability

There are different levels of reconfiguration. In a reconfigurable architecture a subset
of the total instruction set can be used without reconfiguration. On an FPGA this is
only one (large) instruction, a M (see Section 2.5.2) can use more instructions
without reconfiguration. For the re-usability the configuration information should be
as small as possible and it is preferable that the architecture could be reconfigured at
run-time. Reconfiguration also should not take too much time. [17]

Design automation

For a reconfigurable architecture it is important that there is enough high-level tooling
available. Low level languages like HDLs and assembly require a lot of knowledge
of the underlying architecture and experience before the optimizations for standard
code constructions (i.e. loops) can by fully exploited. Besides that, developing in a
low-level language requires much more time than in a high-level language. On the
other hand, compilers have sometimes difficulties with exploiting all the parallelism
and optimizations for a particularly architecture, so for the best implementation the
developer has to have some knowledge about the architecture. One solution is using
a high-level language in which it is possible to have more control over the mapping
on the hardware, for example with the Configuration Description Language (CDL) (see
Section 2.5.2).

2.3 Heterogeneous architectures

A conclusion of the previous section is that different processors have all their own ad-
vantages and every processor is best in a particular application domain. Fine grained
reconfigurable architecture are best in bit level operations, coarse grained reconfig-
urable architectures in word level operations and GPPs have the best performance in
control intensive and irregular tasks (with a lot of different instructions). Combin-
ing different processors gives a system that can efficiently execute a large variety of
algorithms.

Sec. 2.4 Network on Chip 29

2.3.1 Heterogeneous architectures

Today, many applications include algorithms or parts of algorithms that require (for
best performance) different processors. For example, MPEG-4 contains very control
and memory intensive parts (VLC, MC) and very regular, computation intensive parts
(iDCT, CS). That is why Heterogenous Architectures become popular. Heterogeneous
architectures are architectures that consists of different types of processors. For ex-
ample, combining a GPP with a reconfigurable processor gives good performance for
both control intensive and computationally intensive tasks.

When in an heterogeneous architecture the reconfigurable processor can be used
for two different tasks (because that fits in time) it has to be reconfigured, otherwise
it would require two such processors due to the lack of a reconfiguration ability. The
advantage of combining a reconfigurable processor with another processor such as
a GPP is this reconfiguration. The GPP can reconfigure the reconfigurable processor
when necessary, without the need of an external signal or person. [13]

Besides high performance for a single application, mobile devices also require an
architecture that can efficiently run different types of algorithms. Mobile phones are
not only used to make phone calls, but also to listen MP3s, listen to the radio, watch
videos and play games. So, there are a lot of different applications and therefore a
large variety of algorithms. The workload on a mobile device is very dynamic. When
the user watches for example a movie on his phone, the phone is downloading video
(via UMTS), encodes (MPEG) it and shows it on the screen. When the phone is in
standby, it is only contacting the telephone network now and then.

The algorithms have to be mapped on the processor that is the best suitable to
fulfill the task to get a good performance and efficiency. Processors of the architecture
that are temporarily not used (because of the variable demand of processing power)
need to be switched off or switched to low-power mode.

Heterogeneous tiled architectures can be helpful to achieve the performance goal
in an energy-efficiency way. By integrating different types of processors on the device
it can get a good performance in case of high load. The control process maps the
different algorithms to the architectures that are best suitable for it. When there is
little load, parts of the tiled architecture can be switched off or switched to power save
mode to get a considerable reduction in energy consumption. When load decreases
and one or more processors are switched off it can be necessary to move a process
from a processor which is switched off to another processor. Therefore, a run-time
remapping tool is required. [14]

2.4 Network on Chip

When multiple processors are combined in one architecture, a communication in-
frastructure between these processors is required. This communication has to have
enough bandwidth to transport the (streaming) data from one processor to another.
When more than two processors are used, a programmable infrastructure is preferred.
Which processors communicate with each other is related to the application.

Some kind of communication is required on a multi-processor platform. In
the case of only two processors, a point-to-point link between this two processors
satisfies. But when there are more processors, communication possibilities between

30 Reconfigurable and Heterogeneous Architectures Ch. 2

every two processors are required. When for every tuple of processors a point-to-point
link would be implemented, it requires a lot of hardware. Therefore, some flexible
solution is required. One solution is the use of a bus. Drawback of this solution is
that only two architectures can communicate at the same time. A better solution is a
Network on Chip (NoC).

A NoC consists of point-to-point links and routers. Every processor is connected
with a router through a point-to-point link. Routers are connected to each other. Every
tuple of processors can communicate and there are multiple communication paths at
the same time available. For the routers, just like for ethernet networks, scheduling
and routing algorithms are required. And just like for ethernet networks, there are
several methods and algorithms available. Which is the best algorithm is subject of
current research.

2.5 Used architecture: BCVP

For this report the BCVP is used. This is a heterogeneous architecture with reconfig-
urable parts. It is the concept platform of the Smart Chips for Smart Surroundings
(4S) project. [1]

Figure 2.7: Basic Concept Verification Platform architecture

2.5.1 Layout

This architecture contains two GPPs, a fine-grained reconfigurable part (FPGA) and an
ASIC tile [1]. In this master project the FPGA is configured with multiple M
(see Section 2.5.2) connected via a small NoC. These M itself are coarse-

Sec. 2.5 Used architecture: BCVP 31

grained reconfigurable architectures. The configuration of the BCVP is depicted in
Figure 2.7.

All the communication between the different parts is done via shared memory
and the AMBA bus. Hardware drivers between the actual hardware and the memory
handle the communication between the hardware and the memory.

For the General Purpose Processors two ARMs are available, the ARM 946E
(ARM1) and the ARM 920 (ARM0). For our implementation, most of the tasks are
performed by ARM1 (946) because this processor starts at boot time and this processor
can access all memory on the chip. ARM0 is hardly used.

The FPGA on the BCVP is a Xilinx XC2V6000. Optionally this FPGA can be
configured to emulate a couple of M. On the BCVP there is also an ASIC
available. This is a Viterbi decoder. This ASIC is not used in this project. On the ARM
runs an Operating System that is developed at the University of Twente. [18]

2.5.2 Montium

The M is a reconfigurable architecture developed at the University of Twente
by Paul Heysters [16]. The M contains five Arithmetic Logical Units (ALUs)
with their own register file of 16 registers and ten 16-bit wide memories with a dept
of 1024 words. Figure 2.8 depicts the total architecture of the M.

Figure 2.8: Montium architecture [16]

Each ALU is connected with a local interconnect to two memories. One combi-
nation of an ALU, its registers and the two memories is called a Processing Part (PP).
There are 5 such PPs available on one M. Such a set of PPs is called a Processing

32 Reconfigurable and Heterogeneous Architectures Ch. 2

Part Array (PPA). An ALU can do computation on data that is in the register file. The
register bank is divided in four parts, every part can contain four data items. Every
part is directly connected to an input of the ALU. Therefore the ALU can do calcu-
lation on 4 data items every clock cycle, but these data items have to be in different
parts of the register. Next to the input data from the register bank is there an east-west
connection between the PPs. This east-west connection is within the combinatorial
datapath without registers.

Between the PPs and the memories there are 10 global busses for transport of
data to another memory than the two local memories, for data transport between PPs
and for data transport to and from the Communication and Configuration Unit (CCU).
The CCU is the interface to the NoC. There are four 16-bit lanes to the outside and
four 16-bit lanes from the outside. The total width of the datapath (except some parts
of the ALU) is 16-bit. [19]

Figure 2.9: Montium configuration hierarchy [16]

A M is controlled by the sequencer. This sequencer contains an instruction
memory with a depth of 256 instructions. In this memory there are the encoded
instructions for the ALU, memories, registers and the interconnect. So, there are only
256 different sequencer instructions possible without reconfiguration. It is possible
to perform jumps within the sequencer (i.e. at the end of the code jump back to the
beginning to run the same code again), so an algorithm can also perform loops and
more than 256 clock cycles can be run without reconfiguration.

The sequencer behaves like a state machine. The decoding of the state into hard-

Sec. 2.5 Used architecture: BCVP 33

ware instructions is done in stages. The sequencer instructions call a decoder, which
internally selects the hardware instruction. Both the decoder instructions and the
hardware instructions are stored in registers. Not all combinations of instructions fit
in the registers. Therefore, only a subset of the total possible (combinations of) in-
structions can be used without reconfiguration. Figure 2.9 shows the staged memory
hierarchy. The figure shows the configuration hierarchy of the M implementa-
tion described in [16]. There are differences in the memory mapping with the current,
used implementation, but the hierarchy principle remains the same.

The staged decoding of the hardware instructions result in a very small con-
figuration space and thereby in a small reconfiguration time. The M can be
partially reconfigured. Drawback of these registers is that the number of different in-
structions (without reconfiguration) is small. For example, there is for every ALU an
instruction register with a depth of 8 available. This results in 8 different instructions
for every ALU. The instruction register for every global bus has a depth of four, so
there are four configurations possible for one global bus.

The M is capable to read 4 (16-bit) samples from the outside and write
4 samples to the outside every clockcycle. The FPGA implementation of the M-
 has an clockspeed of 6.6 MHz. This results in a (theoretical) communication
bandwidth of 50 MB/s. The ASIC implementation of the M has an expected
maximum clockspeed of 100 MHz. This would result in a bandwidth of 750 MB/s. The
combination of the high bandwidth and a small configuration makes the M
suitable for computationally intensive, regular tasks width a high communication
bandwidth.

The ALU has four inputs and two outputs. The ALU itself is divided into two
levels: a level with four functional units and a level with a multiplier and a butterfly
structure with two adders/subtracters. Figure 2.10 shows this structure.

Figure 2.10: Montium ALU [16]

The functional units in level one of the ALU implement general arithmetic and
logical operations that are available in languages like C [16]. Examples of these arith-

34 Reconfigurable and Heterogeneous Architectures Ch. 2

metic operations are (saturated) additions, minimum and maximum of two values
and absolute values. The logical operations are operations like bitwise ”and” and
”or”, bitwise inversion and the negate operation.

Level two of the ALU is in fact a multiply-accumulate (MAC) structure with a
butterfly structure below. This level is able to multiply two values, add a value to it
and in the butterfly add and subtract another value.

The ALU can do complex computations in one clock cycle. But, especially with
complicated computations, not all combinations of registers are possible. It is possible
to multiply A and C and add and subtract D from it, but is not possible to multiply A
and B and add and subtract C from it. The ALU can do integer calculations as well as
fixed point calculations.

CHAPTER 3

MPEG-4 implementation on the BCVP

This chapter describes which parts of the MPEG-4 standard are implemented on
the M. The first section starts with an argumentation on which processor of
the BCVP (or type of processor) each part of the MPEG-4 standard could best be
implemented. The next two sections describe the implementations of the iQT and CS
on the M. The last section studies how MC could be implemented on a FPGA.

3.1 MPEG-4 processes

For this thesis we use the MPEG-4 implementation of the 4S project [1]. It implements
the Simple Profile and Advanced Simple Profile. The format of the video stream is
QSIF (176x144 pixels) and SIF (352x288 pixels). The input is a MPEG-4 video stream,
the output is the RGB frames that can be displayed on a monitor.

The 4S implementation is a streaming implementation. The application consists
of four processes: variable length coding (VLC), inverse quantization (iQT), motion
compensation (MC) and color space conversion (CS). The first process, VLC, contains
the VLC algorithm, header decoding, EVENT decoding, inverse scanning and AC/DC
prediction. The iQT process exists of the iQT algorithm and the iDCT. The MC process
contains the MC algorithm, the CS process executes the CS algorithm.

All processes are based on frames. The process starts when a whole frame is
available. Therefore, the buffers of the pipes have to be big enough to contain a whole
frame. Figure 3.1 shows the data rate between the processes per frame.

The VLC algorithm searches in lookup tables whether a code is available. The
length of the code is variable. Therefore, it is not possible to map a code directly
to a memory address. The algorithm starts searching with the minimum number of
bits a code can have (length of the smallest codeword). If this code is not available it
searches with one bit more, etc. There are optimizations for this problem, but most of
them require even more memory [12]. Next to searching and accessing memory, and
the memory usage it is an essentially sequential process. Only after a code is decoded

35

36 MPEG-4 implementation on the BCVP Ch. 3

Figure 3.1: Data rate between MPEG-4 processes in bytes per frame

the next code can be decoded because the length of a code is variable. So the VLC
algorithm can best be implemented on the ARM.

The iQT and the iDCT are very computational intensive algorithms. In particular
the iDCT requires a lot of processing power [20]. Some algorithms described in
literature for iDCT contain a lot of parallelism. Next to this, the algorithms only
require input blocks of 64 bytes, 2 times 64 bytes for the inverse quantization and
some operands for the iDCT. These algorithms seem to be suitable to be implemented
on the M. Section 3.2 describes the implementation on the M and the
problems implementing it.

MC is locating the reference block in the memory and adds the prediction error.
These additions are simple integer additions (8 bit). For every input sample there
is one addition. The most challenging part of MC is locating the reference block in
the memory based on the motion vector (MV). These are not always 64 consecutive
addresses. For example, when the image is stored row by row, the first eight samples
of the reference frame are in consecutive addresses but the ninth sample is one row
lower. Implementing MC on the M is not possible because there is by far
not sufficient memory to save a complete reference frame. Furthermore, there is less
parallelism possible because for almost every operation a memory access is required
(to the same memory). The MC could be implemented on a processor with enough
memory and processing power to generate the addresses, for example a FPGA. How
it could be implemented on a FPGA is pointed out in Section 3.4.

The Color Space conversion is a straightforward algorithm consisting of five
multiplications and seven additions per pixel. These operations can be (partially)
done in parallel. Three input samples are used for every iteration and three output
samples produced. Not all input samples are really streamed, a part of the samples
is used multiple times. All together, this algorithm is suitable to be implemented on
the M.

3.2 Inverse Quantization on the Montium

The process iQT consists of two algorithms, the iQT and the iDCT. The iQT algorithm
is different for I- and P-frames and every frame has its own multiplication factor. The

Sec. 3.2 Inverse Quantization on the Montium 37

iDCT is for all frames exactly the same. Therefore, the process requires next to the 64
samples of every block also a flag for the I- or P-frame selection and the multiplication
factor as input.

3.2.1 Inverse Quantization

The iQT algorithm is described in Section 1.3.3. For an I-frame the iQT consists of two
multiplications, for a P-frame of two multiplications and an addition (or subtraction).
This last addition or subtraction is difficult. If the sample is negative, the sample must
be decreased by one, if the sample is positive the sample must be increased by one and
if the sample is zero it must stay zero. For I-frames, the same equation as described
in Section 1.3.3 is used. For P-frames, the equation is a bit changed:

F′′[v][u] =
2 × (QF[v][u] + k) ×W[v][u] × scaler

32
= (QF[v][u] + k) ×

2
32
·W[v][u] × scaler

The value stored in memory is not the matrix value W, but 2
32 ·W. The operations and

their mapping on the M is shown in Figure 3.2. The mismatch control is not
shown in this figure. For the mismatch control all samples are summed up during the
quantization. This is done in parallel on PP4. Afterwards, checking whether the last
sample has to be changed or not and change the sample is done on PP4 in two clock
cycles. One for checking whether the sum of all samples is odd or even and one for
adding or subtracting one of the last sample of the block.

I-frame P-frame

1: X1 = sample[i][j] << 4 1: X1 =

{
(sample[i][j] + 0) << 4 , i f sample[i][j] >= 0
(sample[i][j] + 2) << 4 , otherwise

2: X2 = scaler ×matrix[i][j] 2: X2 = scaler ×matrix[i][j]

3: X3 = X1 × X2 3: X3 =

{
X1 × X2 + X2 , i f X1 <> 0
X1 × X2 + 0 , otherwise

Figure 3.2: iQT mapping on the M, arrows represent data dependencies

The mapping is in such a way that the iQT for I-frames and for P-frames both
use one clock cycle. This is the clock cycle which is also required to stream in the data

38 MPEG-4 implementation on the BCVP Ch. 3

and store it on the right place in the memory for the iDCT. So, after implementing the
iDCT, implementing the iQT hardly increases the number of clock cycles. Only the
last sample (with the mismatch control) and the pipeline fill requires some extra clock
cycles (3 in total).

The mapping shows how the addition/subtraction problem is solved. This is
done by subtracting two if the sample is smaller than zero and nothing otherwise
after multiplying the sample with two (node 1 in Figure 3.2). After multiplying the
result of node 1 and 2 (in node 3) the result of node 2 is added another time if the
result of node 1 is not zero. So, the implemented equations are:


((sample × 2) − 0) × (scaler ×matrixValue) + (scaler ×matrixValue) , i f sample > 0
((sample × 2) − 0) × (scaler ×matrixValue) + 0, , i f sample = 0
((sample × 2) − 2) × (scaler ×matrixValue) + (scaler ×matrixValue) , i f sample < 0

3.2.2 Inverse Discrete Cosine Transform

Implementing an iDCT in a straightforward way is very slow. For every coefficient in
the block there are 8 × 8 multiplications of 5 numbers. There are also cosine numbers
among these numbers and for this cosine numbers itself there are also multiplications
required (or they have to be stored in memory). Implementing the straightforward
way with a few optimizations showed that 16384 multiply accumulate operations are
required for each block. The definition of a 2D 8x8 iDCT is:

f [x][y] =
2
8

7∑
u=0

7∑
v=0

C(u) × C(v) × F[u][v] × cos
(

(2x + 1)uπ
16

)
× cos

(
(2y + 1)vπ

16

)
Where F[u][v] are the input samples, f[x][y] the output samples and C(u) en C(v) are
defined as follows:

C(u),C(v)
{ 1
√

2
, f or u, v = 0

1 , otherwise

There are a lot of different ways of implementing the iDCT algorithm. All these ways
have one thing in common: the 2D iDCT is split in 16 1D iDCTs. For a 1D iDCT there
are much more optimizations known than for a 2D iDCT [20]. The definition of a 1D
iDCT is:

f [x] =
7∑

u=0

C(u) × F[u] × cos
(

(2x + 1)uπ
16

)
The 2D iDCT can be calculated by calculating the 1D iDCT on each row and on each
column of the block.

One of the most optimized ways of implementing an iDCT is Chen’s method
[20,21]. Chen derived a way of implementing a 1D iDCT with 16 multiplications and
26 additions without complicated memory operations or divisions. The whole 2D
iDCT requires 256 multiplications (16*16) and 416 additions (16*26). A flow graph of
Chen’s algorithm is given in Figure 3.3.

We have chosen to implement the method of Chen because this algorithm uses
almost the least number of multiplications and additions and it uses a few constants

Sec. 3.2 Inverse Quantization on the Montium 39

Figure 3.3: Flow graph Chen’s iDCT algorithm

and no other operations (like bit shifts). Figure 3.4 shows the mapping of the algorithm
on the M. An explanation of which operation each node performs and how
the nodes are connected is given in appendix A.

The samples are multiplied by 16 in the iQT. In this way the samples become
12.4 fixed point numbers (12 bits for the representation of the digits before the radix
point, 4 bits for representation of the digits after the radix point). This decreases
the errors caused by rounding the intermediate values. Without this shifting the
rounding errors are up to 10%. The samples are shifted four positions because there
is underflow (smaller than zero) and overflow (bigger than 255) possible for the
intermediate values. Before streaming the samples out the results are multiplied with
1/16. The multiplier rounds the result of the multiplication. Shifting the samples four
positions to the right (flooring) results in errors with a maximum of one (too small).
But, because the MC adds all samples, the errors are added.

3.2.3 Dataflow

The position of the samples in the memory is very important. The first two clock cycles
of each 1D iDCT four samples of a row are read. These samples have to be in different
memories because the M can read at most one word from the same memory
per clock cycle. The first eight iDCTs are performed on the rows of the matrix, the next
eight are performed on the columns. Four memories are used for the input and four
for the output. Storing the results of the first iDCTs (on the rows) in such a way that
the four samples required at the same time for the iDCT on the columns are in different

40 MPEG-4 implementation on the BCVP Ch. 3

Figure 3.4: Scheduling iDCT algorithm on the M

memories is not possible. The values of one column are produced by the same PP,
this PP should then store the results in different memories. This is very irregular
and therefore there are not enough configurations for the interconnect. So, the matrix
must be transposed between the row iDCTs and the column iDCTs. Consecutively
the samples are read and the iQT is performed, eight 1D iDCTs are carried out, the
matrix is transposed, another eight 1D iDCTs are performed, the matrix is transposed
back and the samples streamed out.

The total number of clock cycles for the iQT required for one block is given in
Table 3.1.

Configuring the M to execute the iQT process requires 1249 16 bit words.
To load the operands, another 235 words are required. Every clock cycle one word
can be loaded, so in total 1484 clock cycles are required to configure the M.

Streaming in and iQT 67
Eight 1D iDCTs 40
Transpose matrix 16
Eight 1D iDCTs 40
Transpose and stream out 64
TOTAL 227

Table 3.1: Number of clock cycles for the iQT algorithm on the M per block

Sec. 3.3 Color Space Conversion on the Montium 41

3.3 Color Space Conversion on the Montium

The CS changes the color space from YCrCb to RGB. This requires three input samples
(Y,Cr,Cb) and produces three output samples (R,G,B). For every MacroBlock (MB) there
are four blocks of Y samples but only one block with Cr samples and one with Cb. So
every Cr and Cb sample is used four times.

3.3.1 Mapping the algorithm

The formulas for the CS are:

R = 1, 164 ∗ (Y − 16) + 1, 596 ∗ (Cr − 128)

G = 1, 164 ∗ (Y − 16) − 0, 813 ∗ (Cr − 128) + 0, 392 ∗ (Cb − 128)

B = 1, 164 ∗ (Y − 16) + 2, 017 ∗ (Cb − 128)

The input samples are integer values but the operands are non-integer. The
M has no floating point arithmetic. Therefore, we have to implement the
formulas in fixed point notation. The input and output samples are eight bit values,
so the point can be shifted seven bits to the left to prevent rounding errors (one
bit overflow). Shifting the point to the left can be done by multiplying one of the
operands of the multiplication by 128. The non-integer operands are multiplied, it
become rounded integers (1.164 becomes 149). Before the results are send to the
output, the results of the multiplications have to be shifted back and the results have
to be clipped. Clipping is required because a result bigger than 255 does not fit in
eight bits anymore. When only the least significant eight bits are used (by masking)
without clipping, this results in big errors. The least significant eight bits of 256 results
in 0 (and an error of 255). Results can become bigger than 255 because of the rounding
errors.

Shifting to the right and clipping is done in one clock cycle. Overshoot of the
results is caused by rounding errors, the result does not become much bigger than
255. Therefore, the samples do not become bigger than 511. Then the sample is nine
bits and the most significant bit is set. Since the result is shifted to the left by seven,
the most significant bit (bit 16) is set and therefore the result becomes negative. So,
when the result is negative the result must be 255, otherwise the result has to be
shifted seven to the right. The negative check and optional shifting to the right can
be done on the M in one clock cycle. Figure 3.5 shows all required operations
(operations in one node can be done in one clock cycle on a M PP) and their
dependencies. In the dependency graph the mapping is already included.

3.3.2 Dataflow

In every iteration a new luminance sample is read from the input. The chrominance
samples have to be stored because they are used four times. In the current MPEG-4
implementation the Y, Cr and Cb samples are streamed in the M over different
lanes. The order of the samples is pixelwise row after row from the left to the right.
Every chrominance sample is used two successive iterations and then at the next row
again for two iterations (see Section 1.1.1). For the odd rows three samples are read

42 MPEG-4 implementation on the BCVP Ch. 3

1: X1 = 149 × (Y − 16) 4: X4 = X3 + 50 × (Cb − 128)
2: X2 = X1 + 204 × (Cr − 128) 5: X5 = X1 + 258 × (Cb − 128)

3: X3 = X1 − 104 × (Cr − 128) 6-8: X6−8 =

{
255 , i f Xi < 0
Xi >> 7 , i f Xi ≥ 0

where Xi is the input value of the node

Figure 3.5: Mapping CS algorithm on the M

in the odd columns and the chrominance samples are stored in memory. In the even
columns only a luminance sample is read and the chrominance samples from the
previous iteration are used. For the even rows only a luminance sample is read, in
the odd columns the chrominance samples are derived from the memory. In the even
columns these chrominance samples are used again.

The total number of clock cycles required for the CS is 1(setup) + 2 x 256 (2 for
each pixel) = 513 for every macroblock (MB).

To configure the M for this process, 416 words are required (16 bit).
Loading the operands require 45 words. In total, 461 clock cycles are required to
configure the M to perform the CS.

3.4 Motion Compensation

As mentioned above the MC can not be implemented on the M because of the
large memory required. It could be implemented on a FPGA.

The basis of the implementation are two memories. One memory with the
reference frame and one memory where the resulting frame is stored. For the next

Sec. 3.4 Motion Compensation 43

frame, the resulting frame is the reference frame. After decoding a total frame the
memories are swapped (or preferably only the pointers).

The samples have to be stored in such a way that the address generator can easily
locate an arbitrary block of 8x8 samples when the left-top coordinate is known. The
best way of storing the data is pixel wise row for row, first the luminance samples
and then the chrominance samples. The adresses of an 8x8 block in the memory
are, starting at the left-top coordinate, eight successive addresses, then skip as much
addresses as there are samples in a row, than another eight successive addresses, etc.

The left-top coordinate of the reference block can be derived with the left-top
coordinate of the current block in the frame and the MV. Adding this two vectors
gives the left-top coordinate of the reference block. Storing the block in the resulting
frame happens in the same way. The left-top coordinate of the block is known so the
addresses where the samples have to be stored can be exposed as described above.

Because the memories have to be swapped after each frame there is a control
signal required to signal that the end of a frame is reached. Next to a control signal
for the end of the frame is a signal required for selecting an I-frame or a P-frame.
Motion compensation is only performed on P-frames, not on I-frames. But an I-frame
is a reference frame, it has to be stored in the memory. For keeping regularity, can
this be solved by adding zero to every I-frame sample by using a multiplexer which
decides whether the value from the reference memory is added or a zero is added.
The complete implementation is shown in Figure 3.6.

Figure 3.6: Possible MC implementation on a FPGA

This solution is suitable for the most basic form of MC, using only P-frames and
integer MVs. When also B-frames are used, not all frames are reference frames and
the frames are decoded out of order.

Nevertheless, almost the same implementation can be used. Despite that the
frames are decoded out of order, the reference frames (I- and P-frames) are decoded
in order, only the position of the B-frames in the stream is changed. The B-frames are
decoded directly when both (previous and successive) reference frames are decoded.
Decoding an I- and P-frame is done in the same way as described above. The result
after decoding an I- or P-frames is that the latest I- or P-frame is in a memory and

44 MPEG-4 implementation on the BCVP Ch. 3

the previous I- or P-frame is in the other memory. Both reference frames, which are
required for decoding a B-frame, are available. If this B-frame is not stored and the
memories are not swapped multiple B-frames which require these reference frames
can be decoded. The next I- or P-frame gives no problems, this can be decoded in the
standard way. So, there is only additional hardware required for reading the second
memory instead of storing to the second memory (see Figure 3.7).

Figure 3.7: Possible MC implementation on a FPGA, also suitable for B-frames

Also non-integer MVs can be handled with a slightly different implementation.
For a MV that points between two pixels, the average of this two pixels is used. A
MV can point horizontally between two samples and vertically. The estimation can
be a single pixel (MV does not point between pixels), the average of two pixels or the
average of four pixels. Therefore, for implementing non-integer MVs a calculation
unit has to be added which calculates the average of four pixel values. The resulting
value goes to the multiplexer. The address generation unit must always generate four
addresses. These can be the same addresses, two different addresses or four different
addresses. The memories have to support reading four addresses at the same time.
The rest of the implementation can stay the same (see Figure 3.8).

3.5 Conclusion

The VLC process is a control and memory intensive process. Therefore, it can be
executed best on a GPP. MC requires a lot of memory, but it is a very regular process
and the calculation is straightforward. A M does not have sufficient memory
to store a complete reference frame. Therefore, the M is not suitable to execute
the process. MC could be executed on a processor architecture with sufficient memory
and enough processing power to generate the addresses, for example an FPGA. More
complex versions of MC (B-frames, non-integer MVs) require only little changes of
the implementation on a FPGA.

The M is suitable to execute the iQT and CS. Both processes are regular
and require only a small amount of memory. For the iQT and CS implementation, the
parallelism of the M can be exploited to speed up the process.

Sec. 3.5 Conclusion 45

Figure 3.8: Possible MC implementation on a FPGA, also suitable for non integer MVs

CHAPTER 4

Interprocess communication on the BCVP

For implementing a streaming application on a particular architecture communica-
tion between processes is required (interprocess communication). Communication
between processes on the same GPP can be handled in the OS of the tile. For com-
munication between processes on different processors drivers are required. These
drivers have to manage the hardware between the processors and the interfaces of
the processors. The BCVP is a heterogeneous architecture, it consists of multiple
(types of) processors. The University of Twente is developing an OS for the ARMs on
the BCVP, BOS [18]. Since the BCVP is intented for streaming applications, there
has to be a possibility for streaming communication between processes. The usage
of the communication must be very simple. Therefore, there is also an C
developed, which configures the streaming communication.

The first section of this chapter gives a description of the requirements of the
interprocess communication. The second section gives an overview of the imple-
mentation choices. The last section is a manual for the usage of the C.
Implementation details of BOS are described by van Sisseren [18].

4.1 Requirements

There are requirements defined for the interprocess communication on the BCVP.
These requirements encompass the communication between processes, the configu-
ration of the M and NoC and the C.

• R   PC, BOS M
The processes of an application can run on the PC, ARM or on the M.
There has to be a communication possibility between these processors. Commu-
nication between the BCVP and the PC is done with an USB connection. For the
communication with the M, the bridge from the ARM to the NoC, and
the NoC are used. Therefore, it has to be possible to configure the NoC routers,

47

48 Interprocess communication on the BCVP Ch. 4

so the data can stream from and to the M and between the M.
Because the M is a reconfigurable architecture, the M has to be
configured. Next to communication between processes on different architec-
tures, the processes running on the ARM must also be able to communicate
with each other.

• S      PC, ARM M-


The communication interface of the processes running on different processors
have to be standard. When a process sends data to another process, it makes no
differences whether that process is running on the PC, ARM or M.

• E     
Communication between the processes has to be as simple as possible. Processes
running on the M have a fixed way of communicating (read/write the
lanes). The hardware handles the rest [16]. For processes on the ARM there
has to be an easy, standardized way of communicating with other processes,
independent whether they are running on the ARM, M or PC. Processes
on the PC have to communicate over the USB connection in a determined way.
How this is implemented on the PC is out of the scope of this project.

• D  (-)
The mapping of the processes of an application can change at run-time. The
communication has the be set up in such a way that remapping a process to
another processor can be done at run-time. A process can for example move
from the ARM to the Mwhile the application is running.

• C S
For a user friendly system a configuration system is required. This system
initiates the processes, the communication between the processes and the con-
figuration of the routers and M in the correct way and the correct order
based on a configuration. It has to be as easy as possible for the user to imple-
ment an application in the shape of a process graph to the system.

4.2 Implementation

This section gives a description of the implementation of the interprocess commu-
nication and the C on basis of the requirements described in the previous
section.

4.2.1 Basic idea

An application is defined as a process graph: a set of processes, signals and commu-
nication channels (pipes). A process starts when it receives a signal. Signals can come
from pipes or from other processes (4.2.4).

Processes can run on the ARM, M or the PC. The processes are signal
driven. A process needs signals to start. If all signals connected to a process are
received, the process starts. If there are no signals connected to a process it will not

Sec. 4.2 Implementation 49

start. When all input data is ready and there is enough free memory for the output,
then the process starts it calculation (the developer has to make sure the processes
receive signals at the right time). In this way, the process does not block. Non-blocking
processes are in the first place required to guarantee the real-time constraints [18]. For
replacing a process implementation by another implementation it is also required
that a process terminates in finite time to a known state. When a process is non-
blocking it is running or not. It is not blocked in the middle of the calculation. This
means that when the process is not running it can be replaced with another process.
The processes are stateless, they do not keep any state information. In this way
the process can easily be replaced with another implementation (e.g. on another
processor) without worrying about keeping the state information and initiating the
replacing process in a particular state. In BOS, it is possible to implement processes
blocking. But, it is preferable for the real-time constraints and run-time remapping to
implement processes non-blocking.

The data flows through the graph in a message based way: the streaming data is
divided in message items. It is alway possible to define streaming communication as a
message based communication. The processes always require a minimum amount of
data to perform the calculation. For example, most processes in MPEG-4 can perform
their operations on a MB, so the minimum amount of data required is one MB (the
message size in the current implementation is one frame). This minimum amount of
data can be defined as the message size. Defining the communication in a message
based way makes the run-time remapping much easier. If communication is message
based, it is possible to change the destination process of a communication channel
between two messages. The previous iteration of the process runs on the old processor
and the next iteration of the process runs on the new processor.

For the configuration system it is important to know on which processor a process
is running. In the first place the programming language (and therefore the binary code)
is different for an ARM and a M. Furthermore, it is required to configure the
routers of the NoC for using the M. When the application is initiated, there
is knowledge required about the mapping of the processes. Connecting two ARM
processes uses another initialization of the communication than connecting an ARM
process with a M process. The goal is that there are no differences in interface
for the processes itself. The C initiates the right (type of) communication,
but there is also a difference in the configuration when for example one of the processes
run on the M. One of the differences is that the routers have to be configured.

4.2.2 Processes

Processes on the ARM

Processes running on the ARM are in fact processes running on BOS. All functions
these processes can use (e.g. read/write standard out) are defined in BOS [18].
Because BOS is a real-time operating system, the processes are real-time or run in
slack time [18]. The main difference between a real-time process and a non-real-time
process is that a real-time process has a deadline. Furthermore, a real-time process
has a period. A real-time process runs multiple times, when it finishes its execution it
returns to the waiting queue until it receives signals and is executed again. A process
running in slacktime runs only once, when it finishes its execution it starves [18]. If the

50 Interprocess communication on the BCVP Ch. 4

C is used, every process receives pointers required for the communication
and signaling as argument every iteration. In this way the configuration can change,
e.g. a process is remapped, without the previous or successor process mention it.
Only the arguments change.

Processes on the Montium

To run processes on the M, the M has to be configured. To configure the
M a configuration is send over lane 1 (first lane). Therefore, when a M
is configured, there has to be a direct communication channel between the ARM and
the M. On run-time there might be no communication between the ARM
and the M (e.g. when the M receives its data from another M).
Sometimes it is required to reconfigure the routers of the NoC after the configuration
of the M. The C handles this for the developer (see Section 4.2.6).

4.2.3 Pipes

For the communication between processes pipes are defined. A pipe is a FIFO (First In
First Out) buffer. The size of this buffer is defined when the pipe is initialized. A pipe
consists of the buffer and a read and write threshold (these thresholds are described
below). For reading or writing the pipe only the pointer to the pipe is required, the
pipe is not connected to a process. Because the C gives an argument struct
with this pointer to each process every iteration it is easy to change the source or
destination pipe of a process. Four functions are available for reading and writing the
pipes [18]: a blocking and non-blocking write and a blocking and non-blocking read.

So, reading and writing the pipes can be done blocking or non-blocking. It is
preferred to use non-blocking reads and writes. Non-blocking is required to guarantee
the real-time constraints and for the run-time remapping.

Pipes can also generate signals. A signal can be generated when there is free
memory in the buffer (not full) or when data is available in the buffer (not empty).
When a buffer is not full can be defined by the write threshold. This is the number of
bytes which has to be available in the buffer before the signal is generated. For the not
empty signal there is a read threshold which defines the number of bytes available in
the pipe before the signal is sent. Figure 4.1 shows the signals and thresholds.

Figure 4.1: Signals generated by pipes

Montium Pipes

For the connection to the NoC there are eight fixed pipes available, four pipes in and
four pipes out. The pipes are connected to a router through the bridge (see Section

Sec. 4.2 Implementation 51

2.5). It should be possible to connect an arbitrary pipe to the bridge/router. This is
necessary for run-time remapping (see Section 4.2.5). The eight pipes connected to
the routers are normal pipes, the size and thresholds can be defined.

For a pipe connected to the bridge it is necessary to define the type of communi-
cation. The driver needs to know how the bytes in the pipe have to be translated to
packets for the NoC. A packet in the NoC exists of 16 data bits and 2 bits for the flit
type. Such a packet is called a flit. A flit is a data unit that can be transported over
one channel in one clock cycle. The flit type defines whether the flit is a configuration
packet, data packet or the last data packet of the message (tail). Standard the data
in the pipe is interpreted as 32 bits packets, the least significant 16 bits for the data
and bit 16 and 17 for the flit type. The rest of the bits are discarded. There are three
other ways of interpreting the data in the pipe: 16 bit, 32 bit horizontal dual and 32
bit vertical dual. For the 16 bit packets all bits are data. The flit type is the same for
all data items, the driver adds the flit bits to the data. The flit type is standard set to
data, but this is adjustable. If two pipes are dual, horizontal or vertical, both pipes
are 16 bit and the data from both pipes is synchronically sent to the router. Just as for
the 16 bit pipes the flit type for all data items is the same and added by the driver.
The channels of the router are virtual mapped as an 2x2 matrix (see Figure 4.2). The
horizontal option connects two horizontal neighboring pipes (pipe 1 and 2 or pipe 3
and 4). The vertical option connects two vertical neighboring pipes (pipe 1 and 3 or
pipe 2 and 4).

Figure 4.2: Channel layout of the bridge

USB Pipes

The USB pipes are fixed connected to the hardware. There are two pipes, one pipe in
and one pipe out. For the USB pipes it is also preferable that an arbitrarily pipe could
be connected to the USB driver. To get more USB pipes available there has to be a
protocol defined on top of the USB connection to add information about the pipe.

4.2.4 Signals

Signals are used (and required) to trigger a process to set starting. They can be sent
by another process or by a pipe. Signals can be stateful or stateless. A stateless signal
signals once and then becomes low again. A stateful signal stays high as long as the
signaling condition is valid (e.g. not full and not empty signals from pipes). Standard
a process sends a stateless signal and a pipe a stateful signal. When a process receives

52 Interprocess communication on the BCVP Ch. 4

a signal a bit is set high for that signal. In this way a process remembers a trigger
from a stateless signal. When bits of all signals of a process are set the process starts.
When the process starts, all signal bits are cleared.

4.2.5 Run-time remapping

Run-time remapping is not implemented in the system so far. But the whole design
of the system is such that run-time remapping is possible. The remapping itself can
be started and executed in different ways. There has to be a trigger to remap. This can
be a command, adding more applications to the system, etc. Moreover, there must be
a manner to decide which processes are remapped and in which way. This can be an
explicit command from a user to remap a process or an algorithm that decides what
the best mapping is. What the trigger is and how the system decides what the best
mapping is is out of the scope of this thesis. This thesis focuses on the steps required
to supplant a process (remapping can be split out in objective supplanting processes).

A process consists of, next to the process or code itself, of a collection pipes in,
pipes out, signals in and signals out. Because the processes are stateless, supplanting
a process is in fact initiating another process with the same collection signals and
pipes, remove the signals from the old process and change the scheduler (remove the
old process and add the new). The old finishes its iteration (if it is running) and for
the next iteration the new process starts. When the old process is running at the time
of remapping it is required that one of the signals is stateless. Otherwise the new
process also starts running (because the stateful signals are still high) and interferes
with the old process.

This is not only a valid way for supplanting processes on the ARM, but also for
processes on the M and the PC. But for supplanting a process from or to the
M or PC in the current implementation, the original process has to be idle
(and therefore no stateless signal is required). This is because the pipes from and to
the process have to be changed, so the old process can not read and write the pipes
anymore. Furthermore, the processes on the M and PC are data driven (they
are not triggered by an signal but start executing when data is available). On the
occasion of remapping a process to or from the M or PC the pipes where the
previous process(es) reads from and the successor process(es) writes to are changed.
This is done by changing the argument struct from these processes.

Before run-time mapping is implemented, it is preferred that the M and
USB pipes are implemented as pipes which can be attached and detached to the
bridge/router or USB driver. When there are multiple pipes from or to a process
and there is data available in some of the pipes the process can not start its iteration
because not all data is available yet. But when the pipes are completely replaced the
data from the old pipes can not be read anymore, this data has to be copied into the
new pipes.

Multiple iterations of the application can run in parallel (temporal parallelism).
This is for example an advantage when a process on the M takes more calcula-
tion time than the previous and successor processes on the ARM. While the M
is running, the next process can finish, but also the previous process can finish the next
iteration. When the M finishes its calculation the data for the next iteration is
already available, so the calculation can start directly. But, if multiple iterations of an

Sec. 4.2 Implementation 53

applications can run in parallel, supplanting a running process can the packets get out
of order. For example, if the new process is faster and has therefore a shorter deadline
(because the OS is Earliest Deadline First, EDF [18]). The new process is executed first.
Therefore, an extra requirement is that the new process is not allowed to start before
the old process finishes its last iteration). Also for processes on the ARM its easier to
supplant them when they are not running.

For these reasons supplanting a process can be done best when the old process is
idle. The new process has to be initiated with the right pipes and signals, the signals
in have to be removed from the old process and the scheduler has to be changed (see
Figure 4.3). Concerning the signals a bit more is required. For supplanting an ARM
process with another ARM process the stateless signals which are already set in the
old process has to be copied to the new process. If an ARM process is supplanted with
a M or PC process, the signals from the previous process in the graph to this
process triggering no process anymore (this is not a problem). But when a successor
process is triggered by the process, this gives a problem. A M or a PC can not
send signals. A developer has to keep this in mind while developing, for example by
using only signals generated by the pipes.

4.2.6 Controller

All together there are a lot of options for the different parts of the system. Pipes have
a size and thresholds and can trigger processes. Processes can be real-time or not
and the triggers have to be connected to the process. The M and the routers
have to be configured. This gives a lot of options during initiating of all the parts.
And the initialization of the parts must happen in the right order. The C
does all the initialization based on a configuration. This configuration is a character
array (string), because constructing (for the developer) and parsing (in ANSI C) of a
string is easy. This section describes which steps the C performs to store
the configuration and start the application.

Configuration

The configuration is a string. All options described in the previous sections are
supported by the C. The specification of the configuration, together with
a description of the options for the different parts, can be found in appendix B.
Appendix C shows an example of translating a process graph to a configuration.

Configuration structure

The C stores the configuration in a structure, the configuration structure.
All processes, pipes, signals and routes are stored in this structure with their proper-
ties. In the first place this is necessary for the configuration itself. The M pipes
are for example 32 bit during the configuration of the M, but after the configu-
ration they are configured to what is specified (32 bit, 16 bit or 32 bit dual). Therefore,
not all parts of the objects can be configured at the same time and the configuration
has to be stored. In the second place the total configuration is required in case of
remapping. Only then the pointers to the processes, pipes, etc. can be found. These
pointers are used to alter the properties and to change pointers in the argument struct.

54 Interprocess communication on the BCVP Ch. 4

Figure 4.3: Run-time supplant a process

Every process on the ARM gets an (pointer to an) argument structure as argument. In
this argument structure the pointers to the pipes in, pipes out and the signals out for
that process are placed. The layout of the configuration structure and the argument
structure can be found in appendix D.

The C performs the following steps (in this order):

1. Store routes
The route information is stored in the configuration structure. The routers itself
are configured after configuring the processes, because the configuration of the
M requires a direct route from the ARM.

2. Store and initiate pipes
The information about the pipes is stored in the configuration structure and the
pipes are initiated (with all properties like size, thresholds and triggers).

Sec. 4.3 Usage of the Controller 55

3. Store and initiate M and USB pipes
The information about the M and USB pipes is stored and these pipes
are also initiated. The M pipes are initiated as 32 bit pipes because they
have to be used for the configuration. Later on they are reconfigured.

4. Store and initiate timers
The timers are stored and initiated.

5. Store and initiate signals
The signals are stored and initiated (to zero, non-signaling).

6. Store processes
The information of the processes is stored. Also the pointers to pipes and signals
are retrieved here and stored in the configuration structure.

7. Initiate processes
The processes are initiated. ARM processes are created, flags are set, the argu-
ment structure initiated and the triggers are added to the processes. But the
ARM processes can not start yet, because they are not added to the scheduler.
For the processes on the M the M are configured. The routers
are temporarily configured from the ARM to the particular M (routes are
removed after the configuration). The M processes can not start either
before adding the ARM processes to the scheduler because the only way to
receive data for a M process is by an ARM process.

8. Configure routers
After the M are configured the routers can be configured to the actual
configuration.

9. Reconfigure M pipes
After the M are configured it is also allowed to configure the M
pipes to the right type (32 bit, 16 bit, etc.).

10. Add ARM processes to the scheduler
Finally, the ARM processes are added to the scheduler so the processes (and the
application) can start.

4.3 Usage of the Controller

This section gives a brief introduction to the usage of the C and implement-
ing an application on the BCVP using BOS and the C. Starting point of
the implementation is a process graph with processes, pipes and signals. The imple-
mentation of the processes itself is also required and therefore the spatial mapping is
required.

4.3.1 Layout of the application file

The application requires a file which contains all the processes and configuration
data (eventually using includes). To use the C the file which contains the
controller has to be included. The total layout of the file is in appendix E.

56 Interprocess communication on the BCVP Ch. 4

At the top of the file are the includes. These are standard libraries, libraries
required for BOS and the configuration file. Below the includes are the defines. For
using M or the USB connection defines are required: if this hardware is not
used, the driver (causing overhead) is not loaded. The following includes are required
for using M or the USB:

#define USE_MONTIUM0 //Define to use Montium 0

#define USE_MONTIUM1 //Define to use Montium 1

#define USE_MONTIUM2 //Define to use Montium 2

#define USE_USB //Define to use the USB connection

When a M is used a configuration is required. This configuration has to be
in an integer array with a pre-defined name. For M0 this is ”montium0 cfg”,
for M1 ”montium1 cfg” etc. Also the length of the array has to be defined:
”montium0 cfg size”.

Next, the specification is required. This specification describes the processes,
signals and the connection between the processes. Below the specification are the
processes running on the specified ARM. Because it is a real-time system, there is
for every process a configuration struct. This configuration structure contains also a
name (as string). This name is used by the C to identify a process defined
in the specification. Therefore, there has to be an array with these structure to search
through. This array is placed under the the processes in the file. Finally, a predefined
standard process is required which starts automatically and initiates the C
to start. This process also starts the M and USB drivers because these drivers
have to be started in kernel space [18].

4.3.2 Specification

The specification describes the process graph. For each object in the process graph
there is a line in the specification. The formal definition of the specification can be
found in appendix B. The configuration starts with a line specifying a name for the
specification. This is used to identify the specification. This could be useful later on
when multiple specifications are used. Next the lines that specify the configuration of
the routers are placed. After that the more regular object specified (pipes, signals and
processes) with their properties are given. There is one special type of signals that
is not mentioned before, that is a timer. A timer is a signal that is fired periodically.
The period can be defined in the specification. Appendix C shows an example of
translating a process graph to a configuration.

4.3.3 Processes

The processes can run on three different processors, the PC, the ARM or the M.
Processes running on the PC can communicate via the USB connection. They can use
”libusb” for this. For more information see [18]. The processes on the ARM are
processes running on BOS and the processes running on the M require a
M configuration.

Sec. 4.4 Conclusion 57

ARM Processes

Processes on BOS contains code for the process itself and a structure with the real-
time specifications. The code for the process itself is ANSI C code and has the form
of a function (but it are really processes). The processes can use functions provided
by BOS and libraries suitable for the compiler and processor architecture. [18]

For reading and writing the pipes four functions are available, blocking and
non-blocking reads and writes. Another frequently used function is sending signals.
These five functions are described below:

void SYS_write (pipe *p, char* data, int data_size)

int SYS_write_nb (pipe *p, char* data, int data_size)

void SYS_read (pipe *p, char* data, int data_size)

int SYS_write_nb (pipe *p, char* data, int data_size)

void SYS_event_send_signal (signal *s);

The functions with ” nb” added are the non-blocking functions. These functions
return the number of bytes actual written. The pointers to the pipes and the signals
are provided by the C through the argument structure.

Montium Processes

As mentioned before, the configuration for the M is stored in integer arrays
with pre-defined names. The configuration consists of data items of 32 bit. The
least-significant 16 bits are the data bits and bit 16 and 17 defines the flit type.

4.4 Conclusion

BOS provides drivers for streaming communication between processes running
on the ARM, M and the PC. After initialization, the communication interface
between two processes is independent of on which processor the processes run. Pro-
cesses are defined in such a way that run-time remapping is possible. To make the
usage of the system easier, a C is implemented. This C initiates
the communication and configures the M.

CHAPTER 5

Results

The 4S MPEG-4 is suitable for Osyres on top of eCos [22, 23]. eCos is an open source,
real-time OS intended for embedded applications. Osyres is a middleware layer
between the OS and the application for inter-process communication. Osyres handles
the communication between processes on the ARM and between processes on the
ARM and the PC (using USB). It is not yet possible to handle communication between
the ARM and the Mwith Osyres. [1]

In this chapter the timing results of the different implementations are presented
and compared. The first section describes the method; What is compared and in
which way. In the second section are the results presented.

5.1 Method

The 4S implementation is adjusted to run on BOS. As little as possible has been
adjusted, only data sending and receiving is changed. Therefore, it is possible to
compare this implementation with the Osyres implementation. For the implementa-
tion on BOS, the C is used to validate whether the C works
properly. The CS was not implemented in the 4S implementation, the implementation
for this algorithm has been added to compare the different implementations. The 4S
implementation using Osyres can also run on the PC. Results of the 4S implementation
running on the PC are also presented.

The iQT and CS are implemented on a M as described in Chapter 3. The
C initiates the communication between the ARM and the M. The
other processes stay exactly the same, regardless whether the iQT and CS processes
are running on the ARM or on a M. If the iQT and/or CS are running on a
M, the iQT runs on M0 and the CS runs on M1.

The results show the difference between the implementation running on BOS,
the Osyres implementation running on the ARM and the Osyres implementation
running on the PC. For the timing on the PC all user tasks are canceled and the timing

59

60 Results Ch. 5

functions of C are used. The used PC is a Pentium 4 running at a clock speed of
2.60 GHz. For the timing on the ARM (both for Osyres and BOS) ARM1 of the
BCVP is used. This is the ARM946E running at a clock speed of 86.016 MHz. For the
measurements the clock count of the slow clock of the ARM is used. This clock runs
at 32.75 kHz. The M timing is done by calculating the total number of clock
cycles. The M runs at 6.6 MHz.

The BCVP is connected with an USB and a serial connection to a PC. The USB
connection is used for the data transport to and from the BCVP. The serial connection
is used to load the configuration into the BCVP, start the application and as standard
out.

For all three implementations the total decoding time for a frame and the calcu-
lation times without communication per process are measured. The calculation times
without the communication are for the ARM and PC based on the same function call,
so the same piece of C code is executed. For the M implementations the time
to execute a total process is calculated, because the communication and execution are
done simultaniously (e.g. stream in the samples and the iQT algorithm is done at
once).

The 4S implementation is based on Osyres and therefore optimized for Osyres.
In Osyres a message variable is created and the data is copied to this message, sample
by sample. The pointer to this message is send to the next process. The next process
copies the data from the message into its own variables. On BOS the data is copied
into the pipe (and copied out the pipe), not only the pointer is sent. So, in the current
MPEG-4 implementation first all data is copied into a temporal variable sample after
sample, just like copying the data to the message in Osyres. Then the data is copied
into the pipe in one burst.

In Section 5.2.3 the differences between BOS implementations are presented.
There are 4 different implementations: run all processes on the ARM, run the iQT on
a M, run the CS on a M and run the iQT and the CS on a M.
We determine whether the implementations using the M are faster and how
much overhead the communication with a M causes.

Also the results of possible optimizations for MPEG-4 implementations are pre-
sented. For example connect the pipe from M1 (the CS) directly to the USB
pipe.

Finally, in Section 5.2.5 the optimizations in energy performance using a M
are estimated.

5.2 Results

During the implementation of MPEG-4 on BOS the C worked well. All
options of the C are used in the implementation (e.g. all different options
for the M pipes).

5.2.1 Implementations on different processors

Figure 5.1 shows the total calculation time per process on the different processors
and implementations. As mentioned before, this is for the ARM and PC without

Sec. 5.2 Results 61

communication. For the M these times include the communication because
this can be overlapped with other processes.

Figure 5.1: Calculation time per process per frame

The figure shows that the PC executes all algorithms the fastest. This is because
the PC runs on the highest clock frequency.

Another notable fact is the difference between Osyres and BOS, while the same
C code is used. For some processes eCos is faster, for other processes BOS is faster.
This can be caused by differences in memory management, OS overhead and compiler
options.

Figure 5.2 shows the total execution time for the different implementations.

Figure 5.2: Total execution time per frame

The PC is overall also the fastest, but not ten times as in Figure 5.1. This could be
caused by high overhead due to communication in windows. The difference between
the Osyres and the BOS ARM implementation is notable. When the calculation
times of the processes are added, the sum is lower for Osyres than for BOS. But the

62 Results Ch. 5

total execution time per frame is lower for BOS. The next subsection describes the
difference between the two ARM implementations in more detail.

Outsourcing of the iQT and/or the CS to a M obviously gives a better
performance. Per outsourced process the processing time per frame decreases with
almost 14%. Section 5.2.3 describes the gain on performance and overhead in more
detail.

5.2.2 Differences between ARM implementations

Figure 5.3 shows a decomposition of the total execution time per frame for the ARM
implementations into calculation time, communication time and rest.

Figure 5.3: Execution time of ARM implementations split in calculation, communica-
tion and rest

For the Osyres implementation no communication time is specified, because we
can not measure the communication time in Osyres. For BOS there is a clear differ-
ence between the (for BOS unnecessary) copying of data and the communication.
Furthermore, we were able to measure the time required to read from and write to a
pipe. Therefore, the rest time for Osyres consists of the communication and the OS
overhead. For BOS the rest time consists of copying data into the temporal variable
and the OS overhead.

The figures shows that the overhead for Osyres is much bigger. The total time
without the calculation time is for Osyres 90 ms and for BOS 58 ms, while the
implementation is based on Osyres. Especially copying the data one value at a time
requires much execution time in BOS, while copying all data at once can be done
much faster. If the data is stored in another way we expect a much smaller execution
time for BOS: the data can be copied at once from the pipe before the calculation
and to the pipe after the calculations. This requires in total 9 ms. There are another
82 ms required for the calculation and there is overhead for the OS. Measurements
showed that the overhead for BOS is smaller than 2%. This gives an estimated total
execution time of (82+9)×1.02 = 93 ms. Furthermore, more optimizations are possible
in memory management (e.g. copying data samples one by one) or compilation to

Sec. 5.2 Results 63

decrease the calculation time even more for BOS. One could expect that the total
calculation time for BOS could also decrease to about 62 ms, because exactly the
same processor architecture is used.

Reading from a pipe and writing to a pipe is equally fast. Figure 5.4 shows that
the time required to read from or write to a pipe seems to be linear. For three different
amounts of data it is measured how much time is required to read from or write to the
pipe. The read and write times are exactly the same (an equally number of slow clock
cycles). Note that the measurement error of all measurements based on the slow clock
is 1 clock cycle, 0.03 ms. For the smallest amount of data (12672 bytes), this is 0.03/0.3
= 10%.The formula for the time it takes to read or write an particular amount of data is:

T = 0.00001 × B + 0, 1638
,where T is the time in ms and B the amount of data in bytes.

Figure 5.4: Time to read or write a pipe

5.2.3 Advantage and overhead using the Montium

Outsourcing processes to a M gives a reasonable reduction in the processing
time. Table 5.1 shows the total execution times, the reduction of execution time
and the time the outsourced processes would require on the ARM. The time the
processes require on the ARM is the calculation time. It excludes the time required
for the copying. The communication time stays the same because instead of the ARM
process, the driver reads the data from the pipe and copies the data to the M.

The differences in execution time are smaller than the time required for executing
the outsourced process on the ARM. This is caused by the overhead of communication
with the M. Communication with the M on the BCVP is very slow:
before the ARM is ready with sending data to the M, the M is already
sending data back (the M is data driven, it starts executing directly after it
receives the first data). The expectation is that in the next generation BCVP, the
Highly Integrated Concept Verification Platform (HiCVP), the communication with the
M is much faster. This should give lower overhead costs and therefore even
more advantage of outsourcing processes to a M.

64 Results Ch. 5

Total (ms) Reduction
(ms)

Required on
ARM (ms)

Only ARM 140
iDCT on a M 123 17 21
CS on a M 120 20 31
iDCT and CS on a M 103 37 52

Table 5.1: Total execution time per frame, the decrease of execution time and the time
the process(es) outsourced to a M require on the arm

5.2.4 Optimizations for the BasOS implementation

We tried a couple of possible optimizations in the implementation to get a better
overall performance: connect the pipe from the M (executing the CS) directly
to the USB, change a part of the data copying in the VLC and MC, use other compiler
options and write directly in the pipe instead of copying it to a temporal variable
first. The overall performance is calculated by measuring how long it took to decode
a movie of 201 frames, including the USB communication. So, the measurement starts
when the PC starts sending the first frame and stops when the last frame was received.
The next frame is send when the previous is received. Table 5.2 shows the results of
these optimizations. Connecting the M pipe directly to the USB pipe gives a

Frames per second
No optimizations 5.2
Connect M pipe directly to USB pipe stops half way, but slower
Optimize data copying 5.6
Optimize data copying and use more specific, op-
timized compiler options

5.6

Optimize data copying and write directly in pipe
instead of into a temporial variable first

5.0

Table 5.2: Total execution time per frame, the decrease of execution time and the time
the process would require on the arm

lower performance. If an ARM process is used to copy the data, this process waits
until all data from the M is available and copies it to a variable and then to the
USB. The stop half way is probably caused by a pipe that is under its threshold, so the
driver is not triggered anymore.

The changes to memory copying gives a higher performance. Instead of copying
all data value by value, the data is copied in as big bursts as possible. Loops are un-
rolled to be able to copy the data at once. This gives a remarkable better performance.
Copying the data directly into the pipe instead of to a variable first gives a longer
execution time, while the same clustered way of copying is used. This is because
of the overhead of writing to a pipe, this overhead is independent of the number
of bytes written to the pipe. Using another compiler does not result in changes in
performance.

Sec. 5.2 Results 65

5.2.5 Energy performance

In this subsection we estimate if the energy usage of the total system decreases when
processes are outsourced to the M. Therefore, we make an estimation of the
energy usage of the ARM and the M decoding a frame. Next, we compare the
energy usage performing one 2D 8x8 iDCT and the maximum number of iDCTs per
second per mm2 on different processors architectures: an ASIC, a M, a DSP
and a GPP.

Energy consumption per frame

When processes are outsourced to a M, the ARM finishes processing faster
and therefore uses less energy. But, the M uses also energy and the data has
to be transported to the M.

The power consumption of the ARM946 is 0.46 mW/Mhz [24]. The energy
consumption per clock cycle is 0.46·10−3

1·106 = 0.46 nJ. The total energy usage decoding
a frame completely on the ARM946 is 140 · 10−3

× 86 · 106
× 0.46 · 10−9 = 5.5 mJ. In

the same way is the energy usage of the ARM calculated when the iQT is outsourced
(4.9 mJ), when the CS is outsourced (4.7 mJ) and when both the iQT and the CS are
outsourced (4.1 mJ).

The power consumption of the M is estimated on the basis of tests
from [16]. We assume that clock gating is possible. Therefore, we assume the power
consumption of the Mwhen it is idling can be neglected. The power consump-
tion of the M performing an iQT is estimated to be as much as the M
uses during the FFT64 [16]. This algorithm has the same complexity and uses the
same number of memories. Therefore, the energy consumption of the M per-
forming an iDCT is 0.541 mW/MHz. Because the M is running on 6.6 MHz
and it takes 15 ms to calculate the iQT, the total energy usage for the iQT per frame is
15 · 10−3

× 6.6 × 0.541 · 10−3 = 54 µJ.
The power consumption of the M performing the CS is estimated to

be as much as the M uses for the FIR5 [16]. This algorithm uses also two
memories and has the same complexity or is even more complex. Therefore, the energy
consumption of the M performing the CS is estimated to be 0.374 mW/MHz.
The total energy usage of the M performing the CS is 8 ·10−3

×6.6× .374 ·10−3 =
20 µJ per frame.

Table 5.3 shows the total energy consumption of the processors per frame. It
shows that the power consumption of the M is neglectable concerning the
power consumption of the ARM (factor 100). The energy usage excludes the CCU of
the M, the memory access of the ARM and the communication from the ARM
to the M. There are no numbers about the power consumption of the CCU
available yet. We assume that the energy usage of the CCU is neglectable concerning
the energy consumption of the ARM because the energy consumption of the whole
M is also neglectable.

The energy numbers do not take the memory accesses of the ARM nor the
communication between the ARM and the M into account. When a process
is outsourced to a M, this decreases the number of memory accesses of the
ARM (because not all intermediate values fit into the cache). The energy usage is
increased due the communication with the M. Because the same amount of

66 Results Ch. 5

ARM (J) Montium0 (J) Montium1 (J) TOTAL(J)
Only ARM 5.5 m 0 0 5.5 m
iDCT on M0 4.9 m 54 µ 0 5.0 m
CS on M1 4.7 m 0 20 µ 4.7 m
iDCT and CS on a M 4.1 m 50 µ 20 µ 4.2 m

Table 5.3: Total energy usage per frame

data is copied in both cases, we estimate that these two numbers are approximately
equal: communication with the FPGA is done through a shared memory. The amount
of data that has to be transported to the M is the same as the ARM needs for
calculation. So, the same amount of data is transported over the AMBA bus. The
energy usage of the NoC is not known. No energy consumption tests are done yet.
We estimate that the transport of the data to and from the M requires not more
energy than the calculation on the M itself. Therefore, the energy usage of the
NoC is at most a few percent of the energy usage of the ARM.

Energy consumption per iDCT

To benchmark the energy usage and the processing power of the M, we com-
pared the Mwith three other processors: an ARM, a DSP and an ASIC. These
architecture are alternatives for the M. The ARM can do the MPEG-4 de-
coding also itself, so what is the gain of combining it with a M? The DSP is
one of the most likely alternatives for a reconfigurable architecture. It is more flex-
ible, but also faster and more energy hungry? The ASIC is the best choice in terms
of energy-efficiency and processing power, but is not flexible nor reusable for other
algorithms.

We compare the required energy and processing time performing an 2D 8x8 iDCT
(and therefore the number of iDCTs per second). The energy usage for communication
is for all processors not taken into account. The processing power is normalized by
chip area (number of iDCT per second per mm2). It is evident that doubling the chip
area will increase the processing power (for example using two M instead of
one).

The approach is as follows. First the number of clock cycles required to perform
an 2D 8x8 iDCT are determined. This is multiplied by the energy usage of one clock
cycle. To make an fair comparison, the power characteristics for each processor are
normalized to 0.13 µm technololgy and a nominal voltage of 1.2V. To benchmark
the processing power, the number of iDCTs a processor can perform per second is
determined (also normalized to 0.13 µm technology). This is divided by the area in
mm2.

Table 5.4 depicts the results of this comparison together with the characteristics
of the processors. Figure 5.5 shows the same results in bar graphs. The energy usage
is as expected. The GPP processor (ARM) uses the most energy, the ASIC uses the
least energy. Notable is that the M behaves concerning energy usage much
more like an ASIC than an DSP.

The ASIC can perform the most iDCTs per second per mm2. The difference

Sec. 5.2 Results 67

between the ASIC and the M here is much larger than for the energy usage.
The ARM is much slower than the rest of the processors, it can perform only 1/12
of the number iDCTs compared to a M and 1/80 compared to the DSP. But,
because it has a very small area (1/40 compared to the DSP), the number of iDCTs per
second per mm2 differ only a factor 2 with the DSP.

The ASIC is, as espected, the best choice in terms of energy-efficiency and pro-
cessing power. For energy usage, the M behaves like an ASIC. But, concerning
processing power, the ASIC is four times faster than the M. The M
is still much faster and more energy-efficient as a DSP and ARM. For performing an
iDCT in MPEG-4 decoding in an heterogeneous architecture a (couple of) M
is the best choice. It is much more energy-efficient than an ARM (and DSP) and out-
sourcing the algorithm leads to both more processing power and less energy usage.
An ASIC is even more energy-efficient and has more processing power, but especially
for mobile devices that perform different algorithms the ASIC is too inflexible. The
difference in energy usage is not that big compared to the energy usage of an ARM
and a (couple of) M supply enough processing power to perform the iDCTs in
MPEG-4.

In the remainder of this section we explain the results.

ASIC Montium TI ARM
Max. frequency (MHz) 154 100 720 200
Power @ max. frequency (mW) 635 50 1967 92
Technology (µm) 0.18 0.13 0.09 0.13
Nominal voltage (V) 1.8 1.2 1.2 1.2
Area (mm2) 12.71 2.4 n/a 1.86
Cycles/2D 8x8 iDCT 30 112 82.5 2796
Normalized energy/clock cycle (mW) 1.34 0.541 3.95 0.46
Normalized area (mm2) 6.1 2.4 ≈79 1.86
Normalized max. frequency (MHz) 216 100 514 200
2D 8x8 iDCTs / second 7.2 M 0.9 M 6.2 M 0.072 M
Energy/2D 8x8 iDCT (nJ) 40 61 325 1286
2D 8x8 iDCTs/s/mm2 1182 k 372 k ≈ 79 k 38 k

Table 5.4: Characteristics and benchmarking of 2D 8x8 iDCT in terms of energy and
area on four different processor architectures

Montium

The M needs 112 clock cycles for one 2D iDCT (see Table 3.1). The energy
consumption of a M performing an iDCT is 0.541 mW/MHz (see previous
section). This is for a M in 0.13 µm 1.2V technologie [16]. Therefore, the energy
consumption per clock cycle is 0.541·10−3

1·106 = 0.541 nJ. The total energy consumption
performing an 2D iDCT is 112 × 0.541 = 61 nJ.

The M can run on 100 MHz. Therefore, the M can execute 100·106

112 =
0.893 M 2D iDCTs per second. In 0.13 µm technology, the M is 2.4 mm2 [16].
Dividing by the area gives 0.893·106

2.4 = 372 k 2D 8x8 iDCTS per second per mm2.

68 Results Ch. 5

ARM

We implemented the Chen algorithm also on the ARM946 using the DSP function (i.e.
single cycle MAC). These DSP functions are not supported by the GCC compiler, so
we added this assembly codes by hand (in C, letting the compiler handle the register
mapping). The ARM needs 2796 clock cycles to perform one 2D 8x8 iDCT. Examining
the assembly codes reveals that half of the clock cycles are used to load and store
registers. There are only four registers available for calculation.

The energy consumption of the ARM946 is 0.46 mW/Mhz in 0.13 µm technology
[24]. The energy consumption per clock cycle is 0.46·10−3

1·106 = 0.46 nJ. Therefore, the
energy required for one 2D 8x8 iDCT is 2796 × 0.46 = 1286 nJ. The maximum clock
frequency of the ARM946 in 0.13 µm technology is 200MHz [24]. Therefore, the
number of iDCTs per second is 200·106

2796 = 71530. Because the ARM946E is 1.86 mm2 [24],
the number of iDCTs per second per mm2 is 71530

1.86 = 38 k.

ASIC

As ASIC implementation we examined the implementation presented in [25]. The
used algorithm is the same as our implementation. This ASIC is implemented in
0.18 µm TSMC technology width an nominal voltage of 1.8V. It is possible to estimate
the energy consumption as described in [26] in a smaller technology and a lower
nominal voltage. The energy consumption of the ASIC is 634.5 mW per 156 MHz.
Therefore, the estimated energy consumption per clock cycle in 0.13 µm technology is
(1.2

1.8)2
×

0.13
0.18 ×

634.5·10−3

154·106 = 1.32 nJ. The ASIC needs 30 clock cycles per 2D 8x8 iDCT [25],
so the total energy consumption is 30 × 1.32 = 40 nJ per iDCT.

The area of the ASIC is 12.17 mm2 in 0.18 µm technology [25]. The gate density in
TSMC technology is 100K gates per mm2 for 0.18 µm technology and 200K gates per
mm2 for 0.13µm [27] [28]. Therefore, the area is halved in 0.13 µm and becomes 200

100 ×

12.17 = 6.09 mm2. The clock frequency increases in newer technologies. According
to the ITRS roadmap [29] the maximum clock frequency scale width a factor 1.4
per technology generation. Therefore, the maximum clock frequency will be around
154 × 1.4 = 216 MHz. The number of iDCTs per second is 216·106

30 = 7.2 M. This results
in 7.2·106

6.09 = 1182 k 2D 8x8 iDCTs per second per mm2.

DSP

As DSP we have choossen for the state-of-the-art TMS320C6454-720 for comparison.
According to [30] the power consumption is 1.18W at 1.2V width 60% utilization
and a clock frequency of 720 MHz. We assume that the power consumption is
linear depending on the utilization [16], so we expect 100

60 × 1.18 = 1.97 W at 100%
utilization. This DSP is implemented in 0.09 µm technology. It is possible to estimate
the energy consumption as described in [26] in a larger technology. Therefore, the
power consumption per clock cycle is (1.2

1.2)2
×

0.13
0.09 ×

1.97
720·106 = 3.95 nJ.

TI provides a library with imaging functions. This library contains an 2D 8x8
iDCT function [31]. This function requires 72 × n + 63 clock cycles, where n is the
number of iDCTs. We assume that it is realistic to execute 6 iDCTs, because there are
6 blocks per MB. So, on average 72×6+63

6 = 82.5 clock cycles per 2D 8x8 iDCT are used.
The energy consumption is 3.95 × 82.5 = 326 nJ per iDCT in 0.13 µm technology.

Sec. 5.2 Results 69

The area of the TMS320C6454-720 is not disclosed. Therefore, we estimate the
the area. At the International Electron Devices Meeting in fall 1999, TI presented a
roadmap [32], which reveals that a TMS320 core will contain about 100M transistors
in 2005. Therefore, we assume that the TMS320C6454-720 has about 100M transistors.
To estimate the number of transistor per mm2, we investigated the the 0.13 µm TSMC
technology [33]. For SRAM the density is 2.43 - 2.14 µm2 for 6 transistors. This means
there are 6 transistors per 2.34 µm2 and therefore 6

2.43·10−6 = 2.46 M transistors per mm2

(for SRAM memory). The gate density is 219k gates/mm2, where a gate consists of 4
transistors. Therefore, there are 4 × 218 · 103 = 0.88 M transistors per mm2.

The DSP contains 8 Mbit SRAM. One bit SRAM consists of 6 transistors. There-
fore, the memory on the DSP uses 6 × 8 = 48 M transistors. This requires 48·106

2.46·106 =
20 mm2. Because we estimated the TMS320C6454-720 contains 100M transistors, this
leaves 52K transistors. This remaining transistors require 52·106

0.88·106 = 59 mm2. The total
estimated area is 79 mm2.

Normalization of the clock frequency gives a maximum frequency of 720
1.4 = 514

MHz. Because the iDCT requires 82.5 clock cycles per iDCT, the TMS320C6454-720
can execute 514·106

82.5 = 6.23 M 2D 8x8 iDCTs per second in 0.13 µm technologie. With a
area of 79 mm2 this are 6.23·106

79 = 79 k iDCTs per second per mm2.

70 Results Ch. 5

(a) Energy consumption for a 2D 8x8 iDCT on different processor
architectures, normalized to 0.13µm technology and 1.2V

(b) Number of 2D 8x8 iDCTS per second per mm2 for different
processor architectures

Figure 5.5: Benchmarks of a 2D 8x8 iDCT on different processor architectures

CHAPTER 6

Conclusions and Recommendations

This chapter summarizes the most important conclusions of this thesis and gives some
recommendations for future work.

6.1 Conclusions

1. It is possible to perform MPEG-4 processes on reconfigurable hardware. Not
all tasks can be performed efficiently, the VLC process can be executed best on
a GPP. The iQT and CS process can be executed on a M efficiently. The
MC can be executed on an FPGA.

2. The communication bandwidth is large enough to perform processes on different
processors. The communication overhead for the ARM is smaller than the
reduction of required processing time caused by outsourcing processes. In the
next generation platform, the HiCVP, the communication between the ARM and
the M is faster. Therefore, the communication overhead will be even
smaller.

3. An architecture consisting of an ARM and a M increases performance in
both processing power and energy-efficiency for MPEG-4.

4. The M is, performing an 2D 8x8 iDCT, much more energy-efficient than
a TI DSP and an ARM. An ASIC is more energy-efficient, but the M
behaves for energy-efficiency more like an ASIC than like a DSP.

5. An ASIC is, normalized to area, significantly faster than a M performing
an 2D 8x8 iDCT. The M is much faster than a DSP and ARM.

6. The M is a good choice for a heterogeneous architecture combined with
an GPP. It is for calculation intensive algorithms much faster and more energy-
efficient than an ARM and DSP and more flexible than an ASIC.

71

72 Conclusions and Recommendations Ch. 6

7. A M is a good solution for computational intensive tasks like iDCTs and
CS, but it has also its limitations. Especially the limited amount of memory
(MC) and the limited (and fixed) number of configurations (iDCT transpose).

8. The communication between processes running on the ARM, the M and
the PC works fine. Initializing the communication and configure the NoC and
M is much easier when the C is used.

6.2 Recommendations

6.2.1 Change MPEG-4 implementation

To get a faster demo the MPEG-4 implementation has to be changed:

1. The data storage and communication have to be changed to optimize the com-
munication for BOS and get rid of the double copying of data.

2. Processes are frame based, they perform their operation on a whole frame. When
processes are block (or Macroblock) based, the buffers in the communication
between the processes and the required memory for the processes itself decrease.

3. Processes on the ARM are already data driven, but the first process starts when
the last process is finished. When back pressure is added (a process starts only
when there is enough free buffer memory to write its results), the first process
can start before the last process is finished when there is enough buffer memory
and free CPU time.

6.2.2 Implement run-time remapping

The implementation of the communication between processes in BOS is almost
suitable to support run-time remapping. Only a few changes have to be made:

1. Change the M and USB pipe implementation, so an arbitrary pipe can
be attached or deattached to these devices.

2. Implement the run-time remapping as described in 4.2.5.

Bibliography

[1] 4S report D1.1. Ambient systems requirements (update march 2005). Internal
project report, 2005.

[2] The mpeg home page. http://www.chiariglione.org/mpeg/.

[3] Koenen R. (2002). Overview of the mpeg-4 standard. http://www.

chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm.

[4] B.G. Haskell, A. Puri, and A.N. Netravali. Digital Video: an Introduction to MPEG-
2, chapter 6-10. Chapman & Hall, 1997. ISBN: 0-412-08411-2.

[5] B.G. Haskell, A. Puri, and A.N. Netravali. 1997, chapter 5. Chapman & Hall,
Digital Video: an Introduction to MPEG-2. ISBN: 0-412-08411-2.

[6] J. Kneip, S. Bauer, J. Vollmer, B. Schmale, P. Kuhn, and M. Reimann. The mpeg-4
video coding standard - a vlsi point of view. In IEEE Workshop on Signal Processing
Systems, pages 43–52, 1998.

[7] K.N. Ngan, T. Meier, and D. Chai. Advanced Video Coding: Principles and Techniques,
chapter 1. Elsevier, 1999. ISNB: 0-444-82667.

[8] M. Berekovic, H.J. Stolberg, and P. Pirswch. Implementing the mpeg-4 as profile
for streaming video on a soc multimedia processor. In 3rd Workshop on Media and
Streaming Processors, 2001.

[9] B.G. Haskell, A. Puri, and A.N. Netravali. 1997, chapter 17. Chapman & Hall,
Digital Video: an Introduction to MPEG-2. ISBN: 0-412-08411-2.

[10] K.N. Ngan, T. Meier, and D. Chai. Advanced Video Coding: Principles and Techniques,
chapter 6. Elsevier, 1999. ISNB: 0-444-82667.

[11] V. Bakker and M. Schoemaker. Mpeg decoding on multiple architectures. Em-
bedded Computer Architecture University Twente, 2006.

73

http://www.chiariglione.org/mpeg/
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm

74 BIBLIOGRAPHY Bibliography

[12] D. Ishii, M. Ikekawa, and I. Kuroda. Parallel variable length decoding with
inverse quantization for software mepg-2 decoders. In IEEE Workshop on Signal
Processing Systems, pages 500–509, 1997.

[13] P. Schaumont, I. Verbauwhede, K. Keutzer, and M. Sarrafzadeh. A quick safari
through the reconfiguration jungle. In Design Automation Conference, pages 172–
177, 2001.

[14] G.J.M. Smit, A.B.J. Kokkeler, P.T. Wolkotte, M.D. van de Burgwal, and P.M.
Heysters. Efficient architectures for streaming dsp application. In Dagstuhl
Seminar Proceedings, 2006.

[15] L. Guerra, M. Potkonjak, and J. Rabaey. System-level design guidance using
algorithm properties. In Proc. of the VLSI Signal Processing Workshop, pages 73–82,
1994.

[16] P.M. Heysters. Coarse-Grained Reconfigurable Processors: Flexibility Meets Efficiency.
PhD thesis, University of Twente, 2004. ISBN: 90-365-2076-2.

[17] R. Hartenstein. A decade of reconfigurable computing: a visionary retrospective.
In Design, Automation, and Test in Europe, pages 642–649, 2001.

[18] B.A. van Sisseren. Design of a lightweight real-time streaming kernel. Master’s
thesis, University of Twente, 2007, to appear.

[19] M.D. van de Burgwal, G.J.M. Smit, G.K. Rauwerda, and P.M. Heysters. Hydra:
an energy-efficient and reconfigurable network interface. In Proceedings of the
International Conference on Engineering of Reconfigurable Systems and Algorithms,
pages 171–177, 2006.

[20] C. Loeffler, A. Ligtenberg, and G.S. Moschytz. Practical fast 1-d dct algorithms
with 11 multiplications. In International Conference on Acoustics, Speech, and Signal
Processing, pages 988–991, 1989.

[21] W. Chen, C.H. Smith, and S.C. Fralick. A fast computational algorithm for the
discrete cosine transform. IEEE Transactions on communications, 25(9):1004–1009,
1977.

[22] http://www.ti-wmc.nl/downloads/OSYRES_Product_Sheet_rev_2_0.pdf.

[23] http://ecos.sourceware.org/.

[24] Arm946 technical data. http://www.arm.com/products/CPUs/ARM946E-S.html.

[25] R. Swamy, M. Khorasani, Y. Liu, and Bates S. Elliot, D. and. A fast, pipelined im-
plementation of a two-dimensional inverse discrete cosine transform. In Proceed-
ings of Canadian Conference on Electrical and Computer Engineering, pages 665–668,
2005.

[26] Committee on Networked Systems of Embedded Computers. Embedded, Every-
where: A Research Agenda for Networked Systems of Embedded Computers. National
Academy Press, 2001. ISBN: 0-3090-7568-8.

http://www.ti-wmc.nl/downloads/OSYRES_Product_Sheet_rev_2_0.pdf
http://ecos.sourceware.org/
http://www.arm.com/products/CPUs/ARM946E-S.html

Ap. BIBLIOGRAPHY 75

[27] Tsmc 0.13-micron technology. http://www.tsmc.com/download/enliterature/
013_bro_2003.pdf.

[28] Tsmc 0.18-micron technology. http://www.tsmc.com/download/enliterature/
018_bro_2003.pdf.

[29] International technology roadmap for semiconductors. http://www.

sia-online.org/downloads/Issue_ITRS.pdf.

[30] Gustavo Martinez. Application Report: TMS320C6455/C6454 Power Consumption
Summary. Texas Instruments, September 2006. document: SPRAAE8A.

[31] TMS320C64x+ DSP Image/Video Processing Library Programmers’s Reference. Texas
Instruments, march 2006. Literature Numuber: sprueb9.

[32] http://www.elecdesign.com/Articles/Index.cfm?AD=1\&ArticleID=1004.

[33] Tsmc advanced technology overview. http://www.tsmc.com/download/

english/a05_literature/Advanced_Technology_Overview_Brochure_2006.

pdf.

http://www.tsmc.com/download/enliterature/013_bro_2003.pdf
http://www.tsmc.com/download/enliterature/013_bro_2003.pdf
http://www.tsmc.com/download/enliterature/018_bro_2003.pdf
http://www.tsmc.com/download/enliterature/018_bro_2003.pdf
http://www.sia-online.org/downloads/Issue_ITRS.pdf
http://www.sia-online.org/downloads/Issue_ITRS.pdf
http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=1004
http://www.tsmc.com/download/english/a05_literature/Advanced_Technology_Overview_Brochure_2006.pdf
http://www.tsmc.com/download/english/a05_literature/Advanced_Technology_Overview_Brochure_2006.pdf
http://www.tsmc.com/download/english/a05_literature/Advanced_Technology_Overview_Brochure_2006.pdf

APPENDIX A

Chen’s iDCT algorithm on the Montium

The 1D iDCT algorithm of Chen can be divided into 22 operations that can be per-
formed in one clock cycle on a M. Table A.1 shows an overview of the 22
operations. Values starting with an I are the input samples for the iDCT, values with
an O are the output values, values with an X are intermediate values and values
starting with an C are constants. The flow graph of this 22 operations is shown in
Figure A.1.

1: X1 = I7 × C1 9: X9 = I4 × C4 15: X15a = X10a + X14

- - X15b = X10a − X14

2: X2 = I1 × C7 − X1 10: X10a = I0 × C4 + X9 16: X16a = X10b + X12

- X10b = I0 × C4 − X9 X16b = X10b − X12

3: X3 = I3 × C5 11: X11 = I2 × C6 17: X17 = X4b × C4

- - -
4: X4a = X2 + (I5 × C3 − X3) 12: X12 = X11 − I6 × C2 18: X18a = X6b × C4 + X17

X4b = X2 − (I5 × C3 − X3) - X18b = X6b × C4 − X17

5: X5 = I5 × C5 13: X13 = I2 × C2 19: O0 = X15a + X6a

- - O7 = X15a − X6a

6: X6a = X8 + (I3 × C3 + X5) 14: X14 = I6 × C6 + X13 20: O1 = X16a + X18a

X6b = X8 − (I3 × C3 + X5) - O6 = X16a − X18a

7: X7 = I1 × C1 21: O2 = X16b + X18b

- O5 = X16b − X18b

8: X8 = I7 × C7 + X7 22: O3 = X15b + X4a

- O4 = X15b − X4a

Table A.1: Operations of the iDCT algorithm

77

78 Chen’s iDCT algorithm on the Montium Ap. A

Figure A.1: Flow graph iDCT

APPENDIX B

Configuration specification

Graph definition

<DEFINITION> ::= <GENERAL_CONFIG> [<ROUTES>] [<PIPES>]

[<MONTIUM_PIPES_IN>] [<MONTIUM_PIPES_OUT>]

[<USB_PIPES_IN>] [<USB_PIPES_OUT>] [<TIMERS>]

[<SIGNALS>] <PROCESSES>

<GENERAL_CONFIG> ::= ’configuration’ <NAME> ’\n’

Start of the configuration, <NAME> is the identifier of the configuration.

Configuration of the routers

<ROUTES> ::= ’route’ <ROUTER> <DEVICE> <PORT> <DEVICE> <PORT>

’\n’[<ROUTES>]

<ROUTER> ::= ’router0’ | ’router1’

<DEVICE> ::= ’ARM’ | ’montium0’ | ’montium1’ |

’montium2’ | ’router1’ | ’router2’

<PORT> ::= <DIGIT>

Configuration for the routers of the NoC. There are two routers in the NoC, router0
and router1, <ROUTER> defines for which router this config rule is meant. The first
<DEVICE> and <PORT are the source device and port, the second <DEVICE> and <PORT>
define the destination.

Definition of pipes

<PIPES> ::= ’pipe’ <NAME> <PIPE_SIZE> [<RD_THRESHOLD>]

[<WR_THRESHOLD>] {<PIPE_EVENT>} ’\n’ [<PIPES>]

<PIPE_SIZE> ::= <DIGIT> {<DIGIT>}

<RD_THRESHOLD> ::= ’rd_threshold’ <DIGIT> {<DIGIT>}

79

80 Configuration specification Ap. B

<WR_THRESHOLD> ::= ’wr_threshold’ <DIGIT> {<DIGIT>}

<PIPE_EVENT> ::= <NAME> ’not full’ | ’not empty’

Data can send between processes through pipes. The name of every pipe has to be
unique. The <PIPE_SIZE> parameter defines the size of the buffer. For a proper
working pipe this has to be equal than or bigger than the biggest packet size.

A pipe can create an event. This can be done when the pipe is not empty anymore
(so a process can read from the pipe) or when the pipe is not full anymore (so a process
can write into the pipe). The name of every event (pipe-events, timers and signals)
has to be unique. This pipe events are defined by the <PIPE_EVENT> property.

Standard are the triggers for not empty and not full initiated on 1, so when there
is one bit free in the pipe, the not full trigger is fired. Even so the not full trigger
is fired when there is one bit in the pipe. These thresholds can be changed. The
read threshold (for the not full trigger) can be changed by <RD_THRESHOLD>, the write
threshold (for the not empty trigger) can be changed by <WR_THRESHOLD>.

Definition of Montium pipes

<MONTIUM_PIPES_IN> ::= ’montium_pipe_in’ <NAME> <PIPE_NUMBER>

<PIPE_SIZE> [<PIPE_TYPE>] [<RD_THRESHOLD>]

[<WR_THRESHOLD>] {<PIPE_EVENT>} ’\n’

[<MONTIUM_PIPES_IN>]

<MONTIUM_PIPES_OUT> ::= ’montium_pipe_out’ <NAME> <PIPE_NUMBER>

<PIPE_SIZE> [<PIPE_TYPE>] [<RD_THRESHOLD>]

[<WR_THRESHOLD>] {<PIPE_EVENT>} ’\n’

[<MONTIUM_PIPES_OUT>]

<PIPE_NUMBER> ::= <DIGIT>

<PIPE_TYPE> ::= ’16bit’ | ’32bitH’ | ’32bitV’

M pipes are the pipes connected to the bridge to the NoC. These structure of
the pipes is exactly the same as the structure of the pipes between processes. The pipes
to the M have all options that normal pipes also have (name,size, thresholds,
events). The name of all the pipes have to be unique, so also M pipes and
pipes between processes need different names.

The M pipes in are the pipes to the M, so ARM processes can write
data to the M through these pipes. The M pipes out are pipes from the
M.

An extra parameter of M pipes is <PIPE_NUMBER. This parameter defines
the number of the pipe, the port of the router to which this pipe is connected. There
are four pipes from and four pipes to the M. The pipes are connected to
router0, the router configuration configures in which way the pipes are connected to
the Ms.

The second extra (optional) parameter is <PIPE_TYPE>. This parameter defines
the type of the pipe, the length of one data item. This can either be 32 bit, 16 bit or
connected with an other pipe (32bitH and 32bitV). The pipes are standard 32 bit, 16
bits for the data (least significant) and 2 for the flit type (bit 16 and 17). The rest of the
bits are discarded. The pipes are standard 32 bit when there is no pipe type defined.

Ap. B 81

When the pipe is defined to be 16 bit, all 16 bits are data. The flit type is than
for all data items the same, the driver adds the flit bits to the data. The flit type is
standard set to data.

When to pipes are connected, both pipes are 16 bit and the data from both pipes
is synchronically send to router. Just as with the 16 bit pipes is the flit type for all
data items the same and added by the driver. The 32bitH option connect to pipes
horizontal, pipe 1 and 2 or pipe 3 and 4. The 32bitV option connect to pipes vertical,
pipe 1 and 3 or pipe 2 and 4.

Definition of USB pipes

<USB_PIPES_IN> ::= ’usb_pipe_in’ <NAME> <PIPE_SIZE> [<RD_THRESHOLD>]

[<WR_THRESHOLD>] {<PIPE_EVENT>} ’\n’

<USB_PIPES_OUT> ::= ’usb_pipe_out’ <NAME> <PIPE_SIZE> [<RD_THRESHOLD>]

[<WR_THRESHOLD>] {<PIPE_EVENT>} ’\n’

The USB pipes have the same options as normal pipes. There is only one USB pipe
in and one USB pipe out. The USB pipe in goes to the USB drivers (so to the PC), the
USB pipe out comes from the PC.

Definition of timers

<TIMERS> ::= ’timer’ <NAME> <TIMER_INTERVAL> ’\n’ [<TIMERS>]

<TIMER_INTERVAL> ::= <DIGIT> {<DIGIT>}

A timer can periodically create an event. The name of every event (pipe-events, timers
and signals) has to be unique. The <TIMER_INTERVAL> parameter is the period of the
event in milliseconds.

Definition of signals

<SIGNALS> ::= ’signal’ <NAME> ’\n’ [<SIGNALS>]

With a signal a process can create an event, which can activate another process. The
name of every event (pipe-events, timers and signals) has to be unique.

Definition of processes

<PROCESSES> ::= ’process’ <NAME> ’signals’ <PROCESS_SIGNALS>

’pipes’ <PROCESS_PIPES> ’options’

<PROCESS_OPTIONS> ’\n’[<PROCESSES>]

<PROCESS_SIGNALS ::= ’(’ [<SIGNALS_IN>] ’)’ ’(’ [<SIGNAL_OUT>] ’)’

<SIGNALS_IN> ::= <NAME> [’,’ <SIGNALS_IN>]

<SIGNALS_OUT> ::= <NAME> [’,’ <SIGNALS_OUT>]

<PROCESS_PIPES> ::= ’(’ [<PIPES_IN>] ’)’ ’(’ [<PIPES_OUT>] ’)’

<PIPES_IN> ::= <NAME> [’,’ <PIPES_IN>]

<PIPES_OUT> ::= <NAME> [’,’ <PIPES_OUT>]

<PROCESS_OPTIONS> ::= ’(’ <REALTIME> ’,’ <RUNNING> ’,’ <DEVICE> ’)’

<REALTIME> ::= ’1’ | ’0’

82 Configuration specification Ap. B

<RUNNING> ::= ’1’ | ’0’

<DEVICE> ::= ’ARM’ | ’Montium’ | ’PC’

A process is defined by its <NAME>. This name is also defined in the task specification
struct, there has to be a process in the task specification array with this name for every
ARM process.

The signals (in and out) and the pipes (in and out) has to be defined in the previous
configuration lines. Signals in (events) can be pipe-events, timers and signals. A
process is triggered when it received all signals in.

The <PROCESS_OPTIONS> define if a process is real time or runs in slack time (for
an ARM process), if it is initially running (for an ARM process) and on which device
it is running. For a process running on the M defines <REALTIME> on which
M the process is running.

Primitives

<NAME> ::= <LETTER> {<LETTER> | <DIGIT> | <SYMBOL>}

<LETTER> ::= [a-zA-Z]

<DIGIT> ::= [0-9]

<SYMBOL> ::= [-_]

APPENDIX C

Convert a process graph to a configuration

In this appendix we give an example of converting a process graph to a configuration.
The process graph is shown in Figure C.1.

Figure C.1: Example process graph

The configuration starts with a definition, a name for the configuration. Next are
the lines for configuration of the routers. Which lane the M uses for streaming
in and out data depends of the implementation of the task on the M. In this
example the M streams data in over lane 3 and streams data out over lane 1
and the M used is M0. On the side of the ARM is for the input as well
as for the output the first pipe used (pipe 0). The first lines over the configuration are:

83

84 Convert a process graph to a configuration Ap. C

configuration testapp

route router0 ARM 0 montium0 3

route router0 montium0 0 ARM 0

Next are the pipes defined. First the pipes between ARM processes are defined,
then pipes to the M and then the USB pipes. All pipes are 2000 bytes, the
M pipes are 16 bit:

pipe task1_task2 2000 rd_threshold 500 wr_threshold 500 event1 not_full

event2 not_empty

montium_pipe_in to_montium 0 2000 16bit wr_threshold 500 event3 not_full

montium_pipe_out from_montium 0 2000 16bit rd_threshold 500 event4

not_empty

usb_pipe_in to_usb 2000 wr_threshold 1500 event5 not_full

usb_pipe_out from_usb 2000 event6 not_empty

There are no timers and signals generated by processes, so these configuration
lines can be skipped. Now the processes are defined. For M processes its not
required to define the signals and pipes connected to the process, but it can be helpful:

process task_1 signals (event1, event6) () pipes (from_usb)

(task1_task2) options (1,0,ARM)

process task_2 signals (event2, event3) () pipes (taskl_task2)

(to_montium) options (1,0,ARM)

process M_task signals () () pipes (to_montium) (from_montium)

options (0,0,Montium)

process task_3 signals (event4, event5) () pipes (from_montium)

(to_usb) options (1,0,ARM)

Now the configuration is complete. M0 is used so the #use_montium0
define has to be set. The #use_usb define must also be set because the USB connection
is used. Then there is a M configuration required in variable montium_cfg_0
and there must be three ARM tasks: task_1, task_2 and task_3.

APPENDIX D

Configuration structure Controller

Figure D.1: Configuration structure

85

APPENDIX E

Layout file Controller

87

	Abstract
	Acknowledgements
	Introduction
	MPEG overview
	Compression principles
	Conversion between RGB, YUV and YCbCr
	Interlaced and Progressive

	MPEG versions
	Coding process
	Motion Compensation
	Discrete Cosine Transformation
	Quantization
	AC/DC Prediction
	Scan methods, Event decoding en VLE
	Headers
	Color conversion

	Reconfigurable and Heterogeneous Architectures
	Algorithm properties
	Streaming algorithms
	Parallelism
	Algorithm characteristics

	Reconfigurable Architectures
	Introduction
	Reconfigurable Architecture properties

	Heterogeneous architectures
	Heterogeneous architectures

	Network on Chip
	Used architecture: BCVP
	Layout
	Montium

	MPEG-4 implementation on the BCVP
	MPEG-4 processes
	Inverse Quantization on the Montium
	Inverse Quantization
	Inverse Discrete Cosine Transform
	Dataflow

	Color Space Conversion on the Montium
	Mapping the algorithm
	Dataflow

	Motion Compensation
	Conclusion

	Interprocess communication on the BCVP
	Requirements
	Implementation
	Basic idea
	Processes
	Pipes
	Signals
	Run-time remapping
	Controller

	Usage of the Controller
	Layout of the application file
	Specification
	Processes

	Conclusion

	Results
	Method
	Results
	Implementations on different processors
	Differences between ARM implementations
	Advantage and overhead using the Montium
	Optimizations for the BasOS implementation
	Energy performance

	Conclusions and Recommendations
	Conclusions
	Recommendations
	Change MPEG-4 implementation
	Implement run-time remapping

	Bibliography
	Chen's iDCT algorithm on the Montium
	Configuration specification
	Convert a process graph to a configuration
	Configuration structure Controller
	Layout file Controller

