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How experts reason during modeling an ill-defined task 
 Tijs van den Broek, University of Twente 

Abstract 
This study investigates the reasoning processes of experts while modeling a case in the domain 
of management science. Five experts in human resource management and five novices 
participated in this study. They produced an external representation of a HRM case, while 
verbalizing their thoughts. The resulting protocols were segmented and coded with a scheme 
based on descriptive theories of reasoning activities during inquiry modeling. The findings show 
that experts spent more time on orientation and used more experiential and conceptual domain 
knowledge during the entire modeling process. Furthermore, experts generated more hypotheses 
and separated the hypothesis generation from the modeling implementation. The results 
implicate that instruction on modeling an ill-defined task needs to enhance the learner to use 
prior knowledge by scaffolding. In addition, an environment for modeling ill-defined tasks needs 
a representational system, which can handle the interpretative nature of such tasks.   
 

1 Introduction 
The use of models is imperative to cope with the current myriad of knowledge-intensive 
problems. These problems include scientific problems, such as the development of the climate, 
or problems related to an economical or societal goal, like scheduling trains. Models cope with 
this complexity to extract an abstract representation of these problems, such that one can 
structure, predict or control complex phenomena.   

In this thesis, modeling is defined as forming an explicit, conceptual representation of a 
phenomenon. In other words, a model is a simplified or idealized version of a part of the real 
world. Nowadays, computers are important tools for modeling dynamic phenomena. Ogborn 
(1994) defines computer modeling as “constructing and simulating external representations of 
dynamic phenomena by learners”. This definition stresses highly the educational purpose of 
models. The current study focuses on models as a way to investigate a certain problem or 
situation within the domain of Management Science.  

Models have several cognitive functions. First, models are used to externalize thought in 
order to solve a problem (Bliss, 1994). A problem solver creates a mental model of the problem 
situation. When problems are complex, external representations of such models can serve as 
external memory and prevent an overload of the working memory (Zhang et al., 2006). Second, 
models help structuring the problem by visualizing the problem space. The construction of a 
model is essential to come to a solution of a problem (Simon, 1973). Therefore, models can be an 
important element in learning, which support learners in constructing a mental representation. 
Learners can form conceptual knowledge of qualitative or quantitative subjects by constructing a 
model in modeling environments like Model-It, PowerSim or Stella. Moreover, these learners 
learn about modeling and how to reason scientifically (Löhner et al., 2005).  

In a social context external representations can function as a communication means. By 
constructing an shared external representation, learners can articulate their knowledge, discuss 
and form an agreed common knowledge base (Suthers, 2005). So, modeling can play a role in 
discussing a certain problem or situation. An example is a group-decision support system 
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(GDSS). Such a system facilitates the decision process during a face-to-face meeting by 
structuring discussions, visualizing facts with graphs, a shared workspace and whiteboard, etc. 
The shared representations within the GDSS support the communication and equilibrate the 
different opinions of the participators.    
 

1.1 How experts reason during modeling 
What exactly does someone who makes a model think and how should this modeler think to be 
most effective? The major focus in this study is on modeling as a way to investigate a certain 
problem, situation or issue. Scientific reasoning is the basis of this kind of inquiry and thus 
should be taken in account when studying modeling. 
     Löhner et al. (2005) compared five classifications of reasoning activities during scientific 
reasoning. In general the following reasoning processes take place while investigating a 
scientific problem: 

1. Orientation: the scientist studies the situation and decomposes the situation into elements 
that have importance for the model. 

2. Hypothesis generation: the scientist forms a hypothesis possibly using prior knowledge, 
or experimental evidence. 

3. Experimentation: the scientist designs and executes an experiment to test the hypothesis. 
4. Evaluation: the scientist compares the experimental data with the hypothesis of phase 2 

and evaluates. 
     Although never observed and criticized by some authors, these processes form an inquiry 
cycle (Klahr & Dunbar, 1988; Löhner et al., 2005): the output of the evaluation process should 
function as input for the hypothesis generation process when the experimental data falsifies the 
hypothesis. This cycle continues until the right hypotheses are found.  

These four processes of scientific reasoning are linked with three modeling activities (de 
Jong et al., 2002): 

1. Model sketching 
2. Model specification 
3. Model evaluation 

 

 
Figure 1. The link between scientific reasoning and modeling activities 
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     These reasoning processes can function as a basis for a prescriptive model of how to model 
scientifically; a descriptive model. However, not everybody models in a scientific way. For 
instance, Löhner et al. (2005)  conducted a study on the reasoning process of students who where 
modeling a physics subject using a computer modeling tool. The students followed a data-driven 
approach instead of an inquiry cycle and did not use any substance for their hypotheses.  

A lot of research has been done on expertise in problem solving, especially in solving well-
defined problems. Novice-expert research on problem solving is conducted in domains such as 
Physics, medical diagnosis, Advocacy, performing arts (Chi et al., 1985), but not specifically on 
the reasoning process during modeling. In the novice-expert research of the last decades, some 
discriminating principles of expertise in problem solving emerged: 

- Experts make use of highly developed bodies of knowledge, called schemata. Experts 
have more schemata than novices and these schemata are also more specialized (Chi et 
al., 1985). 

- Experts are highly effective in recognizing and encoding the underlying problem 
structure (de Groot, 1965). Therefore they should excel in the orientation phase of the 
scientific reasoning model. 

- Experts select and apply appropriate problem solving strategies with minimal cognitive 
effort. They reason for example forwards instead of backwards (Gick, 1986). 

- Experts have better meta cognitive ability to monitor their own progress when completing 
a task (Alexander, 2003; Glaser, 1996). 

On the other hand, little research has been done on how experts solve ill-defined problems. 
Simon (1973) assigns the following properties to an ill-defined problem, which are opposed to 
the properties of a well-defined problem:   

- Failing to present one or more problem elements. 
- Having vaguely defined or unclear goals and unstated constraints. 
- Possessing multiple solutions, solution paths, or sometimes no solutions at all. 
- Possessing multiple criteria for evaluating solutions. 
- Represent uncertainty about which concepts, rules, and principles are necessary. 
- Having no explicit means for representing the problem and determining appropriate 

actions. 
- Requiring learners to make judgments about the problem and problem solutions.     

Reitman (1965) and Simon (1973) suggest that experts in solving ill-defined problems would 
excel in decomposing the problem and selecting the critical information, which supports de 
Groot (1965). In modeling activities, this would show up in decompositing the problem situation 
into variables and defining the relations between the variables. This suggests that experts should 
display a more sophisticated orientation process. Voss & Post (1985) provide some examples of 
research on expertise in solving ill-defined problems. They compared the problem structuring 
between the judgment processes of physicians and the judgment processes of magistrates. 
Moreover, they investigated the problem solving process of agricultural experts in the former 
Soviet-Union. The results pointed out that structuring ill-defined problems is highly domain-
specific: the search process for appropriate variables was for example significant quicker for 
physicians than for magistrates. The researchers concluded that novices have difficulty 
processing divergent information in ill-structured problems, whereas experts have developed 
ways to structure the confusing, ill-defined problem for their domain of expertise. So, retrieving 
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domain-specific conceptual knowledge of the problem domain plays an important role in the 
expertise of structuring the ill-defined problem (Simon, 1973).  

The findings of Voss & Post (1985) are in line with research on factors that influence 
modeling positively. Van Joolingen & de Jong (1997) describe a few factors influencing the 
reasoning process of students that were working on a computer simulation. Their findings 
included the claims that domain specific prior knowledge and generic prior knowledge on the 
modeling process itself have both a positive effect on problem solving. Sins et al. (2005) 
compared a high performing dyad of pupils working on a modeling task in a modeling 
environment with a low performing dyad. The high performing dyad used significantly more 
own experience and theoretical knowledge during the reasoning and had a more holistic view on 
the. The low performing dyad used a highly data-driven approach instead of a theory-driven 
approach of the high performing dyad. These results should give some indications on how 
experts reason during modeling. 

1.2 Modeling in the Management Science domain 
This study focuses on modeling in the domain of Management Science. Pidd (2005) defines 
models in Management Science as representations of reality, used to understand, change, manage 
and control reality. This definition links directly to the task-oriented definition of management 
(Fayol, 1949), namely planning, organizing, commanding, coordinating, and controlling.  

Ackoff (1979) used a distinction of problem types, which is similar to ill-defined and well-
defined (Roberston, 2001). Problems in Management Science can vary on two dimensions: 

- Problem formulation agreement: to what extent is there an agreement on the problem 
formulation, like the initial state and possible operators of the problem space? 

- Problem solution agreement: to what extent is there an agreement on the problem 
solution space?  

 
Table 1. Problem types in management science 

Problem type Characteristic Ackoff (1979) Example in Management Science domain 
Puzzles Agreed formulation and solution Defining an optimization strategy for the distribution of 

goods 
Problems Only agreed formulation The allocation of a new supermarket  

Messes No agreed formulation and solution The evaluation of the failure of a new marketing campaign 
 

These different problem types and an example from the domain of Management Science are 
summarized in Table 1. The Management Science sub domains deal mostly with one particular 
problem type. One can state the general rule that the more quantitative the domain, the more 
puzzles one has to deal with. For example, Operations Research focuses more on puzzle 
problems and Strategic Management usually deals with messes.  

Different problems like the ones described above require different models. There is a 
distinction in Management Science between interpretative models and quantitative models (Pidd, 
2005), or soft system modeling and hard system modeling (Hicks, 1999). Quantitative models 
are appropriate for strongly well-defined problems or the so-called puzzles. These models have 
the purpose to strive for unarguable optimal solutions. However, quantitative models are less 
useful in solving messy problems (Hicks, 1999). In case of messy situations, interpretative 
models like cognitive mapping and Strategic Options Development and Analysis (Pidd, 2005) 
are more applicable than quantitative models, because these models are less strict and more open 
for discussion. Pidd (2005) calls these interpretative models “a way of generating debate and 
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insight about the real world”. Such models offer the possibility to discuss and communicate 
group wise about a messy situation (Langfield-Smith, 1992), like a problem in Human Resource 
management, which has strong links with the constructivistic vision of Suthers (2005) on 
external representations. 

A typical example of a quantitative model within the field of Management Science is linear 
programming, which is a subset of mathematical programming (Pidd, 2005).  Linear 
programming is a mathematical method to model well-defined problems. The initial state of the 
problem is formed by reformulating the problem in a function, setting up constraints and 
choosing a goal (like maximize or minimize). An initial state looks as following:  
 
 Maximize c1x1 + c2x2 + … +   cnxn      ‘ goal and function 
 x1 +  x2 = 10       ‘ constraint 
 
This model is solved by making a graph or by linear algebra. The solution includes the values in 
which the variables, like x1 x2, are optimal. Linear programming is a common model in 
operations research and is often used for modeling production schedules, telecommunication 
networks or financial products. 

An example of an interpretative model in the domain of Management Science is cognitive 
mapping, which is a subset of causal maps. A cognitive map is a model in which different 
concepts, a term for ideas or constructs, are connected with each other by arrows. These 
connections symbolize a causal relation between two concepts. The direction of the arrow means 
the direction of the causal relation. A minus sign means a negative relation and no minus sign or 
a plus sign means a positive relation.  

 
Figure 2. An example of a cognitive map made by an executive manager  
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Causal maps, like these cognitive maps, are often used in consultancy as a measure to map a 
client’s ill-defined problem, like the failure of a marketing or recruitment campaign. 

Almost no research on how experts in the Management Science domain reason while 
modeling could be found. Willemain (1995) performed an experiment with 12 management 
experts who were given modeling tasks and were asked to think aloud as they spent 60 minutes 
on developing a model. Willemain (1995) classified the experts’ modeling under the following 
heading: 

1. The problem context: structuring the problem (15% of the time) 
2. The model structure: process of deciding what category of model to use (60% of the 

time).  
3. Model realization: process of parameter estimation for a model and calculation of results 

(10% of the time). 
4. Model assessment: deciding whether the model will be valid, usable and acceptable (15% 

of the time). 
5. Model implementation: working with the client to gain some value from the model (0% 

of the time). 
However, the Operations research tasks given by Willemain (1995) in the experiment 

mentioned above were highly quantitative. In practice most of the problems that confront 
managers, for example in Human Resource Management, are ill-defined nowadays.  

So, what seems to be missing is descriptive research on the expertise of modelers in ill-
defined tasks within the domain of Management Science. To better understand the reasoning 
processes of modeling experts in ill-defined problem solving, one should compare experts in the 
management domain with novices. Therefore, an exploratory expert-novice experiment will shed 
light on the cognitive differences. 
 
The research questions that have to be answered can be stated as following:  
 
1. What are the reasoning processes exerted by modeling experts in ill-defined tasks within the 
domain of management science? 
2. What are the differences between the reasoning processes of modeling experts and novices 
while modeling an ill-defined task within the domain of management science? 
 
These questions will be answered by exploring and describing the reasoning processes exerted 
by management modeling experts when constructing a model and comparing the experts with 
novices executing the same task in detail. A Human Resource Management case will be used as 
an instance of an ill-defined problem.  

Knowing how experts cognitively deal with ill-defined problems is important in Educational 
Psychology. As stated in the introduction, computer models have potential to catalyze the 
novice’s learning process on conceptual domain knowledge, inquiry skills and modeling 
knowledge. A description of the expert’s reasoning processes gives insight on how novices could 
deal effectively with modeling tasks. The results of this research could help in the development 
of scaffolding learning tools and instruction on modeling ill-defined problems.  
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2 Methodology 

2.1 Participants 
Five male experts and five male novices in the Human Resource Management (HRM) domain 
took part in the experiments. The experts were recruited from consultancy firms and one research 
institute. They were selected by holding a short unstructured interview, in which the following 
criteria were assessed: 

- At least two years of practical experience in HRM consultancy or research 
- A (post-) academic degree in a HRM related study, like Business Administration, 

Organizational Psychology and Personnel studies. 
- At least two years of experience in mapping HRM problems.    

More details on the experts can be found in the Table below. 
 

Table 2. Data about the experts 
Expert Educational background Experience 
A MSc in Public Administration, Post master courses 

in HRM 
7 years of experience in HRM consultancy 

B MSc in HRM, PhD in HRM 6 years of experience in HRM research and consultancy 
C MSc in Business administration, PhD in HRM 15 years of experience in HRM research, consultancy and 

education 
D MSc in Business Administration 6 years of experience in HRM consultancy 
E MBA 12 years of experience in HRM and Change Management 

consultancy  
 

These experts were compared with five novices in the HRM domain (Table 3). The novices 
were Bachelor of Science students in their final year at the school of Management & Governance 
of the University of Twente, the Netherlands. They had followed a few introduction courses on 
HRM. This prior knowledge criterion was important for their understanding of the case 
description.  

All subjects participated on a voluntary basis.  
 

Table 3. Data about the novices 
Novice Educational background 
A 3rd year of BSc Industrial Engineering & Management 
B 3rd year of BSc Industrial Engineering & Management 
C 3rd year of BSc Business Administration 
D 3rd year of BSc Business Administration 
E 3rd year of BSc Business Administration 

  

2.2 Materials 
The case was derived from a case study of the Harvard Business Review (Ehrenfeld, 1992). This 
case sketches the difficulties a large chemical company has with retaining its R&D personnel, 
although it performed very well financially as well in productivity. The case requested the 
participant to take the role of an HRM consultant and model the problem situation. The criteria 
of van Someren et al. (1994) were used to ensure well-verbalized protocols. The most important 
criteria for the case selection were  

- Variables could be easily derived from the case description. 
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- Only qualitative relations could be derived from the case description. 
- The case should be at an appropriate level for both experts and novices.  
- The case should be realistic, because task commitment is important. 
- The case should be ill-defined.   

The case was translated to Dutch and the storyline was shortened without making it unrealistic. 
Furthermore, the case was reviewed by an HRM expert on the criteria above and tested twice on 
other experts to test the case on practicality. As a result, some minor changes in the case were 
made to make the description more clear and realistic. The case can be found in Appendix A. 

Participants had the choice to use either the modeling tool in Co-Lab or a whiteboard with an 
eraser to construct their model. Co-Lab is an environment for inquiry learning that includes a 
qualitative modeling tool (van Joolingen et al., 2004). The modeling tool in Co-Lab has a 
graphical representation and works with qualitative, semi-quantitative and quantitative relations. 
The Co-Lab tool was originally intended to be the main tool for modeling the case, but it proved 
to be too restrictive in two pilot studies. However, the choice was made to use this tool as 
training in the experiment, because both pilot studies showed that this exercise made the 
participant more at ease with modeling.   

Two training exercises were developed for the experiment. The first exercise gave the 
participants instructions on how to think aloud properly. This exercise contained an example 
video and two small assignments, in which the participants had to solve a block puzzle and come 
up with five improvements for a kitchen machine, while verbalizing their thoughts. The other 
exercise made the participant acquainted with modeling as an activity. This exercise consisted of 
a brief Co-Lab tutorial and two exercises, in which a model of a rabbit and fox population had to 
be constructed. 

2.3 Measures and analysis  
The participants’ verbalization during the experiment was recorded on a laptop computer and all 
modeling actions were logged by the experimenter using paper and pencil. At the end of the 
experiment a photo was taken of the model constructed by the participant, which was used later 
for the analysis of the model characteristics between the experts and the novices.  

The recordings were transcribed to protocols and segmented into episodes based on natural 
breaks between sentences (van Someren et al., 1994). The length of the episodes varied between 
1 and 90 seconds. These segmented protocols were coded with the coding scheme described in 
the next paragraph. After the coding the percentage of time students spent on each activity and 
the sequence between episodes were computed by using the protocol analysis program MEPA 
(Erkens, 1998), Multiple Episode Protocol Analysis. Furthermore, the protocols were analyzed in 
a spreadsheet to find out the modeling strategies.   

Due to the relatively small sample size, non-parametric Mann-Whitney U tests were used to 
analyze the differences in reasoning processes and the differences in the produced models. 

2.4 Instrument 
The coding scheme of Löhner et al. (2005) was used as an instrument to interpret the activities of 
the participants during the experiment. Only a few categories and examples for coders were 
changed to fit ill-structured problems and the Management Science domain particularly. The 
final coding scheme has two types of categories: 
 

- Scientific reasoning activities  
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- Other activities 
 
The scientific reasoning activities consisted of five main categories: 

- Orientation 
- Hypothesizing 
- Experimenting 
- Model implementation 
- Model evaluation 
-  

The other activities part had the following main categories: 
- Actions 
- Regulation 
- Off task 
- Experimenter 

 
A complete list of categories and subcategories can be found in Appendix B. 

 
In order to compute the inter-rater reliability a second coder received a protocol and coded it 

independently. The analysis program MEPA was used to calculate both the agreement 
percentage and Cohen’s kappa for the main categories and the subcategories. The inter-rater 
reliability of the main categories seemed to be acceptable (69.1 agreement percentage and 
Cohen’s kappa = 0.61).  
 

2.5 Procedure 
As it was important for the participants to feel comfortable, the experiment for the experts took 
place in a quiet conference room at their office. The experiments with the novices took place in a 
conference room at the University of Twente. The procedure was standardized with an 
instruction sheet for the experimenter.  

First, some general information about the study was given and the procedure of the 
experiment was explained to the participant. The experiment continued with a think aloud 
exercise, which lasted for 15 minutes. Second, the participant did an exercise in modeling by 
using a tutorial and a modeling exercise. This took about 30 minutes. After this exercise there 
was time for a 5 minute break. The actual experiment started with a sound check and after the 
sound quality proved to be good the participant could work for 45 minutes on the case using 
either a whiteboard or the modeling tool in Co-Lab. All participants but expert C used the 
whiteboard. The experimenter had a passive role during the experiment answering only 
procedural questions. The experiment concluded with a brief interview about how the participant 
experienced the experiment. This interview evaluated thinking aloud, use of Co-Lab, planning of 
the experiment, experimenter’s attitude during the experiment and the level of the case. The 
experiment total duration was approximately two hours.  
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3 Results 

3.1 Reasoning processes 
Table 4 shows the percentages of time participants spent on each activity. The standard 
deviations of the categories model implementation, regulation and actions are very high, 
indicating large differences between individuals. The share of the orientation and the 
hypothesizing categories together is very large: about 50 percent for the experts and 40 percent 
for the novices. For example, the orientation process of expert B took 39.2 % of the total time 
spent, which was the highest share among the participants. The time subjects talked off-task and 
the time the experimenter intervened are low, indicating that the participants focused strongly on 
the case. 

When looking at the differences between groups, the Mann-Whitney U test (n = 10) indicates 
some significant differences. The percentage of time experts spent on orientating (28.0 %, SD = 
7.7) is significantly higher than the time spent by the novices on this (15.1 %, SD = 0.3; U = 0, p 
= 0.009). The novices spent significantly more time to implement their model (20.8 %, SD = 6.9) 
than the experts (9.8 %, SD = 7.1; U = 3, p = 0.047). There were no segments coded of expert 
B’s protocol in which he was implementing his model, indicating that he implemented his model 
silently and parallel to the other processes. The time experts spent on model evaluation (4.6%, 
SD = 1.9) was significantly less than the novices (5.5%, SD = 2.5; U = 2.5, p = 0.036). At last, 
the time the experimenter intervened to answer procedural questions was longer in the expert’s 
process (4.5%, SD = 1.7) than the share of interventions in the novice’s process (1.9%, SD = 1.9; 
U = 3, p = 0.047). In addition to these differences at p = 0.05 some smaller differences (p = 0.1) 
were found. The expert’s session length (38:12, SD = 5:52) is longer than the time novices spent 
in total (30:10, SD = 7:45; U = 4, p = 0.076). Looking at the time spent on hypothesizing in 
minutes, experts (8:03) spent the same time as novices do (7:56), but the percentage of 
hypothesizing is higher at the novices (26.3 %, SD = 4.4) than at the experts (21.1 %, SD = 4.4; 
U = 4, p = 0.076). There are no significant differences noticed in the categories experimenting, 
regulation, actions and off-task processes.  

 
Table 4.  Time experts and novices spent on reasoning processes while constructing a model 

Experts Novices U p
Length (m:s) 38:12  (5:52) 30:10  (7:45) 4.00 0.076 `

Orientation (%) 28.0  (7.7) 15.1  (0.3) 0.00 0.009 *
Hypothesizing (%) 21.1  (4.4) 26.3  (3.8) 4.00 0.076 `
Experimenting (%) 5.8  (2.0) 3.1  (3.3) 6.00 0.173
Model implementation (%) 9.8  (7.1) 20.8  (6.9) 3.00 0.047 *
Model evaluation (%) 4.6  (1.9) 10.8  (5.5) 2.50 0.036 *
Regulation (%) 16.8  (8.5) 12.6  (6.4) 9.00 0.465
Actions (%) 8.4  (4.3) 8.6  (6.8) 11.00 0.754
Off task (%) 1.0  (1.5) 0.9  (0.8) 12.00 0.911
Experimenter (%) 4.5  (1.7) 1.9  (1.9) 3.00 0.047 *
U and p scores were obtained with a non-parametric Mann-Whitney U-test
* p = 0.05
 ̀p = 0.1  

 
When one has a closer look in the orientation process (Table 4), experts spent in total almost 

6 percent of their time on prior knowledge and novices almost nothing; 0.1 percent in total. The 
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experts spent more time on both experience knowledge (3.0 %, SD = 1.5) and theoretical 
knowledge (2.8 %, SD = 3.3) than novices do (respectively 0.1 %, SD = 0.2; U = 0.0, p = 0.007 
and 0.0 %, SD = 0; U = 2.5, p = 0.019). Moreover, experts take significantly (p = 0.1) more time 
to interpret the data in the case description (14.9 %, SD = 4.3) compared to the novices (9.3 %, 
SD = 1.4; U = 4.0, p = 0.076).  
 

Table 5. The sub processes of the orientation process 
Experts Novices U p

Interpreting (%) 14.9  (4.3) 9.3  (1.4) 4.00 0.076 `
Defining variables (%) 6.2  (4.6) 3.6  (1.4) 10.00 0.602
Experience knowledge (%) 3.0  (1.5) 0.1  (0.2) 0.00 0.007 *
Theoretical knowledge (%) 2.8  (3.3) 0.0  (0.0) 2.50 0.019 *
Refer to instruction (%) 1.2  (0.9) 2.0  (1.4) 6.50 0.209
U and p scores were obtained with a non-parametric Mann-Whitney U-test
* p = 0.05
 ̀p = 0.1  

 
Within the hypothesizing process, no significant differences were found on a lower 

aggregation level. 

3.2 Modeling strategy 
Sequential analysis revealed that the experts stayed longer within a single process: an expert 
generates relatively more hypotheses after each other than a novice, for example. No inquiry 
cycle could be observed for any participant; hypothesis generation  experimenting  model 
evaluation  hypothesis generation. 

When adding a time dimension, one can analyze the modeling strategy in more detail. The 
five scientific reasoning categories are plotted on the protocol position in percentage (X-axis) 
and the relative share of the process (Y-axis), assuming that the length of the sub processes 
change proportionally when scaling up or down between different protocol lengths. The relative 
share is computed within a window of 15 percent. The x-axis ends at 85%, because after this 
point no 15% window can be computed. The graphs in Figure 3 and Figure 4 show how the 
average share of each process for respectively the experts and novices evolve during the 
construction of their model.  
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Figure 3. Process graphs of the expert’s scientific reasoning processes 
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Figure 4. Process graphs of the novice’s scientific reasoning processes 
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The differences support the proportion tables 3 and 4. In general, the share of each process 
during the complete protocol is more stable for the experts, resulting in less steeper lines. For the 
model implementation phase the deviation between the single processes is high. The expert’s 
orientation process is more dominant during the whole time line compared to the novice’s 
orientation process, mostly orientating in the first part of the protocol. On the other hand, the 
model implementation process appears to be more central in the novice’s protocol. The novice’s 
hypothesizing curve seems to have the same shape as the model implementation curve, 
suggesting a relation between both activities. Both curves have a strong peak at approximately 
35%, indicating that the novice has closed the orientation phase and started mainly with 
implementing his representation. In addition, it seems that novices build their model while 
generating hypotheses, instead of experts who separate those processes. In the latter case, the 
hypothesis process gains share when time passes, reaching its summit at the end of the protocol. 
In both graphs the model evaluation process has its central point at the end of the protocol, 
indicating both experts and novices asses their own constructions after hypothesizing and 
implementing it.   
 

3.3 Protocol examples 
 
Qualitative analysis of the protocols provides some details about how processes differ 
substantially. The experts demonstrate some schemata in their protocols. Table 6 shows two 
examples of theoretical knowledge schemata exerted by experts A and C in their protocols. 
Expert A puts the problem situation in a HRM model he uses in practice. First, he tries to state 
the model’s six factors, except one he forgot. Later in the protocol he remembers the missing 
factor. Expert C demonstrates a schema about the meaning of HRM. The words “working in 
teams” elicit connections with other HRM concepts like performance management. Furthermore, 
he decomposes the HRM domain in seven constituents. These schemata of theoretical knowledge 
are often used to analyze the case, define variables and evaluate their model.  
 

Table 6. Examples of theoretical knowledge schemata exerted by expert A and C  
Expert Time Code Segment 
A 00:04:13 Theoretical  

knowledge 
Uuh…from our…from my own practice there is a model that consists of 
six factors, which are related to each other…uuh…this model represents 
balance, coherence and heterogeneity, ESH, and these factors are 
organizational strategy, organizational structure, style of management 
and governance, personnel, systems and I always forget 
one..uuh..perss..no, I come back on it later. Those things are such 
related to each other that if you influence one of the dots presented here, 
it will directly effect the other dots.  

C 00:35:44 Theoretical  
knowledge 

Working in teams...uuh…to be complete, it is about organizing of the 
work, it is also about things like performance measurement, safe 
environment, eeh performance measurement. Uuh…measurement, yes. I 
also would like something about rewards. Rewards...Performance 
measurement, I will deal with appraisal separately. It is about a HRM 
manager, isn’t it? Yes, it is about HRM. I think HRM deals with 
leadership, work organization, performance measurement, rewarding, 
evaluating, career, hop. 

 



Expert’s reasoning during modeling 15

Some schemata of experiential knowledge occur in the experts’ protocols too. Table 7 shows 
how the case reminds expert B to his own experiences with a similar company in the chemical 
industry. He transfers his experiences to visualize the work situation for the employees in the 
case. 
  

Table 7. Example of experiential knowledge schema exerted by Expert B  
Time Code Segment 
00:12:04 Experiential 

knowledge 
But as I can see the company has 350 employees…uuh…that is quite large in 
my opinion. So…the company could be compared with a division of DSM. I 
know DSM reasonably well and that is why I think about it. I can imagine a 
situation with crackers all over the place, a few people, a lot 
of…uuh…machines and factory..uuh these are not actually factory halls, but 
pipelines. People who wear helmets and one office, in which all R&D 
employees sit together. Something like that appears to me. 

 
The novices are more concerned with the construction of their model and how to fit all the 
variables on the whiteboard. Table 8 shows how novice C works with a numbering system to 
implement his model more efficiently. He designates referential numbers to variables, like 
number six for the variable enthusiasm, and makes a legend in which links the numbers to the 
variables.    
 

Table 8. Example of novice C’s model implementation 
Time Code Segment 
00:12:39 Model  

implementation 
Uuh..wait…there stand and is absence through illness and so…everything from 
one till five has a negative influence, uuh..number six is enthusiasm...has a 
negative influence, seven is dissatisfaction, number eight is absence through 
illness, number nine is the retention and that has of course in its turn an 
influence on number ten, the total number of personnel. 

 
As stated in the previous paragraph, novices make more hypotheses during the implementation 
of the model. Table 9 shows a few segments of novice E’s protocol, in which the novice switches 
between model implementation and hypothesizing. He is looking at the whiteboard while placing 
a variable. However, this activity triggers a hypothesis about the variable’s relation, which is 
implemented subsequently. These transitions between hypothesis generation and model 
implementation repeat during the protocol.  
 

Table 9. An example of novice E switching between hypothesis generation and model implementation 
Time Code Segment 
00:09:47 Model 

Implementation 
So this should be on this side 

00:09:51 Hypothesizing However, reverse could also be true…a low labor productivity causes illness. So, 
it is plausible or in any case not ill, but ill for the boss. 

00:10:05 Model 
Implementation 

Possibly an arrow to the other side 
  

00:10:11 Hypothesizing Uuuh…ok..creativity has also to do with…if they are not creative, then they will 
never be productive 

00:10:22 Model 
Implementation 

Also an arrow to this side, reverse is not valid 
  

00:10:29 Hypothesizing One will not become less creative when not productive. Further, a better job 
has…uuh…the possibility of getting a better job could influence the absence 
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through illness. 
00:14:17 Hypothesizing Uuh..yes…for the reason that if you posted your solicitation letter, you probably 

do not want to work at the R&D department of this company anymore. 
00:11:00 Hypothesizing Working conditions have an influence on about everything over here. 
00:11:03 Model 

Implementation 
I will not even draw arrows for it, because the whiteboard will become a chaos.  

00:11:10 Hypothesizing A conflict has somehow an influence on productivity and absence through illness 
and probably also on creativity. As soon as a conflict stresses you, you will not 
act very creatively.  

 
Table 10 shows the hypothesizing process of expert A. He stays for a long time hypothesizing 
without placing the relations directly in the model. The expert forms a chain of causal reasoning 
starting with the variable “recruitment of HRM personnel” and ending with “Conflicts”.   

 
Table 10. An example of Expert D’s hypothesizing 

Time Code Segment 
00:15:17 Hypothesizing That makes the…eeeh…the incoming personnel available…uuh the incoming 

personnel consists of eeh..the the the capacity and recruitment’s dedication 
00:15:51 Hypothesizing Recruitment of incoming personnel..eeh this input can be important for the 

effective available human resources eeh....no, for the available human resources 
uuh, because there is still absence through illness in between  

00:16:08 Hypothesizing So, this leads to…uuh..effective...available and then it will be also…uuh…caused 
by absence through illness. In that case absence through illness is…absence 
through illness is determined by…uuh by conflicts too and conflicts have in its 
turn an effect on the actual effective available eeh…labor hours. If employees 
have disputes with each other, they will not be able to work together 

 

3.4 Models 
 
Figure 5 and 6 depict the external representations constructed by expert A and one 

constructed by novice E respectively. Both models appear to be interpretative stating only 
constructs and qualitative relations. They can be characterized as causal flow models. These 
examples exemplify some obvious differences between expert A and novice E. First, the expert’s 
model constitutes more variables and relations and therefore seems to be more complex. The 
novice used 17 variables in his model from which 12 variables came directly out of the case 
description. The expert on the other hand used 30 variables of which only 9 were deduced from 
the case description. Second, experiential and theoretical knowledge are embedded within the 
expert’s model. Examples are the strategic triangle in the left corner of figure 5 and the ESH 
model, which is located on the right site of the strategic triangle.     
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Figure 5. Model made by expert A 

 
 

 
Figure 6. Model made by novice E 
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Table 6 shows the differences between the main characteristics (variables and relations), of 
the models produced by both groups. In line with the higher orientation activity of experts, the 
number of new variables experts came up with (12.2, SD = 5.5) is significantly higher than the 
novices came up with (4.6, SD = 3.4; U = 0.50, p = 0.012). This comes back in the share of 
variables that could not deducted from the case, since this is significantly higher in the experts’ 
models (60.4 %, SD = 9.5 %) than in the novices’ models (33.3 %, SD = 12.9 %; U = 1.00, p = 
0.016). On the other hand the total number of variables, the number of variables extracted from 
the case description and the total number of relations does not deviate significantly.   

 
Table 11. Quantitative characteristics of the models 

Experts Novices U       p
Variables 19.8 (5.5) 14.2 (4.0) 6.00 0.169
  - Variables case 7.6   (1.7) 9.6  (3.4) 8.00 0.337
  - Variables new 12.2 (4.7) 4.6  (1.9) 0.50 0.012 *
Relations 20.8 (8.3) 16.2 (5.7) 8.00 0.346
U and p scores were obtained with a non-parametric Mann-Whitney U-test
* p = 0.05  

 

4 Conclusion and discussion 
The results show that in modeling an ill-defined task experts spent significantly more time on 
orientation when compared with novices. The differences in orientation consist of the use of own 
experiences and theoretical knowledge, like HRM models and theories. This supports the claim 
that domain knowledge is important for modeling (Sins et al., 2005; Willemain, 1995) and 
problem solving (van Joolingen & de Jong, 1997), especially solving an ill-defined problem 
(Voss & Post, 1985). In addition, experts took less time to build on models with more variables 
and relations. It seems that expert’s familiarity makes the implementation activity more 
automatic, giving experts the opportunity to delve conceptually deeper in the situation as they 
have more time for orientation. The new variables novices brought in, suggest that novices have 
prior knowledge, but do not state it explicitly. On the other hand, novices spent more time on the 
evaluation of their external representation by comparing it with the data in the case description. 
This result deviates from Löhner et al.’s (2005) claim that high-performing modelers evaluate 
their models more, although the domain and the nature of the problem differ between both 
studies. Future research should compare expert modelers from well- and ill-defined task domains 
to shed light on the differences between task domains. The share of the regulative process was 
high for both groups and exceeded the share of regulative processes Löhner et al (2005) found. 
However, no significant differences between novices and experts could be found, which does not 
support Alexander’s (2003) and Glaser’s (1996) claim that experts would regulate their work 
more due to higher meta cognitive capabilities and indicates that apart from regulative processes 
orientating is important too. It could be that experience in course work made the novices, all in 
the third year of their Bachelor degree studies, familiar with planning, monitoring and evaluating 
their performance.  

We could not see that subjects from either group sequenced their actions according to a 
normative inquiry cycle. As the ill-defined task resulted in interpretative models, highly varying 
in syntaxes, it proved to be hard to formalize these models in a modeling environment like Co-
Lab. This confirms the suggestion that ill-defined tasks are hard to quantify in a computer model, 
because of their interpretative nature (Hicks, 1999). Still, an inquiry cycle requires experimental 



Expert’s reasoning during modeling 19

data, for example from a dynamic model, which serve as input for the hypothesis generation 
process.  

 Apart from the reasoning activities, the modeling strategy varied between beginners and 
experts. They start with orientating, continue with hypothesizing and end with evaluation, but the 
distribution of the reasoning processes is different: the expert’s orientation process lasts the 
whole modeling process, whereas novices stop with orientating after they started with the model 
implementation and hypothesizing. Most experts started later in the process with model 
implementation, first carefully orientating on the task, which supports Zhang’s et al. (2006) 
finding that expert modelers wait with constructing the model until the last phase of the 
modeling process. The hypothesizing and model implementation highly correlated within the 
novice’s process: they formulate a hypothesis and put it in the model. In contrast, blocks of 
hypotheses without implementing these were found in the experts’ protocols, indicating that 
experts can make more reasoning steps at once. These blocks of hypothesizing is similar to the 
reasoning chains found by Voss et al. (1983). Qualitative support was found for these findings: 
for example, having a closer look at the experts’ orientation process the use of schemata of prior 
knowledge can be found as predicted by Chi et al. (1985). The reasoning processes resulted in 
different models. All of them consisted of only qualitative relations and abstract constructs as 
variables. Although experts were less busy with building their model, they produced models. The 
share of variables that were not stated in the case description was significantly higher, indicating 
that more extensive orientation process exerted by the experts resulted in more new variables. On 
the other hand experts used less variables stated in the case, which supports the claim that 
experts should be better in filtering critical information (de Groot, 1965; Reitman, 1965; Simon, 
1973) 

Research on the differences between experts and novices contributes to the development of 
modeling instruction, because it identifies key concepts and strategies that students must acquire 
to function effectively in a particular domain (Bransford & Vye, 1989). As a snapshot of the 
reasoning processes exerted by both groups, this study defines the goals novices should pursue. 
The results of this study and prior research (Sins et al., 2005; van Joolingen & de Jong, 1997; 
Voss & Post, 1985)  suggest that the use of (prior) knowledge is important during the whole 
modeling process. Although this study seems to provide on overview of the symptoms of 
expertise, it has implications for the development of modeling instruction, especially for ill-
defined tasks. These practical implications regard both declarative and procedural knowledge. In 
the learning process from beginner to expert, the declarative knowledge of novices and 
intermediaries is passive in the sense that they are not able to spontaneously make transfers as 
their schema are still context-dependent. They can develop expertise by repeating similar cases, 
which in the end decontextualize these schemata (Robertson, 2001). Modeling instruction, for 
example in the form of a learning environment, can possibly catalyze this schema induction for 
experiential and theoretical knowledge, but should aware of the drawbacks of schematization 
(Feltovich et al., 1997). The examples in modeling instruction should start with cases novices are 
already familiar with. Subsequently, the instructional tool should help the novice to make 
transfers with earlier cases, that share productions with the current case (Anderson & Singley, 
1993) by scaffolding on relevant moments. This scaffolding can include active prompting using a 
database with previously made models, which supports the modeler in recognizing the current 
exercise. If the modeler starts recognizing elements in the current model that are similar to 
elements in previous cases, the modeling tool can remind the modeler to these previous cases. 
When the novice starts making transfers spontaneously, the instructional tool should help to 
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induce more conceptual knowledge from related cases. The learning environment could support 
the learner in categorizing and developing conceptual knowledge by offering templates. This 
strategy can be used for enhancing active use of declarative, both experiential and theoretical, 
and procedural knowledge on modeling. Apart from the use of knowledge, modeling instruction 
should stimulate learners to form chains of reasoning instead of generate hypotheses after each 
other.   

The post-experiment interview revealed that the experts appreciated a modeling tool such as 
the modeling tool in Co-Lab for their domain. Such modeling tools can help HRM consultants or 
experts to assess models made for clients or research projects. However, they stated that due to 
the restrictive representation and syntaxes of a modeling tool it would be difficult to implement 
an ill-defined task like the HRM case. A modeling tool suitable for an ill-defined task should 
work with causal relations and allow variables not to be defined or missing. As the problem gets 
more defined in practice, a modeling tool like in Co-Lab can be used.  

This study was intended to be exploratory. It sheds light on the reasoning process of experts 
and gives directions for future research on the reasoning process when modeling ill-defined 
tasks. Some differences between experts and novices are hard to explain. The difference in 
model evaluation can be caused by the time pressure experts had to deal with, as most of them 
did their experiment during work time. The deviation in experimenter’s interventions could be 
the result of the expert’s habit to question, like they should do when working with a client, and 
the novice’s habit to work on an assessment silently. Other research should validate the findings 
with a bigger sample. Moreover, as there is a broad spectrum of ill-defined tasks the reasoning 
process found in this study can not be generalized to all domains. A meta-analysis of several 
validated studies within different domains is necessary for such an induction. Comparing 
modeling expertise in ill-defined tasks with well-defined tasks should tell whether this study’s 
results are characteristic for ill-defined tasks. Future research should investigate whether 
modeling environments appropriate for ill-defined tasks can transform an ill-defined task into an 
inquiry task, possibly provoking the inquiry cycle.  
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6 Appendix A: case 
 
HRM CASE: SuperChem  
 
Pieter van Nieuwenhuizen, HRM consultant at Personnel Advise B.V., opened his E-mail in the 
morning. Superchem’s vice-president, Bert Poortvliet, sent him a very urgent E-mail, asking 
Personnel advice to help Superchem. The E-mail explained that the 93 years old chemical 
company, which had a turnover of 2 billion Euros in 2004, faced a severe threat though it 
performed financially well.  
 
Superchem had introduced a quality management program called “Quality for everybody” three 
years ago. The program aimed to improve the quality of Superchem’s Research & development 
(R&D). R&D employees were placed in product oriented teams, in which different 
organizational layers and functions strived to innovate products together. At first glance 
resistance from the personnel was expected, but fortunately it did not occur and the enthusiasm 
for the new teams grew slowly. The quality management program changed the way people 
worked together at Superchem. The time to market new products was decreased, the product 
quality was improved and Superchem became more efficient. The company’s cultural values 
were changed as well during the last years, compared to the old values. In the previous situation 
cultural values like hierarchy, seniority, functions, hours worked, etc. were appreciated. 
   
However, Pieter read in Bert’s E-mail that the absence through illness percentage had doubled 
from 5 to 10 last year and the turnover of R&D personnel grew with 25 percent to 30 employees 
in 2006. At the moment the E-mail was sent  only 350 R&D employees worked at Superchem. 
The absence through illness reduced productivity. In addition, the number of conflicts among 
employees increased. On the other hand the incoming personnel from recruitment stayed the 
same. Unfortunately, Bert did not have the manpower in the field of HRM to solve this problem 
and therefore he contacted Pieter to fix it. 
 
Pieter studied the problem and decided that in order to solve the problem he needed to map the 
situation for the upcoming months. Which are the problems’ factors and how do these influence 
each other and the in and outflow of R&D employees? 
 
Assignment 
Help Pieter to understand the problem by constructing a model. Examples are causal maps, case 
diagrams, system models, etc. You have 45 minutes to model the situation mentioned above with 
the Co-Lab modeling environment or on the white board. Extract relevant variables from the 
case description and your own experiences and try to link these. You will notice that only a few 
facts about Superchem are available. Therefore you have to make assumptions by using your 
own experience or / and theoretical knowledge. The assignment’s aim is to make a model that is 
as complete and valid as possible, so try to assess and improve your model during the process. 
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Appendix B: coding scheme 
 

Scientific reasoning category

Orientation
Interpreting
Defining variables
Theoretical knowledge
Experiential knowledge
Refering to instruction

Hypothesizing
Predicting
Hypothesis generation
Domain talk

Experimenting
Model implementation
Model evaluation

Other category
Actions
Regulation
Off task
Experimenter  


