
Connecting distributed E-health applications by means of a generic
control protocol

Thesis for a Master of Science degree in Telematics
from the University of Twente, Enschede, the Netherlands

Enschede, June 1, 2009

Wim van Ravesteijn

Report nr: BSS 09-13

GRADUATION COMMITTEE:
Dr. ir. B.J.F. van Beijnum (University of Twente)

Dr. ir. I.A. Widya (University of Twente)
Prof. dr. ir. H.J. Hermens (University of Twente)

Connecting distributed E-health applications by means of a generic
control protocol

Thesis for a Master of Science degree in Telematics
from the University of Twente, Enschede, the Netherlands

Enschede, June 1, 2009

Wim van Ravesteijn

UNIVERSITY OF TWENTE,
Faculty of Electrical Engineering, Mathemathics and Computer Science,

Division of Biomedical Signals and Systems

Abstract

In this thesis a new protocol is designed to support the negotiating of a medical standard.
There exist several vendors of medical equipment that use their own protocols and message
formats to exchange and store medical data. This creates problems in inter-operability.

Using SIP we describe a control protocol that can negotiate the use of a medical standard.
We created a new data format based on SDP to describe the medical standards (called
’MSDP’) and medical data (called ’medical’). The last one is used to exchange single-valued
measurements, to prevent a huge overhead of first negotiating a medical standard, and only
afterwards sending this single value.

The thesis describes the data format of the newly designed protocol, explanations on the use
and interfaces for the different components. To prove the concept, a prototype is implemented
and evaluated.

i

Acknowledgments

I thank my primary supervisor at the University of Twente, Bert-Jan van Beijnum, for all
the discussions, ideas and feedback he gave me during our meetings. The comments on
improvements were of great value, and the discussions made me reflect my choices and rephrase
certain parts of my thesis.

I also thank Ing Widya for his presence at several of the meetings, for his input during the
discussions and the feedback on the content of the thesis.

I would like to thank my family for their support and trust in me during my studies. Also I
would like to thank all my friends, both in Enschede as well as around Europe for giving me
an enjoyable student life and many great experiences.

Wim van Ravesteijn

Enschede, the Netherlands
1 June 2009

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 1
1.3 Approach . 1
1.4 Expected results . 2
1.5 Document structure . 2

2 Background 3
2.1 Control protocols . 3

2.1.1 SIP . 3
2.1.2 RTSP . 4
2.1.3 XMPP . 4
2.1.4 DSM-CC . 5
2.1.5 H.323 . 5

2.2 Medical data standards . 6
2.2.1 DICOM . 6
2.2.2 ecgML . 6
2.2.3 FDA . 7
2.2.4 HL7 . 7
2.2.5 SCP-ECG . 7

3 Requirements 9
3.1 General model . 9
3.2 Requirements . 11

3.2.1 Not linked to existing medical standards 11
3.2.2 Peer to peer . 11
3.2.3 Open standard . 11
3.2.4 Low overhead . 11
3.2.5 Low latency . 12
3.2.6 Both sender and receiver should give their preferences 12
3.2.7 Both sides should know the agreement 12

v

3.2.8 Both sides can conclude the agreement (but only one at a time) . . . 12
3.2.9 Different protocol options of the same standard should be supported . 12
3.2.10 The control protocol should be extensible with new data protocols . . 12
3.2.11 Support to transfer the actual medical data for small data sets 13
3.2.12 Secure . 13
3.2.13 Possibility to reconfigure . 13

4 Design 15
4.1 Choosing an existing control protocol . 15

4.1.1 Not linked to existing medical standards 15
4.1.2 Peer to peer . 16
4.1.3 Open standard . 16
4.1.4 Low overhead . 17
4.1.5 Low latency . 17
4.1.6 Both sender and receiver should give their preferences 18
4.1.7 Both sides should know the agreement 18
4.1.8 Both sides can conclude the agreement (but only one at a time) . . . 19
4.1.9 Different protocol options of the same standard should be supported . 19
4.1.10 The control protocol should be extensible with new data protocols . . 20
4.1.11 Support to transfer the actual medical data for small data sets 20
4.1.12 Secure . 21
4.1.13 Possibility to reconfigure . 21
4.1.14 Summary and conclusion . 22

4.2 Document for negotiating medical data protocols 23
4.2.1 Negotiating parameters . 23
4.2.2 Media type for negotiating medical data protocols 23
4.2.3 Medical Session Description Protocol (MSDP) definition 23
4.2.4 Concluding the agreement . 27
4.2.5 Protocol messages . 28
4.2.6 Security considerations . 32
4.2.7 Example . 32

4.3 Document type for sending actual medical data 33
4.3.1 Media type for sending medical data 33
4.3.2 Medical document definition . 34
4.3.3 Protocol messages . 35
4.3.4 Security considerations . 35
4.3.5 Example . 35

5 Implementation 37
5.1 MDCP design . 37

5.1.1 SIP implementation . 37
5.1.2 SDP implementation . 37
5.1.3 Components . 37
5.1.4 States . 39
5.1.5 Interfaces . 41

5.2 Packages . 46
5.2.1 MSDP messages (package ’core.sdp.msdp’) 46

5.2.2 Data plane (package ’dataplane’) . 47
5.2.3 MDCP (package ’mdcp’) . 48
5.2.4 User interface (package ’ui’) . 48
5.2.5 Other packages . 49

6 Evaluation 51
6.1 Evaluation of the prototype . 51

6.1.1 Exchanging measurements . 51
6.1.2 Finding optimal data protocol . 52
6.1.3 Controlling data transfer . 53

6.2 Validation of requirements . 55
6.2.1 Low overhead . 55
6.2.2 Different protocol options of the same standard should be supported . 56
6.2.3 The control protocol should be extensible with new data protocols . . 56
6.2.4 Support to transfer the actual medical data for small data sets 56
6.2.5 Secure . 56
6.2.6 Summary . 56

7 Conclusions and future work 61
7.1 Conclusions . 61
7.2 Future work . 62

Appendices 63

A SIP 65
A.1 Session Initiation Protocol (SIP) . 65
A.2 Relation between dialogs, transactions, requests and responses 68
A.3 Digest access authentication . 69
A.4 Locating SIP servers . 70
A.5 Event notifications . 71
A.6 Session Description Protocol (SDP) . 71
A.7 Instant Messaging . 73

B RTSP 75

Bibliography 77

List of Figures

3.1 General model . 10

4.1 Specification from which point n is seen. 25
4.2 Session transactions for the case where the UAC sends the MSDP offer. . . . 30
4.3 Session transactions for the case where the UAS sends the MSDP offer. . . . 31
4.4 Example of MSDP offer (medical description only) 32
4.5 Example of MSDP answer (medical description only) 33
4.6 Message transactions for the exchange of medical data 35
4.7 Example of medical document (medical description only) 35

5.1 The different protocol elements that are important for us. The red ellipses
denote interaction points between the different components. 38

5.2 The UML diagram including interfaces. 39
5.3 The simplified MDCP state diagram. In blue and marked with ”<s>” the

communication with the SIP layer, in dark yellow and marked with ”<d>”
communication with the data plane and in black and marked with ”<u>” com-
munication with the user. The first line (in italic) shows an event, the other
lines actions. The action marked with an asterisk is only executed once, either
before or after the Waiting state. 40

5.4 The UIListener interface . 41
5.5 The UIControl interface . 42
5.6 The SipListener interface . 43
5.7 The DataplaneFactory interface . 44
5.8 The DataListener interface . 44
5.9 The ControlListener interface . 45

6.1 Sending a measurement . 51
6.2 Default MSDP offer host 1 . 52
6.3 Default MSDP offer host 2 . 52
6.4 Response when connecting without any additional requirements 53
6.5 Offer from host 1 with requirement ’n=resolution:14 optional’ 53
6.6 Response from host 2 on offer in figure 6.5 . 53
6.7 Offer from host 2 with requirements ’n=bitrate:10’ and ’n=delay:10 optional’ 54
6.8 Response from host 1 on offer in figure 6.7 . 54
6.9 Initiator sends data and sends offer . 57

ix

6.10 Initiator receives data and sends offer . 58
6.11 Initiator sends data and receives offer . 59
6.12 Initiator receives data and receives offer . 60

A.1 SIP session set-up transaction. A shows the case where the UAC sends the
SDP offer, B shows the case where the UAS sends the SDP offer. 67

A.2 Relations between dialogs, transactions, requests and responses in SIP. 69

List of Tables

4.1 Summary of the requirements conformance of currently available control pro-
tocols . 22

5.1 Package structure . 46

xi

List of Acronyms1

ANSI American National Standards Institute A private non-profit organisation
that oversees the development of voluntary consensus standards for products,
services, processes, systems and personnel in the United States.

API Application Programming Interface A set of routines, data structures, ob-
ject classes and/or protocols provided by libraries and/or operating system
services in order to support the building of applications.

ASCII American Standard Code for Information Interchange A character encod-
ing based on the English alphabet.

ASN.1 Abstract Syntax Notation One A standard and flexible notation that de-
scribes data structures for representing, encoding, transmitting and decoding
data.

CRLF Carriage return - new line The character sequence carriage return followed
by new line (ASCII 0x0d0a), used to mark the end of a line.

DNS Domain Name System A hierarchical naming system for computers, ser-
vices or any resource participating in the internet.

DSM-CC Digital Storage Media - Command and Control Part 6 of MPEG-2, an
ISO/IEC standard developed to provide the control functions and operations
specific to managing MPEG-1 and MPEG-2 bit streams.

ECG Electrocardiogram A recording of the electrical activity of the heart over
time produced by an electrocardiograph, usually in a non-invasive recording
via skin electrodes.

FTP File Transfer Protocol A network protocol used to transfer data from one
computer to another through a network such as the Internet.

GSM Global System for Mobile communications The most popular standard for
mobile phones in the world.

HTTP Hyper Text Transfer Protocol A communications protocol used for re-
trieving documents from the Internet.

1Most definitions are taken from wikipedia.org

xiii

http://www.wikipedia.org/

IANA Internet Assigned Numbers Authority The entity that oversees global IP
address allocation, root zone management for the DNS, media types and
other Internet protocol assignments.

IETF Internet Engineering Task Force Developer and promoter of Internet stan-
dards, in particular with standards of the TCP/IP and Internet protocol
suite.

IO Input/Output The communication between an information processing sys-
tem (such as a computer), and the outside world - possibly a human, or
another information processing system.

IP Internet Protocol A protocol used for communicating data across a packet-
switched internetwork.

IPv4 Internet Protocol version 4 The fourth revision in the development of the
Internet Protocol (IP) and the first version of the protocol to be widely
deployed.

IPv6 Internet Protocol version 6 The next-generation Internet Layer protocol
for packet-switched internetworks and the Internet. Currently co-existing
next to IPv4, but supposed to replace it totally in the future.

ISO International Organization for Standardization An international-standard-
setting body composed of representatives from various national standards
organizations.

ITU International Telecommunication Union International organisation to stan-
dardise and regulate international radio and telecommunications.

ITU-T Telecommunication Standardisation Sector Coordinator of standards for
telecommunications on behalf of the ITU.

Java Java A programming language which can run on any Java virtual machine
after being compiled to byte code, regardless of computer architecture.

MDCP Medical Data Control Protocol A prototype developed in this thesis to
prove the correctness of the proposed model.

MIME Multi-purpose Internet Mail Extensions An internet standard that extends
the format of e-mail to support text in character sets other than US-ASCII,
non-text attachments, message bodies with multiple parts and header infor-
mation in non-ASCII character sets.

MPEG Moving Picture Experts Group A working group of ISO/IEC charged with
the development of video and audio encoding standards.

MSDP Medical Session Description Protocol A format for describing medical data
stream initialisation parameters.

MSDP Medical Session Description Protocol A format for describing medical data
stream initialisation parameters.

MTU Maximum Transmission Unit The size of the largest packet that a network
protocol can transmit.

NAPTR Name Authority Pointer DNS record type used to provide a general, flex-
ible, extensible and standard mechanism to provide information about ser-
vices provided for a certain domain.

NTP Network Time Protocol A protocol for distributing time signals over com-
puter networks to synchronise clocks.

OSI Open Systems Interconnection An effort to standardise networking that
was started by ISO along with the ITU-T.

PDA Personal Digital Assistant A hand-held computer.

PER Packed Encoding Rules A set of ASN.1 encoding rules for formatting data
in binary.

QoS Quality of Service The ability to provide different priority to different ap-
plications, users, or data flows, or to guarantee a certain level of performance
to a data flow.

RFC Request for Comments A memorandum published by the IETF describing
methods, behaviours, research, or innovations applicable to the working of
the Internet and Internet-connected systems.

RSVP Resource ReSerVation Protocol A transport layer protocol designed to
reserve resources across a network to request specific levels of QoS for ap-
plication data streams.

RTCP Real-time Transport Control Protocol Out-of-band control information
for an RTP flow, periodically transmitting control packets to participants in
a streaming multimedia session.

RTP Real-time Transport Protocol A standardised packet format for delivering
audio and video over the Internet.

RTSP Real Time Streaming Protocol A protocol for use in streaming media
systems which allows a client to remotely control a streaming media server,
issuing VCR-like commands such as ”play” and ”pause”.

SASL Simple Authentication and Security Layer A framework for authentication
and data security in Internet protocols.

SDP Session Description Protocol A format for describing streaming media
initialisation parameters in an ASCII string.

SIP Session Initiation Protocol A signalling protocol, widely used for setting
up and tearing down multimedia communication sessions such as voice and
video calls over the Internet.

SIPS Session Initiation Protocol Secure The secure version of SIP.

SMTP Simple Mail Transfer Protocol An Internet standard for electronic mail
transmission across Internet.

SRM Session and Resource Manager A network component in the DSM-CC
specification managing sessions and resources.

SRV Service Record DNS record type used to specify information on available
services.

TCP Transmission Control Protocol A core protocol of the Internet Protocol
Suite, providing reliable, ordered delivery of a stream of bytes between two
end systems.

TCP/IP Transmission Control Protocol over Internet Protocol The set of commu-
nications protocols used for the Internet and other similar networks.

TLS Transport Layer Security A cryptographic protocol that provides security
and data integrity for communications over TCP/IP networks.

UA User Agent An application running on an end system.

UAC User Agent Client A User Agent that is behaving like a client in a client-
server communication.

UAS User Agent Server A User Agent that is behaving like a server in a client-
server communication.

UDP User Datagram Protocol A core protocol of the Internet Protocol Suite,
providing unreliable transport of datagrams between two end systems. Data-
grams may arrive out of order, appear duplicated, or go missing without
notice.

UMTS Universal Mobile Telecommunications System One of the third-generation
(3G) cell phone technologies.

URI Uniform Resource Identifier A compact string of characters used to iden-
tify or name a resource on the Internet.

XML Extensible Mark-up Language A general-purpose specification for creating
custom mark-up languages.

XMPP Extensible Messaging and Presence Protocol An open, XML-inspired pro-
tocol for message oriented middleware.

Chapter 1

Introduction

1.1 Motivation

E-health applications are upcoming business, due to the fact that more and more people get
older, and costs for healthcare increase accordingly. There are not enough people willing to
work in healthcare and the costs get too high to continue the existing system. For this reason,
one should investigate more in research on technical measurements to make the older people
longer self-supporting.

In the emerging E-health market, there is a lot of organisations and vendors which developed
their own standards for transmitting and storing the personal and vital sign data. As the
patients will be at their own homes, or at least not in the healthcare centre, the system
works in a distributed way. This results in application components being connected via a
network, where different parties are involved, like the application components of the patient,
the network provider and the application components of the healthcare centre. This makes
merging the different systems complicated when they are developed by different vendors.

1.2 Objective

Design a generic control protocol that can connect distributed application components of dif-
ferent vendors of E-health applications. It should be able to negotiate different data formats
and configure a communication channel based on common capabilities and such that opti-
mal communication is achieved, and which accomodates communication between distributed
applications with possible different health data formats.

1.3 Approach

First we’ll investigate which standards are mainly in use nowadays, both for transmitting
and storing vital sign data. We’ll focus on ECG and blood pressure data, as these two cover
both continues time signals and discrete time measurements. Next to that, we’ll investigate
about control protocols that can be used for negotiating the transfer of vital sign data. The
negotiating will be related to the transfer protocol used and the format of the vital sign data.

Based on the good points of the existing standards, we’ll try to propose a control protocol
that is able to negotiate about different transfer protocols and data formats. This could lead

1

1.4. Expected results Chapter 1. Introduction

to inserting converters on sender and/or receiver side to come to a common data format used
in the transfer that both sides understand. The protocol should be able to negotiate the
transfer of vital sign data between devices and applications of different vendors. A prototype
will be part of the final results.

1.4 Expected results

The result of the work should be a control protocol that is able to negotiate on a common
transfer protocol and data format between different applications and devices. To support this,
one or both entities will have to use converters to convert different formats to a common one
(writing converters is not part of the assignment). The negotiation is based on least costs and
requirements on the quality of the receiving entity. A prototype should prove the feasibility
of the proposed solution.

1.5 Document structure

The remainder of this thesis is structured as follows. Chapter 2 gives some background
information about existing control protocols and medical standards. Chapter 3 presents a
general model we will use in the remainder of this thesis, as well as a list of requirements for the
control protocol we will design. Chapter 4 presents the design. It starts with finding the most
suitable existing control protocol, followed by making adjustments to meet all requirements.
Chapter 5 presents the implementation of a prototype, starting with a refinement of the
design followed by an overview of the implementation. Chapter 6 presents the evaluation and
validation of the prototype. Chapter 7 presents the conclusions and further work.

2

Chapter 2

Background

This chapter presents techniques that are used further on in this thesis. It does not present
new techniques, so anybody already familiar with these techniques can skip to the next
chapter.

2.1 Control protocols

There exist already different control protocols. In this section we provide an overview of the
most used ones.

2.1.1 SIP

The Session Initiation Protocol (SIP) is an application-layer control protocol for creating,
modifying and terminating sessions with one or more participants. It is described in [23]. The
protocol itself does not contain the media data itself, but the parameters needed to set up
the connection. SIP can use different transport protocols, but must at least implement UDP
and TCP. Proxy servers are used as intermediate hosts to route SIP packets. A registration
service is used by users to upload their current location, which is used by proxy servers to
route packets to the right location and offers users mobility in the network while still being
reachable.

The syntax used by SIP is much identical to HTTP/1.1, as defined in [12]. SIP defines several
methods: REGISTER, OPTIONS, INVITE, ACK, CANCEL and BYE. The response includes
a status code. Also this status code is comparable to the ones defined in HTTP/1.1 (see
[12]), with several additions. They are categorised in informational, successful, redirection,
client error, server error and global failure responses. Message bodies are used to include
information that cannot be included in the headers, like media descriptions, for which the
Session Description Protocol (SDP, see [17]) is used.

As SIP is similar to HTTP, also extensions of HTTP can be used in SIP. For authentica-
tion, digest access authentication ([13]) can be used. This is a simple challenge-response
mechanism. It can only be used for authentication, and not for confidentiality or integrity.

Locating SIP servers ([22]) can be done by using DNS. NAPTR and SRV records are used to
inform clients and proxies where a certain contact can be found. This includes mechanisms
for prioritising certain servers and load balancing.

3

2.1. Control protocols Chapter 2. Background

In [20] an extension to SIP that specifies event notifications is described. To receive notifica-
tions, one first has to subscribe to these messages. Different categories of notifications can be
used, and one can subscribe to one or more chosen categories.

More information about SIP and its extensions can be found in appendix A.

2.1.2 RTSP

[25] describes the Real Time Streaming Protocol (RTSP). It is an application level protocol,
which controls the delivery of real-time data. It can be used for on-demand and live streaming
of data, for example audio and/or video. Several data streams can be controlled at once that
need to be time-synchronised. Normally the data streams are not delivered over RTSP,
although this is possible with interleaving. It runs on top of transport protocols like UDP,
multicast UDP and TCP and is similar in syntax and operation to HTTP/1.1, as defined in
[12].

Sessions play an important role in RTSP. The session-id is generated by the server, and in-
cluded in every following request by the client. RTSP defines several methods: DESCRIBE,
ANNOUNCE, GET PARAMETER, OPTIONS, PAUSE, PLAY, RECORD, REDIRECT,
SETUP, SET PARAMETER and TEARDOWN. The response includes a status code. Also
this status code is comparable to the ones defined in HTTP/1.1 (see [12]), with several ad-
ditions. They are categorised in informational, successful, redirection, client error and server
error responses. Message bodies are used to include information that cannot be included in
the headers.

More information about RTSP can be found in appendix B.

2.1.3 XMPP

The eXtensible Message and Presence Protocol (XMPP) is described in [24] and is an open
protocol for message oriented middleware. The protocol uses a XML stream to exchange
messages between two hosts, which can be either client-server, or server-server. Security is
provided by TLS and SASL. The protocol is adapted from the Jabber1 protocol. A client
only connects to one server, the servers in the network take care of routing and forwarding
messages to other clients.

All implementations must support message, presence and info/query messages. These stanzas
provide the core functionality of XMPP. Message is used for exchanging messages between
clients, presence is used to inform subscribed clients about the presence information of a
certain user and info/query is used to retrieve and set values of other clients and servers.

Messages are exchanged near real-time, but provisions can be made in the server to store
messages when they cannot be delivered due to an off-line client. The initial aim of the
protocol was to support instant messaging, but other uses are possible as well within the
specifications of the protocol. Unless many other instant messaging protocols, this is an open
standard, and everybody can run his or her own server.

1http://www.jabber.org/

4

Chapter 2. Background 2.1. Control protocols

2.1.4 DSM-CC

[6] describes the use of Digital Storage Media - Command and Control (DSM-CC). This
is part 6 of the ISO/IEC MPEG-2 standard, developed to provide the control functions
and operations specific to managing MPEG-1 and MPEG-2 bit streams. DSM-CC does not
require a certain transport layer, but can run on different ones, as long as it detects and
discards corrupted messages and delivers entire messages (in case segmentation is performed,
messages must be re-assembled before delivery). The network on which DSM-CC is used may
be non-homogeneous. The DSM-CC specification consists of various protocol areas, which
can be used standalone, or combined with other areas.

Sessions play an important role in DSM-CC and have a network-wide unique session ID. It is
used to group together the resources needed for the instance of a service. Sessions are set up
between a client and server when the client wants to access a service and taken down at the
end of the service. Session messages are send between user and network (U-N messages), via
the Session and Resource Manager (SRM). The data is send over a direct connection between
client and server (U-U connections). Multiple of such connections may exist. Resources are
dynamic during a session, and can be altered with the AddResources and DeleteResources
messages send by the server. Within one session, connections with different servers can exist.

Sessions are always set up by the client, but a client can be notified to set up a connection
via the PassThruReceipt message. Not answering such a message means either the user is not
present, or does not wish to set up the session. Usage of the PassThruReceipt is for example
for notifying the client of an incoming call.

DSM-CC specifies a lightweight and fast protocol for uploading data or software from a server
to a client. The client can inform the server via generic user compatibility descriptors about its
capabilities, so the server can send the correct image. Uploads can be done via inter-active
flow-controlled upload, as well as via a broadcast upload. Every control message contains
enough information to enable a client to receive the data out of sequence, for example to tune
to an upload channel if the upload is already under way. The ability to upload software can
simplify the maintenance procedures for clients.

2.1.5 H.323

In [16] a description of H.323 can be found. H.323 is an umbrella standard, putting several
existing standards together to offer interpersonal communications between end systems that
are attached via some kind of network. The networks on which H.323 operates are the ones
with a non-guaranteed QoS. As audio codecs, for example G.711, G.723.1, G.728 and G.729
can be used, while as video codec H.261 or H.263 can be used. Before a call is set up, an
agreed coding standard is negotiated.

The output streams are transferred over the network using the real-time transport protocol
(RTP). As part of the real-time transport control protocol (RTCP), information is send to
the receiving system to synchronise the audio and video streams, the packet rate and packet
transmission delay. The receiver sends via the RTCP information back about percentage of
packets lost/corrupted and the inter-arrival jitter. The information in the RTCP packets is
used to optimise the data transfer.

5

2.2. Medical data standards Chapter 2. Background

H.323 provides a Gatekeeper. The Gatekeeper should give permission to every end system that
wants to get involved in a multimedia session, or needs more resources in an existing session.
In this way, the Gatekeeper can make sure that not too many end systems get involved in a
multimedia session, which would go beyond the capabilities of the network.

The H.323 Gateway is used to interconnect different types of networks. The Gateway provides
translations between the different messages on each network type, both control and media
messages. It also provides address translation in case different addressing schemes are used
on the different networks.

2.2 Medical data standards

There exists different medical data standards. In this section we present the most important
ones.

2.2.1 DICOM

In [18] an introduction to DICOM is given. DICOM prescribes an uniform, well-understood
set of rules for the interchange of digital images. DICOM can support many different types
of images, transfer syntaxes and service roles. Communication stacks used are point-to-point,
ISO and TCP/IP.

More details of DICOM are described in [29]. Service classes define actions that can be
executed, like store, find, get and move, which can be applied to information objects. Infor-
mation objects carry information, for example images, reports or patients. They are defined
by an Information Object Definition (IOD), which is a list of mandatory, optional and con-
ditional attributes to be stored in that object. Service classes and IODs are combined in the
service-object pair classes (SOP classes).

2.2.2 ecgML

ecgML is a mark-up language using XML for supporting ECG data exchange and analysis. It
is created because SCP-ECG, DICOM and HL7 are considered to focus on specific applications
and domains ([26]; [28]). A major advantage of using XML is that the information is not
merged and intertwined with its representation format, making it more flexible to process,
and avoids redundancy.

ecgML is developed using the knowledge of other standards, and tried to remove the drawbacks
of these standards. Many elements are taken from these other standards. These include
annotations relating to the acquisition protocols, patient information and analysis results
([27]). A drawback of using XML is that it needs lot of storage space, as a lot of overhead is
created by the tags. A measurement solving this is that the actual ECG data is not included in
XML format, but only a reference to the binary data is included. In this way, the advantages
of the use of XML stay for all the extra data added, but not too much overhead is created.

6

Chapter 2. Background 2.2. Medical data standards

2.2.3 FDA

The U.S. Food and Drug Administration (FDA) is an agency part of the USA government that
is responsible for the safety regulations in lot of fields, including biological medical products
and medical devices ([5]). They developed a standard called FDA XML Data Format, which
is meant for waveforms as well as relevant submission information ([8]). During drug studies,
subjects get either the drug under study or a placebo, and are periodically monitored. The
data collected during monitoring needs to be in a standard format for further processing and
for this an own format was created.

2.2.4 HL7

HL7 is both used for the name of the organisation as well as the name of the standard
this organisation has developed. An overview of HL7 can be found in [1]. HL7 creates
international standards for clinical text document mark-up, decision support, inter-system
and inter-organisation messaging and user interface integration. ’Level Seven’ comes from
the application layer of the OSI communications model, which is the seventh layer.

[29] describes version 2.5, which was the latest fully approved version by ANSI. Messages
are used to transfer data between systems. A three-character code is used in every message
to identify its type. The HL7 standard is organised in different chapters that all consist of
several segments. Messages consists of segments, which have a name and segment ID which
identifies the segment type. Segments can be mandatory or optional, and may occur only
once or can be repeated in a message.

Every message starts with a message header segment, containing information about the mes-
sage, processing and version IDs, sending and receiving applications and facilities, date and
time, security and message type. After the header segment, the patient identification seg-
ment follows, which includes personal data of the patient. This is followed by the observation
request segment, which includes information about a specific observation to be made. After
the observation is made, observations are added.

All data in HL7 should be represented in ASCII text, but as this requires more bytes, in
practice encapsulation and binary encoding is applied.

2.2.5 SCP-ECG

The European Committee for Standardization (CEN) developed the Standard Communica-
tion Protocol for Computer-Assisted Electrocardiography (SCP-ECG) ([10]). The standard is
supported by the OpenECG portal2. The scope of the standard is data acquisition, encoding,
transmission and storage.

No transport protocol is defined in SCP-ECG, which means implementations can freely choose
a protocol to exchange the data, as long as the format defined in SCP-ECG is kept. The data
structure defines different sections, both mandatory and optional. The pointers and header
information, including patient and ECG acquisition data are mandatory, other sections are
optional.

2http://www.openecg.net/

7

Chapter 3

Requirements

In this chapter we’ll first describe a general model that we’ll use during the remainder of this
thesis. In the second part we’ll describe the requirements for the control protocol we’ll build.

3.1 General model

As we do not discuss different models in this thesis, we will assume a certain model. In this
section we will describe the model that will be used in the remainder of this thesis.

We define a model with separation of the control plane and the data plane. The control plane
will negotiate about the way data will be transferred in the data plane. In the data plane,
there is a possibility to insert filters and/or converters in the data stream. This is negotiated
by the control plane.

As there do not exist global1 implemented mechanisms to negotiate service parameters on
networks, negotiation will take place directly between the sender and receiver devices. One
device can both be sender and receiver. For example, for the communication between a patient
and hospital the hospital is the receiver, but when a doctor queries the data, the hospital is
the sender. It is possible that these devices are aware of their own network connections, and
take this information into consideration when negotiating the data transfer. For example,
when the sending device is aware that the UMTS connection is not available, but only a GSM
connection, this will influence the maximum data flow. With the information that only GSM
is available, it can decide that certain transfer methods are not going to work, and will thus
not negotiate these.

The data layer should be capable of transferring both continuous time signals as well as
discrete time signals. In this thesis we’ll not go into detail how data connections are working,
as we’ll focus on the control plane, which will negotiate about the parameters used in the
data plane.

Discrete time signals often are a single value only. Negotiating the parameters of a data
channel and setting up the data channel might need more bytes to be transferred than the
actual data would need. In such cases, it would be worth to see if the control plane could

1There do exist protocols for negotiating service parameters, like RSVP [7], but they are only implemented
in some local networks, and not available on a global scale.

9

3.1. General model Chapter 3. Requirements

include methods to transmit such data to limit bandwidth use. This will not be a requirement,
but if possible, it would be a nice feature.

After negotiating the parameters of a data connection, the control plane will pass these param-
eters to configure the data plane. The data plane is responsible for setting up the connection,
including inserting filters and/or converters in the channel. One control connection should
be able to negotiate several data channels, so that for every source to destination connec-
tion there is only one control connection set up, while there can exist zero to several data
connections between the source and destination device, depending on the needs.

Figure 3.1: General model

Figure 3.1 shows the model. There is a sender and receiver having several communication
channels. In the control plane, there is one control channel that takes care of negotiating all
the data channels in the best way. In the data plane, converters and a data channel are visible.
Converters are optional. There can exist several of such data channels with converters. The
definition of ’in the best way’ depends on the system settings. This may be based on the
following parameters:

• Network traffic: this can both be related to the limits of the network, or to cost-efficient
use. Certain channels might be more expensive, and their use should be limited if
possible.

• Local resource usage: both the sender and receiver hardware might have limited re-
sources to process the conversion of signals. At both sides this can be related to limited
computing power of the device used, or to shared resource usage for all connected other
parties.

• Signal quality: for certain usage, a minimum or maximum signal quality might be
required.

10

Chapter 3. Requirements 3.2. Requirements

Both the sender and receiver have static capabilities used for the negotiation, based on the
device in use. One could think about the kind of network connection they have (GSM will limit
the data rate that is possible for example) or their processing power (certain converters will
ask for too many resources for example). Both the sender and receiver also have preferences
used for the negotiation. They are normally set by the user of the device. One could think
about minimum or maximum sampling frequency or bit rate of the transmitted signals.

Based on the static capabilities and preferences of both sender and receiver, the parametrised
negotiation will take place. Negotiation will only take place when a connection is set up, on
a running connection no reconfiguration will be taking place.

In the remainder of this thesis a negotiation protocol will be designed, prototyped and tested.

3.2 Requirements

Before we can design a control protocol that serves the objectives, we need to define clear
requirements. The requirements are based upon the general model described above. With
these requirements we can search for an existing control protocol that covers most of our
needs and that can be extended easily with the missing requirements. We define the following
criteria:

3.2.1 Not linked to existing medical standards

The control protocol should be able to connect different medical standards for data transfer.
To prevent the favouring of a specific one, the control protocol should not depend on an
existing medical standard. This makes it more likely that all vendors will implement it later
on. This requirement is highly appreciated.

3.2.2 Peer to peer

The model described in section 3.1 does not define a client-server model, but a peer to peer.
The control protocol that will be developed in this thesis should be peer to peer. This
requirement is mandatory.

3.2.3 Open standard

The protocol designed should become an open standard, so everybody can implement it, and
use it without any costs. This will also put restrictions on the standards used as base for the
new protocol, as they should allow reuse. This requirement is mandatory.

3.2.4 Low overhead

Many devices used in the medical world have only a limited amount of processing power and
a limited bandwidth connecting to other devices. This makes it necessary for the control
protocol to use as little as possible processing power and bandwidth when negotiating about
the actual data transfer. The processing power is hard to measure, as it also depends on
which program components are used. In [11] a comparison between storing ECG data in the
XML and ASN.1 format is made. It can be concluded that ASN.1 is much more efficient in

11

3.2. Requirements Chapter 3. Requirements

space usage than XML. Important to keep in mind is that using extensive compression to
limit the bandwidth will cause extra processing power to be used, which might result in more
overhead in other fields. This requirement is highly appreciated.

3.2.5 Low latency

The setting up of a connection should be done as quick as possible. There exists the possibility
that a request for data is inter-active, so connection set-up should not take too long. Also,
the medical data might be part of monitored critical values, and any delay in transmitting
them could cause health risks for the patient. This requirement is highly appreciated.

3.2.6 Both sender and receiver should give their preferences

When negotiating about a data transfer, both the sender and the receiver should be able
to give their preferences and capabilities. As the roles of sender and receiver are flexible
(one time the sender can be the one initiating the connection, while the other time it can
be the receiver initiating the connection), both should be able to give their preferences for
the connection. This is needed because both the sending and receiving side might have
limitations or minimal requirements for the data. In these preferences, hosts can include for
example network costs, network capabilities, local resource usage, local resource availability
and required signal quality. This requirement is mandatory.

3.2.7 Both sides should know the agreement

To be able to set up a connection, both the sender as well as the receiver should know the
actual agreement, to be able to prepare themselves for the data transfer. It should not matter
who makes the final decision, but both sides should know the final agreement afterwards. This
requirement is mandatory.

3.2.8 Both sides can conclude the agreement (but only one at a time)

The side making the final decision of the agreement should be independent of who initiates the
control connection. For example, if the host setting up the control session thinks it has more
processing power than the peer, it could request to make the final decision, but when it thinks
the peer has more processing power, it can propose to let the peer decide. Negotiating about
who makes the decision should not cause extra messages to be exchanged. This requirement
is not mandatory.

3.2.9 Different protocol options of the same standard should be supported

Some of the medical standards only define a storage format, but do not specify how data
should be transferred over the network. Due to the lack of this specification, different transfer
methods may exist. The control protocol should be aware of this, and make sure that the
final agreement is unambiguous for both sides. This requirement is mandatory.

3.2.10 The control protocol should be extensible with new data protocols

At this moment, several standards for storing and transferring medical data exist. It can be
expected that over time, more standards will emerge. There is also the possibility that new

12

Chapter 3. Requirements 3.2. Requirements

implementations of existing standards emerge that are not fully compatible with existing ones.
For this reason it should be possible to extend the control protocol with the new standards
and implementations that emerge. This requirement is highly appreciated.

3.2.11 Support to transfer the actual medical data for small data sets

In some cases, the amount of data that needs to be transferred might be less than what it
would take to set up a connection, for example when transferring a single blood pressure. In
such cases, it would save time and data transfer if the control protocol would transfer the
data itself instead of negotiating a data channel to transfer the small piece of data. This
requirement is not mandatory, but would be nice to have support for.

3.2.12 Secure

As sensitive medical data is transferred, the protocol should be secure, in the sense of au-
thentication and integrity. Although the control protocol does not include the actual data,
it should make sure it does not tell a host to set up a malicious connection with an un-
trusted host. When actual medical data is transferred, according to the requirement 3.2.11,
confidentiality is an important issue as well. This requirement is mandatory.

3.2.13 Possibility to reconfigure

Although not included in the first draft of the protocol, it should be possible in the future to
extend the protocol to provide the possibility of reconfiguring an existing connection. This
would mainly influence the life-time of a session that is set up for the negotiation, but without
considering this point already now, it might be very complicated to add this functionality later
on. This requirement is mandatory.

13

Chapter 4

Design

In this chapter the design of the control protocol is described. We start with choosing an
existing control protocol that suits already best our needs, and that will be extended in the
second part with the missing functionality.

4.1 Choosing an existing control protocol

There exist a lot of control protocols already. Several of them are described in section 2.1.
By using one of them, and extend it to meet the requirements specified in section 3.2, we
save a lot of time, and prevent a lot of mistakes in the design, as these protocols have been
extensively tested, and proved themselves in practise.

First, we will evaluate the existing control protocols to see how much they support of the
requirements. Everything that is not supported yet, should be possible to be build into the
existing protocols.

4.1.1 Not linked to existing medical standards

The protocol should not be based on an existing medical standard.

SIP

SIP is designed for multimedia sessions, and not for medical use (though this doesn’t prevent
it from being used for medical applications).

RTSP

RTSP is designed for transferring real-time data, and not for medical use (though this doesn’t
prevent it from being used for medical applications).

XMPP

The origin of XMPP is instant messaging, not related to medical use.

DSM-CC

DSM-CC is designed for handling video streams, and not for medical use (though it doesn’t
forbid being used for medical applications).

15

4.1. Choosing an existing control protocol Chapter 4. Design

H.323

H.323 is designed for handling video and audio streams, and not for medical use (though it
doesn’t forbid being used for medical applications).

4.1.2 Peer to peer

The protocol should support peer to peer.

SIP

SIP has been designed for peer to peer. There is full support.

RTSP

RTSP is made for controlling multimedia streams from a server to a client. But, also clients
can ask a server to join a session for recording, so it should be possible to make RTSP peer
to peer.

XMPP

Messages in XMPP can be exchange to any other client as far as the server configuration
allows. Also messages to a server itself are allowed.

DSM-CC

DSM-CC is made for transferring and controlling multimedia streams from a server to a client.
It is not possible to make it peer to peer.

H.323

H.323 is made for transferring and controlling multimedia streams from a server to a client.
It is not possible to make it peer to peer.

4.1.3 Open standard

SIP

SIP is an open standard. It is defined by a RFC, meaning it can be freely reused.

RTSP

RTSP is an open standard. It is defined by a RFC, meaning it can be freely reused.

XMPP

XMPP is an open standard. It is defined by a RFC, meaning it can be freely reused.

16

Chapter 4. Design 4.1. Choosing an existing control protocol

DSM-CC

DSM-CC is an ISO standard. ISO has the copyright of these standards, and charges for
receiving copies.

H.323

H.323 is an ITU-T standard. The standard as such is freely available, but patents might exist
for certain parts of the standard.

4.1.4 Low overhead

The protocol should limit the bandwidth use and processing power.

SIP

SIP sends messages in plain text. This is less efficient than binary encoding. Commonly used
keywords in SIP do have a compact form, mainly to limit the size of messages to prevent
exceeding the MTU of the used transport protocol.

RTSP

RTSP sends messages in plain text. This is less efficient than binary encoding. There do not
exist compact forms of keywords.

XMPP

XMPP uses XML to submit messages. This creates a lot of overhead in the messages, while
on the other hand they are easy to process by computers or read by humans.

DSM-CC

DSM-CC uses the MPEG transport stream, which is a binary format.

H.323

H.323 uses binary encoding, namely ASN.1 with Packed Encoding Rules (PER)

4.1.5 Low latency

The connection set up should be done as quick as possible, meaning in as little as possible
request-response sequences.

SIP

For setting up a connection, normally 3 messages are enough, provided that both sides support
a common format. These messages are INVITE, 200 OK and ACK.

17

4.1. Choosing an existing control protocol Chapter 4. Design

RTSP

At least three request-response sequences are needed, one for retrieving a media description,
one for setting up a connection and one for starting the stream.

XMPP

There is the need for a continues connection between the client and a server. If messages are
send to a user that is connected to the same server, no connections have to be set up to send
a message. If a message is send to a user on another server, a connection might have to be
set up first, but it might exist already. Depending on the implementation of the negotiation,
only one request-response could be enough for negotiation, without the need to set up any
connection.

4.1.6 Both sender and receiver should give their preferences

Both the sender and receiver should give their own preferences and capabilities as input to
the negotiating process.

SIP

When setting up a session, a SDP body can be included to describe the capabilities of the
initiating side. The answering side builds a final agreement from the received SDP body
together with its own capabilities. If the initiating side does not include a SDP body, the
receiving side includes a SDP body with its capabilities, after which the initiating side builds
a final agreement based on the received SPD body together with its own capabilities. Only
one side is aware of the capabilities of both, the other side only of the common capabilities.

RTSP

RTSP is intended to provide the interaction between media servers and clients interested
in the contents on the media server. To set up a media connection, the client requests a
description from the server. As this description is not defined, it should be possible to include
a description which also specifies preferences. It is possible to inform a server via ANNOUNCE
about an existing session. Afterwards it can be asked to RECORD it if the initiating side
wants to deliver data to the receiving side.

XMPP

XMPP is not made directly for session negotiation, but, it can transfer messages to other
clients. Depending on how the negotiation process is implemented, it is possible that both
sender and receiver give their preferences.

4.1.7 Both sides should know the agreement

After the agreement has been concluded, both sender and receiver should be aware of this
agreement.

18

Chapter 4. Design 4.1. Choosing an existing control protocol

SIP

When the initiating side includes a SDP body, the receiving side generates the agreement,
and includes it in the response to the initiating side. If the initiating side did not include a
SDP body, the receiving side will send its own one, after which the initiating side generates
the agreement. This agreement is included in the ACK request.

RTSP

RTSP is intended to provide the interaction between media servers and clients interested in the
contents on the media server. Because of this, a client retrieves a description of the available
media presentation, and afterwards requests to receive it. In a DESCRIBE response, or
ANNOUNCE request, several options can be included. By afterwards looking at the SETUP
request of the initiating side, the receiving side knows the final choice.

XMPP

XMPP is not made directly for session negotiation, but, it can transfer messages to other
clients. Depending on how the negotiation process is implemented, it is possible that both
sender and receiver know the final agreement.

4.1.8 Both sides can conclude the agreement (but only one at a time)

The side concluding the agreement should be independent of which side requests the connec-
tion set up.

SIP

The initiating side decides who will conclude the agreement. If the initiating side includes a
SDP body in the initial request, the receiving side will conclude the agreement. If the SDP
body is not in the initial request, it will be included in the response to this request, and the
initiating side concludes the agreement.

RTSP

With RTSP, it is always the client (initiating side) that sets up the connection, and decides
about the final parameters to use if there are several possibilities. The server has no control,
unless only providing one option.

XMPP

XMPP is not made directly for session negotiation, but, it can transfer messages to other
clients. Depending on how the negotiation process is implemented, it is possible that either
sender or receiver concludes the agreement.

4.1.9 Different protocol options of the same standard should be supported

If a protocol has different options, they should be distinguishable in the negotiation.

19

4.1. Choosing an existing control protocol Chapter 4. Design

SIP

SIP lacks the mechanism to negotiate a medical data protocol. It does provide a mechanism
to negotiate media sessions via SDP. Depending on how SDP will be extended or replaced for
negotiating medical data protocols, implementing this is possible.

RTSP

The description of the media sessions is not defined. It is possible to include any kind of
description, if this description allows the support of different options of the same protocol,
this is possible.

XMPP

XMPP is not made directly for session negotiation, but, it can transfer messages to other
clients. Depending on how the negotiation process is implemented, it is possible to support
different protocol options of the same standard.

4.1.10 The control protocol should be extensible with new data protocols

The data protocol should not be hard-coded in the control protocol, but be adjustable at
run-time.

SIP

This is much related with section 4.1.9 When designing the negotiating mechanism this should
be taken care of.

RTSP

If the message body is defined in such a way that it can be extended, this is possible.

XMPP

XMPP is not made directly for session negotiation, but, it can transfer messages to other
clients. Depending on how the negotiation process is implemented, it is possible that new
data protocols are added afterwards.

4.1.11 Support to transfer the actual medical data for small data sets

The control protocol should be able to contain medical data if this is a small data set (op-
tional).

SIP

SIP supports including different message bodies via the MIME specification. When a message
body that can include medical data is defined, this can be included in the SIP messages.

20

Chapter 4. Design 4.1. Choosing an existing control protocol

RTSP

RTSP allows the inclusion of message bodies in several of its methods. With properly defined
message bodies, medical data can be included.

XMPP

XMPP is made to transfer messages to other clients. As different kind of messages can be
defined, it is possible to include actual medical data.

4.1.12 Secure

Authentication and integrity should be provided by the control protocol, as well as confiden-
tiality when medical data is transferred via the control protocol.

SIP

SIP is derived from HTTP/1.1, for which several security mechanisms are defined, including
TLS. SIP proxies can normally freely route SIP packets, and security with TLS is only hop-
by-hop, meaning all intermediate proxy servers can read the contents of the messages. As
forwarding might include also untrusted proxies, and because our model only defines direct
connections in section 3.1, the proxies should not be used. Authentication can be provided
by Digest Access Authentication (see [13]). This is not the most strong authentication, but
combined with TLS it should be sufficient, especially since only negotiation takes place, and
not the transfer of actual medical data. Only when actual (small amounts of) medical data
are transferred, additional encryption of the data attachments should be considered.

RTSP

RTSP is derived from HTTP/1.1, for which several security mechanisms are defined. Attach-
ments can be encrypted to provide confidentiality.

XMPP

XMPP implements TLS and SASL. This provides authentication, integrity and confidentiality.

4.1.13 Possibility to reconfigure

It should be possible to reconfigure an ongoing data transfer.

SIP

SIP provides the possibility to reconfigure an existing session.

RTSP

In RTSP both the sending as well as the receiving side can request a reconfiguration. When the
server announces a reconfiguration, the client cannot reject and has to follow the instructions
in the announcement.

21

4.1. Choosing an existing control protocol Chapter 4. Design

XMPP

XMPP is not made directly for session negotiation, but, it can transfer messages to other
clients. Depending on how the negotiation process is implemented, it is possible that recon-
figuration takes place.

4.1.14 Summary and conclusion

In table 4.1, an overview of the evaluation of all requirements for the different protocols is
given. ’+’ means it is available, ’+ -’ means it is not available by default, but it is possible
to make it available as extension, and ’-’ means it is not available by default, and also not
possible to make it available. The requirements marked with an asterisk (*) are mandatory
according to the requirements defined in section 3.2. When looking at the requirement ’peer

Requirement SIP RTSP XMPP DSM-CC H.323
Not linked to existing medical standards + + + + +
Peer to peer* + + - + - -
Open standard* + + + + - + -
Low overhead + - + - - + +
Low latency + + - +
Both should give their preferences* + + + -
Both sides should know the agreement* + + + -
Both sides can conclude the agreement + - + -
Different protocol options supported* + - + - + -
Extensible with new data protocols + - + - + -
Transfer the actual medical data + - + - + -
Secure* + - + - +
Possibility to reconfigure* + + - + -

Table 4.1: Summary of the requirements conformance of currently available control protocols

to peer’ we can see that this is not possible for both DSM-CC and H.323, meaning we cannot
use these protocols to continue our work, as this requirement is mandatory.

When comparing SIP, RTSP and XMPP, we see that SIP has the best overall score, followed
by XMPP, followed by RTSP. Based on this result, we will continue with the development of
the control protocol using SIP.

As can be seen, SIP already provides most of our requirements. The following items need to
still be designed:

• SDP-like document type for negotiating medical data protocols.

• A document type for sending actual medical data, possibly including extra security
measurements.

22

Chapter 4. Design 4.2. Document for negotiating medical data protocols

4.2 Document for negotiating medical data protocols

As can be seen in the previous section, SIP provides already a lot of functionality that we
need according to our requirements. Some functionality is missing, and needs to be added.
In this section, we’ll describe the document for negotiating medical data protocols, based on
our findings in the previous section.

4.2.1 Negotiating parameters

With the choice of SIP, negotiation requires only two data transmissions. In the first transmis-
sion, A sends its preferences to B. B will compare this with its own preferences and conclude
the best option. In the second transmission, B sends back the conclusion to A. A and B
are not fixed, and independent of who initiates a connection and who answers a connection
request.

There is always one host that decides the final agreement, using the preferences received
from the other host. For making the proper decision, meaning the most optimal connection
parameters, a host should be able to describe its preferences in full detail. This includes for
example bitrate, delay, jitter and resolution, which can be bound to a certain acceptable range.
Also, a host might only have a limited amount of understood standards, maybe even a limited
number of different transport protocols of the same standard. The document describing the
preferences and requirements should be able to describe this in full detail, so that a proper
decision can be made.

The description should be fully standardised, so that all hosts have the same understanding
of the requirements and preferences of each other. To make a proper decision, not only the
requirements should be communicated, but also the parameters of the supported formats,
as they might not be totally fixed for a certain standard. It might happen that certain
parameters are unknown, in which case they cannot be taken into account. This happens for
example with the delay when the speed to convert a signal depends on the available processor
power, but the available processor power is unknown. When a parameter is unknown for a
standard, it should still be possible to accept that standard if the host sending the offer is
fine with that. It should be possible to specify this in the offer.

4.2.2 Media type for negotiating medical data protocols

The SDP document (see appendix A.6 and [17]) does provide functionality to negotiate multi-
media sessions, but not for negotiating medical data sessions. The ideas of SDP are very useful
though. We’ll build the new format based on SDP. This new media type will need a name.
Medical Session Description Protocol, abbreviated as MSDP, seems to be a suitable name for
the new standard. The media type registration at IANA could be ”application/msdp”.

4.2.3 Medical Session Description Protocol (MSDP) definition

In section 5 of [17] the SDP description is split into session description, time description and
media description. Both the session description and time description can be partly reused,
while the media description has to be replaced with a description suitable for our purpose.

23

4.2. Document for negotiating medical data protocols Chapter 4. Design

The session description of SDP can be partly reused. The v type letter (protocol version)
must be 0. The o type letter (origin) and s type letter (session name) are compulsory, while
the i type letter (session information) is optional, like in SDP. The u (Uri), e (e-mail) and p
(phone) type letter must not be used. The c type letter (connection data) is again compulsory.
The b type letter (bandwidth information) may only be used in case streaming is used, as in
case of non-streaming this does not make sense. The k type letter (encryption key) must be
omitted, as this method of key exchange is not secure enough, because the MSDP messages
might be exchanged in plain text.

The time description must be used in case streaming is used. In case non-streaming transfer
is used, the t type letter (time) denotes the time the measurement was taken. A range denotes
longer-lasting measurements, and a same start and end time denote that the measurements
were taken at one point in time. The r type letter (repeat times) must be omitted, as for
sending new measurements, new sessions need to be set up. The z type letter (time zones)
may be used.

The media description of SDP should be totally omitted, and replaced with a medical de-
scription. One control session should be able to control several data sessions. This means
that several medical channel descriptions are allowed in one MSDP message, like SDP can
include zero or more media descriptions. The type letter m can be reused to define a medical
channel. The syntax for m is:

m EQUAL <transfer> SP <content>

<transfer> = "stream" / "packet"

<content> = "bloodpressure" / "ecg" / "mixed" / token ; ’token’ should be pre-defined

The parameter <transfer> specifies if the channel is a streaming one, or non-streaming
(denoted by ’packet’). Non-streaming can be used for transferring recorded measurements as
one file, while streaming can be used to display real-time recordings. They are represented
by the keywords stream and packet. The parameter <content> defines the type of data that
is being send over this medical channel. Pre-defined values have to be used to make sure
that there is a common understanding. For the moment we will define only bloodpressure, ecg
and mixed, but more values should be defined in future. The value mixed can be used when
several kind of measurements are combined into one file or stream. A medical channel means
one file or stream in the remainder of this text.

By defining the type of the medical channel and how it is transferred, one can easily parse
the MSDP message, and recognise the parts that are useful to process. Because it is possible
to define more than one medical channel type, it is possible to negotiate the parameters for
different medical channels at once. This can be used when different kind of measurements
belong together, but are not stored into one format that can handle all at once. In case a
format is used that is able to handle different medical channels at once, the mixed type should
be used.

After the definition of the medical channel the requirements or available parameters for the
received data are described. This is done by the type letter n. When the MSDP offer
is generated by the sender, these lines define the parameters of the original signal that is
received from the source (for example a sensor). This is used by the receiver to see if loss or
padding will happen when using certain standards. When the MSDP offer is generated by

24

Chapter 4. Design 4.2. Document for negotiating medical data protocols

the destination, these lines define the requirements of the data to be received. The syntax for
n is:

n EQUAL <key> HCOLON <range> [SP "optional"]

<key> = "bitrate" / "delay" / "jitter" / "resolution" / token ; ’token’ should be pre-defined

<range> = <minimum> "-" <maximum>[SLASH <step>] /

"-" <maximum> /

<minimum> "-" [SLASH <step>] /

<value>

<minimum> = 1*DIGIT

<maximum> = 1*DIGIT

<step> = 1*DIGIT

<value> = 1*DIGIT

The parameter <key> defines the parameter described, directly followed by a colon and then
the acceptable range, where the minimum and maximum are separated by a dash. Only
positive integers can be used for the range, and the minimum and maximum value are included
in the range. Either the minimum or maximum might be omitted in case that side is unbound.
If the value is totally unbound it must not be mentioned as parameter. If only specific values
in the specified range are allowed (only available in case a lower bound is given) the step value
is provided immediately after the range, separated by a slash. To require a specific value,
only that value must be mentioned and the dash must be omitted. The parameter optional
means the acceptable range can be ignored in case it is unknown for a certain standard.

This type letter can be repeated several times to describe different parameters, but can also
be totally omitted in case no specific requirements apply. Parameter names and their units
of measurement must be standardised. For the moment we define bitrate (in kbits/s), delay
(in ms), jitter (in ms) and resolution (in bits), but more parameters can be defined in future.
Bitrate and resolution are measured at the output, while delay and jitter are values caused
by using a certain converter.

Figure 4.1: Specification from which point n is seen.

Figure 4.1 shows a typical view on the data channel in use. In the UAC a sensor measures
data and makes this available. It goes through a converter, and is then transferred over the
network to the UAS. In the UAS it goes first through a converter, and then for example to a
data store.

When the UAC generates a MSDP offer, the n type lines immediately after the m type line
define the parameters of the data that comes from the sensor, in figure 4.1 denoted by ’A’.

25

4.2. Document for negotiating medical data protocols Chapter 4. Design

The n type lines following the q type lines (defined below) define the parameters of the data
that is transferred to the UAS (denoted by ’B’) in case the standard defined in the q type line
is used. If the values for the same parameter differ between the ones defined after the n type
lines and the ones defined after the q type lines, it means in some cases that either padding
needs to be done, or loss of data results (for bitrate and resolution). When the UAS generates
a MSDP offer, the n type lines immediately after the m type line define the parameters of
the data it wants to receive (denoted by ’C’). For this, also the data generated by the sensor
in the UAC (denoted by ’A’) needs at least this value, as well as the data after the converter
(denoted by ’B’).

After the requirements zero or more different options for sending the data are defined with
the type letter q. The syntax for q is:

q EQUAL <preference> SP <standard> [SP <transport> [SP <parameter>]...]

<preference> = 1*DIGIT ; range 0-100

<standard> = "DICOM" / "ecgML" / "FDA" / "HL7" / "SCP-ECG" / token ; ’token’ should be pre-defined

<transport> = token ; ’token’ depending on <standard>

<parameter> = token ; ’token’ depending on the <standard> <transport> combination

The parameter <preference> defines the preference for this option, where the preference
is a value between 0 and 100, with 0 meaning not accepted (not very useful to specify)
and 100 most preferred. This is followed by the name of the standard (<standard>), and
optionally followed by a specific transport protocol (<transport>), for example when the
transport protocol is not defined. Names of the standard are pre-defined. This may be followed
by specific parameters needed for this standard, where their order should be standardised,
and depends on the <standard> and <transport> combination. For the moment we define
for <standard> DICOM, ecgML, FDA, HL7 and SCP-ECG. Transport and possible other
parameters needed for negotiation should be defined before these standards can be used.

Take as example standard SCP-ECG, which does not specify a transport protocol. We will
specify now that the transport can be done over HTTP, FTP and SMTP (but more options
might exist). For both HTTP and FTP we leave the choice of port number undefined, while
for SMTP we define the fixed port number 25 (in this example). In this case, the following
needs to be defined:

• SCP-ECG HTTP <port>

• SCP-ECG FTP <port>

• SCP-ECG SMTP

When using these values, <port> needs to be replaced by a real port number. Because SMTP
has a fixed port number, there is no need to define an extra parameter here, so it should be
omitted. Using this specifications, a resulting q type line could be:

q=75 SCP-ECG HTTP 80

This means that with a preference of 75 standard SCP-ECG using the HTTP implementation
on port 80 is an option.

There is a need to define the parameters in this fixed way, as otherwise different hosts can
have different understandings of the parameters. In case the registered transport appears

26

Chapter 4. Design 4.2. Document for negotiating medical data protocols

later to need more parameters, a new name, with different parameters, needs to be registered.
Consider for example that there exists an implementation of the SCP-ECG standard using a
HTTP protocol that can specify the trunk size, next to the port number. Reusing the name
HTTP would cause misunderstandings between hosts, so this new registration will have to
find a new name, for example HTTP-ts, resulting in a registration ”SCP-ECG HTTP-ts
<port> <trunksize>”.

The <preference> is set by the host generating the MSDP message, and gives the preference
of that host for this option. There is no pre-defined formula to calculate this value. A
host is free to define the formula to calculate this value, and define the parameters used
for the calculation. One host might for example give preference to standards requiring low
processing power, while another one might prefer low amount of data to be transferred.
To allow negotiations in an easy way, the <preference> value is not defined further. The
preferences of both hosts are compared without looking at how this value was calculated.
In this way, no priority is given to the preferences of a specific host, and both have equal
chances to have their preference used. If both hosts have the same interpretation of the
calculation of the preference value (for example, both prefer low processing power), the final
agreement will be the optimum for both hosts. If, on the other hand, both hosts have a
different interpretation of the calculation of the preference value, the conclusion might be
sub-optimal for one host, but the overall conclusion will be the best one possible. This is
because a host is supposed to share all its possibilities with the other, which makes it possible
to calculate the best possible overall conclusion.

Every option should be followed by a description of the parameters of this option. This is done
with the type letter n as described above. Ranges are allowed if the standard supports different
options, but unbound values are not allowed. Unbound values are not allowed because it is
unrealistic that any value for a parameter would be possible in a certain standard. When the
chosen standard defines a fixed value for a parameter, it is not useful to specify it, and the
value should be hard-coded, so it can be used for concluding the negotiation. For example,
when standard X defines a resolution of 16 bits (and not 8, 12 or 16 bits), there is no
possibility to negotiate or change this value, and specifying it in the MSDP message would
waste bandwidth. For this reason, when a host implements standard X, it must be aware
that the resolution is 16 bits. The second parameter (keyword optional) must not be used.
If optional is received, it must be ignored.

4.2.4 Concluding the agreement

Setting up a SIP connection requires a connection set-up request from the initiator to the
intended receipt. In this request a session description (in our case the MSDP) can be included,
but it is also possible to request the intended receipt for a proposal (by not including a session
description at all). This is comparable to the two cases described in figure A.1, which explains
the SIP session set-up using SDP messages. The host receiving the proposal can compare it
with its own preferences and capabilities, and return a final agreement to the other host.

It might happen that the host sending the MSDP offer puts higher requirements than are
possible by the receiver of the offer. In this case no agreement is possible. This is made clear
by sending an empty MSDP answer (no m, n and q type lines). When receiving this answer,
the host knows that the requirements were too high. It can now either decide it doesn’t want

27

4.2. Document for negotiating medical data protocols Chapter 4. Design

a connection, or it can lower its requirements. When sending a new proposal, there is again
the risk the requirements are too high. For this reason, it can opt to ask the other host to
send an offer instead, so it can decide itself if the available parameters of the other host are
sufficient for communication.

Because a PDA is low in resources, the calculation of the final agreement can best be done
by a server, but it is not known in advance which of the two hosts involved in a connection
set-up is the server, and first negotiating this would also consume resources and cause delay.
Connection set-up is normally done between either a PDA and server, or between two servers.
If the initiating host is a server, the answering host can be a PDA or a server. It is the most
save if the initiating host would do the calculation of the final agreement, as in that case for
sure not a PDA will do so. If the initiating host is a PDA, the answering host is for sure a
server. In this case, the answering host should do the calculation, because it normally has
more resources.

The initiating host is the one deciding who will calculate the final agreement. If it includes
a proposal in the connection request, it will be the answering host deciding, if it does not
include a proposal in the connection request, the answering host will include the proposal, and
the initiating host will decide. In case the initiating host knows it is a PDA, the answering
host is a server, meaning that it has more resources. In this case, the initiating host should
send a proposal, so the server (answering host) can make the final decision. If, on the other
hand, the initiating host knows it is a server, it should not include a proposal, as in this case
the answering host is forced to return a proposal, after which the initiating host can make
the final decision. If the initiating host is not able to detect if it is a PDA or server, it is not
a big issue, but in this case the calculation might take a bit more time and consume more
resources, like the battery of the PDA.

The proposal that is send is based on the capabilities of the host and user preferences. The
capabilities define which converters are available, which formats are understood and which
formats don’t exceed the maximum transfer rates of the connected network. The user pref-
erences define the requirements of the user of the system. In case of a storage server, these
user preferences can also be based on the needs of the users requesting the data afterwards.
The user preferences can request a minimum quality of the data to be able to make a proper
evaluation, or maximum quality to prevent the need for too much storage space. Merged
together the capabilities and user preferences form the proposal that is used for the nego-
tiation. This merged proposal is described by the MSDP. The <preference> in the q line
can be used to define the relative preference for a certain standard compared to the other
standards mentioned.

4.2.5 Protocol messages

SIP is normally used for setting up media sessions. In this kind of sessions, loss of data is
acceptable, especially when happening at the beginning or ending of a data stream. With
medical data this is a big issue though, meaning that data should only be send when the
receiving side is ready to receive the data. SIP does not provide the possibility to detect when
the receiving side is ready to receive the data, due to its optimisation in amount of message
exchanges needed to set up a session. As soon as the session parameters are concluded, or the
conclusion is received, a host should prepare for the data transmission. This includes inserting

28

Chapter 4. Design 4.2. Document for negotiating medical data protocols

filters in the data channel, opening ports and preparing protocol stacks. No signalling to the
other host is done via SIP when a host is ready to receive data.

To make sure data is only send after the receipt is ready to receive the data, an extra message
will have to be included to notify the sender it can start sending data. In appendix A.7 and
[9] an extension is described that allows to exchange messages over SIP. As soon as the receipt
of the data is ready to receive the data, it should notify the control plane, which will send
a MESSAGE with a body of the type text/plain and the contents ”ready to receive” to the
control plane of the sender. The control plane of the sender will confirm the message with a
200 OK, and inform the data plane to start transmitting data. This means that compared
to normal SIP operation, an extra message is exchanged before data is send, instead of just
starting to send data and don’t bother about the first part being lost.

As we don’t use SIP in the way it was initially meant for, we should make sure that we don’t
communicate with ’normal’ SIP servers, as this doesn’t make sense. This can be achieved by
including a Required header: X-Medical. This value is also put in the Supported header. We
do not follow the rule of SIP that in case a requested Required header is not supported by the
other peer that we should fall back to basic SIP operation, as this would neglect the purpose
for which we introduced it.

When supporting X-Medical, the implementation should be able to accept the following con-
tent types: application/msdp, application/medical and text/plain. The application/medical
might be omitted in case no support for direct transferring of medical data is included. The
accepted content types should be mentioned in the Accept header.

Another extension to SIP is that in the From header, the parameter isSender must be included
in an INVITE request. It can have the value ’true’ or ’false’. The value ’true’ means that the
initiator of the session is the sender of the data, while the value ’false’ means the initiator of
the session is the receiver of the data.

Figure 4.2 shows the transactions in the case the UAC sends the MSDP offer. In the control
plane first an INVITE request is send, including an MSDP offer. The UAS first replies with
180 Ringing (which can be omitted in case the next reply (200 OK) is send immediately),
followed by a 200 OK reply, including a MSDP answer. The UAS also sends a configure
message to the data plane, including the MSDP answer, so the data plane can configure
itself. After the UAC receives the 200 OK reply, it sends a ACK request to confirm the
receipt of the 200 OK. It also sends the MSDP answer to the data plane, so it can configure
itself for the data transfer. Now both data planes know the configuration parameters, and
will configure themselves.

Both the data planes inform their control plane that they are configured. The control plane of
the receiving host generates a MESSAGE with a body of the type text/plain and the contents
”ready to receive” and sends this to the UAC. The UAC confirms this message with the 200
OK reply, and informs the data plane to start sending the data.

In this case it is the UAC that transfers the data to the UAS, so after it finishes transferring the
data (including confirmation from the UAS, which should be arranged in the data protocol)
it will inform the control plane it finished. Now the UAC control plane will send a BYE

29

4.2. Document for negotiating medical data protocols Chapter 4. Design

Figure 4.2: Session transactions for the case where the UAC sends the MSDP offer.

30

Chapter 4. Design 4.2. Document for negotiating medical data protocols

request to the UAS to close the control session as well. The UAS replies with a 200 OK, and
the control session is closed as well.

Figure 4.3: Session transactions for the case where the UAS sends the MSDP offer.

Figure 4.3 shows the transaction in the case the UAC does not include a MSDP offer in the
INVITE request, and as a result the UAS will have to include one in the 200 OK reply. The
final agreement is made by the UAC, which sends it back to the UAS in the ACK message.
It also informs the data plane to configure itself with these parameters.

When the UAS receives the ACK, including the MSDP body, it will inform the data plane to
configure itself. When the data plane is configured, it will inform the control plane. The UAS,
which is the receiver of the data, will generate a MESSAGE with a body of the type text/plain
and the contents ”ready to receive” and sends this to the UAC. The UAC will confirm this
message with a 200 OK reply, and inform the data plane it can start transmitting the data.

31

4.2. Document for negotiating medical data protocols Chapter 4. Design

As it is also here the UAC that transfers the data to the UAS, it is the UAC closing the
control session.

Both in figure 4.2 and figure 4.3 it is the UAC that transfers data to the UAS. For this reason
it is the UAC that initiates the closing of the control session. Only in case the receiver of
the data (in this case the UAS) suddenly decides it does not want to receive the data, it can
close the control sessions by sending a BYE request. In case the data transfer would be from
the UAS to the UAC (the client requests data, instead of offering to send it), the figures
would be the same until the Configured messages from the data plane to the control plane.
The MESSAGE and the related 200 OK will go in the other direction, and the Start will be
generated in the UAS. The Ready message from the data plane to the control plane would be
send in the UAS instead, and also the BYE request would be send by the UAS.

4.2.6 Security considerations

Although no medical data will be transferred by SIP, it is still advised to use TLS for setting
up connections, including authentication. As for now we only define a direct connection
between the UAC and UAS, without the use of proxies. Because of this, the use of TLS
provides us with an end-to-end encryption, because no intermediate hops exist.

4.2.7 Example

1 m=packet ecg

2 n=bitrate:10-20 optional

3 n=resolution:8-16/4

4 q=100 SCP-ECG http 80

5 n=resolution:12

6 n=delay:60

7 q=70 ecgML http 8080

8 n=bitrate:18

9 q=10 HL7 ftp 21

10 n=bitrate:10

11 n=resolution:12-14

12 n=jitter:50

Figure 4.4: Example of MSDP offer (medical description only)

An example of a medical channel in a MSDP packet that is send by the destination host of
the medical data is shown in figure 4.4. Line 1 of figure 4.4 defines that a file (packet) with
ECG data will be delivered. Line 2 and 3 of figure 4.4 define that a bitrate between 10 and
20 kbits/s and a resolution of 8, 12 or 16 bits is requested. In case bitrate is not known
it is allowed to still select it (because of the keyword optional), but the resolution must be
provided and within the range specified. Line 4, 7 and 9 of figure 4.4 define the different
protocols possible, including their options. With preference 100 the SCP-ECG standard over
HTTP (on port 80) is requested, with preference 70 the ecgML standard over HTTP (on port
8080) and as last option with preference 10 the HL7 standard over FTP (port 21). Line 5 and
6 of figure 4.4 define the parameters for SCP-ECG (line 4 of figure 4.4), line 8 of figure 4.4
defines the parameter for ecgML (line 7 of figure 4.4) and line 10, 11 and 12 of figure 4.4
define the parameters for HL7 (line 9 of figure 4.4). Most of the parameters have a single
value, but line 11 of figure 4.4 defines that the resolution can be varied between 12 and 14
bits by HL7.

32

Chapter 4. Design 4.3. Document type for sending actual medical data

When a host receives a proposal from another host in a session set-up, it will calculate a final
agreement, based on the received MSDP and its own capabilities and user preferences. The
result is returned back in the resulting MSDP. This MSDP reply will only contain one option
for the communication (meaning one q-type per m-type).

1 m=packet ecg

2 q=80 ecgML http 8080

3 n=bitrate:18

4 n=resolution:16

Figure 4.5: Example of MSDP answer (medical description only)

When the example of figure 4.4 is received, and the host supports both ecgML and HL7 with
the same preference, but not SCP-ECG, the resulting reply (medical description only, the
session and time description are like they are in normal SDP messages) is shown in figure 4.5.
Line 1 of figure 4.5 is the same as in the initial proposal. Line 2 of figure 4.5 defines the
chosen option, including the parameters. The first parameter, the preference value, does not
really matter in the reply as only one option is provided, but should give the ’final score’ for
this choice, so the other side can see what the average of the <preference> values for the
choice is. The final score is the average of the <preference> values of both the sender and
receiver, or any value that is between the two <preference> values and related to the way
of calculating the best option. If no final score is calculated, a value of 0 must be used. The
higher the value for final score (still within the range 0-100), the closer to the overall optimum
the final agreement is. When looking at the two MSDP examples, the host that calculated
the conclusion had a <preference> value for ecgML of 90 ((70 + 90) / 2 = 80). Providing
the parameters as requirements (directly after line 1 of figure 4.5 with type letter n) does not
make sense, as only one option is available. Still, the chosen option should be followed by the
final parameters using fixed values, and not ranges (line 3 and 4 of figure 4.5), so both hosts
have the same parameters for the chosen standard.

4.3 Document type for sending actual medical data

The goal of the document type for sending medical data is to limit the amount of data transfer.
When one only wants to send a single measurement (for example blood pressure), it is far
from efficient to first negotiate a standard in which the data will be send, and afterwards
transferring the data via this standard. For this reason, we want to be able to send simple
measurements directly over the control protocol in short messages.

4.3.1 Media type for sending medical data

SIP allows for including MIME attachments, which we can define to be able to contain medical
data. Standard SIP is not designed to exchange messages in the way we need them. There
exists an extension to SIP that allows the exchange of messages, as described in appendix A.7
and [9]. While the goal of this extension is Instant Messaging, it can also be used for our
needs. Messages are exchanged between two SIP endpoints, without the need to set up a
session first. According to [9] the implementation must support the ”text/plain” media type,
but for our work we’ll have to introduce a new media type, and not use ”text/plain”. The
media type registration at IANA could be ”application/medical”.

33

4.3. Document type for sending actual medical data Chapter 4. Design

4.3.2 Medical document definition

When comparing to MSDP, there is several similarities in the needs, with the difference that in
the medical document we transmit actual values instead of negotiating for a certain standard.
MSDP and medical will be closely linked, as they are both transferred over SIP by the same
hosts. SDP provides a compact form to transfer data from one host to another. For these
reasons, we will base the medical document on both SDP and MSDP.

The goal of the medical document is to limit the overhead caused by negotiating a transmission
standard. The overhead is large in case a small data set needs to be transferred. For this
reason, only small data sets will be covered by the medical document. For the moment, we’ll
only handle blood pressure, but other measurements should be easily included later. For
example ECG data does not have a small data set, for this reason, the medical document will
not support the transmission of ECG.

The session description of SDP can be partly reused. The v type letter (protocol version)
must be 0. The o type letter (origin) and s type letter (session name) are compulsory, while
the i type letter (session information) is optional, like in SDP. The u (Uri), e (e-mail) and
p (phone) type letter must not be used. The c type letter (connection information) must be
omitted, as no connection will be set up. The b type letter (bandwidth information) must
be omitted, as in case of a single measurement, bandwidth is not relevant. The k type letter
(encryption key) must be omitted, as the data is already in the medical document itself,
including encryption keys in the actual document does not make sense.

The time description of SDP can be partly reused. The t type letter (time) should denote the
time of the measurement. Normally the start and end time should be the same time, but in
case it took a certain time to measure the value (for example, when measuring blood pressure,
it takes about 20 seconds to measure it) the time frame in which the measurement was made
may be given as well. The r type letter (repeat times) must be omitted, as for sending new
measurements, new messages need to be exchanged. The z type letter (time zones) may be
used.

The media description of SDP should be totally omitted. Instead, we’ll include the measure-
ments. The type letter m will be used to define a medical measurement. It is allowed to
include several different measurements made at the same time, for example a blood pressure
and temperature measurement. The receiving host either confirms the receipt with 200 (OK),
or replies with a suitable 4xx or 5xx response. In case several measurements are combined
into one message, only one response is possible. Only in case all measurements are accepted,
a 200 (OK) response is send, in all other cases, even if all but one measurement are accepted,
a suitable 4xx or 5xx response has to be send. It is impossible to separately accept/reject
measurements if they were combined into one single message, as the response is kept as short
as possible and does not allow for separately confirming measurements. The syntax for m is:

m EQUAL <content> HCOLON <value>

<content> = "bloodpressure" / token ; ’token’ should be pre-defined

<value> = token ; ’token’ depending on <content>

The parameter <content> defines the kind of medical data that has been measured. De-
pending on <content> , <value> is defined. For blood pressure, both systolic and diastolic

34

Chapter 4. Design 4.3. Document type for sending actual medical data

pressures are measured in millimetres of mercury (mm Hg). The values are denoted separated
by a dash, for example 120-75, meaning 120 mm Hg systolic and 75 mm Hg diastolic.

4.3.3 Protocol messages

The set of protocol messages is very limited, because there is no negotiation or session set-up.
Every medical messages needs to be confirmed by the receipt, so the sender knows that the
transmission of the message succeeded. The confirmation can be done with standard SIP
messages. For a successful transmission, including acceptance of the medical data, a 200 OK
should be returned. In case of an error, the most suitable response from the 4xx or 5xx class
should be used.

Figure 4.6: Message transactions for the exchange of medical data

Figure 4.6 shows the message transactions for the exchange of medical data. No session
needs to be set-up first, and only the control plane is involved. First the UAC sends a
MESSAGE, including a body of the type ”application/medical”, which contains the medical
measurements, including timing information. After acceptance of the MESSAGE, the UAS
returns a 200 OK reply.

4.3.4 Security considerations

Because medical data will be transferred by SIP when using this extension, TLS for setting
up connections and authentication must be used. As we define a direct connection between
the UAC and the UAS, without the use of proxies, this provides us with end-to-end security.

4.3.5 Example

1 m=bloodpressure:120-75

Figure 4.7: Example of medical document (medical description only)

Figure 4.7 shows the medical description of a medical document. The session description
and time description have been omitted. Only one measurement is transferred, in this case a
blood pressure, with 120 mm Hg systolic and 75 mm Hg diastolic.

35

Chapter 5

Implementation

In this chapter we describe a design refinement. The control plane of this prototype will be
called Medical Data Control Protocol (MDCP). We specify the finite state machine of MDCP
and the interfaces provided by MDCP as well as the interfaces used by MDCP.

5.1 MDCP design

In chapter 4 we have described a new protocol for negotiating medical data exchange. In this
section we’ll further detail the design, for example by defining interfaces and state diagrams.

5.1.1 SIP implementation

Our design is build on top of the SIP protocol. As there exist reference implementations
of this protocol, we will base our implementation on it. We also prefer to use Java for
implementation, as the language is wide spread. JAIN-SIP is such an implementation. More
information about this implementation as well as a download is available in [2] and [3].

5.1.2 SDP implementation

The messages defined in the previous chapter are based on SDP. This means that the easiest
solution is adjusting an existing implementation of SDP. JAIN-SIP does also implement SDP,
though at first sight it didn’t look like the easiest one to use. For this reason, we have adjusted
the code as provided by jSDP ([4]). The parts we don’t need are removed, and other parts are
added to support MSDP and the medical document type. Some existing classes and methods
of jSDP are adjusted to meet our needs.

5.1.3 Components

The prototype that we’ll build for proving our concept will consist of various components.
First of all, there will be a user interface to operate the computer logic. The user interface
communicates both with the MDCP and data plane. These two also communicate between
each other. The MDCP will be build on top of SIP, which itself will run on top of the TCP
transport layer. The data plane will communicate via different application layer protocols,
or directly with a transport layer protocol, depending on the medical standard used for
exchanging the data or on the choice made during negotiating whenever the transport protocol

37

5.1. MDCP design Chapter 5. Implementation

Figure 5.1: The different protocol elements that are important for us. The red ellipses denote inter-
action points between the different components.

is left open by the medical standard. Figure 5.1 shows these different protocol elements as
protocol stack and their interaction points.

For us, especially the MDCP and its interaction with neighbouring components is important.
This means we have to define interfaces for three interaction points:

• User interface

• SIP layer

• Data plane

All three interaction points are bi-directional.

In our prototype the user interface is operated by a human being. In reality, this is often
not the case. A patient will often carry a device that automatically sends measurements due
to a trigger, for example a timer, or a notified change in measurements received from the
connected sensors. A central storage server will automatically store received measurements
from patients, and send it to a medical person on request. The medical person would either
get measurements on his screen automatically, or requests the data of a certain patient. Only
in the last case a direct interaction with a human being results in the exchange of data, in
other cases, an automated system takes care of it.

For the data plane, there is also a data plane factory to create a data plane instance for every
connection. The data plane factory can also be queried for its capabilities. Communication
with the data plane factory is only initiated by the MDCP.

38

Chapter 5. Implementation 5.1. MDCP design

Figure 5.2: The UML diagram including interfaces.

Figure 5.2 shows the UML diagram, including the interfaces. Our prototype will focus on
MDCP, but of course also the other parts need dummy implementations to show the proper
functioning. The interfaces take care of the communication between the MDCP and the other
components. They are defined in section 5.1.5.

5.1.4 States

Our design is based on SIP. The state diagrams of SIP are shown in figure 5-8 of [23]. SIP
defines different transaction diagrams for INVITE and non-INVITE requests. In our imple-
mentation we’ll have to communicate with SIP following these transaction diagrams.

Figure 5.3 shows the state diagram of the MDCP. The MDCP communicates with the user,
the data plane as well as with the SIP layer. All the communication with the user is in black,
the communication with SIP is in blue and the communication with the data plane is in dark
yellow. In the first line of a state transition (in italic) an event is shown that triggers zero or
more actions, which are shown in the following lines. The top-right path, passing the Ringing
state and that starts with receiving INVITE has twice configure data plane as action on
transition to Connected state, but only one is executed. This depends on whether the MSDP
offer is included in the INVITE request, or in the 200 answer. In case the MSDP offer is
included in the INVITE, the first configure data plane is executed, otherwise the second.
In the connected state, the data receiver sends a MESSAGE when the data plane finishes
configuration, while the sender waits for MESSAGE before it starts sending data. Which
host is the data receiver is independent from where the transaction started.

39

5.1. MDCP design Chapter 5. Implementation

Figure 5.3: The simplified MDCP state diagram. In blue and marked with ”<s>” the communication
with the SIP layer, in dark yellow and marked with ”<d>” communication with the data
plane and in black and marked with ”<u>” communication with the user. The first line
(in italic) shows an event, the other lines actions. The action marked with an asterisk is
only executed once, either before or after the Waiting state.

40

Chapter 5. Implementation 5.1. MDCP design

The diagram doesn’t show all transactions that are possible. At any moment, it is possible
that a host withdraws from the session. In the Ringing state this is done by responding with
a 488 (Not acceptable here) answer, in the other states this is done by sending a BYE request,
after which a transition to the Terminating state is made. Whenever a host receives a BYE,
it should respond with a 200 (OK) and go directly to the Terminated state, while stopping
all communications. It should inform the data plane to cancel the transmission, and unload
everything related to the session.

5.1.5 Interfaces

Seen from MDCP, there are four interaction points. All these interaction points, except the
one with the data plane factory, are bi-directional. This means we have to define in total
seven interfaces.

User interface to MDCP

The user interface takes care of the communication between the user and the MDCP. The
user can control the behaviour of the MDCP via this interface, and the MDCP can show
information to the user. When looking at figure 5.3 one can see only three methods that are
invoked by a user: starting a connection, answering an incoming connection and cancelling a
connection. The interface is shown in figure 5.4.

1 public interface UIListener {
2 CallIdHeader startConnection(String destination, Requirement[] parameters,

3 boolean isSender, boolean sendMsdpOffer);

4 boolean answerCall(CallIdHeader callID, Requirement[] parameters);

5 boolean cancelCall(CallIdHeader callID);

6 boolean sendMeasurement(String destination, String content, String value);

7 boolean sendMeasurement(String destination, String content, String value,

8 Date start);

9 boolean sendMeasurement(String destination, String content, String value,

10 Date start, Date end);

11 void close();

12 }

Figure 5.4: The UIListener interface

To start a connection (lines 2-3 of figure 5.4) the following parameters should be provided: the
destination, requirements for the connection, if the initiator is sender or receiver of the data,
and if a MSDP offer should be send in the initial message (INVITE). The destination is a
SIP URI. The requirements are given in an array, where the array might be empty in case no
requirements apply. The controller must know if the initiator is the data sender or receiver,
as this defines if from the Connected state the left or right path will be taken (see figure 5.3).
The last parameter is used to control which host will make the decision: the initiator or the
answering host. As this is decided by the initiating host only, the idea is that if the host is
low in resources, it should include an MSDP offer, so the other host makes the final decision.
If the host has enough resources it should not include the MSDP offer, so in the 200 (OK)
response, it will receive the offer, and make the decision. With this information, the MDCP
can set up the connection. The session identification number (Call-ID) is returned in case

41

5.1. MDCP design Chapter 5. Implementation

the session is being set up, or a null value in case a session cannot be set up. The type of the
return value is CallIDHeader.

To answer a call (line 4 of figure 5.4) the session identification number (Call-ID) has to be
provided. This number is reported to the user when he is informed about an incoming call.
Also the requirements are given in an array, where the array might be empty in case no
requirements apply. The return value is a boolean that reports true in case the incoming call
was answered, and false otherwise.

A call can be cancelled (or rejected; line 5 of figure 5.4) at any moment. To cancel a call the
session identification number (Call-ID) has to be provided. The return value is a boolean
that reports true in case the call will be cancelled, and false otherwise.

Not mentioned in figure 5.3, but also part of the protocol is the exchange of measurements.
To exchange measurements (lines 6-10 of figure 5.4), a destination, content description, value,
and optionally a starting and ending time of the measurement are needed. The destination is
a SIP URI. The content description is a pre-defined token, which also defines how the value
should be understood. Optionally, the starting and ending time stamp of the measurement
can be given. If both are omitted, the current time is used for both, if only start is given,
this value is used both for start and end.

The close method (line 11 of figure 5.4) is used to make MDCP shut down properly. This
will close the SIP sockets, and cleanly close all other resources, including open calls.

MDCP to user interface

The MDCP has to report certain events to the user. This is done via the user interface. There
are several messages that need to be reported: incoming connection, finished connected,
incoming measurements, debug messages, informative messages and error messages. The
interface is shown in figure 5.5.

1 public interface UIControl {
2 void notifyIncomingCall(CallIdHeader callID, String caller);

3 void notifyFinishedCall(CallIdHeader callID);

4 boolean notifyMeasurement(String caller, String content, String value);

5 void notifyDebug(CallIdHeader callID, String msg);

6 void notifyInfo(CallIdHeader callID, String msg);

7 void notifyError(CallIdHeader callID, String msg);

8 }

Figure 5.5: The UIControl interface

An incoming connection (line 2 of figure 5.5) is communicated to the user interface with the
session identification (Call-ID) and the caller identification (From). This provides information
to the user who is trying to contact him, and also an identification, which is used to answer
or cancel/reject that call, and makes it possible to handle several calls in parallel. There is
no return value.

When a call finishes (line 3 of figure 5.5), either because it ended normally, or because it was

42

Chapter 5. Implementation 5.1. MDCP design

cancelled, the user interface is informed. As parameter the session identification (Call-ID) is
provided, while it has no return value.

Measurements can also be received (line 4 of figure 5.5), and are reported to the user interface.
Although several measurements can be combined into one SIP message, they will be reported
to the user interface one by one. The caller identification (From), the content description
and the value are provided. When the measurement is accepted, the true value is returned,
if measurement sending is not supported, or the measurement is not accepted, false must
be returned, which causes the MDCP to send a negative acknowledgement. When several
measurements are combined into one message, and one is rejected, all measurements will be
marked as rejected in the response. This is because the reply is kept as short as possible, and
only tells if all measurements are accepted, or all rejected, and not per measurement. We use
a reliable transport protocol (TCP, preferably over TLS), meaning there is no need to repeat
the received message. This does prevent though that only part of the received measurements
is accepted.

The debug (line 5 of figure 5.5), informative (line 6 of figure 5.5) as well as the error (line 7
of figure 5.5) message carry two parameters, namely the session identification (Call-ID) and
a text message. The Call-ID must be null in case the message is not related to a certain call.
There is no return value.

SIP layer to MDCP

The interface between the SIP layer and the MDCP has already been defined by the JAIN-SIP
API (see [2]). We’ll describe the interface we have to implement in the MDCP here. There
are in total six methods in the SipListener interface. The interface is shown in figure 5.6.

1 public interface SipListener extends java.util.EventListener {
2 void processRequest(RequestEvent evt);

3 void processResponse(ResponseEvent evt);

4 void processTimeout(TimeoutEvent evt);

5 void processIOException(IOExceptionEvent evt);

6 void processTransactionTerminated(TransactionTerminatedEvent evt);

7 void processDialogTerminated(DialogTerminatedEvent evt);

8 }

Figure 5.6: The SipListener interface

The method processRequest (line 2 of figure 5.6) is called when a new request arrives, with
the event as parameter. The method processResponse (line 3 of figure 5.6) is called when
a response arrives, with the event as parameter. When a time-out is noticed by the SIP
layer, the method processTimeout (line 4 of figure 5.6) is called, with the event as parameter.
In case of an IO exception the method processIOException (line 5 of figure 5.6) is called,
with the event that resulted in this error as parameter. When a transaction is terminated,
the processTransactionTerminated (line 6 of figure 5.6) method is called, with the event as
parameter. In case a dialog is terminated, this is notified by calling the processDialogTer-
minated (line 7 of figure 5.6) method, which also takes the event causing it as parameter.
None of these methods have a return value. The difference between dialogs and transactions
is explained in appendix A.2.

43

5.1. MDCP design Chapter 5. Implementation

MDCP to SIP layer

The JAIN-SIP API defines the methods that are available. These are too many to describe
here. For a detailed overview you can read the API itself (see [2]).

MDCP to data plane factory

The MDCP needs to know about the capabilities of the data plane. For this reason we intro-
duce a data plane factory, which is responsible for informing the MDCP about its capabilities,
as well as for creating new data planes. The interface is shown in figure 5.7.

1 public interface DataplaneFactory {
2 public MsdpSessionDescription getMsdpCapabilities();

3 public ControlListener createControlListener(DataListener dl, CallIdHeader callId,

4 MsdpSessionDescription msdp, boolean isSender);

5 }

Figure 5.7: The DataplaneFactory interface

To know about the capabilities of the data plane (line 2 of figure 5.7), the factory returns a
MSDP session description. This includes all requirements and preferences of the factory, as
well as all different standards it supports, with its parameters.

The factory is also responsible for creating new data planes (which implement the ControlLis-
tener interface; lines 3-4 of figure 5.7). To create a new data plane, the responsible controller,
the session identification (Call-ID), a MSDP description containing the configuration param-
eters, as well as if the data plane will send or receive data have to be given. With these
parameters, the factory should decide which data plane implementation to initiate. The new
data plane created is returned.

Data plane to MDCP

The communication from the data plane to the MDCP is very limited, and consists only of
three messages: configuration succeeded, configuration error and transfer finished. For every
session a new data plane will be created, which has a 1-1 relationship to a sub controller
in the MDCP (a MDCP sub controller is created for every call, and is explained further
in section 5.2.3). Because of this, there is no need for an identification, like the session
identification, to be included. The interface is shown in figure 5.8.

1 public interface DataListener {
2 boolean configurationSucceeded();

3 void configurationError(String msg);

4 void transferFinished();

5 }

Figure 5.8: The DataListener interface

The configuration succeeded message (line 2 of figure 5.8) is used by the data plane to notify
the MDCP it is configured, and ready to exchange data. The receiver communicates this

44

Chapter 5. Implementation 5.1. MDCP design

via the MDCP to the sender, so the sender knows transmission can start. The sender will,
once both the local data plane as well as the remote data plane have confirmed they are
configured, inform the data plane the transmission can start. The return value is true in case
this notification is expected to arrive (MDCP in the waiting or connected state), and false in
all other case. In case false is returned, the data plane should free the reserved resources and
not expect incoming data.

The configuration error message (line 3 of figure 5.8) is used in case it is impossible to configure
the data plane, or in case the data transmission fails. As parameter a textual explanation of
the error is given. After this message, the data plane should free the resources involved in
this transfer. There is no return value.

The sending data plane should inform the MDCP when the transmission is finished (line 4
of figure 5.8). That means that the data has been transferred, and is confirmed in the data
plane by the receiver. After this message, the data plane should free the resources involved
in this transfer. There is no return value.

MDCP to data plane

The MDCP can send three different messages to the data plane: configure, start sending and
close connection. The interface is shown in figure 5.9.

1 public interface ControlListener {
2 void configure();

3 boolean startTransfer();

4 boolean closeTransfer();

5 }

Figure 5.9: The ControlListener interface

The configure message (line 2 of figure 5.9) is used to inform the data plane it should prepare
for a data transmission. This means opening ports, and inserting filters. The configuration
parameters are already included in the constructor. The MDCP must be informed when the
configuration is done. The data plane should return control immediately, and not wait until
configuration succeeded. A separate message is used for this.

In case the host is the sender, it should wait for the start message (line 3 of figure 5.9) from
the MDCP before starting the actual data transfer. The return value is true in case it can
start sending data, or false otherwise. In case transfer fails, this should be communicated to
the MDCP by a separate message.

When the transmission is cancelled, or when the transfer is finished, a message to close the
connection (line 4 of figure 5.9) is send. When this message is received, a possible transmission
should be stopped, and the resources related to the session should be freed. The return value
is a boolean which is true in case the session can be closed, or false otherwise.

45

5.2. Packages Chapter 5. Implementation

5.2 Packages

Our prototype of the protocol contains several Java classes. These classes are grouped in
packages. In table 5.1 an overview of the packages and a short description is given. In the
remainder of this section, they will be explained in more detail.

Package Description
core The interfaces implemented in other packages
core.sdp Basic SDP implementation, with the used parts of the session and time

description
core.sdp.medical The medical description, which extends basic SDP
core.sdp.msdp The MSDP description, which extends basic SDP
core.sdp.util Supporting classes used by SDP
dataplane The data plane implementation
gui A graphical user interface implementation
mdcp The MDCP implementation
ui The user interface implementation

Table 5.1: Package structure

5.2.1 MSDP messages (package ’core.sdp.msdp’)

In section 4.2 we have defined a new message type, namely application/msdp. Several classes
are needed to represent the extension to SDP. This package also extends some of the classes
defined in ’core.sdp’ to make them able to work with the MSDP message type. The factory is
also able to merge MSDP messages with requirements, as well as decide the optimal standard
to exchange the data.

When merging a MSDP message with the requirements, first the general requirements section
of the MSDP will be merged with the supplied requirements. Afterwards all options (different
standards) will be checked if they still are possible with the new requirements set. In this way,
only the options that match the requirements have to be transferred. It is possible that no
single option matches the requirements. In this case the whole medical description is removed.
A method using the merge method should check if there is still a medical description left after
merging, if not, it should stop the negotiating process, as no standard is available with the
given requirements.

The decision method will first merge the general requirements of the sender MSDP with the
MSDP of the receiver, and afterwards do the same the other way around. It might happen
that no option at either the sender or receiver matches all requirements, after which the
deciding method will return a MSDP without medical description. After the previous steps,
a list of common options (standards) is made, and the preference values are compared. The
common option with the highest sum of the square root of the preference value of the sender
and the square root of the preference value of the receiver will be taken as conclusion. The
concluded preference value will be the square of this highest sum:

concluded preference =

(√
preference sender +

√
preference receiver

2

)2

46

Chapter 5. Implementation 5.2. Packages

The reason of using the square root for the calculation is to prefer preferences with a value
closer together above preferences where the values are further apart, while having the same
average. Consider for example a matching standard, where the preference for the sender is
10, and the preference of the receiver is 90. The average preference will be 50. This is also
the case when both sender and receiver have preference 50. In general, using a very low
preference value is not good, as it means the standard is far from preferred, and should only
be used as a last resort. Using the formula above makes sure that the standard where both
sender and receiver have preference 50 is chosen:

(√
50 +

√
50

2

)2

= 50

(√
10 +

√
90

2

)2

= 40

As can be seen, when both have preference 50, the concluded preference is higher than when
one has 10 and the other 90.

5.2.2 Data plane (package ’dataplane’)

The goal of the prototype we implement is to prove the concept we described in chapter 4.
We will not exchange actual medical data, but only pretend we do so. This will give us an
easy way to test if the ideas we presented work, without having to find implementations of
the different medical protocols.

First of all, the data plane factory presents some random capabilities, and for different hosts,
different capabilities should be presented, to simulate reality. Also the data plane factory
should be able to create a dummy data plane which imitates a real data plane. This data
plane does not have the capability to exchange data, but simulates this by using random
timers. First of all, when it is requested to configure, it starts a timer with a value between
2 and 8 seconds. When the timer fires, it informs the MDCP configuring succeeded. This
randomness matches reality: under different system loads, configuration can take longer or
shorter. The values are not realistic, but chosen to slow down the whole process, and to allow
human interaction during the process (like cancelling an ongoing data transfer).

Also the request to start the data transfer results in the starting of a timer with a value
between 2 and 8 seconds. When the timer fires, the MDCP is informed the transfer finished.
Also this randomness matches reality: due to network load, or different amounts of data to
be exchanged, the transfer can take longer or shorter. Monitoring a patient for longer time
(streaming) is possible. In such cases a connection exists for longer time. Unlimited duration
could create problems though: due to a host disappearing from the network, a connection
might not be properly closed, meaning a connection is kept open forever. To prevent this, a
limited time should be set (could be in the range of hours). To support connections existing
longer than the time limit, keep-alive messages must be introduced so a connection is not
closed due to exceeding the time limit. For now, such functionality is not included, and we
rely on SIP for this (SIP does allow for longer-existing connections).

47

5.2. Packages Chapter 5. Implementation

The simulation of the behaviour of configuration and data exchange results in a very simple
implementation. On the other hand, it does react as a real implementation, which means it
can be used for testing purpose.

5.2.3 MDCP (package ’mdcp’)

The MDCP consists of 2 classes: the main controller and the sub controllers. The main
controller is responsible for creating the SIP sockets when it is started. It also creates a
data plane factory, which is responsible for communication with the data plane. The main
controller is the access point for the user interface, as well for all incoming SIP messages.
When a connection request is received from the user interface, or an INVITE request via
SIP, a new sub controller is created to handle this session. Subsequent requests related to
this session are forwarded to the responsible sub controller. For every session a new sub
controller is created. The exchange of single measurements is also the responsibility of the
main controller. Only one main controller is created during execution for an application
(listening on one port for incoming connections).

The sub controller is responsible for a single session. Commands from the user interface and
incoming requests and responses from SIP are forwarded to the sub controller from the main
controller. Handling them is the responsibility of the sub controller. The sub controller also
maintains the state of the MDCP dialogue, as defined in figure 5.3. Whenever a sub controller
is in the Terminated state, the garbage collector of the main controller may delete it. At the
latest when the sub controller is in the Connected state, a 1-to-1 relationship with the data
plane is established. For every session, the data plane factory is requested to create a new
instance of a data plane. The sub controller does communicate directly to the user interface,
while answers come back via the main controller, as the user interface only has an interface
towards the main controller, and not to the sub controllers.

5.2.4 User interface (package ’ui’)

To control the behaviour of MDCP, we need a user interface. In reality this could be a system
that automatically answers or initiates requests. To prove the concept, we will manually
control the MDCP. To keep things simple, we will use a simple text interface. It might
look less clear than a graphical interface, but speeds up development, and can be run in a
non-graphical environment, like command line.

The user interface supports the following commands:

• exit: close the program

• help: display a short message with all available commands

• connect <destination> <send|recv> [<msdp>]: start a new call with <destination>
(a SIP URI) as either sender (send) or receiver (recv) and optional some requirements
for the connection (via the pre-defined requirements in the user interface as shown with
the msdp command).

• answer <call> [<msdp>]: answer an incoming call, where <call> is replaced by the
call number as internally used in the user interface, and optional some requirements for

48

Chapter 5. Implementation 5.2. Packages

the connection (via the pre-defined requirements in the user interface as shown with the
msdp command).

• cancel <call>: cancel an active call, where <call> is replaced by the call number as
internally used in the user interface. This command is also used to reject an incoming
call.

• send <destination> <content> <value>: send a single measurement to <destination>
(a SIP URI). <content> defines the content type (for example blood pressure), and
<value> the value. The content type defines the format of the value.

• calls: show a list of active calls, including the internal call number used in the user
interface.

• msdp: show available MSDP messages, which can be used in the connect and answer
commands.

• msdp full: show available MSDP messages including their full body.

5.2.5 Other packages

Interfaces (package ’core’)

This package defines the interfaces as implemented by the data plane, MDCP and user inter-
face. The are defined in section 5.1.5.

Basic SDP (package ’core.sdp’)

This package is mainly a copy of a part of the jSDP (see [4]) implementation of SDP. Only
the parts we use are copied, and some parts have been adjusted to better match our needs
and some unused parts have been removed. The adjustments are related to the removing of
the variables we don’t use in our implementation and adjusting the constructors and parsers
that make use of these variables.

Medical messages (package ’core.sdp.medical’)

In section 4.3 we have defined a new message type, namely application/medical. This message
type needs to be represented in code. This package defines all classes that are not available in
basic SDP, and also extends some of the classes to make them able to work with the medical
message type.

SDP support classes (package ’core.sdp.util’)

This package defines some data structures used by the basic SDP (implementation taken from
jSDP; see [4]).

Graphical user interface (package ’gui’)

This package provides a graphical user interface which can replace the user interface (package
’ui’). Functionality is the same as in ’ui’, but the interface is graphical instead of command
line based.

49

Chapter 6

Evaluation

In this chapter we describe the evaluation of our prototype. First we evaluate the prototype
itself, and in the second part we validate the requirements set in section 3.2.

6.1 Evaluation of the prototype

In this section we describe several tests of the prototype. First we test the functioning of
exchanging SIP messages for the overall control of the data exchange. After that, we look
into detail in the exchanged MSDP message, to see if indeed the optimal solution is found.
We finish with checking the exchange of measurements.

6.1.1 Exchanging measurements

The designed protocol allows for exchanging medical measurements. Our prototype imple-
ments this part as well. Figure 6.1 shows the exchanged SIP messages. One can see that

1 > MESSAGE sip:wim@willempie.kuipnet.void:3031;transport=tcp SIP/2.0

2 > Call-ID: 8310222386edfa394db72d0a79cff3b3@192.168.48.128

3 > CSeq: 1 MESSAGE

4 > From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

5 > To: "wim" <sip:wim@willempie.kuipnet.void:3031>
6 > Via: SIP/2.0/TCP willempie.kuipnet.void:3030;branch=z9hG4bK7d169d12e2f8054465de770ef3cc0d7d;received=192.168.48.128;rport=3030

7 > Max-Forwards: 0

8 > Content-Type: application/medical

9 > Content-Length: 148

10 >
11 > v=0

12 > o=wim 3452845863 3452845863 IN IP4 192.168.48.128

13 > s=Medical data transmission

14 > i=Medical data

15 > t=3452845862 3452845862

16 > m=bloodpressure:125-80

17

18 < SIP/2.0 200 OK

19 < Call-ID: 8310222386edfa394db72d0a79cff3b3@192.168.48.128

20 < CSeq: 1 MESSAGE

21 < From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

22 < To: "wim" <sip:wim@willempie.kuipnet.void:3031>;tag=Medical v1.0

23 < Via: SIP/2.0/TCP willempie.kuipnet.void:3030;branch=z9hG4bK7d169d12e2f8054465de770ef3cc0d7d;received=192.168.48.128;rport=3030

24 < Content-Length: 0

Figure 6.1: Sending a measurement

the measurement is put in the medical body of the SIP request. The measurement is cor-
rectly shown at the receiving host, and confirmed with 200 OK. Exchanging a measurement
in the other direction shows exactly the same result, thus we can conclude that exchanging
measurements works.

51

6.1. Evaluation of the prototype Chapter 6. Evaluation

6.1.2 Finding optimal data protocol

To show the correct functioning of the decision mechanism, we will do some connection set-
ups, using different requirements. This should result in different optimal solutions. First,
we see the default offers a host would send without any requirements. Figure 6.2 shows the
default MSDP offer of host 1, while figure 6.3 shows the default MSDP offer of host 2.

1 v=0

2 o=msdp-test 2890844526 2890842807 IN IP4 192.168.48.1

3 s=MSDP Sample message

4 i=MSDP Sample message in the DataplaneFactory

5 c=IN IP4 192.168.48.128/127

6 t=2873397496 2873404696

7 m=packet ecg

8 n=bitrate:10-20

9 n=resolution:8-16/4

10 q=100 SCP-ECG http 80

11 n=resolution:12

12 n=delay:60

13 q=70 ecgML http 8080

14 n=bitrate:18

15 q=10 HL7 ftp 21

16 n=bitrate:10

17 n=resolution:12-14

18 n=jitter:50

Figure 6.2: Default MSDP offer host 1

1 v=0

2 o=msdp-test 2890844526 2890842807 IN IP4 192.168.48.1

3 s=MSDP Sample message

4 i=MSDP Sample message in the DataplaneFactory

5 c=IN IP4 192.168.48.128/127

6 t=2873397496 2873404696

7 m=packet ecg

8 n=bitrate:5-20 optional

9 n=resolution:4-16/4 optional

10 q=80 SCP-ECG http 2080

11 n=resolution:10

12 n=delay:20

13 q=100 ecgML http 3080

14 n=bitrate:14

15 n=resolution:4-14

16 n=jitter:10

17 q=50 HL7 ftp 3021

18 n=bitrate:10

Figure 6.3: Default MSDP offer host 2

When connecting without any additional parameters, it means the optimum of figure 6.2 and
figure 6.3 has to be found. To check this, we connect without any additional requirements,
and observe the resulting MSDP response. This can be seen in figure 6.4. As result, the
SCP-ECG standard is chosen with optimum value 89 (line 10 of figure 6.4).

Now we will send another offer from host 1, but apply as requirement ’n=resolution:14 op-
tional’. Due to this, the SCP-ECG capabilities will vanish from the offer. This can be seen in
figure 6.5. Host 2 composes the MSDP response, without applying additional requirements.
As a result, ecgML is concluded, with optimum value 84 (line 10 of figure 6.6).

As third test, we send an offer from host 2, and apply as requirements ’n=bitrate:10’ and
’n=delay:10 optional’. Due to this, only HL7 is left in the offer (line 11 of figure 6.7). Host
1 composes the MSDP response, without applying additional requirements. As a result, HL7
is concluded, with optimum value 26 (line 11 of figure 6.8).

52

Chapter 6. Evaluation 6.1. Evaluation of the prototype

1 v=0

2 o=msdp-test 2890844526 2890842807 IN IP4 192.168.48.1

3 s=MSDP Sample message

4 i=MSDP Sample message in the DataplaneFactory

5 c=IN IP4 192.168.48.128/127

6 t=2873397496 2873404696

7 m=packet ecg

8 n=bitrate:10-20 optional

9 n=resolution:8-16/4 optional

10 q=89 SCP-ECG http 2080

11 n=resolution:10

12 n=delay:20

Figure 6.4: Response when connecting without any additional requirements

1 v=0

2 o=msdp-test 2890844526 2890842807 IN IP4 192.168.48.1

3 s=MSDP Sample message

4 i=MSDP Sample message in the DataplaneFactory

5 c=IN IP4 192.168.48.128/127

6 t=2873397496 2873404696

7 m=packet ecg

8 n=bitrate:10-20

9 n=resolution:14 optional

10 q=70 ecgML http 8080

11 n=bitrate:18

12 q=10 HL7 ftp 21

13 n=bitrate:10

14 n=resolution:12-14

15 n=jitter:50

Figure 6.5: Offer from host 1 with requirement ’n=resolution:14 optional’

When looking at the three given test scenarios, one can see that the response always is as
expected. Based on this, we can conclude that for the given test scenarios, the prototype
behaves as expected.

6.1.3 Controlling data transfer

For the controlling of the data transfer we use SIP. There is also MSDP bodies included, but
they are only used to exchange parameters of the data plane. In this section we’ll discuss the
four possible scenarios, and test them in the prototype. The four scenarios are composed by
the initiator that can be either the sender or receiver, and the initiator can or can not include
the MSDP offer in the invite.

1 v=0

2 o=msdp-test 2890844526 2890842807 IN IP4 192.168.48.1

3 s=MSDP Sample message

4 i=MSDP Sample message in the DataplaneFactory

5 c=IN IP4 192.168.48.128/127

6 t=2873397496 2873404696

7 m=packet ecg

8 n=bitrate:10-20 optional

9 n=resolution:14 optional

10 q=84 ecgML http 3080

11 n=bitrate:14

12 n=resolution:4-14

13 n=jitter:10

Figure 6.6: Response from host 2 on offer in figure 6.5

53

6.1. Evaluation of the prototype Chapter 6. Evaluation

1 v=0

2 o=msdp-test 2890844526 2890842807 IN IP4 192.168.48.1

3 s=MSDP Sample message

4 i=MSDP Sample message in the DataplaneFactory

5 c=IN IP4 192.168.48.128/127

6 t=2873397496 2873404696

7 m=packet ecg

8 n=bitrate:10 optional

9 n=resolution:4-16/4 optional

10 n=delay:10 optional

11 q=50 HL7 ftp 3021

12 n=bitrate:10

Figure 6.7: Offer from host 2 with requirements ’n=bitrate:10’ and ’n=delay:10 optional’

1 v=0

2 o=msdp-test 2890844526 2890842807 IN IP4 192.168.48.1

3 s=MSDP Sample message

4 i=MSDP Sample message in the DataplaneFactory

5 c=IN IP4 192.168.48.128/127

6 t=2873397496 2873404696

7 m=packet ecg

8 n=bitrate:10 optional

9 n=resolution:8-16/4 optional

10 n=delay:10 optional

11 q=26 HL7 ftp 3021

12 n=bitrate:10

Figure 6.8: Response from host 1 on offer in figure 6.7

Initiator sends data and sends offer

In this scenario the initiator includes a MSDP offer in the INVITE, and later on sends the
data. The test output (SIP messages) is shown in figure 6.9, where the direction of the
messages is shown by the arrows in front of it. We describe the scenario seen from the left
host. In line 1 - 15 of figure 6.9 the INVITE is send, including the MSDP offer. First a
180 Ringing is received (line 17 - 23 of figure 6.9), later a 200 OK (line 25 - 38 of figure 6.9),
including the MSDP response. Based on this the data plane is configured. The 200 OK
response is answered by sending ACK (line 40 - 47 of figure 6.9). The left host sends the
data to the right host. Line 49 - 61 of figure 6.9 shows the MESSAGE we receive to inform
us that the other host is ready to receive the data. We answer this with 200 OK (line 63 -
69 of figure 6.9). When we finish sending the data, we notify the right host by sending BYE
(line 71 - 78 of figure 6.9). This is answered with 200 OK (line 80-86 of figure 6.9).

Initiator receives data and sends offer

In this scenario the initiator includes a MSDP offer in the INVITE, and later on receives
the data. The test output (SIP messages) is shown in figure 6.10, where the direction of the
messages is shown by the arrows in front of it. We describe the scenario seen from the left
host. The first four messages (line 1 - 47 of figure 6.10) are exactly the same as in the case
where the initiator sends data and sends the offer. As the direction of the data is opposite,
the last four messages (line 49 - 86 of figure 6.10) are the same as in the case where the
initiator sends data and sends the offer, but are send in the other direction.

Initiator sends data and receives offer

In this scenario the initiator doesn’t include a MSDP offer in the INVITE, and later on sends
the data. The test output (SIP messages) is shown in figure 6.11, where the direction of the

54

Chapter 6. Evaluation 6.2. Validation of requirements

messages is shown by the arrows in front of it. We describe the scenario seen from the left
host. In line 1 - 12 of figure 6.11 the INVITE is send. First a 180 Ringing is received (line
14 - 20 of figure 6.11), later a 200 OK (line 22 - 35 of figure 6.11), including the MSDP offer.
The 200 OK response is answered by sending ACK (line 37 - 47 of figure 6.11), including the
MSDP response. Based on this the data plane is configured. The last four messages (line 49
- 86 of figure 6.11) are again the same as in the scenario where the initiator sends data and
sends the offer.

Initiator receives data and receives offer

In this scenario the initiator doesn’t include a MSDP offer in the INVITE, and later on
receives the data. The test output (SIP messages) is shown in figure 6.12, where the direction
of the messages is shown by the arrows in front of it. We describe the scenario seen from
the left host. The first four messages (line 1 - 47 of figure 6.12) are exactly the same as in
the case where the initiator sends data and receives the offer. As the direction of the data is
opposite, the last four messages (line 49 - 86 of figure 6.12) are the same as in the case where
the initiator sends data and receives the offer, but are send in the other direction.

Conclusion

The four tested scenarios all show the exchange of the messages that would be exchanged in
such scenario. Next to that, the user interface tells the transfer is finished after sending or
receiving of BYE. This means that in case of a successful data transfer, the initial state is
restored. The controlling of the data transfer works as expected.

6.2 Validation of requirements

In section 3.2 we listed several requirements for the control protocol. Table 4.1 lists the
summary of the comparison. Many requirements were already fulfilled by SIP, some where
not. In this section we will discuss the requirements that were not fully fulfilled yet.

6.2.1 Low overhead

Because we choose to work with SIP, we have to exchange messages in plain text, creating a
certain overhead. Also the message bodies containing the negotiating parameters are send in
plain text, namely a format closely linked to SDP, which is also a plain text protocol. The
choice for using SIP resulted in a certain overhead that can not be solved. The amount of data
exchanged is still reasonable. The whole control session requires seven messages, although
eight messages might be exchanged, where the additional message is the 180 (Ringing) re-
sponse. It is not required in a connection set-up, but automatically send because the user
interface needs too long to answer a connection request (SIP requires a response to an IN-
VITE within 200 ms). In case there is no involvement of a human on accepting an incoming
connection request, and a system automatically accepts an incoming connection within 200
ms, the 180 (Ringing) response may be omitted.

55

6.2. Validation of requirements Chapter 6. Evaluation

6.2.2 Different protocol options of the same standard should be supported

As SDP did not include support for negotiating medical data protocols, this requirement
was not fulfilled by SIP. The design of the MSDP messages does allow for this. Next to the
standard, optionally the transport can be given, as well as an unlimited amount of parameters
(to be defined per standard). This definition allows for supporting different protocol options
of the same standard.

6.2.3 The control protocol should be extensible with new data protocols

The MSDP implementation does not limit the used standards, although some are included in
the code. This means that the controller can support any kind of standard. The data plane
should be able to understand the data protocol. This means that the data plane needs to be
extended to support new protocols. As there are defined interfaces for the data plane, and a
factory model is used, extending the data plane to support new data protocols can be easily
achieved.

6.2.4 Support to transfer the actual medical data for small data sets

The newly defined application/medical message type allows for exchanging medical data. The
SIP extension of the MESSAGE method is required for this, but as it is an existing extension,
it can easily be used.

6.2.5 Secure

Our prototype does not implement any security mechanisms. To make a prototype that shows
the correctness of the design, this was not required. Still, SIP allows the use of authentication,
integrity and confidentiality, which should easily be implemented into the prototype. For
confidentiality and integrity TLS can be used. As this only allows for hop-to-hop security, the
use of (forwarding) proxies must be forbidden. This is achieved by setting the MaxForwards
header to 0.

6.2.6 Summary

The low overhead requirement is not totally met, as we use plain text and not binary encoding.
The amount of messages required by the control protocol are only 7 or 8. MSDP allows for
supporting different protocol options of the same standard. In MSDP the data protocols are
not fixed, and due to the use of a factory adding extra data protocols is possible. Actual
medical data can be transferred using the control protocol. Extensions for SIP exist that can
provide the required security.

As can be seen, all requirements that were not fulfilled by basic SIP, are fulfilled after adding
our extensions. This means that our design is a solution for the described problem.

56

Chapter 6. Evaluation 6.2. Validation of requirements

1 > INVITE sip:wim@willempie.kuipnet.void:3031;transport=tcp SIP/2.0

2 > Call-ID: e9a1f8bcc2de4c9dc9ad2804c1e01fde@192.168.48.128

3 > CSeq: 1 INVITE

4 > From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0;isSender=true

5 > To: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>
6 > Via: SIP/2.0/TCP willempie.kuipnet.void:3030;branch=z9hG4bKf1daffc2343da7e98f728b7cb8e38a7d;received=192.168.48.128;rport=3030

7 > Max-Forwards: 0

8 > Contact: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>
9 > Require: X-Medical

10 > Supported: X-Medical

11 > Accept: application/msdp,application/medical,text/plain

12 > Content-Type: application/msdp

13 > Content-Length: 307

14 >
15 > [MSDP offer not shown]

16

17 < SIP/2.0 180 Ringing

18 < Call-ID: e9a1f8bcc2de4c9dc9ad2804c1e01fde@192.168.48.128

19 < CSeq: 1 INVITE

20 < From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0;isSender=true

21 < To: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

22 < Via: SIP/2.0/TCP willempie.kuipnet.void:3030;branch=z9hG4bKf1daffc2343da7e98f728b7cb8e38a7d;received=192.168.48.128;rport=3030

23 < Content-Length: 0

24

25 < SIP/2.0 200 OK

26 < Call-ID: e9a1f8bcc2de4c9dc9ad2804c1e01fde@192.168.48.128

27 < CSeq: 1 INVITE

28 < From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0;isSender=true

29 < To: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

30 < Via: SIP/2.0/TCP willempie.kuipnet.void:3030;branch=z9hG4bKf1daffc2343da7e98f728b7cb8e38a7d;received=192.168.48.128;rport=3030

31 < Contact: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>
32 < Require: X-Medical

33 < Supported: X-Medical

34 < Accept: application/msdp,application/medical,text/plain

35 < Content-Type: application/msdp

36 < Content-Length: 348

37 <
38 < [MSDP response not shown]

39

40 > ACK sip:sip-test@willempie.kuipnet.void:3031;transport=tcp SIP/2.0

41 > Call-ID: e9a1f8bcc2de4c9dc9ad2804c1e01fde@192.168.48.128

42 > CSeq: 1 ACK

43 > Via: SIP/2.0/TCP willempie.kuipnet.void:3030;branch=z9hG4bKb2f9e2b7dff714a067fd40d449b906b1;received=192.168.48.128;rport=3030

44 > From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

45 > To: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

46 > Max-Forwards: 0

47 > Content-Length: 0

48

49 < MESSAGE sip:sip-test@willempie.kuipnet.void:3030;transport=tcp SIP/2.0

50 < Via: SIP/2.0/TCP 192.168.48.128:3031;branch=z9hG4bK41249b0990e38dd2f0572de9aa4190c4;rport=3031

51 < CSeq: 1 MESSAGE

52 < Call-ID: e9a1f8bcc2de4c9dc9ad2804c1e01fde@192.168.48.128

53 < From: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

54 < To: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

55 < Supported: X-Medical

56 < Accept: application/msdp,application/medical,text/plain

57 < Max-Forwards: 0

58 < Content-Type: text/plain

59 < Content-Length: 16

60 <
61 < ready to receive

62

63 > SIP/2.0 200 OK

64 > Via: SIP/2.0/TCP 192.168.48.128:3031;branch=z9hG4bK41249b0990e38dd2f0572de9aa4190c4;rport=3031

65 > CSeq: 1 MESSAGE

66 > Call-ID: e9a1f8bcc2de4c9dc9ad2804c1e01fde@192.168.48.128

67 > From: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

68 > To: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

69 > Content-Length: 0

70

71 > BYE sip:sip-test@willempie.kuipnet.void:3031;transport=tcp SIP/2.0

72 > Via: SIP/2.0/TCP 192.168.48.128:3030;branch=z9hG4bK0859d7a2dc6cf6a2ca89a0804ba90c7e;rport=3030

73 > CSeq: 2 BYE

74 > Call-ID: e9a1f8bcc2de4c9dc9ad2804c1e01fde@192.168.48.128

75 > From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

76 > To: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

77 > Max-Forwards: 0

78 > Content-Length: 0

79

80 < SIP/2.0 200 OK

81 < Via: SIP/2.0/TCP 192.168.48.128:3030;branch=z9hG4bK0859d7a2dc6cf6a2ca89a0804ba90c7e;rport=3030

82 < CSeq: 2 BYE

83 < Call-ID: e9a1f8bcc2de4c9dc9ad2804c1e01fde@192.168.48.128

84 < From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

85 < To: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

86 < Content-Length: 0

Figure 6.9: Initiator sends data and sends offer

57

6.2. Validation of requirements Chapter 6. Evaluation

1 > INVITE sip:wim@willempie.kuipnet.void:3031;transport=tcp SIP/2.0

2 > Call-ID: 38355d2597d96a02daab6eec97ef748f@192.168.48.128

3 > CSeq: 1 INVITE

4 > From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0;isSender=false

5 > To: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>
6 > Via: SIP/2.0/TCP willempie.kuipnet.void:3030;branch=z9hG4bK3f81fffc38e9ca2fbee2c7a9b0f53ec3;received=192.168.48.128;rport=3030

7 > Max-Forwards: 0

8 > Contact: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>
9 > Require: X-Medical

10 > Supported: X-Medical

11 > Accept: application/msdp,application/medical,text/plain

12 > Content-Type: application/msdp

13 > Content-Length: 307

14 >
15 > [MSDP offer not shown]

16

17 < SIP/2.0 180 Ringing

18 < Call-ID: 38355d2597d96a02daab6eec97ef748f@192.168.48.128

19 < CSeq: 1 INVITE

20 < From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0;isSender=false

21 < To: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

22 < Via: SIP/2.0/TCP willempie.kuipnet.void:3030;branch=z9hG4bK3f81fffc38e9ca2fbee2c7a9b0f53ec3;received=192.168.48.128;rport=3030

23 < Content-Length: 0

24

25 < SIP/2.0 200 OK

26 < Call-ID: 38355d2597d96a02daab6eec97ef748f@192.168.48.128

27 < CSeq: 1 INVITE

28 < From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0;isSender=false

29 < To: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

30 < Via: SIP/2.0/TCP willempie.kuipnet.void:3030;branch=z9hG4bK3f81fffc38e9ca2fbee2c7a9b0f53ec3;received=192.168.48.128;rport=3030

31 < Contact: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>
32 < Require: X-Medical

33 < Supported: X-Medical

34 < Accept: application/msdp,application/medical,text/plain

35 < Content-Type: application/msdp

36 < Content-Length: 316

37 <
38 < [MSDP response not shown]

39

40 > ACK sip:sip-test@willempie.kuipnet.void:3031;transport=tcp SIP/2.0

41 > Call-ID: 38355d2597d96a02daab6eec97ef748f@192.168.48.128

42 > CSeq: 1 ACK

43 > Via: SIP/2.0/TCP willempie.kuipnet.void:3030;branch=z9hG4bK7ec20440b8d9ebd367e87cc58bb0cc4b;received=192.168.48.128;rport=3030

44 > From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

45 > To: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

46 > Max-Forwards: 0

47 > Content-Length: 0

48

49 > MESSAGE sip:sip-test@willempie.kuipnet.void:3031;transport=tcp SIP/2.0

50 > Via: SIP/2.0/TCP 192.168.48.128:3030;branch=z9hG4bKc46f28395a8fc776ea822c820dc06ecb;rport=3030

51 > CSeq: 2 MESSAGE

52 > Call-ID: 38355d2597d96a02daab6eec97ef748f@192.168.48.128

53 > From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

54 > To: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

55 > Supported: X-Medical

56 > Accept: application/msdp,application/medical,text/plain

57 > Max-Forwards: 0

58 > Content-Type: text/plain

59 > Content-Length: 16

60 >
61 > ready to receive

62

63 < SIP/2.0 200 OK

64 < Via: SIP/2.0/TCP 192.168.48.128:3030;branch=z9hG4bKc46f28395a8fc776ea822c820dc06ecb;rport=3030

65 < CSeq: 2 MESSAGE

66 < Call-ID: 38355d2597d96a02daab6eec97ef748f@192.168.48.128

67 < From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

68 < To: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

69 < Content-Length: 0

70

71 < BYE sip:sip-test@willempie.kuipnet.void:3030;transport=tcp SIP/2.0

72 < Via: SIP/2.0/TCP 192.168.48.128:3031;branch=z9hG4bK3642c12692f4edf3bcd5a153598a8c59;rport=3031

73 < CSeq: 1 BYE

74 < Call-ID: 38355d2597d96a02daab6eec97ef748f@192.168.48.128

75 < From: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

76 < To: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

77 < Max-Forwards: 0

78 < Content-Length: 0

79

80 > SIP/2.0 200 OK

81 > Via: SIP/2.0/TCP 192.168.48.128:3031;branch=z9hG4bK3642c12692f4edf3bcd5a153598a8c59;rport=3031

82 > CSeq: 1 BYE

83 > Call-ID: 38355d2597d96a02daab6eec97ef748f@192.168.48.128

84 > From: "wim" <sip:wim@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

85 > To: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

86 > Content-Length: 0

Figure 6.10: Initiator receives data and sends offer

58

Chapter 6. Evaluation 6.2. Validation of requirements

1 > INVITE sip:wim@willempie.kuipnet.void:3030;transport=tcp SIP/2.0

2 > Call-ID: da9e143e7b6a369f9ce77b2d0bfd6049@192.168.48.128

3 > CSeq: 1 INVITE

4 > From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0;isSender=true

5 > To: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>
6 > Via: SIP/2.0/TCP willempie.kuipnet.void:3031;branch=z9hG4bK0f3553a2c7b31075acb05c6a9e26d0ff;received=192.168.48.128;rport=3031

7 > Max-Forwards: 0

8 > Contact: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>
9 > Require: X-Medical

10 > Supported: X-Medical

11 > Accept: application/msdp,application/medical,text/plain

12 > Content-Length: 0

13

14 < SIP/2.0 180 Ringing

15 < Call-ID: da9e143e7b6a369f9ce77b2d0bfd6049@192.168.48.128

16 < CSeq: 1 INVITE

17 < From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0;isSender=true

18 < To: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

19 < Via: SIP/2.0/TCP willempie.kuipnet.void:3031;branch=z9hG4bK0f3553a2c7b31075acb05c6a9e26d0ff;received=192.168.48.128;rport=3031

20 < Content-Length: 0

21

22 < SIP/2.0 200 OK

23 < Call-ID: da9e143e7b6a369f9ce77b2d0bfd6049@192.168.48.128

24 < CSeq: 1 INVITE

25 < From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0;isSender=true

26 < To: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

27 < Via: SIP/2.0/TCP willempie.kuipnet.void:3031;branch=z9hG4bK0f3553a2c7b31075acb05c6a9e26d0ff;received=192.168.48.128;rport=3031

28 < Contact: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>
29 < Require: X-Medical

30 < Supported: X-Medical

31 < Accept: application/msdp,application/medical,text/plain

32 < Content-Type: application/msdp

33 < Content-Length: 307

34 <
35 < [MSDP offer not shown]

36

37 > ACK sip:sip-test@willempie.kuipnet.void:3030;transport=tcp SIP/2.0

38 > Call-ID: da9e143e7b6a369f9ce77b2d0bfd6049@192.168.48.128

39 > CSeq: 1 ACK

40 > Via: SIP/2.0/TCP willempie.kuipnet.void:3031;branch=z9hG4bK69a04567aa51630cbf7737206e919241;received=192.168.48.128;rport=3031

41 > From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

42 > To: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

43 > Max-Forwards: 0

44 > Content-Type: application/msdp

45 > Content-Length: 316

46 >
47 > [MSDP response not shown]

48

49 < MESSAGE sip:sip-test@willempie.kuipnet.void:3031;transport=tcp SIP/2.0

50 < Via: SIP/2.0/TCP 192.168.48.128:3030;branch=z9hG4bK782b4b8ef247ca85ddcd3b12a1a6e369;rport=3030

51 < CSeq: 1 MESSAGE

52 < Call-ID: da9e143e7b6a369f9ce77b2d0bfd6049@192.168.48.128

53 < From: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

54 < To: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

55 < Supported: X-Medical

56 < Accept: application/msdp,application/medical,text/plain

57 < Max-Forwards: 0

58 < Content-Type: text/plain

59 < Content-Length: 16

60 <
61 < ready to receive

62

63 > SIP/2.0 200 OK

64 > Via: SIP/2.0/TCP 192.168.48.128:3030;branch=z9hG4bK782b4b8ef247ca85ddcd3b12a1a6e369;rport=3030

65 > CSeq: 1 MESSAGE

66 > Call-ID: da9e143e7b6a369f9ce77b2d0bfd6049@192.168.48.128

67 > From: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

68 > To: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

69 > Content-Length: 0

70

71 > BYE sip:sip-test@willempie.kuipnet.void:3030;transport=tcp SIP/2.0

72 > Via: SIP/2.0/TCP 192.168.48.128:3031;branch=z9hG4bKc3f383b20226a4a6393d67bfe54b1ad0;rport=3031

73 > CSeq: 2 BYE

74 > Call-ID: da9e143e7b6a369f9ce77b2d0bfd6049@192.168.48.128

75 > From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

76 > To: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

77 > Max-Forwards: 0

78 > Content-Length: 0

79

80 < SIP/2.0 200 OK

81 < Via: SIP/2.0/TCP 192.168.48.128:3031;branch=z9hG4bKc3f383b20226a4a6393d67bfe54b1ad0;rport=3031

82 < CSeq: 2 BYE

83 < Call-ID: da9e143e7b6a369f9ce77b2d0bfd6049@192.168.48.128

84 < From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

85 < To: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

86 < Content-Length: 0

Figure 6.11: Initiator sends data and receives offer

59

6.2. Validation of requirements Chapter 6. Evaluation

1 > INVITE sip:wim@willempie.kuipnet.void:3030;transport=tcp SIP/2.0

2 > Call-ID: a2370232ac3b75ac26da0533c2168747@192.168.48.128

3 > CSeq: 1 INVITE

4 > From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0;isSender=false

5 > To: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>
6 > Via: SIP/2.0/TCP willempie.kuipnet.void:3031;branch=z9hG4bK22ba8e07f3ded348bccc79ac982ff653;received=192.168.48.128;rport=3031

7 > Max-Forwards: 0

8 > Contact: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>
9 > Require: X-Medical

10 > Supported: X-Medical

11 > Accept: application/msdp,application/medical,text/plain

12 > Content-Length: 0

13

14 < SIP/2.0 180 Ringing

15 < Call-ID: a2370232ac3b75ac26da0533c2168747@192.168.48.128

16 < CSeq: 1 INVITE

17 < From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0;isSender=false

18 < To: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

19 < Via: SIP/2.0/TCP willempie.kuipnet.void:3031;branch=z9hG4bK22ba8e07f3ded348bccc79ac982ff653;received=192.168.48.128;rport=3031

20 < Content-Length: 0

21

22 < SIP/2.0 200 OK

23 < Call-ID: a2370232ac3b75ac26da0533c2168747@192.168.48.128

24 < CSeq: 1 INVITE

25 < From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0;isSender=false

26 < To: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

27 < Via: SIP/2.0/TCP willempie.kuipnet.void:3031;branch=z9hG4bK22ba8e07f3ded348bccc79ac982ff653;received=192.168.48.128;rport=3031

28 < Contact: "sip-test" <sip:sip-test@willempie.kuipnet.void:3030;transport=tcp>
29 < Require: X-Medical

30 < Supported: X-Medical

31 < Accept: application/msdp,application/medical,text/plain

32 < Content-Type: application/msdp

33 < Content-Length: 307

34 <
35 < [MSDP offer not shown]

36

37 > ACK sip:sip-test@willempie.kuipnet.void:3030;transport=tcp SIP/2.0

38 > Call-ID: a2370232ac3b75ac26da0533c2168747@192.168.48.128

39 > CSeq: 1 ACK

40 > Via: SIP/2.0/TCP willempie.kuipnet.void:3031;branch=z9hG4bK433eb15d73754de59dfa26a7e81b84d5;received=192.168.48.128;rport=3031

41 > From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

42 > To: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

43 > Max-Forwards: 0

44 > Content-Type: application/msdp

45 > Content-Length: 348

46 >
47 > [MSDP response not shown]

48

49 > MESSAGE sip:sip-test@willempie.kuipnet.void:3030;transport=tcp SIP/2.0

50 > Via: SIP/2.0/TCP 192.168.48.128:3031;branch=z9hG4bKf6238ab739ab4335849829c5e5d3dcc0;rport=3031

51 > CSeq: 2 MESSAGE

52 > Call-ID: a2370232ac3b75ac26da0533c2168747@192.168.48.128

53 > From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

54 > To: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

55 > Supported: X-Medical

56 > Accept: application/msdp,application/medical,text/plain

57 > Max-Forwards: 0

58 > Content-Type: text/plain

59 > Content-Length: 16

60 >
61 > ready to receive

62

63 < SIP/2.0 200 OK

64 < Via: SIP/2.0/TCP 192.168.48.128:3031;branch=z9hG4bKf6238ab739ab4335849829c5e5d3dcc0;rport=3031

65 < CSeq: 2 MESSAGE

66 < Call-ID: a2370232ac3b75ac26da0533c2168747@192.168.48.128

67 < From: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

68 < To: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

69 < Content-Length: 0

70

71 < BYE sip:sip-test@willempie.kuipnet.void:3031;transport=tcp SIP/2.0

72 < Via: SIP/2.0/TCP 192.168.48.128:3030;branch=z9hG4bK3c0d0479f7281b69c8dd94ebe7f73dd6;rport=3030

73 < CSeq: 1 BYE

74 < Call-ID: a2370232ac3b75ac26da0533c2168747@192.168.48.128

75 < From: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

76 < To: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

77 < Max-Forwards: 0

78 < Content-Length: 0

79

80 > SIP/2.0 200 OK

81 > Via: SIP/2.0/TCP 192.168.48.128:3030;branch=z9hG4bK3c0d0479f7281b69c8dd94ebe7f73dd6;rport=3030

82 > CSeq: 1 BYE

83 > Call-ID: a2370232ac3b75ac26da0533c2168747@192.168.48.128

84 > From: "wim" <sip:wim@willempie.kuipnet.void:3030;transport=tcp>;tag=Medical v1.0

85 > To: "sip-test" <sip:sip-test@willempie.kuipnet.void:3031;transport=tcp>;tag=Medical v1.0

86 > Content-Length: 0

Figure 6.12: Initiator receives data and receives offer

60

Chapter 7

Conclusions and future work

This chapter presents the conclusions of our work, as well as suggestions for future work.

7.1 Conclusions

The objective of this thesis is to design a generic control protocol that can connect distributed
application components of different vendors of E-health applications. It should be able to
negotiate different data formats and configure a communication channel based on common
capabilities and such that optimal communication is achieved, and which accommodates
communication between distributed applications with possible different health data formats
(as described in section 1.2).

We first created a list with requirements in section 3.2 which had to be fulfilled. Using this
list of requirements, several control protocols were compared to see which one did match best,
and needed smallest amount of adjustments to fit our needs. As a result of this comparison,
SIP appeared to fit best our needs.

The parts not covered by SIP were identified, and we continued looking for solutions of the
missing parts. As a result, two new media types were defined: MSDP and medical. Both are
closely related to SDP, which is already used in combination with SIP.

After presenting the new message types and the extended rules for the protocol messages of
SIP, we continued with designing a prototype. Interfaces were defined, and state diagrams
drawn. Some dummy implementations were made to support testing, while the core part, the
MDCP, was fully implemented.

The prototype has been tested to confirm the proper functioning of the designed protocol.
Different scenarios were applied, and in all cases the behaviour was as expected. Also the list
of requirements that were not fulfilled by basic SIP was compared again with the designed
protocol.

When looking at the prototype and the comparison with the requirements, it can be concluded
that the presented design of the control protocol is a solution to the objective of this thesis.
Using MSDP and medical it is possible to connect distributed application components of
different vendors of E-health applications.

61

7.2. Future work Chapter 7. Conclusions and future work

7.2 Future work

During the work on this thesis, several issues appeared that were considered outside of the
scope of this thesis. These issues can be a starting point for future research.

The control protocol solves the issue of incompatible protocols. But, before negotiating about
a common protocol can be done, it should first be decided which data needs to be exchanged.
When a measuring device wants to upload recorded data, this is not an issue, but when certain
data is needed for evaluation by a medical person, there is no way to define this. For example,
a nurse might want to see the ECG and blood pressure of a certain person for a certain date
and time period. To solve this issue, search functionality should be added to the control
protocol, so certain data can be queried, also when using devices of different manufacturers.
Implementing this in the control protocol makes sure there is a querying method independent
of medical standards.

When streaming a measurement for a longer time, it might happen that conditions change,
due to a mobile user moving between different types of networks. Changed conditions might
mean that the chosen standard is not longer the optimal solution. It can also happen that
due to changed conditions the available bandwidth shrinks below the required value, making
it impossible to continue the streaming in the current configuration. To solve this issue, it
should be possible to reconfigure an ongoing transfer.

To make the design easier, we have removed the use of proxies from SIP. Proxies provide
greater flexibility, but they result in more complicated security models. They allow for dis-
tributed storage of the data, load balancing between servers and locating of mobile users
(this would allow a medical person to connect to a patient to receive real-time data when the
patient does not continuously stream this to a central storage server). Research can be done
on how proxies can be included again, while not breaking the functionality provided in the
current model.

This thesis does present a model that can solve the problems mentioned. A prototype is
implemented, but only a dummy data plane is implemented. Further research should be
done on the different medical standards, and an implementation in the data plane should be
developed. Also converters should be implemented to make sure the data plane can support
different standards.

62

Appendices

63

Appendix A

SIP

The Session Initiation Protocol (SIP) is a control protocol used for negotiating voice and
video connections over the internet. The protocol does not contain the media data itself, but
the parameters needed to set up the connection. Several extensions are possible. A detailed
overview can be found in this section.

A.1 Session Initiation Protocol (SIP)

[23] describes the Session Initiation Protocol (SIP). SIP is an application-layer control protocol
for creating, modifying and terminating sessions with one or more participants. It can use
different transport protocols, but must implement at least UDP and TCP. SIP does not handle
the actual data, it only negotiates the parameters for the actual data transfer. Proxy servers
are used as intermediate hosts to route SIP packets. A registration service is used by users
to upload their current location, which is used by proxy servers to route packets to the right
location and offers users mobility in the network while still being reachable.

The syntax used by SIP is much identical to HTTP/1.1, as defined in [12]. A message
starts with a request line (request) or status line (answer), followed by the headers, an empty
line, and optionally by a message body. The request line consists of a method (REGISTER
for registering contact information, OPTIONS for querying servers about their capabilities,
INVITE, ACK and CANCEL for setting up sessions and BYE for terminating sessions),
followed by a single space character, the request URI (which indicates the called party),
a single space character and the SIP version. The status line consists of the SIP version,
followed by a single space character, a status code, a single space character and a textual
description of the status. The first digit of the status codes defines the class of the response.
The following classes are defined in SIP/2.0:

• 1xx A provisional answer, the request is still being processed and a final answer will
follow.

• 2xx The action was successfully received, understood and accepted.

• 3xx Redirection to another location, further action should be taken to complete the
request.

• 4xx The client made an error. The request contained a bad syntax or the server cannot
fulfil the request.

65

A.1. Session Initiation Protocol (SIP) Appendix A. SIP

• 5xx The server made an error. The request is probably valid, but the server couldn’t
fulfil the request.

• 6xx There was a global failure. There is no server that can fulfil this request.

Within every class, different status codes have pre-defined meanings, as defined in section 21
of [23]. They provide a more detailed description of what happened.

The request line or status line is followed by several header lines, all separated by a CRLF.
Header lines might be split over several lines, as long as each extra lines starts with at least
one space or horizontal tab. The line break and the white space character at the beginning
of the next line are treated as a single space (SP) character. The order of the header field
rows with the same field-name relative to each other is important, while the order of different
field-names is not important.

If a message body is present, the Internet media type must be given by the Content-Type
header field. Bodies of the MIME type multipart, as defined in [14], may be used. The size
of the body must be provided in the Content-Length header. The chunked transfer encoding
of HTTP/1.1 as defined in [12] is not allowed for SIP.

A user agent (UA) represents an end system, and contains a user agent client (UAC) for
sending requests and a user agent server (UAS) for responding to requests. Valid SIP requests
send by a UAC must at a minimum contain the following header fields: To, From, CSeq, Call-
ID, Max-Forwards and Via. Valid SIP responses send by a UAC must contain the same From,
Call-ID, CSeq and Via header in the same order as in the request. The To should also be
the same, but if no tag is provided, this must be added.

The main SIP headers are described below:

• To This header specifies the desired recipient of the request, or the address-of-record
of the user or resource that is the target of this request. The SIP URI scheme must
be supported by all SIP implementations, while other URI schemes are allowed as well.
This header is only valid in a dialogue.

• From This header specifies the logical identity of the initiator of the request. It contains
a URI and optionally a display name. A tag parameter must be added.

• Call-ID Every dialogue should have a global unique call-ID. Messages can be connected
to a dialogue via this header. Both client and server use the same call-ID in a dialogue.

• CSeq This header specifies the order of messages. Every subsequent message in a dia-
logue must have a higher CSeq number than the previous. It also includes the method,
which should be the same as in the request line.

• Max-Forwards This is a counter that is decremented at every hop, to prevent unlimited
forwarding of a message in for example a loop. When the value reaches 0 before the
request reaches its destination, it will be rejected with a 483 (too many hops) error
response.

• Via This header records the hosts a request travelled via. It is used to route responses.
The branch parameter is compulsory and must be unique across space and time for all
requests send by a particular UA.

66

Appendix A. SIP A.1. Session Initiation Protocol (SIP)

• Supported This header specifies which extensions to SIP the UAC supports.

• Require This header specifies which extensions must be supported by the UAS to process
the request.

• Proxy-Require This header specifies which extensions must be supported by a proxy to
process the request.

A request that did not receive a final response yet, but did receive a provisional response (this
applies to INVITE, which can take longer to process) can be cancelled by sending a CANCEL
request. This request must include identical header fields, including tags, for Request-URI,
Call-ID, To, CSeq (except the method which should be changed into CANCEL) and From as
the request it tries to cancel. If present in the initial request, also the Route header should
be identical. Require and Proxy-Require header fields are not allowed in CANCEL requests.

Figure A.1: SIP session set-up transaction. A shows the case where the UAC sends the SDP offer,
B shows the case where the UAS sends the SDP offer.

Figure A.1 shows the messages exchanged in a session set-up without the use of a proxy server
(using INVITE). The UAC sends an INVITE request to the UAS. The UAS replies with a
180 Ringing response, to inform the UAC the request was received, and the UAS is waiting
for user input. When the user picks up the phone (in case where the UAS is a phone) the
UAS sends a 200 OK reply. After receiving this, the UAC sends a ACK request to the UAS,
which has the same CSeq number as the initial INVITE request (while the request method is
changed from INVITE into ACK). From this moment on, the UAC and UAS have a session,
which can be cancelled by either side by sending a BYE request, which should be replied
with a 200 OK message, after which the session does not exist any more. A and B differ in
the way SDP messages are exchanged. In A the initial offer is generated by the UAC in the
INVITE request, and answered (concluded) by the UAS with the 200 OK reply. In B the
UAC does not send an offer with the INVITE request. Now the UAS must include an offer in
the 200 OK reply. The UAC concludes the session parameters, and sends them to the UAS
in the ACK request.

67

A.2. Relation between dialogs, transactions, requests and responses Appendix A. SIP

SIP allows clients to register with a server. This helps proxies in routing requests to mo-
bile hosts. The following header fields are compulsory in a REGISTER request, except for
Contact :

• Request-URI The domain of the location service for which the registration is meant.

• To The address for which the registration is to be created, queried or modified.

• From The address of the person responsible for registration, same as To, or different in
case of registration by a third party.

• Call-ID Should be the same for all registrations done by a UAC.

• CSeq A counter that is incremented by 1 for each subsequent REGISTER request.

• Contact A particular endpoint of the user mentioned in To. This would normally contain
the full host name of the host where the client of the user runs. The expires parameter
can be used to indicate how long the registration should be valid, the q parameter is
used to indicate the relative preference for a certain Contact address.

A 2xx response to a REGISTER contains all bindings for a particular address (mentioned
in To) in the Contact header. A REGISTER request without a Contact header can be
used to query the active bindings. Setting expires in the Contact header to ”0” removes a
binding. Using ”*” for the Contact header with expires set to ”0” removes all bindings for
the registration in the To header.

OPTIONS requests can be used to query the capabilities of the server. An Accept header
can be included to tell the UAS which formats can be used when generating the response. A
response should contain the Allow, Accept, Accept-Encoding, Accept-Language and Supported
header.

Existing sessions can be updated by sending another REGISTER message with new param-
eters. If accepted, the session will continue with the newly agreed parameters, otherwise the
old ones will be used. To end a session, a BYE message must be send.

SIP proxies are used to route requests to UAS and responses to UAC. Every proxy makes
its own routing decisions, and modifies the request before it is being forwarded. Responses
travel back the same way in reverse order as a request went. A SIP message can pass several
proxies on its way to the destination.

A.2 Relation between dialogs, transactions, requests and re-
sponses

Figure A.2 shows the relations between dialogs, transactions, requests and responses in SIP.
Requests and responses are the messages exchanged over the network. A request includes a
method, while a response is a reply to a request, including a status code. Due to their header
values, messages are related to each other. The combination of a request and response is
done in a transaction. This transaction has a client transaction (the request) and a server
transaction (the response). A response is always related to a request, while a request might
not have a related response (currently, only an ACK request does not have a related response).

68

Appendix A. SIP A.3. Digest access authentication

Figure A.2: Relations between dialogs, transactions, requests and responses in SIP.

When setting up a session, where several messages are related, a dialog is created. Requests
and responses are part of a dialog because of common header values. A dialog is set-up
by an INVITE request, and ended by a BYE request. All messages within that dialog are
related to each other. Between two host, different dialogs can exist concurrently, and it is
also possible to exchange messages outside of a dialog when a dialog exists. Dialogs are not
always compulsory to be used, only in case a session is needed (this happens in an end host
when sending or receiving an INVITE). For example an OPTIONS or MESSAGE request
can exist outside of a dialog.

An example of messages exchanged in figure A.2 could be:

• Request 1: INVITE

• Response 1: 200 OK

• Request 2: ACK

• Request 3: BYE

• Response 3: 200 OK

A.3 Digest access authentication

[13] describes Basic and Digest Access Authentication. As Basic Access Authentication is
far from secure, SIP only allows the usage of Digest Access Authentication. This does not
guarantee a 100% secure system, but solves several issues that exist in Basic Access Authen-
tication.

A server should send a 401 (unauthorised) response message to inform the client it needs to
send credentials to use the service. An intermediate proxy uses the 407 (proxy authentication

69

A.4. Locating SIP servers Appendix A. SIP

required) response to inform the client it needs to send credentials to use the proxy. In the
headers of such a reply, the authentication method is put, as well as the parameters needed for
this. Whenever a server or proxy has once send a 401 or 407 response, the client may include
the credentials in every subsequent request, to prevent an extra request/response sequence.
In the Digest scheme a simple challenge-response mechanism is used, supported by a nonce
generated by the server. The authentication information is communicated towards a server
by sending a checksum over the user name, password, given nonce, HTTP method and the
requested URI. The nonce changes regularly and should be unique, for example by using a
hash of a time-stamp, HTTP ETag and private key. The nonce is set by the server. If a server
would only accept the same nonce or digest once, a total protection against replay attacks is
provided. As a counter-measurement against man in the middle attacks, a client can insert
a cnonce, a nonce created by the client, so the man in the middle cannot make it easier to
calculate the password from the response by using a pre-known nonce. This is because also
the cnonce will be used in calculating the hash.

A.4 Locating SIP servers

DNS provides a way to publish records related to SIP, as described in [22]. First, NAPTR [19]
records can be used to inform other parties about the services available for a certain domain,
as well as their preference for a certain service. Examples of NAPTR records are:

; order pref flags service regexp replacement

utwente.nl. IN NAPTR 50 50 "s" "SIPS+D2T" "a" sips. tcp.utwente.nl.

utwente.nl. IN NAPTR 90 50 "s" "SIP+D2T" "a" sip. tcp.utwente.nl.

utwente.nl. IN NAPTR 100 50 "s" "SIP+D2U" "a" sip. udp.utwente.nl.

The order defines the order preferred by the receiving domain (utwente.nl in this example).
A client must use the entry with the lowest order it supports. In case there is several entries
with the same order, it should use the one with the lowest pref, but may for certain reasons
choose one with higher pref. Ignoring the order is not allowed, the first one supported must
be taken.

After finding the protocol to be used, a second DNS query is needed to find the actual
server handling this protocol. The records that describe this are SRV records, defined in [15].
Examples of SRV records are:

; prio weight port target

sip. tcp.utwente.nl. IN SRV 1 10 5060 pbx1.utwente.nl

sip. tcp.utwente.nl. IN SRV 1 40 5060 pbx2.utwente.nl

sip. tcp.utwente.nl. IN SRV 5 10 5060 pbx-backup.surfnet.nl

Prio defines the order in which the entries are to be tried. The lower numbers must be
tried first. When several entries with the same prio exist, the weight defines which server is
contacted. In the above example, both pbx1.utwente.nl and pbx2.utwente.nl share the same
prio, so the weight defines which one to take. The total sum of weight is 50 for prio 1, meaning
that pbx1.utwente.nl should be contacted with chance 10/50 and pbx2.utwente.nl should be
contacted with chance 40/50. This can be used for load-balancing the servers. If a connection
set-up fails to a server, all the other servers with the same prio should be tried first before

70

Appendix A. SIP A.5. Event notifications

moving to a higher prio. In the above example, this would mean 20% of the requests arrives
at pbx1.utwente.nl and 80% of the requests arrives at pbx2.utwente.nl. Only if both these
servers don’t respond, pbx-backup.surfnet.nl will be tried. In SRV records, both port and
host name can be defined.

A.5 Event notifications

[20] defines an extension to SIP that specifies event notifications. When SIP is already used,
and one has the need to send notifications of certain events, this extension is useful. To receive
notifications, one has to subscribe first to a certain group of notifications. All SUBSCRIBE
and NOTIFY messages are confirmed by the receiver. The Event header is used to inform
the notifier for which kind of events notifications should be send. Only one Event header is
allowed per message. A subscription has a limited duration, after which a new subscription
must be made to keep receiving notifications. Immediately after confirming a SUBSCRIBE
message, a first NOTIFY should be send. Subscribers should be prepared to receive the first
NOTIFY message before the SUBSCRIBE transaction is completed, this due to out-of-order
messages. The duration of a subscription is defined with the Expires header, where the notifier
defines this value, while considering the requested subscription time of the subscriber. With
an Expires header of 0, unsubscription is requested.

A notifier must immediately respond to a SUBSCRIBE transaction, and is not allowed to
wait for user input. If the event package is understood, the subscriber is authorized to
subscribe and no other barriers for creating the subscription exist, a ”200 OK” response
is send, immediately followed by a notify message containing the current resource state.
If a subscription request cannot immediately be answered, for example when user input is
required for authorisation, a ”202 Accept” response is send, also immediately followed by a
NOTIFY message. Later on, if the request was rejected, a notification with Subscription-
State header with value ”terminated” can be send to inform the subscriber. Every ending of
a subscription, be it because a resource is not available, a time-out or a subscriber request,
should generate a NOTIFY with Subscription-State header with value ”terminated”, as in
this case the corresponding dialogue can be terminated. A single SUBSCRIBE request may
trigger several NOTIFY requests.

Every NOTIFY message must have a Subscription-State header, with a value of ”active”,
”pending” or ”terminated”. In case of ”active” or ”pending” state, an expires parameter
with the remaining time of subscription should be included. In case of ”terminated” state, a
reason parameter should be included.

The Allow-Events header indicates support for SUBSCRIBE and NOTIFY messages. They
may be returned in the response to an OPTIONS request, as well as in all methods which
initiate dialogues and their responses.

A.6 Session Description Protocol (SDP)

[17] specifies the Session Description Protocol (SDP). SDP is a standard representation of
information used to announce and set up multimedia sessions. SDP itself does not contain

71

A.6. Session Description Protocol (SDP) Appendix A. SIP

multimedia data, neither is it a stand-alone protocol, it always needs a transport protocol,
such as SIP, RTSP, SMTP and HTTP. It is denoted by the media type ”application/sdp”.

The options in the session description have a fixed order, this to allow simple parsers and
easy error detection. Every field in the description consists of one case-significant character,
followed by the ”=” sign and then directly the value, where the line is ended by a CRLF.
The description starts with a description of the whole session. After this session description,
descriptions of zero or more media sessions follows, where the options set in the session
description are used as default values, while the media description can override the defaults.

Now the compulsory fields will be described.

• Version number (v=). Current version number is 0.

• Origin (o=). This announces the originator of the session, including user name, unique
session identification, session version (increased when the session data is modified),
network type (currently only ”IN” is defined meaning ”Internet”), address type (”IP4”
or ”IP6” standing for IPv4 and IPv6) and unicast address of the session creating host.

• Session name (s=). A textual description of the session.

• Connection data (c=). It consists of network type, address type and connection address
(see also origin). Connection data should either be present in the session description,
or in every media description.

• Timing (t=). It defines the start and stop time, with NTP timestamps. A time stamp
of 0 for stop time defines the session is unbounded, but does not start before start time.
If also start time is 0, the session is permanent, although it is discouraged to use a value
of 0.

• Attributes (a=). This is primary used for extending SDP. It can be used both in the
session description as well as in the media description. It can contain both binary
attributes and value attributes, where the attribute and value are separated by a semi-
colon. It is often used to define the RTP payload type numbers, or the direction of
the session (”recvonly” for receive only, ”sendrecv” for bi-directional communication,
”sendonly” for sending only and ”inactive” for making the session inactive, for example
when a user is put on hold).

• Media descriptions (m=). It consists of a media type (currently defined are ”audio”,
”video”, ”text”, ”application” and ”message”), port where the media stream is send,
the transport protocol to be used (currently defined are ”udp” denoting an unspecified
protocol running over UDP, ”RTP/AVP” denoting RTP used under the RTP profile for
audio and video conferences with minimal control running over UDP and ”RTP/SAVP”
denoting secure RTP running over UDP) and the media format description, which might
be repeated several times to announce several accepted formats. The order gives the
preference of the format to be used. The RTP payload type numbers used here should
be assigned with the attribute (for example: a=rtpmap:98 L16/11025).

Media descriptions can be added and removed in subsequent offers, as described in [21].
Adding a new media description is done by adding an extra media description line at the

72

Appendix A. SIP A.7. Instant Messaging

end of the SDP message, or by replacing an old one. To remove a media description, the
specific description line should be replaced with a new description containing a port number
of 0. Changing a description is done by replacing the line describing the media that should
be altered. The order must not be changed in any case, as the order is used to distinguish
different streams by the receiver.

A.7 Instant Messaging

[9] specifies an extension to SIP for transferring Instant Messages. It allows for transferring
MIME bodies inside and outside sessions. The method that is added to SIP for this is
MESSAGE. Message requests are confirmed, but this might be a provisional 202 Accepted
response from a intermediate host. A 200 OK response only confirms the receipt of a message
by the final UAS, not that it has been processed or seen by the user of the UAS. A UAS that
supports the MESSAGE method must understand bodies of the type ”text/plain” and may
understand bodies of the type ”message/cpim”.

Because SIP does not include congestion control, a new message should only be send after
the receipt of the confirmation of the previous message. This to prevent the control network
being flooded with media data, for which it was initially not intended. Messages must not
exceed 1300 bytes, this because upstream proxies might chose to send a message request over
UDP.

SIP does normally not include the actual media data. For this reason, security plays a
more important role when using the MESSAGE method, which includes the actual media
data. End-to-end authentication, body integrity and body confidentiality mechanisms must
be implemented when using the MESSAGE method. Using the SIPS URI mechanism provides
hop-by-hop protection, but all proxies must be trusted by the user, as they can see the message
body in plain text.

73

Appendix B

RTSP

[25] describes the Real Time Streaming Protocol (RTSP). It is an application level protocol,
which controls the delivery of real-time data. It can be used for on-demand and live streaming
of data, for example audio and/or video. Several data streams can be controlled at once that
need to be time-synchronised. Normally the data streams are not delivered over RTSP,
although this is possible with interleaving. It runs on top of transport protocols like UDP,
multicast UDP and TCP and is similar in syntax and operation to HTTP/1.1, as defined in
[12].

Sessions play an important role in RTSP. They are identified by a session-id, which is normally
assigned by the server in a random way. This to prevent that one can spoof the session-id of
somebody else and control his or her media sessions. When a request that generates a session
(SETUP) arrives, the server generates a session-id in the response. The client has to include
that session-id in every following request.

Several methods are defined for RTSP:

• DESCRIBE This method is used to get a complete description of a media object as
identified by the request URL.

• ANNOUNCE This method is used by the client to inform the server about the descrip-
tion of a presentation, and the server uses it to update a session description.

• GET PARAMETER This method is used to retrieve the value of a parameter of the
stream specified in the URI. If this method is send without a body, it can be used to
check if the server is alive. The format of the body is not specified.

• OPTIONS This method is used to query a server for the support for certain function-
ality.

• PAUSE This method is used to interrupt an ongoing data stream. It is possible to
request to stop in future. When continuing the data stream afterwards (with PLAY or
RECORD), it will continue at the point where it was paused. After a certain time of
being paused, the server may free the resources associated with the session.

• PLAY This method is used, after all outstanding SETUP requests have been acknowl-
edged, to request the server to start sending data for the sessions defined in the SETUP
method. It is possible to request the playing of parts of a media stream, and also to

75

Appendix B. RTSP

request the playing of several parts at once without waiting for the previous parts to
finish playing.

• RECORD This method can be used to ask a server to record a session to which it
has been invited before. The server may store the stream at a different location than
requested in the URI, but should send a 201 (created) response, including a Location
header with the new storage location.

• REDIRECT This method is used by the server to inform the client that it should
connect to another host if it wants to continue to receive the stream. The client should
issue a TEARDOWN to the current server, and a SETUP to the new location, as
pointed out in the Location header of the REDIRECT request.

• SETUP This method is used to set up a session. It can also be used for updating an
existing session.

• SET PARAMETER This method is used to set the value of a parameter of the stream
specified in the URI. One should only request the change of one parameter at a time,
to allow the server to either accept or reject it. If several parameters are updated, the
server should either update all, or reject all. The format of the body is not specified.

• TEARDOWN This method stops the stream delivery and frees the resources of the
session.

The response starts with a status line, that includes a status code. The status codes are the
same as in HTTP/1.1 (see [12]), with several additions. The first digit of the status code
categorises the status:

• 1xx is an informational response, the request is received and is being processed.

• 2xx is a response informing that the action was successfully received, understood and
accepted.

• 3xx is a redirection response, that tells the client that a new request will have to be
send to a different location.

• 4xx is a response informing that the client used bad syntax in the request, or that the
request cannot be fulfilled.

• 5xx is a response informing that the server failed to fulfil a valid request.

Both requests as well as responses can in several cases contain a message body. This message
body is defined by certain headers. The message body is used to include information that
cannot be included in the headers. The Content-Length must be used to define the length of
the body.

76

Bibliography

[1] Introduction to hl7. Available from: http://www.hl7.com.au/FAQ.htm.

[2] Jain sip api specification. Available from: http://jcp.org/en/jsr/detail?id=32.

[3] Java api for sip signalling. Available from: http://jain-sip.dev.java.net/.

[4] jsdp: a java implementation of sdp protocol. Available from: http://jsdp.
sourceforge.net/.

[5] U.s. food and drug administration. Available from: http://en.wikipedia.org/wiki/
Fda.

[6] V. Balabanian, L. Casey, N. Greene, and C. Adams. An introduction to digital stor-
age media-command and control. Communications Magazine, IEEE, 34(11):122–127,
November 1996. Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=544202.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation protocol
(rsvp). Rfc, The Internet Society, September 1997. Available from: http://tools.
ietf.org/html/rfc2205.

[8] B. Brown, M. Kohls, and N. Stockbridge. Fda xml data format design specification, draft.
2002. Available from: http://xml.coverpages.org/FDA-EGC-XMLDataFormat-C.pdf.

[9] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, and D. Gurle. Session initiation
protocol (sip) extension for instant messaging. Rfc, The Internet Society, December 2002.
Available from: http://tools.ietf.org/html/rfc3428.

[10] CEN. Standard communication protocol for computer-assisted electrocardiography. 2000.
Available from: http://www.tc251wgiv.nhs.uk/pages/pdf/censcp019.pdf.

[11] B. Erfianto. Design of a vital sign protocol format using xml and asn.1. Master’s thesis,
Faculty of Computer Science, University of Twente, The Netherlands, 2004.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext transfer protocol – http/1.1. Rfc, The Internet Society, June 1999. Available
from: http://tools.ietf.org/html/rfc2616.

77

http://www.hl7.com.au/FAQ.htm
http://jcp.org/en/jsr/detail?id=32
http://jain-sip.dev.java.net/
http://jsdp.sourceforge.net/
http://jsdp.sourceforge.net/
http://en.wikipedia.org/wiki/Fda
http://en.wikipedia.org/wiki/Fda
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=544202
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=544202
http://tools.ietf.org/html/rfc2205
http://tools.ietf.org/html/rfc2205
http://xml.coverpages.org/FDA-EGC-XMLDataFormat-C.pdf
http://tools.ietf.org/html/rfc3428
http://www.tc251wgiv.nhs.uk/pages/pdf/censcp019.pdf
http://tools.ietf.org/html/rfc2616

Bibliography Bibliography

[13] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and
L. Stewart. Http authentication: Basic and digest access authentication. Rfc, The
Internet Society, June 1999. Available from: http://tools.ietf.org/html/rfc2617.

[14] N. Freed and N. Borenstein. Multipurpose internet mail extensions (mime) part two:
Media types. Rfc, The Internet Society, November 1996. Available from: http://
tools.ietf.org/html/rfc2046.

[15] A. Gulbrandsen, P. Vixie, and L. Esibov. A dns rr for specifying the location of services
(dns srv). Rfc, The Internet Society, February 2000. Available from: http://tools.
ietf.org/html/rfc2782.

[16] F. Halsall. Multimedia communications: applications, networks, protocols, standards.
Addison Wesley, 2001.

[17] M. Handley, V. Jacobson, and C. Perkins. Sdp: Session description protocol. Rfc, The
Internet Society, July 2006. Available from: http://tools.ietf.org/html/rfc4566.

[18] S. Horii. Primer on computers and information technology. part four: A nontechnical
introduction to dicom. Radiographics, 17(5):1297–1309, 1997. Available from: http:
//radiographics.rsnajnls.org/cgi/reprint/17/5/1297.pdf.

[19] M. Mealling. Dynamic delegation discovery system (ddds) - part three: The domain
name system (dns) database. Rfc, The Internet Society, October 2002. Available from:
http://tools.ietf.org/html/rfc3403.

[20] A. B. Roach. Session initiation protocol (sip)-specific event notification. Rfc, The Internet
Society, June 2002. Available from: http://tools.ietf.org/html/rfc3265.

[21] J. Rosenberg and H. Schulzrinne. An offer/answer model with the session description
protocol (sdp). Rfc, The Internet Society, June 2002. Available from: http://tools.
ietf.org/html/rfc3264.

[22] J. Rosenberg and H. Schulzrinne. Session initiation protocol (sip): Locating sip servers.
Rfc, The Internet Society, June 2002. Available from: http://tools.ietf.org/html/
rfc3263.

[23] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Han-
dley, and E. Schooler. Sip: Session initiation protocol. Rfc, The Internet Society, June
2002. Available from: http://tools.ietf.org/html/rfc3261.

[24] P. Saint-Andre. Extensible messaging and presence protocol (xmpp): Core. Rfc, The In-
ternet Society, October 2004. Available from: http://tools.ietf.org/html/rfc3920.

[25] H. Schulzrinne, A. Rao, and R. Lanphier. Real time streaming protocol (rtsp). Rfc, The
Internet Society, April 1998. Available from: http://tools.ietf.org/html/rfc2326.

[26] H. Wang, F. Azuaje, G. Clifford, B. Jung, and N. Black. Methods and tools for generating
and managing ecgml-based information. 2004. Available from: http://mimic.mit.edu/
Archive/Publications/Wang04.pdf.

78

http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2782
http://tools.ietf.org/html/rfc2782
http://tools.ietf.org/html/rfc4566
http://radiographics.rsnajnls.org/cgi/reprint/17/5/1297.pdf
http://radiographics.rsnajnls.org/cgi/reprint/17/5/1297.pdf
http://tools.ietf.org/html/rfc3403
http://tools.ietf.org/html/rfc3265
http://tools.ietf.org/html/rfc3264
http://tools.ietf.org/html/rfc3264
http://tools.ietf.org/html/rfc3263
http://tools.ietf.org/html/rfc3263
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc2326
http://mimic.mit.edu/Archive/Publications/Wang04.pdf
http://mimic.mit.edu/Archive/Publications/Wang04.pdf

Bibliography Bibliography

[27] H. Wang, F. Azuaje, B. Jung, and N. Black. A markup language for electrocardiogram
data acquisition and analysis (ecgml). BMC Medical Informatics and Decision Making,
3(1):4, 2003. Available from: http://www.biomedcentral.com/1472-6947/3/4.

[28] H. Wang, B. Jung, F. Azuaje, and N. Black. ecgml: Tools and technologies for multimedia
ecg presentation. May 2003. Available from: http://www.idealliance.org/papers/
dx_xmle03/papers/04-05-02/04-05-02.html.

[29] J. Wijsman. An information model for coherent ecg data sets. Bachelor’s thesis, Faculty
of Science and Technology, University of Twente, The Netherlands, August 2007.

79

http://www.biomedcentral.com/1472-6947/3/4
http://www.idealliance.org/papers/dx_xmle03/papers/04-05-02/04-05-02.html
http://www.idealliance.org/papers/dx_xmle03/papers/04-05-02/04-05-02.html

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Objective
	Approach
	Expected results
	Document structure

	Background
	Control protocols
	SIP
	RTSP
	XMPP
	DSM-CC
	H.323

	Medical data standards
	DICOM
	ecgML
	FDA
	HL7
	SCP-ECG

	Requirements
	General model
	Requirements
	Not linked to existing medical standards
	Peer to peer
	Open standard
	Low overhead
	Low latency
	Both sender and receiver should give their preferences
	Both sides should know the agreement
	Both sides can conclude the agreement (but only one at a time)
	Different protocol options of the same standard should be supported
	The control protocol should be extensible with new data protocols
	Support to transfer the actual medical data for small data sets
	Secure
	Possibility to reconfigure

	Design
	Choosing an existing control protocol
	Not linked to existing medical standards
	Peer to peer
	Open standard
	Low overhead
	Low latency
	Both sender and receiver should give their preferences
	Both sides should know the agreement
	Both sides can conclude the agreement (but only one at a time)
	Different protocol options of the same standard should be supported
	The control protocol should be extensible with new data protocols
	Support to transfer the actual medical data for small data sets
	Secure
	Possibility to reconfigure
	Summary and conclusion

	Document for negotiating medical data protocols
	Negotiating parameters
	Media type for negotiating medical data protocols
	Medical Session Description Protocol (MSDP) definition
	Concluding the agreement
	Protocol messages
	Security considerations
	Example

	Document type for sending actual medical data
	Media type for sending medical data
	Medical document definition
	Protocol messages
	Security considerations
	Example

	Implementation
	MDCP design
	SIP implementation
	SDP implementation
	Components
	States
	Interfaces

	Packages
	MSDP messages (package 'core.sdp.msdp')
	Data plane (package 'dataplane')
	MDCP (package 'mdcp')
	User interface (package 'ui')
	Other packages

	Evaluation
	Evaluation of the prototype
	Exchanging measurements
	Finding optimal data protocol
	Controlling data transfer

	Validation of requirements
	Low overhead
	Different protocol options of the same standard should be supported
	The control protocol should be extensible with new data protocols
	Support to transfer the actual medical data for small data sets
	Secure
	Summary

	Conclusions and future work
	Conclusions
	Future work

	Appendices
	SIP
	Session Initiation Protocol (SIP)
	Relation between dialogs, transactions, requests and responses
	Digest access authentication
	Locating SIP servers
	Event notifications
	Session Description Protocol (SDP)
	Instant Messaging

	RTSP
	Bibliography

