
T.J.L. Wolterink

Operational Semantics Applied
to Model Driven Engineering

Thesis for the degree of

Master Of Science

(Computer Science, Track Software Engineering)

Supervisors
Dr. I. Kurtev

Dr.Ir. K.G. van den Berg

A. Göknil

Faculty of Electrical Engineering,
Mathematics and Computer Science

Abstract

Model driven engineering (MDE) is an approach to software engineering and is
used more and more in both research and practice. It provides a higher level
of abstraction and supports domain specific languages (DSLs). There is much
research done on the static aspects of MDE and most examples deal with static
models. However DSLs are also used more and more to model the behaviour of
a specific domain. These DSLs often lack clear and formal semantics.
Some approaches have been taken to define the semantics of modelling lan-
guages. These approaches differ in their pragmatic and formal aspects. None
of these approaches are built upon the existing formalism of Structural Oper-
ational Semantics (SOS). SOS specifies the semantics of a language based on
rules. These rules define a transition system in which the states are extended
ASTs. This research adapts SOS in such a way that it can be applied on MDE
models instead of ASTs. SOS seems to be a good candidate for specifying the se-
mantics of modelling languages because it is based on the structure of programs
which are well defined in a metamodel of a modelling language.
The main contribution of this thesis consists of a Semantic Language, SemLang,
which is based on SOS. The Semantic Language is defined using an MDE ap-
proach: SemLang is defined as a metamodel. It closely resembles SOS but has
some differences that make it suitable for defining the semantics of a DSL based
on metamodels. A SemLang model is a set of rules that defines a transition
system where the states are extended models. SemLang has constructs to deal
with lists and graph structures. The Semantic Language is formalized by altering
the existing formalizations of SOS.
Another result of this research is a tool which supports simulating and debug-
ging of models given their semantics description in SemLang. The tool is built
upon the Eclipse framework and provides a graphical user interface. As a proof
of concept we apply our approach on some simple functional and imperative
languages. We also show that this approach can be used on DSLs like Activity
Diagrams and Petri Nets.

i

Acknowledgements

All the work done for this thesis could not be done without the help, encour-
agement and support of numerous people. Different people supported me in
different ways and this combination ensured a pleasant working environment.
At first I want to thank my first supervisor, Ivan Kurtev, for his guidance
before and during the project. Without his help I would have had difficulty
discovering the interesting world of academic research. I also admire his calmness
and informality, even when he had to supervise numerous other graduation
students. I would also thank my other supervisors, Arda Göknil and Klaas van
den Berg, for taking the time to read and review my thesis.
Secondly I want to thank my family; my brothers and especially my parents for
supporting me throughout my years at the university. Even though it is difficult
for them to understand the work done in my thesis I am sure they will try to
read some parts of this thesis. Especially this paragraph.
Another important ingredient were my fellow students from room 5066 (for-
merly 5070). The working atmosphere in that room was great on they provided
help when needed. The discussions during lunch and during work were both
entertaining and occasionally also informative.
At last I want to thank anybody that I forgot to thank. This includes the authors
of the interesting papers I have read and of course anybody that showed interest
in my work as a master student.

Tjerk Wolterink, August 2009, Enschede

”The sciences do not try to explain, they hardly even try to interpret, they
mainly make models. By a model is meant a mathematical construct which,

with the addition of certain verbal interpretations, describes observed
phenomena. The justification of such a mathematical construct is solely and

precisely that it is expected to work.”

John Von Neumann (1903 - 1957)

iii

Table of Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 1
1.3 Research Objectives . 2
1.4 Contributions . 3
1.5 Outline . 4

2 Basic Concepts 7
2.1 Introduction . 7
2.2 Model Driven Engineering . 7

2.2.1 Models and Metamodels 7
2.2.2 Model Definition . 9
2.2.3 Metamodel Definition . 9

2.3 MDE Approaches . 10
2.3.1 Object Management Group 10
2.3.2 MS Software Factory Tools 10
2.3.3 Eclipse Modelling Framework 11

2.4 Domain Specific Languages . 11
2.4.1 MetaModel . 12
2.4.2 Semantics . 12

2.5 Semantics of Languages . 12
2.5.1 General Theory . 12
2.5.2 Approaches . 13

2.6 Structural Operational Semantics 14
2.6.1 Semantic Domain . 14
2.6.2 Rules . 14
2.6.3 Example . 15
2.6.4 Transition System Specification 16
2.6.5 SOS Styles . 16

2.7 Approaches to defining the Semantics of Modelling Languages . . 17
2.7.1 Introduction . 17
2.7.2 Model Transformations 17
2.7.3 Graph Transformations 18
2.7.4 MDE with Maude . 18
2.7.5 Simulation in the Topcased Toolkit 18
2.7.6 Semantic Anchoring . 19

2.8 Conclusion . 19

3 An SOS based Semantic Language DSL 21
3.1 Introduction . 21
3.2 SOS for Expressions . 22

3.2.1 Metamodel . 22
3.2.2 Semantics . 23
3.2.3 Example Simulation . 25

v

TABLE OF CONTENTS

3.3 Introducing the Store . 27
3.3.1 MetaModel . 27
3.3.2 Semantics . 29
3.3.3 Example Simulation . 32

3.4 Introducing the Environment . 34
3.4.1 MetaModel . 34
3.4.2 Semantics . 37
3.4.3 Example Simulation . 41

3.5 Supporting Graph Structures: Activity Diagrams 44
3.5.1 MetaModel . 44
3.5.2 Semantics . 45
3.5.3 Example Simulation . 50

3.6 Supporting Graph Structures: Petri Nets 51
3.6.1 MetaModel . 51
3.6.2 Semantics . 53
3.6.3 Example Simulation . 55

3.7 Conclusion . 57

4 Formalizing the Semantic Language DSL 59
4.1 Introduction . 59
4.2 The Transition System . 59

4.2.1 Models as graphs . 59
4.2.2 State representation . 61

4.3 The Transition System Specification 62
4.3.1 SemLang Models . 62
4.3.2 Proving Transitions . 64

4.4 Conclusion . 66

5 Semantic Engine: Tool for the Semantic Language 67
5.1 Introduction . 67
5.2 Requirements . 67
5.3 Architecture . 68

5.3.1 High Level Architecture 68
5.3.2 The Semantic Language 69
5.3.3 Architecture of the Semantic Engine 69
5.3.4 Architecture of the User Interface 70

5.4 Quality attributes . 73
5.5 Conclusion . 74

6 Evaluation 75
6.1 Introduction . 75
6.2 Expressiveness . 75
6.3 Comparison to Existing Approaches 76

6.3.1 Model Transformations 76
6.3.2 Graph Transformations 76
6.3.3 MDE with Maude . 77
6.3.4 Simulation in the Topcased Toolkit 78
6.3.5 Semantics Anchoring . 78

6.4 Conclusion . 78

vi

TABLE OF CONTENTS

7 Conclusions 79
7.1 Introduction . 79
7.2 Summary . 79
7.3 Answers to the Research Questions 80

7.3.1 Limitations . 81
7.4 Future Work . 82

7.4.1 Concurrency & Interactivity 82
7.4.2 Rule Extensions . 82
7.4.3 Potential Applications . 83

A Appendix A: Compact Disc 89

vii

List of Figures

1.1 Dependencies between chapters 5

2.1 Layers in MDE . 8

3.1 SemLang describes the semantics of a DSL 21
3.2 Expression language metamodel 22
3.3 Expression language sample model 23
3.4 Semantic SOS rules for the expression language 24
3.5 Execution states after applying the rules to the example model . 27
3.6 Simple imperative language metamodel 28
3.7 Sample model as a graph . 29
3.8 SOS rules for binary expressions 30
3.9 Rules for the Seq command . 31
3.10 Store definition and rules for Assign and Var 32
3.11 First transition of the sample model 33
3.12 Last transition of the sample model 34
3.13 Functional language metamodel 35
3.14 Sample model as a graph . 36
3.15 Evaluation of the definitions . 38
3.16 Evaluation of the SeqDef to an environment 41
3.17 Reading a variable from the environment 42
3.18 Concrete visual model of an Activity Diagram 44
3.19 Activity Diagram language metamodel 45
3.20 Object model of an Activity Diagram 46
3.21 Example state transition for the example Activity Diagram . . . 50
3.22 Concrete visual model of an example Petri Net 51
3.23 Petri Net language metamodel 52
3.24 Example Petri Net model . 52
3.25 Petri Net example simulation . 53
3.26 Petri Net example model simulation 56

5.1 Component Diagram of the Tool 68
5.2 Class Diagram of the Semantic Engine 69
5.3 Class Diagram of the UI . 71
5.4 The state graph view . 71
5.5 The transition stack view . 72
5.6 The views in the user interface 72

ix

List of Abbreviations

ASM Abstract State Machine

AST Abstract Syntax Tree

BNF Backus–Naur Form

DSL Domain Specific Language

DSM Domain Specific Modelling

EMF Eclipse Modelling Foundation

EMOF Essential Meta Object Facility

GME Generic Modelling Environment

GMF Graphical Modelling Framework

GPL General Purpose Language

LTS Labelled Transition System

LTTS Labelled Terminal Transition System

MDA Model Driven Architecture

MDE Model Driven Engineering

MOF Meta Object Facility

MSOS Modular Structural Operational Semantics

OCL Object Contraint Language

OMG Object Management Group

QVT Query View Transformation

RCP Rich Client Platform

SemLang Semantic Language

SI Structural Induction

SOS Structural Operational Semantics

SWT Standard Widget Toolkit

TCS Textual Concrete Syntax

TSS Transition System Specification

UML Unified Modelling Language

XML Extended Markup Language

xi

1
Introduction

1.1 Background

Modelling is used to understand processes and systems in the real world. Dif-
ferent formal and informal modelling languages have been introduced. This in-
cludes petri nets, state charts and UML . Programming languages and human
languages on the other hand can also be seen as modelling languages. These
languages differ in their formality, ambiguity and application domain.
A new approach to software development is Model Driven Engineering (MDE)
[Ken02]. MDE raises the level of abstraction by introducing metametamodels
[B0́4]. When defining a language without MDE one first specifies the concepts
of the language (either mathematically or by using a syntax specification). Then
one defines the semantics of the language in either an informal or formal way.
With MDE one specifies a modelling language by creating a metamodel which
describes the structures of the models. A textual or graphical concrete syn-
tax can be created if needed (for example with TCS [JBK06]). However, there
is no commonly established way of specifying the semantics of an executable
modelling language. A simple approach is to use code generation, however, this
approach is rather informal. Some research is done in the area of formal seman-
tics for MDE; different authors apply different formal frameworks to solve this
issue [SW08, Hec06, BH02, RRDV07, RV07, CCG+08, VPF+06, CSAJ05].
No research to adapt the Structural Operational Semantics (SOS) [Plo81] for-
malism to MDE is done in the past. This formalism seems a fruitful approach for
MDE because the SOS formalism is built upon the structure of a modelling lan-
guage. MDE has metamodels which clearly define the structure of a modelling
language.

1.2 Problem Statement

Adapting SOS in order to make it useful in an MDE context is not straight
forward. The first problem is the incompatibility between SOS and MDE; SOS
is applied on trees while MDE models are graph structures. However, we think
it is possible to apply SOS, with some changes, to MDE. This leads to the
following research question:

Can SOS be adapted and applied successfully on MDE?

The adapted SOS will be called the Semantic Language (abbreviated to Sem-
Lang). The main research questions can be divided into several sub-questions

1

CHAPTER 1. INTRODUCTION

that need to be answered. The first sub-question is:

MDE models are graph structures but SOS is based on trees. Can SOS be adapted
in order to make it suitable for using it with graph structures?

The main problem is the differences between the programs in SOS and MDE. In
SOS the program is represented as a (extended) abstract syntax tree. In MDE,
however, the program is represented as a model which is basically a more general
graph structure. This difference is a problem that needs to be solved.

SOS is based on the abstract syntax description of languages, how can SOS be
adapted to deal with metamodels?

The rules in SOS refer to the abstract syntax of a language in order to transform
language structures to new language structures. In MDE metamodels have the
same role as the abstract syntax description. This difference requires changes to
SOS in order to apply it to MDE.

The semantic domain of SOS is a labelled transition system in which the states
are trees. How can we change the semantic domain in order to make it suitable
for models?

A semantic domain is a well known mathematical domain in which the semantics
is expressed (for more details see section 2.5). The semantic domain of SOS is
specified in different papers [Plo81, AFV01, Mos04]. The semantic domain of
SOS is not suitable for defining the semantics of MDE modelling languages.
It is of course difficult to test whether the main hypothesis is met in the end
of the thesis. Therefore we limit the test to a set of DSLs which have different
semantic properties. This includes imperative and functional languages but also
graph like languages like petri nets and state charts. Another important result
is to point out what the difficulties are when applying SOS to MDE.

1.3 Research Objectives

The research objectives are listed below. A description of each objective is given.

• Adapt SOS in order to make it suitable for MDE

The objective of this research is to adapt SOS in order to make it useful
for MDE. This includes adapting the SOS formalism and specifying how
it is related to the metamodel of the modelling language. The goal is to
show that MDE and SOS are a good match by proof of concept.

• Introduce a new semantic language which is based on SOS

The main work in order to reach that objective is to develop a new se-
mantic language based on SOS which can be used to define the semantics
of modelling languages. The focus should be on the pragmatic aspects.

• Provide a partial formalization of the new language

In order to provide some mathematical foundation for our work an impor-
tant contribution is the partial formalization of the new language. This
formalization can be built upon existing formalizations of SOS.

• Implement a tool that support simulating and debugging of models

2

1.4. CONTRIBUTIONS

Another major objective is the development of a tool. The tool is needed in
order to make the SOS based language useful. The tool should be able to
load and simulate models given their semantics description. The addition
of a graphical user interface is also desirable.

• Validate the research by applying the new language on some example DLSs

The new language will be applied on several example DSLs in order to
illustrate that the research goal is met. These example DSLs should cover
different language types, like imperative and functional language. Part of
this objective is to apply the new language on graph based languages like
Activity Diagrams.

1.4 Contributions

Each objective resulted in at least one contribution. The contributions are listed
below with a description accompanying each contribution.

• A new Semantic Language is introduced

This work introduces a Semantic Language which can be used to specify
the dynamic semantics of modelling languages. The Semantic Language
builds upon SOS and is therefore greatly influenced by the structure of
SOS rules. However, the Semantic Language has features that make it suit-
able for defining the semantics of modelling language defined using MDE
concepts. The Semantic Language itself also follows the MDE principles;
the language is defined as a DSL. It comes with a concrete syntax which
makes it easy to define the semantics of a DSL.

• A partial formalization of the Semantic Language is given

The known semantics of SOS are adapted in order to provide the mathe-
matical foundations for the Semantic Language. The main differences are
in the semantic domain and in the rules. The states in the semantic do-
main of the Semantic Language are basically extended graph structures.
The rules consist of terms that refer to metamodel elements instead of
AST elements.

• A solution to the problem of applying SOS with graphs

The main difference between the Semantic Language and plain SOS is
that the Semantic Language is suitable for defining the semantics of graph
based models. The main changes that were needed was the introduction
of a breath-first-search based copy algorithm. This copy algorithm en-
sures that nodes are not copied more that once, thus preventing infinite
recursion.

• An implementation of a graphical tool called Semantic Engine

Another major part of the work done for this thesis is the implementation
of a tool called the Semantic Engine. This tool is an implementation of
the Semantic Language and it provides a complementary graphical user
interface in order to simulate models for which the semantics are specified.
The tool also provides debugging functions like state inspection, step-by-
step simulation and a visualization of transition proof trees.

3

CHAPTER 1. INTRODUCTION

• The Semantic Language is applied to several example DSLs

Another contribution is the application of the Semantic Language to sev-
eral example DSLs. This is done as a proof of concept. The DSLs cover
a range of language types; functional and imperative languages but also
graph based languages like Petri Nets and Activity Diagrams.

Different approaches for defining the semantics of DSLs already existed. How-
ever, nobody tried adapting SOS in order to make it suitable for defining the
semantics of DSLs. This thesis provides a first approach in combining SOS and
MDE.

1.5 Outline

Chapter 2 introduces all basic concepts that are used in this thesis. It explains
MDE and highlights some approaches in the MDE field. Secondly the use of do-
main specific languages is explained. The remaining of the chapter focuses on the
semantics of languages. The structural operational semantics (SOS) approach
to semantics is explained in more depth.
Chapter 2.7 takes a look at the current approaches to specifying the semantics
of models in an MDE context. Some current approaches are explained. These
approaches must be explained to place this thesis into a proper context, it also
provides some comparison material.
Chapter 3 introduces a DSL named SemLang which can be used to specify
the semantics of other DSLs. The DSL is based on SOS but has some nice
features that make it suitable in an MDE context. The chapter also provides
some example DSLs on which SemLang is applied.
Chapter 4 formalizes the DSL SemLang DSL. It builds upon existing formal-
izations of SOS. The formalization provides a solid mathematical framework on
which the SemLang DSL is built.
Part of this research was also the implementation of a tool which could simulate
DSLs for which the semantics are defined using SemLang. The tool require-
ments, architecture and evaluation can be found in chapter 5.
The evaluation of the work done in this thesis can be found in chapter 6. Our
approach is compared to the existing approaches for defining semantics of mod-
els. The conclusion of this paper is in the last chapter (chapter 7) in which the
answers to the research questions can be found.
This paper can be read in different ways. To accommodate the reader a diagram
of the dependencies between the chapters is given in figure 1.1. The Basic Con-
cepts chapter may be skipped if the reader is already familiar with MDE and
SOS concepts.

4

1.5. OUTLINE

Figure 1.1: Dependencies between chapters

5

2
Basic Concepts

2.1 Introduction

The main aim of the thesis is to introduce a framework which can be used to
define the semantics of modelling languages in a formal way, therefore it is im-
portant to investigate the basic concepts in this area. First the main concepts
in the Model Driven Engineering (MDE)[Ken02] field are explained. The con-
cepts of model and metamodel and the relations between them are explained.
Subsequently some approaches to MDE are explained and their differences and
similarities are discussed. In section 2.4 domain specific languages (DSLs) and
their relation to the MDE field are covered. Novices in the MDE field may skip
the first two sections.
In the end the current state of the art in the specification of the semantics of
programming languages is explored. The knowledge in this area can be used
to specify semantics for modelling languages. The next chapter (chapter 2.7)
explores how the semantics of DSLs are currently specified.

2.2 Model Driven Engineering

Model Driven Engineering (MDE) provides a higher level of abstraction with
respect to software engineering. Analogous to the principle everything is an
object in object technology, MDE embraces the principle that everything is a
model [B0́4]. The notion of a model is a powerful unification concept in MDE,
therefore it is important to know what a model is and how modelling languages
are defined.

2.2.1 Models and Metamodels

A model represents a system (part of the reality), and is expressed in a modelling
language. In MDE the structure of the modelling language is given by another
model, called its metamodel. This is a generalization of what is common in
computer science (e.g., a Java program conforms to the Java grammar).
Models and metamodels can be placed in layers, by MDE convention the real-
ity is in layer M0, models that represent the reality are in layer M1 and the
metamodels of those models are in layer M2.
Some informal definitions are given below which are inspired by the definitions
analyzed by Kurtev [Kur05]:

7

CHAPTER 2. BASIC CONCEPTS

Definition 1 (Model) A model (at M1) is an abstraction of a part of the
reality for a specific purpose. A model is expressed in a modelling language.

Definition 2 (Modelling language) A modelling language is a well under-
stood (not always formal) language which describes the concepts and their rela-
tion of a part of reality.

Definition 3 (MetaModel) A metamodel (at M2) is a model of a modelling
language.

Figure 2.1: Layers in MDE

Because a metamodel is a model it is expressed in a modelling language. The
model of this modelling language is the metametamodel. This suggests infinite
iteration, to limit the iteration of the conformsTo relation a metametamodel
is said to conform to itself (e.g., the syntax of BNF is defined in itself). The
metametamodelling layer is layer M3. The relations between the layers (M1,
M2 and M3) can be seen in figure 2.1. This figure also shows that existing
technologies like BNF and XMLSchema fit into this view.

Definition 4 (MetaMetaModel) A metametamodel (at M3) is a model of a
modelling language which can be used to express metamodels. The model of the
modelling language of the metametamodel is expressed by itself.

In MDE all metamodels ideally conform to the same metametamodel in the M3
layer. This supports the principle that everything is a model. The metameta-
model defines the set of elements and references that are allowed for specifying
metamodels. A metamodel is well-formed if it conformsTo the metametamodel.
This section introduced some concepts in MDE. However, these concepts are
not formally defined. The meaning of the conformsTo relation is not specified
(i.e. when does a model conform to a metamodel?). In [JB06] and [TCCG07]
attempts have been made to formalize these concepts. These attempts only
formalize simple metamodels and models: the metametamodel is kept small too
keep the formal framework simple. However, these formal frameworks do give
some insight into the formal properties of MDE. The definitions as proposed by
Thirioux et al [TCCG07] will be explained below.

8

2.2. MODEL DRIVEN ENGINEERING

2.2.2 Model Definition

Informally a model represents something in the real world and conforms to
a MetaModel. The definition proposed by Thirioux et al [TCCG07] defines a
model as follows.

Definition 5 (Model) Let C ⊆ Classes be a set of classes.
Let R ⊆ {〈c1, r, c2〉|c1, c2 ∈ C, r ∈ References} be a set of references among
classes such that:

∀c1 ∈ C,∀r ∈ References, |{c2|〈c1, r, c2〉 ∈ R}| ≤ 1

We define a model 〈MV,ME〉 ∈ Model(C,R) as a multigraph over a finite set
MV of typed objects and a finite set ME of labelled edges such that:

MV ⊆ {〈o, c〉|o ∈ Objects, c ∈ C}

ME ⊆ {〈〈o1, c1〉, r, 〈o2, c2〉〉|〈o1, c1〉, 〈o2, c2〉 ∈ MV, 〈c1, r, c2〉 ∈ R}

The definition shows that a model is basically a special kind of graph. The
conformsTo relation is not specified in the model definition. As we will see in
the next sub-section this is specified in the metamodel.

2.2.3 Metamodel Definition

Now we have a definition of a model we need a definition of a metamodel, again
we follow the definition given by Thirioux et al [TCCG07]. A metamodel (also
called a reference model in the paper of Thirioux) is defined as follows:

Definition 6 (MetaModel) A metamodel is a multigraph representing classes
and references as well as semantic properties over instantiation of classes and
references. It is represented as a pair composed of a multigraph (RV,RE) built
over a finite set RV of classes, a finite set as a RE of labelled edges, with a
property over models represented as a predicate function.
We define a reference model as a triple
〈(RV,RE), conformsTo〉 ∈ metaModel such that:

MMV ⊆ Classes

MME ⊆ {〈c1, r, c2〉|c1, c2 ∈ MMV, r ∈ References}

conformsTo : Model(MMV,MME)→ Bool

The model is only valid if the following condition holds:

∀c1 ∈ MMV ,∀r ∈ References, |{c2|〈c1, r, c2〉 ∈ MME}| ≤ 1

where |A| is the cardinality of a set A. Informally this condition says that a
specific reference from a class can only go to maximal one other class. The
conformsTo function specifies the semantic properties over instantiations of
the metamodel. This function is not further specified here. It simply evalu-
ates to true when a model conforms to the metamodel. For an example of
the conformsTo relation with respect to EMOF we refer to Thirioux et al
[TCCG07].

9

CHAPTER 2. BASIC CONCEPTS

Again it is important to understand that different MDE approaches use dif-
ferent metametamodels and thus allow different metamodels and models. The
metametamodel in the formal framework of Thirioux only contains classes and
references. Most MDE approaches also allow attributes, class hierarchies and
references with multiplicities.

2.3 MDE Approaches

MDE and its concepts where introduced by the Object Management Group
(OMG) [Sol00]. However, other approaches where proposed as well. This section
will discuss the main approaches to MDE and their differences and similarities.
First the initial approach of the OMG is covered. Then the approach taken by
the Microsoft Software Factory Tools (MS/DSL) [GSCK04] is discussed. In the
end two similar approaches Ecore [ECO], from the Eclipse Modeling Foundation
[EMF] , and KM3 [JB06] are covered.

2.3.1 Object Management Group

The Object Management Group (OMG) introduced the Model Driven Architec-
ture (MDATM) . They started the development of a metametamodel called the
Meta Object Facility (MOF) . This resulted in MOF 1.4 [OMG02] and MOF
2.0 [OMG03a]. This language is designed in such a way that it can be used as
the metametamodel for UML [OMG]. However, this comes at a higher com-
plexity. The OMG understood that a simpler metametamodel was needed and
therefore defined Essential MOF (EMOF) as a subset of MOF. However, even
EMOF is seen as rather big by the MDE research community. As we will see
a simpler metamodel facilitates understanding and makes it a better candidate
for formalization.
The semantics of MOF is informally described using text. Ambiguous interpre-
tation of MOF can therefore not be prevented and may cause inconsistent tool
implementations. The OMG approach is a rather ambitious approach and tries
to cover all aspects of MDE, however, in our view it is better to start with a sim-
ple pragmatical MDE approach and extend that if needed instead of enforcing
a specific full blown approach.

2.3.2 MS Software Factory Tools

The Microsoft tools for Domain Specific Languages (MS/DSL) is a suite of tools
to support for creating and using domain specific data for automating the soft-
ware development process [GSCK04]. MS/DSL takes a pragmatic approach: the
main focus is on tool support. The MS/DSL does not have a rigid specification,
in fact there is no explicit metametamodel defined [BHJ+05].
MS/DSL is a proprietary platform and its main aim is to generate code. It
therefore comes accompanied with a code generator. However, the aim of MDE
is much broader than merely code generation. For example there is no model
transformation language in MS/DSL. The biggest disadvantage is that it is a
closed platform and it does not have a large research community.
An advantage of MS/DSL is that it takes a pragmatical approach to MDE.
It comes with a lot of tools that makes the life of the MDE developer easier.

10

2.4. DOMAIN SPECIFIC LANGUAGES

This may be the reason that there is no explicit metamodel defined, this only
makes the tool complex. This may be appealing for beginners in the MDE field;
however, in the long run an explicit defined metamodel is really beneficial.

2.3.3 Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF) project is a large modelling and code
generation framework which can be used in an MDE context [EMF]. The project
tries to align itself with the OMGs MDA approach. But an important aim of the
project is to be useful in a practical sense. However, this does not undermine the
theoretical aspects like we see with the MS Software Factory Tools. In fact the
metamodel, named ECORE [ECO] is explicitly defined and is almost identical
to EMOF.

EMF core advantage is that it has a rich user community and a lot of tools that
can be used. There are code generation frameworks, model2text and model2model
transformation engines, and rich editors available. This richness makes EMF the
most commonly used MDE platform.

Another advantage is that there are some MDE approaches which are inte-
grated with the EMF Framework. For example the Topcased Toolkit [VPF+06]
is such an approach. Also the approach by Bézivin which uses KM3 [JB06] as a
metamodel has an implementation which allows models and metamodels to be
transformed to models and metamodels that fit in the EMF framework.

The KM3 approach also comes with a technique which can be used to define a
concrete syntax for a modelling language. Jouault et al for example provides a
way to define the concrete syntax for a specific metamodel using TCS [JBK06].

2.4 Domain Specific Languages

Most programming languages are general purpose languages (GPLs) , they are
very rich and can be used in any problem domain. MDE can be used to specify
the metamodel of a GPL, however, the real power of MDE is the decoupling of
the model from the technical platform.

Programs often solve problems in some problem domain. The program, however,
is some programming language that has (often) no relation with the problem
domain. The translation of the requirements in the problem domain to the actual
program is a difficult and intensive task.

Suppose that the problem domain could actually be modelled in some language
specific to that domain. Such a language is called a Domain Specific Language
(DSL). Such a language closes the gap between the problem and the imple-
mentation. In fact DSLs have been successfully used in some problem domains
[vDKV00].

Domain specific languages (DSLs) model the domain of a specific problem and
therefore the software model is closer connected to the domain. A DSL uses
domain specific notations and constructs and or mostly smaller than GPLs.
This increases productivity and enlarges the user base [MHS05, Hud98]. The
smaller size of DSL programs compared to GPL programs also make the use
of analysis, verification, optimization, parallelisation and transformation more
feasible [MHS05].

11

CHAPTER 2. BASIC CONCEPTS

A problem with DSLs is that they are difficult to design and implement and
require higher initial costs [Hud98]. Here is where MDE comes into play: DSLs
and MDE are a perfect match. The MDE approach makes the specification of a
DSL much easier. Creating a DSL in the MDE context is often called Domain
Specific Modelling (DSM) [KT08].

2.4.1 MetaModel

The syntax of textual languages is mostly defined using Bachus-Naur Form
(BNF). This is also visualized in figure 2.1. The grammar of a language is the
metamodel of the language and BNF itself is a metametamodel, in fact BNF
can be described in itself.

When defining a model for a specific domain one uses domain concepts to express
the model. These domain concepts must be captured in a metamodel for that
domain. The metamodel for a DSL is analog to the grammar for a textual
language. Therefore the structure of a DSL can is captured in a MetaModel
and the concrete syntax can be captured using different tools within MDE (for
example TCS [JBK06]).

2.4.2 Semantics

The metamodel for a specific domain only specifies the structure of the models.
However, the semantic properties such as conditions over valid models and the
behavioural semantics of a model (if any) are not specified. Semantics are as
important as the structure of the language. Some argue that semantics are even
more important than the structure [Hud98].

The semantics of a DSL can be specified in different ways. They can be specific
informally using text or using model-to-code transformations. The semantics
could also be specified in a formal way. More on the general aspects of semantics
of languages can be found in section 2.5.

2.5 Semantics of Languages

Language definition deals with defining the structure of the language. However,
the meaning of those structures must also be defined. This meaning is defined
by the semantics of the language. The semantics of a language can be defined
in different ways. This section explains what the semantics are and we take a
look at different approaches for specifying semantics.

2.5.1 General Theory

Any language consists of a structure defined by some syntactic elements. De-
pending on the type of the language these elements can be words, sentences,
boxes, diagrams etc. However, these structures do not have a meaning with-
out semantics. The semantics of a programming language essentially models the
computational meaning of each program [Mos06]. In order to define the meaning
a mapping is defined from the syntax L of the language to a semantic domain
S. This mapping M : L→ S defines the meaning of the language [HR04].

12

2.5. SEMANTICS OF LANGUAGES

So in order to define the semantics for a syntax definition on has to choose a
semantics domain S and a mapping from the syntax to the semantic domain
has to be made. This mapping defines the meaning of the syntactic elements.
The next two subsections will dive into two dimensions of semantics; the for-
mality of the semantics and the dimension of static and dynamic semantics.

Formal versus Informal Semantics

Programming language tutorials often explain the meaning the language by
explaining them with text and code examples. Those tutorials explain the se-
mantics in an informal manner which is easier for the reader.
However, the disadvantages of informal semantics are that they can be ambigu-
ous and imprecise. The semantic domain and the mapping from syntax to the
domain are not explicitly specified.
Formal semantics on the other hand have an explicit semantic domain, which
is often a well known mathematical domain like natural numbers, graphs or
labelled transition systems. The mapping to that domain is also explicitly given.
Formal semantics are precise and computer readable. They can also be combined
with rigorous mathematical techniques like validation, proofs, simulation etc.

Static and Dynamic Semantics

The semantics of a language can be divided into static and dynamic seman-
tics. The static semantics deals with compile-time semantics like type checking
and well-formedness constraints. These semantics are called static because these
semantics can only be checked before running the program.
The dynamic semantics on the other hand models the runtime behaviour of
the program. All observable behaviour of a running program is defined by the
dynamic semantics.

2.5.2 Approaches

There are several approaches to specifying dynamic semantics. Some of these
approaches are denotational semantics, axiomatic semantics, Abstract State Ma-
chine semantics and action semantics [Mos06]. The axiomatic and denotational
approaches are discussed briefly below. However, the focus of this thesis is on
another approach named structural operational semantics (SOS). This approach
is explained in a separate section.

Axiomatic Semantics

Axiomatic semantics [Hoa69] is based on mathematical logic. The semantics of a
language are specified by making general assertions (or axioms) about syntactic
structures in the language. These assertions are known as Hoare triples written
as {P}S{Q}. They consist of a precondition P , a syntactic structure S and a
postcondition Q. An example assertion is for example:

{x = A}x := x + 1{x = A + 1}

This assertion states that if x equals A, then after execution of the statement
x := x+1 the variable x will equal A+1. The semantics of a language is defined

13

CHAPTER 2. BASIC CONCEPTS

by a set of axioms which define the behaviour of all syntactic structures in the
language.

Denotational Semantics

Denotational semantics was develop by Scott and Strachey at Oxford [SS71,
Sch86]. In denotational semantics the meaning of a language is defined by a
set of functions, or denotations. Each denotation of a construct has a set of
arguments that represent the information before its execution and a result that
represents the information available after its execution.

Denotational semantics has been used to define the semantics of functional pro-
gramming languages. However, attempts to give semantics to larger program-
ming languages have been less successful [Mos06].

2.6 Structural Operational Semantics

Structural Operational Semantics (SOS) was first introduced by Plotkin in 1981
[Plo81] and has been researched further by other researchers [Hen90], notably
Mosses [Mos02, Mos04]. SOS has been used to define the semantics of process
algebras [Mil90] and programming languages [IPW01]. SOS is a compositional:
the semantics of a phrase is specified by the semantics of the subphrases. Com-
positional rules are used to specify the semantics of a specific language structure.

2.6.1 Semantic Domain

The semantic domain of SOS is a labelled transition system (LTS) (see definition
7), which is a well-studied mathematical object.

Definition 7 (Labelled Transition System) A LTS is a triple (Q,A,→)
with Q as set of states, a set A of labels α, a relation →⊆ Q × A × Q of
labelled transitions ((s, α, s‘) is written as s

α
−→ s‘).

The mapping from the syntactic domain of a language to the semantic domain is
done by defining a SOS specification. A SOS specification consists of a definition
of the states and a set of rules which define the transition relation in the LTS.
The states are often sentences of the language with some extensions.

2.6.2 Rules

SOS rules are based on the abstract syntax of a language. A rule consist of
assertion of transitions t

α
−→ t′ where the terms t, t′ are syntactic constructs of

the language which contain meta-variables and α is the label of the assertion.
A rule is written as follows:

c1, · · · , cn

c
(2.1)

Where c, c1, · · · , cn are transition assertions in which c1, · · · , cn are the condi-
tions and c is the conclusion of the rule.

14

2.6. STRUCTURAL OPERATIONAL SEMANTICS

2.6.3 Example

In order to understand the rules the abstract syntax and SOS rules for a simple
expression language will be given. Consider the abstract syntax of a simple
expression language as defined below:

〈Exp〉 → n | 〈BinaryExp〉
〈BinaryExp〉 → 〈Exp〉 〈Exp〉

This is the abstract syntax for a simple language in which the sentences are
numbers n or binary expressions. In order to keep the language simple we did
not add any operators for the binary expressions. In this case a binary expression
is simply an expression which has two sub expressions. A simple sentence of this
language is visualised as an abstract syntax tree below:

Exp

BinaryExp

Number

5

Number

3

n

2

This simple language will be used to illustrate how SOS is used to define the
semantics of a language. In order to specify the semantics for this simple lan-
guage we must know what the intended behaviour of the language is. In this
case we simply evaluate a binary expression to the sum of its sub-expressions.
Therefore a sentence in this language will always evaluate to a number.
The SOS rules that specify this behaviour can be seen below. The rules con-
tain meta-variables x, ei and ni. The meta-variable x matches any syntactic
construct, the meta-variable ei only matches binary expressions and the meta-
variable ni only matches numbers.

e1 → e′1
BinaryExp (e1, x)→ BinaryExp (e′1, x)

(2.2)

Rule 2.2 consist of a condition e1 → e′1 and a conclusion. The condition can be
interpreted as: there is a rule which transforms the syntactic construct bound to
e1 to a new syntactic construct e′1. The conclusion of the rule simply states that
in order to evaluate a binary expression one must first evaluate the first child
expression.

e2 → e′2
BinaryExp (n1, e2)→ BinaryExp (n1, e′2)

(2.3)

Rule 2.3 matches binary expressions in which the first child is already evaluated
to a number (which is bound to meta-variable n1). The rule states that if the
second child, bound to e2, of a binary expression evaluates to e′2 then the binary
expression will evaluate to a new binary expression in which e2 is substituted
by e′2.

n = n1 + n2

BinaryExp (n1, n2)→ n
(2.4)

15

CHAPTER 2. BASIC CONCEPTS

The last rule, rule 2.4, evaluates a binary expression, with two numbers n1 and
n2 as children, to the sum of those numbers. The condition n = n1 + n2 is not
a transition condition but simply an assertion.
Note that the three rules presented here do not strictly follow a specific rule
format. They are just presented here to give you an intuitive understanding of
SOS. To get a more in depth understanding of SOS it is recommended to read
some papers on SOS, for example the paper by Plotkin [Plo81].

2.6.4 Transition System Specification

The semantic domain of SOS is a LTS. The states of the LTS are extended
syntactic constructs of the language. The transitions between the states are
specified inductively using the rules. Thus in fact an SOS specification specifies
a LTS and is therefore called a Transition System Specification (TSS) . For a
formal definition of TSSs and SOS we refer to papers by Mousavi et al [MRG07].
In this introduction we will just explain how a transition in the LTS can be
proved by a set of rules. Such a proof is called a proof-tree. We define a proof
tree in a similar way as Peter Mosses does in his paper about Modular Structural
Operational Semantics (MSOS) [Mos04].

Definition 8 (Transition Proof Tree) Given a set of rules, a triple (s, α, s‘)
is in the transition relation of the LTS if and only if a finite upwardly branch-

ing tree (the proof tree) can be formed that follows satisfies the following
conditions:

1. All nodes are labelled by elements of Q×A×Q

2. the root nodes is labelled by (s, α, s‘)

3. for each node with n child nodes there is a rule c1,··· ,cn

c
and an interpre-

tation of the meta-variables such that

• the label of the node is the interpretation of c

• the labels of the child nodes are the interpretations of c1, · · · , cn.

The paper of Plotkin [Plo81] gives some examples of how to create a proof tree.
Chapter 3 of this thesis shows how to create a proof tree using the proposed
Semantic Language.

2.6.5 SOS Styles

Different authors use SOS in different application domains. However, this re-
sulted in a range of SOS styles [MRG07]. In order to choose an appropriate rule
format for the Semantic Language we must be aware of the current rule styles
and their features.
One important distinction in SOS approaches is the small-step approach and the
big-step approach. In the small-step SOS each transition generally corresponds
to an indivisible item of information processing. In big-step SOS (also called
Natural Semantics) a computation is a single transition that leads directly to
a terminal configuration. For intuitive examples of both big-step and small-step
rules we refer to a paper of Mosses [Mos04].

16

2.7. APPROACHES TO DEFINING THE SEMANTICS OF MODELLING

LANGUAGES

In general the small-step style will require a greater number of rules than the
same specification in big-step style. However, the small-step style rules tend
to be simpler. Another advantage of the small-step style is that it facilitates
the description of interleaving. The big-step style can become ambiguous with
respect to interleaving because the big-step style rules do not enforce a specific
order.
Other important characteristics of different SOS styles are described in the paper
by Mousavi et al [MRG07]. We will not list the SOS formats described in that
paper (there are more than 17 formats). However, an important conclusion of
the paper is that negative and infinite conditions are a complicating factor in
SOS frameworks.

2.7 Approaches to defining the Semantics of Mod-

elling Languages

2.7.1 Introduction

The problem of defining the semantics of a modelling language is not new.
Some considerable amount of research has already been done, this has led to a
number of approaches for defining the semantics. This chapter discusses existing
approaches and gives advantages and disadvantages of the different approaches.
This chapter also provides an initial bridge between the MDE and the semantics
of languages in general as explained in the Basic Concepts chapter. It also
provides comparison material which is used in the evaluation of this thesis.
The sections in this chapter will cover the existing approaches like model trans-
formations, graph transformations, Maude, the Topcased Toolkit and semantic
anchoring.

2.7.2 Model Transformations

A powerful technique in MDE is model transformations. The unifying concept
in MDE ”Everything is a model” makes the description of model to model trans-
formation a relatively easy process. One standard for model transformations is
the QVT (Query/View/Transformation) [OMG08] language as proposed by the
Object Management Group (OMG).
The model transformation technique is used by Sadelik and Wachsmuth [SW08]
to specify the semantics of a modelling language. The approach uses a LTS
as the semantic domain. The states (or configurations as called by Sadelik and
Wachsmuth) are models that conform to the configuration metamodel. The tran-
sitions in the LTS are specified by a QVT model-to-model transformation. An
initialisation transformation is also needed which transforms a model to the
first initial state model.
The authors built an Eclipse plugin, named EProvide, which relies existing tech-
nologies like EMF [EMF], MOF [OMG02, OMG03a] and QVT. EProvide uses
Graphical Modelling Framework [GMF] to visualize the intermediate states dur-
ing simulation.
Scheiden and Fischer [SF07] use a similar approach as Sadelik and Wachsmuth.
The main difference is in the way the model transformations are defined. Schei-
den and Fischer use an action language based on UML activities and OCL

17

CHAPTER 2. BASIC CONCEPTS

[OMG03b] to define the model-to-model transformation. The transformation is
defined graphically which is an advantage according to the authors.

2.7.3 Graph Transformations

Graph transformations [Hec06, BH02]is similar to model transformations how-
ever as the name suggests, it is based on graphs as first class entities. To use
graph transformations in MDE one has to create a type-graph from the language
metamodel. The semantic domain is also a LTS. The states in the LTS are graph
with a structure-preserving mapping to the type graph. Therefore it is required
to transform a model to a graph before using it with graph transformations.

Similar to SOS, the semantics are specified using a set of rules. A rule basically
consists of two graphs L and R. The first graph L represents the pre-conditions
of the rule and the second graph R represents the post-conditions. Intuitively a
rule matches some part of the state graph and deletes/adds edges and nodes in
order to create a new state. A rule is often created with a visual graph editor
which makes graph transformations inherently a visual approach to specifying
semantics.

Because graph transformations are built upon graph theory it has a sound math-
ematical base. The semantic domain, the type-graphs and the rules are all for-
mally defined. However a disadvantage of graph transformations is that the rules
tend to become big; there is always a one-to-one relation between a transition
in the LTS and a rule.

2.7.4 MDE with Maude

Maude is a high level language and an efficient rewriting engine that integrates
functional programming with rewriting logic and provides metalanguage capa-
bilities. Because of the facilities and capabilities of Maude it is used as a notation
and semantic framework for specifying semantics of models and metamodels by
Rivera et al [RRDV07, RV07, RGdLV08].

In the approach with Maude they first transform a language metamodel to
Maude objects. Models are also represented as Maude objects and the Maude
type system is used to check the validity of a model given its metamodel. The
mapping from the MDE domain to the Maude domain is needed in order to
use the Maude rewrite system for specifying the semantics of the modelling
language.

The behavioural semantics of a modelling language are specified in Maude in
terms of rewrite rules. These rules are added to the specification of the meta-
model and model in Maude objects. The Maude rewrite rules are similar to the
graph transformation rules but are based on rewrite-theory and are specified in
a textual form.

The Maude team is currently working on more model operations and on better
tool integration with tools like MOF, EMF and KM3 [OMG03a, EMF, JB06].

2.7.5 Simulation in the Topcased Toolkit

The Topcased Toolkit [CCG+08, VPF+06] is built upon the EMF Framework
[EMF] framework takes a pragmatic approach toward the semantics of DSLs.

18

2.8. CONCLUSION

In order to use Topcased for a given modelling language one has to create dif-
ferent metamodels. The initial metamodel of the language is called the static
metamodel within Topcased. In order to define the semantics one has to create
an event metamodel which models all possible events that occur during simula-
tion. A dynamic metamodel which relies on the static metamodel is used during
the simulation. This dynamic metamodel may be used to specify some runtime
elements that are needed to execute the model. Finally a trace metamodel is
needed. This metamodel is used to define simulation scenarios as a sequence of
events.
The actual semantics are defined in a pragmatic way: a component must be
defined which implements the execution semantics using the programming lan-
guage Java. EMF is used as a framework to update the structure of the model
[EMF].

2.7.6 Semantic Anchoring

Semantic Anchoring [CSAJ05] uses yet another different approach. Essentially
semantic anchoring uses model-to-model transformations to transform a model,
for which the metamodel has no clear semantics, to a model for which the
semantics is formally defined. One first defines a minimal modelling language
Li for a well known mathematical domain (for example Abstract Sate Machines
(ASM)). The abstract syntax and semantics of this language must be precisely
specified. In order to specify the semantics of a modelling language L a mapping
(or model transformation) much be made between the abstract syntax of L to
the abstract syntax of Li. This mapping MA is called the semantic anchoring
of L to Li.
The GME [GME] tool suite is used for defining the abstract syntax of DSLs. The
GReAT [GRe] tool suite is used to define the semantic anchoring. In the paper
[CSAJ05] abstract state machines are used for the minimal modelling language
Li, the semantics of Li is specified as an AsmL specification.
An advantage of Semantic Anchoring is that one does not have to define the
formal semantics of a DSL L, only a model transformation from that DSL to a
DSL with formal semantics Li is needed. However, this is not always possible
because a DSL may have semantic properties that are very different from Li.
Another disadvantage is that during simulation one does not simulate the model
that conforms to L but a model that conforms to Li. This may complicate things
and tracing between the two models must be needed in order to find bugs.

2.8 Conclusion

This chapter introduced all the basic concepts and contains references to re-
lated work. The MDE approach is explained and definitions for models and
metamodels are given. Different MDE approaches are covered and compared.
We also showed the use of Domain Specific Languages and their relation with
MDE.
The concepts used in language definition are explained and different approaches
for specifying semantics are listed. A section covered one approach in more
detail: Structural Operational Semantics (SOS). SOS is compositional which
makes it pragmatical; each syntactical structure of the language has one or

19

CHAPTER 2. BASIC CONCEPTS

more rules, the rules in the small-step approach are generally small and the
rules only refer to directly accessible elements.
This chapter also covered different approaches for defining the semantics of
modelling languages. In all approaches there is a mapping from the modelling
language to a semantic domain. However, this mapping is done in different ways.
Most approaches specialized LTS as the semantic domain, however the transition
relation in the LTS is specified in different manners.
The approaches differ in some aspects. Some approaches are have a rigorous
formal basis however other approaches use a more pragmatical approach. None
of the existing approaches use SOS as a framework for specifying semantics. The
next chapter will explain how SOS can be used in an MDE context.

20

3
An SOS based Semantic Language DSL

3.1 Introduction

Semantics of models can be expressed in different ways. This chapter takes a
MDE approach to specifying dynamic semantics. We will create a DSL, named
SemLang (an abbreviation for Semantic Language), which can be used to de-
scribe the semantic of other DSLs. SemLang will be built upon existing knowl-
edge about SOS and MSOS.

This chapter explains SemLang informally with the aid of examples. A formal
definition will be given in chapter 4. The examples start with a definition of a
DSL, sequentially the semantics of the DSL is defined using SemLang. Each
section adds more complexity to SemLang. After this chapter the reader should
have a complete but informal understanding of SemLang and the differences
between the well known SOS (Plotkin style) and SemLang.

In this chapter we will use the term DSL for the language for which the semantics
is described. The difference between the SemLang and the DSL for which the
semantics is described is crucial. This is visualized in figure 3.1.

Figure 3.1: SemLang describes the semantics of a DSL

It is important that the semantics of our SemLang is also expressed formally,
this prevents ambiguity and provides consistency, completeness and correct-

21

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

ness. This chapter, however, does not deal with formalization and is meant to
be relatively easy reading. This is done to facilitate the understanding of the
formalization in the next chapter.
Note that the metamodels and models defined in this chapter are built using the
Eclipse Modelling Framework [EMF]. EMF is chosen because it has explicitly
defined metametamodels and the tool support is well developed. For further
reasons see section 2.3.3. Therefore the metamodels in this chapter conform to
the ECORE metametamodel [ECO]. Because SemLang is a DSL itself it must
also have a metamodel. The metamodel is too big to include here, but it is
included in appendix A on the disc.

3.2 SOS for Expressions

In this section we will define a simple expression language by giving its meta-
model. A small sample model is also given. The semantics is explained both
informally as well as formally using SemLang. In the end of this section the
sample model will be simulated by applying the semantics.

3.2.1 Metamodel

First the semantics of a simple expression language will be defined. The expres-
sion language only consists of the concepts Expression, Number and Binary-
Expression. The metamodel is given in figure 3.2. Models of the metamodels
are either numbers or expressions. Also note that the models are always trees,
this is because the lhs and rhs relations of a binary expression are containment
relations (as specified by metametamodel ECORE [ECO]).

Figure 3.2: Expression language metamodel

An example model that conforms to the expression language metamodel is given
in figure 3.3. The meaning of the nodes is explained in the list below:

• Black nodes represent objects, the label of the node is the name of the
class that it conforms to.

– The outgoing edges of an object node are either references or at-
tributes

– Black outgoing edges are containment references

– Green outgoing edges are attributes

– The name of an edges refers to the name of the reference or attribute

22

3.2. SOS FOR EXPRESSIONS

• Green nodes represent attribute values

Figure 3.3: Expression language sample model

The example model is needed to show how the semantics is applied to a spe-
cific model. Before the model can be executed the semantics of the expression
language must be defined.

3.2.2 Semantics

The semantics of the expression language is very simple: a binary expression
evaluates to the sum of its operands. The result of a full computation is therefore
the sum of all the numbers in the model. This description is of course incomplete
and informal.
The semantics must be described formally using a flavour of SOS suited for
DSLs. As explained in section 2.6 an SOS specification consists of a number of
rules. These rules specify the transition relation between states when executing
a model. A transition is only valid if a tree of rules can be constructed which
explain the transition (for full details see [Mos04]).
Because of the simplicity of the expression language we can create SOS rules with
minimal modification to the format of the rules. Plotkin style SOS [Plo81] uses
the syntax of the language in the rules. As explained in section 2.2.1 a metamodel
plays the same role in a DSL as the syntax does in a textual language. Therefore
we change the format of the rules in such a way that we refer to the metamodel
instead of the syntax. The rules for the expression language are given below.
The first equation is not a rule, it declares which states are end states (computed
states). This is needed for every SOS specification to indicate when an end state
is reached. The end state specification is rather simple: it declares that objects
that conform to the Number class are end states.
The three rules themselves consist of conditions, a pattern and a result as ex-
plained in section 2.6. The pattern consists of a name of a class. Only objects
that conform to that class are matched. The pattern also consists of zero or more
variable bindings. These variables are bound to either attribute values or refer-
enced objects. All the rules have a pattern like BinaryExp (lhs = L, rhs = R)

23

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

Computes = {Number} (3.1)

L→ NL

BinaryExp (lhs = L, rhs = R)→ BinaryExp (lhs = NL, rhs = R)
(3.2)

R→ NR

BinaryExp (lhs = L, rhs = R)→ BinaryExp (lhs = L, rhs = NR)
(3.3)

BinaryExp (lhs = L, rhs = R)→ Number (val = (L.val + R.val)) (3.4)

Figure 3.4: Semantic SOS rules for the expression language

which matches objects that conform to the BinaryExp class, the variables L
and R are bound to the value of lhs and rhs respectively.

There is one subtle difference between the patterns in the rules; the variable L
is italic in the second rule, and both L and R are italic in the last rule. Italic
variables are called computed variables. Computed variables can only bind to
a computed value, as defined by the equation Computes = {Number}. If a
computed variable cannot be bound then the rule does not match. This is also a
subtle difference with respect to the Plotkin rule format. Plotkin uses different
symbols for computed values (for example m and n for numbers). Note that non
italic variables can also match computed values: italic variables match a subset
of what non-italic variables match.

Rule 3.2 and 3.3 come with conditions like L → NL. The variable at the left
side of the arrow (L) in the condition must be bound to an object in the pattern
of the rule. The condition holds if there is a rule x that matches the object to
which L is bound to. If there is a rule found then NL is bound to the result of
the application of rule x. If such a rule cannot be found then the condition does
not hold. If a condition does not hold then the rule itself does not match. The
variable at the right side of the arrow (NL) can be used in the result of the rule.

The result of a rule looks similar to the pattern. However, it is more complex
and has a different purpose: it constructs new objects. For example the rule 3.2
has the result BinaryExp (lhs = NL, rhs = R). This constructs a new object
that conforms to the Expression class and sets lhs to a copy of the object to
which the variable NL is bound to. The rhs reference is bound to the copy of
the object to which the variable L is bound to.

The copy algorithm can be kept simple in this case. This is because the meta-
model of the expression language does not have cross-references; the model will
always be a tree. Therefore the copy algorithm only has to deal with trees. The
copy algorithm simply copies the current object and its complete tree. The last
DSL for which we describe the semantics (in section 3.5) does contain cross
references. The complete copy algorithm is explained there.

The result in rule 3.4 Number (val = (L.val + R.val)) constructs a Number
object. The attribute val is assigned the sum of the val attribute of R and L.
This shows how the result of a rule can contain simple mathematical expressions.

24

3.2. SOS FOR EXPRESSIONS

Plotkin could not embed these expressions directly in the rules because they
could interfere with the syntax of the language for which the semantics were
described. Because the SemLang rule format does not refer to the syntax of the
DSL we can simply embed these calculations in the rules.

3.2.3 Example Simulation

The semantics of the expression language is specified: the end state is defined and
the rules are given and their format is explained (informally). The sample model
in figure 3.3 can now be executed. The semantics of the expression language is
modelled by a transition system. A transition system consists of states and
transitions. Execution in the sense of SOS is a path in a transition system. The
path consists of states and transitions from state to state. The last state is a
valid end state. Each transition is proved by a tree of rules.

ExecutionPath = State1 → State2 → · · · → Staten−1 → Staten = EndState

The transitions can be labelled, but for now they will not be labelled. The
transitions are specified by the rules. However, we must clearly define the states
of the transition system. The result part of every rule creates a new object that
conforms to the metamodel. There are no elements created that are not defined
by the metamodel. Therefore in this stage the states can be defined as models
that conform to the metamodel of the DSL (the expression language).

When executing the sample model the first state is identical to the sample model
itself. This state is not an end state because the root object does not conform
to a Number. Therefore all rules that match will be applied to create the new
state. Only rule 3.3 matches.

Rule 3.2 does not match because the transition condition L→ NL does not hold:
the L was bound to value of the lhs, which is a Number object. The transition
condition did not hold because there was no rule found which matches the L
Number object.

Rule 3.3 does match because the computed variable L was successfully bound
to the lhs object. Variable R was bound to the rhs object, which conforms to a
BinaryExp. The transition condition R → NR holds because a rule could be
found which matches the R object: This is rule 3.2.

At this stage the variable L will be bound the lhs which is a BinaryExp. The
variable R is bound to the rhs which is a Number (where attribute val equals
2). Note that rule 3.3 does not match because the lhs was not a computed value.
The transition condition L → NL of also holds because the last rule 3.4 which
transforms a binary expression to a number can be applied.

The complete proof for the transition can be given by expanding the transition
conditions. The first rule that is matched is rule 3.3:

R1 → NR1

BinaryExp (lhs = L1 , rhs = R1)→ BinaryExp (lhs = L1 , rhs = NR1)

The transition condition R1 → NR1 can be expanded by applying rule 3.3:

25

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

L2 → NL2

R1 = BinaryExp (lhs = L2, rhs = R2)→ NR1 = BinaryExp (lhs = NL2, rhs = R2)

BinaryExp (lhs = L1 , rhs = R1)→ BinaryExp (lhs = L1 , rhs = NR1)

The transition condition L2 → NL2 can be expanded by applying rule 3.4:

L2 = BinaryExp (lhs = L3 , rhs = R3)→ NL2 = Number (val = (L3 .val + R3 .val))

R1 = BinaryExp (lhs = L2, rhs = R2)→ NR1 = BinaryExp (lhs = NL2, rhs = R2)

BinaryExp (lhs = L1 , rhs = R1)→ BinaryExp (lhs = L1 , rhs = NR1)

This gives a complete proof for a transition condition to a new state. The proof
can now be used to construct the new state. This is done by substituting vari-
ables with the constructed objects in each rule:

L2 = BinaryExp (lhs = L3 , rhs = R3)→ NL2 = Number (val = (L3 .val + R3 .val))

R1 = BinaryExp (lhs = L2, rhs = R2)→ NR1 = BinaryExp (lhs = NL2, rhs = R2)

BinaryExp (lhs = L1 , rhs = R1)→ BinaryExp (lhs = L1 , rhs = NR1)

NL2 = Number (val = (1 + 5))

R1 = BinaryExp (lhs = L2, rhs = R2)→ NR1 = BinaryExp (lhs = NL2, rhs = R2)

BinaryExp (lhs = L1 , rhs = R1)→ BinaryExp (lhs = L1 , rhs = NR1)

NR1 = BinaryExp (lhs = Number (val = 6) , rhs = R2)

BinaryExp (lhs = L1 , rhs = R1)→ BinaryExp (lhs = L1 , rhs = NR1)

Therefore the new state can be constructed using the following constructor.
Note that the free variables in this constructor are bounded to objects.

BinaryExp (lhs = L1 , rhs = BinaryExp (lhs = Number (val = 6) , rhs = R2))

For each state we can find all possible transition by finding proofs for the tran-
sitions. If the DSL is deterministic the only one proof can be found. The new
state can be constructed by using the proof for the transition.

A complete execution path is given in figure 3.5. The proof given is the proof
from the first state (most left in the figure) to the second state. The execution
path consists of four states and three transitions. The proof for the other two
transitions is given as an exercise to the reader.

26

3.3. INTRODUCING THE STORE

BinaryExp

Number

lhs

BinaryExp

rhs

BinaryExp

Integer:1

Number

val

Integer:2

Number

val

Integer:7

val

Number

Integer:5

val

BinaryExp

lhs rhs

rhs lhs

Number

lhs

BinaryExp

rhs

BinaryExp

Integer:6

Number

val

Integer:7

val

Integer:2

Number

val

lhs rhs

Number

rhs

Number

lhs

Number

Integer:8

val

Integer:7

val

Integer:15

val

Figure 3.5: Execution states after applying the rules to the example model

3.3 Introducing the Store

This section introduces a simple imperative language. First the language will be
explained by defining the metamodel and giving a small sample model. Then the
semantics will be defined using SemLang. This requires that SemLang must
be extended to deal with a store. In the end the semantics will be applied to
the sample model.

3.3.1 MetaModel

The imperative language consists of binary expressions as explained in the previ-
ous section. However, a binary expression also has an operator. In this language
we only have a Plus and a Minus operator.

The simple imperative language given in this section also allows occurrences
of variables; a value can be assigned to them and their value can be retrieved.
Therefore a new expression is added: the Var expression. Var evaluates to the
value of the variable that it is referring to.

The main difference is that the imperative language given here allows commands
to be executed sequentially. A command is either a Seq command or an Assign
command. A complete metamodel is given in figure 3.6. The given language is
almost identical to the language given by Plotkin in chapter two of his paper
[Plo81]. The main difference is again that our language is a DSL defined as a
metamodel.

Notice we do not use collections (reference multiplicities greater than one) in our
metamodel. This is done to keep the metamodel close to the language as defined
by Plotkin. The rules must allow list-matching and list-construction when using
lists in the metamodel. This is introduced in the last section in this chapter.

27

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

Figure 3.6: Simple imperative language metamodel

Representing an example model of this language as a graph tends to become
large. Therefore the example model will be given in textual form to accommo-
date easier understanding. However, this requires that we give a syntax definition
for the metamodel. This is done by using the Textual Concrete Syntax (TCS)
technology as defined by Jouault, Bézivin and Kurtev [JBK06].

Listing 3.1: TCS for the simple imperative DSL
� �

1 template Exp main abstract ;
2 template Number : va l ;
3 template Var : name ;
4 template BinaryOp abstract ;
5 template Plus : ”+” ;
6 template Minus : ”−” ;
7 template BinaryExp : ” (” l h s bop rhs ”)” ;
8 template Com main abstract ;
9 template Assign : name ”:=” e ;

10 template Seq : ” (” c0 ” ; ” c1 ”)” ;

� �

This TCS specification can be used to represent a model in textual form. An
example model is given below.

Listing 3.2: Textual sample model
� �

1 (a :=10;
2 (b:=(10+a) ;
3 a :=(b−3)
4)
5)

� �

To be complete this model is also given as a graph in figure 3.7. This model is
retrieved by parsing the sample code using the TCS syntax definition. For full
details we refer to the TCS paper [JBK06].

28

3.3. INTRODUCING THE STORE

Seq

Seq

c1

Assign

c0

Integer:10

Var

b

name

BinaryExp

Number

lhs

Var

rhs

Plus

bop

Assign

e

b

name

BinaryExp

lhs

Number

rhs

Minus

bop

Integer:3

val

Assign

e

a

name

Number

val

Integer:10

val

a

name

c0 c1

a

e name

Figure 3.7: Sample model as a graph

3.3.2 Semantics

The semantics of the simple imperative language is first explained informally.
Expressions are evaluated analogous to the semantics of the expression language
(as explained in the previous section). The only difference is that the calculation
that must be performed is specified by the operator, either Min for subtraction
or Plus for addition. The Var expression is evaluated by getting the value of
the referring variable from the store (internal memory).

A Seq is executed by first executing c0 and then executing c1. An Assignment
is executed by first executing the expression and then by updating the store by
binding the calculated value to the name of the variable. Executing a command
does not yield a result.

The informal description of the imperative language includes the need of memory
in which variables can be created, read, updated (and deleted). Therefore we
add the concept of store, which is an abstraction of memory, to our SemLang
just like Plotkin did in chapter 2 of his paper [Plo81]. In the approach of Plotkin
a store is a function from names to values. To keep our approach flexible we
define a store as a function from (ECORE) objects to other objects: Store :
Object→ Object.

Each object has its own identity. When an object gets created it is assigned
an identity. If it is copied then the copy gets a new identity. An object equals
another object if it has the same identity. However, primitive objects like strings
and integers have a different identity; they have the same identity if their values
are equal.

Plotkin added the store to the states of the transition system that is specified by
a set of rules. A more modular approach MSOS (Modular SOS) was introduced
by Mosses [Mos99, Mos02, Mos04]. In MSOS the store operations are specified
in the labels. SemLang will adopt MSOS: the operations will be specified in

29

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

the labels. However, internally the store will be added to a state. This is more
readable and avoids using the use of category theory that MSOS requires.

The SemLang rules for the imperative language are explained step by step.
First some simple rules are explained and then more complex rules that deal
with the store are explained. The new constructs that are added to SemLang
will also be explained.

The rules for BinaryExp are almost identical to the rules for the expression
language. These are presented in figure 3.8. An additional construct in the rules
is a type-check condition. For example the condition O ∈ Plus holds if the
object bounded to O conforms to the Plus class in the metamodel.

Computes = {Nil,Number}

L→ NL

BinExp (lhs = L,bop = O, rhs = R)→ BinExp (lhs = NL,bop = O, rhs = R)
(3.5)

R→ NR

BinExp (lhs = L,bop = O, rhs = R)→ BinExp (lhs = L,bop = O, rhs = NR)
(3.6)

O ∈ Plus

BinExp (lhs = L,bop = O, rhs = R)→ Number (val = (L.val + R.val))
(3.7)

O ∈Minus

BinExp (lhs = L,bop = O, rhs = R)→ Number (val = (L.val − R.val))
(3.8)

Figure 3.8: SOS rules for binary expressions

Notice that the set of computed values {Nil,Number} includes Nil. Nil refers
to a pseudo-object that represents no value, or no object. Computes = {Nil,Number}
defines therefore that the Nil pseudo-object or a Number object is a valid end
state.

The introduction of Nil means that the states are not pure models that conform
to the DSL metamodel. A state now must conform to a different metamodel that
is an extension of the DSL metamodel. The only extension is that any reference
may also point to a Nil object.

Next the rules that deal with the Var expression and the commands (Seq and
Assign) are introduced. Two rules deal with the evaluation of a Seq command.
Rule 3.9 makes sure that first the object assigned to c0 is evaluated. Rule 3.10
states that a Seq command evaluates to the object assigned to c1 if the object
assigned to c0 is a computed value. Together they define the order in which
commands are executed.

30

3.3. INTRODUCING THE STORE

C0→ NC

Seq (c0 = C0, c1 = C1)→ Seq (c0 = NC, c1 = C1)
(3.9)

Seq (c0 = C0 , c1 = C1)→ C1 (3.10)

Figure 3.9: Rules for the Seq command

In order to evaluate both a Var and an Assignment we need a store. The store
will represented using a function:

Store : Object→ Object

A function consists of zero or more tuples, a tuple with a key k and a value v
is written as k 7→ v. A concrete function with n tuples can be written as:

{k1 7→ v1, k2 7→ v2, . . . , kn−1 7→ vn−1, kn 7→ vn}

There are some operations that can be performed on a function. Suppose we
have a function named a, then a(k) result in the value that is bound to k, or
Nil if the key is not found. More formally:

Suppose we have another function named b, then the expression a [b] results in
a new function with tuples a ∪ b, however if there is a key clash then the tuple
of b is used. This operation is called overriding. More formally if c = a [b] then

SemLang is extended by allowing the definition of functions (which can be used
as a store). Each function has a name, domain and range. A function is defined
by as follows:

functionName : DomainClass→ RangeClass

where functionName indicates the name of the function. DomainClass and
RangeClass both refer to class names in the DSL metamodel. Only objects
that conform the DomainClass can be used as keys, objects that conform to
the RangeClass can be used as values.

The DSL only needs a function that maps variables to number, therefore equa-
tion 3.11 defines a function named store that maps variable names to numbers.
The function definition and the final rules are presented in figure 3.10.

Note that most programming languages do not bind variables to values directly.
The notion of location is used to decouple the variables from the values. A
location can be seen as a memory address. A variable binds to a location, and a
location binds to a value. This can be achieved by defining two functions. First
a function that binds variables to locations: store : String → Integer. And a
function that maps locations to values: memory : Integer→ Number.

Rule 3.12 evaluates a Var expression with the name bound to N to the value
store (N). This is value v if N 7→ v ∈ store. Informally: a Var evaluates to its
current value in the store function.

Two rules deal with the evaluation of an assignment. Rule 3.13 makes sure that
the expression bound to e is first evaluated to a computed value. Rule 3.14 is
more complicated. It evaluates to Nil but it updates the store function.

31

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

store : String→ Number (3.11)

Var (name = N)→ store (N) (3.12)

E→ NE

Assign (name = N, e = E)→ Assign (name = N, e = NE)
(3.13)

Assign (name = N, e = E)
store′=store[{N7→E}]
−−−−−−−−−−−−−−→ Nil (3.14)

Figure 3.10: Store definition and rules for Assign and Var

Rule 3.14 introduces some new notation. The new notation is a label on the
arrow. The label in rule 3.14 is:

store′ = store [{N 7→ E}] (3.15)

A label is used to update a function. The format of the label is:

functionName′ = functionExpression

It means that the function named functionName is set to the value of function-
Expression in the next state. A functionExpression is an expression that results
in a new function. This expression can be a new function by using the format
{k1 7→ v1, . . . , kn 7→ vn}. The expression can also be a reference to a function
(by using its name). Another possibility is the usage of the override expression.

Label 3.15 updates the function named store to the expression store [{N 7→ E}]
in the next state. The expression indicates that the current value of store must be
overridden with {N 7→ E}. This value is a new function with one tuple N 7→ E .
Both variables N and E were bound to an object in the pattern part of the
rule: Assign (name = N, e = E). The total result of the expression is a new
function where N 7→ E is added to the existing store function (if a tuple with
key N already existed it is overridden). This new function is then bounded to
the function named store in the new state.

3.3.3 Example Simulation

In this section the simulation of the sample model will be explained. Most rules
that describe the semantics of the simple imperative language do not introduce
new concepts compared to the rules in the simple expression language. Therefore
the explanation of the simulation will be limited to the new constructs that use
functions.

Some aspects of the first transition, from the first state to the second state, will
be highlighted. This is done in order to explain the effects of having a function
during simulation. The first transition is visualised in figure 3.11.

32

3.3. INTRODUCING THE STORE

Figure 3.11: First transition, from first state (left) to second state (right) of the
sample model

The first state is almost identical to the example model itself. However, two new
red nodes named Store and map are added. The node Store simply represents
a set of functions. The value of a function is represented as a map node which
has zero or more tuples. The label of an edge from Store to a map indicated
the name of the function. The map does not have any tuples in the first state.
However, in the second state the map does have a tuple as indicated by a tuple
node. A tuple has a key and a value. In the second state this key is the string a
and the value is an object that conforms to Number. This tuple is the result
of the application of assignment rule 3.14.

The transition from the first state to the second state can be proven by the
following rules: the root node matches the first Seq rule (rule 3.9) and the tran-
sition condition is satisfied by the Assignment rule (rule 3.14). The assignment
rule evaluates to Nil, therefore we do not see a c0 reference from the root node
Seq (this is just a visual representation choice, another visual representation
was to have an edge labelled c0 from to root node to a Nil node).

The label of the assignment rule (3.14) indicates that the new store function
must have the value store [{N 7→ E}]. N is bound to the string object ”a” and
E is bound to the Number object with attribute val equal to 10. Therefore
the map of function store will be overridden with the new tuple N 7→ E . This
results in the map in the second state.

The transition from the second-last state to the last state is visualised in figure
3.12. The explanation for this transition is analogous to the first transition.
However, there are a few things to notice.

33

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

tuple

b

key

Number

value

Number

Integer:10

val

tuple

value

a

key

Store

map

store

Integer:20

Number

Integer:17

val tuple tuple

val

a

Assign

e name

nill

Integer:20

tuple

b

key

Number

value

tuple

a

key

Number

value

val

Store

map

store

Integer:17

val

tuple tuple

Figure 3.12: Last transition from state (left) to end state (right) of the sample
model

First the value of variable a in the store is overridden from number 10 to number
17. Secondly notice that the end state is a Nil object and the store. So the result
of a simulation of an imperative language is (often) only a store.
The full proof of the last transition is left as an exercise to the reader.

3.4 Introducing the Environment

Functional languages do not have a state. However, functional languages (and
also imperative languages) do have a concept of scope. Imperative languages
often have a scope in which variables are bound to locations, and a store (or
memory) in which locations are bound to values. This decoupling of variables
and values by the usage of locations was already introduced briefly in the pre-
vious chapter.
We will use environment as a more general term for scopes. Constructs in an
environment aware language are executed within a certain environment. The
difference between the concept of store is that an environment has a certain
context. Both environments and stores can be represented using functions as
explained in the previous section.
This section introduces a functional language that requires the need of an en-
vironment. The language is almost identical to the language defined by Plotkin
in chapter 3 of his article [Plo81]. Again we will take an MDE approach.

3.4.1 MetaModel

The metamodel (presented in figure 3.13) of the functional language is an exten-
sion to the simple expression language. The most important class is the abstract
class Expression. Like the simple expression language there are primitive val-
ues, Number for integers and Bool for booleans. The Var class has the same
purpose as the Var class in the imperative language, i.e. it references variables.
There is also a binary expression BinaryExp which has an operator Binary-
Operator. The figure does not include the subclasses of the BinaryOpera-
tion; the concrete operators like Plus, Minus, Multiply, And, Or, Equals
and Neq (Not equals). These are not included in the figure to keep the figure
small.

34

3.4. INTRODUCING THE ENVIRONMENT

Two new expressions are included in the functional language. First the If-
Expression which is a simple if-then-else expression. The most important new
expression is the LetExpression. The let expression defines an environment
using a Def inition d and executes the expression e within that environment.

Figure 3.13: Functional language metamodel

A definition is either a VarDef inition or a so called CompoundDef inition. A
variable definition defines a variable. A compound definition is a combination
of two definitions. There are three types of compound definitions. Each with
different semantics. The semantics will be explained after this subsection.
Again a textual concrete syntax is represent in figure 3.3 to accommodate eas-
ier understanding. The syntax of the Number, Var, BinaryExp, Min and
Plus will not be given, they are similar to the syntax in the simple imperative
language.

Listing 3.3: TCS for the functional language� �
1 template Bool : (va lue ? ” t rue ” : ” f a l s e ”) ;
2 template Mult ip ly : ”∗” ;
3 template Eq : ”=” ;
4 template And : ”and” ;
5 template Or : ”or” ;
6 template Neq : ”<>” ;
7 template LetExp : ” l e t ” d ” in ” e ;
8 template IfExp : ” i f ” e0 ” then” e1 ” e l s e ” e2 ;
9 template Def abstract ;

10 template VarDef : name ”=” e ;

35

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

11 template CompoundDef abstract ;
12 template SeqDef : ” (” d0 ” ; ” d1 ”)” ;
13 template AndDef : ” (” d0 ”and” d1 ”)” ;
14 template InDef : ” (” d0 ” in ” d1 ”)” ;

� �

This syntax definition can now be used to define a sample model in textual form.
The sample model is given in listing 3.4. The texts in green are comments. It
shows how the definitions are evaluated. The next subsection will explain the
semantics of the functional language in depth.

Listing 3.4: Textual sample model
� �

1 l e t
2 ((x=4;y=8); −− env = {x=4, y=8}
3 (
4 (x=6 in y=2∗x) −− env = {y=12}
5 and
6 x=y −− env = {x=8}
7)
8) −− env = {x=8, y=12}
9 in

10 i f (y<>x) then (y+x) e l s e x −− 12+8 because 12<>8

� �

Again to be complete and to avoid confusion the model is also given as a graph
in figure 3.14. The comments in listing 3.4 are not part of the model.

Neq Var

x

name

IfExp

BinaryExp

e1

BinaryExp

e0

Var

e2

BinaryExp

Var

rhs

Number

lhs

Multiply

bop

VarDef

Number

e

x

name

y

Var

name

Integer:2

Var

y

name

VarDef

Number

e

y

name

SeqDef

d1

VarDef

d0

SeqDef

d0

AndDef

d1

Plus InDef

d0

VarDef

d1

Number

Integer:4

value

x

name

x

value

bop

Var

rhs

Var

lhs

Integer:6

e

x

name

LetExp

e d

value

yInteger:8

bop rhs lhs

x

name

value

VarDef

e name

x

name

d0 d1

y

name

e name

Figure 3.14: Sample model as a graph

36

3.4. INTRODUCING THE ENVIRONMENT

3.4.2 Semantics

Like the previous section only the semantics of new elements will be explained.
These elements are the IfExpression, the LetExpression and all subclasses of
a Def inition. The semantics of the Var class is different but similar to the
semantics of the class in the simple imperative language.
The semantics of the IfExpression is straightforward. If e0 evaluates to true
then the IfExpression evaluates to e1. The IfExpression evaluates to e2 oth-
erwise. The SemLang rules are given below.
The first rule shows that first expression e0 must be evaluated. e0 acts as the
condition for the IfExpression.

E0→ NE

IfExp (e0 = E0, e1 = E1, e2 = E2)→ IfExp (e0 = NE, e1 = E1, e2 = E2)
(3.16)

The last two rules define which one of the expression e1 or e2 must be evalu-
ated if e0 is fully evaluated to a computed value E0 . The computed value will
always be a Number. Therefore E0 .value refers to the attribute value of that
Number.
If that value is true rule 3.17 will match. This will mean that the evaluation will
result in expression bound to E1. Otherwise, if the value is false (as indicated by
the condition ¬E0 .value) rule 3.18 will fire. This will evaluate the IfExpression
to the expression bound to E2.

E0 .value

IfExp (e0 = E0 , e1 = E1, e2 = E2)→ E1
(3.17)

¬E0 .value

IfExp (e0 = E0 , e1 = E1, e2 = E2)→ E2
(3.18)

In order to explain the rules for the LetExpression we must first explain the
rules for the Def initions. Definitions are evaluated differently from all previ-
ous structures. They do not evaluate to another object or to a Nil; definitions
evaluate to an environment. This makes sense because a definition defines an
evaluation context. An environment has the same structure as a store: they are
both functions.
The evaluation of the definition in the sample model can be explained informally.
Each definition imports an environment. Then the definition is evaluated within
that environment. Finally the definition exports an environment. The different
definitions are evaluated (informally) as follows:

• A VarDef inition first evaluates the expression e and then evaluates to an
environment with one tuple.

• A SeqDef inition evaluates its sub-definitions in sequence. The second
definition d1 imports the environment that was exported by the first
definition d0. The SeqDef inition exports both environments that were
exported by the sub-definitions d0 and d1.

• The AndDef inition evaluates its sub-definitions in parallel. The environ-
ments of both sub-definitions are exported.

37

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

• Finally, the InDef inition evaluates its sub-definitions in sequence. How-
ever, only the environment of the second sub-definition d1 is exported.
Therefore the environment exported by d0 is private (only visible to d1).

The complete evaluation of the definition in the sample model is visualized in
figure 3.15. It shows how definitions export (the lines that end with an arrow)
and import (the lines that begin with a diamond) environments. For example
the first SeqDef inition (x = 4; y = 8) is evaluated to the environment {x 7→
4, y 7→ 8}. It also shows how the InDef inition does not export the environment
of its first sub-expression x = 6.

Figure 3.15: Evaluation of the definitions. Rounded boxes are definitions. Blue
ellipses are environments.

The informal explanation of the Def initions is used to define the semantics
formally using SemLang. First the rules for the evaluation of the VarDef inition
are given.

E→ NE

VarDef (name = N, e = E)→ VarDef (name = N, e = NE)
(3.19)

VarDef (name = N, e = E)→ {N 7→ E} (3.20)

Rule 3.19 does not include any new structure and its meaning should be clear.
Rule 3.20 on the other hand shows how a VarDef is actually evaluated to a
function with one tuple {N 7→ E}.
Rule 3.20 is only valid if SemLang is extended to support functions as objects
in the states. The extension is rather simple: a reference of an object is allowed
to point to a function. The definition of a function was explained in the previous
section.
The rules for the compound definitions are more complex. They require the
definition of an environment function, much like a store was defined for the sim-
ple imperative language. The environment required for the functional language
will be named envρ. The definition of an environment function is similar to the
definition of a store function:

38

3.4. INTRODUCING THE ENVIRONMENT

envρ : String → Object

The only difference is that the name of the function is labelled with a ρ symbol.
This symbol indicates that the function should only be used as an environment
and not as a store. The equation defines an environment function named envρ

that maps strings to objects. Environment functions differ from store function
in that they can only be used in the labels of transition conditions, the next
rules illustrate this fact.
The usage of environment functions becomes clearer when the rules for the
compound definitions are explained. The rules for the SeqDef inition are given
below. Rule 3.21 is simple: it states that first d0 should be evaluated. Note that
d0 will evaluate to an environment function.

D0→ ND0

SeqDef (d0 = D0,d1 = D1)→ SeqDef (d0 = ND0,d1 = D1)
(3.21)

Rule 3.22 is more complex. The pattern part SeqDef (d0 = d0ρ,d1 = D1)
matches a SeqDef object where reference d0 points to a function. This is
because variable d0ρ only binds to environment functions, not to other objects.
Variable D1 will bind to a non computed Def inition object.

The transition condition also introduces new constructs: D1
envρ=envρ[d0ρ]
−−−−−−−−−−→

ND1. It means that D1 must be evaluated under the environment envρ [d0ρ]. In
other words: D1 will be evaluated in an environment that imports the definitions
as defined by d0.

D1
env=envρ[d0ρ]
−−−−−−−−−→ ND1

SeqDef (d0 = d0ρ,d1 = D1)→ SeqDef (d0 = d0ρ,d1 = ND1)
(3.22)

The last rule (rule 3.23) shows how a SeqDef is eventually evaluated to an
environment function. It also shows that the rhs of a rule may be a function
expression. In this case it is a function override expression d0ρ [d1ρ]. Thus the
final result of a SeqDef inition is the environment defined by d0 overridden by
the environment defined by d1.

SeqDef (d0 = d0ρ,d1 = d1ρ)→ d0ρ [d1ρ] (3.23)

The rules for the AndDef inition are almost identical to the rules of the Se-
qDef inition. Rule 3.24 and 3.26 are actually completely similar to rules 3.21
and 3.23 respectively.

D0→ ND0

AndDef (d0 = D0,d1 = D1)→ AndDef (d0 = ND0,d1 = D1)
(3.24)

D1→ ND1

AndDef (d0 = d0ρ,d1 = D1)→ AndDef (d0 = d0ρ,d1 = ND1)
(3.25)

The only difference is in rule 3.25. The sub-definitions in an AndDef inition are
evaluated in the same environment; definition d1 is not aware of the environment
function d0ρ. This characterizes the parallel behaviour of the AndDef inition.

39

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

AndDef (d0 = d0ρ,d1 = d1ρ)→ d0ρ [d1ρ] (3.26)

The rules for the InDef inition are similar to the rules of the SeqDef inition.
The only difference is that the environment of the first sub-definition d0ρ is not
exported. This is specified by rule 3.29.

D0→ ND0

InDef (d0 = D0,d1 = D1)→ InDef (d0 = ND0,d1 = D1)
(3.27)

D1
env=envρ[d0ρ]
−−−−−−−−−→ ND1

InDef (d0 = d0ρ,d1 = D1)→ InDef (d0 = d0ρ,d1 = ND1)
(3.28)

InDef (d0 = d0ρ,d1 = d1ρ)→ d1ρ (3.29)

The rules for all types of definitions are explained at this point. Definitions are
only allowed in LetExpressions. The rules for LetExpressions are not very
difficult.
A LetExpression first evaluates its definitions to an environment. This is defined
by rule 3.30

D→ ND

LetExp (d = D, e = E)→ LetExp (d = ND, e = E)
(3.30)

If the definitions are fully evaluated to an environment pρ (represented as a
function) then the expression e is evaluated within the environment envρ [pρ].
This is the environment in which the LetExpression is evaluated envρ overrid-
den by the environment pρ defined by the definition in the LetExpression. This
is shown in rule 3.31
This basically means that the variables defined by the definition d are only
visible within expression e of the LetExpression. This is also known as the
scope of the definition.

E
envρ=envρ[pρ]
−−−−−−−−−→ NE

LetExp (d = pρ, e = E)→ LetExp (d = pρ, e = NE)
(3.31)

Finally when the expression e is evaluated to a computed value E (a Number)
then the complete LetExpression is evaluated to that value. The environment
pρ is dropped. So the scope of pρ has ended. This behaviour is defined by rule
3.32.

LetExp (d = pρ, e = E)→ E (3.32)

The rules show how expressions are evaluated in a certain environment. However,
the only expression that actually needs the environment is the Var expression.
A Var expression has an attribute name that refers to a name of a variable.
The result of an evaluation of a Var object is the value of the variable with
name name in the current environment.
Rule 3.33 shows how the Var object is evaluated envρ (N), which is equals to
the value V if N 7→ V ∈ envρ.

Var (name = N)→ envρ (N) (3.33)

40

3.4. INTRODUCING THE ENVIRONMENT

3.4.3 Example Simulation

This section will briefly explain how the example model is simulated. The em-
phasis is on the simulation of the parts that involve the environment. The Let-
Expression is evaluated by first evaluating the definitions and then by evaluating
the expression.

Definition Evaluation

The simulation of the definitions in the example model is already explained
informally using figure 3.15. This figure does not show how the actual state looks
after evaluating definitions to environments. Figure 3.16 explains this better.
The figure shows how the SeqDef inition ”x=4;y=8;” is evaluated. It shows a
branch of the first four states of the simulation.

Figure 3.16: Evaluation of the SeqDef to an environment

The first transition evaluates the VarDef inition ”x=4” by applying rule 3.20 .
The result is a function with one tuple. The function is represented by the map
node. The map contains one tuple node which contains the key and value of the
tuple. This second state is no longer conformant to the language metamodel:
the d0 reference of the SeqDef inition points to a function. This clearly shows
that the state conforms to an extension of the language metamodel as already
explained.
The second transitions evaluates ”y=8” to a function analogous to the first
transition. The last transition merges the two environment functions to a new
environment function by applying rule 3.23. Environment bound to d0 is over-
ridden by the environment bound to d1 resulting in a new environment as shown
in the last state.
The full evaluation of the other definitions (InDef, AndDef) is not given here,
this is done because the other definitions do not introduce new rule constructs.
The tool can be used if one wishes to inspect all the states found during simu-
lation. The tool visualizes the full states and allows easy simulation.

Variable Evaluation

Now that the evaluation of definitions to function is explained we can explain
how these functions are actually used as environments in which expressions are

41

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

evaluated. This is explained using figure 3.17.

Figure 3.17: Reading a variable from the environment

The top state in the figure shows a LetExpression for which the definition is
fully evaluated to a function with two tuples ”x” 7→ Number (value = 8) and
”y” 7→ Number (value = 12) (represented by the map node). The expression
x + y must be evaluated within that environment.

The transition from the top state to the bottom state is proved by rule 3.34:

42

3.4. INTRODUCING THE ENVIRONMENT

E
envρ=envρ[pρ]
−−−−−−−−−→ NE

LetExp (d = pρ, e = E)→ LetExp (d = pρ, e = NE)
(3.34)

The variables pρ is bound to the environment:

pρ = {”x” 7→ Number (value = 8) , ”y” 7→ Number (value = 12)} (3.35)

For simplicity we assume that the current environment envρ is empty. Because
it is empty we can conclude that envρ [pρ] = pρ. Variable E is bound the Bi-
naryExpression and its child nodes as indicated by BinExp (· · ·) expression.
The variable E is now substituted in the rule.

BinExp (· · ·)
envρ=pρ
−−−−−→ NE

LetExp (d = pρ, e = BinExp (· · ·))→ LetExp (d = pρ, e = NE)
(3.36)

The transition condition can be met by applying the rule for evaluating the lhs
of a BinExp. This rule is not given for this language but it is identical to rule
3.5 for the simple imperative language.

L→ NL

BinExp (lhs = L,bop = O, rhs = R)
envρ=pρ
−−−−−→ BinExp (lhs = NL,bop = O, rhs = R)

LetExp (d = pρ, e = BinExp (· · ·))→ LetExp (d = pρ, e = NE)
(3.37)

The variable L, O and R are not filled in to keep the proof readable. L is bound
to Var(name = ”y”). The transition condition L → NL can be expanded
by applying rule 3.33. Also note that the new environment propagates to the
transition condition.

Var(name = ”y”)
envρ=pρ
−−−−−→ envρ (”y”)

BinExp (lhs = L,bop = O, rhs = R)
envρ=pρ
−−−−−→ BinExp (lhs = NL,bop = O, rhs = R)

LetExp (d = pρ, e = BinExp (· · ·))→ LetExp (d = pρ, e = NE)
(3.38)

This concludes the proof. The result of envρ (”y”) is Number (value = 12)
because ”y” 7→ Number (value = 12) ∈ envρ.
All the meta-variables that were changed can now be filled in to construct the
new state. The dots (· · ·) indicate that nothing is changed with respect to the
proof 3.38.

Var(name = ”y”)
envρ=pρ
−−−−−→ Number (value = 12)

BinExp (· · ·)
envρ=pρ
−−−−−→ BinExp (lhs = Number (value = 12) , · · ·)

LetExp (· · ·)→ LetExp (d = pρ, e = BinExp (lhs = Number (value = 12) , · · ·))
(3.39)

In summary this says in the new state the lhs of the BinExpression is replaced
by Number (value = 12). This is exactly what has happened in the new state
in figure 3.17.

43

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

3.5 Supporting Graph Structures: Activity Diagrams

Until now we only showed that SemLang is able to define the semantics of
languages similar to the languages for which Plotkin described the semantics.
The models of these languages are always trees. This is of course a logical
consequence when using abstract syntax trees (ASTs). The metamodel of the
languages we introduced so far always use containment references. This prevents
cross references in the model and it ensures that the models are always trees.
However, in MDE metamodels are also allowed to contain cross references.
Therefore the models in MDE are generally graph structures. Plotkin style SOS,
however, is based on EBNF and therefore the structures are always ASTs. The
rules in standard SOS therefore only deal with tree structures.
However, SemLang must be able to deal with graph structures. The way SemLang
deals with graph structures is illustrated by an example language for which the
models are graphs. This example language is the Activity Diagram Language.

3.5.1 MetaModel

The Activity Diagram language is a simple diagram language that can be used
to visualise the control flow of programs. This is similar to the Activity Diagrams
found in UML. An example diagram is given in figure 3.18, it represents a simple
count-to-five program. The visual syntax is taken from UML Activity Diagrams.

Figure 3.18: Concrete visual model of an Activity Diagram

There are different types of nodes in the example program. There is a start and
stop node. After the start node there is an assignment node in which variable a
is assigned the value 1. After the assignment node there is test node in which the
expression a = 4 acts as an condition. Depending on the value of the condition
either the stop node is visited or another assignment a := a + 1 node is visited.
The metamodel of the Activity Diagram language is given in figure 3.19. An
Activity Diagram consists of Nodes. Each node has a name, this is done for
the concrete textual syntax of the language, which will not be explained here.
A node is either a StopNode or a SeqNode. A SeqNode is a node which
has reference to a next node. A SeqNode is either a StartNode, Test node

44

3.5. SUPPORTING GRAPH STRUCTURES: ACTIVITY DIAGRAMS

or an Assignment node. Both the Test and Assignment nodes consist of an
Expression. For the Test node this expression acts as an condition and for the
Assignment node this acts as the value that is bound to the variable.
It is important to see that the references next of SeqNode and alternative
of the Test node are cross references. This is indicated by the open arrow. The
lines that have a filled diamonds represent containment references.

Figure 3.19: Activity Diagram language metamodel

The example diagram in figure 3.18 can also be represented as an Diagram
object that conforms to the metamodel. This model is presented in figure 3.20.
The new things in this model are the blue arrows. Blue arrows represent cross-
references. The thick black arrows represent containment references. This is
important to know. Also note that the black-arrows always form a tree, this is
a natural result of the use of containment references.

3.5.2 Semantics

Informal Semantics

The semantics for the Activity Diagram Language is not very complex. The
semantics of the expressions will not be explained. They are already explained
for the different languages in the previous sections. The focus is on the semantics
of the nodes.
An Activity Diagram should have one StartNode and at least one StopNode.
A diagram is evaluated by moving through the nodes and by evaluating each
node. The evaluation starts at the StartNode. Then we move to the next node.
Evaluation of a diagram is complete if a StopNode is reached.
An Assignment node is evaluated by first evaluating the expression e, and then
by binding the new value to the variable and moving to the next state.
A Test node is evaluated by first evaluating the condition expression e. If the
condition is true the next node is taken. The alternative node is taken other-
wise.
This concludes an informal explanation of the semantics. However, it is impor-
tant to know that a node can be evaluated multiple times; for example when

45

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

Integer:1 BinaryExp

Eq

bop

Number

rhs

Var

lhs

Plus

StartNode

a

name

Assign

next

a

Integer:5

test

ba

Assign

BinaryExp

e

a

varName

c

name

Test

next

Integer:1

Number

value

bop

Number

rhs

Var

lhs value

StopNode

end

name

namevarNamee next

a

name

value

Diagram

nodes

nodes nodes

nodes

nodes

ename alternative next

name

Figure 3.20: Object model of an Activity Diagram

there is a loop in the activity diagram. This requires a special copy algorithm
that copies the node and rewires all references. SOS cannot be used because it
does only deals with trees in which loops are never encountered.
The Semantic Language has to be extended to deal with the graph structure.
The copy algorithm must also be clearly explained. This is done by first ex-
plaining the rules of the Activity Diagram Language. The copy algorithm will
be explained afterwards.

Formal Semantics

In this section the SemLang rules will be explained. There is a special emphasis
on the fact that we copy certain objects. Note that this was not done in the
explanation of all the previous rules. However, objects were always copied until
now, there was no need to differentiate between a copy and a reference.
We first specify the valid end states. Both Numbers and Booleans are com-
puted values, these are used in expressions. A diagram is calculated if it is
reduced to a StopNode. The valid end states are defined as follows:

Computes = {StopNode,Number,Bool} (3.40)

The Activity Diagram language also needs a store in which variables can be
stored and updated. This is similar to the store in the simple imperative lan-
guage:

46

3.5. SUPPORTING GRAPH STRUCTURES: ACTIVITY DIAGRAMS

store : String → Object (3.41)

Now the rules can be specified. The first rule matches the root Diagram object
and evaluates it to a copy of a StartNode (see rule 3.42). The pattern of this
rule has a new construct: NS 〈∃n ∈ StartNode〉. This means that the rule only
matches if there exists an object n in NS that conforms to a StartNode. This
is called existential quantification.

Diagram (nodes = NS 〈∃n ∈ StartNode〉)→ n (3.42)

If there are multiple StartNodes then this rule matches all of them. Therefore
multiple StartNodes in a single Diagram introduces nondeterminism for the
first transition.
The next rule, rule 3.43, evaluates a StartNode to a copy of the next node.

StartNode (next = N)→ N (3.43)

An Assignment node is evaluated by first evaluating the expression e. Rule
3.44 defines this behaviour. It is important to note that the rhs of the rule,
Assign (· · ·), is a constructor: it constructs a new object that conforms to the
Assign class. All attributes and references are copied :

• varName is assigned to a copy of VN

• e is assigned to a copy of NE

• next is assigned to a copy of N

This is an important detail: after the copy algorithm is explained one will see
that this copying preserves the old Assign object if that object is in the sub-
graph of the object N.

E→ NE

Assign (varName = VN, e = E,next = N)→ Assign (varName = VN, e = NE,next = N)
(3.44)

The next Assignment rule (rule 3.45) simply evaluates to a copy of the next
node. However, a new tuple is added to the store. This is identical to the store
updates in the simple imperative language. Therefore this will not be explained
further.

Assign (varName = VN, e = E ,next = N)
store′=store[{VN 7→E}]
−−−−−−−−−−−−−−−→ N (3.45)

The first Test rule simply evaluates the condition e first. This is defined by
rule 3.46. The rule looks like the first Assignment rule (rule 3.44). Again it is
important to see that the rhs of the rule constructs a new Test object and binds
copies of NC, N, and A to e, next and alternative respectively.

C→ NC

Test (e = C,next = N,alternative = A)→ Test (e = NC,next = N,alternative = A)
(3.46)

47

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

The last two Test rules simply evaluate to either a copy of the next node or a
copy of the alternative node, depending on the value of the condition C . This
is similar to the rules for the IfExp in the functional language.

C .value

Test (e = C ,next = N,alternative = A)→ N
(3.47)

¬C .value

Test (e = C ,next = N,alternative = A)→ A
(3.48)

The Copy Algorithm

Application of the SemLang rules often involves copying parts of the model.
This is performed by the copy algorithm. As already explained this copy al-
gorithm is not that important for DSLs in which the models are always trees.
However, the copy algorithm is crucial for languages in which the models are
graphs.

The copy algorithm is basically a breath-first-search algorithm. All objects are
copied by exploring the graph in a breath first fashion. The copy algorithm
ensures that objects are only copied once. It treats containment references in
a special way: they are always copies. This ensures that the containment edges
never form a cycle.

48

3.5. SUPPORTING GRAPH STRUCTURES: ACTIVITY DIAGRAMS

Copy-Algorithm(object)

1 � a map from old object to copied objects
2 copies← Object→ Object
3 � a queue of object that must be copied
4 queue← [object]
5 � a queue of objects that must be rewired
6 updateQueue← []
7 � perform a breath-first-copy
8 while queue 6= ∅
9 do object← queue.dequeue()

10 if object isA function
11 then copy ← Copy-Function(object)
12 copies.add(object, copy)
13 else copy ← new object that conforms object.class
14 copies.add(object, copy)
15 � add all attributes
16 for att ∈ object.attributes
17 do copy.set(att, object.get(att))
18 � enqueue all referenced objects
19 for ref ∈ object.references
20 do if object /∈ updateQueue
21 then updateQueue.add(object)
22 node← object.get(ref)
23 � enqueue the node if it is a containment
24 � or if it is not copied before
25 if node /∈ queue ∧ (ref.isContainment ∨ node /∈ copies.keys)
26 then queue.add(referred)
27 � rewiring: makes sure all references are updated
28 while updateQueue 6= ∅
29 do object← updateQueue.dequeue()
30 copy ← copies.getCopyOf(object)
31 for ref ∈ object.references
32 do node← object.get(ref)
33 � make sure it refers to the copied object
34 nodeCopy ← copies.getCopyOf(node)
35 copy.set(ref, nodeCopy)

The copy algorithm has a same time complexity as the breath-first-search algo-
rithm and is therefore O(n + e), where n is the number of nodes in the model
and e is the number of edges (references).

Copy-Function(f)

1 copy ← newfunction
2 � copy each tuple
3 for key 7→ value ∈ f
4 do f ← f ∪ {Copy-Algorithm(key) 7→ Copy-Algorithm(value)}
5 return copy

49

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

3.5.3 Example Simulation

To understand the copy algorithm fully an example will be given in this section.
Only one transition will be explained. This is the transition in which an Test
object is evaluated to a new Test node. This is visualized in figure 3.21.

Figure 3.21: Example state transition for the example Activity Diagram

The rule that is proves this transition is rule 3.46. This rule repeated be-
low. The rule shows how a Test node is evaluated to a newly created Test
node. The new Test node is created by the constructor in the rhs of the rule:
Test (e = NC,next = N,alternative = A).
This means that a new Test objects is created for which the references e, next
and alternative are bound to copies of NC, N and A respectively.

C→ NC

Test (e = C,next = N,alternative = A)→ Test (e = NC,next = N,alternative = A)
(3.49)

This explains why there are two Test nodes in the second state. The first Test
node is the newly created node. The second Test node is the one copied due to
the copy algorithm.

50

3.6. SUPPORTING GRAPH STRUCTURES: PETRI NETS

Another detail is that the StopNode is not copied twice. This is what one would
expect until now. Because both the alternative and next objects of the Test
node are copied. However, all objects that are copied within the a constructor
are remembered. The copy algorithm keeps track of what is copied. Whenever
a cross reference is encountered it is only copied when it is has not been copied.
Otherwise it is just rewired to the copied object. This explains why The copied
Test node in the second state does not copy the StopNode again: it is simply
rewired to the copied StopNode.

3.6 Supporting Graph Structures: Petri Nets

The copy algorithm explains how the rules are applied to non tree models.
However, the expressiveness of the rules is limited with respect to the semantics
of graph based languages. It is for example impossible to define the semantics
for Petri Nets.
Therefore the Semantic Language SemLang is again extended with new fea-
tures to support more graph based languages. These extensions are explained
by explaining another graph based semantic language: Petri Nets.
Again we first introduce the metamodel of Petri Nets. Then the semantics is
explained informally and by the use of SemLang. New constructs are explained
when they are introduced. In the end the example model will be simulated using
the given SemLang rules.

3.6.1 MetaModel

A Petri Net is a graph in which the nodes are either places or transitions. Places
can hold tokens and are often visualized as a circle. Transitions are visualized
as black horizontal bars. Directed edges (also known arcs) connect places with
transitions and vice versa. Arcs that connect places with places or transitions
with transitions are not allowed.
A very simple Petri Net is given in figure 3.22. The Petri Net consists of three
places (a, b and c) and two transitions (t1 and t2). Six arcs connect the nodes
with each other.

Figure 3.22: Concrete visual model of an example Petri Net

The metamodel of the Petri Net language is defined in figure 3.23. The static
semantics that is needed to limit the set of valid models is not given. The focus
of this thesis is on the dynamic semantics.

51

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

Petri Net diagrams are very simple compared to the other languages in this
chapter. This is indicated by size of the metamodel. A Petri Net consists of
Nodes (with a name) and Arcs. A Node is either a Place or a Transition.
The number of tokens at a Place is stored in the count attribute.

Figure 3.23: Petri Net language metamodel

Note that the metamodel given is not the only metamodel that is possible for
Petri Nets. Different metamodels are possible but their semantic rules would
also differ. For some metamodels it is difficult (or even impossible) to define the
semantics using SemLang. The expressive power of SemLang is currently not
known an is seen as a future research subject.

The Petri Net in figure 3.22 can now be visualised as a MDE model by using the
metamodel. The model is given in figure 3.24. The model shows how the arrows
are represented as Arc objects. The Arc object either has a Transition or a
Place as its target/source. Also note that the target and source references are
cross references.

Place

b

name

Integer:0

count

Place

c

name

Integer:1

count

Place

a

name

Integer:1

count

t1t2

Petrinet

nodesnodes nodesArc

arcs

Arc

arcs

Transition

nodes Arc

arcs

Arc

arcs

Arc

arcs

Transition

nodes Arc

arcs

source targettarget source

name

sourcetarget target source targetsource

name

sourcetarget

Figure 3.24: Example Petri Net model

52

3.6. SUPPORTING GRAPH STRUCTURES: PETRI NETS

3.6.2 Semantics

Informal Semantics

The Transition nodes in a Petri Net can fire if they are enabled. A Transition
is enabled if each Place for which there is an Arc pointing to the Transition
has at least one token. The firing of a Transition is a two-step process. First
it consumes one token in each Place that points to the Transition. Then
it produces one token for each Place if there is an Arc pointing from the
Transition to the Place.
Transitions do not fire simultaneously. However, multiple Transitions can be
enabled. This makes Petri Nets non-deterministic.
An example simulation of the example model is shown in figure 3.25. There are
five states (labelled S1 to S5). First Transition t1 fires: it first consumes one
token in Place a (at state S2). Then it produces a token in both a and b (at
state S3). Note that the firing of a Transition involves two states.
Sequentially Transition t2 fires. It consumes a token in both b and c (state
S4) and then produces a token in Place c (state S5).

Figure 3.25: Petri Net example simulation

Note that the firing of a Transition is broken into two steps. The semantics
could also be defined in a way that the firing of a Transition only involves one
state transition in which the consuming and producing executes simultaneously.
We choose to break it down into two steps to keep the rules smaller.

Formal Semantics

The SemLang semantics for Petri Nets only consists of two rules. One rule for
the consuming of tokens and one rule for the producing of tokens. However,
these two rules are rather complex. Both rules also use a store named firing.
This store is a singleton: it only stores one object. The firing singleton stores
the current Transition that is firing. It is defined as follows:

firing : Transition

This is a new addition to SemLang: functions (stores and environments) can
also be singletons.

53

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

The rules contain both existential quantification (explained in the previous sec-
tion) and universal quantification. These new constructs are explained first to
understand the SemLang rules for Petri Nets.

• Existential quantification

– ∃var | condition
Holds if there exists at least one item for which the condition holds

– ∃var ∈ ClassName
Holds if there exists at least one item that conforms to the class
named ClassName

– ∃var ∈ ClassName | condition
Holds if there exists at least one item that conforms to the class
named ClassName and for which the condition holds.

• Universal quantification

– ∀var | condition
Holds if for all items the condition holds

– ∀var • assignment
Executed the assignment for each item. This form of quantification
can only be used in the constructor part of a rule, because it changes
the value of an attribute

– ∀var | condition • assignment
Executes the assignment for each item for which the condition holds.
This form of quantification can also only be used in the constructor
part of the rule.

The first rule (rule 3.50) is the consume rule. It has a number of extensions to
SemLang. The rule matches a Petrinet if there exists a node that conforms to a
Transition. This is defined by the 〈∃t ∈ Transition〉 construct. This construct
was explained in the previous section.
The condition firing () = Nil is true if the singleton firing does not point to an
object. This condition makes sure that the two rules do not fire simultaneous.
The consume rule only fires if there is no current Transition firing.

firing () = Nil

Petrinet

(

nodes = N 〈∃t ∈ Transition〉 ,
arcs = A 〈∀a| (a.target = t)→ (a.source.count > 0)〉

)

firing′=→֒t
−−−−−−−−→

Petrinet

(

nodes =→֒ N,
arcs = A 〈∀a | a.target = t • a.source.count := a.source.count− 1〉

)

(3.50)
The arcs are bound to the meta-variable A. There is also a condition that must
be met for the arcs:

〈∀a | (a.target = t)→ (a.source.count > 0)〉

This is a form of universal quantification. It means that the rule only matches if
for all Arcs a the condition (a.target = t) → (a.source.count > 0) holds. The

54

3.6. SUPPORTING GRAPH STRUCTURES: PETRI NETS

→ symbol in the condition is the logical implication operator. Intuitively this
means that the rule only matches if all Places that point to the Transition t
have at least one token.
The constructor also has a universal quantification construct. However, this con-
struct also has an assignment in it. The meaning of the universal quantification
is that for each Arc a for which the condition a.target = t holds the assignment
a.source.count := a.source.count− 1 is executed.

〈∀a | a.target = t • a.source.count := a.source.count− 1〉

The effect of this is that for each source Place the count attribute is decre-
mented by one. This is exactly what should happen when the tokens are con-
sumed.
Another new construct is the use of the →֒ symbol. This symbol can be placed
before meta-variables and indicates that an object should not be copied. A
variable that is preceded by the →֒ is called a referenced variable. For example
→֒ N indicates that the object(s) in N should be referenced and not be copied.
The copy-algorithm is aware of all objects that are referenced within a con-
structor. Whenever it performs a copy it will remember all referenced objects
and rewire all references to make sure they point to the referenced objects. An
example will make this easier to understand.
Suppose we have a constructor that looks like Petrinet (nodes =→֒ N,arcs = A).
When the Arcs in A are copied it will not copy references to Node objects if
the Node is in N. Instead it will make sure that the reference will point to the
Node in N.
The consume rule also updates the store. This is defined by firing′ =→֒ t. It
makes the firing singleton point to a reference of the Transition object t.
The produce rule (rule 3.51) should produce one token in all target Places.
It only matches if the condition ¬(firing () = Nil) holds: i.e. it only matches
when there is a Transition firing.

¬(firing () = Nil)

Petrinet (nodes = N,arcs = A)
firing′=Nil

−−−−−−−−→

Petrinet

(

nodes =→֒ N,
arcs = A 〈∀a | a.source = firing () • a.target.count := a.target.count + 1〉

)

(3.51)
The only new thing in the produce-rule is the universal quantification with an
assignment in the constructor of the rule:

〈∀a | a.source = firing () • a.target.count := a.target.count + 1〉

This makes sure that for all target Places the count attribute is incremented
by one. This is exactly what should happen: it produces one token in the target
Places.

3.6.3 Example Simulation

The meaning of the new constructs is easier to understand by giving an example
simulation of the model. The simulation of the Petri Net given in figure 3.25 is

55

CHAPTER 3. AN SOS BASED SEMANTIC LANGUAGE DSL

now represented in figure 3.26. The figure shows the first three states and two
transitions of the simulation in figure 3.25.

The first state shows the initial model. Note that Transition named t1 has a
thicker border, this is because this transition is the one that will fire.

The second state shows how the application of the consume rules alters the
model. The count attribute of the Place named a is decremented by one,
resulting in a count value of zero. The thick border around the value of the
count attribute emphasizes this.

The singleton store named firing is updated to point to a reference of the Tran-
sition t1 in the second state. This is why the firing singleton points to the
Transition t1 within the Petrinet. No copy is made of the Transition ob-
ject. That would happen if the consume rule updated the firing singleton like
firing′ = t instead of updating it to a reference of the variable: firing′ =→֒ t.

Figure 3.26: Petri Net example model simulation

56

3.7. CONCLUSION

The third state shows the result of the produce rule. The singleton firing points
to nothing (internally it points to Nil). The places named a and b are updated:
their count attribute is incremented by one.
Another important thing to notice is that the effect of the reference symbol
→֒ in the constructor of both rules. The Arc children of the Petrinet object
are not copied but referenced. If they were copied it would mean that all Node
objects will be copied twice; firstly when all Arcs are copied, and secondly when
all Node children of the Petrinet are copied. This is clearly not desirable for
Petri Nets; the graph must be kept intact. This is exactly why the reference
symbol →֒ is introduced. It allows the specifier of the rule to specify when
objects must be copied or referenced

3.7 Conclusion

This chapter showed in an informal but detailed way how SOS can be adapted
in order to make it useful in an model driven context. The first few sections
showed how the semantic language SemLang supports the specification of the
semantics of tree based languages.
We showed how SemLang could be used to specify the semantics for imper-
ative and functional languages. A broad range of programming constructs are
supported. It showed how SemLang can be used to specify the semantics for
expressions, stores and declarations.
SemLang can also be used for the definitions of functions and (recursive) func-
tion invocation. Different parameter passing techniques like pass by reference,
by value and by name are also supported. These techniques are not explained in
this chapter but they do not introduce new constructs in the rules of SemLang.
For more details we refer to the disc in the appendix A. The disc has a collection
of example DSLs with their semantics specified in SemLang.
This chapter also showed how SemLang supports the specification of the se-
mantics of certain graph based languages. This is an extension to the Plotkin
style SOS, as it only supports tree based states. The following additions to SOS
were needed to support the graph based languages.

• An explanation of the copy algorithm for graphs

• Support for referencing instead of copying

• Support for existential and universal quantification

These additions increased the expressiveness of SemLang and makes SemLang
applicable to more languages (tree based and certain graph based languages).
However, it is important to understand that SemLang cannot be used for any
graph based languages. The expressiveness of SemLang compared to other ap-
proaches is not researched and therefore still an open issue. More discussing on
the the expressiveness can be found in chapter 6.

57

4
Formalizing the Semantic Language DSL

4.1 Introduction

This chapter provides a mathematical foundation for the Semantic Language
presented in the previous chapter. The formalization is based on formalization
of SOS as described in [MRG07, AFV01]. Graph theory is also used to formalize
models and states.
First a formalization of the semantic domain is given. The semantic domain of
SOS in general is a labelled transition system (LTS). The states and structure
of the LTS is given in the first section.
Sequentially we formalize the structure of SemLang models. The last section
describes how a SemLang model specifies a LTS. This is based on the fact that
an SOS description can be seen as a Transition System Specification (TSS). A
TSS specifies the valid set of LTS for a specific language.

4.2 The Transition System

The semantic domain for SOS and therefore also for SemLang is a terminal
LTS, also called a Labelled Terminal Transition System (LTTS).

Definition 9 (Labelled Terminal Transition System) A LTTS is a quadru-
ple (Q,T,A,→) with Q as set of states, a set A of labels α, a relation →⊆

Q × A × Q of labelled transitions ((s, α, s‘) is written as s
α
−→ s‘), and a set

T ⊆ Q of terminal configurations such that s
α
−→ s‘ implies s /∈ T

The set of states Q plays an important role. As explained in the previous chapter
the states are extended models. In the previous chapter the states were visualised
as graphs, however a formal definition for a state was not given.
The LTTS also includes a set of labels A. Labels are used in LTTSs are useful for
concurrency and interactivity. However in this thesis we did not focus on those
aspects. Therefore an empty set will be used for the labels A = ∅. A transition
therefore has no label and is written as s→ s‘.

4.2.1 Models as graphs

To formalize the states we must first formalize the MDE models. This is because
states are essentially extended models. The visual representation of the example
models in the previous chapters are graphs. In fact they are a special kind of

59

CHAPTER 4. FORMALIZING THE SEMANTIC LANGUAGE DSL

graph named directed multigraphs (this follows the definition of a model in
section 2.2.2) A directed multigraph is basically a graph which allows self-loops
and duplicated edges.

Definition 10 (Directed MultiGraph) A directed multigraph or multidigraph
G is a pair (V,E), where V is a set of vertices, and E is a multiset of ordered
pairs {u, v} such that u, v ∈ V (the edges of G).

A model however is not exactly a directed multigraph. The edges in models have
a name and are called references. There are also two categories of references:
containment references and cross references.
Containment references are references which model a containment relationship
between two objects. They are not allowed to contain cycles: a model with only
containment references is always a tree or a set of trees.
Cross references are the references that are not containment references. Cross
references do not have the constraint for cycles.
In section 2.2.2 a formal definitions for a model was given. A new definition for a
model is given below. This new definition is useful for the definition of the states
Q of the LTTS in the semantic domain. So this formal definition is meant to
be used in the formalization of SemLang. It does not capture the relationship
between a model and its metamodel formally.

Definition 11 (Model) A model M is a quadruple (O, o1, A,R) where

• O is a set of objects or nodes which also contains a set of primitives P ⊂ O

• o1 ∈ O is the main node

• A is a set of labels

• R is the set of references which is a relation R ⊆ O × A × O of ordered
triples {o, α, o′}. R is partitioned into a set Ra of attributes, a set Rc of
containment references and a set Rr of cross references (R = Ra∪Rc∪Rr

and they are also pairwise disjoint Ra∩Rc = ∅, Ra∩Rr = ∅ and Rc∩Rr =
∅)

We require the following conditions on a model M .

• o ∈ P → ¬∃{o, α, o′} ∈ R, i.e all primitives are leaf nodes

• {o, α, o′} ∈ Ra → o′ ∈ P , i.e all attribute references refer to primitives

• The graph representation of a model is a connected graph

• The graph representation of a model in which the Rr edges are removed is
called a tree (a connected graph without cycles)

Sequentially the definition of the model of an object o is given. The model of an
object o is basically a model which contains all the objects that can be reached
from object o. This definition is given because it is used in the next sections of
this chapter.

Definition 12 (Model of an Object) Given a model (O, o1, A,R). The model
of an object o ∈ O denoted Model(o) is a model (Omodel, o, Amodel, Rmodel) in
which:

60

4.2. THE TRANSITION SYSTEM

• Omodel = {x ∈ O | Path(x, o)}

• Rmodel = {(o1, αo2) ∈ R | o1 ∈ Omodel ∧ o2 ∈ Omodel

• Amodel = {α ∈ A | (x, α, y) ∈ Rmodel}

The definition shows that a model always has a single entry point o1, called
the main object. Another important aspect of models is that the subgraph
which only contains containment references Rc is always a tree. This is a logical
consequence from the fact that containment references model a containment
relationship.
Note that the formal definition is a simplification of a model in the sense of
EMF and ECORE [EMF, ECO]. The ECORE metametamodel includes more
properties on references and model elements. It also supports lists. These fea-
tures are not formalized to keep things to the essential core of models and to
omit trivial details.
The definition does not capture the relation between a model and its metamodel.
However, each object node o ∈ O implicitly refers to its metaclass. This is
implicitly done by giving the object a name that equals the name of its metaclass.
The last two conditions in the definition of a model refer to the graph repre-
sentation of a model. This is because models are essentially a special type of
directed graphs. This allows the use of all definitions and theories found in graph
theory. The graph representation of a model is given below.

Definition 13 (MultiDiGraph representation of a Model) A model M =
(O, o1, A,R) can be represented as a multidigraph G = (V,E) by the following
mapping

• O → V , i.e. all objects are vertices

• {o, α, o′} ∈ R→ {o, o‘} ∈ E, i.e. all references are edges

4.2.2 State representation

The previous chapter informally explained that states are essentially extended
models. This is analogous to the Plotkin style SOS in which states are essentially
sentences of a value-added syntax. The main extension to models is the use of
stores and environment which are represented as functions.

Definition 14 (Function) A function E is a injective function E : O → O
from object to objects.

To support imperative languages a store is needed in which values can be stored,
this was explained in section 3.3 in the previous chapter and can also be found in
[Plo81]. This requires that a state must have some sort of construct to support
stores. This is done by adding a set of functions that is separate from the model.
Functional languages and imperative languages that support scope on the other
hand need an environment. The previous chapter informally explained that these
environments are functions that can be part of the extended model.
States are models with these two extensions. Formally they can be defined as
follows.

61

CHAPTER 4. FORMALIZING THE SEMANTIC LANGUAGE DSL

Definition 15 (State) A state S is a tuple (E,S,O,M) in which E and S
are sets of environments, O is a set of objects, M is a model (OM , o1, A,R) for
which OM ⊆ O ∪ E and E ⊂ OM

• E is called the set of environment functions env : O → O

• S is called the set of store functions store : O → O

• O is called the set of objects

A model can directly be represented as a state. This transformation is needed
to transform the initial model to the initial state. It is also useful for some other
definitions.

Definition 16 (State representation of a Model) Given a model M = (OM , o1, A,R).
The state of this model, denoted Model2State(M), is (E,S,O,M) in which
E = S = ∅ and O = OM .

Using the definition of a model as an object we can give a definition of the state
representation of an object. This transformation from object to state is needed
for describing the semantic language.

Definition 17 (State representation of an Object) Given an object o the
state of this object, denoted Object2State(o), equals Model2State(Model(o))

4.3 The Transition System Specification

A SemLang model specifies the semantics of a certain DSL. The semantic do-
main of SemLang is an LTTS. Therefore a SemLang model is essentially a
specification for a LTTS. This is why SemLang models are called Transition
System Specifications (TSS). TSSs were introduced in section 2.6 about SOS,
however in order to formalize how SemLang specifies a LTTS we must first
formalize the SemLang models.

4.3.1 SemLang Models

A SemLang specification is a model itself and therefore the general definition for
a model can be used. However, this general definition is not useful for defining
how a SemLang model specifies a LTTS. Therefore we use a different definition.
A SemLang model consists of a set of predicates over terminal states, a set of
functions that can act like stores or environments, and a set of rules.

Definition 18 (SemLang Model) A SemLang model is a tuple (E,Fenv, Fstore, R)
in which E is a set of predicates over end states, Fenv a set of functions (called
environment functions), Fstore a set of functions (called store functions) and R
a set of rules.

For each predicate P ∈ E and state S ∈ Q then S is an end state if and only if
P (S). The functions in a SemLang model are partitioned in environment and
store functions. This is done because each type of function is used differently as
explained in the previous chapter.

62

4.3. THE TRANSITION SYSTEM SPECIFICATION

In order to define the rules we must first define terms that are used in the rules.
Terms are simple patterns which match an object or construct an object. A
term always refers to a metaclass and may also contain meta-variables which
are in the set V ar.

Definition 19 (Meta Variables) The set of meta-variables V ar is partitioned
set of normal variables x, y, z · · · and a set of computed variables x , y , z · · ·

The distinction between normal and computed variables is needed because some
meta-variables should only bind to computed objects. A computed object is an
object for which the state of that object is an end state, i.e. an object o for
which P (Object2State(o)) holds. Computed variables only match computed
objects. Computed variables can be recognized by their italic typesetting.
The terms defined here are analogous to the term algebras as defined by Aceto
et al [AFV01]

Definition 20 (Term) The set of terms Π(MM) over a metamodel MM and
a set of meta-variables V ar is the least set such that:

• each x ∈ V ar is a term

• ClassName(r1 = T1, · · · , rn = Tn) is a term, if ClassName is the
name of a metaclass m in MM , r1, · · · , rn are a subset of the attributes
and references of the metaclass m or of a superclass of m and T1, · · · ,Tn

are terms

Definition 21 (1-Level Deep Term) A term ClassName(r1 = T1, · · · , rn =
Tn) is 1-level deep if T1, · · · ,Tn ∈ V ar.

Definition 22 (Variables in a Term) A variable x ∈ V ar is in a term t
(written as x ∈ t) if

• either x = t

• or t = ClassName(r1 = T1, · · · , rn = Tn) and there is an i ≤ n for
which x ∈ Ti

Definition 23 (Closed Term) A term t is called a closed term if there are
no variables x ∈ V ar for which x ∈ t holds. Otherwise the term is called an
open term.

Notice that r1, · · · , rn are not required to contain all the attributes and refer-
ences of the metaclass m: some attributes or references may be skipped. Also
note that r1, · · · , rn may also be attributes or references of a superclass of m:
terms are aware of the inheritance in the metamodel MM .
Terms were already used in the rules in the previous chapter. Some sample terms
are listed below:

• BinExp (lhs = l ,bop = o, rhs = r)

– A term for metaclass named BinExp with meta-variables l , o and r

• IfExp (e0 = e0, e1 = e1, e2 = e2)

63

CHAPTER 4. FORMALIZING THE SEMANTIC LANGUAGE DSL

– A term for metaclass named IfExp with meta-variables e0, e1 and e2

The definition of a the set of terms Π(MM) for a metamodel MM can now be
used to give the definition of a rule for a specific metamodel.

Definition 24 (Rule) Let MM be a metamodel, let t, t′ range over Π(MM),
let x and x′ range over V ar in which x ∈ t and x′ ∈ t′. A rule is a tuple (H,C)

where H is a set of premises x
α
−→ x′ and predicates P (x). C is the conclusion

which is of the form t
β
−→ t′ in which:

• the lhs term of the conclusion is 1-level deep and is called the pattern of
the rule

• the rhs term of the conclusion is called the constructor of the rule

A rule is written as
H

C

Not all rules in the previous chapter fit in this definition. However the essential
parts of a rule are captured in this definition. We do not aim at full formal-
ization of the SOS language. The aim of the formalization is to give a sound
mathematical basis that captures the essential features of SemLang.
The constructs that were used in the previous chapter but which are not formal-
ized include: lists and universal and existential quantification over lists, func-
tions, singleton functions and variable references.
The labels α and β were used in the previous chapter to update functions. The
α label in a premise of a rule was used to update an environment functions. The
β label in the conclusion was used to update store functions. This is similar to
the Modular SOS (MSOS) approach taken by Mosses [Mos99, Mos02, Mos04,
Mos06]. The next section, in which we will prove transitions in the LTTS, does
not take these labels into account. Again this is done to keep the formalization
small and understandable.

4.3.2 Proving Transitions

A SemLang model specifies a LTTS and is therefore a TSS. Until now we
formalized the states Q of the LTTS and the SemLang models. A SemLang
model specifies the transitions in the LTTS. A transition s

α
−→ s‘ in the LTTS

is proved by a set of rules in the SemLang model. This proof is called the proof
tree.
The proof trees in SemLang are essentially the same as the proof trees used
in SOS. The main difference between SOS and SemLang is the fact that the
states in SemLang are special kinds of graphs (explained in section 4.2.2). The
difference in state representation has an impact on the TSS. A SemLang TSS
differs from a SOS TSS. This also changes the way a proof tree is constructed.
Before we define a proof tree we must first define how the pattern term of a
rule matches a state, and how the constructor term of a rule constructs a state.
Both the pattern term and constructor term may be open terms (which contain
variables). These variables are used in a so called binding σ. A binding essentially
binds variables to objects.

64

4.3. THE TRANSITION SYSTEM SPECIFICATION

Definition 25 (Binding) Given an model (O, o1, A,R). A binding for this
model is a mapping σ : V ar → O.

Definition 26 (Fully Bounded Term) Given a term t and a binding σ. The
term t is fully bound in σ if for all variables x ∈ t there exists a tuple (x, o) ∈ σ

The pattern term of a rule matches some objects. If an object o is matched a
binding is created that binds all free variables in the pattern term to the direct
neighbour objects of o.

Definition 27 (Term Model Matching) Given a term t and a model m =
(O, o1, A,R). Match(t,m) = σ holds if the term t = ClassName(r1 = x1, · · · , rn =
xn) matches the model m if o1 is an instance of the metaclass named ClassName.
The result of the matching is an binding σ such that if ri point to an object oi

(i.e. (o1, ri, oi) ∈ R) then (xi, oi) ∈ σ.

The constructor term of a rule is a term which constructs a new model. When
a model is constructed the copy algorithm as explained in section 5.4 is used.

Definition 28 (Term Model Construction) Given a term t which is fully
bound in a binding σ. The construction of the term is an model (O, o1, A,R) =
Construct(t) such that:

• if t ∈ V ar then the construction is a model which is a copy of the model
representation of σ(t)

• If t = ClassName(r1 = T1, · · · , rn = Tn) then the construction is a
model in which object o1 conforms to the metaclass named ClassName.
Each reference ri of object o1 is bound to the construction of term Ti. The
sets O,A and R only contain elements which are connected to o1

The definitions for matching and construction of states are needed to setup
a proof tree. The definition for a proof tree looks like the proof trees in SOS
explained by [AFV01, MRG07, Mos04]. The proof tree for a transition is called
a finite upwardly branching tree.

Definition 29 (Transition Proof Tree) Given a metamodel MM, a set of all
possible states QMM for MM , t, t′ which range over Π(MM), a SemLang model
for metamodel MM with a set of rules R which specifies an LTTS (Q,T,A,→).

A transition is s
α
−→ s‘ is only in → if and only if a finite upwardly branching

tree can be formed satisfying the following conditions:

1. all nodes are labelled by elements of QMM ×A×QMM

2. the root node is labelled by s
α
−→ s‘

3. for each n-ary node labelled s1
α
−→ s2 there is a rule H

t
β

−→t′
and an inter-

pretation of the meta-variables that occur in it such that Match(t, s1) = σ

and Construct(t′) = s2. For each premise x
α
−→ x′ ∈ H there is a la-

belled branch sb
α
−→ s′b such that σ(x) = sb and a rule with constructor

term t′b such that σ(x′) = Construct(t′b). Each predicate P (x) ∈ H must
hold.

65

CHAPTER 4. FORMALIZING THE SEMANTIC LANGUAGE DSL

4.4 Conclusion

This chapter provides a mathematical foundation for SemLang. It shows that
SemLang relies on graph theory and on the foundations of SOS given by dif-
ferent authors [AFV01, MRG07, Mos04].
The semantic domain of SemLang are labelled terminal transition systems
LTTS. We showed that the states are special kind of graph in which the objects
and edges have special properties. The most important structures of SemLang
models were also formalized.
It also became clear that SemLang models are essentially Transition System
Specifications (TSSs). The mapping from a SemLang model to a LTTS was
also given by defining the states in the LTTS. The mapping from the TSS to
the transitions in the LTTS can be done by setting up prove trees. Again this
approach is similar to the approach in SOS.
An important difference between SOS and SemLang is that the terms have
a special task in SemLang. The terms in SemLang either match models or
construct new models. By setting up a prove tree in the current state s1 by
matching models with the pattern terms in the rules, one can construct the new
state by construction new models by using the constructor terms in the rules.
This chapter does not formalize all constructs and features of SemLang. The
formalization is kept to the essential parts to keep it understandable. The main
goal of the formalization is to give a formal basis for SemLang. The focus of
this thesis is on the pragmatical aspects of SemLang. However this chapter also
shows that there is a formal basis on which SemLang depends on.

66

5
Semantic Engine: Tool for the Semantic

Language

5.1 Introduction

This chapter presents the implementation of the tool. The tool is called Semantic

Engine and consists of an engine which is able to simulate models. An user
interface is built upon the engine and provides better usability and supports
visualization of the states.
This chapter begins with a list of requirements for the tool in section 5.2. Section
5.3 explains the architecture of the tool. Both a high level architecture as well
as a more detailed level architecture description is given.
Section 5.4 is devoted to the quality attributes of the tool and is divided into
runtime and non-runtime quality attributes. The last section concludes this
chapter.

5.2 Requirements

Software systems are created to solve a problem in a problem domain. The
problem can be decomposed into sub-problems from which requirements can be
derived. The system solves the problem if it implements all the requirements.
The tool can be used to simulate models given a semantic specification. There
is a list of requirements for the tool. However, these requirements are less strict
because the tool is a proof of concept. Therefore we will not give a detailed list
of requirements; only some explicit high level requirements will be given.
The main functional requirement of the tool is that it must be able to simulate
model given a semantic specification. This, in turn, requires that the semantics
for SemLang are implemented. Other, less important, functional requirements
are that the tool must support state inspection and proof tree construction. An-
other feature that can be implemented is step-by-step simulation (debugging).
Non-functional requirements do not deal with the function of the tool. These
requirements are less strict because the tool is just a proof of concept. How-
ever, this does not mean that there are no non-functional requirements. The
performance of the tool is for example important because the tool is useless if
the simulation is very slow. The documentation of the tool is also important,
because this facilitates future extensions and future research. Usability and ex-
tensibility are also non-functional requirements are important.

67

CHAPTER 5. SEMANTIC ENGINE: TOOL FOR THE SEMANTIC

LANGUAGE

5.3 Architecture

The architecture is first explained at a high level. Sequentially we explain how
the Semantic Language is specified. Then the two main components of the tool
are covered in more detail. These two components are the Semantic Engine and
the User Interface. We also show which design patterns [GHJV00] are used in
the architecture.

5.3.1 High Level Architecture

A high level view of the architecture is visualised in a component diagram
in figure 5.1. The diagram shows the high level components of the tool, their
interfaces and connections to other components. This component diagram is
based on the component diagrams as described by UML [OMG].

The main component is the Semantic Engine (abbreviated to SemEngine) com-
ponent. This component is responsible for simulating a model given a SemLang
model that specifies the semantics for that model. Therefore there is a relation
between the SemEngine and the DSL Model and SemLang Model components.

A SemLang Model conforms to the Semantic Language Metamodel. The Seman-
tic Language itself defined as a modelling language complete with a concrete
syntax specification. To create a SemLang model one has to create a text file
that conforms to this syntax.

The SemEngine component reads the models into memory and these model
are represented as ECore [ECO] objects. Therefore there is a relation between
SemEngine and the EMF Ecore component.

Figure 5.1: Component Diagram of the Tool

The three components on the right in the diagram are the components that are
part of the graphical user interface. The tool can still be used without these
components if no graphical user interface is needed.

The User Interface component contains all the visual elements that form the
user interface window of the tool. The User Interface is built upon the Eclipse

68

5.3. ARCHITECTURE

Rich Client Platform [RCP] which is represented by the RCP Eclipse compo-
nent. RCP is basically a rich library for creating user interfaces which is based
upon SWT [SWT] and JFace [JFa].
The Graphviz component represents a software library [gra]. Graphviz is used
to layout and render graph representations of the states.

5.3.2 The Semantic Language

A semantic specification is written in SemLang. SemLang itself is defined as
a modelling language. The KM3 [JB06] and Textual Concrete Syntax [JBK06]
framework is used to create the Semantic Language. KM3 is used as a metameta-
model. The metamodel of SemLang is written in a text-file that conforms to
the concrete syntax of KM3. The specification of the metamodel can be found
on the disc accompanying this thesis.
A concrete syntax for SemLang was specified to make it easier to create SemLang
models. TCS was used to create this concrete syntax specification. The TCS
specification for SemLang can also be founds on the disc. We also recommend
to study example SemLang models to become familiar with the concrete syntax
of SemLang.

5.3.3 Architecture of the Semantic Engine

Figure 5.2: Class Diagram of the Semantic Engine

The Semantic Engine component is visualized as a class diagram in figure 5.2.
To understand this diagram a description for each class is given.
The SemanticEngine class is the most important class and acts as a facade
for other systems that interact with the engine. Therefore it follows the facade
design pattern. It also fits the composite design pattern nicely because it is
composed of a number of objects. This class is also responsible for managing
simulations and keeping track of states and transitions.

69

CHAPTER 5. SEMANTIC ENGINE: TOOL FOR THE SEMANTIC

LANGUAGE

The SemanticEngineFactory is a simple class that follows the factory design
pattern. It is used to create instances of the SemanticEngine class.

The Evaluator is an abstract class which defines an interface for evaluating cer-
tain objects. There are two types of evaluators. The ValueEvaluator simply
evaluates simple calculations that may occur within a rule. The EnvExpres-
sionEvaluator on the other hand evaluates expressions that result in a new
function which may act as a store or environment. It implements for example
the function override expression as encountered in section 3.3.2.

The Matcher class is responsible for object matching. The proof tree is rep-
resented by the MatchingTree class. Whenever there are multiple possible
matches (non-determinism) it consults a MatchingSelectionStrategy object
to choose a matching. The MatchingSelectionStrategy abstract class follows
the strategy design pattern.

A ResultConstructor is responsible for building the result object for a given
matching (i.e. a MatchingTree object). It constructs new objects and copies or
references existing objects. It also has an implementation of the copy-algorithm
described in section 5.4.

An object that implements a TransitionObserver can be hooked into a Se-
manticEngine. It observes all transitions made and can be used to update the
user interface. This ensures a clean separation between the model and the view
as described in the model-view-controller design pattern. The controller can be
found in the user interface component.

5.3.4 Architecture of the User Interface

The user interface is built upon the JFace library, which results in a number of
subclasses of classes in the JFace library. The architecture of the user-interface is
therefore influenced by the architecture of JFace itself. We recommend to study
JFace in order to understand the architecture description of the user interface.

The class diagram is figure 5.3 shows the structure of the user interface. The grey
filled classes are from the JFace library. The AbstractUIPlugin is an abstract
class which must be subclassed to create an eclipse plugin, the Activator is this
subclass, it activates the plugin. The user interface consists of a perspective. A
perspective is a set of views an optionally one or more editors. The Perspective
class represents the perspective and has five views and one editor.

70

5.3. ARCHITECTURE

Figure 5.3: Class Diagram of the UI

Figure 5.4: The state graph view

71

CHAPTER 5. SEMANTIC ENGINE: TOOL FOR THE SEMANTIC

LANGUAGE

Figure 5.5: The transition stack view

The MatchingView visualizes the proof for a transition, the RulesView
shows a list of rules and the TransitionStack view shows the sequence of
transitions during simulation (see figure 5.5). The state is visualized as a graph
in the StateGraphView, the Graphviz library is used to visualize the state
(see figure 5.4). Figure 5.6 shows a overview screenshot and the decomposition
of the perspective into different views.

Figure 5.6: The views in the user interface

User events (occur when a user clicks a menu-item or toolbar-item) are handled

72

5.4. QUALITY ATTRIBUTES

by subclasses of AbstractHandler. The AbstractEngineHandler class is
a convenience class that has some useful methods for accessing the semantic
engine.
The user interface has one editor, the SemanticEngineEditor. Multiple ed-
itors can be opened. Each editor relates to one SemanticEngine, which is
encapsulated by an SemanticEngineInput object. The editor consists of mul-
tiple pages (that is why it is a subclass of MultiPageEditorPart), one page
shows the current DSL, one page the current model and another page the current
SemLang specification. Note that the data in the editor cannot be changed.

5.4 Quality attributes

This section discusses the quality attributes of the tool briefly. Quality attributes
can be categorized in two parts, runtime quality attributes and non-runtime
quality attributes. Most quality attributes that are discussed here are not mea-
sured by any means, mainly because the tool is a proof of concept. However,
this section gives some insight into the quality aspects of the tool.
Runtime quality attributes can be measured when the tool is executed. It con-
sists of sub qualities like performance, functionality and usability. The perfor-
mance of the tool was not of high priority and there are several optimizations
possible that decreases the memory usage of the tool and increases it perfor-
mance. However, to get some insight into the performance of the tool a small
performance test was performed. In this test we simulated several models of dif-
ferent modelling languages. During this simulation the number of states s was
counted and the total elapsed time t was measured. These two numbers could
be used to calculate the average time per state transition (t/(s−1)). The results
are in table 5.1. To perform these tests one has to open the referred model file,
language metamodel file and semantic description in the tool. See the disc for
more info (appendix A)

Table 5.1: Performance measures
Model File Language #States Time Time / State

Factorial.ad Activity Diagram 46 56.84 s 1.24 s
RecursiveFactorial.pkf Plotkin Functional 94 74.66 s 0.79 s
Test1.pkf Plotkin Functional 23 18.43 s 0.80 s
FibImperative.pim Plotkin Imperative 50 38.42 s 0.77 s

The state transition takes a considerable amount of time because it also includes
the visualization of the state. The visualization of the state involves applying
a graph layout algorithm and a rendering process performed by Graphviz. The
layout algorithm used is the one introduced by Sugiyama et al [Sug] and has a
time complexity of O(n). The transition algorithm itself uses the copy algorithm
as explained in section . The copy algorithm itself is basically a breath-first-
search algorithm and has therefore a worst case time complexity of O(n + e)
where n is the number of nodes and e is the number of edges in the graphs. The

73

CHAPTER 5. SEMANTIC ENGINE: TOOL FOR THE SEMANTIC

LANGUAGE

time complexity of a single transition is not investigated, this is seen as future
work.
The requirements of the tool ensured that the tool had some basic functionality.
The functionality of the tool is therefore sufficient, however more functions can
be added in the future. Again we remind you that this tool is a proof of concept.
The usability of the tool is probably rather good because the tool is built upon
the Eclipse framework and because we use Graphviz [gra] for state visualization.
State visualization greatly increases the usability.
The non-runtime qualities deal with qualities that can be measured when the
system does not execute. These qualities include modifiability, portability and
testability. The modifiability of the tool is of course hard to measure. The
tool has extensive JavaDoc documentation and this chapter gives a high level
overview of the software. Therefore we ensured good modifiability.
The portability of the tool to other MDE frameworks is rather low; the tool is
tightly bound to the EMF [EMF] framework and does not provide a framework
abstraction layer. However, with model transformations one can transform a
model to an EMF based model and still apply our approach.
There are no unit-tests or other explicit tests added to the source code. The
tests were mainly performed by simulating a model and checking the output.
It is difficult and time intensive to write unit tests as you have to check that a
new state is exactly what is expected. Manual tests are easier because one can
use the state view to check whether a new state is correct.

5.5 Conclusion

An implementation of the Semantic Language was needed in order to show a
proof of concept. A tool was build to provide simulation and debugging func-
tionality. This chapter explained the requirements of the tool. A high level ar-
chitecture of both the Semantic Engine and the User Interface was given in
order to understand the composition of the software.
The software architecture follows good practices in software engineering; de-
sign patterns are used and explained intensively. Object oriented code practices
like encapsulation, abstraction, modularity and inheritance are heavily used.
The clear separation between User Interface and Semantic Engine ensures high
cohesion but low coupling.
The quality attributes of the tool are also briefly discussed in this chapter.
A better measurement of those attributes is desirable. However, some critical
remarks regarding the quality attributes are made. The tool is mainly a proof
of concept and therefore there was no focus on runtime quality attributes.

74

6
Evaluation

6.1 Introduction

This chapter gives an evaluation of our approach and compares it to existing
approaches. Firstly we cover the expressiveness of our approach; can SemLang
be used to define the semantics for any DSL? Secondly we compare our approach
to existing approaches which were covered in chapter 2.7. The advantages and
disadvantages of the approaches are discussed.

6.2 Expressiveness

The expressiveness of a semantic framework in MDE says something about the
power of that framework. A semantic framework is fully expressive if the seman-
tics of any DSL can be described using that framework. A limited expressive
semantic framework is a framework which can only be used for a small set of
DSLs. It is of course difficult to measure the expressiveness of a framework
because there are an infinite number of DSLs.
However, insight into the expressiveness of an approach can be gathered by
means of a set of different DSLs. In chapter 3 we introduced different DSLs and
extended SemLang with features which were needed to specify the semantics
of each DSL. In the end of that chapter we added features to SemLang which
makes SemLang useful for graph based DSLs like Activity Diagrams and Petri
Nets.
Using these example DSLs we showed that SemLang is capable of defining
the semantics for a broad range of DSLs. However, this does not prove that
SemLang can be used for any DSL. In fact it is easy to create a DSL for
which it is difficult to define the semantics using SemLang. Such a DSL is for
example the Production System language defined by Rivera et al [RGdLV08].
The semantics for that language are defined using graph transformations and
Maude in the same paper for comparison purposes.
We tried to use SemLang to define the semantics of the Production System
language. However, this was not a straightforward process because SemLang
cannot be easily used to define the semantics of that language. SemLang rules
cannot contain complex graph patterns; they can only match one object and
the direct neighbours of that object. The semantics of the Production System
requires complex object matching.
We can conclude that SemLang is less expressive than graph transformations

75

CHAPTER 6. EVALUATION

or MDE with Maude. However, we could extend SemLang with more features
to increase the expressiveness. This work is seen as future research.

6.3 Comparison to Existing Approaches

Some existing approaches to defining the semantics of models were covered in
chapter 2.7. Each approach will be compared to our approach, disadvantages
and advantages of the approaches will be discussed.

6.3.1 Model Transformations

When specifying the semantics of a modelling language with model transfor-
mations one develops a model transformation which is used to transform the
model from state to state, thereby executing the model. An advantage of this
approach is that it already builds upon existing technologies in MDE like QVT
[OMG08].
A disadvantage of this approach is that it is difficult to use the model transfor-
mation specification for formal methods like model checking. It depends on the
transformation language used whether rigorous mathematical techniques can be
used on the specification. Currently, the most commonly used transformation
languages lack formal semantics.
Another disadvantage is the lack of modularity when using model transforma-
tions. Firstly there is a one-on-one relationship between a transition in the LTS
(in the semantic domain) and the transformation specification. With SOS there
are always one or more rules responsible for a transition in the LTS. We are
aware that a model transformation specification may consist of rule like struc-
tures, however, that depends on the transformation language used.
In fact a SemLang specification can also be seen as a model transformation
specification, because it consists of some rules which are used to transform a
model into a new model. However, the aim of SemLang was to define the seman-
tics of models and is therefore a better candidate for specifying semantics than
a transformation language which aims at pure model-to-model transformation.

6.3.2 Graph Transformations

Graph transformation is based on graph theory and has therefore a sound math-
ematical base. A graph transformation specification consists, just like SOS, of a
set of rules which define the transitions in the LTS. Apart from these similari-
ties between Graph Transformations and SOS there are also a lot of differences
between the two approaches.
The first difference is between the rules. A transition in the LTS is proved by
a set of rules in SemLang. With graph transformation there is a one-on-one
correspondence between the rules and the transitions. This tends to make the
rules with Graph Transformation large because each rule must describe more.
However, with SemLang we tend to have more smaller rules.
An advantage of the smaller rules is that they are more modular. Some rules
can be re-used by other rules. It may even be possible to use certain rules for
multiple DSL’s. This thesis was not focused on providing modularity. However,
the SemLang rules are built upon the MSOS approach as explained by Mosses

76

6.3. COMPARISON TO EXISTING APPROACHES

[Mos99, Mos02, Mos04]. MSOS is an extended version of SOS with features that
accommodate modularity.

Another advantage of SemLang is that there is a guiding principle for creating
the rule. The guiding principle is basically: each structure should have one or
more rules; there should be a transition condition for each sub-structure of that
structure. This guiding principle is derived from linguistics: the semantics of a
phrase is a composition of the semantics of the sub-phrases. We are not aware
of any guiding principle for creating rules for graph transformations.

A related advantage is that SOS is related to the interpreter design pattern
[GHJV00]. When designing an interpreter one creates an interpret function for
each language structure. This is similar to the approach in SOS where each
structure has one or more rules.

Maybe one of the most important disadvantages of graph transformation is
its performance: rule matching is NP-complete. In SOS rule matching is easy
because there is always a current node that has to be matched.

With graph transformations one is required to transform a model to a type graph
before graph transformation can be used. SemLang, however, works directly
with the metamodel. This can be seen as an advantage because the intermediate
transformation to a type graph is not needed. However, this introduces high
coupling between the metamodel and the semantic specification.

Graph transformations also has advantages over SemLang. It is very expres-
sive and it has a sound theoretic basis. The biggest advantage is the graph
awareness. SOS has difficulties when it is used with graphs, with SemLang we
provide a partial solution. But this solution is not as expressive as the graph
transformation approach. The comparison is summarized in table 6.1.

Table 6.1: Comparison of SemLang and Graph Transformations

Feature Graph Transformations SemLang

Rules Single rule for a transition Multiple rules for a transition
Modularity May be problematic MSOS aimed at modularity
Guiding Principle No guiding principle to create rules Based on principle of composition
Interpreter Not easy to map to interpreters Related to interpreter design pattern

Complexity Rule matching hard: NP-complete Rule matching easy
Conversion Needs conversion to type graph Works directly with the metamodel
Theory Sound theoretic basis Theoretic basis work in progress
Expressiveness Expressive Limited (future research)
Graph awareness Good Locally tree oriented

6.3.3 MDE with Maude

Maude is a very powerful rewriting engine and MDE with Maude seems there-
fore a fruitful approach. The biggest disadvantage of Maude is that it has its
own model framework. It is therefore required that models and metamodels are
transformed to Maude objects.

77

CHAPTER 6. EVALUATION

Another possible disadvantage of Maude is its complexity. It is required to learn
Maude before one tries to specify the semantics of a modelling language. How-
ever, the team that uses MDE with Maude is currently working on better tool
integration which will increase the usability.

6.3.4 Simulation in the Topcased Toolkit

The Topcased [CCG+08, VPF+06] approach is pragmatic and very efficient
in terms of memory usage and runtime. However, the semantics is defined in
the Java programming language which makes it less useful for applying rigorous
mathematical techniques. Also the code that specifies the semantics is very hard
to reuse for any other modelling language.

6.3.5 Semantics Anchoring

Some general disadvantages of Semantic Anchoring were already covered in
section 2.7.6. However, no comparison with SemLang was made.
Again, a disadvantage of this approach is that it does not work directly with the
metamodel of the DSL for which the semantics is defined. In fact this approach
needs an additional minimal modelling language for which the semantics is
formally defined. A model of a DSL is then transformed to a model of this
minimal modelling language.

6.4 Conclusion

This chapter provided an evaluation of the SemLang language. The first con-
clusion that can be made is that the expressiveness of SemLang has its limits.
It can be extended by adding more features. However, research is needed to find
out which features are needed.
Another conclusion is that SemLang has several advantages over the other se-
mantic approaches. SemLang is based on SOS and has therefore a good mathe-
matical basis. The close coupling between the DSL metamodel and a SemLang
specification is, in our eyes, a advantage because this coupling is unavoidable
and even desirable. This close coupling also prevents to use of any intermediate
language like we see with most other approaches.
Apart from having a theoretical basis, SemLang is also pragmatical. There is
a guidance for creating the rules and the rules are generally small. However, we
understand that knowledge of SOS and its compositional aspect is needed in
order to define the semantics of a DSL.

78

7
Conclusions

7.1 Introduction

This last chapter concludes the thesis. The first section gives a summary of the
thesis. The next section gives an answer to the main research question and all
sub-questions. The last section discusses possible directions for future research.

7.2 Summary

A lot of research is done in the Model Driven Engineering (MDE) community.
However, the focus is mostly on the static aspects of MDE. MDE is often used
for defining Domain Specific Languages (DSLs). However, the specification of a
DSL also requires that the semantics of the DSL are described in some (formal)
way.
A semantic approach that seems suitable for defining the semantics of a DSL is
Structural Operational Semantics (SOS) [Plo81]. SOS is a semantic framework
in which the semantic domain is a Labelled Transition System (LTS). The se-
mantics of a language is described using a set of rules. A single transition in the
LTS can be proven by a so called upwardly-branching-tree which is built using
the rules. However, there are several problems with applying SOS directly on a
DSL. Therefore the main research question of this thesis is: Can SOS be adapted
and applied successfully on MDE?.
Some other approaches for defining the semantics of modelling languages al-
ready existed. In all of these approaches there is a mapping from the modelling
language to a semantic domain. This mapping is specified in different ways.
Some approaches are very formal while other approaches are more pragmatical.
None of these approaches use SOS as a framework for specifying semantics.
Chapter 3 proposes some changes to SOS in order to make it applicable in
an MDE context. We propose a new language for defining semantics, called
SemLang, and is itself specified as a DSL. SemLang is used to define the
semantics for some DSLs which are similar to the languages in the paper by
Plotkin [Plo81]. However, SemLang also supports the specification of the se-
mantics of certain graph-based languages. This is an extension to the Plotkin
style SOS, as it only supports tree-based states.
Chapter 4 provides a formal basis for SemLang based on formalizations of SOS
[AFV01, MRG07, Mos04]. The semantic domain of SemLang is a labelled ter-
minal transition system (LTTS) in which the states are extended models of the

79

CHAPTER 7. CONCLUSIONS

DSL. SemLang models are essentially Transition System Specifications (TSSs)
in which there is a mapping from a SemLang model to a LTTS (the semantic
domain). The transitions in the LTTS can be proven by the construction of
proof trees. The main difference between SOS and SemLang is that the terms
in a rule have a different task. They either match or construct model objects.
The chapter does not formalize all constructs and features of SemLang. The
formalization is kept to the essential parts to keep it understandable. The main
goal of the formalization is to give a formal basis for SemLang. The focus of
this thesis is on the pragmatical aspects of SemLang.
A tool capable of executing SemLang specifications is discussed in chapter 5. It
provides simulation and debugging functionality. The requirements of the tool
and a high level architecture are both explained. The tool consists of two loosely
coupled modules, the Semantic Engine and the User Interface. The Semantic
Engine is an implementation of the Semantic Language and a simulation frame-
work. The User Interface is a layer on top of the Semantic Engine. It provides
a graphical user interface which increases the usability of the tool.
Our approach is evaluated in chapter 6. SemLang is applied to several DSLs to
demonstrate its expressiveness. However, the expressiveness of SemLang has its
limits. It could, for example, not be applied to the Production System language
defined by Rivera et al [RGdLV08]. The expressiveness can be increased by
adding new features to SemLang. Our approach is also compared to the other
approaches to specifying the semantics of modelling languages (as discussed in
section 2.7). SemLang is based on SOS and had therefore a good mathematical
basis and is also relatively more pragmatical.

7.3 Answers to the Research Questions

The main problem that needed to be solved was the incompatibility between
MDE and SOS. Initially it was not clear how SOS could be adapted to make
it useful for defining the semantics of DSLs. The main research question of the
thesis was therefore:

Can SOS be adapted and applied successfully to MDE?

The answer to the main research question is that SOS in fact can be adapted
to make it useful for defining the semantics of DSLs. The research question was
divided into different sub-questions, which are listed and answered below.

MDE models are graph structures but SOS is based on trees. Can SOS be adapted
in order to make it suitable for using it with graph structures?

The problem with graphs is that it introduces loops in the model. These loops
may cause infinity copying of nodes. This was solved by introducing a copy
algorithm which makes sure that nodes are not copied twice. The copy algorithm
is basically a breath-first-search based copy algorithm for graphs.
Another feature that was added to deal with this problem is the use of reference
meta-variables. The copy algorithm deals with those variables differently. This
feature is not strictly needed but it increases the expressiveness of SemLang.
Another feature that was added is support for quantification over lists. Both ex-
istential and universal quantification is supported. This feature makes SemLang
more useful for defining the semantics of graph based languages.

SOS is based on the abstract syntax description of languages, how can SOS be

80

7.3. ANSWERS TO THE RESEARCH QUESTIONS

adapted to deal with metamodels?

This question was not difficult to answer because metamodels and abstract
syntax descriptions have a lot in common. The rules were changed in order to
match and create objects instead of AST nodes. So called terms are used to
match objects and create them.

Terms in rules The terms in the rules are changed. In SOS they consist of
phrases of the DSL. However, a DSL in MDE does not require the syntax
to be defined. The main elements of an MDE model are objects instead
of sentences. The terms are changed to object patterns in order to match
objects in a model, or construct new objects.

The use of the metamodel instead of the abstract syntax description actually
enhances SOS because it supports polymorphism; rules can be created which
match abstract classes.

The semantic domain of SOS is a labelled transition system in which the states
are trees. How can we change the semantic domain in order to make it suitable
for models?

In chapter 4 we choose for terminal labelled transition systems (LTTSs) as the
semantic domain for SemLang. The states in the semantic domain of SOS are
sentences of the abstract syntax of the DSL and therefore always tree structures.
The states in the semantic domain SemLang, however, are extended models.
These extended models can be represented as graph structures. This solves the
incompatibility.
The answer to the main research question is that SOS can indeed by applied
to MDE, this is shown by proof of concept and partial formalization. The proof
of concept consists of the SemLang language and a tool which can simulate
models using a SemLang specification. The tool was written using the Eclipse
EMF [EMF] and RCP frameworks [RCP]. The architecture documentation can
be read in chapter 5. The complete source-code can be found on the disc that
comes with this thesis (seen appendix A).

7.3.1 Limitations

There are a number of limitations that can be found in our approach. However,
some limitations can be overcome and can therefore be seen as future work. A
list of limitations is given below.

• Expressiveness is limited

As explained in chapter 6 the expressiveness of SemLang is limited. This
can be increased by adding new features to the language. But it is not
know which features must be added and how many; too many features
would make SemLang complex and impractical.

• The language and tool is highly coupled to the Eclipse Modelling Frame-
work

It is difficult to create a modelling language without choosing one MDE
approach. However, by choosing the EMF [EMF] framework we could only
use SemLang to define the semantics of modelling language created with
EMF. The tool itself is also highly coupled to the EMF framework.

81

CHAPTER 7. CONCLUSIONS

• Modularity is an open issue

Defining semantics of languages in a cross language modular fashion could
enable reuse between different languages. SemLang however has no func-
tionality to deal with this kind of modularity. A SemLang specification is
always a single file and no other specifications can be included.

• No good insight into the efficiency and performance quality attributes

The quality attributes of the tool were explained in chapter 5. The per-
formance of the tool was only roughly measured. The measurements did
not take the effect of the visualisation into account. The layout and visu-
alization of the model is done in each transition and is therefore a major
contributor to the runtime.

7.4 Future Work

This thesis provides an initial language based on SOS which can be used to
define the semantics of a DSL. The SemLang language is a proof of concept
and the tool is created to simulate models.
However, there are still open issues and future research directions. A list of
possible future research directions is given in this section. First some possible
extensions to SemLang are given. Secondly we look at some possible applica-
tions fields for SemLang.

7.4.1 Concurrency & Interactivity

SOS is really powerful in specifying the semantics for concurrent systems [AFV01,
MRG07]. The Semlang language does not support concurrency and synchro-
nization constructs. This can be achieved by introducing labels in the LTTS of
the semantic domain.
The labels can also be used to support interactivity (as encountered in user-
interface applications). The labels represent events that occur in the user inter-
face. Together with this extension SemLang can be used to define the behaviour
of user interfaces.

7.4.2 Rule Extensions

The current rules in SemLang consist of terms which either match or cre-
ate objects. More constructs can be added to increase the expressive power of
SemLang.
One way to improve the expressive power of SemLang is to add more list
matching techniques. A good candidate extension can be found in the paper of
Igarashi et al [IPW01]. In their paper they introduce a language Featherweight
Java, which is a subset of Java. Special list matching techniques are used in the
rules in the SOS specification of Featherweight Java.
SemLang already has support for simple object expressions similar like those
found in OCL. However, a possible extension is to adopt OCL [OMG03b] as
an expression language in SemLang. OCL could be used to extend the ob-
ject matching and object creation capabilities by using OCL path expressions.

82

7.4. FUTURE WORK

OCL was currently not used because it does not allow binding objects to meta-
variables, therefore decreasing the object matching power of SemLang.

7.4.3 Potential Applications

There are a number of potential applications for SemLang. These application
domains are similar to the application domains of SOS. A limited list of appli-
cations is listed below.

Simulation

The SemLang semantics of a DSL can be used to simulate models of that DSL.
The purpose of simulation is to gain understanding of a system without manip-
ulating the real system. Therefore simulation is always performed on a model
of the system. This is how Combemale et al [CCG+08] define simulation. They
also subdivide simulation in three steps: Workload generation (trace building),
Model execution and Result analysis. It is possible to combine two of these steps,
or even three of them.
Simulation is, in fact, already supported by the tool written for this research.
The tool allows simulating a model for which the semantics is defined. The
workload (execution trace) is generated on the fly; the user can choose a transi-
tion for any non-deterministic step. The result is also generated on the fly; the
states can be inspected and the proof for the transitions can also be inspected
while simulating the model. However, the tool is only a proof of concept. The
tool could be integrated with other tools. The usability could be improved, for
example by adding a SemLang editor.

Proofs and Reasoning

The semantic domain of SemLang is formally specified in chapter 4. A big
advantage of a well known semantic domain is that rigorous mathematical tech-
niques can be used. In SOS, for example, one can use Structural Induction (SI)
to prove certain statements over a program or over the SOS rules themselves.
SI fits SOS particularly well because the states in SOS are always trees; this is
because SI is a recursive method which works well on recursively defined struc-
tures like lists and trees. In order to make SI useful for SemLang one must
define the states of SemLang in a recursive manner. A possible solution to this
problem is to use induction over the size of the graph. This work is seen as
future research.

Generation of Interpreters

Interpreters (and compilers) must follow the semantics of a language. An inter-
preter has a bug if it does not follow the behaviour as specified in the (formal)
semantics. It looks promising to generate interpreters from the semantics specifi-
cation of a language. In this way bugs can be avoided and the time to implement
an interpreter can be decreased dramatically. In fact this topic is investigated
by different researchers [Mic93, Poe94, Bru99].
SOS is a good candidate for generating interpreters because it is related to the
Interpreter Design Pattern [GHJV00, pages 243–255]. In the Interpreter Design
Pattern an Interpret operation is specified for each abstract syntax class. The

83

CHAPTER 7. CONCLUSIONS

code in an InterpretX operation for an abstract syntax structure X defines the
semantics for that structure. An Interpret operation may call other Interpret
operations in order the interpret the sub-sentences. This technique is similar to
the way the rules in SOS are specified; a rule is defined for each metaclass and
a transition condition is added for each sub-structure.

84

References

[AFV01] Luca Aceto, Willem Jan (Wan) Fokkink, and Chris Verhoef. Struc-
tural operational semantics. In Jan A. Bergstra, Alban Ponse, and
Scott A. Smolka, editors, Handbook of Process Algebra, Chapter 3,
pages 197–292. Elsevier Science, Dordrecht, The Netherlands, 2001.

[B0́4] Jean Bézivin. In search of a basic principle for model-driven engi-
neering. CEPIS, UPGRADE, The European Journal for the Infor-
matics Professional V 2, pages 21–24, 2004.

[BH02] Luciano Baresi and Reiko Heckel. Tutorial introduction to graph
transformation: A software engineering perspective. In Proc. Graph
Transformation - First International Conf., Barcelona, Spain, 2002.

[BHJ+05] Jean Bézivin Guillaume Hillairet, Frédéric Jouault, Ivan Kurtev,
and William Piers. Bridging the ms/dsl tools and the eclipse mod-
eling framework. Proceedings of the International Workshop on
Software Factories at OOPSLA, San Diego, 2005.

[Bru99] Kim B. Bruce. Formal semantics and interpreters in a principles of
programming languages course. In Daniel Joyce, editor, Proceedings
of the Thirtieth SIGCSE Technical Symposium on Computer Sci-
ence Education, volume 31.1 of SIGCSE Bulletin, pages 331–335,
N. Y., March 24–28 1999. ACM Press.

[CCG+08] Benôıt Combemale, Xavier Crégut, Jean-Pierre Giacometti, Pierre
Michel, and Marc Pantel. Introducing simulation and model ani-
mation in the MDE topcased toolkit, 2008.

[CSAJ05] Kai Chen, Janos Sztipanovits, Sherif Abdelwalhed, and Ethan Jack-
son. Semantic anchoring with model transformations. Springer
LNCS, 2005.

[ECO] Eclipse Ecore. http://www.eclipse.org/modeling/emf/.

[EMF] Eclipse Modeling Framework (EMF). http://www.eclipse.org/

modeling/emf.

[GHJV00] Gamma, Helm, Johnson, and Vlissides. Design Patterns Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, Mas-
sachusetts, 2000.

[GME] Generic Modeling Environment (GME). http://www.isis.

vanderbilt.edu/Projects/gme.

[GMF] Eclipse Graphical Modeling Framework (GMF). http://www.

eclipse.org/gmf.

[gra] Graphviz - Graph Visualization Software. http://www.graphviz.

org/.

[GRe] Graph Rewriting and Transformation (GReAT). http://www.

isis.vanderbilt.edu/Projects/mobies.

85

REFERENCES

[GSCK04] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories.
Wiley, 2004.

[Hec06] Reiko Heckel. Graph transformation in a nutshell. Electr. Notes
Theor. Comput. Sci, 148(1):187–198, 2006.

[Hen90] Matthew Hennessy. The Semantics of Programming Languages: An
Elementary Introduction Using Structural Operational Semantics.
Wiley, University of Sussex, United Kingdom, 1990.

[Hoa69] Hoare. An axiomatic basis for computer programming. CACM:
Communications of the ACM, 12, 1969.

[HR04] David Harel and Bernhard Rumpe. Meaningful modeling: What’s
the semantic of “semantics”? Springer LNCS, 2004.

[Hud98] Paul Hudak. Modular domain specific languages and tools. In
P. Devanbu and J. Poulin, editors, Proceedings: Fifth International
Conference on Software Reuse, pages 134–142. IEEE Computer So-
ciety Press, 1998.

[IPW01] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Feather-
weight Java: A minimal core calculus for Java and GJ. TOPLAS,
23(3):396–459, May 2001.

[JB06] Frédéric Jouault and Jean Bézivin. Km3: a dsl for metamodel spec-
ification. Proceedings of 8th IFIP International Conference on For-
mal Methods for Open Object-Based Distributed Systems (LNCS
4037), pages 171–185, 2006.

[JBK06] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. Tcs: a dsl for
the specification of textual concrete syntaxes in model engineer-
ing. Proceedings of the fifth international conference on Generative
programming and Component Engineering, 2006.

[JFa] JFace. http://wiki.eclipse.org/index.php/JFace.

[Ken02] Stuart Kent. Model driven engineering. Proceedings of
ACME/IEEE 9th International Conference on Model Driven En-
gineering Languages and Systems (Modules/UML ’06), pages 286–
298, 2002.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling,
Enabling Full Code Generation. John Wiley & Sons, Inc., 2008.

[Kur05] Ivan Kurtev. Adaptability of Model Transformations. University of
Twente, Netherlands, 2005.

[MHS05] Mernik, Heering, and Sloane. When and how to develop domain-
specific languages. CSURV: Computing Surveys, 37, 2005.

[Mic93] Greg Michaelson. Interpreter Prototypes from Formal Language
Definitions. PhD thesis, Heriot-Watt University, Department of
Computing & Electrical Engineering, Riccarton, Scotland, EH14
4AS, 1993.

86

REFERENCES

[Mil90] Robin Milner. Operational and algebraic semantics of concurrent
processes. In Jan van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 1201–1242. MIT Press/Elsevier, 1990.

[Mos99] Peter D. Mosses. Foundations of modular sos. Technical report,
University of Aarhus, Denmark, 1999.

[Mos02] Peter D. Mosses. Pragmatics of Modular SOS. Springer LNCS Vol
2422, University of Aarhus, Denmark, 2002.

[Mos04] Peter D. Mosses. Modular structural operational semantics. Journal
of Logic and Algebraic Programming 60-61, pages 195–228, 2004.

[Mos06] Peter D. Mosses. Formal semantics of programming languages, an
overview. Electronic Notes in Theoretical Computer Science 148,
pages 41–73, 2006.

[MRG07] MohammadReza Mousavi, Michel A. Reniers, and Jan Friso Groote.
Sos formats and meta-theory: 20 years after. TCS: Theoretical Com-
puter Science, 373(3):238 – 272, 2007. Structural Operational Se-
mantics.

[OMG] OMG. Unified Modeling LanguageTM(UML R©). http://www.omg.

org/technology/documents/modeling_spec_catalog.htm#UML.

[OMG02] OMG. Meta object facility (mof) specification, version 1.4. OMG
Document, 2002.

[OMG03a] OMG. Meta object facility (mof) 2.0 core specication. OMG Doc-
ument, 2003.

[OMG03b] OMG. Uml ocl 2.0 specification. OMG Document, 2003.

[OMG08] OMG. Meta Object Facility (MOF) 2.0, Query/View/Transfor-
mation specification, V1.0. http://www.omg.org/docs/formal/

08-04-03.pdf, 2008.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics.
Technical report, University of Aarhus, Denmark, 1981.

[Poe94] A. Poetzsch-Heffter. Developing efficient interpreters based on for-
mal language specifications. In P. Fritzson, editor, Compiler Con-
struction, volume 786 of LNCS, pages 233–247. Springer, 1994.

[RCP] Eclipse Rich Client Platform (RCP). http://wiki.eclipse.org/
index.php/Rich_Client_Platform.

[RGdLV08] José Eduardo Rivera, Esther Guerra, Juan de Lara, and Antonio
Vallecillo. Analyzing rule-based behavioral semantics of visual mod-
eling languages with maude. In Dragan Gasevic, Ralf Lämmel, and
Eric Van Wyk, editors, SLE, volume 5452 of Lecture Notes in Com-
puter Science, pages 54–73. Springer, 2008.

[RRDV07] R. Romero, J.E. Rivera, F. Duran, and A. Vallecillo. Formal and
tool support for model driven engineering with maude. Journal of
Object Technology, 2007.

87

REFERENCES

[RV07] J.E. Rivera and A. Vallecillo. Adding behavioral semantics to mod-
els. Proceedings of the 11th IEEE International Enterprise Dis-
tributed Object Computing Conference, 2007.

[Sch86] David A. Schmidt. Denotational Semantics – A Methodology for
Language Development. Wm. C. Brown Publishers, 1986.

[SF07] Markus Scheidgen and Joachim Fischer. Human comprehensible
and machine processable specifications of operational semantics.
ECMADA-FA, LNCS 4530, 2007.

[Sol00] R. Soley. Model driven architecture. OMG Document, 2000.

[SS71] Dana Scott and Christopher Strachey. Toward a mathematical se-
mantics for computer languages. pages 19–46. April 1971.

[Sug]

[SW08] Daniel A. Sadiley and Huido Wachmuth. Prototyping visual in-
terpreters and debuggers for domain-specific modeling languages.
ECMADA-FA, LNCS 5095, 2008.

[SWT] SWT: The Standard Widget Toolkit. http://www.eclipse.org/

swt.

[TCCG07] Xavier Thirioux, Benôıt Combemale, Xavier Crégut, and Pierre-Lo
”ic Garoche. A framework to formalise the mde foundations. In-
ternational Workshop on Towers of Models (TOWERS), 2007.

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain specific
languages: An annotated bibliography. ACM SIGPLAN Notices, V
25, issue 6, pages 26–36, 2000.

[VPF+06] F. Vernadat, Christian Percebois, Patrick Farail, R. Vingerhoeds,
Alain Rossignol, Jean-Pierre Talpin, and David Chemouil. The
TOPCASED project - A toolkit in OPen-source for critical appli-
cations and system development. In Data Systems In Aerospace
(DASIA), Berlin, Germany, page (electronic medium), http://

www.esa.int/publications, May 2006. European Space Agency
(ESA Publications).

88

A
Appendix A: Compact Disc

This thesis is accompanied with a compact disc that contains software, source
code, documentation and other files:

1. Thesis in Digital Form

Path /thesis

Description This thesis in digital pdf format. The thesis includes hyper-
links that allow easy navigation between chapters.

Path /thesis/latex/

Description Contains the latex source code of the thesis

2. Presentation in Digital Form

Path /presentation/

Description Contains the presentation(s) done for this thesis in pdf form

3. Tool Binaries and Source Code

Path /tool

Description Contains the binaries of the tool for the Windows platform

Path /code/tool

Description Contains the sourcecode of the tool. Open this folder in
eclipse as an eclipse workspace

Path /code/tool/SemanticLanguage

Description Contains the metamodel and concrete syntax of the seman-
tic language defined in km3

Path /code/tool/SemanticEngine

Description Contains the sourcecode for the semantic engine

Path /code/tool/SemanticEnginePlugin

Description Contains the sourcecode for the user interface of the seman-
tic engine

89

APPENDIX A. APPENDIX A: COMPACT DISC

4. Example DSLs and their Semantics

Path /code/dsls

Description Contains a list of DSLs for which the semantics are defined.

Path /code/dsls/*/Metamodel

Description Contains the metamodel of a dsl

Path /code/dsls/*/Samples

Description Contains one or more sample models of the dsl

Path /code/dsls/*/Semantics

Description Contains the semantics specification in the Semantic Lan-
guage of the dsl

90

