
Probabilistic model checking

A comparison of tools

Masters Thesis
in Computer Science

of

H.A. Oldenkamp

born on the 23th of September 1979

May, 2007

Chairman:
Prof. Dr. Ir. Joost-Pieter Katoen

Supervisors:
Ivan S. Zapreev MSc
Dr. David N. Jansen
Dr. Mariëlle I.A. Stoelinga

University of Twente,
Faculty EEMCS,
Computer Science Department,
Formal Methods and Tools Group

Summary

Model checking is a technique to establish the correctness of hardware or software systems in an
automated fashion. The goal of this technique is to try to predict system behaviour, or more specif-
ically, to formally prove that all possible executions of the system conform to the requirements.
Probabilistic model checking focusses on proving correctness of stochastic systems (i. e. systems
where probabilities play a role). A probabilistic model checker tool automates the correctness
proving process. These tools can verify if a system – which is described by a model, written in a
formal language – satisfies a formal specification, which is expressed using logics, such as Proba-
bilistic Computation Tree Logic (PCTL). We have studied the efficiency of five probabilistic model
checker tools, namely: PRISM (Sparse and Hybrid mode), MRMC, ETMCC, YMER and VESTA.
We made a tool by tool comparison, analysing model check times and peak memory usage. This
was achieved by using five representative case studies of fully probabilistic systems, namely; Syn-
chronous Leader Election (SLE), Randomized Dining Philosophers (RDP), Birth-death process
(BDP), Tandem Queuing Network (TQN) and Cyclic Server Polling System (CSP). Besides their
performance, we also investigated the characteristics of each tool, comparing their implemen-
tation details, range of supported probabilistic models, model specification language, property
specification language and supported algorithms and data structures. During our research, we
have performed nearly 15,000 individual runs. By ensuring that our experiments are automated,
repeatable, verifiable, statistically significant and free from external influences, our findings are
based on a solid methodology.

We have witnessed a significant difference in model check time as well as memory usage between
the tools. From our experiments we learned that YMER (which is a statistical tool) is by far the
best tool for verifying medium to large size models. It outperforms the other statistical model
checker VESTA and all numerical tools. YMER has a remarkably consistent (low) memory usage
across various model sizes. Although its performance is excellent, we found that YMER does
have limitations: the range of supported models and probabilistic operators is limited and it can
not provide the same level of accuracy as numerical tools. YMER may occasionally report wrong
answers, but this can be expected of tools using a statistical approach, where there exists a trade-
off between speed and accuracy. The benefit of statistical tools is that they scale much better
(performance wise) in relation to the state-space size than the numerical tools.

Comparing the numerical tools we conclude that MRMC has the best performance (time and
memory wise) for models up to a few million states. This is especially true for steady-state
and nested properties1, for other properties (i. e. bounded Until,interval Until and unbounded
Until) MRMC and PRISMSparse are rather close. On larger models, PRISMSparse (and sometimes
also PRISMHybrid) performs better. The sparse engine is usually faster than the hybrid engine
at the cost of substantially greater memory usage. As for ETMCC, it has the worst time and
memory performance, it frequently runs out of memory in situations where the models could easily
be checked by the other tools. The performance differences between the two leading numerical
tools MRMC and PRISM have several causes. First of all, PRISM always construct an MTBDD
(Multiterminal Binary Decision Diagram), in sparse mode the MTBDD is converted to a sparse
matrix after performing some pre-computations. This may take a significant time and influence
the model check time. There is no such influence for MRMC as it starts model checking on the pre-
generated sparse matrix. Secondly, the MTBDD size plays a crucial role in PRISMs performance.
Large MTBDDs lead to poor performance of the hybrid engine. The difference between MRMC
and PRISMS is caused by the pre-computation step that is performed by PRISM on the MTBDD.
The pre-computation time is included in the model check time. Finally, MRMCs performance on
large models might be influenced by its high memory usage, in situations where the memory usage
exceeds the systems RAM space, swapping will cause a slow down.

On the aspect of user friendliness we find PRISM the most user friendly tool. MRMC is more
appropriate as a fast back-end verification engine as it has a simple input format.

1 We verified two nested properties, namely for the BDP case study: P≥1[P≥0.9[true U≤100 (n = 70)] U (n = 50)]
and for TQN: S>0.2[P>0.1[X snd]]

Preface

This master thesis project has been a challenging and educational activity. I have had the oppor-
tunity to work on a project that deals with collecting, analysing and interpreting vast amounts
of information, which honed my methodical and analytical capabilities. Another benefit of this
project is that I gained an insight into the field of probabilistic model checking, which was a
relatively new subject to me.

I would like to thank all of my supervisors for there patience and thorough feedback. I am also
grateful for the information provided by Dr. Dave Parker from the University of Birmingham on
the inner workings of the PRISM tool. On a final note I would like to say to my first supervisor,
Ivan Zapreev:
IVAN, OQEN^ PRIZNATELEN ZA GVO� NEOCENIMU� POMOW^.

Marcel Oldenkamp
May, 2007

Glossary

BDD Binary Decision Diagram
BDP Birth-Death Process
BSCC Bottom Strongly Connected Component
CMRM Continuous Markov Reward Model
CSL Continuous Stochastic Logic
CSP Cyclic Server Polling
CSRL Continuous Stochastic Reward Logic
CTMC Continuous-Time Markov Chain
CUDD CU Decision Diagram
DMRM Discrete Markov Reward Model
DTMC Discrete-Time Markov Chain
ETMCC Erlangen-Twente Markov Chain Checker
GPL General Public License
GSMP Generalized Semi-Markov Process
GUI Graphical User Interface
J2SE Java 2 Standard Edition
JOR Jacobi Over-Relaxation
JVM Java Virtual Machine
MDP Markov Decision Process
MOVES Software Modelling and Verification
MRMC Markov Reward Model Checker
MTBDD Multi-Terminal Binary Decision Diagram
OS Operating System
OSSD On-the-fly Steady-State Detection
PCTL Probabilistic Computation Tree Logic
PEPA Performance Evaluation Process Algebra
PRCTL Probabilistic Reward Computation Tree Logic
PRISM Probabilistic Symbolic Model Checker
QuaTEx Quantative Temporal Expressions
RAM Random Access Memory
RDP Randomized Dining Philosophers
RSS Resident Set Size
RWTH Rheinisch-Westfälische Technische Hochschule
SLE Synchronous Leader Election
SOR Successive Over-Relaxation
State-space The set of all possible states and transitions.
STD Student’s t-Distribution
Swap The memory space (i. e. RAM) of a computer can be extended by using the hard

drive as memory. This is called swap. Note that accessing swap memory typically
takes a lot longer than accessing RAM.

SZ Size (memory) in physical pages
TQN Tandem Queuing Network
VSZ Virtual Memory Size (RAM + swap)

Contents

Glossary 7

1 Introduction 11
1.1 Approach . 11

2 Background on probabilistic model checking 15
2.1 Model checking . 15
2.2 Probabilistic model checking . 16
2.3 Probabilistic models . 17

2.3.1 Discrete-Time Markov Chains (DTMC) . 18
2.3.2 Continuous-Time Markov Chains (CTMC) 19

2.4 Logics for checking probabilistic models . 21
2.4.1 Probabilistic Computation Tree Logic (PCTL) 21
2.4.2 Continuous Stochastic Logic (CSL) . 22

2.5 Model checking Markov chains . 23
2.5.1 Numerical and statistical methods . 23
2.5.2 PCTL model checking of DTMCs . 24
2.5.3 CSL model checking of CTMCs . 25
2.5.4 Solving a system of linear equations . 26

2.6 State-space representation: Explicit and Symbolic 27

3 Probabilistic model checker tools 29
3.1 PRISM . 29
3.2 ETMCC . 31
3.3 MRMC . 32
3.4 YMER . 34
3.5 VESTA . 35
3.6 Summary . 36

4 Comparing tool efficiency 39
4.1 Experiment setup . 39
4.2 Model construction . 43
4.3 Case studies: data collection and interpretation . 44

4.3.1 Synchronous Leader Election . 45
4.3.2 Randomized Dining Philosophers . 48
4.3.3 Birth-death process . 50
4.3.4 Tandem Queuing Network. 54
4.3.5 Cyclic Server Polling System. 60

4.4 Analysis . 66
4.4.1 Analysis by probabilistic operator. 67
4.4.2 Causes of performance differences . 72

4.5 User friendliness . 75

5 Conclusion 77
5.1 Recommendations . 79

5.1.1 Comparative research . 79
5.2 Future Work . 80

APPENDICES 81

A Tool settings 83

B Case studies: Model size and sample size 85
B.1 DTMC . 85

B.1.1 Synchronous Leader Election . 85
B.1.2 Randomized Dining Philosophers . 85
B.1.3 Birth-death process . 86

B.2 CTMC . 86
B.2.1 Tandem Queuing Network . 86
B.2.2 Cyclic Server Polling system . 87

C Model check times 91
C.1 Synchronous Leader Election . 91
C.2 Randomized Dining Philosophers . 92
C.3 Birth-death process . 92
C.4 Tandem Queuing Network . 93
C.5 Cyclic Server Polling system . 94

D Peak Memory consumption 97
D.1 Synchronous Leader Election . 97
D.2 Randomized Dining Philosophers . 98
D.3 Birth-death process . 98
D.4 Tandem Queuing Network . 99
D.5 Cyclic Server Polling system . 100

Bibliography 102

Chapter 1

Introduction

In the early days of software (and hardware) development, it was (and regularly still is) com-
mon practice to write software first and (perhaps) test it later. The concept of verifying soft-
ware/hardware correctness by means of testing often proved inadequate for complex systems.
Experience learned that the effect of software bugs can vary from causing a slight inconvenience to
disastrous effects, such as the explosion of the Ariane 5 launch system. Since the early 80’s, people
have been working on a way to formally verify whether a system satisfies a certain behavioural
property by means of a technique called model checking [21]. Model checking is a technique to
establish the correctness of a system. In contrast to testing, model checking looks at all possible
behaviours of a system. While testing can only find errors, formal verification by means of model
checking can also prove their absence. It enables expressing properties to which the answer is “yes”
or “no”, such as: it is never the case that traffic lights “A” and “B” are green simultaneously.
While formal verification focuses on the absolute correctness of systems, in practice such inflexi-
ble demands are hard, or even impossible, to guarantee. Instead, systems are subject to various
phenomena of stochastic nature, such as message loss or garbling, unpredictable environments,
faults, and delays. Correctness thus is of a less absolute nature. Accordingly, instead of checking
whether system failures are impossible, a more realistic aim is to establish, for instance, whether
“the chance of failure is at most 0.01%”. Such properties can be checked using probabilistic model
checking. There are many software tools available that automate the process of probabilistic model
checking. Such tools accept a system model description (“the possible behaviour”), a specification
of the property to be considered (the “desirable behaviour”), and then systematically check the
validity of the property on the given model.

We are interested in the performance difference between available probabilistic model checker
tools. We desire an in-depth analysis of the difference in speed (i. e. how much computation
time does the tool require to verify a particular model and property) and memory usage (i. e. the
maximum amount of memory consumed by the tool). In addition, we are interested in the overall
differences amongst the tools, such as their variety of supported probabilistic models and logical
operators for property specification. This thesis sets out to compare several model checkers for
probabilistic systems (henceforth called tools), by means of an empirical study, and attempts to
observe and explain relevant phenomena.

1.1 Approach

We selected five probabilistic model checker tools for use in an experimental comparison. Limit-
ing ourselves to five tools allowed for an in-depth research between their differences in the time
allowed. For those familiar with probabilistic model checking we note that three out of the five
tools utilise “numerical” techniques, the others are based on “statistical” methods (i. e. simulation
and sampling). These terms will be explained in Chapter 2. In order to compare the different
tools we established a list of key factors which all tools have in common and that are of inter-

12 Chapter 1. Introduction

est to compare. In the initial phase we investigated the general characteristics of each tool and
compared their implementation details, range of supported probabilistic models, model specifi-
cation language, property specification language (i. e. temporal logic operators) and supported
algorithms & data structures. This was accomplished by investigating available documentation
and publications related to the tools and naturally by using the tools themselves. The core of the
project involved an in-depth study into the performance differences between each of the tools. We
therefore constructed a test environment to gather and analyse data related to:

1. speed - the computation time required to verify a particular model and property
2. memory usage - the peak memory consumed by the tool during its execution

Using five representative case studies taken from the literature on performance evaluation
and probabilistic model checking we performed several experiments. For each case study we
generated equivalent1 models written in the model description language of each individual tool. We
constructed a set of properties expressed in the temporal logic PCTL (Probabilistic Computation
Tree Logic) or CSL (Continuous Stochastic Logic) and arranged for the size of the model to be
adjustable. We then collected performance data by letting each tool verify the properties on all
the model sizes.

In order to gather reliable data, we created an isolated test environment, meaning; we made sure
the conditions for each experiment were the same except for the independent2 variables (i. e. the
ones we want to manipulate, namely the model size and property). We used a standard Personal
Computer that was designated to this project only, such that others could not inadvertently
change the environment. All the data, such as tool installation files, input models and result files
were stored on the local hard drive, as to avoid influence in performance measurements due to
network traffic issues. The tools were considered as a “black box”, meaning we made external
measurements. This ensured a uniform method of collecting performance data, independent of the
tools implementation. We did not build any measurement constructions into the source code of the
tools, since this might influence their performance, in addition, this would require the availability
of the source code of each tool. The verification parameters of each tool were set to corresponding
levels. For example, the error bound ε, which is used in solving a system of linear equations, is
set to 10−6 for all non-statistical tools.

Automation. Because we created multiple properties and model sizes per case study, and had
to verify each combination using the five tools, automation became a necessity (we performed
nearly 15,000 individual runs). All experiments and measurements were automated by means of
Linux shell scripts. This enabled us to easily repeat experiments many times and collect data
in a uniform style. An experiment consisted of verifying one property on one particular model
size using one of the model checker tools. The tools were restarted before each experiment; this
prevents features such as caching to influence the results. Each experiment was repeated 20 times,
after which we calculated the sample mean and standard deviation of data such as elapsed time.
The number of runs was limited to 3 in stead of 20 whenever the total time of a single run exceeded
30 minutes, this prevented experiments from consuming excessive amounts of time, but resulted
in a less accurate standard deviation. To counter this effect we used the student’s t-distribution
[26], which takes the number of samples into account. The raw data produced by the tools was
processed automatically by means of shell scripts and a Java application that we designed to
perform the necessary calculations and generate results for easy display in LATEX3.

1 With equivalent models we mean that they model the same system and reflect identical (possible) behaviour.
2 An independent variable is selected and manipulated by the experimenter to observe its effect on the dependent

variable (i. e. the variable that is observed and measured) [31].
3 LATEX is a document preparation system for high-quality typesetting, see www.latex-project.org.

www.latex-project.org.

Chapter 1. Introduction 13

Organisation of the thesis. Chapter 2 presents the necessary background information on
(probabilistic) model checking, including the different probabilistic models such as Discrete-Time
Markov Chains and Continuous-Time Markov Chains and the logics PCTL and CSL for property
specification. Chapter 3 offers a tool by tool overview ranging from general background information
to supported logical operators, algorithms and data structures. In Chapter 4 we perform a series
of experiments on five probabilistic model checker tools to measure and compare their efficiency.
We utilize five well known case studies and compare the performance results of each tool. We
measure and analyse the time and peak memory usage required by each tool (to verify a specific
PCTL/CSL property). Finally, Chapter 5 concludes the thesis.

In this thesis we denote footnotes by a superscripted digit0 and references are placed between
brackets [0]. A glossary explaining the abbreviations and technical terms is listed on page 7.

Chapter 2

Background on probabilistic
model checking

This chapter gives an introduction to (probabilistic) model checking, it elaborates the basic con-
cepts relevant for this thesis, starting with model checking in general and moving on to probabilistic
model checking, probabilistic models and logics for checking probabilistic models.

2.1 Model checking

When designing systems (hardware or software) it is important to know whether or not your system
will operate as expected/required. For instance you do not want to find out after implementation
and delivery of your nuclear power plant control system that it is not as safe as was expected. There
are several techniques available that can be used to verify the functional correctness of a system.
Examples of such techniques are: theorem proving, simulation/testing and model checking. This
thesis focuses on the last technique, namely formal verification by means of model checking [21].
The goal of this technique is to try to predict system behaviour, or more specifically, to formally
prove that all possible executions of the system conform to the requirements. Typical problems
that are addressed are [38]:

• Safety [6]: e. g. does a given mutual exclusion algorithm guarantee mutual exclusion?
• Liveness [6]: e. g. will a packet transferred via a routing protocol eventually arrive at the

correct destination?
• Fairness [29]: e. g. will a repeated attempt to carry out a transaction be eventually granted?

As the name suggests, model checking is performed on a model of a system. The model is
usually generated from a high level system description, such as process algebra or Petri net.
Typically, these generated models are non-deterministic finite-state automata1. These automata
(i. e. transition systems) describe the possible system behaviour. They can be seen as directed
graphs consisting of a finite set of states (nodes) labelled with atomic propositions and state
transitions (edges) that show how the system can change from one state to another. The atomic
propositions represent the basic properties that hold in each state. Once the system is represented
by a model we can check if the model satisfies a formal specification (i. e. if it has certain properties).
The properties that are checked against the system model are expressed using logics, such as LTL
(Linear Time Logic) or CTL (Computation Tree Logic). These logics can express properties on
states or paths in the automata. Once a model and property have been formulated the model
checking process will perform a systematic state-space exploration to verify if the property holds.
This form of traditional model checking focuses on delivering a 100% accurate guarantee whether or
not a property holds in a certain model. There are many cases where giving an absolute guarantee

1 The interested reader is referred to [72] for detailed information on finite-state automaton.

16 Chapter 2. Background on probabilistic model checking

is not feasible or even impossible. Examples are communication protocols, such as Bluetooth or
IEEE 802.11 Wireless LAN, that have to deal with a certain probability of message loss. This is
where probabilistic model checking can be utilized.

2.2 Probabilistic model checking

Probabilistic model checking is an automatic formal verification technique for the analysis of
systems which exhibit stochastic behaviour [41]. The technique is similar to model checking as
discussed earlier. The major difference is that a probabilistic model contains additional informa-
tion on likelihood or timing of transitions between states, or to be more specific, it can model
stochastic behaviour. Probabilistic model checking refers to a range of techniques for calculating
the probability of the occurrence of certain events during the execution of the system, and can
be useful to establish properties such as “shutdown occurs with probability at most 0.01” and
“the video frame will be delivered within 5ms with probability at least 0.97” [50]. Applications
range from areas such as randomized distributed algorithms to planning and AI, security [60], and
even biological process modelling [55] or quantum computing. An overview of the probabilistic
model checking procedure is given in Figure 2.1. It shows that a probabilistic model checker takes
as input a property and a model and delivers the result “Yes” or “No” (i. e. whether or not the
property is satisfied) or some probability. The following sections elaborate on the input of the
model checker tools, namely the model types and logics. But first an example is introduced, that
is used throughout this chapter.

probabilistic
model checker

e.g. PRISM, MRMC

probabilistic
property

e.g. PCTL, CSL (logics)

probabilistic
model

e.g. DTMC, CTMC

result
yes / no / probability

Figure 2.1: Probabilistic model checking overview

The Hubble space telescope example. This example (an adaptation from [38]) models the
failure behaviour of the Hubble space telescope2. We start by describing the real system, which
consists of parts that can possibly fail. Once the system is understood, we will model its failure
behaviour, so that we may predict its behaviour and ask question such as: “What is the probability
that the system will operate without failure for the next 10 years?”

System. The system has a steering unit with six gyroscopes, which are used to aim the telescope.
Redundancy is an important issue when designing systems such as the space telescope, since it
is obvious that performing repairs is not trivial. This is why the telescope is designed in such
a way that it will still function with full accuracy when only three of its six gyroscopes are
operational. With less than three gyroscopes the telescope turns into sleep mode, meaning repairs
are necessary3. If none of the gyroscopes are operational the telescope will crash. No repair
mission will be undertaken, as long as there are more than two gyroscopes operational.

Model. The model of the system that has just been described is depicted in Figure 2.2. The
model has a total of nine states. Each state has a number and label (shown respectively inside and

2 The Hubble space telescope is an astronomical observatory orbiting around earth, since April 24, 1990.
3 In reality, since its launch there have been four service missions to the telescope; 1993, 1997, 1999 and 2002.

Chapter 2. Background on probabilistic model checking 17

outside side the state symbol). States 1 through 6 are not labelled explicitly; their labels equal
their state number, which represents the number of operational gyroscopes. An edge labelled f
represent a failure event of a gyroscope, r means a repair mission has been undertaken successfully
and s means the telescope is going to sleep. States 7, 8, and 9 are labelled sleep2, sleep1 and crash.
State 6 is considered the initial state where all gyroscopes are operational; this is also the state of
the telescope after a successful repair mission. The state with label crash is a terminating state4.
We now have a model of our system that shows its possible behaviour. Later on we expand this
model by adding probabilities and rates.

6 5

8 7

19 2

3

4

f f

f

f

ff

f

f

sleep2sleep1r

crash s s

r

Figure 2.2: State transition system of the Hubble space telescope

2.3 Probabilistic models

In order to model check a system that exhibits stochastic behaviour we will first need to build a
formal probabilistic model of that system. There are several commonly used probabilistic model
representations for stochastic system, for example:

• Discrete-Time Markov Chains (DTMC)
• Continuous-Time Markov Chains (CTMC)
• Markov Decision Process (MDP)
• Stochastic Petri nets
• Bayesian networks

These models usually form a combination of probability theory and graph theory. They consist
of states, transitions, and arcs that connect them. From now on we will focus on Markov chains.
These particular models are used by all probabilistic model checker tools studied in this thesis. A
Markov chain should be considered as a transition system, where we can move from one state to
another and the choice of which state to go to depends on some probability distribution. Moving
from one state to another is referred to as “making a transition”. A more formal definition will
be presented later on. We will only deal with Markov chains that have a finite or countable set
of states, if this condition is not met, we speak of a Markov process5 [61]. A Markov chain has
a very specific characteristic, namely that it retains no memory of earlier transitions. This is
called the Markov property. It means that only the current state of the process can influence
the probability of next transitions. We consider two different types of Markov chains, which are
frequently supported by probabilistic model checker tools:

1. DTMC - Discrete-Time Markov Chain
2. CTMC - Continuous-Time Markov Chain

The Markov chains discussed here are considered time-homogeneous (i. e. the transition matrix,
containing the probabilities or rates, remains constant). The meaning of transition matrix will
become clear in the next sections, where a brief explanation is given of DTMCs and CTMCs. For
a more elaborate treatment see [74].

4 A terminating state, also called absorbing state, is a state that once entered cannot be exited.
5 When a Markov process has a discrete state-space (set of all possible states and transitions) we call it a Markov

chain.

18 Chapter 2. Background on probabilistic model checking

2.3.1 Discrete-Time Markov Chains (DTMC)

A DTMC is a transition system that defines the probability of moving from one state to another.

Definition 2.1 (labelled DTMC). A labelled DTMC is a quadruple < S, s, P, L > where:

• S is a finite set of states,

• s ∈ S is the initial state,

• P : S × S → [0, 1] is the transition probability matrix, where P (s, s′) is the probability of
moving from state s to s′,

• ∑

s′∈S P (s, s′) = 1 for all s ∈ S,

• L : S → 2AP is the labelling function, which assigns to each state s ∈ S the set L(s) of
atomic propositions a ∈ AP that are valid in s.
(adapted from [33])

According to [49], DTMCs are stochastic models of systems with countable state-space that
change their states at times n = 0, 1, 2, . . . and have the following property: if the system enters
state s at time n, it stays there for exactly one unit of time and then jumps to state s′ at time n+1
with probability P (s, s′), regardless of its history up to and including time n − 1. The definition
shows that states are labelled with atomic propositions, they indicate for instance the status
of the system (e. g. waiting, sending). The system can change state according to a probability
distribution given by the transition probability matrix. A transition from state s to s′ can only
take place if P (s, s′) > 0. If P (s, s′) = 0, no such transition is possible. The system can occupy the
same state before and after the transition, since according to definition 2.1 self-loops are allowed.
A sequence of states and transitions forms a path, where a path is defined as a finite or infinite

sequence s0
p0−−→ s1

p1−−→ . . .
pi−1−−−→ si −−→ . . . with i ∈ N, si ∈ S, and pi ∈ R〈0,1] such that

pi > 0 ∧ pi = P (si, si+1) for all i ≥ 0.

We represent a DTMC as a transition diagram, where states are depicted by circles, state
labels by text outside the circle and transitions with non-zero probabilities by arrows labelled
with their probabilities. Figure 2.3 shows the DTMC model and matrix P of the Hubble space
telescope (first introduced on page 16). The number of states and transitions have remained the
same, only now the transitions are assigned with probability values. It shows that as long as there
are more than two gyroscopes operational the next gyroscope will fail with probability 1. This
is represented by the states labelled 6, 5, 4 and 3 with outgoing transitions that have probability
1. In the situation where two gyroscopes are operational, the system can either go to the sleep
mode with probability 0.998 or one of the remaining gyroscopes may fail with probability 0.002,
which is depicted by the outgoing transitions of state 2. Each possible state transition with its
corresponding probability is shown in the transition system and probability matrix in Figure 2.3.

6 5

8 7

19 2

3

4

0.001 0.002

1

1

11

0.032

0.016

sleep2sleep10.984

crash 0.999 0.998

0.968

(a) Transition system

P =

























0 0 0 0 0 0 0 0.999 0.001
0.002 0 0 0 0 0 0.998 0 0

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0.968 0 0.032 0
0 0 0 0 0 0.984 0 0 0.016
0 0 0 0 0 0 0 0 0

























(b) Probability matrix

Figure 2.3: DTMC of the Hubble space telescope

Chapter 2. Background on probabilistic model checking 19

2.3.2 Continuous-Time Markov Chains (CTMC)

A CTMC can be seen as an extension of the DTMC. The difference is that a DTMC models
discrete time steps and a CTMC allows the modelling of real (continuous) time. This means that
state changes in a CTMC can occur at any arbitrary time, as opposed to fixed time n = 0, 1, 2, . . .
in a DTMC. The memoryless property still applies, meaning that the probability of moving to a
future state depends only on the current state. CTMCs are often used for analysing performance
and dependability of systems. Two examples of practical applications of CTMC models are;
determining the mean time between failures in safety-critical systems and identifying bottlenecks
in high speed communication networks. A labelled CTMC is defined as follows (adapted from
[11]):

Definition 2.2 (labelled CTMC). A labelled CTMC is a quadruple < S, s,R, L > where:

• S is a finite set of states,

• s ∈ S is the initial state,

• R : S × S → R≥0 is the rate matrix, where R(s, s′) is the rate of moving from state s to s′,

• L : S → 2AP is the labelling function, which assigns to each state s ∈ S the set L(s) of
atomic propositions a ∈ AP that are valid in s.

Similar to a DTMC, the definition contains a set of states S, the labelling function L and
an initial state. Instead of the probability matrix P a CTMC has a rate matrix R, which gives
rates R(s, s′) at which transitions occur between each pair of states s, s′. If R(s, s′) = 0 then no
transition from state s to s′ is possible, because it has zero probability. Otherwise, if R(s, s′) > 0
and state s has only a single possible successor state s′, then 1−e−R(s,s′)·t denotes the probability
of moving from state s to s′ within t time units. In the case where state s has more than one
successor, i. e. R(s, s′) > 0 for more than one state s′, we have to deal with competition between
the outgoing transitions of s. This can be explained as follows, suppose we have a state s with
multiple outgoing transitions, as soon as we enter state s we start a countdown clock for each
outgoing transition (depending on its specified rate). The transition of which the clock finishes
first wins. This situation is known as the race condition. To account for the race condition we
need to look at the total rate of the outgoing transitions of state s, known as the exit rate:

E(s) =
∑

s′∈S

R(s, s′) (2.1)

The probability of moving from (a non terminating) state s to state s′ within t time units is
specified as:

P (s, s′, t) =
R(s, s′)

E(s)
· (1 − e−E(s)·t) (2.2)

By determining the so called embedded DTMC of a CTMC we can look at the pure probabilistic
behaviour (i. e. ignore the time spent in any state). The probability P (s, s′) of moving from state
s to s′ is determined by the probability that the delay of going from state s to s′ finishes before
the delays of other outgoing edges from s, formally:

P (s, s′) =

{

R(s,s′)
E(s) if E(s) 6= 0

0 otherwise
(2.3)

When s is of an absorbing state, we have E(s) = 0 and P (s, s′) = 0 for any state s′. P is
known as the probability matrix of the embedded DTMC of the CTMC (note that for DTMCs
usually P (s, s) = 1 for a terminating state s). The transformation of a CTMC into a DTMC can be
performed by means of uniformization, more details on this subject can be found in [45, 74, 49, 76].

20 Chapter 2. Background on probabilistic model checking

Figure 2.4 shows a CTMC model of the Hubble space telescope, which was introduced on page
16. We have previously seen the DTMC model, introduced in Section 2.3.1, the CMTC model
takes into account the life span of a gyroscope and other time dependent events. It models the
real-time probabilistic behaviour of the failure and repair of the gyroscopes. The model is based
on the following assumptions:

• each gyroscope has an average lifetime of 10 years,
• the average preparation time of a repair mission is two months,
• it takes about 1/100 year (circa 3.5 days) to turn the telescope into sleep-mode,
• the base time scale is one year.

6 5

8 7

19 2

3

4

0.1 0.2

0.3

0.4

0.50.6

0.2

0.1

sleep2sleep16

crash 100 100

6

(a) Transition system

R =

























0 0 0 0 0 0 0 100 0.1
0.2 0 0 0 0 0 100 0 0
0 0.3 0 0 0 0 0 0 0
0 0 0.4 0 0 0 0 0 0
0 0 0 0.5 0 0 0 0 0
0 0 0 0 0.6 0 0 0 0
0 0 0 0 0 6 0 0.2 0
0 0 0 0 0 6 0 0 0.1
0 0 0 0 0 0 0 0 0

























(b) Rate matrix

E =

























100.1
100.2
0.3
0.4
0.5
0.6
6.2
6.1
0

























(c) Vector E

Figure 2.4: CTMC of the Hubble space telescope

State six of the model corresponds to the system state where all six gyroscopes are operational
and any one of them may fail. Since each gyroscope fails with a rate of 1

10 (because the lifespan is
10 years and the base time scale is one year), the outgoing rate of state six is 6 · 1

10 = 0.6 (because
any one of the six gyroscopes may fail). The relation between the CTMC and the embedded
DTMC of the Hubble space telescope is given by equation 2.3. For example the probability of

moving from state 2 to 7 is: P (2, 7) = R(2,7)
E(2) = 100

100.2 ≈ 0.998, which is consistent with the

probability shown in matrix P of the DTMC in figure 2.3.

Chapter 2. Background on probabilistic model checking 21

2.4 Logics for checking probabilistic models

Once the system is represented by a model we want to check if the model satisfies a formal spec-
ification (i. e. if it has certain properties). These properties can be expressed in a formal manner
using logics. These logics enable us to reason about qualitative6 or quantitative7 properties of
probabilistic systems. This section discusses two temporal logics, namely Probabilistic Compu-
tation Tree Logic (PCTL) [33] and Continuous Stochastic Logic (CSL) [11], which are used for
verification of DTMCs and CTMCs respectively.

2.4.1 Probabilistic Computation Tree Logic (PCTL)

Probabilistic Computation Tree Logic (PCTL) was first introduced by Hansson and Jonsson [33]
as an extension of the temporal logic CTL [20] with discrete time and probabilities. PCTL allows
expressing properties such as: “the probability of reaching a certain goal ψ within a specified number
of steps k, via paths through a set of allowed states φ, is at least/at most some probability value”.
PCTL can express properties on states (state formula) or paths (path formula) in the DTMC.

Definition 2.3 (PCTL syntax). Let p ∈ [0, 1] be a real number, and ki ∈ N and ./ ∈ {<,>,≤,≥}
a comparison operator. The syntax of PCTL formulas over a set of atomic propositions AP is
defined inductively as follows:

• true is a state-formula,
• Each atomic proposition a ∈ AP is a state formula,
• If φ and ψ are state formulas, then so are ¬φ and φ ∧ ψ,
• If φ and ψ are state formulas, then X φ and φ U ψ and φ U [k1,k2] ψ are path formulas8,
• If π is a path formula, then P./p(π) is a state formula.

The boolean operators ¬ and ∧ have their usual meaning, they can be used to derive the
operators ∨ and =⇒ . The path formulas involve the next operator X and the unbounded U or
bounded U [k1,k2] until. The semantics of the next and unbounded until are equivalent to that of
CTL, whereas the bounded until φ U [k1,k2] ψ states that “ψ is satisfied in one of the first k′ states,
where k′ ∈ [k1, k2] and at all preceding states [0, k′) φ holds, with k1 ≥ 0 and k2 <∞. The state
formula P./p(π) asserts that the probability measure of paths satisfying π meets the bound ./ p.

We use a satisfaction relation |=M to define the truth of PCTL formulas, for state s or path
π in a DTMC M = (S, s, P, L). Intuitively s |=M φ means that formula φ is true at state s in
DTMC M, the same applies for path formulas.

Definition 2.4 (PCTL semantics). Let p ∈ [0, 1] be a real number, ki ∈ N, and ./ ∈ {<,>,≤,≥}
a comparison operator. Also let π[i] = si be the ith state along the path π. The satisfaction
relation |=M, where s is a state, π a path and M = (S, s, P, L) a DTMC, is defined as follows:

s |=M true for all states
s |=M a iff a is an atomic proposition valid in s, a ∈ Label(s)
s |=M ¬φ iff s 6|=M φ

s |=M φ ∧ ψ iff s |=M φ ∧ s |=M ψ

s |=M P./p(Ψ) iff Prs{π ∈ PathM(s) | π |=M Ψ} ./ p
π |=M Xφ iff π[1] is defined and π[1] |=M φ

π |=M φ U [k1,k2] ψ iff ∃k′ ∈ [k1, k2]. (π[k′] |=M ψ ∧ (∀k′′ ∈ [0, k′).π[k′′] |=M φ))
s |=M L./p(φ) iff limk→∞ Prs{π ∈ PathM(s) | π[k] |=M φ}

Where Prs{π ∈ PathM(s) | π |=M Ψ} ./ p, means that the probability measure of all paths
π ∈ Path starting in s and satisfying Ψ must meet the bound ./ p.

6 Qualitative properties assert that a certain event φ holds with probability 0 or 1 [10].
7 Quantitative properties guarantee that the probability for a certain event φ meets given lower or upper bounds

[10].
8 If k1 = 0 In U [k1,k2] it is usually expressed as U≤k2 .

22 Chapter 2. Background on probabilistic model checking

With the PCTL syntax en semantics established, we can now for instance define the following
property on the Hubble space telescope DTMC:

“The probability that the telescope eventually crashes without ever having only one operational
gyroscope left is at most 10−4.”

which is expressed in PCTL as:

P≤0.001(¬“1” U “crash”)

2.4.2 Continuous Stochastic Logic (CSL)

Continuous Stochastic Logic (CSL) was originally developed by Aziz et al. [9] and later extended
by Baier et al. [14]. It is based on the temporal logics CTL [20] and PCTL. It provides means to
express properties on CTMCs that refer to steady-state9 and transient10 behaviour. CSL resembles
PCTL, in fact it extends PCTL, however the difference lies in the time domain. PCTL is restricted
to step intervals of natural numbers N, whereas CSL allows real numbers greater than or equal to
zero R≥0.

Definition 2.5 (CSL syntax, adapted from [11]). Let p ∈ [0, 1] be a real number, I ⊆ R≥0 a
non-empty interval and ./ ∈ {<,>,≤,≥} a comparison operator. The syntax of CSL formulas
over a set of atomic propositions AP is defined as follows:

• true is a state-formula,
• Each atomic proposition a ∈ AP is a state formula,
• If φ and ψ are state formula, then so are ¬φ and φ ∧ ψ,
• If φ is a state formula, then so is S./p(φ),
• If Ψ is a path formula, then P./p(Ψ) is a state formula,
• If φ and ψ are state formulas, then X I φ and φ U ψ and φ UI ψ are path formulas.

The state formulas do not differ from those used in PCTL, except for the steady-state S./p(φ)
which corresponds to the long-run operator L./p(φ). It asserts that the probability of being in a
φ state on the long run, meets the bound ./ p. The path formula X I φ asserts that a transition is
made to a φ state at some time point t ∈ I. Formula φ UI ψ states that ψ is satisfied at some time
instant t, within the interval I and at all preceding time instants [0, t) φ holds. The unbounded
until operator U is another notion for asserting φ U [0,∞] ψ. We use a satisfaction relation |=M to
define the truth of CSL formulas, for state s and path π in a CTMC M = (S, s,R, L).

Definition 2.6 (CSL semantics). Let p ∈ [0, 1] be a real number, and t ∈ R and ./ ∈ {<,>,≤,≥}
a comparison operator. Also let π[i] = si be the ith state along the path π. Let δ(π, i) = ti be
the time spent in state si, and let π@t denote the state occupied in path π at time t. (Similar
definitions can be found in [14, 11]) The satisfaction relation |=M, where s is a state, π a path
and M a CTMC, is defined by:

s |=M true for all states,
s |=M a iff a is an atomic proposition valid in s, a ∈ Label(s),
s |=M ¬φ iff s 6|=M φ,

s |=M φ ∧ ψ iff s |=M φ ∧ s |=M ψ,

s |=M S./p(φ) iff limt→∞ Prs{π ∈ PathM(s) | π@t |=M φ},
s |=M P./p(Ψ) iff Prs{π ∈ PathM(s) | π |=M Ψ} ./ p,
π |=M X Iφ iff π[1] is defined and π[1] |=M φ ∧ δ(π, 0) ∈ I,

π |=M φ UI ψ iff ∃t ∈ I. (π@t |=M ψ ∧ (∀t′ ∈ [0, t).π@t′ |=M φ)).

9 Steady-state probabilities consider the system “on the long run” (i. e. when a balance has been reached).
10 Transient probabilities consider the system at a certain time instant.

Chapter 2. Background on probabilistic model checking 23

Similar to PCTL, we can use CSL to formulate properties on the Hubble telescope CTMC.
For instance, since the telescope is expected to last at least 10 years, it is interesting to formulate
properties such as:

“The probability that the system will crash within the next 10 years is at most 2%.”

which is expressed in CSL as:

P≤0.02(true U≤10 “crash”)

2.5 Model checking Markov chains

Once a model and properties have been formulated, a model checker can verify whether of not
the properties hold in the model. The verification amounts to showing that the logical expression
evaluates to true when interpreted over the model. To be more formal: in order to check if state
s satisfies formula φ we need to recursively compute the set Sat(φ) = {s ∈ S | s |= φ} of states
that satisfy φ and check if s is a member of that set. There are several different methods and
algorithms available for model checking. The purpose of this section is to briefly cover the basics
of solution methods of Markov Chains that are used by the tools discussed in this thesis.

2.5.1 Numerical and statistical methods

There are two primary approaches in analysing stochastic behaviour of a system: numerical and
statistical. The numerical approach is divided into symbolic [57] and numerical [74] methods.
Model checking tools have to deal with the fact of rapidly increasing numbers of states and
transition when generating a state-space of concurrent systems.

Symbolic algorithms try to cope with this problem, known as the state-space explosion, by
avoiding ever building the state-space as a set of nodes and transitions; instead, they represent the
graph implicitly using a more compact data structure. The state-space can be represented using
binary decision diagrams (see the work of Ken McMillan [57]) or more recently Multi-Terminal
Binary Decision Diagram [47, 24].

Numerical algorithms offer a range of methods for solving a system of linear equations, which is
needed for solving formulas containing the U operator. The advantage of using numerical methods
is their high accuracy, but the drawback is that they require a large amount of memory (caused
by the state-space explosion problem).

Statistical methods use simulation and sampling. So instead of building a complete state-space
and verifying properties in each state the statistical method uses the model description to generate
sample execution paths. It will then estimate if the property holds based on the generated samples.
This method will obviously not provide the high level of accuracy as in numerical methods, since
it is statistical in nature, but memory requirements are negligible compared to that of numerical
methods. Statistical tools usually offer a choice between setting a fixed number of samples and
using a method called “sequential acceptance sampling” [79, 85]. The latter method is a statis-
tical procedure that takes observations into account as they are made. For instance when using
Wald’s [79] sequential probability ratio test, no predetermined number of observations is used,
but instead this method determines after each observation if another observation is needed or if
the information currently available is sufficient to accept a hypothesis so that the test has the
prescribed strength. When the number of samples is not fixed, the tools usually allow setting a
desired confidence level (also known as the error probability) i. e. the probability that the answer
given by the tool is incorrect. Choosing a better confidence level (i. e. lower probability of getting
wrong answers) results in more samples being taken, which in turn causes the model check time

24 Chapter 2. Background on probabilistic model checking

to increase. In case of a fixed number of samples, the sample collection will stop when the prede-
termined maximum is reached and an answer is given based on the collected samples so far.

Further details on the differences between the aforementioned methods can be found in [84].

2.5.2 PCTL model checking of DTMCs

In this section we present an insight into the theory of PCTL model checking. This subject has
been extensively discussed in for instance [33, 10, 19]. It is known from [33] that PCTL model
checking on Markov chains can be done in polynomial time in the size of the system and in linear
time on the size of the formula. Given a PCTL formula φ, the model checking process generally
starts with building the parse tree of φ, whose nodes represent subformulas of φ. As stated earlier,
the intent is to compute the satisfaction set Sat(φ), where Sat(φ) = {s ∈ S | s |= φ}. This is
achieved by processing the subformulas in the parse tree in a bottum-up manner. The processing
of leaf nodes, where the formula is either true or some atomic proposition, is straightforward.
The same holds for boolean connectives, for instance Sat(Φ ∧ ψ) = Sat(Φ) ∩ Sat(ψ). Below we
present an outline of the actions involved in model checking the different PCTL operators. When
illustrating model checking algorithm complexities, we use the term |S| to denote the number of
states in a DTMC and |E| to denote the number of transitions with non-zero probability.

PCTL Next. Calculations for the PCTL Next formula are somewhat trivial, they involve a
single matrix-vector multiplication.

PCTL Bounded Until. The calculations for U≤k amount to performing some graph analysis
and k matrix-vector multiplications11. According to [33], the number of required arithmetical
operations for bounded until formulas with a finite time bound k is at most O(kmax × (|S|+ |E|)×
|φ|) or O(|S|3 × |φ|), depending on the algorithm, where kmax is the maximum time parameter in
a formula, and |φ| is the size of the formula.

PCTL Unbounded Until. The unbounded until cannot be computed by the bounded until
method, since this would require infinitely many matrix-vector multiplications (recall that U can
be denoted as U≤∞). The technique, however, is quite similar. The algorithm will first perform
some precomputations in time O(|S| + |E|)[19], using general graph traversal algorithms or BDD
fixed point computation [24]. In case the probability bound p in P./p is either 0 or 1, no further
computations are necessary. For the remaining situations (i.e. 0 < p < 1), we require solving a
system of linear equations by means of numerical computations. A system of linear equations can
be solved in polynomial time using direct methods (e.g., Gaussian elimination or LU decomposi-
tion) or iterative methods like the Jacobi- or the Gauss-Seidel-method [74]. For large probability
matrices, the iterative methods perform better. More information on algorithms for solving a
system of linear equations is presented in Section 2.5.4.

PCTL Long Run. The L operator shows the behaviour of the system in the long run. Initially,
a graph analysis is carried out to find all Bottom Strongly Connected Components (BSCC)12,
which takes O(|S| + |E|) [75] time. Then for each BSCC a system of linear equations is solved,
which can be done in polynomial time. Finally, the probability of reaching each BSCC is computed,
which amount to solving P=?[true U BSCCi]. The worst case time complexity for model checking
the long run property is O(|S|3).

11 For large k, the number of multiplications might be smaller if on-the-fly steady-state detection [59, 48] is applied.
12 A BSCC [75] is a maximal subset (i. e. subgraph) of a graph, that once entered, cannot be exited and any two

vertices in a BSCC lie on a cycle.

Chapter 2. Background on probabilistic model checking 25

2.5.3 CSL model checking of CTMCs

As for PCTL, model checking CSL [11, 9, 47] proceeds by recursively computing the satisfaction
sets. For CSL formulas without a time bound, the problem reduces to probabilistic model checking
of DTMCs. Baier et al. [12] demonstrated that CSL model checking of time-bounded formulas can
be reduced to transient analysis (in particular uniformization [45]) of CTMCs. The CSL model
checking algorithms (as presented in [11]) are polynomial in the size of the model and linear in
the length of the formula.

CSL Next. To determine if state s satisfies P./p[X [t1,t2] φ], we require computing the set Sat(φ)
and a single multiplication of the matrix P with a vector b. This vector is defined as:

b(s) =

{

e−E(s)·t1 − e−E(s)·t2 if s ∈ Sat(φ)

0 otherwise
(2.4)

CSL Bounded Until. Model checking the UI operator involves matrix–vector multiplications
and transient analysis. It requires computations on the probability matrix obtained by uniformiza-
tion [45] of the CTMC. Computations for the bounded until can be performed with worst case
time complicity of O(|E| · q · t2) [11], where q is the uniformization rate13, and t2 is the upper
bound of interval I. In practice, there are some efficiency improvements possible. For instance, for
large t2 the number of required computations can be reduced by applying on-the-fly steady-state
detection [59, 48]. Without going into detail, if desired see [11], we like to point out that there
exists a difference between the number of required computations for t1 = 0 and 0 < t1 ≤ t2 in
U t1,t2, where the latter situation is computationally more intensive.

CSL Steady-state. Computing whether s |= S./p(φ) amounts to solving a system of linear
equations (in polynomial time) combined with graph analysis methods, namely a search for all
bottom strongly connected components (BSCC), which takes O(|S| + |E|) [75] time. A steady-
state analysis is performed for each BSCC, after which the probabilities of reaching the individual
BSCCs are computed. According to [11], steady-state analysis can be performed with a worst case
time complexity of O(N3).

Table 2.1 shows an overview of the worst case time complexities of algorithms for model checking
CSL. These results are based on using a sparse storage structure (see Section 2.6), Gaussian
elimination for solving linear equations systems and uniformization for transient analysis.

Table 2.1: From [11], Algorithms for Model Checking CSL and their (worst case) time complexity.

Operator Algorithm(s) Time complexity

S./p[Φ] BSCC detection + steady-state analysis
per BSCC + computing probability of
reaching a BSCC

O(|S|3)

P./p[X Φ] matrix-vector multiplication O(|E|)
P./p[X [t1,t2] Φ] matrix-vector multiplication O(|E|)
P./p[Φ U Ψ] solving linear equation system O(|S|3)
P./p[Φ U [t1,t2] Ψ] matrix-vector multiplication + tran-

sient analysis
O(|E| · q · t2)

With:

|S| = number of states in CTMC M

|E| = the number of transitions with non-zero probability

q = the uniformization rate (usually maximum entry of E)

13 The uniformization rate is greater of equal to the maximum entry of E (see equation 2.1).

26 Chapter 2. Background on probabilistic model checking

2.5.4 Solving a system of linear equations

The previous sections have shown that model checking certain formulas, such as S./p(φ), involves
solving a system of linear equations. These equations take the form of Ax = b. In general there
are two methods to solve a system of linear equations:

• direct methods
• iterative methods

Direct methods

Direct methods, such as Gaussian elimination [74], compute the solution of a system of linear
equations in a fixed number of operations. Direct methods are only recommend when dealing
with relative small models (not exceeding the order of thousands of states). The computational
effort is in the order of N3, where N is the number of states. Although they are highly reliable, the
disadvantage of methods such as Gaussian elimination is that during computation the coefficient
matrix must be updated at each step of the algorithm. Because the elements in the matrix are
constantly updated (in particular the zero elements) it is difficult to organize a compact storage
scheme, resulting in high memory consumption. For this reason most model checker tools apply
iterative methods.

Iterative methods

Iterative methods do not alter the form of the matrix and thus allow the use of compact storage
schemes. For iterative methods it is not known in advance how many computations are required to
achieve an accurate answer. They will perform a series of matrix-vector multiplications until the
difference between iterations is less than some value ε. This is explained by means of an example
of the Power method. The example is an abridged version taken from [74]. Suppose we have a
discrete-time Markov chain M with probability matrix

P =





.0 .8 .2

.0 .1 .9

.6 .0 .4





If the system starts in state 1, the initial probability vector is given by α(0) = (1, 0, 0). Im-
mediately after the first transition, the system will be either in state 2, with probability .8 or in
state 3, with probability .2. The vector denoting the probability distribution after one step is
thus α(1) = (0, .8, .2). This result may be obtained by the matrix-vector multiplication α(0)P .
Likewise we can obtain the probability distribution after two steps:

α(2) = α(1)P = (0, .8, .2)





.0 .8 .2

.0 .1 .9

.6 .0 .4



 = (.12, .08, .8)

Thus, for any integer k, the state of the system after k transitions is obtained by

α(k) = α(0)P k

When the Markov chain is finite, aperiodic14 and irreducible15, also known as ergodic16, (as in
the current example), the vectors α(k) converge to the stationary probability vector α regardless
of the choice of the initial vector. We have

lim
k→∞

α(k) = α

14 A state s is periodic with period j, if on leaving state s a return is possible only in a number of transitions that
is a multiple of the integer j > 1. A state whose period is 1 is said to be aperiodic. A Markov chain is aperiodic
if its states are aperiodic.

15 A Markov chain is irreducible if every state can be reached from every other state.
16 An ergodic Markov chain is aperiodic, irreducible, and recurrent nonnull, where a Markov chain with a finite

number of states has only transient and recurrent nonnull states.

Chapter 2. Background on probabilistic model checking 27

After a certain (beforehand unknown) number of iterations, an equilibrium will have been reached,
meaning we will no longer observe a noticeable difference in the results of the multiplications. The
difference between the results of the kth and (k − 1)th iteration is denoted ε. We usually stop
when ε is in the order of 10−6. The answer remains an approximation, where the accuracy
depends on the desired ε value. The Power method, as described in the example, can be used to
obtain the solution for so called eigenproblems (αP = α). This method is guaranteed to converge
in theory, but it is often extremely slow. There are several other iterative methods, such as
Jacobi, Gauss-Seidel, JOR, and SOR, which are used to obtain the solution of a system of linear
equations, such as (αQ = 0). Where Q is the matrix of transition rates, known as infinitesimal
generator matrix [49, 74, 11]. The Jacobi and Gauss-Seidel17 methods are very similar to the Power
method. The difference is that they use a different iteration matrix. Both methods do not have
guaranteed convergence. In practice, the Jacobi method is usually faster than the Power method
and Gauss-Seidel typically converges faster and consumes less memory than Jacobi. It is possible
to improve the rate of convergence of both Jacobi and Gauss-Seidel by applying a technique called
relaxation; this yields in respectively the JOR (Jacobi Over-Relaxation) and SOR (Successive
Over-Relaxation) methods. These methods use a relaxation parameter ω, which (when chosen
correctly) can considerably improve the convergence rate over that of Jacobi and Gauss-Seidel.
The problem, however, is that the optimal value of ω depends on the problem being solved and
may vary as the iteration process converges, for details see [87]. Additional information regarding
the theory behind aforementioned methods can be found in [74], for complexity see [17].

2.6 State-space representation: Explicit and Symbolic

The definitions of Markov chains in Section 2.3 have shown that a model representation consists
of states, transitions and probabilities or rates. These representations tend to grow extremely
large due to the state-space explosion problem. This is caused by the fact that a system is usually
composed of a number of concurrent sub-systems. Interleaving these sub-systems to form the
overall state-space results in a state-space size that is often exponential in the number of sub-
systems. Systems containing several million states and transitions are not out of the ordinary.
This is why it is important to use data structures that minimise the computational space and
time requirements for model checking large systems. There are two well-known methods applied
in state-space storage, namely explicit and symbolic.

Explicit. In explicit state-space representation each state and transition is individually stored
using data structures such as a sparse matrix [65]. A sparse matrix is a matrix (i. e. array-based
data structure), usually very large, where most of the elements are zero. This method of state-
space representation focuses on preventing the storage of, and computation on, a large number of
zeros. The benefits of this method are that manipulations are relatively easy (e. g. uniformization),
and it frequently provides faster solutions, the drawback is the relative high memory consumption,
compared to symbolic methods.

Symbolic. The concept behind symbolic state-space representation is the exploitation of regu-
larity and structure in models. Instead of single state representations it uses sets of states. This
results in a highly compressed representation of the state-space, provided that the Markov chain
exhibits a certain degree of structure and regularity. An example of a symbolic data structure
is the Multi-Terminal Binary Decision Diagram (MTBDD) [30]. An MTBDD is a data structure
that represents a function mapping of Boolean variables to real numbers. It can be seen as a
rooted, directed acyclic graph containing decision nodes, and terminal nodes with real numbers.
For more information on symbolic model checking see [57, 39, 47, 63, 24].

17 Gauss-Seidel can be performed forward and backward. Forward is generally recommended when most of the
nonzero mass lies below the diagonal of the iterative matrix and vice versa for backward [74].

Chapter 3

Probabilistic model checker tools

This chapter gives details on each of the probabilistic model checker tools we used, namely; PRISM,
ETMCC, MRMC, YMER and VESTA. Each tool section starts with some general background
information followed by:

• implementation details
• model and specification language
• properties
• algorithms and data structures

The section that covers properties uses a basic formula set, this set is defined as:

Definition 3.1 (basic set). The basic set of formulas, where φ denotes a state formula and π a
path formula, is defined by the grammar:

φ ::= true | false | φ ∧ ψ | φ ∨ ψ | ¬φ
π ::= Xφ

Additionally, we use the letters ki ∈ N and ti ∈ R, with i ∈ {∅, 1, 2} to denote a time bound in
respectively PCTL and CSL formulas.

3.1 PRISM

PRISM [50] stands for Probabilistic Symbolic Model Checker. The tool is being developed at the
University of Birmingham (United Kingdom) for the analysis of probabilistic systems. It is a free
and open source tool, distributed under the GNU General Public License (GPL). The information
on PRISM in this thesis is based on version 2.1, first released September 8, 2004. It is available
at: http://www.cs.bham.ac.uk/~dxp/prism/

Implementation details. The tool is developed using a combination of Java and C++. Its
user interface and parsers are written in Java. The core algorithms are mostly implemented
in C++. For state-space representation, PRISM uses a modified version of the CUDD (CU
Decision Diagram) package [73], a BDD/MTBDD library developed by Fabio Somenzi at Colorado
University written in C. This package is included in the standard distribution. The tool requires
Java 2, Standard Edition (J2SE) version 1.4 or higher and operates on Linux, Windows and
Solaris systems (support for Mac OS X is under development). PRISM offers two user interface
types: command line and Graphical User Interface (GUI). The GUI offers a text editor, property
editor and plot capability. Both interfaces use the same underlying model checker. The tool is
also capable of performing automated experiments, which allow to specify a range of values for
constants in the model and/or property.

http://www.cs.bham.ac.uk/~dxp/prism/

30 Chapter 3. Probabilistic model checker tools

Model and specification language. System models are described using the PRISM program-
ming language, which is a high-level state-based description language. It is based on the Reactive
Modules formalism of Alur and Henzinger [7]. In this language a system is described as the parallel
composition of a set of modules. A module state is determined by a set of finite-range variables
and its behaviour is given using a guarded-command based notation. Communication between
modules takes place either via global variables or synchronisation over common action labels [51].
Besides its own model description language, PRISM supports a subset of PEPA [40], which is a
stochastic process algebra. PRISM also provides indirect support (either via Digital Clocks [53]
or KRONOS [23]) for model checking probabilistic timed automata which include probability,
non-determinism and real-time using clocks. PRISM is able to export models in many different
formats, including the ones accepted by ETMCC and MRMC. The PRISM model description is
translated (by the tool) into one of the following three supported probabilistic models:

• DTMC
• MDP
• CTMC

Properties. Properties can be specified using PCTL (for DMTCs and MDPs) or CSL (for
CTMCs). In PRISM it is possible to either determine if a probability satisfies a given bound
or obtain the actual value. There is also support for the specification and analysis of properties
based on costs and rewards, but the implementation of this feature is only partially completed (in
version 2.1) and is still ongoing. The subset of PCTL and CSL formulas supported by PRISM is
displayed in Table 3.1.

Table 3.1: PRISM supported logic subset

Logic Supported

P
C

T
L

Basic X

L./p[Φ]

P./p[Φ U Ψ] X

P./p[Φ U≤k Ψ] X

P./p[Φ U [k1,k2] Ψ]

C
S
L

Basic X

S./p[Φ] X

P./p[Φ U Ψ] X

P./p[Φ U≤t Ψ] X

P./p[Φ U≥t Ψ] X

P./p[Φ U [t1,t2] Ψ] X

P./p[X≤t Ψ]

P./p[X [t1,t2] Ψ]

P./p with ./∈ {<,>,≤,≥}, p ∈ [0, 1]

Algorithms and data structures. PRISM offers a choice between several different algorithms
for verifying PCTL and CSL properties. For PCTL, PRISM implements the algorithms of [33, 16,
15, 10]. For CSL, methods based on [47] and [12] are used. The iterative methods supported by

Chapter 3. Probabilistic model checker tools 31

PRISM are listed below:

• Gauss-Seidel (also backwards)
• Jacobi
• JOR (also backwards)
• Power
• SOR

The iterative methods are used for solving a system of linear equations, needed for model checking
the steady-state S and unbounded until U operators. For the time-bounded until U [t1,t2] operator
PRISM uses uniformization [45] and the techniques of Fox and Glynn [28].

PRISM offers the user a choice between any of the following three data structures for model
checking:

1. MTBDD (Multi-Terminal Binary Decision Diagram) for model construction and BDD for
reachability, more information on MTBBD/BDD’s can be found in [30, 24].

2. Sparse matrix [65, 64].
3. Hybrid, a combination of MTBDD and sparse matrix.

All engines perform the same calculations; therefore the choice between “MTBDD”, “Sparse”
or “Hybrid” will not affect the results of the model checking. However, according to [52], the
time and space performance may differ considerably. Typically the sparse engine is quicker than
its MTBDD counterpart, but requires more memory. The hybrid engine aims to provide a com-
promise, providing faster computation than pure MTBDDs but using less memory than sparse
matrices. By default, PRISM uses the hybrid engine.

3.2 ETMCC

E ` MC2 (written ETMCC) is developed by the Stochastic Modelling and Verification group at
the University of Erlangen-Nürnberg, Germany, and the Formal Methods & Tools group at the
University of Twente, the Netherlands. It is a prototype implementation of a model checker for
continuous-time Markov chains. The tool is free for non-profit organizations. The user has to fill
in a license agreement form before downloading and using the tool. This thesis discusses version
1.4.2, which is available at: http://www7.informatik.uni-erlangen.de/etmcc/

Implementation details. The tool is developed in Java, it requires Java version 1.2 or above
and operates on Linux, Windows and Solaris systems. ETMCC has no command line interface, all
interaction must be performed using a Graphical User Interface (GUI). The GUI offers an editor
for constructing properties and is used for loading all necessary input files and displaying the
verification results. For our measurements, we added ad-hoc command line support to ETMCC.

Model and specification language. ETMCC supports CTMC models only1. It accepts model
descriptions in the tra-format as generated by the stochastic process algebra tool TIPPtool [35]
and Petri net tool DaNAMiCS [18]. An example of the tra-format is shown in Figure 3.1.

send 1 2 1.7 M

receive 1 3 1 M

acknowledge 3 11 1 M

...

Figure 3.1: tra-format example

1 There is a trick to let ETMCC handle DTMCs, namely: let all rates be between 0 and 1 and the rates sum up
to 1, as in a transition probability matrix. Then, the embedded DTMC is identical to this CTMC, and ETMCC
can verify unbounded until properties. We will not utilize this trick in our comparative research.

http://www7.informatik.uni-erlangen.de/etmcc/

32 Chapter 3. Probabilistic model checker tools

Each line specifies one transition consisting of an action name, the source state, the target
state, the transition rate and the type, which is set to M (Markovian). Note that the tra-format
also supports transition types P (probabilistic) and I (immediate), but these are not supported
by ETMCC. ETMCC also accepts model description in a format called CSLstandard, which is
a derivative of the tra-format, where actions and the type of transition are omitted. The state
labelling with atomic propositions must be provided in a .lab file.

Properties. ETMCC supports two types of logics, namely CSL and action-based CSL (aCSL).
The subset of CSL formulas supported by ETMCC is displayed in Table 3.2. Similar to CSL,
aCSL provides a means to reason about CTMCs, but opposed to CSL, it is not state-oriented. Its
basic constructors are sets of actions, instead of atomic state propositions, for details see [37].

Table 3.2: ETMCC supported logic subset

Logic Supported

C
S
L

Basic X

S./p[Φ] X

P./p[Φ U Ψ] X

P./p[Φ U≤t Ψ] X

P./p[Φ U≥t Ψ]

P./p[Φ U [t1,t2] Ψ]

P./p[X≤t Ψ]

P./p[X [t1,t2] Ψ]

P./p with ./∈ {<,>,≤,≥}, p ∈ [0, 1]

Algorithms and data structures. The model checking algorithms used by ETMMC are de-
scribed in [36, 38]. The tool offers a choice between Gauss-Seidel and Jacobi as the iterative
methods used in solving steady-state and unbounded until properties. The methods for bounded
until are either transient analysis (recommended) or Volterra integrals for [0;t] (less accurate,
slow). ETMCC uses an explicit (i. e. not symbolic) data structure, namely a sparse matrix.

3.3 MRMC

MRMC is a model checker for discrete-time and continuous-time Markov reward models. It is
distributed under the GNU General Public License (GPL). The MRMC tool is developed by the
Software Modelling and Verification (MOVES) group at the RWTH Aachen University (Germany)
and Formal Methods & Tools group at the University of Twente (the Netherlands). The version
used is 1.1.1b. It is available at: http://www.cs.utwente.nl/~zapreevis/mrmc/

Implementation details. The developers of MRMC have used ETMCC as inspiration to build
a new probabilistic model checker. Therefore, MRMC can be seen as ETMCC’s successor. MRMC
is a command-line-based tool, which is implemented in the C language and currently supports the
Linux platform only.

http://www.cs.utwente.nl/~zapreevis/mrmc/

Chapter 3. Probabilistic model checker tools 33

Model and specification language. MRMC supports four types of input models:

• DTMC
• DMRM2

• CTMC
• CMRM3

The input models are described in the same format as for ETMMC (see Section 3.2), except for
the syntax related to aCSL which is not supported by MRMC. The probability (for DTMC) or
rate matrix (for CTMC) is defined by a .tra file and the state labelling by a .lab file. These files
contain straightforward text-based descriptions of the models. When dealing with specification
and analysis of properties based on rewards, the state reward structure can be specified in a .rew
file and the impulse reward structure in a .rewi file.

Properties. Properties can be specified using one of the following logics:

• PCTL
• PRCTL4

• CSL
• CSRL5

The subset of PCTL and CSL formulas supported by MRMC is displayed in Table 3.3.

Table 3.3: MRMC supported logic subset

Logic Supported

P
C

T
L

Basic X

L./p[Φ] X

P./p[Φ U Ψ] X

P./p[Φ U≤k Ψ]a X

P./p[Φ U [k1,k2] Ψ] X

C
S
L

Basic X

S./p[Φ] X

P./p[Φ U Ψ] X

P./p[Φ U≤t Ψ]a X

P./p[Φ U≥t Ψ]

P./p[Φ U [t1,t2] Ψ] X

P./p[X≤t Ψ]a X

P./p[X [t1,t2] Ψ] X

P./p with ./∈ {<,>,≤,≥}, p ∈ [0, 1]

a mrmc syntax requires ≤ x bound to be
specified as [0,x]

2 DMRM stands for Discrete Markov Reward Model, which is a DTMC with reward extension [8] .
3 CMRM stands for Continuous Markov Reward Model, which is a CTMC with reward extension [13, 34].
4 PRCTL, Probabilistic Reward Computation Tree Logic [8] extends PCTL with reward-bounded properties.
5 CSRL, Continuous Stochastic Reward Logic [13, 34] extends CSL with reward-bounded properties.

34 Chapter 3. Probabilistic model checker tools

Algorithms and data structures. For checking PCTL, MRMC uses the algorithms described
in [33], for PRCTL see [8] and for CSL see [11]. MRMC supports two algorithms for time-
and reward-bounded until-formulas (CSRL). One is based on discretization [77], the other on
uniformization and path truncation [67]. This includes state and impulse rewards. In combination
with uniformization it used the techniques of Fox and Glynn [28]. The supported iterative methods
are listed below:

• Jacobi
• Gauss-Seidel

The state-space is represented using sparse matrix with the compressed row, compressed column
technique [68] (also called Harwell-Boeing sparse matrix format).

3.4 YMER

YMER(3.0) is a tool for verifying transient properties of stochastic systems. It supports Continuous-
Time Markov Chains (CTMCs) and Generalized Semi-Markov Processes (GSMPs)6. YMER im-
plements statistical model checking techniques, based on discrete event simulation and acceptance
sampling, for CSL model checking [83]. YMER also supports numerical techniques for CTMCs
model checking. The tool is developed by H̊akan Younes at Carnegie Mellon University (Pitts-
burgh). The current version is 3.0 (released February 1, 2005), which is distributed under the
GNU General Public Licence (GPL). The tool is available at: http://www.cs.cmu.edu/~lorens

Implementation details. YMER is a command-line-based tool. It uses a random number
generator implemented in C, whereas other parts of the tool are written in C++. YMER uses the
CUDD7 package for symbolic data structures, this package is not included in the distribution and
should be installed separately. The numerical engine for model checking CTMCs is adopted from
the hybrid model checker engine of the PRISM tool. The tool operates on the Linux platform,
support for other platforms is not specified.

Model and specification language. YMER supports two types of input models:

• CTMC
• GSMP[80]

The language used for model specification is a subset of the PRISM language8. Because the
language is a subset, it means not all operations on for instance rate values are supported9.

Properties. Properties can be specified using CSL. The subset of CSL formulas supported by
YMER is displayed in Table 3.4.

Algorithms and data structures. For CSL model checking YMER implements the statistical
model checking techniques proposed by Younes and Simmons in [85]. YMER uses discrete event
simulation [71] to generate sample execution paths and verifies a given CSL path formula over
each sample path. The tool offers a choice between either taking a fixed number of samples
or sequential acceptance sampling. There is also support for distributed acceptance sampling,
meaning multiple machines can be used to generate samples independently. It uses a master/slave
architecture to collect and process samples. The interested reader is referred to [83] for more
details on this architecture. Understandably, the data structures for state-space representation

6 Details on GSMPs can be found in [80].
7 The CUDD package can be obtained from http://vlsi.colorado.edu/~fabio/CUDD.
8 The BNF grammar for YMER is listed in [82].
9 In YMER it is not possible to add or subtract rate values in the model description, only multiplication and

division is supported.

http://www.cs.cmu.edu/~lorens
http://vlsi.colorado.edu/~fabio/CUDD

Chapter 3. Probabilistic model checker tools 35

Table 3.4: YMER supported logic subset

Logic Supported

C
S
L

Basic X

S./p[Φ]

P./p[Φ U Ψ]

P./p[Φ U≤t Ψ] X

P./p[Φ U≥t Ψ]

P./p[Φ U [t1,t2] Ψ] X

P./p[X≤t Ψ] X

P./p[X [t1,t2] Ψ] X

P./p with ./∈ {<,>,≤,≥}, p ∈ [0, 1]

are not applicable for the statistical part of this tool. It has no need for data structures that
can store the complete state-space, as is the case in numerical tools. However, the collected
samples and intermediate results do need to be stored, but the required size of the samples is
negligible compared to a fully generated state-space. The data structures used by YMER are not
documented, except for the numerical part of the tool, which uses the sparse/MTBDD hybrid
engine from the PRISM tool to represent the state-space.

3.5 VESTA

VESTA (2.0) is a tool for statistical analysis of probabilistic systems. It supports statistical model-
checking and statistical evaluation of expected values of temporal expressions. Like YMER, the
tool can only provide probabilistic guaranties of correctness. The current release is version 2.0
(September 2005). It is developed at the University of Illinois at Urbana-Champaign and can be
obtained from http://osl.cs.uiuc.edu/~ksen/vesta2/.

Implementation details. VESTA is written in Java and requires runtime environment version
1.5 or above. Although the documentation gives no specifics regarding platform support, it has
been proven to operate on Linux and Windows. The tool has command-line support and a GUI
that offers basic text editing and model check/save/load capability.

Model and specification language. VESTA supports two types of input models:

• DTMC
• CTMC

The tool uses a Java-based language to specify models. The model description consists of sequen-
tial statements in combination with Java code, such as for or if-then-else constructions. Each
sequential statement consists of a guard, rate and action, all of which can use variables (e. g. int,
float or arrays). The language offers no parallel composition. In addition to the Java based lan-
guage there is support for PMaude [5], an executable algebraic specification language which allows
to describe models in probabilistic rewrite theories. It uses a query language called Quantative
Temporal Expressions (QuaTEx)[5] to express various quantitative properties of the probabilistic
system.

Besides the two modelling languages described above, VESTA allows to plug in any probabilis-
tic modelling language. In order to use the language, it is necessary to provide a discrete event
simulator by implementing a predefined Java interface, for details see [4].

http://osl.cs.uiuc.edu/~ksen/vesta2/

36 Chapter 3. Probabilistic model checker tools

Properties. Properties can be specified using one of the following logics:

• PCTL
• CSL
• QuaTEx

The subset of PCTL and CSL formulas supported by VESTA is displayed in Table 3.5, for QuaTEx
see [5].

Table 3.5: VESTA supported logic subset

Logic Supported

P
C

T
L

Basic X

L./p[Φ]

P./p[Φ U Ψ] X

P./p[Φ U≤k Ψ]a X

P./p[Φ U [k1,k2] Ψ]

C
S
L

Basic X

S./p[Φ]

P./p[Φ U Ψ] X

P./p[Φ U≤t Ψ]a X

P./p[Φ U≥t Ψ]

P./p[Φ U [t1,t2] Ψ]

P./p[X≤t Ψ]a X

P./p[X [t1,t2] Ψ]

P./p with ./∈ {≤,≥}, p ∈ [0, 1]

a The ≤ is not supported as time bound, only <.

Algorithms and data structures. VESTA uses the statistical methods proposed in [85] and
extended in [69], which are based on Monte-Carlo simulation of the model and performing statis-
tical hypothesis testing [42] on the samples generated. The VESTA development team has made
some modifications to the methods proposed in [85, 69], these modifications and algorithms are
discussed in [70]. One example modification is the addition for support of the unbounded until op-
erator. VESTA (being a statistical tool) has no need for storing a complete state-space, therefore
information on data structures is not available.

3.6 Summary

In the previous sections we have seen the details on each of the probabilistic model checker tools
we used, namely; PRISM, ETMCC, MRMC, YMER and VESTA. The upcoming tables show an
overview of the tools background 3.6, platform support 3.7, supported models 3.8, data struc-
tures 3.9, logical operators 3.10 and the implemented algorithms 3.11.

Chapter 3. Probabilistic model checker tools 37

Table 3.6: Tool background

Tool University Type
programming language user interface

Java C++ C GUI cmdl.a

PRISM Birmingham numerical X X X X X

ETMCC Erlangen-Nürnberg and Twente numerical X X

MRMC Aachen and Twente numerical X X

YMER Carnegie Mellon (Pittsburgh) statistical X X X

VESTA Urbana-Champaign, Illinois statistical X X X

a command-line

Table 3.7: Platform support

Tool
platform

Linux Windows Solaris Mac OS X

PRISM X X X Xa

ETMCC X X X

MRMC X

YMER X

VESTA X X ?

a under development

Table 3.8: Model support

Tool
supported models

DTMC CTMC MDP DMRM CMRM GSMP

PRISM X X X

ETMCC X

MRMC X X X X

YMER X X

VESTA X X

Table 3.9: Data structures

Tool
data structures

Sparse MTBDD Sparse/MTBDD
hybrid

PRISM X X X

ETMCC X

MRMC X

YMER - - X

VESTA - - -

38 Chapter 3. Probabilistic model checker tools

Table 3.10: Logical formulas supported by the tools

(a) Probabilistic Computation Tree Logic

Tool
PCTL

b
a
si

c

L .
/
p
[Φ

]

P .
/
p
[Φ

U
Ψ

]

P .
/
p
[Φ

U≤
k

Ψ
]

P .
/
p
[Φ

U[
k
1
,k

2
]
Ψ

]
PRISM X X X

ETMCC

MRMC X X X X X

YMER

VESTA X X X

./∈ {<,>,≤,≥},
p ∈ [0, 1],
k, k1, k2 ∈ N

For the basic set, see Definition 3.1

(b) Continuous Stochastic Logic

Tool
CSL

b
a
si

c

S .
/
p
[Φ

]

P .
/
p
[Φ

U
Ψ

]

P .
/
p
[Φ

U≤
t

Ψ
]

P .
/
p
[Φ

U≥
t

Ψ
]

P .
/
p
[Φ

U[
t1

,t
2
]
Ψ

]

P .
/
p
[X

≤
t

Ψ
]

P .
/
p
[X

[t
1
,t

2
]
Ψ

]

PRISM X X X X X X

ETMCC X X X X

MRMC X X X X X X X

YMER X X X X X

VESTA X X X X

./∈ {<,>,≤,≥},
p ∈ [0, 1],
t, t1, t2 ∈ R

Table 3.11: Algorithms

Tool Logic Algorithm reference Solution method

PRISM CSL [12, 47] iterative Gauss-Seidel
Jacobi
Jor
Power
Sor

U [t1,t2] Uniformization & Fox-Glynn

PCTL [33, 16, 15, 10] see iterative methods CSL

ETMCC CSLa [36, 38] iterative Gauss-Seidel
Jacobi

U [t1,t2] Transient analysis
Volterra integrals

MRMC CSL [11] iterative Gauss-Seidel
Jacobi

U [t1,t2] Uniformization & Fox-Glynn

PCTL [33] see iterative methods CSL

CSRL [77, 67] Discretization ‘Tijms Veldman’
Uniformization ‘Bruno Sericola’
Uniformization ‘Qureshi and Sanders’

PRCTL [8] -

YMER CSL [85] Discrete event simulation

VESTA CSL [85, 69, 70] Discrete event simulation
PCTL

a ETMCC also supports the logic aCSL [37].

Chapter 4

Comparing tool efficiency

This chapter is about collecting, analysing and interpreting data related to the efficiency of the
tools. We perform a series of experiments based on five existing case studies, namely:

• Synchronous Leader Election (SLE)
• Randomized Dining Philosophers (RDP)
• Birth-death process (BDP)
• Tandem Queuing Network (TQN)
• Cyclic Server Polling System (CSP)

We measure efficiency by recording the model check time (i. e. the time it takes a tool to verify a
specific PCTL/CSL property) and the peak memory usage (i. e. the maximum memory consumed
by the tool during its execution) of the tools during verification of the case studies listed above.
Besides efficiency, we also record and compare the verification results (i. e. the answers produced
by the tools).

Section 4.1 starts by explaining the conditions under which the experiments are conducted. The
construction of the models and the case study descriptions are addressed in Section 4.2 and 4.3.
The latter section also presents the performance results of the tools for each particular PCTL/CSL
property that is verified. An analysis is given in Section 4.4, followed by an assessment of the user
friendliness of each tool in Section 4.5.

4.1 Experiment setup

Our experiments were set up to meet the following three criteria:

1. Repeatable/Verifiable.
Everyone must be able to repeat any experiment and verify the results. This is achieved
by providing detailed documentation and by using e. g. open source models, open tools
and standard equipment. Furthermore, the experiment process is automated (by means of
scripts). The models, properties, script and tool settings are publicly available at [62].

2. Statistically significant.
Make sure that observations are not due to mere chance. This is achieved by gathering a
sufficient amount of data; we repeat the same experiment multiple times and compute the
standard deviation. In addition, we use methods available from the field of statistics, namely
hypothesis testing [78].

3. Encapsulated.
Encapsulation mean that the experiments should be performed in an environment that is free
from (unwanted) external influences. It is essential that the environment remains unchanged,
except for the independent variables1. We must also ensure that our comparison is fair

1 The independent variable is the variable selected and manipulated by the experimenter (e. g. model size) to
observe its effect on the dependent variable (i. e. the observed/measured variable e. g. model check time) [31].

40 Chapter 4. Comparing tool efficiency

and that we do not attempt to compare the incomparable (for example we made sure the
verification parameters, such as the error bound ε, of each tool were set to corresponding
levels.) To ensure encapsulation, we use a dedicated machine for our experiments.

Hardware and software settings. We will now discuss the conditions under which the exper-
iments are conducted, such as hardware and software settings. All experiments are performed on
a standard Personal Computer. The operating system is Linux, because this is supported by all
tools (see Table 3.7). The specification of the test-environment is listed in Table 4.1. The tools

Table 4.1: Test environment
Hardware Memory 2GB DDR 400MHz

CPU Intel R© Pentium R© 4 CPU 3.00GHz DUAL CORE

Software Operating system SuSE Linux 9.1 (kernel 2.6.5-7.202.7-smp)

Java version 1.5.0 06

gcc GNU project C and C++ compiler (version 3.3.3)

time UNIX command to measure elapsed time (version GNU 1.7)

ps UNIX command to report process status (version 3.2.1)

are installed on the local hard disk to prevent any anomalies in performance measurements due
to network traffic issues. Furthermore we ensure that the verification parameters of each of the
tools match. For example, the solution method for solving a system of linear equations is set to
Jacobi, this is usually the default setting, and the error bound ε for all non-statistical tools is set
to 10−6. For statistical tools we bind the probability of error (i. e. the chance of false positive or
negative) by α = β = 0.01. Section 3.1 showed that PRISM offers a choice between several engines
that use different data structures. We will use both the “sparse” and “hybrid” engine to perform
our experiments, henceforth denoted as PRISMS and PRISMH . It is expected that the PRISMS

engine will show a faster performance, whereas the PRISMH engine will consume less memory.
As shown in Table 4.1, our system contains 2GB of RAM memory. If any of the tools consume
more than 2GB during model checking, we know that memory swapping will cause a slow down
in performance. For further details regarding tool settings we refer to Appendix A.

Gathering data. Each experiment generates a certain amount of data. The main goal is to
compare the tools on their model checking time and memory usage. However other data such as
total elapsed time is also relevant. For instance, when a tool is able to check a certain property
on a model very fast, but requires a long model construction time, then total time performance is
poor. Also a tool that checks a model very fast but gives a wrong answer is worthless, for this we
need to compare the results given by the tools. Results consist of a true/false value and usually a
probability vector. We record two situations, namely:

1. The property holds in the initial state of the model.
2. The property holds in all states of the model.

Besides the obvious information, such as the tool name, model type, property, and the result, we
record the metrics presented in Table 4.2.

Information regarding the number of states and transitions of a model are displayed by each
tool at the start of the model checking procedure. Naturally each tool should arrive at the same
amount of states and transitions for identical models, despite the fact that the model description
language may differ. An important fact to keep in mind is that, unlike numerical tools, statistical
tools (like YMER and VESTA) compute the validity of a property only in the initial state of the
model. Hence, they will outperform the numerical tools.

Chapter 4. Comparing tool efficiency 41

Table 4.2: Recorded information (metrics) for each experiment

model size states number of states of the model

transitions number of transitions of the model

performance states sampled number of sampled states (in case of statistical model check-
ing

construction time time it took to construct the model (sec.)

model check time time it took to model check the given property (sec.)

total time time between tool invocation and termination (sec.)

memory memory consumption (kilobytes)

Timing. The time measurements related to “construction” and “checking” are reported in the
output generated by the tools. The total time that the tool operates is measured by means of the
GNU version of the UNIX shell command time2 Using the time command we store the elapsed time
between tool invocation and termination. Of all measured time values, we are mainly interested in
the “model check time”, which is the time it took to model check a given property, or to be more
precise; the time the tool spend on computing the answer. The “model construction time” is of less
interest, because one would often construct the model only once and then use it to verify multiple
properties. Moreover, since not all of the tools deliver information on their model construction
time, it is hard to compare this aspect among the different tools. Nonetheless, the information
is recorded to make future analysis possible, if so desired. The same applies to the “total time”
value, which includes the time it takes a tool to, for instance, read and write the input and output
from and to a file3. This value is recorded, but analysis is left for future work.

Memory usage. Information related to memory usage is gathered by using a separate program
that runs in parallel with the model checker during the experiment. This program is a shell
script that, every 0.1 seconds, takes a snapshot of the memory consumption of a specified process.
We designed the script to use the UNIX command ps, which provides the information listed in
Table 4.3.

Table 4.3: Memory information provided by the UNIX command ps

VSZ Virtual Memory Size (RAM + swap) in kilobytes of the entire process.

RSS Resident Set Size, the amount of physical RAM actually consumed by the
application i. e. the non-swapped physical memory, in kilobytes

SZ Size in physical pages of the entire process

The memory measure script takes measurements from the moment the tool is invoked and
continues until the tool terminates, so this includes the memory usage during model construction.
Of the available data, we analyse the peak VSZ memory usage. The VSZ value represents the
total amount of memory used by the process. The peak value tells us the amount of memory that
is minimally required (by the tool) to verify the particular property. This makes it an interesting
value for our performance comparison among the tools. As for the RSS and SZ values, they are
recorded for possible future analysis but are not used in this thesis. In our opinion the RSS value
is of less interest, since it does not reflect the real memory usage of a process (on a machine where

2 The time command runs any specified program command (in our case the model checker tools) and produces
timing statistics and resource usage about this program run.

3 File I/O may consume considerable amounts of time, for example MRMC lists the complete probability vector
in its output, which for large models might take up to several minutes to write to file.

42 Chapter 4. Comparing tool efficiency

swapping is enabled), it only represents the part of the total amount of memory that is stored in
physical RAM. As for the SZ value, it is merely an different representation of the VSZ value. The
SZ value is expressed in “number of pages4”. The page size may vary between platforms, in our
cause it is 4,096 bytes (4KB). Multiplying the “number of pages” with the page size results in the
VSZ value in KB. We find KB more intuitive than number of pages and therefore choose to use the
VSZ value. As stated above we use the Linux command ps to perform our measurement. Although
this method is not perfect5, the command gives us the means to conduct uniform measurements on
our system on all the tools with their different programming languages. It provides a reasonable
indication of the memory consumption of a process, moreover by using ps we can do a ”black box”
memory consumption measurement of a process i. e. we can perform measurements without having
to change anything to the model checker tools itself. Other methods, such as profiling tools were
investigated, but proved to be less suitable. Most of these tools were either, commercial, intended
for the Windows platform or they required some form of modification to the application that
needed to be profiled. Optionally, we could have used the memory consumption data reported by
the model checker tools itself, but this would require all of the tool to produce such data, which
is not the case.

Automation. All experiments and measurements are automated by means of Linux shell scripts.
This enables us to easily repeat experiments many times and collect data in a uniform style. An
experiment consists of verifying one property on one particular model using one of the model
checker tools. The tools are restarted before each experiment; this prevents features, such as
caching, to influence the results. Each experiment is repeated 20 times, after which we calculate
the sample mean and standard deviation of data such as the model checking time. The standard
deviation indicates the dispersion of a sample set i. e. it shows the range of variation from the
sample mean of a group of measurements. Calculation of the mean requires no explanation, for
the standard deviation we use the following formula:

G(x) =

√

n
∑

xi
2 − (

∑

xi)2

n(n− 1)
· STD[n− 1]√

n
(4.1)

Where x = (x1, . . . , xn), is the collected sample set, n the number of samples, and STD[n − 1] is
the Student’s t-Distribution [26] with n−1 degrees of freedom. The number of runs is limited to 3
instead of 20 whenever the total time of a single run exceeds 30 minutes, this prevents experiments
from consuming excessive amounts of time, but results in a less accurate standard deviation. This
is why we use the student’s t-distribution in Formula 4.1, it takes the number of samples into
account. If a single verification run requires more than 24 hours, we abort the process and denote
the model check time as ∞ in the charts and tables. As a rule, the result of a time measurement
are denoted as: avg ± stdev. For example 16.54 ± 3, means the average time is 16.54 seconds
with a deviation of 0.03 seconds faster or slower. The raw data produced by the tools is processed
automatically by means of shell scripts and a Java application that we designed to perform the
necessary calculations and generate results for easy display in LATEX6.

The measurement procedures described above are focussed on tools that have command-line
support. For a tool without command-line support, such as ETMCC (see Table 3.6) it becomes
difficult to automate the measurement process by means of scripts. Instead of reverting to solutions
such as macro recorders (these do not work well in the graphical environment of Linux), we
solved the issue by slightly modifying ETMCC. We build in support for accepting command-line
arguments and printing of results to the standard output.

4 A page is the smallest unit of memory handled by the operating system (i. e. a building block of memory).
5 There are some ongoing discussions regarding the accuracy of the data produced by the ps command. However,

we were not able to find any substantial evidence (or detailed research) on this matter. The main issue involves
the fact whether or not to include the memory consumed by shared libraries, as done by ps.

6 LATEXis a document preparation system for high-quality typesetting, see www.latex-project.org.

www.latex-project.org.

Chapter 4. Comparing tool efficiency 43

4.2 Model construction

Before discussing the selection of case studies, which is the topic of Section 4.3, we want to address
the issue of creating the actual models (DTMCs/CTMCs) for each of the tools. The case studies
that we selected had to be modelled using the model description language of each of the tools.
For some tools the models where readily available, for instance from [2] or from the example
models included in the tool distribution. As became apparent in Chapter 3, the tools use different
modelling languages. Despite this fact, we require the model to be equivalent (across all tools).
The procedure for model creation and generation is as follows:

1. Obtain or create the desired model in the PRISM programming language.
2. Use the export function7 of the PRISM tool to export the model into the .tra and .lab format

accepted by MRMC and ETMCC.
3. Create the model for YMER by adjusting8 the PRISM model using the syntax supported

by YMER.
4. Obtain or create the desired model in the VESTA programming language. (The TQN and

CSP case studies are provided in the standard distribution of the tool. The BDP case study
was re-modelled by hand. We were not able to generate models for the SLE and RDP case
studies due to parsing problems.)

By following above procedure, we minimize the chance of creating inequivalent case study
models among the different tools. We attempted to generate models as large as possible by
varying the model parameters. We discovered that there are two factors restricting the model
size. One of which is the file size of the .tra files used by MRMC and ETMCC, which is limited to
a maximum of 2GB9. PRISM can not export to a file exceeding this size, and even if we managed
to generated the file, MRMC would not be able to read it due to limitations of the implemented
file reader. In some cases we could not generate (and verify) our model due to the fact that PRISM
crashed. We will not go into detail on the cause of this error, but suffice to say the error message
reported a (known) problem with the CUDD package used for BDD’s.

As MRMC and ETMCC do not support a built-in modelling language, their overhead to gener-
ate a sparse matrix representation is low compared to the sparse matrix generation by PRISM. In
sparse mode, PRISM converts the MTBDD (which is always constructed first) to a sparse matrix
after performing some pre-computations. This, along with the generation of the sparse matrix,
may take a significant time and influence the model check time. This aspect should be considered
when interpreting the experimental results.

Properties. The properties verified in each of the case studies were selected based on their
comprising operator(s). For discrete-time models we used at least one property containing the
unbounded U operator and one containing the bounded U operator. The long run operator L and
the interval until U [k1,k1] were not included, since there is only one tool (MRMC) that supports
them. The next operator X is also excluded, since its verification is trivial. As for continuous-
time models, we included the bounded and unbounded U operator, the steady-state S operator
and the interval until. In addition we included a nested property (i. e. a property containing
multiple operators) for at least one discrete-time and one continuous-time model. In some cases
the properties may seem to make no sense in relation to the model, but remember that we selected
them based on their operators (and parameters) and not their semantics.

The properties verified in each of the case studies were chosen with such parameters10 that, in
most cases, they will evaluate differently when the model parameters are adjusted. This increases

7 For model export we used a beta version of PRISM (3.0 beta1). Before exporting (in command-line mode), one
needs to define the correct labels in the PRISM property file in order to generate a working .lab file. The time
consumption of exporting the model has not been measured.

8 The are some minor differences between the PRISM and YMER modelling language syntax. For instance PRIMS
declares a rate as ‘‘const double lambda = 0.5", whereas YMER requires ‘‘rate lambda = 0.5".

9 The 2GB file size limit is not caused by the file system (ext3) of our local hard disk. It handles files up to ≈ 2TB.
10 With the parameters of a PCTL/CSL property we mean the probability bound p in P./p and possible step/time

t in U./t, with comparison operator ./ ∈ {<, >,≤,≥}

44 Chapter 4. Comparing tool efficiency

the chance of detecting discrepancies in the results produced by the tools. The value of the
probability bound ./ p in the properties only effects the outcome (as in true or false), it does
not influence the model check time and computed probabilities as they will be the same for all
p (except for the extreme cases 0 and 1). We avoid using PCTL/CSL formulas with probability
bounds very close to (or exactly) the actual value, because statistical model checkers, such as
YMER and VESTA, do not handle such properties very well. An example of a situation where
VESTA provides an inaccurate answer is illustrated using the simple DTMC in Figure 4.1. The

2

31
0.3

0.7

green

red

1

blue

Figure 4.1: Simple DTMC.

probability to move from the initial state red to blue is exactly 0.3. When verifying the property
P≥0.3[X blue] the probability bound equals the actual value. Verifying this property results in
unreliable answers (it should evaluate to true). For this particular example, experiments showed
that VESTA produces the answer true about 50% of the time (and false otherwise), with default
error bound α = β = 0.01. Even when narrowing the error bound to 0.0001 it still produces a
wrong answer half of the time. We will not go into detail on the cause of this particular problem.
It is a known phenomenon for statistical model checkers, that is related to the indifference region
[79].

4.3 Case studies: data collection and interpretation

To compare the tools we need to compare their performance on model checking equivalent models.
This requires a selection of case studies that serve as a benchmark. We present five representative
case studies, taken from the literature on performance evaluation and probabilistic model checking,
see for instance [82, 69, 84, 36]. There are three discrete-time and two continuous-time case studies,
as shown in Table 4.4.

Table 4.4: Case studies
discrete-time Synchronous Leader Election

Randomized Dining Philosophers

Birth-Death process

continuous-time Tandem Queuing Network

Cyclic Server Polling System

For each case study we present; a brief description, the size of the model, the model check times
and peak memory usage for each verified property. The timing and memory data is presented
by histograms where the linear x-axis indicates the model parameters that determine the state-
space size, and the log-scale y-axis indicates the verification time (in seconds) or the memory
consumption (in Kbytes). Note that the y-axis is log-scale, so small differences are substantial.
Many detailed performance information can be found in the Appendices. For instance, the exact
timing values for all case studies are presented in Appendix C and for detailed memory values,
see Appendix D. Information related to model size and the amount of samples collected by the
statistical tools is presented in Appendix B.

Chapter 4. Comparing tool efficiency 45

4.3.1 Synchronous Leader Election

Description. The Synchronous Leader Election (SLE) protocol [44] describes the following prob-
lem: given a synchronous ring of N processors, design a protocol such that they will be able to
elect a leader (a uniquely designated processor) by sending messages around the ring. The pro-
tocol proceeds in rounds and is parameterized by a constant integer k > 0. Each round begins
by all processors (independently) choosing a random number (uniformly) from the set [1 . . . k] as
an id. The processors then pass their ids around the ring. For instance, if we take N = 4 and
k = 6, then each processor will pick a random id from the integer set [1,2,3,4,5,6]. It will take
one complete round (i. e. a minimum of N + 1 transitions/steps are required for initialisation and
for each processor to send an id to its neighbour and at the same time receive an id of its other
neighbour) in order for every processor to see the ids of every other processor and establish if
its own id is unique. If there is a unique id, then the processor with the maximum unique id is
elected the leader, and otherwise the processors begin a new round. We assume that the ring is
synchronous, meaning that there is a global clock and at every time slot; a processor reads the
message that was sent at the previous time slot (if it exists), makes at most one state transition,
and then may send at most one message [2]. The protocol is used in several studies, for instance
[54, 32, 27]. The adjustable parameters of the model are presented below, as well as the list of
PCTL properties to be verified.

parameters n number of processes
k size of the random number choice set [1 . . . k]

properties P≥1[true U leaderelected] With probability 1, eventually a leader is
elected.

P≥0.85[true U≤5 leaderelected] The probability of electing a leader within 5
steps. In our model, it takes n + 1 steps
(i. e. transitions) to complete a full round (in-
cluding initialization). Suppose n=4, then
we have defined the probability of electing a
leader within 1 round, since rounds = steps

n+1 .

P≥0.99[true U≤40 leaderelected] Similar to above, with a different bound on
the number of rounds.

Model size. The number of processes and the size of the random number set, in the SLE
protocol, is varied according to the values n and k in Table 4.5, which shows the corresponding
number of states and transitions.

Table 4.5: SLE - states and transitions
n k #states #transitions
4 2 55 70

4 782 1,037
6 3,902 5,197
8 12,302 16,397

10 30,014 40,013
12 62,222 82,957
14 115,262 153,677
16 196,622 262,157

8 2 1,803 2,058
4 458,847 524,382

The SLE protocol has been verified using only MRMC and PRISM (sparse and hybrid), since
ETMCC and YMER do not support discrete-time models. As mentioned earlier, we were unsuc-
cessful in creating an equivalent VESTA model for this case study.

46 Chapter 4. Comparing tool efficiency

Model check time. The time it takes to verify a property (i. e. model check time) is displayed
using bar charts such as Figure 4.2. As mentioned before, the log-scale y-axis shows the model
check time in seconds and the x-axis shows the model parameter(s), in this case n and k. Fig-
ure 4.2(a) presents the performance on verifying the property P≥p[true U≤t leaderelected] for t = 5
and t = 40. Figure 4.2(b) does the same for P≥1[true U leaderelected].

(a) P≥p[true U≤t leaderelected]

 P>=1 [true U leaderelected]

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

100000

4_2 4_4 4_6 4_8 4_10 4_12 4_14 4_16 8_2 8_4

number of processes_random set size n_k

lo
g

.s
c

a
le

 m
o

d
e

l
c

h
e

c
k

 t
im

e
 (

s
e

c
.)

(b) P≥1[true U leaderelected]

Figure 4.2: Synchronous Leader Election - model check times

These charts clearly show that MRMC outperforms the PRISM hybrid and sparse engine by
a wide margin, for both the bounded and unbounded U operator. For instance, MRMC is able
to verify P≥p[true U≤40 leaderelected] (on the model with parameters n = 4, k = 16) in 0.25
sec., whereas it takes PRISMS 93 sec. and PRISMH 4h15m. An obvious reason for the large
performance difference between MRMC and PRISM would be that one of the tools sacrifices
speed for accuracy (or vice versa). However as it turns out the probability vectors generated by
MRMC and PRISM match up to approx. 6 digits, which is acceptable considering ε is set to
10−6. Studying the difference between both PRISM engines shows that, as expected, the PRISM
sparse engine outperforms the hybrid engine, in this case by at most a factor of 340. For the
unbounded until property in Figure 4.2(b) there appears to be no performance difference between
both engines, we will address this phenomenon later on (in Section 4.4.2, which discusses the
causes of performance differences.) When examining Figure 4.2(a) more closely there emerges
another difference between the tools. When the time bound t increases from 5 to 40, we can
see that it takes MRMC longer to verify the formula. Which is to be expected, since there is a
direct relation between t and the number of calculations performed by MRMC (see Section 2.5.3).
The difference between t = 5 and t = 40 is hardly noticeable in the performance graph of both
PRISM engines. This can be explained by the way PRISM operates. Prior to performing the
computations that depend on t, PRISM will carry out some pre-computations on the matrix of
the model. These pre-computations are independent of t and take much longer than the second (t
dependent) part. Because the second part of the process is so quick compared to the first part we
hardly notice the overall difference between model checking various time bounds. One might argue
that the difference between the chosen time bounds (t = 5 and t = 40) is too marginal to show
a significant difference in model checking time. We therefore performed a series of measurements
with an increased time bound of t = 400 and found, as before, no significant difference in model
checking time11. Detailed timing values for the SLE case study can be found in Appendix C.1.
11 The lack of performance difference between the different time-bounds for the PRISM tool was not caused by

“On-The-Fly Steady-State Detection” (OSSD) [59, 48]. When OSSD is triggered, PRIMS will report this event
in its log files, which was not the case during verification of any of the properties in the SLE case study.

Chapter 4. Comparing tool efficiency 47

Memory usage. Figures 4.3 and 4.4 show the maximum VSZ (Virtual Memory Size) used by
the tools during the experiments. Analysing Figure 4.3(a) we see that PRISMS uses less memory

(a) log. scale - P≥p[true U≤t leaderelected] (b) linear scale - P≥p[true U≤t leaderelected]

Figure 4.3: Synchronous Leader Election - peak VSZ memory

than PRISMH . This effect becomes more apparent as the model size increases. When the bar
chart is plotted using a linear scale, as done in Figure 4.3(b), the difference between the tools
is even more emphasized. We see that, for all model sizes, MRMC uses the least memory. For
example, observing the model parameters n k = 4 16 we see that MRMC uses 24,872 KB (≈ 24.3
MB), and PRISMS 472,536 KB (≈ 461.5 MB) and that PRISMH requires 561,740 KB (≈ 548.6
MB) of memory.

The memory usage for verifying the unbounded U operator, see Figure 4.4, shows that again
MRMC uses less memory than PRISMH and PRISMS . For this particular property there appears
to be no difference between both PRISM engines.

 U leaderelected

1

10

100

1000

10000

100000

1000000

10000000

4_2 4_4 4_6 4_8 4_10 4_12 4_14 4_16 8_2 8_4

number of processes_random set size n_k

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

Figure 4.4: Synchronous Leader Election - peak VSZ memory - P≥1[true U leaderelected]

Verification results. Studying the results produces by the tools (i. e. the true/false values
stating whether or not the property is satisfied) we learned that each tool produced the exact
same answer for every property and model parameter. This is what we expected to find, when
comparing numerical tools set to use the same algorithm (Jacobi) and error bound (ε).

48 Chapter 4. Comparing tool efficiency

4.3.2 Randomized Dining Philosophers

Description. As in the leader election problem, the Randomized Dining Philosophers12 [66]
describes a distributed randomized algorithm. Suppose we have n philosophers who spend their
lives just thinking and eating. We put the philosophers in a room and seat them at a circular table.
There is a large plate of spaghetti in the centre of the table, which is constantly replenished. To
the left of each philosopher lays a chopstick. If a philosopher feels hungry, he can pick up his own
chopstick on his left. Since eating spaghetti with one chopstick is rather futile, the philosopher
requires also the use of the chopstick on his right. When finished eating, he will put down both
chopsticks and continue thinking. Of course a chopstick can only be used by one philosopher at a
time. Therefore, not all philosophers can eat at the same time, they will need to share chopsticks
(i. e. wait until it becomes available again). The dining philosophers situation is depicted in
Figure 4.5. Followed by the model parameters and PCTL properties.

(a) Example table
setting for 5
philosophers

Think
Pick up

chopsticks

Eat for a while
Put down
chopsticks

(b) Philosopher process cycle

Figure 4.5: Dining Philosophers problem

parameter n number of philosophers

properties P≥1[true U eat] This is a liveness property: eventually some
philosopher gets to eat.

P≥0.9[true U≤20 eat] Similar to above, only no we state that the
probability that “eventually some philosopher
gets to eat within 20 steps” must be at least
0.9.

Model size. For the Dining Philosophers problem (RDP) we vary the number of philosophers n
according to Table 4.6, which shows the resulting number of states and transitions. This (discrete-
time) case study has been applied to the PRISM and MRMC tool.

Table 4.6: RDP - states and transitions
n #states #transitions
3 770 2,845
4 10,022 47,432
6 594,790 4,170,946
7 5,454,562 44,070,594

12 The Dining Philosopher problem has also been studied in [56] and was posed originally by Dijkstra [25]. It is
used in for instance [54, 32, 63, 24].

Chapter 4. Comparing tool efficiency 49

Model check time. Figures 4.6(a) and 4.6(b) present the model check times on verifying the
properties P≥0.9[true U≤20 eat] and P≥1[true U eat]. Our data shows that generally MRMC is
faster13 than PRISM except for verifying the unbound U operator on the larger models n ∈ {6, 7}.

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

100000

3 4 6 7
number of philosophers n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(a) P≥0.9[true U≤20 eat]

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

100000

3 4 6 7
number of philosophers n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(b) P≥1[true U eat]

Figure 4.6: Dining Philosophers - model check times

The difference between the PRISM hybrid and sparse engine for Figure 4.6(b) is negligible,
but for Figure 4.6(a) we see that as the model size increases the difference is slightly in favour of
the hybrid engine (e. g. for n=7 the hybrid engine is 1.74 sec. faster). Detailed model check times
can be found in Appendix C.2.

Memory usage. Studying the memory usage, as depicted in Figure 4.7, we see the following.
As the model size increases, the memory usage of MRMC grows rapidly, whereas that of PRISM
increases rather slowly. When verifying the largest model size (k=7), both PRISMH and PRISMS

use less memory than MRMC. The most extreme difference was measured during the verification of
P≥1[true U eat] with k=7, here MRMC used 1,644,692 KB (≈ 1.60 GB), PRISMH required 279,376
KB (≈ 272.8 MB) and PRISMS 279,104 KB (≈ 272.6 MB). The opposite happens for the smaller
model sizes, where MRMC uses the least memory. Similar to the leader election protocol there
appears to be no difference in the memory usage between the two PRISM engines when verifying
the unbounded U operator (see Figure 4.7(b)). For the bounded U operator (Figure 4.7(a)) we
see that, as the model size increases, PRISMS requires more memory than PRISMH .

13 Note that the speed mentioned here is related to the model check time only. It is worth mentioning that although
it takes MRMC a near 5.3 seconds to model check the property P≥1[true U eat] for the largest model size (n = 7),
the total time required is ≈ 225 seconds. This is caused by the fact that MRMC spends a considerable amount
of time on file I/O, for instance it needs to read the large model description files i. e. the .lab and .tra file, which
have a size of 88.2 MB and 1.3 GB respectively. For the same model size and property, PRISMS and PRISMH

shows a model check time of ≈ 0.074 seconds and a total elapsed time of ≈ 1.66 seconds.

50 Chapter 4. Comparing tool efficiency

1

10

100

1000

10000

100000

1000000

10000000

3 4 6 7

number of philosophers (n)

lo
g

.s
c

a
le

 V
S

Z
 m

e
m

o
ry

 (
K

b
y

te
s

)

(a) P≥0.9[true U≤20 eat]

1

10

100

1000

10000

100000

1000000

10000000

3 4 6 7

number of philosophers (n)

lo
g

.s
c

a
le

 V
S

Z
 m

e
m

o
ry

 (
K

b
y

te
s

)

(b) P≥1[true U eat]

Figure 4.7: Dining Philosophers - peak VSZ memory

Verification results. The results of MRMC, PRISMH and PRISMS are consistent, meaning
that for each property and model parameter they produced equal answers.

4.3.3 Birth-death process

Description. Birth-death processes [58, 46] are used in numerous fields, for instance to model
the growth of a population. States in a birth-death process are numbered by integers that denote
the current population size. In a birth-death process, the change in population size can occur by
at most one, an increase in size is denoted as “birth” whereas a decrease is denoted as “death”.
The birth-death processes are related to queuing theory, for example we might state that the
population represents “customers in the queue at the post office”. Birth would then represent the
arrival of a new customer and death the departure of a customer. State changes in a birth-death
process can only happen between neighbouring states, this situation is depicted in Figure 4.8.

0 1 . . .2 31-P(0,1)

P(0,1)

P(1,0)

P(1,2)

P(2,1)

P(2,3)

P(3,2)

P(3,...)

P(...,3)

P(m-1,m)

P(m,m-1)

m 1-P(m,m-1)

Figure 4.8: Birth-death process

To model check the birth-death process with the selected model checker tools we create a finite
Markov chain by limiting the maximum population size (m). The probability of growth (P(n,n+1))
and death (P(n,n−1)) can be made dependent on the current population size (n). We defined the
transition matrix for our case study as:

Pij =































λ i = 0 ∧ j = 1 ∧ n = 0 ;birth from the initial state
λ

λ+(n·µ) j = i+ 1 ∧ (0 < n < m) ;birth
n·µ

λ+(n·µ) j = i− 1 ∧ (0 < n < m) ;death

µ i = m ;death from the n = m state

0 otherwise

(4.2)

Chapter 4. Comparing tool efficiency 51

The constants λ and µ in Formula 4.2 are set to 0.8 and 0.001 respectively, in addition we define
the chance of remaining in the initial state as 1− λ and for state m we have 1− µ. The chosen λ
and µ values result in a decreasing probability of birth as the population grows, and at the same
time an increasing probability of death. The size of the model depends on the maximum allowed
population size. The model parameters and PCTL properties for this case study are listed below.

parameter m maximum population size

properties P≥0.9[true U≤m

2 (n = m
4)] The probability that we reach a

quarter of the maximum popula-
tion, within m

2 steps, is at least 0.9.
P≥1[P≥0.9[true U≤100 (n = 70)] U (n = 50)] With a probability of 1 we will even-

tually reach a population size of
50, while maintaining a minimum
of probability of 0.9 of eventually
reaching a population of size 70
within 100 steps.

P≥1[true U (n = m)] We will eventually reach the maxi-
mum population size.

Model size. For the Birth-death process we varied the maximum population size m as shown
in Table 4.7, where the number of states is always m+ 1 and the transitions 2 · (m + 1). The

Table 4.7: Birth-death process - states and transitions
m #states #transitions

100 101 202
1,000 1,001 2,002

10,000 10,001 20,002
100,000 100,001 200,002

tools MRMC, PRISM and VESTA where used to verify the three properties shown in Figure 4.9.

Model check time. Starting with Figure 4.9(a) we see that MRMC outperforms PRISMS for
the smaller model sizes (m ≤ 1, 000), for the largest model size PRISMS wins with ≈ 10.4 sec.
difference. The PRISMH engine is in all cases slower than PRISMS , for instance in case of the
largest model size (m = 100, 000) we have PRISMH ≈ 1h27m versus PRISMS ≈ 90 sec. (and
MRMC ≈ 100.6 seconds). The exact performance values can be found in Appendix C.3. When we
look at VESTA we see that it performs poorly compared to MRMC and PRISM. It is slower for
the model sizes (m ≤ 1, 000) and for larger sizes it could not provide an answer after continuously
operating for 24 hours and had to be aborted. Investigating the amount of samples taken by
VESTA (see Table B.4 at m = 1, 000) shows this amount to be very high (≈ 2 million), compared
to the number of states in the model (1, 000). We suspect that too many samples are required
because the event n = m

4 is rather rare. For the nested formula in Figure 4.9(b) we see that,
for all model sizes, MRMC is the fastest followed by PRISMS and PRISMH . It takes MRMC
≈ 0.2561 sec. to verify the formula P≥1[P≥0.9[true U≤100 (n=70)] U (n = 50)], whereas PRISMS

and PRISMH need 12.24 and 4061 (1h7m41s) seconds respectively. VESTA offers no solution for
any of the model sizes after running 24 hours and seems to be stuck in an infinite loop of collecting
samples. For the PCTL formula P≥1[true U (n = m)], see Figure 4.9(c), it is clear that MRMC
once again is the fastest tool, followed by PRISMS and PRISMH , where the latter two show no
significant performance difference. VESTA has the worst performance and in addition provides
incorrect answers, where PRISM and MRMC state the property to be true in the initial state (for
all model parameters m), VESTA reports it to be false (for all model parameters and for all 20
runs).

52 Chapter 4. Comparing tool efficiency

mrmc
prism hybrid
prism sparse
vesta

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

100 1000 10000 100000

maximum population size m

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(a) P≥0.9[true U≤m

2 (n = m
4

)]

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

100 1000 10000 100000

maximum population size m

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(b) P≥1[P≥0.9[true U≤100 (n=70)] U (n = 50)]

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

100 1000 10000 100000

maximum population size m

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(c) P≥1[true U (n = m)]

Figure 4.9: Birth-death process - model check times

Memory usage. The memory usage for all three of the verified PCTL formulas is displayed in
Figure 4.10.

In each case MRMC is the tool requiring the least memory. In Figure 4.10(a) and/or Table D.3
we can see that (for the largest model size) MRMC uses 15,016 KB (≈ 14.7 MB), PRISMS 443.460
KB (≈ 433.1 MB) and PRISMH 468.704 KB (≈ 457.7MB). In this particular case the sparse engine
is not only faster than the hybrid engine, it also uses less memory. The same effect can be seen in
Figure 4.10(b). The memory related output reported by PRISM itself confirms our measurements,
it indicates that the “hybrid MTBDD matrix” uses more memory (for the same model size) than
the “sparse matrix”. We believe this is caused by the fact that the birth-death model has little
regularity14, which is what the MTBDD approach tries to exploit (see Section 2.6). The memory
usage of VESTA is fairly constant, as expected for a statistical tool. For smaller models it requires
a similar amount of memory as used by PRISM, only when the model size increases we see
that VESTA uses less than PRISM, but still more than MRMC. The missing memory values, in
Figure 4.10(a) and 4.10(b), are due the fact that for these properties (and model parameters)
VESTA seemed to require an infinite running time (i. e. at least more than 24 hours) and as a
result the experiment was aborted.

14 The probability of death and birth depend on the current population size n and therefore every transition in
our birth-death model has a unique probability p, which makes exploitation of regularity difficult.

Chapter 4. Comparing tool efficiency 53

mrmc
prism hybrid
prism sparse
vesta

1

10

100

1000

10000

100000

1000000

10000000

100 1000 10000 100000

maximum population size m

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

(a) P≥0.9[true U≤ m

2 (n = m
4

)]

1

10

100

1000

10000

100000

1000000

10000000

100 1000 10000 100000

maximum population size m

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

(b) P≥1[P≥0.9[true U≤100 (n=70)] U (n = 50)]

1

10

100

1000

10000

100000

1000000

10000000

100 1000 10000 100000

maximum population size m

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

(c) P≥1[true U (n = m)]

Figure 4.10: Birth-death process - peak VSZ memory

Verification results. The results of MRMC, PRISMH and PRISMS are equal in all situations,
as for VESTA; it produced an incorrect answer for all verifications of the property
P≥1[true U (n = m)], which should be satisfied (i. e. true) according to MRMC and PRISM.
Verifying this unbounded until property, stating that we will “eventually reach the maximum
population”, would theoretically require sample paths of infinite length. VESTA mitigates this
problem by using a stopping probability ps

15. This means that, while sampling a path from a
state, VESTA will stop and return the path so far simulated with probability ps [70]. Because
of the nature of the model there is one very long path from the initial state to the only state
satisfying “maximum population” (n = m), where the probability of reaching the state n = m

becomes ever smaller. Thus when sampling, at some point the chance of stopping becomes greater
than the chance of reaching the n = m state, and VESTA will evaluate the property to false. A
small experiment where we lowered the stopping probability for n = 100 from 0.05 to 0.01 showed
that, for these settings, VESTA produced correct answers. This supports our theory of the fault
being caused by the stopping probability. The timing measurements for this experiment are not
displayed here, because we settled on comparing the tools in their default mode.

15 The stopping probability ps for VESTA is (default) 0.05, see Appendix A.

54 Chapter 4. Comparing tool efficiency

4.3.4 Tandem Queuing Network.

This case study, taken from [39, 2] (see also [36, 84, 69, 82, 86]), consists of two sequentially
composed queues, each of capacity n. Messages arrive at the first queue and stay in the queue
for some time, before getting routed to the second queue, from where they eventually leave the
system. The time between arrival of messages at the first queue is exponentially distributed with
rate λ = 4n. If the first queue is not empty and the second queue not full, then messages are
routed from the first queue to the second queue. The routing time distribution is a two-phase
Coxian [22] distribution with parameters16 µ1, µ2 and a. The processing time at the second queue
is exponentially distributed with rate κ = 4. Figure 4.11 shows the tandem queueing network and
its parameters, which is followed by the CSL property listing.

. . .
λ

Ph=1 Ph=2
aμ1

(-a)μ1 1

μ2

routing time distribution

. . .
κ

Figure 4.11: Tandem Queueing Network of two sequentially composed queues.

parameter n capacity of both queues

properties S<0.01[full] The steady-state probability of the queueing net-
work being full (i. e. each queue contains n mes-
sages and Ph=2)is less than 0.01.

S>0.2[P>0.1[X snd]] The steady-state probability to be in a state that
can reach a state in which the second queue is
full in a single step with probability > 0.1 satis-
fies > 0.2. The steady-state probability of “the
second queue becoming full in the next state with
probability greater than 0.1” is greater than 0.2.

P<0.1[true U [0.5,2] full] The probability of the queueing network becom-
ing full between 0.5 and 2 time units is less than
0.1.

P≤0.01[true U≤2 full] The probability of the queueing network becom-
ing full within 2 time units is less than (or equal
to) 0.01.

P≤0.5[true U≤10 fst] The probability that the first station of the tan-
dem network becomes fully occupied within 10
time units is less than (or equal to) 0.5.

P≥1[snd U sndn] The probability of leaving a situation where the
second queue is entirely populated is equal to 1.

16 The parameters for arrival time and the routing time distribution of the tandem queueing network remain
constant during all experiments; we use µi∈{1,2} = 2 which is the exit rate for the ith phase of the distribution,
1 − a = 0.9 which is the probability of skipping phase two, and ph ∈ {1,2} which denotes the current phase of
the Coxian distribution.

Chapter 4. Comparing tool efficiency 55

Model size. The queue size n of both queues in the Tandem Queuing Network (TQN) has been
varied according to Table 4.8, resulting in a maximum of approx. 2 million states and 7 million
transitions.

Table 4.8: TQN - states and transitions
n #states #transitions
2 15 33

10 231 729
50 5,151 17,649

100 20,301 70,299
255 130,816 455,939
511 523,776 1,829,379

1023 2,096,128 7,328,771

Model check time. We start by examining the performance on verifying the steady-state op-
erator, see Figure 4.12. This is done for the numerical tools only, since the others do not support
steady-state detection17 We see that, for the larger queue sizes, the timing values of ETMCC are
missing. This is caused by the fact that ETMCC has run out of memory and terminated, thus no
results are available. ETMCC is the slowest of the tools, whereas MRMC is the fastest, followed
by PRISMS and PRISMH . For example if we look at Figure 4.12(a) (and or Table C.4) queue
size 1023 we see that MRMC requires 708.7 sec. (≈ 12min.), PRISMS 7681 sec. (≈ 2h8m), and
PRISMH 8311 sec. (≈ 2h18m31s). The CTMC of the TQN is strongly connected, meaning that a
search for BSCC’s (Bottom Strongly Connected Components), which is required for steady-state
detection, will yield a single BSCC. Since all states are in a single BSCC, no reachability prob-
abilities need be computed. The calculations for the BSCC steady-state probabilities for both
formula require the same amount of iterations, this is why there is little difference between the
model check times of the formulas in Figure 4.12(a) and 4.12(b). We would also like to note that
for both steady-state properties, queue size 1023, PRISM reaches it maximum iteration point18

and the iterative method is stopped early.

mrmc

prism hybrid

prism sparse

etmcc

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

2 10 50 100 255 511 1023

queue size n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(a) S<0.01[full]

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

2 10 50 100 255 511 1023

queue size n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(b) S>0.2[P>0.1[X snd]]

Figure 4.12: TQN - Steady-state, model check times

17 In a nutshell, the steady-state operator in not supported by the statistical tools, because it is unclear when to
stop the sample path generation.

18 The maximum number of iterations was set to 10,000 for each (numerical) tool. The TQN case study is the
only case where this maximum number of iterations was reached.

56 Chapter 4. Comparing tool efficiency

The graphs in Figure 4.13 show the performance on verifying the U operator. Starting with Fig-
ure 4.13(a), we see the performance results of MRMC, PRISM and YMER on P<0.1[true U [0.5,2] full]
(the other tools do not support the interval until operator). When the model size increases
(n >= 50), the statistical tool YMER easily outperforms any of the other tools. Also note that

mrmc
prism hybrid
prism sparse
etmcc
ymer
vesta

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

2 10 50 100 255 511 1023

queue size n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(a) P<0.1[true U [0.5,2] full]

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

2 10 50 100 255 511 1023

queue size n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(b) P≤0.01(true U≤2 full)

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

2 10 50 100 255 511 1023

queue size n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(c) P≤0.5[true U≤10 fst]

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

2 10 50 100 255 511 1023

queue size n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(d) P≥1[snd U sndn]

Figure 4.13: TQN - Until, model check times

an increase in model size has a less drastic effect on the performance of YMER as it does on
the other tools. For each model size we see that MRMC is faster than PRISMS . The largest
difference is 83.4 sec., namely for queue size 1023, where MRMC and PRISMS requires 911.1
and 994.5 sec. respectively. The hybrid engine is slower than the sparse engine it uses (on av-
erage) 1583.8 sec. for the same queue size. Figures 4.13(b) and 4.13(c) display the performance
graphs on P≤0.01(true U≤2 full) and P≤0.5[true U≤10 fst] respectively. YMER is in both cases
the fastest tool when it comes to the larger models (n ≥ 50). VESTA on the other hand seem
to have more difficulties competing against the numerical tools, it is faster only for the larger
queue sizes (4.13(b): n ≥ 255 and 4.13(c): n ≥ 511). In figure 4.13(b) we see that MRMC has
the fastest verification time for the smaller model sizes (up to n = 100). For larger values of n,
PRISMS prevails. In every situation we see that the PRISM hybrid engine is slower than the
sparse engine but still faster than ETMCC, which performs the poorest of all numerical tools.
For queue size n = 1023, the tools PRISMS , PRISMH , and MRMC require approximately 983,
1531 and 1705 seconds respectively. As for ETMCC, it can only verify models of queue size up
to and including n = 255, after which it runs out of memory. At this point we would like to note

Chapter 4. Comparing tool efficiency 57

that we discovered a substantial difference in performance for the MRMC tool when repeating
the same experiment with the “On-The-Fly Steady-State Detection” (OSSD) [59, 48] turned off,
namely for P≤0.01(true U≤2 full), queue size 1023 we recorded 882 sec. in stead of 1705 sec. It is
possible that PRISM would also perform faster without OSSD. This could not be verified seeing
that PRISM enables OSSD by default and it can not be turned off. The effect witnessed here is
already well known. By utilizing OSSD, verification time is longer (i. e. it doubles compared to
not using OSSD) prior to the point from which a steady-state is detected during computations.
Once the equilibrium is reached (and detected), the run time for the variant with OSSD turned on
remains constant, whereas the runtime for verification without OSSD continues to grow linearly
in t [48].

In Figure 4.13(c) we can see that verification of the property P≤0.5[true U≤10 fst] using the
numerical tools is performed the fastest by MRMC for all model sizes. Performance wise, PRISMS

and PRISMH are in second and third place, and ETMCC finishes last. Further analysis showed
that on-the-fly steady-state detection was triggered in MRMC, PRIMS and ETMCC (for this
particular property and all model sizes), which in this case reduced the number of iterations
required by the model checking algorithm, and thus resulted in a faster model check time. Here
we witnessed the benefit of OSSD, for instance MRMC took 28.42 sec. for queue size 511 when
OSSD was turned on, and 520.7 sec. (not depicted) otherwise.

In Figure 4.13(d) we see the results of verifying the unbounded until property P≥1[snd U sndn].
Although the model size does not seem to effect VESTA, its overall performance is not as good
as the numerical tools (comparison with YMER was not possible, since it does not support the
unbounded until operator). For smaller model sizes (n ≤ 100) MRMC is the fastest tool, but
as the model size increases its model check time exceeds that of PRISM and even ETMCC. For
queue size n = 1023, both PRISM engines require ≈ 0.021 sec., MRMC needs 1.338 seconds and
ETMCC has run out of memory. A overview of exact timing values can be found in Appendix C.4.

Memory usage. Figure 4.14 depicts the peak VSZ memory usage measured during verification
of the formulas S<0.01[full] and S>0.2[P>0.1[X snd]]. As the queue size increases we see that the
PRISM memory usage increases as well (although less dramatic as MRMC). We also notice that
increasing the queue size increases the difference between PRISMH and PRISMS , where the latter
uses more memory. This indicates that PRISM stores the queuing model more efficiently, using the
hybrid approach, but at the cost of performance (as demonstrated in Figure 4.12). As for MRMC;
for the smallest model sizes we were unable to accurately measure its peak memory usage, because
the measure period was to short (i. e. the verification is completed before enough measurements
could be taken). MRMC uses less memory than both PRISM engines, but its memory consumption
rapidly increases as the model grows larger and it can not maintain its lead after reaching the
largest model size (n = 1023). ETMCC uses an average of 4.1 MB less than PRISMH , until it
reaches queue sizes n = 511 (Figure 4.14(a)) and n = 255 (Figure 4.14(b)), where it runs out of
memory.

In these particular cases, there is no peak memory value available for ETMCC. This is caused by
the fact that ETMCC produces an “java.lang.OutOfMemoryError:Java heap space"19 error.
This error appears soon after the tools starts. This could either mean that the application has a
memory leak or that ETMCC really needs a lot of memory. A possible cause of the heap space
error is that the maximum recursion depth (of a recursive function) is exceeded. The error is
actually produced by the Java Virtual Machine (JVM). The JVM manages an internal heap of
memory and imposes a fixed limit on the size of this heap. During runtime, the JVM will grow
the heap by allocating more memory from the operating system when needed. Before satisfying
a memory allocation, the JVM checks if the allocation would result in overstepping the heap size
limit. If the JVM can not free memory by means of garbage collection and the limit would be
exceeded, it will throw an “OutOfMemoryError”. We could have tried to remedy this problem by

19 This is the memory that the JVM uses to allocate java objects.

58 Chapter 4. Comparing tool efficiency

mrmc

prism hybrid

prism sparse

etmcc

1

10

100

1000

10000

100000

1000000

10000000

2 10 50 100 255 511 1023

queue size n

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

(a) S<0.01[full]

1

10

100

1000

10000

100000

1000000

10000000

2 10 50 100 255 511 1023

queue size n

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

(b) S>0.2[P>0.1[X snd]]

Figure 4.14: TQN - Steady-state, peak VSZ memory

increasing the Java heap size using certain runtime parameters20, but this would have influenced
our test environment. We need to remain consistent and use the same Java heap size for all
experiments (this applies to all tools written in Java, see Table 3.6).

Moving on to the bounded U operator, of which the peak VSZ memory is presented in Fig-
ures 4.15(a) through 4.15(c), we see a similar memory consumption behaviour between the first
two figures. We have excluded the graph for the property P≤0.5[true U≤10 fst], because it is al-
most identical to that of P≤0.01(true U≤2 full) in Figure 4.15(b) (the largest measured deviation
is 676 Kbytes). Instead, we provide Figure 4.15(c), which shows the memory consumption for
the property P≤0.01(true U≤2 full) on a linear scale, which emphasises the differences amongst
the individual tools. We see that for queue sizes n ≥ 100, YMER uses by far the least mem-
ory. MRMC starts out with a significantly lower memory consumption compared to PRISM,
but MRMC shows an rapid increase as the model grows. After reaching the largest model size
(n = 1023) the memory usage of MRMC has surpassed that of PRISM, at this point MRMC uses
≈ 500 MB, PRISMH ≈ 338 MB, PRISMS ≈ 429 MB and ETMCC has ran out of memory. As we
noticed earlier when investigating the steady-state performance, we again see that as the model
size increases the PRISM sparse engine consumes more memory than the hybrid engine, resulting
in a trade-off between speed and memory consumption. The memory usage of VESTA is similar to
that of PRISM, whereas we would expect VESTA to use less memory, since it is a statistical tool.
We believe this might be caused by the fact that both tools use the Java Virtual Machine, which
tends to claim a certain amount of memory at start-up and even though garbage collection21 will
decrease the JVM heap size, the JVM will not release its allocated memory back to the operating
system, until the process is terminated.

Figure 4.15(d) presents the memory chart for the remaining property P≥1[snd U sndn]. All
the Java-based tools, PRISM,ETMCC and VESTA seem to require the same amount of memory,
as for MRMC it starts out low and then increases up to a point (n = 1023) where it requires more
than PRISM and VESTA (ETMCC has run out of memory).

Verification results. The results of all tools matched 100%. This includes the statistical tools,
meaning that YMER and VESTA produced the correct answer for all experiments (i. e. for all
properties, model parameters and all 20 runs).

20 The Java heap size can be adjusted using the runtime parameters:
java -Xms<initial heap size> -Xmx<maximum heap size>

21 For addition information on Java memory management, we refer to
http://java.sun.com/j2se/reference/whitepapers/memorymanagement_whitepaper.pdf

http://java.sun.com/j2se/reference/whitepapers/memorymanagement_whitepaper.pdf

Chapter 4. Comparing tool efficiency 59

mrmc
prism hybrid
prism sparse
etmcc
ymer
vesta

1

10

100

1000

10000

100000

1000000

10000000

2 10 50 100 255 511 1023

queue size n

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

(a) P<0.1[true U [0.5,2] full]

1

10

100

1000

10000

100000

1000000

10000000

2 10 50 100 255 511 1023

queue size n

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

(b) P≤0.01(true U≤2 full)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

2 10 50 100 255 511 1023

queue size n

lin
e

a
r

s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

(c) linear scale - P≤0.01(true U≤2 full)

1

10

100

1000

10000

100000

1000000

10000000

2 10 50 100 255 511 1023

queue size n

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

(d) P≥1[snd U sndn]

Figure 4.15: TQN - Until, peak VSZ memory

60 Chapter 4. Comparing tool efficiency

4.3.5 Cyclic Server Polling System.

This case study describes a symmetric22 polling system [43] consisting of n stations and a server.
Each station has a single-message buffer and the stations are attended by a single server in cyclic
order. The server starts by polling the first station. If this station has a message in its buffer
(busy), the server starts serving the station. Once the station has been served, or if there was no
message in the buffer (idle), the server start polling the next station. After polling all stations, the
server returns to polling the first station and thus beginning a new cycle. The polling and service
times are exponentially distributed with rates γ = 200 and µ = 1. The arrival rate of messages at
a station is equal for all stations and is exponentially distributed with rate λ = µ

n
. Applications of

this case study can be found in for instance [83, 82, 36, 69, 84, 86]. We will apply this case study
for different values of n using the following CSL properties.

parameter n number of stations

properties S<0.2[busy1 ∧ ¬serve1] The long run probability that station 1 is
waiting for the server is less than 0.2.

P≤0.99[true U [40,80] serve1] The probability that station 1 will be served
within the time bound [40,80] is at most 0.99.

busy1 =⇒ P≥0.5[true U≤t poll1] Once station 1 has become busy (i. e. full),
with probability of at least 0.5 it will be
polled within at most t ∈ {5, 10, 20, 40, 80}
time units.

busy1 =⇒ P≥1.0[true U poll1] Once station 1 has become busy, it will even-
tually be polled.

¬(poll1 ∧ poll2) The server never polls station 1 and 2 at the
same time.

Model size. The size of the state-space for this model depends on the number of stations (n),
as shown in Table 4.9. The largest possible model parameter is n = 18, for n = 19 the model
description file (.tra file) could not be generated because it exceeds the 2Gb size limit (as explained
in Section 4.2).

Table 4.9: CSP - states and transitions
n #states #transitions
3 36 84
6 572 2,208
9 6,912 36,864

12 73,728 503,808
15 737,280 6,144,000
16 1,572,864 13,893,632
17 3,342,336 31,195,136
18 7,077,888 69,599,232

Model check time. Starting with the steady-state operator (Figure 4.16(a)) we see that MRMC
is the fastest followed by PRISMH , PRISMS and EMTCC, where the latter runs out of memory
as the number of stations (n) exceeds 12. As for the property P≤0.99[true U [40,80] serve1] of which
the model check times are shown in Figure 4.16(b), we can see that PRISMS outperforms MRMC
and PRISMH for all model sizes. For instance, for n = 16 it takes PRISMS (on average) 1339.5
sec. (22.3 min.), MRMC 1574 sec. (26.2 min.), and PRISMH 2979 sec. (49.7 min.). For larger
model sizes (n ≥ 12) the statistical tool YMER is by far the fastest, for n = 16 it requires only
1.2 seconds.
22 The cyclic server polling system is symmetric, because message arrival rates for all stations are equal.

Chapter 4. Comparing tool efficiency 61

mrmc

prism hybrid

prism sparse

etmcc

ymer

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(a) S<0.2[busy1 ∧ ¬serve1]

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

100000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(b) P≤0.99[true U [40,80] serve1]

Figure 4.16: CSP - Steady-state and interval Until, model check times

Figure 4.17 shows the performance on verifying the property busy1 =⇒ P≥0.5[true U≤t poll1],
where the time bound t is set to 5, 10, 20, 40 and 80 successively. We encountered a problem when
trying to verify this property using MRMC. Verification worked fine for model sizes n ≤ 6, but for
larger n the tool produced the following error message: ERROR: The number of BSCCs exceeds

255, this is not supported23. The On-The-Fly Steady-State Detection (OSSD) proved to
be the cause of this error. Since we would still like to be able to see how MRMC relates to
the other tools, we turned OSSD off for the duration of this experiment i. e. for the property
busy1 =⇒ P≥0.5[true U≤t poll1] with t ∈ 5, 10, 20, 40, 80 and n ≥ 9.

The data shows that, of the numerical tools, PRISMS is overall faster than MRMC and
PRISMH . The difference becomes more apparent as the time bound t increases. For exam-
ple, for t = 80 and n = 16 PRISMS , PRISMH , and MRMC24 require respectively 533.5, 1166 and
1462 seconds, which is depicted in Figure 4.17(e) and Table C.5. Analysis of the PRISM log files
showed that the on-the-fly steady-state detection was triggered for all model sizes in combination
with the time bounds 40 and 80. This explains why there is no significant difference between the
model check times of PRISM for these two time bounds, see Figures 4.17(d) and 4.17(e). On
the other hand, we see that the model check times of MRMC increase when the time bound t is
raised, as is evident in Figure 4.17(f). This is caused by the fact that MRMC is unable to apply
on-the-fly steady-state detection in these conditions, as explained above.

For the statistical tools we see that VESTA performs reasonably for larger model sizes, whereas
YMER has excellent performance. Although the graphs in Figure 4.17 do not show values for
YMER, checking Table C.5 learns that YMER reports to model check this property in 0 seconds.
This is caused by the fact that YMER will only verify if the property holds in the initial state.
The property busy1 =⇒ P≥0.5[true U≤t poll1] can be rewritten as ¬busy1∨P≥0.5[true U≤t poll1]
and since ¬busy1 is satisfied in the initial state YMER needs not verify P≥0.5[true U≤t poll1] and
thus computes the answer almost instantly. This conclusion is supported by the fact that the
number of collected samples (see Table B.8) for this property is not specified by YMER, meaning
no samples have been collected. We do note that if the order of the property would have been
reversed (i. e. P≥0.5[true U≤t poll1]∨¬busy1) YMER would require more time, since it would first
verify P≥0.5[true U≤t poll1]. This shows that the order in which the property is formulated can
influence performance.

23 In the course of this research, a new version (1.2.1) of MRMC was released, which resolves the limitation of 255
BSCCs

24 In Figure 4.17 the MRMC values for some of the larger model sizes are missing, this is due to the fact that
MRMC suffered a timer overflow, i. e. the variable used by MRMC for keeping track of model check time is not
large enough.

62 Chapter 4. Comparing tool efficiency

mrmc
prism hybrid
prism sparse
etmcc
ymer
vesta

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(a) busy1 =⇒ P≥0.5[true U≤5 poll1]

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(b) busy1 =⇒ P≥0.5[true U≤10 poll1]

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(c) busy1 =⇒ P≥0.5[true U≤20 poll1]

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(d) busy1 =⇒ P≥0.5[true U≤40 poll1]

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

(e) busy1 =⇒ P≥0.5[true U≤80 poll1]

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

 t {5,10,20,40,80}

(f) summary of Figure 4.17 a through e

Figure 4.17: CSP - bounded U , model check times

Chapter 4. Comparing tool efficiency 63

When we look at the model check times of the unbounded U operator, shown in Figure 4.18,
we see that PRISMH and PRISMS are equally matched. For larger models (n ≥ 12) the PRISM
engines easily outperform MRMC and VESTA, e.g. where PRISM needs 0.83 seconds to verify
the largest model (n=18), MRMC requires ≈ 3.8 seconds and VESTA ≈ 51.2 seconds.

mrmc

prism hybrid

prism sparse

etmcc

vesta

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

Figure 4.18: CSP - model check times - busy1 =⇒ P≥1.0[true U poll1]

We have one property remaining, namely ¬(poll1 ∧ poll2). Model checking this property is
trivial, because it requires no probability computations. All of the tools manage to verify this
property within 0.007 seconds, regardless of the model parameters.

Memory usage. Starting with the memory usage for the steady-state operator in Figure 4.19(a),
we see a similar behaviour as observed in the Tandem Queueing Network Figure 4.14(a). The
difference between the memory consumption of two PRISM engines increases as the model size
grows and, as expected, the sparse engine requires the most memory (but outperforms the hybrid
engine in model check time). MRMC uses the least memory for models with n ≤ 15 stations, after
which PRISMH is more economic (at this point ETMCC has run out of memory).

mrmc

prism hybrid

prism sparse

etmcc

ymer

1

10

100

1000

10000

100000

1000000

10000000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

(a) S<0.2[busy1 ∧ ¬serve1]

1

10

100

1000

10000

100000

1000000

10000000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

(b) P≤0.99[true U [40,80] serve1]

Figure 4.19: CSP - Steady-state and interval Until, peak VSZ memory

64 Chapter 4. Comparing tool efficiency

Verification of the steady-state property on the largest model size (n = 18) resulted in a peak
memory consumption of approximately 433 MB, 1255 MB and 2596 MB for PRISMH , PRISMS

and MRMC respectively. The peak memory for verification of the interval until property, see
Figure 4.19(b), has similar behaviour as described above. The turning point for MRMC is n = 15,
after which PRISMH takes over as the numerical tool that uses the least memory. YMER is the
overall winner if we consider model sizes n ≥ 9.

The peak memory for the property busy1 =⇒ P≥0.5[true U≤t poll1] is presented in Figure 4.20.
We combined the results for the various time bounds t ∈ {5, 10, 20, 40, 80} into a single bar chart
in order to illustrate the fact that an increase in time bound does not seem to affect the peak
memory consumption of the tools (whereas it does affect the model check time, as we have seen
in Figure 4.17(f). As the model size increases, we see a growth in memory consumption for all
numerical tools. Compared to PRISM, MRMC uses the least memory for n ≤ 15, after which
PRISMH takes over. ETMCC can verify models up to n ≤ 12, after which it runs out of memory.
The memory usage of VESTA remains constant during model growth. As for YMER; we were
unable to measure its peak memory usage for this property. This is due to the fact that YMER
verified the property within such a short time, that an accurate measurement was not possible.
But we believe it is safe to assume that the peak memory consumption does not exceed that of
any of the other tools.

Figures 4.21(a) and 4.21(b) show the peak memory usage during verification of the properties
busy1 =⇒ P≥1.0[true U poll1] and ¬(poll1 ∧ poll2). The situation does not differ much from
what we have previously seen, namely MRMC uses less memory than PRISM for smaller model
sizes (n ≤ 15). For these particular properties, there seems to be no difference between the peak
memory usage of both prism engines.

mrmc
prism hybrid
prism sparse
etmcc
ymer
vesta

1

10

100

1000

10000

100000

1000000

10000000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

 t {5,10,20,40,80}

Figure 4.20: CSP - peak VSZ memory - busy1 =⇒ P≥0.5[true U≤t poll1], with
t ∈ {5, 10, 20, 40, 80}

Chapter 4. Comparing tool efficiency 65

mrmc
prism hybrid
prism sparse
etmcc
vesta

1

10

100

1000

10000

100000

1000000

10000000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

(a) busy1 =⇒ P≥1.0[true U poll1]

1

10

100

1000

10000

100000

1000000

10000000

3 6 9 12 15 16 17 18

number of stations n

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
b

y
te

s
)

(b) ¬(poll1 ∧ poll2)

Figure 4.21: CSP - peak VSZ memory

Verification results. The results produced by all numerical tools (MRMC, PRISMH , PRISMS ,
and ETMCC) are identical. Examining the statistical tools showed VESTA to be less reliable in
verifying the properties busy1 =⇒ P≥0.5[true U≤5 poll1] and busy1 =⇒ P≥0.5[true U≤10 poll1]
on the larger model sizes. Verification of the first property resulted in 87.5% of the answers
being wrong, for the latter property the percentage of wrong answers was 62.5% (out of 160
measurements). YMER provided correct answers for all of its verified properties, except for
P≤0.99[true U [40,80] serve1]. For some model sizes, the actual probability proved to be close to
the ≤ 0.99 bound. Verification of this particular property, for which we took 160 measurements
(i. e. 20 per model parameter), resulted in 3.13 % wrong answers. Out of the total number of
measurements taken in this case study by each of the statistical tools, which is 960 measurements,
we can state that VESTA had 25% and YMER 0.52% wrong.

66 Chapter 4. Comparing tool efficiency

4.4 Analysis

In Section 4.3 we have done a case by case analysis of the difference in speed, memory usage and
verification results between the tools. We now consider topics related to the overall timing and
memory measurement.

So far we have only shown the averages and standard deviation of the data related to timing
measurements and have not discussed the individual measurements. The variation between the
individual runs (i. e. the standard deviation of the 20 repeated experiments) is usually very low
(< 1%), as can be witnessed in Appendix C. We did notice however that the first measurement
(i. e. 1 of 20) often exhibits a slower model check time than the 19 measurements that follow. This
is believed to be caused by disk caching. After the first experiment the Operating System (OS)
will have stored the requested data in the cache, when the second experiment starts it requires
the same data, which at this time can be read from the cache, resulting in faster access. We
restarted the tools before each experiment to prevent the tools itself from reusing results obtained
in previous experiments. This however does not prevent the OS from caching files that are (often)
used.

In Section 4.3 we demonstrated the difference in tool performance and memory consumption,
by interpreting a variety of charts. These interpretations were made by using common sense and
visually inspecting the charts (and raw data). We believe that this method is admissible, because
of the small standard deviation between the (20) repeated measurements and the fact that the
differences between the tools are often substantial. There are methods available from the field
of statistics, namely hypothesis testing [78], which can be applied to prove whether or not the
difference between two sets of data is significant enough not to be a coincidence. For completeness
we apply a statistical significance test called the t Test to one of our data sets, see Table 4.10.
The data represents the model check times of the PRISMH and PRISMS engines for verification
of the property P≤0.5[true U≤10 fst] on the Tandem Queuing Network with queue size n = 100.
The t Test tests the significance of the difference between two sample means, see [31] for details.
The t Test results presented in 4.10 are obtained using SPSS [3], a predictive analytic software
package.

Table 4.10: Example statistical significance test on the Tandem Queuing Network case study

(a) Model check time samples ,
TQN, queue size 100,
P≤0.5[true U≤10 fst]

Model check time (sec.)
Measurement PRISMH PRISMS

1 0.507 0.489
2 0.507 0.488
3 0.51 0.488
4 0.508 0.485
5 0.51 0.488
6 0.51 0.488
7 0.509 0.491
8 0.509 0.491
9 0.509 0.488
10 0.507 0.488
11 0.51 0.488
12 0.509 0.49
13 0.508 0.485
14 0.508 0.489
15 0.509 0.488
16 0.504 0.49
17 0.51 0.487
18 0.529 0.486
19 0.51 0.489
20 0.507 0.488

Mean 0.509 ± 2 0.4882±8

(b) Results of t Test

t Test for Equality of Means
ta df b Sig.c Meand Std. Errore 95% confidence intervalf

(2-tailed) difference difference of the difference
lower upper

-18.640 38 1.03E-20 -0.0213 0.001143 -0.023613 -0.018987

a Statistic used for testing the null hypothesis that two population
means are equal.

b Value associated with a test statistic that is used in determining
the observed significance level.

c The probability of obtaining results as extreme as the one ob-
served, and in either direction when the null hypothesis is true.

d The mean for one group minus the mean for the other group.
e The standard deviation of the sample differences.
f A range of values based on the paired difference. If the interval
does not contain 0, the paired difference differs significantly from
0.

Chapter 4. Comparing tool efficiency 67

We will not go into details on every aspect of the t Test results. The most important factor in
the results is the 2-tailed25 significance. If this value is less than 0.05 – in statistics, it is general
practice to use the 5% level as significance boundary – we can reject the so called null hypothesis,
which states: “there is no significant difference between the two group means”. As mentioned
earlier, and witnessed again in this example, the standard deviation between the collected samples
is small, which makes comparing the mean values easier (if done by hand i. e. on intuition).
Motivated by the small standard deviation, and in view of the t Test results on two mean values
that are relatively close together and yet still statistically significant, we believe it is safe to forgo
the t Test26.

4.4.1 Analysis by probabilistic operator.

In the previous sections we presented the results per case study and property. Although it is
interesting to see how each tool performs on the case studies, we are primarily interested in the
overall performance of the tools in verifying the different probabilistic operators. We therefore
group all performance data based on the probabilistic operators; steady-state S, unbounded until
U , bounded until U≤t, interval until U [t1,t2], and nested properties. We opt to evaluate the overall
performance per operator and therefore do not differentiate between PCTL and CSL properties.
This gives us a greater data set to work with, in contrast with subdividing the grouped data. We
are aware that the complexities for model checking e. g. interval until and bounded until for CSL
and PCTL are different, but we look at them as time bounded reachability problems in general
regardless of the underlying algorithms. Once grouped per operator we create graphs of the model
check time and peak memory consumption of the tools for all case studies involving the specific
operator. The results are shown in Figures 4.22 and 4.23. Note that the x-axis enumerates the
case study performed with the specific type of property. The y-axis shows the (average) model
check time or peak memory usage for each tool. The lines between the data points were merely
added for better surveyability, they have no significance since the case studies are in ‘random’
order. We did however try to sort the data (in an increasing order) to make the graphs more
readable.

Model check time sorted per probabilistic operator. Figure 4.22(a) demonstrates the
performance of MRMC, PRISMH , PRISMS , and ETMCC on all experiments involving steady-
state properties. It is clear that MRMC has the best performance, all of its data points lay below
that of the other tools. The next best tool is PRISM using the sparse engine, which is faster than
the hybrid engine. For those cases where ETMCC has not run out of memory, it is clearly the
slowest tool.

Figure 4.22(b) shows the model check times for the bounded until property. For MRMC we
see that for most of the experiments the data points are entangled with that of PRISM, meaning
that sometimes MRMC is faster and sometimes PRISM is faster. In this situation, we conclude
that there exists no significant difference between MRMC and PRISMS , based on the available
number of measurements. Studying the difference between PRISMH and PRISMS , it is clear that
verifying a bounded until property proceeds faster using the sparse engine. The sparse engine
outperformed the hybrid engine in 79 situations, out of a total of 82. As for ETMCC, it performs
the worst of all numerical tools. The statistical tool YMER is missing several data points. This
is due to the fact that YMER does not support the PCTL bounded until operator (only CSL),
also in several cases YMER reports to model check this property in 0 seconds, as was explained
in Section 4.3.5 page 61. Nevertheless we can state that YMER performs better than any of the
other tools, for instance case 43 shows YMER requiring an average of 0.9467 sec., whereas MRMC,

25 2-tailed means that we hypothesize that the difference between the groups of data may go in either direction
(i. e. PRISMH may be faster than PRISMS or vice versa, we do not specify the direction just that there exists
a significant difference).

26 The decision to forgo the t Test was based on a multitude of example runs, where each time the results matched
our self-diagnosis.

68 Chapter 4. Comparing tool efficiency

PRISMS , and PRISMH require 28.4 min., 16.4 min. and 25.5 min. respectively. VESTA displays
an mediocre performance, in roughly half of the experiments it outperforms the numerical tools.

The model check times for the interval until property, see Figure 4.22(c), show that YMER
has the overall best performance. The difference between both PRISM engines is clearly visible,
namely PRISMS outperforms PRISMH . The difference between MRMC and PRISMS is difficult
to evaluate, in some cases MRMC is faster and in others PRISMS . There exist no significant
difference in either direction.

In Figure 4.22(d) we see the results for the unbounded until property. The results of both
PRISM engines for this property are identical (that is to say within the standard deviation). As
for MRMC, we see a mixed result. In the two most extreme cases (number 21 and 33) MRMC is
11.2 seconds slower and 194.9 seconds faster than PRISM. Because of the mixed results we can
not conclude that either PRISM or MRMC is significantly faster for this property. However, the
results do lean towards MRMC, since there are more data points (23 out of 33) where MRMC is
faster than PRISMS . If we examine ETMCC’s performance we see that there are few available
data points. This is due to the fact that this tool does not support DTMCs and sometimes runs
out of memory. In those cases where verification succeeded, it frequently performed worse than
the other numerical tools but still better than VESTA. VESTA has by far the worst performance
when it comes to verifying the unbounded until property.

Figure 4.22(e) presents the performance on verification of the nested properties
P≥1[P≥0.9[true U≤100 (n=70)] U (n = 50)] and S>0.2[P>0.1[X snd]] for respectively the Birth-death
and the Tandem Queuing Network case study. The results are unambiguous, MRMC outperforms
both PRISM engines in all cases and the sparse engine is superior to the hybrid engine. ETMCC
has the worst performance. There is no data available on VESTA, for the nested property in
the Birth-death process it seemed to require an infinite amount of time and the experiment was
aborted (see Section 4.3.3). The remaining nested property could not be verified with VESTA,
since it does not support the steady-state operator. The same applies to YMER, which in addition
has no support for the unbounded until operator (used in the Birth-death nested formula).

Peak memory consumption sorted per probabilistic operator. Figures 4.23(a) through
4.23(e) show the peak memory consumption of the tools during verification of the various proba-
bilistic operators. In contrast with the model check time performance, the memory usage graphs
assert a similar behaviour of the tools amongst the various properties. In general we can state
that YMER is the best tool when is comes to memory consumption. It uses by far the least
memory and has excellent scalability (i. e. we have seen in the individual case studies that YMERs
memory consumption stays almost constant and appears independent of the model size). Unfor-
tunately, YMER has a limited range of probabilistic operators at its disposal, which is apparent
from the small amount of data points in the graphs. The other statistical tool in our test, VESTA,
demonstrates a memory behaviour that far exceeds that of YMER, requiring up to 95 times as
much memory for verification of the bounded until operator. Since YMER does not support the
unbounded until operator, we can not compare YMER and VESTA on this property. Compared
to the numerical tools we can state that VESTAs memory usage is fairly constant (i. e. the peak
consumption does not differ greatly per case). For smaller model sizes VESTA requires more
memory than the numerical tools, but as the models grow larger VETSA is more efficient and
uses less memory than the numerical tools. Data for the remaining properties is not available.
VESTA does not support the steady-state and bounded until property and verification of the
nested properties was unsuccessful (they seemed to require an infinite amount of time and were
aborted). If we compare MRMC and PRISM we see that in most cases, but not all, the (peak)
memory consumption of MRMC is substantially lower than that of PRISM. As we know from the
analysis in the individual case studies, MRMC has some problems with scalability. Although we
can not see the model parameters in Figure 4.23, we know that for the largest model sizes MRMC
often requires more memory than PRISMS . Comparing the two prism engines learns that the
hybrid engine is overall much more efficient (i. e. uses less memory) than the sparse engine. This
applies to all properties, there are however a few situations, in particular for the bounded until

Chapter 4. Comparing tool efficiency 69

properties, where the hybrid engines is less efficient than its sparse counterpart. This is believed to
be caused by the fact that the memory efficiency of the (hybrid) MTBDD approach relies heavily
on the structure and regularity of the model. This may lead to situations (e. g. poor regularity,
many distinct values) where sparse matrix representation proves more efficient than MTBDDs.
The last tool to be discussed is ETMMC. This tool displays a memory consumption similar to
that of PRIMS, caused by the fact that they both use the JVM. However, ETMCC quickly runs
out of memory. The tool produces the error: java.lang.OutOfMemoryError:Java heap space",
when trying to verify models with more than approximately 600,000 states.

70 Chapter 4. Comparing tool efficiency

mrmc
prismh
prisms
etmcc
ymer
vesta

? ::= to fast to measure
! ::= out of memory error
∞ ::= run aborted after waiting 24H
* ::= timer overflow

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

case number

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

 !... ...! ! !

(a) steady-state

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

100000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

case number

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

 !... * * * ...!

(b) bounded until

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

case number

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

 * *

(c) interval until

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

case number

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

 ! ! ! ! !

(d) unbounded until

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11

case number

lo
g

.s
c
a

le
 m

o
d

e
l
c
h

e
c
k
 t

im
e

 (
s
e

c
.)

 ! ! !

(e) nested

Figure 4.22: Model check times over all case studies (and model sizes) - arranged per property.

Chapter 4. Comparing tool efficiency 71

mrmc
prismh
prisms
etmcc
ymer
vesta

? ::= to fast to measure
! ::= out of memory error
∞ ::= run aborted after waiting 24H

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

case number

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
B

y
te

s
)

?

!... ...!

(a) steady-state

1000

10000

100000

1000000

10000000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

case number

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
B

y
te

s
)

?...

!..

...?

...! ...! !...

(b) bounded until

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

case number

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
B

y
te

s
)

?

(c) interval until

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

case number

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
B

y
te

s
)

!... ...!

?... ...?

!

(d) unbounded until

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10 11

case number

lo
g

.s
c
a

le
 V

S
Z

 m
e

m
o

ry
 (

K
B

y
te

s
)

 !...

? ?

...!

(e) nested

Figure 4.23: Peak VZS memory consumption over all case studies (and model sizes) - arranged
per property.

72 Chapter 4. Comparing tool efficiency

4.4.2 Causes of performance differences

Up to now, the emphasis in this thesis has been on establishing whether or not (and to what
extend) there exists a performance difference in speed and memory usage between the probabilistic
model checker tools. From the preceding sections we know that differences exist and can be quite
profound. The performance difference between the statistical and numerical tools is not surprising,
and is caused by the different approach in model checking techniques i. e. sampling (from the initial
state) versus numerical computations (for all states).

In the Leader Election case study we have seen a performance variance of several hours between
the two top numerical tools MRMC and PRISMH . Not much has been said on what might cause
these differences. Although some performance difference between the tools might be caused by the
difference in implementation language (C/C++ versus Java), we find it unlikely that this would
be the sole cause, since both PRISM and MRMC have model checking engines implemented in
C/C++. ETMCC on the other hand is fully developed in Java, which partially explains its poor
performance. Since PRISM and MRMC are the top numerical tools in our study, we focus on
uncovering the reasons for there performance differences.

In search for an explanation we focus on the PRISM tool and its inner workings. It is known
that PRISM always builds an MTBDD, even with the sparse engine selected. In sparse mode,
PRISM converts the MTBDD to a sparse matrix after performing some pre-computations27. This,
along with the generation of the sparse matrix, may take a significant time and influence the model
check time. On the other hand, there is no such influence for MRMC as it starts model checking
on the pre-generated sparse matrix. Thus even if the model checking algorithms have the same
performance the reported model check time for PRISM may be higher.

MTBDD size also plays a crucial role in PRISMs performance. If we take the Synchronous
Leader Election case study as an example, we find that the considerable differences between PRISM
and MRMC are due to the fact that the MTBDD is very large. It appears that the SLE protocol is
an exceptionally bad example for symbolic methods i. e. the model is irregular resulting in a non-
compact MTBDD. Naturally, this effect is most prominent on the larger model sizes, as witnessed
in Table 4.11(a). It shows the relation between the state-space and the MTBDD size, for example
the model n = 4, k = 16 contains 196,622 states (and 262,157 transitions), which requires 2.7
million MTBDD nodes. For the bounded until properties we witnessed model check times that
differ up to several hours, e. g. for n = 4 and k = 16 we measured 0.25 sec for MRMC, 93 sec. for
PRISMS and 4 hours for PRISMH . The performance of the hybrid engine heavily depends on the
size of the MTBDD, which as we have just seen is very large. This explains the poor performance
of PRISMH on the SLE case study. The difference between MRMC and PRISMS is caused by
the pre-computation step that is performed by PRISM on the MTBDD. The time consumed by
the pre-computations is included in the model check time.

We have also experienced cases were memory usage can influence performance. If we look at
the Cyclic Server Polling case study we note that using MTBDDs leads to a significant advantage
in memory performance. As shown in Table 4.11(b), the CSP model can be represented as a
highly compact MTBDD e. g. the model of 7 million states only requires 2,745 MTBDD nodes. If
we study the average memory performance on verification of the largest model size (n = 18), we
find that the memory usages for PRISMH , PRISMS , and MRMC are roughly 500MB, 1250 MB
2400MB, respectively, on our 2GB ram machine. Clearly the 2.4 GB, acquired by MRMC, does
not fit in 2.0 GB RAM and thus swapping goes on, which is always a significant slow down. This
is why MRMC may become considerably slower than both PRISM engines.

27 In case of model checking time-unbounded until formula on DTMCs the pre-computations involve removing
states that cannot ever reach the goal states.

Chapter 4. Comparing tool efficiency 73

Table 4.11: PRISM state-space and MTBDD size

(a) SLE case study

n k #states #trans.
#MTBDD
nodes

4 2 55 70 908
4 782 1,037 10,801
6 3,902 5,197 58,324
8 12,302 16,397 165,625

10 30,014 40,013 473,188
12 62,222 82,957 929,667
14 115,262 153,677 1,669,106
16 196,622 262,157 2,762,663

8 2 1,803 2,058 7,857
4 458,847 524,382 1,131,806

(b) CSP case study

n #states #trans.
#MTBDD
nodes

3 36 84 112
6 572 2,208 367
9 6,912 36,864 765

12 73,728 503,808 1,282
15 737,280 6,144,000 1,942
16 1,572,864 13,893,632 2,188
17 3,342,336 31,195,136 2,469
18 7,077,888 69,599,232 2,745

Reachability properties. We have seen on more than one occasion that the PRISM hybrid and
sparse engine have an identical performance in model check time as well as memory consumption.
Looking back we can state that this happened in all cases where we verified an unbounded until
property (see Figures 4.2(b),4.6(b),4.9(c), 4.13(d), 4.18). However, we learned that the indifference
between the engines is not caused by the fact that we verify a property with the unbounded until
operator. It is a result of the chosen probability bound ./ p in P./p[Φ U Ψ]. In cases where
the bound is extreme (i. e. either 0 or 1), PRISM will perform its computations solely on the
MTBDD, even if the sparse engine is selected it will use the MTBDD without converting it to a
sparse matrix. All our unbounded until properties happen to have an extreme probability bound,
namely ≥ 1. This explains why there is no performance difference between the sparse and hybrid
engine for these properties.

We also noticed that VESTA has a rather poor performance for the properties with extreme
bounds. The inefficiency of VESTA stems from the fact that it needs an excessive amount of
sample paths to decide properties with bounds of the form ≥ 1, as witnessed by e. g. , Tables B.4
and B.9. Generally, statistical tools have difficulties to decide whether the probability of some
property meets a bound if the actual probability and the bound are close. Note that YMER does
not support the unbounded until operator, and we could therefore not compare its performance
to VESTA. As for ETMCC, its poor performance is caused by the less efficient sparse matrix
representation.We do not have performance data on verification of unbounded until properties
without extreme bounds, this would need to be investigated separately.

In the CPS case study we verified a time-bounded until property and observed what happens
upon changing the time bound t. As expected, the memory usage is independent of t, in contrast
to the model check time. The model check time required by MRMC is heavily influenced by t,
e. g. , for n=15 the verification for t=20 is about four times longer than t=5. This is not surprising,
as the time complexity of the underlying algorithm is linear in t, which is also true for ETMCC.
Although this might not be apparent from our observation of the model check time graphs, the
model check time for PRISMH and PRISMS is also linear in t. This fact is obscured by the
initial overhead of the MTBDD construction, a careful analysis of the logfiles reveals that the
time per iteration is independent from t. From t=30 on, the verification time is almost constant,
due to a built-in steady-state detection [48]. The verification time for VESTA is rather constant
for small t, this can be contributed to the fact that it collects the same amount of samples for
different model sizes n, e. g. for t = 5 it needs ≈ 300,000 samples). Only for larger t the amount of
samples (and thus the model check time) increase slightly, e. g. for t = 80 the number of samples
increase from 0.2M for n = 3 to 1.1M for n = 18. We have also used YMER to verify the time-
bounded property and found its runtime to be extremely fast. This is caused by the fact that
YMER instantly establishes that the initial state does not satisfy the premise of the implication
busy1 =⇒ P≥0.5[true U≤t poll1] and therefore stops. Like YMER, VESTA only checks the initial
state (whereas the other tool check all states), but is unable to find the trivial satisfaction.

74 Chapter 4. Comparing tool efficiency

Java, tools and memory consumption. On increasing model parameters, the memory con-
sumption of MRMC grows noticeably (as expected) whereas for PRISMS and PRISMH the mem-
ory usage seems constant for the smaller model ranges and only changes after reaching the larger
model parameters. This is due to the fact that PRISM requires a large base memory consumption
for; the JVM, the CUDD28 package (around 40 MByte), and the MTBDD it generates from the
input model. The large JVM base memory consumption is also the reason for the similarities in
memory consumption between VESTA, PRISM and ETMCC.

We have witnessed on numerous occasions that ETMCC runs out of memory, it produces a
“java.lang.OutOfMemoryError:Java heap space" error. Contrary to what one might expect,
we did not detect an increase in ETMCCs VSZ memory consumption prior to the error. The VSZ
memory usage remains fairly constant from the start of the tool, which is again caused by the fact
that the JVM claims a large amount of base memory. We believe the large base memory chunk
obscures the point where the fixed heap size limit is exceeded and the error is thrown.

28 A explained in Chapter 3.1, the CUDD package [73] is a BDD/MTBDD library written in C.

Chapter 4. Comparing tool efficiency 75

4.5 User friendliness

The efficiency of a tool is not only defined by its speed and memory performance, we believe that
user friendliness can be a contributing factor to the users perception of efficiency. A tool may
perform fast computations, but if it offers a clumsy user-interface one would not be inclined to use
it on a regular basis. During our experiments we have extensively used each of the probabilistic
model checker tools and gained an insight in their user friendliness. Although it may seem difficult
to measure user friendliness objectively, we aimed to present an honest overview.

As recognised by many people in the field, we find PRISM the most user friendly tool, having
a reasonably powerful modelling language, simple installation instructions, a GUI and many addi-
tional features29, such as the ability to plot the probability for different model parameter values.
VESTA was less powerful in this respect, although it does have a nice GUI. The lack of a parallel
composition operator, in its modelling language, on the other hand reduces it’s usability, since one
has to combine the various parallel components into a single model by hand, which is cumbersome
and error-prone. Also, VESTAs supported syntax for model and property specification is not
highly intuitive, the same applies to reported error message.

The syntax used by YMER strongly resembles that of PRISM, but not completely. Thus
if one would want to model check a PRISM model with YMER (e. g. if a fast, but possible less
accurate, response is desired), the model would have to be slightly transformed. This obviously also
applies the other way around i. e. if more accuracy is required, one could verify YMER models
using PRISM. Having no GUI, MRMC and YMER are less intuitive to use than VESTA and
PRISM. On the other hand, MRMC is more appropriate as back-end verification engine as it has
a simple input format. ETMCC offers a GUI, which simplifies the user interaction, but it offers
no modelling language capabilities. Like MRMC, it works with pre-generated Markov chains and
labellings. ETMCCs usefulness is limited due to the fact that for larger models it quickly runs
out of memory.

In order to better asses the user friendliness, we decompose this aspect into three parts, namely:

1. Ease of modelling.
This entails the supported modelling and property specification language (i. e. how hard is
it to construct a model and specification accepted by the tool?)

2. Ease of use.
This factor is mainly influence by the presence of a GUI. It also depends on available features,
such as model export capabilities and the capability to adjust tool settings.

3. Installation.
This relates to the difficulty in getting the tool up and running.

The tools are rated on their performance on each of the aspects listed above. Table 4.12 yields
the results of our (informal) comparison. Here, ++ is the best, −− is the worst, and 0 is neutral.

Table 4.12: User friendliness assessment

user friendliness
ET

M
C
C

M
R
M
C

PR
IS
M

Y
M
ER

V
ES

TA

ease of modelling ++a ++a ++ + −−
ease of use + 0/+ ++ 0 +
installation + 0/+ ++ −b +
++ is the best, −− is the worst, and 0 is neutral

a Exploiting the modelling facilities of PRISM.
b The required CUDD package files are not included in the distribu-

tion.

29 The MRMC and PRISM projects are still active and new features are under development, new versions were
released during creation of this thesis (MRMC[1], PRISM[2]).

Chapter 5

Conclusion

In this thesis we have studied five probabilistic model checker tools. Three of these utilise nu-
merical techniques (PRISMSparse and Hybrid , MRMC, ETMCC) and two (YMER, VESTA) are
based on statistical methods (i. e. simulation and sampling). We made a tool by tool comparison,
analysing model check times1 and peak memory2 usage. Using five3 representative case studies of
fully probabilistic systems, taken from the literature on performance evaluation and probabilistic
model checking, we carefully constructed equivalent models for the individual tools and gathered
performance data in an automated fashion in a controlled environment. We constructed multiple
PCTL/CSL properties and realistic model sizes per case study, and verified each combination
using the five tools, resulting in nearly 15,000 individual runs. Besides their performance, we
also investigated the characteristics of each tool, comparing their implementation details, range
of supported probabilistic models, model specification language, property specification language
and supported algorithms and data structures. By ensuring that our experiments are repeatable,
verifiable, statistically significant and free from external influences, our findings are based on a
solid methodology.

From our experiments we learned that YMER is by far the best tool for verifying medium to
large size models. It is the fastest tool and has a remarkably consistent (low) memory usage across
various model sizes. Unfortunately YMER has a limited range of supported probabilistic operators
at its disposal (no unbounded Until and steady-state operators), in addition it does not support
discrete-time models (only CTMCs). Furthermore, being a statistical model checker YMER can
not provide the same level of accuracy as can be achieved with numerical tools. The tool may
report a wrong answer, and has done so during our experiments (in a few cases, as expected).
We also learned that, at least for YMER, the order in which the CLS property is specified may
influence performance. YMER outperforms the other statistical model checker VESTA. VESTA’s
memory consumption is also rather constant, but more in the order of PRISM’s memory usage,
which is mainly caused by the Java Virtual Machine (JVM). The model check time varies a lot. For
certain nested properties, VESTA did not terminate within 24 h, even on a model with 100 states
only. Overall we can state that, as expected, the statistical tools scale much better (performance
wise) in relation to the state-space size than the numerical tools4. On the other hand, it is known
[84] that for statistical tools, high accuracy comes at a greater price than for numerical tools. In
addition, statistical tools have difficulties dealing with properties with a probability bound very
close to the actual probability value and are not guaranteed to decide on probability bounds equal
to the actual probability value.

Comparing the numerical tools we conclude that, as expected, PRISMS is usually faster than

1 The time it takes a tool to verify a specific PCTL/CSL property.
2 The maximum amount of memory consumed by the tool during its execution.
3 The five case studies (of fully probabilistic systems) are; Synchronous Leader Election (SLE), Randomized

Dining Philosophers (RDP), Birth-death process (BDP), Tandem Queuing Network (TQN) and Cyclic Server
Polling System (CSP).

4 Increasing the model size may increase the model check time by several orders of magnitude for the numerical
tools, whilst the effect on statistical tools is minimal.

78 Chapter 5. Conclusion

PRISMH at the cost of substantially greater memory usage. MRMC often outperforms PRISMS

for models up to a few million states, this applies to the model check time as well as memory
consumption and is especially true for steady-state and nested properties. The memory usage of
PRISM is influenced by the overhead for MTBDD generation. On larger models, PRISMS and
PRISMH perform better. This effect is more apparent whenever the MTBDD representation is
compact. Because it uses MTBDDs, PRISM is able to check much larger models than the other
numerical tools. For MRMC and ETMCC the model size is limited by the size of their model
description files (i. e. .tra and .lab), which is bounded by 2GB due to system functions used for
reading the files. The largest model size verified in our experiments contained 7 million states and
approx. 69.5 million transitions. It is known that PRISM can handle models of e. g. 2,600 million
states, provided that the model allows for a compact MTBDD representation, such as witnessed in
the Cyclic Server Polling system case study. As for the remaining model checker tool, ETMCC, it
has the worst performance. It is the slowest tool and it frequently runs out of memory in situations
where the models could easily be checked by the other tools.

The conclusions regarding time performance have been based on the model check time only, we
did not compare the tools on time spend on e. g. reading the input files, constructing the internal
representation and writing results to file. The memory performance is based on the peak memory
consumption during tool operation (i. e. from invocation to termination) and thus includes the
model construction process. The results of the speed and memory performance of each tool are
summarized in Table 5.1 and 5.2. We believe that in practice, one might often have to deal with
model checking non trivial systems, which results in large state-space sizes. We therefore choose
to let the model check times and memory performance on larger models weigh more heavily in our
final evaluation.

Table 5.1: Speed performance

speed
ET

M
C
C

M
R
M
C

PR
IS
M
S

PR
IS
M
H

Y
M
ER

V
ES

TA

steady-state − ++ + 0/+a N/A N/A
bd. until − +b +/++ 0/+a ++ +
int. until N/A +/++ +/++ −a ++ N/A
unbd. until − +b +/++ +/++a N/A −/0
nested − ++ + 0/+a N/Ac −− d

++ is the best, −− is the worst, 0 is neutral, and N/A means Not Applicable

a The time heavily depends on the MTBDD size.
b MRMC was faster in most cases, PRISMS on larger models.
c The property contained operators not supported by YMER.
d Based on one property, for which VESTA did not terminate.

Table 5.2: Memory performance

memory
ET

M
C
C

M
R
M
C

PR
IS
M
S

PR
IS
M
H

Y
M
ER

V
ES

TA

steady-state − +a + +/++a bN/A N/A
bd. until − +a + +/++a b ++ +c

int. until N/A +a 0/+ +/++a b ++ N/A
unbd. until − +a +/++ +/++a bN/A 0/+c

nested − +a + +/++a bN/A N/Ad

++ is the best, −− is the worst, 0 is neutral, and N/A means Not Applicable

a MRMC used least memory in most cases. For larger models PRISMS

was between MRMC and PRISMH , and PRISMH was the best.
b The MTBDD size varied much with the case study.
c Fairly constant; inefficient for small models, efficient for large ones.
d Based on one property, for which VESTA did not terminate.

Chapter 5. Conclusion 79

During our experiments we have extensively used each of the probabilistic model checker tools
and gained an insight in their capabilities and user friendliness. We found a noticeable difference
in the range of supported probabilistic operators between the tools and they lack a uniform model
description language. The similarities between the tools are their support for the Linux platform
and ability to model check Continuous Time Markov Chains (CTMCs), for which they all provide
the bounded until operator. As recognised by many people in the field, we find PRISM the
most user friendly tool, having a wide selection of probabilistic models and PCTL/CSL operators,
an intuitive GUI and many additional features. MRMC is more appropriate as a fast back-end
verification engine as it has a simple input format. In regards to the maximum verifiable model
size, we discovered that, in addition to the RAM size, two factors restrict the model size: the size
of the model description .tra files used by MRMC and ETMCC is limited to a maximum of 2 GB
due to restrictions of the used system calls to write and read these files. In a few cases, we could
not generate (and verify) our model as PRISM crashed due to a (known) problem of the CUDD
package used for MTBDDs.

5.1 Recommendations

Based on our experience, we have the following suggestions for improving the tools. For YMER, it
would be very useful if it supported more CSL/PCTL operators, so that its “slim and fast” engine
becomes applicable to a wider class of model checking problems. Also, it would be nice for YMER
to use exactly the same syntax as PRISM, improving the tool interoperability. For VESTA, we
suggest to improve its running time. Also, its applicability would be enlarged by improving the
modelling language by adding a parallel composition operator. For PRISM, a tight connection
with YMER could be of relevance — ideally, a user would call the YMER model checker by
pressing a single button. Besides the current model export functionally, it would be convenient
if models could also be imported. This would eliminate model construction time. For MRMC,
we suggest to improve the performance for larger models. For ETMCC, we do not provide any
recommendations as it has been succeeded by MRMC.

5.1.1 Comparative research

On a more general note, for those who wish to perform a similar comparative research project we
offer some wise words:

• Automation is the key word in this type of research. When performing experiments one
generally needs to provide certain input parameters, which may or may not vary per ex-
periment. Each experiment will generate a certain amount of data that often requires post
processing e. g. filtering or some additional calculations. Automating this process as much
as possible will not only ensure a consistent method of experiment execution, it also saves
an enormous amount of time. Furthermore, if the process is automated it will make verifi-
cation/duplication of the results feasible (especially for an outsider).

• In comparative research, it is essential that the environment (in which the items are com-
pared) remains unchanged, except for the independent variables. The independent variable
is the variable which is selected and manipulated by the experimenter to observe its effect on
the dependent variable (i. e. the variable that is observed and measured) [31]. Also, ensure
your comparison is fair and do not attempt to compare the incomparable (for example we
made sure the verification parameters, such as the error bound ε, of each tool were set to
corresponding levels.

• Always think about the level of desired accuracy. It is pointless to present an average value
with six decimal places, when the source data is only accurate to, for instance, two decimals.
Repeat experiments to establish that obtained results were not due to mere chance.

• Know your statistics and sources of experimental errors. Make sure you calculate the right
thing and that you calculate things right. For example, there are numerous statistical
significance test available, whether or not a test is applicable depends on your data (e. g. is

80 Chapter 5. Conclusion

the data divided into related groups? , is it continuous numerical data and if so can we
assume that it is normally distributed?).

• Use reliable and multiple information sources. Different documentation on the same subject
my reveal contradictive information.

We observed that there is little to none methodology available on how to set up an experimental
research (e. g. tool comparison) project. This is in sheer contrast to domains such as physics and
psychology, where there exist strict guidelines. On a basis level, we propose that a comparative
research should at least meet the following three criteria:

1. Repeatable/Verifiable.
A third party must be able to repeat any experiment and verify the results. This can be
achieved by providing detailed documentation and by using e. g. open source models, openly
available software and standard equipment. Automating the experiment process (e. g. by
scripts) is also recommend.

2. Statistically significant.
Gather a sufficient amount of data in order to make sure that your observations are not due
to mere chance.

3. Encapsulated.
With this we mean that experiments should be performed in an environment that is free
from (unwanted) external influences.

5.2 Future Work

In this study we analysed the performance of five probabilistic model checker tools, naturally
the study can be expanded to include more tools and even more diverse case studies. Besides
DTMCs and CTMCs, it would be interesting to include reward models (which are supported by
MRMC and the latest PRISM release). In our study we investigated the overall performance on
verification of the different probabilistic operators. This can be augmented by investigating more
details, such as differentiating between CSL and PCTL properties.

In our study we have mainly focussed on the model check time and peak memory consumption,
there remains of course other interesting data that can be analyses, such as: time per iteration,
the total elapses time (including model construction and memory usage without the JVM effect.
Obviously, the time per iteration is not applicable for statistical tools.

We expect that, in the future, more tools will support distributed model checking, i. e. utilising
multiple processor cores and/or multiple networked computers. A similar study as performed in
this thesis may be repeated to include such tools. This will however require a different testing
environment and new means of tracking model check time and memory consumption. From our
selection of tools, YMER is the only one that is able to utilise multiple machines. It supports
distributed acceptance sampling, i. e. the use of multiple machines to generate samples.

The statistical tools in this research always operated using fixed precision parameters
(e. g. α and β), a different approach is to perform a series of experiment where these parame-
ters vary (as done in for instance [84]).

On a final note we want to address the issue of significance testing. The field of statistics offers
a wide variety of significance tests, such as the t Test [31] and the Wilcoxon test [81]. Significance
tests can detect whether or not there exist a significant difference between for instance the means of
two data sets. These tests assume that data is gathered from some random population. Therefore,
these test can not be applied on all aspects of our study, since we did not pick the case studies
and model sizes randomly. When continuing our research, we believe it is prudent to investigate
if and when statistical significance tests can be applied on the collected data.

Appendices

Appendix A

Tool settings

This appendix lists the settings of each of the probabilistic model checker tools. These setting were
not altered during the experiments. The table below displays the crucial settings, any parameter
not displayed in the table can be assumed to have its default (tool distribution) value.

Table A.1: Tool settings

General settings num. tools: MRMC, ETMCC, PRISM

Numerical computation alg. Jacobi

Epsilon value for convergence check 10−6

Maximum number of iterations 104

Steady-state detection ON

Statistical tools: YMER, VESTA

α (bound on false negative) 0.01

β (bound on false positives) 0.01

δ indifference region 0.01

Addition settings for YMER:
sampling method (fixed number/seq.acc.sampling) seq.acc.sampling

Addition settings for VESTA:
Maximum sample size 108

Settings related to unbounded until:
Stopping probability 0.05

Discount probability 1.0

Appendix B

Case studies: Model size and
sample size

This appendix shows for each case study the model parameter(s) with the corresponding model
size (i. e. number of states and transitions). When applicable it also lists the number of samples
taken by the statistical tools. We use the following notations:

avg.± stdev. ::= average value over all runs in seconds ± the standard deviation in seconds.
- ::= no value available (i. e. formula is not supported by the tool).
n.s. ::= the tool has not specified the value.
∞ ::= tool has produced no answer after 24 hours of computation time.

B.1 DTMC

B.1.1 Synchronous Leader Election
Table B.1: SLE - states and transitions
n k #states #transitions
4 2 55 70

6 3,902 5,197
8 12,302 16,397

10 30,014 40,013
12 62,222 82,957
14 115,262 153,677
16 196,622 262,157

8 2 1,803 2,058
4 458,847 524,382

B.1.2 Randomized Dining Philosophers
Table B.2: Phil - states and transitions
n #states #transitions
3 770 2,845
4 10,022 47,432
6 594,790 4,170,946
7 5,454,562 44,070,594

86 Appendix B. Case studies: Model size and sample size

B.1.3 Birth-death process
Table B.3: Birth-death - states and transitions

m #states #transitions
100 101 202

1,000 1,001 2,002
10,000 10,001 20,002

100,000 100,001 200,002

Table B.4: Birth-death - statistical tools #samples

property m
#samples

vesta

P≥0.9[true U≤ m

2 (n = m
4

)]

100 143, 349 ± 35
1000 1, 933, 446 ± 794
10000 ∞
100000 ∞

P≥1[P≥0.9[true U≤100 (n=70)] U (n = 50)]

100 ∞
1000 ∞
10000 ∞
100000 ∞

P≥1[true U (n = m)]

100 13, 483, 586 ± 231, 318
1000 4, 674, 346 ± 5, 113
10000 4, 673, 103 ± 5, 206
100000 4, 673, 632 ± 5, 105

B.2 CTMC

B.2.1 Tandem Queuing Network
Table B.5: TQN - states and transitions

n #states #transitions
2 15 33

10 231 729
50 5,151 17,649

100 20,301 70,299
255 130,816 455,939
511 523,776 1,829,379

1023 2,096,128 7,328,771

Appendix B. Case studies: Model size and sample size 87

Table B.6: Tandem Queuing Network - statistical tools #samples

property n
#samples

ymer vesta

P<0.1[true U [0.5,2] full]

2 394 ± 23 -
10 207.0 -
50 207.0 -
100 207.0 -
255 207.0 -
511 207.0 -
1023 207.0 -

P≤0.01[true U≤2 full]

2 40 ± 5 15279 ± 93
10 228.0 28300 ± 80
50 228.0 81478 ± 88
100 228.0 147815 ± 79
255 228.0 353418 ± 100
511 228.0 692832 ± 102
1023 228.0 1371806 ± 122

P≤0.5[true U≤10 fst]

2 115.0 43802 ± 98
10 115.0 186776 ± 86
50 115.0 863870 ± 86
100 115.0 1709112 ± 77
255 115.0 4329504 ± 88
511 115.0 8657521 ± 71
1023 115.0 17313474 ± 87

P≥1[snd U sndn]

2 - 0
10 - 0
50 - 0
100 - 0
255 - 0
511 - 0
1023 - 0

B.2.2 Cyclic Server Polling system
Table B.7: Polling - states and transitions
n #states #transitions
3 36 84
6 572 2,208
9 6,912 36,864

12 73,728 503,808
15 737,280 6,144,000
16 1,572,864 13,893,632
17 3,342,336 31,195,136
18 7,077,888 69,599,232

88 Appendix B. Case studies: Model size and sample size

Table B.8: Cyclic Server Polling system - statistical tools #samples - part a

property n
#samples

ymer vesta

P≤0.99[true U [40,80] serve1]

3 228.0 -
6 207 ± 23 -
9 48 ± 29 -
12 24 ± 10 -
15 10 ± 9 -
16 14 ± 5 -
17 4 ± 2 -
18 8 ± 3 -

busy1 =⇒ P≥0.5[true U≤5 poll1]

3 n.s. 160, 493 ± 154
6 n.s. 284, 765 ± 181
9 n.s. 324, 589 ± 307
12 n.s. 329, 852 ± 347
15 n.s. 330, 506 ± 320
16 n.s. 330, 373 ± 294
17 n.s. 330, 294 ± 346
18 n.s. 330, 488 ± 373

busy1 =⇒ P≥0.5[true U≤10 poll1]

3 n.s. 166, 072 ± 143
6 n.s. 348, 730 ± 222
9 n.s. 503, 718 ± 242
12 n.s. 596, 501 ± 277
15 n.s. 630, 992 ± 330
16 n.s. 634, 901 ± 504
17 n.s. 637, 752 ± 405
18 n.s. 639, 204 ± 313

busy1 =⇒ P≥0.5[true U≤20 poll1]

3 n.s. 166, 087 ± 144
6 n.s. 352, 736 ± 215
9 n.s. 539, 353 ± 253
12 n.s. 725, 026 ± 345
15 n.s. 901, 620 ± 341
16 n.s. 956, 408 ± 307
17 n.s. 1, 007, 298 ± 380
18 n.s. 1, 053, 768 ± 347

busy1 =⇒ P≥0.5[true U≤40 poll1]

3 n.s. 165, 950 ± 121
6 n.s. 352, 783 ± 260
9 n.s. 539, 847 ± 247
12 n.s. 726, 546 ± 294
15 n.s. 912, 908 ± 246
16 n.s. 975, 716 ± 332
17 n.s. 1, 037, 856 ± 261
18 n.s. 1, 100, 436 ± 359

Appendix B. Case studies: Model size and sample size 89

Table B.9: Cyclic Server Polling system - statistical tools #samples - part b

property n
#samples

ymer vesta

busy1 =⇒ P≥0.5[true U≤80 poll1]

3 n.s. 165, 972 ± 114
6 n.s. 352, 815 ± 293
9 n.s. 539, 563 ± 295
12 n.s. 726, 599 ± 270
15 n.s. 912, 938 ± 407
16 n.s. 975, 645 ± 297
17 n.s. 1, 037, 376 ± 543
18 n.s. 1, 100, 126 ± 496

busy1 =⇒ P≥1.0[true U poll1]

3 n.s. 33, 963 ± 248
6 n.s. 150, 300 ± 775
9 n.s. 394, 236 ± 1, 921
12 n.s. 841, 445 ± 4, 574
15 n.s. 1, 604, 517 ± 8, 010
16 n.s. 1, 956, 313 ± 9, 307
17 n.s. 2, 379, 633 ± 10, 533
18 n.s. 2, 871, 492 ± 10, 863

¬(poll1 ∧ poll2)

3 n.s. 0
6 n.s. 0
9 n.s. 0
12 n.s. 0
15 n.s. 0
16 n.s. 0
17 n.s. 0
18 n.s. 0

Appendix C

Model check times

This appendix shows the model check times for each case study. We use the following notations:

avg.± stdev. ::= average time over all runs in seconds ± the standard deviation in seconds.
- ::= no time measurement available (i. e. formula is not supported by the tool).
n.s. ::= the tool has not specified the value.

C.1 Synchronous Leader Election
Table C.1: Synchronous Leader Election - model check time

property n k
model check time (sec.) additional measurements

mrmc prism prism prism prism
hybrid sparse hybrid sparse

P≥0.85[true U≤5 leaderelected]

4 2 0.0000348 ± 13 0.0150 ± 3 0.0147 ± 6
4 0.0003129 ± 17 0.0997 ± 16 0.0711 ± 5
6 0.000949 ± 2 2.016 ± 8 0.3808 ± 19
8 0.003111 ± 15 33.58 ± 12 1.209 ± 16
10 0.0107 ± 3 361.4 ± 3 3.89 ± 7
12 0.01966 ± 9 1583.5 ± 16 8.25 ± 15
14 0.05092 ± 16 5376 ± 12 20.9 ± 4
16 0.0946 ± 15 15299 ± 10 83 ± 39

8 2 0.00077 ± 4 0.122 ± 2 0.0892 ± 6
4 0.2413 ± 9 14237 ± 34 41.7 ± 14 P≥0.99[true U≤400 leaderelected]

P≥0.99[true U≤40 leaderelected]

4 2 0.000076 ± 2 0.017 ± 4 0.01490 ± 14 0.0155 ± 2 0.0151 ± 3
4 0.000929 ± 3 0.0990 ± 4 0.0712 ± 4 0.1038 ± 2 0.0736 ± 3
6 0.002632 ± 5 2.018 ± 9 0.380 ± 2 2.14 ± 4 0.3946 ± 13
8 0.00878 ± 4 33.64 ± 17 1.208 ± 13 33.70 ± 16 1.250 ± 12
10 0.03018 ± 11 361.8 ± 4 3.94 ± 7 365.4 ± 5 4.00 ± 7
12 0.06290 ± 16 1585.3 ± 18 8.19 ± 17 1591.4 ± 11 8.67 ± 14
14 0.1391 ± 4 5377 ± 36 20.79 ± 12 5375 ± 18 21.7 ± 2
16 0.2534 ± 13 15297 ± 77 93.0 ± 13 15282 ± 20 92.5 ± 15

8 2 0.00211 ± 14 0.1257 ± 14 0.0908 ± 3 0.1333 ± 14 0.0962 ± 3
4 0.6151 ± 15 14233 ± 21 41.7 ± 6 14242 ± 128 44.04 ± 19

P≥1[true U leaderelected]

4 2 0.000059 ± 3 0.0198 ± 6 0.02010 ± 14
4 0.000518 ± 3 0.1255 ± 6 0.1257 ± 3
6 0.001703 ± 16 0.685 ± 3 0.686 ± 2
8 0.00515 ± 3 2.13 ± 2 2.15 ± 2
10 0.0164 ± 5 6.77 ± 17 6.74 ± 18
12 0.02906 ± 6 13.92 ± 15 14.3 ± 3
14 0.0693 ± 3 30.2 ± 14 30.6 ± 11
16 0.1245 ± 3 193.1 ± 10 195 ± 4

8 2 0.00113 ± 8 0.1760 ± 9 0.1772 ± 5
4 0.3264 ± 6 70.9 ± 6 71.2 ± 5

92 Appendix C. Model check times

C.2 Randomized Dining Philosophers
Table C.2: Randomized Dining Philosophers - model check time

property n
model check time (sec.)

mrmc prism prism
hybrid sparse

P≥0.9[true U≤20 eat]

3 0.00043 ± 3 0.025 ± 2 0.0228 ± 2
4 0.00507 ± 3 0.0347 ± 4 0.0347 ± 2
6 0.5209 ± 19 1.185 ± 5 1.478 ± 4
7 4.99 ± 5 10.89 ± 2 12.63 ± 5

P≥1[true U eat]

3 0.00041 ± 5 0.02510 ± 14 0.0252 ± 2
4 0.005089 ± 18 0.0258 ± 2 0.0256 ± 3
6 0.5268 ± 12 0.0669 ± 2 0.0668 ± 2
7 5.261 ± 19 0.0745 ± 4 0.0744 ± 5

C.3 Birth-death process
Table C.3: Birth-death process - model check time

property m
model check time (sec.)

mrmc prism prism vesta
hybrid sparse

P≥0.9[true U≤ m

2 (n = m
4

)]

100 0.000171 ± 13 0.0136 ± 4 0.0127 ± 2 1.4335 ± 14
1000 0.0088 ± 4 0.1241 ± 4 0.0608 ± 3 4.831 ± 3
10000 0.826 ± 5 34.84 ± 15 1.352 ± 5 ∞a

100000 100.6 ± 6 5249 ± 11 90.0 ± 6 ∞

P≥1[P≥0.9[true U≤100 (n=70)] U (n = 50)]

100 0.000440 ± 14 0.0841 ± 4 0.0824 ± 3 ∞
1000 0.00320 ± 17 0.2389 ± 9 0.1774 ± 6 ∞
10000 0.01840 ± 9 33.92 ± 13 1.0114 ± 19 ∞
100000 0.2561 ± 8 4061 ± 6 12.24 ± 4 ∞

P≥1[true U (n = m)]

100 0.000102 ± 6 0.01900 ± 15 0.0185 ± 2 128 ± 2
1000 0.00066 ± 3 0.1509 ± 5 0.1510 ± 10 44.22 ± 4
10000 0.004162 ± 16 2.298 ± 8 2.263 ± 7 45.23 ± 6
100000 0.0567 ± 5 29.63 ± 16 29.4 ± 4 45.1 ± 3

a ∞ = experiment aborted, no result produces after continuously operating for ≈ 24 hours.

Appendix C. Model check times 93

C.4 Tandem Queuing Network
Table C.4: Tandem Queuing Network - model check time

property n
model check time (sec.)

mrmc prism prism etmcc ymer vesta
hybrid sparse

S<0.01[full]

2 0.000235 ± 8 0.015 ± 4 0.0127 ± 3 0.03 - -
10 0.00280 ± 12 0.0236 ± 16 0.0225 ± 6 0.257 ± 5 - -
50 0.1125 ± 3 0.3631 ± 13 0.2948 ± 6 30.4 ± 2 - -
100 1.011 ± 8 2.815 ± 5 1.965 ± 7 826 ± 10 - -
255 16.64 ± 3 157.83 ± 12 135.25 ± 7 9509 ± 577 - -
511 114.2 ± 3 1746.5 ± 8 1606.4 ± 7 out mem. - -
1023 708.7 ± 9 8311 ± 46 7681 ± 11 out mem. - -

S>0.2[P>0.1[X snd]]

2 0.000216 ± 8 0.0123 ± 2 0.0130 ± 4 0.042 ± 3 - -
10 0.00282 ± 8 0.02290 ± 14 0.0227 ± 4 0.32 - -
50 0.11288 ± 16 0.3592 ± 10 0.2883 ± 8 30.45 ± 5 - -
100 1.008 ± 4 2.813 ± 6 1.964 ± 5 579 ± 77 - -
255 16.521 ± 19 157.80 ± 8 135.23 ± 7 out mem. - -
511 113.44 ± 11 1746.4 ± 5 1606.9 ± 4 out mem. - -
1023 706.9 ± 7 8301 ± 10 7679 ± 17 out mem. - -

P<0.1[true U [0.5,2] full]

2 0.000294 ± 14 0.0104 ± 2 0.0105 ± 4 - 0.0263 ± 11 -
10 0.00369 ± 4 0.0154 ± 2 0.01400 ± 15 - 0.0240 ± 6 -
50 0.0849 ± 2 0.2309 ± 6 0.1685 ± 4 - 0.0553 ± 3 -
100 0.695 ± 4 1.467 ± 3 1.155 ± 7 - 0.0935 ± 3 -
255 14.644 ± 13 38.18 ± 4 21.934 ± 19 - 0.2163 ± 7 -
511 138.54 ± 14 284 ± 3 173.37 ± 14 - 0.4214 ± 9 -
1023 911.1 ± 10 1583.8 ± 17 994.5 ± 4 - 0.832 ± 3 -

P≤0.01[true U≤2 full]

2 0.000315 ± 6 0.0105 ± 4 0.01000 ± 15 0.032 ± 3 0.0035 ± 5 0.5550 ± 6
10 0.004772 ± 16 0.01320 ± 19 0.0126 ± 2 0.157 ± 2 0.0264 ± 2 0.5956 ± 7
50 0.1324 ± 3 0.1823 ± 3 0.1348 ± 4 7.09 ± 16 0.0622 ± 3 0.7373 ± 6
100 1.237 ± 6 1.298 ± 3 1.047 ± 5 116.2 ± 11 0.1064 ± 4 0.9127 ± 10
255 23.25 ± 3 35.69 ± 4 20.220 ± 17 5161 ± 22 0.2506 ± 6 1.470 ± 3
511 248.26 ± 16 273.1 ± 3 164.76 ± 18 out mem. 0.4835 ± 7 2.382 ± 3
1023 1705.8 ± 8 1531 ± 5 983 ± 3 out mem. 0.9467 ± 17 4.208 ± 6

P≤0.5[true U≤10 fst]

2 0.000132 ± 5 0.012 ± 4 0.01010 ± 14 0.031 ± 2 0.00290 ± 14 2.920 ± 19
10 0.00086 ± 4 0.0107 ± 2 0.0105 ± 2 0.131 ± 2 0.0093 ± 2 3.293 ± 4
50 0.01732 ± 6 0.07285 ± 17 0.0701 ± 4 6.343 ± 4 0.0298 ± 2 5.098 ± 4
100 0.1498 ± 8 0.509 ± 2 0.4882 ± 8 98.2 ± 6 0.0519 ± 2 7.367 ± 8
255 2.353 ± 7 8.377 ± 7 7.588 ± 7 4440 ± 13 0.1195 ± 4 14.458 ± 13
511 28.42 ± 4 72.80 ± 10 64.51 ± 2 out mem. 0.2366 ± 11 26.027 ± 13
1023 198.37 ± 19 529.4 ± 12 477.8 ± 10 out mem. 0.4675 ± 13 49.18 ± 4

P≥1[snd U sndn]

2 0.000054 ± 3 0.0105 ± 2 0.0106 ± 2 0.01 - 0.3389 ± 5
10 0.000190 ± 3 0.01080 ± 19 0.0105 ± 2 0.01 - 0.3388 ± 4
50 0.002167 ± 5 0.0113 ± 2 0.0121 ± 13 0.033 ± 3 - 0.3385 ± 3
100 0.00750 ± 15 0.0148 ± 6 0.0140 ± 7 0.050 ± 3 - 0.3387 ± 4
255 0.0715 ± 8 0.0250 ± 9 0.0239 ± 8 0.078 ± 3 - 0.3381 ± 4
511 0.3395 ± 18 0.0144 ± 5 0.0141 ± 7 0.177 ± 2 - 0.3386 ± 4
1023 1.334 ± 4 0.0214 ± 6 0.0215 ± 6 out mem. - 0.3384 ± 4

94 Appendix C. Model check times

C.5 Cyclic Server Polling system
Table C.5: Cyclic Server Polling system - model check time - part a

property n
model check time (sec.)

mrmc prism prism etmcc ymer vesta
hybrid sparse

S<0.2[busy1 U serve1]

3 0.000233 ± 11 0.0096 ± 2 0.00885 ± 17 0.063 ± 6 - -
6 0.00594 ± 18 0.0268 ± 4 0.0251 ± 4 0.716 ± 7 - -
9 0.0994 ± 5 0.1996 ± 6 0.1490 ± 5 51.20 ± 14 - -
12 1.761 ± 5 3.274 ± 11 1.807 ± 3 6908 ± 157 - -
15 25.72 ± 4 48.8 ± 3 26.75 ± 3 out mem. - -
16 61.26 ± 7 122.7 ± 4 70.89 ± 13 out mem. - -
17 145.8 ± 10 287 ± 6 158.2 ± 6 out mem. - -
18 369 ± 2 680 ± 15 385.0 ± 16 out mem. - -

P≤0.99[true U [40,80] serve1]

3 0.0168 ± 7 0.0104 ± 2 0.00890 ± 14 - 6.44 ± 5 -
6 0.2568 ± 7 0.2078 ± 7 0.1155 ± 12 - 8.8 ± 10 -
9 4.051 ± 16 4.216 ± 11 2.240 ± 11 - 2.8 ± 16 -
12 57.93 ± 4 88.73 ± 16 40.06 ± 13 - 1.8 ± 7 -
15 688.2 ± 6 1196.4 ± 15 548.2 ± 5 - 0.8 ± 8 -
16 1574 ± 2 2979 ± 9 1339.5 ± 14 - 1.2 ± 4 -
17 timer overfl. 6644 ± 40 3115 ± 12 - 0.4 ± 2 -
18 timer overfl. 15207 ± 177 7208 ± 31 - 0.8 ± 3 -

busy1 =⇒ P≥0.5[true U≤5 poll1]

3 0.00242 ± 11 0.0069 ± 2 0.0065 ± 2 0.05 0.0 4.47 ± 9
6 0.0350 ± 4 0.0383 ± 3 0.0273 ± 5 0.3695 ± 10 0.0 5.254 ± 6
9 0.2748 ± 16 0.4955 ± 16 0.2930 ± 14 12.095 ± 10 0.0 5.872 ± 5
12 4.223 ± 10 8.479 ± 14 4.291 ± 8 1367 ± 6 0.00005 ± 10 6.372 ± 6
15 51.43 ± 14 100.02 ± 19 50.83 ± 7 out mem. 0.0 6.833 ± 6
16 117.37 ± 19 237.4 ± 5 119.43 ± 17 out mem. 0.0 6.975 ± 6
17 266.2 ± 3 506 ± 7 259.6 ± 11 out mem. 0.0 7.127 ± 8
18 606 ± 11 1133 ± 7 579 ± 3 out mem. 0.0 7.279 ± 9

busy1 =⇒ P≥0.5[true U≤10 poll1]

3 0.00421 ± 19 0.0082 ± 9 0.00720 ± 19 0.0510 ± 14 0.0 4.461 ± 16
6 0.0631 ± 5 0.06095 ± 18 0.0405 ± 3 0.457 ± 18 0.0 5.543 ± 10
9 0.512 ± 3 0.892 ± 4 0.504 ± 2 13.3 ± 2 0.0 6.966 ± 9
12 7.656 ± 18 15.49 ± 3 7.51 ± 2 1960 ± 144 0.0 8.353 ± 6
15 93.46 ± 14 183.5 ± 3 89.90 ± 13 out mem. 0.0 9.484 ± 10
16 213.7 ± 4 437.3 ± 7 212.2 ± 3 out mem. 0.0 9.783 ± 11
17 476.0 ± 8 933 ± 2 461 ± 2 out mem. 0.0 10.123 ± 8
18 1073.4 ± 19 2063 ± 32 1030 ± 4 out mem. 0.0 10.46 ± 8

busy1 =⇒ P≥0.5[true U≤20 poll1]

3 0.0069 ± 3 0.0077 ± 2 0.0070 0.061 ± 5 0.0 4.451 ± 6
6 0.1217 ± 8 0.0801 ± 10 0.0488 ± 4 0.5580 ± 19 0.0 5.58 ± 2
9 0.993 ± 4 1.643 ± 10 0.919 ± 4 15.14 ± 11 0.0 7.7 ± 3
12 14.54 ± 9 28.96 ± 4 13.71 ± 3 1397.1 ± 12 0.00005 ± 10 9.309 ± 5
15 174.8 ± 2 345.1 ± 8 164.9 ± 3 out mem. 0.0 11.840 ± 10
16 395.1 ± 7 821.9 ± 17 389.5 ± 6 out mem. 0.0 12.744 ± 10
17 895.1 ± 8 1751 ± 4 845 ± 2 out mem. 0.0 13.667 ± 11
18 1994 ± 3 3902 ± 86 1896 ± 15 out mem. 0.0 14.596 ± 10

busy1 =⇒ P≥0.5[true U≤40 poll1]

3 0.0068 ± 3 0.0078 ± 2 0.00695 ± 10 0.058 ± 2 0.0 4.456 ± 4
6 0.1416 ± 8 0.0787 ± 8 0.0484 ± 6 0.559 ± 11 0.0 5.562 ± 6
9 1.900 ± 8 1.572 ± 5 0.822 ± 5 15.60 ± 3 0.0 7.187 ± 6
12 27.90 ± 4 33.81 ± 6 15.25 ± 6 1433 ± 22 0.0 9.318 ± 7
15 333.4 ± 15 468.7 ± 15 214.9 ± 4 out mem. 0.0 11.933 ± 12
16 753.2 ± 15 1168 ± 2 536.1 ± 15 out mem. 0.0 12.924 ± 11
17 1710.1 ± 16 2591 ± 15 1206 ± 7 out mem. 0.0 13.988 ± 9
18 timer overfl. 6019 ± 117 2828 ± 17 out mem. 0.0 15.082 ± 11

busy1 =⇒ P≥0.5[true U≤80 poll1]

3 0.0068 ± 3 0.0078 ± 4 0.0070 0.064 ± 5 0.0 4.454 ± 7
6 0.1418 ± 5 0.0794 ± 3 0.0482 ± 5 0.58 ± 3 0.0 5.556 ± 5
9 3.714 ± 18 1.573 ± 5 0.830 ± 6 16.2 ± 2 0.0 7.184 ± 7
12 54.25 ± 6 33.76 ± 4 15.28 ± 4 1472 ± 4 0.0 9.320 ± 7
15 645.3 ± 6 467.4 ± 11 214.6 ± 4 out mem. 0.0 11.932 ± 8
16 1462 ± 3 1166 ± 2 533.5 ± 8 out mem. 0.0 12.920 ± 9
17 timer overfl. 2589 ± 52 1208 ± 2 out mem. 0.0 13.994 ± 13
18 timer overfl. 6032 ± 121 2829 ± 51 out mem. 0.0 15.075 ± 13

Appendix C. Model check times 95

Table C.6: Cyclic Server Polling system - model check time - part b

property n
model check time (sec.)

mrmc prism prism etmcc ymer vesta
hybrid sparse

busy1 =⇒ P≥1.0[true U poll1]

3 0.000058 ± 2 0.0063 ± 2 0.00610 ± 14 0.0095 ± 10 - 1.752 ± 10
6 0.00047 ± 2 0.0124 ± 6 0.0124 ± 4 0.016 ± 2 - 4.37 ± 2
9 0.003786 ± 7 0.0263 ± 2 0.0266 ± 2 0.0480 ± 19 - 9.22 ± 4
12 0.0597 ± 9 0.0315 ± 5 0.0315 ± 6 0.128 ± 11 - 18.46 ± 14
15 0.790 ± 2 0.0505 ± 4 0.0500 ± 2 out mem. - 34.45 ± 18
16 1.748 ± 5 0.0591 ± 4 0.0593 ± 5 out mem. - 41.99 ± 17
17 3.842 ± 11 0.083 0.084 out mem. - 51.2 ± 2
18 11.3 ± 4 0.090 ± 3 0.0903 ± 14 out mem. - 62.3 ± 3

¬(poll1 ∧ poll2)

3 n.s. 0.007 ± 3 0.0053 ± 2 0.0 0.00005 ± 10 0.00005 ± 10
6 n.s. 0.0048 ± 2 0.0047 ± 3 0.0 0.0 0.00015 ± 17
9 n.s. 0.0047 ± 2 0.0044 ± 2 0.0 0.0 0.0
12 n.s. 0.0047 ± 2 0.0047 ± 2 0.0010 ± 14 0.0 0.00005 ± 10
15 n.s. 0.00480 ± 19 0.0048 ± 3 out mem. 0.0 0.00005 ± 10
16 n.s. 0.0048 ± 2 0.00480 ± 19 out mem. 0.0 0.0
17 n.s. 0.0055 ± 2 0.0055 ± 2 out mem. 0.0 0.0
18 n.s. 0.0048 ± 3 0.0046 ± 2 out mem. 0.0 0.00005 ± 10

Appendix D

Peak Memory consumption

This appendix shows the peak VSZ (Virtual Memory Size) memory consumption (in Kilobytes)
for each case study. We use the following notations:

- ::= no memory measurement available (i. e. formula is not supported by the tool).
n.m. ::= the value could not be measured (i. e. the model check time was to short for an

accurate memory measurement).

D.1 Synchronous Leader Election
Table D.1: Synchronous Leader Election - peak VSZ memory

property n k
VSZ memory in Kbytes
mrmc prism prism

hybrid sparse

P≥0.85[true U≤5 leaderelected]

4 2 n.m. 273, 980 274, 092
4 n.m. 274, 876 274, 996
6 1, 808 281, 456 279, 464
8 1, 664 293, 480 288, 176
10 5, 300 335, 012 317, 260
12 6, 112 391, 592 359, 924
14 10, 776 487, 332 429, 960
16 24, 872 559, 864 469, 940

8 2 1, 804 274, 924 274, 908
4 54, 180 555, 968 457, 628

P≥0.99[true U≤40 leaderelected]

4 2 n.m. 273, 980 273, 984
4 n.m. 274, 876 274, 972
6 1, 808 281, 456 279, 596
8 1, 668 293, 588 288, 080
10 5, 300 334, 416 317, 520
12 6, 600 391, 592 360, 236
14 15, 288 485, 440 432, 432
16 24, 872 561, 740 472, 536

8 2 1, 808 274, 908 274, 908
4 54, 180 554, 092 459, 508

P≥1[true U leaderelected]

4 2 n.m. 273, 984 273, 960
4 n.m. 274, 960 274, 880
6 1, 808 279, 404 279, 400
8 1, 668 288, 304 288, 060
10 7, 296 317, 276 317, 272
12 7, 088 360, 096 359, 692
14 12, 584 427, 608 427, 604
16 20, 396 464, 136 464, 220

8 2 1, 668 274, 912 274, 908
4 85, 120 441, 724 444, 068

98 Appendix D. Peak Memory consumption

D.2 Randomized Dining Philosophers
Table D.2: Randomized Dining Philosophers - peak VSZ memory

property n
VSZ memory in Kbytes
mrmc prism prism

hybrid sparse

P≥0.9[true U≤20 eat]

3 1, 668 274, 112 274, 116
4 2, 616 274, 700 274, 376
6 127, 640 291, 608 318, 564
7 1, 265, 648 407, 576 671, 392

P≥1[true U eat]

3 1, 668 274, 204 274, 104
4 2, 616 274, 380 274, 368
6 168, 864 276, 776 276, 932
7 1, 644, 692 279, 376 279, 104

D.3 Birth-death process
Table D.3: Birth-death process - peak VSZ memory

property m
VSZ memory in Kbytes

mrmc prism prism vesta
hybrid sparse

P≥0.9[true U≤ m

2 (n = m
4

)]

100 1, 664 271, 988 272, 100 267, 996
1000 1, 800 272, 932 272, 808 267, 404
10000 3, 020 285, 760 283, 132 -
100000 15, 016 468, 704 443, 460 -

P≥1[P≥0.9[true U≤100 (n=70)] U (n = 50)]

100 n.m. 271, 988 271, 976 -
1000 1, 668 273, 224 272, 952 -
10000 1, 668 285, 468 283, 032 -
100000 15, 016 468, 824 443, 312 -

P≥1[true U (n = m)]

100 1, 664 271, 988 272, 100 267, 976
1000 1, 668 273, 012 272, 868 267, 976
10000 1, 668 282, 740 282, 736 267, 976
100000 21, 672 438, 424 439, 192 267, 976

Appendix D. Peak Memory consumption 99

D.4 Tandem Queuing Network
Table D.4: Tandem Queuing Network - peak VSZ memory

property n
VSZ memory in Kbytes

mrmc prism prism etmcc ymer vesta
hybrid sparse

S<0.01[full]

2 1, 524 273, 860 273, 868 270, 868 - -
10 1, 668 273, 860 273, 836 270, 868 - -
50 2, 944 274, 520 274, 528 270, 496 - -
100 7, 000 276, 088 276, 004 270, 648 - -
255 35, 864 279, 416 284, 220 271, 468 - -
511 138, 632 289, 236 312, 352 out mem. - -
1023 549, 920 332, 668 426, 696 out mem. - -

S>0.2[P>0.1[X snd]]

2 n.m. 273, 860 273, 836 270, 868 - -
10 1, 668 273, 868 273, 840 270, 352 - -
50 2, 948 274, 516 274, 516 270, 488 - -
100 7, 008 276, 100 276, 004 271, 864 - -
255 35, 920 279, 416 284, 224 out mem. - -
511 138, 808 289, 264 312, 112 out mem. - -
1023 550, 528 331, 752 425, 032 out mem. - -

P<0.1[true U [0.5,2] full]

2 n.m. 273, 868 273, 836 - 2, 820 -
10 1, 668 273, 868 273, 836 - 2, 824 -
50 2, 576 274, 380 274, 400 - 2, 824 -
100 5, 364 275, 964 275, 956 - 2, 824 -
255 25, 620 280, 884 285, 640 - 2, 824 -
511 97, 976 297, 824 320, 300 - 2, 824 -
1023 386, 952 362, 080 455, 464 - 2, 824 -

P≤0,01[true U≤2 full]

2 1, 660 273, 860 273, 868 270, 868 n.m. 267, 984
10 1, 672 273, 860 273, 836 270, 868 2, 824 267, 984
50 2, 880 274, 380 274, 356 270, 432 2, 824 267, 984
100 6, 428 275, 804 275, 792 270, 572 2, 824 267, 984
255 33, 492 279, 788 285, 128 270, 284 2, 824 267, 984
511 129, 116 293, 208 316, 276 out mem. 2, 824 267, 984
1023 511, 676 345, 984 439, 592 out mem. 2, 824 267, 984

P≤0,5[true U≤10 fst]

2 n.m. 273, 868 273, 836 271, 384 n.m. 267, 652
10 1, 668 273, 868 273, 844 270, 948 2, 824 267, 984
50 2, 536 273, 996 274, 352 270, 432 2, 824 267, 984
100 5, 204 275, 800 275, 788 270, 532 2, 824 267, 988
255 24, 596 279, 764 285, 116 270, 268 2, 824 267, 984
511 93, 884 292, 848 316, 180 out mem. 2, 824 267, 988
1023 370, 564 345, 308 439, 024 out mem. 2, 824 267, 988
2 n.m. 273, 868 273, 836 271, 384 n.m. 267, 652
10 n.m. 273, 868 273, 844 270, 948 2, 824 267, 984
50 1668 273, 996 274, 352 270, 432 2, 824 267, 984
100 6, 424 275, 800 275, 788 270, 532 2, 824 267, 988
255 33, 448 279, 764 285, 116 270, 268 2, 824 267, 984
511 129, 012 292, 848 316, 180 out mem. 2, 824 267, 988
1023 511, 520 345, 308 439, 024 out mem. 2, 824 267, 988

P≥1[snd U sndn]

2 n.m. 273, 860 273, 868 270, 860 - 267, 972
10 n.m. 273, 860 273, 872 270, 380 - 267, 992
50 1, 668 273, 988 274, 076 270, 868 - 267, 972
100 5, 044 274, 348 274, 356 270, 352 - 267, 988
255 31, 324 275, 280 275, 184 270, 928 - 267, 992
511 120, 860 276, 348 276, 324 269, 960 - 267, 988
1023 478, 108 279, 472 279, 452 out mem. - 267, 988

100 Appendix D. Peak Memory consumption

D.5 Cyclic Server Polling system
Table D.5: Cyclic Server Polling system - peak VSZ memory - part a

property n
VSZ memory in Kbytes

mrmc prism prism etmcc ymer vesta
hybrid sparse

S<0.2[busy1 U serve1]

3 n.m. 272.772 273.232 298.228 - -
6 1.820 273.864 273.900 270.384 - -
9 3.596 274.936 274.832 617.716 - -
12 25.060 277.228 282.672 270.804 - -
15 256.716 293.652 367.656 out mem. - -
16 561.232 313.904 482.096 out mem. - -
17 1.223.528 354.424 733.056 out mem. - -
18 2.658.048 442.992 1.285.452 out mem. - -

P≤0.99[true U [40,80] serve1]

3 1.668 272.928 273.088 - 2.824 -
6 1.800 273.860 273.996 - 2.824 -
9 3.248 274.960 274.860 - 2.824 -
12 20.168 277.752 282.820 - 2.824 -
15 208.832 304.592 378.608 - 2.820 -
16 459.044 337.344 505.424 - 2.824 -
17 1.006.428 406.148 783.980 - 2.824 -
18 2.198.012 552.484 1.394.964 - 2.956 -

busy1 =⇒ P≥0.5[true U≤5 poll1]

3 n.m. 272.856 273.232 270.880 n.m. 268.052
6 1.780 274.348 273.896 270.340 n.m. 267.980
9 3.104 274.648 274.648 617.716 n.m. 267.980
12 19.572 277.196 282.400 270.904 n.m. 267.980
15 202.940 298.704 369.584 out mem. n.m. 267.980
16 446.496 325.052 486.220 out mem. n.m. 267.980
17 979.664 379.936 743.292 out mem. n.m. 267.980
18 2.141.688 497.084 1.308.948 out mem. n.m. 267.980

busy1 =⇒ P≥0.5[true U≤10 poll1]

3 n.m. 273.144 272.768 270.948 n.m. 267.980
6 1.780 273.988 273.896 270.872 n.m. 267.980
9 3.104 274.640 274.736 270.496 n.m. 267.980
12 19.572 277.284 282.400 270.508 n.m. 267.980
15 202.940 298.608 369.584 out mem. n.m. 267.980
16 446.496 325.048 486.220 out mem. n.m. 267.980
17 979.664 379.936 743.312 out mem. n.m. 267.980
18 2.141.688 497.076 1.308.948 out mem. n.m. 267.980

busy1 =⇒ P≥0.5[true U≤20 poll1]

3 1.668 272.892 273.860 270.872 n.m. 267.980
6 1.780 273.988 273.896 270.856 n.m. 267.980
9 3.104 274.640 274.644 270.432 n.m. 267.980
12 19.572 277.284 282.400 271.000 n.m. 267.980
15 202.940 298.932 369.584 out mem. n.m. 267.980
16 446.496 325.052 486.308 out mem. n.m. 267.980
17 979.664 380.064 743.312 out mem. n.m. 617.716
18 2.141.688 497.208 1.308.948 out mem. n.m. 267.980

busy1 =⇒ P≥0.5[true U≤40 poll1]

3 1.668 273.860 273.368 298.228 n.m. 267.980
6 1.800 273.988 273.896 270.572 n.m. 267.980
9 3.104 274.732 274.644 270.492 n.m. 267.980
12 19.572 277.284 282.492 271.004 n.m. 267.980
15 202.940 298.744 369.664 out mem. n.m. 267.980
16 446.496 324.960 486.220 out mem. n.m. 267.980
17 979.664 379.468 743.308 out mem. n.m. 267.980
18 2.141.688 496.648 1.308.948 out mem. n.m. 457.972

busy1 =⇒ P≥0.5[true U≤80 poll1]

3 1.668 273.952 273.860 270.948 n.m. 267.980
6 1.780 273.860 273.896 270.856 n.m. 267.980
9 3.104 274.660 274.644 270.504 n.m. 267.980
12 19.572 277.416 282.400 271.016 n.m. 457.972
15 202.940 298.840 369.588 out mem. n.m. 267.980
16 446.496 324.960 486.224 out mem. n.m. 267.980
17 979.796 380.068 743.312 out mem. n.m. 267.980
18 2.141.688 497.216 1.308.948 out mem. n.m. 267.980

Appendix D. Peak Memory consumption 101

Table D.6: Cyclic Server Polling system - peak VSZ memory - part b

property n
VSZ memory in Kbytes

mrmc prism prism etmcc ymer vesta
hybrid sparse

busy1 =⇒ P≥1.0[true U poll1]

3 n.m. 272.800 273.860 270.856 - 267.976
6 1.668 273.956 273.896 270.856 - 267.976
9 2.508 273.956 273.944 270.932 - 267.976
12 18.824 273.832 274.212 270.264 - 267.976
15 241.080 274.760 274.892 out mem. - 267.976
16 527.824 275.032 274.988 out mem. - 617.716
17 1.152.504 275.184 275.144 out mem. - 267.976
18 2.507.400 275.316 275.304 out mem. - 617.716

¬(poll1 ∧ poll2)

3 n.m. 273.236 272.768 270.340 n.m. 267.992
6 1.668 272.772 272.768 270.872 n.m. 267.992
9 2.508 273.976 273.972 270.900 n.m. 268.060
12 14.948 273.832 273.832 617.716 n.m. 267.992
15 156.956 274.988 274.896 out mem. n.m. 267.880
16 348.416 275.040 274.932 out mem. n.m. 267.992
17 771.248 274.736 274.648 out mem. n.m. 267.992
18 1.700.312 275.284 275.104 out mem. n.m. 267.992

Bibliography

[1] MRMC website. November, 2006, http://www.cs.utwente.nl/~zapreevis/mrmc/.

[2] PRISM website. November, 2006, http://www.cs.bham.ac.uk/~dxp/prism/.

[3] SPSS - Statistical Package for the Social Sciences, version 12.0. February, 2007,
http://www.spss.com/.

[4] VESTA website. March, 2007, http://osl.cs.uiuc.edu/~ksen/vesta2/.

[5] Gul A. Agha, José Meseguer, and Koushik Sen. Pmaude: Rewrite-based specification lan-
guage for probabilistic object systems. Electronic Notes in Theoretical Computer Science,
153(2):213–239, 2005.

[6] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed Computing,
2(3):117–126, 1987.

[7] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999.

[8] Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen. Discrete-time rewards model-
checked. In Kim G. Larsen and Peter Niebert, editors, Formal Modeling and Analysis of
Timed Systems : First International Workshop (FORMATS’03), volume 2791 of LNCS, pages
88–104, Berlin, 2003. Springer.

[9] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert K. Brayton. Verifying continuous
time Markov chains. In Rajeev Alur and Thomas A. Henzinger, editors, Proc. 8th Interna-
tional Conference on Computer Aided Verification (CAV’96), volume 1102 of LNCS, pages
269–276, Berlin, 1996. Springer.

[10] C. Baier. On algorithmic verification methods for probabilistic systems. habilitation thesis,
University of Mannheim, 1998.

[11] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter Katoen. Model-
checking algorithms for continuous-time Markov chains. IEEE Transactions on Software
Engineering, 29(6):524–541, 2003.

[12] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Katoen. Model
checking continuous-time Markov chains by transient analysis. In E. Allen Emerson and
A. Prasad Sistla, editors, Proc. 12th International Conference on Computer Aided Verification
(CAV’00), volume 1855 of LNCS, pages 358–372, Berlin, 2000. Springer.

[13] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Katoen. On the
logical characterisation of performability properties. In Ugo Montanari, José D. P. Rolim,
and Emo Welzl, editors, Proc. 27th International Colloquium on Automata, Languages and
Programming (ICALP ’00), volume 1853 of LNCS, pages 780–792, Berlin, 2000. Springer.

http://www.cs.utwente.nl/~zapreevis/mrmc/
http://www.cs.bham.ac.uk/~dxp/prism/
http://www.spss.com/
http://osl.cs.uiuc.edu/~ksen/vesta2/

104 Bibliography

[14] Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. Approximate symbolic model
checking of continuous-time Markov chains. In Jos C. M. Baeten and Sjouke Mauw, editors,
Proc. 10th International Conference on Concurrency Theory (CONCUR’99), volume 1664 of
LNCS, pages 146–161, Berlin, 1999. Springer.

[15] Christel Baier and Marta Z. Kwiatkowska. Model checking for a probabilistic branching time
logic with fairness. Distributed Computing, 11(3):125–155, 1998.

[16] Andrea Bianco and Luca de Alfaro. Model checking of probabilistic and nondeterministic
systems. In P. S. Thiagarajan, editor, Foundations of Software Technology and Theoretical
Computer Science, volume 1026 of LNCS, pages 499–513, Berlin, 1995. Springer.

[17] Peter Buchholz, Gianfranco Ciardo, Susanna Donatelli, and Peter Kemper. Complexity of
memory-efficient Kronecker operations with applications to the solution of Markov models.
INFORMS J. on Computing, 12(3):203–222, 2000.

[18] Byron Changuion, Ian Davies, and Micheal Nelte. DaNAMiCS - a petri net editor. March,
2007, http://www.cs.uct.ac.za/Research/DNA/microweb/danamics/DNAFrameH.html.

[19] Frank Ciesinski and Marcus Größer. On probabilistic computation tree logic. In Christel
Baier, Boudewijn R. Haverkort, Holger Hermanns, Joost-Pieter Katoen, and Markus Siegle,
editors, Validation of Stochastic Systems, volume 2925 of LNCS, pages 147–188, Berlin, 2004.
Springer.

[20] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst., 8(2):244–263, 1986.

[21] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
London, UK, 1999. ISBN 0-262-03270-8.

[22] David R. Cox. A use of complex probabilities in the theory of stochastic processes. In Proc.
Cambridge Philosophical Society, volume 51, pages 313–319, 1955.

[23] Conrado Daws, Marta Z. Kwiatkowska, and Gethin Norman. Automatic verification of the
IEEE 1394 root contention protocol with KRONOS and PRISM. International Journal on
Software Tools for Technology Transfer (STTT’04), 5(2-3):221–236, 2004.

[24] Luca de Alfaro, Marta Z. Kwiatkowska, Gethin Norman, David Parker, and Roberto Segala.
Symbolic model checking of probabilistic processes using MTBDDs and the Kronecker repre-
sentation. In Susanne Graf and Michael I. Schwartzbach, editors, Proc. 6th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’00),
volume 1785 of LNCS, pages 395–410, Berlin, 2000. Springer.

[25] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica, 1:115–
138, 1971.

[26] Ronald A. Fisher. Applications of student’s distribution. Metron, 5:90–104, 1925.

[27] Wan Fokkink and Jun Pang. Simplifying itai-rodeh leader election for anonymous rings.
Electronic Notes in Theoretical Computer Science, 128(6):53–68, 2005.

[28] Bennett L. Fox and Peter W. Glynn. Computing poisson probabilities. Communications of
the ACM, 31(4):440–445, 1988.

[29] Nissim Francez. Fairness. Springer-Verlag, NY, USA, 1986. ISBN 0-387-96235-2.

[30] M. Fujita, P.C. McGeer, and J. C.-Y. Yang. Multi-terminal binary decision diagrams: An
efficient datastructure for matrix representation. Form. Methods Syst. Des., 10(2-3):149–169,
1997.

http://www.cs.uct.ac.za/Research/DNA/microweb/danamics/DNAFrameH.html

Bibliography 105

[31] Laurence G. Grimm. Statistical Applications for the Behavioral Sciences. John Wiley & Sons
Inc., NY, USA, 1993. ISBN 0-471-50982-5.

[32] Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskar. On randomization in sequential and
distributed algorithms. ACM Comput. Surv., 26(1):7–86, 1994.

[33] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

[34] Boudewijn Haverkort, Lucia Cloth, Holger Hermanns, Joost-Pieter Katoen, and Christel
Baier. Model-checking performability properties. In International Conference on Dependable
Systems and Networks (DSN’02), pages 103–112, Washington D. C., 2002. IEEE CS Press.

[35] Holger Hermanns, Ulrich Herzog, Ulrich Klehmet, Vassilis Mertsiotakis, and Markus Siegle.
Compositional performance modelling with the TIPPtool. Performance Evaluation, 39(1-
4):5–35, 2000.

[36] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus Siegle. A Markov
chain model checker. In Susanne Graf and Michael I. Schwartzbach, editors, Proc. 6th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’00), volume 1785 of LNCS, pages 347–362, Berlin, 2000. Springer.

[37] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus Siegle. Towards
model checking stochastic process algebra. In Wolfgang Grieskamp, Thomas Santen, and Bill
Stoddart, editors, 2nd International Conference on Integrated Formal Methods (IFM’00),
volume 1945 of LNCS, pages 420–439, Berlin, 2000. Springer.

[38] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus Siegle. A tool for
model-checking Markov chains. Int. J. on Softw. for Technology Transfer (STTT), 4(2):153–
172, 2003.

[39] Holger Hermanns, Joachim Meyer-Kayser, and Markus Siegle. Multi-terminal binary decision
diagrams to represent and analyse continuous-time Markov chains. In B. Plateau, W. J.
Stewart, and M. Silva, editors, Proc. 3rd Int. Workshop on the Num. Sol. of Markov Chains,
pages 188–207, Spain, 1999. Prensas Universitarias de Zaragoza.

[40] Jane Hillston. Compositional Approach to Performance Modelling. Cambridge University
Press, Cambridge, UK, 1996. ISBN 0-521-57189-8.

[41] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic
verification of probabilistic systems. In Holger Hermanns and Jens Palsberg, editors, Proc.
12th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’06), volume 3920 of LNCS, pages 441–444, Berlin, 2006. Springer.

[42] Robert V. Hogg and Allen T. Craig. Introduction to Mathematical Statistics. Macmillan, NY,
USA, fourth edition, 1978. ISBN 0-02-355710-9.

[43] Oliver C. Ibe and Kishor S. Trivedi. Stochastic Petri Net models of polling systems. IEEE
Journal on Selected Areas in Communications, 8(9):1649–1657, 1990.

[44] Alon Itai and Michael Rodeh. Symmetry breaking in distributed networks. Information and
Computation, 88(1):60–87, 1990.

[45] Arne Jensen. Markoff chains as an aid in the study of Markoff processes. Skandinavisk
Aktuarietidskrift, 36:87–91, 1953.

[46] Samuel Karlin and James L. McGregor. The differential equations of birth-and-death pro-
cesses, and the Stieltjes moment problem. Transactions of the American Mathematical Soci-
ety, 85(2):489–546, 1957.

106 Bibliography

[47] Joost-Pieter Katoen, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Faster
and symbolic CTMC model checking. In Luca de Alfaro and Stephen Gilmore, editors,
Proc. 1st Joint International Workshop on Process Algebra and Probabilistic Methods, Per-
formance Modeling and Verification (PAPM/PROBMIV’01), volume 2165 of LNCS, pages
23–38, Berlin, 2001. Springer.

[48] Joost-Pieter Katoen and Ivan S. Zapreev. Safe on-the-fly steady-state detection for time-
bounded reachability. In Third International Conference on the Quantitative Evaluation of
Systems (QEST’06), pages 301–310, Washington D. C., 2006. IEEE Computer Society.

[49] Vidyadhar G. Kulkarni. Modeling and analysis of stochastic systems. Chapman & Hall,
London, UK, 1995. ISBN 0-412-04991-0.

[50] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilistic symbolic
model checker. In Tony Field, Peter G. Harrison, Jeremy T. Bradley, and Uli Harder, edi-
tors, Proc. 12th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation (TOOLS’02), volume 2324 of LNCS, pages 200–204, Berlin, 2002.
Springer.

[51] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 2.0: A tool for proba-
bilistic model checking. In Proc. 1st International Conference on Quantitative Evaluation of
Systems (QEST’04), pages 322–323, Washington D. C., 2004. IEEE Computer Society.

[52] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Quantitative analysis with
the probabilistic model checker PRISM. Electronic Notes in Theoretical Computer Science,
153(2):5–31, 2005.

[53] Marta Z. Kwiatkowska, Gethin Norman, David Parker, and Jeremy Sproston. Performance
analysis of probabilistic timed automata using Digital Clocks. In Kim Guldstrand Larsen and
Peter Niebert, editors, 1st International Workshop on Formal Modeling and Analysis of Timed
Systems (FORMATS’03), volume 2791 of LNCS, pages 105–120, Berlin, 2003. Springer.

[54] Richard Lassaigne and Sylvain Peyronnet. Approximate verification of probabilistic systems.
In Holger Hermanns and Roberto Segala, editors, Process Algebra and Probabilistic Methods.
Performance Modeling and Verification (PAPM-PROBMIV’02), volume 2399 of LNCS, pages
213–214, Berlin, 2002. Springer.

[55] Paola Lecca and Corrado Priami. Cell cycle control in eukaryotes: A BioSpi model. In Proc.
Workshop on Concurrent Models in Molecular Biology (BioConcur’03), ENTCS, 2003.

[56] Daniel J. Lehmann and Michael O. Rabin. On the advantages of free choice: A symmetric and
fully distributed solution to the dining philosophers problem. In Proc. 8th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’81), pages 133–138,
New York, 1981. ACM Press.

[57] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic, Dordrecht, NL, 1993.
ISBN 0-7923-9380-5.

[58] Sri Gopal Mohanty, Aliakbar Montazer-Haghighi, and R. Trueblood. On the transient behav-
ior of a finite birth-death process with an application. Computers and Operations Research,
20(3):239–248, 1993.

[59] Jogesh K. Muppala and Kishor S. Trivedi. Numerical transient solution of finite markovian
queueing systems. In U. Narayan Bhat and Ishwar V. Basawa, editors, Queueing and Related
Models, pages 262–284, USA, 1992. Oxford University Press.

[60] Gethin Norman and Vitaly Shmatikov. Analysis of probabilistic contract signing. Journal of
Computer Security, 14(6):561–589, 2006.

Bibliography 107

[61] James Norris. Markov chains. Cambridge series on statistical and probabilistic mathematics
no. 2. Cambridge University Press, Cambridge, UK, 1997. ISBN 0-521-48181-3.

[62] H.A. Oldenkamp. Probabilistic model checking: A comparison of tools. MSc thesis, University
of Twente, Enschede, The Netherlands, 2007. http://www.cs.utwente.nl/~oldenkampha.

[63] David Anthony Parker. Implementation of symbolic model checking for probabilistic systems.
Master’s thesis, the University of Birmingham, 2002.

[64] Bernard Philippe, Youcef Saad, and William Stewart. Numerical methods in Markov chain
modelling. Operations Research, 40(6):1156–1179, 1992.

[65] Sergio Pissanetzky. Sparse Matrix Technology. Academic Press, London, UK, 1984. ISBN
0-12-557580-7.

[66] Amir Pnueli and Lenore D. Zuck. Verification of multiprocess probabilistic protocols. Dis-
tributed Computing, 1(1):53–72, 1986.

[67] Muhammad A. Qureshi and William H. Sanders. A new methodology for calculating dis-
tributions of reward accumulated during a finite interval. In Proc. of the 26th International
Symposium on Fault-Tolerant Computing (FTCS’96), pages 116–125, Japan, 1996.

[68] Youcef Saad. NumericalMethods for Large Eigenvalue Problems. Manchester University Press,
Manchester, UK, 1992. ISBN 0-7190-3386-1.

[69] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model checking of black-
box probabilistic systems. In Rajeev Alur and Doron Peled, editors, Proc. 16th International
Conference on Computer Aided Verification (CAV’04), volume 3114 of LNCS, pages 202–215,
Berlin, 2004. Springer.

[70] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model checking of stochastic
systems. In Kousha Etessami and Sriram K. Rajamani, editors, Proc. 17th International
Conference on Computer Aided Verification (CAV’05), volume 3576 of LNCS, pages 266–
280, Berlin, 2005. Springer.

[71] Gerald S. Shedler. Regenerative stochastic simulation. Acedemic Press, London, UK, 1993.
ISBN 0-12-639360-5.

[72] Matthew Simmons. Automata Theory. World Scientific Publishing, Singapore, 1999. ISBN
981-023753-7.

[73] Fabio Somenzi. CUDD: CU Decision Diagram package. Public software, Colorado University,
Boulder, 1997.

[74] William J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, New Jersey, UK, 1994. ISBN 0-691-03699-3.

[75] Robert E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Compting,
1(2):146–160, 1972.

[76] Henk C. Tijms. A First Course in Stochastic Models. John Wiley & Sons Ltd, West Sussex,
UK, 2003. ISBN 0-471-49881-5.

[77] Henk C. Tijms and R. Veldman. A fast algorithm for the transient reward distribution in
continuous-time Markov chains. In Operation Research Letters, volume 26, pages 155–158,
2000.

[78] Kishor S. Trivedi. Probability & statistics with reliability, queuing, and computer science
applications. Prentice-Hall, New Jersey, USA, 1982. ISBN 0-13-711564-4.

http://www.cs.utwente.nl/~oldenkampha

108 Bibliography

[79] Abraham Wald. Sequential tests of statistical hypotheses. Annals of Mathematical Statistics,
16(2):117–186, 1945.

[80] Ward Whitt. Continuity of generalized semi-markov processes. Mathematics of Operations
Research, 5:494–501, 1980.

[81] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–
83, 1945.

[82] H̊akan L. S. Younes. Verification and Planning for Stochastic Processes with Asynchronous
Events. PhD thesis, Computer Science Department, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 2005. CMU-CS-05-105, http://www.cs.cmu.edu/˜lorens/papers/.

[83] H̊akan L. S. Younes. Ymer: A statistical model checker. In Kousha Etessami and Sri-
ram K. Rajamani, editors, Proc. 17th International Conference on Computer Aided Verifica-
tion (CAV’05), volume 3576 of LNCS, pages 429–433, Berlin, 2005. Springer.

[84] H̊akan L. S. Younes, Marta Kwiatkowska, Gethin Norman, and David Parker. Numerical vs.
statistical probabilistic model checking. International Journal on Software Tools for Technol-
ogy Transfer (STTT), 8(3):216–228, 2006.

[85] H̊akan L. S. Younes and Reid G. Simmons. Probabilistic verification of discrete event systems
using acceptance sampling. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proc. 14th
International Conference on Computer Aided Verification (CAV’02), volume 2404 of LNCS,
pages 223–235, Berlin, 2002. Springer.

[86] H̊akan L. S. Younes and Reid G. Simmons. Statistical probabilistic model checking with a
focus on time-bounded properties. Information and Computation, 204(9):1368–1409, 2006.

[87] David M. Young. Iterative Solution of Large Linear Systems. Acedemic Press, NY, USA,
1971. ISBN 0-12-773050-8.

	Glossary
	Introduction
	Approach

	Background on probabilistic model checking
	Model checking
	Probabilistic model checking
	Probabilistic models
	Discrete-Time Markov Chains (DTMC)
	Continuous-Time Markov Chains (CTMC)

	Logics for checking probabilistic models
	Probabilistic Computation Tree Logic (PCTL)
	Continuous Stochastic Logic (CSL)

	Model checking Markov chains
	Numerical and statistical methods
	PCTL model checking of DTMCs
	CSL model checking of CTMCs
	Solving a system of linear equations

	State-space representation: Explicit and Symbolic

	Probabilistic model checker tools
	PRISM
	ETMCC
	MRMC
	YMER
	VESTA
	Summary

	Comparing tool efficiency
	Experiment setup
	Model construction
	Case studies: data collection and interpretation
	Synchronous Leader Election
	Randomized Dining Philosophers
	Birth-death process
	Tandem Queuing Network.
	Cyclic Server Polling System.

	Analysis
	Analysis by probabilistic operator.
	Causes of performance differences

	User friendliness

	Conclusion
	Recommendations
	Comparative research

	Future Work

	APPENDICES
	Tool settings
	Case studies: Model size and sample size
	DTMC
	Synchronous Leader Election
	Randomized Dining Philosophers
	Birth-death process

	CTMC
	Tandem Queuing Network
	Cyclic Server Polling system

	Model check times
	Synchronous Leader Election
	Randomized Dining Philosophers
	Birth-death process
	Tandem Queuing Network
	Cyclic Server Polling system

	Peak Memory consumption
	Synchronous Leader Election
	Randomized Dining Philosophers
	Birth-death process
	Tandem Queuing Network
	Cyclic Server Polling system

	Bibliography

