
University of Twente
EEMCS / Electrical Engineering

Control Engineering

On FPGAs with embedded processor cores
for application in robotics

 Roderick Colenbrander

MSc report

Supervisors:
prof.dr.ir. J. van Amerongen

dr.ir. J.F. Broenink
ir. M.M. Bezemer
ir. E. Molenkamp

 August 2009

Report nr. 015CE2009
Control Engineering

EE-Math-CS
University of Twente

P.O.Box 217
7500 AE Enschede

The Netherlands

2 On the use of FPGAs with embedded processor cores for application in robotics

University of Twente

3

Glossary

ACE - Advanced Configuration Environment
APU - Auxiliary Processor Unit
BIT - FPGA bitstream programming file
BSP - Board Support Package
CE - Control Engineering
CW - Configware
EDK - Platform Studio Embedded Development Kit
ELF - Executable and Linkable Format
FPGA - Field Programmable Gate Array
HDL - Hardware Description Language
LVDS - Low Voltage Differential Signalling
LUT - Lookup Table
MHS - Microprocessor Hardware Specification
PLB - Processor Local Bus
SysACE - System Advanced Configuration Environment
SysGen - System Generator for DSP
UCF - User Constraints File
XMP - Xilinx Microprocessor Project

Control Engineering

4 On the use of FPGAs with embedded processor cores for application in robotics

Summary

The industry makes heavy use of embedded systems. Traditionally they consist of an
embedded computer running real-time software on a real-time operating system. The
complexity of embedded systems has increased due to higher demands. More design effort
is required to ensure that real-time requirements can be met.

The emergence of powerful, low-cost FPGAs has initiated a trend in which real-time tasks
are moved from software to FPGAs. When moving tasks away from the CPU, the demands
on both the CPU and software become less harsh which simplifies design. In the end a
simple CPU running non-real-time software might suffice.

The Control Engineering group has acquired an FPGA platform which they intend to use
for application in robotics. This platform is the Xilinx ML510 FPGA board which contains
a Virtex-5 FX130T FPGA. The Virtex-5 FX130T contains a large number of logic cells
and two PowerPC CPUs which allow a tight coupling between FPGA logic and software.
The Virtex-5 FX130T offers a large amount of parallel computation power which is enough
for performing the PID calculations of 50,000 Production Cell setups.

The main goal of this project is to investigate the use of the ML510 platform for application
in robotics. The assignment consists of two parts. The first part of this assignment is
devoted to the creation of a development platform. The required work required consisted
of: porting Linux to the ML510, development of a ML510 configware package in order to
boot Linux and setting up the FPGA and software development tools. In the second part
of this assignment a robotic demonstrator is developed in which the position of a motor
is controlled by the Virtex-5.

The CE design flow has been adopted with a Xilinx hardware/software co-design flow. This
extended design flow, advocates to use a mix of software and configware for a controller
design. This way a better design can be obtained at a lower design effort because each
part can be implemented using the best technology, either software or configware, for the
task.

The extended CE design flow has been successfully applied on the creation of a robotic
demonstrator. This proves that the ML510 is suitable for robotics but the large amount
of computation power offered by the Virtex-5 is overkill for use in simple control projects.

At this point the ML510 platform is only accessible to designers with a background in
computer engineering and it can only be used in applications with low requirements on
I/O performance. Here three recommendations are given for using the board and make the
board more usable. First of all the ML510 should be used in complex control applications
like vision-in-the-loop which can take advantage of the parallel computation power of the
Virtex-5. Second, a PID controller core can be designed of which the PID parameters and
sample frequency are programmable from software, this way rapid prototyping as offered
by 20-sim/4C is possible. Third, a new ML510 I/O board should be developed which fixes
the performance limitations of the current board.

University of Twente

5

Preface

This report marks the end of my study Electrical Engineering at the University of Twente.
During the six years of my study here I have learned a lot on the academic level but also
extracurriculary. The activity I enjoyed most and will never forgot was organizing of Study
Project Ohiariha to Canada in 2006-2007.

I would like to thank a number of people who have assisted me during this project. First
of my supervisors Jan Broenink, Maarten Bezemer and Bert Molenkamp for their support
and guidance throughout the project. Second, I would like to thank Marcel Groothuis for
his assistance with adding ML510 support to Embryo, discussion on the Linux kernel and
help with other parts of my assignment.

As part of this assignment Linux was ported to the ML510. During this work I have been
assisted by PowerPC Linux developers. I would like to thank Benjamin Herrenschmidt
(IBM Corporation) and Grant Likely (SecretLab) for the dozens of hours of support they
gave me by IRC and e-mail.

Finally I would like to thank my fellow students at the Control Engineering Lab and my
housemates for their questions and feedback on my project for bringing it to a higher level.

Roderick Colenbrander
Enschede, August 2009

Control Engineering

6 On the use of FPGAs with embedded processor cores for application in robotics

University of Twente

7

Contents

1 Introduction 1

1.1 Context . 1

1.2 Goals and approach of the project . 2

1.3 CE methodology in context of this board 2

1.4 FPGA terminology . 4

1.5 Report outline . 4

2 ML510 6

2.1 Overview . 6

2.2 Virtex-5 FX130T FPGA . 7

2.3 User I/O . 11

2.4 Operating system support . 12

2.5 Virtex-5 compared to FPGAs used in previous CE projects 14

3 Preparation of the ML510 for control applications 17

3.1 Linux kernel . 17

3.2 Embryo . 18

3.3 ML510 I/O board . 19

4 Xilinx Design flow 21

4.1 Hardware/Software co-design . 21

4.2 Hardware/software co-design using Platform Studio EDK 23

4.3 Software development using Platform Studio SDK 25

4.4 Configware development using ISE Foundation 26

4.5 Configware development using System Generator for DSP 27

5 Proposed design flow 33

5.1 Partitioning of a controller design in software and configware 33

5.2 Configware development . 35

5.3 Software development . 36

6 Design of a robotic demonstrator 39

6.1 Description of demonstrator setup . 39

6.2 FPGA implementation of position controller 40

6.3 Results . 46

7 Conclusions and Recommendations 49

7.1 Conclusions . 49

Control Engineering

8 On the use of FPGAs with embedded processor cores for application in robotics

7.2 Recommendations . 49

A PowerPC Linux kernel 52

A.1 PowerPC Linux boot process . 52

A.2 ML510 PCI driver . 53

B Installation of Embryo and Linux on the ML510 55

B.1 Create Linux compatible BIT-file [1.2 - 1.4] 55

B.2 Implement algorithm in software and SW compilation [2.b.1, 2.b.4] 58

B.3 Embryo configuration and compilation [2.b.2] 58

B.4 Create BSP [2.b.3] . 60

B.5 Build Embryo ACE file - CW/SW integration [1.5] 61

B.6 Upload to CompactFlash [2.b.6] . 61

C SysGen implementation of PID algorithm 64

Bibliography 65

Roderick Colenbrander, August 25, 2009 University of Twente

1

1 Introduction

1.1 Context

The industry makes heavy use of embedded systems. Traditionally they consist of an
embedded computer running real-time software on a real-time operating system. The
complexity of embedded systems has increased due to increased requirements. More design
effort is required to ensure that real-time requirements can be met.

The emergence of powerful, low-cost FPGAs has initiated a trend in which real-time tasks
are moved from software to FPGAs. When moving tasks away from the CPU, the demands
on both the CPU and software become less harsh which simplifies design. In the end a
simple CPU running non-real-time software might suffice.

FPGAs offer a flexible platform for building systems-on-a-chip. Traditionally FPGAs
offered only a small number of programmable LUTs and a large amount of I/O pins.
Modern FPGAs contain a large amount of LUTs but next to that they also integrate
CPU cores, DSP blocks, memory and other cores. Thus they allow the integration of all
hardware and software, of which an embedded system is composed, into a single device.

New promising applications of FPGAs have arisen, for instance, in the field of robotics. A
popular research topic in robotics is the creation of human-like robots with vision. The im-
age processing algorithms needed for vision require a large amount of computation power.
Currently, these vision algorithms run on high performance general purpose processors,
but these are not well suited for this task. Trade-offs between the complexity of the im-
age processing algorithm and its execution time are needed in order to meet real-time
demands. The parallel computation power of FPGAs is suitable to accelerate these tasks
and allows for the creation of more sophisticated algorithms.

Development for an FPGA is a trade-off between development time, FPGA resource usage
(LUTs), timing, accuracy and performance. An example of these trade-offs can be seen in
the implementation of the controllers of the Production Cell setup into an FPGA (Sassen,
2009; Groothuis et al., 2008). The original software implementation made use of double
precision floating-point. Due to resource constraints in the number of FPGA LUTs extra
work was required in order to fit the design into the FPGA. This rework included trade-offs
in accuracy by converting double precision floating-point computations to single procision
floating-point or trade-offs in timing by sequential execution of floating-point calculations.

In order to be able to perform FPGA trade-off studies and to build more complex robots, a
platform featuring an FPGA with a large amount of computation power has been acquired.
This platform is the Xilinx ML510 FPGA board (Xilinx, 2008c) which contains a Virtex-5
FX130T FPGA. The Virtex-5 FX130T contains a large number of LUTs and two PowerPC
CPUs which allow a tight coupling between FPGA logic and software. This makes it
possible to realize a complete embedded control system as a system-on-a-chip.

The ML510 is a new type of platform for the Control Engineering group. From a technical
point of view the platform looks promising for use in robotics. The problem is that it
is not known what the strong/weak points of the platform are: how easily the potential
of the platform can be revealed and whether the platform can easily be fitted into the
design methodology used within the group. This assignment tries to find an answer to
these questions.

Control Engineering

2 On the use of FPGAs with embedded processor cores for application in robotics

1.2 Goals and approach of the project

The main goal for this assignment is to investigate the use of the ML510 in robotics. This
investigation should result in recommendations on situations in which to use the ML510
and how to use the it.

In order to find these answers, three tasks are performed:
1 The creation of a development platform consisting of FPGA and software develop-

ment tools.
2 Integration of the development platform into the CE design flow.
3 Development of a robotic demonstrator in which a motor is controlled by the FPGA.

The first task focuses on the creation of a development platform, so that others can easily
take advantage of the ML510 platform. The second task integrates FPGA and software
development tools for ML510 development into the CE design flow. As part of the third
task, the modified CE design flow is applied to the creation of a robotic demonstrator
which proves the usability of the ML510 for robotics. The robotic demonstrator consists
of a rotating platfrom of which the position is controlled by the FPGA by actuating a
motor.

1.3 CE methodology in context of this board

The process of designing a system can be described using the pyramid shown in Figure 1.1.
The figure splits the design process in several stages. The design process starts at the top
and by making choices a lower stage is reached and more detail is achieved. The choices
made during the design result in different final products.

The pyramid model is useful for FPGA design because trade-offs need to be made during
design in e.g. accuracy, development time, FPGA resource usage, timing and performance.
The large capacity of the Virtex-5 allows for this sort of trade-off studies.

Figure 1.1: System design process (Corporaal, 2006; Groothuis and Broenink, 2009)

In case of Embedded Control Software the pyramid can be translated into Figure 1.2.

Roderick Colenbrander, August 25, 2009 University of Twente

Introduction 3

Figure 1.2: CE design flow (Broenink et al., 2007)

The figure shows a design flow developed within the Control Engineering group (CE). The
design flow consists of four design phases:

• Physical System Modeling: A model of the physical system is designed.
• Control Law Design: The model of the physical system is used to create a controller

for controlling the physical system.
• Embedded System Implementation: In this step the model is prepared for implemen-

tation on a hardware platform. Effects of operations like sampling, digital-to-analog
/ analog-to-digital conversion are included into the model.

• Realization: The system is transferred to hardware and tested on the physical
system.

The result of each design phase is analyzed. In the first three design phases this is done
by simulation. By simulation, it can be verified whether the model, as it has been written
down in the simulation program, behaves as it was designed to do so. For this check, test
simulations can be run to judge the behavior of the model under particular circumstances,
like equilibrium, step response and transient response. Important aspects to look at are
the shape of the curves and the value range of the variables. During the realization phase
measurements on the real physical system can be performed. These measurement results
can be compared to the simulations results, this is called validation.

The verification step is critical as it allows for stepwise refinement of the model. This
means that a problem is divided into small, manageable subproblems. Solving of such a
subproblem leads to a more complete answer to the whole problem e.g. the design of a
model.

The prefered design for mechatronic design within CE is 20-sim (Controllab Products,
2009). It can be used during all four design phases from modelling a physical system
to C/C++ code generation when the target hardware platform uses a general purpose
processor. When the code has to be executed on an FPGA, the 20-sim code generator
cannot be used. This is because FPGAs are not programmed using C/C++ but using a
Hardware Description Language (HDL) and 20-sim does not provide a code generator for
this.

In previous projects targetting an FPGA, the design was ported to Handel-C during the
Realization phase. Handel-C is a hardware desciption language based on ANSI-C with
language extensions for paralellism inspired by CSP. It would make sense to use Handel-C
for this project but it proved not to be suitable:

• The Handel-C tools do not provide glue logic for interfacing Handel-C designs with
a PowerPC CPU; writing your own Handel-C/VHDL interfaces for this is possible
but it is a lot of work.

• Handel-C offers limited simulation capabilities which led to the use of trial-and-error

Control Engineering Roderick Colenbrander, August 25, 2009

4 On the use of FPGAs with embedded processor cores for application in robotics

in previous CE projects. This method is not suitable for a large FPGA due to long
synthesize times.

• The future of Handel-C is uncertain after the company which developed it (Agility
Design Solutions, 2009), has been acquired by its competitor Mentor Graphics.

This project focusses on the ”Embedded Control System Implementation” and ”Realiza-
tion” phases. Models of a plant and controller are reused from previous projects and are
modified were needed. FPGA design tools from Xilinx will be used to realize the design
in the Virtex-5.

1.4 FPGA terminology

In electrical engineering and computer science some terms have a different meaning. One
such term is hardware which in case of electrical engineering refers to components like
resistors or circuit boards while in case of computer science the content used to configure
an FPGA is considered hardware as well. To prevent confusion within CE, terminology
is introduced here which is used throughout the rest of this report. The terminology is
introduced by explaining CPUs and software first.

A CPU is a device which can execute a fixed number of operations like additions and
multiplications. The tasks which a CPU has to perform are contained in a software
program. A software program is a sequence of instructions which defines the operations a
CPU has to perform in a specified order.

An FPGA is a parallel device of which the functionality can be configured at device startup.
Both software and ’FPGA functionality’ are expressed in a human readable language
which is compiled to respectively a software program or an FPGA programming file. The
main difference is that an FPGA programming file does not contain instructions but it
defines a structure of a digital circuit. Depending on performance constraints specified
to a HDL compiler more operations are performed in parallel, which takes more FPGA
building blocks, or operations are performed sequentially to save FPGA building blocks.
If writing software is a 1-dimensional problem in execution time, FPGA programming is
a 2-dimensional problem in FPGA area and execution time.

In this report the content which is used to configure an FPGA is called configware instead
of hardware (Hartenstein, 2006).

Vendors of FPGAs provide pre-built configware blocks in order to save design time. Pre-
built configware blocks are called Intellectual Properties (IPs) or soft-cores. The last term
is used in this report. The term hard-core exists as well and it refers to fixed blocks
integrated into FPGAs like DSP blocks or CPU cores.

1.5 Report outline

This report provides some background information on various topics regarding the Xilinx
hardware and software. Some of the chapters can be seen as a continuation of these
background chapters but they cover the work carried out in this assignment e.g. work in
order to get the ML510 board working. The choice was made to place chapters containing
own work after the corresponding background chapter.

The second chapter of this report gives an overview of the Xilinx ML510 board. The third
chapter explains the work needed to get the ML510 running. The fourth chapter gives
background on the Xilinx design flow and their tooling. The fifth chapter proposes how
the Xilinx design flow can be fitted into the CE design flow. The sixth chapter applies
the proposed design flow for the creation of a robotic test case. The final chapter draws
conclusions and gives recommendations for future projects.

Roderick Colenbrander, August 25, 2009 University of Twente

Introduction 5

The appendices provide information on how to install Linux and Embryo on the ML510
and give technical details about the robotic demonstrator.

Control Engineering Roderick Colenbrander, August 25, 2009

6 On the use of FPGAs with embedded processor cores for application in robotics

2 ML510

In this chapter an overview of the capabilities of the ML510 is given. The first two
paragraphs give a look at the ML510 and the Virtex-5 FPGA from a computer architecture
point of view. The third section gives an overview of the User I/O ports of the ML510.
The fourth section gives an overview of supported operating systems. The last section
compares the Virtex-5 FPGA with FPGAs used in previous CE projects.

2.1 Overview

A picture of the Xilinx ML510 development board is shown in Figure 2.1. At first glance
the board looks like an ATX-sized PC motherboard with features common on PC moth-
erboards like PCI slots, IDE ports, DIMM banks and more. Closer inspection reveals that
there is no general purpose processor like a x86-processor on the board but a Virtex-5
FX130T FPGA.

Figure 2.1: Xilinx ML510 FPGA board

General FPGA development boards offer a large number of User I/O pins in combination
with communication interfaces like UARTs and Ethernet. The ML510 offers this as well
but also offers a large amount of features normally found in PCs. An overview of the
features of the ML510 is given below:

• FPGA: Virtex-5 FX130T
• CPU: 2x IBM PowerPC 440 core (inside the Virtex-5 FX130T)
• Memory: 2x DIMM banks for DDR2 memory (by default each contains 512MB
• Expansion slots: 4x PCI, 2x PCI-Express
• Storage: 1x CompactFlash interface, 256Mbit onboard Flash, 2x IDE, 2x Serial ATA
• LAN: 2x Gigabit Ethernet physical layers
• Video: 1x DVI-I, max resolution 640x480
• Audio: AC97 audio with headphone and microphone ports
• I/O-ports: 2x RS232, 2x PS/2, 2x USB 1.1
• User I/O: 124 GPIO pins, 4x debug LED/switch

As can be seen in the list, the ML510 offers a large amount of functionality. Most of
this functionality is not realized using dedicated hardware but by soft-cores inside the

University of Twente

ML510 7

FPGA. Xilinx and their partners ship a large number of different soft-cores which can be
flashed inside the FPGA. This way the ML510 can be configured to the requirements of
the designer.

In case of Ethernet: the ML510 contains two onboard Ethernet physical layers. Different
Ethernet soft-cores are available, which allow for realization of different types of Ethernet
cards. Two of the available Ethernet soft-cores are a Gigabit Ethernet core by Xilinx and
a real-time Ethernet core EtherCAT core by Beckhoff (Beckhoff, 2008).

2.2 Virtex-5 FX130T FPGA

This section gives an overview of the Virtex-5 FX130T FPGA and two of its components
namely DSP blocks and the embedded IBM PowerPC 440 processor cores.

2.2.1 Overview

Xilinx offers two families of FPGAs: the low-cost Spartan and the high-end Virtex. A
recent Virtex family is the Virtex-5. It is made using 65nm technology and it offers various
architectural improvements over previous Xilinx FPGAs.

The most significant change in the Virtex-5 over previous Xilinx FPGAs is the design of
its logic cells. In previous Xilinx FPGAs, these were made up of a 4-input lookup-table
(LUT) in combination with a flip-flop and some other logic. The Virtex-5 uses larger logic
cells, each consisting of 6-input LUT paired with a flip-flop and the other logic. Four logic
cells are grouped together in slices.

A 6-input LUT has a capacity of 26 entries which is equivalent to four traditional 4-input
LUTs, which have 24 entries each. Not all designs can take advantage of the larger LUTs.
For example basic bitwise operations which need less than six inputs, do not use a 6-input
LUT up to its maximum capacity. Xilinx claims that on average one Virtex-5 logic cell is
equivalent to 1.6 traditional logic cells (Xilinx, 2007). This factor will be used throughout
this report when comparing resource usage with previous FPGA designs.

Within the Virtex-5 family, there are five product lines each optimized for a different
application. The differences can be found in the number of logic cells, the number of DSP
blocks and the number of high-speed communication links. The FPGA on the ML510 is a
Virtex-5 FX130T (see Figure 2.2) which belongs to the FXT product line. This product
line is optimized for embedded processing and offers one or more embedded IBM PowerPC
440 processors in combination with a moderate amount of logic cells and DSP blocks. The
Virtex-5 FX130T is one of the largest Virtex-5 FXT models.

Figure 2.2: Xilinx Virtex-5 FX130T FPGA

Control Engineering Roderick Colenbrander, August 25, 2009

8 On the use of FPGAs with embedded processor cores for application in robotics

An overview of the features of the Virtex-5 FX130T is given below:
• Slices: 20,480 (contains logic cells and flip-flops)
• Logic cells: 81,920 6-input LUTs (equivalent to 131,072 traditional 4-input LUTs)
• Flip-flops: 81,920
• Maximum operating frequency: 550MHz
• DSP blocks: 320x DSP48E
• Processor block: 2x IBM PowerPC 440 cores
• Block RAM: 298 blocks of 36kbit for a total of 10,278kbit
• Hard-core memory controller with support for DDR2 using soft-core bridge
• LAN: 6x 10/100/1000 Ethernet MAC blocks
• High-speed serial I/O: 20x RocketIO transceivers capable of 150Mbps to 6.5Gbps

2.2.2 DSP48E block

Algorithms make frequent use of arithmetic operations like additions, subtractions and
multiplications. These operations can all be implemented in logic cells, but the use of logic
cells has two disadvanages. First, when a high number of bits is needed (e.g. for accuracy)
a large number of logic cells is required. Second performance of a design implemented
solely using logic cells is limited. This is because a structure like a multiplier can require
hundreds of logic cells which all have to be connected. Connecting these using an internal
network reduces performance. For this reason DSP blocks which can perform arithmetic
and logic operations have been added to modern FPGAs.

The Virtex-5 FX130T contains 320 DSP48E blocks which can operate at a frequency upto
550MHz. The DSP blocks are spread in columns and rows over the FPGA. Within a
column DSP blocks are connected to each other using an internal network.

A DSP block (see Figure 2.3) consists of a 2-complement 25x18 multiplier in parallel with
an integrated 48-bit ALU and logic for buffering and signal routing.

Figure 2.3: Virtex-5 DSP48E block, image (Przybus, 2007)

A DSP block receives input data from either user driven inputs A, B and C or from other
DSP blocks using ACIN, BCIN and PCIN. The input source and the operation of the
ALU can be selected using multiplexers. The ALU can perform additions, subtractions
and various logic operations. It can perform these operations on input data from C and

Roderick Colenbrander, August 25, 2009 University of Twente

ML510 9

PCIN or from the output data of the multiplier. It can also be fed with previous results
stored in the P register and in this way it acts like an integrator.

There are three ways using which DSP blocks can be used in a design. First, smart FPGA
synthesis tools are able to automatically realize logic and arithmetic operations using DSP
blocks when it makes sense to them. Second, the designer can explicitly instantiate DSP
blocks in his design but this requires additional work. The work includes configuration of
multiplexers and other logic in the DSP block. Third, design tools can offer wizards for
the creation of filters and floating-point cores which use the DSP blocks internally.

The DSP block can be used in various applications, two of these are explained here.
One such an application is the creation of digital filters. Digital filters consist of a large
number of stages and each stage performs multiplications and subtractions. Each stage
can be mapped on a single DSP block. Using PCIN and PCOUT multiple stages can be
chained together.

A second application of the DSP block is the implementation of floating-point. Xilinx
provides a floating-point core wrapper named Floating-Point Operator (Xilinx, 2009a)
which can be used for implementing single and double-precision floating-point. For single-
precision, the floating-point wrapper requires two DSP blocks and the wrapper can operate
upto 410MHz. Each calculation requires multiple clock cycles. For instance a multipli-
cation takes 8 clock cycles and an addition takes 11. The effective operating frequency
of the wrapper is approximately 50MHz (=410MHz/8) for multiplications and 40MHz
(=410MHz/11) for additions. The effective operating frequency can be increased by us-
ing more DSP blocks. For example, doubling the operating frequency requires twice the
number of DSP blocks.

2.2.3 IBM PowerPC 440 CPU core

The Virtex-5 FX130T features two separate IBM PowerPC 440 cores. PowerPC is a RISC
based processor architecture developed by IBM in coorperation with Apple and Motorola
(IBM, 2009). These days PowerPC based CPUs are used in all sorts of devices ranging
from consumer devices, like Wii, Playstation3 and Xbox360 to high performance servers
and embedded systems. For integration into SoCs, IBM offers embedded PowerPC cores.
This type is used in the Virtex-5 FXT series.

The PowerPC 440 is a 32-bit big-endian CPU, based on the PowerPC Book-E specification
for embedded processors (IBM, 2003). This specification defines a common subset of the
PowerPC architecture which all Book-E designs must implement. Extra functionality like
64-bit support or a hardware floating-point unit is optional.

The Book-E specification also defines an interface for an Auxiliary Processor Unit (APU)
which can hook into the execution engine of the processor for the creation of custom CPU
instructions. Xilinx for instance offers a PowerPC-compatible soft-core floating-point unit
which makes use of it.

A list of features is shown below.
• Architecture: 32-bit PowerPC (RISC)
• Endianness: Big-Endian
• Clock frequency: upto 475MHz 1

• Integrated memory management unit
• APU-bus for creation of custom CPU instructions
• Floating point: available using APU-connected soft-core

Xilinx has added logic around the PowerPC 440 core for high-performance, low latency
1In the FX130T FPGAs with the fastest speed grade PowerPC 440 cores can run upto 550MHz, the

ML510 uses a lower speed grade limited to 475MHz

Control Engineering Roderick Colenbrander, August 25, 2009

10 On the use of FPGAs with embedded processor cores for application in robotics

access to system memory and periperhals inside the FPGA. The resulting hard-core em-
bedded processor block is shown in Figure 2.4. The block consists of the PowerPC 440
core, an APU-bus for interfacing with co-processors, Device Control Registers (DCR) and
a Crossbar interface.

Figure 2.4: Embedded PowerPC 440 processor block with Crossbar (Abramson et al.,
2008)

The Device Control Registers are a special type of registers which are visible from inside the
CPU core (and also have their own special CPU instructions) but are actually implemented
outside the CPU core as a soft-core. The registers are meant as a control interface for
busses and custom peripherals implemented in FPGA logic. Some soft-cores like the Xilinx
Ethernet core and the Xilinx VGA core use the DCR interface.

The Crossbar is used by both the CPU and the FPGA to access system memory and
peripherals. A more detailed diagram of the Crossbar interface which illustrates this is
shown in Figure 2.5. The light colored areas are inside the FPGA, the DDR2 memory is
outside the FPGA in the ML510 dimm banks. The Crossbar has five input connections
(on the left) and two output connections (on the right).

Figure 2.5: Crossbar with peripherals attached (Abramson et al., 2008)

The input connections are so called Processor Local Busses (PLBs) and each is 128-bit

Roderick Colenbrander, August 25, 2009 University of Twente

ML510 11

wide. Three of the PLB inputs, named ICURD, DCURD and DCURW, are used by the
CPU for respectively reading instructions, reading data and writing data. The other two
’PLB Slave’ inputs can be used as a PLB as well but they can also be used as a LocalLink
DMA port as shown in Figure 2.4. A LocalLink interface is used by high-speed devices
like Ethernet cores.

The two output connections are connected to respectively a Memory Controller Interface
(MCI) and a PLB to which PLB slave devices can be attached.

Peripherals connected to the input connections are called masters. They can initiate data
read or write transactions on the Crossbar. As part of a transaction a master provides a
memory address. Based on this address, the Crossbar forwards a transaction to either the
MCI or a PLB Master (MPLB). In case of the ML510, the MCI is wired to DDR2 system
memory using a soft-core memory controller. The PLB Master is interfaced to PLB slave
devices for GPIO and UART.

Communication between a soft-core in the FPGA and the CPU can be done in various
ways. First of all a soft-core can be connected as a PLB slave device to the MPLB. The
crossbar is then able to provide a direct connection between soft-core and a master like
the CPU. Another method is to use shared memory. For this the soft-core uses a PLB
Slave or a LocalLink to access system memory and writes his data there. The CPU can
read it there but there would be no direct connection. Performance can be higher because
both soft-core and CPU do not have to be synchronized.

2.3 User I/O

The ML510 board has been designed for high-performance embedded applications. For
this reason it offers various high-speed communication busses like PCI, PCI-Express, S-
ATA and Ethernet. Standard development boards offer pin headers for interfacing with
custom peripherals. These pin headers are not suited for high-speed communication at
hundreds of megahertz and for this reason Xilinx provides two ’Xilinx Personality Module’
(XPM) interfaces named ’PM1’ and ’PM2’ as shown in Figure 2.6.

Figure 2.6: ML510 XPM connectors

The connectors as shown in Figure 2.7 are Tyco ’Z-Dok’ connectors. They are designed for
high-speed differential communication at bitrates upto 6.5Gbps and for this reason they
are expensive. In control applications the highest frequent signals are needed for Pulse
Width Modulation (PWM). When using a PWM frequency of 10kHz, a duty cycle of 1%
corresponds to a bitrate of 1MHz, so the Z-Dok connectors can operate at three orders of
magnitude higher bitrate than needed.

On the ML510 eight RocketIO transceivers of the Virtex-5 are connected to PM1 and these
can operate from 150Mbps to 6.5Gbps. The rest of the I/O pins of PM1 and PM2 are
pairs at 2.5V designed for Low Voltage Different Signaling (LVDS). When this signaling
method is used, a signal is transported over two wires each carrying the same signal but

Control Engineering Roderick Colenbrander, August 25, 2009

12 On the use of FPGAs with embedded processor cores for application in robotics

with an opposite sign and the signal level is not relative to ground. LVDS is less sensitive
to disturbances and for this reason used for high-frequent signals. Each LVDS pair can
be used single-ended as well and in this way act like a normal pin. While most pins use
2.5V, a small number of pins is also suited for 3.3V.

Figure 2.7: Tyco Z-Dok connectors

Both PM1 and PM2 ports combined provide the ML510 with upto 158 I/O pins. The
features of each connection are given below. The PM1 connector provides the following
signals:

• 8 high-speed RocketIO serial links
• 3 LVDS pairs at 2.5V (can be used as 6 single-ended I/O at 2.5V)
• 1 LVDS clock pair at 2.5V
• 12 single- ended I/O at 2.5V
• 26 single-ended I/O at 3.3V
• 1 single-ended clock at 2.5V
• 1 pin not connected

The PM2 connector on provides the following signals:
• 39 LVDS pairs at 2.5V (can be used as 78 single-ended I/O at 2.5V)
• 1 single-ended clock at 2.5V
• 1 pin not connected

2.4 Operating system support

The availability of a PowerPC 440 CPU inside the Virtex-5 FX130T allows the use of
operating systems with PowerPC support. The Xilinx ML510 is officially supported by
three operating systems: Xilinx standalone, Xilinx Xilkernel and VxWorks. Other Xilinx
boards based on a similar FPGA as used on the ML510 are supported on Linux and QNX
as well. Due to support for other Virtex-5 FXT FPGAs in Linux and QNX, there is also
a limited amount of unofficial support for the ML510.

As part of this assignment Linux support has been added for the ML510 and this is
available in the Linux 2.6.31 kernel (see chapter 3). The performed work includes adding
support of peripherals not available on other Xilinx boards which are supported on Linux.

An overview of the features of the different operating systems kernels is shown in Table 2.1.
In case of Linux the table reflects the features as supported in Linux 2.6.31. For QNX the
table reflects the features supported on the ML507.

The operating systems shipped with the Xilinx development tools are ’Xilinx Standalone’
and ’Xilinx Xilkernel’. The first is a minimalistic kernel which is linked into an executable.

Roderick Colenbrander, August 25, 2009 University of Twente

ML510 13

Operating System kernel
Feature Standalone Xilkernel VxWorks Linux QNX
Console + + + + +
Memory management – – + + +
Timers – + + + +
Real-time support – – + ? 2 +
Multithreading – + + + +
Networking +/– +/– + + +
Filesystem support +/– +/– + + +

Table 2.1: Features of operating system kernels

It can boot the CPU and bring up a console with input and output on the UART. From
software there is access to all board periperhals including flash memory, Ethernet and user
I/O using user mode libraries for which Xilinx provides a few examples. The Xilinx Xilk-
ernel is similar to Xilinx Standalone but adds support for Posix threads and timers. Both
Xilinx Standalone and Xilinx Xilkernel are suited for running basic control algorithms, but
since each kernel provides only limited functionality the user needs to guarantee real-time
behavior and provide memory management.

VxWorks (Wind River Systems, 2009) is a commercial, closed-source, real-time operating
system developed by Wind River Systems, a subsidiary of Intel. This operating system
supports a large number of hardware platforms and it is widely used by the industry in
aerospace, automotive, military and telecommunication applications.

Linux (Torvalds, 2009) is an open-source, UNIX-compatible operating system with support
for a large number of hardware platforms. This operating system is frequently used for
real-time applications within CE. This requires the use of real-time patches like RTAI
(DIAPM, 2009) or Xenomai (Xenomai Project, 2009) patches. These are also available for
the PowerPC 440 architecture but whether they work on the ML510 is not known. Most
likely changes in the Xilinx interrupt controller driver are needed.

QNX (QNX Software Systems, 2009) is a commercial, real-time, operating system for use
in embedded systems. This operating system uses a micro-kernel which is responsible for
task creation, scheduling, interprocess communication and interrupts. All other tasks are
handled using ’servers’ in user-space, which are applications running in the background.
This allows disabling of features without recompiling the operating system. The source
code of the QNX kernel is available for non-commercial use.

An overview of the peripherals supported by each operating system is given in Table 2.2.
As is shown in the table, Standalone and Xilkernel offer basic I/O support and access to
flash storage. VxWorks and QNX add support for LAN. Linux supports most periperhals
including including Audio, IDE, PCI, USB and Video.

Peripherals unsupported by any of the operating systems are: PCI-Express, S-ATA and
PS/2. For PCI-Express there is a soft-core but no driver for it has been written. In case
of S-ATA there is no S-ATA controller core available. The reason the board contains S-
ATA connectors at all is because they allow for creation of a high-speed communication
link using commercial-of-the-shelf cables. PS/2 is part of a ALI M1533 PCI chipset and
depends on PCI support. Linux support for it can easily be added but it is not available
at this point.

2Real-time Linux patches (RTAI and Xenomai) are available for PowerPC 440 Linux, but whether they
work on the ML510 is unknown.

Control Engineering Roderick Colenbrander, August 25, 2009

14 On the use of FPGAs with embedded processor cores for application in robotics

Operating System
Peripheral Standalone Xilkernel VxWorks Linux QNX
Expansion Slots PCI - - - + -

PCI-Express - - - - -
Storage CompactFlash + + + + +

IDE - - - + -
Flash + + + + +
S-ATA - - - - -

Other LAN - - + + +
Video - - - + -
Audio - - - + -

I/O Ports PS/2 - - - - -
RS232 + + + + +
USB - - - + -

User I/O Debug LEDs/switches + + + + +
GPIO + + + + +

Table 2.2: ML510 peripheral support in operating systems

2.5 Virtex-5 compared to FPGAs used in previous CE projects

The preceeding sections described the Virtex-5 from a computer architecture point of view.
It is described using quantities like logic cells and DSP blocks. This section illustrates the
use of the Virtex-5 for control. This is done by estimating the FPGA resource usage of a
control design, previously made for a different FPGA, if would be transferred to a Virtex-
5. The results of a recent FPGA project on floating-point based control of the Production
Cell setup (Sassen, 2009; Groothuis and Broenink, 2009) are used as a reference.

The FPGA used for the control of the Production Cell is a Xilinx Spartan-3 XC3S1500.
The Spartan-3 is based on a less modern architecture than the Virtex-5 and it offers less
features but at a lower price. A comparison between the two FPGAs is shown in Table 2.3.

FPGA
Feature Spartan-3 XC3S1500 Virtex-5 FX130T
Logic cells 29,952 131,072 3

Flip-flops 29,952 81,920
Maximum operating frequency 200 MHz 550 MHz
Processor cores 0 2
DSP blocks 0 320
Multipliers 32 0 4

Block RAM 576kbit 10,278 kbit

Table 2.3: Comparison between Virtex-5 FX130T and Spartan-3 XC3S1500

The Production Cell setup consists of six motors and each motor requires a PID controller
and a motion profile. The setup uses a sample frequency of 1 kHz. The Spartan-3 did
not offer enough FPGA resources for a parallel floating point implementation of six PID
controllers. In order to fit the design into the Spartan-3, a single PID controller block was
designed in such a way that it could be reused for all six PID calculations. The same was
done for the calculation of motion profiles. The results are shown in Table 2.4 (Groothuis
and Broenink, 2009).

3Equivalent number of 4-input LUTs
4On the Virtex-5, DSP blocks contain multipliers

Roderick Colenbrander, August 25, 2009 University of Twente

ML510 15

FPGA
Element LUTs (amount) Flip-flops (amount)
Floating-point library + wrapper 27.4% (8191) 19.7% (5909)
PID controllers 4.2% (1251) 0.3% (91)
Motion profiles 1.1% (314) 0.5% (163)
I/O + PCI 4.1% (1250) 1.8% (534)
S&C Framework 5.6% (1666) 4.2% (1250)
Free 57.6% (17280) 73.5% (22005)

Table 2.4: Estimated FPGA resource usage of the Production Cell on a Xilinx Spartan-3
FPGA

The results in the table are estimated based on compile logs of the Handel-C compiler. As
can be seen in the table a large number of LUTs and flip-flops is taken by a floating-point
library. The design contains this library for carrying out the majority of the calculations
for both the PID controllers and motion profiles. The compiler has placed a large portion
of the FPGA resources which were only used in the PID controller or Motion profile code
to the floating point library. For estimating how many times the design can fit into the
Spartan-3 the FPGA resource usage of these three parts needs to be added together. In
total the sequential design can fit the Spartan-3 twice but it is not big enough to fit it six
times.

The Production Cell design could be moved changes in the pin-out to the Virtex-5. This
recompilation has been attempted but during synthesis a lot of compile errors were en-
countered which would take a lot of effort to fix. Instead, the results are calculated out of
the Spartan-3 results using the approximation that one 6-input Virtex-5 LUT equals 1.6
Spartan-3 LUTs. This means that the amount Spartan-3 LUTs has been divided by 1.6,
the number of flip-flops stays the same. The results are shown in Table 2.5.

FPGA
Element LUTs (amount) Flip-flops (amount)
Floating point library + wrapper 6.3% (5120) 7.2% (5909)
PID controllers 1.0% (780) 0.1% (91)
Motion profiles 0.2% (200) 0.2% (163)
I/O + PCI 1.0% (780) 0.7% (534)
S&C Framework 1.3% (1040) 1.5% (1250)
Free 90.2% (74000) 90.3% (73973)

Table 2.5: Calculated FPGA resource for the Production Cell using a Xilinx Virtex-5
FPGA

The table illustrates that for a naive translation, only 10% of the capacity of the Virtex-5 is
needed. Using DSP blocks even a much lower usage can be obtained because the floating-
point library can be reduced to a DSP wrapper library consuming mostly DSP blocks
and a small amount of LUTs and flip-flops. As explained in subsection 2.2.2, two DSP
blocks can be used for implementing single-precision floating-point. Below the number
of PID calculations which can be performed in one sample period of 1ms is calculated.
This allows for comparing DSP blocks with the Production Cell design. It is considered
that on average a single floating-point calculation takes 10 clock cycles and that the DSP
blocks can operate at 410MHz, see subsection 2.2.2 . This results in an effective operating
frequency of 41MHz. The discrete 20-sim PID controller block requires approximately 20
computations. This means that in theory two DSP blocks can carry out approximately

Control Engineering Roderick Colenbrander, August 25, 2009

16 On the use of FPGAs with embedded processor cores for application in robotics

2,000,000 PID calculations a second or 2,000 each sample period (1ms). The Virtex-5
contains 320 DSP blocks, so it allows for 320,000 PID calculations per sample period or
320,000,000 per second!

The motion profiles could also be realized using DSP blocks and this would save additonal
LUTs and flip-flops. An even better way would be to store motion profiles in memory
blocks which are filled by the PowerPC core at startup. This way only a small number
of LUTs and flip-flops would be needed to create a bus interface to the processor, the
rest would be located in block memory of which the Virtex-5 offers a large amount. An
advantage of this approach would be that for a motion profile with a different shape only
the software needs to be changed and no changes to the FPGA design have to be made.

The described redesign of the Production Cell using Virtex-5 functionality would require
only a few percent of LUTs and flip-flops since PID controllers and motion profiles can be
implemented efficiently using DSP blocks and block memory. In total 320,000 PID calcu-
lations could be calculated in a single sample period which is enough for 320,000/6=53,000
Production Cell setups. Though at some point the number of User I/O pins (158) becomes
a limitation and serial communication busses e.g. EtherCAT must be used.

By these calculations, it is demonstrated that the Virtex-5 is overkill for solving basic
control problems. Computation intensive calculations take better advantage of the Virtex-
5. Vision for robotics is one such application as was mentioned in the introduction. The
Virtex-5 would be able to carry out all needed computations within a control loop.

Roderick Colenbrander, August 25, 2009 University of Twente

17

3 Preparation of the ML510 for control applications

The first half of this assignment is devoted to making the ML510 usable for CE projects.
This work consisted of programming, hardware testing and documenting all steps on the
CE wiki.

The first section describes the work carried out for adding ML510 support to the Linux
kernel. The second section describes integration of the ML510 Linux code with Embryo.
The third section describes work on an external I/O board which provides the ML510 with
I/O pins for interfacing with external periperhals like a plant.

3.1 Linux kernel

Linux is the most used operating system at CE for use in embedded control systems. The
availability of Linux support for the ML510, as claimed at the launch of the ML510 (Xilinx,
2008b), was one of the reasons for acquiring the board. After the board had arrived and
tests were performed, it appeared that no Linux support was publicly available for the
ML510.

Xilinx had written ML510 Linux support for an outdated Linux kernel but they decided
not to release the code because it was incomplete and would have to be rewritten for use
with modern Linux kernel versions which they decided not to do so.

Besides the ML510, Xilinx offers other FPGA boards based on the Virtex-5 FXT. One
of these is the ML507 which contains a smaller FPGA with a single PowerPC 440 core
and less onboard features compared to the ML510 for instance it lacks PC functionality
like IDE, PCI, and VGA support but it does provide standard pin headers for I/O. Xilinx
provides official support for the ML507 in Linux.

Due to similarities between the ML507 and the ML510, it was decided to port Linux to
the ML510 and take the ML507 code as a starting point. In order to prepare the ML510
for vision, which was the intended test case for this assignment, work was also done on
adding support for the PC features offered by the ML510.

The performed ML510 Linux work includes:
• Creation of a Linux-compatible configware package for the ML510.
• Adopting ML507 Linux code for use on the ML510.
• Writing of a PCI driver for the ML510 to make previously unsupported board func-

tionality available.
• Submission of the ML510 Linux work to the Linux developers for inclusion in the

official Linux kernel distribution.

The remaining of this section describes the ML510 Linux work in detail. Instructions for
installing Linux on the ML510 can be found in Appendix B.

Before the ML510 is able to run software, configware needs to be loaded into it for inter-
facing the CPU to a memory controller and setting up board peripherals. For the ML507,
Xilinx provides a pre-built configware package to boot Linux. For the ML510 such a
Linux-compatible configware package had to be developed from scratch, see Appendix
B.1.

The process of porting the ML507 Linux code to ML510 took several weeks. The main
difficulty in getting Linux to work is that both the configware and the software portion need
to function correctly before Linux starts. A large number of issues had to be addressed
before the Linux kernel completely booted. The issues can be classified into two categories:

Control Engineering

18 On the use of FPGAs with embedded processor cores for application in robotics

• No debug output shown on the console
The most common issue is that no output appears on the UART which is used as a
serial console for input and output. In general this issue is caused either by incorrect
system information provided by a DTS-file to the Linux kernel or by a Linux kernel
panic which occurs before the console is initialized. The first issue can be fixed by
verifying by hand whether the DTS-file is correct. The second issue is hard to debug
because no debugger is available, which means that the designer needs to act as a
debugger. In this project special UART debug code was added to the Linux kernel
boot process to reveal the kernel panic log.

• Linux kernel panic
A Linux kernel panic occurs when a driver or other part of the Linux kernel crashes.
In general such issues are caused by driver bugs caused by null pointer exceptions
or deeper issues. The kernel crash log and related driver code needs to be analyzed
to find the root of the problem.

The two categories of issues described above give an idea about the issues encountered.
In general debugging crashes on the ML510 is very time consuming and depending on the
issue it takes hours or even days.

In order to prepare the ML510 for robotic applications a PCI driver was written to make
previously unsupported PC functionality of the ML510 available. The driver allows the
use of the on-board PC functionality but it also allows the use of PCI add-on cards e.g. a
FireWire add-on card for interfacing with a video camera. Details on the PCI driver can
be found in Appendix A.2.

The finished ML510 Linux code has been submitted for inclusion into the official Linux
kernel distribution and is part of the Linux 2.6.31 which is to be released in September
2009. The inclusion of the code in the Linux kernel is important because it ensures that
the code gets maintained and it proves the quality of the written code. Before any code
enters the Linux kernel, it is reviewed by other developers and they provide feedback for
improving the code. In general, a number of design iterations is needed before the code
is considered clean enough for inclusion in the Linux kernel. In this case three iterations
were required.

In total it has taken approximately three months for writing all ML510 Linux code. The
process of getting the code integrated into the official Linux kernel distribution took an-
other two months.

3.2 Embryo

Within CE a variety of different hardware platforms is used. Most of these run a Linux
distribution named Embryo developed by ir. M. Groothuis from CE. Embryo is a small,
embedded Linux distribution build on top of OpenWrt (OpenWrt, 2009) which is fre-
quently used on wireless routers. As part of this assignment ML510 support has been
added to Embryo. Below Embryo and the ML510 Embryo work are described. Installa-
tion instructions for Embryo can be found in Appendix B.

Embryo itself is a set of scripts and configuration files which automate all compilation
tasks for building an embedded Linux distribution. These tasks include:

• Downloading source code of compilers, the Linux kernel, libraries and tools.
• Building of cross-compilers.
• Configuration and building of the Linux kernel.
• Compilation of Linux libraries and tools.
• Creation of a Linux root file system.

The Embryo scripts must be used on a development PC running a UNIX-like operating

Roderick Colenbrander, August 25, 2009 University of Twente

Preparation of the ML510 for control applications 19

system like Linux or Mac OS X. The first task is to configure the Embryo distribution. This
includes the selection of hardware platform, a set of libraries and the tools to be bundled
with the Embryo installation. After that Embryo downloads and compiles the source code
of compilers, the Linux kernel and the selected libraries and tools. The compiled Linux
kernel, libraries and tools can then be installed on a memory card or a hard disk for loading
on the embedded hardware platform.

In case of the ML510, Embryo already had support for the PowerPC 440 architecture.
Most work focused on configuration files for a ML510 Linux kernel and integration of a
compiled Linux kernel with an FPGA programming file to allow the ML510 to launch
Embryo. Details on this integration can be found in section 5.3.

3.3 ML510 I/O board

As explained in section 2.3, the ML510 lacks I/O pin headers which are needed for in-
terfacing with custom peripherals like a plant. An extension board is needed to interface
the Z-Dok connectors of the ML510 to I/O pins. Such a board has been designed by the
Electronic Systems group of the Technical University of Eindhoven (TU/e) because they
have also required access to I/O pins on a ML510 board. An empty PCB of the ML510
I/O board has been acquired from the TU/e. This section describes the board and the
work needed to get it working for a CE setup.

The demonstrator which had to be interfaced to the ML510 at the TU/e, was a setup
similar to the Production Cell. Originally this setup was controlled by a PLC and now it
needs to be controlled by an FPGA. Their requirements for the I/O board were:

• Digital high level of 24V
• Signal frequency in the order of 1 kHz
• Prevent the test setup from damaging the FPGA

Based on these requirements an I/O board was built which provides access to 78 pins of
which one half is for input and the other half for output. The board uses optocouplers to
isolate the FPGA from the setup. The type of optocouplers used in the design is meant for
transmission of analog signals with an analog bandwidth of 100kHz. For use in setups as
used within CE, the optocouplers are not ideal because PWM signals which are used for
digital-to-analog conversion require a frequency of several MHz for high accuracy. Other
types of optocouplers, optimized for digital I/O at high frequencies, are available but they
use a different pinout and require different biasing, so they cannot be used on this board.

Figure 3.1: Diagram of the circuitry on the ML510 I/O board

Control Engineering Roderick Colenbrander, August 25, 2009

20 On the use of FPGAs with embedded processor cores for application in robotics

For interfacing with a CE setup modifications were made to the circuitry to get it to operate
at 5V and component values were adjusted to improve performance of the optocouplers
for use with PWM signals. A diagram of the circuitry is shown in Figure 3.1. With these
modifications the I/O board is usable but the optocouplers severly limit the accuracy of
input and output signals. For instance when outputting a square wave at a frequency of
100kHz with a 50% duty cycle, the signal is high for 55% instead of 50%. This results in
losses in accuracy during digital-to-analog-conversions. Similar issues occur for the input
pins. Another problem, only limited to inputs pins of the I/O board, is that optocouplers
have current inputs while within CE voltage signals are used. A buffer chip is required to
be able to drive the optocouplers.

To summarize the ML510 I/O board works but it does not perform well at the signal
frequencies required for CE but it is better than not having access to any I/O pins. A
different board should be designed within CE which fixes the performance limitations.
Until that time, the board can be used as it is or the optocouplers can be replaced with
transistors. The FPGA then is not galvanic separated from a test setup but the FPGA
pins are still protected and I/O performance for high-frequent signals should be good.

Roderick Colenbrander, August 25, 2009 University of Twente

21

4 Xilinx Design flow

The first section of this chapter introduces the concept of hardware/software co-design.

Xilinx offers various FPGA design tools and multiple design flows (using their tools) for
hardware/software co-design. For the creation of designs consisting of an embedded CPU
and configware, the design flow recommended by Xilinx is build around a tool named
Platform Studio Embedded Development Kit (EDK). Development of software (SW) and
configware (CW) takes place in specialized tools outside EDK, the EDK is used for their
integration into the overall system design. The EDK is described in section two.

The third section describes Platform Studio SDK which is used for software development.

Xilinx offers two tools for the development of configware namely ISE Foundation and
System Generator for DSP (SysGen). The first tool, described in section four, is the one
recommended by Xilinx for obtaining the best performance and lowest FPGA resource
usage at the cost of a large design effort. The second tool, described in section five,
requires a smaller design effort at the cost of performance and FPGA resource usage.

4.1 Hardware/Software co-design

When creating a design which consists of a CPU and an FPGA, decisions have to be made
on which parts of an algorithm to implement in configware and which in software. Good
candidates for implementation in configware are the parts which are either computation
intensive or which have hard real-time requirements.

The process of paritioning an algorithm in configware and software is illustrated in Fig-
ure 4.1. It starts with a specification of the algorithm for example in C, MATLAB,
Simulink or 20-sim. Next, the algorithm should be analyzed by the designer to discover
timing critical or CPU-intensive parts. A profiling tool can obtain statistics on how much
CPU time is spent in different parts of the algorithm. This is done by analyzing the al-
gorithm when it is running on a CPU. In the end, the decision on how to partition the
algorithm lies by the designer.

When a partioning in configware and software has been made, both parts can be imple-
mented using respectively a hardware description language (HDL) and a programming
language. During development co-simulation can be employed to test the individual parts
against the algorithm specification or against each other. Co-simulation (Damstra, 2008;
Colenbrander et al., 2008) is a type of simulation in which models can be simulated to-
gether while each uses a different simulation engine. This can prevent late integration
problems.

Xilinx provides forms of co-simulation in their tools. They define a simulation in which
parts of a design are executed on an FPGA and parts in a simulator ’hardware co-
simulation’. Within the Control Engineering group this is considered a form of ’X’-in-the-
loop-simulation (Visser et al., 2004; Michalek et al., 2005; Oosterom, 2006). Oosterom has
distinguished four types for mechatronic design as shown in Figure 4.2. In the Hardware-
in-the-loop case electrical signals like PWM are used for I/O instead of simulated signals
and for that reason a sine wave is shown in the figure.

Control Engineering

22 On the use of FPGAs with embedded processor cores for application in robotics

Figure 4.1: Partitioning of an algorithm in configware & software (Colenbrander et al.,
2008)

Figure 4.2: Different ’X’-in-the-loop simulation types, image from (Oosterom, 2006)

The four types of ’X’-in-the-loop are described below:
• Model-in-the-loop: models of a plant and control algorithm are connected in a loop

and are simulated on the same development PC, this is normal simulation.
• Software-in-the-loop: control algorithm runs as an executable on the development

PC, plant and I/O are simulated on the development PC.
• Processor-in-the-loop: control algorithm runs as an executable on the target proces-

sor, plant and I/O are simulated on the development PC.
• Hardware-in-the-loop: control algorithm runs on target processor, non-simulated

I/O over wires, plant simulated on the development PC in real-time.
Hardware co-simulation in combination in which e.g. the controller is executed on the
ML510 and the model on a development PC could be called ’FPGA-in-the-loop’ in CE-
terminology as illustrated in Figure 4.3.

Roderick Colenbrander, August 25, 2009 University of Twente

Xilinx Design flow 23

Figure 4.3: FPGA-in-the-loop simulation

4.2 Hardware/software co-design using Platform Studio EDK

The primary Xilinx design tool for hardware/software co-design is Platform Studio Em-
bedded Development Kit. The program is used for overall system development and project
management. Development of software and configware takes place in specialized tools, the
EDK is used for their integration into the overall system design.

The program ships with a collection of templates and configware for the creation of an
embedded design. A new foundation for an embedded design is created using a wizard
called Base System Builder (BSB). At the start of the BSB wizard a template of the target
FPGA board, for example the ML510, has to be loaded. This template provides the wizard
with information about the target board (e.g. available CPU, available configware and
pin locations). The BSB wizard can then be used to configure the target board with a
CPU and the peripherals needed to obtain a bootable system. All hardware information
is stored in a Microprocessor Hardware Specification file (MHS).

The base system can be extended with user created configware or with configware shipped
with the EDK. Additional configware needs to be integrated into the overall system de-
sign. Integration consists of connecting communication busses, the assignment of memory
addresses and mapping of input/output pins to FPGA pins. The EDK automates most of
this integration work but pin mapping has to be done manually. This is done by adding
location constraints, which are the mappings of FPGA nets to FPGA pins, to a User
Constraints File (UCF).

The EDK can be used to set up a simulation environment in which the completed system
can be simulated. Different types of simulation can be carried out ranging from fast but
inaccurate behavioral simulations to detailed timing-accurate simulations. The simulation
time increases with the amount of detail requested. In order to decrease simulation time,
the EDK ships with simulation models of busses, configware and processors but even then
simulation time can be long. It is recommended to only verify the behavior of individual,
custom designed cores and to verify behavior of the complete system on-target.

The ML510 contains a hardware based boot loader named System Advanced Configuration
Environment (SysACE). Its task is to initialize the FPGA and CPU at board startup.
SysACE boots the ML510 from ACE-files which are stored on a CompactFlash card. An
ACE-file is the integration of pre-compiled software in the Executable and Linkable Format
(ELF) with a FPGA bitstream programming file (BIT).

The design flow for using the EDK in conjunction with external tools for the development
of software and configware is shown in Figure 4.4 (Xilinx, 2008a). The figure shows

Control Engineering Roderick Colenbrander, August 25, 2009

24 On the use of FPGAs with embedded processor cores for application in robotics

three columns each representing a different program. The steps performed using EDK are
numbered 1.x and the software and configware blocks have respectively the numbers 2 and
3. These last two numbers are also used for the numbering of steps carried out in software
and configware design flows presented in the rest of this chapter and in chapter 5. The
numbering schemes used for respectively software and configware are [2.y.x] and [3.y.x],
where ’y’ is used for numbering the design flow and ’x’ for numbering a step within the
specific design flow.

Figure 4.4: Recommended Xilinx EDK design flow

The steps in the design flow are described below:
• Create Project [1.1]

The design flow begins with the creation of a project in EDK. This results in a Xilinx
Microprocessor Project file (XMP) which is used for project management.

• Choose target platform [1.2]
The BSB wizard is used to select an FPGA development board and to configure
it with a CPU and the minimum amount of Xilinx provided configware needed to
obtain a bootable system.

• Develop software [2]
Software is developed using a software development tool.

• Develop configware [3]
Configware is developed using a configware development tool.

• Configware integration [1.3]
During this phase, wrapper HDL-code is generated using the MHS-file. This wrapper
code is the ’main-function’ which instantiates all selected configware.

• Design synthesis [1.4]
During this stage the HDL-code is translated to a netlist and mapped on FPGA
building blocks.

Roderick Colenbrander, August 25, 2009 University of Twente

Xilinx Design flow 25

• Configware/Software integration [1.5]
The contents of the ELF-binary is combined with the BIT-file in order to generate
an ACE-file.

• Upload to CompactFlash [1.6]
The final step consists of uploading the ACE-file to a CompactFlash.

4.3 Software development using Platform Studio SDK

Platform Studio SDK is a software development environment for Xilinx devices based
on Eclipse (Eclipse Foundation, 2009). Eclipse is a software development environment
consisting of an IDE and a plug-in framework for extending it. Originally, Eclipse was
designed for software development in Java, using plug-ins it has been extended to support
other programming languages (e.g. C, C++ and Python) and other tasks like LaTeX
editing or modelling in UML.

Xilinx has used the plug-in mechanism offered by Eclipse to extend it with functionality
for MicroBlaze and PowerPC development. This includes the creation of Board Support
Packages (BSPs), uploading of software to a processor using JTAG and on-target debug-
ging/profiling using JTAG.

Most functionality offered by Platform Studio SDK including C/C++ compilation, JTAG
uploading/debugging and more is limited to Xilinx Standalone and Xilkernel operating
systems. When a different operating system like Linux is used a different design tool is
needed for instance the standard version of Eclipse.

The design flow, recommended by Xilinx, for using Platform Studio SDK in conjunction
with the EDK is shown in Figure 4.5. The figure can be seen as a realization of block [2]
of Figure 4.4 which contains the EDK design flow. In this section numbering in the form
2.a.x is used for substeps of [2], the letter ’a’ is used because chapter 5 describes another
software flow. For reference, three steps of the EDK flow have been drawn with a white
background color.

Figure 4.5: Platform Studio SDK software development flow

Control Engineering Roderick Colenbrander, August 25, 2009

26 On the use of FPGAs with embedded processor cores for application in robotics

The steps of the design flow are explained below:
• Implement algorithm [2.a.1]

The software parts of the algorithm are implemented in C or C++.
• Create BSP [2.a.2]

The EDK provides the SDK with an XML-file containing relevant hardware informa-
tion. A BSP-generator extracts relevant information from the XML-file and bundles
this with the source code of an operating system and drivers to create a BSP. Op-
tionally the BSP-generator can also add system libraries.

• SW compilation [2.a.3]
The code of the algorithm is compiled using a cross-compiler and linked with headers
and libraries from the BSP. This results in a binary in the ELF-format for execution
on a PowerPC or MicroBlaze processor.

4.4 Configware development using ISE Foundation

Xilinx ISE Foundation is a design tool for the development of configware. It is used for
writing HDL-code, simulation and the synthesis of HDL-code to a BIT-file.

Development of configware for an FPGA is different compared to software design. First of
all development takes place using a HDL instead of a programming language like C/C++.
The most important difference is that a HDL is inherently parallel while C/C++ code
is sequential. This requires a different way of thinking and writing code. Second, devel-
opment using a HDL requires knowledge of computer engineering including digital logic
design. Third, configware development consists of longer design iterations due to addi-
tional, time-consuming development steps.

ISE Foundation offers support for the synthesizable subsets of the HDLs: VHDL and
Verilog. Both of these languages can be used to create high-performance designs which
make efficient use of FPGA resources. Though development using VHDL or Verilog, which
are low-level compared to Handel-C, can be time consuming.

The recommended Xilinx configware development flow using ISE is shown in Figure 4.6.
The figure is a realization of block [3] of Figure 4.4. In this section numbering in the form
3.a.x is used for substeps of [3]. The letter ’a’ is used because more configware design flows
are described in this chapter and in 5. The names of blocks 3.a.1 to 3.a.3 correspond to
the names used by Xilinx in the documentation of ISE Foundation. All verification steps
are carried out using ISE Foundation or QuestaSim.

The steps in the design flow are described below:
• Design Entry [3.a.1]

The algorithm is implemented using a HDL in ISE. The functional behavior of the
HDL-code is verified by simulation.

• Design Synthesis [3.a.2]
The functional HDL-code is captured to structural HDL-code which contains a rep-
resentation of the design at register transfer level (RTL). The structural HDL-code
needs to be simulated because its behavior can differ from the function HDL-code.

• Design Implementation [3.a.3]
The netlist is mapped on FPGA building blocks. If design implementation succeeds
the end-result is a BIT-file. In all cases a report is generated which contains timing
information and FPGA resource usage. The timing information can be used to
refine the design if parts do not meet their timing constraints. Further the timing
information can be used during simulation for correct set-up and hold times of logic.
This way more potential design errors can be found at an early stage.

• Upload to board [3.a.4]
The complete design or parts of it can be uploaded to the target board for testing.

Roderick Colenbrander, August 25, 2009 University of Twente

Xilinx Design flow 27

Figure 4.6: ISE Foundation configware development flow

• Export to EDK [3.a.5]
The HDL-code of the finished configware can be exported back to the EDK for
integration with CPU and software.

4.5 Configware development using System Generator for DSP

Besides ISE Foundation, Xilinx offers a second design tool for configware development
named System Generator for DSP (SysGen). It is a model-driven design tool and com-
pared to ISE Foundation development using SysGen requires a smaller design effort at the
cost of performance and FPGA resource usage. This is because SysGen generates more
code than a developer would have written by hand.

The first subsection gives an overview of SysGen. The second subsection describes hard-
ware co-simulation. SystGen for DSP bears a strong resemblance to 20-sim. A comparison
between the tools is given in the last subsection.

4.5.1 System Generator for DSP design flow

SysGen is a model-driven tool for configware development. The tool is build on top of
MATLAB and Simulink, two tools which are widely used in the industry for solving all
sorts of engineering problems. SysGen makes use of other Xilinx design tools and a finished
design can be transferred to EDK and ISE Foundation.

Development of configware takes place using the graphical user interface of Simulink.
SysGen is not able to generate code for standard Simulink blocks. For this reason Xilinx
has added FPGA specific building blocks ’Xilinx blocks’ to the library which are to be
used for configware design. For simulation the Xilinx portion of a design can be interfaced
to standard Simulink blocks. Interfacing of Xilinx and Simulink blocks requires ’Gateway’
blocks to bridge the two different domains as illustrated in Figure 4.7. Gateway blocks
perform sampling, datatype conversion and pin mapping. The Xilinx block domain is time-

Control Engineering Roderick Colenbrander, August 25, 2009

28 On the use of FPGAs with embedded processor cores for application in robotics

discrete, uses a fixed time-step and uses a fixed-point datatype (the designer can customize
the fixed-point format at the block level). Simulink offers additional timing simulations
and offers more datatypes including integer and double precision floating-point.

Figure 4.7: Design which mixes Simulink and Xilinx blocks

A Xilinx block is similar to a Simulink block except it has additional properties. Each
block is backed by HDL-code and it has options for time delays, precision and rounding.
Xilinx guarantees that if a design consists solely of Xilinx blocks simulations are cycle and
bit-accurate. This means that the design will behave exactly the same in simulation as in
an FPGA. Hence no structural or timing simulations are necessary.

SysGen provides a library of more than one hundred Xilink blocks. The library includes
clones of common Simulink blocks like constants, adders and multipliers but it also includes
FPGA specific blocks like registers, DSP blocks, communication busses and processor
blocks.

The tool also offers the ability to express parts of a design in a subset of the MATLAB
programming language which it can translate to HDL-code. This is useful for algorithms
which do not lend themselves for expression in a graph.

A configware development flow for using SysGen in combination with EDK is shown in
Figure 4.8. The figure is a realization of block [3] of Figure 4.4. In this section numbering
in the form 3.b.x is used for substeps of [3].

The SysGen design flow assumes a finished design in Simulink consisting of a model and a
test environment. Step by step, parts of the original Simulink model (step [3.b.1]) can be
re-implemented using Xilinx blocks. Meanwhile the behavior of the design can be verified
using the original MATLAB/Simulink test environment.

When the design is complete, SysGen can perform code generation. The tool offers various
output options including HDL-code and a BIT-file. In case of a BIT-file, SysGen auto-
matically carries out the Design Synthesis [3.b.2] and Design Implementation [3.b.3] steps
using ISE Foundation. Optionally the user can decide to carry out structural and timing
simulations but as mentioned before, these steps are not necessary if the design consists
solely of Xilinx blocks since Xilinx guarantees bit and cycle accuracy.

SysGen cannot predict beforehand whether the design meets all timing constraints. For
this reason step [3.b.3] might fail and changes to the design might be required e.g. the
addition of registers for adding a pipeline if the design contains long combinational paths.

The end-result of step [3.b.3] is a BIT-file which can be tested on the FPGA in step [3.b.4].
If the design proves to work correctly for example when connected to a plant, the SysGen
project can be exported to the EDK [3.b.5].

The default CPU used for designs on the ML510 is the built-in hard-core PowerPC 440.
Xilinx also provides a soft-core CPU named MicroBlaze. The MicroBlaze can be selected
in the EDK as a general purpose processor like the PowerPC 440. The design flow as

Roderick Colenbrander, August 25, 2009 University of Twente

Xilinx Design flow 29

Figure 4.8: System Generator for DSP configware development flow

described in this section can be followed for it as well, but two additional flows are specially
available for the MicroBlaze:

1 Import MicroBlaze EDK design into SysGen
An EDK design consisting of MicroBlaze and peripherals like a Uart and Ethernet
can be imported into SysGen. The design can then be extended in SysGen with Xil-
inx blocks and SysGen is responsible for generating a BIT-file of the complete design.
This functionality allows someone without EDK experience to create a configware
design.

2 MicroBlaze Xilinx block
The MicroBlaze is available as a special Xilinx block in Simulink. The block allows
the inclusion of a MicroBlaze into a SysGen design without having to use EDK for
setting up a design. A software executable in the form of an ELF-binary can can be
set as an option in the block.

SysGen is not the only MATLAB/Simulink to HDL-code tool on the market. The
MathWorks, the company behind MATLAB and Simulink, also offers an HDL-addon for
Simulink called ’Simulink HDL Coder’ (The Mathworks, 2009). The tool has similarities
with SysGen as both can generate HDL-code. The main difference is that HDL Coder
can generate code of a normal Simulink model while SysGen is limited to special Xilinx
provided blocks. The functionality of HDL Coder is is limited to code-generation and it
exposes no FPGA-specific blocks for DSP blocks, processor busses or memory. Further
external HDL design tools are needed for synthesis and ’FPGA-in-the-loop’ simulations.

4.5.2 Hardware co-simulation

System Generator for DSP provides support for hardware co-simulation which is similar
to FPGA-in-the-loop, see Figure 4.3. In a hardware co-simulation, the parts of a design
implemented using Xilinx blocks in Simulink are run on the FPGA and the Simulink parts
(the testbench) are executed on the development PC. Communication between FPGA and
development PC takes place using JTAG or Ethernet. The latter provides more bandwidth

Control Engineering Roderick Colenbrander, August 25, 2009

30 On the use of FPGAs with embedded processor cores for application in robotics

and is that way suited for high bandwidth applications or a high simulation frequency.
JTAG is available on all boards but Ethernet is not available on all and is also not support
in the Linux version of SysGen (version 11.1),

A hardware co-simulation is set up by selecting ’Hardware co-simulation’ as the compila-
tion target in SysGen. During compilation SysGen creates a BIT-file, a Simulink wrapper
block and Matlab scripts. The BIT-file is synthesized from two sources of HDL-code
namely HDL-code generated from the design and wrapper HDL-code. The wrapper HDL-
code forms the communication bus at the FPGA side between the ML510 and Simulink.
At the development PC, a Simulink wrapper block acts as a gateway from Simulink to the
FPGA. Next to the Simulink wrapper block also MATLAB scripts are generated. These
allow hardware access from MATLAB without any involvement from Simulink. The choice
for using either MATLAB or Simulink depends on the type of tests the designer wants
to perform. A reason for using MATLAB, can be that in a script the designer has more
control over the provided test signals and data logging.

Two types of simulation are supported: single-step and free-running. When using single-
step, the FPGA and simulation clocks are synchronized. This allows for bit- and cycle-
accurate simulations but synchronization overhead limits performance.

In free-running mode, FPGA and simulator clocks are not synchronized. Both simulator
and FPGA can work as fast as they can which results in higher simulation performance.
When an event occurs in simulation, SysGen communicates with the FPGA. Because the
clocks are not synchronized, an unknown number of FPGA clock cycles has elapsed before
the data has reached the FPGA. Due to this, the simulation is not bit- and cycle-accurate.
The user needs to provide his own synchronization mechanism.

In general, a hardware co-simulation using SysGen is an FPGA-in-the-loop simulation.
The tool also offers the ability to include external signals e.g. from AD-converters into a
hardware co-simulation. This way a hardware-in-the-loop simulation can be performed.
The SysGen option for this is not clearly visible in the tool if one wants to use it look for
’non-memory-mapped ports’.

Groothuis (Groothuis, 2004) designed a hardware-in-the-loop simulation setup consisting
of a real embedded control system and a real-time simulation model of a plant. The
embedded control system consisted of a PC/104 which ran the control algorithm on real-
time Linux. Another PC/104 system ran the real-time simulation model of the plant. The
output of the control system were PWM signals and the system which ran the simulation
required PWM inputs. The difference with Groothuis his approach is that in this case the
control algorithm runs on an FPGA instead of a CPU. Further setting up the simulation
in SysGen takes a smaller design effort because big parts of the work are automated by
the tool. One of the things Groothuis had to do was to provide his own communication
bus.

4.5.3 Comparison between Simulink/System Generator for DSP and 20-
sim/4C

Simulink/System Generator for DSP and 20-sim are both model-driven design tools but
each have been designed for a different purpose. In this subsection the tools will be
compared on code-generation and interfacing the generated code to physical hardware.

System Generator for DSP is a generic configware design tool which can be used for all sorts
of signal processing tasks. Modelling takes place using blocks which are interconnected by
signals. During code-generation each block is replaced by a HDL-code template and all
these blocks are connected by a HDL-code wrapper.

20-sim has been designed for mechatronic modelling and design. A mechatronic design

Roderick Colenbrander, August 25, 2009 University of Twente

Xilinx Design flow 31

consists of a plant and a controller. The physical model of the plant is modelled using
equations, iconic diagrams or bond graphs and these models use power ports or signals.
A digital controller works using signals. 20-sim code generation is based on templates
which contain placeholders for equations and design specific information. Before code-
generation takes place, 20-sim converts the model to an ordered set of equations. During
this process for example algebraic loops are solved by solving the respective equations.
When generating code, the set of equations is converted to sequential code in e.g. C or
C++ and placed in the template.

Code-generation at the block level as performed by SysGen has two advantages. First of
all an FPGA is inherently a parallel device. If the SysGen design contains parallel signal
paths, parallel HDL-code is generated which is also synthesized to a parallel structure
on the FPGA, so there is a close mapping of the design onto hardware. Secondly, each
block can be backed with highly optimized HDL-code because blocks are independent. A
drawback is that SysGen does not handle algebraic loops well. If it encounters one during
simulation or code-generation, it warns the user about it by mentioning that results do
not converge and it suggests to add delays to fix the problem. 20-sim attempts to solve
algebraic loops when it encounters them. The structure of the code generated by 20-sim
is not a direct mapping of the structure of the model on code. For a general purpose
processor 20-sim generates sequential code and this code is less suited for mapping to an
FPGA because the parallelism of the model is lost in the code.

A design in SysGen is time-discrete and is limited to fixed-point. 20-sim can be used
for the modelling of both continuous-time and discrete-time systems and it uses double
precision floating-point internally. This format is more suited for control than fixed-point
because it is able to represent small numbers with more accuracy than fixed-point.

After code-generation, the generated code needs to be extended with platform specific
code for interfacing to I/O pins. In case of 20-sim this task is handled using 4C which is
an external tool. SysGen offers two ways for performing pin mapping. In the first method
pin mapping is performed internally inside the ’Gateway blocks’ of the SysGen model, so
design and pin mapping are not separated. In the second method the SysGen design is
exported to EDK. Pin mapping has to be performed in the EDK inside a UCF-file. The
EDK could be considered similar to 4C for this task.

The features of both tools are summarized in Table 4.1.

Tool
Feature System Generator for DSP 20-sim
Code generation block-level model-level
Code structure sequential, parallel sequential
Timing model discrete-time continous-time, discrete-time
Floating-point type fixed-point double-precision
Pin mapping in model or outside using EDK outside model using 4C

Table 4.1: Comparison of System Generator for DSP and 20-sim/4C features

Both SysGen and 20-sim use a different method of code generation where SysGen is opti-
mized for parallel execution on FPGAs and 20-sim for sequential execution on a CPU. If
20-sim could generate sequential HDL-code instead of C/C++, SysGen and 20-sim could
be considered opposites in the method of code generation. Depending on the situation one
of the methods is better than the other. Under FPGA resource constraints sequential code
could be better because it allows for re-use of LUTs or DSP blocks for computations. A

Control Engineering Roderick Colenbrander, August 25, 2009

32 On the use of FPGAs with embedded processor cores for application in robotics

parallel implementation has a close mapping to physical hardware and makes debugging
easier because there is a physical FPGA net for each input or output.

Roderick Colenbrander, August 25, 2009 University of Twente

33

5 Proposed design flow

Section 1.3 describes the CE design flow, used for realizing a design on an embedded
hardware platform. It is explained that 20-sim does not provide a code-generator for HDL.
This means that for realizing a design in configware on the ML510, external configware
design tools must be used. In this chapter the CE design flow is adopted with a Xilinx
hardware/software co-design flow.

The first section, considers the realization of a 20-sim controller design on the ML510
a ’Hardware/Software co-design’ problem. It describes the partitioning of the controller
design in software and configware. The second and third section describe which tools
should be used for the development of respectively configware and software in context of
the modified CE design flow.

5.1 Partitioning of a controller design in software and configware

During the Realization phase of the CE design flow (see Figure 1.2), a 20-sim controller
design is transferred to an embedded hardware platform. This process can be considered a
’Hardware/Software co-design’ problem for which a partitioning in software and configware
has to be made.

In this section, the design of a 20-sim controller is partitioned in software and configware
for use on the ML510. In order to establish this partitioning, two partitionings used in
previous projects are discussed and the results are used for the new partitioning.

The first subsection describes a partitioning in which the control algorithm is implemented
completely in software. The second subsection describes a partitioning in which the control
algorithm is implemented fully in configware. The proposed partitioning, as described in
the third subsection, uses a combination of both software and configware to come to a
better balance between software and configware.

5.1.1 Software based control implementation

In most robotic and mechatronic projects at CE a demonstrator is built to prove a certain
theory. The focus lies on the theory and not on the creation of the demonstrator. A
demonstrator consists of a plant and a controler to control the plant. The controller is
implemented on an embedded hardware platform which consists of an embedded CPU
in combination with a small FPGA. A fixed partitioning in software and configware (as
shown in Figure 5.1) is used.

Figure 5.1: Partitioning in software/configware used in most CE projects

The figure shows three blocks: software, configware and mechanics. The software and

Control Engineering

34 On the use of FPGAs with embedded processor cores for application in robotics

configware blocks are discussed here. The software block contains a set point generator
and a controller. Code for these parts is generated by the 20-sim C/C++ code generator.
The configware block contains pre-built I/O interfacing blocks for digital-to-analog and
analog-to-digital conversion. Using the 4C tool, the input/output ports of the generated
C/C++ are interfaced to these I/O interfacing blocks. Next, 4C compiles the C/C++
code to an executable using cross-compilers created by Embryo. The executable is run on
an embedded Linux distribution created by Embryo.

To summarize: the amount of design effort needed for porting a controller design to an
embedded hardware using this partitioning is limited, because the software is generated
automatically and for configware pre-built I/O blocks are used.

5.1.2 Configware based control implementation

A controller design can also be implemented fully in configware as illustrated in Figure 5.2.
This partitioning has been used for the Production Cell (see section 1.1 and 2.5). The
Production Cell implementation worked correctly, but a large amount of design effort was
required in order to fit all parts into an FPGA.

Figure 5.2: Partitioning in which the design is implemented fully in configware

5.1.3 Proposed partitioning

Due to tight integration of FPGA logic and PowerPC CPUs, different parititionings in
software and configware are possible on the ML510. A controller design does not have to be
implemented completely in software or completely in configware anymore. A combination
of both can be used in which there is a better balance between software and configware.

The choice, how parts of the controller design must be implemented, depends on the re-
quirements defined for the application. In general the strengths of each technology should
be exploited. In case of software three situations can be identified in which it should be
used. First of all software should be used for tasks with low real-time requirements. Sec-
ond, software should be used for tasks which require flexibility in updating the algorithm.
Third, software can best be used for floating-point calculations because in configware these
require a large amount of FPGA resources in configware, but it should only be used for
this if real-time requirements can be met. Configware should be used for tasks with hard
real-time requirements, tasks which are computation intensive and for I/O.

In case of a controller design with a structure similar to Figure 5.1, a better balance
between software and configware can be achieved by implementing the PID-controller in
configware, so that hard real-time behavior can be assured. The set point generator, which
typically uses floating-point, can be implemented in software (see Figure 5.3) by filling a
block of memory which is accessible by the PID-controller. This way the design is more
flexible compared to the complete configware implementation because software is easy to

Roderick Colenbrander, August 25, 2009 University of Twente

Proposed design flow 35

adjust, so a differently shaped motion profile can easily be created. If the CPU initializes
the block memory before the controller is started, real-time behavior can be guaranteed
without having to use a real-time operating system.

During design, co-simulation must be used to verify correct behavior. Damstra (2008)
describes how a co-simulation between different design tools can be set up for mechatronic
design. In previous projects co-simulation was not used because it was not needed or not
possible. Co-simulation is not needed for a pure software implementation of the controller
because all models are in the same tool. For a setup like the Production Cell, it is needed
because configware and the plant model are not in the same tool. In case of the Production
Cell, co-simulation has not been used because the configware design tool offered limited
simulation support. Instead the behavior was validated on the setup.

Figure 5.3: Partitioning in software/configware optimized for the ML510

5.2 Configware development

After a design has been partitioned in software and configware, the configware portion can
best be implemented using SysGen. This tool has been chosen for two reasons. First of
all, the use of SysGen requires only a limited amount of computer engineering knowledge.
Second, SysGen can be used for model based design which is comparable to development
in 20-sim. A design created using SysGen might have a higher FPGA resource usage and
lower performance than a design developed using manually written HDL-code but the size
and clock frequency of the Virtex-5 compensate for that.

The process of porting a 20-sim design to an FPGA using SysGen is illustrated in Fig-
ure 5.4. The figure has been derived from Figure 4.8. The first two steps are different, the
rest of the flow is the same and has been shown for completeness.

• Separate model into software, configware and mechanics [3.c.1]
The input to the design flow is a completed 20-sim model of the controller. The
model should be separated into the parts to be implemented in software, configware
and mechanics as indicated in Figure 5.3. This is needed to prepare the model for a
co-simulation of configware and mechanics.

• Re-implement Controller and I/O using Xilinx blocks [3.c.2]
The 20-sim models of controller and I/O are re-implemented in Simulink using Xilinx
blocks. The behavior of controller and I/O should be verified in a co-simulation
against the model of the plant in 20-sim. This comparison can for instance be used
to compare the accuracy of double precision floating-point (as used by 20-sim and
Simulink) to fixed-point (as used by SysGen).

• Configware flow [3.c.3 - 3.c.6]

Control Engineering Roderick Colenbrander, August 25, 2009

36 On the use of FPGAs with embedded processor cores for application in robotics

Figure 5.4: Proposed design flow using 20-sim in combination with SysGen

The standard SysGen configware design flow is resumed at the ‘Design Synthesis’
phase. As has been described before, simulations can be carried out at each stage
of the configware design flow. Xilinx recommends to skip simulation at the Design
Synthesis and Design Implementation stages if the design is composed solely of Xilinx
blocks, because of guarantees for cycle and bit accuracy which they provide for Xilinx
blocks. The end-result of the design flow is HDL-code which can be imported into
Platform Studio EDK for inclusion in the system design.

The design flow actually used in this assignment is slightly different from the described
flow. Instead of setting up co-simulation between Simulink and 20-sim, the 20-sim model of
the plant was exported to a Simulink model in order to not have to set up a co-simulation
environment which is time consuming. Using this mechanism the Controller could also be
brought over to Simulink for direct comparison.

5.3 Software development

As part of this assignment, support for the ML510 has been added to Embryo. This
section describes integration of Embryo into the Xilinx software development flow.

Xilinx recommends the use of Platform Studio SDK for the creation of a BSP and software
development. Unfortunately the functionality of Platform Studio SDK is limited to BSP
creation when the target operating system is not one of Xilinx their own operating systems.
A different tool for example the standard version of Eclipse should be used for software
development.

Embryo has built-in support for the ML510, but for building the Linux kernel external
information in the form of a Device Tree Source file (DTS) is needed. This DTS-file
provides the Linux kernel with a list of configured peripherals and for each peripheral

Roderick Colenbrander, August 25, 2009 University of Twente

Proposed design flow 37

its memory address offset and interrupt. For most standard hardware platforms this
information is fixed or can be obtained at system powerup from firmware. In case of the
ML510 the information is specific to a BSB.

A BSP-generator plug-in for Platform Studio SDK named ’Device-tree’ (Xilinx, 2009b) is
used for the creation of a DTS-file. Cross-compilers generated by Embryo are used for
compilation of the Linux kernel and software.

The software development half of Figure 4.4 extended with Embryo is shown in Figure 5.5.
The numbering used in the figure does not reflect the order in which steps are performed.
Previously the ’Upload to CompactFlash’ step was placed under the EDK. In the Embryo
flow there are two partitions on the CompactFlash card one for the ACE-file and one for
the Linux root file system and the Linux ELF-binary, therefore [2.b.6] has been placed in
the software development flow.

Figure 5.5: Embryo flow

The steps of the design flow are described below:
• Implement algorithm [2.b.1]

The software parts of the algorithm are implemented in C or C++.
• Embryo configuration and compilation [2.b.2]

The configuration of Embryo starts with a list of requirements (e.g. required li-
braries and tools) for the software platform. Based on these requirements Embryo is
configured and after that compiled. This step results in development files (headers
and libraries) to be used during cross-compilation of the software algorithm, a Linux
root filesystem and a configured Linux kernel source tree.

• Create BSP [2.b.3]
The Device-tree BSP-generator is used for the creation of a BSP.

• SW Compilation [2.b.4]
C/C++ code is compiled using the cross-compilers created by Embryo.

• Linux kernel compilation [2.b.5]
During Linux kernel compilation, a configured Linux kernel source tree is combined
with the DTS-file for the creation of an ELF-binary containing the Linux kernel.

Control Engineering Roderick Colenbrander, August 25, 2009

38 On the use of FPGAs with embedded processor cores for application in robotics

• Upload to CompactFlash [2.b.6]
In the final stage the ACE-file is written to a FAT-partition on a CompactFlash
card. The Linux root filesystem and Linux ELF-binary of the algorithm are both
written to a Linux-partition on the same CompactFlash card.

This section described integration of Embryo with the Xilinx software flow. More infor-
mation on how to compile Linux for the ML510 using Embryo can be found in ??.

Roderick Colenbrander, August 25, 2009 University of Twente

39

6 Design of a robotic demonstrator

The previous chapter describes a design flow for implementing a controller design in the
Virtex-5 FPGA. In this chapter, this design flow is applied on the design of a robotic
demonstrator in which a motor is controlled by the Virtex-5. The first section describes
the demonstrator setup. The second section describes the FPGA implementation of the
controller. The third section describes the results.

6.1 Description of demonstrator setup

A robotics demo setup developed within CE is the JIWY as shown in Figure 6.1. The
JIWY is a mechatronic setup for holding a camera. Two motors can rotate the setup in
respectively the horizontal and vertical direction.

This project focuses on proving that the ML510 is suitable for control applications. Be-
cause the JIWY is used in a lot of different projects, it has been modelled already and for
this reason is used as the demonstrator setup for this project as well. In this project only
the horizontal axis of the JIWY is controlled by the Virtex-5. The remaining text of this
section describes more details about the JIWY setup relevant for the demonstrator.

Figure 6.1: Robotics demo setup

The horizontal platform of the JIWY is rotated by a DC motor which is driven by a PWM
signal. There are two endstops on the platform which prevent the platform from making
a full rotation. The angular position of the platform is measured by a quadrature encoder
which is mounted on the horizontal axis. The output of the encoder are pulses which
need to be counted in order to obtain the position. In case of the JIWY, one rotation
corresponds to 2000 counts.

In this project the model of plant and controller have been reused from (Deen, 2008). The
plant model has been used without any modifications but changes have been made to the
controller. The original controller consisted of a basic proportional controller and it has
been changed to a PID controller. The model of the PID controller to be implemented in
the Virtex-5, is shown in Figure 6.2. The controller has two inputs for the set point and

Control Engineering

40 On the use of FPGAs with embedded processor cores for application in robotics

the encoder. Both inputs provide an angle in encoder pulses for which 0 pulses corresponds
to 0 degrees and 2000 pulses to 2π rad.

When a controller is designed during the Control Law Design phase, see Figure 1.2, it
is designed to work on signals which have a value and a dimension like radian, Volt or
Newton. In the hardware implementation of the controller, signals are represented by
digital numbers which are typically integers and which have a different value range than
the original controller. A design choice has to be made whether to scale the numbers to
lie in the same value range as the orignal controller design or to modify the controller to
work on the larger value range. In case of scaling, floating-point is required because the
numbers become small. When the controller design is modified to work on the value range
of the measurement data, the hardware implementation is not a direct mapping of the
original controller design on hardware.

In case of the Jiwy encoders it has been decided to convert encoder pulses to radians,
so that no modifications to the controller design were needed. This conversion requires a
conversion factor of π/1000 from encoder pulses to radians. The output of the controller,
Controller OUT, is connected to a PWM-generator. The range of Controller OUT is
limited from -1 to +1 because these values are mapped to PWM in which -1 and +1
corresponds to respectively rotating full speed to the left and full speed to the right.

Figure 6.2: 20-sim model of position controller

The equations for the PID algorithm as used in the 20-sim model are:
� �

f a c t o r = 1 / (sampletime + tauD ∗ beta) ;
uD = f a c t o r ∗ (tauD ∗ prev ious (uD) ∗ beta

+ tauD ∗ kp ∗ (e r r o r − prev ious (e r r o r))
+ sampletime ∗ kp ∗ e r r o r) ;

uI = prev ious (uI) + sampletime ∗ uD / tauI ;
output = uI + uD;

� �

A 20-sim simulation showing the step response of the controller connected to a model of
the JIWY is shown in in Figure 6.3. The controller is simulated at a sample frequency of
1kHz and the parameters used for the PID algorithm are: Kp=10, tauD = 0.02s, beta=0.1,
tauI=10s.

As can be seen in the figure it takes approximately 0.1 second for the JIWY to make a
rotation of 1

2 π rad.

6.2 FPGA implementation of position controller

This section describes the implementation of the position controller in the Virtex-5 FPGA.
The first subsection describes the overall design. The remaining subsections describe the
overall design.

Roderick Colenbrander, August 25, 2009 University of Twente

Design of a robotic demonstrator 41

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

time [s]
[ra

d]

Set point

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

time [s]

[ra
d]

Position

Figure 6.3: Step response of position controller in 20-sim.

6.2.1 Design

In subsection 5.1.3 a partitioning of a controller design is made in software and configware
(see Figure 5.3). For the JIWY position controller the same partitioning is used. The
design of the configware part made using SysGen is shown in Figure 6.4. The figure is
based on Figure 6.2 but has been extended with a PWM generator, an encoder interface
and a processor interface. The set point and measured value are in integers and are
subtracted in this format as well because an integer subtraction is more efficient in terms
of FPGA resource usage. The error value is converted to radians inside the PID controller
block.

Figure 6.4: PID-controller implemented using Xilinx bloxks im Simulink

The design consists of five blocks:

Control Engineering Roderick Colenbrander, August 25, 2009

42 On the use of FPGAs with embedded processor cores for application in robotics

• Processor interface
The processor interface provides read and write access from a PowerPC 440 core
to the SysGen design using the PLB bus. This interface is used for providing a set
point value and for read back of the horizontal position from software. The position
value could be used for a homing procedure at startup.

• Error calculation
An error value is calculated by taking the difference between the set point value and
the measured value. The result is passed to the PID controller.

• PID controller
The PID controller calculates a control value based on the error value and internal
states variables.

• PWM generator
The PWM generator generates a PWM signal and a direction signal based on the
control value.

• Encoder interface
Pulses A and B, generated by the quadrature encoder are counted, in order to
calculate the horizontal position of the JIWY setup.

The set point generator is implemented in software. A Linux program was written which
accesses the ’set point’ register of the processor interface using memory mapped I/O.

6.2.2 PID controller

This subsection describes the implementation of the 20-sim PID algorithm in SysGen. An
image of the complete design is placed in Appendix C but it is not needed for understanding
this subsection.

As described previously, the main goal for this demo is to prove that the ML510 is usable
for application in robotics. For this reason the design of the PID algorithm has been kept
simple and no optimizations have been added.

Each operation of the 20-sim PID algorithm has been mapped directly on a Xilinx block.
Designs in SysGen must use fixed-point and so must this design. Based on predictions of
the signal levels inside the algorithm, a fixed-point format has been chosen for each block.
In general a 32-bit fixed-point format with 24-bit fraction bits has been used. The number
of integer bits has been increased at the cost of fraction bits in places where the numbers
can become large.

The design does not make explicit use of DSP blocks for which either special Xilinx blocks
have to be added to the design or special options need to be set on Xilinx blocks. The
synthesizes tool may decide to use DSP blocks depending on constraints but for this design
it has not used them.

During design, the behavior of the SysGen implementation of the PID algorithm has been
verified against a 20-sim model of the JIWY. The JIWY model was exported to Simulink
and imported into the SysGen design using the simulation setup shown in Figure 6.5.
Because 20-sim is not able to export models of I/O interfacing blocks like analog-to-
digital converters, these have been implemented using Simulink blocks. The behavior of
the Simulink equivalents of the 20-sim blocks can differ slightly.

The result of a step signal applied to the SysGen version of the position controller is shown
in the top of Figure 6.6. The same test signals have been applied as used in Figure 6.3. The
bottom of the figure shows the difference between the same simulation carried out using
20-sim. As can be seen upto 1.4s the maximum error is 1 count and at approximately 1.5
seconds the maximum error between 20-sim and SysGen is 5 counts which is equivalent
to 1 degree. This difference has three causes. First of all the 20-sim model uses double-

Roderick Colenbrander, August 25, 2009 University of Twente

Design of a robotic demonstrator 43

Figure 6.5: Simulation setup used for verification of the controller design against a 20-sim
model of the JIWY

precision floating-point while the SysGen implementation uses fixed-point because 20-sim
does not support fixed-point. Second, each simulation tool uses a different numerical
integration method. Third, different models for I/O blocks have been used in Simulink
and 20-sim which also behave differently.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

600

time [s]

[c
ou

nt
s]

Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

time [s]

[c
ou

nt
s]

Difference

Figure 6.6: Step response of position controller implemtented using Xilinx blocks

6.2.3 Encoder interface

The quadrature encoder mounted on the horizontal axis of the JIWY is connected to the
encoder interface. As explained before, a quadrature encoder outputs two pulse signals
which correspond to the relative horizontal displacement. These pulses need to be counted
in order to obtain the position. The algorithm for counting pulses can be implemented
as a graph in SysGen but it was decided to implement it in MATLAB code. The reason
for this is that the algorithm is easier to express in code and further it allows for testing
MATLAB to HDL-code conversion by SysGen. This subsection gives a description of the
MATLAB code and ends with a simulation result.

As shown in Figure 6.4, the encoder interface has three input signals (A, B and reset)

Control Engineering Roderick Colenbrander, August 25, 2009

44 On the use of FPGAs with embedded processor cores for application in robotics

and one output containing containing the number of pulses. The inputs correspond to the
parameters passed to the MATLAB function and the output is the result of the MATLAB
function:

function [Encoder_Out] = encoder_func(A, B, Reset)

Internally the algorithm contains state variables for the pulse count and the previous
values of A and B. Normally variables in MATLAB are typeless until they are assigned a
variable. For conversion to HDL-code it is required that datatypes are known in advance.
The following code defines the pulse count variable as a 12-bit signed register:

persistent count, count = xl_state(0, {xlSigned, 12, 0});

The encoder pulses A and B are square waves which are 90 degrees out of phase. Depending
on the direction in which the JIWY setup rotates, the A signals leads the B signal or the
way around. Depending on the current and last values of A and B, the pulse count is
increased or decreased when a rising or falling edge of one of the signals occurs. The
MATLAB sample code, which is a small part of the total counting algorithm, illustrates
pulse counting for a situation in which A leads B and a rising edge of A occurs:

%if rising edge of A and B=0
if(A==1 && A_previous==0 && B==0 && B_previous==0)

count = count + 1;

A simulation of the complete encoder interface is shown in Figure 6.7. The top graph in
the figure shows two pulses A and B which are 90 degrees out of phase. The bottom graph
shows the pulse count which is increased when a rising or falling edge of one of the signals
occurs.

0 1 2 3

x 10−4

0

0.5

1

time [s]

Pulse A
Pulse B

0 1 2 3

x 10−4

0

5

10

15

time [s]

[c
ou

nt
s]

Encoder counts

Figure 6.7: Counting of encoder pulses

The encoder interface has been tested separately of the rest of the design on hardware.
For this the highest bits of the encoder output where interfaced to the LCD interface of
the ML510. These pins were connected to an oscilloscope with digital inputs.

Roderick Colenbrander, August 25, 2009 University of Twente

Design of a robotic demonstrator 45

During testing it appeared that the counting algorithm sometimes does not reach the same
pulse count when rotating the JIWY back and forth between the start position. The cause
for this was found in the low analog bandwidth of the optocouplers and the voltage levels
used on the ML510 I/O board. The input signals to the optocouplers are pulses with steep
edges but after the optocouplers the edges are not steep anymore and the digital high level
after the optocouplers is 1.8V while the digital threshold voltage of the Virtex-5 inputs is
1.25V. Filtering was added to the code to compensate for the limitations of the ML510
I/O board and with the filtering code the pulse count is the same each time when rotating
the JIWY back and forth between the start position.

6.2.4 PWM generator

PWM signals are oftenly used for digital-to-analog conversion in digital control systems.
In this case the motor used for horizontal positioning of the JIWY setup is actuated using
a PWM signal.

The PWM generator creates a PWM signal and a direction signal for driving an H-bridge
to which a motor is connected. The PID controller generates an output value between -1
and +1 which correspond to respectively rotating to the left and to the right. The output
value of the PID controller is scaled to an integer between -10000 and +10000 which is used
as a threshold value. The PWM generator generates a signal by comparing the absolute
value of its input value against a sawtooth signal generated by a counter. When the input
value is below the counter value, an output of 1 is generated else 0. Depending on the sign
of the input value the direction signal is made high or low.

A simulation of the PWM generator is shown in Figure 6.8 for a fixed input value. The
counter counts from 0 to 10000 and is compared with a fixed threshold value of 2500 which
results in a signal which is high for 25% of the time.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10−3

0

2000

4000

6000

8000

10000

time [s]

Counter
Threshold

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10−3

0

0.2

0.4

0.6

0.8

1

time [s]

PWM

Figure 6.8: Simulation of the PWM generator

Control Engineering Roderick Colenbrander, August 25, 2009

46 On the use of FPGAs with embedded processor cores for application in robotics

6.3 Results

In this chapter the design flow proposed in chapter 5 was applied to the creation of a
robotic demo setup. The first subsection the results of using the design flow. The second
subsection describes the results of the controller design.

6.3.1 Design flow

As explained in section 4.2, during the first steps a base system is created which forms
the foundation of an embedded design. This wizard proved to be easy in use and within
an hour you obtain a synthesized BIT-file.

Getting Linux to work, using this BIT-file, requires extracting a DTS-file and combining
this with the Linux kernel sources. The device-tree generator works well for generating
a DTS-file. After compilation of the Linux kernel with a correct DTS-file, Linux should
boot on the ML510. It should then behave like any other Embryo installation and anyone
with Linux experience should be able to use it.

For configware development SysGen proved to be an easy to use tool but it has some
issues. As claimed by Xilinx, it is possible to create functioning configware designs in
SysGen with limited computer engineering knowledge. After creating a design only a few
clicks are required to have SysGen generate a BIT-file. This functionality has been used
for testing the encoder interface and the PWM generator on hardware without a complete
processor design. It takes approximately five minutes to synthesize a small design and
upload it to the Virtex-5 using JTAG. This allows for short design iterations.

When the design becomes more complicated, synthesis can fail during the final stages
when applying timing constraints for I/O or bus interfaces. At such moments computer
engineering knowledge is still needed to fix the problem. In most cases the problem is that
the design contains so called ’long combinational paths’. This are paths consisting of a
large number of logic gates without any sequential element like a flip-flop in between. Long
combinational paths can introduce long timing delays and due to these timing constrains
can not always be met. Useally this problem can be fixed by adding delay blocks. If the
PID controller (as shown in Appendix C) would not meet timing constraints, a redesign
is required. The reason for this is that the design itself runs at 1kHz, so each delay block
would add a delay of 1ms which would change the behavior of the PID algorithm.

If the complete configware design needs to be used in combination with a CPU, it must
be exported to the EDK. During import of a configware design, made using either SysGen
or ISE, in EDK, the EDK import tool recognizes bus connections and even connects the
design to the PLB bus. After that the designer needs to perform some steps by hand:
assigning the memory address, interfacing of I/O ports to FPGA pins and specifying the
timing constraints. The main problem encountered during this project when integration
a design into EDK were again violations of timing constraints. In theory this issue can
be fixed in the same way as described above. The problem is that the issue is more
complicated to find as the violation might occur in other peripherals. The exact cause can
be found by an analysis of the (generated) HDL-code and timing logs.

In the end, integration of the controller design into the EDK succeeded. The controller
design could be accessed from software by accessing the memory addresses configured in
the EDK. For this a small Linux program was written for specifying a set point and reading
of encoder values.

6.3.2 Controller design

The Jiwy position controller design works in configware and software as illustrated by
a measurement shown on the actual setup as shown in Figure 6.9. The same set point

Roderick Colenbrander, August 25, 2009 University of Twente

Design of a robotic demonstrator 47

was applied to the Jiwy setup as in the simulation. As shown in the figure the measured
position suffers of 20% overshoot and it takes more time for the setup to reach the set
point for the first time. The exact causes of this issue have not been investigated. One
cause is that the PWM frequency is 1kHz while the motors need a frequency between
10kHz-20kHz for accuracy. This is due to a design error which was revealed during testing
where the complete design worked 10 times too fast (PWM worked at 10kHz at this high
frequency). The clock frequency of the design was reduced from 100MHz to 10MHz to
get it running at the correct speed and this reduced the PWM frequency to 1kHz as well.
There was no time to fix this. A second cause is that the plant model of the JIWY is
relatively basic and does not take into account all friction effects of the setup. The Jiwy
setup also does not reach its final value of 500 but reaches 491 counts which is 1.6 degrees
off. The cause of this is that there is a deadzone upto approximately 10% in the PWM
output, which is caused by the low analog bandwidth of the optocouplers on the ML510
I/O board. Compensation could be added for the deadzone but this has not been done.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

100

200

300

400

500

600

700

time [s]

[c
ou

nt
s]

Simulated position
Measured position

Figure 6.9: Position measurement of Jiwy setup compared to simulation

The FPGA resource usage of the controller design is shown in Table 6.1. The table shows
the FPGA resource usage of the blocks, see Figure 6.4, in slices, flip-flops and LUTs. This
information comes directly from the synthesis logs but the slice consumption needs some
additional explanation. As explained previously a slice is made up of four LUTs, four flip-
flops and some other logic. Parts of a slice can be used by multiple blocks. This results in
the synthesis tool counting some slices multiple times. Due to this the total slice usage,
in this case 700, is lower than the sum of the slice count per block.

In total the controller design requires 700 slices which corresponds to 3.4% of all slices. To
get a feeling whether the SysGen design is small or large, an attempt is made to compare
the results to an integer implementation of the Production Cell. It cannot be compared
to the floating-point version because that implementation is too different. It should be
pointed out that no hard conclusions can be drawn out of the comparison because of three
reasons. First of all the architecture of the Spartan-3 as used for the Production Cell
setup is very different from the Virtex-5. Second, the designs are different for instance
different PID constants and a different number of bits are used. Third, different design

Control Engineering Roderick Colenbrander, August 25, 2009

48 On the use of FPGAs with embedded processor cores for application in robotics

FPGA resource
Block Slices Flip-flops LUTs
Processor interface 39 93 53
Error calculation 16 0 26
PID controller 568 96 1291
PWM generator 103 16 208
Encoder interface 62 41 146
Other 351 27 349
Total resource usage 700 312 2073

Table 6.1: FPGA resource consumption of controller design

tools were used namely Handel-C tools for the Production Cell and Xilinx tools for the
JIWY. The original Handel-C design can be recompiled for the Virtex-5 but as mentioned
in section 2.5 for the floating-point implementation of the Production Cell, recompilation
takes some design effort.

An integer implementation for the Production Cell setup required in total 8500 LUTs and
3300 flip-flops for six parallel implementations on a Spartan-3 (Groothuis and Broenink,
2009). The exact distribution of the LUTs and flip-flops over Spartan-3 slices is not
known. Translated to Virtex-5 quantities, the integer design used 8500/1.6=5300 LUTs
and 3300 flip-flops for six motors. A single motor requires respectively 5300/6=900 LUTs
and 3300/6=550 flip-flops. These results are shown in Table 6.2.

FPGA resource
Demonstrator Flip-flops LUTs
Jiwy 312 2073
Production Cell 550 900

Table 6.2: Jiwy FPGA resource usage compared to integer Production Cell

Compared to the integer implementation of the Production Cell, the JIWY design re-
quires twice the number of LUTs and half the number of flip-flops. In FPGA designs
computations are carried out using LUTs. One would expect that the size of a fixed-point
implementation is close to the size of an integer implementation. This is because fixed-
point is a special form of integer but it requires additional logic for placing the binary
point at the correct place for multiplications, addition and subtraction are the same. The
numbers reflect that the fixed-point implementation is larger than the integer implemen-
tation of the Production Cell. Hard conclusions can not be drawn out of the numbers
because the FPGAs and designs are very different. For judging the quality of the code
generated by SysGen design, the same design would have to be made in fixed-point using
a HDL which has not been done.

Roderick Colenbrander, August 25, 2009 University of Twente

49

7 Conclusions and Recommendations

7.1 Conclusions

The main goal of this assignment is to investigate the use of the ML510 for application in
robotics. The ML510 platform is suitable for robotics which is proven by the successful
implementation of the JIWY controller design and the implementation of Linux for use
on the ML510.

The CE design flow has been extended with FPGA design tools. These design tools work
but they have two limitations. First of all the design tools have a steep learning curve
and are not user friendly. Second, users need a large amount of computer engineering
knowledge, compared to what is needed for 20-sim code generation, before they can use
the tools for creating designs for the ML510.

For interfacing the ML510 with CE setups, the board is limited to the use of special
connectors. An extension board was acquired which makes use of these connectors, but
this board has performance limitations which limit the use of the I/O board to interfacing
with setups which have low accuracy requirements.

The third task set for this assignment is the creation of a robotic demonstrator in which
the position a motor is controlled by the Virtex-5. The demonstrator works but it does
not exactly reach the set point due to limitations in the ML510 I/O board.

The amount of computation power offered by the ML510 is overkill for solving basic control
problems. Instead, the platform should be used in applications which can take advantage
of the computation power of the ML510.

To summarize, the ML510 is a development platform suitable for use in robotic applica-
tions, but at this point the platform is only accessible to designers with a large amount
of computer engineering knowledge and to applications with low requirements on I/O
performance.

7.2 Recommendations

The ML510 platform is a promising platform for use in robotics but at this point the
board is not usable for most people within CE. Below recommendations are given for
lowering the boundaries for using the board and recommendations are given for taking
better advantage of the platform:

• Develop a CPU programmable PID controller core
In most robotic and mechatronic projects at CE demonstrators are created as a
mean for proving a theory. The 20-sim code generator in combination with 4C
is used in such projects for rapid prototyping. In projects where hard real-time
behavior is important the best option is to implement a controller in configware but
this requires a large amount of design effort and computer engineering knowledge.
As pointed out earlier in this report, tight coupling of a CPU and FPGA logic allows
for designs in which tasks can be performed using a mix of software and configware.
A solution for making rapid prototyping possible, while preserving hard real-time
behavior, is to design a PID controller core which is configurable by a CPU using
a ’control bus’ as depicted in Figure 7.1. The figure is based on Figure 5.3 but a
CPU and control bus have been added, the text for new parts is in black, gray is
used for the original texts. The complete PID controller would be implemented in
configware but PID parameters and the sample frequency would be adjustable from

Control Engineering

50 On the use of FPGAs with embedded processor cores for application in robotics

software. A software program would configure the PID parameters at startup.

Figure 7.1: Software/configware partitioning containing a programmable PID con-
troller

• Use the ML510 for complex control tasks
The ML510 board offers a large amount of parallel computation power. This com-
putation power should be exploited in complex control tasks like providing vision to
robots.

• Develop new ML510 I/O board
The ML510 I/O board, developed at the TU/e, does not perform well for high-
frequent PWM signals. This limits accuracy of digital-to-analog conversions. A new
I/O board should be developed to fix these performance issues. The board needs to
handle level shifting because the voltage level used by ML510 pins is 2.5V. Next, the
FPGA pins should be buffered to prevent a test setup from damaging the FPGA.
The buffers could be implemented using high-speed optocouplers but if galvanic
separation is not needed for instance transistors could be used.

• Investigate the use of DSP blocks for controller design
As described in section 2.5, DSP blocks look promising for the implementation of
controllers. It should be investigated whether DSP blocks are indeed as suited for
controller design as predicted. A suitable test case would be to port the Production
Cell controller design to the ML510 where the DSP blocks can be used for implemen-
tation of PID controllers. For taking better advantage of the unused computation
power of the ML510, the Production Cell setup could be extended with vision which
could be used for sorting the blocks.

• Investigate the use of ImpulseC as a replacement for Handel-C
For implementation of the controllers of the Production Cell setup in an FPGA,
Handel-C was used as the HDL. The future of the language and tools is unknown
because its developer has been acquired by a competitor which offers a similar

Roderick Colenbrander, August 25, 2009 University of Twente

Conclusions and Recommendations 51

product. A relative new HDL tool which allows for compilation of C to HDL-code
is ImpulseC (Impulse Accelerated Technologies, 2009). Its developer works closely
together with Xilinx. Due to this cooperation the ImpulseC tools integrate well
with Xilinx tools and the tool also supports advanced PowerPC 440 functionality
like the APU bus for the creation of custom CPU instructions. ImpulseC might
be a good replacement for Handel-C, but it is not known how it handles HandelC
constructs like par. The tool could also be used for translating 20-sim C/C++ code
to HDL-code.

• Use ’PLB to Wishbone bridge’ for reusing Wishbone designs
In another FPGA project carried out within CE (Hettinga, 2008), the configware
design made use of the open source communication bus called Wishbone. A large
number of free configware designs is available for this bus, which allows for core
reuse and thus saves design time. The PowerPC 440 CPU uses PLB busses for
communication. A PLB to Wishbone bridge has been developed by the open source
community which allows interfacing of Wishbone cores to a PowerPC 440 CPU
(OpenCores, 2009). The quality and status of the Wishbone bridge is not known
but it might allow CE to standardize on Wishbone cores for PWM and encoder
interfaces.

Control Engineering Roderick Colenbrander, August 25, 2009

52 On the use of FPGAs with embedded processor cores for application in robotics

A PowerPC Linux kernel

This appendix describes the ML510 PCI driver which has been written as part of this
assignment. The content of this appendix is very technical and is written for people who
want an understanding of the PowerPC Linux kernel for debugging or writing a driver.
The first section gives an overview of the boot process of the PowerPC Linux kernel,
knowledge of this is important for writing drivers. The second section describes the PCI
driver which was written as part of this assignment.

A.1 PowerPC Linux boot process

The PowerPC Linux kernel is started in two phases. At system start a ’boot loader’
which resides in arch/powerpc/boot is loaded. It performs initial system initialization and
decompresses a Linux kernel image to system memory. Once the Linux kernel image is
loaded into system memory, the instruction pointer is set to the memory address of the
Linux kernel image to start the actual Linux kernel.

The boot loader for the Virtex-5 is contained in arch/powerpc/boot. The files used for
the Virtex-5 are described in the order in which they are used at boot:

1 fixed-head.S and crt0.S
These files contain the initial assembler code for bringing the system up.

2 simpleboot.c
The code in this file is called by the assembler code to bring up firmware-less systems.
Platform specific functions can be called from here to set up caches, to initialize a
UART and so on. Further the code also parses the DTS-file.

3 virtex.c
Contains a Xilinx Virtex-5 specific initialization function for initializing the UART.
Information on register offsets is obtained from the DTS-file.

4 main.c
This file contains the code for decompressing the compressed Linux kernel image.
The code outputs debug information to the UART e.g. ’Allocating 0xX bytes for
kernel ...’ and ’gunzipping (0xX <- 0xY:0xZ)’. After the file is done it moves the
instruction pointer to the Linux kernel image and from then on the boot code of the
actual Linux kernel is started.

The actual PowerPC Linux kernel code resides in arch/powerpc/kernel. The code makes
use of the DTS-file and calls platform specific code in arch/powerpc/platforms/44x. Plat-
form specific code is called using a static structure ’ppc md’ which contains function
pointers. During the boot process these functions are set to platform specific functions e.g.
functions in arch/powerpc/platforms/44x/virtex.c for the Virtex-5. The generic PowerPC
linux code residing in arch/powerpc/kernel calls ppc md function pointers from different
stages of the boot process.

Below some important files used throughout the PowerPC Linux boot process are de-
scribed:

1 arch/powerpc/head 44x.S
After the boot loader sets the instruction pointer to the Linux kernel image, the
assembler code contained in ’head 4xx.S’ is called. It calls code for the initial ini-
tizializatioon of interrupts and the memory management unit. It also calls a function
’machine init’ which hooks platform specific and board peripherals. After initial sys-
tem initialization control is passed to the ’start kernel’ function of Linux kernel init
code residing in ’init/main.c’.

2 arch/powerpc/setup 32.c

University of Twente

PowerPC Linux kernel 53

This file contains the ’machine init’ function which is called from the assembler
code. The function parses the device tree and after doing this calls ’probe machine’
for interfacing the ppc md structure to platform specific functions, which in case for
the Virtex-5 are located in arch/powerpc/platforms/44x/virtex.c. After interfacing
the ppc md structure, the probe machine calls ’ppc md.probe’ which is described
below.

3 arch/powerpc/platforms/44x/virtex.c
This file contains Virtex-5 specific functions and information which are hooked up to
the ppc md structure at some point during loading of the Linux kernel. One of the
functions in the file is ’.probe()’ for initializing the Virtex-5 and peripherals which
can be loaded into the Virtex-5 like a UART and interrupt controller.

4 init/main.c
The ’start kernel’ is called after bringing up the hardware platform for starting the
Linux kernel. The code here initializes interrupts, the memory management unit,
the scheduler and other low-level tasks. After completing these low-level tasks the
Linux kernel is ready for loading device drivers and once these are loaded, the system
is ready for use and hands control over to user space.

A.2 ML510 PCI driver

This section describes the PCI driver which has been written for the ML510 to make PC
functionality and PCI slots available.

Most of the PC functionality of the ML510 is provided by the ALI M1533 chipset. The
chipset is a PCI device and together with the PCI slots on the ML510 it is connected to
the FPGA. The use of PCI requires a PCI soft-core as illustrated in Figure A.1.

Figure A.1: PCI soft-core connected Crossbar

As can be seen in the figure, the soft-core is connected to the ML1533 chipset and to the
PCI slots. Inside the FPGA it is connected as both a master and slave to the PCI bus.
The slave connection is required by the CPU for accessing the PCI device by read/write
transactions. The master connection is required because PCI device need Direct Memory
Access (DMA) for bulk read and write operations, so that the CPU does not have to
perform all read and write transactions itself. This improves performance because the
CPU can do other things while the PCI device is transferring data.

The ML510 PCI driver is responsible for configuring the PCI soft-core and it provides

Control Engineering Roderick Colenbrander, August 25, 2009

54 On the use of FPGAs with embedded processor cores for application in robotics

functionality to the Linux kernel for accessing the PCI bus. The core of the PCI driver is
approximately 150 lines of C-code. Next to a PCI driver other changes in the Linux kernel
are needed for setting up PCI interrupts and for initializing PCI devices. The complete
ML510 PCI code consists of five parts:

• PCI read / write functions
Generic Linux PCI code is responsible for tasks like scanning the PCI bus and
initializing PCI devices. Each PCI driver has to provide functions for reading and
writing data to the PCI bus.

• DMA code
Setting up DMA on the PCI soft-core is complicated. First of all the PCI soft-core
needs to be connected properly to the PLB bus in the EDK if this is not done (which
is the case in some old Xilinx examples) DMA will not work. Code is required to
configure the PCI soft core for DMA, so that PCI devices can access system memory.

• Interrupt mapping in the DTS-file
PCI uses an interrupt scheme consisting of IRQ lines named A, B, C and D which
are wired in a special order to the PCI slots. A table for the interrupt mapping
needs to be added to the DTS-file to get PCI interrupts working. On a normal PC
motherboard this information is fixed inside the BIOS.

• Interrupt controller code for i8259
The PCI devices integrated into the ALI M1533 southbridge use a i8259 interrupt
controller which is inside the southbridge. This interrupt controller is physically
interfaced to the main Xilinx interrupt controller driver. Some special code was
required to let the two interrupt controllers cooperate else ALI M1553 peripherals
would not work.

• Initialization code for ALI M1533 southbridge
On a normal PC motherboard the BIOS is responsible for initializing the southbridge
chipset at system startup. In case of the ML510 the Linux kernel has to perform
this work which includes enabling of PCI devices and assignment of interrupts.

For reference the ML510 PCI support is spread over the following files of the Linux 2.6.31
kernel:

• arch/powerpc/boot/dts/virtex440-ml510.dts
• arch/powerpc/platforms/44x/virtex.c
• arch/powerpc/platforms/44x/virtex ml510.c
• arch/powerpc/platforms/sysdev/xilinx pci.c

Roderick Colenbrander, August 25, 2009 University of Twente

55

B Installation of Embryo and Linux on the ML510

Section 5.3 gives an overview of how Embryo and Linux are installed on the ML510. This
appendix describes the installation of Embryo and Linux in detail. For reference the figure
of Figure B.1 is repeated. The sections in this appendix follow the numbering used in the
figure. Next to this appendix some additional information can be found at the Xilinx
Linux wiki at http://xilinx.wikidot.com/.

Figure B.1: Embryo flow

B.1 Create Linux compatible BIT-file [1.2 - 1.4]

Xilinx Platform Studio EDK is the recommended tool for creating a system design consist-
ing of a CPU (PowerPC or MicroBlaze) in combination with soft-core periperhals. Once
the design is finished a BIT-file can be generated which can be programmed along with
software (in the form of ELF-binaries) into the FPGA.

A collection of reference BSB designs and tutorials on how to create these designs from
scratch is available from the ML510 website. This appendix describes how to create a
basic BSB using EDK 10.1 which is able to run Linux and how to use an existing BSB
from Xilinx which has PCI support. Some of the steps might be different in the latest
EDK 11.1 which became available at the end of this project.

B.1.1 Basic Linux capable BSB

This guide explains how you can create a ML510 BSB from scratch which can run Linux.
The BSB will offer support for a Uart for a serial console, Ethernet and SysACE (for
compact flash). Refer to the other design below for features like VGA/DVI and PCI.

Launch the EDK. When the EDK is loaded you are greeted with a dialog which asks
whether you want to create a new project or open an existing one. Select ’Base System

Control Engineering

56 On the use of FPGAs with embedded processor cores for application in robotics

Builder Wizard (recommended)’ to create a new design. The steps below guide you through
the base system builder wizard.

1 Base System Builder - Welcome
• Select ’I would like to create a new design’.

2 Base System Builder - Select board
• Board vendor: Xilinx
• Board name: Virtex-5 ML510 Evaluation Platform
• Board revision: C

3 Base system builder - Select processor
• Processors: PowerPC

4 Base system builder - Configure PowerPC processor
• Processor clock frequency: 300MHz (400MHz should also work but hasn’t been

tested)
• Processor bus clock frequency: 100MHz
• Debug I/F: FPGA/JTAG
• Cache setup: Enable
• Enable floating point FPU: Disable (I haven’t tried APU floating point in

Linux yet)
5 Base system builder - Configure IO interfaces (1 of 4)

• RS232 Uart 1: Enable o Peripheral: XPS UART 16550 o Configure as: Uart
16550 o Use interrupt: Enable

• RS232 Uart 2: Disable
6 Base system builder - Configure IO interfaces (2 of 4)

• SPI EEPROM: not needed
• LEDs 4Bit: not needed but useful for debugging
• LCD OPTIONAL: not needed but useful for debugging
• IIC EEPROM: not needed

7 Base system builder - Configure IO interfaces (3 of 4)
• FLASH: not needed
• Ethernet MAC: Disable
• Hard Ethernet MAC: Enable o DMA Present: Enable scatter gather DMA

(No DMA isn’t supported by the Linux driver; enabling it results in LocalLink
mismatch errors)

8 Base system builder - Configure IO interfaces (4 of 4)
• DDR2 SDRAM DIMM0: Enable o Peripheral: PPC440MC DDR2
• SysACE CompactFLASH: Enable (Not used in the default Linux kernel config

but will be used in the future for storing a root file system on compact flash)
o Use interrupt: Enable

9 Base system builder - Add internal peripherals (1 of 1)
• xps bram if cntlr 1 o Memory size: 32kB

10 Base system builder - Cache setup
• Select the memory peripherals you would like to cache o Enable caching for

DDR2 SDRAM DIMM0 instruction and data cache
11 Base system builder - Software setup

• Devices to use as standard input, output, and boot memory o STDIN:
RS232 Uart 1 o STDOUT: RS232 Uart 1

• Boot memory: xps bram if cntlr 1 (bram is needed for booting an OS from
SysACE)

• Sample applications: none needed

Roderick Colenbrander, August 25, 2009 University of Twente

Installation of Embryo and Linux on the ML510 57

B.1.2 Xilinx BSB with PCI support

As mentioned in the introduction Xilinx offers various reference BSB designs for the
ML510. One of them is called ’ML510 BSB1 Pcores Design’ which uses all (or nearly
all) periperhals on the ML510 including PCI, VGA/DVI, ethernet and more.

A tutorial on how to create this design and the files can be obtained from the pages below:
• Xilinx BSB1 Pcores Design tutorial at:
http://www.xilinx.com/products/boards/ml510/ml510_10.1_3_1/docs/
ml510_bsb1_ppc440_pcore_addition.pdf

• Xilinx BSB1 Pcores Design files at:
http://www.xilinx.com/products/boards/ml510/ml510_10.1_3_1/files/
ml510_bsb1_pcores_ppc440.zip

The tutorial (revision February 2009; a previous version was more broken) has one bug
which prevents PCI from functioning correctly on Linux. Below a description of the
problem.

The PCI bus is implemented by a soft-core which is connected to the PLB bus which is
seen by the CPU at 0xa0000000. Both the PLB and PCI have their own address domain.
The PCI soft-core performs translation between the two domains. The CPU is able to
perform read/write actions to the PCI device but the PCI device is also able to initiate
read/write transfers to system memory (DMA).

The Xilinx plbpci doc mentions ’the number of high-order bits substituted in the PLB
address presented to the bridge is given by the number of bits that are the SAME between
C IPIFBAR N and C IPIF HIGHADDR N.’

For the default ML510 pci sample this means:
� �

C IPIFBAR 0 = 0xa0000000
C IPIF HIGHADDR 0 = 0 x b f f f f f f f
C IPIFBAR2PCIBAR 0 = 0x00000000
C IPIFBAR 1 = 0x94000000
C IPIF HIGHADDR 1 = 0 x 9 7 f f f f f f
C IPIFBAR2PCIBAR 1 = 0x00000000

� �

This means that a CPU write to 0xa0001234 translates to 0x00001234 on the PCI bus and
that the pcibar 0 base and pcibar 1 base are zero. As mentioned both the CPU and a PCI
device can initiate read/write transactions. In order to have this work properly both CPU
and PCI need their own address range else the pci host bridge gets confused. Assuming a
4GB layout it is common to map e.g. the upper 2GB (0x80000000-0xffffffff) for inbound
request (CPU reads/writes) and the lower 2GB for outbound requests (reads/writes from
a PCI device) and address 0 needs to map to address 0 of the system RAM (for DMA).

The problem is that in the default version of this BSB the inbound and outbound windows
overlap. (As indicated a write to 0xa0001234 translates to 0x1234 on the PCI side, this
should map to at least 0x80001234 in order not to confuse the PCI host bridge). In order
to fix the issue select the PCI soft core in the EDK and modify its settings:

� �

set C IPIFBAR2PCIBAR 0 to 0xa0000000
� �

The Linux kernel maintainers wanted me to use 0xa0000000 instead of 0x80000000 to
prevent confusion as the base address for pci bar 0 as seen from the CPU is also 0xa0000000.

Note while you can generate a DTS-file for this BSB, I would recommend to use the
’virtex440-ml510.dts’ file which I wrote and which should hopefully be part of the 2.6.31

Control Engineering Roderick Colenbrander, August 25, 2009

58 On the use of FPGAs with embedded processor cores for application in robotics

kernel. It contains a hand written pci section containing the memory addresses and inter-
rupt mapping of all PCI peripherals like USB, IDE, Audio and the pci slots.

B.2 Implement algorithm in software and SW compilation [2.b.1, 2.b.4]

The cross-compilers of Embryo can be used for compiling software for use on the ML510.
The compile tools can be found in the build directory and can be called from there. They
are located in:

� �

s t a g i n g d i r / too l cha in−powerpc gcc −4.1 .2 uClibc −0.9.29/ usr / bin
� �

A better method is to add self written code as a package to Embryo. It would be possible
to use standard GNU makefiles and the Embryo build environment takes care of cross-
compiling.

The first step is to add create a package directory and edit the needed files. This can
be done by copying a directory structure e.g. the one from ’gpio’. The second step is
to select the package for compilation. The package appears in ’make menuconfig’ under
the category defined in the package Makefile. The package is selected for compilation by
marking it with a ’*’.

The package is compiled and bundled with the Linux root file system using:
� �

make V=99
� �

If only the package needs to be recompile the following can be used:
� �

run make V=99 /packages / [name] / compi le ’
� �

The compiled ELF-binary can then be found in:
� �

bu i l d d i r / l inux−xlnxppc44x ml510/ [package name] .
� �

B.3 Embryo configuration and compilation [2.b.2]

This appendix describes how to build Embryo from source and install it on a compact
flash card of which the ML510 can boot it.

B.3.1 Embryo Configuration

Obtain Embryo using:
� �

svn co https : // cew i k i . ewi . utwente . n l / svn/EMBRYO/branches / openwrt ce
� �

For the ML510 target, we have a default configuration (set of packages) as starting point.
Copy this configuration from the configs/ dir via:

� �

grs@ce151 :˜/ embryo$ cp c on f i g s /powerpc−xlnx ml510 −2.6 . c on f i g
� �

Install some necessary dependencies:
� �

sudo apt−get i n s t a l l f l e x gawk z l ib1g−dev l i bncu r s e s 5−dev
� �

Include additional packages not included by default. You will need this for the 20-sim 4C
discoverydaemon:

� �

grs@ce151 :˜/ embryo$ make package/ syml inks
� �

Roderick Colenbrander, August 25, 2009 University of Twente

Installation of Embryo and Linux on the ML510 59

To update the default config for new options/packages in Embryo/OpenWRT:
� �

grs@ce151 :˜/ embryo$ make o l d c on f i g
� �

You will see for new options questions like:
� �

Mount f l a s h in / f l a s h (PC104 MOUNT FLASH) [Y/n/?] (NEW)
� �

In most cases you can just press <enter>. The default value (in this case Y) is almost
always ok. If you want to know more about a specific option press ? for help.
To review and/or change the settings for your target, you can always run:

� �

grs@ce151 :˜/ embryo$ make menuconfig
� �

To see which version of Embryo was used to compile the image running on a particular
ML510 board:

1 Start embryo on the ML510
2 Login with root and password embedded
3 Run:

� �

cat / e t c /embryo/ r e v i s i o n
� �

B.3.2 Linux kernel configuration

By default Embryo compiles a Linux kernel with support for a limited number of ML510
peripherals. If more peripherals and additional drivers are needed, the Linux kernel con-
figuration can be adjusted. The Linux kernel can be configured from within the Embryo
environment after Embryo is configured using:

� �

make kerne l menuconf ig
� �

A list of drivers required for some periperhals is shown in Table B.1.

Peripheral Driver
Audio ali5451
Ethernet ll temac
IDE ali15x3
USB ohci-hcd
SysAce xsysace
Video xilinxfb

Table B.1: Linux drivers required for different peripherals

All of the drivers mentioned in the table have been tested except for the audio driver. In
theory this driver should work but if it does not some initialization code could be incorrect
in ’arch/powerpc/platforms/44x/virtex pci.c’. Further for USB the ohci-hcd driver should
be set to little endian mode and the big endian options should be disabled because all PCI
on the ML510 is little endian.

B.3.3 Embryo Compilation

After Embryo Configuration, the next step is to compile everything via:
� �

grs@ce151 :˜/ embryo$ make V=99
� �

Control Engineering Roderick Colenbrander, August 25, 2009

60 On the use of FPGAs with embedded processor cores for application in robotics

This will take a while, so time for coffee...

When the compilation process finishes without errors, you can find the PC/104 embryo
output files in bin/.

� �

xlnxppc44x−rXXXX−c on f i g (Embryo . c on f i g f i l e)
xlnxppc44x−rXXXX−r o o t f s . ex2 (16 MB EXT2 f i l e s y s t em image)
xlnxppc44x−rXXXX−r o o t f s . tgz (inhoud r o o t f s a l s t a r b a l l)
xlnxppc44x−rXXXX−zImage (PowerPC zipped ke rne l image)
simpleImage . v i r tex440−ml510 . e l f (PowerPC ELF ke rne l image)

� �

You will need these files for ACE-file generation as described in section B.5 and installation
as described in section B.6.

B.4 Create BSP [2.b.3]

The PowerPC Linux kernel uses a mechanism consisting of ’device tree’ files (.dts) which
contains all info (e.g. memory addresses, interrupts) of board peripherals. At the end
of Linux kernel compilation the dts file is combined with the compiled kernel sources
to construct a Linux kernel. The contents of the dts file depends on the used soft-
cores and can be generated from XPS using a ’device-tree’ plugin which is available from
http://git.xilinx.com.

Obtain the device-tree files using:
� �

g i t c l one g i t : // g i t . x i l i n x . com/device−t r e e . g i t
� �

Once the files are downloaded it should be possible to add the device-tree generator to
your current project using:

� �

cp −r bsp <path to p r o j e c t>/
� �

On my own system this didn’t work and I added it globally to /opt/Xil-
inx/10.1/EDK/sw/lib/bsp by copying the contents of the bsp directory to here. The
result is the following directory tree:

� �

/opt/ X i l i nx /10.1/EDK/sw/ l i b /bsp/ device−t r e e /data/ device−t r e e v2 1 0 :
device−t r e e v2 1 0 . mld
device−t r e e v2 1 0 . t c l

� �

Once device-tree is installed properly it should appear in ’Software â ↪EŠ Software Platform
Settings’ in Xilinx Platform Studio EDK. Select the ’device-tree’ option in this menu.

If no console device is selected on the ’OS and Libraries page’ make sure to set ’console
device’ to ’RS232 Uart 1’ (in case of the design made above) else not all boot output
appears on the RS232 port. (To be exact this option sets linux,stdout-path in the dts file)

In order to create a .dts file ’Software → Generate Libraries and BSPs’ in the EDK (as
of version 11 of the Xilinx software, Platform Studio SDK should be used for this task).
A dts file should now appear in ’ppc440 0/libsrc/device-tree’ called xilinx.dts. This file
should be put in the Linux kernel source in arch/powerpc/boot/dts and it should be naded:
’virtex440-ml510.dts’.

When SysACE is enabled in the FPGA config and you want to boot the root file system
from a partition on the compact flash card add ’root=/dev/xsa2’ for partition 2 on the com-
pact flash card. For booting busybox you also need a line which adds ’init=/etc/preinit’.

Roderick Colenbrander, August 25, 2009 University of Twente

Installation of Embryo and Linux on the ML510 61

B.5 Build Embryo ACE file - CW/SW integration [1.5]

This section describes how to create an ACE-file which is used for booting the ML510
board. This file contains a hardware mapping in the form of a BIT file and a software
mapping consisting of a ELF binary. The resulting ACE file can for instance be put on a
compact flash card in order to boot the board.

An ACE-file is created using the Xilinx Memory Debugger (XMD) in combination with
TCL script called ’genace.tcl’. When using the script you need to pass a so called ’.opt’
file which contains the name of the BIT and ELF files to use among other options like the
type of CPU to use.

The script is used like this:
� �

xmd −t c l genace . t c l −opt gen . opt
� �

A sample .opt file is shown below which works for a single processor for the ML510:
� �

−jp rog
−t a r g e t ppc hw
−hw ./ download . b i t
− e l f . / simpleImage . v i r tex440−ml510 . e l f
−board ml507
−ace boot . ace
� �

Note that the board type is set to ml507 because older scripts don’t recognize the ML510
(at least this is the case with scripts included in EDK 10.1 and 11.1) but this is no problem
as the ML507 contains a similar FPGA with a lower number of logic elements and 1 CPU
instead of 2. The Linux kernel image can be found in ’arch/powerpc/boot’ of the Linux ker-
nel source and is called ’simpleImage.virtex440-ml510.elf’ (e.g openwrt ce/build dir/linux-
xlnxppc44x ml510/linux-2.6.30-rc7/arch/powerpc/boot/simpleImage.virtex440-ml510.elf)
when using the ’virtex440-ml510.dts’ file for the ML510 reference design. The file down-
load.bit is the BIT-file generated using the EDK.

The .opt file for two processors
� �

−jp rog
−t a r g e t ppc hw
−board ml510
−hw ./ ml510 bsb system . b i t
−debugdevice cpunr 1
− e l f . / simpleImage . v i r tex440−ml510 . e l f
−t a r g e t ppc hw
−debugdevice cpunr 2
− e l f . / Standalone . e l f
−ace boot . ace
� �

Execute this command from a EDK Shell (XPS → Project → Launch EDK Shell) because
a normal shell even when the Xilinx settings scripts are sourced don’t have tools like
’powerpc-eabi-objdump’ in their path which is needed by the genace script. After running
the command a file ’boot.ace’ should be created which can be placed on a CompactFlash
card.

B.6 Upload to CompactFlash [2.b.6]

Uploading of software and configware to a CompactFlash card requires five steps:

Control Engineering Roderick Colenbrander, August 25, 2009

62 On the use of FPGAs with embedded processor cores for application in robotics

• Partition a CompactFlash card with a FAT partition for the ACE -file and a partition
with a Linux file system.

• Create an ACE file which contains the FPGA BIT file and the OS ELF-binary
containing the Linux kernel.

• Install the Linux ELF-binary containing the software program e.g. the controller
software.

• Install the Linux root file system on the CompactFlash card.
• Install the ACE-file to the FAT partitition of the CompactFlash card.

B.6.1 Partition a CompactFlash card

The Virtex-5 FPGA can be configured using compact flash (SysACE), JTAG and flash
memory. This guide assumes that the FPGA is configured from compact flash. Two
partitions are required on the CompactFlash card a FAT16 one for configuring the FPGA
and a Linux one (e.g. ext3) for storing the Embryo root file system.

When booting the ML510 using SysACE (which happens when SW3=00010101) the
SysACE interface looks for a .ace file on a FAT16 partition of the compact flash card.
The .ace file contains the FPGA configuration (a .bit file) and software (a .elf binary for
the PowerPC or a binary for a MicroBlaze). The Xilinx Linux SysACE block device driver
needs to be build into the Linux kernel in order to be able to access the compact flash
card. This kernel option can be found under Device Drivers → Block Devices → Xilinx
SysACE support.

Start Linux fdisk e.g. fdisk /dev/sdb if the cf-card is /dev/sdb
1 Remove all current partitions (use the d option on each partition)
2 Add a 100MB fat16 partition for storing the .ace file

1 Add a new partition using the ’n’ option, choose number 1
2 The start cylinder is 1
3 The end cylinder +100M
4 Change the file system id to fat16 using the ’t’ option and pass it value ’6’

(fat16)
5 Add a linux partition to fill the rest of the cf-card

Add a new partion using the ’n’ option, assign it partition number 2
6 Write back the partition table use ’w’
7 Quit fdisk use ’q’

Now remove the compact flash card and reinsert in order for Linux to see the new partition
table. Create partitions on the device

� �

mkdosfs −v −F 16 −S 512 /dev/sdb1
� �

Reconnect the CompactFlash card first because Linux doesn’t have a /dev/sdb2 yet, then:
� �

mkfs . ext3 /dev/sdb2
� �

The CompactFlash card is ready to use now.

For reference the partition table should look like:
� �

Disk /dev/sdb : 512 MB, 512483328 bytes
16 heads , 63 s e c t o r s / track , 993 c y l i n d e r s
Units = cy l i n d e r s o f 1008 \ item 512 = 516096 bytes
Disk i d e n t i f i e r : 0 x37191e13

Device Boot Star t End Blocks Id System
/dev/sdb1 1 204 102784+ 6 FAT16

Roderick Colenbrander, August 25, 2009 University of Twente

Installation of Embryo and Linux on the ML510 63

/dev/sdb2 205 993 397656 83 Linux
� �

B.6.2 Install the Linux ELF-binary

Copy the Linux ELF-binary to a directory of choice on the second partition containing
the Linux filesystem.

B.6.3 Install the Linux root filesystem

Copy the contents from the xlnxppc44x-rXXXX-rootfs.tgz to the second partition of the
Compact Flash card.

B.6.4 Install the ACE-file

Copy the ACE-file to the FAT partition of the CompactFlash card. If there is only one
ACE file on this partition it will be booted by default.

Control Engineering Roderick Colenbrander, August 25, 2009

64 On the use of FPGAs with embedded processor cores for application in robotics

C SysGen implementation of PID algorithm

This appendix shows an implementation of the PID algorithm in SysGen. It implements
the PID algorithm as used by 20-sim:

� �

f a c t o r = 1 / (sampletime + tauD ∗ beta) ;
uD = f a c t o r ∗ (tauD ∗ prev ious (uD) ∗ beta

+ tauD ∗ kp ∗ (e r r o r − prev ious (e r r o r))
+ sampletime ∗ kp ∗ e r r o r) ;

uI = prev ious (uI) + sampletime ∗ uD / tauI ;
output = uI + uD;

� �

The SysGen implementation of the PID algorithm is shown in Figure C.1. It uses the
paramters: Kp=10, tauD=0.02 s, beta=0.1, tauI= 10 s and Ts=1 ms.

Figure C.1: PID-controller implemented using Xilinx blocks im Simulink

University of Twente

Bibliography 65

Bibliography

Abramson, C., D. Isaacs and A. Ansari (2008), Embedded Processing Innovations with
Virtex-5 FXT Devices, in Xcell Journal Issue 64: Embedded Processing Solutions:
Inside the New VirtexÂő-5 FXT FPGA, Xilinx, pp. 8–13.
http://www.xilinx.com/publications/xcellonline/xcell_64/xc_pdf/p08-13_
64-cover.pdf

Agility Design Solutions (2009), Mentor Graphics Aquires Agility C Synthesis Suite.
http://www.agilityds.com/literature/012209_MentorAgilityReleasevf2.pdf

Beckhoff (2008), Ethercat IP for Xilinx FPGAs datasheet.
http://www.beckhoff.com/download/Document/EtherCAT/Development_products/
EtherCAT_IPCore_Xilinx_Datasheet_all.pdf

Broenink, J. F., M. A. Groothuis, P. M. Visser and B. Orlic (2007), A Model-Driven
Approach to Embedded Control System Implementation, in Western Multiconference
on Computer Simulation WMC 2007, Eds. E. J. Anderson and R. Huntsinger, San
Diego, USA, pp. 137–144, ISBN 1-56555-311-X.
http://www.ce.utwente.nl/rtweb/publications/2007/pdf-files/102CE2007_
WMC07_pdf.pdf

Colenbrander, R., A. Damstra, C. Korevaar, C. Verhaar and A. Molderink (2008),
Co-design and Implementation of the H.264/AVC Motion Estimation Algorithm Using
Co-simulation, in Proceedings of the 11th Euromicro Conference on Digital System
Design, IEEE Computer Society Press, Los Alamitos, pp. 210–215.
http://doc.utwente.nl/64995/

Controllab Products (2009), 20-sim.
http://www.20-sim.com/

Corporaal, H. (2006), Embedded system design, in PROGRESS White Papers 2006,
Technologiestichting STW, pp. 7–27.

Damstra, A. S. (2008), Virtual prototyping through co-simulation in hardware/software
and mechatronics co-design, MSc. Thesis 005CE2008, University of Utwente.

Deen, B. (2008), A software solution for absolute position estimation using WLAN for
robotics, MSc. Thesis 022CE2008, University of Utwente.

DIAPM (2009), RealTime Application Interface for Linux.
https://www.rtai.org/

Eclipse Foundation (2009), Eclipse.
http://www.eclipse.org

Groothuis, M. A. (2004), Distributed HIL simulation for BodeRC, MSc. Thesis
020CE2004, University of Utwente.

Groothuis, M. A. and J. F. Broenink (2009), HW/SW Design Space Exploration on the
Production Cell Setup, in To be published in Communicating Process Architectures
2009, IOS Press, Netherlands.

Groothuis, M. A., J. F. Broenink and J. P. van Zuijlen (2008), FPGA based Control of a
Production Cell System, in Communicating Process Architectures 2008, volume 66,
IOS Press, Netherlands, volume 66, pp. 135–148.
http:
//www.ce.utwente.nl/rtweb/publications/2008/pdf-files/p135-groothuis.pdf

Hartenstein, R. (2006), Morphware and Configware, in Handbook of Nature-Inspired and
Innovative Computing, Springer US, pp. 343–386, ISBN 978-0-387-40532-2.

Control Engineering Roderick Colenbrander, August 25, 2009

66 On the use of FPGAs with embedded processor cores for application in robotics

Hettinga, S. A. (2008), FPGA configuration development automation, Individual
Assignment-Report 031CE2008, University of Utwente.

IBM (2003), Book E: Enhanced PowerPC Architecture.
http://www.freescale.com/files/32bit/doc/user_guide/BOOK_EUM.pdf?WT_
TYPE=Users%20Guides&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=
Documentation

IBM (2009), Power Architecture.
http://www-03.ibm.com/technology/power/

Impulse Accelerated Technologies (2009), Impulse-C.
http://www.impulseaccelerated.com/

Michalek, D., C. Gehsat, R. Trapp and T. Bertram (2005),
Hardware-in-the-Loop-Simulation of a Vehicle Climate Controller with a combined
HVAC and Passenger Compartment Model, in Proceedings of the 2005 IEEE/ASME,
pp. 1065–1070, ISBN 0-7803-9047-4.

Oosterom, H. P. (2006), On the verification of real-time distributed embedded control
systems, MSc. Thesis 024CE2006, University of Utwente.

OpenCores (2009), PLBv46 to Wishbone Bridge.
http://www.opencores.org/project,plbv46_to_wb_bridge,overview

OpenWrt (2009), OpenWrt.
http://www.openwrt.org/

Przybus, B. (2007), Leveraging the Virtex-5 SXT High-Performance DSP Solution, in
Solutions for High-Performance Signal Processing Designs Issue 3 : Xilinx Unleashes
New XtremeDSP Portfolio, Xilinx, pp. 6–7.
http://www.xilinx.com/publications/magazines/dsp_03/xc_pdf/
p06-07-3dsp-przybus.pdf

QNX Software Systems (2009), QNX Neutrino RTOS.
http://www.qnx.com/products/neutrino_rtos/

Sassen, T. (2009), Floating-point based control of the Production Cell using an FPGA
with Handel-C, MSc. Thesis 009CE2009, University of Utwente.

The Mathworks (2009), Simulink HDL Coder.
http://www.mathworks.com/products/slhdlcoder/

Torvalds, L. (2009), Linux.
http://www.kernel.org/

Visser, P. M., M. A. Groothuis and J. F. Broenink (2004), Multi-Disciplinary Design
Support using Hardware-in-the-Loop Simulation, in 5TH PROGRESS Symposium on
Embedded Systems, STW Technology Foundation, pp. 206–213.
http://doc.utwente.nl/56327/

Wind River Systems (2009), Wind River VxWorks: Embedded RTOS with support for
POSIX and SMP.
http://www.windriver.com/products/vxworks/

Xenomai Project (2009), Xenomai: Real-Time Framework for Linux.
http://www.xenomai.org/index.php/Main_Page

Xilinx (2007), WP284 - Advantages of the Virtex-5 FPGA 6-Input LUT Architecture.
http://www.xilinx.com/support/documentation/white_papers/wp284.pdf

Xilinx (2008a), EDK Introduction.
Xilinx (2008b), Xilinx Announces Development Platform for Building Dual Processor

Embedded Systems Using Virtex-5 FXT FPGA.

Roderick Colenbrander, August 25, 2009 University of Twente

Bibliography 67

http://press.xilinx.com/phoenix.zhtml?c=212763&p=irol-newsArticle&ID=
1218920&highlight=

Xilinx (2008c), Xilinx ML510.
http://www.xilinx.com/products/devkits/HW-V5-ML510-G.htm

Xilinx (2009a), ”Xilinx DS335 Floating-Point Operator 5.0, data sheet”.
http://www.xilinx.com/support/documentation/ip_documentation/floating_
point_ds335.pdf

Xilinx (2009b), Xilinx Linux Device Tree Generator.
http://xilinx.wikidot.com/device-tree-generator

Control Engineering Roderick Colenbrander, August 25, 2009

