
The development of a generic scheduling
approach for the PLANWISE optimizer

Graduation assignment
E. M. Alvarez

Supervisors:Dr. Ir. J.M.J. Schutten
Dr. J. L. Hurink
Dr. Ir. A. J. R. M. Gademann

Enschede, 16th December 2008

2

Preface
In this report, I present the results I obtained while executing my Master’s assignment at
ORTEC. With the completion of this assignment, I complete my Master program in Industrial
Engineering and Management at the University of Twente.

The execution of my Master’s assignment has taken me one year. During this year, I have
learned many things in the area of scheduling. In addition, ORTEC gave me the opportunity
to perform a number of projects in different areas. Overall, it was an enjoyable year in which I
was able to do many things.

I now take the opportunity to thank a number of people. First of all, I thank my supervisors,
Marco Schutten and Johann Hurink of the University of Twente and Noud Gademann of
ORTEC, for all their support during the execution of my assignment. I could always turn to
them for useful insights and feedback on my work.

I also thank my colleagues at ORTEC for making my time at ORTEC so enjoyable. I
appreciate the support they have given me during the execution of my assignment and the
enjoyable work environment they provided. I especially thank Daniël Dam for all the daily
support during the first few months of my assignment and all the guys at Software
Development for the help they gave me with programming the scheduling approaches (and
solving all those impossible bugs I managed to create).

Last, but certainly not least, I thank all my family and friends for their love and support.
During my assignment, they have always shown interest in my work and they were always
willing to listen when I needed them.

3

Summary
In this assignment, we focus on creating scheduling approaches for the optimizer in
PLANWISE, a scheduling system created by ORTEC that supports the user in scheduling
operations on different resources, such as machines and operators. The scheduling
approaches must be able to solve a scheduling problem specified by the optimizer. In other
words: The approaches must be able to create a schedule in which a set of operations is
scheduled on a set of resources.

The scheduling approaches have to meet two requirements:
1. The approaches should be generic and be able to handle different scheduling

situations that occur in practice.
2. The approaches need to be able to handle manual adjustments made by users. More

specifically: The approaches must be able to solve scheduling problems that contain
fixed operations. These operations have already been scheduled on a set of
resources and they may not be rescheduled: i.e. they may not be reassigned to
different resources and they may not obtain different starting and completion times.

To create scheduling approaches that meet these requirements, we first determine which
scheduling problem the approaches should be able to solve. After considering the scheduling
situations at different PLANWISE customers and potential customers, we create a general
scheduling problem that contains the constraints and objectives mentioned most often by the
PLANWISE customers. In the resulting scheduling problem, we have a set of jobs that each
consist of one or more operations. These operations each need to be scheduled on a set of
resources for their processing. The objective is now to schedule the operations on the
available resources such that the total tardiness of the jobs in the schedule is minimized. The
main constraints that we consider in our scheduling problem are general finish-start
precedence relations, unique resources, preemptive and non-preemptive downtimes, setup
times, routing constraints, resource-dependent processing times, and fixed operations.

Subsequently, we determine which scheduling approaches we use to solve our scheduling
problem. After performing a literature study on different scheduling approaches, we create
two approaches to solve the general scheduling problem: One approach based on an
integrated architecture and the regret-based random sampling algorithm and one approach
based on the hierarchical architecture and local search algorithms. These approaches are
able to handle the following constraints of the general scheduling problem: Finish-start
precedence relations, unique resources, preemptive and non-preemptive downtimes, and
setup times. The integrated approach is also able to handle routing constraints. In addition,
we expect that the approaches are also able to handle fixed operations.

We test both approaches on a set of scheduling instances and we subsequently compare the
performance of the approaches to each other. In this comparison, we use the integrated
approach as the benchmark approach, because ORTEC currently uses this approach in
certain PLANWISE optimizers. Based on the test results, we can make a number of
conclusions: First, on the tested instances the hierarchical approach generally performs
better than the integrated approach with respect to tardiness minimization. Among the
different versions of the hierarchical approach, we obtain the best results when we use
simulated annealing to solve the assignment problem. In addition, a good initial solution and
frequent iteration between the assignment and sequencing steps are also beneficial for the
performance of the approach.

4

However, improvements can still be made to both approaches with respect to both tardiness
minimization and calculation time. Based on test results, we are able to conclude that the
characteristics of a scheduling instance have a lot of influence on the performance of the
integrated approach. Specifically, the characteristics of the jobs in the scheduling instance
have a lot of influence on the decision sets created to choose a next operation to schedule
and the operation chosen from this decision set. Therefore, further research is required to
fine tune the integrated approach to the scheduling instance. Also, further tests need to be
done to determine the influence of the initial solution and communication scheme on the
performance of the hierarchical approach. Finally, both approaches need to be adjusted so
they are able to handle all constraints of the general scheduling problem: First, both
approaches need to be adjusted so they can handle resource-dependent processing times.
In addition, at present the approaches can only solve scheduling problems where all
resources have the same intervals of preemptive downtime. In practice, however, resources
often have different intervals of preemptive downtime. Finally, the hierarchical approach must
be adjusted so it is able to handle routing constraints.

5

Table of contents
PREFACE... 2

SUMMARY .. 3

1. INTRODUCTION .. 6

2. PROBLEM DESCRIPTION .. 7

2.1 INTRODUCTION.. 7
2.2 RESEARCH QUESTIONS ... 8
2.3 RESEARCH APPROACH.. 8

3. AN INTRODUCTION INTO SCHEDULING... 10

3.1 SCHEDULING IN THEORY .. 10
3.2 SCHEDULING WITH PLANWISE... 10

4. SCHEDULING SITUATIONS... 13

4.1 PROCESSING CONSTRAINTS .. 13
4.2 OBJECTIVES .. 16
4.3 ADDITIONAL CLASSIFICATIONS OF SCHEDULING SITUATIONS ... 18
4.4 CONCLUSIONS ... 20

5. THE GENERAL SCHEDULING PROBLEM... 22

5.1 THE GENERAL SCHEDULING PROBLEM .. 22
5.2 CHARACTERIZATION OF A SOLUTION FOR THE SCHEDULING PROBLEM .. 25
5.3 THE CRITICAL SET OF AN OPERATION .. 28

6. APPROACHES FOR SOLVING THE GENERAL SCHEDULING PROBLEM.................................. 32

6.1 ALGORITHMS MENTIONED IN LITERATURE .. 34
Constructive algorithms ... 34
Local search algorithms ... 39

6.2 SCHEDULING APPROACHES BASED ON THE HIERARCHICAL ARCHITECTURE ... 41
The general structure of hierarchical scheduling approaches.. 42
Examples of hierarchical approaches ... 43

6.3 A SCHEDULING APPROACH BASED ON THE INTEGRATED ARCHITECTURE ... 46
6.4 EVALUATION OF FOUND LITERATURE ... 46

7. CREATED SCHEDULING APPROACHES... 50

7.1 A GENERAL DESCRIPTION OF THE INTEGRATED APPROACH WITH RBRS.. 50
7.2 IMPLEMENTATION DETAILS OF THE INTEGRATED APPROACH .. 51
7.3 A GENERAL DESCRIPTION OF THE HIERARCHICAL APPROACH ... 52
7.4 IMPLEMENTATION DETAILS OF THE HIERARCHICAL APPROACH... 55

8. EVALUATION OF THE SCHEDULING APPROACHES... 71

8.1. TESTED SCHEDULING INSTANCES... 71
8.2 THE PARAMETERS USED FOR EACH APPROACH .. 73

Parameters for the integrated approach.. 74
Parameters for the hierarchical approach .. 75

8.3 TARDINESS RESULTS FOR THE INTEGRATED APPROACH .. 77
8.4 TARDINESS RESULTS FOR THE HIERARCHICAL APPROACH .. 83
8.5 THE PERFORMANCE OF THE APPROACHES ON OTHER FACTORS ... 88
8.6 CONCLUSIONS BASED ON THE TEST RESULTS ... 90

9. CONCLUSIONS AND RECOMMENDATIONS .. 92

9.1 CONCLUSIONS ... 92
9.2 RECOMMENDATIONS.. 95

REFERENCES ... 100

6

1. Introduction
This assignment takes place at ORTEC, a company specialized in advanced planning and
optimization software and consulting services. ORTEC is active in several different areas,
such as workforce scheduling, vehicle routing and dispatch, and production and project
planning. In the area of production and project planning, ORTEC currently has a scheduling
system called PLANWISE. PLANWISE is a real-time system that supports the user (a human
scheduler) in the scheduling of activities on different resources, such as machines,
employees, and tools. To support PLANWISE users even further, ORTEC would now like to
implement a generic optimizer in PLANWISE that can create a schedule automatically. This
optimizer requires a scheduling approach that is able to schedule a set of activities on a set
of resources. In doing so, the approach should ensure that a set of restrictions is met when
creating the schedule. In addition, the approach should optimize the schedule on a set of
objectives.

In this assignment, we focus on creating a generic scheduling approach for the PLANWISE
optimizer. We can divide the assignment in three main sections: First, we need to determine
which scheduling problem we wish to solve with the scheduling approach: We need to
determine which set of restrictions the approach should be able to handle and the objectives
that the approach should optimize when creating a schedule. Second, we need to create
different scheduling approaches to solve the scheduling problem. Finally, we need to
compare the different approaches to each other to determine which approach is most
suitable.

The remainder of the report is as follows: In Chapter 2, we describe in more detail the
problem that we consider in this assignment. Here, we also mention the research questions
that we wish to answer and we describe our research approach. In Chapter 3, we
subsequently give an introduction into scheduling and we describe how scheduling takes
place in PLANWISE. Next, we mention different scheduling situations that we encounter in
practice in Chapter 4. Based on these scheduling situations, we determine the general
scheduling problem that we consider in the remainder of the assignment. We present this
scheduling problem in Chapter 5. In Chapter 6, we present the results of a literature study on
scheduling approaches for the general scheduling problem. Based on this study, we create
two main scheduling approaches, which we describe in Chapter 7. We subsequently test
both approaches on a number of scheduling instances and we provide the results of these
tests in Chapter 8. Finally, in Chapter 9 we present some conclusions and we give some
recommendations for further research.

7

2. Problem description

2.1 Introduction
In Chapter 1, we mentioned that ORTEC has a scheduling system called PLANWISE that
supports the user in scheduling activities on different resources. At the moment, scheduling
occurs mainly manually in this system: The user himself needs to choose which activity he
will subsequently schedule and on which resource and at what time he will schedule the
activity. The function of PLANWISE is to show the user which possibilities there are for
scheduling a certain activity (e.g. which resources are available for scheduling and at what
times they are available).The so-called engine in the system calculates and propagates all
consequences and generates warnings in case of violations.

ORTEC now wishes to implement an optimizer function in PLANWISE that can create a
schedule automatically. The user should be able to specify the activities that need to be
scheduled and the resources on which the activities need to be scheduled. Subsequently,
the optimizer needs to perform the following steps:

1. It needs to translate the request made by the user into a scheduling problem that
needs to be solved. The scheduling problem specifies which restrictions need to be
met when scheduling the activities on the resources. In addition, the problem
specifies which objectives need to be optimized when creating the schedule.

2. It needs to solve the scheduling problem. To solve this scheduling problem, the
optimizer requires a scheduling approach. This scheduling approach actually creates
the schedule: It assigns the activities to different resources and it determines the
starting and completion times of the activities.

3. It needs to present the solution given by the scheduling approach to the user. In
PLANWISE this is done by presenting the resulting schedule in a graphical planning
board.

The scheduling approach used in the optimizer needs to meet a number of requirements:
1. It should be able to handle certain scheduling situations that occur often in practice.

ORTEC wishes to use the scheduling approach to solve scheduling problems that
occur at different kinds of customers. Therefore, the scheduling approach should be
able to handle several restrictions that occur often in practice. The approach should
also be able to optimize schedules based on objectives that occur in practice. In
addition, the scheduling approach should be easily adjustable to different scheduling
situations. In other words: It should be possible to easily adjust the scheduling
approach to a different set of constraints or objectives.

2. A PLANWISE user should be able to use the scheduling approach to develop
schedules interactively. Besides generating complete schedules, the approach should
thus be able to cope with manual adjustments made by users. The set of activities S
that is scheduled manually by the user may not be rescheduled by the scheduling
approach: Each activity in S has been assigned to a set of resources. This set may
not be adjusted by the scheduling approach. In addition, each activity in S has a
fixed starting and completion time; the scheduling approach may not assign different
times to the operations in S .

In addition to these requirements, ORTEC considers it an added benefit if a PLANWISE user
can also use the optimizer for capacity planning. Sometimes, ORTEC customers wish to
roughly determine whether they have sufficient capacity to schedule the set of orders that
they have at present. In addition, these customers wish to determine how much capacity they
have to accept new orders. To answer these questions, a scheduling approach should be
implemented in the optimizer that is able to determine whether a feasible schedule can be
found where the set of current orders is scheduled on the available set of resources. In
addition, if the approach cannot find a feasible schedule, it should be able to indicate which

8

resources are bottleneck resources and solve a new scheduling problem that contains a
larger number of bottleneck resources. For instance, the scheduling approach may not be
able to find a feasible plan, because there is only one machine of type A. The approach
should then specify that machine A is the bottleneck resource and it should suggest a
schedule where activities are scheduled on more machines of type A.

At present, certain versions of PLANWISE already contain an optimizer. The scheduling
approaches used in these optimizers have been developed specifically for a certain
customer. Therefore, these approaches are not sufficiently generic to handle different
scheduling situations. However, each scheduling approach is based on a random sampling
algorithm1. ORTEC therefore wishes to know whether an approach based on this algorithm is
a suitable approach or whether a different approach should be used. In addition, ORTEC
would like to obtain an optimizer based on a generic scheduling approach.

In this assignment, we focus on creating different generic scheduling approaches and
comparing these approaches to each other to determine which approach is most suitable to
use in the PLANWISE optimizers. During the assignment, we focus on the two requirements
that the scheduling approach needs to meet. To limit the scope of the assignment, we do not
consider possibilities for using the scheduling approach for capacity planning.

2.2 Research questions
In the previous section, we mentioned that we focus on creating a number of generic
scheduling approaches and comparing these scheduling approaches to each other. In
addition, we mentioned that we use a scheduling approach to solve a specific scheduling
problem. Therefore, we need to perform three main steps in this assignment: First, we need
to determine which scheduling problem we wish to solve. Subsequently, we need to develop
different scheduling approaches to solve the scheduling problem. Finally, we need to
compare the different approaches to each other. In this graduation assignment, we thus need
to answer the following research questions:

1. Which general scheduling problem do we want to solve?
a. Which kinds of scheduling situations do we want to handle with the optimizer?
b. Which objectives and constraints should the approach be able to handle to

incorporate the chosen scheduling situations?

2. Which scheduling approaches do we use to solve the main scheduling problem?

3. How well do the approaches perform?

2.3 Research approach
In this section, we describe the research approach that we use to answer our research
questions. For each research question we mention the activities performed to answer that
question.

Determining the general scheduling problem
As we previously mentioned, we first need to determine which scheduling problem we want
to solve. To determine this scheduling problem, we determine the scheduling situations at
current and potential PLANWISE customers. We do so by interviewing ORTEC employees.
During these interviews, we focus on the characteristics of the activities that need to be
scheduled and on the kinds of resources on which the activities need to be scheduled.

1 We describe this random sampling algorithm in Section 6.1

9

In addition, we focus on relevant scheduling constraints and objectives. Once we have
determined the different scheduling situations, we are able to determine which situations
occur most frequently and which constraints and objectives are most relevant in these
scheduling situations. Based on this information, we define our general scheduling problem.

Developing scheduling approaches for the general scheduling problem
As we mentioned, ORTEC has versions of PLANWISE that contain an optimizer. The
scheduling approaches used in these optimizers are all based on a random sampling
algorithm. In this assignment, we therefore develop a new scheduling approach based on
this algorithm that is able to solve the general scheduling problem. We also develop an
alternative scheduling approach to solve the general scheduling problem. To do so, we
perform a literature study to determine which general approaches are suitable to solve the
general scheduling problem. We then develop the alternative approach based on the results
of the literature study.

Evaluating the different approaches
Once we have developed an approach based on random sampling and an approach based
on alternative algorithms, we compare both approaches to each other by testing them on a
set of scheduling instances. Here, we use the approach based on random sampling as the
benchmark approach and we compare the results of the alternative approach to those of the
random sampling approach. During this comparison, we predominantly focus on the quality
of the resulting schedules.

10

3. An introduction into scheduling
In this assignment, we focus on creating a scheduling approach to solve scheduling
problems. Therefore, in this chapter we define what we mean by the concept ‘scheduling’
and we introduce the basic scheduling concepts that PLANWISE uses.

In Section 3.1, we first give a theoretical explanation of scheduling: We present our definition
of scheduling and mention where scheduling is located in the planning framework. In Section
3.2, we mention how scheduling occurs in PLANWISE and we state some important
scheduling concepts that are used in PLANWISE.

3.1 Scheduling in theory
In this research, we use the definition of scheduling as given by Baker (1974). We thus
define scheduling as the allocation of resources over time to perform a collection of activities.
Baker mentions that the solving of a scheduling problem amounts to the answering of two
kinds of questions:
§ Which resources will be allocated to perform each activity?
§ When will each activity be performed?

In the remainder of this document, we use the term ‘assignment’ to specify the allocation of
resources to activities.

Within the planning framework of Hans et al. (2007), scheduling can be found at the
operational level. At this level, several aspects have already been fixed by decisions taken at
higher planning levels. Examples of such higher-level decisions are determining demand
forecasts and rough predictions for future production mix and volume, and allocating
sufficient resources to deal with the incoming demand. At the scheduling level, thus, the
nature of the activities to be scheduled has already been described and the configuration of
the resources available has already been determined (Baker, 1974). In other words: We
consider the activities to be scheduled and the resources on which they can be scheduled as
inputs in a scheduling problem.

3.2 Scheduling with PLANWISE
As previously mentioned, we focus on developing a scheduling approach for the optimizer for
PLANWISE. In this section, we therefore describe PLANWISE in a bit more detail, focusing
in particular on the way that PLANWISE defines activities and resources.

With respect to the activities, we can define a number of different concepts. They are:
§ Orders: In PLANWISE, an order is defined as a customer order that consists of a set

of order lines. Each order consists of a time frame in which the order is to be carried
out.

§ Order lines: Customer orders can be split into different order lines. Each order line
specifies the demand for a product that needs to be delivered to the customer and the
quantity to be delivered of that product. An order line, for example, may specify that
20 units of type B books must be delivered.

§ Operations: Each product is made by performing one or more operations. In our
example, one book of type B is made by first printing the pages of the book and then
binding the pages together. The operations are those that are actually scheduled on
the resources; each operation requires a certain amount of time and capacity from
the resources.

11

§ Resource demands: Each operation has one or more resource demands. The
resource demands specify which subset of the resources is suitable for processing
the operation. For each type of resource required, there is a resource demand that
specifies which skills (called ‘properties’ in PLANWISE) the resource must have and
at what skill levels. For example, to print pages we require two types of resources: A
resource that can print ink on paper and a resource that can service the printing
resource (i.e. an operator). We then need to define two resource demands, one for
each type of resource required, that specify the skills that the resource must have.
For example, the printing resource should be able to print black ink on paper. The
resource demands also specify the quantities required of each resource type.

Figure 3.1 shows the relationships between the different concepts just described:

Figure 3.1: Different PLANWISE concepts with respect to activities

As mentioned, the operations are those that need to be scheduled. Each operation needs to
be scheduled on a set of resources. Resources are those instruments that can be used to
perform different operations. Some examples of resources are machines, employees, tools,
and spaces.

Each resource has a certain amount of capacity available during each time period. This
available capacity is determined based on the resource’s availability (at each point in time a
resource can either be available or unavailable) and its capacity (the resource’s capacity in
the event that the resource is available). We assume that all resources are unique: Each
resource thus has a capacity of one in the periods in which it is available. PLANWISE
specifies the availability of a resource by using an availability profile. This profile specifies the
time intervals in which a resource is available. In addition to available capacity, each
resource possesses a number of skills (i.e. properties) at a certain skill level for each
property. The skill level specifies whether, and how well, the resource possesses that
property. For instance: The skill level may specify whether instructor A is suited to teach a

Order (e.g. order
for customer C)

Order line A (e.g. print
100 leaflets of type A)

Order line B (e.g. print
20 books of type B

Operation 1
(e.g.printing)

Operation 2 (e.g.
assembly)

Resource demand 1 (e.g.
one resource that prints

black ink on paper)

Resource demand 2 (e.g.
one person to service the

printing resource)

Product A (a
leaflet of type A)

Product B (a
book of type B)

12

specific course. In addition, the skill level may also specify that instructors A and B are both
suited to teach the course, but that instructor B is better suited to do so than instructor A.

With the available information on the different activities and resources, PLANWISE is able to
aid the user in generating a schedule. The user first needs to assign each operation to a set
of resources. PLANWISE aids the user by specifying the set of resources on which the
operation can be scheduled to satisfy a specific resource demand. PLANWISE does this by
comparing the properties and skill levels demanded by that resource demand to those
provided by the resource. Once the user has assigned an operation to a set of resources, he
must determine a starting and completion time for that operation. Now, PLANWISE aids the
user by calculating the earliest possible time that the operation can start. In calculating this
time, PLANWISE considers, amongst others, the predecessors of an operation (i.e. the set of
operations that must be completed before the operation can start) and the availability profiles
of the resources to which the operation is assigned.

In the remainder of this report, we refer to order lines as jobs and to activities as operations.
We do so, because scheduling literature often describes scheduling problems in terms of
jobs and operations.

13

4. Scheduling situations
In this chapter, we describe the different scheduling situations encountered at current and
possible future PLANWISE clients. Each PLANWISE client has its own particular constraints
and characteristics that need to be considered when developing schedules. In addition, each
client operates in a different environment with different kinds of operations and resources. In
this chapter, we describe these different aspects in more detail. In addition, we describe the
scheduling situations for a representative set of 15 PLANWISE customers based on these
aspects.

Pinedo and Chao (1999) mention that scheduling problems are often characterized by three
aspects: Machine configuration, the processing constraints, and the objectives used for a
particular schedule. This scheme is based on the classification scheme introduced by
Graham et al. (1979) and revised by Lawler et al. (1982). In addition to these aspects,
ORTEC also classifies customers based on the customer’s scheduling environment. We now
use these four aspects to characterize the scheduling situation at each customer.

In Section 4.1, we first discuss the processing constraints. In Section 4.2, we subsequently
discuss the scheduling objectives. We then discuss the other two types of classifications in
Section 4.3. Finally, we give conclusions on the scheduling situations in Section 4.4. We then
use these conclusions to create the scheduling problem of the next chapter (Chapter 5).

4.1 Processing constraints
When scheduling operations, a scheduling approach needs to consider many different
processing constraints. Pinedo and Chao (1999) and Schutten (1996) mention a number of
constraints that can be found in scheduling problems. However, since the number of
constraints experienced by PLANWISE customers is a more extensive list, we only mention
the constraints experienced by these customers.

The following are some of the constraints that are experienced by the PLANWISE clients:
§ Resource capacity: Each resource has a finite amount of capacity. The capacity of a

resource specifies the maximum workload that can be scheduled on that resource at
any moment in time. As a result, only a limited number of operations can be
scheduled on a resource at any moment. As we mentioned in Section 3.2, we
assume that each resource is unique. As a result, at most one operation can be
scheduled on a resource at any moment in time.

§ Resource eligibility: Usually, a resource demand cannot be satisfied by every
resource; each resource demand can only be satisfied by a subset of the available
resources.

§ Precedence relations: Precedence relations are those constraints that specify time
lags between the start or completion of operations belonging to the same job (De
Reyck and Herroelen, 1999). There are four main types of precedence constraints:
The Finish-Start (F-S) relations are the most common precedence relations. They
specify minimal and maximal time lags between the completion time of an operation
and the starting time of a successor. With Start-Start (S-S) relations, the minimal and
maximal time lags apply between the starting times of the operations. A similar
reasoning applies to Finish-Finish (F-F) relations and Start-Finish (S-F) relations.

§ Multiple resources: Each operation may require multiple resources to be processed.
For instance, we may need a machine and an operator to process an operation. The
starting time of the operation now depends on the completion times of preceding
operations on all resources to which the operation has been assigned.

§ Transportation times: Transportation time may apply between two operations
belonging to the same job. If this transportation time is fixed between two operations,

14

it becomes a special case of a F-S precedence relation. Transportation time may also
depend on the resources on which the operations are scheduled. In this case, we
thus will not know how much transportation time must be scheduled until we have
assigned both operations to a set of resources. In some cases, we might require a set

tR of resources to transport a product. For instance, we might need to transport a
table top and four table legs to the assembly department, where they will be
assembled into a table. To transport the table top and legs we might need a
container. To perform the transportation in this case, we need to schedule the
transportation on each of the resources in tR .

§ Personnel constraints: ORTEC’s customers at times have personnel constraints.
These constraints are based on laws and collective labour agreements and they
specify, amongst others, the maximum number of hours an employee is allowed to
work both on a daily and a weekly basis.

§ Resource availability: Resources are often not continuously available for
processing. Schutten (1996) defines the periods in which resources are unavailable
as downtime. He distinguishes between two types of downtime: Preemptive and non-
preemptive downtime. In the case of preemptive downtime, an operation may start
before the downtime and finish after it. In contrast, in the case of non-preemptive
downtime each operation needs to be completely processed either before or after the
downtime.

§ Changeover times: Schutten (1996) mentions that a resource may have to be set up
before it can process a next operation. As a result, an operation cannot start before
the previous operation on the resource has been completed and the setup (or
changeover) has been performed. Setups can either be sequence-dependent or
sequence-independent. When a setup is sequence-dependent, the length of the
setup depends both the operation just completed and the operation to be processed
(Pinedo and Chao, 1999). With a sequence-independent setup, in contrast, the length
of the setup only depends on the operation being processed next. In some cases, a
set of resources cR is also required to perform the setup. As a result, the setup
cannot be performed unless each resource in cR is available to perform the setup.

§ Use of the same resources: In addition to eligibility constraints, there may be an
additional constraint that all operations belonging to a job must be processed on the
same set of resources. A job, for instance, may be to give a group of people a course
that consists of several modules (i.e. operations). In this case, we may require that
the same instructor (i.e. resource) gives all modules of the course to that group of
people.

§ Materials: Certain operations require input of materials. In addition, certain
operations produce material output. The material stock will thus increase and
decrease over time. For this reason, checks need to be present to ensure that
sufficient materials are present for production and that the material stocks do not
exceed a certain maximum.

§ Eligibility between resources: Eligibility constraints may also apply between
different resources. For example, only a subset of employees may be allowed to
service a machine. Also, a tool can only be used on a subset of machines.

§ Transfer batches: Certain customers of ORTEC also work with production and
transfer batches. Schutten (1996) defines a production batch as a number of identical
products that is processed contiguously on a resource. The transfer batch is defined
as the number of items that is transported simultaneously to another resource. In
practice, the batch sizes of both kinds of batches do not need to be equal: Often, the
transfer batch is smaller than the production batch. In this case it is not necessary to
wait until the entire production batch has been completed on the first resource to start
with processing on the subsequent resource; it is sufficient to wait for the completion
of a transfer batch.

15

§ Shared resources: ORTEC’s customers sometimes have resources that are shared
between different locations. We distinguish two situations: Resources with a fixed
location and resources without a fixed location. If a resource has a fixed location (e.g.
the main office), a specific amount of transportation time from this location needs to
be included in the schedule before the production of an operation can take place. If,
the resource does not have a fixed location, however, the transportation time is
dependent on the present location of the resource and the location where the
operation needs to be performed.

§ Combining and splitting different customer orders: In some production
environments, it might be efficient to combine operations from different jobs in a
single production operation O . For example, it may be beneficial to print labels for
different customers on the same sheet of paper instead of using a different sheet for
each customer. If the operations of different jobs are combined, they must also be
split in a later production stage. When creating and splitting a combined operation,
the precedence relations must be considered between the combined operation and
the other operations that belong to the jobs that have been combined: O may not
start until all predecessors of the operations in O have been completed. Similarly, the
successors of the operations in O may not start until O has been completed.

§ Waiting time between operations: Some waiting time may need to be scheduled
between the completion of an operation and the start of the operation’s successor.
Waiting time between operations is a special case of the F-S precedence relation with
a minimal time lag: The minimal time lag is equal to the amount of waiting time.

§ Use of different resources for two operations: This constraint specifies that a set
dO of operations belonging to the same job may not be performed on the same set of

resources: Each operation in dO must be performed on a different set of resources.
This constraint may apply, for instance, when a product needs to be developed and
tested: Development and testing must then be done by two different people.

§ Routing constraints: In some environments, the physical routings between the
different resources are fixed. The different routings are also known as the
organization’s factory layout. Routing constraints specify the set of resources that
may succeed each other: If, for instance, there is a routing from resource A to
resource B, then an operation may be scheduled on resource A and its successor on
resource B. Otherwise, this is not possible. These constraints are special cases of the
resource eligibility constraints, since they only specify which resources are suitable
for an operation. We mention them separately, however, because in this case the
eligibility of a resource for an operation depends on the set of resources to which the
operation’s predecessor is assigned.

§ Resource dependent processing times: Certain operations can be performed on
more than one resource. However, the processing time of the operation may differ
depending on the resource to which the operation is assigned. This is modelled in
PLANWISE by the use of modes: Each operation can be performed in one or more
modes, where the mode determines the operation’s processing time and its resource
requirements.

§ Product carriers: When producing certain products, product carriers are sometimes
required for the different operations needed to produce the product. For example,
when we need to perform maintenance on a ship, we require a maintenance dock
(the product carrier) where the ship is kept for the duration of the maintenance
activities. ORTEC assumes that product carriers are occupied for the entire duration
of production, even when no processing takes place. The maintenance dock in our
example is thus unavailable from the moment the ship enters the dock until the
moment that all maintenance activities are completed and the ship leaves the dock.

16

Table 4.1 specifies how often each type of constraint has been mentioned:

Constraint Number of times mentioned
Resource capacity 15
Resource eligibility 12
Precedence relations 10
Multiple resources 9
Transportation times 6
Use of the same resources 6
Personnel constraints 5
Resource availability 5
Changeover times 4
Materials 3
Eligibility between resources 3
Transfer batches 3
Shared resources 2
Combining and splitting different customer orders 2
Waiting time between operations 2
Routing constraints 2
Use of different resources for two operations 1
Resource dependent processing times 1
Product carriers 1
Table 4.1: Constraints mentioned by (potential) PLANWISE customers

Before we continue with the section on objectives, we want to make one final note with
respect to preemption: Pinedo and Chao (1999) mention that in some environments the
processing of an operation may be interrupted in favour of a different operation being
processed, for example a rush order. ORTEC, however, assumes that an operation is never
interrupted once its processing has started. We thus assume that operations are never
preempted.

4.2 Objectives
When developing schedules, we can focus on several kinds of objectives. Pinedo and Chao
mention (1999) the following objectives as being important basic objectives:

1. Throughput and makespan objectives: The throughput of a resource is equivalent to
the output rate of that resource. An objective might thus be to maximize this
throughput. The makespan, on the other hand, is defined as the time that the last job
leaves the system. In other words: The makespan of a schedule is equal to the
maximum completion time of the operations in the schedule. Now, the objective is to
minimize this makespan. Heuristics that tend to minimize the makespan when there
are a finite number of jobs also tend to maximize the throughput rate when the flow of
jobs is constant over time (i.e. when the release and due dates of the jobs are spread
evenly over the planning horizon. This in contrast to a situation where the jobs are
clustered together).

2. Due date related objectives: Several objectives are related to due dates. Some
examples of due date related objectives are minimizing the maximum lateness,
minimizing the number of tardy jobs, and minimizing the total weighted tardiness

3. Objectives related to production costs:
a. Setup costs: The related objective here is to minimize the setup costs. Note

that setup costs are not necessarily proportional to setup times. So minimizing
setup costs may lead to different schedules being chosen than when setup
time is minimized.

17

b. Work-in-Process inventory costs: The objective here is to minimize WIP
inventory. Some reasons to minimize this inventory are that the inventory ties
up capital and increases handling costs. Large amounts of WIP can also clog
operations. Certain performance measures, such as the average throughput
time (the average time it takes for a job to traverse the system), can be used
as a surrogate for WIP.

c. Finished Goods inventory costs: The objective here is to minimize the
inventory costs of the finished goods.

d. Personnel costs: Costs are associated with the assignment of a particular shift
to a particular time slot. The objective is to minimize the total costs associated
with certain shift patterns. An important factor to consider here is the costs
required for overtime: These costs are often significantly higher than the costs
of regular time.

Pinedo and Chao also mention other objectives, such as the minimization of the sum of the
earliness (which could be an objective in a Just-in-Time environment, where a job should not
be completed until just before its due date) or generating schedules that are as robust as
possible (in a robust schedule, necessary changes that need to be made as a result of a
disruption are minimal).

When developing schedules, PLANWISE customers focus on a number of different
objectives. Some of these objectives are common and can be found in the list of basic
objectives. In addition, customers often also have their own specific objectives. We now
mention the most common types of objectives used by PLANWISE customers:

1. Due date related objectives: The most frequently used objectives are due date related
objectives. All customers have as most important goal to develop schedules where
jobs are scheduled on or before their due dates. However, this goal translates into
different objective functions for different customers. In equipment scheduling
environments (equipment scheduling is mentioned in Section 4.3), for instance, jobs
need to take place a specific moments. When developing schedules, a job is thus
either on time or it cannot be scheduled at the required time. In these environments,
the focus therefore is on maximizing the number of jobs scheduled (and thus on
time). In other environments, however, the focus was on minimizing the total
(weighted) tardiness of the jobs.

2. Objectives related to the use of resources: Several PLANWISE customers also focus
on how resources are used, but they consider these goals to be of less importance
than the due date related goals. In this category, customers again have mentioned
several objective functions. The most frequently mentioned objectives are:

a. Minimizing the number of used resources: Customers want to minimize the
number of resources used to perform the operations.

b. Maximizing the number of preferred resources used: The preferred resource
of resource A is that resource that, if available, must be used in combination
with resource A. Often, the preferred resource is an operator. This operator is
then the preferred person to operate machine A. Preferred resources can also
apply for a certain job. If, for instance, customer B is used to having engineer
A, then engineer A should be scheduled for jobs from customer B as much as
possible.

c. Balancing the workload as much as possible over the different resources:
Customers sometimes wish to balance the total workload as much as possible
over different resources. This objective often applies to human resources: A
company, for instance, may want to spread the workload over different
operators. In addition, certain companies wish to schedule the operations in
one department in such a way that the next department has a more balanced
workload. For instance, one company wishes to schedule operations in the

18

production department in such a way that the workload is evenly balanced
over time in the assembly department.

4.3 Additional classifications of scheduling situations
In this section, we describe the possible machine configurations and scheduling
environments that (potential) PLANWISE customers could have. In scheduling literature, a
scheduling problem is partially characterized by the machine configuration used. ORTEC
also classifies the scheduling situations at its customers by describing the scheduling
environment at the customer.

Machine configurations
The machine configuration specifies the machine characteristics of a problem. Based on the
classification scheme by Graham et al. (1979) and Lawler et al. (1982), we can specify five
basic machine configurations:

1. Single machine models: In these models there is a single resource on which a set of
operations needs to be scheduled. These models can, naturally, be used in systems
with only one resource. However, they can also be used, for instance, to model a
single bottleneck resource in a multi-resource environment. Since the operation
sequence at the bottleneck typically determines the performance of the entire system,
it might be helpful to first schedule operations on the bottleneck resource and then
schedule operations on the other resources.

2. Parallel machine models: In these models, we have a workstation that consists of a
number of resources in parallel. We may, for example, have a printing area consisting
of a number of printers. When operations arrive at the workstation, they need to be
processed on one of the resources of that workstation. The resources at a
workstation may be identical, thus enabling an operation to be processed on any one
of the resources. It may also occur that the resources are not identical. In this case,
certain operations may only be processed on a subset of the resources. In addition,
the processing time of the operation may vary depending on the chosen resource.
The single machine model previously described is a special case of the parallel
machine model: The workstation then consists of only one resource.

3. Flow shop models: In flow shop models, we have jobs consisting of one or more
operations. Each operation needs to be processed on a different resource. However,
the route for each job is identical. The operations thus need to be scheduled in a fixed
sequence. The flow shop is a special case of the flexible flow shop, which consists of
a number of stages in series with a number of resources in parallel at each stage. At
each stage, an operation needs to be processed on one of the parallel resources.

4. Job shop models: The flow shop model is also a special case of the job shop model.
As in a flow shop, the operations of a job need to be performed in a certain sequence.
However, in a job shop, the sequence in which the operations of a job need to be
processed depends on the job (this in contrast to the flow shop, where the sequence
is fixed for all jobs). Job shops, in turn, are special cases of the flexible job shop,
where work centres have multiple resources in parallel. Each operation now needs to
be scheduled on one of the parallel resources.

5. Open shop models: In open shops, the operations of a job can be processed in any
order. As a result, no precedence relations exist between the different operations of a
job. The operations of a job, however, cannot be processed simultaneously.

The machine configurations just described are the most basic configurations. In practice,
however, we do not encounter any PLANWISE customers that have these basic
configurations, because these customers often have additional practical constraints that
characterize their scheduling situations. In the basic configurations, for instance, each
operation only requires one resource to be processed. In practice, we often require multiple

19

resources to perform an operation. In addition, two operations belonging to the same job may
be performed simultaneously in practice if the one operation is not a (direct or indirect)
predecessor or successor of the other operation. In the basic configurations, however, at
most one operation of a job may be performed at any moment in time.

The scheduling situations at the PLANWISE customers thus differ from the basic
configurations described. Nevertheless, we are still able to specify which basic configuration
most resembles the scheduling situation at that customer. Table 4.2 specifies the machine
configurations for the set of PLANWISE customers:

Machine configuration Number of customers
Single machine 0
Parallel machine 4
Flow shop 0
Flexible flow shop 4
Job shop 1
Flexible job shop 6
Open shop 0
Table 4.2: The machine configurations of PLANWISE customers

As we can see, the machine configurations most frequently encountered are those where
operations can be performed on different resources. For many PLANWISE customers, an
important part of scheduling is thus the assignment of operations to resources: Users need to
choose a resource for an operation before they can give the operation a start and completion
time.

Brucker and Thiele (1996) mention that all basic machine configurations are special cases of
the general-shop problem. In a general shop problem, the operations of a job do not need to
be performed in a sequence: There can be arbitrary precedence relations between any pair
of operations. As a result, it may occur that several operations need to be completed before
a certain operation can start. Similarly, an operation can also have multiple successors.

Scheduling environments
ORTEC distinguishes three kinds of scheduling environments based on the different kinds of
customers that it has. We distinguish the different environments based on the main resource
types scheduled in the environments. In addition, each environment has its own specific
constraints:

- Task scheduling: With task scheduling, the general idea is to assign operations to
persons with the right qualifications and competences (i.e. the right properties). The
use of machines and equipment plays a limited role in this kind of scheduling.
Eligibility constraints, precedence relations, and resource-dependent processing
times (i.e. a more experienced person can perform an operation faster than a less
experienced person) are some of the main constraints in task scheduling problems.

- Equipment scheduling: The idea of equipment scheduling is to schedule operations
on equipment (e.g. a crane) and the resources related to this equipment, such as
tools and equipment operators. The main constraints that play a role in task
scheduling also apply in equipment scheduling problems. In addition to these
restrictions, an important aspect of equipment scheduling is the fixed time intervals in
which a job needs to take place: When a customer calls to use a piece of equipment,
he specifies a time interval in which he requires the equipment. For instance, the
customer wishes to have a crane at his disposal from 2 pm to 6 pm on Thursday.
Since each job must be done in a specific time interval, the release date of a job is
equal to the start of the interval and the due date of a job is equal to the end of the
interval. As a result, jobs in an equipment environment do not have any slack: Each
job must start on its release date and it must end on its due date. The starting and

20

completion times for the operations of a job are thus fixed as well. Since we do not
need to determine starting and completion times for the operations of a job, we only
need to assign the operations to a set of resources to solve the equipment scheduling
problem.

- Production scheduling: This is the most detailed scheduling environment. Production
scheduling entails the scheduling of operations on several kinds of resources, such
as machines, tools, and people. In this kind of scheduling, several additional factors
need to be considered that do not play a role in the other kinds of scheduling
environments. Examples of such factors are the use and storage of materials,
changeovers, and layout constraints. Task scheduling is a special case of production
scheduling: The restrictions that apply in task scheduling also apply in production
scheduling.

Table 4.3 specifies the scheduling environments in which PLANWISE customers operate:

Scheduling environment Number of customers
Task scheduling 6
Equipment scheduling 4
Production scheduling 5
Table 4.3: Scheduling environments of PLANWISE customers

4.4 Conclusions
In the previous sections, we have described the scheduling situations at different PLANWISE
customers by looking at the constraints that customers need to deal with, the objectives that
they wish to optimize, and their machine configurations and scheduling environments. In this
section, we use the information from the previous sections to determine which constraints
and objectives we need to include in our scheduling problem.

With respect to the different scheduling environments, we notice that PLANWISE customers
are divided equally over the different scheduling environments. When creating the general
scheduling problem, we choose to focus on the production scheduling environment. As we
mentioned before, task scheduling is a special case of production scheduling. Therefore, a
scheduling approach that solves a production scheduling problem will also be suitable to
solve a task scheduling problem. We do not focus on creating an equipment scheduling
problem, because this environment differs in a number of ways from the production
scheduling environment: As we mentioned before, in the equipment scheduling environment
each operation has a specific starting and completion time. As a result, an equipment
scheduling problem only consists of assigning a set of operations to a set of resources.
Therefore, we might require a different approach to solve an equipment scheduling problem
compared to a production scheduling problem. An equipment scheduling problem also
requires a different objective function from a production scheduling environment. Since the
production and task scheduling environments occur more frequently among the PLANWISE
customers, we choose to create a production scheduling problem.

We also consider the machine configurations of the customers in determining which
constraints need to be included in the general scheduling problem. As we can conclude from
Table 4.2, the basic configurations that occur most frequently are the parallel machine
configuration, the flexible flow shop and the flexible job shop. We choose to focus on the
flexible job shop, because the other two types of configurations are special cases of the
flexible job shop.

21

We thus wish to create a production scheduling problem that is able to handle flexible shops.
As we mentioned before, a flexible shop contains jobs, where each job consists of one or
more operations that need to be performed in a certain sequence. Each operation requires
one resource to be performed and this resource must be chosen from a set of suitable
resources. Therefore, the general scheduling problem that we consider in the remainder of
this assignment must contain at least two basic constraints: Precedence relations and
eligibility constraints. The precedence relations specify the predecessors and successors of
each operation and the eligibility constraints specify which subset of resources is suitable to
schedule each operation on. Since we want to have a practical scheduling problem, we
choose to specify general Finish-Start (FS) precedence relations in the general scheduling
problem instead of the precedence relations used in the flexible job shop. As a result, each
operation has a set of predecessors and a set of successors. In addition, we allow two
operations of a job to be performed simultaneously if the operations are not related in any
way (i.e. the one operation is not a (direct or indirect) predecessor or successor of the other
operation).

The general scheduling problem that we consider should thus contain general precedence
relations and eligibility constraints. In addition to these restrictions, we also include an
additional set of constraints in the scheduling problem. As we can see from Table 4.1, certain
practical restrictions are experienced by several PLANWISE customers. Therefore, we
choose to include them in the general scheduling problem. In addition, certain restrictions are
also interesting to include, because ORTEC thinks that these restrictions could be important
restrictions for PLANWISE customers in the future.

In total, we include the following restrictions in the general scheduling problem:
1. Precedence relations
2. Resource eligibility constraints
3. Resource capacity restrictions
4. Multiple resources
5. Resource availability constraints
6. Changeover times
7. Resource dependent processing times
8. Routing constraints

With respect to objectives, we noticed that customers have mentioned several different types
of objectives. Of these different objectives, customers have mentioned the due date related
objectives most frequently. In addition, they also consider these objectives to be the most
important objectives to focus on. Therefore, we focus on these types of objectives when
solving the general scheduling problem.

When we compare the different due date related objectives, we see that customers
predominantly focus on minimizing the (weighted) tardiness of the jobs or minimizing the
number of tardy jobs. Tardiness minimization has been mentioned more frequently by
customers in production and task scheduling, whereas the minimization of tardy jobs has
been mentioned most frequently by customers in equipment scheduling. Since we focus on a
production scheduling environment, we choose to minimize the tardiness of the jobs in the
general scheduling problem.

22

5. The general scheduling problem
In Chapters 3 and 4 we introduced scheduling problems in general and we described
different scheduling situations that we may encounter in practice. Based on these chapters,
we now define the general scheduling problem that we consider in the remainder of the
assignment.

In this chapter, we also discuss two other topics: The description of a solution for the
scheduling problem and the critical set of an operation. We discuss these topics here,
because we frequently use them in subsequent chapters.

We discuss the main scheduling problem in Section 5.1. Subsequently, we discuss the
description of a solution in Section 5.2. Finally, we discuss the critical set of an operation in
Section 5.3.

5.1 The general scheduling problem
For our general scheduling problem we consider a modified general shop problem. The
problem can be formulated as follows:

We have n jobs nJJJ ,.....,, 21 , each with a release date jr and due date jd . Each job jJ
consists of a set of operations jnjj j

OOO ,21 ,.....,, . Here, jn denotes the number of operations

of job jJ . All operations are non-preemptive: Once an operation starts, it may not be
interrupted in favour of another operation.

Finish-Start precedence relations may apply between any two operations of a job. These
precedence relations specify the sequence in which the operations of a job need to be
performed: If a precedence relation applies from operation ijO to operation

hjO ()jnhinj ,...,2,1,;,...,2,1 == , then ijO must be completed before hjO can start. Since ijO
must be completed before hjO can start, we define ijO to be a job predecessor of hjO .

Similarly, we define hjO to be a job successor of ijO . Nonnegative minimal time lags apply
between the completion of an operation and the start of a job successor of that operation (or,
similarly, between a job predecessor of an operation and that operation).

We also have a set R of unique resources on which the operations need to be scheduled.
Each resource works according to a calendar that specifies the periods in which the resource
has preemptive downtime. In addition, each resource may also have periods of non-
preemptive downtime.

Each operation ijO can be performed in ijn modes. For each mode ijmV),...,2,1(ijnm = , the

operation has a processing time ijmp and a set of resource demands
ijmijmnijmijm UUU ,...,, 21

that need to be satisfied (ijmn denotes the number of resource demands belonging to

operation ijO when executed in mode ijmV). Each resource demand

ijmkU ()ijmijj nknmninj ,...,2,1;,...,2,1;,...,2,1;,...,2,1 ==== requires ijmka suitable resources.

For each resource demand ijmkU , there is a subset)(RRR ijmkijmk ⊂ that specifies the
resources that are suitable for satisfying that resource demand. Since all resources are
unique, the resource demand ijmkU must be satisfied by ijmka different resources from ijmkR .

23

For the given scheduling problem, three different types of decisions have to be made:
• For each operation ijO , we need to choose one mode *ijmV in which the operation will

be performed.
• For each resource demand

kijmU * corresponding to the chosen mode *ijmV , we must

assign
kijm

a * suitable resources to operation ijO .

• For each operation ijO we need to determine a starting time ijS . The completion time

ijC of the operation follows from the starting time, the processing time *ijmp , and the
preemptive downtimes on the resources assigned to this operation. In Section 5.2, we
provide more detailed information on the way that starting and completion times are
calculated.

Constraints
In the scheduling problem we consider the following constraints:

1. Precedence relations: As we mentioned before, Finish-Start (F-S) precedence
relations may apply between any two operations of a job. Between operation ijO and

its job successor hjO the following constraint thus applies: hj
fs

ihjij SlagC ≤+ min . Here,
minfs

ihjlag denotes the minimal time lag. Note that we only model minimum time lags:

We do not consider maximum time lags in this problem. If operations ijO and tjO are
not related to each other (i.e. the one operation is not a (direct or indirect) job
predecessor or successor of the other operation), the operations may be performed
simultaneously.

2. Resource capacity constraints: As previously mentioned, each resource is unique.
Therefore, at most one operation can be scheduled on a resource at any moment in
time.

3. Resource availability constraints: As we previously mentioned, there can be periods
of both preemptive and non-preemptive downtime on each resource. The preemptive
downtimes on a resource are specified by the calendar of the resource and they often
occur on a regular basis. For instance, the resource’s calendar may specify that the
resource is always unavailable during the weekend. Operations may be scheduled
over preemptive downtimes: An operation may thus start before a preemptive
downtime and finish after the downtime. In addition to preemptive downtimes, a
resource can also have incidental periods of non-preemptive downtime. An example
of incidental downtime is when a resource is unavailable because preventive
maintenance is being performed on that resource. Operations may not be scheduled
over non-preemptive downtimes: Each operation must be scheduled either entirely
before the downtime or entirely after the downtime.

4. Changeovers: ijhlrZ units of changeover time need to be scheduled between the

completion of operation ijO and the start of operation hlO if hlO is scheduled directly

after ijO on resource rR , i.e. in this case the starting time of hlO must be at least the

completion time of ijO plus ijhlrZ .

5. Routing constraints: We have a set FR of forbidden resource pairs. If the pair
},{ vr RR),(RRR vr ∈ is included in the set FR , it is forbidden to schedule an

operation ijO on resource rR and a job successor hjO of ijO on vR .

24

6. Fixed operations: We have a set fixedO of fixed operations. Each operation ijO in
fixedO has already been scheduled: The operation has been assigned to a set of

resources and it has been given a starting time ijS and completion time ijC . These
operations may not be rescheduled: They may not be reassigned to different
resources and their starting and completion times may not be changed. Each
operation in fixedO needs to be treated as a non-preemptive downtime on the set of
resources to which the operation is assigned. In other words: Any other operations
scheduled on the same resources must be scheduled either entirely before, or
entirely after, the fixed operation. Note that precedence relations may apply between
a fixed operation and the other operations belonging to the same job.

Objectives
Each job has a certain tardiness value jT that specifies the amount of time by which the

completion time of the job exceeds its due date. Let)(max ijij CC = be the completion time

of job jJ . The tardiness of job jJ is then determined as ()0,max jjj dCT −= .

In this scheduling problem, the objective is to minimize the total tardiness of the jobs, i.e.

∑ j jTmin .

Before we proceed with the next section, we give a number of additional comments with
respect to the scheduling problem:

• In the scheduling problem, we have changeover time ijhlrZ between two adjacent

operations ijO and hlO on resource rR . In Section 4.1, we mentioned that in practice

we sometimes require a set of resources CR to perform the changeover. For
instance, we may require an operator to perform the changeover. In this scheduling
problem, however, we do not consider changeovers with resource requirements. In
other words: The set CR is always empty.

• In addition to the constraints previously specified, we also implicitly consider the
following set of constraints in the general scheduling problem:

o Eligibility constraints: We incorporate eligibility restrictions in the problem when
we specify the set of resources included in the subset ijmkR . The resources

included in the subset are suitable resources for resource demand ijmkU ,
whereas the remaining resources are not suitable.

o Multi-resource operations: Since we are able to specify operations with more
than one resource demand, we are able to incorporate multi-resource
operations in the scheduling problem.

o Resource-dependent processing times: In the scheduling problem we are able
to specify multiple modes in which an operation can be performed. For each
mode, we can specify a different processing time. As a result, we can create
resource-dependent processing times by specifying a different mode for each
production speed in which a resource can operate. Subsequently, by including
only those resources that operate on the right speed in the subset ijmkR , we
ensure that an operation is only assigned to the resources that actually
operate at that specific speed.

25

5.2 Characterization of a solution for the scheduling problem
In the previous section, we described the general scheduling problem. There, we mentioned
that we need to make three different types of decisions:

1. Determining the mode in which each operation is performed.
2. Determining the resources on which each operation is performed.
3. Determining a starting and completion time for each operation.

We thus obtain a solution for our scheduling problem by making three choices for each
operation:

1. The mode in which the operation is performed.
2. The set of resources to which the operation is assigned. The chosen set of resources

depends on the mode in which the operation is performed, because the mode
determines the set of resource demands for the operation.

3. The position that the operation has on each resource to which it is assigned. The
positions of the operations on a resource specify the sequence in which those
operations are performed on that resource. If an operation has position 5, we thus
know that the operation is the fifth operation in the sequence on that resource. Based
on the position of the operation, we can determine which operations need to be
completed before the operation can be scheduled: For instance, if operation ijO has
position 5 on a resource, we know that we need to schedule the operations on
positions 1 to 4 on the resource before operation ijO . Since the operation only
obtains a position on the resources to which it is assigned, we need to know to which
set of resources an operation has been assigned before we can assign positions to
the operation on these resources.

Once we have specified these issues for each operation, we are able to create a schedule:
Since we have assigned each operation to a set of resources, we are able to determine
which operations are scheduled on a specific resource. In addition, we can determine the
sequence in which the operations are performed on each resource by looking at the positions
that operations have on that resource: We first schedule the operation with position 1 on the
resource, subsequently we schedule the operation with position 2, and so forth.

Once we know the assignment of operations to resources and the sequence in which
operations are performed on each resource, we can assign starting and completion times to
each operation ijO by finding the first time interval in which ijO can be scheduled. Naturally,
this time interval must be after the completion time of the job predecessors and resource
predecessors of ijO . In addition, we must ensure that the set of restrictions in Section 5.1 are

satisfied: For instance, there must be sufficient time between the start of ijO and the
completion of a job predecessor to incorporate the minimal time lag between the two
operations. Similarly, there must be sufficient time to perform a changeover between ijO and
each of its resource predecessors. In addition, the preemptive and non-preemptive
downtimes on resources must be considered when determining both the start and the
duration of the interval.

We characterize a solution q to the general scheduling problem as follows:
),,(qqq WAMq = . We now describe each of the elements of which q is comprised:

1. We have a function)(ijq OM that assigns a mode to operation ijO in solution q . This

means that qM specifies the mode assignment of solution q .

26

2. We have a function),(qijq MOA that specifies a set of resources for each resource

demand ijmkU that ijO has when it is performed in the mode obtained through

)(ijq OM . This means that qA specifies for each operation in q the set of resources
assigned to that operation to satisfy the resource demands that the operation has
corresponding to the mode assigned to the operation in qM .

3. We have a function),,(qqijq AMOW that specifies for each resource rR assigned to

ijO by)(, qijq MOA the position on which ijO is processed on rR . This means that qW
specifies for each resource RRr ∈ the sequence in which the operations assigned to

rR in q are scheduled.

Once the mode assignment, the resource assignment, and the sequence are fixed for each
operation, we can develop a schedule. Let)(ijOP specify the direct predecessors of

operation ijO . In other words: The set)(ijOP contains the operations that must be

scheduled before ijO can be scheduled.)(ijOP consists of two kinds of operations:

a) The job predecessors of ijO .

b) The resource predecessors of ijO on each resource rR in),(qijq MOA . The resource

predecessor of ijO on rR is that operation that has a position directly in front of

operation ijO on rR .

Once)(ijOP is known for each operation, we can actually assign starting and completion
times to the operations. We do so by repeating the following steps until all operations have
been scheduled:

1. Choose an unscheduled operation ijO for which the set)(ijOP is empty or for which
all direct predecessors have already been scheduled.

2. Calculate the earliest possible starting time ijES for ijO by only considering the

predecessors of ijO . This time must be at least jr , the release date of the job to

which ijO belongs. For)(ijhl OPO ∈ let ijhlOES)(be the earliest possible starting

time of ijO with respect to only hlO . If hlO is a job predecessor (i.e. jl =), then

ijhlOES)(is equal to hlC plus the minimal time lag between hlO and ijO . If hlO is a

resource predecessor, then ijhlOES)(is defined equal to hlC . ijES then can be

calculated as })(max,max{
)(ijhlOPOj OESr

ijhl∈
. Note that we do not include any changeover

time in ijhlOES)(. We consider the changeover times in step 3.

3. Determine the actual starting and completion time of ijO :
a. Create an aggregate availability profile that specifies the intervals of

downtime, both preemptive and non-preemptive, present on each of the
resources in),(qijq MOA . Based on this profile, we can determine the
intervals of time in which all resources are available. We create the aggregate
availability profile by considering the individual availability profiles of each
resource in),(qijq MOA . The availability profile for a resource specifies the
downtimes, both preemptive and non-preemptive, present on the resource.

27

The non-preemptive downtimes can either be incidental downtimes or fixed
operations.

b. Determine the earliest time interval]','[ijij cs after ijES that does not include a

non-preemptive downtime on any of the resources in),(qijq MOA in which all

resources),(qijqr MOAR ∈ have ijmp units of simultaneous uptime. The

starting time ijS of ijO is then equal to the start 'ijs of the interval and the

completion time ijC is equal to the end 'ijc of the interval. By considering the
aggregate availability profile, we can determine when the resources in

),(qijq MOA have simultaneous uptime. When determining the earliest
interval, we must consider two factors:

i. There must be sufficient uptime before the time interval to schedule a
possible setup between ijO and the previous operation on that

resource (either a fixed operation or the resource predecessor of ijO
on the resource).

ii. There must be sufficient uptime after the time interval to schedule a
possible setup between ijO and the next fixed operation on the
resource (since we only schedule an operation once all its
predecessors have been scheduled, it is not possible to have a setup
between ijO and a resource successor of ijO).

For clarity, we now present an example to demonstrate how to calculate starting and
completion times of operations:

We have two operations, 11O and 22O , that both need to be scheduled on an operator and a

machine. Operation 11O has no predecessors and can start at time 0. Operation 22O has two

predecessors: Resource predecessor 11O and a job predecessor. Operation 22O can start at time 6 if
we only consider its job predecessor. The processing time of both operations is 1 day.

Both the operator and the machine have periods of preemptive and non-preemptive downtime. In
Figure 5.1, we present the availability profiles of both resources. The timeline is given in days in the
figure:

Machine

Operator

50 1 9 113

FO 1 FO 3

FO 2DT

62 4 7 8 10

Machine

Operator

50 1 9 113

FO 1 FO 3

FO 2DT

62 4 7 8 1050 1 9 113

FO 1 FO 3

FO 2DT

62 4 7 8 10

Figure 5.1: An example to demonstrate the calculation of starting and completion times for operations.

In Figure 5.1, the periods of preemptive downtime are marked in dark grey. The first preemptive
downtime has a duration of 0.5 and is over the interval [0.25, 0.75], whereas the other three
downtimes have a duration of 0.25 each and are over the intervals [3.25, 3.5], [9.25, 9.5], and [10.25,
10.5]. The four blocks on the different resources indicate the non-preemptive downtimes: On the
operator, we have two fixed operations and on the machine we have one period of actual downtime
(indicated with DT) and one fixed operation (FO 2).

28

We schedule operations 11O and 22O as follows:

§ We first schedule operation 11O :

2. Since operation 11O does not have any predecessors, 11ES is equal to 0.
3. In Figure 5.1, we can see that there are three time intervals where neither resource

contains a non-preemptive downtime. These intervals are [0,1], [3,5], and [9,11]. We
cannot schedule 11O in [0,1], because the uptime in this interval is 0.5, which is smaller
than the processing time of the operation. In interval [3,5], we have a total uptime of 1.75,
which is greater than the processing time of 11O . However, we must also consider if we

have sufficient time to perform setups between FO 1 and 11O , between 11O and FO 3,

and between 11O and FO 2. Assuming that no setups are required, then the earliest

interval in which we can schedule 11O is [3,4.25]. This interval consists of the processing

time of 11O and the non-preemptive downtime of 0.25. 11O obtains a starting time 11S of

3 and a completion time 11C of 4.25.

§ Since we have scheduled 11O and the job predecessor of 22O , we are now able to schedule

22O :

2. 22ES is max(4.25, 6), so 22O cannot start before time 6.

3. The only possible interval in which 22O can be scheduled, is the interval [9,11]. If we

assume that a setup is required between FO 2 and 22O of 0.125, then the earliest interval

in which we can schedule 22O is [9.125, 10.625]. 22O obtains a starting time 22S of 9.125

and a completion time 22C of 10.625.

In Figure 5.2, we can see the resulting schedule. The scheduled operations are indicated by the light
grey boxes. The striped box between FO 2 and 22O is the setup between the two operations:

Machine

Operator FO 1 FO 3

FO 2DT

50 1 9 113 62 4 7 8 10

11O

22O

22O

11O

Machine

Operator FO 1 FO 3

FO 2DT

50 1 9 113 62 4 7 8 10

11O11O

22O 22O

22O 22O

11O11O

Figure 5.2: The resulting schedule

Note that we only construct schedules that are semi-active: Given a mode assignment, a
resource assignment, and a sequence, each operation starts as early as possible.

5.3 The critical set of an operation
In the remainder of this document, we frequently work with the critical set of an operation in a
schedule. In this section, we therefore describe what we mean by a critical set and we give
some definitions that we use often. We first give an intuitive definition of the critical set.
Subsequently, we give a more formal definition.

29

Intuitively, we define the critical set of an operation ijO as the set of relevant operations that

prohibit ijO from being scheduled at an earlier time. There are two kinds of operations in the

critical set of ijO :

1. Critical predecessors of ijO : A critical predecessor is an operation that directly

determines the earliest starting time of operation ijO . Each critical predecessor is

either a job predecessor or a resource predecessor of ijO .
2. Operations that directly or indirectly determine the earliest starting time of a critical

predecessor of ijO .

We determine the critical predecessors of ijO as follows: For each (job or resource)

predecessor hlO of ijO , we determine the earliest possible time ijhlOET)(that ijO can start

if we only consider hlO . For job predecessors we use a different way to calculate ijhlOET)(
than for resource predecessors:
§ For each job predecessor)(jlOhl = , ijhlOET)(is equal to the completion time of

hlO plus the minimal time lag between hlO and ijO .

§ For each resource predecessor hlO , we determine whether there are any non-

preemptive downtimes between the completion time hlC of hlO in the schedule q
and the starting time ijS of ijO in q . If so, ijhlOET)(is equal to the end time of last

non-preemptive downtime in the interval],[ijhl SC plus the setup time, if any, between

the downtime and ijO (the setup time may apply if the downtime is a fixed operation).

If there are no non-preemptive downtimes in the interval],[ijhl SC , then ijhlOET)(is

equal to the completion time of hlO plus possible setup time between hlO and ijO .

Once we have determined ijhlOET)(for each predecessor, we determine

})(max,max{
)(ijhlOPOj OETr

ijhl ∈
, which specifies the earliest possible starting time for ijO if we

only consider the predecessors of the operation and the release date of the job to which ijO
belongs. We define)(ijhl OPO ∈ to be a critical predecessor of ijO if and only if ijhlOET)(is

equal to this value. We now determine the critical set)(ijOCOS of operation ijO recursively
as the set of all its critical predecessors plus the critical set of these critical predecessors.

We now clarify the steps to determine)(ijOCOS by giving some examples.

For the first example, given in Figure 5.3, we use the following simple schedule consisting of three
jobs. A precedence relation applies between operation 11O and its job successor 21O . Similarly, there

is a precedence relation from 12O to 22O of job 2J . Operation 13O does not have any predecessors

and it has the release date of job 3J as starting time (indicated by the striped line in the figure).

30

O12

O22O21O13Resource A

Resource B O11

r3

Figure 5.3: An example schedule

In Figure 5.3,)(22OCOS is the set },{ 2113 OO . Operation 22O has two predecessors: Job

predecessor 12O and resource predecessor 21O . When comparing the two predecessors, we see that

21O has the latest completion time. Therefore, 21O is the only critical predecessor of 22O . Similarly,

operation 21O has one critical predecessor: Resource predecessor 13O .Since 13O does not have any

predecessors, we are done:)(22OCOS consists of operations 21O and 13O .

As we can see in the example, operations 12O and 11O are not a part of)(22OCOS , because neither

operation influences the earliest starting time of 22O or any operation on the critical set of 22O .

In a second example, given in Figure 5.4, we have a schedule that is similar to the first schedule. As in
the example in Figure 5.3, we have precedence relations between the operations of jobs 1J and 2J .

However, in this example we also have a minimal time lag between operations 11O and 21O . The
duration of the minimal time lag is given by the length of the arrow in Figure 5.4.

O12 O11

O22O21O13Resource A

Resource B

r3
Figure 5.4: A second example schedule

In the example of Figure 5.4,)(22OCOS is the set },,,{ 21131112 OOOO : As in Figure 5.3, 21O is the

only critical (resource) predecessor of 22O . In this case, however, 22O has both 11O and 13O as

critical predecessors, because 2111)(OET is equal to 2113)(OET . Operation 11O only has one

predecessor, operation 12O , which is also the only critical predecessor of 11O . Since both operations

12O and 13O do not have any predecessors, we have found all operations belonging to)(22OCOS .

Finally, we include an example to show the influence of non-preemptive downtimes on the critical set
of an operation. Again, we have a schedule that is similar to the schedules in the previous two
examples: We have precedence relations between the operations of jobs 1J and 2J . However, now
we also have a non-preemptive downtime on resource A (indicated by the grey block). The schedule is
given in Figure 5.5:

31

O12 O11

O22O21Resource A

Resource B

O13

r3

Figure 5.5: A third example schedule

In Figure 5.5,)(22OCOS is again the set },{ 2113 OO : As in the previous examples, 21O is the only

critical (resource) predecessor of 22O .When determining)(21OCOS , we again have operations 11O
and 13O as predecessors. In this case, however, 2111)(OET is equal to 11C , whereas 2113)(OET is

equal to the end time of the non-preemptive downtime. Since 2113)(OET is greater than 2111)(OET ,

13O is the only critical predecessor of operation 22O . As in previous examples, 13O does not have any
predecessors.

Note, that we do not consider any kind of non-preemptive downtime as a possible operation for
)(22OCOS : If the grey block had been a fixed operation, we still would not have considered it as a

possible operation to include in)(22OCOS . We choose not to consider fixed operations for the critical
set, because these operations cannot be rescheduled in any way: The operations cannot be
scheduled earlier in time and they cannot be scheduled on a different set of resources. Therefore, we
cannot adjust these operations so 22O can be scheduled earlier in time.

The critical set of an operation is relevant when we determine the set of operations in a
schedule that determine the schedule’s tardiness. We define this set of operations as the set
of bottleneck operations. Each bottleneck operation in the schedule directly or indirectly
determines the tardiness of the schedule. Therefore, to reduce the tardiness of a schedule,
we must ensure that at least one bottleneck operation in the schedule obtains an earlier
starting and completion time.

We distinguish two kinds of bottleneck operations:
1. Operations that directly determine the tardiness of a schedule: As we mentioned in

Section 5.1, we determine a schedule’s tardiness by determining the tardiness of
each job in the schedule. The tardiness of a job is determined by the completion time
of the latest operation that belongs to the job. The latest operation of each job thus
directly determines the tardiness of the schedule. We define the set qT as the set that
contains the latest operation of each tardy job in schedule q .

2. Operations that indirectly determine the tardiness of a schedule: In addition to the
operations in qT , the critical set of each operation in qT also influences the schedule’s
tardiness. As we mentioned before, the critical set of an operation prohibits that
operation from being scheduled earlier in time. In other words: The critical set of an
operation determines the starting time (and hence the completion time) of an
operation. Therefore, the critical sets of the operations in qT indirectly determine the
schedule’s tardiness.

As mentioned, we need to reassign or resequence at least one bottleneck operation in a
schedule if we want to decrease the tardiness of that schedule. In subsequent chapters we
demonstrate how the set of bottleneck operations is used in different scheduling approaches
for solving scheduling problems.

32

6. Approaches for solving the general scheduling problem
In the previous chapter, we defined the scheduling problem for which we develop a
scheduling approach. In this chapter, we focus on the different scheduling approaches to
solve this scheduling problem.

In Section 5.2, we mentioned that we need to make three different types of decisions to solve
the general scheduling problem:

1. We need to determine the mode in which each operation is performed.
2. We need to determine the set of resources on which each operation is performed.
3. We need to determine a starting and completion time for each operation.

The scheduling problem therefore contains three different subproblems:
1. The mode assignment problem: This is the problem of assigning each operation in

the scheduling problem to a specific mode. By solving this problem, we obtain qM .
2. The resource assignment problem: This is the problem of assigning each operation in

the scheduling problem to a set of resources to satisfy the operation’s resource
demands. By solving this problem, we obtain qA .

3. The sequencing problem: This is the problem of determining for each resource in the
scheduling problem the sequence in which the operations assigned to that resource
are processed. By solving this problem, we obtain qW .

As we previously mentioned, we are able to create a schedule once we have determined
qM , qA , and qW . The procedure to determine starting and completion times for the

operations in the schedule is given in Section 5.2.

When studying scheduling approaches found in literature, we thus need to focus on those
approaches that can be used to solve a scheduling problem that contains a mode
assignment problem, a resource assignment problem, and a sequencing problem. We did
not find a scheduling problem in literature in which all these subproblems need to be solved.
The scheduling problems found in literature that contain most similarities with the scheduling
problem of the previous chapter are:

1. Flexible shop scheduling problems: The general scheduling problem closely
resembles a general shop problem. Therefore, we consider these kinds of problems
in scheduling literature as well. We also consider the most extensive special case of
the general shop, namely the flexible job shop, because the flexible job shop also has
important similarities to the general scheduling problem of the previous chapter: In
the flexible job shop, (basic) precedence relations apply between operations
belonging to the same job. Therefore, a scheduling approach for this kind of problem
must consider the job predecessors of an operation when scheduling that operation.
Another important similarity to our scheduling problem is resource flexibility: In the
flexible job shop problem, each operation needs to be scheduled on one of the
different suitable resources. Therefore, scheduling approaches for this scheduling
problem must include a procedure to assign operations to resources.

2. Multi-mode resource-constrained project scheduling problems (MRCPSP): We also
consider MRCPSP, because this type of problem shows even stronger similarities to
our scheduling problem than the flexible job shop problem. In the MRCPSP, we again
have a set of jobs that consist of a number of operations (called activities in project
scheduling) between which general precedence relations may apply. In these
problems, each operation needs to be performed in one out of several possible
processing modes (ways), where a processing mode uniquely determines the
operation’s processing time and resource requirements. A set of resources, each with

33

a limited amount of capacity in each time period, is available to satisfy the resource
requirements of the operations (Kolish and Drexl, 1997). Two kinds of decisions need
to be made to solve a MRCPSP: First, each operation must be assigned to a
processing mode. Second, each operation must obtain a starting time. The most
important similarities between the MRCPSP and our scheduling problem are:

a. General precedence relations between operations: Operations in the
MRCPSP may have multiple job predecessors and job successors.

b. Multi-resource operations: The processing mode of an operation may specify
that an operation needs to be scheduled on multiple types of resources.

c. Resource flexibility: As in the general scheduling problem, we need to assign
each operation to a set of resources before we can determine starting times
for the operations. In the MRCPSP, the assignment of operations to resources
is done by choosing a processing mode in which the operation will be
performed. Note that the assignment of a mode to an operation in the
MRCPSP is not completely similar to the mode assignment in the scheduling
problem of the previous chapter: In that scheduling problem, we still need to
assign operations to a set of resources after having assigned the operation to
a mode. In the MRCPSP, in contrast, the set of resources on which an
operation needs to be scheduled, is fixed once we have assigned a
processing mode to the operation.

Both the flexible shop problems and the MRCPSP contain an assignment problem and a
sequencing problem: In the flexible shop problems the assignment problem consists of
assigning each operation in the flexible shop to a resource to process the operation, whereas
in the MRCPSP the assignment problem consists of assigning each operation in the
scheduling problem to a processing mode. By considering the scheduling methods used to
solve the assignment problem in these types of problems, we may be able to determine a
suitable method to solve the mode assignment and resource assignment problems in the
general scheduling problem of the previous chapter. We may also be able to determine a
suitable method to solve the sequencing problem by considering the methods used to solve
the sequencing problem in the flexible shop problems and MRCPSP: In both the flexible
shop and the MRCPSP, we need to determine starting and completion times for each
operation. Therefore, we might be able to use the methods for the sequencing problem to
determine positions for the operations in the general scheduling problem.

In addition to the flexible shop and MRCPSP, we also consider some special cases of these
problem types when looking for scheduling approaches in literature. The special cases that
we consider are the job shop scheduling problem (a special case of the flexible job shop
problem) and the singe resource-constrained project scheduling problem (RCPSP, which is a
special case of the MRCPSP). In both types of special cases, each operation has already
been assigned to a specific mode or a specific resource. As a result, these problem types do
not contain an assignment problem. However, we still consider these special cases because
scheduling approaches for these cases need to determine starting and completion times for
each operation. Therefore, we might be able to use these approaches to solve the
sequencing problem in the general scheduling problem.

When we consider scheduling approaches found in literature to solve the problem types
previously mentioned, we notice that the different scheduling approaches are based on one
of the following two main solution architectures:

1. The hierarchical architecture: In the hierarchical architecture, the assignment of
operations to resources and the sequencing of operations on the resources are
treated separately. First, the assignment problem is solved, in which operations are
assigned to a set of resources. In this problem, the sequencing of the operations is of
little or no importance. Once the assignment problem has been solved, the
assignment of operations to resources is considered fixed. The sequencing problem

34

is then solved for the given assignment (i.e. positions are determined for the
operations on the resources to which the operations have been assigned). This
structure is based on the idea of decomposing the original problem in order to reduce
its complexity.

2. The integrated architecture: Brandimarte (1993) refers to this structure as the
concurrent architecture. In the integrated architecture, the assignment and
sequencing problems are considered simultaneously: After assigning an operation to
a set of resources, the operation immediately obtains a position on each resource in
this resource set. This in contrast to the hierarchical architecture, where each
operation first obtains a resource assignment before the operations obtain positions
on their resource sets.

Irrespective of the structure used, each scheduling approach must assign each operation to
a set of suitable resources and determine a position for the operation on each resource to
which the operation is assigned. To do so, all scheduling approaches found in literature use
a set of basic algorithms. Therefore, the remainder of this chapter is as follows: In Section
6.1, we first discuss the basic algorithms that have been used in the different scheduling
approaches. Subsequently, we discuss the scheduling approaches themselves. In Section
6.2, we first discuss the scheduling approaches based on the hierarchical architecture. In this
section, we also mention the algorithms that different authors have used in the different
approaches. Then, in Section 6.3, we discuss scheduling approaches based on the
integrated architecture. Finally, in Section 6.4, we make conclusions on the suitability of the
different approaches and algorithms for the general scheduling problem introduced in the
previous chapter.

6.1 Algorithms mentioned in literature
We previously mentioned that all scheduling approaches consist of a set of basic algorithms.
In this section, we discuss the different basic algorithms that authors have used to create the
different scheduling approaches.

As we mentioned, we focus on those scheduling approaches that have been used to solve
(flexible) job shop problems, general shop problems, and (M)RCPSP’s. These different
problem types are all NP-hard problems if we wish to minimize the tardiness of the schedule
(Brucker, 1998). For these types of problems, no scheduling approaches have yet been
created to solve the problem to optimality in polynomial time. Since we focus on solving real-
life scheduling problems, we must limit the calculation time of the scheduling approach so it
can be used in practical settings. Therefore, we do not consider any exact scheduling
approaches in this assignment; we only focus on scheduling approaches based on heuristic
algorithms.

We consider two kinds of algorithms: Constructive algorithms and local search algorithms. A
constructive algorithm builds a schedule from scratch. A local search algorithm, in contrast,
takes an existing schedule and tries to improve upon this schedule. We first discuss the
constructive algorithms. Afterwards, we discuss local search algorithms.

Constructive algorithms
We have encountered a number of constructive algorithms in scheduling literature. The
algorithms that we have encountered most frequently are priority-rule-based algorithms, the
shifting bottleneck heuristic, truncated exponential algorithms, and multi-pass algorithms.

35

Priority-rule-based algorithms
Kolish and Padman (2001) mention priority-rule-based algorithms as algorithms that can be
used in scheduling approaches for the RCPSP and its multi-mode variant. Scheduling
approaches based on these algorithms work as follows: A partial schedule is extended in a
stage-wise fashion to generate a feasible schedule. In each stage, a set of operations is
chosen and these operations are scheduled on a set of resources.

Priority-rule-based algorithms are made up of two components: A schedule generation
scheme and a set of priority rules. The schedule generation scheme determines which
operations may be considered when determining the set of operations to be scheduled in a
specific stage. In other words: the generation scheme determines which operations belong to
the decision set in each stage. Subsequently, the priority rules are used to choose the set of
operations that will be scheduled in the stage. In the flexible job shop problem (FJS) and the
MRCPSP, priority rules are also used to choose the resource or mode to which the operation
is assigned.

Kolish and Padman mention two types of schedule generation schemes: The serial method,
(Kelley, 1963) and the parallel method (Bedworth and Bailey, 1982). In the serial scheme, we
choose one operation in each stage and we schedule this operation on a set of resources.
To choose which operation we will schedule in the stage, we create a decision set consisting
of all unscheduled operations that do not have any job predecessors or whose job
predecessors have all been scheduled. An important aspect of the serial scheme is that the
scheme does not focus on the time that an operation can actually be scheduled. In other
words: If we have two operations whose job predecessors have been scheduled, we include
both operations in the decision set even if one of the operations can be scheduled much
earlier than the other operation. As a result, we do not necessarily build up a schedule from
left to right: It may occur that we first schedule an operation ijO on a resource and that we

subsequently schedule an operation hlO before ijO on this resource.

When we create schedules with the parallel scheme, we focus both on the job predecessors
of an operation and the actual time that an operation can start when we create a decision
set. With this scheme, we construct a schedule from left to right: We first schedule the
operations that can start the earliest and we subsequently continue to schedule operations
that can start later in time. We reach a new stage in the parallel scheme as soon as we reach
a time *t where we could possibly schedule a new operation. There are different moments
when we can reach a new stage. Some possible moments are when a scheduled operation
is completed (in this case *t is equal to the completion time of the operation), when we
reach the end time of a non-preemptive downtime (*t is equal to this end time), or when we
reach the release date of a job (*t is equal to this release date). In each stage, we create a
decision set that consists of operations that meet two criteria:

1. The operation is unscheduled and it either has no job predecessors or it has job
predecessors that have been scheduled and completed by time *t .

2. We can actually schedule the operation at time *t on the set of resources to which
the operation is assigned. Here, we assume that it is known in advance to which
resources an operation is assigned.

Once we have created the decision set, we schedule a subset of the operations in the
decision set. We do so by repeating the following steps until the decision set is empty:

1. Choose one operation from the decision set and schedule the operation at time *t .
2. Remove all operations from the decision set that can no longer be scheduled at time

*t .

36

Once we have scheduled a subset of operations, we find a new value for *t and we proceed
to the next stage. We proceed in this way until we have scheduled all operations.

The procedure just mentioned for determining whether an operation belongs to the decision
set assumes that each operation has already been assigned to a set of resources. In the
scheduling problem of the previous chapter, however, the resource assignment for an
operation is not known in advance. As a result, we do not know to which resources an
operation has been assigned when we need to create a decision set. This problem also
applies when we need to solve a FJS problem or an MRCPSP. In scheduling literature, this
problem is solved by including an operation in the decision set if there is at least one
resource (in the FJS) or one mode (in the MRCPSP) on which the operation can be
scheduled at time *t . For the scheduling problem of the previous chapter we can use a
similar approach: We include an operation in the decision set if the operation can be
scheduled at time *t in at least one of its modes. This means that, for at least one mode,
there must be a set of resources to which the operation can be assigned that satisfies the
resource demands of the mode. In addition, it must be possible to schedule the operation at
time *t on this set of resources.

Once the decision set has been created in a stage, priority rules are used to actually choose
an operation from the decision set to schedule as the next operation. When the FJS problem
or the MRCPSP is solved, these rules are also used to choose a resource or mode to assign
the operation to. To solve the scheduling problem of the previous chapter, we need several
priority rules: One to choose an operation from the decision set, one to choose a mode in
which the operation is performed, and one to choose a set of resources to satisfy each
resource demand of the mode. Pinedo and Chao (1999) discuss different priority rules, but
they use the term ‘dispatching rules’. They make a distinction between basic and composite
dispatching rules, where a basic rule is defined as a function of attributes of operations,
resources, or both. Here, an attribute is any property associated with either an operation (e.g.
its due date) or a resource (e.g. the speed of the resource). A composite rule, on the other
hand, is a ranking expression that combines a number of basic dispatching rules. In a
composite rule, the overall priority of an operation is determined by the basic rules used and
their accompanying scaling parameters. The scaling parameter properly scales the
contribution of each basic rule in the total ranking.

In addition to the distinction between basic and composite rules, Pinedo and Chao also
classify priority rules in static and dynamic rules and local and global rules. Static rules are
not time-dependent. As a result, the priorities of an operation remain the same in every
stage. Dynamic rules, in contrast, are time-dependent. The priorities of an operation thus
change in every stage. An example of a dynamic rule is the minimum slack first rule: This
rule chooses the operation with the minimum amount of slack among the operations in the
decision set. The slack of an operation depends on the moment in time when the slack is
measured. We determine slack as follows: Slack = MIN(internal due date2 – processing time
– t ,0). Here, t specifies the moment in time when the slack is measured. For instance, we
wish to determine which operation from the decision set will be scheduled next on resource

rR . Assuming that rR becomes available at time t, the minimum slack rule determines the
slack of each operation in the decision set at time t. Subsequently, the rule chooses the
operation with the least amount of slack.

2 The internal due date of an operation specifies the latest moment in time that the operation can finish
such that the remaining operations of the job can be scheduled before the due date of the job. In other
words: If an operation

ijO is scheduled after its internal due date, then there will be at least one
operation gjO whose completion time will be later than the due date of job jJ .

37

Local and global priority rules differ in the kind of information each type of rule uses: A local
rule only uses information on the operations in the decision set or the resource to which the
operation is assigned. A global rule, in contrast, may use information on other operations or
other resources. In a job shop, for instance, we may consider an operation’s job successor
when we determine which operation will be scheduled as next operation: If the job successor
needs to be processed on a resource that is available immediately, we may choose to give
the operation a higher priority. On the other hand, if the successor needs to be processed on
a resource that is not available for processing soon (for instance, because a lot of operations
are already scheduled on the resource), we may choose to give the operation a lower
priority, since the successor cannot start any time soon.

Truncated exponential algorithms
Brandimarte (1993) mentions some general heuristic algorithms for solving the flexible job
shop problem. The truncated exponential algorithms are among the algorithm types he
mentions. These algorithms are derived from exact algorithms (e.g. branch and bound),
when the condition assuring optimality of the solutions is relaxed. One example of such an
algorithm is the beam search algorithm. This algorithm is derived from branch and bound. In
branch and bound, we (implicitly or explicitly) consider all solutions in the solution space and
we choose the solution with the best objective value. In beam search, in contrast, we only
consider the subset of the solutions in the solution space that seem most promising. From
this subset, we subsequently choose the best solution. To increase the probability of finding
the most promising solutions, the beam search algorithm uses a two-stage approach: First, a
set of criteria are used to roughly determine which solutions in the solution space have most
potential. The solutions that meet the criteria are retained, whereas the remaining solutions
are discarded permanently. We subsequently use a set of criteria to evaluate the remaining
solutions more thoroughly. The solutions that seem most promising after this evaluation are
kept. From this set of solutions we subsequently choose the solution with the best objective
value.

Shifting bottleneck heuristic
The shifting bottleneck heuristic of Adams et al. (1988) can be used for minimizing a
schedule’s makespan in the job shop environment. In the classical job shop, each operation
has been assigned to a resource. The scheduling problem is thus to determine a sequence
for the operations assigned to each resource. The shifting bottleneck heuristic solves this
scheduling problem by sequencing the operations on one resource at a time. In each step,
the heuristic identifies the bottleneck resource among the resources not yet sequenced and it
sequences the operations assigned to this resource. Subsequently, the algorithm locally re-
optimizes all previously sequenced resources. Both the identification of the bottleneck
resource and the local re-optimization of the sequenced resources are done by solving
single-machine scheduling problems.

To solve the classical job shop, the heuristic repeats the following steps until all resources
have been scheduled:

1. Determining the bottleneck resource among the resources not yet sequenced: To
determine the bottleneck resource, the heuristic takes the following steps:

a. For each not sequenced resource, the heuristic solves a single machine
problem of minimizing the makespan. In doing so, the heuristic considers the
job predecessor of an operation when determining the earliest starting time of
that operation. Note that the job predecessor gjO of an operation ijO may be
processed on a resource that has already been scheduled. In this case, the
operation sequence on that resource determines the earliest starting time of

gjO and, hence, the earliest starting time of ijO on its resource.
b. The resource with the largest makespan is considered the bottleneck

resource.

38

2. After having sequenced the operations on the bottleneck resource, the operation
sequences on each of the previously scheduled operations is re-determined, keeping
in mind the sequence on the new resource.

Schutten (1998) mentions that the shifting bottleneck heuristic can be extended to solve
more general scheduling problems than the classical job shop. For instance, the heuristic
can be extended to incorporate downtimes, changeover times, and multi-resource
operations. In addition, the heuristic can be used for other objectives than makespan
minimization.

Multi-pass algorithms
In the previously mentioned algorithms, only one schedule is constructed. Some of these
algorithms require very little computation time. Baker (1974) therefore suggests that the
procedure by which a single schedule is obtained, is repeated a number of times with some
simple variations. The best schedule then can be selected from the generated schedules.

Generally, two different approaches of multi-pass procedures have been proposed:
- One schedule generation scheme (i.e. a serial or parallel scheme) and different

priority rules are used. This approach is called the multi-priority rule approach. Baker
(1974) mentions an approach closely related to this approach, where a family of
appropriate rules are identified that are distinct only in terms of a single parameter.
The algorithm is now repeated for several parameter values and the best schedule is
then chosen.

- One scheduling scheme and one priority rule are used, but the choice made by the
priority rule is biased through a random device. This approach is called multi-pass
sampling. There are three basic variations of multi-pass sampling (Kolish and Drexl,
1996):

o Random sampling: This variation assigns the same probability to each item in
the decision set.

o Biased random sampling: This form of sampling biases the probabilities for
each item in the decision set by relating this probability to the priority values of
the items. A priority rule is used to create an ordered list of the items in the
decision set: The smaller the position of the item in the list, the higher the
priority that the item has. Subsequently, each item in the list is given a
probability that depends on its position in that list (Baker, 1974).

o Parameterized regret-based random sampling: In parameterized regret-based
random sampling, the selection probability assigned to an item depends on
the regret factor that the item has. The regret factor on an item specifies the
amount of ‘regret’ if the item is not chosen. Therefore the higher the regret
factor on an item, the greater the probability assigned to the item. Assuming
that an item with a higher priority should get a higher probability, we determine
the regret factor jr of item j as follows:)(min jjjj ppr −= . Here, jp is the

priority of item j . Subsequently, we calculate the probability of an item as

follows:
∑ +

+
=

j
j

j
j r

r
prob

)1(
)1(. Here, is a parameter that specifies the level of

bias: An of zero results in random sampling, whereas a large value of
results in a more deterministic choice. As we can see from the previous
equations, the algorithm considers the absolute difference in priority values
instead of the priority values themselves: The regret factor is equal to the
difference in priority values and this factor is the one used to determine an
item’s probability.

39

Local search algorithms
Hurink (-) mentions that local search algorithms are based on the idea of iteratively moving
through the set of feasible schedules. We move through the set of schedules by taking a
given schedule (which is called the current solution in scheduling literature) and choosing a
new schedule based on this given schedule (and possibly on previous schedules that have
been visited). The choice for a new schedule is restricted to schedules that are in some way
close to the given schedule. These schedules belong to the neighbourhood of the given
schedule and they are called the neighbours of the given schedule.

Once we have moved to the new schedule, this schedule becomes the new given schedule.
We then continue to move to other schedules in the solution space in a similar way until a set
of stopping criteria are met.

In scheduling literature, we have found a number of local search algorithms that are used in
scheduling approaches for the (flexible) job shop and (M)RCPSP. The algorithms that we
have encountered most frequently are the iterative improvement algorithm, simulated
annealing, threshold accepting, tabu search, and genetic algorithms. Note, that in the
remainder of this chapter, and in subsequent chapters, we refer to the given schedule as the
current schedule.

Iterative improvement
Papadimitriou and Steiglitz (1982) give an introduction in iterative improvement. However,
they refer to the algorithm as ‘local search’. The idea behind iterative improvement is that
only true improvements are accepted. In other words: We move from the current schedule to
a neighbouring schedule only if the objective function value of the neighbour is better than
the value of the current schedule. The algorithm is repeated with a new solution until no
improving candidate is found.

The iterative improvement algorithm just described has one important disadvantage: Since a
neighbour is only accepted if it has a better objective function value than the current
schedule, the algorithm stops as soon as it reaches a schedule that does not have any
neighbours with a better objective value. This schedule is called a local optimum. Often,
however, this local optimum is not the best schedule in the solution space (i.e. the global
optimum).

Simulated annealing
Van Laarhoven and Aarts (1987) created the simulated annealing (SA) algorithm as an
algorithm that is able to escape local optima. As we mentioned before, the iterative
improvement algorithm only accepts a neighbour if the neighbour has a better objective value
than the current schedule. The SA algorithm, in contrast, can also accept a neighbour if the
neighbour has a worse objective value than the current schedule. As a result, SA can escape
a local optimum and reach other areas of the solution space.

The basic SA algorithm is as follows: We start with an initial schedule. In every step, we
randomly choose a neighbour schedule 'q . If the objective value of 'q is better than the
objective value of the current solution q , we accept 'q and we move to 'q . Otherwise, we
accept 'q with a probability that depends on the deterioration of the objective function
value. The probability of acceptance is computed as e- /T. Here, is equal to)'()(qovqov − ,
with)(qov being the objective value of the current solution q , and T being a control
parameter (the “temperature”). During the course of the algorithm, T is gradually reduced
according to some cooling scheme. As a result, the probability of accepting a deteriorating
move decreases during the annealing process. The algorithm ends once T reaches a value
below a certain minimum temperature (i.e. the end temperature).

40

The Simulated Annealing algorithm has the following parameters:
1. An initial temperature: This is the temperature at the start of the algorithm.
2. The end temperature: The end temperature is the stop criterion in the algorithm. The

algorithm ends once the temperature becomes lower than this minimum temperature.
3. The Markov chain length: In the Simulated Annealing algorithm, we perform a number

of steps with the same temperature. The Markov chain length (MCL) specifies this
number of steps. Once this number of steps has been performed, we reduce the
temperature and subsequently we perform MCL steps with the new temperature.

4. Decrease factor: The decrease factor determines by how much the temperature is
reduced after MCL steps have been performed. To obtain a new temperature, the
current temperature is multiplied by the decrease factor. Therefore, the decrease
factor has a value between zero and one.

Threshold accepting
Ducek and Sheuer (1990) designed threshold accepting as a partially deterministic version of
the SA algorithm. As with SA, the algorithm randomly chooses a neighbour in every step.
The mechanism for accepting the neighbour solution, however, differs from SA: The
threshold accepting algorithm only accepts an inferior neighbour if the difference between its
objective function value and the value of the current solution is smaller than a threshold t.
The threshold is a positive control parameter that decreases as the number of iterations
increases and converges to zero. As with SA, the probability of accepting a deteriorating
move thus decreases in the course of this algorithm.

Tabu search
The tabu search (TS) algorithm is a local search technique that has been created by Glover
(1986). As with the SA and threshold accepting, this technique also tries to avoid getting
stuck in a local optimum. In TA, we try to avoid local optima by forbidding (or penalizing)
certain moves. The algorithm examines all solutions in the neighbourhood (or in a subset of
the neighbourhood when the neighbourhood is too big to be explored efficiently) and moves
to the best possible neighbour, even if this neighbour is not a better solution than the current
solution. To avoid cycling, a list, called the tabu list, is installed that contains a certain
number of the last solutions encountered. If a solution is in the list, the move to that solution
is forbidden. Alternatively, a characteristic or an attribute of the moves can be recorded.
These characteristics are used to develop aspiration criteria that determine which tabu
restrictions can be overridden, thus removing a tabu classification otherwise applied to a
move.

Genetic algorithms
Pinedo and Chao (1999) mention genetic algorithms as a general-purpose scheduling
algorithm. The algorithm has been developed by Holland (1975). Genetic algorithms view
solutions as individuals or members of a population. Each individual is characterized by its
fitness, which is measured by its objective function value. The genetic algorithm generally
starts with an initial population, which is comprised of a subset of feasible solutions. During
each iteration, the algorithm replaces the current population by a next population. The
current population can be changed in two ways: By mutation and by recombination or
crossover. A mutation is applied with a given probability to each solution in the current
population and it changes the solution slightly. A recombination, in contrast, produces a new
subset of solutions. This is done by choosing pairs of solutions from the current population
(i.e. parents) and for each pair two new solutions (i.e. children) are obtained by combining
the parents. Which pairs of solutions are chosen, depends on the fitness of the solutions: In
general, the solutions are assigned a probability based on their fitness (i.e. if they are ‘fitter’,
they have a higher probability of being chosen). Subsequently, the pairs of solutions are
randomly chosen.

41

From solutions obtained by mutation and recombination, a subset is subsequently chosen as
the new population. Often, the best k solutions are chosen to form the new population. The
population size often remains constant over time.

Pinedo and Chao mention that the use of genetic algorithms has both advantages and
disadvantages. One advantage of the algorithm is that it can be applied to a problem without
having to know much about the structure of that problem. Also, the algorithm can be coded
very easily and it often gives good solutions. However, compared with more rigorous
problem-specific approaches, the algorithm might need a relatively large amount of
computation time to obtain comparable solutions.

6.2 Scheduling approaches based on the hierarchical architecture
As mentioned at the beginning of this chapter, the assignment of operations to resources and
the sequencing of operations on the resources are treated separately in the hierarchical
architecture. As a result, scheduling approaches based on this structure consist of two
different steps:

1. A step in which the assignment problem is solved: In this step, the approach
determines an assignment qA for the schedule. Here, the approach does not focus,

or barely focuses, on determining a sequence qW for the operations assigned to the
different resources.

2. A step in which the sequencing problem is solved: In this step, the approach assumes
that the assignment qA of operations to resources is known. Based on this
assignment, the approach now determines the positions that each operation will
obtain on the resources to which that operation has been assigned.

As we mentioned in Section 5.2, we must have an assignment qA before we are able to

specify qW . As a result, scheduling literature considers the assignment problem as the higher
level problem that needs to be solved. The sequencing problem is the lower level problem
that can only be solved once an assignment has been specified.

Schedule approaches based on the ‘pure’ hierarchical architecture solve the assignment
problem by only specifying qA . In other words: The approach does not specify a sequence

qW for the schedule. This form of the hierarchical architecture has the important
disadvantage that we cannot determine how an assignment affects the objective value of a
schedule: In the scheduling problems that we consider in scheduling literature and the
scheduling problem of the previous chapter, the objective is either to minimize the makespan
of the schedule or to minimize the tardiness of the jobs in the schedule. To determine the
quality of an assignment on either type of objective value, each operation in the schedule
must be given a completion time. To determine the completion times for the operations,
however, the sequence qW for the schedule must have been determined first.

To determine the quality of an assignment qA , we thus might need to solve the sequencing
problem for that assignment. As we previously mentioned, the sequencing problems that we
consider are NP-complete problems: Both the job shop problem and the RCPSP are NP-
complete if we wish to minimize tardiness. Since we focus on solving practical problem
instances (i.e. instances that tend to be large), we expect it to be very time-consuming to
solve the sequencing problem for each possible assignment. In scheduling literature, authors
therefore choose to evaluate each assignment qA by using a simple method)(qsimple Af to

42

solve the sequencing problem for the assignment. The authors subsequently choose a set of
assignments that seem most promising and they solve the sequencing problem again for
these assignments. Now, however, the authors use a more extensive sequencing method

)(qextensive Af .

In the remainder of this section we describe the scheduling approaches based on the
hierarchical architecture that we have found in scheduling literature. We first describe the
general structures of which the scheduling approaches are comprised. Subsequently, we
give examples of hierarchical scheduling approaches that certain authors have used to solve
a certain scheduling problem. Here, we specify the general structure of the scheduling
approach and the algorithms that have been used to solve the assignment and sequencing
problems.

The general structure of hierarchical scheduling approaches
Brandimarte (1993) mentions that scheduling approaches based on the hierarchical
architecture can be classified according to the information flow between the method used to
solve the assignment problem and the method used to solve the sequencing problem. We
refer to these flows as communication schemes. Brandimarte mentions two types of
schemes:

- The one-way communication scheme: In this scheme, the assignment problem is
solved first and subsequently the sequencing problem is solved once. When we solve
the assignment problem, we thus obtain a set of assignments. For each assignment

qA in the set we subsequently solve the sequencing problem.
- The two-way communication scheme: In this scheme, iteration takes place between

the method that solves the assignment problem and the method that solves the
sequencing problem. The schedules that we obtain when we solve the sequencing
problem for a given assignment qA can thus be used as input to create a new

assignment qA . For this new assignment we can again solve the sequencing
problem and so forth. We continue to iterate in this way until a certain stop criterion is
met.

When using a hierarchical architecture, we must thus determine whether we exit a
scheduling approach once we have solved the sequencing problem for a given assignment
or whether we determine new assignments based on the schedules created when solving the
sequencing problem.

In addition to determining a communication scheme, we must also specify how we determine
a set of assignments and for which assignments we subsequently solve the sequencing
problem. De Reyck and Herroelen (1999) have experimented with different possibilities. They
mention the following:

1. Truncated enumeration: Approaches based on truncated enumeration systematically
enumerate a number of assignments and subsequently solve the sequencing
problem for each assignment.

2. Random enumeration: Approaches based on random enumeration randomly
generate a number of assignments. As with truncated enumeration, the sequencing
problem is solved for each of the generated assignments.

3. Local search methods: These types of approaches start with an initial solution q .
Subsequently, they use local search to improve the schedule’s assignment: The
approaches create a neighbourhood of q , where each neighbour 'q has a different
assignment 'qA from qA . A simple procedure)('qsimple Af is used to determine a

43

sequence 'qW for the given assignment. From the neighbourhood, the schedule with
the best objective value is chosen and the process is repeated until a stop criterion is
met. The assignment *qA of the best schedule *q found is subsequently fixed, and a

more detailed procedure)(*det qailed Af is then used to solve the sequencing problem
for the given assignment. Some algorithms used for the local search are fastest
descent (the first schedule in the neighbourhood with a better objective value is
chosen), steepest descent (the best schedule in the neighbourhood is chosen), and
tabu search.

Examples of hierarchical approaches
In the previous section, we described some factors to consider when creating a hierarchical
scheduling approach. In this section, we give some examples of the hierarchical scheduling
approaches that different authors have used.

Brandimarte (1993) considers two hierarchical scheduling approaches to solve the flexible
job shop problem: One approach based on the one-way communication scheme and one
approach based on the two-way scheme. In the one-way approach, priority rules are used to
create an initial schedule q . Subsequently, the assignment qA of operations to resources is

considered fixed. The approach then uses a more detailed procedure)(det qailed Af based on
the tabu search algorithm to solve the sequencing problem for the given assignment. The
procedure uses a neighbourhood)(qN seq that contains schedules where a subset of
operations is chosen and each operation in this subset is swapped with an adjacent
operation. The remaining operations maintain the positions they had on their resources in q .
The procedure performs a fixed number of iterations, where each iteration consists of
creating a neighbourhood)(qN seq of the current schedule and choosing the non-tabu
neighbour with the lowest makespan. As we can see, the approach only creates one
assignment and it subsequently considers this assignment to be fixed. Brandimarte mentions
that the approach can be performed multiple times, each time with a different set of priority
rules to create an assignment. Then, the approach can be used to create schedules with
different assignment and then choose the schedule with the best objective value.

The approach based on the two-way scheme differs in two important ways from the one-way
approach. First, in the two-way scheme we are able to determine a new assignment

'qA after
solving the sequencing problem. Second, the approach now uses tabu search instead of
priority rules to solve the assignment problem. The two-way approach uses the following
procedure to solve the assignment problem: The procedure performs a predetermined
number of iterations. In each iteration, the procedure creates a neighbourhood)(qN assign by
reassigning one operation on a critical path3 of the current schedule q to a different resource
and giving this operation the position on the resource that reduces the makespan of the
schedule. All other operations remain assigned to the same set of resources as in q . Note
that each schedule 'q in)(qNassign obtains both a new resource assignment 'qA and a new

sequence 'qW . From)(qNassign the procedure chooses the non-tabu neighbour with the
lowest makespan. When the assignment problem is solved for the first time, priority rules are

3 Each schedule has one or more critical paths. Each critical path specifies a chain of operations that
determine the makespan of the schedule: If the completion time of any of the operations on the critical
path is increased, the makespan of the schedule will increase as well.

44

used to obtain an initial schedule. Later, the best schedule found when solving the
sequencing problem is used as the initial schedule. Like the one-way approach, the two-way
approach also uses)(det qailed Af to solve the sequencing problem for a given assignment.

Brandimarte mainly focuses on minimizing the schedule’s makespan. However, he mentions
that the approaches can easily be adjusted to minimize the total (weighted) tardiness of a
schedule. To use the approaches for tardiness minimization, however, we must not focus on
the operations on a critical path of the schedule. Now, we need to focus on the operations
that determine the tardiness of the schedule. For the scheduling problem of the previous
chapter we thus need to focus on the bottleneck operations as described in Section 5.3.

Fattahi et al. (2007) developed different hierarchical approaches for the flexible job shop
problem. All approaches work according to the same basic structure: First, a set of
neighbours is created of the current schedule, where each neighbour 'q has an assignment

'qA that differs from the current schedule. For each neighbour, the procedure)('qAf is

subsequently used to solve the sequencing problem, leading to a sequence 'qW for the
neighbour. One neighbour is subsequently chosen and this neighbour becomes the new
current schedule if a set of criteria are met. The process is then repeated until a specific stop
criterion is met and we exit the approach. All different approaches use a two-way
communication scheme: By solving the sequencing problem for a neighbour, we obtain a
complete schedule for which we can determine the makespan. We subsequently use the
makespan of a neighbour to determine which neighbour becomes the new current schedule.

Two different algorithms are used to determine the set of neighbours with a different
assignment: SA and TS. These two algorithms are also used to solve the sequencing
problem for each neighbour. By combining the different algorithms, we obtain the following
four approaches: An approach where SA is used to create the neighbours with different
assignments and solve the sequencing problem, an approach where TS is used to create
assignment neighbours and solve the sequencing problem, an approach where SA is used to
solve create assignment neighbours and TS is used to solve the sequencing problem, and
an approach where TS is used to create assignment neighbours and SA is used to solve the
sequencing problem.

Both SA and TS use the same assignment and sequencing neighbourhoods: To solve the
assignment problem, an assignment neighbourhood is created with schedules where one
operation is reassigned to a new resource and all other operations remain assigned to the
same resources as in the current schedule. The sequencing problem is solved by creating a
sequencing neighbourhood with schedules where one resource is chosen and the positions
of two adjacent operations on this resource are swapped.

An initial schedule q is obtained as follows: First, the resource assignment qA is determined
by assigning each operation to the resource on which the operation has the smallest
processing time. Subsequently, qW is determined by randomly assigning a position to each
operation on its resource.

Zribi et al. (2007) also propose a hierarchical architecture for solving the flexible job shop
problem. In this approach, both the assignment and sequencing sub-problems are solved
once, with the assignment problem being solved first. When solving the assignment problem,
the authors focus on minimizing the weighted sum of the workload on the critical resource
(i.e. the resource with the greatest workload) and the total workload on all resources. Here,
the workload of a resource is equal to the sum of the processing times of the operations
scheduled on that resource. To solve the assignment problem, the authors first create an

45

initial assignment by using the localization approach. The idea behind this approach is to
assign each operation to the least loaded resource, i.e. the resource with the smallest
workload after including the processing time of the new operation. The assignment is
subsequently improved by using tabu search. A neighbourhood is created by reassigning
one operation to the resource that leads to the best schedule with respect to workload
minimization.

By solving the assignment algorithm, the authors obtain an assignment qA . This assignment
is subsequently used as input when solving the sequencing problem. The authors now focus
on makespan minimization and they use a hybrid genetic algorithm to solve the sequencing
problem. An initial set of schedules (i.e. an initial population) is created that consists of two
types of schedules: Schedules created by using different priority rules and schedules created
by randomly assigning positions to operations. Each schedule q is stored as a list

},...,{ hlij OOd = that specifies the sequence in which the operations are performed: The
schedule is obtained by scheduling the operations in the order in which they are found in the
list.

In each iteration, the authors obtain a new population as follows: First, they obtain a new set
of schedules by mutation and recombination of the current set of schedules. A mutated
version of schedule q is created by taking an operation ijO from list d and giving the
operation a new position in the list. This position must be between the positions that the job
predecessor and job successor of ijO have in the list. In recombination, two schedules are

combined to form two new schedules: In the list 'ad that represents the new schedule 'aq ,

there is one job whose operations have the same positions in 'ad as they had in ad . The
other operations are assigned to the remaining positions in the list according to the order that
these operations have in bd : If an operation ijO has an earlier position in bd than an

operation hlO , then ijO will also have an earlier position than hlO in 'ad . Consider the
following example: We have two schedules, represented by the lists

},,,,,,,{ 2313313221221211 OOOOOOOOda = and },,,,,,,{ 2332133121221112 OOOOOOOOdb = . A
possible schedule that we can create through recombination is the schedule, represented by

},,,,,,,{' 2332311321221211 OOOOOOOOda = . In 'ad , the operations of job 1J have the same
positions as in ad . The remaining operations need to be performed in the following order:

2332132212 OOOOO →→→→ , which is the order that the operations have in bd . Operation

12O thus obtains the first free position (position 2), operation 22O obtains the next free
positions (position 3), and so forth.

Once the authors have obtained a new set of schedules, they apply iterative improvement to
the schedules obtained through recombination to obtain the new population. They create a
neighbourhood by taking an operation on a critical path of the schedule and swapping this
operation (if possible) with its critical resource predecessor.

De Reyck and Herroelen (1999) use a hierarchical architecture for solving the multi-mode
resource-constrained project scheduling problem with generalized precedence constraints.
They develop several scheduling approaches, amongst others approaches based on
truncated and random enumeration, steepest descent, and tabu search. A more detailed
explanation of each approach is given in the previous section. In all cases, an initial
assignment is obtained by assigning to each operation the mode with the smallest
associated duration. For solving the resource-constrained problem (i.e. the sequencing
problem), a truncated version of branch and bound is used.

46

The different procedures are compared with each other for several problem cases and the
authors are able to conclude that tabu search consistently performs better than other
procedures.

6.3 A scheduling approach based on the integrated architecture
In scheduling literature, we have also found approaches based on the integrated
architecture. Here, we discuss the approach used by Dauzère-Pérès et al. (1998) to solve a
practical flexible job shop. In this job shop, each operation may need several resources to be
performed and each resource may be selected from a given set of candidate resources.
Also, each operation has a set of job predecessors and a set of job successors. The authors
propose a neighbourhood where one operation on a critical path is moved from its current
position between operations ijO and hlO to a position between two different operations on a
(possibly different) resource. The operation is reinserted in such a way that a feasible
schedule is obtained. This neighbourhood structure is used to perform tabu search.

The authors generate an initial solution by using a two-step procedure: First, they assign the
operations to the resources in order to balance the workload on each resource. They then
develop a feasible schedule by using a FIFO dispatching rule. With tabu search, neighbours
are subsequently developed and the best neighbour is chosen. The tabu list is then updated
with a record that consists of three elements: The moved operation, its predecessor, and the
resource on which the operation is scheduled.

6.4 Evaluation of found literature
As mentioned at the beginning of this chapter, the scheduling approach that we use needs to
solve the scheduling problem mentioned in Chapter 5. In this section, we therefore evaluate
the different approaches and algorithms found in literature and determine which seem to be
most promising for our scheduling problem.

When comparing the hierarchical architecture to the integrated architecture, we can conclude
that the hierarchical architecture seems the most promising for our scheduling problem. This
is because the hierarchical architecture can be adjusted more easily to different scheduling
situations: In Section 4.3, for instance, we concluded that many (potential) PLANWISE
customers operate in an equipment environment. In such an environment, operations have
fixed time windows. As a result, it is only relevant to solve the assignment problem in such a
case. In the integrated architecture, in contrast, both sub-problems are combined into one
problem. Therefore, it is more difficult to easily incorporate different scheduling situations.

As previously mentioned, hierarchical architectures either use a one-way or a two-way
communication scheme. We think that for our scheduling problem it is more suitable to use a
two-way scheme instead of a one-way scheme. We expect to find better solutions with this
scheme compared to the one-way scheme: As we mentioned before, we solve the
sequencing problem for a given assignment qA . As a result, we reduce the solution space

when we solve the sequencing problem to those schedules that have assignment qA . Since
we are not allowed to iterate between sequencing and assignment in the one-way scheme,
we remain stuck in a specific part of the solution space once we have chosen an assignment.
In the two-way scheme, however, we avoid this problem: Now, we are able to iterate
between assignment and sequencing. As a result, we are able to create a new assignment

qA based on the results of the sequencing step. We can then use this new assignment to
reach a different part of the solution space. In other words: When we use the two-way

47

scheme, we are still able to reach different kinds of assignments (and thus different areas of
the solution space).

In addition to choosing a communication scheme, we must determine for which assignments
we choose to solve the sequencing problem. For instance, we could choose to solve the
sequencing problem for all assignments, or we could choose a set of assignments in a
systematic way and subsequently solve the sequencing problem for this set of assignments.
De Reyck and Herroelen (1999) mentioned three possibilities for making this choice, which
have been described in Section 6.2. Of the different possibilities we prefer the local search
method: With this method, we can use a simple procedure)(qsimple Af to determine a

sequence qW , and hence a schedule, for each a assignment qA . We can subsequently
compare different assignments to each other by looking at the objective values for the
resulting schedules. We can thus choose the most promising assignments based on the
objective values that we can reach with the assignment. Subsequently, we can use a
detailed procedure to solve the sequencing problem for the promising assignments.

As we mentioned in Section 6.1, we have found a number of algorithms that are used in
methods to solve the assignment problem or the sequencing problem. In Section 5.1 we
mentioned that we require a scheduling approach to solve a modified general shop
scheduling problem. Therefore, we require a generic algorithm (i.e. the algorithm should not
only be suitable for a job shop problem). In addition, the algorithm should be flexible, so it
can be easily adjusted to the situation at a specific customer. Based on the literature study,
we conclude that the most suitable algorithms to meet these demands are local search
algorithms and multi-sampling algorithms. These types of algorithms are not problem
specific: In scheduling literature, they have been used to solve (flexible) job shops, practical
general shops, and (M)-RCPSP. In addition, these types of algorithms have also been used
to optimize a schedule on different types of objective functions. For instance, these types of
algorithms have been used for makespan minimization and tardiness minimization. We thus
know that these types of algorithms can be used to solve scheduling problems with different
types of constraints and objective functions. The different algorithm types can also be
adjusted easily to different scheduling problems, because the algorithm types are all very
generic. If, for instance, we use a method based on local search and we wish to adjust this
method to a different scheduling problem, we must only adjust the procedure used to create
a neighbourhood. However, the structure of the method remains intact: In each iteration we
still choose one neighbour from the neighbourhood of the current schedule and we move to
this neighbour if certain criteria are met. Similarly, in methods based on multi-sampling
algorithms, we only need to adjust the procedure to create a single schedule. The scheduling
approach, however, still consists of creating a number of schedules and subsequently
choosing the best schedule created.

Of the different local search algorithms, we prefer the Simulated Annealing (SA) and Tabu
Search (TS) algorithms for our scheduling problem. The greatest advantage of these
algorithms is that they provide possibilities for escaping local optima. Algorithms like iterative
improvement and threshold acceptance, in contrast, have less (or no) possibilities to
examine the complete solution space. In addition, SA and TS can be implemented relatively
easily and they can be used for solving both the assignment and the sequencing
subproblem. Finally, we prefer these algorithms over the genetic algorithm, because they are
easier to explain and understand.

In addition to local search algorithms, we think that multi-sampling algorithms might also be
suitable for our scheduling problem. Like local search algorithms, multi-sampling algorithms
are very flexible: They can easily be adjusted to incorporate different scheduling situations.
We can use such algorithms, for instance, to optimize schedules on different criteria. In
addition, we can incorporate practical constraints relatively easily in these algorithms.

48

Truncated exponential algorithms, in contrast, are highly problem dependent. For these kinds
of algorithms we thus require more effort to adjust the algorithm to a different scheduling
situation. We also prefer multi-sampling algorithms to the shifting bottleneck heuristic: Both
kinds of algorithms are able to incorporate many different practical constraints. We think,
however, that we can incorporate more kinds of practical constraints in multi-sampling
algorithms than in the shifting bottleneck heuristic. For instance, in the general scheduling
problem we have multi-resource operations. Since resources may have different periods of
preemptive downtime, we must consider all resources in a set S simultaneously in order to
schedule an operation on the resources in S 4. In the shifting bottleneck heuristic, however,
we solve a scheduling problem by solving a number of single-machine problems. The
heuristic is thus not able to consider multiple resources simultaneously.

Of the different multi-sampling variants, we prefer the regret-based random sampling (RBRS)
variant, because it is the most flexible variant: By adjusting the bias parameter we can
create both situations in which a item is chosen randomly from the decision set and
situations in which the item with the highest regret value has by far the greatest probability of
being chosen. We also prefer RBRS, because the variant looks at the difference between
priority values instead of the priority values themselves. The scheduling approach should be
able to solve different scheduling situations. Since we expect that operations will have
different priority values in different scheduling situations, we do not want the height of priority
values alone to influence the outcome of the algorithm.

Like priority-rule based algorithms, the RBRS algorithm requires a schedule generation
scheme. Both the serial and the parallel generation scheme are suitable for our scheduling
problem. The serial scheme, however, has the advantage of being the simplest scheme to
implement: When determining a decision set for the next operation to schedule, we only
need to determine whether the operation’s job predecessors have been completed. For the
parallel scheme, in contrast, we also need to determine whether the operation can be
scheduled at a time t . For the general scheduling problem we thus need to determine if
there is at least one mode in which the operation can start at time t . To determine whether
an operation ijO can start at time t in mode ijmV , we need to determine whether there is a

set of resources S on which we can schedule ijO at time t , such that all resource demands

of ijmV are satisfied. In the general scheduling problem, however, each resource has a
calendar that specifies the periods of preemptive downtime on that resource. If all resources
work according to the same calendar, we are sure that we can schedule operation ijO on the

set S at time t if we can schedule ijO on each resource in S at time t . If the calendars of

the resources differ, however, a situation may occur where ijO can be scheduled at time t
on each resource in S , but that ijO still cannot be scheduled on the set S at time t .
Consider the following example:

We need to determine whether operation ijO can be scheduled at time 1. Operation ijO has a

processing time of 2. One possible set S on which we can schedule ijO consists of resource A and
resource B. Figure 6.1 gives the availabilities of the two resources. Resource A has the following
intervals of preemptive downtime (indicated by the grey areas): [2,3] and [4,5]. Resource B has
preemptive downtime in the interval [2.5, 3.5] and a fixed operation that is scheduled at time 5.

4 In Figure 6.1, we give an example to demonstrate that we must consider all resources in set S
simultaneously to determine whether an operation can be scheduled on that set.

49

71 2 5

Fixed op.Resource B

Resource A

63 4

Figure 6.1: The availabilities of resource A and resource B.

As we can see in Figure 6.1, operation ijO can start on resource A at time 1. ijO then finishes at time

4. Similarly, operation ijO can start on resource B at time 1 and then finish at time 4. However, it is not

possible to schedule operation ijO on resource A and resource B at time 1: ijO can only be

processed if both resources are available. Therefore, to schedule ijO on time 1 on both resources, the

resources must have at least 2 units of uptime that take place simultaneously in the interval [1,5] (ijO
must be completed before time 5, because it may not be scheduled over the fixed operation on
resource B). When we consider the periods of simultaneous uptime, we notice that the resources only
have 1.5 units of uptime in interval [1,5] (the resources are available in intervals [1,2] and [3.5,
4]).Thus, ijO cannot be scheduled on set S at time 1.

In practical scheduling situations, we expect different resources to have different calendars.
We thus need to consider the resources in S simultaneously to determine whether ijO can
be scheduled on set S at time t . Since we need to consider all resources in the set
simultaneously, it may be a time-consuming process to determine whether ijO can be

scheduled in mode ijmV at time t : There may be many possible sets of resources that can

satisfy the resource demands of ijmV . Each set must be considered separately to determine

whether ijO can be scheduled on that set at time t . In addition, the calculation time also
increases as the number of resources in a set S increases.

For the general scheduling problem it can thus be time-consuming to determine whether an
operation can be scheduled at time t and, hence, to create a single schedule. Since we
develop many different schedules in the RBRS algorithm, it must not take a lot of time to
develop a single schedule. A parallel scheme, however, might still be interesting in the future:
In the parallel scheme, there is a greater focus on using the available free capacity of
resources. As a result, schedules obtained with a parallel scheme will probably contain less
idle time on resources compared to schedules obtained with a serial scheme.

50

7. Created scheduling approaches
In this chapter, we discuss the scheduling approaches that we use to solve the general
scheduling problem mentioned in Chapter 5. We use two different approaches to solve the
scheduling problem: An integrated approach based on regret-based random sampling
(RBRS) and a hierarchical architecture based on local search algorithms.

We use an integrated approach based on RBRS, because certain PLANWISE versions
already contain an optimizer based on this scheduling approach. This approach has thus
already been used to solve different practical scheduling problems. Based on our findings in
the literature, we also develop and implement an alternative approach for scheduling based
on the hierarchical solution approach. In this approach, we solve both the assignment
problem and the sequencing problem by using local search algorithms.

As mentioned in Section 2.3, the integrated approach serves as our benchmark approach:
We compare the schedules obtained by this approach to the schedules obtained by using the
hierarchical architecture.

The remainder of this chapter is as follows: We first discuss the integrated approach in
Section 7.1 and 7.2 and subsequently we discuss the hierarchical approach in Sections 7.3
and 7.4. In Sections 7.1 and 7.3, we present the general structure of the different
approaches: Here, we explain the idea behind the approaches and we specify in general
terms how the approaches work. Then, in Sections 7.2 and 7.4, we discuss the actual
implementation of the two approaches: Here, we specify, amongst others, the neighbourhood
structures that we use and the algorithms on which the scheduling approaches are based.

When creating the different approaches, we assume that each operation is performed in a
default mode. This mode does not change during the execution of the approach. Therefore,
when describing the approaches, we do not focus on assigning or reassigning an operation
to a different mode.

7.1 A general description of the integrated approach with RBRS
In the integrated approach based on RBRS, a number of different schedules are generated.
The idea behind the approach is that it takes relatively little computation time to generate one
schedule. As a result, we can generate multiple schedules and subsequently choose the best
one.

We generate a single schedule by using a constructive procedure. In this procedure, we use
the RBRS algorithm at decision points to choose an item from the decision set. Each item in
the decision set is assigned a weight that determines its probability of being chosen. Since
an item is chosen randomly at each decision point, a different schedule can be obtained if
the procedure is performed multiple times.

The approach has the following general structure:
• Set k to 1
• Repeat the following steps until k > n (a fixed value):

o Develop a schedule q and calculate its objective value.
o If the objective value of q is better than the objective value of the best

schedule found so far, store q as the new best schedule.
o Increase k by 1.

51

To develop a single schedule q , the following steps are repeated until all operations have
been scheduled or until we are sure that the partial schedule will have an objective value that
is at least as great as the objective value of the best schedule found so far:

1. Choose an operation ijO to schedule next:
a. Determine a decision set D of those operations that may be scheduled as the

next operation.
b. Assign to each operation in D a weight and determine for each operation the

probability of being chosen.
c. Randomly choose an operation from D based on the probabilities of the

operations in D .
2. Determine a resource assignment),(qijq MOA for ijO .

3. Determine a position),,(qqijq AMOW for ijO on each resource in),(qijq MOA .

4. Calculate ijS and ijC for operation ijO .
5. Determine the objective value of the partial schedule: The objective value of the

partial schedule is equal to ∑ j jT for all jobs whose operations have all been

scheduled.

7.2 Implementation details of the integrated approach
In this section, we specify the details of the version of the integrated approach that we have
implemented in PLANWISE.

To create a single schedule, we use a serial generation scheme in combination in RBRS. In
Section 6.4, we compared the serial scheme to the parallel scheme. There, we concluded
that both schemes are suitable for the general scheduling problem, but that we require less
computation time when we use the serial scheme to create a schedule. We therefore choose
to use a serial scheme in this approach.

We use the RBRS algorithm to choose items from the different decision sets. To choose
operations from the decision set, we assign each operation a weight that is equal to the latest
starting time of that operation. We determine the latest starting time of an operation ijO as

follows: ijijij pdlst −= . In this equation, ijd is the internal due date of ijO and ijp is its
processing time. As we mentioned in Chapter 5, we want to minimize the total tardiness of
the jobs. Therefore, we give the operation with the smallest latest starting time the highest
regret value. By doing so we try to ensure that the operations that need to be scheduled
earliest are scheduled before the operations that need to be scheduled later in time.
Similarly, to choose a resource from the resource decision set, we assign each resource a
weight equal to the earliest time that the operation can be scheduled on that resource. In
determining this earliest time we also consider any changeover time that might need to take
place between the operation and its resource predecessor on that resource. By assigning
weights this way, we try to find a set of resources on which the operation can be scheduled
as soon as possible.

In Section 7.1, we described the general structure of the integrated approach. This is also the
structure that we have implemented in PLANWISE. Therefore, in this section we only
mention the algorithm that we use to develop a single schedule. A schedule q is developed
as follows:

52

Repeat until all operations have been considered:
1. Choose an operation ijO to schedule next:

a. Develop an operation decision set consisting of all unscheduled operations
that are precedence-feasible.

b. Assign each operation a weight equal to its latest starting time.
c. Choose an operation by using RBRS.

2. Determine a resource assignment),(qijq MOA :

a. For each resource demand ijmkU do:

i. Assign each resource in ijmkR a weight equal to the earliest time that

ijO can be scheduled on that resource.

ii. Use RBRS to choose ijmka resources from ijmkR .

3. Determine),,(qqijq AMOW :

a. Assign operation ijO the earliest position on its resources.
4. Calculate the starting and completion times for the operation as described in Section

5.2.

7.3 A general description of the hierarchical approach
As we mentioned in Section 6.2, we solve the assignment problem and the sequencing
problem separately in the hierarchical approach. The approach uses a two way
communication scheme: The schedules that we obtain when solving the assignment problem
serve as input when solving the sequencing problem and vice versa.

We use local search algorithms to solve both subproblems. To solve a subproblem, we
perform a number of iterations. In each iteration, we choose a schedule from the
neighbourhood of the current solution and we move to this solution if a set of criteria are met.
When we solve the assignment problem, we create an assignment neighbourhood consisting
of schedules with a different resource assignment qA than the current solution. When we
solve the sequencing problem, we create a sequencing neighbourhood consisting of
schedules with a different sequence qW than the current solution.

Both neighbourhoods consist of complete schedules. In other words: The operations in each
solution in the neighbourhoods have been assigned to a set of resources and they have
obtained starting and completion times. Thus, when we create a solution q in an assignment
neighbourhood, we do not only specify the resource assignment qA , but we also determine a

sequence qW and, hence, starting and completion times for all operations in q . We choose
to create neighbourhoods consisting of complete schedules for a number of reasons: First,
we determine the quality of a neighbour by determining the tardiness of that neighbour. As
we mentioned in Section 6.2, however, all operations in a schedule must have starting and
completion times in order to determine the tardiness of the schedule. We must thus create a
complete schedule in order to determine the tardiness of that schedule. Second, we increase
the flexibility of the scheduling approach by creating complete schedules in both
neighbourhoods: Since the neighbourhoods consist of complete schedules, we are able to
solve each subproblem separately. As a result, we can easily adjust the scheduling approach
to special cases of the scheduling problem that only contain an assignment or a sequencing
problem. For instance, we discussed equipment scheduling problems in Section 4.3. When
we solve an equipment scheduling problem, we only need to assign operations to resources.

53

When we use the hierarchical approach, we can now skip the solving of the sequencing
problem.

As we mentioned in Section 6.2, we predominantly focus on determining an assignment qA
when we solve the assignment problem. We therefore wish to limit the amount of calculation
time needed to create a schedule for a given assignment. Therefore, we use a simple
procedure)(qassign Af to determine a sequence qW for qA . Once we have solved the
assignment problem, we focus on determining a good sequence for the most promising
assignments that we have found. We then use a more elaborate procedure)(qseq Af to solve
the sequencing problem for those assignments.

The general structure of the approach is as follows:
§ Start with an initial schedule. This becomes the initial current schedule q .
§ REPEAT steps 1 through 4:

1. Solve the assignment problem:
a) Create an assignment neighbourhood)(qNassign of the current

schedule. We create the schedules in)(qNassign by choosing a set 'O
of operations and determining an assignment),('' qijq MOA for each

operation ijO in 'O that differs from the assignment in the current
schedule.

b) Accept one neighbour from)(qNassign according to a set of criteria.
This neighbour becomes the new current schedule q . Store the
neighbour in a set assignmentQ if certain criteria are met.

2. If a stop criterion is met, proceed to solving the sequencing step (step 3).
Otherwise, resolve the assignment problem (step 1) with the new current
schedule.

3. For each schedule assignmentQq ∈ do

a) Solve the sequencing problem with procedure)(qseq Af :

i. Create a sequencing neighbourhood)(qN seq . We create the

schedules in)(qN seq by choosing a set 'O of operations and

determining a set of positions),,(''' qqijq AMOW for each

operation ijO in 'O that differs from the current schedule.

ii. Accept one neighbour from)(qN seq according to a set of
criteria. This neighbour becomes the new current schedule q .

Store the neighbour as schedule q if it is the best schedule
found so far in step 3.

b) If a stop criterion is met, proceed to the next schedule in assignmentQ .
Otherwise, resolve the sequencing problem with the new current
schedule.

4. The best schedule q found when solving the sequencing problem becomes
the new current schedule.

UNTIL a criterion is met to exit the hierarchical approach

The possible moves between the different parts of the approach are highlighted in Figure 7.1:

54

Create initial schedule

Change assignment of schedule

Change sequence of schedule

Figure 7.1: Possible moves between the different parts of the hierarchical approach

In the hierarchical approach, the set assignmentQ contains the schedules that have the most
promising assignments. This set may contain more than one schedule. In other words: We
may choose to solve the sequencing problem for more than one schedule. We make this
choice based on the ideas behind the two-stage approach in the beam search algorithm:
When we solve the assignment problem, we may find multiple schedules that have promising
assignments. If, however, we only choose to solve the sequencing problem for the schedule
with the most promising assignment, we might miss a good schedule in the solution space
simply because this schedule has a different assignment. On the other hand, we cannot
solve the sequencing problem for each schedule that we create when solving the assignment
problem, because this requires too much calculation time. Therefore, we choose a subset of
the schedules that we have created when solving the assignment problem and we solve the
sequencing problem for each schedule in the subset.

We use the following basic procedure to create a schedule 'q in)(qNassign (i.e. an
assignment neighbour of solution q):

1. Choose the set of operations 'O that will obtain new assignments.
2. Determine an assignment 'qA :

a) For each operation 'OOij ∈ do

i. Determine a new assignment),('' qijq MOA that differs from

),(qijq MOA .

3. Use procedure)('qassign Af to determine a new sequence 'qW
4. Calculate starting and completion times for all operations.

To create a schedule 'q in)(qN seq (i.e. an sequencing neighbour of solution q), we use the
following basic procedure:

1. Choose a set of operations 'O that will obtain new positions on their respective
resources.

2. Determine a sequence 'qW :

a) For each operation 'OOij ∈ do

i. Determine a new set of positions),(''' qqijq AMOW for ijO on the set

of resources in),('' qijq MOA .

55

3. Calculate starting and completion times for all operations.

7.4 Implementation details of the hierarchical approach
In the section, we specify which versions of the hierarchical approach we have actually
implemented in PLANWISE. We divide this section into three parts: First, we describe some
preliminaries. Subsequently, we describe how we create the assignment and sequencing
neighbourhoods. Finally, we describe the different versions of the approach that we have
implemented.

Preliminaries
In this section, we describe some preliminaries when we create the assignment and
sequencing neighbourhoods. We mention which kinds of operations we consider for
rescheduling (either by assignment or by sequencing) and some focus points and
assumptions when creating a neighbour.

In Section 5.3, we defined the bottleneck operations of a schedule. There, we mentioned that
the bottleneck operations determine the tardiness of a schedule: To reduce the tardiness of
the schedule, we thus need to reschedule at least one bottleneck operation. Therefore, when
we create an assignment or sequencing neighbourhood, we focus on reassigning or
resequencing the bottleneck operations in the schedule.

We focus on creating neighbours by making small adjustments to the current solution. In our
assignment neighbourhoods, for instance, we focus on reassigning one operation at a time.
We focus on making small adjustments, because we expect to require less computation time
when we make small adjustments compared to when we make large adjustments. For
instance, if we create a neighbour by reassigning multiple operations to different resources,
we can expect the approach to take more time than if we were to reassign only one operation
to different resources.

As we mentioned in Section 7.3, the assignment and sequencing neighbourhoods that we
use contain complete schedules. Therefore, we require a procedure to determine a
sequence qW when we create a neighbour. When determining positions for operations, we
must ensure that we obtain a feasible schedule. This is especially the case for operations
that require multiple resources: If two operations are assigned to the same set of resources,
we must ensure that ijO is always scheduled before operation hlO on all resources to which

both operations are assigned. Otherwise, we create a situation in which operation ijO has a

position before operation hlO on resource 1, whereas ijO has a position after hlO on
resource 2. As a result, neither operation can obtain a starting (and completion) time,
because the one operation cannot be scheduled until the other operation is scheduled and
vice versa.

To ensure that we always create a feasible schedule, we calculate a temporary starting time
for each operation and we subsequently assign positions to each operation based on this
starting time: If operation ijO has a lower temporary starting time than operation hlO , then

ijO obtains a lower position than hlO . Since the temporary starting time is not dependent on

the resource, we ensure that operation ijO obtains a lower position than hlO on all resources
to which both operations are assigned. After we have assigned positions to the operations,
we can determine the actual starting and completion times for the operations by using the
procedure as described in Section 5.2.

56

We take the following general steps when determining a temporary starting time for an
operation ijO :

• We first determine the position for ijO on a subset S of its resources according to a
specific set of criteria.

• Subsequently, we determine a temporary starting time for ijO by only considering the

job predecessors of ijO and the operations scheduled before ijO on the resources in
S .

Once we have determined a temporary starting time for ijO , we insert ijO on its other
resources as follows: On each resource, we look for the last operation with a lower starting
time than the temporary starting time of ijO and insert ijO directly behind this last operation.

When we describe the procedures to create the different neighbourhoods, we specify in more
detail how we determine the temporary starting time.

The creation of neighbours
In the implemented versions of the hierarchical approach, we use two different
neighbourhood structures when solving the assignment problem and one neighbourhood
structure when solving the sequencing problem. We refer to the first neighbourhood structure
for the assignment problem as)(1 qNassign and to the second structure as)(2 qNassign . We

refer to the neighbourhood structure for the sequencing problem as)(qN seq .

As we mentioned in the preliminaries, we focus on reassigning and resequencing the
bottleneck operations in a schedule. Therefore, we create the different neighbourhoods by
specifying one neighbour for each bottleneck operation that meets a set of criteria. In other
words: We have a set S of bottleneck operations that meet certain criteria. For each
operation ijO in this set S we create one neighbour by rescheduling ijO (either by
reassignment to other resources or by resequencing). Therefore, the set S determines the
size of a neighbourhood. Note that we might be able to create multiple neighbours in which
we reassign ijO . For instance, it might be possible to reassign ijO to different sets of
resources. However, to limit the size of a neighbourhood, we choose to create only one
neighbour for each operation.

When creating a neighbour, we use RBRS at different decision moments to choose among
different possible options. For instance, we create assignment neighbours by reassigning an
operation to a new set of resources. We use RBRS to choose the new resources to which we
assign the operation.

We now discuss in detail the procedures we have used to create the different neighbourhood
structures:

Procedure to create neighbourhood)(1 qNassign

The neighbourhood)(1 qN assign contains the schedules where one bottleneck operation ijO is
removed from one resource and is reassigned to a new resource to replace the resource
removed. Subsequently, ijO is given new positions on all resources to which it is assigned.

The bottleneck operation ijO must have a critical resource predecessor or a critical resource
successor. The main advantage of this neighbourhood structure is that it is easy to create:

57

To create a neighbour, we only need to choose one operation to reassign and we only need
to reassign this operation to one new resource.

We restrict the operation ijO to those bottleneck operations with either a critical resource
predecessor or a critical resource successor for the following reasons:

• If ijO has a critical resource predecessor, then it might be scheduled earlier in time if

it is reassigned to a different resource. To schedule ijO earlier in time, ijO must be
removed from the resource on which it has the critical resource predecessor.

• If ijO has a critical resource successor, then this successor might be scheduled

earlier in time if ijO is reassigned to a different resource. To schedule the critical

resource successor earlier in time, ijO must be removed from the resource on which
it has the successor.

We define the bottleneck resource demand as that resource demand that is satisfied by the
resource on which the bottleneck operation has the critical resource predecessor or
successor.

There may be multiple suitable resources to which we can reassign ijO . As we mentioned
before, we use RBRS to choose a new resource among the suitable resources. We assign
each suitable resource a weight equal to the amount of free capacity that the resource has
over the planning horizon. The higher the amount of free capacity a resource has, the greater
the regret value given to that resource. We assign higher regret values to resources with
more free capacity, because we think that, in general, it should be easier to schedule an
operation on time on a resource with a lot of free capacity available compared to a resource
with little free capacity available5. We calculate the free capacity of a resource as follows:
The free capacity is the total uptime of the resource over the planning horizon minus the
processing times of the operations scheduled on the resource during the planning horizon.
Here, the amount of uptime is equal to the length of the planning horizon minus the periods
of preemptive and non-preemptive downtime during the planning horizon. We calculate the
free capacity over the entire planning horizon for simplicity reasons: The total uptime of a
resource is fixed for a scheduling problem. Therefore, we only need to determine the sum of
the processing times of the operations scheduled on the resource to determine the free
capacity. The disadvantage, however, of calculating the free capacity over the total planning
horizon is that we do not consider the interval in which we actually wish to schedule the
operation. As a result, we may choose a resource that has a lot of free capacity over the
planning horizon, but that has very little free capacity in the interval in which we actually wish
to schedule the operation.

After choosing a new resource to assign ijO to, we need to determine positions for ijO on all

resources to which it is assigned. In other words: We not only determine a position for ijO on

the new resource, but we also determine new positions for ijO on the other resources to

which the operation is assigned. We determine new positions for ijO on all resources to
increase the probability of obtaining a good schedule: Once we have determined a position

5 Note however, that we do not necessarily obtain a better starting time for an operation if we assign that
operation to a resource B with more free capacity compared to resource A with less capacity. This may be the
case if the resource with more free capacity also has a number of non-preemptive downtimes. In such a case, it
may be difficult to schedule an operation on time, because we are not allowed to schedule the operation over the
non-preemptive downtimes.

58

for ijO on its new resource, it might no longer be optimal to give ijO the same positions on
the remaining resources as before. Therefore, we also determine whether the positions of

ijO on the remaining resources need to be adjusted. To increase the probability of obtaining
a neighbour with a better objective value than the current solution, we resequence the
operation such that the operation obtains an earlier starting time in the neighbour than in the
current solution. This is especially important for those operations that directly determine the
tardiness of the schedule: These operations must be scheduled earlier in time to reduce the
schedule’s tardiness. As we mentioned in the preliminaries, however, we wish to obtain
neighbours by making minimal changes to the current solution. Therefore, we do not wish to
give the operation a much earlier starting time than it has in the current solution. For this
reason, we choose to give the operation the latest position on each resource that still
enables the operation to start earlier than in the current solution.

We use the following procedure to create a schedule 'q in)(1 qNassign :

1. Pick one bottleneck operation ijO with either a critical resource predecessor or a
critical resource successor.

2. Find a new resource assignment),('' qijq MOA for ijO :

a) Find a resource demand ijmkU of ijO that can be satisfied by a different set of

resources than the set to which ijO is currently assigned for that resource
demand. Preferably, a bottleneck resource demand should be chosen. If there
is no resource demand that can be satisfied by different resources, we do not
consider the neighbour any further. In that case, we do not include the
neighbour in)(1 qNassign .

b) Remove ijO from one resource currently used to satisfy ijmkU and replace this

resource with a resource from ijmkR not currently assigned to ijO . If ijmkU is a

bottleneck resource demand, ijO must be removed from the resource on

which it has the critical resource predecessor or successor. Otherwise, ijO
must be removed from the resource with the least amount of free capacity.
RBRS is used to choose the new resource to which ijO is assigned.

3. Determine new positions),,('''' qqijq AMOW for ijO on the resources in),('' qijq MOA :

a) Find the latest operation hlO scheduled on a resource in),('' qijq MOA that

has a smaller completion time in q than the starting time of ijO in q . Insert

ijO directly behind hlO on all resources to which both operations are
assigned.

b) Determine positions for ijO on the other resources in),('' qijq MOA . The job

predecessors and new resource predecessor of ijO must be considered when
determining these positions:

i. Determine the earliest starting time temp
ijS for ijO in 'q if we only

consider the job predecessors of ijO and the new resource

predecessor hlO .
ii. Insert ijO on each remaining resource directly behind the latest

operation with a smaller starting time in q than temp
ijS .

59

4. Calculate starting and completion times for all operations in the schedule.

We now use the following example to demonstrate the procedure:

We have a schedule that includes operations belonging to six different jobs. In this example, operation

12O is the only tardy operation. The schedule is given in Figure 7.2:

O12O11O13

Machine B

Machine A

Operator A

Operator B

O13

O11

O12

O14 O15

O14

O15

O16

O16

Figure 7.2: An example schedule

In this schedule,)(12OCOS is the set },{ 1113 OO . We assume that all operations may start at time
zero.

We obtain an assignment neighbour 'q as follows:
1. The bottleneck operations (i.e. the set },,{ 111312 OOO) either have a critical resource

predecessor or a critical resource successor. Therefore, they are all suitable candidates for
reassignment. In this case, we choose operation 12O for reassignment.

2. Determination of 'qA :

a) Operation 12O has two resource demands: A machine and an operator. Both resource
demands can be satisfied by a different resource. Since the machine is the bottleneck
resource demand, we reassign 12O to a new machine.

b) There is only one suitable candidate for the new resource: Machine B. We thus
remove 12O from machine A and we reassign 12O to machine B.

3. Inserting 12O on its resources:

a) In this instance, operation hlO is 15O : 15O is the last resource with a completion time

that is smaller than the starting time of 12O in q . We thus insert 12O behind 15O on
both resources.

b) We have assigned 12O a position on both machine B and operator A. Since 12O is
not assigned to other resources, we are done.

4. Determine starting and completion times for all operations as discussed in Section 5.2.

In Figure 7.3, we can see the resulting assignment neighbour:

O11O13

Machine B

Machine A

Operator A

Operator B

O13

O11

O14 O15

O14

O15

O16

O16O12

O12

Figure 7.3: The neighbour obtained with the procedure

60

Procedure to create neighbourhood)(2 qNassign

The neighbourhood)(2 qNassign contains the schedules where one bottleneck operation ijO is
removed for each resource demand from one resource and is reassigned to a new resource
for each resource that has been removed. Subsequently, ijO is given new positions on all

resources to which it is assigned. As in)(1 qNassign , the bottleneck operation ijO must have a
critical resource predecessor or critical resource successor. With this neighbourhood we try
to remove an operation from all resources on which it has a critical resource predecessor:
We expect that an operation has for each resource demand at most one resource on which
the operation has a critical resource predecessor. Therefore, by reassigning the operation to
a new resource for each resource demand, we ensure that the operation is removed from all
resources on which it has a critical resource predecessor. In neighbourhood)(1 qNassign , in
contrast, it is not possible to remove an operation from all resources on which it has a critical
resource predecessor or successor, because the operation is removed from only one
resource.

We choose to reassign the operation to a new resource for each resource demand instead of
only the bottleneck demands of the operation. We do so for simplicity reasons: Now, we do
not need to first determine which resource demands contain a bottleneck resource. Instead,
we try to reassign the operation to a new resource for each resource demand. We then
ensure that we have also reassigned the operation to a new resource for all bottleneck
resource demands.

As in neighbourhood)(1 qN assign , there may be multiple suitable resources to which we can

assign ijO to replace a resource from which ijO has been removed. We again use RBRS to

choose a resource among the suitable resources. As in)(1 qNassign , we give each suitable
resource a weight equal to its free capacity over the planning horizon.

We use the following procedure to create a schedule 'q in)(2 qNassign :

1. Pick one critical operation ijO with either a critical resource predecessor or a critical
resource successor.

2. Find a new resource assignment),('' qijq MOA for ijO :

a) Repeat the following for each resource demand ijmkU of ijO that can be

satisfied by a different set of resources than the set assigned to ijO at this

time (i.e. the resource was not assigned to ijO in q and is not in the set

),(
'' qijq MOA):

§ Remove ijO from one resource currently used to satisfy ijmkU and

replace this resource with a resource from ijmkR not assigned to ijO at

present. If ijmkU is a bottleneck resource demand, ijO must be
removed from the resource on which it has the critical resource
predecessor or successor. Otherwise, ijO must be removed from the
resource with the least amount of free capacity. RBRS is used to
choose the new resource to which ijO is assigned.

61

b) If ijO does not have a resource demand that can be satisfied by different
resources, we do not consider the neighbour any further. In that case, we do
not include the neighbour in)(2 qN assign .

3. We use the same procedure)('qassign Af to determine 'qW as when we create a

neighbour for)(1 qNassign .
4. Calculate starting and completion times for all operations in the schedule.

We now use a new example to demonstrate the procedure to create a neighbour for
)(2 qNassign :

In this example, we again have a schedule containing operations from six different jobs. This example
is slightly different from the example in Figure 7.2. Figure 7.4 presents the new example schedule:

O12O11O13

Machine B

Machine A

Operator A

Operator B

O13

O11 O12

O14 O15

O14

O15 O16

O16

Figure 7.4: An example schedule

As in the example in Figure 7.2, 12O is the tardy operation.)(12OCOS is also the same, namely the

set },{ 1113 OO . In addition, each operation may again start at time zero.

In this case, we obtain a neighbour as follows:
1. As in Figure 7.2, we have three suitable operations for reassignment: 12O , 11O , and 13O .We

again focus on reassigning operation 12O .

2. Reassignment of 12O to new resources:
a) Operation 12O again has two resource demands: A demand for a machine and a

demand for an operator. Both demands can be satisfied by a different resource.
b) For both resource demands there is only one suitable candidate. We remove 12O

from the old resources and we reassign 12O to machine B and operator A.

3. Inserting 12O on its resources:

a) Again, operation hlO is 15O . We insert 12O behind 15O on machine B and operator
A.

b) Since we have determined a position for 12O on both resources, we are done.
4. Determine starting and completion times for all operations as discussed in Section 5.2.

62

In Figure 7.5, we see the resulting assignment neighbour:

O12

O11O13

Machine B

Machine A

Operator A

Operator B

O13

O11

O14 O15

O14

O15 O16

O16

O12

Figure 7.5: The neighbour obtained with the procedure

Procedure to create neighbourhood)(qN seq

We create schedules in)(qN seq by choosing a bottleneck operation ijO and swapping ijO
with an operation hlO that is assigned to a resource on which ijO has a critical resource

predecessor and that is scheduled earlier than ijO on this resource. After swapping hlO and

ijO on the resources on which both operations are scheduled, each operation is also given
new positions on the other resources to which the operation is assigned. The bottleneck
operation ijO has exactly one critical predecessor and this predecessor must be a critical
resource predecessor. The advantage of this neighbourhood structure is its simplicity: Now,
we only need to consider the influence of two operations on a schedule. The more operations
we resequence at a time, the more effort we must put into finding a feasible schedule. This is
especially the case for the general scheduling problem, where operations may require
multiple resources to be performed: As we mentioned in the preliminaries, we must ensure
that if two operations are scheduled on the same resources, that the one operation is always
scheduled before the other operation on the common resources. Otherwise, we do not obtain
a feasible schedule. When we need to resequence many different (multi-resource)
operations, we must check for several operations whether they have feasible positions on
their resources. This can be time-consuming.

We only consider operations that have exactly one critical resource predecessor. If ijO does

not have a critical resource predecessor, then we cannot decrease the starting time of ijO by

swapping ijO with an operation that has been scheduled before ijO . As a result, we do not
choose operations that have critical job predecessors or operations that have no critical
predecessors. In addition, we do not consider operations that have multiple critical resource
predecessors. If we have an operation with multiple critical resource predecessors, we must
swap the operation with each predecessor for the operation to obtain an earlier starting time.
To limit the number of swaps that need to be performed, we limit the number of critical
resource predecessors that an operation may have. We, however, do not expect that the
number of possibilities for ijO is drastically reduced if we limit ijO to those operations with
only one critical resource predecessor: We assume that the probability is small that an
operation can have two resource predecessors that finish at the exact same time.

We swap ijO with an operation hlO that is sequenced before ijO to ensure that ijO (i.e. the
bottleneck operation) obtains an earlier starting time. As a result, we might decrease the
schedule’s tardiness. We limit the possibilities for operation hlO to those operations with a
completion time in the current schedule q that is greater than the internal release date of ijO
in q . The internal release date of ijO specifies the minimum starting time that the operation

63

can have based on the job predecessors of ijO . Therefore, if we swap ijO with an operation

that has a completion time before the internal release date of ijO , we unnecessarily give the

operation a later starting time: ijO cannot start before its internal release date, so it cannot
be (partially) scheduled where the operation used to be scheduled.

If we can choose from multiple operations for hlO , we use RBRS to choose among these
operations. We assign each operation a weight equal to the starting time of the operation in
q . In this case, an operation will obtain a higher regret value if it has a higher starting time.
As a result, the critical resource predecessor of the operation will obtain the highest
probability of being chosen. We choose to give higher probabilities to operations that are
scheduled in proximity of operation ijO , because we think that a swap is less disruptive if it
takes place between two operations that are scheduled in proximity of each other compared
to two operations that are scheduled further away from each other. If, for instance, we
choose to swap non-adjacent operations, we can expect that the operations scheduled
between these two operations will also obtain different starting and completion times. In
contrast, if we schedule two adjacent operations, we expect less other operations to be
influenced by the swap.

We use the following procedure to create a neighbour 'q in)(qN seq :

1. Pick one bottleneck operation ijO that has one critical resource predecessor.

2. Pick an operation hlO to swap ijO with:

a) Develop a decision set D for hlO consisting of operations that are scheduled

on the same resource as ijO and its critical resource predecessor and whose

completion times are greater than the internal release date of ijO .
b) Assign each operation in D a weight equal to its starting time in q and pick

an operation from D by using RBRS.
3. Determine 'qW :

a) Swap operations ijO and hlO on the set S of common resources: ijO obtains

the position of hlO and hlO obtains the position of ijO .

b) Determine new positions for ijO on the remaining resources to which ijO is
assigned. In determining these positions, the job predecessors and new
resource predecessors6 of ijO on the resources in S must be considered:

§ Determine the earliest starting time temp
ijS for ijO if we consider the

internal release date of ijO and the new resource predecessors of ijO .

§ Insert ijO on each resource rR)),(('' SMOAR qijqr −∈ directly behind
the latest operation with a smaller starting time in the current schedule
q than temp

ijS .

c) Determine new positions for hlO on the remaining resources to which hlO is

assigned. This happens in a similar way to ijO : temp
hlS is now equal to the

6 The new resource predecessor of ijO on resource rR)(SRr ∈ is the operation that was scheduled

before hlO on rR in the current schedule q .

64

earliest starting time for hlO if we consider the internal release date of hlO and
the new resource predecessors of hlO (i.e. the resource predecessors of ijO
in q). Based on this starting time, hlO obtains new positions on its remaining
resources in the same way as ijO .

4. Calculate starting and completion times for all operations in the schedule.

We use the example in Figure 7.6 to demonstrate how the procedure works:

O12O13

Machine B

Machine A

Operator A

Operator B

O14 O15

O16

O16

O13

O14

O11

O11

O15

O12

Figure 7.6: An example schedule

In Figure 7.6, 12O is our tardy operation.)(12OCOS is the set },,{ 151411 OOO . The dotted line in the

figure indicates the internal release date of 12O .

With this schedule, we can obtain multiple different neighbours. We therefore illustrate how we can
use the procedure to determine two different neighbours.

We obtain the first neighbour as follows:
1. In this example, we have four bottleneck operations: 11O , 14O , 15O , and 12O . Of these

operations, we can choose operations 14O , 15O , and 12O for resequencing. We choose to

resequence 12O .

2. Determine hlO :

a) Operation 12O has one resource in common with its critical resource predecessor:

Machine A. Our decision set thus consists of all operations scheduled before 12O on

machine A with a completion time after the internal release date of 12O . In this case,

the decision set is the set },,{ 151413 OOO .

b) We choose to swap 12O with 13O . Note that 13O does not belong to)(12OCOS .

3. Determine 'qW :

a) We swap operations 12O and 13O on machine A, which is the only common resource.

Operation 12O is scheduled as the first operation and 13O is scheduled behind 15O .

b) We need to determine a new position for 12O on operator A. tempS12 is equal to the

internal release date of 12O . Since operation 11O has a smaller starting time in q
than the internal release date of 12O , we schedule 12O between 11O and 14O on this
resource.

65

c) We need to determine a new position for 13O on operator B. tempS13 is equal to the

completion time of 15O in q . On operator B, operation 13O is therefore scheduled

behind operation 15O .
4. Determine starting and completion times for all operations as discussed in Section 5.2.

We see the resulting neighbour in Figure 7.7:

O12 O13

Machine B

Machine A

Operator A

Operator B

O14 O15

O16

O16

O13

O14

O11

O11

O15

O12

Figure 7.7: A possible sequencing neighbour.

We obtain a second neighbour as follows:
1. We choose 15O as operation ijO .

2. The choice for operation hlO :

a) Operation 15O also has machine A as the common resource with its critical

predecessor 14O . Assuming that operation 15O has the same internal release date as

operation 12O , the decision set is the set },{ 1413 OO .

b) We choose to swap 15O with its critical resource predecessor 14O .

3. Determine 'qW :

a) We swap operations 15O and 14O on machine A: Operation 15O gets the position

behind 13O and 14O is scheduled between operations 15O and 12O .

b) We determine a new position for 15O on operator B: tempS15 is equal to the completion

time of 13O .Therefore, 15O is scheduled behind 13O on operator B.

c) We determine a new position for 14O on operator A: tempS14 is equal to the new

completion time of 15O . The latest operation with a smaller starting time in q than
tempS14 is operation 11O . Therefore, we schedule 14O between 11O and 16O .

4. Determine starting and completion times for all operations as discussed in Section 5.2.

In this case, we obtain the neighbour in Figure 7.8:

O12O13

Machine B

Machine A

Operator A

Operator B

O14O15

O16

O16

O13

O14

O11

O11

O15

O12

Figure 7.8: A second sequencing neighbour.

Note that our assignment neighbourhoods are not suitable when we use the scheduling
approach to solve a scheduling problem with routing constraints. If a problem contains

66

routing constraints, we might need an assignment neighbourhood where we reassign
multiple operations in one neighbour to different resources. The assignment neighbourhoods
that we use, however, only reassign one operation to new resources. Consider the example
in Figure 7.9:

O12

O22

O21

O23

O11

O13

Production Machine A

Production Machine B

Assembly Machine B

Assembly Machine A

Figure 7.9: An example schedule

In the example, there is a connection from production machine A to assembly machine A. This
connection is also present between the machines of type B. It is however forbidden to schedule an
operation on production machine A and its job successor on assembly machine B. Similarly, the set
{Production machine A, Assembly machine B} is also a forbidden set. As we can see, we can obtain a
better schedule by reassigning operation 12O to production machine B and operation 22O to assembly
machine B. However, we cannot reach this solution, because we obtain an infeasible solution by only
reassigning one operation at a time.

Implemented versions of the hierarchical approach
We have created four versions of the hierarchical approach. In this section, we describe each
version. First, we describe the general idea behind a version. Subsequently, we give details
on each version.

As we previously mentioned, we have created two different assignment neighbourhoods:
)(1 qNassign and)(2 qNassign . In versions 1 and 2 of the hierarchical approach, we only use

assignment neighbourhood)(1 qNassign when solving the assignment problem. The remaining
versions of the approach we test with both neighbourhoods: We first perform a number of
tests with assignment neighbourhood)(1 qNassign and then we perform the same tests with

assignment neighbourhood)(2 qNassign . We do so to compare the different neighbourhoods
to each other and determine which neighbourhood is best for the scheduling instances that
we test.

When describing the different versions of the hierarchical approach, we use a different
general structure than the one we described in Section 7.3. We do so for easier explanation
of the different versions.

Hierarchical approach version 1
In version 1 of the hierarchical approach, we solve both the assignment and the sequencing
problem by using the iterative improvement algorithm. We solve both subproblems in the
same way: In each iteration, we create a neighbourhood of the current solution and we move
to the solution in the neighbourhood with the lowest tardiness value if this solution has a
lower tardiness than the current solution. We continue in this way until we cannot find a
neighbour with a lower tardiness value than the current solution.

After we solve the assignment problem, we use the best schedule found so far as the initial
current solution when solving the sequencing problem. Once we have solved the sequencing

67

problem for the given assignment, we exit the hierarchical approach. This version of the
hierarchical approach thus uses a one-way communication scheme: We do not use the best
solution found in the sequencing problem to resolve the assignment problem.

We use the integrated approach to obtain an initial solution. The main advantage of using the
integrated approach is that the approach enables us to easily create different initial solutions
by varying bias parameter that we use in the RBRS algorithm and the number of iterations
that we perform of the approach.

With this version of the hierarchical approach we hope to get an impression of the influence
of the different subproblems on the objective value of a schedule. In other words, we hope to
determine whether the method to solve the assignment problem or the method to solve the
sequencing problem has most influence on the objective value of a schedule. Then, we can
determine whether we should put more effort in finding a schedule with a good assignment or
a schedule with a good sequence.

In this version, the hierarchical approach works as follows:
§ Create an initial schedule by using the integrated approach. This schedule becomes

the current schedule q .
§ PERFORM the steps of the hierarchical approach once:

1 + 2. Solve the assignment problem:
a) Repeat the following steps until no assignment neighbour can be found

with a lower tardiness value than the current schedule q :

i). Create assignment neighbourhood)(1 qNassign of q .
ii). Choose the neighbour with the lowest tardiness value. Accept this

neighbour if it has a lower tardiness than q . The neighbour then
becomes the new current schedule.

3 + 4. Solve the sequencing problem for the best schedule found so far:
a) Repeat the following steps until no sequencing neighbour can be found

with a lower tardiness value than q :
i). Create sequencing neighbourhood)(qN seq of q .
ii). Choose the neighbour with the lowest tardiness. Accept this

neighbour if it has a lower tardiness than q . The neighbour then
becomes the new current schedule.

Hierarchical approach version 2
In version 2 of the hierarchical approach, we again solve both subproblems by using iterative
improvement. However, we now solve the subproblems in a different way: We solve the
assignment problem by moving to the first neighbour in the assignment neighbourhood that
has a lower tardiness than the current solution. Once we have moved to a new neighbour (or
we do not have a neighbour with a lower tardiness than q), we are done: We then exit the
method for solving the assignment problem. We solve the sequencing problem in a similar
way.

After we have solved one subproblem, we use the best schedule found so far as input to
solve the next subproblem. In other words: After we have solved the assignment problem
(i.e. we have either found a better assignment neighbour or we have not been able to find
any assignment neighbour that was better than the current solution), we use the best
schedule found so far as the initial solution when solving the sequencing problem and vice
versa. We continue to iterate between the assignment step and the sequencing step until we
are no longer able to find either an assignment neighbour or a sequencing neighbour with a

68

better solution value than the current solution. Note that we use a two-way scheme in this
version of the hierarchical approach: Once we have solved the sequencing problem, we use
the best solution found so far as the new initial solution and we resolve the assignment
problem for this initial solution.

With this version of the hierarchical approach we can determine whether we obtain better
results by using a two-way communication scheme as opposed to a one-way scheme. To do
so, we compare the schedules obtained with version 1 of the hierarchical approach with the
schedules obtained with this version.

The approach works as follows:
§ Create an initial schedule q by using the integrated approach.
§ REPEAT the following steps of the hierarchical approach:

1 + 2. Solve the assignment problem:
a) Create assignment neighbourhood)(1 qNassign .

b) Choose the first neighbour in)(1 qNassign with a lower tardiness value
than q . This neighbour becomes the new current solution.

3 + 4. Solve the sequencing problem for the best schedule found so far:
a) Create sequencing neighbourhood)(qN seq .

b) Choose the first neighbour in)(qN seq with a lower tardiness than q .
This neighbour becomes the new current solution.

UNTIL we cannot find a neighbour in either)(1 qNassign or)(qN seq with a lower
tardiness than the current solution

Hierarchical approach version 3
In versions 1 and 2 of the hierarchical approach, we only consider a neighbour to be
interesting if the neighbour has a lower tardiness value than the current schedule. As we
mentioned in Chapter 6, a disadvantage of only considering neighbours that are better than
the current schedule is that we can remain stuck in local optima. In this version of the
hierarchical approach we therefore use an algorithm that enables us to escape local optima
when we solve the assignment problem. When we solve the sequencing problem, however,
we still only consider a neighbour if the neighbour is better than the current schedule.

In this version, we solve the assignment problem by using the simulated annealing (SA)
algorithm. As we mentioned in Section 6.1, this algorithm enables us to escape local optima.
We prefer this algorithm over the tabu search (TS) algorithm, because SA does not require
us to create an entire neighbourhood for the current schedule: In SA, we only need to create
one neighbour at a time and we compare this neighbour to the current schedule. In TS, in
contrast, we need to create all schedules in the neighbourhood of the current schedule
before we can compare the neighbours to the current schedule.

As we previously mentioned, when we solve the sequencing problem we still only consider a
neighbour if the neighbour has a better solution value than the current schedule. We do so,
because we think that we can reach a greater part of the solution space by reassigning
operations to different resources than by resequencing operations on their resources: We
assume that we can only create a limited number of different sequencing neighbours,
because each bottleneck operation has a limited number of operations with which it can be
swapped. If the number of resources is large, in contrast, we expect that we can create
several different assignment neighbours where a bottleneck operation is assigned to different
resources. In addition, we also determine a new sequence when we create an assignment
neighbour. Therefore, we choose to use the method for solving the assignment problem as

69

the main method to examine the solution space. We then use the method for solving the
sequencing problem to determine if we can further improve the schedules we have found
when solving the assignment problem.

Once we stop the search for schedules with a different assignment than the current solution,
we take the best found solution as starting point for the sequencing phase. Note that the last
considered assignment neighbour may be much worse than the best solution found. We
choose to solve the sequencing problem for the best solution found so far, because we only
accept a neighbour in the sequencing phase if this neighbour has a lower tardiness than the
current solution. Therefore, we only solve the sequencing problem for the best solution found
so far to see if this scheduled can be improved further in the sequencing step.

In this version of the approach, we again use a two-way communication scheme: We use the
best schedule we have found when solving the sequencing problem as the initial current
schedule when solving the assignment problem. However, in this version of the hierarchical
approach we only iterate once from the method for solving the sequencing problem to the
method for solving the assignment problem. In other words: Once we exit the method to
solve the sequencing problem for a second time, we exit the hierarchical approach. We thus
solve each subproblem twice in this version of the hierarchical approach. We choose to solve
the subproblems twice so we are still able to determine a new assignment for the schedule
after having solved the sequencing problem the first time. To limit the calculation time of the
approach, we do not use a more extensive communication scheme (i.e. a scheme where
more frequent iteration takes place between the two substeps).

The approach works as follows:
§ Create an initial schedule q by using the integrated approach.
§ REPEAT the following steps twice:

1 + 2. Solve the assignment problem by using the Simulated Annealing algorithm
with q as initial solution.

3 + 4. Solve the sequencing problem for the best solution found so far: Repeat the
following steps until no sequencing neighbour can be found with a better
tardiness than the current solution.

a) Create sequencing neighbourhood)(qN seq .

b) Choose the first neighbour in)(qN seq with a lower tardiness value
than q . This neighbour becomes the new current solution q .

Hierarchical approach version 4
In version 4 of the hierarchical approach, we choose to solve both the assignment and the
sequencing problem by using the SA algorithm. As a result, we now also have the ability to
escape local optima when solving the sequencing problem.

With this version, we can determine whether better results can be obtained if we also accept
worse solutions than the current solution when we solve the sequencing problem. To
determine this, we compare the results obtained with version 3 to those obtained with this
version.

When we solve the sequencing problem in this version, we choose to store the best schedule
we have found so far. This schedule is the one that we use as the initial current schedule
when we solve the assignment problem. As in version 3, we choose to exit the hierarchical
approach once we exit for the second time the method for solving the sequencing problem.

70

We now describe how the approach works. Since this version of the hierarchical approach is
very similar to version 3, we only specify those steps that differ from version 3 of the
hierarchical approach.

The approach is as follows:
§ We create an initial solution with the integrated approach. This initial solution

becomes the current schedule q .
§ REPEAT the following steps twice

1 + 2. As in version 3, we use Simulated Annealing to solve the assignment
problem. Again, we use q as the initial solution.

3 + 4. We use Simulated Annealing to solve the sequencing problem. The
best solution found so far serves as the new initial solution q .

71

8. Evaluation of the scheduling approaches
In this section, we describe the results of the tests that we have performed with the different
scheduling approaches. In Section 8.1, we first describe the scheduling instances on which
we have tested the approaches. In Section 8.2, we subsequently give the parameters that we
have used to test the different scheduling approaches. Next, we discuss the results of the
tests. In Section 8.3 we first discuss the performance of the integrated approach with respect
to tardiness minimization. Subsequently, we discuss the performance of the hierarchical
approach in Section 8.4. In Section 8.5 we discuss the performance of the approaches on
calculation time and other performance indicators than total tardiness. Finally, we give some
conclusions based on the test results in Section 8.6.

Before we proceed with the remainder of the chapter, we first discuss a number of
assumptions that we made when implementing the approaches. These assumptions are:

1. We assumed that all resources have the same calendar. As a result, all resources
have the same intervals of preemptive downtime. This assumption makes it easier to
determine starting and completion times for multi-resource operations: We can be
sure that an operation can be scheduled at a certain time t on all resources in a set
S if that operation can be scheduled on each individual resource in S at time t . If
each resource has a different calendar, however, the calculation becomes more time-
consuming. Then, it becomes possible that an operation can be scheduled on each
resource in S at time t , but that it cannot be scheduled on al resources in S
simultaneously at that time7. In that case, we thus need to consider all resources in S
simultaneously to determine if an operation can be scheduled at a certain time.

2. We assumed that the job predecessors of fixed operations are fixed as well. If we do
not make this assumption, we might introduce deadlines in the schedule. As a result,
we might not be able to find a feasible schedule, because we are not able to schedule
job predecessors of the fixed operation before the starting time of the fixed operation.

8.1. Tested scheduling instances
In this section, we describe the scheduling instances on which we tested the different
approaches. We have tested the approaches on 10 different instances.

We created the instances in the following way: At present, ORTEC has a scheduling instance
that it uses to demonstrate PLANWISE to potential customers. This instance consists of 25
jobs that need to be scheduled. Each job consists of a set of operations, where the number
of operations per job varies between 1 and 5. When a job consists of 5 operations, the
operations need to be performed in the sequence given in Figure 8.1:

Figure 8.1: The sequence of operations when a job consists of 5 operations.

As we can see in Figure 8.1, certain operations have two job predecessors. The operations
of the remaining jobs in the schedule need to be performed in a simple chain, e.g. for 3
operations the sequence is as given in Figure 8.2:

7 In Figure 6.1, we present an example to demonstrate this issue.

OD

OA

OB

OC

OE

72

Figure 8.2: The sequence of operations when a job has 3 operations.

Based on this instance, we have created 4 instances consisting of 50 jobs, 4 instances
consisting of 100 jobs, and 1 instance consisting of 150 jobs. For each instance, we create a
set of jobs and resources in the following way:

1. We start with the set of jobs and resources as in the ORTEC instance with 25 jobs.
This set of jobs is the initial set of jobs for the instance. Similarly, this set of resources
is the initial resource set.

2. We then expand the initial set of jobs: By using a random generator, we create an
additional set 'K of jobs by making copies of a subset of the jobs in the initial set. We
subsequently adjust each job in 'K such that the job no longer resembles the job in
the initial set from which it was copied. There are two ways in which we can adjust the
jobs in 'K : First, each job in 'K obtains a different release and due date. In addition,
a subset of the jobs in 'K also consists of a different set of operations: The
processing times of the operations are adjusted or the set of operations belonging to
the job is adjusted.

3. For a subset of the instances, we also expand the initial set of resources. We do so
by creating additional resources of a specific type. For example, in instances with
more jobs we might specify that the jobs can be performed on five machines of type X
instead of the four machines of type X included in the initial set. Note that the
additional resources need not be exactly the same as the resources in the initial set.
For instance, if we have a machine of type X in the initial set that can process
operations in two different speeds, we may include a new machine of type X that can
only process operations in one of those speeds.

As a result of these steps, the sets of jobs and resources are specific for each instance. In
addition, each instance has its own specific set of constraints. The following constraints are
instance-specific:

1. Precedence relations: Each operation has a set of job predecessors and job
successors. However, the set of job predecessors and job successors of each
operation is instance-specific.

2. Resource-eligibility constraints: In all instances, the set ijmkR specifies the suitable

resources for resource demand ijmkU of operation ijO . However, the resources

included in the set ijmkR differ per instance. For example, resource rR may be

suitable to satisfy ijmkU in instance A, while it is not suitable for ijmkU in instance B.
3. Downtimes: Resources in all instances contain periods of preemptive downtime.

However, the intervals of downtime differ per instance. In addition, certain instances
also contain resources on which there are intervals of non-preemptive downtime.

4. Changeovers: In instance 100-1, no changeovers apply between any two adjacent
operations. In the other instances, a changeover time ijhlrC applies if operation hlO is

scheduled after operation ijO on resource rR .

Table 8.1 gives the details on each instance that we have created. In this table, we focus on
the differences between the different instances. Therefore, we do not specify the restrictions
that apply for all instances.

OA OB OC

73

Instance # jobs # operations
per job

resources Average # of
resources for
operation

Non-
preemptive
downtimes

Changeovers

25 25 1-5 25 2 - X
50-1 50 1-5 25 2 - X
50-2 50 1-7 27 2 - X
50-3 50 1-5 28 2 - X
50-4 50 1-5 28 2 X X
100-1 100 1-7 34 2 - -
100-2 100 1-5 38 2 - X
100-3 100 1-8 30 2 X X
100-4 100 1-5 28 2 - X
150-1 150 1-5 44 2 X X
Table 8.1: Details on each instance

In Table 8.1, the column ‘Average # of resources for operation’ specifies the average number
of resources required to perform an operation. The columns ‘non-preemptive downtimes’ and
‘changeovers’ specify whether an instance contains non-preemptive downtimes or
changeover times respectively: If an instance has an ‘X’, the constraint applies for that
instance, otherwise it does not. Note that instances 50-2, 100-1 and 100-3 contain jobs with
7 or 8 operations. The operations of these jobs are performed in a network (e.g. certain
operations in these jobs have multiple job predecessors).

We consider the created instances to different sufficiently for the purposes of this
assignment: First, we have created instances with different numbers of jobs. In addition, the
set of jobs also differs among the instances with the same number of jobs: The number of
operations per job varies for the different instances as well as the processing times of the
operations themselves. The resource requirements per operation also differ per instance.
Finally, the set of constraints also differ per instance.

With these instances we are able to test whether the different scheduling approaches are
suitable to solve production scheduling and task scheduling problems. The created instances
are production scheduling instances: With the exception of instance 100-1, all instances have
changeovers that need to take place between operations ijO and hlO if those operations are
scheduled after each other on a specific resource. Thus, by testing the approaches on these
instances, we can obtain an impression on the suitability of the approaches for production
scheduling. As we mentioned before, task scheduling is a special case of production
scheduling. As a result, we can also obtain an impression on the suitability of the approaches
for task scheduling.

As we mentioned in Section 4.4, we do not focus on creating a scheduling approach for the
equipment scheduling environment, because this environment differs in a number of ways
from the production scheduling environment Since we do not focus on equipment scheduling,
we did not create an equipment scheduling instance. As a result, we cannot test how the
scheduling approaches perform on an equipment scheduling problem. In addition, we are not
able to test how well the approaches can handle fixed operations: At present, we are not able
to create scheduling problems in PLANWISE that contain fixed operations.

8.2 The parameters used for each approach
As we mentioned in Chapter 7, we created an integrated scheduling approach based on
RBRS and different versions of a hierarchical scheduling approach. In this section, we
specify the parameters that we use to test the different versions. We first discuss the

74

parameters for the integrated approach. Subsequently, we discuss the parameters for the
hierarchical approach.

Parameters for the integrated approach
For the integrated approach, we use the RBRS algorithm. We therefore need to determine
how many schedules we create (i.e. the number of iterations performed) and which values
we will use for . Kolisch and Drexl (1996) refer to the number of iterations performed as the
sample size. Therefore, in the remainder of this document we also use this term.

The sample size required and the values for are closely related: Kolisch and Drexl
mention that the best value for is a function of the sample size: If the sample size is 1, we
obtain the best results if we use a large value. As we mentioned in Section 6.1, a large
value leads to a deterministic choice for an item in the decision set, because the items with
the highest regret values are also given the highest probabilities of being chosen. Therefore,
the items that seem most promising are chosen in each step. Once the sample size
increases, however, it becomes more beneficial to use smaller values for . As mentioned
in Section 6.1, the choice for an item in the decision set becomes more random if we use
smaller values of . Therefore, we are able to reach more solutions in the solution space if
we use a small value of compared to a large value of . Thus, if we are able to perform
many iterations, we should use a small value of to obtain many different solutions.

We thus need to determine an scheme that specifies which value is most suitable for
different sample size values. Kolisch and Drexl determined this scheme by solving each
instance that they created with different combinations of sample size and values. Table 8.2
specifies the different values for the sample size and that the authors used:

Parameter Value
Sample size 1, 5, 10, 50, 100

, 3, 2, 1, 0
Table 8.2: The values used by Kolisch and Drexl (1996) for sample size and value.

The authors solved the different instances with all combinations of sample size and value.

For this assignment, we use the same approach as Kolisch and Drexl. However, we test a
more extensive set of combinations of sample sizes and values than those that Kolisch
and Drexl use. Table 8.3 specifies the different values that we test for each parameter. We
also test the integrated approach with each combination of sample size and value.

Parameter Value
Sample size 1, 5, 10, 25, 50, 100, 250, 500

150, 100, 50, 25, 10, 5, 4, 3, 2, 1, 0
Table 8.3: The values tested for the parameters of the integrated approach.

As we can see in Table 8.3, we vary the values of from 0 to 150. By using a value of 0, we
emulate that items are chosen completely randomly from the decision set. We use a
maximum value of 150 to create solutions almost deterministically: When we use a
value of 150, only the items with the highest regret value obtain a probability of being
chosen, whereas the remaining items obtain a probability close to 0 of being chosen. For
instance, if there are two items with the highest regret value, then those items each have a
probability close to 0.5 of being chosen, whereas the remaining items have a probability
close to 0 of being chosen.

We vary the sample size from 1 to 500. We choose larger sample sizes than Kolisch and
Drexl, because we focus on solving practical scheduling problems. We expect the solution

75

space for practical problems to be larger than for the scheduling problems discussed in
literature. Therefore, we use larger sample sizes to ensure that we can reach a larger part of
the solution space when we use small values for .

To limit the number of tests that we need to perform, we test the different combinations on
three instances. Based on these tests, we create an scheme that we apply to the
remaining instances when we use the integrated approach.

Parameters for the hierarchical approach
For the hierarchical approach we need to specify which parameter values we use for the
integrated approach to obtain an initial solution. In addition, we need to specify which
parameter values we use for the Simulated Annealing (SA) algorithm. In this section, we
specify these different values.

In Section 7.4 we mentioned that we use the integrated approach to create an initial
schedule for the hierarchical approach. To use the integrated approach, we need to specify
the number of iterations that we perform and the values for that we use. We choose to
create multiple initial solutions so we are able to determine what influence, if any, the initial
solution has on the performance of the hierarchical approach. There are several options to
obtain different initial solutions: If we use a low value for (for example, an of 0), we
expect to obtain a different solution each time we perform a new iteration of the integrated
approach. In addition, we can also obtain different solutions by using a different sample size
to create each solution (again for small values). Finally, we can vary the value for that
we use: When we use a high value for (for example, an of 100), we expect the
approach to choose the item with the highest regret from the decision set. When we use a
low , in contrast, the choice for an item is more random. Therefore, we expect to obtain a
different solution when we use a low value compared to a high value. In this
assignment, we use different values for to obtain different initial solutions. To test the
different instances, we use three different initial solutions. We use an of 2, an of 25,
and an of 100 to obtain the different solutions. We create each solution by performing one
iteration of the integrated approach.

For SA, we need to determine the initial temperature, the decrease factor, the Markov Chain
Length, and the end temperature. When determining the values for these parameters we
look for a combination of parameters that gives good results while limiting the calculation
time of the hierarchical approach. Therefore, we performed some initial tests on three of the
created instances. Table 8.4 specifies for each parameter the different values that we have
used during testing:

Parameter Values
Initial temperature 10, 50, 100, 150
End temperature 0.5
Decrease factor 0.85, 0.9, 0.95, 0.99
Markov Chain Length 20, 30, 50
Table 8.4: The tested values of the Simulated Annealing parameters

We did not test all possible combinations of parameter values. For example, when we
performed tests with an initial temperature of 100 or 150, we used a decrease factor of 0.85
and 0.9 and a Markov Chain Length of 20. We chose not to test all combinations to limit the
amount of time spent on the initial tests. Therefore, we did not perform the tests that would
require a lot of calculation time (i.e. the tests with high values for both initial temperature and
decrease factor).

76

When we use an initial temperature of 150, the approach initially accepts 86% of the
neighbours on average. We consider this to be a high acceptance ratio: Many neighbours
are thus accepted initially. As a result, we can easily reach different areas in the solution
space at the start of the approach. Similarly, with a temperature of 0.5 we accept very few, if
any, neighbours: If a neighbour has one more day of tardiness than the current solution, that
neighbour only has a probability of 13% of being chosen. If the difference in tardiness
becomes two or greater, this probability decreases to 2% or less. At the end of the approach,
we thus predominantly accept neighbours with a tardiness that is equal to, or smaller than,
the current solution.

When we compared the results of the approach with different combinations of parameter
values, we noticed that the calculation time increases as the values of the parameters
increase. However, when we used high values for the parameters, the approach performs
similar to, or even worse than, an approach with low parameter values. Therefore, we
choose to use an initial temperature of 10 and a Markov Chain Length of 20 when testing the
hierarchical approach on the remaining instances. For the decrease factor, however, we
have not been able to specify which value gives the best results: Contrary to the other
parameters, we sometimes obtained better results with a high decrease factor compared to a
low decrease factor. Therefore, we use two values for the decrease factor when testing the
different instances: 0.9 and 0.95. Table 8.5 specifies the parameter values that we use when
we solve the remaining seven instances with the hierarchical approach.

Parameter Values
Initial temperature 10
End temperature 0.5
Decrease factor 0.9, 0.95
Markov chain length 20
Table 8.5: The values of the Simulated Annealing parameters used for the hierarchical approach

As we mentioned in Section 7.4, we use SA to solve both the assignment and the
sequencing problem in version 4 of the hierarchical approach. We have chosen to use the
same parameter settings when solving both the assignment and the sequencing problem.

In Table 8.6, we specify the different versions of the hierarchical approach that we test. In
addition, we specify which parameter values we test the versions with. Note that we only
specify the values that we use to create an initial solution and the decrease factor used.
We do not specify the values for the other simulated annealing parameters, because these
parameters only take on one value.

Approach
version

Algorithm used
for assignment

Algorithm used
for sequencing

Number of
iterations

Decr.
factor

HA v1 Iterative
improvement

Iterative
improvement

1 N/A 2

HA v2 Iterative
improvement

Iterative
improvement

N/A 2

HA v3-1 SA Iterative
improvement

2 0.95 2, 25, 100

HA v3-2 SA Iterative
improvement

2 0.9 2, 25, 100

HA v4-1 SA SA 2 0.95 2, 25, 100
HA v4-2 SA SA 2 0.9 2, 25, 100
Table 8.6: The different versions of the hierarchical approach

In Table 8.6, the column ‘Algorithm used for assignment’ specifies whether we use iterative
improvement or simulated annealing to solve the assignment problem. Similarly, the column

77

‘Algorithm used for sequencing’ specifies which algorithm is used to solve the sequencing
problem. The column ‘Number of iterations’ specifies how often the two subproblems are
solved. In HA v1, for example, we solve both subproblems once (i.e. we use a one-way
communication approach). In HA v2, in contrast, we keep iterating from one substep to the
other until we are not able to find a neighbour with a better solution value than the current
solution.

As we can see in Table 8.6, we only test versions 1 and 2 with the initial solution that we
create by using an of 2. The choice to use an of 2 for these two versions is a random
one: In versions 1 and 2 of the hierarchical approach we are less interested in the best
schedule that the approach is able to find. For instance, with version 1 of the hierarchical
approach we wish to investigate whether solving the assignment problem or solving the
sequencing problem has most influence on the performance of the approach. With version 2
of the approach we wish to investigate whether it is beneficial to use a two-way
communication scheme instead of a one-way scheme. In both versions we are thus
predominantly interested in the amount by which we reduce the tardiness of the schedule
and not in the actual tardiness value of the best schedule that we have found. Therefore, we
can use any initial solution to test these versions of the approach.

As we can see in Table 8.6, we test versions 3 and 4 of the hierarchical approach with
different decrease factors and different initial solutions. We thus test these two versions with
six different parameter combinations. For clarity, we specify version 3 as version 3-1 when
we test this version with a decrease factor of 0.95. Similarly, we refer to version 3 as version
3-2 when we use a decrease factor of 0.9.

In all versions of the hierarchical approach we use an of 100 when we need to choose an
item from the decision set in the methods that we use to create an assignment or sequencing
neighbour.

8.3 Tardiness results for the integrated approach
In this section, we present the results obtained when using the integrated approach. As we
mentioned in the previous section, we need an scheme when we use to integrated
approach to test the different instances. Therefore, we first give the results of the tests that
we have performed to determine the scheme. Then, we give the results on the
performance of the integrated approach with the scheme that we determined.

As we mentioned in the previous section, we use a similar approach as Kolisch and Drexl
(1996) to determine the scheme. Table 8.3 specifies the different values of sample size
and values that we test. As we mentioned in Section 7.2, we use a serial scheme to
create decision sets. We subsequently assign to each operation in the decision set a weight
that is equal to the latest starting time (LST) of that operation. Tables 8.7a and 8.7b specify
the test results for instances 50-2 and 100-4 respectively. In the tables we furthermore
specify the objective value of the best solution found (expressed in days).

1 5 10 25 50 100 250 500
Alpha = 150 199 118 118 118 111 105 105 102

100 151 151 144 117 117 109 109 109
50 192 149 145 128 128 124 124 124
25 213 199 159 158 153 137 137 137
10 275 186 171 171 154 154 136 136

5 192 192 181 181 143 143 143 143
4 218 218 213 159 159 150 150 140
3 198 198 180 174 174 155 155 155
2 204 204 204 179 179 149 149 149
1 242 242 242 195 195 193 193 173
0 426 356 356 351 332 285 283 283

Min. Value 151 118 118 117 111 105 105 102

Sample size
1 5 10 25 50 100 250 500

Alpha = 150 338 241 205 152 152 144 141 132
100 339 235 155 155 155 154 146 113
50 220 171 171 171 160 145 141 131
25 270 212 212 169 169 163 163 140
10 289 282 198 198 198 198 198 198
5 462 409 343 343 343 323 285 285
4 435 435 435 426 362 362 306 306
3 686 588 455 455 446 446 363 363
2 666 585 585 443 443 443 443 431
1 830 657 578 560 560 560 450 449
0 1174 1078 965 902 808 808 803 665

Min. Value 220 171 155 152 152 144 141 113

Sample size

78

Tables 8.7a and 8.7b: Test results for instance 50-2 and 100-4.

The results in Tables 8.7a and 8.7b are unexpected. As we mentioned in the previous
section, we expected lower values for to perform better than higher values for when we
increased the sample size. However, in Tables 8.7a and 8.7b we notice that the higher
values still perform the best for large sample sizes. We also notice that the quality of the
solutions still varies greatly when we use a high value for : Even when we use an of
150 the objective values of the schedules in instance 100-4 differ greatly when we perform
500 iterations compared to 1 iteration. This is strange, because with such a high we
expected to obtain the same schedule in each iteration.

The unexpected results are caused by the specific data of the jobs that need to be scheduled
in the different instances. For example, in instance 50-2 we can divide the jobs into two sets.
The jobs belonging to the same set all have release and due dates that are close to each
other. The operations of these jobs thus need to take place at approximately the same
moment in time. The two sets, however, need to take place at different moments in time. In
other words: The release date of a job in set B is much later in time than that of a job in set
A. Figure 8.3 gives a simple representation of the instance. In the figure, the grey blocks
indicate the jobs belonging to the different sets. The length of the block indicates the interval
in which the job must be scheduled.

Set A Set B

Figure 8.3: A simple representation of the jobs in instance 50-2.

As a result of the job sets in the instances, the serial scheme and LST rule no longer work as
expected: As we mentioned in Section 6.1, the serial scheme does not consider the time in
which operations need to be scheduled. Therefore, an operation decision set in instance 50-
2 will contain operations from jobs belonging to both set A and set B. In addition, each
operation in the decision set is given a weight equal to its latest starting time. As a result of
these factors, the operations in set A will have very low weights while those of set B have
very high weights. Because of the great difference in weights between the operations in the
two sets, the scheduling approach is not able to distinguish well among the operations in the
decision set that have the highest priority (i.e. the operations in set A): Because of the great
difference in weights, the operations in set A all obtain high regret values. As a result, all
operations in set A obtain a high similar probability of being chosen, even when we use a
high value for . In general, we obtain this problem when the difference in weights between
the operations with high priority and those with low priority is large: If in this case, the
scheduling approach cannot distinguish well among the operations with the highest priorities.
Consider the following example:

We have a decision set consisting of three operations. Table 8.8 specifies two different scenarios with
respect to the regret values of the operations:

Operation Regrets in scenario 1 Regrets in scenario 2
1 10 300
2 9 299
3 0 0

Table 8.8: Two different scenario’s with respect to regret values of operations in a decision set.

79

If we used an of 100 in scenario 1, operation 1 would obtain a probability of 0.999 of being chosen.
However, if we used the same in scenario 2, operation 1 would only obtain a probability of 0.58 of
being chosen, while operation 2 would obtain a probability of 0.42.

Since the weight of the operations in the decision set has a lot of influence on the ability of
the approach to distinguish among the operations with the highest priorities, we performed
the same set of tests again with a different priority rule to assign weights to operations. We
gave each operation ijO the following weight: ijijijij prdw −−= . Here, ijd specifies the

internal due date of the operation and ijr specifies the internal release date. With this priority
rule, we determine the amount of time flexibility that we have to schedule an operation. The
time flexibility of ijO determines how important it is to schedule ijO as the next operation: If

ijO has a lot of time flexibility, then we have a large interval in which we can schedule ijO
such that ijO finishes before its internal due date. In that case ijO does not have a high
priority to be scheduled next. Note that this priority rule closely resembles the minimum slack
rule. The minimum slack rule, however, determines the weight at a particular moment in time.
With the time flexibility rule, we expect the difference in weights between the operations in
the decision set to become smaller compared to the LST rule. In addition, with this rule we
still focus on reducing the tardiness of a schedule: We have more possibilities to schedule an
operation with a lot of time flexibility on time than an operation with little time flexibility.
Therefore, the operations with the lowest values for time flexibility obtain the highest regret
values. In this way, we can try to schedule those operations on time or with as little tardiness
as possible.

We perform the tests with the new priority rule on the same set of instances. Tables 8.9a and
Tables 8.9b give the results for instance 50-2 and 100-4 respectively.

Tables 8.9a and 8.9b the results of the tests with the time flexibility rule

As we can see in Tables 8.9a and 8.9b, the results resemble the expectations more closely:
The optimal value for becomes smaller as we increase the sample size. However, we are
still not able to create a deterministic schedule when we use a high value for a . In addition,
when we compare Tables 8.9a and 8.9b to Tables 8.7a and 8.7b, we notice that the
approach performed much better when we used the LST rule.

The poorer performance of the approach when we use the time flexibility rule is caused by
the fact that the scheduling approach no longer considers the internal due date of the
operations when determining which operation needs to be scheduled first: Now, the least
flexible operation is given the highest probability of being chosen even if that operation needs
to be scheduled at a late moment in time. As a result, it may become more difficult to
schedule an earlier operation ijO on time, because this operation must now finish before the
starting time of the previously scheduled operation.

1 5 10 25 50 100 250 500
Alpha = 150 437 437 437 414 414 414 352 352

100 622 483 467 422 396 396 396 370
50 536 468 463 365 365 365 365 365
25 640 418 418 418 407 374 374 356
10 443 443 443 443 443 441 419 409
5 529 517 429 429 429 429 410 410
4 567 567 502 489 347 347 347 347
3 715 556 494 494 494 406 406 406
2 700 469 469 469 469 469 448 447
1 884 701 701 594 568 529 529 482
0 1174 1078 965 902 808 808 803 665

Min. Value 437 418 418 365 347 347 347 347

Sample size
1 5 10 25 50 100 250 500

Alpha = 150 179 176 168 149 149 147 147 145
100 183 164 159 159 159 142 140 139
50 176 171 171 144 144 144 139 139
25 178 177 169 148 148 144 142 142
10 190 182 157 157 149 148 145 133

5 232 192 179 172 168 165 165 141
4 209 165 165 163 163 163 163 152
3 252 196 195 195 169 157 157 157
2 291 193 188 188 187 179 167 165
1 233 233 219 205 205 193 167 167
0 426 356 356 351 332 285 283 283

Min. Value 176 164 157 144 144 142 139 133

Sample size

80

From the previous tests we can conclude that we must consider the due date of the
operations in some way when we create an operation decision set. However, when we use
the serial scheme in combination with simple priority rules, we do not obtain expected
results: We then obtain operation decision sets where the difference in regret values
between operations with the highest weights and those with the lowest weights is very large.
As a result, the scheduling approach is not able to distinguish well between the operations
with the highest regret values (i.e. the operations with the highest priority of being scheduled
as the next operation).

To solve this problem, we have two main possibilities:
1. We can adjust the scheme by which we determine which operations are included in

the decision set. For example, instead of including all operations whose job
predecessors have been scheduled, we can choose to include only the subset of
operations that are most promising (i.e. the subset with the highest priorities).

2. We choose weights for the operations in the decision set such that the approach is
able to distinguish more clearly among the operations with the highest priorities.

In this assignment, we use the following procedure: We still use the serial scheme to create
the decision set and we give each operation a weight equal to its latest starting time. We
then adjust the weights for each operation such that the approach is able to distinguish more
clearly among the most promising operations. We adjust the weights as follows:

1. We first determine the subset S of operations in the decision set that have the highest
priorities (e.g. the operations with the lowest LST values). We include an operation in
S if that operation has a weight that is equal to or lower than a specific threshold
weight thresholdw .

2. We now determine the actual weights for the operations in the decision set as follows:
The operations in S maintain their original weights. The remaining operations in the
decision set obtain the threshold weight as their new weight.

Once we have assigned new weights to the operations in the decision set, we proceed in the
usual way: We determine regret values and probabilities for each operation and we
subsequently choose an operation from the decision set.

With this scheme, each operation in the decision set still has the probability of being chosen.
However, the largest weight in the decision set is now smaller than before. As a result,
operations obtain smaller regret values and the approach is able to distinguish better
between the operations with the largest regrets. Consider the following example:

We have a decision set consisting of five operations. Table 8.10a gives the weights of the operations
when we use certain priority rule. Table 8.10b gives the adjusted weights for the operations when we
use a threshold weight of 1. We use an of 100 to determine the probabilities for the operations.

Operation Weight Regret Probability Operation Adj. Weight Regret Probability
1 0,1 99,9 0,41 1 0,1 0,9 1,00
2 0,4 99,6 0,31 2 0,4 0,6 0,00
3 0,5 99,5 0,28 3 0,5 0,5 0,00
4 99 1 0,00 4 1 0 0,00
5 100 0 0,00 5 1 0 0,00

Tables 8.10a and 8.10b: Two example decision sets

81

As we can see in Table 8.10a, there is a large difference between the smallest and largest weight in
the decision set. As a result, the approach is not able to distinguish well among the operations with the
lowest weights, even when we use a high value. In Table 8.10b, in contrast, the difference between
the smallest and largest weight in the set has become much smaller. As a result, the regret values of
the operations are much smaller than in Table 8.10a. As we can see in Table 8.10b, operation 1 now
has a rounded probability of 1 of being chosen.

We have tested the new procedure on instance 50-2, because in this instance there is a
large difference in weights between the operations in set A and those in set B. We use the
LST rule to determine initial weights for the operations. We then apply the new procedure as
follows:

1. For each operation in the decision set D , we determine both the weight and the
normalized weight. The normalized weight is equal to the weight of the operation
when it is normalized on a scale from 0 to 10. As a result, the operation with the
highest weight obtains a normalized weight of 10 and the operation with the lowest
weight obtains a normalized weight of 0.

2. We determine the set S as follows: Each operation with a normalized weight of 0.3 or
less, is included in S . If S consists of less than 5 operations, we add the operations
with the lowest normalized weights to S until S consists of 5 operations.

3. The operations in S retain their original weights. The remaining operations (i.e. the
set SD −) obtain the same weight as the operation in SD − with the smallest
weight.

We have set the threshold weight to include an operation in set S at 0.3. We set the
threshold weight at 0.3, because the set of operations with a normalized weight of 0.3 or less
has a distribution that most closely resembles a uniform distribution. In other words: The
normalized weights of those operations are distributed relatively evenly over the interval [0,
0.3]. The advantage of a uniform distribution of the operation weights is that the integrated
approach is able to distinguish more clearly among the different operations in the decision
set. We have also specified that the set S should consist of at least 5 operations. We make
this choice to ensure that S contains multiple operations that have original weights. We limit
the threshold to 5, however, to avoid creating a decision set that still contains several
disruptive operations. We consider these thresholds to be suitable for our testing purposes.
In the future, however, further research is required to determine good values for the
thresholds.

Once we have assigned new weights to the operations, we again normalize the weights on a
scale from 0 to 10. Now, all operations in SD − obtain a weight of 10, while the other
operations obtain a weight between 0 and 10. We choose to normalize the weights to ensure
that the weights always remain within the interval [0,10] irrespective of the instance that we
are considering or the priority rule that we use. As a result, we further reduce the influence of
the weights themselves on the decision set: For example, we may have two decision sets
consisting of five operations. The weights of the operations in these decision sets are as
follows [1, 2, 3, 4, 5] and [10, 20, 30, 40, 50]. As we can see, in both decision sets the
weights are uniformly distributed over their respective intervals. However, the regret values
that the operations receive will still differ per decision set. Now, if the weights are normalized,
the operations in the decision sets obtain the same normalized weights and, thus, the same
regret values. Once we have normalized the weights of the operations, we proceed to
determine regret values for the operations and so forth.

82

Table 8.11 specifies the results of the tests with the new approach:

1 5 10 25 50 100 250 500
Alpha = 150 136 126 116 113 111 111 106 106

100 136 128 127 113 112 109 107 106
50 137 126 124 111 110 106 106 106
25 138 105 105 105 105 105 105 105
10 134 119 107 107 104 104 95 95

5 156 132 132 117 107 107 103 96
4 153 129 128 117 115 106 98 98
3 177 134 134 120 120 118 115 110
2 191 169 152 130 124 120 120 120
1 297 249 207 185 185 178 178 157
0 415 371 363 324 283 283 283 283

Min. Value 134 105 105 105 104 104 95 95

Sample size

Table 8.11: Results obtained for instance 50-2 when using the new approach.

As we can see in Table 8.11, the results resemble the expectations even closer than in the
previous tests: The optimal value decreases as the sample size increases. We still do not
find a deterministic solution when we use high values for , but the range of objective
values reached is more limited than in the previous tests. In addition, this scheme performs
better than the previous schemes: For most combinations of sample size and value the
approach performs much better than in the first test. The best schedule that we find now has
an objective value of 95 compared to a value for 102 in the first test. In addition, we require
much less iterations to obtain a good solution: When we use an of 10 or 25, we already
find good solutions when we perform 10 to 25 iterations. In the first test, in contrast, we reach
good solutions after performing 50 to 100 iterations.

Based on the results in Table 8.11, we have tested the other instances with the same
procedure and the following scheme: We perform 1 iteration with an of 100, 25
iterations with an of 25, and 500 iterations with an of 10. We compared these results
with the results that we obtain when we do not use the new procedure to assign weights to
operations. We performed three additional sets of tests for the instances: 500 iterations,
1000 iterations, and 5000 iterations. The iterations were equally spread over five values:
100, 50, 25, 10, and 2. As we have seen in previous tests, we can still reach several
solutions in the solution space with high values. Therefore, we spread the iterations
equally over the values to ensure that we perform several iterations with each value.

We find the results of the tests in Table 8.12. In this table, we have four columns with results.
The column ‘526’ specifies the results with the new procedure and the scheme with 526
iterations. The remaining columns specify the results of the other three tests. The number
specifies the total number of iterations performed.

Run Instance
526 500 1000 5000

1 25 23 23 23 23
2 50_1 148 122 117 117
3 50_2 99 109 109 109
4 50_3 230 232 218 218
5 50_4 287 271 271 266
6 100_1 501 535 535 532
7 100_2 425 457 457 457
8 100_3 1664 1645 1543 1584
9 100_4 126 130 127 113
10 150 963 1001 970 962

Integrated approach

Table 8.12: Comparison of the approach with the new procedure to approaches without the procedure

83

As we can see in Table 8.12, the approach with the new procedure seems very promising:
For certain instances the approach even finds better results than when we perform 5000
iterations with equal values. However, we can also see that the approach performs poorly
for certain instances (such as instances 50-1 and 100-3). A good area for future research is
thus to test the procedure further to determine how it can be fine-tuned to the scheduling
instance. Further research should also be done to determine whether there are any
alternative procedures that can be used (e.g. a procedure where we only include the most
promising operations in the decision set).

8.4 Tardiness results for the hierarchical approach
In this section, we present the results when solving the scheduling instances with the
hierarchical approach. Table 8.13 presents the objective values of the best solutions found
with each version of the hierarchical approach. The table also contains the objective values
of the best solutions found with the integrated approach.

Run Instance Assignment
neighbourhood IA HA 1 HA 2 HA 3_1 HA 3_2 HA 4_1 HA 4_2

1 25 N1 23 43 43 23 23 23 23
N2 25 23 23 25

2 50_1 N1 117 152 156 109 118 106 105
N2 108 107 107 104

3 50_2 N1 99 152 139 95 92 90 94
N2 78 100 92 97

4 50_3 N1 218 317 295 163 159 157 158
N2 136 170 157 178

5 50_4 N1 266 443 401 252 267 238 233
N2 242 248 241 234

6 100_1 N1 501 676 724 417 365 369 371
N2 394 423 480 459

7 100_2 N1 425 622 519 400 419 395 366
N2 405 409 373 386

8 100_3 N1 1543 1869 1755 1380 1426 1335 1435
N2 1404 1434 1496 1496

9 100_4 N1 113 481 446 195 150 156 194
N2 165 202 220 167

10 150 N1 962 1834 1636 1038 1040 1051 1081
N2 1139 1072 1108 1120

Best solution

 Table 8.13: The best solutions found with the different approaches

In Table 8.13, N1 refers to assignment neighbourhood)(1 qNassign and N2 refers to

neighbourhood)(2 qNassign . All values are expressed in days.

Based on Table 8.13 we are able to make a number of conclusions. First, versions 3 and 4 of
the hierarchical approach often perform better than the integrated approach: These versions
manage to find better solutions than the integrated approach in 7 of the 10 instances. In
some instances, the difference between the best solution found with the integrated approach
and the one found with the hierarchical approach is even quite large. For instance 100_4 and
150 (i.e. the two instances where the integrated approach has the better performance) we
compared the best schedule found with the hierarchical approach to the one found with the
integrated approach. When comparing the two schedules, we noticed that the assignments

)(qA of the schedules are quite similar. In the solution obtained with the hierarchical
approach, however, the maximum tardiness is much larger than in the solution with the

84

integrated approach. Based on these observations, we can conclude that the difference in
schedules is caused by the way that operations are sequenced on their resources. Because
the hierarchical solution has a much larger maximum tardiness than the integrated solution,
we think that the hierarchical approach schedules a set of jobs very late in time so the
operations of other jobs can be scheduled on time.

In Table 8.13, we also see that versions 1 and 2 of the hierarchical approach perform the
poorest. This result is not surprising: As we mentioned before, we used an of 2 to create
an initial solution for these versions of the hierarchical approach. Compared to an of 100,
an item in the decision set is chosen randomly when we use an of 2. As a result, this initial
solution had a poor objective value. In addition to a poor initial solution, the two versions of
the hierarchical approach only accept neighbours if those neighbours have a better objective
value than the current solution. As a result, these versions are not able to escape local
optima. Therefore, these versions will probably only find neighbours that are in close
proximity to the initial solution. Since we use a relatively poor initial solution, we can thus also
expect our best solution to be relatively poor. Because we have only tested versions 1 and 2
of the hierarchical approach with a poor initial solution, it is not possible to compare the
performance of versions 1 and 2 to other versions of the hierarchical approach and the
integrated approach based on the data in Table 8.13. We have chosen to still include the
data for these two versions in the table to obtain an overview of the best schedules found
with all versions of the hierarchical approach.

As we just mentioned, we are not able to determine how well versions 1 and 2 of the
hierarchical approach perform compared to versions 3 and 4 based on the results of Table
8.13: When we used versions 3 and 4 we often found the best solutions when we used an
of 25 or 100 to create an initial solution. As we just mentioned, however, we only tested
versions 1 and 2 with the initial solution that we obtained when we used an of 2. To be
able to compare the different versions to each other, we also compare the performance of
the different versions when we used the same initial solution. Figure 8.4 gives the results of
this comparison for four of the instances tested. For each version of the hierarchical
approach we used an of 2 to create an initial solution. In addition, each version used
assignment neighbourhood)(1 qNassign when solving the assignment problem.

85

50

70

90

110

130

150

170

190

210

230

250

Init BA BS

Instance 50-1

HA 1

HA 2

HA 3_1

HA 3_2

HA 4_1

HA 4_2

200

250

300

350

400

450

500

Init BA BS

Instance 50-4

HA 1

HA 2

HA 3_1

HA 3_2

HA 4_1

HA 4_2

400

450

500

550

600

650

700

750

800

850

Init BA BS

Instance 100-2

HA 1

HA 2

HA 3_1

HA 3_2

HA 4_1

HA 4_2

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

Init BA BS

Instance 100-3

HA 1

HA 2

HA 3_1

HA 3_2

HA 4_1

HA 4_2

Figure 8.4: Comparison of the different versions of the hierarchical approach when using the same initial solution
and assignment neighbourhood.

In Figure 8.4, ‘Init’ refers to the value of the initial solution, ‘BA’ refers to the best solution
found by reassigning operations to different resources, and ‘BS’ refers to the best end
solution found.

As we can see in Figure 8.4, version 1 of the hierarchical approach still performs poorly when
compared to the other versions of the approach. Version 2, however, performs relatively well:
In two of the four instances we manage to find an end solution that is comparable to those
found with versions 3 and 4 of the hierarchical approach. This observation also applies to
the other instances that we have tested. The main difference between version 2 and the
other versions is that version 2 has a more extensive communication scheme than the other
versions: In version 2, we iterate between reassignment and resequencing until we cannot
find either an assignment neighbour or a sequencing neighbour with a better objective value
than the initial solution. In other versions, we either use a one-way scheme or we only iterate
once from the sequencing procedure to the assignment procedure. An interesting area for
future research is thus to iterate more frequently between reassignment and resequencing.

In Figure 8.4 we can also see that versions 3 and 4 of the hierarchical approach generally
have the best performance. From this we can conclude that it is beneficial to use SA to solve
the assignment problem. However, we are not able to specify clearly which version works
best: In these instances, we find the best end solution with version 4-1. However, we also
find good solutions with versions 3-1 and 4-2.

86

We also investigate which assignment neighbourhood gives the best results. When we look
at the results in Table 8.13, we notice that the best neighbourhood is dependent on the
tested instance: For some instances, we obtain the best results with)(1 qNassign , whereas

)(2 qNassign leads to the best results in other instances.

Finally, we make some conclusions on the influence of the initial solution on the performance
of the hierarchical approach. To determine the influence of a particular initial solution, we
compare the tardiness of the initial solution to the performance of the hierarchical approach
when that initial solution was used. We measure the performance of the hierarchical
approach by determining the average tardiness over the best solutions found with the
different versions of the hierarchical approach. Figure 8.5 presents the results obtained for
four of the tested instances:

0

500

1000

1500

2000

2500

Initial solution Best solution

Instance 150

Alpha = 2

Alpha = 25

Alpha = 100

0

100

200

300

400

500

600

700

Initial solution Best solution

Instance 100-4

Alpha = 2

Alpha = 25

Alpha = 100

0

100

200

300

400

500

600

Initial Solution Best Solution

Instance 50-4

Alpha = 2

Alpha = 25

Alpha = 100

0

50

100

150

200

250

Initial solution Best solution

Instance 50-2

Alpha = 2

Alpha = 25

Alpha = 100

Figure 8.5: The performance of the hierarchical approach for different initial solutions

In Figure 8.5, we can see that the best solution found by the approach is very dependent on
the quality of the initial solution: The better the initial solution, the better the end solution
found. When we consider the slopes of the lines in the figure, we see that the approach
manages to find a greater improvement when we use a poor initial solution compared to a
good initial solution. However, the different versions of the approach are not able to examine
the entire solution space and find a good end solution irrespective of the initial solution. For
the current versions of the hierarchical approach we can thus conclude that it is important to
create a good initial solution in order to find a good end solution.

Based on the information above, we can thus conclude that further research needs to be
done to determine the influence of the initial solution and the communication scheme on the
performance of the hierarchical approach. Therefore, we have performed some additional
tests with the hierarchical approach on a subset of the instances. In these tests, we vary the
initial solution used and the amount of times that we iterate between the assignment and the
sequencing step.

87

As we have done before, we use the integrated approach to create initial solutions. In this
case, however, we perform several iterations to create an initial solution. We create two initial
solutions in the following way:

1. We perform 100 iterations of the integrated approach. We divide the iterations equally
over the following five values: 100, 50, 25, 10, and 2.

2. We perform 500 iterations of the integrated approach: Again, we divide the iterations
equally over the same five values as the scheme with 100 iterations.

As in version 3-1, we solve the assignment problem with simulated annealing and the
sequencing problem with iterative improvement. Similarly, we used a decrease factor of 0.95.
We choose this version of the approach so we have the possibility to consider a large part of
the solution space when we solve the assignment problem. As we have seen in previous
tests, the hierarchical approach does not perform much better when we also use simulated
annealing to solve the sequencing problem. Since simulated annealing requires more
calculation time than iterative improvement (calculation times are discussed in the next
section), we use iterative improvement in the sequencing step.

To determine whether more frequent iterating between the assignment and sequencing step
results in better schedules, we used two different communication schemes: In one scheme,
we only iterate once from the sequencing problem to the assignment problem (i.e. we use
the same scheme as version 3-1). In the other scheme, we iterate between assignment and
sequencing until we have solved both subproblems four times. We use assignment
neighbourhood 2

assignN when we solve the assignment problem.

We perform the tests on three instances: instance 50-4, instance 100-4, and instance 150.
We find the results of the tests in Table 8.14. In the column ‘ scheme’ we specify the
number of iterations performed to obtain an initial solution. Again, we express the results in
days:

Instance scheme
Init. BA BS Init. BA BS

50-4 100 298 267 266 298 266 263
500 289 225 225 289 225 218

100-4 100 157 153 126 157 153 118
500 124 117 109 124 117 107

150 100 994 992 965 994 964 960
500 973 973 858 973 973 858

Both subproblems are solved twice Both subproblems are solved four times

Table 8.14: Initial tests with a better initial solution and more frequent iterations between substeps

From Table 8.14, we can see that the hierarchical approach manages to find improvements
when we use relatively good initial solutions. Now, the best solution with the hierarchical
approach is also better than the best solution with the integrated approach for instances 100-
4 and 150 (note that the best solution of the hierarchical approach is also better than that of
the integrated approach for instance 50-4. However, in previous tests we have already found
solutions with a lower tardiness value than the best solution found with the integrated
approach).

In the table we can also see that we generally obtain better solutions when we perform each
subproblem four times. However, compared to the communication scheme in which we
perform each subproblem twice, the improvements are relatively minor.

The results of these initial tests seem promising. Further testing is still required, however, to
determine a good initial solution and communication scheme.

88

8.5 The performance of the approaches on other factors
In this section, we focus on the performance of the approaches with respect to calculation
time. In addition, we determine how the hierarchical approach influences other performance
indicators when it focuses on minimizing the total tardiness.

Comparison of the approaches with respect to time
During the different runs, we stored information on the calculation time of the different
approaches. In Table 8.15, we can see the results of each approach with respect to
calculation time. The values are average values over all runs done during testing. We specify
the calculation times in minutes.

Run Instance Integrated approach
526 iterations HA 1 HA 2 HA 3-1 HA 3-2 HA 4-1 HA 4-2

1 25 <1 <1 <1 <1 <1 <1 <1
2 50_1 2 1 1 5 2 9 6
3 50_2 2 1 1 6 2 9 5
4 50_3 2 1 1 4 2 7 4
5 50_4 3 1 1 4 2 7 4
6 100_1 4 14 8 13 10 16 8
7 100_2 8 11 8 20 13 30 22
8 100_3 7 29 30 30 23 34 16
9 100_4 5 10 8 11 6 17 10

10 150 15 40 42 36 27 45 21

Hierarchical approach

Table 8.15: Calculation times of the different approaches

In Table 8.15 we have only specified the calculation times when we performed 526 iterations
of the integrated approach. The calculation time for the integrated approach increases in a
linear fashion when the number of iterations increases.

Based on the information from Table 8.15 we can conclude that the integrated approach is
roughly comparable to version 3-1 of the hierarchical approach with respect to time when we
perform 1250 iterations of the integrated approach. As we have seen in the previous section,
the hierarchical approach presently performs better than the integrated approach with
respect to tardiness minimization. However, we have not yet determined how the integrated
approach performs when we use the new procedure for creating decision sets and we
perform more than 526 iterations. It may thus be the case that the integrated approach
performs better than the hierarchical approach when both approaches require the same
amount of calculation time. Further testing of the two approaches is thus required in the
future to truly determine which approach works best.

When we compare versions three and four of the hierarchal approach with respect to time,
we notice that version 3-2 often has a much lower calculation time than 3-1. We make a
similar observation when we compare versions 4-2 and 4-1 of the approach. This result does
not surprise us: Since versions 3-2 and 4-2 use a lower decrease factor than versions 3-1
and 4-1, we are able to solve the assignment problem (and the sequencing problem in
version 4) more quickly. However, when we compare the performance of the versions to
each other with respect to the objective value, we see that the versions with a lower
decrease factor do not perform much worse than the versions with a higher decrease factor.
We can make similar conclusions when we compare version 3-1 with version 4-1 and version
3-2 with version 4-2.

89

Finally, we can also conclude that improvements must be made to the speeds of the different
approaches. The instances that we have tested contain few jobs. For these instances, we
already require a lot of calculation time. This calculation time increases when we solve
practical scheduling problems that contain more jobs.

The performance of the hierarchical approach on other performance
indicators
In the general scheduling problem we focus on minimizing the tardiness of the jobs in the
schedule. However, we are also interested in the performance of the hierarchical approach
with respect to other performance indicators. We can then determine how other indicators
are affected when we try to reduce the tardiness of the schedule.

We focus on four additional kinds of performance indicators: The number of tardy jobs, the
maximum tardiness found, the total amount of time spent on changeovers, and the number
of changeovers performed. We chose not to focus on the way the total workload was
balanced over the different resources, because information on the workload was not readily
available.

We determine how versions 3 and 4 of the hierarchical approach perform on the different
indicators. To do so, we relate the tardiness of the schedules that we have created with
these versions to the values that the schedules have on the indicator. We create a scatter
plot for each indicator in which we specify this data. For each instance we have created 26
schedules with either version 3 or 4. Therefore, each scatter plot contains 26 points.

We compare the tardiness performance of the approach to the other indicators for four
instances (two with 50 jobs, one with 100 jobs, and one with 150 jobs). Figure 8.6 shows the
scatter plots of the different indicators for instance 100-2:

40

45
50
55
60

65

300 350 400 450 500 550 600 650

Total tardiness (days)

Total tardiness vs. maximum
tardiness

30

35

40

45

300 350 400 450 500 550 600 650

Total tardiness (days)

total tardiness vs. # tardy jobs

60

70

80

90

100

300 350 400 450 500 550 600 650

Total tardiness (days)

Total tardiness vs. #
changeovers

7,00

8,00

9,00

10,00

11,00

12,00

300 350 400 450 500 550 600 650

Total tardiness (days)

Total tardiness vs. total
changeover time

Figure 8.6: Performance of the hierarchical approach on other indicators for instance 100-2

90

When we compare tardiness to the other performance indicators, we find the strongest
relation between the total tardiness and the maximum tardiness: When we calculate the
correlation coefficient, we always find a positive relation between the total tardiness and the
maximum tardiness. However, the correlation coefficient varies greatly between different
instances: The minimum correlation value is 0.15, while the maximum value is 0.95. In three
of the four instances, however, the correlation between total and maximum tardiness is at
least 0.5. Therefore, we conclude that our versions of the hierarchical approach also tend to
reduce the maximum tardiness of a schedule when we reduce the total tardiness of a
schedule.

For the remaining indicators we cannot find such a relation: For certain instances, we
manage to find a positive relation between two indicators. For other instances, however, we
manage to find no relation or even a negative relation between the same two indicators.
Based on these results we conclude that there is no clear effect on these indicators when we
reduce the total tardiness of a schedule.

8.6 Conclusions based on the test results
In the previous section, we compared the different approaches on their performance with
respect to tardiness minimization, calculation time, and other indicators. In this section, we
draw some general conclusions based on these results.

In Section 8.3, we performed tests to determine a suitable scheme for the integrated
approach. To determine this scheme, we used a similar approach to Kolisch and Drexl
(1996): We tested different combinations of sample size and values to determine which
value is most suitable for a specific sample size. In general, the most suitable value for
should decrease as the sample size increases. In the tests, however, this did not always
occur.

An important conclusion that we are able to make based on the test results is that we should
adjust the decision sets that we create and the weights that we give to the items in the
decision set to the scheduling instance that we are solving. This conclusion is important,
because it has not been mentioned in scheduling literature before. Contrary to the scheduling
instances that are tested in scheduling literature, the instances that we have tested contain
certain characteristics that influence the regret values given to the items in the decision set
and, hence, the probabilities of the items of being chosen. For example, we have scheduling
instances in which the jobs are divided over different clusters that need to take place at
approximately the same time. These clusters affect the weights given to operations in the
decision set and make it more difficult for the scheduling approach to distinguish among the
operations from jobs belonging to the same cluster.

We have described a general procedure in Section 8.3 that considers the scheduling
instance when creating operation decision sets. This procedure adjusts the weights of the
operations with relatively low priority such that the scheduling approach is able to distinguish
well between the high priority operations. Initial tests with the procedure seem promising, but
further research is still required to fine tune the procedure to the different scheduling
instances.

In addition to conclusions with respect to the integrated approach, we are also able to make
a number of conclusions for the hierarchical approach. First, the hierarchical approach
performs well compared to the integrated approach: As we have seen in Section 8.4, we
often find better solutions with the hierarchical approach than with the integrated approach.

91

Of the different versions of the hierarchical approach, we obtained the best results with the
versions in which we used the simulated annealing algorithm to solve the assignment
problem. However, we also noticed that version 2 of the hierarchical approach often works
well compared to versions 3 and 4 of the hierarchical approach. We attribute the good
performance of version 2 to the extensive two-way communication scheme used in that
version. Therefore, we can conclude that it is important to iterate often between the
assignment and sequencing.

Based on the test results we can also conclude that the initial solution we use in the
hierarchical approach is of great influence on the performance of the approach with respect
to tardiness: The better the initial solution, the better the performance of the approach.
Further testing needs to be done, however, to determine a good initial solution for the
hierarchical approach. Testing must also be done to determine a good communication
scheme.

When we compare versions 3 and 4 of the hierarchical approach to each other, we notice
that the different versions give comparable results with respect to tardiness minimization.
However, when we compare the versions on calculation time, we can definitely see
differences: The versions in which we used a lower decrease factor required a lot less time
than the methods in which we used a higher decrease factor. In addition, versions 4-1 and 4-
2, where we used simulated annealing in the sequencing step, required more time than
versions 3-1 and 3-2, where we only accepted better neighbours in the sequencing step.
Based on these results, we can conclude that we do not require an extensive version of the
hierarchical approach to obtain good results. Finally, based on the calculation times required
by the different approaches, we can conclude that the calculation time of both the integrated
and the hierarchical approach need to be improved if ORTEC wishes to use the approaches
to solve practical scheduling problems.

The final conclusion that we wish to make in this section is with respect to the scheduling
instances that we have tested. With the instances that we have created, we have certainly
been able to test whether the approaches are able to handle specific constraints. In addition,
we think that we have obtained a good impression of the ability of the different approaches to
minimize the tardiness of a schedule: When creating the instances, we have taken a number
of measures to ensure that the instances differ sufficiently for us to make robust conclusions
based on the test results. However, we have not been able to test the approaches on any
practical scheduling instances (i.e. the scheduling instances found at (potential) PLANWISE
customers). We expect that practical scheduling instances will be different from the instances
that we have tested. For example, we expect the jobs in practical instances to have different
characteristics than the jobs in the instances that we have tested. Therefore, the approaches
should also be tested on practical scheduling instances in the future to truly determine how
suitable the approaches are for solving practical scheduling problems.

92

9. Conclusions and recommendations
Based on our research, we are able to make a number of conclusions and give a number of
recommendations for future research. In this chapter, we present these conclusions and
recommendations. First, in Section 9.1, we make a number of conclusions on the scheduling
approaches that we have developed and implemented in the optimizer in PLANWISE. Here,
we discuss how well the approaches meet the requirements stated in Chapter 1 and, more
specifically, how suitable the approaches are for solving the general scheduling problem of
Chapter 5. Subsequently, we present some recommendations for future research in Section
9.2.

9.1 Conclusions
As mentioned in Chapter 1, ORTEC has two main requirements for a scheduling approach:

1. The approach should be sufficiently generic and it should be able to handle different
practical scheduling situations.

2. The approach should be able to handle manual adjustments made by users.

The first step in our research was to translate these requirements into a general scheduling
problem that the approach would need to solve. For this purpose, we considered the
scheduling situations at different PLANWISE customers. Subsequently, we have created a
scheduling problem in which we have included the most relevant constraints found in
practice. We consider the scheduling problem that we have created to be a generic
scheduling problem: The scheduling problem is based on the production scheduling
environment, because this environment has the most extensive set of constraints. Since task
scheduling problems are special cases of production scheduling problems, we are thus also
able to model task scheduling problems with the general scheduling problem. With the
scheduling problem that we have created, we are thus able to model production and task
scheduling problems, which are the problems that occur most frequently. In addition, we also
incorporate the second requirement in the scheduling problem by specifying a set fixedO of
fixed operations. As we have mentioned in Chapter 5, the operations in fixedO may not be
rescheduled in any way: The assignment),(qijq MOA for each operation ijO in fixedO is

fixed and may not be adjusted. In addition, the starting and completion times of ijO are also

fixed. Thus, by specifying that manually scheduled operations belong to the set fixedO , we
ensure that manual adjustments made by the user are not changed by the scheduling
approach.

Based on the literature study into suitable scheduling approaches for the general scheduling
problem, we concluded that a hierarchical scheduling approach was most suitable for the
general scheduling problem, because hierarchical approaches can be adjusted more easily
to different scheduling situations than integrated approaches. We also concluded that a two-
way communication scheme was more beneficial than a one-way scheme. Finally, we
concluded that the assignment and sequencing subproblems of the general scheduling
problem can best be solved by using either local search algorithms, specifically SA and TS,
or the RBRS algorithm, because these algorithms are generic: They are able to solve
scheduling problems with different kinds of constraints and objective functions. Second,
these algorithms are flexible: They can easily be adjusted to incorporate new constraints or
different objective functions. Also, the algorithms are able to reach large parts of the solution
space. As a result, they can consider several solutions in the solution space and
subsequently determine which solution is best.

93

Based on these conclusions, we developed two kinds of scheduling approaches: An
integrated approach based on RBRS and a hierarchical approach based on local search
methods. Both approaches are suitable to solve the general scheduling problem. However,
we made a number of simplifying assumptions when creating the approaches:

1. We assumed that each operation is performed in a default mode. As a result, the
scheduling approaches are not able to adjust the mode in which an operation is
performed and hence the approaches are not able solve scheduling problems where
operations have resource-dependent processing times.

2. We assumed that all resources work according to the same calendar. As a result, all
resources have the same intervals of preemptive downtime.

3. We assumed that job predecessors of fixed operations are also fixed. We made this
assumption to ensure that no deadlines are introduced in the schedule.

4. We assumed that routing constraints did not apply when creating the hierarchical
approach. As a result we were able to use assignment neighbourhoods in which only
one operation is reassigned to new resources.

We tested the approaches on 10 scheduling instances. With these scheduling instances, we
were able to test whether the approaches could handle the following constraints: Precedence
relations, capacity constraints, preemptive and non-preemptive availabilities, and setup-
times. In addition, the approaches should be able to handle fixed operations. However, we
have not been able to test this.

In Table 9.1, we summarize the previous observations. The table contains the same set of
constraints as Table 4.1. For each constraint we specify whether the constraint is
incorporated in the general scheduling problem, whether the constraint can be solved by the
scheduling approaches, and whether we have tested the scheduling approaches on
instances that include the constraint (column ‘tested’). Finally, when needed, we make some
additional comments with respect to the constraint. We focus on the constraints included in
the general scheduling problem when we determine whether the approach can handle the
constraint and whether the constraint has been tested.

94

Constraint Included in
scheduling
problem

Included in
scheduling
approaches

Tested Additional comments

Resource capacity X X X We assume that resources are
unique.

Resource eligibility X X X
Precedence relations X X X We only consider F-S precedence

relations.
Multiple resources X X X
Transportation times X X If transportation time is fixed

between two operations, it can be
specified as a minimal time lag in
a F-S precedence relation

Use of the same
resources
Personnel constraints
Resource availability X X X
Changeover times X X X We assume that changeoves do

not require resources to be
performed.

Materials
Eligibility between
resources
Transfer batches
Shared resources
Combining and splitting
different jobs
Waiting time between
operations

X X We model waiting time as a
minimal time lag in a F-S
precedence relation.

Routing constraints X * The integrated approach is able to
handle routing constraints, the
hierarchical approach is not.

Use of different
resources for two
operations
Resource dependent
processing times

X When creating the scheduling
approaches, we assumed that
operations are performed in a
default mode.

Product carriers
Fixed operations X X
Table 9.1: A summary of constraints included in the scheduling problem

In Table 9.1, the ‘X’ specifies that a constraint is included in the scheduling problem and so
forth. The table also contains a ‘*’ to specify that the integrated approach is able to handle
routing constraints.

As we can see in the table, there are still some activities that need to be done in order for us
to use the scheduling approaches to solve the scheduling problem. At present, the
scheduling approaches are not able to handle all constraints specified in the scheduling
problem. If we thus wish to solve the scheduling problem with the scheduling approaches, we
must ensure that the approaches can handle the remaining constraints that they cannot
handle at present. Subsequently, the approaches must be tested on instances that contain
those constraints. In addition, there are some constraints for which we have not been able to
test whether the approaches can truly handle those constraints. In Section 9.2, we specify in

95

more detail which activities need to be done and the amount of time and effort that the
activities require.

In Chapter 8, we tested the approaches on the scheduling instances that we have created.
Based on the results, we were able to make a number of conclusions. First, it is important to
tune the scheduling approaches to the scheduling instance being solved. As we have seen in
Section 8.3, the scheduling instances had a lot of influence on the operation decision sets
created and thus the operations chosen from the decision set. We also noticed this to a
lesser extent in the hierarchical approach, where the scheduling instances influenced which
assigntment neighbourhood led to the best results. Second, when comparing the
performance of the hierarchical approach to the integrated approach, we were able to
conclude that the hierarchical approach generally gives better results than the integrated
approach. When comparing the different versions of the hierarchical approach to each other,
we were able to conclude that a number of factors influenced the performance of the
approach, such as the quality of the initial solution, the use of simulated annealing to solve
the assignment problem, and extensive iterating between the reassignment and
resequencing. Initial testing on these factors seemed promising but further research is still
required to determine how the factors influence the performance of the approach. Further
research is also required to determine how the integrated approach needs to be tuned to a
specific scheduling instance. Finally, the calculation time of both approaches must also
improve if ORTEC wishes to use the approaches to solve practical scheduling problems.

The conclusions that we have made on the performance of the different approaches is based
on the tests that we have done on the scheduling instances that we have created. As we
have mentioned in Section 8.1, we have taken a number of measures to ensure that the
instances were sufficiently different for us to make robust conclusions. Therefore, we think
that the test results give a good impression of the ability of the approaches to reduce a
schedule’s tardiness and the factors that influence the performance of the approaches.
However, we expect that the tested instances differ in certain ways from practical scheduling
instances. Therefore, further tests need to be done on practical instances before we can truly
determine how the approaches perform with respect tardiness minimization.

9.2 Recommendations
We have developed two generic scheduling approaches and we have performed a number of
tests to compare these two approaches to each other. However, there are still a number of
areas where further research can be done. As we have seen in the previous section, we still
need to perform further research to ensure that the scheduling approaches are able to solve
the generic scheduling problem. We also require additional research to improve the
performance of the scheduling approaches with respect to tardiness minimization and
computation time. Finally, we should consider possibilities to use the scheduling approaches
for more complex scheduling problems and capacity planning purposes.

We divide this section into four parts: Research to ensure that the scheduling approaches
are able to solve the general scheduling problem, research to improve the performance of
the approaches, research to adjust the scheduling approaches to more complex scheduling
problems, and research into the possibilities to use scheduling approaches for capacity
planning.

96

Ensuring that the scheduling approaches are able to solve the general
scheduling problem
The most important activities that need to be done in the short term are to ensure that the
scheduling approaches are able to solve the general scheduling problem. As we mentioned
in the previous section, there are a number of constraints in the general scheduling problem
that the approaches are not able to handle. In addition, we have not been able to incorporate
all constraints that the scheduling approaches can handle in the scheduling instances that
we tested. As a result, we cannot be sure that the approaches are truly able to handle these
constraints.

The following activities must be performed in order for the scheduling approaches to be able
to handle the scheduling problem:

1. A procedure must be created for both the integrated and the hierarchical approach
that can assign or reassign an operation to a different mode than its default mode.
This procedure must be able to choose a different mode and, subsequently, assign
the operation to a set of resources to satisfy the resource demands of the new mode.

2. For both types of approaches, we need to look at possibilities to incorporate
resources that use different kinds of calendars.

3. For the hierarchical approach, we need to create an assignment neighbourhood
where multiple operations are reassigned to new resources. We require such a
neighbourhood to handle routing constraints.

We expect the inclusion of different calendars for resources to require most effort: When
resources have different calendars, we must consider all resources in a set simultaneously to
determine whether an operation can be scheduled on that set at a specific time. In contrast,
when all resources have the same calendar, we can consider each resource in the set
individually. We thus need to make a lot of adjustments to the procedure that we use to
calculate starting and completion times for operations. In addition, since we need to consider
a set of resources simultaneously, we can expect the calculation time of the approach to
increase. In comparison, the other two constraints can be implemented in a short period of
time.

In addition to adjusting the approaches to solve the scheduling problem, we must also test
the approaches to ensure that they are truly able to handle all constraints. For most
constraints, we simply need to test the approaches on a scheduling instance that has that
constraint. For other constraints, such as fixed operations, some adjustments must be made
to PLANWISE before we can create scheduling problems that contain the constraint. Overall,
we expect that testing can be done with little time and effort required.

Finally, the approaches also need to be tested on actual scheduling problems of PLANWISE
customers to determine whether the approaches are able to solve ‘real’ scheduling problems.
We recommend performing these tests once the approaches are able to handle the general
scheduling problem. In addition, we recommend improving the speed of the approaches
before solving practical scheduling instances.

Improving the performance of the scheduling approaches
In addition to ensuring that the scheduling approaches can solve the general scheduling
problem, research must also be done on the short term to improve the performance of the
scheduling approaches with respect to tardiness minimization and calculation time.

Research must be performed to determine how to adjust the approaches to the specific
scheduling instance that needs to be solved. This is certainly the case for the integrated
approach: As we have seen in Section 8.3, the scheduling instances had a lot of influence on
the operation decision sets that were created and thus the operation that was chosen from

97

the decision sets. In Section 8.3 we described a general procedure to create operation
decision sets based on the set of jobs in the scheduling problem. Initial tests with this
approach seemed promising, but further research is required to fine tune the procedure to
the scheduling instance. The research can be done very easily: We can use the instances
that we have created to perform the tests.

There are also possibilities to improve the performance of the hierarchical approach. A
simple way to improve the performance of the hierarchical approach is to create a new
assignment neighbourhood containing schedules in which an operation is only reassigned to
new resources to replace those resources on which the operation has a critical resource
predecessor or successor. We can further improve the performance of the approach by
investigating the influence of the initial solution and the communication scheme used on the
performance of the approach. Initial tests showed that the performance of the approach
improves when we use a good initial solution and when we iterate frequently between
reassignment and resequencing. This research will require more time than the creation of a
new assignment neighbourhood, but it is not difficult to do: We can easily create new
versions of the hierarchical approach in which we use a good initial solution and an extensive
communication scheme. We can then test these new versions on the different scheduling
instances that we have created. Finally, we recommend that some research be done on the
priority rules used in the hierarchical approach. When we need to choose a new resource to
assign an operation to, for example, we give higher priority to those resources that have a lot
of free capacity over the planning horizon. As we mentioned in Section 7.4, however, it would
be more beneficial to consider the free capacity of the resource in the interval in which we
wish to schedule the operation.

Finally, it is also beneficial to consider possibilities to improve the speed of the approaches.
Certain procedures in the approaches can be performed more efficiently. A good area for
research is the procedure that determines the actual starting and completion times of
operations: For instance, we use an inefficient procedure to determine whether a changeover
is necessary and the amount of changeover time required. Some time will be required to
perform research in this area: First, we must determine which procedures work inefficiently.
Subsequently, we need to create more efficient procedures and implement them in
PLANWISE.

Scheduling approaches for more complex scheduling problems
We have not been able to consider all constraints and objectives that are relevant for
(potential) ORTEC customers. An interesting area for future research is thus to adjust the
scheduling approaches so they are able to handle scheduling problems with more
constraints and different kinds of objective functions.

The most important constraints to focus on are:
1. Precedence relations: We have chosen to focus on F-S relations in the general

scheduling problem, because it is the most common kind of precedence relation
found at PLANWISE customers. Customers, however, also experience other kinds of
precedence relations between the operations of a job. For instance, there are
PLANWISE customers who have S-S relations between some of their operations. The
scheduling approaches should therefore also be able to handle at least S-S relations
and preferably also F-F and S-F relations. For each type of precedence relation, the
approaches should be able to handle minimal time lags. If resources do not have any
periods of downtime, this extension will be easy to implement: In this case, S-S, F-F
and S-F relations can be translated into F-S relations. For instance, if hjO needs to

start either at the same time as, or after, ijO then we can translate this S-S relation

into the following F-S relation: hj
fs

ihjij SlagF ≤+ min . In this equation, minfs
ihjlag is

98

equal to the negative processing time of ijO . If resources have periods of downtime,
however, we cannot translate the other precedence relations into F-S relations. In this
case, it will require more effort to implement the other precedence relations: First, it
must be possible to specify these kinds of precedence relations in PLANWISE. At the
moment, this is not possible. In addition, the scheduling approaches must be adjusted
to handle these kinds of relations.

2. Product carriers: Several (potential) PLANWISE customers have scheduling
situations in which they work with product carriers. Therefore, it will be beneficial if the
scheduling approaches are able to handle these kinds of resources. Product carriers
are used to process all operations of a job. The need for these resources is
dependent on the schedule: When a job requires a product carrier, this carrier must
be available for the entire duration of the job, even when no processing takes place.
In other words: When a product carrier is assigned to a job, the carrier remains
occupied from the moment the first operation of the job is scheduled until the final
operation of the job is completed. An example of a product carrier is a maintenance
dock for ships: When maintenance needs to be done to a ship, the ship is kept in a
maintenance dock for the entire duration of the maintenance. We expect that it will be
easier to implement this constraint in the integrated approach than in the hierarchical
approach: In the integrated approach, we can claim a product carrier for a job as
soon as the first operation of that job has been scheduled. Additional constraints must
then be specified to ensure that the product carrier remains occupied until the last
operation of the job has been scheduled. In the hierarchical approach, in contrast, it
will be more difficult to implement the constraint: When we try to reschedule the
operations of a job, it may occur that the job as a whole obtains a new starting and
completion time. Checks must then be present in the approach to determine whether
the product carrier is still available for that job in the new time interval in which the job
is scheduled. We therefore expect that it will be difficult to create feasible neighbours
of a solution.

Another interesting area for future research is to adjust the approaches so they are able to
solve equipment scheduling problems. We expect this to be possible with very little
adjustments to the scheduling approaches: The most important issue is that we need to use
a different objective function (i.e. the number of tardy jobs) to evaluate schedules. In addition,
we might require different priority rules to choose items from the decision sets. For example,
since we now focus on minimizing the number of tardy jobs, we might give higher priorities to
the operations of a job that is partially scheduled over the operations of a job that has not
been scheduled yet. However, we can easily adjust the structures of the approaches for
equipment scheduling problems: In the hierarchical approaches, for instance, we simply skip
the solving of the sequencing problem.

Using the approaches for capacity planning
As mentioned in Section 2.1, ORTEC would like to use the scheduling approaches in an
optimizer for capacity planning. A suitable area for future research is thus to investigate how
suitable the approaches are for this purpose and which aspects of the approaches need to
be adjusted. An important aspect of a scheduling approach for capacity planning is that it
should specify which resources are bottleneck resources in the event that the approach is
not able to find a feasible schedule. In addition, in this case the approach should suggest
alternative schedules where operations are scheduled on a larger number of bottleneck
resources. Of the different recommendations, this recommendation should be considered
last: First, the scheduling approaches need to be able to solve the general scheduling
problem. In addition, it is necessary to first reduce the calculation time of the approach: A
scheduling approach for capacity planning must be able to solve multiple scheduling
problems. For instance, if the approach cannot find a feasible schedule with the initial set of
resources, it must solve a new scheduling problem that contains more units of the bottleneck

99

resource. Therefore, the approach may not require a lot of time to solve a single scheduling
problem. We also think that it will take some time and effort to adjust the approaches so they
are able to solve capacity planning problems: A set of criteria need to be implemented in the
approaches that specify which resource should be considered the bottleneck resource. In
addition, the scheduling approach must be able to create a new scheduling problem
containing more units of the bottleneck resource.

100

References

• Adams, J., Balas, E., and Zawack, D. (1988). The shifting bottleneck procedure for
job shop scheduling. Management Science, 34:391-401

• Baker, K. (1974). Introduction to sequencing and scheduling. New York: John Wiley &
Sons

• Bedworth, D.D., and Bailey, J.E. (1982). Integrated Production Control Systems -
Management, Analysis, Design. New York: John Wiley & Sons

• Boctor, F (1990). Some efficient multi-heuristic procedures for resource-constrained
project scheduling. European Journal of Operational Research, 49: pp. 3-13

• Boctor, F(1994). Heuristics for scheduling projects with resource restrictions and
several resource duration modes. International journal of Production Research,

• Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search.
Annals of Operations Research, 41: 157-183

• Brucker, P. (1998). Scheduling algorithms. Berlin: Springer – Verlag.

• Brucker, P. and Thiele, O. (1996). A branch and bound method for the general-shop
problem with sequence dependent setup-times. OR Spektrum, 18: 145-161.

• Dauzère-Pérès, S. et al. (1998). Multi-resource shop scheduling with resource
flexibility. European Journal of Operational Research, 107: pp. 289 – 305

• Fattahi, P. et al. (2007). Mathematical modeling and heuristic approaches to flexible
job shop scheduling problems. Journal of Intelligent Manufacturing 18, pp. 331–342

• Glover, F. (1986). Future path for integer programming and links to artificial
intelligence, Computers & Operations Research, 13: 533 – 549

• Graham, R.L. et al. (1979). Optimizer and approximation in deterministic sequencing
and scheduling: A survey. Annals of Discrete Mathematics,

• Guldemond, T.A. (2007). Analyse van de functionele voorwaarden en mogelijkheden
m.b.t. een planautomaat voor PLANWISE 2.5. (in Dutch, not publicly available)

• Hans, E.W. et al. (2007). A hierarchical approach to multi-project planning under
uncertainty. Omega 35 (5), pp. 563-577

• Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI: The
University of Michigan Press.

• Hurink, J.L. Introduction to Local Search. Obtained through private communication.

• Kelley, J.E., Jr. (1963), "The critical-path method: Resources planning and
scheduling", in: J.F. Muth and G.L. Thompson (Eds.), Industrial Scheduling, Prentice-
Hall, New Jersey, pp. 347-365.

101

• Kolisch, R. (1995). Project Scheduling under Resource Constraints: Efficient
Heuristics for Several Problem Classes. Heidelberg: Physica-Verlag

• Kolisch, R. and Drexl, A. (1996). Adaptive search for solving hard project scheduling
problems. Naval Research Logistics, Vol. 43 pp. 23 – 40

• Kolisch, R. and Drexl, A. (1997). Local search for nonpreemptive multi-mode
resource-constrained project scheduling. IIE Transactions, 29: pp. 987-999

• Kolisch, R. and Padman, R. (2001). An integrated survey of deterministic project
scheduling. Omega, 29: pp. 249 – 272

• Van Laarhoven, P.J.M and Aarts, E.H.L (1987). Simulated Annealing: theory and
applications Dordrecht, Holland: D. Reidel Publishing Company.

• Lawler, E.L. et al. (1982). Recent developments in deterministic sequencing and
scheduling: A survey. In M.A.H. Dempster, J.K. Lenstra, and A.H.G. Rinnooy Kan,
editors, Deterministic and Stochastic Scheduling, pages 35-73. NATO Advanced
Study and Research Institute, D. Reidel Publishing Company, Dordrecht, The
Netherlands.

• Lin, S. And Kernighan, W. (1973). An Effective Heuristic Algorithm for the Traveling-
Salesman Problem. Operations Research, Vol. 21, No. 2, pp. 498-516.

• Papadimitriou, C. H. and Steiglitz, K. (1982) Combinatorial optimization: Algorithms
and complexity, NewJersey: Prentice Hall.

• Reid, R.D. and Sanders, N.R. (2002). Operations Management. New York: John
Wiley & Sons

• Reyck, B. de and Herroelen, W. (1999). The multi-mode resource-constrained project
scheduling problem with generalized precedence relations. European Journal of
Operational Research, 119: pp. 538 – 556

• Pinedo, M. and Chao, X. (1999). Operations scheduling with applications in
manufacturing and services. Irwin/McGraw-Hill

• Schutten, J.M.J. (1996). Shop Floor Scheduling with Setup Times: Efficiency versus
Leadtime Performance. Ph.D. thesis, University of Twente

• Zribi, N. et al. (2007). Assignment and Scheduling in Flexible Job-Shops by
Hierarchical Optimization. IEEE Transactions on Systems, Man, and Cybernetics –
Part C: Applications and Reviews vol. 37, no. 4, july 2007

