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Abstract 

In a typical conversation held within a small group, we often see one person speaking, whilst the 

others listen. In most dialogues the listeners are not completely silent while the speaker has the 

floor. Occasionally they indicate to the speaker and the rest of the group their engagement  in the  

discourse by giving feedback in the form of words  like “Oh really?”, “yeah”, “hmm-mm”, “you don’t 

say!”. By doing so, the listener informs the speaker with their opinion about what is being said. 

Opposed to these feedback words – called backchannels – a listener can choose to interrupt or take 

over with a new statement if he or she wishes to contribute more than a few backchanneling words. 

In this thesis we have studied recordings of conversations in order to determine if the prosody from 

the speaker contains characteristic differences between the situation in which a listener uses a 

backchannel and the other situation, in which a listener adds an entirely new verbal contribution to 

the conversation. 

We used a corpus, consisting of the recorded signals of 138 multiparty meetings with an average 

length of 33 minutes each, in which four participants discuss the design of a new product. From the 

participants’ speech each utterance is annotated with a type, indicating whether it is a backchannel 

or not. From this corpus we selected the utterances of a speaker wherein or where shortly after, one 

of the listeners would start a contribution. 

By using “Praat”, we extracted several prosodic features from the selected utterances, normalized 

them for each speaker and used the resulting dataset in a series of machine learning experiments. 

By applying statistical techniques on our data, we assessed whether the two different types of 

contributions could be distinguished, based on the prosodic features that can be taken from the 

speaker’s speech. We found our decision tree to be correct in classifying the type of the contribution 

in backchannels and non-backchannels in 65.9% of all cases. With the baseline set at 50%, this is an 

increase of 15.9%.  

This report will present the following contents: chapter one serves as the introduction and is 

followed by chapter two, presenting previous findings from fields related to our study. Chapter three 

will present the corpus used and how this was formatted to support automatic utterance selection. 

The selection criteria, resulting data selection and  feature sets that are extracted are presented in 

chapter four. The experiments that were conducted and the results obtained from them are 

described in chapter five. Finally, we conclude in chapter six with conclusions and suggestions of 

further research. 
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1.  Introduction 

For some years now, computing systems are no longer communicated to with a mere keyboard and 

monitor. In recent years new ways of human-machine interaction have been developed. Take for 

example speech recognition and synthesis systems that are developed to assist in the everyday use 

of the personal computer. Presently we see the development of virtual humans, supplying the 

computer with a face to go along with the voice. These virtual humans, or conversational agents, as 

they are also called, are developed to assist in various applications. Giving a virtual tour through a 

building, assisting the school teacher in learning tasks, representing a system that is interconnected 

with the hardware in your home. Some examples exist today, some might in the near future. 

The examples above have a common vantage point: we (humans) interact verbally with a computer 

system and we expect this conversation to occur smoothly – preferably as natural as possible – as if 

the system were another human. Building a conversational agent that quickly and adequately 

responds to user requests or can interact casually, using everyday topics, obviously is not done 

overnight. There are major difficulties to overcome before a system can be produced, that knows 

that it is being addressed, is capable of processing human speech and can promptly form an 

appropriate response. The difficulties can be grouped into three major aspects: How should the 

agent interpret it’s input?; When should the agent contribute to the conversation?; What should it 

say?  

An integral part of the ones role as a listener, is signaling to the speaker that you (the listener) are 

(still) engaged in the conversation. In natural dialogue this is called backchanneling and these signals 

can be given verbally as well as non-verbally. A good example of a spoken backchannel is “Hmm-

mm”, but also think of an occasional nod or turn of the head, a sprouted set of lips, raised eyebrows, 

etc. Although we might take them for granted, backchannels are of great importance in a 

conversation. Imagine talking to a virtual human on a computer screen, that uses no backchanneling 

signals. Is it listening? Is it ‘on’?. Or, even worse, the other way around: gazing at you, following you 

around the room, giving an “Uh-u” every 1½ seconds. Clearly, the optimum lies somewhere in 

between. Although much progress has been made in the development of natural appearing 

(embodied) conversational agents, existing systems remain far from being perfect.  

We distinguish between situations in which a backchanneling utterance was given and situations in 

which a participant that was a listener before, started talking. We strive to contribute to the fields by 

determining if characteristics of the forgoing speech can be used to identify these two situations.  
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2.  Background 

In the introduction we showed that this study focuses on distinguishing backchannels from other 

kinds of utterances in a dialogue. In our approach we will select these moments from a corpus 

containing a large quantity of conversations and extract a set of prosodic features for analysis. 

Before we go into how we (de)compose a dialogue with the intent of finding these items and what 

to extract from them, we elaborate on features and methods used in other studies on closely related 

topics and how one of the most important attributes of speech came into play: silence.  

 

2.1 Conversation segmentation: the pause feature. 

In the fields of turn-taking and conversation modeling many researchers refer back to a study from 

1974: “Simplest systematic for turn-taking”, (Schegloff, Sacks, & Jefferson, 1974). Although it was a 

design that would be discussed (and sometimes criticized) in many studies to come, it is also 

considered to be one of the first models for turn-taking. In the 70’s and 80’s linguists presented 

many more studies on the properties of human dialogue with the intention of designing better 

dialogue models, (Jurafsky & Martin, 2000). The notion that sophisticated dialogue systems, used by 

conversational agents, would need some understanding of human dialogue as well, arose later. In 

the following decades, the 80’s and 90’s, this lead to many systems that initially relied on keyboard 

input, producing output on a screen. Later, these also accepted and generated spoken language. It 

wasn’t until the late 90’s and early in the 21
st

 century that extra modalities, like non-verbal 

communication with hand gestures, or gazing behavior were taken into account in (spoken) dialogue 

systems.  

In the past decade many systems have been developed, that rely mainly on an increasing period of 

silence at the end of the interlocutor’s turn for the decision on when to start with their answer. This 

simple systematic can prove very useful for end-of-turn detection in question-answering systems, 

where there is one person asking the questions, and one agent, attempting to provide the requested 

information. Classic examples are ticket or flight reservation systems. Preferably the agent’s 

responding time has the perfect balance between short but possibly wrong, and long but possibly 

awkward or unnatural. The perfect agent starts as soon as possible, but never when it shouldn’t. 

In the first mentioned study, a conversation was modeled as a collection of turns of conversational 

partners with an uninterrupted sequence of utterances as contents, (Schegloff, Sacks, & Jefferson, 

1974). At the end of an utterance the speaker would choose to continue with a new utterance or 

yield the floor to the partner, who signaled that he or she wishes to contribute. In this manner a 

dialogue is structured in a very ‘civilized’ manner, in which participants are expected to prevent 

overlapping turns. It was found that in some occasions the pause between utterances in the same 

turn were longer than the pauses between utterances of two different turns and noticed a small 

amount of speech that overlapped with other speech. In these situations, the participants should 

attempt to repair the dialogue, comparable to a real world scenario in which the speaker is 

interrupted or two participants start simultaneously. It was mentioned that relying solely on a pause 

feature would lead to a few errors. 
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In a different study, it is argued that an interruption or long pause within a turn are not errors in the 

dialogue but rather part of the normal discourse structure, (O'Connell, Kowal, & Kaltenbacher, 

1990).  In this view, a conversation is a joint activity between speakers where the dialogue is a result 

of a common goal of the speakers: both want to convey information or an opinion. 

Whether or not an interruption or overlap is labeled as an error in a conversation, they seem to 

occur quite often.  A study about the classification of meeting activities found that a considerable 

overlap of utterances occurred in the corpus that was used, (Tommassen, 2007). Little under seven 

percent of all sentences were at some point overlapped by an utterance from another speaker – 

excluding the backchannels, which tend to occur naturally in overlap with other utterances, 

considering their intended nature. In cases of interrupts or overlap one cannot rely (solely) on the 

pause duration as a feature for deciding when to start; there is none. 

Apart from the pause related features, there are many more items, that can be extracted, from the 

speech of conversational partners. These items are in general referred to as prosodic features and 

can vary over tonal or pitch related attributes, duration and intensity of speech elements, or 

intonation of specific words. These feature’s values represent, in principal, a large amount of data 

that we ourselves unconsciously use in our everyday structuring of conversations, but that is lost in 

written text. The relevance of prosodic features for the recognition of discourse structures has been 

found to apply across different ages, sexes, languages and cultures. 

In the past decade several studies have presented methods to segment human-human dialogue into 

smaller items, using prosodic features as a means of identifying the segment borders and possibly 

classifing the resulting segments into groups as well. Some used prosodic features to identify end of 

turn boundaries (Jonsdottir, Thorisson, & Nivel, 2008), (Schlangen, 2006); others segmented 

recordings of continuous speech in natural dialogue into sentences and utterances (Shriberg, 

Stolcke, Hakkani-Tür, & Tür, 2000), (Kolář, Shriberg, & Liu, 2006), (Atterer, Baumann, & Schlangen, 

2008). 

 

2.2 Transition relevant places and prosody 

Decomposing speech into smaller segments and labeling them, is necessary for the automatic 

recognition of these items in general. This decomposing of a turn was already applied by (Schegloff, 

Sacks, & Jefferson, 1974); they deconstructed a turn into several “turn constructional units” (TCU), 

comparable to separate sentences. In their turn taking systematic, each ending of a TCU indicates a 

moment in which the floor can either stay with the previous speaker or switch to another. These 

moments are called “transition relevant places” (TRP). This term is adopted in the field as the period 

indicating the end of an utterance or the end of a turn. We shall review a number of studies that 

focused on the detection (and prediction) of TRP’s 

In a study directed at the segmentation of speech into sentences and topics, a set of local prosodic 

features was used to determine if two sequential words surrounded a sentence boundary,  

(Shriberg, Stolcke, Hakkani-Tür, & Tür, 2000). This, initially large set of prosodic features was paired 

down to a usable set of well performing attributes. This was done by conducting experiments 
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wherein the functional merit of the feature was determined by decision tree classifiers. Furthermore 

a set of lexical features was input into language models that used word probabilities around the 

sentence boundaries. To compare the separate feature sets on the task of sentence segmentation, 

two corpora containing speech, that differ in content essence, were used. One consists of a body of 

natural dialogue between two humans (the switchboard corpus, presented by (Godfrey, Holliman, & 

McDaniel, 1992)). The other contains a corpus of news messages that were read aloud (the 

Broadcast News corpus, presented by (Graff, 1997)). The performance of the different feature sets 

were compared as well and it was found that the prosodic feature set performed on par with the 

lexical set, for both corpora. A combination of both resulted in the best scores. A big advantage of a 

prosodic feature set is that is can be extracted with relative ease, compared to lexical features, for 

which a speech recognizer is necessary in a real life scenario. 

The resulting models use attributes that measured around the actual boundary, and thus one word 

and a potential pause in between, in the future, when seen from the moment at which the sentence 

actually ends. Therefore this would be of poor use in a real time scenario. The actual intention was 

automatic sentence segmentation of a recorded set of utterances, in which scenario the ‘future’ is at 

the experimenter’s disposal.  

In a realtime scenario the near future is understandably ‘off limits’. Many of the current dialogue 

systems do however rely  to some extend on pause and silence related features, because in many 

cases it is simply found that performance increases when this information is used. In these cases, the 

decision depends on a preset minimum pause length. (De Kok & Heylen, 2009). It is argued, that by 

making use of any form of a pause feature that uses any time behind the actual boundary (of 

whichever unit), a transition relevant place recognizing model can never predict the actual TRP, only 

detect. After all, it can only use hind sight, so when the threshold of an x amount of time is triggered, 

the actual speech has progressed with a minimum of x time. To be able to truly predict a TRP, a 

model needs to be pause independent.  

In a study about classifying spoken words as being the end of a turn or not, (Schlangen, 2006) 

attempted to bridge the gap between detection and prediction. A mixture of prosodic and syntactic 

features was used to classify each pause of a certain length as being the end of the turn or not. In a 

series of experiments this length was shortened until each word had to be classified as being the last 

of the turn (or not). This enabled measuring of the necessity of the pause feature. The result showed 

that the use of any pause threshold above 0 did contribute in the f-measure values for the end-of-

turn class. Without any use of the pause, the distribution of end-words and not-ending-words 

became biased towards the latter, making the results difficult to compare. Yet still, they showed a 

contributing value of the syntactic and acoustic features. The acoustic features were indicated to 

perform on par with the syntactic features, in correspondence with the findings of (Shriberg, Stolcke, 

Hakkani-Tür, & Tür, 2000). 

A comparable approach was used in another study, determined to break a continuous stream of 

speech down into utterance segments. The influence of the pause related features was intentionally 

minimized, (Atterer, Baumann, & Schlangen, 2008). The input consisted of sentences from the 

switchboard corpus – no longer than 25 words – from which a prosodic and syntactic feature set was 

extracted. Classification was done word-wise, indicating whether a word was the last of a sentence 
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or not. This time around, different performance results were found: the syntactic feature set had a 

substantially larger contribution in the performance than the prosodic feature set. This was 

concluded after separate and combined testing on the classification task.  

A very different feature set aimed at end-of-turn prediction was explored in another study, (De Kok 

& Heylen, 2009). Here, a segment of a natural conversation corpus was used, that has been outfitted 

with manual annotations of the head movements and focus of attention of the four interacting 

participants. These features were used next to a prosodic feature set. When just one feature set was 

used for the classification experiments, the prosodic feature set achieved higher performance scores 

than the multimodal feature set. Classification performance peaked when the combination of both 

were used, implying an additive value of the head movement and focus of attention feature set. 

In the end-of-sentence detecting approach a set of prosodic features was used, that extracted data 

very local for simplicity and computational complexity reasons. (Shriberg, Stolcke, Hakkani-Tür, & 

Tür, 2000). The analysis window was determined by two words and consisted of,  200 milliseconds 

(ms) before the start of the first word and 200 ms after the second. A potential pause between the 

word was automatically encompassed in the window. Next to this pause feature extractions were 

done on pitch, voice quality and phone duration. An interesting feature is the pause before the first 

word, indicating whether the first word continued from continuous speech or if it is the first in a new 

sequence, because most words in sequence have an intermittent pause of 0 ms. The slope of pitch is 

styled into a robust contour from which several features depicting general slope, continuity and 

range. By evaluating experiments using decision trees, the initial number of prosodic features was 

tuned down to the useful ones. For a corpus consisting of natural dialogue, the important groups 

were phone and rhyme duration preceding the sentence boundary, pause duration at the sentence 

boundary and preceding the first word, total duration in the turn and whether there was a speaker 

turn at the boundary. The useful features that were found in the other corpus (news messages read 

aloud) are of less importance for this study, given the nature of the contents, but here as well, it 

turned out that pause and turn duration features are important, as well as the F0 range, gender and 

if there is a turn boundary at the sentence boundary. 

The overall classification performance of these feature sets was compared to the performance of 

statistical language models, capturing lexical features from the context of sentence boundaries. 

Speech recognition was used on the spoken words, enabling the use probability models on 

combinations of boundaries and parts of speech. Because different corpuses were used, a distinction 

could be made in the merit of different feature sets. It appeared that pitch features contributed 

more in text that was read aloud and duration and word-based features were of greater use in 

natural conversation. Pause related features played an important role in both corpora.  

In a study into the detection of end-of-turn using pause thresholds, a set of prosodic features was 

used, that proved useful in a classification task where all words in a corpus containing spontaneous 

human-human dialogue were classified as being the last word of a turn or not, (Schlangen, 2006). 

The features that were used, consisted of a series of F0 and intensity measures, taken from 10 ms 

frames and smoothed over the sample. From these two categories, they took a number of features 

that depict the curve (direction, number of changes), a set of features normalized to the speaker’s 

overall mean values (min, max, standard deviation), and a set of differences from the mean at 
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boundary frames. The F0 curve was segmented in three sections, where the mean and standard 

deviation were measured for each of them. Word length was also used. These features were used as 

a set, showing improvement when included amongst other feature sets, in the classification task. No 

individual feature performances were reported. 

A different approach was found to be useful as well in a study aimed at the detection of detecting 

end of utterance boundaries. A collection of classifiers was trained and tested with values of a 

prosodic feature set that consisted of the dot products taken from a set of filters and a set of  

prosodic extractions of various lengths, (Fuentes, Vera, & Solorio, 2007). A very large set of features 

was the result: 342 different features per item in the corpus. Although the model was trained on a 

relatively (considering the amount of features) small corpus of less than a thousand instances, it 

achieved very nice recall, precision and f-measure scores, with a REP decision tree as best 

performer. The features included log pitch and energy and were taken over 56 different samples 

with a length of 50 ms, spanning back to 3 seconds over the utterance. This set could be used 

efficiently, obtaining good classification scores, by using a set of filters, applied to the separate 

intervals, creating a smoothed pitch and intensity slope. 

In a study about detecting sentence boundaries, a combination of a prosodic and syntactic feature 

set was used as well, (Atterer, Baumann, & Schlangen, 2008). Comparable to the previous studies, 

they extracted from prosody: pitch and intensity average and standard deviation values over 

windows varying between 50 and 5000 milliseconds and differences between them, depicting pitch 

and intensity slopes. Furthermore the place of minima and maxima were included. A syntactic 

feature set kept track of the number of words and duration of the sentence and consisted of:  

- n-gram models depicting the probabilities of trigrams where the last unit is the actual 

border;  

- internal parsers state related features;  

- a set that is related to the syntactic parse tree of the sentence.  

This latter indicated the part-of-speech (POS) categories for the words and kept track of the amount 

of nominal phrases and verbs in the sentence, resulting in the probability of a end-of-utterance 

encounter. It turned out that the n-gram and the POS feature set had a substantially larger 

contribution to classifier performance than the prosodic feature set. 

The merit of a multimodal feature set in the detection of end-of-turn boundaries was also 

researched, (De Kok & Heylen, 2009). The study used a set of 14 meetings, annotated with the 

locations to which the participants are looking during conversation as well as the gestures made by 

the head. These features were compared on performance to a set of prosodic features that 

specialized in intonation slope features, including slow and fast fall or rise of both pitch and 

intensity. It was found that the focus of attention and head gestures feature set did not perform as 

well as the prosodic feature set, but contributed nonetheless.  

Other studies have also used prosodic attributes to model backchannel prediction. (Ward & 

Tsukahara, 2000), For example focused on a region of at least 110 milliseconds at which the speaker 

produced a low pitch. Furthermore, it seems that,  for the detection of backchannels as well, the 

pause feature has a prominent role. Other work focused on pause durations of no less than 600 
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milliseconds or more for the detection of backchannels and based their model on these ‘silence’ 

features and part-of-speech trigrams (Cathcart, Carletta, & Klein, 2003).  A decision tree was used for 

classification. In another approach, a sequential model was made by combining a Hidden Markov 

Model and a Conditional Random Field that use a varying set of input features. This then produces 

the probability that a backchannel should occur, given prosodic extractions from a period of speech 

as input. Next to continuing regions of low pitch they also us continuing downward pitch slopes and 

periods without speech (pauses), (Morency, De Kok, & Gratch, 2008). 

 

2.3 Summary 

In the past decade, many studies have been using prosodic features (among other sets), to detect 

their respective transition relevant places, whether it be at the end of a specific set of words, a 

dialogue act, an utterance or a turn. In some studies this proved to be more useful than in others, 

but in most (if not all) the use of prosodic features had merit in distinguishing between different 

classes. The features that were found to be of most value, were periods with low pitch values and 

drops of pitch and intensity, expressed in respective slope features.  

With this background, we assume that prosodic, syntactic and multi modal feature sets have merit in 

finding transition relevant places’ regions. Also we have seen that decision tree based approaches 

can be used in the classification of TRP’s and to determine the contributing values of the different 

attributes. Very different input corpora and evaluation methods have been reviewed and it is hard 

to say which would be best. In this study we will be using a corpus containing speech and 

corresponding word transcriptions and dialogue segment annotations. It will be presented in the 

next chapter. From this corpus we will select the relevant utterances based on criteria that identifies 

utterances that were followed by a listener’s backchannel and utterances that were followed by a 

new speakers’ contribution from all annotated utterances in the corpus. From this selection we will 

extract several prosodic features and make their values into a dataset containing both types of 

contributions. Several different classifiers will be trained and tested on this dataset. Decision tree 

based classifies have been found to function very fast and with good performance.  

Regarding the prosodic feature sets used in previous studies, there seems to be a lot of agreement. 

In most cases intensity and pitch falls and sharp falls seem to be positively evaluated, as well as a 

collection of periods with low pitch values. Intonation slopes are mostly smoothed or hammered 

down into robust shapes. A difficulty herein lies with the amount of smoothing that should be 

applied. As always, there is the balance between two evils: a slope that is too smooth doesn’t 

contain distinguishing values, and a ‘raw’ slope needs many descriptors, making it unpractical for the 

classification task. Durational attributes like length of utterance or length of boundary word are also 

often used. The pause features remained popular throughout many studies, whether they are used 

for detection or prediction of boundaries. We also see that words or parts of speech are often 

counted. Whether they can be considered as syntactical (like n-grams of words) or prosodic (like the 

duration) features can be debated. In this study we include them into our prosodic feature set, as 

there are no other features that could be considered syntactic and this would be a very poor ‘set’. 
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A section of the corpus contains annotations of focus of attention, and communicating signals from 

head movements. The corpus that we will be using is the same as the one using the multimodal 

features, reported about in the previous section. We will test their merit as well. However, as these 

signals are annotated in just a small part of the corpus, these will be use in a spate experiment.  

We assume an eventual real life scenario classification problem, so no right looking features will be 

extracted. We have however no reservations on the difficulty that a particular extraction would have 

in a real life scenario. For example number of words would need a word-boundary detecting 

algorithm, or a speech recognizer. We use the label of the corresponding dialogue act group, which 

would require a robust (real time!) dialogue act recognizer, etc. Also some feature set contain a 

large amount of data for a small sample of time. In a real-life scenario a fast computer would be 

required in extracting all of them in (very near) real-time. 

 

2.4 Definitions and objectives 

In the previous paragraph we have seen methods of finding and identifying Transition Relevant 

Places, or TRP and that these moments indicate the end of a turn. Figure 2.1 shows a most simple 

example of a part of a dialogue that contains a transition relevant place. In it we see the turn being 

taken over by speaker B, from speaker A, when he has finished his utterance. This turn could have 

been given to B, of simply be taken, simply by starting to talk – either way, there was a turn 

transition. For an end-of-turn detection problem, the situation becomes more difficult if there had 

been overlap, i.e. if speaker A continued for a period of time, while B had already started. 

 

 

The difference from the previous example – with or without overlapping speech – and the end of 

turns in general is that we know of conversational units that are utterances following a speaker, but 

that do not take over a turn. In fact, backchannels often have the opposite intention. As with end-of-

turn detecting tasks we will also be focusing on the moments (and a preceding period of time), 

where other speakers start with an utterance. But instead of classifying these moments as an end-

of-turn or not, we will distinguish between the next utterance being a backchannel or not. 

We define all utterances as being contributions, so that backchanneling utterances are included and 

we will define a TRP related term to indicate their starting moment as Contribution Relevant Places 

or CRP.  

Utterance 

Utterance 

Speaker A 

Speaker B 

TRP 

Time  

Figure 2.1 A simplest example of a Transition Relevant Place 
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In a new example, based on Figure 2.2 Two Contribution Relevant PlacesFigure 2.2, we see again a 

speaker A having the floor. In this case speaker B has two utterances, but the floor is kept by A. 

Without going into detail on the durations of these utterances, this scenario is seen when Speaker B 

would use a backchannel (B’s first utterance) and then attempt to take the floor (B’s second, longer 

utterance). Note that the definition includes the starts of continuing utterances as well. In the 

previous example, speaker A had one long utterance. If this was subdivided into two or more, the 

starting moments of those new utterances would have been CRP as well. A new example is given in 

Figure 2.3. As we will be using the term on more occasions and because we usually refer to just one 

type, we will subdivide the CRP in two sets and distinguish between them with a type label:  

- CRP’s
1
 that indicate the start of an utterance from a newly starting speaker will be labeled 

with the type ‘n’ and referred to as CRPn. The starting speaker thus, is not the one that was 

already speaking. 

- CPR’s that indicate the start of a continuing utterance by the same speaker will be labeled 

with type ‘c’, so CRPc 

 

 

 

Both types are show in Figure 2.3. We will be using only the CRP that marked the beginning of an 

utterance by a speaker other than the one that was already uttering – CRPn; these are underlined in 

the figure. 

                                                           
1
 Generally throughout this report, plural form of abbreviations will be denoted with “ ’s ”. This is done to 

minimize the mixing with abbreviations that use upper and lower case, or those with an ‘s’. 

Utterance 

Speaker A 

Speaker B 

CRPn 

Time  

CRPn 

Utterance 

Utterance Utterance Utterance 

CRPc CRPc 

Utterance 

Speaker A 

Speaker B 

CRP 

Time  

CRP 

Utterance 

Utterance 

Figure 2.2 Two Contribution Relevant Places 

Figure 2.3 Two kinds of CRP: continuing by the same speaker and starting by a new speaker (underlined). 
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We are interested in whether a speaker exhibits certain prosodic characteristics before others in a 

conversation start to backchannel to him/her and we hypothesize that prosody can give an 

indication on whether the CRPn following utterance is a backchannel or not. Should this be the case, 

then these prosodic markers can be included in future conversational models and contribute in 

finding appropriate moments for conversational agents to use a backchannel. To test this, we will 

experiment with prosodic feature values that are extracted from the moments preceding a CRPn. 

For these experiments we formulate the following questions. 

Where an utterance that follows on a CRPn is identified as being one of two possible categories: a 

backchannel or not a backchannel (one of all other utterance types): 

- Can we distinguish between the category of utterances that followed a CRPn, using only 

prosodic information embedded in the speech preceding the CRPn? 

- Can a decision model be made that distinguishes between these two categories, given the 

moment of CRPn and prosody as input and how well would it perform? 

For this experiment we will be using a corpus consisting of multi party natural dialogue, enriched 

with transcriptions and annotations at word and dialogue act level, containing utterances’ 

boundaries and content. The next chapter will elaborate on this. From this corpus we will select the 

appropriate contribution relevant places and subject them to prosodic analysis. The resulting 

extractions form the dataset that serves as input for the eventual machine learning, training and 

classification task. Next to prosodic features we will also experiment with multimodal features, like 

the focus of attention and head signals of the speaker and if eye contact was made at the CRPn. 

Experiments are conducted, using a subset of utterances, taken from a large amount of data that 

was annotated beforehand. The resulting subset will still have a considerable size, so the selection 

needs to be automated. To support this we made a parser that transforms the corpus into a list of 

items depicting the state of a conversation at any given time. By analyzing the transitions between 

these states, we can identify any change in the conversation throughout the corpus. This generally 

usable selection algorithm is applied to find the CRPn and label them as being followed by a 

backchanneling utterance, or an utterances of another type of dialogue act. Chapter 3 will elaborate 

on the data formatting and chapter 4 presents the parser. 
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3.  Data formatting 

This chapter reports on the corpus that was used in the thesis and how it was formatted to support 

quick selection of an appropriate subset of utterances. The following sections will explain the setup 

by answering respectively, the following questions: 

[Q1]: What are our requirements, what do we have at our disposal and how is this formatted?  

[Q2]: What items will we be using and why?  

[Q3]: How  can the data best be used and how should it be formatted to support a general setup? 

[Q4]: How can we identify and take together similar situations in the data corpus? 

[Q5]: How do we proceed towards experimentation? 

 

3.1 The Corpus 

As with each study, the quality of the experiments’ results rests on the shoulders of the material that 

was used. This study focuses on prosody in discourse – and, where possible, other characteristics. As 

chapter 2.5 explains: processing the corpus must be done automatically to be able to generate and 

use a large dataset. This means that there is need for a corpus, packed with qualitative recording of 

utterances, that can be parsed easily. 

With the goals in mind the choice was made to make use of an existing corpus: The AMI corpus fits 

the demands (McCowan, et al., 2005), (Carletta, 2007). It is created by the European-funded AMI 

project whose goal is to improve group interaction by the development of new technologies, based 

on research on human-human interaction. For studies that are related to the group and their goals, a 

corpus was created from the recordings from several group meetings, totaling approximately at 100 

hours.  

The corpus consists of recordings of the proceedings of a number of board meetings. In these 

meetings, a scenario is played out in which four participants play specific roles of the members of a 

design team that was ordered to develop a new product: a new TV remote control. Each set of 

meetings is divided in four separate get-togethers in which the different phases of the design 

process are elicited: the first shows the project kick-off, followed by functional, conceptional and 

detailed design. The meetings are held in English, by a mixture of native and non-native speakers of 

both genders. 

The signals that are recorded per meeting, consist of audio and video recordings, capturing all 

utterances and (most) movements. Audio signals were stored from individual headsets and a 

recorder in the middle of the table. Video signals consist of recordings taken from cameras at the 

corners of room and recordings taken from individual cameras depicting the participants face (and 

upper part of the torso). 
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The corpus has been enriched with transcriptions and annotations on various characteristics. Spoken 

words have been manually transcribed and the corresponding dialog acts have been annotated. For 

clusters of meetings there are also annotations on semantics like topic segments and summaries. 

Non-verbal cues like focus of attention and movements of the body are included as well for some 

meetings. The annotations and transcriptions have been encoded in XML format, with good support 

for parsing the contents. Different items are linked together through unique identities for each type, 

so that information that is contained in annotations on different levels can be combined. The next 

sample and Figure 3. 1 show, for example, how a dialogue act is connected to a selection of words, 

and how all annotations can be connected by temporal alignment. 

The following dialogue act encompasses a part of the opening of a random meeting in te corpus: 

<dact nite:id="ES2008a.A.dialog-act.vkaraisk.3" addressee="D,C,B"> 

           <nite:pointer role="da-aspect"  href="da-types.xml#id(ami_da_14)"/> 

           <nite:child href="ES2008a.A.words.xml#id(ES2008a.A.words3)..id(ES2008a.A.words6)"/> 

</dact> 

The dialogue act is connected to following four words with a matching content of the “nite:id” tag: 

<w nite:id="ES2008a.A.words3" starttime="32.79" endtime="32.93">Good</w> 

<w nite:id="ES2008a.A.words4" starttime="32.93" endtime="33.18">morning</w> 

<w nite:id="ES2008a.A.words5" starttime="33.18" endtime="33.86">everybody</w> 

<w nite:id="ES2008a.A.words6" starttime="33.86" endtime="33.86" punc="true">.</w> 

At the same time these focus of attention elements were annotated (like the words and head signals 

they have their own starting and ending time indices: 

<foa  endtime="33.56" starttime="32.44" type="person" role="ID" nxt_agent="B" 

 nite:id="IDIAP_ES2008a_A.foa.21"/> 

<foa  endtime="34.28" starttime="33.56" type="place" place="table"   

 nite:id="IDIAP_ES2008a_A.foa.22"/> 

The annotations of head signals at the corresponding time: 

<head  endtime="43.798" starttime="0.0" type="no_comm_head" 

 nite:id="tmigaz_ES2008a_A.head.1"/> 

This can be schematically represented, analogues to the figures in chapter 2, by representing each 

item as a block on a tier (the horizontal bar), progressing in time when read left to right.  

The AMI corpus is used in this study as well. Not much of a surprise after listing the upsides above, 

but it is a reasonable choice: There is a very large amount of data available, recorded in relatively 

good quality from a wide variation of participants. Also, annotations and transcriptions are encoded 

in a data structure that can very easily be read: Not only does the AMI project support good parsing 

functionality, we also have access to a few tools that were created for earlier work. 

During the corpus study issued beforehand, a few downsides and limitations on form and quality 

came to light, that affect the exact choice of the corpus’ usable content, regarding to the data 

processing tasks at hand. These are listed below, after which the subsection that is used in this 

study, will be presented. 
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The corpus is enriched with audio recordings from two devices: a recorder located in the middle of 

the table and a microphone in each participants’ headset. The latter accounts for two formats that 

can be used: a mixture of the utterances from all participants (1 signal) and the separate recordings 

of each individual’s utterances (4 signals). Of these three possibilities, only the separately recorded 

signal can be used, for two reasons: 

- In the mixture of signals, there is a very large difference in loudness between speakers. 

Although this can be counteracted by normalizing for separate participants, there is an 

undesired difference in the signal-to-noise (SNR) ratio between loud speakers (higher SNR) 

and soft speakers (higher SNR).  

- On frequent occasions participants are laughing, coughing, or even breathing too close to 

the microphone. These sounds interfere greatly with utterances that need to be analyzed. 

A small drawback from using the separately recorded audio, is that this complicates the analysis 

process because the identity of the speaker needs to be known, next to already required start and 

stop times of the audio sample. 

The minimum requirements of data that a meeting must contain, before it can be used for the 

experiment in this thesis are: a qualitative recording of each participants’ utterances, an accurate 

transcription of words, fitted with time indexes and the manual annotation of dialogue acts. The 

collection of meetings, listed below in Figure 3. 1, conforms to these requirements. This listing is 

used in all experiments where the prosodic feature set is evaluated. In this table, the total recorded 

time is the sum of the four meeting recordings, as the signals have been processed separately. 

Set of meetings # meetings # dialogue acts # recordings Rec. size Rec. time  

(h:m.s) 

ES2002 ~ ES2016 60 47299 240 13.1 GB 131:23.04 

IS1000 ~ IS1009 38 26932 152 7.65 GB 80:34.12 

TS3003 ~ TS3012 40 42747 160 10.4 GB 97:12.20 

Combined 138 116978 552 31.2 GB 309:09.36 
Table 3.1 Corpus summarization 

ami da 14 

Person, B 

Good 

Place, table 

No communication head 

Words 

Dialogue acts 

 

F.O.A. 

 

Head signals 

34.0 time 
33.0 33.5 

morning everybody . 

Figure 3. 1 Schematic representation in time of usable AMI corpus annotations 
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Chapter 1 reported about a study  that showed a multimodal feature set consisting of annotated 

head movements and focus of attention, which had a positive effect on classifier performance, (De 

Kok & Heylen, 2009). These feature sets were also extracted from the AMI corpus. In this study we 

will also conduct a separate experiment that uses these features. For this experiment, we are limited 

to a much smaller subset of meetings, since not all meetings have been augmented with annotations 

on these modalities. In the corpus, there are 13 meetings, that contain the annotations of focus of 

attention and  movements of the participant’s head:  

- ES2008a,  

- IS1000a 

- IS1001a, b, c 

- IS1003b, d 

- IS1006b 

- IS1008a, b, c, d 

- TS3005a 

Set of meetings # 

meetings 

# 

 dialogue acts 

#  

foa 

#  

head 

#  

recordings 

Rec. size Rec. time  

(h:m.s) 

Combined 13 8426 27724 10670 56 2.4 GB 26:18.06 
Table 3.2 Multimodal meeting set summary 

The research approach that will be described in the following sections is designed to work with this 

corpus. The goal of this section was to get the reader acquainted with the AMI corpus and to 

understand the basics of the data that will be used. Apart from why the AMI corpus was chosen we 

now also know: 

- What data corpus and which subset of meetings will be used to form the base; 

- Which annotations from this corpus are used and how they look 

 

 

3.2 A conversation in the AMI corpus 

Chapter 2 explained the general use of dialog acts and the previous section reported that they will 

be used in our approach as well. Now we shall describe the dialogue acts that are used in the AMI 

corpus, show how a conversation can be visualized and give a few implications for analysis. 

The AMI corpus is enriched with the annotation of dialogue acts for 138 meetings. In these 

annotations, there are 15 different types of dialog acts, distributed over 6 classes (5 + 1 bucket 

class). All separate dialogue acts are considered to be a contribution, where the backchannel (named 

specifically in section 1.3) as being a non-trivial contribution. The names, and labels used in the 

corpus are tabulated later in this chapter, in Table 3.5.  

By definition, a conversation is an interchange of thoughts, information, etc, communicated orally. 

So one can only speak of a conversation when two or more participants are involved. As explained, 

the corpus depicts four participants in a conversation. We can visualized a conversation in figures 
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3.1, containing all signal for one speaker, or like figures 2.1 to 2.3 containing speech of two 

participants. This can be extrapolated to all the four participants, creating an image with 4*4 tiers of 

blocks (including f.o.a. and head signals), or 2*4 if just words and dialogue acts are used. It is 

assumed that the reader is familiar with these representations; an example is given in Figure 3.2, 

showing just two participants. From here on no punctuations are included in the figures (they are 

annotated as well in the words corpus) as they have no duration, and thus no prosodic contribution 

(in the corpus). The dialog acts in this figure mark each conversational contribution with a block that 

has a start, end and type: data that is encoded in each combination of dialog act and first and last 

corresponding words. 

 

>> A: “Good morning everybody.” 

>> B: “Good morning!” 

 

 

The thesis sets out to find markers that indicate the type (a backchannel or something else) of a new 

contribution. This means that the period of speech that a speaker uses right up to the moment at 

which a new dialog acts starts, is now the area of interest: this is the section in which the markers – 

should they exist – reside.  

Chapter 2 explained that we have an interest in the speech preceding the contribution by the new 

speaker, marked by the CRPn label. As we are focusing on one particular channel at a time and 

because separate recordings were used, the speaker that is to be sampled must first be found. There 

is a small set of meetings for which the dialogue acts do contain addressing information. In these 

cases annotators have augmented most of the dialogue acts with a target label, identifying one, two 

or all of the other participants as being addressed by the corresponding utterance. If such a dialogue 

act is found to follow on a CRPn point, finding the previous speaker would be straightforward. 

However, since the larger part of the AMI corpus has not been outfitted with this information, 

finding the correct audio is a bit of a challenge and requires looking at the dialogue as a whole at 

that moment. 

 

ami da 14 

Good A: Words 

A: Dialogue acts 

 

B: Words 

 

B: Dialogue 

acts

morning everybody 

Good morning 

ami da 14 

Figure 3.2 A two participant’s dialogue with words and dialogue acts 



21 

 

3.3 Target identification 

We developed a means of selecting particular moments from the corpus for two reasons: 

- All items that will be analyzed – items preceding CRPn – are but a subset of the corpus. 

These items are subdivided in our two groups: utterance preceding a backchannel and 

utterances preceding another type of dialogue act. 

- For each of these items, we need to determine the previous speaker, since the larger part 

has no addressing information embedded. Only situations in which the previous speaker can 

be identified unambiguously, are included.  

The selection process is split up into three tasks:  

- Produce a tag set that describes each situation in conversation. 

- Process each situation into a label from this tag set, that denotes the change in 

conversation. 

- Automate this label production so that relevant situations can be sorted from the rest.  

We shall first focus on a tag set. Our primary interest lies in the features that can be extracted from 

utterances. The boundaries of these utterances are marked by the boundaries of the annotated 

dialogue acts, that are available in the AMI corpus. Since dialogue acts are directly connected to the 

words that contain the eventual needed time indices, keeping track of the dialogue acts in the 

conversation is both necessary and sufficiently to be able to look up any segment of speech from the 

corpus. Thus, (for now) the outspoken words can be left out from the original dialogue visualization. 

What remains, are four channels of dialog acts, shown in Figure 3.3. 

 

 

 

The figure shows, that the state in which the dialogue resides, is defined by the combination of all 

four dialogue acts, at any particular moment. We shall use the term dialogue state when referring to 

any of these situations. This term was adopted from earlier work on multiparty dialog analysis by a 

study in which an effort was made to identify the different activities a meeting would be in given a 

sequence of conversational states. (Tommassen, 2007).  

Da 4 

Da 3 

Da

1 

Da4 

Da1 

Da 4 

Channel A 

Channel B 

Channel C 

Channel D 

Figure 3.3 DA representing a conversation 
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 We define the status of a conversation by combining all dialogue acts at a given time into the 

dialogue state: 

The dialogue state is a 4-tuple, consisting of all four dialogue act types at one particular time. 

To prevent information loss and maintain ‘readability’ of the state, the label for the dialog state will 

be made as a four dimensional vector, wherein the dimensions correspond to a participants’ 

dialogue act channel. The value at each dimension corresponds to a dialogue act type.  

(Xi, Xi+1, … , Xn), where X Є { Da1, Da2, … , Da16 }  and i … n correspond to a dialogue act channel 

Note that there are 15 different dialogue act types in the AMI corpus, numbered 1 to 16 with 

number 10 left out. We abbreviate the dialogue act type names to the corresponding type number 

and in our scenario there are only 4 channels. If a dialogue acts stops, type 0 is appointed. This type 

does not occur naturally in the AMI corpus and will be used to imply silence on the corresponding 

channel, so there are 15 + 1 different types of dialogue act and the definition becomes:   

(XA, XB, XC, XD),   X Є { 0, 1, … , 16} \ {10} 

 

 

In Figure 3.4, above, we see an enlargement of a part of the previous dialogue. Without loss of 

information, the dialogue act channels have been condensed to a single, more complex layer: the 

dialogue state. At this point the changes in a dialogue, can be seen as the transition from one 

dialogue state into the next. For example: someone starts or stops with an utterance, possibly 

interrupting another speaker. In Figure 3.4 we see three moments T1, to T3, that represent the 

instance in time at which the dialogue states changes. The term dialogue state transition is 

introduced as a tuple of two dialog states. 

DST:  ( (Xl,Xl+1,…,Xn), (Xr,Xr+1,…,Xm) ) where X  Є  { 1, 2, …, 16 }  

and l … n and r … m correspond to a dialogue act channel. 

Da 4  

Da 3  

    (0,0,0,0) (0,4,0,0) ( 0,4,3,0 ) 

T1 

(0,0,0,0) 

T2 T3 

Channel A 

Channel B 

Channel C 

Channel D 

Da 1  

 

Figure 3.4 Dialogue states and the moments of their transitions: Ti 
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T1 = (  (0,0,0,0), (0,4,0,0)  ) 

T2 = (  (0,4,0,0), (0,4,3,0)  ) 

T3 = (  (0,4,3,0), (0,0,0,0)  ) 

In a more dynamic approach, a dialogue state transition can be seen as a transition function on a 

dialogue state and one or more changes. 

Define action ‘a’ as being the start ‘S’ of a new dialogue act, the stop ‘T’ or the Continuation ‘C’ of an 

already occurring dialogue act, the switch ‘Wo’ to a new dialogue act of the same dialogue act type 

(a speaker may utter several dialogue acts sequentially) or ‘Ws’ as the switch to a new dialogue act 

of a different type. 

a  Є  {S, T, C, Wo, Ws} 

Define type ‘da’ as the type of the new dialog act.  

da  Є  {{0,*}, 1, 2, …, 16} 

Define a channel c as being one of the speakers identified with A, B, C or D in the meeting uttering 

the (new) dialogue act: 

c  Є  {A, B, C, D} 

Define a time index as t in seconds, with an accuracy of 10 milliseconds. 

Now Define a change g as a four-tuple of these new terms 

g  Є  {(a, da, c, t)} 

Finally, define a transition T as a collection of one more changes. 

T -> g+ 

Now all the dialogue acts in a complete conversation from the AMI corpus can be produced with the 

starting dialogue state, which is always (0,0,0,0) and a list of transitions: 

DS(i+1)  =  DS(i)  x  T(i) 

DS(0)  =  (0,0,0,0) 

Note that allowing a collection of changes for each transition allows for the possibility of 

simultaneous changes in the conversation. (These situations are common.) The example in Figure 

3.4also has 2 transitions at T3. Since it is impossible for a specific speaker to have more than one 

change, or – in other words – since all changes in a transition will have a unique channel, they have 

the quality of transitivity and therefore it does not matter in which order they are given, for any 

transition. 

If we look at Figure 3.4 once again, we can exemplify the formalization for the transitions T1 to T3. In 

this case the starting dialog state DS(0) is set to (0,0,0,0) and the moments of T1 to T3 are t1 to t3 

respectively. 
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DS(1) =  (0,0,0,0)  x  < (S,4,B,t1) >   = (0,4,0,0) 

DS(2) =  DS(1)  x  < (S,3,C,t2), (C,4,B,t2) >  = (0,4,3,0)  

DS(3) =  DS(2)  x  < (T,3,C,t3), (T,4,B,t3) >  = (0,0,0,0) 

The extensive list of dialogue state transitions can now be used to identify situations in a 

conversation and also distinguish those that need to be analyzed, from the rest. For example if we 

would like to find all moments on which a stall type dialogue acts was annotated, we could search 

the list for transitions containing a change in which the action is a S(tart) and the type is a number 2. 

Before we get to this point there are some practical problems to overcome. 

 

3.4 Grouping 

The previous section showed how the dialogue acts are condensed from multiple speakers into a 

single data layer, and how a transition can be made from one dialogue state, to the next. Although 

the list of transitions that can be produced at this point brings us close to discussing which changes 

in dialogue state will be targeted for analysis, there remains a small problem: the list is rather large. 

Not very surprising, given the list of all possible changes – even, if the time dimension is ignored: 

there are 5 possible state changes, 16 different dialogue act types and 4 different channels, per 

change. Then there and any number between 1 an 4 changes. Now combine these to all possible 

dialogue states consisting, again, of 16 different dialogue act types, times 4 channels… the number 

explodes. We define the situation space as the collection of all possible results from any dialogue 

state with any transition. This section will attempt to lessen this space. 

The fact that this theoretical space is also rather large in practice, comes to light when the corpus is 

run through a parser, that builds the dialogue state and lists the different occurrences (this program 

is presented in chapter 3). The same was done for each combination of two sequential dialogue 

states – amounting to the complete list of occurrences of dialogue state transitions. Appendices A1 

and A2 show the distribution of these types for all cases that occurred one in a thousand times or 

more in total. The table below shows the amount of dialogue state (transitions) throughout the used 

corpus. These numbers are summarized from the respective appendices.  

Distribution #theoretical 

possibilities 

Total item count # different Items # different items  

> 1 / 1000 

Dialogue state 16^4           (64k) 182.320 2.849 130 

Dialogue state  

transition 

(16^4)^2    (4g) 182.182 19.541 170 

Table 3.3 Dialogue state (transition) variation over the corpus 

The problem lies not with processing this information (a distribution of the entire corpus can be 

generated in less than a minute on a modern (multi core) computer), but with the eventual 

classification between states: No classifier can be made, that is accurate enough, to distinguish 

between all these cases when trained only with prosodic information, extracted from these 

situations – and probably ever. A relief is that a future classifier actually doesn’t need to. 



25 

 

A fairly simple solution lies in the realization that several dialog states and dialogue state transitions 

actually depict the same situation. For example if speaker (or channel) “A” starts with a dialogue act 

– say, a backchannel – then this transition reflects the same situation as when speaker B starts with 

the same type dialogue act. For this situation, it also doesn’t matter who of the remaining three 

channels was (or is) speaking, when A or B start their backchannel. We have just – in a very rough 

manner – eliminated 2 dimensions from the equation. The same can be done with the time index: 

for an representation of a particular situation this can also be left out. 

For example, the situation of ‘someone uttering a dialogue act of the inform type’, could previously 

be shown by one of four possibilities: [4,0,0,0], …, [0,0,0,4] and is now shown by [4]. Likewise, we 

can show the transition ‘someone backchanneling at an inform utterance’ in several manners:  

( [4] , [4,1] )  (tuple of dialogue states) 

[4]  x  < (S,1) >  (dialogue state and dialogue state transition) 

< (C,4) , (S,1) >  (only dialogue state transitions) 

Thanks to the continuation  action, the situation can also be depicted, using only dialogue state 

transitions (the latter form). Note that we will still need to know who was speaking in the first 

dialogue state to be able to produce an audio sample that must be analyzed. The same applies for 

the time index. This information is kept in the original dialogue state, but for the label that 

represents the situation, this information is no longer relevant and is omitted. 

Next to grouping ‘who said something after whom’, we also group different types of dialogue acts 

together, based on their function in a conversation. This however, does imply some loss of 

information because the type is abstracted to a general function.  

 

Ami_da_1 BC “BC” 

Ami_da_2 Stall “S” 

Ami_da_3 Fragment “F” 

Ami_da_4 Inform  

“ISA” Ami_da_6 Suggest 

Ami_da_9 Assess 

Ami_da_5 Elicit-Inform  

 

“EL” 

 

Ami_da_8 Elicit-Offer-or-Suggest 

Ami_da_11 Elicit-Asses 

Ami_da_13 El-Comment-About-Understanding 

Ami_da_12 Comment-About-Understanding  

 

“R” 

Ami_da_7 Offer 

Ami_da_14 Be-Positive 

Ami_da_15 Be-Negative 

Ami_da_16 Other 
Table 3.4 Dialogue act grouping 
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In the dialogue state (and transition) representation we shall henceforth use the dialogue act group 

label ‘dg’ instead of the previously used dialog act type label, named ‘da’. 

dg  Є  {BC, S, F, ISA, EL, R} 

If these changes are incorporated in the corpus parser so that it renames the dialog act types to their 

new group name, the situation space changes significantly. 

Distribution Total item count # different Items # different items > 1 promille 

Dialogue state 182320 588 45 

Dialogue state transition 182320 1655 111 
Table 3.5 Dialogue state (transition) variation after grouping 

Chapter 4.1 elaborates on the implementation that can produce the entire list of dialogue states 

(transitions). So, after grouping all occasions where a dialogue act changes on one of the four 

channels, according to the parser’s results, there are 1655 different situations in the corpus. Think of 

these as: “one speaker starts with an ISA-act while another speaker was stalling” or “a speaker falls 

from a fragment into a stall”. The listing of these items forms the input for the selection process that 

targets audio samples that fit a specific profile, as the next section will report.  

 

3.5 Experimentation 

At this point the corpus is refitted to be used as we please: an experiment can be set up. This section 

will show how we proceed towards results by giving a short, stepwise notification of the remaining 

actions that are worked out in the remaining chapters. The selection steps are explained using an 

exemplary case. 

(1) Specify a case that compares group X to Y (or more) 

Example case: We wish to select a subset of situations for comparison, where group “C” consist of all 

situations where someone stalled and then continues and group “I” consists of all situations where 

someone stalled and is then interrupted by another participant. 

(2) For each group, specify a list of criteria that must be met to obtain the desired selection. 

Group “C” would like all situations in which there is one active channel, for which there is a change 

of type ‘switch’ from the ‘stall’ group into any other group but another ‘stall’. Remember, that a 

switch indicates a change on the same channel, so we know for sure that this particular person 

continued with another contribution than a stall. Remember also, that a change is a 4-tuple, 

formatted with action a, dialogue act group type dg, channel c and time t by (a, dg, c, t), where 

channel and time may assume any value and can be omitted.  

C:  [S]    x   < (Wo, { BC, F, ISA, EL, R } ) > 

An alternative would be a continuation of the particular type groups “ISA” or “EL”, selected by:  

C:  [S]    x   < (Wo, { ISA, EL } ) > 
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Likewise, group “I” would like all occurrences of DST where there are two changes: one is a 

continuation of the type “Stall” and one is the start of any dialogue act group. 

I:  [S]    x   < (C, S)  ,  (S, { BC, S, F, ISA, EL, R }) >  or, alternatively: 

I:  [S]    x   < (C, S)  ,  (S, { ISA, EL }) > 

(3) Implement these into the parser and select all occurrences that apply. 

The formalization allows for an implementation that can process expressions like the ones given 

above. In which case a tool that is outfitted with any kind of textual input can be created. Sadly, the  

available time has not allowed this to be created yet. For now, we settle for a hardcoded version. 

The argument of grouping that leads to the implementation of a few, relatively simple, rules, still 

holds: a completely different subset of situations can be selected by changing a few conditions in the 

programming. Chapter 3 will report on how the parser is outfitted with an selection algorithm that 

selects all occurrences that are relevant for the experiment that was conducted. 

(4) Extract from corresponding audio samples all relevant prosodic features. 

In this study the phonetics toolkit “Praat” (Boersema & Weenink, 2001) was used to extract prosodic 

information. Chapter 3 will report on how this was done. The chapter also shows how the list of 

selections needs to be formatted for easy processing in the Praat prosodic analysis script and how, in 

its turn, the script formats the extracted values into the input for the next step. Steps (1) to (4) are 

incorporated in chapter 4 for this study’s experiments. 

(5) Attempt to classify between groups based on extractions and assess feature values. 

When a dataset is provided from all the audio samples, we use the machine learning toolkit “Weka” 

(Witten & Frank, 2005), to try to differentiate between the audio samples, using the data and 

knowledge of which group (“C” or “I”) they belong to. Weka can be used to explore the predicting 

capabilities of the (prosodic) features.  

(6) Incorporate valuable features into (part of) a decision model 

If usable results are produces from Weka’s training and testing algorithms, the decision model that 

was created in the classification process, can be (partly) used to form better models. In our situation 

(remember the continue/interrupt example) this would result in set of features that could help an 

agent that can detect stalls from other speakers decide if it is appropriate to start its own sentence 

or let the speaker continue. In the end, the decision would be based on a number of examples, taken 

from the AMI corpus. Chapter 5 will discuss classification and results. 
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4. Data selection and extraction  

The previous chapter has described the general approach on how to bring forth an experiment on 

prosodic information, drawn from the utterances: First of all, by explaining how the corpus can be 

transformed into a set of situations that need analyzing and secondly, showing how this set is 

analyzed and processed into a usable model. This chapter first reports about the developed parser, 

software tools and analysis script. Essentially, this section can be read apart from the research. It 

shows how the data was processed and how intermittent data was formatted. Then, in the following 

paragraphs, we will elaborate on the contents of the dataset by reporting the situations that were 

extracted and the implementation of the different feature sets. 

 

4.1 The AMI -> Praat parser 

Each meeting in the corpus has a number of types and a number of participants that are interacting. 

The corresponding data is stored per type, per participant, so there is an intrinsic connection 

between a number of files: four for each type that is processed. Except for the content that is being 

discussed in the meetings, in which remarks are made about ‘the previous meeting’, there is no 

reference at all from one meeting to the next. So at our level of analysis (that doesn’t include 

semantics), using exactly one meeting for the maximum scope of a data structure for, seems a 

logical choice. With this data structuring, parsing the contents of a meeting can thus be done 

detached from other meetings, creating an ‘embarrassingly parallel’ workload. The figure below is a 

part of the class diagram belonging to the parsing tool, showing the connections between the data 

structures.  

 

The toolkit AMIDAs – short for “shuffling around with Dialogue Acts in the AMI corpus” – has grown 

into a collection of tools that can be used to parse and change input from the AMI corpus and 

datasets in other stages of analysis. It has implemented the data structure described above and uses 

the “AMI -> Praat” parser to create the dialogue state transitions. The graphical user interface for 

this tool is shown in Figure 4.2. 

The front end uses checkboxes to configure the conditions for the parsing process, buttons to issue 

the actions and text fields to supply the user with information on what was done, how much time is 

used for intermittent processes and, if error’s should occur, in what files and for which process they 

happened.  

Meeting AMI Type 

Participant 

ID 

File name 

file location 

… 

1        4 1         + 

Meeting 

manager 

ID 

File name 

file location 

… 

1         + 

Figure 4.1 Class diagram representation of the connection of corpus contents 
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Figure 4.2 GUI of the AMI -> Praat parser 

The location for the input can be given in the top left input field, this is the root of the input corpus. 

The tool requires that for each input type, there is a subdirectory with the same name, containing 

the files of corresponding meetings in this root. For example, if words and dialogue acts are issued 

for the parser, then are at least these two subdirectories: 

\root\words 

\root\dialogue-act 

The files in these directories are matched to each other by a file manager in to a meeting object, for 

each meeting. This manager searches for the meeting names that have the format that is used in the 

AMI corpus so it is required that the files of different types, that correspond to one meeting, use the 

default meetings names. It is recommended to use the default filenames from the AMI corpus but 

they may be changed as long as they contain: 

- A type name, equal to the directory name and equal to the checkbox name, that orders the 

parser to include the type. 

-  the default AMI corpus meeting name.  

The file manager kicks into action when the read button is pressed: directories are scanned and 

pointers to corresponding files are stored per meeting. Should there be missing files for the types 



30 

 

that were assigned for parsing, this will result in messages in the output areas for every meeting, 

that holds inconsistent input.  

Furthermore a number of parsers is created, supporting multithreaded parsing. In the current build, 

this number is hardcoded at 4, since more and more desktop systems are outfitted with quad core 

cpu’s. Creating more parsers than the computer has different cores to its avail, will not speed up the 

parsing process any further. In fact, since the parsers use a lot of memory (up to 90MB), using more 

than 4 parsers could slow down the process due to memory swapping and is therefore discouraged. 

Upon creation, each parser is configured to the wishes of the user according to the (un)checked 

boxes in the interface. 

Once the parse button is pressed, a thread is created for each parser and the start command is 

given. Active parsers poll the common meeting manager independently from one other for work. 

The manager holds a queue of meeting objects – which basically are work units for the parsers. 

When asked for the next unit, the manager takes the next meeting out of the queue. 

Synchronization of this process prevents situations where different parsers get to work on the same 

meeting. This process continues until all work units have been handed out and the queue is empty. 

The architecture of the classic thread pool was used for this design.    

 

 

When a parser get’s a meeting object – which basically is a structure containing pointers to all the 

available files for this particular meeting – it reads the relevant XML documents from the AMI corpus 

and converts the data to maps of intervals. These interval types are an internal data structure that  

hold (at least) an identifier, start and ending times and a label of the instance they correspond to. 

This can be a word, dialogue act, dialogue state, or anything that we need to work with. Once the 

Meetings: 

  -   words 

  -   dialogue acts 

 (-   Focus of attention) 

 (-   Head signals) 

Text grids: 

  -   words 

  -   dialogue acts 

 (-   Focus of attention) 

 (-   Head signals) 

Parser Input 

Parser output 

AMI => Praat parser,  

with typically 4 active processes 

Figure 4. 3 The parser processes the meetings by using a thread pool design 
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files are completely read, the dialogue acts are used to create interval objects for the dialogue states 

and dialogue state transitions. 

Chapter 3.3 reported about a large number of possible dialogue states and transitions. A distribution 

of their occurrence can be made when the text for a dialogue state interval is created. This text is 

given to a ‘statsManager’ that is commonly used by all parsers. Like the workload distributing this 

manager accepts the input in a synchronized manner. It sorts the input into the appropriate 

collection of types (for example the dialogue states) and count the occurrences that have the same 

text. When all parsers have terminated the distributions, whichever their type, can be printed. This 

functionality was included initially to support the corpus study and secondly, testing the 

distributions of groups in datasets. The result of ‘measuring up the dialogue states’ was already 

shown in [table … in chapter 2]. To use this option, the user must check the boxes in the “Include for 

Counter” section in the interface. Each type will produce a text file with a corresponding name in the 

“\root\stats” directory, containing a distribution of all items that occurred for at least 1 / 1000 times 

of all items. 

In a similar but more simple fashion – synchronization and counting are not required –  a list of 

dialogue states and (more importantly) their transitions can be produced. In its most simple and 

‘unchanged’ form the entries from this list look like these 3 examples: 

16.73,  19.56,  19.67,  (  [4,*,*,*]  ,  [5,*,*,*]  ) 

19.56,  19.67,  20.03,  (  [5,*,*,*]  ,  [5,*,*,9]  ) 

19.67,  20.03,  23.32,  (  [5,*,*,9]  ,  [5,*,*,*]  ) 

[preferably: use again from same example (can be manually produced, concept is proven)] 

Where the each line is preceded by an identity made up from the meeting and unique dialogue state 

transition id; secondly the 3 numbers represent starting time of first dialogue state, time of 

transition and end time of second dialogue state, respectively; the last item represents the transfer. 

The id and times are necessary for the next application: the extraction process needs to know from 

which file and at which time indices a sample needs to be extracted. 

 

4.2 Grouping and selecting 

We have described the approach, data formatting and parser implementation. In this paragraph, we 

present the criteria to which the data must correspond and describe the selection that was made 

from the AMI corpus.  

The goal of the eventual experiment is to find prosodic markers, that characterize the type of the 

following contribution as being a backchanneling type or not. First we will need to distinguish 

between utterances that were followed by a new speakers’ contribution, or those that were 

followed by a new utterance of the same speaker. In chapter 2 we defined the moment of transition 

between the previous and next contributions as either CRPc or CRPn. The figure that graphically 

distinguishes both groups is reused below: Figure 4.4.  
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For each transition that represents an item from the CRPn group, we need to make clear:  

- The speaker that is to be sampled. 

- The group it belongs to: is the utterance followed by a backchanneling contribution or by 

another? 

- A starting and stopping time of the period of time from which the prosodic features are to 

be extracted. 

If one of these task cannot be performed, the item is discarded. We start by showing the contents of 

both groups. The set of utterances that was followed by a backchannel is named group “Ba”; the 

other “NBa”. Until now naming and abbreviating terms has (hopefully) not led to any confusion. 

From this point on, more abbreviations will be used, so to prevent mix-up’s we give a short 

explanation on the labels used in Table 4.1. 

Term / abbreviation Description 

“Ba” and “NBa” labels for the two data groups in the experiment, also referred to as classes. 

 

“BC” 

Used to indicate dialog acts of the type backchannel or items from the 

backchannel dialog act group (which, basically is the same). 

Participant or 

speaker A, B, C, D 

The meeting participant or speaker, capitals A, B, C or D are used to indicate 

which one. 

“DA” Abbreviation used for the term dialogue act. Not to be confused with 

participants A and D 

“DS” Abbreviation used for the term dialogue state. 

“DST” Abbreviation used for the term dialogue state transition. 

‘s Used whenever a plural form is needed. For example we will be assessing 

for several DST’s if they indicate that the preceding utterance should be 

labeled as a “Ba”, “NBa” or discarded. 

Table 4.1 Terms and abbreviations 

Utterance 

Speaker A 

Speaker B 

CRPn 

Time  

CRPn 

Utterance 

Utterance Utterance Utterance 

CRPc CRPc 

Figure 4.4 CRP’s of type n and c 
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There are a few limitations on the groups: We are not looking for just all utterances where there the 

transition contains the start of a backchannel, but for those of which we can be sure that a 

backchannel was the result. Chapter 2 explained that the audio signals that were used are the 

separately recorded collection of signals. This means, that there are, three channels that could be 

sampled, next to the backchanneling speaker. Since, in the largest part of the corpus, there is no 

addressing information available, we need to fine-tune the selection. Imagine, for example, that 

there are more than one active speakers and a third (or fourth) participant utters a backchannel. 

Then, without any addressing information encoded in the BC dialogue act, we can’t tell at which 

dialogue act the BC is directed. In this situation we cannot identify and thus select, the triggering 

utterance. Some selection tricks are called for: to keep it simple this is done in steps. A nice 

advantage is that the criterion does not become much more complex by adding a new situation to 

the selection. We will also elaborate using graphical representations of the situations. 

Selecting Ba 

For the Ba group all dialogue state transitions are selected that have at least one starting DA of the 

BC group.  

Ba: < (S, BC) > 

As told before, it is necessary to have a continuing dialogue act, to be able to select the speaker that 

must deliver an audio sample. This continuing act may be of any type, except for a back channel. 

Instead of making a large list of possible transitions, a list is used to indicate an option of one of the 

items in the list. A new change is added to the requirement. This situation is represented in Figure 

4.5, below. For simplicity all dialogue acts that are not a backchannel (BC) will be labeled a being 

“ISA”’s 

Ba: < (S, BC)  ,  (C,  {S, F, ISA, EL, R}) > 

 

 

To increase readability, the collection of all dialogue act groups will be denoted with ‘(G)’ so that 

{BC, S, F, ISA, EL, R} may be substituted for (G). For the same reason the ‘-‘ sign will be used to 

indicate exclusion, making “(G)-BC” a substitute for all dialogue act groups, except for a 

backchannel: 

{BC, S, F, ISA, EL, R}   <->   (G)  and  {S, F, ISA, EL, R}    <->   (G)-BC 

We now get: 

Speaker A 

Speaker B 

Time  

BC 

ISA 

Figure 4.5 The simple backchannel 
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Ba: < (S, BC)  ,  (C, (G)-BC) > 

The continuing dialog act may as well have stopped at the instance of the starting backchannel; this 

is rare, but the speaker can be identified all the same. The ‘continuing’ type can be expanded with 

the ‘stop’ type. A situation that was found to occur often is where the speaker finished, and just 

after this moment a backchannel was given. With an upper time limit of 250 milliseconds of 

intermittent pause, these situations are included as well. The pause that can occur between the 

contributions, this will used as a feature. The end time of the corresponding audio sample is kept at 

the starting moment of the new contribution. This is represented by Figure 4.6 

Ba: < (S, BC)  ,  ({C, T},  (G)-BC) > 

 

 

On that same matter, the starting backchannel may also be a switch from another backchannel: this 

can happen, if the backchanneling participant utters another one. Note that it must be a switch of 

the same type (Ws) and not a switch to another type (Wo), because that would result in the same 

situation as when more than one stopping DA occur in which scenario, we cannot identify the target. 

This is also represented by Figure 4.7. 

Ba: < ({S, Ws}, BC)  ,  ({C, T},  (G)-BC) > 

 

 

Finally, there may be more backchannels happening at the same moment, since backchannels will 

not be selected for delivering the audio sample, there could be as many as three, and they may have 

started already, but could also start at the same moment, or stop, or switch to yet another 

backchannel. Now this seems to get out of hand, but here as well the possibilities can be added step 

Speaker A 

Speaker B 

Time  

BC 

ISA 

< max 250 ms > 

Speaker A 

Speaker B 

Time  

BC 

ISA 

BC 

(optional) 

Figure 4.6 Short silences are allowed as well 

Figure 4.7 With previous backchannels the relevant speaker can still be found 



35 

 

by step. To indicate multiplicities, a ‘*’ coupled to a change denotes that any number of these 

changes may be given. In a similar fashion a ‘+’ indicates that a minimum of one of the 

corresponding changes is required, and more than one are allowed. So 

Ba: < ({S, Ws}, BC)+ ,  ({C, T}, (G)-BC) > 

indicates that there can be one, two, or thee starting BC’s (next to the other requirement of course). 

To include stopping and continuation of BC, we specify: 

Ba: < ({S, T, C, Ws}, BC)+ ,  ({C, T},  (G)-BC) > 

This seems to be the complete criterion for the Ba collection. But, unfortunately, this criterion now 

allows for too much. The initial requirement stated that at least one Backchannel started and this is 

no longer necessary in the current criterion. For example, there could be three stopping BC next to a 

continuing ISA. This is easily remedied by explicitly naming one stopping or continuing backchannel. 

We have at least one backchannel that can be given by any speaker. In Figure 4.8 all but one are 

indicated to be optional. Of course this mandatory one can have any place in this scenario, The 

backchannels by the other speakers are optional:  

Ba: < ({S, Ws}, BC)  ,  ({C, T},  (G)-BC)  ,  ({S, T, C, Ws}, BC)* > 

 

 

Selecting NBa 

The requirement for the other collection, the NBa group, can be constructed in a similar fashion. We 

start with the minimum requirement: exactly one starting DA that is not a backchannel 

NBa: < (S, (G)-BC)  > 

As with the other group, there has to be a speaker that is currently speaking, or has just finished 

speaking. The dialogue act group does not matter. As with the Ba group, there may be a silence with 

a maximum duration of 250 milliseconds in front of the new contribution. The situation is 

Speaker A 

Speaker B 

Time  

BC 

 

ISA 

Speaker C 
BC 

(optional) 

Speaker D 
BC 

(optional) 

BC 

(optional) 

BC 

(optional) 

BC 

(optional) 

Figure 4.8 A peculiar conversation… 
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represented in figures. Note that the new contribution can be of any type but a backchannel. To 

denote this we use the same group denoting label as in the critera. 

NBa: < (S, (G)-BC)  ,  ({C, T},  (G) )  > 

 

 

This already completes the criterion for which the transitions must apply. Relatively simple, 

compared to the previous group, due to the lack of addressing information. After all, if any more 

(speaker) channels contain non-BC dialogue acts, we can no longer unambiguously appoint the 

speaker that must be prosodically sampled.  

 

 

The null group 

All occurrences that do not comply to one of both requirements are collected in group “null”. This 

group mainly consists of transitions that indicate a stopping dialogue act, transitions that are not 

included in the CRPn definition and those for which no speaker could be appointed. The selection 

process was their first and last attempt for glory: they will not be input into the prosodic analysis 

script, saving a considerable amount of time 

When these requirements are issued in the parser and applied on the entire list of dialogue state 

transitions, the following numbers are produced: 

Class # Occurrences 

Ba 9110 

NBa 33867 

null 139343 
Table 4.2 Post selection class ditribution 

Speaker A 

Speaker B 

Time  

(G)-BC 

(G) 

Speaker A 

Speaker B 

Time  

(G)-BC 

(G) 

< max 250 ms > 

Figure 4.9 The default NBa situation 

Figure 4.10 Short pauses are allowed as well 
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The major part of the experiments were conducted on a balanced distribution of both groups. In the 

parsing process, the selection algorithm is augmented with the option of creating a balanced set, so 

that any distribution can be made. The algorithm functions as following: The parser processes the 

DST’s and keeps track of the Ba and NBa collection’s size. It has been told that the Ba group will be 

the smallest, which means, that every item that is labeled as a Ba-member, must be accepted. Every 

time an NBa is processed, a choice is made to accept or discard it. This choice is based on a random 

number from null to the Ba size at that moment, which is compared to the size of the NBa group at 

that point and a weight. In this way, the groups grow evenly throughout the parsing process and the 

NBa items are randomly chosen from the entire group – differently each time. The eventual 

distribution depends on the value of the weight (default is 1.00). If this set is balanced the number of 

NBa items will be approximately the same as the number of Ba items – around 9.1k. 

 

4.3 Prosodic feature extraction and analysis 

This paragraph reports on the features that were extracted by the Praat script. The attributes, as 

they are also called, are distributed over different sets, containing different types. The choice to 

group them together was made to allow for a reasonable number of experiments; they can be 

compared set wise. They shall be presented in this section in the same manner. We start by defining 

the terminology that will be used. 

Section 3.3 reported that Praat extracts feature values from samples, taken from a larger source of 

audio. These samples can have any length, as long as they remain within the limits of the audio file 

itself. The different feature sets that will be extracted for each dialogue state transition, will be 

varying in length. Each period that is used to denote the start and end time of a sample, is called an 

interval. In the feature lists, time indices will be used to denote their starting and ending time. With 

the help of the Figure 4.11 and Table 4.2, we shall explain the used terminology. 

 

ISA 

BC 

DA  Channel A 

DA  Channel B 

t(DS) 

t2(Word) t(DA) 

t (DST) 

ISA,*,*,* 

 

Dialogue States 

“Hm-m” 

figures are complex these Words  Channel A 

Words Channel B 

ISA,BC,*,* 

 

ISA,*,*,

* 

t1(Word) 

Figure 4.11 Starting time indices: a word, dialogue state or dialogue act. In this example DS and DA 

are of equal length because there is nothing else in between, they start at the same time index. 
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In this table “ms” stands for millisecond, t(DST) is moment (accurate to 10 ms) at which in the corpus 

the actual transition takes place. So this is the end of the audio sample – all audio succeeding this 

moment occurs, while the backchannel (or other dialogue act) is taking place and should therefore 

not be used. t(DS) is the moment at which the dialogue state starts, that preceded the DST. t(DA) 

stands for the starting time of the dialogue act that surrounds the dialogue state. This is also the DA 

from which the prosody is extracted over the (sub)sample’s duration. t1(word) is the starting point of 

the very last word that was uttered before t(DST) and t2(word) denotes the end time. If t(DST) 

intersects a word interval (in other words: a word was being uttered at t(DST)), then the previous 

word is used as ‘last word’. For further clarification, see the figure. 

subsample Name prefix Start index End index 

DS ds_ t(DS) t(DST) 

DA da_ t(DA) t(DST) 

Word w_ t1(word) t2(word) 

Last sec sec_ t(DST) – 1000ms t(DST) 

Last 500 500_ t(DST) – 500ms t(DST) 

Last 300 300_ t(DST) – 300ms t(DST) 

Last i * 200 It1000_ t(DST) – 1000ms t(DST) – 800ms 

 It800_ t(DST) – 800ms t(DST) – 600ms 

 it600_ t(DST) – 600ms t(DST) – 400ms 

 It400_ t(DST) – 400ms t(DST) – 200ms 

 It200_ t(DST) – 200ms t(DST) 
Table 4.3 Used names and intervals 

 

The features that are extracted can be of two types: ‘context’ and ‘prosodic’ and fall into two 

different categories: ‘long’ and ‘short’, referring to their interval length. In the experiment we often 

use a combination of long and short features, where the short ones apply to a small interval close to 

the dialogue state transition. Their values are compared against the values of corresponding 

features, that were extracted over a longer period in time. The first four features are contextual 

features, extracted from the contextual dialogue act (or possibly another longer period), that 

surrounds the dialogue state. They are thus the context features for the long interval. This set is 

included in every experiment. 

name Short description 

Dag_label The group name to which this DA’s type belongs (ISA, EL, …) 

Word_amnt The amount of separate words that this DA contains up to the moment of t(DST) in 

the example this would amount to 3. 

Da_dur The duration up to the transition: t(DST) – t(DA) 

Da_w_l_avg The average length of each word in this DA, measured over the start to the last 

completed worde before t(DST), so  (t(DA) - t2(word)) / word_amnt 
Table 4.4 The contextual act feature set: always included 

This is followed by a list that make up the prosodic feature collection for the long interval. In this list 

the features are measured over DA, thus over t(DA) to  t(DST) 
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name Short description 

da_p_mean The mean F0 (pitch) 

da_p_sd The standard deviation in F0 (pitch) 

da_vfrms The total number of voiced frames 

da_vf_r The ratio of voiced frames over total frames (voiced + unvoiced) 

da_vf_ps The average Speech rate: voiced frames / sec 

da_i_mean The mean intensity (dB) 

da_i_sd The standard deviation of intensity (dB) 
Table 4.5 The dialogue act (long) feature set 

Next up are the listings of the prosodic features for the short intervals. Many of them contain the 

difference between the extraction from the subsample and the DA sample. Each feature name that 

uses the postfix “_dif” or “_d” denotes the remainder of the extracted value of corresponding 

subsample minus the value of the same feature, extracted from the DA sample:  

Subsample_Feature_dif = feature_value( short interval) – feature_value( long interval ).  

The list for the subsamples “word”, “1000ms”, “500ms” and “300ms” contain several of these 

features. The numbers represent the unit this feature is measured in (dB, Hertz, seconds, etc) and 

they are not made absolute, so they may be negative values. Most classifiers can handle negative 

integer values. The next list belongs to the last word. 

name Short description 

w_dur The length of the last word (= sample length) 

w_pau_dur The duration of pause after end of last word: t(DST) – t2(word) 

w_i_m_dif The difference in mean intensity  

w_p_m_dif The difference in mean pitch 

w_p_vf_dif The difference in frequenty of voiced frames (total) 

w_avg_l_dif The difference in length from average word length 

w_i_RFC RFC intensity slope 

w_p_RFC RFC pitch slope 
Table 4.6 The word (short) feature set 

The term RFC is used from the Rise Fall Continue term. It can be used here as Rise, Fall, Continuous, 

because it is used to indicate if a part of a slope rises, falls, or is relatively flat (continuous). For each 

feature, that has an RFC calculation, the interval is divided in four parts, as Figure 4.12 shows. For 

each of these parts the feature is calculated: this can result in a pitch or intensity value. Then these 

values v1 to v4 are compared to each other, where a discrete value denotes the difference between 

vi and vi+1. The result of each comparison is an “R” whenever vi+1 was more than a preset threshold 

variable higher than vi; the comparison receives an “L” if it is the other way around and an “C” in 

neither is true. These three evaluations lead to three letters denoting the value for this slope. 

Possible values are { s1s2s3 | si  Є {R,F,C}} resulting in 3
3
 different possibilities. 
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The following list belongs to the subsections corresponding to the last 300ms, 500ms, 1000ms of the 

DA before the transition occurred. Like the ‘last word’ feature set, these are extracted from the 

short interval and belong to the prosodic category. The name “{300,500,s}_featurename” is used to 

denote all of them in this list (their meaning is straightforward). In the experiment, they are named 

uniquely and are extracted over the remaining interval before t(DST) according to their names. 

name Short description 

{300,500,s}_i_m_diff The difference in mean intensity  

{300,500,s}_p_m_diff The difference in mean pitch 

{300,500,s}_p_vf_diff The difference in frequency of voiced frames  

{300,500,s}_w_i_RFC RFC intensity slope, same as with the word set 

{300,500,s}_w_p_RFC RFC pitch slope, same as with the word set 
Table 4.7 The short sample feature set 

The last list in the prosodic category, extracted from a short interval is the ‘delta’ feature set. This 

collection consists of 5 different value for each attribute, taken over 5 sequential subsamples, each 

with a length of 200 ms, delivering average values. The values for these features are the difference 

between the mean extraction of current subsample minus the mean extraction of the previous 

section, where the first subsample is starting at 1000 ms before t(DST) – without any subtractions – 

and the last at 200 ms before t(DST). So for example 

It1000_p_d = average pitch over( ( t(DST) – 1000 ) to ( t(DST) – 800 ) ) 

It800_p_d = average pitch over( (t(DST) – 800) to (t(DST) – 600) )  minus it1000_p_d 

All attributes within the ‘delta’ feature set describe the slope of the item, corresponding to the 

feature name, over the last second of audio, before the transition. The values are, similar to the RFC, 

an average over the subsample’s interval and expressed in continuous numbers, in contrast to the 

RFC, that used discrete denominators. It is possible to use a subset of these in classification. They are 

all extracted, so that it1000 remains the starting number and the following attributes retain the 

difference depicting value. 

 

v1 v2 v3 v4 

R C F 

Figure 4.12 RFC representation of a slope 
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name Short description 

{it1000, it800, it600, it400, it200,s} 

_i_mean_d 

The difference in mean intensity between this item 

and the previous, where it1000 precedes it800.  

it1000_i_mean_d is used for the difference 

(numeric value) between the mean intensity 

obtained from the interval inbetween 1000 and 800 

ms before t(DST) and the mean value over the 

longer interval: da_i_ mean.  

 

The same goes for the ‘p’ (pitch) ‘sd’ (standard 

deviation), and vfr (voiced frames frequency) 

 

{it1000, it800, it600, it400, it200,s} 

_i_sd_d 

{it1000, it800, it600, it400, it200,s} 

_p_mean_d 

{it1000, it800, it600, it400, it200,s} 

_p_sd_d 

{it1000, it800, it600, it400, it200,s} 

_vfr_d 

Table 4.8 The delta feature set 

There is one last contextual feature set that caught our eye. We speak of the ‘focus of attention’ 

dataset – foa for short. It is extracted at the moment of t(DST) but looks back in time if necessary 

and is therefore marked as a set that is extracted at a short interval.  

For a relatively small amount of meetings, the direction of a participant’s gaze was annotated in the 

F.O.A. modality, as explained in chapter 2. A participant  can look at several items; we subdivided 

these in persons, places or undefined(s). In the list below, the ‘speak’ nominator is used to indicate 

the person that will start speaking shortly; elsewhere named as the next or new speaker. 

name Short description 

foa_type The class of item the gaze is  directed at, this can be a person, place or 

unspecified 

foa_target A label naming the specific target: participant A~D, the table, screen 

whiteboard or unspecified 

foa_at_speak Whether the next speaker is looked at (“Y” or “N”) 

foa_at_speak_dur How long the next speaker was looked at (numeric; 0 if foa_at_target = 

“N”) 

foa_e2e Whether or not the next speaker was looked at and was looking back at 

the previous/current speaker (“Y”, “N”) 

foa_e2e_dur How long the participants had eye contact (numeric; 0 if foa_e2e = “N”) 
Table 4.9 The foa feature set 

One more feature  was extracted from the samples. Because one feature does not make a set, this 

was included in the focus of attention set. Together they form the multimodal feature set. 

name Short description 

Head A signal that is communicated (or not) 
Table 4.10 Head feature set, included with foa from here on 

All meetings that received foa-annotations also contain head communication annotations and if we 

can detect focus of attention in a real scenario, surely head moments would be possible as well, so if 

this feature can improve overall classification, it may be used with the foa feature set in experiments 

to com. There is a list of signals that were encoded. We denoted them with the two-letter labels 

listed below.  
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Annotaion name label 

Emphatis_signal SE 

Concord_signal SC 

Discord_signal SD 

Deixis_signal SX 

Negative_signal SN 

Other_comm_head CO 

No_comm_heand CN 

Off_camera OC 
Table 4.11 Possible head signals and abreviations 

 

One very different feature set was reported about in chapter 2, where a collection of filters was 

applied to a collection of samples taken from different lengths of two features: F0 and intensity. 

(Fuentes, Vera, & Solorio, 2007) Using the same approach, we create the “FilteredSlope”.  

We start by taking defining the 3 filters that are applied: 

 

A 

A filter’s response is either 1 or -1 for filters 1 and 2, depending on the step. We call filter 1 “F1” and 

the response is F1(s) where s is the input step.  

For example:  F1(1) = 1.  F1(24) = 1. F1(25) = -1. F1(48) = -1. 

Likewise  F2(1) = 1.  F2(24) = -1. F2(25) = -1. F2(48) = 1. 

Filter 3 is a linear interpolated slope between -1 and 1, where F3(1) = -1 and F3(48) = 1. 

We explain the algorithm by describing the steps that are taken and applying them directly to an 

example: extraction of F0 of an interval of 200 ms in length. The dot product from the filters and this 

sample is calculated in the following manner:  

- The 200 ms period is subdivided in a number of intervals, equal to the number of steps as 

we have in our filter. In this case we used 48. Each interval has a duration of 200/48 ms and  

the starting and stopping time indices are i * (200/48) and (i +1) * (200/48) respectively, 

where i runs from 1 to 48. We call these separate intervals SIi.. This number ‘48’ is chosen 

Steps 

Response 

  1 

- 1 

Response 

  1 

- 1 

Response 

  1 

- 1 

Filter 1 Filter 2 Filter 3 

48 1 

Steps 

48 1 

Steps 

48 1 

Figure 4.13 Three filters 
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arbitrary: increasing it means more accurate results, but longer required computation time. 

We recommend using a number dividable by 2 and 3, given the contours of F1 and F2. 

- Each separate interval SI is sampled on the prosodic feature F0 and the resulting value is 

multiplied by a filters response at that time step; SIi * F(i). This is done for each filter 

separately. 

- All products are added together into one numeric value, for each filter. The process is 

comparable to taking the dot product of 2 vectors of the same size. 

Now we have 3 numeric values, one for each filter, representing the F0 slope of 200 milliseconds, 

multiplied by the filters slope with a step size of 48. 

This process is repeated for a collection of 18 different window lengths, starting at 200 milliseconds 

before the moment of t(DST) and increasing with 100 ms steps to a maximum of 2 seconds before 

t(DST). The same is done for the intensity slope. This results in a feature set of 2 (features) * 3 

(filters) * 18 (sample lengths). 

The feature names start with “fs” to denote that they belong to the ‘filtered slope’ feature set, a  ‘i' 

or ‘p’ for intensity and pitch, a number (1, 2 or 3) for the applied filter and a number to indicate the 

sample length in milliseconds. For example: “fs_p1_200”, or “fs_i2_1800”. 

The essential approach was adopted from a study in which a comparable set of feature was taken 

and an effort was made to detect the end of utterances. Although this is an entirely different 

classification problem, the results that were obtain lead to believe that this feature set can be used 

in our task as well. 

We will elaborate on each feature set’s performance in the next chapter. In a few sections it reports 

on the process of experimenting, evaluating intermediary results and making choices based on 

them. It resembles the larger (relevant) part of the experiments that were conducted and the result 

that were obtained. 
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5 Processing results 

As explained, the goal is to find and evaluate the prosodic features that perform well, in the sense 

that they help the classification process that distinguishes moments preceding backchannels from 

other moments based on the utterance characteristics. At this point an experiment can be seen as a 

very large function with a number of arguments, that were explained in the previous chapter:  

- The collection of occurrences that make up the input dataset 

- The collection of features that is extracted from each sample 

- The collection of classifiers that is experimented with 

Through thorough analysis of different combination of features, taken from different sample 

lengths, results become more accurate and valuable. There is however a limit on the available 

computational space and time complexity. During the experimentation phase it became clear that 

the right balance is needed between exhaustive experimenting and combining feature sets in 

classification tasks. So, at one side, we need to vary the parameters enough to make sure that the 

results do not get stuck at a local optimum in the set of possible outcomes. On the other side, trying 

every combination of feature set and window length is not feasible.  

This chapter reports on what was experimented with and what findings were the result. It does so, 

not by listing a 4-dimensional table (dataset, sample length, feature set, classifiers) with results, but 

by establishing what choices can best be made for these dimensions, in a linear manner. First we 

report on experiments with a varying window length, then we compare feature set performances 

and finally the best training / classification algorithm is chosen.  

 

5.1 Varying window length 

The long window 

Extractions are done on a sample of the recording of a participant over the whole meeting. Getting 

the time indices of this sample right is perhaps the most important issue and there are many 

options. Chapter 2 explained that rises and drops in pitch and intensity should be well explored as 

they are used by many and are often found to be useful. The choice is made to extract two samples 

for each item in our dataset, so that a comparison can be made between a short sample, that is 

extracted moments before the DST and a long sample, that stretches further back in time. Sample 

lengths will be referred to as ‘intervals’ and we shall first discuss the long variant. 

The DST’s that were extracted from the AMI corpus are marked by 1 time index; the moment at 

which one dialogue state transits to the next: at the bottom of Figure 5.1, this is denoted by 

“t(DST)”. It marks the end point of any sample, because at this point in time one of the participants 

started a dialogue act, while someone else was already talking. Any point beyond this one, lies 

outside of the scope of what could be measured for this transition in a real(time) situation. We refer 

to the participant that starts with the new dialog act and causes the DST as the ‘new speaker’. In 

Figure 5.1 this is the participant on channel B. By the ‘current speaker’, ‘active speaker’ , or just 

‘speaker’ we mean the participant that has the floor and is the source of the extracted features; 

channel A in the same figure. 
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For the long sample we can choose between three options: 

(1) The interval between the start and end time index of the dialog state (DS) preceding the DST 

(2) The interval between the start of the dialogue act (DA), corresponding to the current 

speaker and the start of the DA uttered by the new speaker. 

(3) The interval between the start of the turn of the current speaker and the start of the DA 

started by the new speaker 

(1)  Seems an obvious choice. The start and end index of this interval are marked in by t1(DS) and 

t2(DS), respectively. A result from choosing these indices for the long interval proved unsuccessful 

because it was too short on many occasions. The extraction procedure handles errors by the marking 

and removal of occasions of which a feature set could not be extracted for any reason. In early 

experiments, many items were removed from the dataset in the cleaning process, as table 5.1 

shows.  

Collection Total DST Error producing samples Accepted items 

ES2002 ~ ES2016 6758 2125 4633 

IS1000 ~ IS1009 4256 1248 3008 

TS3003 ~ TS3012 4050 1286 2764 
Table 5.1 Dataset specific accepted items 

The problem was traced back to the long interval being very short on many occasions. This happens 

when several participants start at approximately the same time: for each n short dialogue acts, given 

by any number of participants, causing rapidly following stats/stops, there can be n -1 items that did 

not have at least 200 milliseconds of uninterrupted speech needed that has been set as a minimum 

length requirement.  Figure 5.2 shows a situation that would produce a long sample of too little 

time: there is another dialog act (type Elicit) at another channel (participant C), right in front of the 

backchannel. This new dialogue act changes the dialogue state, just like any other would. Compared 

ISA 

BC 

Channel A 

Channel B 

 

Dialog State 

ISA 

 … 

(ISA,*,*,*) (ISA,*,*,*) 

 

(ISA,*,*,*) 

 

(ISA,BC,*,*) 

 

* 

 

t2(DS) 

t1(DS) t(DST) 

 <  200 ms  > 

Figure 5.1 The long interval stretches over the preceding dialogue state. In this example it is the same size as the 

preceeding part of the dialogue act. 
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to figure 5.1 we now get a new dialogue state, starting at the EL-type. Now the starting time of the 

BC preceding interval t1(DS) is set at the start of this new DS, creating a much shorter interval t1(DS) 

– t2(DS).  

 

 

To prevent a sample from getting too short, the choice was made to extend the start back in time to 

the start of the new dialogue act: choice (2) with time indices: t1(DA) – t2(DA), in figure 5.2. 

The third option mentioned above will be discussed shortly. First the feature set extracted from this 

long interval is combined to a set that is extracted from the short interval, so the first results can be 

created and evaluated. 

 

5.1.2 short 

The second feature set is used for comparison to the corresponding features over the entire 

dialogue act (the long interval). The value for each feature is subtracted with the corresponding 

value from the long set and the result can be given in discrete or continuous form. Take, for example 

Table 5.2, showing possible values for the mean pitch feature:  

Da_p_mean value Da_w_mean Value Printed discrete Printed continuous 

180 Hz 125 Hz “Less” - 55 
Table 5.2 Mean pitch value example  

ISA 

BC 

Channel A 

Channel B 

 

Dialog State 

ISA 

 … 

ISA,*,*,* ISA,*,*,* 

 

ISA,*,*,* 

 

ISA,BC,EL,* 

 

* 

 

t2(DS) 

t2(DA) 

t2(Tu) 

t1(DA) 

t1(Tu) 

t(DST) 

EL Channel C 

ISA, *, 

EL,* 

t1(DS) 

 <     200ms     > 

New DS 

Figure 5.2 The new long (turn) interval stretches further back than the preceding dialogue acts if the silence between these 

is less than 250 milliseconds 
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As with the previous, longer interval, one can also think of any number of possible periods, for the 

short interval. We choose to compare the performance of these four different ‘prosodic windows’ as 

the second feature set: 

- The last spoken word 

- The last 300 millisec of the utterance 

- The last 500 millisec of the utterance 

- The last 1000 millisec of the utterance 

The ending time indices of these intervals are set on the moment of the DST only if a word was being 

outspoken at that exact moment (Praat is very precise…). If not, then the end time is set at the 

ending time of the last outspoken word. (The period between the end of the word and the start of 

the new dialogue state will count in the ‘pause’ feature.) In order to measure which set performs 

best, intermittent results were obtained by using the Weka toolkit on a dataset of extracted feature 

values. Different datasets were created: one for each of the three collections of meetings, named in 

chapter 1.2. They are listed again in table 5.2, below. 

Collection name 

ES2002 ~ ES2016 ES 

IS1000 ~ IS1009 IS 

TS3003 ~ TS3012 TS 
Table 5.2 Dataset abbreviations 

Several different classifiers were tested on these first datasets, giving varying results. We choose to 

continuously use Weka’s implementation of the J48 decision tree classifier to test performances of 

different datasets. J48 was chosen because it is one of the best performing classifiers on average and 

works very fast in comparison to others. It was applied, using a 10-fold-cross-validation training and 

testing method on the 3 different datasets and their unison. The Table 5.3, below lists the results 

obtained from the united dataset (ES+IS+TS). In this table, the feature set label indicates which 

interval was used from which the prosodic set was extracted. “DA + last 300ms” implies that the long 

interval had the start of the corresponding dialogue act as its t1. Likewise the short interval had 

t(DST) - 300 ms as its starting time. “DA + all” implies that all the extractions for all 4 separate short 

intervals were included. For detailed results on the separate datasets (ES, IS, TS), see appendix B1 to 

B5 in the same order as the feature sets are the table; one appended sheet per line. (Please note the 

difference between ‘data set’ and ‘feature set’.)  

Exp Feature set Correct Precision Recall f-Measure 

1.1 DA + last word  61.7 % Ba:    0.61 

NBa: 0.624 

Ba:    0.639 

NBa: 0.595 

Ba:    0.624 

NBa: 0.609 

1.2 DA + last 300 ms 61.8 % Ba:    0.61 

NBa: 0.627 

Ba:    0.628 

NBa: 0.607 

Ba:    0.632 

NBa: 0.632 

1.3 DA + last 500 ms 61.8 % Ba:    0.61 

NBa: 0.627 

BA:    0.646 

NBa: 0.589 

Ba:    0.628 

NBa: 0.607 

1.4 DA + last 1000 ms  61.8 % Ba:    0.61 

NBa: 0.627 

BA:    0.646 

NBa: 0.589 

Ba:    0.628 

NBa: 0.607 

1.5 DA + all 61.9 % Ba:    0.607 

NBa: 0.632 

BA:    0.664 

NBa: 0.574 

Ba:    0.634 

NBa: 0.602 
Table 5.3 10-fold J48 Performance for short interval variations with the long dialogue act interval 
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the 3 + 1 different sets were purged of all items that generated errors while being processed. In the 

praat script these generate output that can be identified later; the item is discarded and the next is 

analyzed. In total, there were 19971 DST processed, 14282 of which were accepted and 5689 were 

removed. The accepted items were distributed 7114 / 7168 over the Ba / NBa classes respectively. 

 The rather large number of unaccepted items is mainly caused by dialogue state transitions that lack 

enough sampling space in front of the transition. Recall that the dialogue act, rather than the 

dialogue state was chosen to be sampled for the long interval. If we compare these numbers to the 

removals that occurred from choosing the shorter interval (see [table 5.x]), we can see that there is 

an improvement of accepted items. There are however still many unaccepted feature extractions. 

Possibly, the long interval is still a bit short.  

In this experiment (and those to come) a weighed dataset was input into Weka’s classifies, creating 

ideal conditions for classification: approximately the same number of items for both groups. Based 

on the removal rates of the separate datasets, the parser was adjusted so that a balanced dataset 

would be created. 

The results that were obtained from the first experiment are shockingly similar over the different 

feature sets, and above all, not very impressing. By using a balanced dataset over 2 different classes, 

we set the baseline at 50%. ((7158 / (7158+7168) =  49.965) An overall increase between 11 and 12% 

over that minimum is rather disappointing. The detailed results on precision, recall and f-measure 

aren’t exciting either: there is practically no difference between feature sets . Recall and f-measure 

score a little higher on the Ba class, precision is a bit higher for the NBa class, on all separate sets. 

This leaves us with two probabilities: 

- There is not much to be learned from pitch and intensity measurements over any part of the 

recent history of an utterance 

- The DA feature set is mainly responsible of the 11.8% increase over baseline. 

The first assumption is a bit worrying given the expectations. Remember however, that this was a 

rather small feature set over relatively greatly varying, short interval. The next experiment attempts 

to cut down on the losses by increasing the long interval.  

 

5.1.3 longer 

There is another choice to explore for the long interval, namely the entire turn up to the moment at 

which the new speaker started. At the start of the paragraph this was option number (3) and figure 

5.2 denotes the time indices for this interval as t1(Tu), t2(Tu) for start and stop respectively. In this 

case the term ‘turn’ is slightly inappropriate but it still describes the actual interval the best. With 

this term, we mean the period of speech that was not interrupted by a period of silence longer than 

200 milliseconds. The long interval feature set is now labeled as ‘Turn’ (see also table 5.4) 

The new period is selected for the ‘long interval’ and the combination of feature sets is repeated in a 

new experiment. What interests us is the difference in results that is made by lengthening the long 

interval. In a real (time) situation the selection of this period might be more expensive in terms of 
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computing complexity, because features like mean and standard deviation must be calculated over 

more values as the time progresses and an interval would get longer (remember Praat’s 10 ms 

sampling method). It would also be simpler to apply in a real-life scenario: there is no need for an 

algorithm that determines the start of a new dialogue act, but rather the start of speech would be 

enough. 

Again we list the summary of the experiment. Table 5.4, below, shows the results obtained from the 

combined dataset. The training and classification method was kept the same, as well as the input 

data set for the prosodic feature extraction and the small interval feature sets. For more detailed 

results please consult appendix C1 to C5, corresponding to experiment (‘Exp’ column) 2.1 to 2.5 

Exp Feature set Correct Precision Recall f-Measure 

2.1 Turn + last word  65.1% Ba:    0.635 

NBa: 0.666 

BA:    0.628 

NBa: 0.672 

Ba:    0.632 

NBa: 0.669 

2.2 Turn + last 300 ms 65.4% Ba:    0.634 

NBa: 0.674 

BA:    0.648 

NBa: 0.66 

Ba:    0.641 

NBa: 0.667 

2.3 Turn + last 500 ms 65.5% Ba:    0.638 

NBa: 0.669 

BA:    0.631 

NBa: 0.676 

Ba:    0.635 

NBa: 0.672 

2.4 Turn + last 1000 ms 65.9% Ba:    0.637 

NBa: 0.681 

BA:    0.659 

NBa: 0.659 

Ba:    0.648 

NBa: 0.67 

2.5 Turn + all 65.4 % Ba:    0.633 

NBa: 0.674 

BA:    0.648 

NBa: 0.659 

Ba:    0.64 

NBa: 0.666 
Table 5.4 10-fold J48 performance on short interval variations with the long turn interval 

The merging and cleaning process produced completely different results. As expected, more items 

were accepted because we look back in time for preceding dialogue act’s with no (or a very small) 

gap in between. This way less samples would fail data extraction caused by an interval duration of 

less than 200 milliseconds. The difference between the two selection methods exceeded expectation 

as in this scenario only 1547 (instead of 5689!) items were removed. So, once more 19971 items 

were processed, but now 18424 made it to the eventual dataset. 

Not only did we produce more results, they are better on average as well – although not very much. 

Furthermore, there is a small variation in the precision, recall and f-measure columns between the 

two classes, possibly due to a little shift in the balancing. In experiment series 1, items from the NBa 

group were discarded more often than those of the Ba group. To create a balanced input set for 

training, the weighing algorithm was set to compensate for this difference. As a result the NBa group 

was 9% larger at time of input for the prosodic extraction. In the second series, there is no significant 

difference in these removal proportions, but in the total removals: this set was reduced with 73%. 

Obviously this causes a different resulting proportion: for the combined set this is a 8761 / 9663 

distribution over the Ba / NBa classes respectively. (see the appendix C1-5) for the separate sets) 

Note that this imbalance affects the baseline as well; if all items were simply to be classified as being 

part of the NBa class, the baseline classifier would achieve 52.4% instead of the previous 50.0%. 

If we look at the general improvement, it is concluded that the longer – turn – interval clearly 

performs better that the shorter – dialogue act or dialogue state –  and is to be used in next 

experiments. The classification performance has increased more than the baseline. Furthermore, all 
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scores from the two corresponding tables 5.3 and 5.4 on precision, recall and f-measure are 

compared for both classes, 28 out of 30 are better. 

Although the difference between some did get larger in the performance of different short sample 

feature sets (w, 300, 500, 1000), it is still too small to clearly state that one performs better than the 

other. In conclusion, it is surprising to see that – although only by 0.5% – the ‘turn + 1000ms’ set, 

outperformed the ‘turn + all’ set, which also includes the ‘1000ms’ feature set. We shall look in to 

this in the next experiment. 

5.2 Feature sets’ results 

The previous section focused on the long and short interval feature sets. In the ‘last word’ and fixed-

amount-of-time, short-interval feature sets (300ms, 500ms, 1000ms), the contents mainly consisted 

of discrete comparisons against the averages of the longer interval, for corresponding features. 

Although this did not result in a very exiting aftermath, it did provide simple and fast comparisons. It 

was concluded that the use of a longer interval resulted in better performances. This section will 

now ‘zoom’ in on the shorter interval by discussing the result obtained from the ‘delta’ feature set. 

The ‘long’ interval’s features, shown in table, will be extracted over an interval ending at t(DST) (like 

most features) and start either at the start of the speakers turn, or 15 seconds before t(DST), 

whichever results in the shortest sample. The balance lies between: as much as possible without 

stepping in front of the speakers turn, but still manageable in terms of time complexity. Because the 

entire turn is not always the interval for this set and because this set is used in the following 

experiments, it is now labeled the base set. The features are those of tables 4.4 and 4.5, extracted 

over the interval mentioned above.  

As explained in chapter 4, this feature set is also based on the slopes of certain features, like the RFC 

(rise, fall, continuous) slopes that were used in the other short interval feature sets. However, where 

RFC was printed with a fixed number of nominators (Le(ss), Mo(re), Co(ntinuous)), the new features 

are depicted with continuous values. Remember the short example from 5.1. 

Da_p_mean value Da_w_mean Value Printed discrete Printed continuous 

180 Hz 125 Hz “Less” - 55.0 
Table 5.4 

For experiment series 3, we use the ‘turn’ based, long interval feature set, concluded to perform the 

best in the previous section. Since this set produced many more accepted items, the weighed input 

resulted in a extracted dataset that was a little off balance. To rebalance this, the weights in the 

parser were adjusted from Ba : NBa = 100 : 109 to Ba : NBa = 100 : 104. As chapter 3 explained, the 

NBa set is randomly selected from the much larger NBa group. This entails that the input for the NBa 

group will not be the exact same set of items as for experiment series 1 and 2. However, since the 

dataset contains more than nine thousand separate items for both groups, this should result in an 

practically equal (or at least a comparable) dataset. 

We experimented with several different lengths of the delta set, combined to the turn-set for the 

long interval. As chapter 4 explained, the delta set calculates the difference between this step and 

the previous, where the step size is 200ms and the maximum time in the past is 1 second. Feature 
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values are numeric and “last 400 ms” means that the differences were calculated from the features 

at t(DST) – 400 to t(DST), where every 200 ms a new set of feature differences is included in the set. 

The feature set names in table 5.5, showing the delta results, below, are mean recursively, meaning 

that the name ‘400ms’ implies that the two separate sets delta(400) and delta(200) were used; so 

‘1000ms’ has all five. In the cleaning process, out of 19971 items,  2984 were rejected and 16987 

were accepted, distributed over Ba / NBa with a 8461 / 8526 spreading. 

Exp Feature set Correct Precision Recall f-Measure 

3.1 Base + last 1000 ms 62.9% Ba:    0.624 

NBa: 0.634 

BA:    0.633 

NBa: 0.626 

Ba:    0.633 

NBa: 0.626 

3.2 Base + last 800 ms 63.3% Ba:    0.626 

NBa: 0.639 

BA:    0.649 

NBa: 0.615 

Ba:    0.638 

NBa: 0.627 

3.3 Base + last 600 ms 63.4% Ba:    0.625 

NBa: 0.643 

BA:    0.66 

NBa: 0.608 

Ba:    0.642 

NBa: 0.625 

3.4 Base + last 400 ms 64.0% Ba:    0.628 

NBa: 0.653 

BA:   0.677 

NBa: 0.602 

Ba:    0.652 

NBa: 0.627 

3.5 Base + last 200 ms 64.5% Ba:    0.646 

NBa: 0.643 

BA:    0.634 

NBa: 0.655 

Ba:    0.64 

NBa: 0.649 

3.6 Base 

 

64.5% Ba:    0.648 

NBa: 0.642 

BA:    0.629 

NBa: 0.66 

Ba:    0.638 

NBa: 0.651 
Table 5.5 incrementing short interval length 

Once more, the differences are not very large between the different lengths, but is very remarkable 

that the shorter the slope becomes, the better the results get. This is puzzling, since the second 

series of experiment held the best results for the feature set ‘turn + 1 second’. The differences 

between these two series are: 

- Series 2 uses simple, discrete values like “More” or “Equal”, whilst series 3 uses continuous, 

numeric values; surely these can retain more information. 

- Series 2 uses two values per feature to indicate the difference between the last second and 

the entire turn: an absolute (continuous) value and the difference (discrete). Series 3 uses 6 

different values: the turn’s average, the average over (-1000 ... -800) and the remaining 4 

values denoting the difference between their average, and their previous (the 200ms 

stepping). Again, per feature, series 3 holds more information. 

We take a closer look at the features themselves. The appendices show a list of feature names and 

numbers, under the classification-scores table (series 1 and 2 (appendix B and C) as well), looking 

like table 5.6, below. The table lists the top five ranked features 

average merit average rank attribute 

0.07  +- 0.001 1.1 +- 0.3 2 word_amnt 

0.069 +- 0.001 1.9 +- 0.3 7 base_vfrms 

0.058 +- 0.001 3   +- 0 3 base_dur 

0.028 +- 0.001 4   +- 0 1 dag_label 

0.018 +- 0.001 5   +- 0 8 base_vf_r 
Table 5.6 Feature Top 5, delta set 



52 

 

For the upper line, this means, that – measured over 10 fold cross validation – Weka’s attribute 

selecting algorithm (“InfoGain”) with default ranker and default parameters, found feature number 

2,  “word_amount”, to have the most value for experiment 3.1. This algorithm ranks all the features 

that were used for classification. On average it was ranked 1.1 with a standard deviation of 0.3. For 

each experiment the ranking is given over the combined (ES+IS+TS) dataset; this is gathered in the 

respective appendices. If the other rankings are consulted as well, it becomes apparent that the base 

feature set has more overall value than the slope features over any interval in the last second. All 

experiments of this series list the features in table 5.6 as their top-5 attributes and in the same order 

as well. 

In conclusion the delta feature set did not yield a productive contribution. This leaves us with the 

distinct feeling that there is little to be gained in the last moments before the dialogue state 

transition occurred.  

 

5.3 Increasing the resolution 

The previous section left us with doubts about the merit of using slope values for classification 

between the Ba and NBa groups. In this section we use a different approach, by literally looking at a  

small sample from the dataset. A script was written, that extracts F0 values from the speakers 

utterance over the last 500 milliseconds before the dialogue state transition, with time steps of 

10ms. (This is also the resolution used in the corpus in time indices.) By connection these values we 

visualized the pitch slopes. 

Figure 5.3 Shows the pitch contours extracted from 100 different samples that belonged to the Ba 

group. The number was chosen as the balance between getting a good distribution and manageable 

visibility. In order of maximizing the chance to detect a distinctive pattern in the pitch slopes, all 

samples were randomly picked from one randomly selected person in exactly  1 randomly selected 

set of meetings (i.e. ES2002a,b,c,d) (any meeting or person could be sampled). On the vertical scale 

we see the pitch in Hz, on the horizontal there is the time in steps of 10 ms where ‘-50’ indicates 

t(DST) – 500ms. Pitch values below 50 Hz have been cut off.  



53 

 

 

Figure 5.3 Pitch slope showing 100 utterances preceding a backchannel 

 

As we can see, there are a few steep falls and rises. Those jumping to and from regions around 50 Hz 

indicate starts and stops of utterances, since those sounds are far below the average pitch value of 

approximately 220 Hz. There are a few pitch slopes that beautifully indicate pitch falls at the end of 

this sample, but there are so few of them. Sadly, the vast majority of pitch slopes lies in between the 

170 and 260 Hz regions.  

 

Figure 5.4 Pitch slope showing 100 utterances preceding a non-backchannel 

50

100

150

200

250

300

350

400

450

500

550

-50 -48 -46 -44 -42 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4

50

100

150

200

250

300

350

400

450

500

-50 -48 -46 -44 -42 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4

Time in 10ms steps 

Pitch (Hz) 

Time in 10ms steps 

Pitch (Hz) 



54 

 

The same was done for 100 samples taken from the other group: NBa. The result is shown in Figure 

5.4 These were taken from the same collection of four meetings, from the same person. On first 

notice there seems to more deviation from the ‘gray’ midsection, especially the ‘excursions’  

between 250 and 400 Hz occur more in this graph than in the ‘Ba’ group of Figure 5.3. They seem to 

be a little higher as well. Still these ‘risers’ make up for no more than 12, maybe 15 percent of this 

random selection (of items from the same group). The majority still resides in the midsection.  

Because this image only shows the slopes of little over 1 % of the complete dataset (around 9k items 

for both groups), we cannot conclude on this data. Still we would like to notice that a few items (12 

~ 15% in this case) clearly stands out from the mid section. Furthermore, the pitch slopes appear to 

have a larger variation in the NBa set than in the set, in the midsection at the same moment before 

t(DST). Except for the few high value ‘strangers’ in the latter set, the similarities in these images 

strengthens the notion that little information can be used from pitch values to distinguish between 

both groups.  

 

5.4 Filtered slopes 

The last feature set that was described in chapter 4, was a set for witch three filters were combined 

with extractions of varying lengths for F0 and intensity values. The resulting feature set, next to the 

base set, consists of 18 different sampling lengths to which three filters were applied. This was done 

for both speech intensity and F0 so we obtained 108 features in the filtered slope set.  As the 

dataset after feature extraction has become of considerable size, the three different (IS, TS, and ES) 

sections have not been merged, but are evaluated separately in table 5.7 below. The features are 

base + FS for each of them and the training and classification method that was applied was J48 with 

a 10-fold cross evaluation. 

 

Exp Data set Correct Precision Recall f-Measure 

4.1 ES2002 ~ ES2016 

 

 59.8% Ba:     0.583 

NBa:  0.607 

Ba:    0.658 

NBa:  0.529 

Ba:     0.619 

NBa:  0.566 

4.2 IS1000 ~ IS1009 

 

 55.5% Ba:     0.574 

NBa:  0.640 

Ba:    0.734 

NBa: 0.466 

Ba:    0.644 

NBa: 0.539 

4.3 TS3003 ~ TS3012 

 

 58.0% Ba:     0.540 

NBa:  0.586 

Ba:    0.731 

NBa: 0.380 

Ba:    0.622 

NBa: 0.461 

Table 5.7 10-fold J48 performance on Base + FS set 

The input for this experiment was balanced, setting the baseline at 50.0%. Although the 

classification on general is no better than previously achieved results – that were mostly obtained 

from considerably less complex features – it is interesting to see the IS and TS sets achieve the 

highest recall values yet, especially since the input was balanced well. Table 5.8 lists the input 

dataset sizes after balancing.  
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Set # items 

ES Ba: 2827 

NBa: 2876 

IS Ba: 1713 

NBa: 1718 

TS Ba: 1786 

NBa: 1776 
Table 5.8 base + FS dataset sizes  

 

The corpus that was used in the study from which we adopted this feature set was considerably 

smaller than ours (little under a thousand items, total), but good results were obtained from it.  

(Fuentes, Vera, & Solorio, 2007) In the study, a collection of classifiers, primarily consisting of 

decision tree classifiers was trained and tested on the data. The best performance was obtained 

from a REP tree classifier, with a recall value on the End-of utterance group of 0.85. The obtained f-

measure was 0.841. 

After experimentation with different classifiers we obtained high recall values as well. The maximum 

score of, 0.859 on the Ba group of the IS set was achieved by a DecisionStump decision tree 

classifier, trained and tested using 10-fold crossvalidation. In all cases the high scores resulted from 

over classifying on this group: False positives were high as well, resulting in poor overall 

performance scores. No overall improvement over the Base set could be found. 

 

5.5 Focus of attention 

One feature set remains. As described in chapter 3, a part of the AMI corpus was outfitted with 

annotations on signals that were captured in the multimodal featureset. An experiment was 

conducted to assess their merit as well. Because this experiment can only use a small part of the 

corpus, a new set of instances was extracted by the parser. These were combined and resulted in a 

set containing 1392 items, distributed  698 / 694 items, for Ba and NBa respectively. Of the tested 

classifiers BayesNet had the best average performances. Table 5.9 shows it’s performance used the 

default 10-fold training and classification method. 

Exp Data set Correct Precision Recall f-Measure 

5.1 Foa 

 

 52.9% Ba:     0.530 

NBa:  0.529 

Ba:    0.543 

NBa:  0.516 

Ba:     0.536 

NBa:  0.522 

5.2 Base + Foa  

 

 61.7% Ba:     0.608 

NBa:  0.627 

Ba:    0.662 

NBa: 0.571 

Ba:    0.634 

NBa: 0.597 

5.3 Base + Foa + word 

 

 61.8% Ba:     0.608 

NBa:  0.630 

Ba:    0.670 

NBa: 0.565 

Ba:    0.638 

NBa: 0.596 

5.4 Base + Foa + word 

+ sec 

62.3 % Ba:     0.612 

NBa:  0.636 

Ba:    0.675 

NBa: 0.571 

Ba:    0.642 

NBa: 0.601 

5.5 Base + word + sec 62.8 % Ba:     0.614 

NBa:  0.641 

Ba:    0.683 

NBa: 0.568 

Ba:    0.647 

NBa: 0.602 
Table 5.9 10-fold BayesNet performance on determinig FOA’s merit 
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After the initial base + foa set did not achieve a very promising performance, the first tested (word, 

300ms, 500ms, 1000ms) set was included.  Experimentation afterwards resembles a bad comedy in 

the sense that performance again peaked, with just the original set. The focus of attention set, like 

many other seems not able to contribute in our classification task.  

 

5.6 Evaluation  

We have tested and evaluated four different feature set combinations. The set best performing 

achieved an overall classification score of 65.9 % correct, roughly 16% above the 50% baseline of the 

balanced set. This score is not particularly high, so what can be concluded? Can we say that prosody 

is use full in out scenario? 

The dialogue acts with which the AMI corpus has been outfitted, have all been manually annotated 

by several different individuals. As a result, there will be inter annotator disagreement, on this body 

of nearly 117k dialogue acts. Is a backchannel always annotated as one? Is a dialogue act that is not 

a backchannel always annotated as one of the other class. The short answer of course, is “No.”. A 

study about backchannel distribution regarding the dialogue acts in the AMI corpus showed that 

there is a significant disagreement between the dialogue act type “Assess” and backchannels. From 

a small part of the corpus it was found that in 75% of the backchannel cases the annotators agree on 

the given label, (Heylen & Op den Akker, 2007). 

In an internal rapport for the Department of Human Media Interaction at the University of Twente, it 

was found from comparing annotations that there was also considerable disagreement between 

backchannel and other types. This report shows annotations of one meeting and from one of the 

confusion matrices that are presented it can be concluded that one person annotated 128 

backchannels, the other 127. They agreed on 96 items as being backchannels. it  that the annotators 

agreed on 96 dialogue acts out of 128 while comparing. 96/127 and 96/128 concurs with the 75% 

agreement found in the study, (Op den Akker). The meetings used for this data are also included in 

our dataset. It seems safe to assume that in the overall set there is also a significant annotator 

disagreement in our two classes of backchannel of non-backchannel. 

From our experiments we found the best performing feature set to be the base set, combined with 

the basic set, extracted from the last second of speech. This set included the list of features that is 

tabulated in Table 5.10.  

In this list the first prefix represents the interval over which was extracted. Here Base means that the 

starting point was chosen at a maximum of 15 seconds before the dialogue state transition occurred, 

whiteout preceding the start of the speakers turn. If the speaker preceding utterances started later, 

than this was chosen as a starting point. The ‘w’ prefix indicates that the sample was taken over the 

last finished word in the utterance and the most simple – ‘s’ – is used to indicate a sample length of 

exactly one second before the time of the DST. 
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1 Dag_label The group name to which this DA’s type belongs (ISA, EL, …) 

2 base_word_ 

amnt 

The amount of separate words that the base sample contains up to the 

moment of t(DST). 

3 base_dur The total duration of the base sample 

4 base_w_l_avg The average length of each word in the base, measured over the start to the 

last finished word before t(DST) 

5 base_p_mean The mean F0 (pitch) over base 

6 base _i_mean The mean intensity (dB) over base 

7 base _vf_r The ratio of voiced frames over total frames (voiced + unvoiced) in base 

8 base _vf_ps The average Speech rate: voiced (frames / base_dur) in base 

9 w_i_m_dif The difference from base in mean intensity, over last finished word  

10 w_p_m_dif The difference from base in mean pitch, over last finished word 

11 w_p_vf_dif The difference from base in frequency of voiced frames,        “ 

12 w_i_RFC RFC intensity slope,       “ 

13 w_p_RFC RFC pitch slope,       “ 

14 w_dur The length of the last word (= sample length),    “ 

15 w_avg_l_dif The difference in length from average word length,   “ 

16 w_pau_dur The duration of pause after end of last word: t(DST) – t2(word),  “ 

17 s_i_m_diff The difference from base in mean intensity, over the last 1000ms 

18 s_p_m_diff The difference from base in mean pitch,    “ 

19 s_p_vf_diff The difference from base in frequency of voiced frames,  “ 

20 s_w_i_RFC RFC intensity slope, same as with the word set,    “ 

21 s_w_p_RFC RFC pitch slope, same as with the word set,    “ 
Table 5.10 Feature list of best performing feature set 

Of course, not all these features performed equally well. Weka’s GreedyStepwise feature subset 

evaluator only selects features 1, 2, 3 and 7 from the list in Table 5.10. Ten fold cross validation by 

the InfoGainAttributeEval algorithm, using the default ranker results in the list of Table 5.11. Once 

more the durational features perform best. 

Average merit   Avg. Rank    Attribute name 

0.066 +- 0.001   1   +- 0         2    word_amnt 

0.061 +- 0           2   +- 0         3    da_dur 

0.028 +- 0.001   3   +- 0        1    dag_label 

0.019 +- 0           4.1 +- 0.3      4    base_w_l_avg 

0.018 +- 0.001   4.9 +- 0.3       7    base_vf_r 

0.015 +- 0.001   6   +- 0         8    base_vf_ps 

0.011 +- 0.001   7   +- 0        16 w_pau_dur 

0.009 +- 0           8   +- 0        15 w_avg_l_dif 

0.004 +- 0           9.8 +- 0.6      20 s_i_RFC 

0.004 +- 0          10.2 +- 0.98     21 s_p_RFC 

Average merit   Avg. Rank    Attribute name 

0.004 +- 0          10.6 +- 1.43      5  base_p_mean 

0.004 +- 0          11.5 +- 0.67     19  s_p_vf_dif 

 0.003 +- 0          13.1 +- 0.54     18  s_p_m_dif 

 0.003 +- 0          14   +- 0.77     17  s_i_m_dif 

 0.002 +- 0          15.4 +- 0.66     12  w_i_RFC 

 0.002 +- 0          16.2 +- 1.08     10  w_p_m_dif 

 0.002 +- 0          17.1 +- 0.94     14  w_dur 

 0.002 +- 0          17.7 +- 1.1      13  w_p_RFC 

 0.002 +- 0          18.4 +- 1.2       6   base_i_mean 

 0     +- 0          20.1 +- 0.3       9   w_i_m_dif 
Table 5.11 Top 20 Ranking of features. 

The Experiment used J48 decision tree classifiers, because these could be experimented with very 

fast. The best results were obtained from a LAD decision tree classifier, using default arguments, 

based on 10 fold cross validation and testing on the set that encompassed a balanced set of roughly 

9.1k items for both groups we achieved 65.9% correct classifications. Where the J48 classifier builds 

trees, containing hundreds of nodes and leaves, this classifier builds the decision tree for this set 

using only a small amount of features. Figure 5.5 show a textual representation of this decision tree. 
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Figure 5.5 LAD Decision tree’s textual  

: 0,0 

|   (1) da_dur < 4.265: -0.302,0.302 

|   |   (4) word_amnt < 5.5:   -0.123,   0.123 

|   |   (4) word_amnt >= 5.5:     0.138, - 0.138 

|   (1) da_dur >= 4.265:      0.236, - 0.236 

|   |   (5) word_amnt < 13.5:   - 0.223,   0.223 

|   |   (5) word_amnt >= 13.5:    0.043, - 0.043 

|   |   (8) w_pau_dur < 1.112:    0.027, - 0.027 

|   |   (8) w_pau_dur >= 1.112:  - 0.302,   0.302 

|   |   (10) w_avg_l_dif < 0.423:    0.022, - 0.022 

|   |   (10) w_avg_l_dif >= 0.423:  - 0.176,   0.176 

|   (2) dag_label = ISA:      0.099, - 0.099 

|   |   (3) w_pau_dur < 0.009:  - 0.433,   0.433 

|   |   (3) w_pau_dur >= 0.009:    0.026, - 0.026 

|   (2) dag_label != ISA:    - 0.252,   0.252 

|   |   (6) dag_label = R:   -0.161,   0.161 

|   |   (6) dag_label != R:     0.126, - 0.126 

|   |   (9) da_i_mean < 49.395:  - 0.127,   0.127 

|   |   (9) da_i_mean >= 49.395:    0.091, - 0.091 

|   (7) s_i_m_dif = Le:      0.052, - 0.052 

|   (7) s_i_m_dif != Le:    - 0.071,   0.071 

Legend: Ba, NBa 
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6 Conclusions and further research 

After evaluating several sets of features, encompassing not only the sought after prosodic values, 

but also features applying to the context of the dialogue and – for a relatively small corpus – the 

gaze of the participants, we found less distinguishing markers than initially expected, given other 

studies’ results on different, but comparable classification tasks.  

6.1  Conclusions 

Reflecting from overall scores, we feel safe to say that our classification problem did gain use full 

information from the contextual prosody – although it is not much. the best performing feature set 

was the set extracted from the entire turn, or as far back as 15 seconds, combined with relatively 

simple prosodic features, extracted from the last second of speech before the new contribution 

stated. Next to the amount of words and time, this set consisted of basic prosodic features like the 

amount of time spend having the floor and – not surprisingly – the pause between the last uttered 

word and the start of the new dialogue act. There were a few attributes that contributed a little, like 

mean intensity measured over the entire preceding set of utterances and the difference between 

this and the intensity of the last second of speech. With a balanced input data set, an overall 

performance was achieved of 65.9%, roughly 16 % above the balanced baseline. The mentioned 

features allow for the creation of a predicting model with relative ease. The best performing 

classifier was the LADtree, from which the decision tree was presented. To our surprise very little 

could be used from pitch and intensity slopes, nor from periods of low pitch or intensity. This was 

tested over several intervals and with two different approaches. The same conclusion can be drawn 

for focus of attention signals. Although they contribute in other classification tasks, they had no 

merit in this study. 

In our opinion there is some merit to the developed method and software. It can provide a list 

depicting all dialogue states and changes in the meeting’s conversation. In any case where the 

requirements of a specific set of situations can be translated to specific demands on dialogue state 

or dialogue state transitions, the developed software can be used to supply the experimenter with a 

subset of applicable items. Whether this is then used for prosodic extraction, or something entirely 

different does not matter. 

6.2 Further research 

We can think of two possible ways to improve on our results. One option that seems worthwhile to 

explore would be inclusion of semantic features. Word sequence probabilities have been found to 

be use full in end of utterance and end of turn classification tasks. Another option would be to see 

how the performance would change if only the backchannel and non-backchannel items are selected 

on which the annotators agree on the class. Although this would result in a smaller dataset, it would 

be of higher quality. If the creation of a best case scenario would improve on our results, it would 

strengthen the notion that prosodic attributes can be used in this classification task. It might also be 

true that human conversation simply allows for a great deal of randomness when it comes to back 

channeling. Perhaps simulations can shed new light on this matter; simulation wherein human 

participators must evaluate the ‘appropriateness’ of any number of randomly generated 

backchannels of a virtual or embodied agent, addressed by another participant. 
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Appendix A1  Dialogue state distribution > 1 prom 

 

Distribution: dialog-state 

Different item count: 2849 

Total item count: 182320 

Relative amount scale: 10.0 = 1% 

Absolute threshold: 0 

Minimum threshold (promille): 1.0 

Item name      # Relative amount  

[*,*,*,*]           24003 131.65314 

[*,*,*,11]          559   3.0660377 

[*,*,*,12]          298   1.6344888 

[*,*,*,14]          334   1.8319439 

[*,*,*,16]          437   2.3968847 

[*,*,*,1]           559   3.0660377 

[*,*,*,2]           1249  6.850592 

[*,*,*,3]           1798  9.861781 

[*,*,*,4]           7757  42.546074 

[*,*,*,5]           867   4.7553754 

[*,*,*,6]           2203  12.083151 

[*,*,*,7]           365   2.0019746 

[*,*,*,9]           3623  19.871655 

[*,*,1,*]           553   3.0331285 

[*,*,1,4]           394   2.1610355 

[*,*,11,*]          351   1.9251865 

[*,*,12,*]          222   1.2176393 

[*,*,14,*]          318   1.744186 

[*,*,16,*]          350   1.9197016 

[*,*,2,*]           1335  7.3222904 

[*,*,3,*]           1990  10.914875 

[*,*,3,4]           403   2.2103994 

[*,*,3,9]           273   1.4973673 

[*,*,4,*]           8421  46.188023 

[*,*,4,1]           392   2.150066 

[*,*,4,3]           401   2.1994295 

[*,*,4,4]           339   1.8593681 

[*,*,4,9]           394   2.1610355 

[*,*,5,*]           735   4.0313735 

[*,*,6,*]           2202  12.077665 

[*,*,7,*]           315   1.7277315 

[*,*,9,*]           3507  19.23541 

[*,*,9,3]           205   1.1243967 

[*,*,9,4]           372   2.0403686 

[*,*,9,9]           484   2.654673 

[*,1,*,*]           636   3.488372 

[*,1,*,4]           376   2.062308 

[*,1,4,*]           409   2.2433085 

[*,11,*,*]          433   2.3749452 

[*,12,*,*]          286   1.5686705 

[*,14,*,*]          347   1.903247 

[*,16,*,*]          369   2.023914 

[*,2,*,*]           1395  7.651382 

[*,3,*,*]           2030  11.13427 

Item name       #   Relative amount  

[*,3,*,4]           370   2.029399 

[*,3,*,9]           241   1.3218517 

[*,3,3,*]           210   1.151821 

[*,3,4,*]           411   2.2542782 

[*,3,9,*]           262   1.4370338 

[*,4,*,*]           8447  46.330627 

[*,4,*,1]           426   2.3365512 

[*,4,*,3]           317   1.7387012 

[*,4,*,4]           321   1.7606406 

[*,4,*,9]           376   2.062308 

[*,4,1,*]           447   2.451733 

[*,4,3,*]           462   2.534006 

[*,4,4,*]           485   2.660158 

[*,4,9,*]           411   2.2542782 

[*,5,*,*]           904   4.958315 

[*,6,*,*]           2625  14.397762 

[*,6,9,*]           183   1.0037297 

[*,7,*,*]           310   1.7003071 

[*,9,*,*]           3709  20.343353 

[*,9,*,3]           212   1.1627907 

[*,9,*,4]           339   1.8593681 

[*,9,*,9]           551   3.0221589 

[*,9,1,*]           192   1.0530934 

[*,9,3,*]           279   1.5302764 

[*,9,4,*]           325   1.7825801 

[*,9,9,*]           478   2.621764 

[1,*,*,*]           700   3.8394032 

[1,*,*,4]           545   2.9892497 

[1,*,*,9]           192   1.0530934 

[1,*,4,*]           588   3.2250986 

[1,*,9,*]           188   1.031154 

[1,4,*,*]           605   3.3183415 

[1,9,*,*]           198   1.0860026 

[11,*,*,*]          829   4.5469503 

[12,*,*,*]          441   2.418824 

[14,*,*,*]          714   3.9161913 

[16,*,*,*]          538   2.9508557 

[2,*,*,*]           2693  14.770733 

[3,*,*,*]           2558  14.030276 

[3,*,*,3]           183   1.0037297 

[3,*,*,4]           398   2.182975 

[3,*,*,9]           278   1.5247916 

[3,*,3,*]           201   1.1024572 

Item name        #   Relative amount  

[3,*,4,*]           445   2.4407635 

[3,*,9,*]           261   1.431549 

[3,3,*,*]           194   1.0640632 

[3,4,*,*]           478   2.621764 

[3,9,*,*]           259   1.4205792 

[4,*,*,*]           11069 60.711937 

[4,*,*,1]           563   3.0879772 

[4,*,*,3]           521   2.857613 

[4,*,*,4]           455   2.4956121 

[4,*,*,9]           504   2.7643704 

[4,*,1,*]           566   3.1044319 

[4,*,3,*]           493   2.704037 

[4,*,4,*]           489   2.6820974 

[4,*,9,*]           474   2.5998244 

[4,1,*,*]           609   3.3402808 

[4,3,*,*]           541   2.9673102 

[4,4,*,*]           491   2.693067 

[4,9,*,*]           536   2.9398859 

[5,*,*,*]           1586  8.698991 

[5,*,*,4]           236   1.2944274 

[5,*,4,*]           246   1.349276 

[5,4,*,*]           242   1.3273365 

[6,*,*,*]           3511  19.257349 

[6,*,*,9]           251   1.3767003 

[6,*,9,*]           217   1.190215 

[6,1,*,*]           183   1.0037297 

[6,3,*,*]           193   1.0585784 

[6,9,*,*]           261   1.431549 

[7,*,*,*]           541   2.9673102 

[8,*,*,*]           346   1.8977622 

[9,*,*,*]           4720  25.888548 

[9,*,*,3]           275   1.508337 

[9,*,*,4]           444   2.4352787 

[9,*,*,9]           655   3.5925844 

[9,*,1,*]           189   1.0366389 

[9,*,3,*]           316   1.7332163 

[9,*,4,*]           472   2.5888548 

[9,*,9,*]           554   3.0386133 

[9,1,*,*]           206   1.1298815 

[9,3,*,*]           320   1.7551558 

[9,4,*,*]           472   2.5888548 

[9,6,*,*]           198   1.0860026 

[9,9,*,*]           611   3.3512506 
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Appendix A2 DST distribution > 1 prom 

 

Distribution: dialog-state-transition 

Different item count: 19.541 

Total item count: 182.182 

Relative amount scale: 10.0 = 1% 

Absolute threshold: 0 

Minimum threshold (promille): 1.0 
Item name                      #     Relative amount  

[*,*,*,*] -> [*,*,*,16]         247   1.3547609 

[*,*,*,*] -> [*,*,*,1]          384   2.1061869 

[*,*,*,*] -> [*,*,*,2]          552   3.0276437 

[*,*,*,*] -> [*,*,*,3]          650   3.5651603 

[*,*,*,*] -> [*,*,*,4]          1347  7.3881087 

[*,*,*,*] -> [*,*,*,5]          251   1.3767003 

[*,*,*,*] -> [*,*,*,6]          360   1.9745502 

[*,*,*,*] -> [*,*,*,9]          1174  6.4392276 

[*,*,*,*] -> [*,*,1,*]          367   2.0129442 

[*,*,*,*] -> [*,*,2,*]          534   2.9289162 

[*,*,*,*] -> [*,*,3,*]          579   3.175735 

[*,*,*,*] -> [*,*,4,*]          1367  7.497806 

[*,*,*,*] -> [*,*,5,*]          222   1.2176393 

[*,*,*,*] -> [*,*,6,*]          371   2.0348837 

[*,*,*,*] -> [*,*,9,*]          1132  6.2088637 

[*,*,*,*] -> [*,1,*,*]          429   2.3530056 

[*,*,*,*] -> [*,16,*,*]         188   1.031154 

[*,*,*,*] -> [*,2,*,*]          611   3.3512506 

[*,*,*,*] -> [*,3,*,*]          675   3.7022817 

[*,*,*,*] -> [*,4,*,*]          1368  7.503291 

[*,*,*,*] -> [*,5,*,*]          252   1.3821852 

[*,*,*,*] -> [*,6,*,*]          420   2.303642 

[*,*,*,*] -> [*,9,*,*]          1124  6.1649847 

[*,*,*,*] -> [1,*,*,*]          462   2.534006 

[*,*,*,*] -> [11,*,*,*]         209   1.1463361 

[*,*,*,*] -> [12,*,*,*]         225   1.2340939 

[*,*,*,*] -> [14,*,*,*]         203   1.1134269 

[*,*,*,*] -> [16,*,*,*]         280   1.5357614 

[*,*,*,*] -> [2,*,*,*]          1171  6.4227734 

[*,*,*,*] -> [3,*,*,*]          785   4.3056164 

[*,*,*,*] -> [4,*,*,*]          1886  10.344449 

[*,*,*,*] -> [5,*,*,*]          443   2.4297938 

[*,*,*,*] -> [6,*,*,*]          604   3.3128564 

[*,*,*,*] -> [9,*,*,*]          1434  7.8652916 

[*,*,*,11] -> [*,*,*,*]         220   1.2066696 

[*,*,*,16] -> [*,*,*,*]         240   1.3163668 

[*,*,*,1] -> [*,*,*,*]          356   1.9526109 

[*,*,*,2] -> [*,*,*,*]          218   1.1956998 

[*,*,*,2] -> [*,*,*,4]          396   2.1720052 

[*,*,*,3] -> [*,*,*,*]          647   3.5487056 

[*,*,*,4] -> [*,*,*,*]          1520  8.33699 

[*,*,*,4] -> [*,*,*,2]          201   1.1024572 

[*,*,*,4] -> [*,*,*,3]          222   1.2176393 

[*,*,*,4] -> [*,*,*,4]          2179  11.951514 

[*,*,*,4] -> [*,*,*,6]          313   1.7167617 

[*,*,*,4] -> [*,*,*,9]          269   1.4754279 

[*,*,*,4] -> [*,*,1,4]          282   1.546731 

[*,*,*,4] -> [*,1,*,4]          269   1.4754279 

[*,*,*,4] -> [1,*,*,4]          421   2.3091269 

[*,*,*,4] -> [9,*,*,4]          215   1.1792452 

[*,*,*,5] -> [*,*,*,*]          289   1.5851251 

[*,*,*,6] -> [*,*,*,*]          521   2.857613 

[*,*,*,6] -> [*,*,*,4]          256   1.4041246 

[*,*,*,6] -> [*,*,*,6]          296   1.6235191 

[*,*,*,9] -> [*,*,*,*]          1091  5.983984 

[*,*,*,9] -> [*,*,*,4]          393   2.1555507 

 

Item name                    #     Relative amount  

[*,*,*,9] -> [*,*,*,9]          266   1.4589733 

[*,*,*,9] -> [9,*,*,9]          185   1.0146995 

[*,*,1,*] -> [*,*,*,*]          340   1.864853 

[*,*,1,4] -> [*,*,*,4]          271   1.4863975 

[*,*,2,*] -> [*,*,*,*]          194   1.0640632 

[*,*,2,*] -> [*,*,4,*]          433   2.3749452 

[*,*,3,*] -> [*,*,*,*]          616   3.3786747 

[*,*,3,*] -> [*,*,4,*]          242   1.3273365 

[*,*,3,4] -> [*,*,*,4]          210   1.151821 

[*,*,4,*] -> [*,*,*,*]          1559  8.5508995 

[*,*,4,*] -> [*,*,2,*]          231   1.267003 

[*,*,4,*] -> [*,*,3,*]          308   1.6893374 

[*,*,4,*] -> [*,*,4,*]          2427  13.31176 

[*,*,4,*] -> [*,*,4,1]          308   1.6893374 

[*,*,4,*] -> [*,*,4,3]          193   1.0585784 

[*,*,4,*] -> [*,*,4,9]          203   1.1134269 

[*,*,4,*] -> [*,*,6,*]          289   1.5851251 

[*,*,4,*] -> [*,*,9,*]          249   1.3657305 

[*,*,4,*] -> [*,1,4,*]          301   1.6509434 

[*,*,4,*] -> [1,*,4,*]          457   2.5065818 

[*,*,4,*] -> [9,*,4,*]          248   1.3602457 

[*,*,4,1] -> [*,*,4,*]          279   1.5302764 

[*,*,4,3] -> [*,*,4,*]          234   1.2834576 

[*,*,5,*] -> [*,*,*,*]          276   1.5138218 

[*,*,6,*] -> [*,*,*,*]          463   2.539491 

[*,*,6,*] -> [*,*,4,*]          269   1.4754279 

[*,*,6,*] -> [*,*,6,*]          288   1.5796402 

[*,*,9,*] -> [*,*,*,*]          972   5.3312855 

[*,*,9,*] -> [*,*,4,*]          441   2.418824 

[*,*,9,*] -> [*,*,9,*]          238   1.3053972 

[*,1,*,*] -> [*,*,*,*]          428   2.3475208 

[*,1,*,4] -> [*,*,*,4]          249   1.3657305 

[*,1,4,*] -> [*,*,4,*]          283   1.5522159 

[*,16,*,*] -> [*,*,*,*]         185   1.0146995 

[*,2,*,*] -> [*,*,*,*]          258   1.4150944 

[*,2,*,*] -> [*,4,*,*]          426   2.3365512 

[*,3,*,*] -> [*,*,*,*]          675   3.7022817 

[*,3,*,*] -> [*,4,*,*]          222   1.2176393 

[*,3,*,4] -> [*,*,*,4]          207   1.1353664 

[*,3,4,*] -> [*,*,4,*]          223   1.2231241 

[*,4,*,*] -> [*,*,*,*]          1598  8.764809 

[*,4,*,*] -> [*,2,*,*]          227   1.2450637 

[*,4,*,*] -> [*,3,*,*]          296   1.6235191 

[*,4,*,*] -> [*,4,*,*]          2395  13.136244 

[*,4,*,*] -> [*,4,*,1]          342   1.8758228 

[*,4,*,*] -> [*,4,*,9]          191   1.0476086 

[*,4,*,*] -> [*,4,1,*]          321   1.7606406 

[*,4,*,*] -> [*,4,3,*]          187   1.0256691 

[*,4,*,*] -> [*,4,9,*]          213   1.1682756 

[*,4,*,*] -> [*,6,*,*]          302   1.6564282 

[*,4,*,*] -> [*,9,*,*]          277   1.5193067 

[*,4,*,*] -> [1,4,*,*]          434   2.38043 

[*,4,*,*] -> [3,4,*,*]          188   1.031154 

[*,4,*,*] -> [9,4,*,*]          236   1.2944274 

[*,4,*,1] -> [*,4,*,*]          292   1.6015797 

[*,4,*,3] -> [*,4,*,*]          185   1.0146995 

[*,4,1,*] -> [*,4,*,*]          312   1.7112769 

Item name                  #        Relative amount  

[*,4,3,*] -> [*,4,*,*]          254   1.3931549 

[*,5,*,*] -> [*,*,*,*]          308   1.6893374 

[*,6,*,*] -> [*,*,*,*]          576   3.1592803 

[*,6,*,*] -> [*,4,*,*]          307   1.6838526 

[*,6,*,*] -> [*,6,*,*]          362   1.98552 

[*,9,*,*] -> [*,*,*,*]          1058  5.8029838 

[*,9,*,*] -> [*,4,*,*]          424   2.3255813 

[*,9,*,*] -> [*,9,*,*]          245   1.3437911 

[1,*,*,*] -> [*,*,*,*]          412   2.259763 

[1,*,*,4] -> [*,*,*,4]          394   2.1610355 

 [1,*,4,*] -> [*,*,4,*]          413   2.2652478 

[1,4,*,*] -> [*,4,*,*]          408   2.2378237 

[11,*,*,*] -> [*,*,*,*]         327   1.7935498 

[16,*,*,*] -> [*,*,*,*]         271   1.4863975 

[2,*,*,*] -> [*,*,*,*]          531   2.9124615 

[2,*,*,*] -> [3,*,*,*]          188   1.031154 

[2,*,*,*] -> [4,*,*,*]          681   3.7351909 

[2,*,*,*] -> [6,*,*,*]          314   1.7222466 

[3,*,*,*] -> [*,*,*,*]          765   4.195919 

[3,*,*,*] -> [4,*,*,*]          350   1.9197016 

[3,*,*,4] -> [*,*,*,4]          222   1.2176393 

[3,*,4,*] -> [*,*,4,*]          258   1.4150944 

[3,4,*,*] -> [*,4,*,*]          258   1.4150944 

[4,*,*,*] -> [*,*,*,*]          2246  12.318999 

[4,*,*,*] -> [2,*,*,*]          413   2.2652478 

[4,*,*,*] -> [3,*,*,*]          363   1.9910048 

[4,*,*,*] -> [4,*,*,*]          2996  16.432646 

[4,*,*,*] -> [4,*,*,1]          430   2.3584905 

[4,*,*,*] -> [4,*,*,3]          250   1.3712155 

[4,*,*,*] -> [4,*,*,9]          254   1.3931549 

[4,*,*,*] -> [4,*,1,*]          426   2.3365512 

[4,*,*,*] -> [4,*,3,*]          215   1.1792452 

[4,*,*,*] -> [4,*,9,*]          246   1.349276 

[4,*,*,*] -> [4,1,*,*]          456   2.501097 

[4,*,*,*] -> [4,3,*,*]          229   1.2560333 

[4,*,*,*] -> [4,9,*,*]          289   1.5851251 

[4,*,*,*] -> [6,*,*,*]          435   2.3859148 

[4,*,*,*] -> [9,*,*,*]          319   1.7496709 

[4,*,*,1] -> [4,*,*,*]          414   2.2707329 

[4,*,*,3] -> [4,*,*,*]          297   1.629004 

[4,*,1,*] -> [4,*,*,*]          397   2.1774902 

[4,*,3,*] -> [4,*,*,*]          275   1.508337 

[4,1,*,*] -> [4,*,*,*]          440   2.4133391 

[4,3,*,*] -> [4,*,*,*]          319   1.7496709 

[4,9,*,*] -> [4,*,*,*]          186   1.0201843 

[5,*,*,*] -> [*,*,*,*]          537   2.9453707 

[6,*,*,*] -> [*,*,*,*]          857   4.7005267 

[6,*,*,*] -> [4,*,*,*]          391   2.1445808 

[6,*,*,*] -> [6,*,*,*]          407   2.2323387 

[9,*,*,*] -> [*,*,*,*]          1249  6.850592 

[9,*,*,*] -> [4,*,*,*]          524   2.8740675 

[9,*,*,*] -> [6,*,*,*]          211   1.1573058 

[9,*,*,*] -> [9,*,*,*]          337   1.8483984 

[9,*,*,*] -> [9,*,*,9]          234   1.2834576 

[9,*,*,*] -> [9,*,9,*]          184   1.0092145 

[9,*,*,9] -> [9,*,*,*]          229   1.2560333 

[9,9,*,*] -> [9,*,*,*]          217   1.190215 
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Appendix B1 Experiment 1.1 

Feature sets:  DA + last word 

Accepted / Bad: 14282 / 5689 

Goups:    backchannel (Ba),non-backchannel (NBa) 

Classifier:  J48 decision tree (default arguments) 

Traning / testing: 10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances: 14282 

61.7 % Ba: 7114 

NBa: 7168 

Ba:    0.61 

NBa: 0.624 

Ba:    0.624 

NBa: 0.609 

Ba:    0.612 

NBa: 0.612 

ES2002 ~ ES2016 

Instances: 6079 

61.1 % Ba: 3036 

NBa: 3043 

Ba:    0.602 

NBa: 0.623 

Ba:    0.654 

NBa: 0.569 

Ba:    0.627 

NBa: 0.594 

IS1000 ~ IS1009 

Instances: 4241 

60.8 % Ba: 2125 

NBa: 2116 

Ba:    0.602 

NBa: 0.615 

Ba:    0.644 

NBa: 0.572 

Ba:    0.601 

NBa: 0.601 

TS3003 ~ TS3012 

Instances: 3962 

62.1 % Ba: 1953 

NBa: 2009 

Ba:    0.61 

NBa: 0.632 

Ba:    0.624 

NBa: 0.618 

Ba:    0.621 

NBa: 0.621 

 

Feature merit ranking  

Dataset: All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method: 10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.037 +- 0.001     1   +- 0       2 word_amnt 

 0.034 +- 0.001     2   +- 0       3 da_dur 

 0.028 +- 0.001     3   +- 0       1 dag_label 

 0.015 +- 0.001     4   +- 0      16 w_pau_dur 

 0.012 +- 0         5.2 +- 0.4     4 da_w_l_avg 

 0.011 +- 0.001     6   +- 0.63    7 da_vf_r 

 0.01  +- 0.001     6.8 +- 0.4     8 da_vf_ps 

 0.006 +- 0         8   +- 0      15 w_avg_l_dif 

 0.004 +- 0         9   +- 0       5 da_p_mean 

 0.002 +- 0        10.2 +- 0.4    12 w_i_RFC 

 0.002 +- 0        10.8 +- 0.4    13 w_p_RFC 

 0.001 +- 0        12.2 +- 0.4    14 w_dur 

average merit average rank   attribute 

0.001 +- 0        13   +- 0.63   10 w_p_m_dif 

0     +- 0        14.2 +- 0.4     9 w_i_m_dif 

 0     +- 0        15.2 +- 0.4    11 w_p_vf_dif 

 0     +- 0.001    15.4 +- 1.2     6 da_i_mean 
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Appendix B2 Experiment 1.2 

Feature sets:  DA + last 300 ms 

Goups:    backchannel (Ba) non-backchannel (NBa) 

Classifier:  J48 decision tree (default arguments) 

Traning / testing: 10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances: 14282 

 61.8% Ba: 7114 

NBa: 7168 

Ba:    0.61 

NBa: 0.627 

Ba:    0.628 

NBa: 0.607 

Ba:    0.632 

NBa: 0.632 

ES2002 ~ ES2016 

Instances: 6079 

61.7 % Ba: 3036 

NBa: 3043 

Ba:    0.608 

NBa: 0.627 

Ba:    0.655 

NBa: 0.579 

Ba:    0.631 

NBa: 0.602 

IS1000 ~ IS1009 

Instances: 4241 

60.2 % Ba: 2125 

NBa: 2116 

Ba:    0.598 

NBa: 0.606 

Ba:    0.628 

NBa: 0.575 

Ba:    0.613 

NBa: 0.59 

TS3003 ~ TS3012 

Instances: 3962 

60.4 % Ba: 1953 

NBa: 2009 

Ba:    0.587 

NBa: 0.626 

Ba:    0.666 

NBa: 0.544 

Ba:    0.624 

NBa: 0.582 

 

Feature merit ranking  

Dataset: All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method: 10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.037 +- 0.001     1   +- 0       2 word_amnt 

 0.034 +- 0.001     2   +- 0       3 da_dur 

 0.028 +- 0.001     3   +- 0       1 dag_label 

 0.012 +- 0         4.2 +- 0.4     4 da_w_l_avg 

 0.011 +- 0.001     5   +- 0.63    7 da_vf_r 

 0.01  +- 0.001     5.8 +- 0.4     8 da_vf_ps 

 0.006 +- 0         7   +- 0      12 300_i_RFC 

 0.005 +- 0         8.1 +- 0.3    13 300_p_RFC 

 0.004 +- 0         9.1 +- 0.54   11 300_p_vf_dif 

 0.004 +- 0         9.8 +- 0.4     5 da_p_mean 

 0.003 +- 0        11   +- 0       9 300_i_m_dif 

 0.002 +- 0        12   +- 0      10 300_p_m_dif 

 0     +- 0.001    13   +- 0       6 da_i_mean 

average merit average rank   attribute 
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Appendix B3 Experiment 1.3 

Feature sets:  DA + last 500 ms 

Goups:    backchannel (Ba) non-backchannel (NBa) 

Classifier:  J48 decision tree (default arguments) 

Traning / testing: 10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances: 14282 

61.8 % Ba: 7114 

NBa: 7168 

Ba:    0.61 

NBa: 0.627 

BA:    0.646 

NBa: 0.589 

Ba:    0.628 

NBa: 0.607 

ES2002 ~ ES2016 

Instances: 6079 

61.7 % Ba: 3036 

NBa: 3043 

Ba:    0.608 

NBa: 0.627 

Ba:    0.655 

NBa: 0.579 

Ba:    0.631 

NBa: 0.602 

IS1000 ~ IS1009 

Instances: 4241 

 60.2% Ba: 2125 

NBa: 2116 

Ba:    0.598 

NBa: 0.606 

Ba:    0.628 

NBa: 0.575 

Ba:    0.613 

NBa: 0.59 

TS3003 ~ TS3012 

Instances: 3962 

60.2 % Ba: 1953 

NBa: 2009 

Ba:    0.589 

NBa: 0.622 

Ba:    0.657 

NBa: 0.548 

Ba:    0.619 

NBa: 0.583 

 

Feature merit ranking  

Dataset: All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method: 10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.037 +- 0.001     1   +- 0       2 word_amnt 

 0.034 +- 0.001     2   +- 0       3 da_dur 

 0.028 +- 0.001     3   +- 0       1 dag_label 

 0.012 +- 0         4.2 +- 0.4     4 da_w_l_avg 

 0.011 +- 0.001     5   +- 0.63    7 da_vf_r 

 0.01  +- 0.001     5.8 +- 0.4     8 da_vf_ps 

 0.006 +- 0         7   +- 0      12 500_i_RFC 

 0.005 +- 0         8.1 +- 0.3    13 500_p_RFC 

 0.004 +- 0         9.1 +- 0.54   11 500_p_vf_dif 

 0.004 +- 0         9.8 +- 0.4     5 da_p_mean 

 0.003 +- 0        11   +- 0       9 500_i_m_dif 

 0.002 +- 0        12   +- 0      10 500_p_m_dif 

 0     +- 0.001    13   +- 0       6 da_i_mean 

average merit average rank   attribute 
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Appendix B4 Experiment 1.4 

Feature sets:  DA + last1000 ms 

Goups:    backchannel (Ba) non-backchannel (NBa) 

Classifier:  J48 decision tree (default arguments) 

Traning / testing: 10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances: 14282 

 61.8 % Ba: 7114 

NBa: 7168 

Ba:    0.61 

NBa: 0.627 

BA:    0.646 

NBa: 0.589 

Ba:    0.628 

NBa: 0.607 

ES2002 ~ ES2016 

Instances: 6079 

61.7 % Ba: 3036 

NBa: 3043 

Ba:    0.608 

NBa: 0.627 

Ba:    0.655 

NBa: 0.602 

Ba:    0.622 

NBa: 0.622 

IS1000 ~ IS1009 

Instances: 4241 

60.2 % Ba: 2125 

NBa: 2116 

Ba:    0.598 

NBa: 0.606 

Ba:    0.628 

NBa: 0.575 

Ba:    0.613 

NBa: 0.59 

TS3003 ~ TS3012 

Instances: 3962 

 60.4% Ba: 1953 

NBa: 2009 

Ba:    0.5887 

NBa: 0.626 

Ba:    0.666 

NBa: 0.544 

Ba:    0.624 

NBa: 0.582 

 

Feature merit ranking  

Dataset: All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method: 10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.03728   2 word_amnt 

 0.03363   3 da_dur 

 0.02777   1 dag_label 

 0.01218   4 da_w_l_avg 

 0.01144   7 da_vf_r 

 0.01092   8 da_vf_ps 

 0.00557  12 s_i_RFC 

 0.00468  13 s_p_RFC 

 0.00408  11 s_p_vf_dif 

 0.00381   5 da_p_mean 

 0.00304   9 s_i_m_dif 

 0.00187  10 s_p_m_dif 

 0         6 da_i_mean 

average merit average rank   attribute 
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Appendix B5 Experiment 1.5 

Feature sets:  DA +last word+ last 300ms +  last 500 ms + last 1000 ms 

Goups:    backchannel (Ba) non-backchannel (NBa) 

Classifier:  J48 decision tree (default arguments) 

Traning / testing: 10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances: 14282 

61.9 % Ba: 7114 

NBa: 7168 

Ba:    0.607 

NBa: 0.632 

BA:    0.664 

NBa: 0.574 

Ba:    0.634 

NBa: 0.602 

ES2002 ~ ES2016 

Instances: 6079 

 61.9 % Ba: 3036 

NBa: 3043 

Ba:    0.616 

NBa: 0.622 

Ba:    0.628 

NBa: 0.61 

Ba:    0.622 

NBa: 0.616 

IS1000 ~ IS1009 

Instances: 4241 

 60.4 % Ba: 2125 

NBa: 2116 

Ba:    0.605 

NBa: 0.605 

Ba:    0.604 

NBa: 0.604 

Ba:    0.604 

NBa: 0.603 

TS3003 ~ TS3012 

Instances: 3962 

 60.8 % Ba: 1953 

NBa: 2009 

Ba:    0.593 

NBa: 0.615 

Ba:    0.624 

NBa: 0.584 

Ba:    0.608 

NBa: 0.599 

Feature merit ranking  

Dataset: All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method: 10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.037 +- 0.001      1   +- 0        2 word_amnt 

 0.034 +- 0.001      2   +- 0        3 da_dur 

 0.028 +- 0.001      3   +- 0        1 dag_label 

 0.015 +- 0.001      4   +- 0       16 w_pau_dur 

 0.012 +- 0          5.2 +- 0.4      4 da_w_l_avg 

 0.011 +- 0.001      6   +- 0.63     7 da_vf_r 

 0.01  +- 0.001      6.8 +- 0.4      8 da_vf_ps 

 0.006 +- 0          8.6 +- 1.2     15 w_avg_l_dif 

 0.006 +- 0          8.9 +- 0.54    20 s_i_RFC 

 0.006 +- 0         10.1 +- 0.54    25 500_i_RFC 

 0.006 +- 0         10.4 +- 0.8     30 300_i_RFC 

 0.005 +- 0         12.8 +- 1.54    26 500_p_RFC 

 0.005 +- 0         13.5 +- 0.92    31 300_p_RFC 

 0.005 +- 0         13.6 +- 0.92    21 s_p_RFC 

 0.004 +- 0         15.6 +- 1.56    29 300_p_vf_dif 

 

average merit average rank   attribute 

0.004 +- 0         16   +- 1       19 s_p_vf_dif 

 0.004 +- 0         16.1 +- 1.3     24 500_p_vf_dif 

 0.004 +- 0         17.4 +- 1.2      5 da_p_mean 

 0.003 +- 0         19.3 +- 0.64    27 300_i_m_dif 

 0.003 +- 0         20.3 +- 0.46    22 500_i_m_dif 

 0.003 +- 0         20.4 +- 0.8     17 s_i_m_dif 

 0.002 +- 0         23.5 +- 0.5     23 500_p_m_dif 

 0.002 +- 0         23.6 +- 1.69    18 s_p_m_dif 

 0.002 +- 0         23.7 +- 1.55    12 w_i_RFC 

 0.002 +- 0         24.3 +- 0.9     28 300_p_m_dif 

 0.002 +- 0         24.9 +- 1.51    13 w_p_RFC 

 0.001 +- 0         27.2 +- 0.4     14 w_dur 

 0.001 +- 0         28   +- 0.63    10 w_p_m_dif 

 0     +- 0         29.2 +- 0.4      9 w_i_m_dif 

 0     +- 0         30.2 +- 0.4     11 w_p_vf_dif 

 0     +- 0.001     30.4 +- 1.2      6 da_i_mean 
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AppendixC1 Experiment 2.1 

Feature sets:  DA + last word 

Accepted / Bad:  

Goups:    backchannel (Ba),non-backchannel (NBa) 

Classifier:  J48 decision tree (default arguments) 

Traning / testing: 10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances: 18424 

65.1% Ba: 8761 

NBa: 9663 

Ba:    0.635 

NBa: 0.666 

BA:    0.628 

NBa: 0.672 

Ba:    0.632 

NBa: 0.669 

ES2002 ~ ES2016 

Instances: 7936 

67.2 % Ba: 3767 

NBa: 4169 

Ba:    0.651 

NBa: 0.691 

Ba:    0.665 

NBa: 0.678 

Ba:    0.658 

NBa: 0.685 

IS1000 ~ IS1009 

Instances: 5331 

64.0 % Ba: 2541 

NBa: 2790 

Ba:    0.61 

NBa: 0.673 

Ba:    0.677 

NBa: 0.606 

Ba:    0.642 

NBa: 0.638 

TS3003 ~ TS3012 

Instances: 5157 

 63.9% Ba: 2453 

NBa: 2704 

Ba:    0.628 

NBa: 0.647 

Ba:    0.59 

NBa: 0.683 

Ba:    0.609 

NBa: 0.665 

 

Feature merit ranking  

Dataset: All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method: 10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.083 +- 0.001     1   +- 0       2 word_amnt 

 0.081 +- 0.001     2   +- 0       7 da_vfrms 

 0.074 +- 0.001     3   +- 0       3 da_dur 

 0.034 +- 0.001     4   +- 0       1 dag_label 

 0.029 +- 0.001     5   +- 0      19 w_pau_dur 

 0.028 +- 0.001     6   +- 0       4 da_w_l_avg 

 0.026 +- 0.001     7   +- 0       8 da_vf_r 

 0.022 +- 0.001     8   +- 0       9 da_vf_ps 

 0.02  +- 0.001     9   +- 0      11 da_i_sd 

 0.012 +- 0.001    10   +- 0      18 w_avg_l_dif 

 0.01  +- 0.001    11.2 +- 0.6    17 w_dur 

 

average merit average rank   attribute 

0.008 +- 0.001    12.3 +- 0.46    6 da_p_sd 

 0.008 +- 0.001    12.5 +- 0.67    5 da_p_mean 

 0.005 +- 0        14   +- 0      13 w_p_m_dif 

 0.003 +- 0        15.4 +- 0.49   10 da_i_mean 

 0.003 +- 0        15.7 +- 0.64   15 w_i_RFC 

 0.002 +- 0        16.9 +- 0.3    16 w_p_RFC 

 0.001 +- 0        18   +- 0      12 w_i_m_dif 

 0     +- 0        19   +- 0      14 w_p_vf_dif 
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Appendix C2 Experiment 2.2 

Feature sets:  DA + last 300 ms 

Goups:    backchannel (Ba) non-backchannel (NBa) 

Classifier:  J48 decision tree (default arguments) 

Traning / testing: 10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances: 18424 

65.4% Ba: 8761 

NBa: 9663 

Ba:    0.634 

NBa: 0.674 

BA:    0.648 

NBa: 0.66 

Ba:    0.641 

NBa: 0.667 

ES2002 ~ ES2016 

Instances: 7936 

 67.7% Ba: 3767 

NBa: 4169 

Ba:    0.655 

NBa: 0.699 

Ba:    0.677 

NBa: 0.677 

Ba:    0.666 

NBa: 0.668 

IS1000 ~ IS1009 

Instances: 5331 

64.2 % Ba: 2541 

NBa: 2790 

Ba:    0.628 

NBa: 0.654 

Ba:    0.61 

NBa: 0.671 

Ba:    0.619 

NBa: 0.662 

TS3003 ~ TS3012 

Instances: 5157 

 63.9% Ba: 2453 

NBa: 2704 

Ba:    0.633 

NBa: 0.643 

Ba:    0.573 

NBa: 0.699 

Ba:    0.602 

NBa: 0.67 

 

Feature merit ranking  

Dataset: All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method: 10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.083 +- 0.001     1   +- 0       2 word_amnt 

 0.081 +- 0.001     2   +- 0       7 da_vfrms 

 0.074 +- 0.001     3   +- 0       3 da_dur 

 0.034 +- 0.001     4   +- 0       1 dag_label 

 0.028 +- 0.001     5   +- 0       4 da_w_l_avg 

 0.026 +- 0.001     6   +- 0       8 da_vf_r 

 0.022 +- 0.001     7   +- 0       9 da_vf_ps 

 0.02  +- 0.001     8   +- 0      11 da_i_sd 

  

 

average merit average rank   attribute 

0.008 +- 0.001     9.4 +- 0.49    6 da_p_sd  

0.008 +- 0.001     9.6 +- 0.49    5 da_p_mean 

 0.005 +- 0        11.4 +- 0.49   14 300_p_vf_dif 

 0.005 +- 0        11.9 +- 0.7    13 300_p_m_dif 

 0.005 +- 0        12.8 +- 0.75   12 300_i_m_dif 

 0.004 +- 0        13.9 +- 0.3    16 300_p_RFC 

 0.003 +- 0        15   +- 0      10 da_i_mean 

 0.002 +- 0        16   +- 0      15 300_i_RFC 
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Appendix C3 Experiment 2.3 

Feature sets:  DA + last 500 ms 

Goups:    backchannel (Ba) non-backchannel (NBa) 

Classifier:  J48 decision tree (default arguments) 

Traning / testing: 10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances: 18424 

65.5% Ba: 8761 

NBa: 9663 

Ba:    0.638 

NBa: 0.669 

BA:    0.631 

NBa: 0.676 

Ba:    0.635 

NBa: 0.672 

ES2002 ~ ES2016 

Instances: 7936 

 67.8% Ba: 3767 

NBa: 4169 

Ba:    0.656 

NBa: 0.699 

Ba:    0.677 

NBa: 0.68 

Ba:    0.666 

NBa: 0.689 

IS1000 ~ IS1009 

Instances: 5331 

63.6 % Ba: 2541 

NBa: 2790 

Ba:    0.623 

NBa: 0.648 

Ba:    0.601 

NBa: 0.669 

Ba:    0.612 

NBa: 0.658 

TS3003 ~ TS3012 

Instances: 5157 

 63.2% Ba: 2453 

NBa: 2704 

Ba:    0.624 

NBa: 0.638 

Ba:    0.57 

NBa: 0.688 

Ba:    0.596 

NBa: 0.662 

 

Feature merit ranking  

Dataset: All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method: 10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.083 +- 0.001     1   +- 0       2 word_amnt 

 0.081 +- 0.001     2   +- 0       7 da_vfrms 

 0.074 +- 0.001     3   +- 0       3 da_dur 

 0.034 +- 0.001     4   +- 0       1 dag_label 

 0.028 +- 0.001     5   +- 0       4 da_w_l_avg 

 0.026 +- 0.001     6   +- 0       8 da_vf_r 

 0.022 +- 0.001     7   +- 0       9 da_vf_ps 

 0.02  +- 0.001     8   +- 0      11 da_i_sd 

 

average merit average rank   attribute 

0.008 +- 0.001     9.4 +- 0.49    6 da_p_sd 

 0.008 +- 0.001     9.6 +- 0.49    5 da_p_mean 

 0.005 +- 0        11.4 +- 0.49   15 500_i_RFC 

 0.005 +- 0        11.6 +- 0.49   13 500_p_m_dif 

 0.004 +- 0        13   +- 0      16 500_p_RFC 

 0.003 +- 0        14   +- 0      10 da_i_mean 

 0.003 +- 0        15   +- 0      14 500_p_vf_dif 

 0.002 +- 0        16   +- 0      12 500_i_m_dif 
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Appendix C4 Experiment 2.4 

Feature sets:  DA + last 1000 ms 

Goups:    backchannel (Ba) non-backchannel (NBa) 

Classifier:  J48 decision tree (default arguments) 

Traning / testing: 10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances: 18424 

65.9% Ba: 8761 

NBa: 9663 

Ba:    0.637 

NBa: 0.681 

BA:    0.659 

NBa: 0.659 

Ba:    0.648 

NBa: 0.67 

ES2002 ~ ES2016 

Instances: 7936 

 67.4% Ba: 3767 

NBa: 4169 

Ba:    0.646 

NBa: 0.702 

Ba:    0.691 

NBa: 0.659 

Ba:    0.668 

NBa: 0.68 

IS1000 ~ IS1009 

Instances: 5331 

63.9 % Ba: 2541 

NBa: 2790 

Ba:    0.62 

NBa: 0.656 

Ba:    0.625 

NBa: 0.651 

Ba:    0.623 

NBa: 0.654 

TS3003 ~ TS3012 

Instances: 5157 

 64.4% Ba: 2453 

NBa: 2704 

Ba:    0.633 

NBa: 0.653 

Ba:    0.598 

NBa: 0.685 

Ba:    0.615 

NBa: 0.669 

 

Feature merit ranking  

Dataset: All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method: 10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.083 +- 0.001     1   +- 0       2 

word_amnt 

 0.081 +- 0.001     2   +- 0       7 da_vfrms 

 0.074 +- 0.001     3   +- 0       3 da_dur 

 0.034 +- 0.001     4   +- 0       1 dag_label 

 0.028 +- 0.001     5   +- 0       4 

da_w_l_avg 

 0.026 +- 0.001     6   +- 0       8 da_vf_r 

 0.022 +- 0.001     7   +- 0       9 da_vf_ps 

 0.02  +- 0.001     8   +- 0      11 da_i_sd 

 

average merit average rank   attribute 

0.017 +- 0.001     9   +- 0      15 1s_i_RFC 

 0.008 +- 0        10.4 +- 0.66   13 

1s_p_m_dif 

 0.008 +- 0.001    11.1 +- 0.7     6 da_p_sd 

 0.008 +- 0.001    11.5 +- 0.67    5 

da_p_mean 

 0.003 +- 0        13.2 +- 0.4    10 

da_i_mean 

 0.003 +- 0        13.8 +- 0.4    16 1s_p_RFC 

 0.001 +- 0        15   +- 0      12 1s_i_m_dif 

 0     +- 0        16   +- 0      14 1s_p_vf_dif 
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Appendix C5 Experiment 2.5 

Feature sets:  DA +last word+ last 300ms +  last 500 ms + last 1000 ms 

Goups:    backchannel (Ba) non-backchannel (NBa) 

Classifier:  J48 decision tree (default arguments) 

Traning / testing: 10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances: 18424 

65.4 % Ba: 8761 

NBa: 9663 

Ba:    0.633 

NBa: 0.674 

BA:    0.648 

NBa: 0.659 

Ba:    0.64 

NBa: 0.666 

ES2002 ~ ES2016 

Instances: 7936 

67.3 % Ba: 3767 

NBa: 4169 

Ba:    0.653 

NBa: 0.692 

Ba:    0.665 

NBa: 0.68 

Ba:    0.659 

NBa: 0.686 

IS1000 ~ IS1009 

Instances: 5331 

 63.1% Ba: 2541 

NBa: 2790 

Ba:    0.604 

NBa: 0.659 

Ba:    0.654 

NBa: 0.61 

Ba:    0.628 

NBa: 0.634 

TS3003 ~ TS3012 

Instances: 5157 

 63.9% Ba: 2453 

NBa: 2704 

Ba:    0.629 

NBa: 0.648 

Ba:    0.591 

NBa: 0.683 

Ba:    0.609 

NBa: 0.665 

Feature merit ranking  

Dataset: All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method: 10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.083 +- 0.001      1   +- 0        2 word_amnt 

 0.081 +- 0.001      2   +- 0        7 da_vfrms 

 0.074 +- 0.001      3   +- 0        3 da_dur 

 0.034 +- 0.001      4   +- 0        1 dag_label 

 0.029 +- 0.001      5   +- 0       19 w_pau_dur 

 0.028 +- 0.001      6   +- 0        4 da_w_l_avg 

 0.026 +- 0.001      7   +- 0        8 da_vf_r 

 0.022 +- 0.001      8   +- 0        9 da_vf_ps 

 0.02  +- 0.001      9   +- 0       11 da_i_sd 

 0.017 +- 0.001     10   +- 0       23 1s_i_RFC 

 0.012 +- 0.001     11   +- 0       18 w_avg_l_dif 

 0.01  +- 0.001     12.2 +- 0.6     17 w_dur 

 0.008 +- 0         13.4 +- 0.66    21 1s_p_m_dif 

 0.008 +- 0.001     14   +- 0.77     6 da_p_sd 

 0.008 +- 0.001     14.4 +- 0.92     5 da_p_mean 

 0.005 +- 0         16.8 +- 0.87    28 500_i_RFC 

 0.005 +- 0         17.3 +- 1.27    26 500_p_m_dif 

average merit average rank   attribute 

0.005 +- 0         17.7 +- 1.19    32 300_p_vf_dif 

0.005 +- 0         18.7 +- 1       31 300_p_m_dif 

 0.005 +- 0         20.1 +- 1.04    30 300_i_m_dif 

 0.005 +- 0         20.6 +- 0.8     13 w_p_m_dif 

 0.004 +- 0         21.8 +- 0.6     34 300_p_RFC 

 0.004 +- 0         23   +- 0       29 500_p_RFC 

 0.003 +- 0         24.6 +- 0.8     10 da_i_mean 

 0.003 +- 0         25.2 +- 0.98    15 w_i_RFC 

 0.003 +- 0         26   +- 1.41    24 1s_p_RFC 

 0.003 +- 0         27.1 +- 0.83    27 500_p_vf_dif 

 0.002 +- 0         27.7 +- 1.19    16 w_p_RFC 

 0.002 +- 0         28.5 +- 1.02    33 300_i_RFC 

 0.002 +- 0         29.9 +- 0.3     25 500_i_m_dif 

 0.001 +- 0         31   +- 0       12 w_i_m_dif 

 0.001 +- 0         32   +- 0       20 1s_i_m_dif 

 0     +- 0         33   +- 0       14 w_p_vf_dif 

 0     +- 0         34   +- 0       22 1s_p_vf_dif 
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Appendix D1 Experiment 3.1 
Feature sets:  Turn + 200ms +400ms +600ms +800ms + 1000ms 

Goups:    backchannel (Ba) non-backchannel (NBa) 

Classifier:   J48 decision tree (default arguments) 

Traning / testing:  10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances: 16987 

62.9% Ba: 8461 

NBa: 8526 

Ba:    0.624 

NBa: 0.634 

BA:    0.633 

NBa: 0.626 

Ba:    0.633 

NBa: 0.626 
Feature merit ranking  

Dataset:  All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method:  10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.07  +- 0.001      1.1 +- 0.3      2 word_amnt 

 0.069 +- 0.001      1.9 +- 0.3      7 da_vfrms 

 0.058 +- 0.001      3   +- 0        3 da_dur 

 0.028 +- 0.001      4   +- 0        1 dag_label 

 0.018 +- 0.001      5   +- 0        8 da_vf_r 

 0.015 +- 0          6   +- 0        9 da_vf_ps 

 0.014 +- 0.001      7   +- 0       11 da_i_sd 

 0.011 +- 0.001      8   +- 0        4 da_w_l_avg 

 0.008 +- 0          9   +- 0       12 it1000_p_mean_d 

 0.006 +- 0         10   +- 0       15 it1000_i_mean_d 

 0.004 +- 0.001     12   +- 1.55    18 it800_p_sd_d 

 0.004 +- 0         12.5 +- 0.81    13 it1000_p_sd_d 

 0.004 +- 0         12.8 +- 1.08     5 da_p_mean 

 0.004 +- 0.001     13.4 +- 1.62     6 da_p_sd 

 0.003 +- 0         14.5 +- 0.67    19 it800_vfr_d 

 0.003 +- 0         17   +- 1.18    17 

it800_p_mean_d 

0.003 +- 0         17.1 +- 1.04    21 it800_i_sd_d 

 0.003 +- 0         18   +- 0.89    14 it1000_vfr_d 

 0.003 +- 0         18.1 +- 1.7     16 it1000_i_sd_d 

average merit average rank   attribute 

0.002 +- 0.001     19.9 +- 0.94    23 it600_p_sd_d 

 0.001 +- 0         21.7 +- 0.64    24 it600_vfr_d 

 0.001 +- 0         23.2 +- 4.17    25 

it600_i_mean_d 

 0     +- 0         25.2 +- 3.03    32 it200_p_mean_d 

 0     +- 0         26.2 +- 1.08    36 it200_i_sd_d 

 0     +- 0         26.9 +- 0.83    35 it200_i_mean_d 

 0     +- 0         27.5 +- 1.02    33 it200_p_sd_d 

 0     +- 0         27.7 +- 1.49    34 it200_vfr_d 

 0     +- 0.001     28.2 +- 3.87    22 

it600_p_mean_d 

 0     +- 0.001     28.5 +- 4.72    27 

it400_p_mean_d 

 0.001 +- 0.001     28.9 +- 6.66    10 da_i_mean 

 0     +- 0         29.9 +- 4.87    31 it400_i_sd_d 

 0     +- 0         30.5 +- 1.28    26 it600_i_sd_d 

 0     +- 0         31.4 +- 0.49    20 it800_i_mean_d 

 0     +- 0         31.7 +- 3.95    30 it400_i_mean_d 

 0     +- 0         33.2 +- 2.27    28 it400_p_sd_d 

 0     +- 0         35   +- 1       29 it400_vfr_d 
 

 

 

Appendix D2 Experiment 3.2 
Feature sets:  Turn + 200ms +400ms +600ms + 800ms 

Goups:    backchannel (Ba) non-backchannel (NBa) 
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Classifier:   J48 decision tree (default arguments) 

Traning / testing:  10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances:  

63.3% Ba: 8461 

NBa: 8526 

Ba:    0.626 

NBa: 0.639 

BA:    0.649 

NBa: 0.615 

Ba:    0.638 

NBa: 0.627 
Feature merit ranking  

Dataset:  All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method:  10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.07  +- 0.001      1.1 +- 0.3      2 word_amnt 

 0.069 +- 0.001      1.9 +- 0.3      7 da_vfrms 

 0.058 +- 0.001      3   +- 0        3 da_dur 

 0.028 +- 0.001      4   +- 0        1 dag_label 

 0.018 +- 0.001      5   +- 0        8 da_vf_r 

 0.015 +- 0          6   +- 0        9 da_vf_ps 

 0.014 +- 0.001      7   +- 0       11 da_i_sd 

 0.011 +- 0.001      8   +- 0        4 da_w_l_avg 

 0.004 +- 0.001      9.7 +- 1.19    13 it800_p_sd_d 

 0.004 +- 0         10.1 +- 0.7      5 da_p_mean 

 0.004 +- 0.001     10.8 +- 1.08     6 da_p_sd 

 0.003 +- 0         11.5 +- 0.67    14 it800_vfr_d 

 0.003 +- 0         13.4 +- 0.66    12 

it800_p_mean_d 

 0.003 +- 0         13.5 +- 0.5     16 it800_i_sd_d 

 0.002 +- 0.001     15.3 +- 0.46    18 it600_p_sd_d 

 0.001 +- 0         16.7 +- 0.64    19 it600_vfr_d 

 0.001 +- 0         17.7 +- 2.79    20 

it600_i_mean_d 

 

average merit average rank   attribute 

0     +- 0         19.9 +- 1.64    27 it200_p_mean_d 

 0     +- 0         20.9 +- 2.77    26 it400_i_sd_d 

 0     +- 0         21.6 +- 1.43    28 it200_p_sd_d 

 0     +- 0         22.6 +- 0.92    31 it200_i_sd_d 

 0     +- 0         23   +- 1.73    30 it200_i_mean_d 

 0     +- 0.001     23.1 +- 3.78    17 

it600_p_mean_d 

 0     +- 0         23.8 +- 0.4     29 it200_vfr_d 

 0.001 +- 0.001     24   +- 6.71    10 da_i_mean 

 0     +- 0.001     24.9 +- 5.54    22 

it400_p_mean_d 

 0     +- 0         25.3 +- 4.98    25 it400_i_mean_d 

 0     +- 0         26.7 +- 1.68    21 it600_i_sd_d 

 0     +- 0         27   +- 0.45    15 it800_i_mean_d 

 0     +- 0         29   +- 1.55    23 it400_p_sd_d 

 0     +- 0         29.5 +- 1.12    24 it400_vfr_d 

 



77 

 

Appendix D3 Experiment 3.3 
Feature sets:  Turn + 200ms +400ms +600ms 

Goups:    backchannel (Ba) non-backchannel (NBa) 

Classifier:   J48 decision tree (default arguments) 

Traning / testing:  10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances:  

63.4% Ba: 8461 

NBa: 8526 

Ba:    0.625 

NBa: 0.643 

BA:    0.66 

NBa: 0.608 

Ba:    0.642 

NBa: 0.625 
Feature merit ranking  

Dataset:  All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method:  10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.07  +- 0.001      1.1 +- 0.3      2 word_amnt 

 0.069 +- 0.001      1.9 +- 0.3      7 da_vfrms 

 0.058 +- 0.001      3   +- 0        3 da_dur 

 0.028 +- 0.001      4   +- 0        1 dag_label 

 0.018 +- 0.001      5   +- 0        8 da_vf_r 

 0.015 +- 0          6   +- 0        9 da_vf_ps 

 0.014 +- 0.001      7   +- 0       11 da_i_sd 

 0.011 +- 0.001      8   +- 0        4 da_w_l_avg 

 0.004 +- 0          9.4 +- 0.49     5 da_p_mean 

 0.004 +- 0.001      9.6 +- 0.49     6 da_p_sd 

 0.002 +- 0.001     11.3 +- 0.46    13 it600_p_sd_d 

 0.001 +- 0         12.7 +- 0.64    14 it600_vfr_d 

 0.001 +- 0         13.7 +- 2.79    15 

it600_i_mean_d 

 

average merit average rank   attribute 

0     +- 0         15.3 +- 1.27    23 it200_p_sd_d 

 0     +- 0         16.5 +- 0.67    22 it200_p_mean_d 

 0     +- 0         18.1 +- 1.14    26 it200_i_sd_d 

 0.001 +- 0.001     18.4 +- 5.31    10 da_i_mean 

 0     +- 0         18.7 +- 0.64    24 it200_vfr_d 

 0     +- 0         18.8 +- 4.26    21 it400_i_sd_d 

 0     +- 0.001     19.2 +- 3.87    12 

it600_p_mean_d 

 0     +- 0         19.3 +- 0.9     25 it200_i_mean_d 

 0     +- 0.001     19.3 +- 4.43    17 

it400_p_mean_d 

 0     +- 0         21.6 +- 0.8     16 it600_i_sd_d 

 0     +- 0         23.9 +- 2.21    18 it400_p_sd_d 

 0     +- 0         24.4 +- 1.2     19 it400_vfr_d 

 0     +- 0         24.8 +- 0.98    20 it400_i_mean_d 
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Appendix D4 Experiment 3.4 
Feature sets:  Turn + 200ms + 400ms 

Goups:    backchannel (Ba) non-backchannel (NBa) 

Classifier:   J48 decision tree (default arguments) 

Traning / testing:  10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances:  

64.0% Ba: 8461 

NBa: 8526 

Ba:    0.628 

NBa: 0.653 

BA:   0.677 

NBa: 0.602 

Ba:    0.652 

NBa: 0.627 
Feature merit ranking  

Dataset:  All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method:  10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.07  +- 0.001      1.1 +- 0.3      2 word_amnt 

 0.069 +- 0.001      1.9 +- 0.3      7 da_vfrms 

 0.058 +- 0.001      3   +- 0        3 da_dur 

 0.028 +- 0.001      4   +- 0        1 dag_label 

 0.018 +- 0.001      5   +- 0        8 da_vf_r 

 0.015 +- 0          6   +- 0        9 da_vf_ps 

 0.014 +- 0.001      7   +- 0       11 da_i_sd 

 0.011 +- 0.001      8   +- 0        4 da_w_l_avg 

 0.004 +- 0          9.4 +- 0.49     5 da_p_mean 

 0.004 +- 0.001      9.6 +- 0.49     6 da_p_sd 

 

average merit average rank   attribute 

0     +- 0         12.8 +- 1.4     20 it200_i_mean_d 

 0     +- 0         13.1 +- 0.54    21 it200_i_sd_d 

 0     +- 0         13.5 +- 0.81    19 it200_vfr_d 

 0     +- 0.001     13.8 +- 1.83    12 t400_p_mean_d 

 0     +- 0         16   +- 3.69    18 it200_p_sd_d 

 0     +- 0.001     16.1 +- 4.72    10 da_i_mean 

 0     +- 0         16.2 +- 0.4     14 it400_vfr_d 

 0     +- 0         17.2 +- 0.4     13 it400_p_sd_d 

 0     +- 0         18.7 +- 2       15 it400_i_mean_d 

 0     +- 0         19   +- 1.1     17 it200_p_mean_d 

 0     +- 0         19.6 +- 1.36    16 it400_i_sd_d 
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Appendix D5 Experiment 3.5 
Feature sets:  Turn + 200ms  

Goups:    backchannel (Ba) non-backchannel (NBa) 

Classifier:   J48 decision tree (default arguments) 

Traning / testing:  10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances:  

64.5% Ba: 8461 

NBa: 8526 

Ba:    0.646 

NBa: 0.643 

BA:    0.634 

NBa: 0.655 

Ba:    0.64 

NBa: 0.649 
Feature merit ranking  

Dataset:  All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method:  10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.07  +- 0.001     1.1 +- 0.3     2 word_amnt 

 0.069 +- 0.001     1.9 +- 0.3     7 da_vfrms 

 0.058 +- 0.001     3   +- 0       3 da_dur 

 0.028 +- 0.001     4   +- 0       1 dag_label 

 0.018 +- 0.001     5   +- 0       8 da_vf_r 

 0.015 +- 0         6   +- 0       9 da_vf_ps 

 0.014 +- 0.001     7   +- 0      11 da_i_sd 

 0.011 +- 0.001     8   +- 0       4 da_w_l_avg 

 

average merit average rank   attribute 

0.004 +- 0         9.4 +- 0.49    5 da_p_mean 

 0.004 +- 0.001     9.6 +- 0.49    6 da_p_sd 

 0     +- 0        12.4 +- 0.49   16 it200_i_sd_d 

 0     +- 0        12.6 +- 0.49   15 it200_i_mean_d 

 0     +- 0        13   +- 2      14 it200_vfr_d 

 0.001 +- 0.001    13   +- 2      10 da_i_mean 

 0     +- 0        14.4 +- 0.8    13 it200_p_sd_d 

 0     +- 0        15.6 +- 0.8    12 it200_p_mean_d 
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Appendix D6 Experiment 3.6 
Feature sets:  Turn  

Goups:    backchannel (Ba) non-backchannel (NBa) 

Classifier:   J48 decision tree (default arguments) 

Traning / testing:  10 fold cross validation 

Dataset Correct 

classifications 

# Instances Precision Recall f-Measure 

All combined 

Instances: 16987 

64.5% Ba: 8461 

NBa: 8526 

Ba:    0.648 

NBa: 0.642 

BA:    0.629 

NBa: 0.66 

Ba:    0.638 

NBa: 0.651 
 

Feature merit ranking  

Dataset:  All: ES2002 ~ TS3012 

Evaluator: InfoGainAttributeEval    (default arguments) 

 Method:  10 fold cross validation  (list only features with average merit > 0) 

average merit average rank   attribute 

0.07  +- 0.001     1.1 +- 0.3     2 word_amnt 

 0.069 +- 0.001     1.9 +- 0.3     7 da_vfrms 

 0.058 +- 0.001     3   +- 0       3 da_dur 

 0.028 +- 0.001     4   +- 0       1 dag_label 

 0.018 +- 0.001     5   +- 0       8 da_vf_r 

 0.015 +- 0         6   +- 0       9 da_vf_ps 

 0.014 +- 0.001     7   +- 0      11 da_i_sd 

 0.011 +- 0.001     8   +- 0       4 da_w_l_avg 

 0.004 +- 0         9.4 +- 0.49    5 da_p_mean 

 0.004 +- 0.001     9.6 +- 0.49    6 da_p_sd 

 0.001 +- 0.001    11   +- 0      10 da_i_mean 

 

 

 

 

 


