
Bringing Scalability/Failover to a
complex producer/consumer

implementation

J. Houtman

A master thesis submitted to the

University of Twente, Enschede, the Netherlands

Department of Electrical Engineering, Mathematics and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science

Commissioned by: Startphone limited (workname Hyves)

August 2009

Graduation Comittee:
Ir. Pierre Jansen
Ir. Hans Scholten

Ir. Philip Hölzenspies
Drs. Reinoud Elhorst

Contents

Contents iii

Preamble vii

Preface ix

Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Hyves Architecture . 2

1.1.1 Front end . 2
1.1.2 Back end . 3

1.2 Problem statement . 5
1.3 Research focus . 6

2 State of Art 7
2.1 Implementation of pre-fetching data preparation tasks 7

2.1.1 Tasks . 7
2.1.2 Technique . 8

2.1.2.1 Parallelization data access 8
2.1.3 Implementation . 8
2.1.4 Resource usage . 9
2.1.5 Problems . 10

2.1.5.1 Lack of statistics 11
2.1.5.2 Static configuration 11
2.1.5.3 Failure resistance 11

2.2 Implementation of offloaded tasks 11
2.2.1 Tasks . 11
2.2.2 Technique . 11
2.2.3 Implementation . 12
2.2.4 Resource usage . 14
2.2.5 Problems . 15

2.2.5.1 Lack of statistics 15
2.2.5.2 Failure resistance 15
2.2.5.3 Static configuration 16

2.3 Existing techniques . 16
2.3.1 Virtual machines . 16

iii

iv Contents

2.3.2 Batch system . 17

3 Proposed Solutions 21
3.1 Design decisions . 21

3.1.1 Global decisions . 21
3.1.1.1 Centralized decisions 21
3.1.1.2 De-centralized decisions 22
3.1.1.3 Conclusion . 23

3.1.2 Event or time based system 23
3.2 Design goals . 23
3.3 Solutions . 23
3.4 Choice . 24
3.5 Solution B . 24

3.5.1 Queue concern . 24
3.5.1.1 Node . 25
3.5.1.2 Container . 25
3.5.1.3 Global state 25
3.5.1.4 Load balancing 26
3.5.1.5 Scaling up/down 27
3.5.1.6 Failure resistance 27
3.5.1.7 Monitoring . 28

3.5.2 Consumer/h-worker concern 28
3.5.2.1 Manager . 28
3.5.2.2 Worker . 29
3.5.2.3 Batch system 29
3.5.2.4 Load balancing 30
3.5.2.5 Scaling up/down 30
3.5.2.6 Failure resistance 30
3.5.2.7 Monitoring . 30
3.5.2.8 Single instance daemons 30

3.5.3 Conclusion . 31

4 Proof of concept 33
4.1 Queue system . 33

4.1.1 Algorithm . 33
4.1.1.1 Determining node state 34
4.1.1.2 Select containers to move 34
4.1.1.3 Determine downscale 35
4.1.1.4 Find targets for containers. 35
4.1.1.5 Move containers to target 36
4.1.1.6 Communication of updates 36
4.1.1.7 Restoring weights of containers 36

4.1.2 Model . 36
4.1.2.1 Purpose . 36
4.1.2.2 Environment 37
4.1.2.3 Results . 37

4.1.3 PoC implementation . 38
4.1.3.1 Purpose . 38
4.1.3.2 Environment 38
4.1.3.3 Results . 39

Contents v

4.1.4 Conclusion . 40
4.2 Consumer/h-worker system . 41

4.2.1 Algorithm . 41
4.2.1.1 Determining Consumer rate 42
4.2.1.2 Overload prevention 42
4.2.1.3 Backlog . 43

4.2.2 Model . 43
4.2.2.1 Purpose . 43
4.2.2.2 Environment 44
4.2.2.3 Results . 44

4.2.3 Proof of Concept implementation 46
4.2.3.1 Purpose . 46
4.2.3.2 Environment 46
4.2.3.3 Results . 47

4.2.4 Conclusion . 49

5 Conclusion 51

6 Future work 53

A Complimentary explanations and data 55
A.1 Selection of a batch system . 55

A.1.1 Sun grid engine . 55
A.1.2 Condor . 56
A.1.3 Cluster resources . 57
A.1.4 Conclusion and selection 57

A.2 Tasks implemented using h-workers 58
A.3 Tasks implemented using the producer/consumer paradigm . . 58
A.4 Database . 59
A.5 Load balancer . 60
A.6 Solution A . 60

A.6.1 Node . 60
A.6.2 Container . 61
A.6.3 Global state . 62
A.6.4 Load balancing . 62
A.6.5 Scaling up/down . 62
A.6.6 Failure resistance . 63
A.6.7 Monitoring . 63
A.6.8 Single instance daemons 63
A.6.9 Conclusion . 63

B Plots 65
B.1 Queuesystem . 65

B.1.1 Model test run . 65
B.1.2 PoC test run . 74
B.1.3 Standalone tests . 79

B.1.3.1 Model - select only one container 79
B.1.3.2 Crash . 84

B.2 Consumer/worker system . 89
B.2.1 Model test run . 89

vi Contents

B.2.2 PoC test run . 111
B.2.3 Standalone tests . 127

B.2.3.1 Overload . 127
B.2.3.2 Backlog . 131

Bibliography 135

Preamble

Popular dynamic websites employ a wide diversity of techniques to improve
performance. Classic examples are database replication [[4], [3]], load balanc-
ing [11], caching [[11],[39]], optimizing web pages [32], the application of the
producer/consumer[31] paradigm to offload heavy tasks from the website front-
end1, and data preparation for easy access by the website front-end.

In one way or another, all of these techniques are employed to increase
the website performance of http://www.hyves.nl, the most popular social
networking website in the Netherlands2. The latter two examples in the enu-
meration, offloading heavy tasks and data preparation, were adopted early on
and have proven their value in various tasks3, from sending e-mail notifications
to importing blogs and photos from other on-line services. Hyves implemented
these techniques in a statically configured system that had been designed when
the website was a lot smaller. This resulted in a system that is scalable in terms
of throughput, but requires too much maintenance due to its static configura-
tion.

This research explores new solutions for implementing the mentioned tech-
niques in a system with more flexibility to address current and future issues. It
aims to improve the manageability of this system during its expected growth
over the next few years.

1Servers communicating directly with the users
2http://www.yme.nl/ymerce/2008/03/16/social-networking-diensten-in-nederland/
3there are no hard numbers on this, but applying these techniques is an important corner

stone in optimizing website performance

vii

http://www.hyves.nl
http://www.yme.nl/ymerce/2008/03/16/social-networking-diensten-in-nederland/

Preface

The last eighteen months have been spent completing this master’s thesis in
partial fulfillment of the requirements for the degree of Master of Science at
the University of Twente. It is in fact a fine completion of a much longer, 6
year, period. As a novice I did my bachelor thesis at Hyves. The period since
then has been spent at the university and partially at Hyves. Doing a second
thesis project at Hyves gave obvious possibilities for a comparison between the
two projects and nicely illustrated reached goals over the past few years both
on a personal and professional level, this was an added bonus. I would like
to thank a number of people. In order of appearance: R. Elhorst for taking
on an inexperienced student 5 years ago; the University of Twente for offering
a challenging educational program with competent teachers; P.G. Jansen, H.
Scholten and P. Hölzenspies for providing supervision and guidance from an
educational point of view; R. Elhorst (again) for the supervision, advice, guid-
ance and criticism which he offered in his role of internal advisor; my direct
colleagues for advice during this project and proofreading the thesis; and last
but certainly not least my wife, who was a hawk when it came to correcting
spelling and made it possible for me to concentrate on finishing this thesis
during this rather dynamic period of our lives.

ix

Summary

This research centers around two subjects. First queues used in a produ-
cer/consumer paradigm and implemented using a database must be made self-
scalable. Secondly a self-scalable system for the queue consumers and h-workers
(programs that perform tasks like data preparation) must be developed. Two
solutions were suggested. The first solution creates a container from a fixed set
of processors or h-workers, when required a queue is also added. A container is
then run on a node, effectively creating a consumer side queue. Containers only
hold h-workers or processors that perform the same task, to scale capacity for
a task more containers are created. The de-centralized nature of the solution
only allows for gradual scaling. This is a very ill fit for the h-workers, because
they run in intervals and have a very abrupt need for resources.

The second solution separates the queues from the consumers on a concep-
tual level. This allows different systems for the queues and the consumers/h-
workers. Each queue is segmented into a minimum of two segments and divided
over a set of nodes. A weight associated with each queue segment determines
how the incoming events are distributed over the available segments.

Queues are typed and different types can coexist on the same node. Incom-
ing events are routed to appropriately typed queue-segments. Scaling takes
place by changing the routing of events to be better spread over the available
nodes. Consumers and h-workers are implemented in a master/worker model
(further called manager/worker) which runs on top of a batch system, thereby
allowing the manager to request the necessary resources on demand. As long
as there are enough resources avail-able these requests are met. This results in
a system in which both continuous and abrupt resource demands can be met.

Several reasons, including the lack of performance data per queue (con-
sumers) or task (h-workers) and ill fit scaling possibilities of the first solution,
make solution two stand out. It is subsequently developed into a proof of con-
cept. Data retrieved from the proof of concept indicates a partial success. The
queue system is in its current state unusable, mostly due to the lack of per-
formance statistics per queue segment. It is therefore unknown what weight
should be redistributed, making it a guess game. The manager/worker imple-
mentation works well for consumers. The setup is able to adjust its resource
consumption to the demands while timely processing all incoming events. Due
to facilities provided by the batch system, the manager/worker paradigm is
robust and quite resistant to failure. The h-workers have not been tested, but
provided there are enough resources available in the batch system a manager
can request the required resources and receive them after a small delay.

xi

Samenvatting

Dit onderzoek beslaat twee onderwerpen. Ten eerste moeten, door middel
van een database, gemplementeerde queues die gebruikt worden in een produ-
cer/consumer paradigm, automatisch schaalbaar gemaakt worden. Ten tweede
moet een automatisch schaalbaar systeem ontwikkeld worden voor de queue
consumers en de h-workers (programmas die taken vervullen zoals data voor-
bereiding). Er zijn twee voorgestelde oplossingen. In de eerste oplossing wordt
een container gecreerd die bestaat uit een vaste set processors of h-workers. In-
dien nodig wordt ook een queue toegevoegd, waarmee een consumer side queue
ontstaat. Deze container draait dan op een node. Alle h-workers of processors
in een container vervullen dezelfde taak. Om de capaciteit voor deze taak uit te
breiden worden meer containers ingezet. De decentrale opzet van deze oplossing
faciliteert alleen geleidelijke verandering in capaciteit. Dit maakt deze methode
zeer ongeschikt voor h-workers, omdat die met tussenpozen draaien en sterk
schommelende capaciteitsbehoeften hebben.

De tweede oplossing scheidt op een conceptueel niveau de queues van de con-
sumers. Dit biedt de mogelijkheid van verschillende systemen; n voor de queues
en n voor de consumers/h-workers. Elke queue wordt opgesplitst in minstens
twee segmenten die worden verdeeld over een set nodes. Elk queue-segment
krijgt een gewicht toebedeeld, aan de hand waarvan de binnenkomende events
verdeeld worden over de beschikbare segmenten. Queues worden ingedeeld in
types en verschillende types kunnen samen op dezelfde node draaien. Bin-
nenkomende events worden gerouteerd naar het juiste type queue-segment. De
capaciteit wordt aangepast door het gewicht te herverdelen over de beschik-
bare nodes. Consumers en h-workers worden geimplementeerd in een mas-
ter/worker model (hierna manager/worker genoemd), dat bovenop een batch-
systeem draait. Dit stelt de manager in staat op elk moment om meer capaciteit
te vragen. Zo lang de capaciteit het toestaat, wordt aan deze vraag voldaan.
In dit systeem wordt in zowel de langlopende als in de plotselinge behoefte aan
capaciteit voorzien.

Verschillende punten, waaronder het gebrek aan performance-data per queue
(consumers) of taak (h-workers) en de moeizame schaalbaarheid van de eerste
oplossing, maken dat de voorkeur uitgaat naar de tweede. Deze wordt on-
twikkeld tot een proof of concept. De data die hieruit voortkomen, wijzen
op een gedeeltelijk succes. Het queue systeem is in zijn huidige staat niet
bruikbaar. Dit is voornamelijk te wijten aan het gebrek aan performance
statistics per queue-segment. Door dit gebrek is niet bekend welk gewicht
herverdeeld moet worden, wat resulteert in giswerk. De manager/worker im-
plementatie echter, werkt goed voor consumers. Deze constructie is in staat
haar capaciteitsgebruik aan te passen aan de vraag en alle binnenkomende

xiii

xiv SAMENVATTING

events tijdig te verwerken. Door de eigenschappen van het batchsysteem, is het
manager/worker paradigm robuust en behoorlijk foutbestendig. De h-workers
zijn niet getest, maar uitgaand van voldoende capaciteit in het batch system
kan een manager de vereiste capaciteit opvragen en er binnen korte tijd over
beschikken.

Chapter 1

Introduction

Since the rise of the internet, especially the last five years, many services
have emerged to connect friends through the internet. Well known examples
are msn[21] and, in the category of social networking services, MySpace[26],
Facebook[8] and the Dutch website Hyves[13].

An on-line social network service aims to build on-line communities of peo-
ple who share interests and/or activities. It creates a place for people to interact
with each other using a variety of services and media. Users mostly interact
through messages but other media like photo’s, music, videos and specially
written applications like the open social gadgets are popular as well. While
the majority of user interaction takes place through a website, other media
like e-mail, instant messaging and SMS are also integrated into popular social
networking services.

The formentioned website http://www.hyves.nl is, in the Netherlands,
by far the biggest in its kind and is akin to popular international sites like
myspace[26] and hi5[12]. Beside this Hyves.nl is the third most popular dutch
website, following the dutch versions of google[9] and windows live[18]. It is
also number 165 in the world ranking1.

These rankings bring interesting opportunities and challenges in all aspects
of the site, such as:

• The possibility to use this dominant position in the Netherlands to gen-
erate revenue, or even profit.

• The development of features that take advantage of the high percentage
of the youth present on Hyves.

• Handling privacy considerations.

• Tackling copyright issues for the content uploaded by users.

• Serving 5 billion page views each month in a timely fashion.

• Improving the manageability of the almost 2000 servers (also called nodes
and machines).

• Serving and storing more than 400 Tbytes of photos and music.

1according to http://www.alexa.com on 29 Nov 2008

1

http://www.hyves.nl
http://www.alexa.com

2 CHAPTER 1. INTRODUCTION

• Managing and prioritizing the infinite number of items on the todo list.

• Efficiently handling and foreseeing scalability issues.

Even though Hyves is the third largest website in the Netherlands a steady
expansion is still measured and considerable growth in both the amount of
users and the number of photo’s/message/etc per user is expected2.

1.1 Hyves Architecture

Even though this thesis effects only a small portion of the underlying system
architecture at Hyves a broad overview is given here to create an insight into
the complexity involved and to introduce and explain common terms (used in
this thesis).

The Hyves serverpark can be divided into a front and back-end segment,
this abstraction serves to make a general division between the servers that in-
teract ”directly” with the user (front-end) and the servers that support the
front-end but have no direct connection with the user (back-end). By servers
that interact ”directly” with the user, we mean the servers that process requests
coming directly from the users computer. As can be seen in figure figure 1.1
on the facing page, the front-end and back-end are divided into clusters. Each
of these clusters is a group of servers performing a specific (set of) function(s).
These clusters are formed for a variety of reasons; incompatible designs, spe-
cific optimizations or simply a dedication of hardware for performance reasons.
Each cluster is named according to its function: Web cluster, Media cluster,
etc.

1.1.1 Front end

The front-end consists of all clusters that communicate directly with the users.
The most prominent of these is the web cluster, the webservers contain

all interface and business logic that require user interaction. The webservers
handle the user requests and after retrieving the required data from the back-
end, compile the resulting page and send it to the users browser (client). The
clients web browser then renders the page and requests all external resources
(images, layout specifications).

By reducing the response times of webservers and by minimizing the browser’s
render and load times, the user experience is optimized. This is achieved by
extensive use of asynchronous loading of page content ”just-in-time”3. This
prevents unnecessary communication and rerenders pages only partially, re-
ducing the load on the front-end and preventing unnecessary content fetching
and generation on the backend.

Browser load times are further reduced by increasing the number of parallel
connections the browser uses to fetch external resources. This makes more
effective use of now widely spread high bandwidth internet connections. In
general it can be said that a characteristic of all code in the front-end is, that
it is designed to minimize the response time for the users.

2This expectation is a given in this thesis, as it is implied in the assignment.
3This is done using Asynchronous JavaScript[37] and XML (acronym: AJAX)

1.1. HYVES ARCHITECTURE 3

Front-end Back-end

Cache
cluster

50 nodes

Web
cluster

600 servers

Login
cluster

20 nodes

Media
cluster

600 servers

Main
cluster

50 servers

Profile
cluster

50 servers

Friend
cluster

50 servers

Figure 1.1: logical division of the hyves serverpark

Another large group of servers in the front-end is the media cluster . This
cluster of over 600 servers handles 30.000 requests/sec and stores 350 million
media items (audio, images and video) taking up about 1 petabyte of storage
space. This architecture is kept scalable and fault-tolerant. Each media item
is stored on two distinct servers in the cluster. This primary and secondary
location of each media-item is kept in a large index. Each media item is served
from its primary location, unless a server fails (its inability to perform its
intended function)upon which it is served from the secondary location. Upon
failure of a server the data on that server is considered lost and all media-
items on that server have only one location left from which they can be served.
A process is started which copies the media-items from that one location to a
different server and the index is updated to reflect the new primary or secondary
location of each media-item.

1.1.2 Back end

The back-end is considered to be everything else and performs two basic func-
tions: Data storage/retrieval and the processing of all tasks that do not need
user interaction.

Because the data-set used by Hyves is very large, data storage is distributed
over multiple database clusters, as shown in figure 1.1. The data-set is split

4 CHAPTER 1. INTRODUCTION

up into disjointed subsets. Each of these subsets is stored in its own database.
The subsets are chosen in such a way, that (closely) related information resides
in the same subset, e.g. the caption of a photo should be in the same subset
as that photo and the other photos within the same album should preferably
also reside in that subset.

The data in our databases is most often stored in a normalized[6] way, this
eases data manipulation and reduces storage space considerably. Due to its
nature this method is not one of the fastest when data is retrieved, because the
data needs to be searched, gathered and combined before it can be returned to
the client.

To improve performance an application level cache is built between the
database clusters and the front-end. Upon retrieval of cache-ble data from
the database the front-end will store the (de-normalized) data in the cache,
from where it can be retrieved the next time the front-end needs that data.
Invalidation of the cached data can be done explicitly by the front-end when
the data is updated or after a period of time, depending on the consistency
restraints for that data. The cache allows for simple key-value storage and
retrieval of data stored in memory, which leads to the faster data retrieval
times.

The data storage/retrieval is comprised of various database architectures
that provide permanent storage of the data at the cost of slower data retrieval.
The cache provides fast data retrieval at the cost of storage efficiency and
non-permanent data storage.

This leaves the second function of the back-end, the tasks that do not need
user interaction. A task is a definite piece of functionality, for example the
delivery of messages between Hyves users. This set of tasks is varied but can
be separated into three categories, all of which are aimed at improving the
response time of the website.

The first of the three categories is pre-fetching tasks. Pre-fetching is the
process of fetching and storing data that is located externally to Hyves in our
own back-end, this considerably improves data retrieval time. All pre-fetching
tasks are executed regularly in order to keep the data from becoming stale.

Data preparation is the second category of tasks. Data preparation is the
processing of our own data into a more efficient format that reduces retrieval
time. For example, raw statistical data is processed throughout the day and
then re-inserted into the back-end after which the results can be retrieved by
the front-end.

Pre-fetching and data-preparation both reduce data-retrieval time at the
cost of retrieving or preparing data that is never requested.

The third and final category of tasks are offloading tasks. These tasks
execute a resource intensive function, in the background, that does not need
user-interaction but does require parameters specified by the user. The function
thus has no influence on the page generation time. The delivering of a message
is such a task. After the front-end has gathered all needed parameters for the
task (such as: title, body and recipients) it will send the parameters to the
back-end where the actual delivery of the message takes place, this is called
offloading.

For managing the execution of all these tasks a system called hyves-daemons
has been setup and expanded over the years. The hyves-deamons system is a
setup/deploy system. For each task it takes a number of arguments including

1.2. PROBLEM STATEMENT 5

the program to run, a list of servers on which to run the program and how
many instances of the program to run on each of those servers. On deploy the
system sets up the tasks to run on the servers and starts the programs. This
allows each task to exploit the data parallelism of the accessed data to the
fullest.

The simplicity of the system allows it to scale to a large number of nodes
and tasks because once deployed, no overhead and bottlenecks exists. The scal-
ability of a tasks however can be limited, and is often the result of bottlenecks
on data access.

1.2 Problem statement

The set of tasks in the hyves-daemon system and the servers in the cluster
have grown and while the hyves-daemon system itself still has no bottlenecks,
the popularity of the system has shown deficiencies in the design that need to
be fixed. While these issues are strictly speaking not scalability issues their
impact is closely connected to the popularity/size of the system.

Core to the noted deficiencies are the following disadvantages:

• The number of servers and instances per task are statically configured

• Performance data per task or instance is unavailable.

The deficiencies leading from this are:

• The lack of performance data per task or instance makes it difficult to an-
alyze variety of situations, including over-utilization of a server, capacity
requirements of a task and analyzing the performance of tasks.

• The static configuration hampers functionality like automatic load-balancing
of the instances over the available servers and fail-over of instances to
other servers upon failure of a server.

• Other inefficiency problems arise because all tasks are configured for the
peak-load needed, this wastes resources during off-hours.

• All these currently manual operations require a constant stream of at-
tention from the operators which would be well spent on other tasks. By
improving on the points above would improve the maintainability of the
system as it grows and thus also its scalability.

The problem statement can now be formalized as:

“How can the scalability, fail over and load balancing
characteristics of the offloaded and data preparation
tasks be improved, while decreasing (or at least not

increasing) the workload for the technology department?”

While the problem statement is intended to give direction and focus to
this research, it is not enough to explain its starting position and intended
focus. These factors can, and will, be explained by exploring the state of art
in chapter 2 on page 7 and the focus points defined below.

6 CHAPTER 1. INTRODUCTION

1.3 Research focus

In order to facilitate consistency in the decisions made, especially when there
are conflicting interests, a prioritized list of focus points has been defined.
Listed according to importance (Descending):

• Scalability of each task. As a guideline: a task should be able to grow
tenfold without problems

• Failure resistence/ self healing. The system must have the ability to deal
with failures, most importantly the failure of a server.

• No (major) modification of existing code. This research is not intended
to redesign the whole system but should try to build on the code already
in place.

• Support for single instance tasks. Tasks that can only run one instance
at a time due to data-corruption issues should be supported.

• Automation. Common tasks in the system should be automated, for
example resolving over-utilization of a server.

• Monitoring. Better support for (performance) monitoring

Of limited importance are:

• Efficient use of hardware. This is closely connected to scalability, but a
scalable solution might still make in-efficient use of its hardware.

• Prioritization (at overload). When the required resources for all tasks
exceed the capacity of the available servers, prioritization between tasks
should be applied.

• Software/hardware prerequisites per task. Whenever possible the de-
signed system should take into account prerequisites of tasks.

Chapter 2

State of Art

This section will describe the state of art at Hyves and existing techniques on
the market. It will discuss benefits of these systems and the problems/limitations
that are inherent to the techniques that are used. This will of course, happen
in the context of this research and the problems it intends to solve.

The Hyves website uses two designs to implement the three categories of
tasks that where discussed in section 1.2 on page 5. The first design is ex-
plained in section 2.1 and discusses the first two categories, pre-fetching and
data preparation tasks. The second design is explained in section 2.2 on page 11
and covers the third category: offloaded tasks. The sections discuss the theory,
implementation, advantages and weaknesses of each design.

The last two sections of this chapter explore virtual machines and batch
systems and discusses their weaker and stronger points in order to decide on
their suitability as a solution.

2.1 Implementation of pre-fetching data preparation
tasks

Pre-fetching and data preparation tasks have been introduced because per-
forming these tasks in the front-end significantly increases the response time of
the website. The task are performed in the back-end and the result inserted to
our own databases so that the front-end can retrieve the prepared data quickly
when requested. This allows for the data to become stale, but this is reme-
died by running the tasks at regular intervals and when needed the task runs
perpetually.

2.1.1 Tasks

A small example list of the tasks that are implemented this way:

• Photo email importer (pre-fetching)

• Server management data import (pre-fetching)

• Member integrity checker (data preparation)

The full list of tasks implemented using the h-worker principle can be seen
in section A.2 on page 58

7

8 CHAPTER 2. STATE OF ART

2.1.2 Technique

The programs implementing tasks of these types are called h-workers. A h-
worker will, on execution perform the whole, or more commonly, a small subset
of the task it is designed to perform. Each execution of the program is said to
create an instance of that program, multiple instances can be started so that
they run in parallel. Either parallel or sequential, it is the set of these instances
that perform the whole task.

Upon execution a h-worker retrieves the list of work items through some
arbitrary method and starts processing. After finishing this work the instance
quits. When an instance only performs a small subset of the total task, it will
only retrieve a small set of the work that needs to be done, restarting the h-
worker instance after it quits ensures that the whole task gets done eventually.

When the data accessed by a h-worker is suitable for parallel access, multiple
instances of an h-worker can run simultaneously to decrease the total runtime
of a task. If not, for example because parallel access will lead to data-integrity
issues, only one instance of that h-worker can run at any time and such h-
workers are said to be single instance h-workers.

Most of these tasks are never done, or only done for a particular moment,
this means that they must run at regular intervals. For example, the member
integrity checker runs with 5 parallel instances every night between 2 and 6,
while the photo email import has only one instance running every 5 minutes
throughout the day.

2.1.2.1 Parallelization data access

In order to coordinate parallel data-access, the h-worker uses a simple algo-
rithm. This algorithm builds on the fact that the work can be divided into
chunks which can be identified, accessed and retrieved using a global identifier.

This algorithm uses locking, to retrieve and raise a global identifier that
indicates the next chunk of work. After the identifier is retrieved the h-worker
instance starts retrieving the work that needs to be done.

This simplistic method has some potential problems: if the data can not
be retrieved at that moment, it is skipped. Depending on the task at hand
this could be a problem and in such cases more complex methods should be
employed.

2.1.3 Implementation

The hyves-daemon system is responsible for setting up the h-worker according
to specification. If a task indicates that it needs to be installed on 3 servers with
5 instances per server then the hyves-daemon system will install 5 daemons for
this h-worker on each of the three servers specified.

Each daemon is a small bash1 script started by default when the system
boots. This bash scripts execute the h-workers and monitors the instances to
see if they exit. After an instance has quit, the bash script will sleep for a while
and then re-execute the h-worker. The time the bash script sleeps is dependent
on on whether h-worker quit without doing any work or not.

1The standard shell environment used in linux

2.1. IMPLEMENTATION OF PRE-FETCHING DATA PREPARATION
TASKS 9

Bash script h-worker

execute()

Assertions()

Process()

save data()

WHILE: memory below 128 MBWHILE: memory below 128 MB

sleep(n)

Run LoopRun Loop

Figure 2.1: H-worker Execution

This implementation allows a task to be executed perpetually while the
execution of a h-worker stops after it has performed its sub-task. When a task
is only supposed to be executed between certain hours, a small assertion at
the beginning of the execution makes the h-worker quit before it performs any
work outside the designated hours or when the work has already finished in
this period.

After the execution of a h-worker passes the assertions it will start by re-
trieving a chunk of work for processing. The reason that the h-worker quits
after doing the work just to be restarted by the bash script, is to work-around
a memory-leak in one of the used software libraries. This work-around has
been optimised so that the php script does not exit until it reaches a certain
memory footprint. This reduces the overhead of frequently restarting the php
script.

See figure 2.1 for a graphical representation of the h-worker execution se-
quence.

2.1.4 Resource usage

The number of parallel h-worker instances needed is roughly determined by
using the following formula:

endtime = starttime+ amount work/(througput ∗ nr hworkers) (2.1)

endtime indicates the moment at which the task is finished, starttime the
moment at which the task is started, amount work indicates how many units
of work there are to be processed, throughput specifies how many units of work

10 CHAPTER 2. STATE OF ART

an h-worker can process per time unit and the nr hworkers is the number of
of h-worker instances running simultaneously.

Because some of the variables are unknown, this formula can only tell us
that the more simultaneous h-worker instances, the sooner the work will be
done, with an upper limit that is defined by the maximum number of chunks the
work can be divided into. The unknown values in this formula are throughput
and the desired end time which is defined as ‘as soon as possible without
overloading the system’.

Because the h-workers are always present in the system, an indistinct pic-
ture of the system resources that are actually needed at the moment exists.
Because it is unclear how many resources are used by waiting h-workers and
how many are used by h-workers that are actually running. So for scaling a
task, the new number of simultaneous instances is guessed and just to be sure,
it is overestimated.

No real numbers are available on the resource requirements for h-workers.
It is however expected that the required processing capacity changes to the
configured maximum when the tasks starts and stays at that maximum until
the tasks finishes, after which its capacity needs drops back to zero. This is
represented in figure 2.2. There are a few offloaded tasks that require running
at small intervals or maybe even perpetually. These tasks have a continuous
resource demand during the day. The needed processing capacity for a pre-
fetching or data preparation task can thus be very sudden and demanding or
continuous during the day.

00 02 04 06 08 10 12 14 16 18 20 22 00

re
so

ur
ce

 d
em

an
d

Time (hours)

h-worker activity

Figure 2.2: H-worker activity during a day

2.1.5 Problems

The current implementation of the h-workers and the hyves-daemon system
has several problems, usually caused by the static configuration and a lack of
proper statistics.

2.2. IMPLEMENTATION OF OFFLOADED TASKS 11

2.1.5.1 Lack of statistics

There are no numbers on throughput, resource usage per task or other measures
that give insight into the current state of the system. Therefore no clear view
on the available or needed capacity at any time, making decision about scaling
guess work.

2.1.5.2 Static configuration

The static configuration only allows the system to be configured for peak load.
This means that the number of h-worker instances that are needed during the
period in which the h-worker is allowed to run will also exist during off hours.
This leads to an unclear picture of the amount of resources that is actually
needed at any moment, in other words: It is unclear how many resources are
spent on over-capacity during peak and off-hours.

2.1.5.3 Failure resistance

When a server with h-worker instances fails, those instances are not recovered
by the hyves-daemon system. This means lost capacity for the tasks that
did not have enough over-capacity configured to deal with this. For a single
instance h-worker running on that failed server operator intervention is required
before it is restored.

2.2 Implementation of offloaded tasks

Important sections of the Hyves website depend on the operation of offloaded
tasks to obtain a faster response time for the user. Performing the tasks in the
foreground would in most cases significantly increase the response time of the
website.

2.2.1 Tasks

Typical tasks that are offloaded to the back-end are:

• Sending email notifications for new messages, photo comments, etc.

• Sending sms notifications.

• Processing page hits for statistics.

• Member deletion, cleanup of more complex data.

For a complete list of offloaded tasks, see section A.3 on page 58

2.2.2 Technique

Offloaded tasks are implemented using the unbounded buffer producer/consumer
design, discussed in [31].

This is achieved by lifting the producer/consumer design to the level of
distributed programming. In the producer/consumer design, two processes are
described that share a common buffer. The (first) a producer produces pieces
of data and stores these in the shared buffer, the consumer then consumes the

12 CHAPTER 2. STATE OF ART

data from the buffer and processes it. At Hyves the shared buffer is actually
an external database which acts as an unbounded buffer. Just to keep the ter-
minology consistent with that used at Hyves, the terms queue and buffer are
considered interchangeable. Because communication with the database hap-
pens using the network, the producer, consumer and buffer can be on different
servers.

The front-end acting as a producer compiles all operands required to per-
form the task and insert it into the proper queue, with each offload task having
its own queue. The set of operands needed to perform a task is called an event,
so each event represents one execution of the task. The back-end forms the
consumer and executes the function with the parameters retrieved from the
queue.

Each task has its own program to function as the consumer for that task,
this consumer will, on execution, fetch a number of events from the queue and
process them. As with an h-worker the execution of a consumer is said to
create an instance of that program and these instances can run in parallel to
increase to processing capacity for a task.

The queue itself also uses system resources and to increase the number
of events a task can handle it is necessary to create multiple queues for the
same task, we call this partioning. Each of these queues is a segment of the
whole queue, this setup is called a ’distributed task’. A task that has only one
queue is called a ’non-distributed task’. See figure 2.3 on the facing page for a
graphical representation. This leads to the producers and consumers needing
a way to be distribute the putting and pulling from the queue equally over all
segments. The producers use a round-robin method to balance their inserts
over all segments, and the consumers are statically divided over the segments.
Other algorithms akin to those in load balancing are possible, see [39].

2.2.3 Implementation

The queue structure is implemented on top of a MySQL database (see sec-
tion A.4 on page 59). This is done by defining a database table in which the
events can be saved. Using the SQL language over the network, events can be
inserted and retrieved from the databases. The communication take place over
tcp/ip or unix sockets, depending on the location of both end nodes. Because
each task has its own table in the database, multiple queues can coexist in
the same database instance. See section A.4 on page 59 for more information
about databases.

This implementation was chosen because MySQL was, to Hyves, a proven
technology and therefore cut down on development time considerably. Apart
from this, the database also provides persistent storage in case of failure and the
ability to implement priority, weighted and other types of queues by redefining
the calls and table definitions. However it is known among the Hyves team
that a database is unlikely to be the most efficient implementation for queues.

All tasks with non-distributed queues have their queue placed on the same
node and their consumers run from a set of servers that connect to this ’queue-
master’ node. Each task with a distributed queue has a set of dedicated servers,
each server holds a queue segment and the consumers that are statically as-

2.2. IMPLEMENTATION OF OFFLOADED TASKS 13

Node A Node B

Hyves.nl Queue

consumer

consumer

consumer

Non distributed Task

Node C

Node D

consumerQueue
consumer

consumerQueue
consumer

Hyves.nl

Distributed Task

Node FNode E

h-worker

W
ork

h-worker

h-worker

h-worker

W
ork

Multiple h-workers Single h-worker

Figure 2.3: Abstract design for consumers and h-workers currently in use by
Hyves

14 CHAPTER 2. STATE OF ART

Bash script Consumer Queue

execute()

Fetch()

Process()

save data()

WHILE: memory below 128 MBWHILE: memory below 128 MB

sleep(n)

Run LoopRun Loop

Figure 2.4: Consumer Execution

signed to that queue segment.
The execution path for a consumer is basically the same as for the h-workers,

except that it fetches a number of events from its queue (segment) and starts
processing those. See figure 2.4 for a graphical representation of the consumer
execution.

2.2.4 Resource usage

To determine the number of consumers required, when processing the events
synchronously, we can use the following formula:

peak insert rate = throughput ∗ nr consumers (2.2)

peak insert rate is the event insert rate during peak hours on a queue (seg-
ment). throughput represents the number of events processed by a consumer,
based on the same time period as the peak insert rate. The nr consumers
is the number of consumer instances running simultaneously. This formula
assumes a synchronous system where the events can not be kept waiting.

This applies to all queues, distributed or not, but it also applies to each
queue segment in a distributed queue. Even though there might be enough
consumers in the system, when one queue segment has too few consumers that
queue segment will create a backlog of events that need to be processed. In the
current situation however, this formula is unusable because both the through-
put per consumer and the peak insert rate are unknown in the live system.
The current approach therefore is to start an excess amount of consumers to
process the queue at peak periods and leave them running all day and start

2.2. IMPLEMENTATION OF OFFLOADED TASKS 15

more when a backlog of events is detected. This system depends on the built-in
sleeps to limit resource usage during off hours.

No real numbers are available on how the insert rate behaves during the
day. It is however expected to follow the same curve as seen when measuring
website usage, see figure 2.5. This means that the needed processing capacity
per queue will also follow this pattern, and will change gradually over the
period of a day.

 0

 2

 4

 6

 8

 10

 12

 14

00 02 04 06 08 10 12 14 16 18 20 22 00

pa
ge

vi
ew

s
(m

ill
io

ns
)

Time (hours)

Pageviews Hyves.nl

Figure 2.5: Typical number of pageviews during a day

2.2.5 Problems

Much of the problems for the offloaded task setup has great overlap with the
ones experienced for the pre-fetching and data preparation tasks. There are
some distinctions though as will be discussed below.

2.2.5.1 Lack of statistics

The numbers on event insert rate per task are hard to get, there is currently
no way to retrieve per task insert rates when queues are located on the same
server. This means its difficult to tell the difference between overcapacity or
-just enough- capacity for most of the offloaded tasks. Under capacity is luckely
easier spotted because the queues start filling up.

The lack of statistics make it easy to over-commit the resources of a server
that is used by multiple tasks, be it to run h-workers/consumers or queues.
Determining which tasks are using the majority of resources on an overloaded
server is difficult and challenging, better statistics would improve this situation.

2.2.5.2 Failure resistance

For tasks that use a non-distributed queue, these queues are grouped on a single
machine (’queuemaster’) for maintainability. This means they are sensitive
to failure of that single machine. Using manual fail-over the system can be
switched to use a cold-spare that is available. The tasks with a distributed
queue are better protected in case of failure. Failure of one server will mean

16 CHAPTER 2. STATE OF ART

an increase in load for all other nodes, but will not lead to a failure of the task
as a whole. For both systems, events might be lost in case of (partial) failure
but this is defined as acceptable.

2.2.5.3 Static configuration

The static configuration poses the same problems as with the pre-fetch and
data preparation tasks.

2.3 Existing techniques

The last two section explores two currently available techniques, namely vir-
tualization and batch systems. The purpose of this exploration is to decide on
their usefulness in a solution.

2.3.1 Virtual machines

Native virtualization is one of a few virtualization techniques that are broadly
applied. Others include operating system virtualization and application virtu-
alization. The main difference between these three types is the level on which
virtualization is applied.

Application virtualization encapsulates an application, thereby abstracting
it from the hardware and operating system. Examples of this principle are
found in the Sun’s Java Virtual Machine [17] and Microsoft’s .NET framework
[22]. Operating system virtualization, applied in, for example jails, [15], is often
used by hosting providers to give customers seperate production environments,
while avoiding the overhead of running a (possibly virtualized) server for every
customer.

Figure 2.6: Virtual machines simulate a hardware environment [36]

Native virtualization provides a complete virtualization of the physcial
hardware, and basically packages the operating system, filesystems and in-
stalled programs in a container called a virtual machine (VM) (see figure 2.6).

2.3. EXISTING TECHNIQUES 17

It is this packaging of an entire operating system that might be of interest in
a possible solution.

Native virtualization solutions are offered by a number of products, most
notably Vmware[36], Parallels[28] and Sun virtualization[33]. A small inventory
was drawn up during the project, to establish the capabilities of the different
products and have a look at other aspects such as licensing, maturity and fu-
ture developments. VMware offers at least the same set of functionality as most
other mature products. Also, there is the convincing fact that there is already
in house experience with the product. When a virtualization product is needed
in the proof of concent, VMware will be used. Further elaboration on virtu-
alization is also based on VMware. A more complete survey of virtualization
producs should be made at a later stage, when it is clear that virtualization
will be used in the final application.

By simulating a complete hardware environment, the native virtualization
solution can provide each VM with the same virtual hardware platform (see
figure 2.6 on the facing page), while the real hardware might contain a variety
of platforms. This abstraction allows for several advantages. First is the pos-
sibility to run multiple VM’s on one physical node. This is a popular use of
VM’s as it allows the consolidation of several physical systems onto one system,
which of course must have the capacity to acommodate this.

Another advantage is that a VM can run, unaltered, on top of virtualized
hardware, making hardware diversity less of an issue.

Still, in this case the most significant advantage is on-line migration of
VMs between nodes, allowing the movement of a virtualized system from one
physical node to another without downtime. This allows load balancing VMs
across a set of real servers, making sure that each VM gets the resources it
requires.

A crude, but effective, high availability method is also implemented on
several of the products mentioned above. This method works by restarting the
virtual machine from a shared storage when it is detected to be down.

To support live migration, load balancing and high-availibility, all products
mentioned above require a shared storage facility that can be accessed by all
real servers to store the virtual machine. Everything comes at a cost, and so
does virtualization. This is demonstrated in lost performance when compared
to running on bare hardware. [19] measures overhead to be less than 6% for
CPU intensive workloads and up to 9.7% for I/O intensive workloads. A more
complete study of the overheads caused by virtualization and the reasons for
them is presented in [2].

By design, a VM can not exceed the hardware limits of the system it runs
on. The smaller VM’s are in relation to the hardware, the more effective
load balancing can take place. Also, the consolidation factor will then be
much larger. When a VM becomes too large, these benefits are lost while the
disadvantages remain. A VM that needs an entire node to itself will in any
case, but not exclusively, fit the definition for ’too large’.

2.3.2 Batch system

Batch systems, also known as distributed job schedulers, are often used in the
scientific or industrial world to provide computational power beyond the limits
of a single machine. The system usually manages the resources provided by

18 CHAPTER 2. STATE OF ART

a set of hardware nodes, called a cluster. The system also manages a list of
tasks that have some resources provided by the cluster. The available resources
are then mapped to the requested resources in order to run the list of tasks as
efficiently as possible.

Typical tasks run in a batch are cpu or io intensive applications that need
to search a large space of possibilities. These applications can often be run in
parallel, and as such benefit from the set of nodes provided in the cluster, in
order to improve the time to completion.

A number of solutions are on the current market: Condor[35] developed by
the university of Wisconsin-Madison, SGE[10] by Sun, moab[24] by Cluster-
resources and maui[20] provided as an open source alternative to moab. An
inventory of these products was drawn up and can be found in section A.1
on page 55. Condor provides the most complete set of features and the most
intuitive structure. While it might not deliver the best performance this was
deemed less important than mature fault tolerance and high availability meth-
ods. Condor will be used in this paper to present solutions and implement a
possible proof of concept.

By managing the resources of multiple hardware nodes and scheduling the
waiting tasks onto those resources, the system creates an abstraction between
each task and the resources it needs. This abstraction is the key to the success
of this system and allows the scheduler to create the following advantages over
a set of nodes managed by a manual operator or static assignments of tasks to
resources:

Better utilization of the available resources is achieved because the schedul-
ing algorithm can reassign resources to a job as soon as they become avail-
able. The scheduling algorithms differ from product to product and can vary
from a simple FIFO algorithm to more complicated matching algorithms like
condors[30]. A better utilization ultimately leads to faster execution of the
submitted tasks.

Better load distribution is achieved because the system knows the state
of all its resources and manages them in an attempt to achieve optimal use.
This includes using all resources whenever possible, and depending on the sys-
tem and algorithm it might also include migrating tasks in order to optimize
resource consumption.

Tasks that fail can be configured to be restarted automatically, thus a rough
failure recovery for tasks is achieved.

Scheduling can take into account tasks or node requirements and prefer-
ences, allowing tasks to only execute on nodes with certain software or to have
a preference for certain nodes. This becomes useful when the nodes in the
cluster are not uniform in terms of hard- or software. Jobs can also be given
priorities, so that higher priority jobs will be assigned resources first.

Because the set of tasks is managed by the batch system and jobs will only
run when there are resources, it is easy to submit a weeks worth of tasks. This
creates a backlog of tasks for the system which allows it to utilize the hardware
to its fullest and makes it possible to submit tasks now without overloading
the system.

This has several disadvantages, one of them being that strict control over
which task is run at which moment is relinquished. Immediate execution of
jobs is no longer possible, because the scheduler must first match the job to
available resources. The moment at which a job will run has become a function

2.3. EXISTING TECHNIQUES 19

of the algorithm and parameters like available resources and priority. In a
busy system tasks that are submitted now, might run in a few days. Another
disadvantage is that the operational aspects of a system like condor have a
steep learning curve.

Chapter 3

Proposed Solutions

During the research and inventarisation of the current situation, two possible
solutions were developed that, at least on a conceptual level, answered to all
problems and focus points. Based on the requirements (section 1.3 on page 6
and section 3.2 on page 23), one solution was chosen and further developed.

The first two sections will cover the made design decisions and set design
goals. The third section will briefly discussed both solution while the fourth
section reaches a decision on which solution is further developed into a proof
of concept. The favored solution is discussed in the fifth and final section while
the rejected solution can be found in the appendix (section A.6 on page 60).

3.1 Design decisions

A number of design decisions were taken in advance to limit the potential
complexity of the resulting system in terms of maintainability and development
time. These decisions boil down to the way in which choices are made and
whether the system is event or time based. Both decisions are motivated below.

3.1.1 Global decisions

From the start, it was clear that the solution had to be a distributed system,
as is the original (system). Every distributed system has to make a mixture of
global and local decisions. A good example of such a global decision is whether
the system still has enough capacity.

3.1.1.1 Centralized decisions

A common way to make centralized decisions is to assign a master which takes
all decisions and informs the nodes in the system. Global decisions are easily
made in such an algorithm but require that a master is selected or assigned.
In case of failure the possibility of recovering system state is needed. Another
potential problem is that such a centralized approach might require more re-
sources than a single node can deliver.

Master selection One of the requirements of a central decision algorithm is
that a master is selected. To pass the failure resistant criteria dynamic selection
of the master is necessary, a new master should be select in case the current

21

22 CHAPTER 3. PROPOSED SOLUTIONS

master fails. A good example is the election of a root switch in the spanning
tree protocol [14].

However dynamic selection algorithms can select multiple masters in case
of a network failure that splits the distributed system1 in two or more sections,
a so-called split-brain situation. This poses difficulties for the single-instance
h-workers.

Master state Re-selecting the master in case of failure raises the question
of preserving the master state and whether this is necessary. Depending on the
ability of masters to collect the state of the system and the importance of this
state, it might be necesary to preserve master state during fail-over.

Common ways of achieving state recovery in case of failure are replication,
replaying log files or checkpointing (see [34]).

Scalibility This centralized approach creates a possible bottleneck on the
master because it must keep and update a system wide state, perform all cen-
tralized decisions and inform the necessary nodes. Depending on the complex-
ity of these tasks and the size of the system, required resources might exceed
the limits of a single node.

3.1.1.2 De-centralized decisions

Global decisions can also be taken in a de-centralized manner with multiple
nodes coming to the same conclusion. To achieve such a system, two options
are available: Either all systems must have the same information at the time of
the decision, thereby making sure that the outcome is the same on all systems,
or consensus must be reached afterwards.

Timing In both situations timing is essential, to ensure that the decision
process is started at the same time on all participating nodes. Many clock
synchronization algorithms are available [[5], [7], [16]]. However ntp ([23]) is in
widespread use and should be used whenever possible.

However problems which are the result of bad timing are notorious for their
elusive nature, resulting in potential problems that are difficult to solve.

Consistency Ensuring that all systems are consistent (have the same infor-
mation) when they make a decision ensures that the outcome of that decision is
the same on all systems. A lot of consistency models exist, from very strict to
lazy, with or without synchronization operations. From the models discussed
in [34], strict consistency is the most applicable.

Consensus Instead of guaranteeing consistency, the distributed system could
also try to reach a consensus over the outcome of the decision. The assumption
is that without consistency restrictions and just a best effort guarantee to send
state changes to all other nodes, the majority of the systems will still have a
consistent view of the data. By comparing the decisions made and reaching a
consensus on them, the correct decision will be taken.

1D.s. al uitgelegt

3.2. DESIGN GOALS 23

This could be accomplished with a majority vote, after all nodes have ex-
changed their results.

3.1.1.3 Conclusion

While for most of the problems described for both the centralized and decen-
tralized decisions, well working/flexible solutions can be found in literature,
implementing such features is complex and error prone. Self-built solutions
would, in such cases, only add to the workload of the engineering teams and
are therefore unwanted.

To avoid such problems, each node takes global decisions, but a random
factor makes sure that only a small amount of those decision are really effected.

3.1.2 Event or time based system

The proof of concept, like any system cab be event or time based, or a mixture
of both. Time based systems are programmed to take actions that are triggered
by the passing of time. Event based systems take actions based on received or
triggered events.

Because actions do not allways have an guaranteed outcome an event based
system must have the ability to re-trigger events after a certain period of time.
This raises the question of specifying an effective timeout value.

The time based system takes actions at a defined interval. If these actions
do not have the desired effect they will be taken again the next interval.

Time based systems are simple and predictable by nature, and as such the
proposed solutions are time based to improve the design and development time.

3.2 Design goals

To reach the goals set in research focus and solve the main problems, a number
of goals have been set that should be reached in these designs.

• automated scaling of consumers and h-workers

• providing a clear view of used resources

• better monitoring options

• failure resistance

• load balancing

• providing facilities for single instance h-workers.

3.3 Solutions

The first solution, called A, creates a container type for each task. These con-
tainers contain the elements required to perform the task: a set of consumer
instances and a queue segment for all offloaded tasks and just a set of workers
for the other tasks. A task is thus performed by its set of containers. The num-
ber of instances per container is fixed, so that each container has a maximum
throughput. The containers are executed on a set of servers, when a single

24 CHAPTER 3. PROPOSED SOLUTIONS

server becomes overloaded some of the local containers are moved to another
server. When the number of containers for a task is not enough the containers
will indicate this and more containers will be started to create enough pro-
cessing capacity. These increases happen gradually ensuring good scalibility
for the offloaded tasks, pre-fetching and data-preparation tasks however have
more ad-hoc capacity needs.

The other solution, called B, clearly separates the queues and processors/tasks
and scales each separately. The queues are split up into a minimum of two
queue segments (containers) and then these containers are divided over the
available nodes, distributing incoming events between the containers. Contain-
ers are further split up and divided over the nodes when cpu usage indicates
that the node is too busy. For each container (queue segment), a manager is
run in a batch system. This manager monitors the queue length and starts
workers that process the events stored in the queue segment. For pre-fetching
and data-preparation tasks, that do not use a queue, a single manager is started
in the batch system. This manager knows how much work needs to be done
and starts workers to do the task. Because these managers and workers all run
on a batch system, the processing capacity can be increased on demand, either
gradually or ad-hoc, to be determined by the manager.

3.4 Choice

Although the second approach this seems more complex, it seperates the queues
from the processing, a seperation of concerns. This results in a system that
clearly allows for distinct scaling of the queue and consumer/h-workers to their
own needs. This creates optimal conditions to answer to the h-workers’ ad hoc
resource demands. All in all, this makes it the most flexible of the two systems.

Separation of the concerns allows a distinct insight in used resources for
each of the concerns, thereby meeting one of the main design goals. This
separation also allows fault isolation between the concerns, further improving
maintainability.

Single instance h-workers are also an better fit in solution B and an ad-
ditional benefit comes from the fact prioritization and software/hardware de-
mands of jobs are possible in a batch system.

Solution B is chosen to be further developed and tested.

3.5 Solution B

As the chosen solution, solution B will be explained hereafter. This is done
by discussing each concern in turn, and then exploring them by listing the key
concepts and exploring how the design goals (see section 3.2 on the previous
page and section 1.3 on page 6) are met using these concepts.

3.5.1 Queue concern

The first concern is load balancing and scaling the queues on the system. The
goal is to use a minimum amount of hardware while keeping the load on each
node acceptable. By influencing the distribution of incoming events among
the available nodes, the systems slows down insert rates on busy nodes in an

3.5. SOLUTION B 25

attempt to lower the load. Besides nodes can be taken in and out of use
according to the total capacity needs.

3.5.1.1 Node

A node is hardware that is available for use by the container described in
this section. Each node has a state indicating its availability. This state is
determined by the resource consumption of the database and the containers
present on the node. Available states are as follows:

IDLE has no containers, is not used by the system

NORMAL has a normal workload

BUSY node is busy and load balancing can not move work to this node

TOOBUSY node is overloaded and load balancing tries to move work to
normal or idle nodes

At a certain interval, each node takes a set of local decisions. These are
based on local information and the information concerning all other nodes
available through the global state. These decisions are further described in the
sections 3.5.1.4 to 3.5.1.7.

3.5.1.2 Container

As mentioned, each queue is split up into queue segments, every one of which
together with a weight forms a container. Each container belongs to a type,
according to the queue it represents. The minimum number of containers that
must be available in the system can be set per container type, allowing to
prepare the system for high throughput queues on start up and after scale
down (see section 3.5.1.5 on page 27).

Each queue has 1000 weight points that are divided over the containers.
The distribution of these points determines how incoming events are divided
over the containers. In order to balance queue loads over multiple nodes, the
weight points can be partially (or fully) moved to other nodes.

Each node keeps a list of containers it holds. On receiving weight for a
container it checks whether it already holds the container, if so it will raise the
weight of this container. If not, a container of the required type is started.

Implementing start and stop methods for a container allows the container
to perform a number of actions on start up or shutdown. These actions can
include checking/cleaning up the environment or starting/stopping a manager
in the batch system.

3.5.1.3 Global state

The global state is a fictional layer holding state information about all nodes.
This information is tapped in order to facilitate localized decisions regarding
global matters, like scaling hardware as discussed in ’scaling up/down’ sec-
tion 3.5.1.5 on page 27.

At regular intervals each node sends an update to all other nodes, which
then update their global states accordingly.

26 CHAPTER 3. PROPOSED SOLUTIONS

To guarantee freshness of this information a timeout is defined. When a
node stops sending updates it is eventually considered offline and removed from
the global state.

The update consists of the following information: node name, node state
and the list of containers it holds.

Communications for the global state take place over multicast; this allows
the node to send a one to all message. This is far more efficient for the sender
than sending N-1 messages using normal tcp or udp mechanisms, where N is
the number of nodes in the system.

Using multicast also allows a flexible membership system. No list of partici-
pating nodes is needed, a message sent using multicast is received by all systems
listening for it. When the system spans multiple network segments, multicast
routing must be employed on the routers. Several protocols are available for
this, see: [38], [25] and [1].

Sending these messages and maintaining the global state will not become
a bottleneck, because the numbers listed below fall well within the capabilities
of a node. The number of updates received at each interval by every node is
equal to the number of nodes in the system. A modern node can process tens of
thousands of packets per second2. The maximum size of each update is chosen
as the maximum packet size, which is roughly 1500 bytes. Assuming 8 byte
names for nodes and containers and 1 byte for a state. An update can contain
a maximum of 186 containers3 per node.

The memory size used for maintaining a global state on each node is small
and is a function of the number of nodes and containers in the system. Assum-
ing that the overhead of storing the containers and nodes in memory doubles
their memory requirements, due to overhead introduced by the used structures,
we can store roughly 7000 nodes or containers in 1 MB of memory.

3.5.1.4 Load balancing

One of the local decisions taken by a node is whether load balancing is needed.
When the node is TOOBUSY, it selects a container. The weight of this con-
tainer is split, one half remaining on this node and the other half is moved to
a selected target node.

Selection of the target node follows two steps. The first step tries to find
a NORMAL node already holding the container. If this fails the second step
is to select just any NORMAL node. Preference is given to nodes already
holding the container to avoid splintering a queue into many containers. If no
NORMAL node is found the target node is selected from the IDLE nodes. This
is further explained in section 3.5.1.5 on the next page.

In order to distribute the incoming events over the available containers, a
load balancer monitors the weight of each container on every node. This load
balancer directs incoming events according to the weight of each container.
The used algorithm is called Weighted round robin and is further explained in
section A.5 on page 60.

The load balancer is a potential bottleneck in the system. The setup works
by using a pull mechanism. The load balancer must monitor every node for
every possible container regularly, which amounts to N x C checks each interval.

2a quick estimate: 1Gb/s divided by 1500 bytes is 83.333 packets/s
3(1500− nodename− nodestate)/8

3.5. SOLUTION B 27

N represents the number of nodes and C the number of possible containers.
The number of check could raise rapidly when the system grows, potentially
overburdening the load balancer with checks.

The interval at which these checks are done must be chosen wisely and is a
trade off between reaction time and the resources required do these checks.

Moving weight between nodes is relatively light work, a simple request and
reply indicating success or failure suffice. The request only needs to hold the
container name and the weight that is moved. On success the source node
lowers the weight of its own container and the target node raises the weight of
its container or starts a new one. On failure everything stays the same. These
messages require one to one communications and can use tcp or udp.

3.5.1.5 Scaling up/down

The system attempts to use as few nodes as possible. To indicate that they
are unused nodes change their states to IDLE. Nodes that are in use, have the
NORMAL, BUSY or TOOBUSY state.

As part of the decision cycle on each node, it is determined how many of
the used systems are normal and how many are BUSY or TOOBUSY. These
numbers are used to determine whether there is enough processing capacity in
the queue system. When the majority of systems is BUSY or TOOBUSY it
is determined that unused nodes can be used as target nodes when balancing
the load. This effectively enlarges the number of used nodes when the system
becomes busy as indicated by the BUSY and TOOBUSY state.

When the majority of used nodes returns to NORMAL, there is over ca-
pacity in the system and it will try to scale down the number of used nodes.
When this condition is detected in the decision cycle, a chance will determine
whether the node will try to offload all of its containers to NORMAL nodes.

Offloading is done by moving all the weight from all containers to another
node, effectively returning to the IDLE state. During the offload process, it is
ensured that the minimum number of required containers stay in the system.
When a container can not be moved because the minimum is reached, the
offloading process is aborted.

This aspect of the system allows the system to adjust the number of used
nodes to the current requirements. This also makes sure that containers adapt
to changing load conditions from day to day. In future versions of the system
the possibility of using the spare capacity of IDLE nodes for other purposes can
be explored. The nodes might also be shut down to save on power consumption.

3.5.1.6 Failure resistance

There are several failures that can occur in such a system, the most common
of which is the loss of a node. This could be because of communication failure,
bugs in the software, hardware failure, etc. Regardless of the cause it is assumed
that this is experienced by loss of the ability to communicate with other nodes.

In such a case, the global state updates will no longer be received by other
nodes and the node will be removed from the global state as soon as the fresh-
ness of the last update expires, effectively removing the node from the system.
The node is reintroduced into the system as soon as its updates are received
again.

28 CHAPTER 3. PROPOSED SOLUTIONS

The load balancer notices a failed node because the checks, discussed in
the previous section, fail. It responds by directing incoming events to the
remaining containers. Because each queue has a minimum of two containers
there is always at least one container left if a node fails.

Depending on the failure the node might lose its state. The containers and
their weight on that node are then lost to the system. Because each weight point
represents a share in the total, only the granularity in which load balancing
can take place is influenced. This is no problem as long as a fair portion of
the original points remain in the system. The loss of a container however,
might drop the number of containers for that type below the minimum, which
potentially cancels the fail-over capabilities for that container type.

When the node does not lose state, for example because the problem was
network related, the node rejoins the system as soon as communication is re-
established, with its containers and weight the same as when it left the system.
The load balancer detects this, because the periodic checks succeed again, and
restarts sending events.

The final version of the system is to detect the loss of a node, and insert a
new container when the number drops below the minimum. The system should
also attempt to keep the total weight per container type at 1000, anticipating
failing and rejoining nodes.

3.5.1.7 Monitoring

Because the queue system is to be developed in house, it can be made to work
smoothly with the monitoring systems in place. An interface could be provided
to pull status information from nodes or the system could push information to
monitoring systems. Available information includes system resources used by
the database, the list of present containers and their weights and the managers
associated with each container.

3.5.2 Consumer/h-worker concern

The second concern is scaling for the consumers and h-workers according to
their needs. The goal is to make sure that events are processed in time for
each consumer and that all offloaded tasks are executed in a timely manner.
Key to achieving this goal is the implementation of consumers and h-workers
in a manager/worker system running on top of a batch system. By giving a
central authority - the manager - the responsibility of monitoring the work at
hand and spawning workers to do the work, it is easy to scale the processing
capacity up and down - by starting more or less workers - according to capacity
needs. A manager will quit only when the task is done.

This all runs on a batch system, taking care of distributing the workers and
manager over all available resources.

3.5.2.1 Manager

There are two kinds of managers in the system: the managers that are associ-
ated with a container (queue segment), and the managers that perform offline
tasks. While each of these has the same responsibility, making sure that the
work gets done, the implementations differ.

3.5. SOLUTION B 29

Each container (discussed above) starts a manager in the batch system.
This manager monitors the associated queue segment. The term queue man-
ager is used to refer to this kind of manager. The manager keeps a worker
insert rate that defines how many workers are started every x seconds. By
monitoring the queue length of a segment, it is possible to determine whether
the processing capacity is sufficient and the worker insert rate is raised or low-
ered accordingly. Raising the insert rate is done when the queue length exceeds
a threshold, indicating that events are not processed quickly enough. Lowering
the rate is done when no waiting events have been detected for a short period of
time. This results in an algorithm that keeps adjusting the insert rate towards
the optimal value for that moment. Because the insert rate is assumed to vary
over time this is acceptable.

For the h-worker managers (task managers), there are several possibilities
depending on the data that is available in the system. When for example it
is known how much work needs to be done and how much one worker can
process, all needed workers can be submitted into the batch system at once.
The manager only needs to wait until all are finished and check whether the
work has truly been done. Other possible algorithms include guessing and a
steady insert rate of workers until the work is done.

All these algorithms could be complimented by using a feedback loop of
historic data from previous runs to guess the needed capacity more accurately.
The queue manager could use trend information about insert rates from prior
days, while the task manager can use the history to more accurately guess the
number of needed workers. This is however designated as future work.

3.5.2.2 Worker

The workers started by the manager are a small variation on the old consumers
and h-workers discussed in ’State of Art’ chapter 2 on page 7. The bash loop
is removed in both cases, so that the new workers are certain to exit at some
point. This however means that queue managers must constantly submit new
workers, in order to obtain a steady availability of processing capacity.

The alternative, allowing workers to run perpetually and implementing a
mechanism for the manager to stop running workers, is far more intrusive and
prone to failure. When a manager crashes, it loses state. Running workers can
therefore no longer be stopped.

3.5.2.3 Batch system

The batch system consists of a set of execution nodes which together represent
all available resources. These nodes are all configured statically and are not re-
leased during off-hours. The batch system has to provide a number of facilities
for successful operation. First and foremost the batch system has to distribute
the submitted managers and workers (called jobs) over all available resources.
Additionally, it has to restart jobs when they have finished abnormally, for
example due to a crash or node failure. Finally, a crontab like facility to ex-
ecute task managers at designated times, if these managers were not already
running, must be available.

30 CHAPTER 3. PROPOSED SOLUTIONS

3.5.2.4 Load balancing

It is the batch system’s responsibility to distribute the jobs over all available
resources, making sure that these resources are used as effectively as possible.

3.5.2.5 Scaling up/down

The managers are responsible for scaling processing capacity up and down, by
submitting the proper amount workers. The batch system is in turn responsible
for executing the submitted jobs, while taking into account available resources
and priorities.

The batch system itself does not scale up or down, but the utilization of
the available resources does drop during off-hours. Future work might include
using free resources by other lower priority tasks to make optimal use of the
available hardware at all times.

3.5.2.6 Failure resistance

The batch system can restart a job in case of failure. As a result that the
manager can be considered reliable in case of failure. When workers crash it is
expected that the work they were doing is lost; this is deemed acceptable. If
not, the manager and workers must implement a mechanism that will retry to
process work that failed.

The batch system provides its own methods for high availability, making
sure that essential tasks are taken over by a different node in case of failure.
During such a failure the state of the managers that crashed is lost. The
managers are however designed to quickly recuperate from such crashes.

3.5.2.7 Monitoring

The managers and workers are developed internally and can be (re)written
to provide statistics to the monitoring system in place, thereby giving good
insight in the current insert rate and the number of consumers executing per
second. Extra intelligence must be built to detect non-running managers or
single instance workers that should be in the system.

The batch system should provide adequate methods for retrieving infor-
mation like utilization and the number of waiting jobs. As an added benefit
it would be useful to see statistics on how many resources each manager gets
assigned.

3.5.2.8 Single instance daemons

The batch system makes sure that jobs submitted into the system only run
once. The managers described above are all single instance daemons. The
single instance daemons described in section 2.1 on page 7 should be considered
managers that do not submit workers, but perform the work themselves. In
case of a split brain there is the possibility that the batch system is no longer
in touch with the node running the job. In such a case it might re-spawns the
job while the allready running job is not stopped. There are several solutions
to this: a node in the batch system should stop all running single instance ones
it can no longer reachs the central manager of the batch system. Or the single

3.5. SOLUTION B 31

instance should check connectivity with the central manager itself, or try to
obtain a global lock.

3.5.3 Conclusion

The introduction of the batch system and manager/worker paradigm allows for
a system that can scale processing capacity fluently or abruptly at the discretion
of the manager. This allows the managers to follow the required capacity, which
is more efficient than the method currently in use, which is always configured
for peak-load. The queue system is also scaled according to its own resource
consumption, and using weight to distribute incoming events between available
queue segments introduces great flexibility and fail-over abilities.

The queue and batch systems are clearly separated in this design, each
running on its own set of nodes. In future versions these systems could be
placed on the same node to allow worker or manager execution on the same
node as the associated queue segment, thereby reducing network overhead.
When capacity does not allow all workers to execute on the same node as their
containers, they can be executed elsewhere. Both the queue and batch system
need to be configured to allow for this without overloading the node.

One of the implicit goals of this research is to remove the static configuration
that made the systems described in chapter 2 on page 7 so very rigid. The
static configuration left in this design is limited to a static assignment of the
nodes available for each system and a definition of the container types present
in the system. This for example allows the system to start the appropriate
manager. The load balancer is also statically configured to monitor all nodes
for all containers. This configuration needs to be adjusted when either of those
change. All these settings do not hamper the ability of the system to adjust to
changing work loads.

For more information about the the available batch systems and the selec-
tion of the batch system to be used in the proof of concept, see section A.1 on
page 55.

Chapter 4

Proof of concept

The proof of concept (PoC) is a rudimentary implementation of the chosen
design. Its goal is to test the correctness and usability of the design. Before
implementing the system in a PoC, a crude model was built to recognize and
eliminate major deficiencies early in the process.

This chapter is divided into two sections, the first explains the queue system
and the second explains the consumer/h-worker system. Each section will
describe the core algorithm of the system and highlight important design issues,
following with a discussion of goals, implementation and results from both the
model and the PoC.

4.1 Queue system

This section explains the PoC implementation of the queue system. First, the
different aspects of the algorithm are explained. Then the model and PoC
implementation are explained according to their purpose, environment and
results.

For an explanation about the purpose of this queue system, please reread:
’Queue concern’ in the ’Proposed Solution’ section 3.5.1 on page 24.

4.1.1 Algorithm

Every node runs the same algorithm, the most important aspects of which are
explained below. The aspects can be categorized into three sections:

Detection Determining node state (4.1.1.1)

Decision Select containers to move (4.1.1.2) and Determine downscale (4.1.1.3)

Execution Find targets for containers (4.1.1.4), Move containers to target
(4.1.1.5) and Communication of updates (4.1.1.6)

The purpose of each aspect is explained together with its model or PoC
implementation and each aspect finishes with a section of suggested improve-
ments. Wherever the model section is left out this means that there was no
model implementation of this aspect. If the PoC implementation is left out
this means that it was the same as the model implementation.

33

34 CHAPTER 4. PROOF OF CONCEPT

4.1.1.1 Determining node state

Purpose Monitor resource usage of the database in order to indicate the
state the node is in.

Model solution The model did not mimic resource usage and the system
state was therefore determined by the number of inserted events per second.

PoC solution Because the resource usage turned out to be highly erratic
when measured every few seconds, the average over the four latest measure-
ments is used to determine the node state.

Improvements The system works well, but when it balances around a thresh-
old, system state changes might follow each other frequently. To remedy
this, a buffer area could be implemented. For example: the state changes
to TOOBUSY when resources usage passes 50% but will only change back to
BUSY when it becomes lower than 35%. Another improvement might be to
use a formula to smoothen the effect of the erratic resource measurements. One
such formula is listed below and is currently in use for the website statistics.

V = α ∗NV + (1− α) ∗OV (4.1)

α indicates the effect the latest measured value (NV) will have. For example,
with α = 0.5 the measured value will make out 50% of the result, the other 50%
is determined by the previous result (OV) of the function. V is the smoothend
result value.

4.1.1.2 Select containers to move

Purpose When a node is TOOBUSY, the algorithm selects a subset of its
containers, to be split and moved to another, not overloaded, node in the
system. Effectively this will lower the insert rate on the node.

Model solution Early versions of the model selected one random container
to be split and moved. Tests showed that in the case of many containers this
method was too slow so newer versions move a percentage of the available con-
tainers. Please read section 4.1.2.3 on page 37 for a more in-depth explanation.

Improvements First, information like insert rates is unavailable in the live
system. Therefore no estimation can be made of the load each container im-
poses on a node, resulting in random selection as described above. Making
effective decisions about which container should be moved is therefore subjec-
tive to chance, and figure B.4 on page 69 clearly shows that this is the case.
Keeping a history of the effectiveness of the chosen selection, could facilitate
the development of a heuristic method for choosing containers.

Secondly, resource consumptions of the database queue implementation can
be seen as the product of two parameters per container. The number of put
operations and the number of get operations on each container to be precise.
Lower or raise either of them and the resource consumption will rise and fall
accordingly. This behavior however is not linear.

4.1. QUEUE SYSTEM 35

By lowering the number of puts on a container, the number of gets will
follow because the manager (section 3.5.2.1 on page 28) will adjust to the
lowered processing capacity needs. The employment of this cause and effect
mechanism to lower the load of a node causes problems when the node gets
overloaded. In case of an overload performance of the node decreases, creating
a backlog of items to be processed. Therefore the manager will raise its worker
insert rate, increasing strain on the system. This can be seen very clearly in
section B.2.3.1 on page 127

Future manager versions would therefore do well to monitor the state of
the queue system and allow it time to recover from overload by drastically
decreasing processing, after which processing can continue as normal. It is
better to slow down processing for a while than to overload the system and not
work at all.

4.1.1.3 Determine downscale

Purpose To minimize resource usage and the splintering of containers, the
system will try to detect off hours and consolidate the containers onto as few
nodes as possible.

Model solution This is done by determining the states of all participating
nodes. If it is determined that a large percentage of the nodes has a normal
state, the algorithm will try to select one of these nodes and try to move all its
containers to another node in order to reclaim the IDLE state for this node.

Improvements The outcome of this operation is random, each night a dif-
ferent set of nodes could stay on-line. An improvement would be to consolidate
the containers onto the most capable nodes, ensuring that when resource usage
rises in the morning the weaker (in terms of hardware) nodes will not be over-
whelmed.

4.1.1.4 Find targets for containers.

Purpose When the system has determined that it needs to move one or more
containers it also has to determine where to move them, and whether they can
be moved at all. Factors taken into account are:

• minimum number of containers for queue X

• current state of all nodes

• a possible need for downscaling

Model solution Every container that needs to be moved has an associated
percentage, indicating how much weight is to be moved to the target node.
This is normally 50%, unless the system is downscaling and wants to move all
the weight. There is one exception: when the weight points of a container after
splitting breach a lower limit, then the full container will be moved in order to
avoid too much fragmentation.

For every container on the list, a target node is determined using the fol-
lowing set of rules:

36 CHAPTER 4. PROOF OF CONCEPT

• When scaling out an Idle node should be used.

• Use a node already containing a container of this type.

• If the minimum number of partitions is reached or none of the above
works, use a node that does not have the container.

In case of downscaling the attempt is aborted, if not all containers find a
successful target.

4.1.1.5 Move containers to target

Purpose This aspect of the algorithm moves the container to its target node.
The algorithm splits the container (according to the associated percentage) and
moves the separated portion to its target host. On success, the container weight
is updated on the local node, on failure everything is left the same.

Model solution The system is implemented as discussed directly above.

PoC solution The system sets up a tcp connection to the target node, com-
municating the container type and the weight that is moved. On success, the
weight on the sending node is lowered and that on the target node is raised.

4.1.1.6 Communication of updates

Purpose To spread the current system state to all other nodes, thereby al-
lowing them to be informed of the current state of the system.

PoC solution This is done by sending a multi-cast message regularly, hold-
ing the current state of the node. See section 3.5.1.3 on page 25 for more
information.

4.1.1.7 Restoring weights of containers

Purpose As explained in section 3.5.1.6 on page 27, the system should restore
weight and containers after they are lost.

Improvements This was not implemented in the model or PoC because it
was not yet necessary.

4.1.2 Model

This section explains the model implementation for the queue system according
to its purpose, environment and results.

4.1.2.1 Purpose

A model was created to speed up the development of the algorithm. It al-
lowed accelerated testing of the algorithm, so that it worked correctly when
implemented in the PoC.

It also allowed and simplified testing under extreme circumstances, like
large numbers of nodes or containers.

4.1. QUEUE SYSTEM 37

4.1.2.2 Environment

The model is constructed as a program that simulates nodes and containers in
order to test the algorithm described above. The runs are then displayed in
plots to interpret the results and make improvements.

The model was used to test the algorithm with four possible system config-
urations. Each configuration represented a number of queues and nodes.

• The first configuration consisted of eight nodes and 12 queues. Six of
these queues had a maximum event insert rate of ten, five of them had a
maximum of 100. The last one had a maximum insert rate of 1800 events
per second. This is a possible lifelike configuration.

• The second configuration is identical to the first, except it has only six
nodes, which created an overload situation.

• The third configuration consisted of 50 nodes and 200 queues, each with
a maximum of 100 inserts per second. It is intended to test the system
on a larger scale.

• The fourth configuration consisted of 50 nodes and 151 queues. One
of these queues had a maximum event insert rate of 5000, the others a
maximum of 100.

These four configurations were used to test different settings of the algo-
rithm. The tested setting influenced how many containers were split and moved
when the node became TOOBUSY. The first test only moved one container at
a time, but the last two tests moved 25% and 40% of the containers on a node.

4.1.2.3 Results

The first test only selected one container to move. The results (section B.1.3.1
on page 79) clearly show that selecting the container that causes the overload
is rarely accomplished at first attempt. This test is only included as a reference
and as an exaggerated example of how bad random selection works.

Each plot shows five graphs. In the first graph each ’line’ represents the
insert rate on a particular node. Abrupt drops and rises of these lines indicate
the movement of a container; the more load a container represented for that
node the larger the difference. The second to fifth graph give the number of
nodes in the system that were in a particular state over time. These numbers
are relevant because they indicate when the system is overloaded and show
that the system adjusts the number of nodes it uses according to its needs.

The tests with the 25% and 40% setting worked better as they raised the
chance that the right container was selected. It was however no guarantee
for making optimal choices. The 40% setting was the best of the two tested,
and was therefore used in the PoC implementation. This can also be seen in
table 4.1 on the next page1. This table shows the chance that the algorithm
has selected the right container after each selection. The numbers in 4.1 only

1 c =
∑x

i=1

(
(1− k)i−1 ∗ k

)
shows how the chances are calculated. k is the chance that

a selection is correct, while x is the number of selections that are attempted, c then returns
the chance that a right selection is made after x selections. Selections are made every 15
minutes

38 CHAPTER 4. PROOF OF CONCEPT

hold when a single container is responsible for the majority of the load, the
worst case scenario. The results of these two tests are shown in section B.1.1
on page 65 and are grouped by test run, first the four plots for the 25% test,
then the 40% test.

As future work the algorithm could be modified to move 20% of all con-
tainers, thereby making sure that the input rate drops with 20 percent. This
however was not implemented due to time constraints.

attempt 25% selection 40% selection
1 25% 40%
2 4,7% 64,0%
3 57,8% 78,4%
4 68,3% 87,0%
5 76,2% 92,2%
6 82,2% 95,3%
7 86,6% 97,2%
8 89,9% 98,3%
9 92,4% 98,9%
10 94,3% 99,3%

Table 4.1: Chance that the random selection of a set of containers selects the
right container after an attempt. Attempts are done every 15 minutes when a
node is TOOBUSY

4.1.3 PoC implementation

This section explains the PoC implementation for the queue system according
to its purpose, environment and results.

4.1.3.1 Purpose

The PoC was developed to test the queue system in an environment that was
as lifelike as possible.

4.1.3.2 Environment

The queue system consists of three nodes: joscluster7, joscluster8 and josclus-
ter9. joscluster9 has significantly less hardware than the other two. These
three nodes are dedicated to the queue system. They can submit jobs (man-
agers/workers) into the batch system, but no jobs are executed on them.

The system will hold five container types: one large and four smaller. This
is consistent with the live environment where only a few queues are considered
large. See figure B.9 on page 74 for the container names and their insert rate
over time.

The input stream of events is created using a query log file from the alert
container. Because logging of all database requests is heavy, this practice was
stopped in spring 2008, after a series of service disruptions due to the load.
The remaining log files are therefore scarce and full of service disruptions. The

4.1. QUEUE SYSTEM 39

used log file is thought to provide an accurate pattern of the event stream
except for the service interruption, which occurs after a few hours. Still the
service interruption helps to test how the whole system would react in case of
failure. The log file however only provides events for the alert queue and does
not provide enough events to stress the PoC. To increase pressure the numbers
have been multiplied. For every replayed event from the log file the PoC inserts
a multitude, the numbers of which have been empirically determined in order
to stress but not overload the test system. The event insert stream during the
PoC test run is shown in figure B.9 on page 74.

The load balancer has been installed on another node that doubles as ex-
ecution node for the batch system. The load balancer retrieves the current
weight for each container by pulling a web service on each node providing this
information.

The system is created using Python[29] and the Twisted[27] library. They
have been chosen because of my experience with python and Twisted offers
a good abstraction from networking and as such allows easy programming of
network applications.

The containers are initially deployed over joscluster7 and joscluster9; the
incoming event stream is enough to stress joscluster9. Because the hardware of
joscluster9 is less powerful, it becomes TOOBUSY and moves weight to josclus-
ter7 and eventually joscluster8 is taken into use. Thus, both load balancing
and upscaling to meet resource demands are tested.

4.1.3.3 Results

Scalability In order to meet the scalability requirement, the system is ex-
pected to scale according to needs. In case of the queue system this means
redistributing containers in such a manner that no system stays TOOBUSY.

Figure B.10 on page 75 clearly shows that the algorithm starts shifting
weight when joscluster9 becomes TOOBUSY. However, the plots shown in the
overload section (section B.2.3.1 on page 127) show that this shifting is not
always perfectly successful. This has been discussed in various places already,
see section 4.1.1.2 on page 34.

The random factor that is applied when load balancing, can be a serious
problem. Still, when by chance the random selection hits the spot, the system
works quite satisfactory as can be seen in the PoC test run (section B.1.2 on
page 74).

The PoC test run shows that around 16:00, when all systems are BUSY or
TOOBUSY, the third node is taken into use. It is taken out of use again by the
scale down that takes place during the service disruption in the replayed event
stream. The same happens around midnight and 7:00, but now joscluster7 is
taken out of use.

This shows that the random factors involved when choosing which contain-
ers to move, or where to move them are less than ideal.

Failover Failover is achieved by always having a minimum of two containers
per queue in the system. If one fails, the load balancer will detect this and
direct all connections to the remaining container, as shown in section B.1.3.2
on page 84

40 CHAPTER 4. PROOF OF CONCEPT

Modification of existing code Scaling the queue system requires no code
modifications, just the extra code that needs to be run on the queue nodes.
However systems that depend on the queue system, for example the consumers,
need to be adapted. This is discussed in section 4.2.3.3 on page 47

Automation The new system proves to be an automatic scaling tool which
makes manual adjustments virtually unnecessary as long as the right containers
are moved. Due to the random selection however, the system might not run
as smoothly as section B.2.3.1 on page 127 suggests and manual intervention
might be needed to resolve such situations.

Efficiency Scaling down the number of used nodes works well, see for exam-
ple figure B.10 on page 75. However, the set of nodes that is used during the
off-hours is unpredictable as explained in section 4.1.1.3 on page 35.

To improve efficiency the unused (IDLE) nodes could be used for other
tasks during these off hours, or with some future work might even be shut
down during the night to save on power consumption.

Prioritization at overload Due to time constraints no system has been
implemented to handle priority in overload situations.

Monitoring In the PoC implementation statistics have been gathered by
letting the algorithm write periodic status messages to a database, used to
created the plots found in chapter B on page 65. This is exemplary for the
ability of the system to export performance data to our in-place monitoring
systems.

Minimizing network overhead To minimize network overhead the queue
nodes could also serve as execution nodes in the batch system. In this case it
is important to make sure that the batch and queue system do not overload
the node. See section 4.2.3.3 on page 49 for a more thorough explanation of
how workers are run on the right node.

Load balancing As said in the scalability section (section 4.1.3.3 on the
preceding page), the load balancing is well displayed in figure B.10 on page 75,
for a more detailed look per node see figure B.11 on page 76, figure B.12 on
page 77 and figure B.12 on page 77.

4.1.4 Conclusion

As the PoC implementation showed, the system is not ready for deployment in
its current form. While the redistribution of weight works well it is just a tool,
and could equally improve or worsen the situation when no correct decisions
are taken about the allocation of containers.

To improve the system a more effective selection method needs to be de-
veloped. Suggested methods include: heuristics based on history, improving
the available statistics in the live system or avoiding the selection process by
moving a small percentage of all containers on a node.

4.2. CONSUMER/H-WORKER SYSTEM 41

The distributed nature of the system improves features like fail-over, but
also makes the system more complex. For example detecting lost weight or lost
container types in a system without a central authority requires making sure
that not all nodes try to re insert lost weight or containers at the same time.

The system needs more work before it becomes usable. A better approach
might be to reconsider the use of databases as a queue system. Another queue
implementation might not only improve efficiency, but might also improve the
starting point from which a scalable solution can be built.

4.2 Consumer/h-worker system

This section shows that the developed manager/worker system as explained in
section 3.5.2 on page 28 fulfills its purpose; it can process incoming events in a
timely manner while making the system adaptive to changing load conditions.

First, the purpose of the manager/worker system is explained, after which
the core algorithm is presented and important sections are highlighted. As was
the case in the previous section about the queue system, a small model was
made to check early feasibility of the algorithm. These two, model and PoC
implementation, are discussed according to their goals and results.

Section 3.5.2 on page 28 discusses the application of the manager/worker
paradigm to solve the problems for the consumers and the h-workers (as ex-
plained in chapter 2 on page 7). The principles that make the manager/worker
system an adequate solution, apply to the consumers as well. Also, the de-
mands for the consumer system are the most complex and demanding:

• Deadline demands for the consumers are much stricter than for the h-
workers.

• The consumer system must be able to run 24/7, while the h-worker system
works at intervals.

• Determining the workers that need to be started is far more simple for
the h-worker system.

Given these points and the fact that timing restraints on this research the
feasibility of the manager/worker system for h-workers is assumed to be proven
by the feasibility of the consumers (discussed in this section). The proof of
concept system thus only implements the consumers. For an explanation about
the purpose of the consumer/worker system, please reread section 3.5.2 on
page 28

4.2.1 Algorithm

Every manager runs the same algorithm, the most important aspects of which
are explained below. The purpose of each aspect is explained together with
its model or PoC implementation and each aspect finishes with a section of
suggested improvements. Wherever the model section is left out this means that
there was no model implementation of this aspect. If the PoC implementation
is left out, this means that it was the same as the model implementation.

42 CHAPTER 4. PROOF OF CONCEPT

4.2.1.1 Determining Consumer rate

Purpose To re-evaluate the number of consumers submitted every five sec-
onds, according to the queue length history of the last minute the processing
capacity is scaled up or down.

Model solution An upper limit and lower limit are defined to indicate the
sufficiency of the processing capacity in terms of consumer rate. The last
minute of history is used to determine the state in which the system currently
resides. Going back from the most recent measurement, the number of suc-
cessive upper limit breaches is counted; when the sequence stops the count is
terminated. Also, the number of times the queue length was below lower limit
is counted. This results in three possible outcomes. First, if there is too much
processing capacity, indicated by the count of lower limit breaches. When the
history was below the lower limit more than 4 times, the consumer insert rate
is lowered with 10%. Second, if processing capacity proves to be insufficient,
the consumer insert rate is raised with 20% for every time the upper limit was
breached, with a maximum of 100% if all history items breached upper limit.
In the third situation, neither of these events occur, in which case processing
capacity is assumed to be sufficient. No changes are made in this situation.

This procedure allows fast adaptation to growing event insert rates, poten-
tially doubling the consumer insert rate every minute, while taking gradual
steps during scale down.

Improvements Ideally, the consumer insert rate could be re-evaluated using
the event insert rate of the monitored container, because there is a direct
relation between the number of needed consumers and the event insert rate.
Using queue length to steer this process introduces errors, because a rise in the
queue length could mean two things:

• Inserts/sec have risen and there is not enough processing capacity.

• The underlying system is overloaded and there is a backlog of consumers
that need to be run.

In this algorithm the first reason is assumed and the second is handled by the
built-in overload prevention, which is explained below.

The exact figure for the optimal upper limit is not stated here; it is however
explored in the results section of the model (section 4.2.2.3 on page 44).

4.2.1.2 Overload prevention

Purpose Overload prevention is necessary to make sure that when the batch
system is overloaded, no more consumers are submitted into the system. When
overload occurs, the batch system is unable to process all submitted consumers.
This will cause a rise in the queue length. The re-evaluation of the consumer
rate described above will assume this is caused by a risen number of inserts
and will raise (worst case: doubling each minute) the consumer rate, further
overloading the system.

4.2. CONSUMER/H-WORKER SYSTEM 43

PoC solution Each manager keeps track of the number of consumers that
are submitted to the batch system, but that still need to run. Using this
number the manager can determine whether an overload is situation exists and
stop submitting more workers.

Improvements The central storage needed for the count introduces a poten-
tial risk into the system in terms of availability. Therefore it would be better
if the batch system could report, for each type, on the number of workers that
are waiting to be run.

The only available method to monitor job progress in the current batch
system is to read and parse the log files (provided by the batch system) for
each job. The drawback of this is the potentially large number of log files that
have to be monitored. This is why job tracking is implemented in the managers
and workers.

4.2.1.3 Backlog

Purpose A backlog in the events that need to be processed can be caused
by three things:

• an empty queue on startup

• a sudden burst of events for which processing capacity was insufficient

• a systematic shortage of processing capacity because either the batch
system or mysql can not provide sufficient resources

Model solution To secure the processing of a backlog, the system regularly
checks the queue length and after this exceeds a certain threshold it will sub-
mit extra workers. Because the cause can be overload of either the batch or
database system, it is also subject to overload prevention.

Improvements The current implementation only helps to process events
already waiting. It might be worthwhile to experiment with anticipating future
events and starting more workers than necessary.

4.2.2 Model

This section explains the model implementation for the consumer/h-worker
system according to its purpose, environment and results.

4.2.2.1 Purpose

The model was developed to create a sound core algorithm that can be used
while building the PoC. Doing this in a model has several advantages:

• early check on its feasibility.

• Tests are much faster since the conception of time is modeled as well.

44 CHAPTER 4. PROOF OF CONCEPT

Upper limit total waiting events run workers
50 230269 16319
250 618564 10766
500 1093347 9461
1000 1449517 10175
2000 3047514 9982
5000 9448519 9614
15000 42139598 8375

current system best case - 12000

Table 4.2: Total number of worker runs needed to process all events. The upper
limit is changed in order to see the effect this has on the total worker runs and
the number of measured events in the queue. The events have a maximum
insert rate of 50 events/sec.

4.2.2.2 Environment

The model was written as a program in Python, which wrote data to files
that could be generated into plots. This way the algorithm could be easily
analyzed and adjusted. The model was tested with a sinus wave as its input
rate, to mimic the changing input rate during the day in the live system.
While this is not life like, it provided enough data to adjust the algorithm.
Two maximum insert rates of 50 and 1000 events per second were tested to
examine the adjustment of the system to low throughput and high throughput
queues. For each of these input rates a variety of upper limit settings were
tested, in order to determine their effects on the algorithm.

A worker in the system processes 50 events before it quits. In a later test
exploring the PoC conditions, event insert rate was set a maximum of 3000 and
the workers processed 400 events at once. This was done to limit the number
of workers needed in the system.

4.2.2.3 Results

The first version of the algorithm did not include a system to cope with the
accumulation of events while the algorithm adjusts its insert rate to match
conditions on startup. The tests showed early on that this created an unstable
system on startup. The worker insert rate over shot the ideal in order to process
all waiting events. A backlog system remedied this by submitting workers to
process the backlog that was created during abrupt changes in the event insert
rate. For more information about this please see section 4.2.1.3 on the preceding
page and section 4.2.3.3 on page 47.

As can be seen in the plots in section B.2.1 on page 89, the algorithm adjusts
well to changing conditions. The upper limit used to determine whether the
worker insert rate should increase is has a lot of influence on how efficiently
the algorithm runs. There is a trade-off between the delay events incur before
being processed and the total number of workers run.

Tables table 4.2, table 4.3 on the facing page show that when the the upper

4.2. CONSUMER/H-WORKER SYSTEM 45

Upper limit total waiting events run workers
50 7144436 211115
250 7452414 175680
500 9909419 167900
1000 10599948 158138
2000 12052485 157162
5000 16591509 155812
15000 32221041 147241

current system best case - 240000

Table 4.3: Total number of worker runs needed to process all events. The upper
limit is changed in order to see the effect this has on the total worker runs and
the number of measured events in the queue. The events have a maximum
insert rate of a 1000 events/sec.

Upper limit total waiting events run workers
50 18489993 97404
250 18711647 93843
500 19049233 81263
1000 20209587 74626
2000 23171925 70592
5000 30052367 62926
15000 43745289 60734

current system best case - 90000

Table 4.4: Total number of worker runs needed to process all events. The upper
limit is changed in order to see the effect this has on the total worker runs and
the number of measured events in the queue. The events have a maximum
insert rate of 3000 events/sec. Each worker processes 400 events on a run

limit used in the algorithm is increased, the total number of workers decreases
but the number of events that are measured to be waiting increases, indicating
that events incur more delay before being processed. The tables also show the
”current system best case”, which the number of consumers that would need
to run in the current system to match the peak insert rate.

A sweet spot appears to exist when the upper limit is set between 250 and
2000 for a worker that processes 50 events in a run. This changes to 500 up to
5000 when the worker processing capacity is changed into 400 events.

Further tests regarding the optimal settings for the algorithm are left for
future work. It is however proven that, at least in the model, the algorithm uses
less resources than the best case scenario in the current system. For example,
a maximum insert rate of a 1000 events per second and a worker processing
capacity of 50 events leads to a static configuration of 20 h-workers that need
to run each second. This results in 24.000 h-worker runs during the period of
the model test. Table 4.3 shows however that the algorithm used 30 to 40%
less workers.

In conclusion, the algorithm adjusts very well to changing conditions in the
insert rate which is one of the main demands. By design, demands like failure

46 CHAPTER 4. PROOF OF CONCEPT

resistance and single instance daemon are delegated to the batch system. This
only leaves the ability of a manager to restart without seriously hampering the
processing capacity, which is the purpose of the backlog aspect. As said the
optimal settings for the algorithm can be even further explored, but this is
designated to be of lesser importance and as such left for future work.

4.2.3 Proof of Concept implementation

This section explains the PoC implementation for the consumer/h-worker sys-
tem according to its purpose, environment and results.

4.2.3.1 Purpose

This system is the most lifelike test in the research. The amount of factors taken
into account, make this phase more realistic than the model. This results in a
test system which can mimic the live behavior as closely as needed in order to
evaluate the system.

This evaluation takes places using the focus points or problems that exist
in the current system.

4.2.3.2 Environment

The queue system submits managers to the batch system when a new container
is created. The batch system then runs these managers and the workers that
they in turn submit into the batch system. The batch system consists of a
total of 11 nodes; three of these are the nodes that run the queue system which
can only submit managers to be run on the other eight nodes. Each node has
a number of slots, in which they can execute a job. In total the system has 68
slots.

The chosen batch system is Condor and this choice is explained in sec-
tion A.1 on page 55.

The input data for each manager is dependent on the insert rate for its
associated container. Still, the quality of the event stream (see section 4.1.3.2
on page 38) is such that it closely follows what happened on the alert queue
for a typical day in april 2008, making sure that the pattern represented by the
stream is as realistic as possible. However, in order to generate enough load
the insert events are multiplied around 400 times.

While the queue managers are implemented as if this were the live system,
the workers take a more simplistic approach. To save on the needed processing
capacity in the PoC, these workers just delete X events after which they sleep
for a short period to emulate processing the deleted events. Another reason
for this simplistic approach is that there was no time to build a complete live
test environment in order to give the workers proper access to all databases.
Other aspects that would potentially make it time consuming are: the code is
unfamiliar and the practice of ruling out any effect on the live or development
environment would have been a trial and error method. The aim was to elim-
inate as many external factors as possible, making sure that they could not
influence the test results.

4.2. CONSUMER/H-WORKER SYSTEM 47

4.2.3.3 Results

To evaluate the system, it is best divided into sections which will be discussed
separately. The order in which they are presented here indicates their impor-
tance to the final conclusion.

Scalability In order to fulfill the scalability requirement the system is ex-
pected to scale according to needs. In case of the manager/worker model, the
worker insert rate should follow a pattern, equal to the event insert rate on the
associated container, thereby adjusting processing capacity to the requirements
at hand.

The plots in section B.2.2 on page 111 show that this is indeed the case.
Each plot illustrates the behavior of a manager associated with a container.
There are five distinct container types and three nodes in the queue system,
resulting in 15 possible containers and thus 15 plots. The plots contain four
graphs; the first graph shows the estimated event insert rate of the queue, the
weight of the container and the derived insert rate on that container. The
second plot shows the worker insert rate determined by the manager. The
third plot shows the number of waiting events (queue length) measured in the
system. When no waiting events were measured this is not shown. The fourth
graph shows an approximation of the processing delay over time. The reliability
of this has a direct relation with the event insert rate on the container, and
fluctuates strongly when the insert rate draws near zero. Nota bene: the event
insert rates are unknown in the live environment.

By comparing figure B.43 on page 112 and figure B.48 on page 117 in
particular it is seen that the system works well for both high capacity and low
capacity queues.

However when a queue node becomes overloaded, the managers associated
with a container on that node further degrade performance. This is shown by
the plots in section B.2.3.1 on page 127. The node on which the container
exists becomes overloaded around 23:45 (figure B.59 on page 129). This results
in degraded performance from the database. Queue operations take longer
and might eventually time out. Because queue operations take more time,
connections stay open longer, further degrading performance of the already
busy database system. In addition the manager detects a large number of
waiting events and raises the worker insert rate even further, which can be
seen in figure B.58 on page 128.

In addition the workers take longer to run and could thus fill up the re-
sources of the batch system, thereby decreasing performance for all other jobs
running on the batch system. This in turn could raise the number of waiting
events in other queues, triggering their managers to raise the worker insert rate.
Future versions of the manager algorithm should take the state of the node on
which their container resides into account, for example by not further raising
the worker insert rate when the node state is TOOBUSY. Another method of
overload detection could be to monitor the rate at which workers are executed.

To allow the manager to adjust to abrupt and large increases in the event
insert rate on a container the backlog system is used. As figure B.61 on page 132
shows, the backlog system submits burst workers when a backlog of events is
created. These workers are to process the events currently waiting. This gives
the algorithm time to adjust its worker insert rate to the desired level. This

48 CHAPTER 4. PROOF OF CONCEPT

can be seen by comparing figure B.61 on page 132 and figure B.62 on page 133.
In B.62 the backlog system is disabled. It shows that the worker insert rate
then overshoots the desired insert rate by a factor of two.

Failover Failover of the manager/worker system is handled by the batch
system. For this, it is necessary that the managers are stateless, so that, in
case of a crash, they can be restarted without undue problems. Of course, it
is to be expected that processing capacity will be disrupted for a period of
minutes after a crash. When a manager stops running the batch system will
restart the manager on another node. figure B.61 on page 132 shows that,
at 13:10, a manager crashes and restarts almost immediately, after which the
necessary processing capacity is restored within minutes.

Single instance daemons This specific kind of worker can only be run once
at any time, to avoid data corruption. The managers from the manager/worker
system are implemented as single instance daemons and therefore serve as
perfect examples.

Modification of existing code One of the goals of the research is to use
the legacy system as a basis for a new solution. This should be done by
re-using codes and techniques that are already implemented, but only to a
certain extent, as the objective is to develop a new and improved method.
All consumers and h-workers in the current system must be rewritten to take
configuration variables regarding the location of their containers/queues from
either command line arguments or environment variables. They must also be
stripped from the outer batch loop that made them run perpetually. The
managers have to be developed, but can borrow heavily from the version built
for this proof of concept.

Automation The manager/worker system proves to automatically scale pro-
cessing capacity according to the needs.

Efficiency Adjusting the number of workers to the demand, should lead to
more efficient use of hardware. The model tests of the manager/worker system
show that this is indeed possible. A quick glance at the plots of this PoC test
show that this is not yet the case, this is expected to be solved by revising or
fine-tuning the algorithm at a later stage, when the input of the system is less
focused on stress testing and becomes more realistic.

Prioritization at overload One of the subgoals of this research is to in-
troduce prioritization in the system to handle overload cases as efficient as
possible. In such cases, it is desired that jobs get an order of importance and
resources are assigned to them accordingly. Because prioritization is defined
to be of limited importance and time was short, this was not implemented in
the PoC. Implementation could be achieved using the prioritization facilities
provided by the batch system2.

2http://www.cs.wisc.edu/condor/manual/v7.0/2_6Managing_Job.html#sec:job-prio

http://www.cs.wisc.edu/condor/manual/v7.0/2_6Managing_Job.html#sec:job-prio

4.2. CONSUMER/H-WORKER SYSTEM 49

Monitoring Monitoring has a double purpose. On one hand it keeps track
of performance indicators, thereby showing the current state of the system. On
the other, it informs the team in case of errors. The possibilities to extract
enough performance indicators is illustrated by the abundance of data collected
in the PoC solution. In a life solution, all this data can be gathered and
presented by the systems currently in place: Ganglia and Nagios.

Software/hardware demands of jobs In a live environment, it is not un-
common that different pieces of software have different requirements regarding
software libraries, or maybe even hardware aspects. In the used batch system,
such requirements can be taken into account during resource assignment. This
is done by having execution nodes broadcast their capabilities and defining re-
quirements for a job on submit. The batch system will then run the job only
on the nodes that meet the requirements. For examples see the manual3.

Minimizing network overhead In a later stage, the queue system and the
batch system can possibly run on the same set of nodes. This would be done by
dividing local resources between both system, for example: 30% for the queues
and the rest for the batch system.

On submitting workers, a preference for a specific node can be defined. By
defining this preference4 for the node that holds the container, the job basically
requests to be run close to the queue so that it can use unix sockets instead
of tcp/ip. But when the node is busy the job is run on another node, so
network overhead is minimized without making the worker wait. Configuring5

the ’shared’ nodes such that they only allow jobs that have requested to run
on that particular node, makes sure that these nodes are only used by the jobs
that take most benefit.

Load balancing Managers submit their workers to the batch system, which
handles their execution. The batch system distributes them among the avail-
able nodes, making sure that the load is equally spread.

4.2.4 Conclusion

As described in previous sections and can be seen in the plots (section B.2.2 on
page 111) the system works well in most respects. It adjusts well to changing
conditions, although efficiency could be improved as is shown in the model.
Failure resistance is robust and a crash of the manager is remedied within
minutes, with only a small hiccup in processing capacity.

Weak spots however are overloads of the node on which the associated
container resides or an overload of the batch system, for which two solutions
are suggested.

The principle of using a manager/worker system in combination with a
batch system (resource manager) is proven to be sound and effective and as such

3http://www.cs.wisc.edu/condor/manual/v7.0/2_5Submitting_Job.html#

SECTION00352000000000000000
4http://www.cs.wisc.edu/condor/manual/v7.0/2_5Submitting_Job.html#

SECTION00352100000000000000
5http://www.ccp4.ac.uk/ronan/condor_tutorials/scotland-admin-tutorial-2004-10-12.

html#start_expression

http://www.cs.wisc.edu/condor/manual/v7.0/2_5Submitting_Job.html#SECTION00352000000000000000
http://www.cs.wisc.edu/condor/manual/v7.0/2_5Submitting_Job.html#SECTION00352000000000000000
http://www.cs.wisc.edu/condor/manual/v7.0/2_5Submitting_Job.html#SECTION00352100000000000000
http://www.cs.wisc.edu/condor/manual/v7.0/2_5Submitting_Job.html#SECTION00352100000000000000
http://www.ccp4.ac.uk/ronan/condor_tutorials/scotland-admin-tutorial-2004-10-12.html#start_expression
http://www.ccp4.ac.uk/ronan/condor_tutorials/scotland-admin-tutorial-2004-10-12.html#start_expression

50 CHAPTER 4. PROOF OF CONCEPT

also applicable for the offloaded tasks. The only relevant question remaining is
whether the batch system can fulfill the resource requirements of these offloaded
tasks, no problems are foreseen though.

Chapter 5

Conclusion

It was a challenge to find a way to improve the current static implementation of
h-workers and consumers without changing it in an intrusive way. While a lot
of work still needs to be done before an actual implementation can be realized,
this thesis presented a framework that increases the scalability, fail over and
load balancing characteristics of the current offload and data preparation tasks.

The outlined solution facilitates the dynamic assignment of queues and tasks
according to needs and availability of resources, introducing flexibility into the
system. This flexibility is harnessed to improve on many of the deficiencies of
the current system.

The static configuration of the system, mentioned as one of the core prob-
lems, is now done dynamically. In this system each task has a manager, re-
sponsible for requesting adequate resources, and the underlying batch system
then assigns resources on one of the available servers.

The other core problem was that performance data per task is not available.
By introducing the managers there is now a central authority per task that
can gather and report performance data, helping in the analysis of problems
encountered during daily operations.

These improvements allow the system to become more scalable because the
batch system handles the physical resource assignment in an automated and
dynamic way. Meanwhile the managers allow tasks to scale according to their
individual capacity needs.

Fail-over of tasks is achieved by ensuring that the batch system restarts
crashed managers. The algorithm in the managers must be designed to easily
recover from a crash.

The tasks managers request resources to start short running workers. The
fact that these workers are relatively short lived aids the fail-over and load-
balancing characteristics. The fast pace at which workers are started allows
the batch system to ”balance” the workers over the available resources and
quickly adapt to changing conditions.

In opposition to the chosen solution one might say that the design is too
complex. However this complexity is necessary, because the system is designed
to grow with the capacity needs of the coming years and the dynamic assign-
ment of resources opens the doors to using unused resources on servers during
off-peak hours.

There are several options left to improve the queue system, like: more ele-

51

52 CHAPTER 5. CONCLUSION

gant handling of overload situations. A more suitable algorithm of the database
queue, and the actual database product used are also variables that could pro-
vide further research.

Chapter 6

Future work

Throughout this thesis several possibilities for future work are mentioned. A
summary of them is given here.

First, the algorithms used throughout the system could be further developed,
thereby taking into account aspects like history. For example a heuristic con-
tainer selection or worker insert rates that are partially based on history. It
would also be interesting to see whether moving a small percentage of all con-
tainers on a node would be more effective, especially in combination with a
back-off period in the queue manager in case of a TOOBUSY node.

Better results however, could probably be achieved by finding a more suitable
implementation for the queues. Overload detection in the queue managers
could possibly be made more effective by monitoring the number of run work-
ers per second.

The different settings in the queue manager algorithm should be explored in
order to improve efficiency.

Other areas of research could be the development more effective resource man-
agement for SMP machines, instead of the current slot mechanism. Because
many similar jobs execute in this system, their resource usage could be profiled
over several runs. This profile could then be used to decide whether a node
has enough spare capacity to run a job.

The Hyves serverpark and software should be explored for tasks that would
benefit from running on a batch system, such as performing backups or pars-
ing log files.

53

Appendix A

Complimentary explanations and
data

A.1 Selection of a batch system

The selection of the batch system is based on a number of factors, ranging
from failure resistance to costs. Three batch systems were tested on all relevant
aspects; a small test setup was created to evaluate the operational difficulty
of each system. All three batch systems will be listed below and for each all
aspects will be discussed.

A.1.1 Sun grid engine

Sun grid engine (SGE) is an open source project sponsored by Sun Microsys-
tems. The system works by defining a queue for each job category. A category
is the product of several attributes like priority, software requirements, timing,
etc. A queue can be associated with one or more nodes, and a node can, in
turn, be associated with one or more queues.

As the batch system will be used in a facilitating manner, it has to be
dependent. In other words, it needs to run perpetually. SGE works with a
master that directs all other nodes. In case of failure the system stops working.
To eliminate this risk, shadow masters can be designated to take over the role
in case of master failure. In order to facilitate this, a shared file system is
required to share state between the master and its shadows. Fail over should
happen within ten minutes.

By assigning a queue only to machines with a certain software package, it
is possible to make sure that jobs that need this package will only run on these
nodes.

Depending on the policy jobs that have failed to execute properly can be
re inserted into the queue, so that they will be run again.

As mentioned, queues can be assigned a priority, thereby influencing prior-
ities among jobs.

Queues can be suspended according to a schedule. Jobs in the queue are
not brought into the system during its suspension and jobs already running are
suspended. Jobs can thus be started at a specific time, namely the time the
queue is unsuspended, but the queue must remain unsuspended as long as a
job runs. Some jobs are not allowed to leave the queue and are thus forced to

55

56 APPENDIX A. COMPLIMENTARY EXPLANATIONS AND DATA

run at intervals. However while the queue is unsuspended the job will restart
as soon as it finishes. For a well working system, suspension of the queue and
the finishing of the jobs must coincide. If the schedule suspends the queue
too early, the job is suspended as well and will not finish until the queue is
resumed. If the schedule is too lax the job will be restarted as soon as it has
finished.

A job inserted into the batch system is only run once at any time, however
nothing stands in the way of inserting the same job multiple times. Consumable
resources can be used to remedy this problem; they are often used for example
for licensing. When a job indicates that it uses a consumable resource that
resource is lowered as soon as it is run. When the resource only holds one
(for example license), no other jobs that use that resource can run at the same
time.

A.1.2 Condor

Condor is developed by the University of Wisconsin Madison. The system
works by associating a set of attributes to a job, called an advertisement. Each
node also advertises its capabilities. The scheduler then matches jobs onto the
available resources using these advertisements.

Condor is a largely distributed system, but one of its few centralized aspects
is the negotiator. The negotiator fulfills an important role by mapping jobs
to available resources. The negotiator is also called the central manager. To
protect the system against failure, several mechanisms are implemented. The
most important of these protects the negotiator. From the condor manual1:

”Configuration allows one of multiple machines within the pool to function as
the central manager. The other potential central managers are the idle central
managers. Each potential central manager machine runs the high availability
daemon, condor had. These daemons communicate with each other, constantly
monitoring the pool to ensure that one active central manager is available. If
the active central manager machine crashes or is shut down, these daemons
detect the failure, and they agree on which of the idle central managers is to
become the active one.

In the case of a network partition, idle condor had daemons within each
partition detect (by the lack of communication) a partitioning, and then use
the protocol to choose an active central manager. As long as the partition re-
mains, and an idle central manager exists within the partition, there will be one
active central manager within each partition. When the network is repaired,
the protocol returns to having one central manager.”

Replication from the active central manager to the idle central managers makes
sure that the state is not lost during failure.

Another potential failure point is that each machine holds a queue of the
jobs which are submitted on that machine. When that queue becomes unavail-
able, those jobs can no longer be run until the problem is fixed. A central
queue (with backups) can be used to remedy this problem, but this method
works through a shared file system.

1http://www.cs.wisc.edu/condor/manual/v7.0/3_10High_Availability.html

http://www.cs.wisc.edu/condor/manual/v7.0/3_10High_Availability.html

A.1. SELECTION OF A BATCH SYSTEM 57

A job can specify requirements which must be fulfilled by the node that is
matched to the job. These requirements can range from a software package to
hardware requirements or free memory.

Depending on the policy in place, the job will be re inserted when it exists
abnormally.

Jobs can be given a priority on submission, which is then taken into account
by the negotiator.

Each job can also be given a schedule, which specifies when the job has to
run. The job is then released on the times that are specified, unless it is still
running from the previous interval. When a job finishes it is not run until the
schedule releases it again.

Single instance daemons are implemented using a schedule that will run
them every five minutes. In case of a failure it will take five minutes before the
daemon runs again.

A.1.3 Cluster resources

Cluster resources is the company that builds Moab, a scheduler that is run on
top of the open source Torque resource manager.

Moab relies on replication to provide high availability of its scheduler. The
underlying resource manager (torque) however uses a shared file system to
provide high availability.

Just as in the previous batch systems, jobs can specify requirements which
have to be met when scheduled. Also the policy decides whether jobs are re
inserted on failure.

Using a reservation system, jobs can be scheduled regularly or at particular
times. The job is started each time, regardless of whether the previous job still
runs.

By using consumable resources the system can guarantee that single in-
stance daemons really only run once, even when submitted multiple times.

A.1.4 Conclusion and selection

Even though Condor is a complex system to operate, it best fulfills the aspects
discussed in the previous sections. Failure resistance of the master is more
than acceptable, although the queues could use more attention. Its crontab
like scheduling works well with the way tasks manager would be constructed
for workers (section 3.5.2.1 on page 28), and its priority and requirements
mechanisms for jobs seem more simple than those of SGE. For these reasons
Condor was chosen for a Proof of Concept implementation. For a real world
implementation this decision should be reconsidered, in the view of knowledge
gathered during this research.

58 APPENDIX A. COMPLIMENTARY EXPLANATIONS AND DATA

A.2 Tasks implemented using h-workers

This section gives an indication of the tasks that are implemented using the
h-worker paradigm. All tasks listed here should work in the new solution. The
list does not aim to be complete, only to be comprehensive. The table shows
the task names, the interval at which the task is run and whether it is a single
instance.

Task name Interval Single instance
Easymembersearchindexer daily
AlbumIntegrityChecker daily
MemberIterator daily
SearchBuilder daily Yes
Globalcache almost perpetual
OrderIntegrityChecker hourly
OldMessageDeleter hourly
ServerManagementImporter almost perpetual Yes
Parsemail almost perpetual
WhatsNext almost perpetual Yes

Table A.1: List of tasks using the h-worker model

A.3 Tasks implemented using the producer/consumer
paradigm

This section gives an indication of the tasks that are implemented using the
producer/consumer paradigm. All tasks listed here should work in the new
solution. The list does not aim to complete, only to be comprehensive. the
table will mention task names and whether the task currently uses a distributed
queue.

A.4. DATABASE 59

Task name Distributed Queue
Queueserver
SmsQueueServer
OrderQueueServer
QueueServerBlogPing
QueueServerGroupMessage
QueueServerOneWayFriendMessage
FeedleecherQueueServer
ProcessPrepaymentsDaemon
ResendInvitationsDaemon
MemberDeletion
NewsLetterSender
MailNotifier yes
SignalQueueServer yes

Table A.2: Dispersion of jobs on character categories

A.4 Database

A simple definition of a database is: A data store that allows efficient storage
and retrieval of data. Several techniques exist that define different methods of
storing and retrieving the data, some of these are object, relational and xml
databases.

Relational databases are in common use among web applications. The
MySQL database, http://www.mysql.com is such a relational database. It
is also in widespread use, and has always been used by Hyves. Hyves makes
extensive use of the MySQL database for data storage and retrieval. The 500
database servers in use by Hyves, currently contain about 4TB of unique data.
This data is however duplicated a great many times over these 500 servers to
facilitate load balancing and fast retrieval of data.

Several techniques are used to meet the data access requirements imposed
by the volume of the website. First, duplicates of the data are spread over more
servers, so that they can be accessed in parallel. Write operations are sent to a
’master’ server which keeps all duplicates consistent through replication, which
makes sure that all duplicates execute the writes in the proper order. Read
performance can be scaled almost linear with the number of duplicates. Write
performance however is restricted, and can only scale up to the capabilities of
the weakest server.

Second, the data is split into distinct sets. For example, market data and
friend data can be split because there are no relations between the two. Each
set gets its own servers to apply principle one if necessary. This is an easy
method of reducing the writes per dataset by splitting it over multiple sets.
This however only works if distinct sets of data can be identified within the
total dataset.

Third, the data can be split according to some common identifier. For
example the data for the users 1 through 50.000 are put onto server X, while
the data for the next batch of users is put on server Y. If the the size of the
resulting partitions is chosen carefully the system can scale almost endlessly,
as the partitions can be kept small enough to fit easily within the capabilities

http://www.mysql.com

60 APPENDIX A. COMPLIMENTARY EXPLANATIONS AND DATA

of a database server. The problem has now shifted to determining which server
holds the data we seek. More about these techniques can be found here: [11]

A.5 Load balancer

The load balancer used is a layer 4 load balancer, which means that it works
on the ip level in tcp or udp. Clients connect to the load balancer and are then
redirected to a real node chosen by the load balancer.

This behaviour is achieved by using direct routing. The load balancer
rewrites the destination mac address and puts the frame on the internal lan
where it is received by the real node. More about this and other possible
methods to load-balance using layer 4 can be found in [39].

The connection scheduling algorithm used throughout this paper is Weighted
Round Robin. A more detailed explanation of this and other connection
scheduling algorithms can be found in [39], but here is a small explanation
extracted from the article:

In the WRR scheduling, all servers with higher weights receive new connec-
tions first and get more connections than servers with lower weights. Servers
with equal weights get an equal distribution of new connections. For example,
the real servers A,B,C have the weights 4,3,2 respectively, then the scheduling
sequence can be AABABCABC in a scheduling period (mod

∑
(Wi)). The

WRR is efficient to schedule requests, but it may still lead to dynamic load
imbalance among the real servers if the request load varies highly.

A.6 Solution A

This design is based on , the article describes a load balancer algorithm
in which each node in the system has the responsibility to manage its own
resources. If the node becomes TOOBUSY it has to move work to other nodes.

Solution A is a distributed system in which each node is independent. Com-
munication with other systems only happens in case of status updates or when
moving work between nodes. The purpose of the system is to load-balance and
scale typed containers and hardware. The number of nodes used by the system
is scaled according to the needed capacity: all nodes during peak hours, only
a few during off hours.

A.6.1 Node

A node is a hardware system that is available for use by solution A. Unlike nodes
in ’Solution B’ (section 3.5 on page 24) they will be used by queues, consumers
and h-workers. Each node has a state indicating its availability. This state is
determined by the total resource consumption on the node. Available states
are as follows:

IDLE has no containers, is not used by the system

NORMAL has a normal workload

BUSY node is busy, and load balancing can not move work to this node

A.6. SOLUTION A 61

TOOBUSY node is overloaded and load balancing tries to move work to
normal or idle nodes.

At a certain interval, each node takes a set of local decisions. These are
based on local information and the information concerning all other nodes
available through the global state. These decisions are further described in the
sections section A.6.4 on the next page to section A.6.7 on page 63.

A.6.2 Container

Unlike in ’solution B’, a container holds a fixed set of consumers or h-workers,
all performing the same task. The h-workers and consumers run perpetually,
just like in the current system. If a container holds consumers it also holds
the associated queue (see figure A.1). Typing occurs according to the task the
consumers or h-workers perform. Also, multiple containers can co-exist on the
same node.

Container, type=sms sender, state=NORMAL

Container, type=data importer, state=NORMAL

Queue

processor

processor

processor

worker

worker

worker

Figure A.1: Different container implementations

Because the set of consumers or h-workers running in the container is fixed,
so is the maximum processing capacity per container. To facilitate scaling, each
container therefore indicates, through a state variable, whether more processing
capacity is needed. In such situations the system tries to start more containers
of the required type in order to increase the processing capacity. ’consumer
containers’ might use the length of their queues to detect if more capacity is
needed. A growing queue length generally indicates a shortage of processors.
The ’h-worker container’ has no real conception of how many h-workers are
required, but simple first versions might try to aim for a number of h-workers
and use the container state to reach this ’optimum’.

The queues in the system are segmented and a segment holding a container
of the right type runs on each node. All incoming events are distributed among
the available containers, taking into account the correct type. When a ’consu-
mer container’ runs on a node the local database will hold its queue-segment.
Consumers therefore always connect through unix sockets, thereby minimizing
network overhead. When multiple ’consumer containers’ run on the same node,
they will share the local queue-segment.

62 APPENDIX A. COMPLIMENTARY EXPLANATIONS AND DATA

Each container has a start and stop method that is called by the system.
This allows for different implementations per container type and easy adop-
tation to the different requirements per type. For example: a ’consumer con-
tainer’ might check whether a queue is available on the node before starting
the consumers.

A.6.3 Global state

Every node in the system regurarly sends an update to every other node in
the system announcing its own state: node name, node state and a list of
containers. Every node processes the received updates, and is thus informed
about the global state of the system.

This information is used for making local decisions based on the global
state of the system. Solution B implements the same global state and for
further discussion of membership, implementation and scalability please read
section 3.5.1.3 on page 25.

A.6.4 Load balancing

Each node takes a number of local decisions. One of them is whether containers
should be moved to other nodes. When the node is TOOBUSY, the algorithm
will select a number of containers and attempt to move them to different nodes.
NORMAL nodes already containing the container type are preferred, if these
are not available the system uses other NORMAL nodes. When too few normal
nodes are available, the target node is selected from the IDLE nodes. This is
further explained in section A.6.5.

On movement of a container the system stops the container on the current
node and restarts it on the target node. If this does not succeed the system
leaves the container on the originating system. Stopping of a container imme-
diatly drops the resource consumption on that node.

In order to distribute incoming events, a load balancer monitors the number
of each container type on every node and distributes the events according to
these numbers. The algorithm Weighted Round Robin is briefly discussed in
section A.5 on page 60.

A.6.5 Scaling up/down

Both the number of active nodes and the number of containers per type need
to be scaled up and down according to the required capacity.

Using the state variable of each container indicating whether more process-
ing capacity is required, the percentage of containers (grouped by type) that
request more capacity is calculated each decision cycle. When this exceeds a
threshold the node will try to start more containers of the required type. These
are started locally, if the current system load allows this. To make sure that
not every node starts containers, only a percentage of the nodes that detect
the need for more containers, succeed in starting a new container.

The same principle is used for determining whether more nodes are needed.
When the majority of nodes is BUSY or TOOBUSY, the load balancing de-
scribed above is influenced. An IDLE node is selected as a target node, effec-
tively that node is taken into use. To make sure that not all nodes are taken

A.6. SOLUTION A 63

into use at the same time, only a percentage of the times an IDLE node is truly
selected.

During off-hours the system is scaled down. When all nodes, or at least a
large percentage, in the system indicate their states as NORMAL, there is a
small chance that a node will try to move all of its containers to other nodes.
If succesful the node returns to the IDLE state.

Also, during the off hours, a small percentage of the nodes that are not
trying to reach the IDLE state will try to stop some of their containers. They
will only stop containers that exist multiple times on the same node. This is
in an attempt to consolidate the number of containers.

A.6.6 Failure resistance

There are several failures that can occur in such a system. The most common
is the loss of a node. This could be because of communication failure, bugs
in the software, hardware failure, etc. In such a case the node will no longer
send periodic updates and will be removed from the global state. After a
period of time, all other nodes will no longer know of its existence. The node
is reintroduced into the system when the other nodes start receiving updates
again. The load balancer also notes the unavailability of the node and will no
longer send events to it. So, in case of failure the node is taken out of the
system until it announces itself again.

To guarantee that a certain type of container is always present in the system
it has to be running twice, each on a different node, so that it is still available
when a node fails. If one container goes down with a node, it has to be restarted
on another node to re-establish its failure resistance. Of course this course of
action is not available for single instance workers, so the system must keep
track of all single instance workers and if one fails restart it.

A.6.7 Monitoring

Because the queue system is to be developed in house, it can be made to work
smoothly with the monitoring systems in place. An interface could be provided
to pull status information from nodes or the system could push information
to monitoring systems. Available information includes system resources used,
the list of present containers and their states. Auxiliary intelligence must be
built in to detect non running single instance workers or container types which
should be in the system.

A.6.8 Single instance daemons

A single instance daemon is wrapped into a container which will never indicate
a need for more capacity. The system will run only a single container of that
type and upon detecting failure, will restart the container on another node.

A.6.9 Conclusion

The system is a good fit for consumers that have continuous resource needs.
The h-workers however, which have a burst need for resources at specific inter-
vals, are ill served by this system.

64 APPENDIX A. COMPLIMENTARY EXPLANATIONS AND DATA

Also the efficiency of the used resources is not optimal. Downscaling only
happens during off-hours and a task that runs in the morning will keep its
requested resources until the system downscales in the night.

All in all, the scaling mechanisms used are an ill fit for the h-workers,
making the system unsuitable.

Appendix B

Plots

This chapter contains the plots used to explain the results in proof of concept.
a section is created to differentiate between plots and there sources.

B.1 Queuesystem

B.1.1 Model test run

This section contains the plots for the queue model test run, discussed in sec-
tion 4.1.2 on page 36.

65

66 APPENDIX B. PLOTS

Model Queue system
Configuration: one

Containers moved: 25%

200
Busy

TooBusy
1000

1400

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

ev
en

ts
/s

ec

Time

cumulative Inserts per node

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of BUSY or TOOBUSY servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of IDLE servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of NORMAL servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of TOOBUSY servers

Figure B.1: Together with B.2, B.3 and B.4 this plot tests moving 25% of the
containers in all four configurations. Plots B.5, B.6, B.7 and B.8 do the same,
but move 40% of the containers.

B.1. QUEUESYSTEM 67

Model Queue system
Configuration: two

Containers moved: 25%

200
Busy

TooBusy
1000

1400

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

ev
en

ts
/s

ec

Time

cumulative Inserts per node

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of BUSY or TOOBUSY servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of IDLE servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of NORMAL servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of TOOBUSY servers

Figure B.2: Together with B.1, B.3 and B.4 this plot tests moving 25% of the
containers in all four configurations. Plots B.5, B.6, B.7 and B.8 do the same,
but move 40% of the containers.

68 APPENDIX B. PLOTS

Model Queue system
Configuration: three

Containers moved: 25%

200
Busy

TooBusy
1000

1400

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

ev
en

ts
/s

ec

Time

cumulative Inserts per node

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of BUSY or TOOBUSY servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of IDLE servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of NORMAL servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of TOOBUSY servers

Figure B.3: Together with B.1, B.2 and B.4 this plot tests moving 25% of the
containers in all four configurations. Plots B.5, B.6, B.7 and B.8 do the same,
but move 40% of the containers.

B.1. QUEUESYSTEM 69

Model Queue system
Configuration: four

Containers moved: 25%

BusyTooBusy
1500
2000

3000

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

ev
en

ts
/s

ec

Time

cumulative Inserts per node

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of BUSY or TOOBUSY servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of IDLE servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of NORMAL servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of TOOBUSY servers

Figure B.4: Together with B.1, B.2 and B.3 this plot tests moving 25% of the
containers in all four configurations. Plots B.5, B.6, B.7 and B.8 do the same,
but move 40% of the containers.

70 APPENDIX B. PLOTS

Model Queue system
Configuration: one

Containers moved: 40%

200
Busy

TooBusy
1000

1400

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

ev
en

ts
/s

ec

Time

cumulative Inserts per node

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of BUSY or TOOBUSY servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of IDLE servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of NORMAL servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of TOOBUSY servers

Figure B.5: Together with B.6, B.7 and B.8 this plot tests moving 40% of the
containers in all four configurations. Plots B.1, B.2, B.3 and B.4 do the same,
but move 25% of the containers.

B.1. QUEUESYSTEM 71

Model Queue system
Configuration: two

Containers moved: 40%

200
Busy

TooBusy
1000

1400

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

ev
en

ts
/s

ec

Time

cumulative Inserts per node

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of BUSY or TOOBUSY servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of IDLE servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of NORMAL servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of TOOBUSY servers

Figure B.6: Together with B.5, B.7 and B.8 this plot tests moving 40% of the
containers in all four configurations. Plots B.1, B.2, B.3 and B.4 do the same,
but move 25% of the containers.

72 APPENDIX B. PLOTS

Model Queue system
Configuration: three

Containers moved: 40%

200
Busy

TooBusy
1000

1400

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

ev
en

ts
/s

ec

Time

cumulative Inserts per node

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of BUSY or TOOBUSY servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of IDLE servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of NORMAL servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of TOOBUSY servers

Figure B.7: Together with B.5, B.6 and B.8 this plot tests moving 40% of the
containers in all four configurations. Plots B.1, B.2, B.3 and B.4 do the same,
but move 25% of the containers.

B.1. QUEUESYSTEM 73

Model Queue system
Configuration: four

Containers moved: 40%

200
Busy

TooBusy
1000

1400

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

ev
en

ts
/s

ec

Time

cumulative Inserts per node

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of BUSY or TOOBUSY servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of IDLE servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of NORMAL servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of TOOBUSY servers

Figure B.8: Together with B.5, B.6 and B.7 this plot tests moving 40% of the
containers in all four configurations. Plots B.1, B.2, B.3 and B.4 do the same,
but move 25% of the containers.

74 APPENDIX B. PLOTS

B.1.2 PoC test run

This section contains the plots for the queue PoC test run, discussed in sec-
tion 4.1.3 on page 38.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

29 08:00 29 12:00 29 16:00 29 20:00 30 00:00 30 04:00 30 08:00 30 12:00

in
se

rt
s/

se
c

Time

Proof of concept test

Inserts/sec for all containers

inserts/sec for all
inserts/sec for alert

inserts/sec for blogping

inserts/sec for feedleecher
inserts/sec for order
inserts/sec for sms

Figure B.9: Together with B.10, B.11, B.12 and B.13 this plot shows the state
of the queue system. It shows the number of inserts per queue. These events
are divided over the containers (B.10) and the containers in turn are distributed
over the available nodes (B.11, B.12, B.13)

B.1. QUEUESYSTEM 75

Proof of concept test

 0

 1000

 2000

 3000

 4000

 5000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
IDLE

NORMAL

BUSY

TOOBUSY

W
ei

gh
t

Time

Containers on joscluster7

 0

 1000

 2000

 3000

 4000

 5000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
IDLE

NORMAL

BUSY

TOOBUSY

W
ei

gh
t

Time

Containers on joscluster8

 0

 1000

 2000

 3000

 4000

 5000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
IDLE

NORMAL

BUSY

TOOBUSY

W
ei

gh
t

Time

Containers on joscluster9

alert
blogping

feedleecher
order

sms
node state (Right)

Figure B.10: Together with B.9, B.11, B.12 and B.13 this plot shows the state
of the queue system. It shows the containers and there cumulated weight for
each node over time. The events inserted according to B.9 are distributed over
these containers and the containers in turn are distributed over the available
nodes (B.11, B.12, B.13).

76 APPENDIX B. PLOTS

Proof of concept test
Node: joscluster7

 0

 20

 40

 60

 80

 100

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
IDLE

NORMAL

BUSY

TOOBUSY

pe
rc

en
ta

ge

N
od

e
st

at
e

Time

Node state of joscluster7

cpu avarage
io wait perc

node state
BUSY threshold

TOOBUSY threshold

 0

 1000

 2000

 3000

 4000

 5000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
ei

gh
t

Time

Containers on joscluster7

alert
blogping

feedleecher
order

sms

Figure B.11: Together with B.9, B.10, B.12 and B.13 this plot shows the state
of the queue system. It shows cpu and node state in conjunction with the
containers and there accumulated weight. The events inserted according to
B.9 are distributed over the containers (B.10) and the containers in turn are
distributed over the available nodes (B.11, B.12, B.13).

B.1. QUEUESYSTEM 77

Proof of concept test
Node: joscluster8

 0

 20

 40

 60

 80

 100

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
IDLE

NORMAL

BUSY

TOOBUSY

pe
rc

en
ta

ge

N
od

e
st

at
e

Time

Node state of joscluster8

cpu avarage
io wait perc

node state
BUSY threshold

TOOBUSY threshold

 0

 1000

 2000

 3000

 4000

 5000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
ei

gh
t

Time

Containers on joscluster8

alert
blogping

feedleecher
order

sms

Figure B.12: Together with B.9, B.10, B.11 and B.13 this plot shows the state
of the queue system. It shows cpu and node state in conjunction with the
containers and there accumulated weight. The events inserted according to
B.9 are distributed over the containers (B.10) and the containers in turn are
distributed over the available nodes (B.11, B.12, B.13).

78 APPENDIX B. PLOTS

Proof of concept test
Node: joscluster9

 0

 20

 40

 60

 80

 100

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
IDLE

NORMAL

BUSY

TOOBUSY

pe
rc

en
ta

ge

N
od

e
st

at
e

Time

Node state of joscluster9

cpu avarage
io wait perc

node state
BUSY threshold

TOOBUSY threshold

 0

 1000

 2000

 3000

 4000

 5000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
ei

gh
t

Time

Containers on joscluster9

alert
blogping

feedleecher
order

sms

Figure B.13: Together with B.9, B.10, B.11 and B.12 this plot shows the state
of the queue system. It shows cpu and node state in conjunction with the
containers and there accumulated weight. The events inserted according to
B.9 are distributed over the containers (B.10) and the containers in turn are
distributed over the available nodes (B.11, B.12, B.13).

B.1. QUEUESYSTEM 79

B.1.3 Standalone tests

B.1.3.1 Model - select only one container

This section contains the extra plots for the queue model test run that moved
only one container each time, discussed in section 4.1.2 on page 36.

80 APPENDIX B. PLOTS

Model Queue system
Configuration: one

Containers moved: one

BusyTooBusy
1500
2000
2500
3000
3500

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

ev
en

ts
/s

ec

Time

cumulative Inserts per node

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of BUSY or TOOBUSY servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of IDLE servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of NORMAL servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of TOOBUSY servers

Figure B.14: Together with B.15, B.16 and B.17 this plot tests moving a single
container in all four configurations. This series can be compared to the plots
in B.1.1 which test moving 25% and 40% of the containers.

B.1. QUEUESYSTEM 81

Model Queue system
Configuration: two

Containers moved: one

BusyTooBusy
1500
2000
2500
3000
3500

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

ev
en

ts
/s

ec

Time

cumulative Inserts per node

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of BUSY or TOOBUSY servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of IDLE servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of NORMAL servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of TOOBUSY servers

Figure B.15: Together with B.14, B.16 and B.17 this plot tests moving a single
container in all four configurations. This series can be compared to the plots
in B.1.1 which test moving 25% and 40% of the containers.

82 APPENDIX B. PLOTS

Model Queue system
Configuration: three

Containers moved: one

BusyTooBusy
2000
4000
6000
8000

10000
12000

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

ev
en

ts
/s

ec

Time

cumulative Inserts per node

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of BUSY or TOOBUSY servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of IDLE servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of NORMAL servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of TOOBUSY servers

Figure B.16: Together with B.14, B.15 and B.17 this plot tests moving a single
container in all four configurations. This series can be compared to the plots
in B.1.1 which test moving 25% and 40% of the containers.

B.1. QUEUESYSTEM 83

Model Queue system
Configuration: four

Containers moved: one

BusyTooBusy
2000
4000
6000
8000

10000
12000

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

ev
en

ts
/s

ec

Time

cumulative Inserts per node

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of BUSY or TOOBUSY servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of IDLE servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of NORMAL servers

 0
 10
 20
 30
 40
 50

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00

A
m

ou
nt

Time

Number of TOOBUSY servers

Figure B.17: Together with B.14, B.15 and B.16 this plot tests moving a single
container in all four configurations. This series can be compared to the plots
in B.1.1 which test moving 25% and 40% of the containers.

84 APPENDIX B. PLOTS

B.1.3.2 Crash

This section contains the plots for the queue system crash test, discussed in
section 4.1.3.3 on page 39.

B.1. QUEUESYSTEM 85

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

25 13:15 25 13:18 25 13:21 25 13:24 25 13:27 25 13:30 25 13:33 25 13:36 25 13:39 25 13:42 25 13:45

in
se

rt
s/

se
c

Time

Queue node crash test

Inserts/sec for all containers

inserts/sec for all
inserts/sec for alert

inserts/sec for blogping

inserts/sec for feedleecher
inserts/sec for order
inserts/sec for sms

Figure B.18: Together with B.19, B.20 and B.21 this plot shows the reaction
of the system on the crash of joscluster8 around 13:35

86 APPENDIX B. PLOTS

Queue node crash test

 0

 20

 40

 60

 80

 100

13:15 13:18 13:21 13:24 13:27 13:30 13:33 13:36 13:39 13:42 13:45
IDLE

NORMAL

BUSY

TOOBUSY

pe
rc

en
ta

ge

N
od

e
st

at
e

Time

Node state of joscluster7

cpu average io wait perc node state

 0

 20

 40

 60

 80

 100

13:15 13:18 13:21 13:24 13:27 13:30 13:33 13:36 13:39 13:42 13:45
IDLE

NORMAL

BUSY

TOOBUSY

pe
rc

en
ta

ge

N
od

e
st

at
e

Time

Node state of joscluster8

cpu average io wait perc node state

 0

 20

 40

 60

 80

 100

13:15 13:18 13:21 13:24 13:27 13:30 13:33 13:36 13:39 13:42 13:45
IDLE

NORMAL

BUSY

TOOBUSY

pe
rc

en
ta

ge

N
od

e
st

at
e

Time

Node state of joscluster9

cpu average io wait perc node state

Figure B.19: Together with B.18, B.20 and B.21 this plot shows the reaction
of the system on the crash of joscluster8 around 13:35

B.1. QUEUESYSTEM 87

Queue node crash test
Manager for alert container on joscluster7

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

13:15 13:18 13:21 13:24 13:27 13:30 13:33 13:36 13:39 13:42 13:45
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0

 2

 4

 6

 8

 10

 12

13:15 13:18 13:21 13:24 13:27 13:30 13:33 13:36 13:39 13:42 13:45

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

13:15 13:18 13:21 13:24 13:27 13:30 13:33 13:36 13:39 13:42 13:45

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

13:15 13:18 13:21 13:24 13:27 13:30 13:33 13:36 13:39 13:42 13:45

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.20: Together with B.18, B.19 and B.21 this plot shows the reaction of
the system on the crash of joscluster8 around 13:35. It shows that the manager
has to raise its worker insert rate in response to the increased load

88 APPENDIX B. PLOTS

Queue node crash test
Manager for alert container on joscluster8

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

13:15 13:18 13:21 13:24 13:27 13:30 13:33 13:36 13:39 13:42 13:45
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

13:15 13:18 13:21 13:24 13:27 13:30 13:33 13:36 13:39 13:42 13:45

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

13:15 13:18 13:21 13:24 13:27 13:30 13:33 13:36 13:39 13:42 13:45

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

13:15 13:18 13:21 13:24 13:27 13:30 13:33 13:36 13:39 13:42 13:45

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.21: Together with B.18, B.19 and B.21 this plot shows the reaction
of the system on the crash of joscluster8 around 13:35. It shows that the alert
manager for joscluster8 does not crash at the same time as joscluster8. It
however does lower its worker insert rate because it can no longer connect to
its queue. Eventually the process is killed because its submit node (joscluster8)
went down.

B.2. CONSUMER/WORKER SYSTEM 89

B.2 Consumer/worker system

This section contains three kind of plots. Plots from the model test run, the
PoC test run and special crafted tests/plots to tests different aspects.

B.2.1 Model test run

This section contains all plots from the model test run. They are ordered by
insert rate and then by the applied upper limit. For a discussion of the results
see section 4.2.2.3 on page 44.

90 APPENDIX B. PLOTS

Model consumer manager
Insert rate: max 50 events/sec

Consumer process: 50 events

upper limit: 50

 0

 10

 20

 30

 40

 50

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 5
 10
 15
 20
 25

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.22: The plot for the consumer worker model with a varying insert
rate of max 50 events per second and an upper limit of 50. The consumer
process 50 events per run. Together with B.23, B.24, B.25, B.26, B.27 and
B.28 these plots explore the algorithm with different upper limit settings. The
larger the upper limit the less workers are run but the longer events have to
wait on average.

B.2. CONSUMER/WORKER SYSTEM 91

Model consumer manager
Insert rate: max 50 events/sec

Consumer process: 50 events

upper limit: 250

 0

 10

 20

 30

 40

 50

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 5
 10
 15
 20
 25

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.23: As B.22, upper limit adjusted to 250. Together with B.22, B.24,
B.25, B.26, B.27 and B.28 these plots explore the algorithm with different
upper limit settings. The larger the upper limit the less workers are run but
the longer events have to wait on average.

92 APPENDIX B. PLOTS

Model consumer manager
Insert rate: max 50 events/sec

Consumer process: 50 events

upper limit: 500

 0

 10

 20

 30

 40

 50

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 5
 10
 15
 20
 25

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.24: As B.22, upper limit adjusted to 500. Together with B.22, B.23,
B.25, B.26, B.27 and B.28 these plots explore the algorithm with different
upper limit settings. The larger the upper limit the less workers are run but
the longer events have to wait on average.

B.2. CONSUMER/WORKER SYSTEM 93

Model consumer manager
Insert rate: max 50 events/sec

Consumer process: 50 events

upper limit: 1000

 0

 10

 20

 30

 40

 50

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 5
 10
 15
 20
 25
 30
 35
 40

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.25: As B.22, upper limit adjusted to 1000. Together with B.22, B.23,
B.24, B.26, B.27 and B.28 these plots explore the algorithm with different
upper limit settings. The larger the upper limit the less workers are run but
the longer events have to wait on average.

94 APPENDIX B. PLOTS

Model consumer manager
Insert rate: max 50 events/sec

Consumer process: 50 events

upper limit: 2000

 0

 10

 20

 30

 40

 50

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 10
 20
 30
 40
 50
 60
 70

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.26: As B.22, upper limit adjusted to 2000. Together with B.22, B.23,
B.24, B.25, B.27 and B.28 these plots explore the algorithm with different
upper limit settings. The larger the upper limit the less workers are run but
the longer events have to wait on average.

B.2. CONSUMER/WORKER SYSTEM 95

Model consumer manager
Insert rate: max 50 events/sec

Consumer process: 50 events

upper limit: 5000

 0

 10

 20

 30

 40

 50

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 20
 40
 60
 80
 100
 120
 140

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.27: As B.22, upper limit adjusted to 5000. Together with B.22, B.23,
B.24, B.25, B.26 and B.28 these plots explore the algorithm with different
upper limit settings. The larger the upper limit the less workers are run but
the longer events have to wait on average.

96 APPENDIX B. PLOTS

Model consumer manager
Insert rate: max 50 events/sec

Consumer process: 50 events

upper limit: 15000

 0

 10

 20

 30

 40

 50

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 50
 100
 150
 200
 250
 300
 350

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.28: As B.22, upper limit adjusted to 250. Together with B.22, B.23,
B.24, B.25, B.26 and B.27 these plots explore the algorithm with different
upper limit settings. The larger the upper limit the less workers are run but
the longer events have to wait on average.

B.2. CONSUMER/WORKER SYSTEM 97

Model consumer manager
Insert rate: max 1000 events/sec

Consumer process: 50 events

upper limit: 50

 0

 200

 400

 600

 800

 1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 100
 200
 300
 400
 500
 600
 700

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.29: The plot for the consumer worker model with a varying insert
rate of max 1000 events per second and an upper limit of 50. The consumer
process 50 events per run. Together with B.30, B.31, B.32, B.33, B.34 and
B.35 these plots explore the algorithm with different upper limit settings. The
larger the upper limit the less workers are run but the longer events have to
wait on average. By comparing with the series started by plot B.22 it can be
seen that adjustments happen more fluently.

98 APPENDIX B. PLOTS

Model consumer manager
Insert rate: max 1000 events/sec

Consumer process: 50 events

upper limit: 250

 0

 200

 400

 600

 800

 1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25
 30
 35
 40

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 100
 200
 300
 400
 500
 600
 700

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.30: As B.29, upper limit adjusted to 250. Together with B.30, B.31,
B.32, B.33, B.34 and B.35 these plots explore the algorithm with different
upper limit settings. The larger the upper limit the less workers are run but
the longer events have to wait on average. By comparing with the series started
by plot B.22 it can be seen that adjustments happen more fluently.

B.2. CONSUMER/WORKER SYSTEM 99

Model consumer manager
Insert rate: max 1000 events/sec

Consumer process: 50 events

upper limit: 500

 0

 200

 400

 600

 800

 1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25
 30
 35
 40

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 100
 200
 300
 400
 500
 600
 700

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.31: As B.29, upper limit adjusted to 500. Together with B.30, B.31,
B.32, B.33, B.34 and B.35 these plots explore the algorithm with different
upper limit settings. The larger the upper limit the less workers are run but
the longer events have to wait on average. By comparing with the series started
by plot B.22 it can be seen that adjustments happen more fluently.

100 APPENDIX B. PLOTS

Model consumer manager
Insert rate: max 1000 events/sec

Consumer process: 50 events

upper limit: 1000

 0

 200

 400

 600

 800

 1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25
 30
 35
 40

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 100
 200
 300
 400
 500
 600
 700

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.32: As B.29, upper limit adjusted to 1000. Together with B.30, B.31,
B.32, B.33, B.34 and B.35 these plots explore the algorithm with different
upper limit settings. The larger the upper limit the less workers are run but
the longer events have to wait on average. By comparing with the series started
by plot B.22 it can be seen that adjustments happen more fluently.

B.2. CONSUMER/WORKER SYSTEM 101

Model consumer manager
Insert rate: max 1000 events/sec

Consumer process: 50 events

upper limit: 2000

 0

 200

 400

 600

 800

 1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25
 30
 35
 40

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 100
 200
 300
 400
 500
 600
 700

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.33: As B.29, upper limit adjusted to 2000. Together with B.30, B.31,
B.32, B.33, B.34 and B.35 these plots explore the algorithm with different
upper limit settings. The larger the upper limit the less workers are run but
the longer events have to wait on average. By comparing with the series started
by plot B.22 it can be seen that adjustments happen more fluently.

102 APPENDIX B. PLOTS

Model consumer manager
Insert rate: max 1000 events/sec

Consumer process: 50 events

upper limit: 5000

 0

 200

 400

 600

 800

 1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25
 30
 35

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 100
 200
 300
 400
 500
 600
 700

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.34: As B.29, upper limit adjusted to 5000. Together with B.30, B.31,
B.32, B.33, B.34 and B.35 these plots explore the algorithm with different
upper limit settings. The larger the upper limit the less workers are run but
the longer events have to wait on average. By comparing with the series started
by plot B.22 it can be seen that adjustments happen more fluently.

B.2. CONSUMER/WORKER SYSTEM 103

Model consumer manager
Insert rate: max 1000 events/sec

Consumer process: 50 events

upper limit: 15000

 0

 200

 400

 600

 800

 1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 300
 350
 400
 450
 500
 550
 600
 650

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

Upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.35: As B.29, upper limit adjusted to 15000. Together with B.30, B.31,
B.32, B.33, B.34 and B.35 these plots explore the algorithm with different upper
limit settings. The larger the upper limit the less workers are run but the longer
events have to wait on average. By comparing with the series started by plot
B.22 it can be seen that adjustments happen more fluently.

104 APPENDIX B. PLOTS

Model consumer manager
Insert rate: max 3000 events/sec

Consumer process: 400 events

upper limit: 50

 0

 500

 1000

 1500

 2000

 2500

 3000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 50
 100
 150
 200
 250

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.36: The plot for the consumer worker model with a varying insert
rate of max 3000 events per second and an upper limit of 50. The consumer
process 400 events per run. These are the settings employed in the Proof of
Concept solution. Together with B.37, B.38, B.39, B.40, B.41 and B.42 these
plots explore the algorithm with different upper limit settings. The larger the
upper limit the less workers are run but the longer events have to wait on
average. By comparing with the series started by plot B.22 it can be seen that
adjustments happen more fluently. A comparison with the series started by
B.29 is hard to make, but waiting events seem to be more spread. A more in
depth discussion is held in section 4.2.2.3 on page 44

B.2. CONSUMER/WORKER SYSTEM 105

Model consumer manager
Insert rate: max 3000 events/sec

Consumer process: 400 events

upper limit: 250

 0

 500

 1000

 1500

 2000

 2500

 3000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 50
 100
 150
 200
 250

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.37: As B.36, upper limit adjusted to 250. These are the settings
employed in the Proof of Concept solution. Together with B.37, B.38, B.39,
B.40, B.41 and B.42 these plots explore the algorithm with different upper limit
settings. The larger the upper limit the less workers are run but the longer
events have to wait on average. By comparing with the series started by plot
B.22 it can be seen that adjustments happen more fluently. A comparison with
the series started by B.29 is hard to make, but waiting events seem to be more
spread. A more in depth discussion is held in section 4.2.2.3 on page 44

106 APPENDIX B. PLOTS

Model consumer manager
Insert rate: max 3000 events/sec

Consumer process: 400 events

upper limit: 500

 0

 500

 1000

 1500

 2000

 2500

 3000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 50
 100
 150
 200
 250

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.38: As B.36, upper limit adjusted to 500. These are the settings
employed in the Proof of Concept solution. Together with B.37, B.38, B.39,
B.40, B.41 and B.42 these plots explore the algorithm with different upper limit
settings. The larger the upper limit the less workers are run but the longer
events have to wait on average. By comparing with the series started by plot
B.22 it can be seen that adjustments happen more fluently. A comparison with
the series started by B.29 is hard to make, but waiting events seem to be more
spread. A more in depth discussion is held in section 4.2.2.3 on page 44

B.2. CONSUMER/WORKER SYSTEM 107

Model consumer manager
Insert rate: max 3000 events/sec

Consumer process: 400 events

upper limit: 1000

 0

 500

 1000

 1500

 2000

 2500

 3000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 50
 100
 150
 200
 250

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.39: As B.36, upper limit adjusted to 1000. These are the settings
employed in the Proof of Concept solution. Together with B.37, B.38, B.39,
B.40, B.41 and B.42 these plots explore the algorithm with different upper limit
settings. The larger the upper limit the less workers are run but the longer
events have to wait on average. By comparing with the series started by plot
B.22 it can be seen that adjustments happen more fluently. A comparison with
the series started by B.29 is hard to make, but waiting events seem to be more
spread. A more in depth discussion is held in section 4.2.2.3 on page 44

108 APPENDIX B. PLOTS

Model consumer manager
Insert rate: max 3000 events/sec

Consumer process: 400 events

upper limit: 2000

 0

 500

 1000

 1500

 2000

 2500

 3000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 50
 100
 150
 200
 250

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.40: As B.36, upper limit adjusted to 2000. These are the settings
employed in the Proof of Concept solution. Together with B.37, B.38, B.39,
B.40, B.41 and B.42 these plots explore the algorithm with different upper limit
settings. The larger the upper limit the less workers are run but the longer
events have to wait on average. By comparing with the series started by plot
B.22 it can be seen that adjustments happen more fluently. A comparison with
the series started by B.29 is hard to make, but waiting events seem to be more
spread. A more in depth discussion is held in section 4.2.2.3 on page 44

B.2. CONSUMER/WORKER SYSTEM 109

Model consumer manager
Insert rate: max 3000 events/sec

Consumer process: 400 events

upper limit: 5000

 0

 500

 1000

 1500

 2000

 2500

 3000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 50
 100
 150
 200
 250

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.41: As B.36, upper limit adjusted to 5000. These are the settings
employed in the Proof of Concept solution. Together with B.37, B.38, B.39,
B.40, B.41 and B.42 these plots explore the algorithm with different upper limit
settings. The larger the upper limit the less workers are run but the longer
events have to wait on average. By comparing with the series started by plot
B.22 it can be seen that adjustments happen more fluently. A comparison with
the series started by B.29 is hard to make, but waiting events seem to be more
spread. A more in depth discussion is held in section 4.2.2.3 on page 44

110 APPENDIX B. PLOTS

Model consumer manager
Insert rate: max 3000 events/sec

Consumer process: 400 events

upper limit: 15000

 0

 500

 1000

 1500

 2000

 2500

 3000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

in
se

rt
s/

se
c

Time

event insert rate

 0
 5

 10
 15
 20
 25

00:00 00:30 01:00 01:30 02:00 02:30 03:00
 0
 50
 100
 150
 200
 250

W
or

ke
rs

 /
se

c

Time

Worker insert rate

Ideal worker insert rate
actual insert rate

submitted burst workers (right)

 1

 10

 100

 1000

 10000

 100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 1

 10

 100

00:00 00:30 01:00 01:30 02:00 02:30 03:00

se
co

nd
s

Time

approximation event processing delay

Figure B.42: As B.36, upper limit adjusted to 15000. These are the settings
employed in the Proof of Concept solution. Together with B.37, B.38, B.39,
B.40, B.41 and B.42 these plots explore the algorithm with different upper limit
settings. The larger the upper limit the less workers are run but the longer
events have to wait on average. By comparing with the series started by plot
B.22 it can be seen that adjustments happen more fluently. A comparison with
the series started by B.29 is hard to make, but waiting events seem to be more
spread. A more in depth discussion is held in section 4.2.2.3 on page 44

B.2. CONSUMER/WORKER SYSTEM 111

B.2.2 PoC test run

This section contains the plots created during the normal test run as explained
in the enviroment of the PoC, see section 4.1.3.2 on page 38 and section 4.2.3.2
on page 46.

All plots are grouped by container and then by host, and are described by
there caption.

112 APPENDIX B. PLOTS

Proof of concept test
Manager for alert container on joscluster7

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0
 2
 4
 6
 8

 10
 12
 14

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.43: This plot shows the behavior of the manager for the alert container
on joscluster7. Together with B.44 and B.45 it shows the total processing
capacity for the alert queue. Around 08:00 it can be seen that the queue
system decided to offload the container to joscluster8 (B.44 and B.10) the
manager is therefore stopped. Please note that the event processing delay is
an approximation and unreliable with low insert rates.

B.2. CONSUMER/WORKER SYSTEM 113

Proof of concept test
Manager for alert container on joscluster8

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0

 5000

 10000

 15000

 20000

 25000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.44: This plot shows the behavior of the manager for the alert container
on joscluster8. Together with B.43 and B.45 it shows the total processing
capacity for the alert queue. Around 08:00 it can be seen that the queue
system decided to offload the alert container on joscluster7 to joscluster8 (B.43
and B.10) the manager is therefore started.

114 APPENDIX B. PLOTS

Proof of concept test
Manager for alert container on joscluster9

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.45: This plot shows the behavior of the manager for the alert container
on joscluster9. Together with B.43 and B.44 it shows the total processing
capacity for the alert queue. Around 16:00 it can be seen that joscluster9
becomes TOOBUSY and offloads wait to joscluster7 (B.43 and B.10), because
the insert rate was rising, there is no real change in rate of events the container
receives.

B.2. CONSUMER/WORKER SYSTEM 115

Proof of concept test
Manager for blogping container on joscluster7

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0

 5000

 10000

 15000

 20000

 25000

 30000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.46: This plot shows the behavior of the manager for the blogping
container on joscluster7. Together with B.47 and B.48 it shows the total pro-
cessing capacity for the blogping queue. Around 08:00 it can be seen that the
queue system decided to offload the container to joscluster8 (B.47 and B.10)
the manager is therefore stopped. Please note that the event processing delay
is an approximation and unreliable with low insert rates.

116 APPENDIX B. PLOTS

Proof of concept test
Manager for blogping container on joscluster8

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%
in

se
rt

s/
se

c

Time

Event inserts

total on container container Weight

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.47: This plot shows the behavior of the manager for the blogping
container on joscluster8. Together with B.46 and B.48 it shows the total pro-
cessing capacity for the blogping queue. Around 08:00 it can be seen that
the queue system decided to offload the blogping container on joscluster7 to
joscluster8 (B.46 and B.10) this caused the worker insert rate to jump in order
to keep up.

B.2. CONSUMER/WORKER SYSTEM 117

Proof of concept test
Manager for blogping container on joscluster9

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0

 2000

 4000

 6000

 8000

 10000

 12000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.48: This plot shows the behavior of the manager for the blogping
container on joscluster9. Together with B.46 and B.47 it shows the total pro-
cessing capacity for the blogping queue. Around 16:00 it can be seen that
joscluster9 becomes TOOBUSY and offloads the container to joscluster7 (B.46
and B.10), because the insert rate was rising, there is no real change in rate of
events the container receives.

118 APPENDIX B. PLOTS

Proof of concept test
Manager for feedleecher container on joscluster7

 0
 50

 100
 150
 200
 250
 300
 350
 400

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%
in

se
rt

s/
se

c

Time

Event inserts

total on container container Weight

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0

 5000

 10000

 15000

 20000

 25000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.49: This plot shows the behavior of the manager for the feedleecher
container on joscluster7. Together with B.50 and B.51 it shows the total pro-
cessing capacity for the feedleecher queue. Around 08:00 it can be seen that the
queue system decided to offload the container to joscluster8 (B.50 and B.10)
the manager is therefore stopped. Please note that the event processing delay
is an approximation and unreliable with low insert rates.

B.2. CONSUMER/WORKER SYSTEM 119

Proof of concept test
Manager for feedleecher container on joscluster8

 0
 50

 100
 150
 200
 250
 300
 350
 400

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0

 2000

 4000

 6000

 8000

 10000

 12000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.50: This plot shows the behavior of the manager for the feedleecher
container on joscluster8. Together with B.49 and B.51 it shows the total pro-
cessing capacity for the feedleecher queue. Around 08:00 it can be seen that
the queue system decided to offload the feedleecher container on joscluster7 to
joscluster8 (B.49 and B.10) due to the declining insert rates this has no effect
on the workers.

120 APPENDIX B. PLOTS

Proof of concept test
Manager for feedleecher container on joscluster9

 0
 50

 100
 150
 200
 250
 300
 350
 400

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.51: This plot shows the behavior of the manager for the feedleecher
container on joscluster9. Together with B.49 and B.50 it shows the total pro-
cessing capacity for the feedleecher queue.

B.2. CONSUMER/WORKER SYSTEM 121

Proof of concept test
Manager for order container on joscluster7

 0
 50

 100
 150
 200
 250
 300
 350
 400

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0

 5000

 10000

 15000

 20000

 25000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.52: This plot shows the behavior of the manager for the order con-
tainer on joscluster7. Together with B.53 and B.54 it shows the total pro-
cessing capacity for the order queue. Around 08:00 it can be seen that the
queue system decided to offload the container to joscluster8 (B.53 and B.10)
the manager is therefore stopped. Please note that the event processing delay
is an approximation and unreliable with low insert rates.

122 APPENDIX B. PLOTS

Proof of concept test
Manager for order container on joscluster8

 0
 50

 100
 150
 200
 250
 300
 350
 400

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.53: This plot shows the behavior of the manager for the order con-
tainer on joscluster8. Together with B.52 and B.54 it shows the total processing
capacity for the order queue. Around 08:00 it can be seen that the queue sys-
tem decided to offload the order container on joscluster7 to joscluster8 (B.52
and B.10) due to the declining insert rates this has no effect on the workers.

B.2. CONSUMER/WORKER SYSTEM 123

Proof of concept test
Manager for order container on joscluster9

 0
 50

 100
 150
 200
 250
 300
 350
 400

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.54: This plot shows the behavior of the manager for the order con-
tainer on joscluster9. Together with B.52 and B.53 it shows the total processing
capacity for the order queue.

124 APPENDIX B. PLOTS

Proof of concept test
Manager for sms container on joscluster7

 0
 50

 100
 150
 200
 250
 300
 350
 400

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0

 5000

 10000

 15000

 20000

 25000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.55: This plot shows the behavior of the manager for the sms container
on joscluster7. Together with B.56 and B.57 it shows the total processing ca-
pacity for the sms queue. Around 08:00 it can be seen that the queue system
decided to offload the container to joscluster8 (B.56 and B.10) the manager is
therefore stopped. Please note that the event processing delay is an approxi-
mation and unreliable with low insert rates.

B.2. CONSUMER/WORKER SYSTEM 125

Proof of concept test
Manager for sms container on joscluster8

 0
 50

 100
 150
 200
 250
 300
 350
 400

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.56: This plot shows the behavior of the manager for the sms container
on joscluster8. Together with B.55 and B.57 it shows the total processing
capacity for the sms queue. Around 08:00 it can be seen that the queue system
decided to offload the sms container on joscluster7 to joscluster8 (B.55 and
B.10).

126 APPENDIX B. PLOTS

Proof of concept test
Manager for sms container on joscluster9

 0
 50

 100
 150
 200
 250
 300
 350
 400

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.57: This plot shows the behavior of the manager for the sms container
on joscluster9. Together with B.55 and B.56 it shows the total processing
capacity for the sms queue.

B.2. CONSUMER/WORKER SYSTEM 127

B.2.3 Standalone tests

B.2.3.1 Overload

This section contains the plots for the queue system overload test, discussed in
section 4.2.3.3 on page 47.

128 APPENDIX B. PLOTS

Queue node overload
Manager for alert container on joscluster9

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

23:30 23:40 23:50 00:00 00:10 00:20 00:30 00:40 00:50 01:00
0%

50%

100%

in
se

rt
s/

se
c

Time

Event inserts

total on container container Weight

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

23:30 23:40 23:50 00:00 00:10 00:20 00:30 00:40 00:50 01:00

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0

 5000

 10000

 15000

 20000

 25000

 30000

23:30 23:40 23:50 00:00 00:10 00:20 00:30 00:40 00:50 01:00

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

23:30 23:40 23:50 00:00 00:10 00:20 00:30 00:40 00:50 01:00

se
co

nd
s

Time

Approximation event processing delay

Approximation processing delay

Figure B.58: This plot shows the behavior of the manager for the sms con-
tainer on joscluster9 during an overload. B.59 shows that joscluster9 becomes
overloaded when joscluster7 offloads containers to it, in order to downscale the
system. This results in slow processing of events and thus the number of wait-
ing events rises. The manager reacts by raising the worker insert rate, further
stressing joscluster9. The test is aborted around 00:40.

B.2. CONSUMER/WORKER SYSTEM 129

Queue node overload

 0

 20

 40

 60

 80

 100

23:30 23:40 23:50 00:00 00:10 00:20 00:30 00:40 00:50 01:00
IDLE

NORMAL

BUSY

TOOBUSY

pe
rc

en
ta

ge

N
od

e
st

at
e

Time

Node state of joscluster7

cpu average io wait perc node state

 0

 20

 40

 60

 80

 100

23:30 23:40 23:50 00:00 00:10 00:20 00:30 00:40 00:50 01:00
IDLE

NORMAL

BUSY

TOOBUSY

pe
rc

en
ta

ge

N
od

e
st

at
e

Time

Node state of joscluster8

cpu average io wait perc node state

 0

 20

 40

 60

 80

 100

23:30 23:40 23:50 00:00 00:10 00:20 00:30 00:40 00:50 01:00
IDLE

NORMAL

BUSY

TOOBUSY

pe
rc

en
ta

ge

N
od

e
st

at
e

Time

Node state of joscluster9

cpu average io wait perc node state

Figure B.59: Cpu and io resource usage during the overload, node state is alse
plotted.

130 APPENDIX B. PLOTS

Queue node overload

 0

 1000

 2000

 3000

 4000

 5000

23:30 23:40 23:50 00:00 00:10 00:20 00:30 00:40 00:50 01:00
IDLE

NORMAL

BUSY

TOOBUSY

W
ei

gh
t

Time

Containers on joscluster7

 0

 1000

 2000

 3000

 4000

 5000

23:30 23:40 23:50 00:00 00:10 00:20 00:30 00:40 00:50 01:00
IDLE

NORMAL

BUSY

TOOBUSY

W
ei

gh
t

Time

Containers on joscluster8

 0

 1000

 2000

 3000

 4000

 5000

23:30 23:40 23:50 00:00 00:10 00:20 00:30 00:40 00:50 01:00
IDLE

NORMAL

BUSY

TOOBUSY

W
ei

gh
t

Time

Containers on joscluster9

alert
blogping

feedleecher
order

sms
node state (Right)

Figure B.60: The container distribution during the overload. The plot shows
that joscluster9 tries to move part of its containers every 15 minutes in an
attempt to lower the load. The combination of non optimal choices made and
the manager which raised its worker insert rate ensures that the situation is
not remedied.

B.2. CONSUMER/WORKER SYSTEM 131

B.2.3.2 Backlog

This section contains the plots for the backlog test, discussed in section 4.2.3.3
on page 47.

132 APPENDIX B. PLOTS

Manager crash
Manager for alert container on joscluster7

 0

 200

 400

 600

 800

 1000

 1200

12:50 13:00 13:10 13:20 13:30 13:40

in
se

rt
s/

se
c

Time

event inserts

total

 0

 5

 10

 15

 20

12:50 13:00 13:10 13:20 13:30 13:40

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0

 50000

 100000

 150000

 200000

12:50 13:00 13:10 13:20 13:30 13:40

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 0

 20

 40

 60

 80

 100

 120

12:50 13:00 13:10 13:20 13:30 13:40

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Burst consumers

Burst

Figure B.61: The plots shows the reaction of a manager when it crashes and
is restarted. The manager is forcefully stopped at 13:14, after which the batch
system automatically restarts it. The burst consumers plot shows how many
extra consumers are started in order to keep up while the worker insert rate is
too low.

B.2. CONSUMER/WORKER SYSTEM 133

Manager crash - no backlog protection
Manager for alert container on joscluster7

 0

 200

 400

 600

 800

 1000

 1200

14:45 14:50 14:55 15:00 15:05 15:10 15:15 15:20

in
se

rt
s/

se
c

Time

event inserts

total

 0

 5

 10

 15

 20

14:45 14:50 14:55 15:00 15:05 15:10 15:15 15:20

W
or

ke
rs

 /
se

c

Time

Workers

Worker insert rate

 0

 50000

 100000

 150000

 200000

14:45 14:50 14:55 15:00 15:05 15:10 15:15 15:20

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Waiting events

upper limit

 0

 20

 40

 60

 80

 100

 120

14:45 14:50 14:55 15:00 15:05 15:10 15:15 15:20

N
r

of
 w

ai
tin

g
ev

en
ts

Time

Burst consumers

Burst

Figure B.62: As in B.61 this plots shows the reaction of a manager in case of
crash (which occurred around 15:00), but the backlog mechanism is disabled.
This illustrates that without the backlog system the manager will overshoot
the ideal worker insert rate by a factor of at least two.

Bibliography

[1] W. S. A. Adams, J. Nicholas. RFC 3973: Protocol independent multicast
- dense mode (pim-dm), Mar. 1994. 3.5.1.3

[2] K. Adams and O. Agesen. A comparison of software and hardware tech-
niques for x86 virtualization. Technical report, Technical Report ACM
1-59593-451-0/06/0010. VMware, August 2006. 2.3.1

[3] C. Amza, A. Cox, and W. Zwaenepoel. A comparative evaluation of trans-
parent scaling techniques for dynamic content servers, 2005. (document)

[4] C. Amza, A. L. Cox, and W. Zwaenepoel. Scaling and availability for
dynamic content web sites, 2002. (document)

[5] F. Christian. Probabilistic clock synchronization. Distributed Computing,
3:146–158, 1989. 3.1.1.2

[6] E. F. Codd. The relational model for database management: version 2.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.
1.1.2

[7] R. Drummond and O. Babaoglu. Low-cost clock synchronization. Dis-
tributed Computing, 6:193–203, 1993. 3.1.1.2

[8] Facebook. http://www.facebook.com/. 1

[9] google. http://www.google.com/. 1

[10] S. grid engine. http://gridengine.sunsource.net/. 2.3.2

[11] C. Henderson. Scalable web architectures common patterns and ap-
proaches. Presentation. (document), A.4

[12] hi5. http://www.hi5.com/. 1

[13] hyves. http://www.hyves.nl/. 1

[14] IEEE. Ieee standard 802.1d mac bridges, 2004. 3.1.1.1

[15] P. H. Kamp and R. N. M. Watson. Jails: Confining the omnipotent root.
2.3.1

[16] H. Kopetz and w. Ochsenreiter. Clock synchronization in distributed real-
time systems. IEEE Trans. Comp., C-87(8):933–940, August 1987. 3.1.1.2

135

136 BIBLIOGRAPHY

[17] T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification,
Second Edition. Prentice Hall PTR, 2 edition (april 24, 1999) edition,
1999. 2.3.1

[18] W. Live. http://www.live.com/. 1

[19] C. Macdonell and P. Lu. Pragmatics of virtual machines for high-
performance computing: A quantitative study of basic overheads. 2.3.1

[20] Maui. http://www.clusterresources.com/pages/products/maui-cluster-
scheduler.php. 2.3.2

[21] M. messenger. http://services.nl.msn.com/messenger/. 1

[22] Microsoft. Ecma c-sharp and common language infrastructure standards.
Internet. 2.3.1

[23] D. Mills. Network time protocol (version 3): Specification, implementa-
tion, and analysis. RFC 1305, July 1992. 3.1.1.2

[24] Moab. http://www.clusterresources.com/. 2.3.2

[25] J. Moy. RFC 1584: Multicast extensions to OSPF, Mar. 1994. 3.5.1.3

[26] myspace. http://www.myspace.com. 1

[27] T. network Library. http://twistedmatrix.com/trac/. 4.1.3.2

[28] parallels. http://www.parallels.com. 2.3.1

[29] Python. http://www.python.org. 4.1.3.2

[30] R. Raman. Matchmaking Frameworks for Distributed Resource Manage-
ment. PhD thesis, university of wisconsin - madison, October 2000. 2.3.2

[31] A. Silberschatz. Operating System Concepts, page 108. Wiley, New York,
2003. (document), 2.2.2

[32] S. Souders. High Performance Web Sites. O’reilly, 2007. ISBN:0596529309.
(document)

[33] Sun. http://www.sun.com/datacenter/consolidation/index.jsp. 2.3.1

[34] A. S. Tanenbaum and M. van Steen. Distributed Systems, Principles and
Paradigms. Alan Apt, 2002. 3.1.1.1, 3.1.1.2

[35] T. university of wisconsin. http://www.cs.wisc.edu/condor/. 2.3.2

[36] vmware. http://www.vmware.com. 2.6, 2.3.1

[37] W3C. The xmlhttprequest object, april 2008. 3

[38] D. Waitzman, C. Partridge, and S. E. Deering. RFC 1075: Distance vector
multicast routing protocol, Nov. 1988. 3.5.1.3

[39] W. Zhang. Linux virtual server for scalable network services. (document),
2.2.2, A.5

	Contents
	Preamble
	Preface
	Summary
	Samenvatting
	Introduction
	Hyves Architecture
	Front end
	Back end

	Problem statement
	Research focus

	State of Art
	Implementation of pre-fetching data preparation tasks
	Tasks
	Technique
	Parallelization data access

	Implementation
	Resource usage
	Problems
	Lack of statistics
	Static configuration
	Failure resistance

	Implementation of offloaded tasks
	Tasks
	Technique
	Implementation
	Resource usage
	Problems
	Lack of statistics
	Failure resistance
	Static configuration

	Existing techniques
	Virtual machines
	Batch system

	Proposed Solutions
	Design decisions
	Global decisions
	Centralized decisions
	De-centralized decisions
	Conclusion

	Event or time based system

	Design goals
	Solutions
	Choice
	Solution B
	Queue concern
	Node
	Container
	Global state
	Load balancing
	Scaling up/down
	Failure resistance
	Monitoring

	Consumer/h-worker concern
	Manager
	Worker
	Batch system
	Load balancing
	Scaling up/down
	Failure resistance
	Monitoring
	Single instance daemons

	Conclusion

	Proof of concept
	Queue system
	Algorithm
	Determining node state
	Select containers to move
	Determine downscale
	Find targets for containers.
	Move containers to target
	Communication of updates
	Restoring weights of containers

	Model
	Purpose
	Environment
	Results

	PoC implementation
	Purpose
	Environment
	Results

	Conclusion

	Consumer/h-worker system
	Algorithm
	Determining Consumer rate
	Overload prevention
	Backlog

	Model
	Purpose
	Environment
	Results

	Proof of Concept implementation
	Purpose
	Environment
	Results

	Conclusion

	Conclusion
	Future work
	Complimentary explanations and data
	Selection of a batch system
	Sun grid engine
	Condor
	Cluster resources
	Conclusion and selection

	Tasks implemented using h-workers
	Tasks implemented using the producer/consumer paradigm
	Database
	Load balancer
	Solution A
	Node
	Container
	Global state
	Load balancing
	Scaling up/down
	Failure resistance
	Monitoring
	Single instance daemons
	Conclusion

	Plots
	Queuesystem
	Model test run
	PoC test run
	Standalone tests
	Model - select only one container
	Crash

	Consumer/worker system
	Model test run
	PoC test run
	Standalone tests
	Overload
	Backlog

	Bibliography

