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Abstract

Many different models exist that describe the behaviour of stock prices and are used to value op-
tions on such an underlying asset. This report investigates the local volatility model in which the
volatility of the underlying asset is assumed to be a deterministic function of both time and the
underlying asset price.

First the report considers how the local volatility surface can be extracted from market data
for option prices. Theoretically this can be achieved by Dupire’s formula, but it appears that in
practice it is better to transform this equation so that the local volatility surface can be extracted
from the implied volatilities. To fit the implied volatility surface to market data smoothed thin
plate splines are used.

Secondly a pricing mechanism has to be devised to value options using the local volatility sur-
face. For this trinomial trees are used. The classical tree model is adjusted to make it work properly
in the presence of local volatility, particularly to avoid the occurrence of negative transition prob-
abilities. The method is quick and can easily incorporate discrete dividend payments.

The accuracy of this method is verified for European and American options. Prices generated
for European options are compared to Black-Scholes prices and prices for American options are
compared to prices generated by Monte Carlo simulations. It is shown that the model works accu-
rately for both European and American options.

Finally the model is tested on real market data. The prices generated by the local volatility
method are not always within the bid-ask spread of the market. Since the implied volatilities were
extracted from the market data by inverting a different pricing mechanism, this shows there is
non-neglible difference between these two methods. Also the stability of the local volatility surface
and delta hedging are considered. On the basis of the analysis of the data used, no definitive
statement can be made on the performance of the delta hedges suggested by the local volatility
model compared to delta’s suggested by the implied volatilities.
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1 Introduction

For a full understanding of the contents of this report, some basic knowledge is needed. In 1.1
an overview of financial terms used in this report is given. Section 1.2 gives a short overview of
some of the important mathematical concepts that are essential in the mathematical description
of financial processes. For a more elaborate insight into these, and other, concepts the reader is
referred to the literature [7, 39]. In section 1.3 an overview of research regarding local volatility is
given and the model is introduced.

1.1 Financial Terminology

A derivative is a financial product whose value depends on some reference entity, which is commonly
known as the underlying (asset). In theory the underlying can be anything as long as some sort of
objective measurement of it can take place. This could be the value of a house, the temperature
at Dam square in Amsterdam or the concentration of pollutants in the North Sea. The value of
the derivative depends on the measured value of the underlying; it is contingent on the underlying
and is therefore sometimes referred to as a contingent claim. In financial markets the underlying
is usually a traded financial asset, such as an equity share, bond or commodity, or some observed
economic variable such as an interest or currency exchange rate. Derivatives can be traded on an
official exchange, such as NYSE Euronext, or through private transactions, usually referred to as
over-the-counter (OTC).

A common derivative is an option. This gives the holder the right, but not the obligation, to
perform a specific transaction under certain, agreed upon, conditions. The fact that the right to
exercise an option is optional, means the option can never have a negative value.

The simplest options, known as plain vanilla options, are the standard call and put. A call
option gives the holder the right to buy the underlying asset at, or before, a certain time for a cer-
tain price. This time is the option’s time, or date, of maturity and the price is the option’s strike
price. Similarly, a put option gives the holder the right to sell the underlying asset at, or before the
time of maturity for the strike price. An option that gives the right to perform this transaction,
exercise the option, only on the exact time of maturity is said to be European. An option that
can be exercised at any point in time before the maturity as well, is said to be American. The
intermediary form, options that can be exercised at several specified points in time before maturity,
are known as Bermudan options.

Any sort of option can be devised, as long as some other party is willing to pay for it. Options
with non-standard pay-offs, strikes, exercise possibilities, that consist of a combination of other
options or any other non-standard conceivable structure are known as exotic options.

An important concept in option theory is hedging. It is the replication of the contingent claims,
by buying (longing) or selling (shorting) other financial products (usually the underlying). By
ensuring that the replicating portfolio has the same payoff as the option does, the option trader
eliminates the uncertainty of making a loss (or profit).

A market in which all contingent claims can be replicated is said to be complete. In a complete
market an option has a unique price, which can be determined by finding the cost of setting up,
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and maintaining, its replicating portfolio. In a complete market there are no possibilities of making
a risk-free profit in excess of the risk-free interest rate, known as arbitrage opportunities.

1.2 Mathematical Framework

Some basic concepts in measurability and stochastic calculus are presented below. In the short
overview given the mathematical details are intentionally kept to a minimum to enhance the read-
ability.

All concepts in financial mathematics are defined within a certain probability space (Ω,F ,Q).
Here Ω denotes the total space, Ft denotes the σ-algebra of all the information that is known at
time t and Q denotes the risk neutral probability measure, which governs the probabilities of events
occurring in this space. The domain of Q is F .

A random variable is a function that assigns values to outcomes of a probabilistic experiment.
It’s future value is uncertain. This uncertainty is known as stochasticity, explaining why random
variables are also known as stochastic variables. If the value of a particular random variable, Xt,
is known at time t it is said to be Ft-measurable (notation Xt ∈ Ft). For any time t2 after t, the
value of the random variable cannot be determined at time t.

The collection, X, of Ft-measurable random variables, {Xt : 0 ≤ t ≤ T}, is a stochastic process.
If a stochastic process Y behaves such that every realisation Yt is Ft-measurable, then it is said that
it is adapted to the filtration {Ft}0≤t≤T . Adapted processes are also known as non-anticipating
processes, since their values do not depend on future events.

Conditional expectation is the expected value of a random variable given, conditional on, a cer-
tain amount of information. Let G be a σ-algebra contained in F . Then the conditional expectation
of X given the information contained in G is denoted by

E[X|G] (1.1)

It then follows that when X is adapted to the filtration {Ft}0≤t≤T

E[Xt|Ft] = Xt (1.2)

If X /∈ G, then its value is unknown at time t and the expected value, under the probability
measure Q, is an objective prediction of the future value. Formally this means

E[X|G] =
∫
G
X(ω)dQ(ω) (1.3)

In a complete market the value of an option at time t, Vt, with a payoff XT at time T , is the
expected value of the payoff, discounted by the risk free interest rate to time t, conditional on the
information known at time t

Vt = E[e−
R T
t rsdsXT |Ft] (1.4)
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Most stochastic processes are described by stochastic differential equations(SDEs), usually of
the form

dXt = a(t,Xt)dt+ b(t,Xt)dWt (1.5)

with a(t,Xt) and b(t,Xt) Ft-measurable. Wt is standard Brownian motion (also known as a Wiener
process). This is a random process that describes a motion beginning at W0 = 0. In each time
period t2 − t1 its increment, Wt2 −Wt1 , is independent of everything that happened before t1, and
its values are normally distributed with mean 0 and variance t2 − t1.

Finally, the workhorse of financial mathematics can be introduced. If a stochastic process
follows an SDE of the form (1.5) then a function f of this process and time is described by Itô’s
formula

df(t,Xt) =
∂f(t, x)
∂t

dt+
∂f(t, x)
∂x

dXt +
1
2
∂2f(t, x)
∂x2

dXt · dXt

=
(
∂f(t, x)
∂t

+ a(t,Xt)
∂f(t, x)
∂x

+
1
2
b(t,Xt)2∂

2f(t, x)
∂x2

)
dt+ b(t,Xt)

∂f(t, x)
∂x

dWt

(1.6)

In general asset prices are assumed to be of the form (1.5). It is then obvious why Itô’s formula
plays such an important role in option theory. The price of an option, if it is a function of the
underlying asset, satisfies this formula.

1.3 The Local Volatility Model

Modern option pricing theory came into existence with the advent of the influential paper by Black
and Scholes [8]. In it the authors showed that, under certain model assumptions, there exists a
unique price for European options since the payoff can be perfectly replicated by a portfolio consist-
ing of the underlying asset and a risk free money account, which is the mathematical equivalent of
buying bonds of an institution that is assumed to never default on its obligations. Usually the bonds
issued by the sovereign governments, such as the United States (T-bills) and Germany (Bunds),
are assumed to give risk free returns. Since this portfolio (which must be adjusted continuously)
gives the same payoff as the option, the price of setting up this portfolio must be the price of the
option.

In this model it is assumed that the asset which is underlying to the derivatives being considered
(typically share prices), evolves according to geometric Brownian motion

dSt
St

= (r − q)dt+ σdWt (1.7)

Here it is assumed that the drift term, r − q, (the risk-free interest rate minus the dividend yield)
and the diffusion term, σ, (commonly known as the asset’s volatility) driving this process are con-
stant. Wt is standard Brownian motion. If geometric Brownian motion accurately describes the
dynamics of asset prices, then the asset prices have distributions which at all times are lognormal.
Theoretically this is a nice result, since it gives rise to closed form analytical formulae for plain
vanilla options. This Black-Scholes equation can then price plain vanilla options in a quick and
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neat way, since only a few constant variables have to be considered.

Although satisfactory for European options, the Black-Scholes model comes up short for more
complex options, such as Asian options (whose payoff depends on the average price of the under-
lying asset over time), barrier options (whose value depends on whether a specific boundary value
has been attained by the underlying asset before its maturity) or even common American options.
For these options no analytic solution can be given. Fortunately in the Black-Scholes framework,
American and Asian options can be accurately priced by so-called binomial trees introduced by
Cox, Ross and Rubinstein (CRR) [14, 41].

1.3.1 Volatility Skew

In reality things are more complicated than the model of Black and Scholes assumes. Market
participants have long noted that using the same constant variables for all options result in prices
not compatible with the market. It seems that different options on the same underlying asset are
governed by different volatilities. The constant value for the volatility which, once plugged into
the standard Black-Scholes equation, gives the market price for the option, commonly known as
the implied volatility, seems to be dependent on the strike price, K, and the time to maturity, T ,
of the option under consideration. The dependence on T can easily be solved by introducing a
time-dependency for the volatility as was shown shortly after the original Black-Scholes article [46].

The dependence on K is commonly known as the volatility ‘skew’, ‘smile’ or ‘frown’ (depending
on the exact relation between volatility and the strike price). Before the market crash of 1987 no
noticeable skew occurred, but ever since it has become a common feature of financial markets [39].
If the Black-Scholes model was an exact description of reality, it should be concluded that every
option has an underlying asset with different dynamics, which is obviously not the case. This would
also suggest that, because different options seem to have different volatilities, using binomial trees
to value options, would mean having to build a different tree for the asset price process for each
different option. This seems non-sensical. Why would the price process of the underlying asset de-
pend on the value of the derivative on it? It also poses practical issues, since the valuing techniques
that are used should be fast, providing market participants with up to date information. Further-
more, if the volatility is dependent on the maturity and strike price, how should an exotic option be
priced whose parts are made up of options with different strikes and maturities? A better descrip-
tion of the volatility process such that one tree can be used to price different options is thus needed.

1.3.2 Explaining the Skew

Over the years different methods have been proposed to make adjustments to the Black-Scholes
model to make it more accurately describe market reality, and in particular the volatility skew. The
main proposed methods are stochastic volatility processes [19, 34, 38, 40], jump-diffusion processes
[2, 45] and local volatility models [10, 15, 18, 20, 21, 25, 26, 27, 32, 49, 59].

Stochastic volatility processes were introduced by Hull and White [40]. In it the volatility itself
is a process that satisfies a stochastic differential equation. The most famous stochastic volatility
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models are the Heston model [38] and the SABR model [34] (section 8.2.1). How these models
cause the volatility skew in the market is discussed in [19, 34].

Jump-diffusion models were first introduced by Merton [45]. These models incorporate discon-
tinuous jumps in the underlying asset price. This resembles reality were events can have sudden
impacts on asset prices. How this explains the volatility skew is described in [2].

The local volatility model assumes the volatility is a deterministic function of the asset price
and time. It came into existence when Dupire [25, 26] showed that, in the presence of volatility
skews, consistent models can be built if the asset price process is assumed to have the following
dynamics under the risk neutral probability measure Q

dSt
St

= (rt − qt)dt+ σ(t, St)dWt (1.8)

where the volatility is now a deterministic function of time and the asset price and rt and qt de-
note the continuously compounded short rate and dividend respectively. In this case the diffusion
process is usually referred to as local volatility.

1.3.3 Local Volatility

Local volatility models, which are widely used in the finance industry [27], are the subject of this
report. Whereas stochastic volatility and jump-diffusion models introduce new features into the
model resulting from sound economic arguments, local volatility models try to stay close to the
Black-Scholes model by introducing more flexibility into the volatility. This is one of the main
reasons of fierce criticism of local volatility models [4].

The drawback of stochastic volatility and jump-diffusion models is that in describing the asset
dynamics, they introduce new sources of stochasticity. Since the stochastic volatility and jumps
in asset prices cannot be traded, these models lose the completeness of the original Black-Scholes
model.

In the local volatility model the only stochastic behaviour introduced into the volatility function
is a result of it being a function of the underlying asset price (if rt and qt are deterministic). So
there is still just one source of stochasticity, ensuring the completeness of the Black-Scholes model
is perserved. Completeness is important, because it guarantees unique prices. This is the stated
reason to develop the local volatility model in Dupire’s original paper [25].

In [26] Dupire’s method of working with local volatility is described. Around the same time
other methods for local volatility methods were developed by Rubinstein [50] and Derman and Kani
[18]. Both of these methods use so-called ‘implied trees’. The idea of these is to price options with
standard CRR trees with a constant volatility, and then adjust the volatility at different places
in the tree to obtain the correct market prices for the options. This method is not clear-cut and
numerous adjustments have to be made to make it work in practice. Furthermore, it is notoriously
unstable [49]. Therefore Dupire’s method is preferred over the implied tree method in this report.
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This report is organised as follows. First it is described how the local volatility surface can
be extracted from plain vanilla option prices in section 2. In section 3 and 4 it is described how
the local volatility surface can be used to price options by use of binomial and trinomial trees,
respectively. The incorporation of dividend payments in the tree is discussed in section 5. Delta
hedging in the local volatility model follows in section 6 and section 7 is devoted to Monte Carlo
simulations. Finally the model is tested on real world examples in section 8.
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2 Obtaining the Local Volatility

Before the local volatility can be used to price derivatives, a procedure to obtain the local volatility
function must be devised. In this section Dupire’s formula is derived in 2.1, which allows the local
volatility surface to be extracted from the prices of traded call options. Since in most practical
situations implementing this formula proves not to be suitable for all options, as discussed in 2.2,
a method is derived in 2.3 by which the local volatility surface can be extracted from the implied
volatility surface. The process of fitting an implied volatility surface to real data is covered in 2.4.

2.1 Dupire’s Equation

According to standard financial theory, the price at time t of a call option with strike price K,
maturity time T is the discounted expectation of its payoff, under the risk-neutral measure. Letting
D0,T denote the discount rate from the current time t0 to maturity and φ(T, s) the risk neutral
probability density of the underlying asset at maturity. More accurately the density should be
written as φ(T, s; t0, S0), since it is the transition probability density function of going from state
(t0, S0) to (T, s). But since t0 and S0 are considered to be given constants, for brevity it is written
as φ(T, s). This means

D0,T = e
−

R T
t0
rs ds

C = E
[
D0,T (ST −K)+|F0

]
= D0,T

∫ ∞
K

(s−K)φ(T, s) ds

(2.1)

Here, as in the rest of this report, it is assumed that the term structure for the short rate rt
is a deterministic function known at the current time t0 (F0 is the shorthand version of Ft0).
Comparable equations in the presence of stochastic interest rates can be derived, but this is outside
the scope of this report.

2.1.1 Derivation

The risk-neutral density distribution of the asset price at maturity is φ(T, s). Since this is a
probability density function its time evolution will be described by the forward Kolmogorov (or
Fokker-Planck) equation

0 =
∂φ(t, s)
∂t

+ (rt − qt)
∂

∂s
[sφ(t, s)]− 1

2
∂2

∂s2
[σ(t, s)2s2φ(t, s)] (2.2)
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For further calculations the derivatives of (2.1) with respect to K are needed. They are given by

∂C

∂K
= D0,T

∂

∂K

∫ ∞
K

(s−K)φ(T, s) ds

= D0,T

[
−(K −K)φ(T,K)−

∫ ∞
K

φ(T, s) ds
]

= −D0,T

∫ ∞
K

φ(T, s) ds

∂2C

∂K2
= −D0,T

∂

∂K

∫ ∞
K

φ(T, s) ds

= D0,Tφ(T,K)

(2.3)

Combining equation (2.2) together with the definition in (2.1) gives

∂C

∂T
+ rTC = D0,T

∫ ∞
K

(s−K)
∂φ(T, s)
∂T

ds

= D0,T

∫ ∞
K

(s−K)
(

1
2
∂2

∂s2
[σ(T, s)2s2φ(T, s)]− (rT − qT )

∂

∂ST
[STφ(T, s)]

)
ds

=
1
2
D0,T

([
(s−K)

∂

∂s
[σ(T, s)2s2φ(T, s)]

]s=∞
s=K

−
∫ ∞
K

∂

∂s
[σ(T, s)2s2φ(T, s)] ds

)
−D0,T (rT − qT )

(
[(s−K)sφ(T, s)]s=∞s=K −

∫ ∞
K

sφ(T, s) ds
)

= − 1
2
D0,T

[
σ(T, s)2S2

Tφ(T, s)
]s=∞
s=K

+ (rT − qT )D0,T

∫ ∞
K

sφ(T, s) ds

=
1
2
D0,Tσ(T,K)2K2φ(T,K) + (rT − qT )

(
C +D0,TK

∫ ∞
K

φ(T, s) ds
)

=
1
2
σ(T,K)2K2 ∂

2C

∂K2
+ (rT − qT )

(
C +K

∂C

∂K

)

(2.4)

Here it is assumed that φ(T, ST ) behaves appropriately at the boundary condition of ST =∞ (for
instance this is the case when φ decays exponentially fast for ST →∞).

The final result is

∂C

∂T
=

1
2
σ(T,K)2K2 ∂

2C

∂K2
− qTC − (rT − qT )K

∂C

∂K

⇒ σ(T,K)2 = 2
∂C
∂T + (rT − qT )K ∂C

∂K + qTC

K2 ∂2C
∂K2

(2.5)

The latter of the above equations is commonly known as the Dupire formula, derived in this form
by Derman and Kani [18] but the method was developed by Dupire [26]. Since at any point in time
the value of call options with different strikes and times to maturity can be observed in the market,
the local volatility is a deterministic function, even when the dynamics of the spot volatility are
stochastic.
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2.1.2 Local Volatility as a Conditional Expectation

A different approach dealing directly with (2.1) instead of considering the forward Kolmogorov
equation, reveals an interesting property of the local volatility.

Reformulating (2.1) gives

C = E
[
D0,T (ST −K)+|F0

]
= E

[
D0,T (ST −K)1{ST>K}|F0

] (2.6)

Where 1 is the indicator function having the following properties

1{s>K} =

{
1 if s > K,

0 if s ≤ K.

∂

∂s
1{s>K} = δ(s−K)

∂

∂K
1{s>K} =

∂

∂K

(
1− 1{K≥s}

)
= −δ(s−K)

(2.7)

where δ(·) is the Dirac-delta function.

Under normal integrability assumptions Fubini’s theorem holds and the expectation and deriva-
tive operator can be interchanged. This leads to

∂C

∂K
=

∂

∂K
E
[
D0,T (ST −K)1{ST>K}|F0

]
= −E

[
D0,T1{ST>K}|F0

]
− E [D0,T (ST −K)δ(ST −K)|F0]

= −E
[
D0,T1{ST>K}|F0

]
∂2C

∂K2
= −E

[
D0,T

∂

∂K
1{ST>K}|F0

]
= E [D0,T δ(ST −K)|F0]

(2.8)

From which it can be seen that the probability density function of the stock price at maturity being
equal to K is the expected value of the Dirac-delta function

φ(T,K) = E [δ(ST −K)|F0] (2.9)

Applying Itô to (2.6)

dC = E
[
d
(
D0,T (ST −K)1{ST>K}

)
|F0

]
= E[

∂D0,T

∂T
(ST −K)1{ST>K}dT +D0,T

∂

∂s

[
(s−K)1{s>K}

] ∣∣∣
s=ST

dST

+D0,T
1
2
∂2

∂s2

[
(s−K)1{s>K}

] ∣∣∣
s=ST

dST · dST |F0]

(2.10)
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and using the following identities
∂D0,T

∂T
= −rT e

−
R T
t0
rs ds

= −rTD0,T

∂

∂s

[
(s−K)1{s>K}

]
= 1{s>K} + (s−K)δ(s−K)

= 1{s>K}
∂2

∂s2

[
(s−K)1{s>K}

]
=

∂

∂s
1{s>K}

= δ(s−K)

(2.11)

The resulting expression for (2.10) is

dC = D0,TE[−rT (ST −K)1{ST>K}dT + 1{ST>K}ST [(rT − qT )dT + σ(T, ST )dWT ]

+
1
2
δ(ST −K)S2

Tσ
2(T, ST )dT |F0]

= D0,TE[rTK1{ST>K} − qTST1{ST>K} +
1
2
δ(ST −K)K2σ2(T, ST )|F0]dT

⇒ ∂C

∂T
= rTD0,TKE[1{ST>K}|F0]− qT

(
C +D0,TKE[1{s>K}|F0]

)
+

1
2
D0,TK

2E[δ(ST −K)σ2(T, ST )|F0]

= (rT − qT )D0,TKE[1{ST>K}|F0]− qTC +
1
2
D0,TK

2E[δ(ST −K)σ2(T, ST )|F0]

(2.12)

The last term in this equation can be transformed by

E[δ(ST −K)σ2(T, ST )|F0] = E[σ2(T, ST )|ST = K,F0]E[δ(ST −K)|F0] (2.13)

Now using (2.8), this results in

∂C

∂T
= −(rT − qT )

∂C

∂K
− qTC +

1
2
K2E[σ2(T, ST )|ST = K,F0]

∂2C

∂K2
(2.14)

⇒ E[σ2(T, ST )|ST = K,F0] = 2
∂C
∂T + (rT − qT ) ∂C∂K + qTC

K2 ∂2C
∂K2

(2.15)

Comparing equations (2.15) and (2.5) shows that the local variance can be seen as the expected
variance at maturity given that the asset price at maturity is equal to the strike price. This result
first appeared in [21]. It gives further insight into the nature of local volatility. An analogy can be
made with interest rates. The local volatility surface is comparable to the yield curve for interest
rates. It is an expectation of future instantaneous volatilities (future spot rates). This does not
mean that this expected value will actually be realised but it is possible at the current time to lock
in this value by trading different financial products. For interest rates this means buying and selling
bonds of different maturities, for local volatility it means buying and selling options with differing
strikes and maturities (the exact procedure for this is described in detail in [21]). Furthermore, the
implied volatility is the constant value for the volatility which is consistent with option prices in
the market, exactly like the yield is the constant value for the interest rate consistent with bond
prices in the market.
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2.2 Problems Using Dupire’s Formula

Given a certain local volatility function, the price of all sorts of contingent claims on the under-
lying can be priced. By the method described in 2.1 this process can be inverted, by extracting
the local volatility surface from option prices given as a function of strike and maturity. The
tacit assumption being that the option price is a continuous C2,1 function, known over all possible
strikes and maturities. Even if this assumption holds, problems arise in the implementation of
(2.5). Since the option price function will never be known analytically, neither will its derivatives.
Numerical approximations for the derivatives have to be made, which are by their very nature
imperfect. Therefore problems can arise when the values to be approximated are very small and
small absolute errors in the approximation can lead to big relative errors, perturbing the estimated
quantity heavily. When the disturbed quantity is added to other values, the effect will be limited.
This is not the case in Dupire’s formula where the second derivative with respect to the strike in
the denominator stands by itself. This derivative will be very small for options that are far in- or
out-of-the-money (the effect is particularly large for options with short maturities). Small errors in
the approximation of this derivative will get multiplied by the strike value squared resulting in big
errors at these values, sometimes even giving negative values, resulting in negative variances and
complex local volatilities. This is, needless to say, unacceptable behaviour for a volatility function.

The continuity assumption of option prices is, of course, not very realistic. In practice option
prices are known for certain discrete points. Usually option maturities correspond to the end of a
certain fixed period, like the end of a month. So the number of different maturities is always limited.
The same holds to a lesser degree for strikes. The result of this is that in practice the inversion
problem is ill-posed: the solution is not unique and is unstable. This is an extra problem when
dealing with Dupire’s formula in practice. One can smooth the option price data using Tikhonov
regularisation [15, 35] or by minimising the function’s entropy [3, 51]. Both these methods try
to estimate a stable option price function. These methods must, among other things, assure the
resulting option price function is convex in the strike direction at every point to avoid negative local
variance. This guarantees the positivity of the second derivative in the strike direction. This seems
sensible, since the non-convexity of the option price leads to an arbitrage opportunity (a butterfly
spread will have a negative price). It does, however, add a considerable amount of complexity to
the model. An easier, and inherently more stable method to obtain the local volatility surface is
to obtain it from the implied volatility surface.

2.3 Local Volatility as a Function of Implied Volatility

The local volatility can be described as a function of the implied volatility if a change of variables
is made in (2.5) by using C as a function of some other variable. Instinctively this is not possible,
because there is no closed form formula for C to be transformed. But use can be made of the
Black-Scholes formula and the concept of implied volatility. The standard Black-Scholes environ-
ment with lognormal prices is a highly idealised world, which does not accurately describe reality.
But as Rebonato [49] pointedly observed, the implied volatility is “the wrong number to put in the
wrong formula to get the right price of plain-vanilla options”. Therefore the formula (2.5) can be
expressed in terms of the implied volatility.
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Using the following notation

Σ = σimp(K,T )
τ = T − t0

(2.16)

with t0 as the current time, and the following parametrisation (slightly adapting the method pro-
posed in [32])

y = ln
(
K

S0

)
+
∫ T

t0

(qs − rs)ds

w = Σ2τ

(2.17)

the option price has the expression

Cmarket(S0, t0,K, T, σ) = CBS(S0, t0,K, T,Σ)

= S0e
−

R T
t0
qsds [N(d1)− eyN(d2)]

(2.18)

where

d1 = − y√
w

+
√
w

2

d2 = − y√
w
−
√
w

2

(2.19)

Now the partial derivatives of this expression of the call option with respect to T and K are needed,
to plug into the Dupire formula.

∂C

∂K
=
∂C

∂y

∂y

∂K
+
∂C

∂w

∂w

∂K

=
1
K

∂C

∂y
+
∂w

∂K

∂C

∂w

∂2C

∂K2
=− 1

K2

∂C

∂y
+

1
K

∂

∂K

(
∂C

∂y

)
+
∂2w

∂K2

∂C

∂w
+
∂w

∂K

∂

∂K

(
∂C

∂w

)
=− 1

K2

∂C

∂y
+

1
K

(
1
K

∂2C

∂y2
+
∂w

∂K

∂2C

∂w∂y

)
+
∂2w

∂K2

∂C

∂w

+
∂w

∂K

(
1
K

∂2C

∂y∂w
+
∂w

∂K

∂2C

∂w2

)
=

1
K2

(
∂2C

∂y2
− ∂C

∂y

)
+

2
K

∂w

∂K

∂2C

∂w∂y
+
∂2w

∂K2

∂C

∂w
+
(
∂w

∂K

)2 ∂2C

∂w2

∂C

∂T
= − qTC + (qT − rT )

∂C

∂y
+
∂w

∂T

∂C

∂w

(2.20)

Inserting these equations into (2.5) results in

σ2
L = 2

−qTC + (qT − rT )∂C∂y + ∂w
∂T

∂C
∂w + (rT − qT )∂C∂y + (rT − qT )K ∂w

∂K
∂C
∂w + qTC(

∂2C
∂y2
− ∂C

∂y

)
+ 2K ∂w

∂K
∂2C
∂w∂y +K2 ∂2w

∂K2
∂C
∂w +K2

(
∂w
∂K

)2 ∂2C
∂w2

(2.21)
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This equation can be simplified significantly by making use of the following identities

∂2C

∂w2
=
(
−1

8
− 1

2w
+

y2

2w2

)
∂C

∂w

∂2C

∂w∂y
=
(

1
2
− y

w

)
∂C

∂w

∂2C

∂y2
− ∂C

∂y
= 2

∂C

∂w

(2.22)

which, after simplification, gives an expression of the local volatility in terms of the new variables
y and w

σ2
L =

∂w
∂T + (rT − qT )K ∂w

∂K

1 +K ∂w
∂K

(
1
2 −

y
w

)
+ 1

2K
2 ∂2w
∂K2 − 1

4K
2
(
∂w
∂K

)2 (1
4 + 1

w −
y2

w2

) (2.23)

Now the partial derivatives of w are given by

∂w

∂K
= 2Στ

∂Σ
∂K

∂2w

∂K2
= 2τ

(
∂Σ
∂K

)2

+ 2Στ
∂2Σ
∂K2

∂w

∂T
= Σ2 + 2Στ

∂Σ
∂T

(2.24)

and plugging these into (2.23) results in

σ2
L =

Σ2 + 2Στ
(
∂Σ
∂T + (rT − qT )K ∂Σ

∂K

)
1 +KΣτ ∂Σ

∂K − 2KyΣ
∂Σ
∂K +K2Στ ∂2Σ

∂K2 − 1
4K

2Σ2τ2
(
∂Σ
∂K

)2
+ K2y2

Σ2

(
∂Σ
∂K

)2
=

Σ2 + 2Στ
(
∂Σ
∂T + (rT − qT )K ∂Σ

∂K

)(
1− Ky

Σ
∂Σ
∂K

)2
+KΣτ

(
∂Σ
∂K −

1
4KΣτ

(
∂Σ
∂K

)2
+K ∂2Σ

∂K2

) (2.25)

which is consistent with other known versions of this formula such as the one found in [59]. This
formula will be the main tool for extracting the local volatility surface from a given input. When
the second derivative with respect to the strike price becomes very small it will not give rise to the
same problems as would be experienced with the direct implementation of Dupire’s formula (2.5).

From the formula above it can be seen that if the implied volatility does not exhibit any
dependence on K

σ2
L = Σ2 + 2Στ

∂Σ
∂T

= Σ2 + 2Στ
∂Σ
∂τ

=
∂(Σ2τ)
∂τ

⇒ Σ2 =
1
τ

∫ τ

0
σ2
L(u)du

(2.26)
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where the last integral is over the time variable. This means that, when the implied volatility
surface does not have any skew, the implied total variance is the time average of the local variance.

2.4 Fitting the Implied Volatility Surface

When comparing equation (2.25) with (2.5) it is clear that the first problem described in 2.2 no
longer exists. The transformation of Dupire’s formula into one which depends on the implied
volatility ensures that there no longer is a lone second derivative in the denominator as there was
in (2.5). The second derivative of the implied volatility is now one term of a summation, so small
errors in it will not necessarily lead to large errors in the local volatility function.

There is, of course, still the matter that the implied volatility is not a known continuous func-
tion of strike and maturity, but only known at certain points. To get the local volatility function
from (2.25), some method has to be used to interpolate and extrapolate the given data points
unto a surface. Since obtaining the local volatility out of the data involves taking derviatives, the
extrapolated surface cannot be too rough, to avoid irregularities in the local volatility surface.

A good overview of different methods of fitting an implied volatility surface to data points can
be found in [28]. All these methods can be subdivided in two parts. First a rough fit of a certain
form is made to the data, which captures all the local information. Secondly some sort of smoothing
is applied to this rough pre-smoothed surface, thereby ensuring the differentiability of the function
and thus removing large spikes in the local volatility surface. Although this means the resulting
surface does not necessarily go through all the data points, this can be justified given the inherent
uncertainty of the data. In the market there is not one precise value for the option price, and thus
implied volatility, because of the bid-ask spread. It seems reasonable to use the mid-market price
for the modelling. Small deviations from this mid-market price are thus not a problem. It should
of course be checked that the smoothed surface indeed matches all the bid-ask spreads.

Since the number of data points is always many times less than the number of grid points for
the surface, there are many degrees of freedom in the fitting of the surface. The process of fitting
the surface is therefore for a large part more art than science. It cannot be said with certainty
which method of fitting the implied volatility surface is the best. Different methods have different
advantages.

2.4.1 Thin Plate Splines

In this report the data is fitted to a surface by a thin plate spline (TPS), which is considered to be
a natural candidate for this type of problem [10, 29]. The TPS is the two-dimensional equivalent
of the cubic spline. First developed by Duchon [23], it gets its name from the physical process of
bending a thin plate of metal. The TPS is constrained to go through all the data points and is the
fit with the least amount of curvature. If the spline function is denoted by f(x, y), and the bending
energy function by

J =
∫∫

R2

((
∂2f

∂x2

)2

+ 2
(
∂2f

∂x∂y

)2

+
(
∂2f

∂y2

)2
)
dx dy (2.27)
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the TPS is found by minimising the bending energy function

E =
1
n

n∑
i=1

(f(xi, yi)− zi)2 + λJ (2.28)

where zi are the n data points at coordinates (xi, yi) and λ is the smoothing parameter. For λ = 0
the procedure simply finds the interpolating spline. When λ > 0 the resulting function is smoothed
to reduce the function’s curvature. By adjusting the value for λ the amount of smoothing can
be controlled. This procedure ensures the TPS agrees with the original data as good as possible
(when the TPS is smoothed it does not go through these points exactly), and minimal curvature.
Although used in a slightly different setting, this methods is similar to the Tikhonov regularisation
used in [15, 35].

From the original TPS paper by Duchon [23] and the work by Meinguet [44] it follows that
there is a unique solution to this problem and it can be written as

f(xi, yi) =
n∑
j=1

ajAi,j +
3∑
j=1

bjBi,j (2.29)

Here, A is an [n × n] matrix and B an [n × 3] matrix (I is the [n × n] identity matrix) , where n
denotes the number of data points. The entries of these matrices entries are given by

Ai,j = ||(xi, yi)− (xj , yj)||2 ln(||(xi, yi)− (xj , yj)||2)
Bi,(1:3) = (1, xi, yi)

(2.30)

in which || · || is the Euclidean norm in R2. Note that to get a correct fit it is usually necessary to
scale the variables x and y before the actual fitting, due to the behaviour of the ln function.

The subsequent work by Wahba and Wendelberg [58] shows, by inserting the expression above
into (2.28) and some manipulation, that the vectors ~a and ~b that minimise the bending energy in
(2.28) satisfy

~f = (A+ nλI)~a+B~b

0 = BT~a
(2.31)

This set of equations is usually solved by making a QR-decomposition of the matrix B

B = QR = (Q1|Q2)
(
R1

0

)
= Q1R1 (2.32)

Here Q is an [n×n] matrix with orthonormal vectors as columns and R is a [n×3] upper triangular
matrix. Since the bottom n− 3 rows of R are zero, it is useful to write Q and R in the form above.
Here Q1 is [n× 3] and Q2 is [n× (n− 3)].

Since BT~a = 0 it follows from the QR-decomposition that ~a = Q2γ, for some n − 3 vector γ.
By multiplying the first equation in (2.31) by QT2 (and using the orthonormality of Q such that
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QT2 Q1 = 0)

QT2 f = QT2 (A+ nλI)~a+QT2 B
~b

QT2 f = QT2 (A+ nλI)Q2γ +QT2 Q1R1
~b

QT2 f = QT2 (A+ nλI)Q2γ

γ = (QT2 (A+ nλI)Q2)−1QT2 f

⇒ ~a = QT2 (QT2 (A+ nλI)Q2)−1QT2 f

= QT2 (QT2 AQ2 + nλI)−1QT2 f

(2.33)

By multiplying the first equation in (2.31) by QT1

QT1 f = QT1 (A+ nλI)~a+QT1 B
~b

QT1 f = QT1 A~a+ nλQT1 Q2γ +QT1 Q1R1
~b

QT1 f = QT1 A~a+R1
~b

⇒ ~b = R−1
1 QT1 (f −A~a)

(2.34)

Finally the value of the smoothed TPS can be found by inserting these values into

f(x, y) =
n∑
i=1

ai||(x, y)− (xi, yi)||2 ln(||(x, y)− (xi, yi)||2) + b0 + b1x+ b2y (2.35)

A complete overview of the TPS method is given in [57].
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3 Binomial Trees

In this section the binomial tree as a method of pricing options is discussed. The standard version of
the binomial tree and a version using the local volatility surface is described in 3.1. The logarithmic
binomial tree is discussed in 3.2. To check the accuracy of these methods, the described methods
are used for plain vanilla European options. Since the local volatility surface is obtained by using
the implied volatility as an input, the right value of these options can be calculated from the Black
Scholes equation. These results (which are illustrated in 8.2.3 and 8.2.4) give an indication of the
accuracy of the methods used.

3.1 The Standard Binomial Tree

The first binomial tree used for pricing options, and the one that is described in this section, was
developed by Cox, Ross and Rubinstein [14]. It models the possible paths of the price of the un-
derlying asset in discrete time. Before considering an adaptation of this model for the case of local
volatility, the original model with constant volatility is considered.

Assume that in any fixed time increment ∆t the asset can either go up in value to Su with
probability p or down to Sd with probability 1− p as depicted in the figure below
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The unknown variables can be derived by equating the discrete time mean and variance of the
asset to the values of mean and variance known from continuous time.

3.1.1 Continuous Time Analysis

In continuous time the asset price is assumed to follow geometric Brownian motion (under Q)

dSt
St

= (rt − qt)dt+ σdWt (3.1)

where rt and qt are the deterministic continuously compounded risk-free interest rate and dividend
yield, respectively. From this it follows that the asset price is lognormally distributed since (using
Itô)
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d lnSt =
1
St
dSt −

1
2S2

t

dSt · dSt

= (rt − qt)dt+ σdWt −
1
2
σ2dt

= (rt − qt −
1
2
σ2)dt+ σdWt

St = S0e
R t
t0

(rs−qs)ds− 1
2
σ2(t−t0)+σWt

(3.2)

From this the mean and variance at time node j + 1 (time = t+ ∆t) as seen from j (time = t) can
be derived, where Sj = Stj . It is assumed that within the time increment ∆t rj (rtj ) and qj (qtj )
remain constant

E[Sj+1] = Sje
((rj−qj)− 1

2
σ2)∆t E[eσ∆Wt ]

= Sje
((rj−qj)− 1

2
σ2)∆t e

1
2
σ2∆t

= Sje
(rt−qt)∆t

Var[Sj+1] = S2
j e

(2(rj−qj)−σ2)t Var[eσWt ]

= S2
j e

(2(rj−qj)−σ2)∆t
(
E[e2σ∆Wt ]−

(
E[eσ∆Wt ]

)2)
= S2

j e
(2(rj−qj)−σ2)∆t

(
e2σ2∆t −

(
e

1
2
σ2∆t

)2
)

= S2
j e

2(rj−qj)∆t
(
eσ

2∆t − 1
)

(3.3)

with ∆Wt = Wt+∆t −Wt. The mean of the asset gives, as could be expected, the regular forward
price.

3.1.2 Discrete Time Analysis

In discrete time the mean and variance at time node j + 1 (time = t+ ∆t) as seen from j (time =
t) are

E[Sj+1] = pSu + (1− p)Sd
E[S2

j+1] = pS2
u + (1− p)S2

d

Var (Sj+1) = E[S2
j+1]− (E[Sj+1])2

= pS2
u + (1− p)S2

d − p2S2
u − 2p(1− p)SuSd − (1− p)2S2

d

= p(1− p)(Su − Sd)2

(3.4)
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3.1.3 Recombining the Binomial Tree

Comparing the expressions for mean and variance in continuous and discrete time gives

Sje
(rj−qj)∆t = pSu + (1− p)Sd

⇒ p =
Sje

(rj−qj)∆t − Sd
Su − Sd

(3.5)

S2
j e

2(rj−qj)∆t
(
eσ

2∆t − 1
)

= p(1− p)(Su − Sd)2

=
Sje

(rj−qj)∆t − Sd
Su − Sd

Su − Sje(rj−qj)∆t

Su − Sd
(Su − Sd)2

=
(
Sje

(rj−qj)∆t − Sd
)(

Su − Sje(rj−qj)∆t
) (3.6)

A small change in notation is made

Su = uSj

Sd = dSj
(3.7)

To avoid confusion: dSj always means d times Sj , an infinitesimal change in the price is always
denoted by dSt.

This transforms equation (3.6) into

e2(rj−qj)∆t
(
eσ

2∆t − 1
)

=
(
e(rj−qj)∆t − d

)(
u− e(rj−qj)∆t

)
= (u+ d)e(rj−qj)∆t − du− e2(rj−qj)∆t

e(2(rj−qj)+σ2)∆t = (u+ d)e(rj−qj)∆t − du

(3.8)

The problem has been reduced to solving one equation with two unknowns. This leaves one
degree of freedom which is used to make the tree recombining. This can be achieved in numerous
ways, one of which is by imposing the following relation between u and d

d = u−1 (3.9)

With this relation, equation (3.8) now becomes

e(2(rj−qj)+σ2)∆t = (u+ u−1)e(rj−qj)∆t − 1 (3.10)

From which it becomes clear that d will satisfy the exact same equation because of relation (3.9).
Therefore both u and d will be solutions of this equation, which is just a simple quadratic equation

u2 − u
(
e−(rj−qj)∆t + e((rj−qj)+σ2)∆t

)
+ 1 = 0 (3.11)

This equation has two solutions. By the manner of construction of the binomial tree it easy to see
which solution corresponds with u and which one with d

u = β +
√
β2 − 1

d = β −
√
β2 − 1

β =
1
2

(
e−(rj−qj)∆t + e((rj−qj)+σ2)∆t

) (3.12)
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Expanding the expressions for β and
√
β2 − 1 in Puiseux series and comparing it with the same

expressions for eσ
√

∆t and e−σ
√

∆t shows

β = 1 +
1
2
σ2∆t+O(∆t2)√

β2 − 1 = σ
√

∆t+
1

2σ

(
(rj − qj)2 + (rj − qj)σ2 +

3
4
σ4

)
∆t

3
2 +O(∆t2)

eσ
√

∆t = 1 + σ
√

∆t+
1
2
σ2∆t+

1
6
σ3∆t

3
2 +O(∆t2)

e−σ
√

∆t = 1− σ
√

∆t+
1
2
σ2∆t− 1

6
σ3∆t

3
2 +O(∆t2)

⇒ u = eσ
√

∆t +O(∆t
3
2 )

d = e−σ
√

∆t +O(∆t
3
2 )

(3.13)

So if the terms O(∆t
3
2 ) are neglected (which is justifiable for ∆t small), this results in the approx-

imations for u and d used in [14] that are widely used for the binomial tree.

Since it was assumed that the volatility was constant, u, d and therefore also p are constant at
all nodes in the binomial tree. It is thus recombining at every point in time.

3.1.4 Binomial Tree with Local Volatility

When considering the local volatility model, where the volatility is a function of time and the asset
price, the situation becomes more complicated. At different nodes the volatility will typically be
different. Choosing condition (3.9) at each node will not make the tree recombining, since now
going up at one time and then down is not equivalent anymore to going down at that time and
then up. This presents a big problem, because for binomial trees to be used effectively it needs to
be recombining. Without recombination the number of nodes will be 2n at time step n. After a
mere 100 steps, not enough to make accurate valuations, the number of nodes will be of the order
1030. Implementing this for more time steps, not to mention actually using this tree multiple times,
will be computationally impossible. For a recombining tree the number of nodes at time step n
will simply be n + 1. This means making the binomial tree recombining is vital for the model to
be used in practice.

Assuming it is possible to construct a recombining tree and standing at a fixed point in time
j, there are j + 1 nodes and as many known asset values. At this point there are the following
equations (i denotes the number of the node with the top assigned i = 0 counting downwards)

e(2(rj−qj)+σ2
i )∆t = (ui + di)e(rj−qj)∆t − diui i = 0, ..., j (3.14)

To make sure the tree is recombining the following condition has to be satisfied

Sidi = Si+1ui i = 0, ..., j − 1 (3.15)
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This means that at each point in time there are 2j+ 1 equations for 2j+ 2 unknowns, which means
that typically this system can be solved, leaving one degree of freedom. By the very construction
of the tree it is ensured that the tree is recombining.

Using the degree of freedom to take
dk = u−1

k (3.16)

at some node k there is a simple algorithm to construct the tree to value European options.

3.1.5 Algorithm

At time step j, there are j+1 nodes, i denotes the number of the node, and σi is the local volatility
at time j andnode i.

1. Calculate uk and dk with the original formula for the standard recombining binomial tree
(3.12) because of assumption (3.16)

2. Calculate dk−1 from the recombining condition (3.15)

3. Calculate uk−1 from (3.14)

uk−1 =
e(2(rj−qj)+σ2

i )∆t − dk−1e
(r−q)∆t

e(rj−qj)∆t − dk−1

(3.17)

4. Repeat steps 2 and 3 for k − 2, .., 0

5. Calculate uk+1 from the recombining condition (3.15)

6. Calculate dk+1 from (3.14)

dk+1 =
uk+1e

(rj−qj)∆t − e(2(rj−qj)+σ2
i )∆t

uk+1 − e(rj−qj)∆t
(3.18)

7. Repeat steps 5 and 6 for k + 2, ..., j

8. Put payoff values in tree at maturity, work backwards discounting the value of the option,
where the transition probabilities are given by (3.5)

3.1.6 Instability of the Binomial Tree

When the binomial tree with local volatility, as described in the previous section, is implemented
a major problem is encountered. For low values of the maximum amount of steps n, eg n < 80, in
the tree the model is relatively stable and seems to work reasonably well. To improve the accuracy
of the model however more time steps are needed. When this is done the model becomes very
unstable. At some points in the tree the values for u and d start to oscillate (as is shown in 8.2.3).

21



This oscillation results in the fact that at some nodes u is smaller than d, resulting in irregular
trees for the asset price. This behaviour depends on the choice of k in (3.16). When k is chosen to
be 1 (the upper node), the tree becomes very unstable for n > 80. The optimal choice for k seems
to be to take k in the middle of the tree branch k = [ j2 ] (the square brackets denote rounding),
where the tree becomes very unstable for around n > 100.

For some plain vanilla European options the model seems to give a reasonably well approxi-
mation for the option price. However, since the model is unstable, it is impossible to check the
accuracy of the model sufficiently. Furthermore, given the irregular behaviour of the tree, it is im-
possible to predict if this model is in any way useful when dealing with American or exotic options.

3.2 The Logarithmic Binomial Tree

One possible solution to remedy the instability of the standard binomial tree with local volatility
may be to use a logarithmic binomial tree where the logarithmic values of the asset price and u
and d are used. Maybe the different numerical behaviour of these variables will lead to increased
stability of the model.

3.2.1 Continuous Time

From (3.2) follow the equations for the mean and variance in continuous time

d lnSt = (rt − qt −
1
2
σ2)dt+ σdWt

lnSt = lnS0 +
∫ t

t0

(rs − qs)ds−
1
2
σ2(t− t0) + σWt

(3.19)

or in the language of the binomial tree with time nodes j and j + 1

lnSj+1 = lnSj + (rj − qj −
1
2
σ2)∆t+ σ∆Wt (3.20)

Giving the mean and variance of the logarithm of the asset price at time node j + 1 as seen from j

E[lnSj+1] = lnSj + (rj − qj −
1
2
σ2)∆t

Var[lnSj+1] = σ2∆t
(3.21)

3.2.2 Discrete Time

In discrete time
E[lnSj+1] = p ln(uSj) + (1− p) ln(dSj)

= lnSj + p lnu+ (1− p) ln d

E[(lnSj+1)2] = p ln2(uSj) + (1− p) ln2(dSj)

= p (lnu+ lnSj)
2 + (1− p) (ln d+ lnSj)

2

= ln2 Sj + p ln2 u+ 2p lnu lnSj + (1− p) ln2 d+ 2(1− p) ln d lnSj

(3.22)
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Leading to

Var[lnSj+1] = E[(lnSj+1)2]− (E[lnSj+1])2

= ln2 Sj + p ln2 u+ 2p lnu lnSj + (1− p) ln2 d+ 2(1− p) ln d lnSj
− (ln2 Sj + 2p lnSj lnu+ 2(1− p) lnSj ln d+ p2 ln2 u

+ 2p(1− p) lnu ln d+ (1− p)2 ln2 d)

= (p− p2) ln2 u+ [(1− p)− (1− p)2] ln2 d− 2p(1− p) lnu ln d

= p(1− p)(ln2 u− 2 lnu ln d+ ln2 d)

= p(1− p) ln2 u

d

(3.23)

So the result of mean matching is

(rj − qj −
1
2
σ2)∆t = p lnu+ (1− p) ln d

⇒ p =
(rj − qj − 1

2σ
2)∆t− ln d

lnu− ln d

(3.24)

And for variance matching

σ2∆t = p(1− p) ln2 u

d

=

[
(rj − qj − 1

2σ
2)∆t− ln d

lnu− ln d

][
lnu− (rj − qj − 1

2σ
2)∆t

lnu− ln d

]
ln2 u

d

= (rj − qj −
1
2
σ2)∆t[lnu+ ln d]− lnu ln d− (rj − qj −

1
2
σ2)2(∆t)2

(3.25)

When choosing d = u−1 ⇒ ln d = − lnu at some node k, it yields

σ2∆t = ln2 uk − (rj − qj −
1
2
σ2)2(∆t)2

⇒ lnuk =

√
σ2∆t+ (rj − qj −

1
2
σ2)2(∆t)2

(3.26)

Which gives the same result as before if expanded in a Puiseux series

e

q
σ2∆t+(rj−qj− 1

2
σ2)2(∆t)2 = 1 + σ

√
∆t+

1
2
σ2∆t+O

(
∆t

3
2

)
⇒ uk = eσ

√
∆t +O

(
∆t

3
2

) (3.27)

For the logarithmic binomial tree with local volatility to be recombing, the following condition
needs to be satisfied

lnSi + ln di = lnSi+1 + lnui+1 (3.28)
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3.2.3 Algorithm

The algorithm for the logarithmic binomial tree is not that different from the one for the standard
binomial tree.

1. Calculate lnuk and ln dk for some fixed k from (3.26) and the condition that ln dk = − lnuk

2. Calculate ln dk−1 from the recombining condition (3.28)

3. Calculate lnuk−1 from (3.25)

lnuk−1 = (rj − qj −
1
2
σ2
k−1)∆t−

σ2
k−1∆t

ln dk−1 − (rj − qj − 1
2σ

2
k−1)∆t

(3.29)

4. Repeat steps 2 and 3 for k − 2, .., 0

5. Calculate lnuk+1 from the recombining condition (3.28)

6. Calculate ln dk+1 from (3.25)

ln dk+1 =
σ2
k+1∆t

(rj − qj − 1
2σ

2
k+1)− lnuk+1

+ (rj − qj −
1
2
σ2
k+1)∆t (3.30)

7. Repeat steps 5 and 6 for k + 2, ..., j

8. Put payoff values in tree at maturity, work backwards discounting the value of the option,
where the transition probabilities are known by (3.24)

3.2.4 Instability of the Logarithmic Binomial Tree

Unfortunately the logarithmic binomial tree exhibits the same unstable behaviour as the normal
binomial tree (although it behaves slightly better, see 8.2.4). In both cases no adjustments can be
made to counter the instability while keeping the tree recombining since there is only one degree of
freedom at each time step, which needs to establish a relation between two variables at one node. It
seems that more degrees of freedom are needed to get a stable model. A model with more degrees
of freedom is the trinomial tree model, which is the subject of the next section.
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4 Trinomial Trees

The principles of the trinomial tree are the same as those of the binomial tree, the only difference
being that at each node there are three possibilities for the next time step, Su, Sm and Sd, instead
of two. The basic equations needed for the construction of the trinomial tree are derived in 4.1.
Two different methods of constructing the trinomial tree are described in 4.2 and 4.3. Dividends?
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u
4.1 Basic Equations

Again the main equations are derived by equating the mean and variance to the values obtained
from the continuous time analysis. For the trinomial tree at each time the top node is denoted by
0 and, since there are 2j + 1 nodes at time j, the bottom node is denoted by 2j.

E[Sj+1] = puSu + (1− pu − pd)Sm + pdSd

E[S2
j+1] = puS

2
u + (1− pu − pd)S2

m + pdS
2
d

Var[Sj+1] = E[S2
j+1]− (E[Sj+1])2

= pu(Su − Sm)2 + pd(Sm − Sd)2 − (pu(Su − Sm)− pd(Sm − Sd))2

(4.1)

Matching mean and variance gives (using the notation of the binomial tree)

For i = 0, ..., 2j

e(rj−qj)∆t = pu,iui + (1− pu,i − pd,i)mi + pd,idi

e2(rj−qj)∆t
(
eσ

2
i∆t − 1

)
= pu,i(ui −mi)2 + pd,i(mi − di)2

− (pu,i(ui −mi)− pd,i(mi − di))2

(4.2)
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To make the tree recombining it must be ensured that the following conditions hold

For i = 0, ..., 2j − 1
miSi = ui+1Si+1

diSi = mi+1Si+1

(4.3)

Resulting in 4j + 2 equations from mean and variance matching and 4j equations from the
recombining conditions. Since there are 5(2j + 1) unknowns, there are 2j + 3 degrees of freedom.
These extra degrees of freedom with respect to the binomial tree will help solve the problems ex-
perienced with that model.

The main problem with the binomial tree used with the local volatility model is the instability
of the stock tree. At some points the values for ui,j and di,j began to oscillate, leading to situations
where ui,j < 1 such that Su < Sd mangling the shape of the tree (if many time steps are used it can
even lead to ui,j < 0 leading to negative asset prices). In the trinomial tree this can be remedied by
choosing certain values for mi,j (using 2j+1 degrees of freedom). It is chosen to keep mi,j constant
over all nodes i, simply denoting it by mj . The time dependency of mj will be discussed shortly.

Together with the recombining conditions (4.3) this leads to a robust tree, where Sd < Sm < Su
is guaranteed (and negative assets prices are also avoided). Since this fixates almost all the points
of the tree, the two remaining degrees of freedom are needed at the first and last node at each point
in time.

4.2 Fixing u and d

Since m is already fixed it seems obvious to use the remaining degrees of freedom to fix u and d.
Most of these values are already fixed by the recombining conditions and the choice for fixing mj .
Denoting the time step at one node by j, and remembering that by definition Si+1,j+1 is at the
same height as Si,j and i is counting down from the top to the bottom node, it follows from (4.3)
that

ui+1,j+1 =
Si+1,j+2

Si+1,j+1

=
Si,j+1mi,j+1

Si,jmi,j

= ui,j
mj+1

mj

(4.4)

Also at the last node u2j+2,j+1 is known by

u2j+2,j+1 =
S2j+2,j+2

S2j+2,j+1

=
S2j,jm2j,jm2j+1,j+1

S2j,jd2j,j

=
mjmj+1

d2j,j

(4.5)
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The equations for di+1,j+1 and d0,j+1 are comparable.

di+1,j+1 = di,j
mj+1

mj

d0,j+1 =
mjmj+1

u0,j

(4.6)

So the whole tree can be fixed by using the two remaining degrees of freedom to fix u0 and d2j

at each point in time j.
The transition probabilities are derived from the first of (4.2)

pu,i =
e(rj−qj)∆t + pd,i(mj − di)−mj

ui −mj

pd,i =
e(2(rj−qj)+σ2

i )∆t − e(rj−qj)∆t(ui +mj) + uimj

(ui − di)(mj − di)

⇒ pu,i =
e(2(rj−qj)+σ2

i )∆t − e(rj−qj)∆t(di +mj) + dimj

(ui −mj)(ui − di)
⇒ pm,i = 1− pu,i − pd,i

=
e(rj−qj)∆t(ui + di)− uidi − e(2(rj−qj)+σ2

i )∆t

(ui −mj)(mi − di)

(4.7)

4.2.1 Negative Probabilities

From the construction of the trinomial tree it is not guaranteed that the probabilities in (4.7) are
between 0 and 1, and therefore may not be actual probabilities. Since all u’s and d’s are essentially
fixed from the start, it is obvious they are chosen in a way such that ui > mi > di. This means
that all the denominators in (4.7) are larger than zero. Temporarily denoting the numerator of pd,i
by N , ensuring that pd,i ≥ 0 means N ≥ 0. Using that eσ

2
i∆t ≥ 1, because σi ≥ 0, gives

N = e(2(rj−qj)+σ2
i )∆t − e(rj−qj)∆t(ui +mj) + uimj

≥ e2(rj−qj)∆t − e(rj−qj)∆t(ui +mj) + uimj

=
(
e(rj−qj)∆t − ui

)(
e(rj−qj)∆t −mj

) (4.8)

So if it is chosen to let mj = e(rj−qj)∆t, this means N ≥ 0 and thus pd,i ≥ 0. Expressions (4.7) can
thus be written as

pu,i =
e2(rj−qj)∆t

(
eσ

2
i∆t − 1

)
(
ui − e(rj−qj)∆t

)
(ui − di)

pd,i =
e2(rj−qj)∆t

(
eσ

2
i∆t − 1

)
(ui − di)

(
e(rj−qj)∆t − di

)
pm,i =

e(rj−qj)∆t(ui + di)− uidi − e(2(rj−qj)+σ2
i )∆t(

ui − e(rj−qj)∆t
) (
e(rj−qj)∆t − di

)
(4.9)
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From this it becomes clear that this choice of mj also ensures that pu,i ≥ 0. However, no definitive
statement can be made about the upper bound of these probabilities, since they depend on the
level of the volatility. So some extra feature is needed in the model to ensure that pm,i > 0.

Negative probabilities only occur for the transition to the middle node pm,i, since pu,i ≥ 0 and
pd,i ≥ 0. The trinomial tree is fixed from the start, and the values for u and d will be chosen to
make sure no negative probabilities occur at the origin of the tree (see section 4.2.2). But as the
tree progresses in time, the volatility changes, since it depends on the asset price and the time.
When the volatility rises, the tree becomes too rigid to accommodate the increased volatility. The
price process needs high values for u and low values for d to reflect the high volatility. But u and
d are fixed, so the probabilities of going up and down grow, as can be seen in (4.9), giving rise to
negative probabilities for the middle node.

To fix this problem u and d in the extreme nodes can be made time dependent. This is not
sufficient though when the local volatility also rises with time (as it does in the SABR model, see
8.2.1) and due to the choice of m the asset rises for the middle nodes. It will still result in some
negative transition probabilities. It also seems too much compensation to change u and d for those
parts of the tree which behave normally.

A procedure is thus used to provide more flexibility at the points in the tree with high volatility.
The tree is constructed according to the formulae in the previous section. At each point in time,
before continuing to the next time step, the tree is checked for negative values of pm. If such a
negative value is encountered at the first or last node, the most extreme values of the asset, u0

or d2j is increased or decreased respectively, after which the tree is adjusted and probabilities are
recalculated. If a negative probability is encountered at one of the inner nodes, the asset will not
go up one step, stay in the middle or down one step, but instead will go up two steps, stay in the
middle or down two steps. u and d are adjusted accordingly and the probabilities are recalculated.
This effectively changes the tree (for all inner nodes) into a recombining quintinomial tree (five
possible transitions at each node) where the probabilities of going up two steps and down two
steps, puu and pdd, are zero, but when negative probabilities are encountered, those probabilities
are adjusted and the probabilities of going one step up or down are set to zero.

4.2.2 Determining u0 at the Origin of the Tree

As mentioned in the previous section, at the origin of the tree the values for u and d will be chosen
to make sure no negative probabilities occur. pm in (4.9) needs to be larger than or equal to zero.
This is guaranteed when

0 ≤ e(r0−q0)∆t(u0 + d0)− u0d0 − e(2(r0−q0)+σ2
0)∆t (4.10)

Since the values of both u0 and d0 at this point can be chosen freely, it is ensured that the
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above inequality is satisfied. For instance if d0 = m2
0

u0
= 1

u0
e2(r0−q0)∆t then

0 ≤ u0, e
(r0−q0)∆t +

1
u0
e3(r0−q0)∆t − e2(r0−q0)∆t − e(2(r0−q0)+σ2

0)∆t

0 ≤ u2
0 − u0e

(r0−q0)∆t
(
eσ

2
0∆t + 1

)
+ e2(r0−q0)∆t

⇒ u0 ≥ umin :=
1
2
e(r0−q0)∆t

(
eσ

2
0∆t + 1 +

√(
eσ

2
0∆t + 1

)2
− 4

) (4.11)

The other solution for u0 would require it to be less than a value which is typically less than 1, and
is therefore discarded.

Different choices for u0 can be made as long as (4.11) is satisfied. A large value will make the
tree wider, ensuring that negative probabilities will occur as little as possible. However, it gives
rise to more inaccuracy. A possible reason for this can be that when the tree is wider there will
be fewer distinct values at maturity in that part that matters most: the middle part where the
probability of ending up in that part of the tree is largest. Since these values are the most likely
to occur and therefore contribute the most to the option value, having fewer of these value should
lead to more imprecision. Therefore, to get the best result, the choice is made to put u0 = umin.

4.2.3 Implementing a Cutoff for High Volatilities

Another aspect that has to be considered is what happens in the tree when the asset price becomes
very large. In some models, including the SABR model depending on the specific parameters, the
local volatility is increasing in the asset price. In the trinomial tree, as indeed is also the case in
the binomial tree, the values at the top of the tree become very large. If the local volatility surface
is extrapolated to these prices, large volatilities can occur. This leads to negative probabilities
for the middle nodes even after adjusting u by large amounts. This causes serious delay in the
computational time and leads to a general breakdown of the model and should thus be avoided.

The choice is made to implement a cutoff value for the asset dependency of the local volatility.
Above some value for the asset price, for the calculation of the local volatility it is assumed the asset
price is equal to this cutoff value. This removes the asset dependency above the cutoff value, while
keeping the time dependency. A natural question is if this can be done and if it will compromise
the accuracy of the model. To answer this question the effect of this cutoff value is determined by
implementing the trinomial tree for a large variety of cutoff values and strike prices (with maturity
of 1 year and 1000 time steps). This results in two observations:

• Placing the cutoff value below 3S0 results in significant variations of the order of a few cents.

• For a cutoff value above 3S0, the cutoff value does not change the modeled price by more
than a tenth of a cent in the most extreme case.

These observations suggest that as long as the cutoff value is implemented at a relatively high value
(≥ 3S0) the cutoff does not affect the option price significantly and therefore will not cause any
significant problems.
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4.2.4 Algorithm

At the origin of the tree:

1. Fix u0 = umin such that (4.11) is satisfied. Then fix m0 = e(r0−q0)∆t and d0 = m2
0

u0

2. Calculate the transition probabilities from (4.9)

3. Calculate the tree at time step 1

For all time steps j ≥ 1:

4. Fix u0,j and d2j,j . The other u’s and d’s are known from (4.4), (4.5) and (4.6)

5. Calculate tree values for time j + 1

6. Calculate the transition probabilities from (4.9)

7. Check for negative probabilities at each node i = 0, ..., 2j

8. If pm,0,j < 0

• Increase u0,j

• Start over from step 5

9. If pm,2j,j < 0

• Decrease d2j,j

• Start over from step 5

10. If pm,i,j < 0 for i /∈ {0, 2j}

• uui,j = Si−1,j+1

Si,j

ddi,j = Si+3,j+1

Si,j

• Set pu,i,j = pd,i,j = 0

• Calculate puu,i,j , pm,i,j and pdd,i,j from (4.9) with uui,j and ddi,j instead of ui,j and di,j

• Start over from step 5

11. Increase time step and repeat steps 4-10 as long as the time of maturity is not reached

12. Put payoff values in the tree at maturity, work backwards discounting the value of the option
(let V denote the value of the option)

Vi,j = e−rj∆t(puu,i,jVi−1,j+1 + pu,i,jVi,j+1 + pm,i,jVi+1,j+1 + pd,i,jVi+2,j+1 + pdd,i,jVi+3,j+1)
(4.12)
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4.3 Fixing Probabilities

The choice to be made at the end of 4.1 was what to do with the two remaining degrees of freedom,
to evaluate the most extreme nodes. In the previous section these degrees were used to fix u and
d. Although this is the most logical choice since the other degrees of freedom were used to fix
the values for m, it is not perfect, since it sometimes results in negative transition probabilities
for the middle nodes. Another possibility for using the two remaining degrees of freedom is to fix
the transition probabilities at these extreme nodes. This will lead to slightly more complicated
formulas but since it puts restrictions on the probabilities and lets u or d adjust in these points,
this will sometimes lead to fewer problems with negative probabilities.

These probabilities are fixed by (omitting the time subscript)

pu,0 = pd,2j = pf (4.13)

4.3.1 Origin of the Tree

At the first node of the tree there are no recombining conditions. Equations (4.2) need to be solved
for u0 and d0. Both probabilities are fixed since 2j + 1 = 1. The first of these equations gives

d0 =
e(rj−qj)∆t − pu,0u0 − (1− pu,0 − pd,0)mj

pd,0
(4.14)

Plugging this into the second equation

e2(rj−qj)∆t
(
eσ

2
0∆t − 1

)
= pu,0(u0 −mj)2 + pd,0

(
mj −

e(rj−qj)∆t − pu,0u0 − (1− pu,0 − pd,0)mj

pd,0

)2

−
[
pu,0(u0 −mj)−

(
mjpd,0 − (e(rj−qj)∆t − pu,0u0 − (1− pu,0 − pd,0)mj

)]2

= pu,0(u0 −mj)2 +
1
pd,0

(
pu,0(u0 −mj) +

(
mj − e(rj−qj)∆t

))2
−
(
e(rj−qj)∆t −mj

)2

= pu,0(u0 −mj)2 −
(
e(rj−qj)∆t −mj

)2

+
1
pd,0

[
p2
u,0(u0 −mj)2 + 2pu,0(u0 −mj)(mj − e(rj−qj)∆t) + (mj − e(rj−qj)∆t)2

]
=

(
pu,0 +

p2
u,0

pd,0

)
(u0 −mj)2 + 2

pu,0
pd,0

(
u0mj − u0e

(rj−qj)∆t −m2
j +mje

(rj−qj)∆t
)

+
1− pd,0
pd,0

(e(rj−qj)∆t −mj)2

(4.15)
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For the choice mj = e(rj−qj)∆t this gives

m2
j

(
eσ

2
0∆t − 1

)
=

(
pu,0 +

p2
u,0

pd,0

)
(u0 −mj)2 (4.16)

Or
pd,0
pu,0

m2
j

(
eσ

2
0∆t − 1

)
= (pu,0 + pd,0)(u2

0 − 2u0mj +m2
j ) (4.17)

which leads to the following quadratic equation for u0

0 = au2
0 + bu2

0 + c

a = pu,0 + pd,0

b = − 2mj(pu,0 + pd,0)

c = m2
j (pu,0 + pd,0)−

pd,0
pu,0

m2
j

(
eσ

2
0∆t − 1

) (4.18)

This equation has two solutions. Since one of these solution is less than one, it is discarded, leading
to the final equation’s for u0 and d0 (using that at the origin of the tree pu,0 = pd,0 = pf

u0 =
−b+

√
b2 − 4ac

2a

= mj +mj

√√√√(eσ2
0∆t − 1

)
2pf

d0 =
e(rj−qj)∆t − pu,0u0 − (1− pu,0 − pd,0)mj

pd,0

= mj −mj

√√√√(eσ2
0∆t − 1

)
2pf

(4.19)

4.3.2 Rest of the Tree

When the tree is at the time step denoted by j most of the u’s and d′s are fixed because of the
choice of fixing all values of mj and the recombining conditions (4.3). The equations for ui+1,j+1,
u2j,j+1, di+1,j+1 and d0,j+1 are equal to those in section 4.2. So once u and d are calculated at one
timestep in the tree, the values for u and d are all known except for u0 and d2j (omitting the time
indices).

At the first node at time j there are two equations for the two unknowns u0 and pd,0 (since
pu,0 = pf )

e(rj−qj)∆t = pfu0 + (1− pf − pd,0)mj + pd,0d0

⇒ pd,0 =
mj − e(rj−qj)∆t + pf (u0 −mj)

mj − d0

(4.20)
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and

e2(rj−qj)∆t
(
eσ

2
0∆t − 1

)
= pf (u0 −mj)2 + pd,0(mj − d0)2 − (pf (u0 −mj)− pd,0(mj − d0))2

= pf (u2
0 − 2u0mj +m2

j ) + (mj − e(rj−qj)∆t + pf (u0 −mj))(mj − d0)

−
(
pf (u0 −mj)− [mj − e(rj−qj)∆t + pf (u0 −mj)]

)2

= pf (u2
0 − u0mj − u0d0 +mjd0)

+
(
mj − e(rj−qj)∆t

)
(mj − d0)−

(
e(rj−qj)∆t −mj

)2

(4.21)

Or for mj = e(rj−qj)∆t

m2
j

pf

(
eσ

2
0∆t − 1

)
= u2

0 − u0(mj + d0) +mjd0 (4.22)

Resulting again in a quadratic equation for u0, where only the value bigger than 1 is considered
a valid solution

0 = au2
0 + bu0 + c

a = 1
b = −(mj + d0)

c = mjd0 −
m2
j

pf

(
eσ

2
0∆t − 1

)
⇒ u0 =

−b+
√
b2 − 4ac

2a

(4.23)

The same analysis holds for d2j where pd,2j = pf and u2j are known

e(rj−qj)∆t = pu,2ju2j + (1− pu,2j − pf )mj + pd,2jd2j

⇒ pu,2j =
e(rj−qj)∆t −mj + pf (mj − d2j)

u2j −mj

(4.24)

e2(rj−qj)∆t
(
eσ

2
2j∆t − 1

)
= pu,2j(u2j −mj)2 + pf (mj − d2j)2

− (pu,2j(u2j −mj)− pf (mj − d2j))
2

=
(
e(rj−qj)∆t + pf (mj − d2j)−mj

)
(u2j −mj)

+ pf (m2
j − 2mjd2j + d2

2j)− (e(rj−qj)∆t −mj)2

= pf (d2
2j − d2jmj +mju2j − d2ju2j)

+
(
e(rj−qj)∆t −mj

)
(u2j −mj)− (e(rj−qj)∆t −mj)2

(4.25)

Or for mj = e(rj−qj)∆t

m2
j

pf

(
eσ

2
2j∆t − 1

)
= d2

2j − d2j(mj + u2j) +mju2j (4.26)

33



The only viable solution for this equation is the one that is less than one

0 = ad2
2j + bd2j + c

a = 1
b = −(mj + u2j)

c = mju2j −
m2
j

pf

(
eσ

2
2j∆t − 1

)
⇒ d2j =

−b−
√
b2 − 4ac

2a

(4.27)

The transition probabilities can then be found by the equations (4.9), giving all the necessary
equations for building the trinomial tree and valuing options on it.

4.3.3 Negative Probabilities and Cutoff

When the last two degrees of freedom for the trinomial tree were used to fix the values for u and
d and the extreme nodes, at some nodes negative transition probabilities appeared for the middle
transition. The suspicion was that this was caused by a lack of flexibility in the tree. The tree
with fixed probabilities at the extreme nodes is more flexible and can therefore better handle the
changes in the local volatility.

One consequence is that the values for the asset at the top of the tree increase significantly. This
does not seem to result in bigger inaccuracies of the option price and is therefore not deemed to
be important. Another consequence is that when the tree is used with the SABR implied volatility
surface as an input 8.2.1, it results in negative probabilities far fewer times than when u and d were
fixed. To be more precise: only for relatively high values for pfixed do negative probabilities arise.
For plain vanilla options with strike price K = S0 and T = 1 this maximum acceptable value for
pfixed is 45.7% for 100 time steps and declines almost linearly to 44.9% for 1000 time steps. Below
these values no negative probabilities arise, resulting in a ‘cleaner’ model. However, this behaviour
depends on the shape of the implied volatility surface, so no definite preference for one of both
versions of the tree can be given.

The exact choice of pfixed does not affect the price significantly. Only at very low values (less
than 10%) and few time steps in the tree (less than 200) do significant deviations occur. The choice
is made to let pfixed = 30%. There is no significant difference in computational time between the
model where u and d are fixed and when the probabilities are fixed.

When implementing this model for the trinomial tree again a cutoff value for the local volatility
is used as described in 4.2.3.

For a numerical comparison between the two versions of the tree see 8.2.5. Numerical results
describing the accuracy of the tree developed in this section for valuing European options can be
found in 8.2.6. American options are considered in 8.2.8.
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4.3.4 Algorithm

1. At the first node of the tree pu and pd are fixed in advance. u0 and d0 can be calculated
according to (4.19)

2. At the next time steps the u’s and d’s are given by (4.4), (4.5) and (4.6)

3. The two remaining values u0,j+1 and d2j+2,j+1 can be calculated by (4.23) and (4.27)

4. Since the tree at time step j + 1 is now completely fixed the transition probabilities can be
calculated from (4.9)

5. Repeat steps 2.-4. until the tree is complete

6. Put the payoff of the option to be priced in a seperate tree and use the transition probabilities
to calculate the discounted expected payoff of the tree
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5 Dividends

Up until now the effect of dividends on option pricing has been ignored. Since most assets on which
options are written do pay out dividends it is important to incorporate this into the pricing model.
Dividends are payments by the issuer of a financial asset (the asset underlying the option) to the
holder of the asset. In financial modelling it is usually assumed that the payment of a dividend
amount leads to a decline in the asset’s price by the same amount. This relies on the assumption of
a frictionless market in which the transfer of dividends does not encounter obstacles such as taxes
or transaction costs. It also assumes that, when considering equity shares, a certain amount of cash
on the balance sheet of a company is valued at exactly the same value as when the amount is on
the shareholder’s bank account.

5.1 Kinds of Dividends

Although the word ‘dividend’ is only used for shares, equivalent principles hold for other asset
classes. The regular interest payments, known as coupons, to bondholders, act in exactly the same
way. For currency exchange options, the interest rate of the foreign currency behaves like a dividend
payment [39].

For practical reasons there is usually a difference between the date when for all trading purposes
the asset is assumed to pay out the dividend, the ex-dividend date, and the actual time of payment.
After the ex-dividend date the holder of the underlying asset does not have a claim to the declared
dividend. In this report the ex-dividend date is used as the payment date.

Three different forms of dividends can be distinguished: continuous, proportional and discrete.

Continuous dividends are the easiest to deal with. As can be seen from the formulae in this
section, the presence of a continuous dividend yield usually amounts in a simple reduction of the
interest rate. For options on equity shares this situation never occurs. There is no company in the
world that pays out continuous dividends. However it does occur for options on currency exchange
rates. Since foreign interest rates can be continuous, continuous dividend yields will occur for cur-
rency options .

Proportional dividends assume that paid out dividends are proportional to the underlying as-
set’s price at the ex-dividend date. This is easy to implement, since it results in a reduction in
the value of the asset price at each node, by a fixed percentage. A radically different share prices
could change the decision by a listed company concerning its dividend policy, providing some logi-
cal basis for the assumption of proportional dividends. However, in most cases dividend payments
are announced in advance and subsequent changes in the share price do not affect the payments.
Therefore in most models, discrete dividends are used.

Discrete dividends describe the real-world situation for options on equity shares. The timing
and size of dividends are usually well known in advance. The size of the dividend is not a given
deterministic function of the share price, such as with proportional dividends. But due to the
assumptions stated above, some dependency between the two does exist. Given the assumption
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that at the ex-dividend date the share price declines by the dividend size some assumption has to
be made for the occassion when the dividend size is equal or larger than the share price. Negative
share prices do not occur in reality, due to the limited liability provisions applicable to publicly
held companies. Therefore the assumption is made, as it is in [56], that the dividend size is equal
to the minimum of the stated dividend and the share price. When the share price falls below the
dividend size at the ex-dividend date, it is assumed the company only pays out the amount equal
to the share price, thereby reducing the share price to zero.

5.2 Direct Implementation

Discrete dividends add complexity to the pricing of options, that do not arise for continuous and
proportional dividends. First consider the traditional Black-Scholes framework with a constant
volatility term. When working with binomial trees the u and d are fixed at the beginning and
are, because the volatility is constant, constant over the whole tree. Incorporating a fall in the
share price at a specific point in time, reflecting the dividend payment, destroys the recombining
property of the tree. This is, for reasons given in 3.1.4, unacceptable. The problem arises because
from the dividend date forward, different values for u and d should be used from to make the tree
recombining, which is not possible in this framework.

Arguably, more flexibility is present when using trinomial trees with local volatility. Some
small adjustments in (4.4) and the equivalent equation for d can take care of the impact discrete
dividends have on the recombining property of the tree. Since recombination in the trinomial tree
is imposed, this should not be a problem. Still, discrete dividends cannot be implemented in this
way. The reason is that for low values of the share price, which are always present in the lower
region of the tree, the discrete dividend will cause the share price to go to zero. Since the share
price increases to a higher node by multiplying by u, this means that when the share price hits
zero, it will stay zero (a straightforward consequence of the adjusted geometric Brownian motion
framework). This means that this part of the tree cannot possibly recombine with the non-zero
part of the tree. Therefore another method must be used to implement the impact of discrete
dividends on the option price.

5.3 Dividend Adjustments to Model

In the literature different methods are proposed on how to deal with discrete dividends.

One approach, known as the escrowed model, is to separate the dividends from the asset price
[39]. Since the discrete dividends are deterministic, they can be valued simply by discounting their
value by the risk-free interest rate. Then the tree is built with the spot price of the asset minus
the present value of the future dividends at the start of the tree. As the escrowed model brings
the dividends back to the current time, the forward model pushes the dividends forwards to the
maturity date. In the forward model the value of the dividends are compounded by the risk-free
interest rate and added to the strike value of the option [47]. A combination of the escrowed and
the forward model is proposed in [9], where the dividends closest to the current date are brought
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backwards and the other ones are pushed forwards.

It seems these models work relatively well in the standard Black-Scholes environment for Euro-
pean options, but they suffer from some logical flaws as is pointed out in [36, 56]. In the escrowed
model the spot price of the underlying asset is adjusted by the dividends during the life of the
option. This results in a different price process than the one used in the forward model. It is there-
fore not surprising that they lead to different values for path-dependent options [31]. Furthermore
it follows that different maturities imply different price processes, but it is clear that the price
dynamics of the asset do not depend on the particular options depending on it. A remedy for this
would be to include all future dividends, but, as pointed out in [56], this is also unsatisfactory from
a logical point of view since changes in dividends after the option’s maturity should not affect the
option price.

In a local volatility model modifying the spot price cannot be justified, since the local volatility
surface is calculated with the current spot price. By adjusting the spot price it is not clear if the
same local volatility surface can be used. In making the decision if it can be used, an assumption
has to be made on how the surface changes under spot price moves. There is no reason to assume
the surface depends on the asset’s spot price, but there is no guarantee that it doesn’t.

Since both the escrowed and the forward model compress all the dividends in one point they do
not sufficiently incorporate the effects that the dividends will have on early exercise decisions. It is
well known that early exercise for American call options is only profitable just before the dividend
dates [39]. By compressing all the dividends into one point, it removes the possible moments of
early exercise from the tree. So American calls, and by similar reasoning puts, cannot be accurately
priced using the escrowed or forward model.

5.4 The Vellekoop-Nieuwenhuis Method

The Vellekoop-Nieuwenhuis model [56], does not adjust the price process of the asset, but instead
adjusts the discounting process of the option on the tree. The tree is built without any dividends.
The payoff can then be discounted in the normal way up until the last dividend date (which is the
first that is encountered when working backwards). At these nodes, whose asset values are written
collectively as S, the price of the option is a function of the asset price, f(S). But this is without
dividends. At these nodes the asset price declines by the value of the dividend, d. So the correct
prices at these nodes are actually f(S− d). Assuming that f is a continuous function, these values
can be approximated by interpolating the values f(S) to f(S−d). Here it is assumed that the asset
price never becomes negative, so actually f(S) is interpolated onto f(max(S−d, 0)). Cubic splines
are used as the method of interpolation, in contrast to [56] where linear interpolation is used. To
avoid extrapolation the points f(S) are augmented by the point f(0). Since an asset price with
value zero will always remain zero, this value can be easily determined for both the call and the
put, both European and American. Then the option value can be discounted in the regular way
until a new dividend is encountered, at which point the same procedure is performed.

In the original article binomial trees are used, but, as is explicitly mentioned there, the method
can also be applied to trinomial trees. A property that does not carry over unto the local volatility
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model, is the convergence proof. One of the assumptions used in proving convergence, is that in the
absence of dividends uniform convergence exists. This is the case for trees with constant volatility,
for which uniform convergence is proven [37]. A convergence result does not exist for trees with
local volatility (yet), so convergence of the price obtained by the tree, to the true option price, is
not guaranteed.

5.5 Interest Rates

At all points in the preceding sections the interest rate was said to be a known deterministic function
of time. However this is not the way in which interest rates are observed in the market. Although
it is easy to derive the interest rate function from market data, for completeness it is included in
this report.

Interest rates are observed indirectly in the market, they are derived from the price of risk-free
bonds. A zero-coupon bond is a claim on a specific amount of cash in the future, without the
payment of intermediary amounts. Since it is risk free, the price is the amount discounted by the
risk-free interest rate

p(t0, T ) = e−R(t0,T )(T−t0) (5.1)

where p(t0, T ) is the bond price at time t0 for a claim of 1 unit of cash at time T . R(t0, T ) is the
bond’s yield, which can be easily calculated from bond prices. When this rate is used for other
purposes than describing a bond, it is referred to as the spot interest rate for a certain maturity.
Equal bonds with different maturities have different prices, and therefore different yields. Because
the yield is a function of the time to maturity, it is usually called the yield curve. The time evolu-
tion of the short interest rate can be derived from this yield curve.

The price of a risk-free bond can be written as the expected value of the discounted value of
the 1 unit of cash at maturity. So when interest rates are deterministic

p(t0, T ) = E[e−
R T
t0
rsds|F0]

= e
−

R T
t0
rsds

(5.2)

By combining this equation with (5.1)∫ T

t0

rsds = R(t0, T )(T − t0)

rT =
∂R(t0, T )

∂T
(T − t0) +R(t0, T )

rt =
∂R(t0, y)

∂y

∣∣∣∣∣
y=t

(t− t0) +R(t0, t)

(5.3)
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6 Delta Hedging

An essential practice for the option trading industry is hedging. The simplest version, delta hedging,
is the subject of this section. In 6.1 delta hedging in the classical Black-Scholes framework is
presented. The minimum variance hedge is given in 6.2 and the hedge given by the local volatility
model, the local delta, is considered in 6.3.

6.1 Black-Scholes Framework

The most commonly known technique to ensure a trader with a long or short position of an option
against fluctuations in the price of the underlying asset is delta hedging. The total portfolio is
made delta-neutral by adding a certain amount of the asset. Thus if Π is the value of the portfolio
and Black-Scholes is assumed

Π = VBS − S∆BS (6.1)

Then, the portfolio is hedged only at the point when the option position is taken, the delta of the
option can be calculated by equating the total delta of the portfolio to zero

∆BS =
∂VBS

∂S
(6.2)

This is the classic result, which holds in the Black-Scholes environment and would hold in the real
markets if all prices were described by geometric Brownian motion. But when other models are
used such as the local volatility model things change. When trying to fit specific model variables
α the following equation must be satisfied

V (S, t,K, T ) = VBS(S, t,K, T, α) (6.3)

Calculating the derivative of this equation results in

∂V

∂S
=
∂VBS

∂S
+
∂VBS

∂α

∂α

∂S

= ∆BS +
∂VBS

∂α

∂α

∂S

(6.4)

Which is just a generalisation of the Black-Scholes model since in that model the second term in
the last equation would equal zero. The point this equation makes, is that different models lead to
different delta hedges.

6.2 Minimum Variance Delta

Observing the statements above, [1] suggests defining a minimum variance (MV) delta that min-
imises the quadratic covariation of the changes in the delta hedged portfolio Π with the changes in
the underlying asset. Setting this equal to zero

0 = dΠ · dS
= (dV − dS∆MV) · dS

⇒ ∆MV =
dV · dS
dS · dS

(6.5)
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Considering the local volatility model and using Itô gives

dV =
∂V

∂S
dS +

∂V

∂t
dt+

∂V

∂σ
dσ +

1
2
∂2V

∂S2
dS · dS

+
1
2
∂2V

∂σ2
dσ · dσ +

∂2V

∂S∂σ
dS · dσ

dσ =
∂σ

∂S
dS +

∂σ

∂t
dt+

1
2
∂2σ

∂S2
dS · dS

dσ · dσ =
∂σ

∂S
dS · dS

dS · dσ =
∂σ

∂S
dS · dS

⇒ dV · dS =
∂V

∂S
dS · dS +

∂V

∂σ
dσ · dS

=
(
∂V

∂S
+
∂V

∂σ

∂σ

∂S

)
dS · dS

(6.6)

this results in
∆MV =

∂V

∂S
+
∂V

∂σ

∂σ

∂S
(6.7)

This is an important adjustment to the normal delta, which is the first term on the right-hand
side of the equation above. It has been noticed that applying the normal delta for delta hedging
purposes leads to inaccurate values of the delta [5, 12, 22]. It seems that to get good delta hedges in
the local volatility model, some sort of vega hedge (the sensitivity with respect to the volatility) has
to be incorporated to get good results [27]. These ad-hoc alterations are messy and seem to come
from nowhere. But (6.7) suggests that this vega adjustment should have been incorporated all along.

6.3 Local Delta

As remarked in [16, 24, 55], volatility is usually negatively correlated to the asset price. Since plain
vanilla options have positive vega’s, this would suggest that in general ∆L ≤ ∆BS. Although the
MV delta is presented in a nice analytic form, for the local volatility model it cannot be used in
this way. The partial derivatives of the option value used in (6.7) are not known. Therefore the
delta for the local volatility delta will always be calculated numerically.

One of the criticisms of local volatility models is that it implies dynamics of the implied volatility
surface that are not compatible with market practices [4, 34]. This behaviour is illustrated when
the local volatility function is time independent and solely a function of the asset price. In [34]
Hagan derived, by perturbation techniques, that the implied volatility at time t0 with asset price
S0 can then be approximated by

Σ(K,T ;S0) = σ

(
1
2

[S0 +K]
)

(6.8)

which implies that as the spot of the asset moves up by ∆S

Σ(K,T ;S0 + ∆S) = σ

(
1
2

[(S0 + ∆S) +K]
)

= σ

(
1
2

[S0 + (K + ∆S)]
)

= Σ(K + ∆S, T ;S0) (6.9)
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Suggesting that as the spot price moves up the implied volatility curve moves to the left, which,
according to Hagan, is contrary to the experience of market participants. For this reason it is
assumed that local volatility models give wrong greeks and therefore provide wrong hedges.

The reasoning of the critique above is, however, only justified if certain ‘stickiness’ assumptions
hold, highlighting the importance of being aware of the different possible assumptions that can be
made.

6.3.1 Stickiness Assumptions

The term ‘sticky’ to describe the dynamics of the implied volatility curve (the cross section of the
implied volatility surface for a given maturity) was introduced in [17]. In general three different
stickiness assumptions can be made

• If the implied volatility curve does not change when the spot price of the underlying asset
changes the curve is said to be sticky-strike

Σ(K,T ;S0) = Σ(K,T ;S0 + ∆S) (6.10)

• If the implied volatility curve does not change when the spot price of the underlying asset
changes but the moneyness ( SK ) does not change the curve is said to be sticky-moneyness.

Σ(K,T ;S0) = Σ(K +
K

S0
∆S, T ;S0 + ∆S) (6.11)

• If the local volatility surface is assumed to be fixed, then the model is said to be model
consistent

σ(S, t;S0) = σ(S, t;S0 + ∆S0)
⇒ Σ(K,T ;S0) ≈ Σ(K + ∆S, T ;S0 −∆S)

(6.12)

From this it can be seen that Hagan’s critique only holds when one assumes that in reality the
implied volatility is sticky moneyness. However as pointed out in [27] and [49] this may not be the
best assumption in every market.

Sections 6.1 and 6.2 gave a theoretical description of calculating delta’s. In practice delta’s are
usually calculated numerically. The simplest approach is by taking the central difference approxi-
mation

∆(S0) =
∂V (S0)
∂S

≈ V (S0 + ∆S)− V (S0 −∆S)
2∆S

(6.13)

where ∆S is some small change in S0. This approach, however, does not recognise the observations
made about different stickiness assumptions. If a change in S0 changes the local volatility surface,
the new perturbed option values (V (S0 +∆S) and V (S0−∆S)) should be calculated using the new
local volatility surface. A more accurate numerical calculation of ∆(S0) would thus be (borrowing
notation from [27])

∆(S0) ≈ 1
2∆S

[V (S0 + ∆S, σ(Σ(K + α∆S, T ;S0 + β∆S);S0 + β∆S)

−V (S0 −∆S, σ(Σ(K − α∆S, T ;S0 − β∆S);S0 − β∆S)]
(6.14)
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The sticky-strike assumption corresponds to α = 0, β = 1, sticky-moneyness to α = K
S0

, β = 1
and model consistent to α = 0, β = 0 (no change in the local volatility surface). Which one of
these assumptions should be made is not clear a priori. If the local volatility function captures the
actual diffusion process for the asset price, then it should remain constant, indicating the model
consistent stickiness assumption is justified. There are, however, many indications that different
markets justify different stickiness assumptions [49]. [16] suggests that for equity markets and
equity indices the model consistent assumption is the most natural.

6.3.2 Performance of Local Delta

The earliest comparison of the performance of local delta hedging versus Black-Scholes (or implied)
delta hedging, suggests that the traditional BS delta performs best [24]. Most subsequent research
[12, 13, 16, 55] concludes the opposite, although [16] provides a more nuanced picture. Since the
local delta captures local information, the local delta should provide a better hedge. Given the
multiple adjustments that are necessary to make the BS delta work accurately [5, 12, 22], the BS
delta does not inspire much confidence as a good hedge. The numerical results presented in section
8.4.4 present a mixed picture.
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7 Monte Carlo Simulations

The principle method of pricing options presented in this report is the trinomial tree. The reason
why Monte Carlo simulations are included is to compare the outcomes of the trinomial tree to a
reference value. For standard European options this reference value can be both the Black-Scholes
formula, which provides a closed form formula for the option prices, and Monte Carlo simulations.
For American options only the latter is available to generate reference values.

In Monte Carlo simulations the dynamics of the asset price under the risk neutral measure Q as
given by (1.8) are simulated. By sampling a great number of paths an approximation is made for
the actual dynamics of the underlying asset. By calculating what the value of a particular option
would be under many sample paths and then averaging the result, an approximation is made for
the expected discounted value of the payoff, thus giving an estimate for the option price under
consideration. The standard method is described in 7.1-7.3. Although the standard Monte Carlo
method can only be used for European options, it can be modified to accomodate other options
(such as American and exotic options). To do this the method developed by Longstaff and Schwartz
[43] is used, which is described in 7.4.

7.1 Creating Sample Paths

The dynamics as given in (1.8) are made by fixing S0 and discretising the equation into

St+∆t = St (1 + (rt − qt)∆t+ σ(t, St)∆Wt)

∆Wt = Wt+∆t −Wt ∼ N(0,∆t) =
√

∆tN(0, 1)

St+∆t = St

(
1 + (rt − qt)∆t+ σ(t, St) εt

√
∆t
) (7.1)

where εt ∼ N(0, 1) is distributed according to the standard normal distribution and independent
samples are used at different times.

7.2 Antithetic Sampling

The simulation of the function εt in (7.1) is the essential part in Monte Carlo simulation, since
it is the only source of randomness, all the other values are deterministic. Thus making sure the
sampling of this function as accurate as possible is of the utmost importance. A method that is
used often to create better estimates, and which reduces the variance of the estimate, is antithetic
samples.

The standard normal distribution is symmetric. If φ is the probability density function of the
standard normal distribution this means that φ(x) = φ(−x). Thus when εt is simulated, it is
equally likely to generate a sample value Xi as it is to get −Xi. To make ensure this property holds
exactly during the simulation, everytime a sample Xi is generated, the value −Xi (the antithetic
sample) is used in another sample path, obtaining twice the number of sample paths.

Calculating the estimate for the option value and the confidence interval, relies on the Strong
Law of Large Numbers and the Central Limit Theorem. Let Yi be an option value calculated using
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one sample path, and let Ỹi be the value calculated by the antithetic path. Then Yi and Ỹi are
not independent from each other, but each pair (Yi, Ỹi) is independent and identically distributed.
This means that the average can be defined as

Ȳ =
1

2n

(
n∑
i=1

Yi +
n∑
i=1

Ỹi

)
=

1
n

n∑
i=1

(
Yi + Ỹi

2

)
(7.2)

where n is the number of original samples that are generated and Yi+Ỹi
2 are iid. So by the Law of

Large Numbers
Ȳ → E[Y ] as n→∞ (7.3)

This ensures that eventually the average will converge to the actual option value.

By the Central Limit Theorem

Ȳ − E[Y ]
σ/
√
n
→ N(0, 1) as n→∞

σ2 = Var(Ȳ )
(7.4)

Denoting the cumulative density function of the normal distribution by Φ, the 95% confidence
interval will thus be given by

Ȳ ± Φ−1(0.975)
σ√
n

(7.5)

Since Yi and Ỹi are negatively correlated, the variance of Ȳ is smaller than if 2n samples of
Yi would have been considered. As such antithetic sampling is known as a variance reduction
technique. Other variance reduction techniques include control variates, stratified sampling and
importance sampling [33].

7.3 European Options

By calculating the payoff at maturity and discounting, the value of a standard European option can
be determined. This is a simple procedure, requiring few programming skills. The drawback is that
a large amount of simulations (in the order of millions) have to be performed to get accurate results.
The reason for this is that to get an accurate estimate for the price of an option, the probability
density distribution of the asset price at maturity has to be determined. Both in the tree and in
Monte Carlo simulations this is the essence of the method. In the tree however, many different
possible outcomes are determined, each of which is assigned a probability value. In Monte Carlo
simulations this probability is determined by looking at many different simulations. To accurately
approximate the probability density distribution at maturity, the number of simulations has to be
of such a high order that highly unlikely outcomes are also represented in the sample. The result
of which is that although the concept of Monte Carlo simulations is simple, the execution can be
time consuming.

Numerical results for valuing European options by Monte Carlo simulations can be found in
8.2.7.
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7.4 American Options

Since a European option can only be exercised at maturity, calculating the payoff is easy. For an
American option the situation is more complicated, since it can be exercised at each moment in
time before maturity. Simulations for each infinitesimal time period is not practical, so the time
points at which the American option can be exercised is limited to the discrete points in time used
in the simulation. In effect a Bermudan option is simulated, which is used as an approximation to
the American option.

A further complication is that it is usually not known when it is optimal to exercise the option.
To determine whether it is optimal to exercise the option at a particular point in time the immediate
exercise value should be compared to the expected value of continuing with the option, conditional
on the current state. So if j denotes the time step and Vj is the option value at that time

Vj = max(erj∆tE[Vj+1|Fj ], Ej) (7.6)

where Ej is the immediate exercise value. For the tree this was easy to calculate, since the value
E[Vj+1|Fj ] was known when discounting backwards from the transition probabilities. During a
Monte Carlo simulation this is not the case. An approximation has to be made. The method used
here is the commonly used Longstaff-Schwartz method [43]. At maturity the payoff of the option
is known. Working backwards the expected value of continuing with the option (the continuation
value) is estimated from the discounted cash flows at later times. It is assumed that the continuation
value can be estimated to be a linear combination of functions on the information at time j

E[Vj+1|Fj ] =
N∑
i=1

aiψi(Sj) (7.7)

where ψi are a set of deterministic functions, referred to as basis functions.

By taking a set of sample paths and regressing the discounted cash flows of future times onto
the basis functions the coefficients ai can be estimated. This is usually done in a least squares sense
(the method is therefore usually denoted as the Least Squares Monte Carlo Method or LSM). This
way an estimate of the continuation value can be made for each sample path, giving a criterion for
early exercise by comparing this value to the immediate exercise value.

7.4.1 Bias and Convergence of LSM

By approximating the American option with a Bermudan option a bias is introduced into the es-
timation of the option value. Since a Bermudan option has less possibilities of early exercise, its
value is always less or equal to an American option with the same specifications. This low bias from
sub-optimal exercise is mentioned in the original Longstaff-Schwartz article and it is suggested that
the estimated option value can never be be larger than the true option value because of this. This,
however, is not all there is to it.

As noted in [30, 33] there is also a high bias. The LSM approximates the expected value of the
option at a later time conditional on the current information, by regressing the continuation value
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on certain basis functions. These continuation values however, are obtained from information on
the future paths of the simulations. This seems like a clear violation of the measurability of the
conditional expectation (Vj should be Fj-measurable, but now information from tj+1 is used). By
considering the future cash flows a superoptimal exercise strategy is employed. As a result the bias
of the method is mixed. One could hope that the positive and negative bias somehow cancel each
other out, but there is no clear indication that this will indeed happen.

The LSM is similar to the method proposed by Tsitsiklis and Van Roy [53, 54], where the value
function is approximated instead of the continuation value, but Longstaff and Schwartz decided to
use only those sample paths that were in the money for the regression, improving the efficiency of
the algortihm. Convergence of LSM is studied in [11, 52, 60] were almost sure convergence of the
algorithm is shown as the number of basis functions and sample paths used go to infinity. This
is proven for the algorithm given in the original article, which assumes constant volatility. It is
thus not clear whether this method will converge to the real value of the option for a non-flat local
volatility surface. Increasing the amount of samples will usually reduce the variance and thus shows
some convergence, but this does not necessarily improve the accuracy of the estimate.

Numerical results for valuing American options by Monte Carlo simulations can be found in
8.2.8.
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8 Numerical Results

8.1 Finite Differences Approximation for Derivatives

If an analytic expression exists for a differentiable function, the derivative can be calculated ana-
lytically. But in most cases either there exists no such analytic expression or the expression is so
complicated that taking derivatives renders it impossible to get an analytic expression (as is the
case in the SABR model, see section 8.2.1).The finite differences approach is a numerical method
often used to get approximating values for derivative values of a function for which values are known
on a fixed grid. The essence of this method is to approximate the given function with a ordinary
polynomial of order n. The factors of this polynomial can then be determined by considering
n + 1 values of the given function. The higher the order of the approximation, the higher the ac-
curacy, but the more complicated the formulae. In this report the approximations are of the order 4.

Assume an equidistantly spaced grid with interpoint distances of ∆x, on which the function
u(x) is known at the grid points. For 4th order approximations, 5 points need to be considered,
u0, u1, u2, u3 and u4, placed at x0 = 0, x1 = ∆x, x2 = 2∆x, x3 = 3∆x and x4 = 4∆x respectively.
The polynomial approximation for the function and the first two derivatives is

u(x) ≈ c0 + c1x+ c2x
2 + c3x

3 + c4x
4

u′(x) ≈ c1 + 2c2x+ 3c3x
2 + 4c4x

3

u′′(x) ≈ 2c2 + 6c3x+ 12c4x
2

(8.1)

the first of which gives the following expressions for the known values of u

u0 ≈ c0

u1 ≈ c0 + c1∆x+ c2(∆x)2 + c3(∆x)3 + c4(∆x)4

u2 ≈ c0 + 2c1∆x+ 4c2(∆x)2 + 8c3(∆x)3 + 16c4(∆x)4

u3 ≈ c0 + 3c1∆x+ 9c2(∆x)2 + 27c3(∆x)3 + 81c4(∆x)4

u4 ≈ c0 + 4c1∆x+ 16c2(∆x)2 + 64c3(∆x)3 + 256c4(∆x)4

(8.2)

This system of five equations with five unknowns (the u’s and ∆x are known) can be solved to
yield expressions for the polynomial constants

c0 ≈ u0

c1 ≈
−25u0 + 48u1 − 36u2 + 16u3 − 3u4

12∆x

c2 ≈
35u0 − 104u1 + 114u2 − 56u3 + 11u4

24(∆x)2

c3 ≈
−5u0 + 18u1 − 24u2 + 14u3 − 3u4

12(∆x)3

c4 ≈
u0 − 4u1 + 6u2 − 4u3 + u4

24(∆x)4

(8.3)

Once inserted into (8.1), these equations result in the approximations for the derivatives of u with
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respect to the variable x in the points x0, x1, x2, x3 and x4.

u′(x0) ≈ −25u0 + 48u1 − 36u2 + 16u3 − 3u4

12∆x

u′′(x0) ≈ 35u0 − 104u1 + 114u2 − 56u3 + 11u4

12(∆x)2

u′(x1) ≈ −3u0 − 10u1 + 18u2 − 6u3 + u4

12∆x

u′′(x1) ≈ 11u0 − 20u1 + 6u2 + 4u3 − u4

12(∆x)2

u′(x2) ≈ u0 − 8u1 + 8u3 − u4

12∆x

u′′(x2) ≈ −u0 + 16u1 − 30u2 + 16u3 − u4

12(∆x)2

u′(x3) ≈ −u0 + 6u1 − 18u2 + 10u3 + 3u4

12∆x

u′′(x3) ≈ −u0 + 4u1 + 6u2 − 20u3 + 11u4

12(∆x)2

u′(x4) ≈ 3u0 − 16u1 + 36u2 − 48u3 + 25u4

12∆x

u′′(x4) ≈ 11u0 − 56u1 + 114u2 − 104u3 + 35u4

12(∆x)2

(8.4)

When approximating the values of derivatives in a gridpoint, it should be the most accurate
when an equal amount of points on both sides are used for this procedure (i.e. the values for
x2). These approximations are usually referred to as central differences. Since the derivation of
equations above only depends on the relative position of the x values with respect to each other
and not on their absolute position, the formulas hold on the entire grid. Therefore in all points
on the grid the central differences are used, except in the cases where there are not two gridpoints
on both sides of the point in which we are making approximations. In these boundary points the
formulas with x1 and x3 are used when there is one gridpoint on one side of the point and the those
with x0 and x4 when it is a true boundary point (i.e. on the edge of the grid).

Note that the variable x in these derivations is arbitrary, such that the formulae hold for deriva-
tives with respect any variable, where the derivatives are made in a any direction on the grid. For
higher order derivative approximations the expressions can be easily deduced from the expressions
above. Mixed derivatives are slightly more complicated and deserve some more work. Since higher
order and mixed derivatives are not used in this report the formulae for these are not derived here.

8.2 SABR Model

As was seen in 2.3, to derive the local volatility surface implied volatilities are needed as an input.
To check how well the methods presented in this report work, at first it is checked in an environment
where the implied volatility surface is known.
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8.2.1 Theoretical Framework

In [34] the Stochastic-αβρ, or shortly SABR, model was derived in which the volatility function
was assumed to be stochastic. The dynamics of the SABR model are given by

dFt = αtF
β
t dW

1
t

dαt = ναtdW
2
t

dW 1
t · dW 2

t = ρdt

(8.5)

Here Ft is the forward price, αt the volatility function with starting value α0 = α, ρ is the correlation
between the two Brownian motions ad ν is the volatility of the volatility.

The SABR model has the advantage that there exists an analytic expression for the implied
volatility as a function of the strike price K and the forward price f = F0 = Se(r0−q0)T . The best
result would be a precise analytic expression for the local volatility function. In the SABR model
the implied volatility is closely approximated by

Σ(f,K) ≈ α(fK)
β−1

2

[
1 +

(1− β)2

24
ln2

(
f

K

)
+

(1− β)4

1920
ln4

(
f

K

)]−1(
z

x(z)

)
[

1 +

(
(1− β)2

24
α2

(fK)1−β +
1
4

ρβνα

(fK)
(1−β)

2

+
2− 3ρ2

24
ν2

)
τ

] (8.6)

where

z =
ν

α
(fK)

(1−β)
2 ln

(
f

K

)
x(z) = ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

) (8.7)

which is derived in [34].

Since an analytic, closed form formula for the implied volatility exists, plugging it into (2.25)
will result in an expression for the local volatility. However, it is easy to see that this formula
would be huge. Particularly the derivative with respect to T is large, rendering it impossible to
work with. Programs such as Maple cannot handle it. Even the simpler approximating formula

Σ(f,K) ≈ α

f1−β

(
1− 1

2
[1− β − ρλ] ln

(
K

f

)
+

1
12
[
(1− β)2 + (2− 3ρ2)λ2

]
ln2

(
K

f

))
(8.8)

proves to be unworkable for the same reasons. Therefore it is necessary to focus on numerical
approximations of (2.25).

A different approximation for the implied volatility surface is made in [6]. Just like (8.6) this
is an asymptotic expansion of the implied volatility surface with an error of O

(
∆τ2

)
. From [48]

it becomes clear that the SABR model is better approximated by the function derived in [6] and
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specified in [42]. Although this gives a slight improvement of the model, it makes things signif-
icantly more complicated. Formula (8.6) is quite compact. The formula derived in [42] fills two
pages if written in an efficient manner. Implementing this would be time-consuming and increases
the chance of making errors. Since in this report an analytic input for the implied volatility surface
is only used for stylised examples, in which the actual input is quite arbitrary (the goal is to work
with market data as the input), the slight improvement is deemed to not to be worth the effort so
(8.6) will be used.

8.2.2 Volatility Surface

The local volatility surface derived from (2.25) if (8.6) is used as an input, with α = 0.4, β = 0.9,
ρ = 0.3, ν = 0.4 for an option with T = 1, S0 = K = 100, r = 0.05, q = 0

Local Volatility
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The local volatility exhibits a strong dependency on the underlying asset price. It goes to in-
finity as the asset price approaches zero as can be seen from (8.6). The time dependency is less
pronounced, but the volatility is increasing in time, especially for small values of S.

8.2.3 Binomial Tree Instability

In section 3.1.6 the inherent instability of the binomial tree, as used with local volatility, was
described. The main problem is that the value for u, d and p become highly irregular. As an
example the different values of u as they appear in a binomial tree with 100 time steps are plotted
below as a function of the position in the tree. The underlying asset has initial value S0 = 100 and
the local volatility surface used is the one shown in 8.2.2. Since the values of u vary wildly the
values are capped at 100 on the positive side (actual values attained were of the order 1020).

Values of u on tree
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It should be noted that although this tree seems highly unstable (negative value for u are obvi-
ously unrealistic), for European options it did result in prices closely resembling the Black-Scholes
prices (differences of a few cents). For more time steps, needed to increase the accuracy, this was
not the case.

8.2.4 Logarithmic Binomial Tree Instability

When the exact same local volatility as given in 8.2.2 is used for the logarithmic binomial tree,
the same instability arises (as described in 3.2.4). It does behave slightly better than the regular
binomial tree, as can be seen in the graph below, which did not need to capped for large values as
was needed for the regular binomial tree. However, the large oscillations in the values for u and the
occurrence of negative values are clearly unacceptable in any model that tries to describe reality.

Values of u on tree
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8.2.5 Comparison Between Fixing u and d and Fixing Probabilities

When constructing the trinomial tree in section 4 a choice had to be made what to do with the
degrees of freedom. Most were used to fix the increment of making the middle transition, for the
remaining degrees two possible choices were presented, fixing u and d in 4.2, and fixing probabilities
in 4.3. Both versions of the tree were said to have similar accuracies. The numerical comparison is
given in the table below.

For different values of the number of steps in the tree a European call and put options with
S0 = K = 100 are priced using both trees and compared to the Black-Scholes price. The differences
between the trees are equal for both call and put and are therefore only mentioned once per number
of time steps.

Black-Scholes: Call = 12.4707, Put = 7.5936

Time Steps Call/Put Tree pf Tree u and d Diff. Trees Diff./BS
50 C 12.4597 12.4692 -9.46·10−3 -.0758 %

P 7.5826 7.5921 -.1245 %
100 C 12.4809 12.4824 -1.55·10−3 -.0124 %

P 7.6038 7.6054 -.0204 %
200 C 12.4711 12.4710 9.94·10−5 .0008 %

P 7.5941 7.5940 .0013 %
300 C 12.4734 12.4650 8.32·10−3 .0667 %

P 7.5963 7.5880 .1096 %
400 C 12.4694 12.4707 -1.21·10−3 -.0097 %

P 7.5924 7.5936 -.0160 %
500 C 12.4726 12.4724 1.88·10−4 .0015 %

P 7.5956 7.5954 .0025 %
600 C 12.4713 12.4727 -1.33·10−3 -.0107 %

P 7.5943 7.5956 -.0176 %
700 C 12.4700 12.4722 -2.26·10−3 -.0181 %

P 7.5929 7.5952 -.0297 %
800 C 12.4717 12.4715 2.44·10−4 .0020 %

P 7.5947 7.5944 .0032 %
900 C 12.4717 12.4706 1.08·10−3 .0086 %

P 7.5946 7.5935 .0142 %
1000 C 12.4705 12.4696 9.00·10−4 .0072 %

P 7.5935 7.5926 .0119 %
1500 C 12.4701 12.4670 3.09·10−3 .0247 %

P 7.5931 7.5900 .0406 %
2000 C 12.4705 12.4697 8.24·10−4 .0066 %

P 7.5935 7.5926 .0109 %

8.2.6 Valuing European Calls with pf with Different Strikes

To assess the accuracy of the trinomial tree with pf , European call options are valued with the
tree with the local volatility surface from 8.2.2 as an input. Since this surface is derived from an
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implied volatility surface, the Black-Scholes price is known. Valuing the options over a range of
strikes (from 1

2S0 to 2S0 with intervals of 5) and deducting the Black-Scholes price, shows how the
tree performs for different European options. The time steps considered are the same ones as given
in the table in 8.2.5.

Price on tree - Black-Scholes price

The minimum and maximum differences between the tree and the Black-Scholes formula, over
the different strikes per given time step are given in the table below. The difference goes from a
few cents for 50 time steps to a few hundredths of a cent for 2000 time steps
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Time Steps Min Diff Max Diff
50 -2.14·10−2 1.21·10−2

100 -1.22·10−2 1.02·10−2

200 -4.63·10−3 4.13·10−3

300 -3.76·10−3 3.04·10−3

400 -2.38·10−3 2.21·10−3

500 -1.88·10−3 1.92·10−3

600 -1.56·10−3 1.49·10−3

700 -1.25·10−3 1.15·10−3

800 -1.05·10−3 1.02·10−3

900 -7.85·10−4 9.51·10−4

1000 -9.98·10−4 8.73·10−4

1500 -7.34·10−4 6.24·10−4

2000 -4.70·10−4 3.12·10−4

To gain insight into how the values on the trinomial tree converges to Black-Scholes prices, the
logarithm of the maximum absolute difference in the table above is plotted against the logarithm
of the time steps in the tree.

The dependency seems to be linear. This suggests a dependence of the form y = bxa (with y
denoting the absolute error and x the number of time steps in the tree). The fitted green line has
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a slope of −1.05. This means that for European options the tree converges to Black-Scholes prices
approximately like 1

x .

8.2.7 Monte Carlo Simulations for European Options

European at-the-money (S0 = K = 100) options are simulated for different sample paths, with 100
time steps and a flat volatility surface of σ = 0.4. The results with their respective 95% confidence
intervals are given below. The computational time is given in seconds and denotes the time for the
call and put calculations combined.

Black-Scholes: Call = 18.0230, Put = 13.1459

Samples Call/Put MC 95% CI MC - BS Comp. Time1

103 C 17.3246 1.9710 -.6984 < 1
P 12.7012 1.0273 -.4447

5 · 103 C 18.0382 .8546 .0153 < 1
P 13.2132 .4657 .0673

5 · 104 C 18.0944 .2745 .0714 < 1
P 13.1868 .1479 .0409

5 · 105 C 17.9755 .0862 -.0474 8
P 13.1310 .0466 -.0149

5 · 106 C 18.0338 .0274 .0108 90
P 13.1530 .0148 .0071

5 · 107 C 18.0214 .0086 -.0016 919
P 13.1505 .0047 .0046

The same simulations are performed with the local volatility surface of 8.2.2 as an input.

Black-Scholes: Call = 12.4707, Put = 7.5936

Samples Call/Put MC 95% CI MC - BS Comp. Time1

103 C 12.3582 1.2981 -.1125 < 1
P 7.4788 .6807 -.1148

5 · 103 C 12.2987 .5761 -.1720 < 1
P 7.5114 .3017 -.0823

5 · 104 C 12.5358 .1855 .0651 3
P 7.6333 .0961 .0397

5 · 105 C 12.4435 .0581 -.0272 29
P 7.5918 .0303 -.0019

5 · 106 C 12.4673 .0184 -.0034 305
P 7.6007 .0096 .0071

5 · 107 C 12.4667 .0058 -.0040 2993
P 7.6015 .0030 .0079

In all but one case the Black-Scholes approximation lies within the 95% confidence interval. In
the only case it doesn’t (5 · 107 samples for the non-flat volatility) the estimate is already quite
accurate with an error less than one cent.

1Computational time (s) in MATLABR© version R2008b on an Intel 3.06 GHz CPU computer with 2 GB of RAM
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8.2.8 Monte Carlo Simulations for American Options

The options priced are at-the-money American options with T = 1, S0 = K = 100 with flat
volatility surface σ = 0.4, with 105 sample paths used for each regression, repeated 10 times (giving
one million samples), 100 time steps. The regressions are done upon either normal polynomials

pn(x) =
n∑
i=0

aix
i (8.9)

so the basis functions are xi or the basis functions are weighted Laguerre polynomials given by

Ln(x) =
ex/2

n!
dn

dxn
e−xxn (8.10)

Tree (500 steps): Call = 18.0243, Put = 13.6689

Basis Functions Call/Put MC 95% CI MC - Tree Comp. Time2

5 normal C 17.8841 .0444 -.1402 222
P 13.6776 .0138 .0086

5 weighted Lag C 17.9593 .0464 -.0650 311
P 13.6838 .0137 .0149

7 normal C 18.0097 .0477 -.0146 363
P 13.6901 .0138 .0211

7 weighted Lag C 18.0435 .0484 .0192 674
P 13.6925 .0138 .0086

9 normal C 18.0491 .0473 .0248 514
P 13.6952 .0137 .0262

11 normal C 18.0716 .0481 .0473 670
P 13.6985 .0138 .0296

And the same options priced with the volatility surface as in 8.2.2

Tree (500 steps): Call = 12.4726, Put = 8.1206

Basis Functions Call/Put MC 95% CI MC - Tree Comp. Time2

5 normal C 12.3750 .0300 -.0976 322
P 8.1178 .0096 -.0039

5 weighted Lag C 12.4356 .0313 -.0370 401
P 8.1272 .0096 .0065

7 normal C 12.4745 .0318 .0019 475
P 8.1285 .0096 .0079

7 weighted Lag C 12.4921 .0319 .0195 791
P 8.1291 .0096 .0084

9 normal C 12.4839 .0318 .0113 623
P 8.1397 .0096 .0190

11 normal C 12.4764 .0323 .0038 768
P 8.1178 .0096 -.0029

2Computational time (s) in MATLABR© version R2008b on an Intel 3.06 GHz CPU computer with 2 GB of RAM

58



The results presented in the table above, indicate that the tree model and Monte-Carlo simula-
tions give comparable values for American options. This suggests the tree model works accurately
for both European and American options.

8.3 AEX

In section 2.4 it was said that fitting an implied volatility surface to market data was for a large
part more art than science. This can be well illustrated by the case of fitting options on the AEX
index. The market data was observed on May 21, 2007, at a given point in time during the day
when the index was at 536.92. All options are European.

The spot rate of interest R(t0, T ) for different times of maturity T (given in days until the
maturity date) are given by

T (days) 26 61 89 124 152 215 305 397
R(t0, T ) (%) 3.964 4.023 4.077 4.141 4.173 4.244 4.318 4.265

Options are available for the last five maturities in the table above. An initial fitting of the
TPS surface (as described in 2.4) gives the following result

Implied Volatility
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Here the strike and maturity axes are rescaled by the spot price of the index S0 and the largest
maturity T0. The red dots are the mid market prices. From the figure above, it is clear that this
TPS surface will not suffice. The absence of data for some regions means that in these regions
the TPS makes an extrapolation. While this is not a problem for low strike values, this leads to
negative values for large strikes. This is of course not realistic, and thus not a valid extrapolation.
Some assumption thus has to be made for the shape of the surface for large strike values. Here
the assumption is made that for strikes larger than the largest strike of the available data for that
maturity, the implied volatility remains constant. This leads to

Implied Volatility

This is clearly more acceptable. The resulting local variance surface is
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Local Variance

Negative local variances make no sense and would lead to a local volatility surface with complex
values. But this can be resolved by making a small adjustment to the TPS surface. When fitting
the implied volatility surface, it is not necessary that the surface goes exactly through all the mid
market prices. The only criterion should be that it falls within the bid ask spread. By removing
one data point for fitting purposes (the second lowest strike for the second maturity), the fitted
surface becomes

Implied Volatility
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This is a small adjustment from the previous fitted surface. At the site of the point that was
removed the surface is still between the bid ask spread, so this surface is equally justifiable. The
resulting local volatility surface is

Local Volatility

So small adjustments in the implied volatility can lead to large changes in the local volatility.
Care should thus be taken when the surface is fitted to the market data. A possible criterion for
the inclusion of data points could be the size of the bid ask spread. Removing a point with a large
bid ask spread (as was done here), will not likely lead to problems since the resulting surface will
usually still go through the bid ask spread. This should of course always be checked.

8.4 Royal Dutch/Shell

European options are relatively easy to value. To test the model thoroughly it should be used on
American options. Here options on Royal Dutch/Shell Class A (RDSA) shares, as traded on NYSE
Euronext Amsterdam are considered. The data is from trading on January 2, 2006. The spot price
of the underlying is 26.035.

The spot rate of interest R(t0, T ) for the different times of maturity T (given in days until the
maturity date) are given by

T (days) 19.6 47.6 75.6 166.6 257.6 292.6 348.6 530.6
R(t0, T ) (%) 2.400 2.459 2.518 2.668 2.786 2.831 2.866 2.978

T (days) 656.6 719.6 901.6 1020.6 1083.6 1447.6 1811.6
R(t0, T ) (%) 3.035 3.051 3.099 3.130 3.146 3.217 3.265

And the date, t (given in days from January 2, 2006), and size of future dividends, in euros, are

62



t (days) 37.8 128.8 212.8 303.8 401.8 492.8 576.8
Dividend 0.22 0.22 0.22 0.22 0.22 0.235 0.235

t (days) 667.8 765.8 856.8 940.8 1038.8 1129.8 1220.8
Dividend 0.235 0.235 0.235 0.235 0.235 0.235 0.235

t (days) 1311.8 1402.8 1493.8 1584.8 1675.8 1766.8
Dividend 0.235 0.235 0.235 0.235 0.235 0.235

8.4.1 The Volatility Surfaces

As described in 8.3, some assumption has to be made for the implied volatility at large strikes.
Here the implied volatility at 3S0 is fixed at 0.185 for all strikes. How much the surface should be
smoothed cannot be determined up front. It usually depends on the grid on which it is calculated.
In theory this shouldn’t make a difference, but since the derivatives are determined numerically
(see 8.1), it does. Consider for instance the implied volatility surface for RDSA with λ = 0 for both
a 50x51 grid (T at calculated at 50 points, K at 51) and a 100x101 grid

Implied Volatility

These are of course identical except for the grid on which they are defined. This results however
in vastly different local volatility/variance surfaces
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Local Volatility Local Variance

where the left one is local volatility and the right one local variance. This means the second implied
volatility surface needs more smoothing.To determine which smoothing parameter λ should be used,
it is first put at zero, and if the local variance is negative at some point it is increased by 0.001
until the local variance is positive everywhere. Following this procedure the required smoothing for
the 100x101 grid is λ = 0.001. The resulting implied volatility and local volatility surfaces for the
100x101 grid are then

Implied Volatility Local Volatility

Of course this gives the minimum smoothing necessary to get a viable local volatility surface.
In some cases it may be advantageous to use a larger smoothing parameter to avoid large spikes in
the local volatility surface, which usually lead to negative transition probabilities in the trinomial
tree.
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8.4.2 Verifying Results

The purpose of the local volatility surface is to price options on RDSA. These resulting prices
can be compared to the market data, to assess how the model performs. This may seem a bit
redundant, since the local volatility surface was in the end extracted from the market data. This
would mean it gives back the input, not an impressive result. In this case, however, the input are
implied volatilities, which are obtained from the market prices by inverting a pricing process for
American options, used by AllOptions. So comparing the prices given by the model with market
prices is in effect comparing the local volatility pricing process to the one used to obtain the implied
volatilities. In the figures below different American calls (left) and puts (right) are valued with a
trinomial tree with 400 time steps, and the market prices given by the red dots

Call Prices Put Prices

Although this is a nice illustration, it would be better to value the exact same options for which
there are market prices, and compare these. How well these match is given by two numbers, the
number of modelled prices that fall outside the bid ask spread, and the average absolute difference
or absolute ‘error’ for these values between the modelled price and the nearest bid or ask. For
the data presented above, the 99 values for the call options all fall between bid and ask. For the
put options 11 out of 95 options fall outside the bid ask spread, with an average absolute error
of 0.0242. It seems the models give the same results for call prices, but different values for put prices.

8.4.3 Stability of Local Volatility Surface

If the local volatility model is used in practice, it would not be practical to have to recalculate
the local volatility surface every minute. It would be easier to obtain the local volatility surface at
some point in time and then keep using this same surface to value options at other times. To see
what this means for RDSA options the local volatility surface is calculated from implied volatility
data at a fixed point. Then at every following minute, the spot price is observed, and the values
for the same options are calculated with a trinomial tree with 400 time steps and compared to the
market data. This is done for 500 points (minutes), and the number of modelled prices that fall
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outside the bid ask spread, and the average absolute error for these options is recorded. The result
is as follows

In these graphs the blue line denotes the values for call options (99 in total) and the green line
denotes put options (95 in total). These lines are fairly flat, although a slight upwards trend can
be detected in all. It would suggest that the local volatility surface obtained at one point can be
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used equally well at other points up to 500 minutes, since the number of points outside the bid
ask spread and their average absolute error is about the same at minute 1 as it is at minute 500.
The slight upward trend of the lines, does suggest that this cannot be said for any point in time in
the future. The models seem to agree quite well for call options, while for put options, significant
differences are observed.

An obvious improvement would be to recalibrate the local volatility surface at constant intervals.
When the local volatility surface is recalculated every 50 minutes the result is
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In these graphs the dotted red line indicates the time when the volatility surface is recalibrated to
the current market data. It seems like the recalibration does not make that much of a difference. It
would thus seem that the local volatility surface implied by the data, does not change significantly
over the day or that possible changes in the local volatility surface do not lead to significantly
different prices. This suggests that recalibration is not worth the extra effort. Just as easily the
same volatility surface can be used during the entire day.

8.4.4 Delta Hedging

The local delta of options can be calculated according to the formulae given in 6.3. If the delta is
correct it should predict the change in the option price (δV ) if the underlying changes by a certain
amount (δS). At two points in time the value of an option and its underlying is observed and the
delta is calculated. A measure of the accuracy of the delta is then given by

ε = δV −∆δS (8.11)

This is the error that would occur if the option was delta hedged with this particular delta. A
lower absolute value for ε indicates a better hedge.

The performance of the local delta is observed over a period of seven days: January 2, 3, 4, 5, 9,
10 and 18. Only options for which market data is available on all these days are considered. Each
option is considered to be delta hedged at every day. For each option, the average of the error, ε̄,
and the standard deviation, σε, over these days indicate how well the hedging scheme works. The
performance of the local delta is compared to the Black-Scholes delta. Since the options on RDSA
are American and there are discrete dividends, no explicit Black-Scholes delta formula exists. But
it can be calculated by using a flat local volatility surface, with values equal to the implied volatility
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of the option, and then calculating the delta in the same way the local delta was calculated. Since
this is not the classical Black-Scholes delta, a more accurate name would be implied delta.

The following graphs show how big the hedging errors are with respect to maturity and strike.
The plotted values are the average values of ε̄. In the first graph the values at a particular maturity
are averaged over all strikes and the resulting values are plotted against time to maturity. In the
second graph they are averaged over different maturities and plotted against the strike price.
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In these graphs the normal lines denote the local delta hedge, the dashed lines denote the im-
plied delta hedges. Red lines represent call options, blue ones denote put options. It should be
noted that during the time period over which the data was observed the stock price did not vary
much, it stayed between 26 and 27 euros. This means the same strikes represented about the same
moneyness over the different days. The complete set of data can be found in the Appendix.

From these graphs the following observations can be made about the hedging errors:

• The hedging errors for call options are usually negative, for put options they are usually
positive.

• The largest errors occur for the options with the largest maturities.

• For short maturities the local delta and implied delta give rise to approximately the same
errors.

• For larger maturities the local delta gives smaller errors than the implied delta for call options,
but larger errors for put options.

• A general statement on the error as a function of the strike, or moneyness, cannot be made.
The results shown do not show a clear dependency on the strike price.

Given these observations a clear cut general statement on the performance of the local delta
over the implied delta cannot be made.

70



9 Conclusion

The aim of this report was to investigate the local volatility model. It was found in section 2
that although the Dupire formula gives a nice theoretical method to extract the local volatility
surface from option prices, in practice it is better to extract the surface from implied volatilities.
To achieve this, the Dupire formula was transformed into a formula that relates local volatility to
implied volatility.

To price options valuation trees were used. By adjusting the traditional binomial tree to accom-
modate for local volatility, it was found in section 3 that the binomial tree was unstable. Since this
is unrealistic and gives unstable results, it was deemed insufficiently appropriate. The trinomial tree
model provides more flexibility (section 4). Some adjustments had to be made to avoid negative
transition probabilities which occurred because more flexibility was needed in some places in the
tree. By transforming the tree into a quintinomial tree in those places, the negative probabilities
were resolved. Discrete dividends were incorporated into the tree using the Vellekoop-Nieuwenhuis
method (section 5).

The numerical results presented in section 8 show that the model works well for both European
and American options. For European options the results were compared to Black-Scholes prices, for
American options they were compared to Monte Carlo simulated prices (section 7). By increasing
the number of steps in the tree, the difference between these values could be made less than one cent.

When the model was used on market data for options on Royal Dutch/Shell Class A shares
(section 8.4), it was found that the prices fell within the bid ask spread most of the time, but not
always. This means that there exists a significant difference between the local volatility model and
the model to price options currently used by AllOptions, which was inverted to generate implied
volatility data. Whether one or the other is better cannot be stated, since the latter model was not
investigated in this report. When the local volatility surface, generated at a given point in time, was
used to price options at later times it was found that the differences between the models was fairly
constant. Perhaps more significantly it was found that recalibration of the local volatility surface
at regular intervals during the day did not have a significant impact, indicating that recalibrating
during the day is not needed.

The literature suggests the delta’s generated by the local volatility model, local delta’s, perform
as better delta hedges than Black-Scholes or implied delta’s (section 6). For the data observed
this seems true for call options with large maturities, but the reverse seems to be the case for put
options with large maturities. For short maturities the delta’s give approximately the same result.
As such no conclusive statement can be made about the performance of the local delta. The data
used was limited (it included seven trading days) and a more extensive investigation of the local
delta is needed to get a more thorough understanding of its performance.
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A Appendix: Delta Hedging Results

Below are the graphs of the average delta hedging error, ε̄ as a function of the different strikes, for
a given maturity. The normal lines denote data for the local delta hedge, the dashed lines denote
data for the implied delta hedges. Red lines represent call options, blue ones denote put options.
The maturities mentioned below are the times to maturity, in years, as seen from the first day
market data was observed, January 2 2006.

T = 0.0537

T = 0.1304
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T = 0.2071

T = 0.4564
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T = 0.7058

T = 0.8016
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T = 0.9551

T = 1.4537
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T = 1.7898

T = 2.9688
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T = 3.9660

T = 4.9633
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[16] Crépey, S., ‘Delta Hedging Vega Risk?’, Quantitative Finance, vol. 4, no. 5, pp. 559-597, 2004

[17] Derman, E., ‘Regimes of Volatility’, RISK, vol. 12, no. 4, pp. 55-59, 1999

78



[18] Derman, E. and Kani, I., ‘Riding on a Smile’, RISK, vol. 7, no. 2, pp. 32-39, 1994

[19] Derman, E. and Kani, I., ‘Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term
and Strike Structure of Volatility’, International Journal of Theoretical and Applied Finance,
no.1, pp. 61-110, 1998

[20] Derman, E., Kani, I. and Chriss, N., ‘Implied Trinomial Trees of the Volatility Smile’, Journal
of Derivatives, vol. 3, no.4, pp.7-22, 1996

[21] Derman, E., Kani, I., and Kamal, M., ‘Trading and Hedging Local Volatility’, Quantitative
Strategies Research Notes, Goldman Sachs & Co, 1996

[22] Doran, S., ‘The Influence of Tracking Error on Volatility Risk Premium Estimation’, Working
Paper, 2006

[23] Duchon, J., ‘Interpolation des Fonctions de Deux Variables Suivant le Principe de la Flexion
des Planques Minces’, RAIRO Analyse Numérique, vol. 10, pp. 5-12, 1976

[24] Dumas, B., Fleming, J. and Whaley, R., ‘Implied Volatility Functions: Empirical Tests’, Jour-
nal of Finance, vol. 53, no. 6, pp. 2059-2106, 1998

[25] Dupire, B., ‘Pricing and Hedging with Smiles’, Paribas Capital Markets Swaps and Options
Research Team, 1993

[26] Dupire, B., ‘Pricing with a Smile’, RISK Magazine, no. 7, pp. 18-20, 1994

[27] Engelmann, B. and Fengler, M., ‘Better than its Reputation: An Empirical Hedging Analysis
of the Local Volatility Model for Barrier Options’, Working Paper, 2006

[28] Fengler, M., ‘Semiparametric Modeling of Implied Volatility’, Springer-Verlag, 2005

[29] Fengler, M., ‘Arbitrage-Free Smoothing on the Implied Volatility Surface’, Working Paper,
2005

[30] Fries, C., ‘The Foresight Bias in Monte-Carlo Pricing of Options with Early Exercise: Classi-
fication, Calculation & Removal’, Working Paper, 2005

[31] Frishling, V., ‘A Discrete Question’, Risk Magazine, Jan., pp. 115-116, 2002

[32] Gatheral, J., ‘The Volatility Surface: A Practitioner’s Guide’, John Wiley & Sons, 2006

[33] Glasserman, P., ‘Monte Carlo Methods in Financial Engineering’, Springer-Verlag, 2004

[34] Hagan, P., Kumar, D., Lesniewski, A. and Woodward, D., ‘Managing Smile Risk’, Wilmott
Magazine, pp. 84-108, 2002

[35] Hanke, M. and R osler, E., ‘Computation of Local Volatilities from Regularized Dupire Equa-
tions’, International Journal of Theoretical and Applied Finance, vol. 8, no. 2, pp. 207-222,
2005

[36] Haug, E., Haug, J. and Lewis, A., ‘Back to Basics: a New Approach to the Discrete Dividend
Problem’, Wilmott Magazine, Sept., pp. 37-47, 2003

79



[37] He, H., ‘Convergence from Discrete- to Continuous-time Contingent Claims Prices’, Review of
Financial Studies, vol. 3, pp. 523-546, 1990

[38] Heston, S., ‘A Closed-Form Solution for Options with Stochastic Volatility with Applications
to Bond and Currency Options’, Review of Financial Studies, vol. 6, no. 2, pp. 327-343, 1993

[39] Hull, J., ‘Options, Futures and Other Derivatives’, 6th Edition, Pearson Prentice Hall, 2006

[40] Hull, J. and White, A., ‘The Pricing of Options on Assets with Stochastic Volatilities’, Journal
of Finance, vol. 42, no. 2, pp. 281-300, 1987

[41] Hull, J. and White, A., ‘Efficient Procedures for Valuing European and American Path-
Dependent Options’, Journal of Derivatives, vol. 1, pp. 21-31, 1993

[42] Labordère, P.H., ‘A General Asymptotic Implied Volatility for Stochastic Volatility Models’,
Working Paper, 2005

[43] Longstaff, F. and Schwartz, E., ‘Valuing American Options by Simulation: A Simple Least
Squares Approach’, The Review of Financial Studies, vol. 14, no. 1, pp. 113-147, 2001

[44] Meinguet, J., ‘Multivariate Interpolation at Arbitrary Points Made Simple’, Zeitschrift für
Angewandte Mathematik und Physik, vol. 30, pp. 292-304, 1979

[45] Merton, R., ‘Option Pricing when Underlying Stock Returns are Discontinuous’, Journal of
Financial Economics, vol. 3, pp. 125-144, 1976

[46] Merton, R., ‘Theory of Rational Option Pricing’, Bell Journal of Economics and Management
Science, vol. 4, no. 1, pp. 141-183

[47] Musiela, M. and Rutkowski, M., ‘Martingale Methods in Financial Modelling’, Springer, 1997
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