
PROVENANCE
MANAGEMENT

IN
PRACTICE

MATTHIJS OOMS

MASTER’S THESIS

Human Media Interaction Group

Software Engineering Group

Faculty of Electrical Engineering, Mathematics and Computer Science

GRADUATION COMMITTEE

dr. P.E. van der Vet
 dr.ir. D. Hiemstra

 ir. I. Wassink
 dr.ir. R. Langerak

September, 2009

Chairman HMI:
Chairman SE:
1 coordinator:
2 coordinator:

st
nd

Summary

Scientific Workflow Managements Systems (SWfMSs), such as our own
research prototype e-BioFlow, are being used by bioinformaticians to de-
sign and run data-intensive experiments, connecting local and remote
(Web) services and tools. Preserving data, for later inspection or reuse,
determine the quality of results. To validate results is essential for sci-
entific experiments. This can all be achieved by collecting provenance
data. The dependencies between services and data are captured in a
provenance model, such as the interchangeable Open Provenance Model
(OPM).

This research consists of the following two provenance related goals:

1. Using a provenance archive effectively and efficiently as cache for
workflow tasks.

2. Designing techniques to support browsing and navigation through
a provenance archive.

Early in this research it was determined that a representative use case
was needed. A use case, in the form of a scientific workflow, can show the
performance improvements possibly gained by caching workflow tasks.
If this use case is large-scale and data-intensive, and provenance is col-
lected during its execution, it can also be used to show the levels of detail
that can be addressed in the provenance data. Different levels of detail
can be of aid whilst browsing and navigating provenance data.

The use case identified is called OligoRAP, taken from the life science
domain. OligoRAP is casted as a workflow in the SWfMS e-BioFlow. Its
performance in terms of duration was measured and its results validated
by comparing them to the results of the original Perl implementation. By
casting OligoRAP as a workflow and using parallelism, its performance
is improved by a factor two.

iv | Summary

Many improvements were made to e-BioFlow in order to run OligoRAP,
among which a new provenance implementation based on the OPM, en-
abling provenance capturing during the execution of OligoRAP in e-Bio-
Flow. During this research, e-BioFlow has grown from a proof-of-concept
to a powerful research prototype.

For the OPM implementation, a profile for the OPM to collect prove-
nance data during workflow execution has been proposed, that defines
how provenance is collected during workflow enactment. The proposed
profile maintains the hierarchical structure of (sub)workflows in the col-
lected provenance data. With this profile, interoperability of the OPM for
SWfMS is improved.

A caching strategy is proposed for caching workflow tasks and is imple-
mented in e-BioFlow. It queries the OPM implementation for previous
task executions. The queries are optimised by formulating them differ-
ently and creating several indices. The performance improvement of
each optimisation was measured using a query set taken from an Oli-
goRAP cache run. Three tasks in OligoRAP were cached, resulting in a
performance improvement of 19%. A provenance archive based on the
OPM can be used to effectively cache workflow tasks.

A provenance browser is introduced that incorporates several techniques
to help browsing through large provenance archives. Its primary visual-
isation is the graph representation specified by the OPM. The following
techniques have been designed:

• An account navigator that uses the hierarchy captured by the OPM-
profile using composite tasks and subworkflows to visualise a tree
structure of generic and detailed views towards the provenance
data.

• The provenance browser can use several perspectives towards prove-
nance data, namely the data flow, control flow and resource per-
spectives, identical to the perspectives used towards workflows in
e-BioFlow. This enables the end-user to show detail on demand.

• A query panel that enables the end-user to specify a provenance
query. The result is directly visualised in the provenance browser,
allowing the user to query for certain data items, tasks or even
complete derivation trails.

• Retrieve tasks or data items that are not loaded in the provenance
browser, but are neighbours of currently visible tasks or data items.

| v

These techniques have already proven their value whilst debugging Oli-
goRAP: error messages, and more interestingly, their cause, were easily
identified using the provenance browser. The provenance archive could
be queried for all generated pie charts using the query panel, presenting
a clear overview of the results of an OligoRAP run.

Preface

The work described in this thesis was carried out between March 2008
and September 2009 as the result of an extended final project combining
the two Master of Science studies Human Media Interaction and Soft-
ware Engineering at the University of Twente, Enschede.

During this period, many things have happened in my life, both good and
bad. I happily remember the joyful days on which my nephew Yannick
and niece Chiara were born, in contrast to the sad and somber days on
which my mother and grandmother passed away. The day of my gradu-
ation would have been one of the happiest in both their lives.

I would like to take this opportunity to thank my supervisors personally.
You have contributed to many of the good times, and have been a great
support in the bad.

Ingo, I hope you do not withdraw your supervision, as you said you
would when you were demoted from chairman to coordinator due to
university regulations. Regardless of your position in the committee,
you have been an excellent supervisor. In the three years that we have
worked together, I think we have formed a great team. Under the in-
fluence of caffeine during our coffee breaks, many creative ideas were
born leading to the improvement of e-BioFlow. I am proud to see how
e-BioFlow has evolved, something neither of us had foreseen in the be-
ginning. But at least equally important, I really enjoyed our pleasant
non-work related discussions, over drinks at the NBIC conference for in-
stance. Have you heard any fire alarms recently?

Paul, with great pleasure I will always recall the conversations during our
meetings, in which you managed to combine sometimes totally off-topic
but often surprisingly sharp and funny anecdotes with Ingo’s dry sense
of humour. Your enthousiasm for my work has been a great motivation
that got the best out of me. I am really grateful for all the opportuni-
ties you have given me: attending the NBIC 2008 and 2009 conferences

viii | Preface

in Maastricht and Lunteren, resulting in a poster- and oral presentation
of my work and attending the 3rd Provenance Challenge. Not to for-
get my nomination for the KNAW programme, during which I really en-
joyed philosophising about the history of science and of which a publica-
tion and visit to the BIOINFORMATICS 2010 Conference in Valencia will
hopefully be the result.

Djoerd, although we have not seen each other as much as I have spo-
ken Ingo and Paul, I would like to thank you for always expressing your
honest and critical opinion towards my methods. Your feedback was es-
sential for the research results described in this thesis.

Rom, I would like to thank you for your flexibility, for the useful tips
and for the inspirational words you gave me the final days before my
graduation.

During this research, I have had the privilege to be introduced to Pieter
Neerincx, creator of OligoRAP. Pieter, without your quick, accurate and
elaborate responses during many debug sessions, OligoRAP in e-BioFlow
would still be future work.

This research and thesis benefited from conversations with friends and
fellow lab-mates, Sander “4-uur Cup-a-Choco” Bockting, and Wim Bos,
but most notably, Viet Yen Nguyen. Viet, since you are probably the
smartest person I have ever met, it can be logically implied your feedback
has improved this thesis. It is comforting to always see a green dot in
front of your name, but also without it, I know you are there for me.

Finally, I wish to express my greatest thanks to my father, mother, my
sister and her family, for their love and support.

Matthijs Ooms Enschede, September 2009

Contents

SUMMARY iii

PREFACE vii

LIST OF FIGURES xiii

LIST OF TABLES xiv

LIST OF QUERIES AND QUERY PLANS xv

1 INTRODUCTION 1
1.1 Provenance as Cache . 3
1.2 Provenance visualisation . 4
1.3 Outline of this thesis . 5

2 PROVENANCE IN SCIENTIFIC WORKFLOWS 9
2.1 Scientific Workflow Management Systems 9
2.2 Provenance . 11

2.2.1 The Open Provenance Model 13
2.2.2 Provenance archive as cache 16

3 IMPROVEMENTS TO E-BIOFLOW 19
3.1 Motivation for the use of e-BioFlow 19
3.2 Improvement implementation details 20
3.3 Proof-of-principle case: OligoRAP 23

3.3.1 Motivation . 24
3.3.2 Casting OligoRAP as a Workflow in e-BioFlow 26

3.4 Provenance implementation . 27
3.4.1 Requirements for provenance implementations 29
3.4.2 Database Design . 30

3.5 Provenance Recording: an OPM-profile 31

xii | Contents

3.6 Running OligoRAP: results . 37
3.7 Discussion . 40

4 USING PROVENANCE AS CACHE 45
4.1 Caching scheme . 45

4.1.1 Cache phase 1 . 46
4.1.2 Cache phase 2 . 47

4.2 Implementation . 48
4.2.1 Query for cache phase 1 49
4.2.2 Query used in cache phase 2 52

4.3 Optimising performance of phase 1 cache queries 52
4.3.1 Query set and database used in measurements 54
4.3.2 Optimising using subqueries 54
4.3.3 Optimising using indices 60
4.3.4 Performance of querying non-cached tasks 62
4.3.5 Performance of Phase 2 queries 63

4.4 Caching tasks in OligoRAP . 64
4.4.1 Results . 64
4.4.2 Discussion . 65

5 PROVENANCE VISUALISATION 69
5.1 Provenance Browser . 69

5.1.1 Navigating the Refinement Tree 70
5.1.2 Perspectives . 72
5.1.3 Query interface . 78
5.1.4 Loading neighbours . 81

5.2 Browsing through an OligoRAP run 82
5.3 Debugging with the Provenance Browser 83
5.4 Discussion . 85

6 CONCLUSION 87
6.1 Summary . 87
6.2 Future Work . 90

APPENDICES

A QUERIES 95

B QUERY PLANS 99

BIBLIOGRAPHY 115

List of Figures | xiii

List of Figures

2.1 OPM entities and causal dependencies. 14

3.1 Exotic MI workflow pattern . 28
3.2 Screenshot of OligoRAP in e-BioFlow 29
3.3 ERD of Open Provenance Model 31
3.4 Asynchronous BLAST workflow specification 35
3.5 OPM graph of the execution of a BLAST job 35
3.6 Matching pie chart results of OligoRAP 39
3.7 CPU load during OligoRAP run 41

4.1 Provenance graph of a cache candidate 47

5.1 Refinement tree structure . 72
5.2 Refinement tree with provenance elements 73
5.3 Provenance perspectives. 74

(a) Data flow
(b) Resource
(c) Control flow

5.4 Screenshots of perspectives in e-BioFlow 76
(a) Normal perspective
(b) Data flow perspective
(c) Resource perspective
(d) Control flow perspective

5.5 Screenshots of pie charts in e-BioFlow 80
(a) All pie charts
(b) Only Transcriptome pie charts

xiv | List of Tables

List of Tables

3.1 e-BioFlow improvements for running OligoRAP 21
3.2 BioMOBY services used by OligoRAP 25
3.3 OPM Database table specification 32
3.4 The OPM-profile . 34
3.5 Storage sizes and durations of OligoRAP runs 39
3.6 Provenance data statistics . 40

4.1 Query used in cache phase 1 . 48
4.2 View used for data comparison 51
4.3 Query used in cache phase 2 . 52
4.4 Item value index sizes . 59
4.5 Form 2 and 3 and view 1 and 2 query statistics. 59
4.6 Created indices and their size . 61
4.7 Statistics of all indices. 62
4.8 Query performance of non-cached processes. 63
4.9 Query performance of phase 2 queries. 64
4.10 Durations of OligoRAP run with and without cache 65

5.1 Accounts created during an OligoRAP run 83

List of Queries and Query Plans | xv

List of Queries and Query Plans

4.1 Deriving query form 2 from query form 1 55
4.2 Deriving query form 3 from query form 2 57
5.1 Query for retrieving SVG pie charts 79
5.2 Recursive query for retrieving a derivation trail 81
A.1 Ineffective cache query (form 1) 95
A.2 Cache query for MobyBlat in form 2 96
A.3 Cache query for MobyBlat in query form 3. 97
A.4 Cache query for Download url process 97
B.1 Query plan for query A.1 . 100
B.2 Query plan for query A.2 . 102
B.3 Query plan for query A.3 . 104
B.4 Query plan for query A.3 with all effective indices 106
B.5 Query plan for query A.4 . 108
B.6 Query plan for query A.4 with all effective indices 109
B.7 Query plan for query A.3 . 110
B.8 Query plan for query A.4 with index i7 112
B.9 Query plan for a phase 2 query 112

The greatest challenge to any thinker is stating the problem in
a way that will allow a solution.

Bertrand Russell, 1872 - 1970

Chapter 1

Introduction

Whilst working for a long time on a single topic, this topic becomes so fa-
miliar that it is surprising if others, even fellow computer scientists, have
never even heard of it. The interest in the main topic of this research,
provenance, has grown in the last years and has become an established
research field. Yet, the people working in this field still form a select
group, therefore a proper introduction is in place.

Provenance means origin or derivation, and is also referred to as (data)
lineage, audit trail or pedigree. Different techniques and provenance
models have been proposed in many areas such as workflow systems and
tools, visualisation, databases, digital libraries and knowledge represen-
tation. In library systems for example, the structure of articles and their
citations form an audit trail that helps the reader determine the quality of
articles by its derivation from previous work. In database context prove-
nance is used to capture the changes of data records. The importance of
provenance can hardly be overestimated. It can be used to inspect and
validate (intermediate) results of workflow runs and pay credit to the
owners. Provenance makes results reproducible, which is a very impor-
tant factor in scientific research.

In this research, provenance is used in the context of workflows, where
provenance is primarily used to capture the execution of a workflow run.
All intermediate results, timestamps, tasks and metadata of local and/or
remote services are recorded by means of a certain provenance model.
Workflow specifications are closely related to provenance models, they
both define the relation between tasks and data. The difference is that a
workflow defines how tasks are going to be executed, whereas a prove-
nance model describes tasks that were actually executed.

2 | Chapter 1 - Introduction

Many workflow systems exist nowadays, such as Taverna, Kepler, Chime-
ra, Vistrails, Triana and our own research prototype e-BioFlow (see §2).
Some of these only focus on a certain domain. Taverna for instance
provides tools mainly used by life scientists. Kepler is more generally
addressed to as a Scientific Workflow Management System, a group of
workflow systems to which e-BioFlow belongs as well. These workflow
systems are named Scientific, because they are used for running scientific
experiments. The workflows they run are scientific experiments them-
selves, like an experiment performed by a life scientist in his lab. Diverg-
ing from the wet-lab, some life scientists now run their experiments in
a completely automated fashion. These are called in-silico experiments.
A new scientist evolved, called the bioinformatician. Most bioinformati-
cians have a stronger affiliation with biology than they have with infor-
mation or computer science. They build software, and small tools, out
of need, simply because the tools do not exist. Workflow systems, orig-
inally used for business administration, form a useful means to model
the tasks used in experiments, enabling re-execution of experiments and
sharing them. Workflow editors or workbenches have been made more
user friendly, so that not only the informatician, but also the life scientist
can design and run workflows.

Among the major challenges faced today, that would benefit end-users,
among which bioinformaticians, is how to integrate provenance tech-
niques and models so that complete provenance can be derived for com-
plex data products during workflow execution. Some of the workflows
systems mentioned earlier capture provenance data, all using their own
storage models. Another challenge is to make these different provenance
aware systems interoperable. The Open Provenance Model (OPM) is one
of the few existing proposals working towards this goal. Yet another issue
is scalability. The amount of provenance data captured during workflow
execution can be enormous, depending on the granularity, the level at
which provenance is captured. Processing all the amounts of data in-
volved in the experiments can take a long time, so efficiency is an impor-
tant factor. Davidson and Freire [11] have categorised these challenges
into four major open research problems:

1. Information management infrastructure and information overload

2. Interoperability

3. Analyse and visualise provenance data

4. Connecting database and workflow provenance

1.1 Provenance as Cache | 3

This thesis is the result of a combined final project of two Master of
Science studies, namely Human Media Interaction, and Software Engi-
neering. It addresses all four challenges posed by Davidson and Freire,
working towards two different research goals. Each study has its own re-
search goal. The first goal, for Software Engineering (SE), is to improve
the efficiency of workflow runs, by using a provenance archive as cache.
The second goal, for Human Media Interaction (HMI), is to facilitate the
interpretation of provenance data by means of a provenance browser
that is able to navigate through a provenance archive. The studies share
a common subgoal: collecting provenance data during workflow execu-
tion. A large-scale data-intensive use case from the life science domain
has been identified and casted as a workflow.

1.1 Provenance as Cache

During workflow execution, some tasks can be computationally inten-
sive and thus time-consuming. The task, its input and its results can be
stored in some archive, such as a provenance archive. If the output of
such a task can be predicted based on its input, and a previous execution
does exist in the archive, the output can be retrieved from the archive, by
way of cache. By fetching the output directly from cache instead of re-
executing the task itself can improve performance. This would be very
beneficial in cases a workflow is executed repeatedly, or only a small
number of parameters is changed. In an ‘ad-hoc’ workflow design ap-
proach, when part of a workflow is executed, results inspected and new
tasks added based on these results, it is desirable to not perform all previ-
ous tasks over and over again, especially when they are time-consuming.
Caching these tasks would be very helpful.

Besides performance gain, there are various other practical reasons for
caching workflow tasks. If a workflow crashes, caching makes it possi-
ble to resume execution. Webservices are frequently used in workflows.
A drawback of webservices is that the server running them can be over-
loaded, resulting in a slow performance and they can be unreachable due
to network problems. If a task invoking a webservice is stored in cache,
the workflow can still be executed.

When provenance data is collected during workflow execution and stored
in a provenance archive, all task information, task inputs and outputs can
be queried. This is exactly the data and functionality needed for caching

4 | Chapter 1 - Introduction

workflow tasks.

The large data volumes and different ways to store and query provenance
archives make caching of workflows a challenging task. This challenge
is one of the main motivations for this thesis and is expressed in the
following research question:

SE Research Question Can a provenance archive be used ef-
fectively and efficiently as cache for workflow tasks using the
structure of the Open Provenance Model?

The result of this research is a new caching strategy (see Chapter 4),
which is implemented in e-BioFlow. The proposed caching scheme de-
fines how collected provenance data can be used as cache, without af-
fecting the workflow itself. For this cache implementation several im-
provements were necessary to e-BioFlow. Among the improvements is a
direct implementation of the OPM to collect and store provenance data
according to a newly defined OPM profile for workflow systems. The
implementation of the OPM is tested with a large-scale data-intensive
use case called OligoRAP, and the performance improvement that can be
achieved by caching tasks in OligoRAP is measured. For a more elaborate
description of OligoRAP, see §3.3.

1.2 Provenance visualisation

A provenance archive can be always represented as a directed acyclic
graph, see §2.2.1. It is straightforward to use this representation when
visualising provenance data, the OPM is a clear example. During work-
flow execution, many process, actor and data nodes are created, growing
a huge provenance graph. Finding data in these large-scale graphs is a
hard task: simply presenting the whole graph would not do the trick.
Groth [21] showed, with six use cases, that the average overhead of col-
lecting provenance data was about 13%. Of course this greatly depends
on the type of use case that is used. In experiments performed with the
Large Hadron Collider the amount of data that needs to be interpreted
is expected to be hundreds, even thousands of petabytes [13]. Visual-
ising a graph that uses 13% of a petabyte storage space can not easily
be performed on a commodity pc, due to memory limitations and pro-
cessing power, and would not benefit usability, nor facilitate a clearer
understanding of the data by the end-user.

1.3 Outline of this thesis | 5

Having different levels of detail is useful when visualising data struc-
tures by only representing data that matches users needs, enabling to
zoom in and out to a certain level. The OPM provides some means to
specify provenance data hierarchically, which can be of help when sur-
veying, inspecting and navigating through a large provenance archive.
The challenge to facilitate this way of navigation through large prove-
nance archives is expressed in the following research question:

HMI Research Question Can level of detail be captured in the
Open Provenance Model to support browsing and navigation
through large provenance graphs?

The result of this research is a provenance browser that exploits the struc-
ture of the OPM by deducing levels of detail. Additionally, several other
techniques have been designed and implemented in the browser, such as
support for different perspectives, a query interface, and an account nav-
igator that enables a user to load only interesting parts of a provenance
graph. The implementation is tested with and illustrated by the same use
case OligoRAP.

1.3 Outline of this thesis

First, a literature study is presented in Chapter 2, providing a background
of previous work in the field of provenance and workflow systems. Chap-
ter 3 describes several improvements made to e-BioFlow, which were
needed in order to run a large-scale data-intensive use case, called Oli-
goRAP. OligoRAP is used as a proof-of-principle case for e-BioFlow. The
provenance model identified for collecting and storing provenance data
is the OPM, which is implemented in e-BioFlow. A generic mapping be-
tween workflow events to OPM entities is made, to explicitly define what
information is captured and how it is stored. This mapping is called a
profile for the OPM. The OPM-profile presented in §3.5 facilitates prove-
nance capturing at different levels of detail, making use of the hierar-
chical structure of subworkflows. Levels of detail can be captured in an
OPM specification using a Refinement Tree. The proposed profile is used
in the OPM implementation. In Chapter 4 a caching strategy is proposed
that uses the provenance data generated according to the OPM-profile
as cache for workflow tasks. Queries are defined and the database op-
timised to retrieve the cached tasks and results efficiently. This caching

6 | Chapter 1 - Introduction

scheme is implemented and the performance improvement measured by
caching specific tasks in the OligoRAP workflow. Chapter 5 presents a
provenance browser, that is able to browse OPM provenance archives by
navigating the Refinement Tree. In addition, users are able to switch
between fine-grained and coarse-grained views on the provenance data.
The use of the provenance browser is explained with provenance data of
an OligoRAP run. The final Chapter 6 summarises this work and high-
lights future research directions.

Provenance? No, it is not a region in France.

skeptico.blogs.com, July 2009

Chapter 2

Provenance in Scientific
Workflows

Workflow systems are being used extensively in the life science domain
as well as in other scientific research areas. In this chapter an overview is
presented of a selection of prominent scientific workflow systems, which
appear to belong to the more popular workflow systems, based on their
occurrence in literature. In §2.2 several provenance implementations
are described, and more specifically the Open Provenance Model (see
§2.2.1), which is the provenance model used throughout this research.

2.1 Scientific Workflow Management Systems

Many Scientific Workflow Management Systems (SWfMS) exist nowa-
days, such as Taverna [34], Kepler [2], Triana [45], Vistrails [8], Trident-
[5] and our own research prototype e-BioFlow [52]. All these systems
have in common they are able to compose workflows using a graphical
user interface also referred to as workflow editor or workbench. Fur-
ther, they are able to execute these workflows, by mapping the workflow
tasks to either local or remote (web) services. There is much overlap
between the functionality of these systems, yet all of them approach sci-
entific workflows from a slightly different angle.

Taverna [34; 35] is developed mainly for life scientists, and is the most
prominent workflow tool available in this area. At the current time of
writing it provides a collection of over 3500 services, using a variety of
protocols such as WSDL/SOAP [33], BioMOBY [53] and Soaplab [39];

10 | Chapter 2 - Provenance in Scientific Workflows

the latter two are webservice collections providing a uniform data format
and ontology structure. Exact numbers are not mentioned consistently in
literature and on the web, but these services are mainly tools for bioinfor-
maticians [12]. Still, Taverna has also been used to enact workflows in
other domains, like meteorology. The workflow editor has quite a learn-
ing curve since the interface is not always that intuitive. It is announced
that the user interface will be improved in future versions. Taverna work-
flows provide means to iterate over lists, and provide nested processors
to define workflows hierarchically.

Kepler [2] has been designed not specifically with the life scientist in
mind, but with scientists in general. It comes with some 350 services,
called actors in Kepler. These are more general, such as R, Matlab, a
generic WSDL actor and a database query actor. While other workflows
systems are truly data oriented, like Taverna and Triana, Kepler was de-
signed keeping in mind that workflows executed by scientists have a close
resemblance to business process workflows. In addition to (and not in
contrast with) business workflows, scientific workflows pose new chal-
lenges, such as being computationally intensive and dealing with large
and complex derived data products [25]. Being general, life science
workflows still can be modelled in Kepler. In a recent combination, called
Kepler/pPOD [6] workflows are used for phylogenetic analysis, which be-
longs to the life science domain. In contrast with Taverna, where work-
flows are directed acyclic graphs (DAGs), Kepler supports loops as well.

Triana [44] also intends to be a generic workflow system, employable
in different distributed and GRID environments. It is used in many do-
mains, varying from gravitational wave analysis to galaxy visualisation
to fleet management and biodiversity problems [42]. An important key
aspect is its graphical user interface [12].

In Vistrails [8] too, as the name already suggests, the visualisation is an
important factor. The focus lies on the visualisation of not only the work-
flow but also its data. During the exploration process, scientists can gain
insights by comparing multiple visualisations, which Vistrails tries to fa-
cilitate. Another unique feature of Vistrails is how it deals with workflow
modifications. Before the scientist is able to view and analyse final re-
sults, the workflow probably has undergone numerous changes. These
changes are all stored, since these are considered part of the scientific
process.

Trident [5] is a scientific workflow workbench built on top of the com-
mercial workflow enactment engine Windows Workflow. It has been

2.2 Provenance | 11

mainly applied and demonstrated in the field of oceanography 1. It
uses several technologies developed by Microsoft. Services can be pro-
grammed in .NET, workflows can be connected to other software, such
as Microsoft Word, and Silverlight is used to be able to run Trident on
multiple platforms.

e-BioFlow [52] started as being only a workflow editor rather than en-
actor, able to compose workflows using three different perspectives, the
control flow, data flow and resource perspective. In a multi-disciplinary
environment, an intuitive workflow editor can improve the collaboration
between scientists of different research areas. Having only a graphical
representation of workflows is not very useful, therefore the YAWL [47]
workflow engine was added. YAWL intends to be a complete workflow
language, supporting all control-, data and resource workflow patterns
as specified by van der Aalst et al. [48]. Another advantage of YAWL is
its formal foundation, Petri nets, which enables validation of the work-
flow. Evolving from these perspectives, new ways of designing workflows
are embraced, such as the recent ad-hoc workflow design [50]. During
development, usability has always been and still is a key factor.

2.2 Provenance

As was mentioned in the introduction, provenance means origin or deriva-
tion [21]. Some SWfMS, such as Taverna, Kepler and Trident, capture
provenance information during workflow execution, which is essential
to inspect (intermediate) result data [20] and validate experiment re-
sults [54]. Despite the high interest in provenance it is still an open
research area [9]. Many workshops have been held about the topic, such
as the International Provenance and Annotation Workshops of 2006 and
2008 [16; 27].

Provenance data make experiments reproducible, simplify the discovery
of changes in the underlying data and can be used to pay credit to the
owners of these data and resources [18]. In the life science domain as
in any other scientific research field, the trace fulfills a vital function
in the quality assurance of the scientific output [17]. SWfMS are ideal
environments to automatically capture provenance data. They ‘know’
which resources are accessed, when they are accessed and what data are

1Project NEPTUNE, http://www.neptune.washington.edu/, last visited July 2009

http://www.neptune.washington.edu/

12 | Chapter 2 - Provenance in Scientific Workflows

exchanged between the resources. Therefore, they can manage what is
called a process-oriented provenance model [40; 55].

The idea of capturing provenance during in-silico experiments was intro-
duced by Stevens et al. [41]. They mention four different kinds of prove-
nance that can be collected: process, data, organisational and knowledge
level respectively. PASOA [29] for instance only captures provenance at
the process level. Kepler has workflow provenance support, but its focus
is slightly shifted: it records the provenance of changes in the workflow
specification made by the user himself, in other words, the evolution of a
workflow specification. This idea is also adopted in VisTrails [8]. Hence
Kepler and VisTrails capture provenance at the organisational level. Ac-
cording to Barga and Digiampietri [4] workflow systems lack support for
the collection of provenance at the data level, Stevens et al. [41] beg
to differ and present a counter example: myGRID. myGRID (the engine of
Taverna) captures provenance at all levels, using a combination of dif-
ferent provenance systems, such as PASAO for the process level, and it
uses its own data format to capture and store data at other levels. All
the above mentioned SWfMSs use their own models for capturing and
storing provenance data. Since all systems use their own data formats,
interoperability is a big challenge.

Standardisation improves interoperability. One of the few existing ap-
proaches to standardise on a provenance data model is the Minimal In-
formation About Microarray Experiments (MIAME) [7]. MIAME is specif-
ically designed to capture provenance data of microarray experiments. A
SWfMS requires a more generic provenance model, since it is able to
access a diversity of resources and is not limited to a single type of ex-
periment, such as microarray experiments. The Open Provenance Model
specification [31] is one of the few existing proposals to capture prove-
nance in an interchangeable format, directly addressing the interoper-
ability challenge. It is a generic model that intends to capture prove-
nance data in a technology-agnostic manner. Despite all efforts, the OPM
does not tackle the interoperability challenge completely yet. Identify-
ing equivalent OPM features among workflow runs of different SWfMS
seems intuitive but is often a difficult task [9]. The main idea for the
Open Provenance Model was born at the 1st Provenance Challenge [30],
in which all teams of the systems described above participated.

2.2 Provenance | 13

2.2.1 The Open Provenance Model

IPAW’06 brought forth the idea of the 1st Provenance Challenge [30],
which concluded with a workshop in Washington, DC (September, 2006).
Existing provenance models were investigated and compared. When
provenance data is used as a means for publication, it is important that
an interchangeable format is used. The 2nd Provenance Challenge ad-
dressed interoperability between provenance-aware systems and ended
with a workshop held in California (June 2007), where an agreement
was reached about a core provenance representation amongst the thir-
teen participating groups 2, called the Open Provenance Model, abbre-
viated OPM [28]. The 3rd Provenance Challenge ended with a work-
shop held in Amsterdam (June 2009), during which the OPM specifica-
tion [31] was evaluated, focussing on interoperability.

One of the goals of the 3rd Provenance Challenge was to stimulate the
development and use of concrete bindings and serialisations for the OPM.
Currently schemas for XML and RDF exist 3. A problem of serializing all
provenance data (including all data passed between tasks) in a single
OPM XML file is that it can result in very large files and will end in
scalability problems [40]. How to include data in the value attributes of
an OPM XML serialization is undefined. This is still an interoperability
issue for hte OPM. Sahoo et al. [37] argue for a Semantic Web approach
to the OPM. They present a provenance algebra based on OWL, with a
lot of similarity to the OPM (but without accounts).

The OPM is a generic model, that represents the relation between pro-
cesses (tasks), artifacts (data) and agents (actors, services). Every OPM
is a directed acyclic graph (DAG), even when the underlying captured
workflow contains loops. Therefore, OPM provenance data is also re-
ferred to as an OPM graph. The nodes represent processes, artifacts
or agents. Edges represent causal dependencies, such as USED and WAS-
GENERATEDBY. Views on a particular OPM subgraph are called accounts.
An account can refine another, representing a more detailed view of the
same execution.

DAGs are hard structures to represent: in a DAG two parents can have
the same child, hence a DAG is not a tree. When serializing such data

2Provenance Challenges Wiki, http://twiki.ipaw.info/bin/view/Challenge,
last visited July 2009

3Open Provenance Model website, http://openprovenance.org/, last visited July
2009

http://twiki.ipaw.info/bin/view/Challenge
http://openprovenance.org/

14 | Chapter 2 - Provenance in Scientific Workflows

P

WasTriggeredBy
P2

A
Used()roleI

WasGeneratedBy()roleO
P A

Ag P
WasControlledBy()roleP

P1

A Artifact

P Process

Ag Agent

Account

A1A2
WasDerivedFrom

Figure 2.1: OPM entities and causal dependencies.

to XML for instance, cross links and references have to be made, the
structure cannot be represented using the hierarchy of the XML directly.
A relational database can be used to represent this structure.

OPM structure
Since the Open Provenance Model and its structure plays a major role
throughout this thesis, the model is now explained in detail based on the
OPM specification, version 1.01. [31].

Entities and causal dependencies The OPM consists of three entity
types, Artifacts (data), Processes (tasks) and Agents (actors, services)
respectively. In this thesis, entities are referred either as entities or ele-
ments. Further, five causal dependency types are defined, also referred
to as relations, namely USED, WASCONTROLLEDBY, WASGENERATEDBY, WASTRIG-
GEREDBY and WASDERIVEDFROM. See Figure 2.1 for a visual representation
of the entities and relations. Relations have a cause (its source) and an
effect (its target).

For the USED relation, the cause is a Process and the effect an Artifact. It

2.2 Provenance | 15

states a certain process P has used a certain artifact A.

For the WASCONTROLLEDBY relation, the cause is a Process and the effect an
Agent. It states a certain process P was controlled by a certain Agent Ag.

For the WASGENERATEDBY relation, the cause is an Artifact and the effect is
a Process. It states an artifact A was generated by a certain process P
(the artifact is the result, or output of the process).

For the WASTRIGGEREDBY relation, both cause and effect are processes. It
states that a process P1 was triggered by some other process P2.

For the WASDERIVEDFROM relation, the cause is an Artifact and the effect
is an Artifact. It states that artifact A1 was derived from A2. The OPM
specification defines that the WASDERIVEDFROM can be derived from a com-
bination of a USED and WASGENERATEDBY between two artifacts A1, A2 and
a process P . If A1 is the input and A2 is the output of process P , then
A2 is derived from A1. During the 3rd Provenance Challenge, there was
a long discussion about this relation and whether or not this derivation
always applies. None of the participants use the relation in their prove-
nance implementations.

For the USED, WASGENERATEDBY and WASCONTROLLEDBY relations a Role is
defined. Roles capture additional information about a relation, in Figure
2.1, the roles Irole, Orole and Prole are used for these relations respec-
tively. Irole captures information about the context in which the artifact
was used. By a similar argument, Orole captures information about the
context in which the artifact was generated. Prole captures information
about the context in which an agent controlled a process.

Account views Relations and entities can belong to Accounts or Ac-
count views. Accounts are used to specify views towards the provenance
data, at different levels of granularity for example. The granularity of
a provenance graph, is determined during its recording stage. Suppose
a computer performs some math calculation, say addition of two num-
bers, and provenance data is collected. At a very fine-grained level, all
CPU steps, memory addresses and values are recorded. At a very coarse-
grained level, only the calculation itself is recorded as a single process,
with the two input numbers and the result.

If entities belong to multiple accounts, these accounts overlap, which
is specified in the Overlap relation. The Overlap relation is a relation
between two accounts. If one account is captured at a more fine-grained
level than another, this can be specified in the Refinement relation.

16 | Chapter 2 - Provenance in Scientific Workflows

2.2.2 Provenance archive as cache

Besides using provenance in the traditional way, the provenance archive
can also be used as cache, as described by Altintas et al. [1] as a proposal
to be implemented in Kepler. They have called this idea smart re-runs.
In their approach, parts of the workflow that remain unchanged (when
for example a simple parameter is updated) in future executions, are re-
placed by a StreamActor. This StreamActor fetches the necessary data
from the provenance archive. This idea was the result of work previously
done, collecting the provenance of the evolution of workflow specifica-
tions. In the GRID domain, decentralised caching schemes have been
proposed where GRID jobs are represented as workflows [43].

Most caching schemes extend service invocation protocols directly, such
as the SOAP extension by Seltzsam et al. [38]. The Taverna Webservice
Data Proxy is developed to keep large data sets out of the Taverna en-
gine 4. However, it can also be used to store intermediate results to serve
as a cache in order to speed up the re-execution of workflows. Caching
is also useful in case a workflow crashes. Wassink et al. [51] have imple-
mented a workflow to analyse large data sets related to microarray data.
They have added additional tasks to support a restore and run option in
case the workflow environment crashes. If a SWfMS can use its prove-
nance archive as cache for workflow tasks then restore and run is directly
supported.

4Taverna Webservice Data Proxy, last visited July 2009, http://www.cs.man.ac.
uk/~sowen/data-proxy/guide.html

http://www.cs.man.ac.uk/~sowen/data-proxy/guide.html
http://www.cs.man.ac.uk/~sowen/data-proxy/guide.html

Models are to be used, not believed.

Henri Theil, 1924 - 2000

Chapter 3

Improvements to e-BioFlow

3.1 Motivation for the use of e-BioFlow

One of the main goals of this research and a requirement to reach both
research goals is to collect provenance data during the execution of a
large-scale data-intensive workflow. An excellent case study was found
in the life science domain: OligoRAP. For a more elaborate description of
OligoRAP, see §3.3.

In order to collect provenance data for OligoRAP, which was originally
written in Perl, OligoRAP had to be casted as a workflow, which requires
a workflow system. Although Taverna is the most prominent tool for
designing and running workflows in the life science domain, the work-
flow tool chosen to implement OligoRAP is e-BioFlow. This choice was
motivated by the following reasons. Neither e-BioFlow nor Taverna had
provenance support at the time, so this had to be implemented in ei-
ther workflow system. A great plus for e-BioFlow is its workflow engine
YAWL [47], that supports amongst others loops and conditional OR-split
and joins. It was anticipated that loops and conditions are needed for the
polling of asynchronous webservices, which Taverna does not support.
A plus for Taverna on the other hand is its support for BioMOBY ser-
vices [22], the protocol used in OligoRAP to invoke webservices, which
e-BioFlow did not support. A drawback of both systems is the use of
main memory for storage of (intermediate) results, which was destined
to become a problem for the large amounts of XML data generated by
OligoRAP.

To summarise, both tools needed many improvements in order to run

20 | Chapter 3 - Improvements to e-BioFlow

OligoRAP and collect provenance data. Adding the support of loops to
Taverna means changing its engine, which requires an extensive knowl-
edge of its architecture. Features in Taverna 1 have been developed by
many parties in parallel, which did not benefit the design of its architec-
ture. A complete redesign was needed and is currently ongoing work for
Taverna 2. e-BioFlow on the other hand has a clearly documented archi-
tecture [49]. In addition, the engine core does not need any adaptations
to support loops and conditions. A BioMOBY java framework already ex-
ists (JMoby 1) that can be integrated in e-BioFlow with little effort. This
made e-BioFlow the primary choice.

Some of the requirements needed to cast and run OligoRAP have been
mentioned above, such as BioMOBY support and loops. A complete
overview of the functionality needed to cast and run OligoRAP is listed in
Table 3.1. The table indicates which functionality was already present in
e-BioFlow, before and after casting OligoRAP as a workflow, presenting
a clear overview of the implemented improvements.

First an overview is given of the minor implementation details, before
continuing with the provenance implementation and details about Oli-
goRAP.

3.2 Improvement implementation details

BioMOBY. JMoby is a Java BioMOBY framework supporting all features
provided by BioMOBY registries, such as the invocation of Moby services
and the construction of Moby data containers for the input and output of
these services without the need to serialize XML. The ontology provided
by a Moby service is used to create actors for each service available,
amongst which the services needed by OligoRAP.

Moby services distinguish between primary and secondary inputs. Sec-
ondary inputs are parameters. A bug was found in the JMoby implemen-
tation: all secondary parameters are added with default values if not
specified. This conflicts with some of the services used in OligoRAP: not
all parameters in the BLAT service for instance can be combined. The bug
was fixed in JMoby, only the specified secondary parameters are submit-
ted.

1JMoby Project Website: http://BioMOBY.open-bio.org/CVS_CONTENT/
moby-live/Java/docs/, last visited September 2009

http://BioMOBY.open-bio.org/CVS_CONTENT/moby-live/Java/docs/
http://BioMOBY.open-bio.org/CVS_CONTENT/moby-live/Java/docs/

3.2 Improvement implementation details | 21

Improvement Before After

Design workflows in different perspectives X X
Hierarchical workflow support X X
Workflow Engine (YAWL) X X
Scripting actor X X
Visualise executing tasks in engine view X X
Dependency checking using port values X X
Late binding X X
Loops X X
BioMOBY actor X
BioMOBY data composers and splitters X
Collection support X
Pass data by reference X
Database item manager X
BioMOBY actor X
GZIP actor X
Base64 actor X
User actor X
Workflow event: link followed X
Interleaved parallel routing X
Run workflows without GUI X
Data viewer supporting XML and SVG X

Table 3.1: List of functionality provided by e-BioFlow before and after
casting OligoRAP as a workflow

22 | Chapter 3 - Improvements to e-BioFlow

Collection support. BioMOBY supports collections as input and output
of services, which was required by the use case services as well. The
Perl actor and BioMOBY actor were adapted to enable the correct use of
collections.

Database item manager. The architecture of e-BioFlow provides an item
manager that stores all items in memory. A reference of a data item is
passed to the YAWL engine, instead of the complete data value. This
approach made it possible to implement a database item manager, that
stores the data values in a database and provides a database item refer-
ence consisting of only an id with which the data value can be found.

The passing of data items as reference and storing values in the database
partly solves the memory problem mentioned earlier: now only data
items that are being processed (for example when checking data items or
when passed to a service) are kept in memory. This approach no longer
limits workflow execution to main memory size limits but raises the limit
to disk storage space.

Actors. The OligoRAP client uses GZIP and Base64 encoding to transfer
SVG images. These data transformations are implemented as two (lo-
cal) actors in e-BioFlow, using the native GZIP and Base64 functionality
provided by the Java API.

Another actor has been devised, mainly used for testing purposes: a User
actor. This user actor shows an input screen consisting of all inputs the
workflow task receives. The task outputs can be edited by the user, if the
task has any. If the task only has inputs, it can be used to visualise data
during workflow execution. Further, it can serve as a means for simple
synchronisation: it waits for the user to continue.

Workflow event: link followed. When a workflow task is started, it
is initiated by one or more previous tasks, unless it is the start task of
the main workflow. YAWL throws events when a task starts and when
a task finishes, but it is hard if not impossible to tell which process in-
voked which other process, especially when many processes are running
in parallel.

YAWL is based on Petri nets [46]. Using Petri net terminology, the link
follow event can be seen as the event of a transition that fires: the transi-
tion consumes a token from place A and places a new token at place B. In
the YAWL source, tokens were extended with metadata: the identifier of
their previous place. The YAWL engine was extended at the point where
a token is removed from one place and a new one added to another. A

3.3 Proof-of-principle case: OligoRAP | 23

new event is thrown in that case. Tasks are modelled as places in YAWL,
thus the event can easily be translated to the workflow event of a link
followed from task A to B.

Interleaved parallel routing. The workflow pattern ‘interleaved parallel
routing’ , pattern 17 as specified by van der Aalst [48], was required
for the use case. This pattern states that the order in which a set of
tasks is executed is of no importance, but none of the tasks in the set are
allowed to be executed at the same time. YAWL does not directly support
this pattern, but it can be implemented in e-BioFlow without changing
the YAWL engine, by allowing only a maximum number of instances per
actor. If this maximum number of instances is set to one, none of the
tasks performed by the actor are executed at the same time.

Data viewer. A data viewer component has been implemented that is
able to visualise data items in e-BioFlow. Currently supported visualisa-
tions are normal string, XML data and SVG, JPG and PNG images. The
viewer can easily be extended to support more. This component is used
in the user actor.

3.3 Proof-of-principle case: OligoRAP

OligoRAP [32] is short for ‘Oligo Re-Annotation Pipeline’. An essen-
tial component of genome-wide microarray-based gene-expression ex-
periments is a high-quality oligonucleotide probe library. In order to
maintain this quality, probes have to be updated when new sequence or
annotation data is released. An OligoRAP client orchestrates BioMOBY
web services to automatically update the annotation for oligonucleotide
probes and also check their target specificity.

A widely used service by life scientist is BLAST [3], an RNA/DNA align-
ment tool that matches particular sequences against genomes present in
a database and retrieves matching scores. The BLAST algorithm itself has
evolved over the years, and several variants currently exist, improved
BLAST algorithms, but also variants such as BLAT [23], which can be
considered as ‘BLAST on steroids’, with the drawback that results are not
always found. Several genome databases have been created, such as En-
sembl [15] and Entrez Gene [26]. Both provide tools in the form of web
services to query and BLAST against the databases.

The OligoRAP pipeline integrates amongst others the alignment tools like

24 | Chapter 3 - Improvements to e-BioFlow

BLAST and BLAT and genome annotations provided by the Entrez Gene
and Ensembl project. The result of an OligoRAP run consists of XML
files that provide detailed information per oligonucleotide and a quality
assessment of the whole array. OligoRAP is a modular and distributed
system originally written in Perl. The oligos are processed in chunks
containing a configurable maximum number of sequences. A run of the
Perl client for a microarray of the mouse (Mus Musculus) consisting of
20K+ oligos takes about 6 hours. For more elaborate details of running
OligoRAP using the Perl client see §3.6.

The OligoRAP pipeline consists of eight major BioMOBY services, which
can be categorised in six primary steps, see Table 3.2. All invocations of
the same service are considered a primary step of the OligoRAP pipeline.
The BLAST and concatenate services are secondary, since they depend on
the result of the BLAT service and are not always performed.

The Perl client performs all primary steps sequentially. Parallelism is used
only for the asynchronous jobs, but the client waits for all asynchronous
jobs to be completed before initiating the following primary step. For
example, all Oligo Annotation jobs are submitted simultaneously, but the
merge step (4) does not start before the last annotation job is finished.
The same holds for the BLAST jobs. The first concatenate task starts not
before all BLAST jobs are finished. The last asynchronous task, the Oligo
Quality analyses, is just a single task, that processes all merged results
at once. Since the pie charts can only be generated once the quality is
known, they can only by performed when the analysis is completed.

3.3.1 Motivation

OligoRAP makes an ideal proof-of-principle case for e-BioFlow. By spec-
ifying OligoRAP in e-BioFlow not only OligoRAP will be better maintain-
able and more easily customised, but it also enables end-users to better
understand the pipeline without studying the Perl code and to share their
results. The OligoRAP workflow can be shared, for example through the
social sharing medium myExperiment [19].

The amount of data generated during a single OligoRAP run can be enor-
mous. In the case of an OligoRAP run of the mouse, the amount of data
of all intermediate and final results is about 3 gigabyte. Analysing data
produced during a single OligoRAP run and relaterelating intermediate
results is therefore a hard task. This makes it an ideal use case to measure
the performance of the provenance archive. Furthermore, the overhead

3.3 Proof-of-principle case: OligoRAP | 25

Service Description Async

1. Tab2Multi-
Sequence-
FastaChunks

Convert a comma separated tab file of se-
quences to chunks of size N , where N is
the maximum number of sequences per
chunk. This results in an XML file of all
chunks. Steps 2 - 4 are performed per
chunk.

2a. BLAT BLAT all sequences of a chunk against
the transcriptome (UMT) and genome
databases.

2b. BLAST If no results were found using BLAT, a
BLAST is performed for the particular se-
quences (only the sequences unmatched
using BLAT are BLASTed, not the whole
chunk.)

X

2c. ConcatenateFile Concatenate the results of BLAT and
BLAST (if a BLAST was performed).

3. Annotation-
Analyser

Analyse the annotations of the previous
results for the BLAT/BLAST results of both
Genome and UMT.

X

4. OligoMergeXML Merge the Genome and UMT results of the
AnnotationAnalyser.

5. OligoQuality-
Analyser

Perform a quality analyses over all merged
OligoMergeXML results.

X

6. MakePieChart The results of the QualityAnalyser can be
visualised using a pie chart service.

Table 3.2: The BioMOBY services used by OligoRAP, categorised in six
primary steps.

26 | Chapter 3 - Improvements to e-BioFlow

of provenance information versus intermediate and final results can be
measured.

3.3.2 Casting OligoRAP as a Workflow in e-BioFlow

OligoRAP has been casted as a workflow in e-BioFlow. One of the main
advantages of designing a workflow graphically instead of programming
in Perl for example, is the intuitive way of modelling parallelism of tasks.
Instead of dividing the pipeline in six major steps and perform them se-
quentially, which is a logical way of programming because it makes the
code easier to read, the workflow specification does not wait for each
step to complete. Instead, all chunks are processed in parallel, and tasks
are started at the moment all their necessary input is known. Thus, once
a BLAST is finished, the concatenate service directly starts processing the
BLAT and BLAST results. Once the BLAT/BLASTS results are known of
both the Genome and UMT, the OligoMerge service starts, and once that
service is finished for the particular chunk, the OligoAnnotationAnalyser
is invoked. Thus, the OligoAnnotationAnalyser task for chunk A can al-
ready be finished, while the BLAT service for chunk B has not even started
yet.

By using this more efficient way of parallelism, OligoRAP is already opti-
mised: the runtime was cut in half. Unfortunately the servers accessed by
OligoRAP cannot handle the load of executing the synchronous services
all at once, therefore the workflow pattern ‘interleaved parallel routing’
(one of the improvements of e-BioFlow) was used, pattern 17 as speci-
fied by van der Aalst [48]. This pattern states that the order in which
a set of tasks is executed is of no importance, but none of the tasks in
the set are allowed to be executed at the same time. This resulted in
some tasks, such as the synchronous BLAT task, still being executed ‘in
sequence’ because no two BLAT jobs are allowed to be executed at the
same time.

The asynchronous jobs are performed on a GRID. A GRID manager sched-
ules the jobs based on server load, resulting in a maximum of 20 jobs
being performed at the same time. Hence, submitting all jobs together
should not give any problems. Unfortunately, this was not the case. A
bug was found in the Oligo Annotation Analyse service, jobs were not
scheduled properly and too many were executed at the same time. Since
the number of connections to the database is limited, at some point the
maximum was reached and the OligoAnnotation service returned a con-

3.4 Provenance implementation | 27

nection error. .

Designing a workflow that processes all chunks in parallel turned out to
be also quite a challenge. This can be achieved by using the ‘Multiple
Instances’ pattern, pattern 14 as specified by van der Aalst [48], which
states that several instances of a task can run concurrently, but have to
be synchronised in the end. Although it is true that the YAWL language
provides this pattern, the (bèta) YAWL engine implementation does not
support it. To overcome this problem, an exotic workflow pattern was
used, that has, to our knowledge, never been mentioned before: multi-
ple instances by means of recursive workflow invocation. The pattern is
presented in Figure 3.1.

Usually iteration is more efficient than tail recursion in terms of stack
space and performance. This is also true for the workflow pattern pre-
sented here: Each subworkflow is started in its own thread, and extra
tasks have to be executed to split and combine the results. The advan-
tage of this pattern is that all chunks can be processed in parallel, which
is not possible using iteration. The time saved by processing all chunks
in parallel is, in the case of OligoRAP, greater than the overhead that is
the result of the extra tasks that are being invoked, therefore the overall
performance of the workflow increases in terms of speed.

Some OligoRAP implementation workflow facts The OligoRAP work-
flow contains fifteen subworkflows (plus one for the main) and a total of
149 tasks, 9 tasks on average per subworkflow. 35 tasks are composite
tasks representing one of the fifteen subworkflows. A single subworkflow
was used for all configuration parameters, providing a single location
where all parameters can be specified. See Figure 3.2 for a screenshot of
the Oligo Quality Analyser subworkflow in e-BioFlow.

3.4 Provenance implementation

In order to collect provenance data during workflow execution, a suit-
able provenance model had to be either designed or selected. In §2.2.1
the history of the OPM was described, being the result of several (still
ongoing) challenges and combined ideas of existing provenance-aware
workflow systems. OPM intends to be interoperable. Translated to sci-
entific experiments, this means that scientists can read and understand

28 | Chapter 3 - Improvements to e-BioFlow

Start

chunks processed
results

EndRest chunks
chunks

Remove chunk

top chunk

Process Chunk
chunk url

Loop (invoke self)
chunks results

Result list
URLs

Add result to list

URL

Empty list

emptylist

top chunk=null

top chunk!=null

chunk:XML

chu
nks

:XM
L

chunks:XML
em
ptylist:[URL]results:[URL]

resu
lt:U

RL

results:[URL]

OR-split OR-join

Figure 3.1: Exotic workflow pattern used for the parallel processing
of all chunks. The pattern works in a similar way as tail
recursion. The input of the workflow consists of all the
chunks containing oligos. The ‘remove chunk’ task splits
the chunks, into the head chunk (the first chunk) and the
tail (all remainder chunks). The head and tail are the out-
put of this task. If the tail is empty, the Emptylist task is ex-
ecuted next, otherwise the loop task is executed. The loop
task is a special case of a composite task, which decom-
poses into the same subworkflow as the one currently run-
ning. The input of the loop task are the remainder chunks,
its output a list of the results of all processed remainder
chunks. In parallel with the loop task, the composite task
‘process’ is executed, which processes only the head (note
the OR-split, only two of the three outgoing dependencies
are enabled after each task invocation). The result of the
process task is an URL, identifying where the processed re-
sults can be downloaded. The results of the process task
and the results of the composite task ‘loop’ are combined
in the task ‘Add result to list’, which combines the result of
the processed top chunk with the results of the processed
remaining chunks (note the OR-join, which synchronises
on the previous OR-split). Thus, the result of an instance
of this workflow is a list of all the URLs of all input chunks.
The first invocation of this workflow can be called from
another (sub)workflow.

3.4 Provenance implementation | 29

Figure 3.2: OligoRAP in e-BioFlow. In the left navigation panel all sub-
workflows are specified. The currently selected subwork-
flow is the Oligo Quality Analyser. It consists of several
tasks for submitting, polling (which occurs in the loop) and
retrieving the result of the asynchronous job.

each others’ lab journals. In workflow context, it means workflow sys-
tems are able to exchange their workflow runs, even among different
systems. Being designed for interoperability, the OPM is a very generic
model.

Because of these reasons the OPM is a very suitable candidate. Unfortu-
nately, no libraries or other direct OPM implementations exist. Therefore,
e-BioFlow is improved with a new direct implementation of the OPM.
This implementation can be easily adopted by other provenance aware
systems, or other SWfMS. An advantage of a direct OPM implementation
is that provenance data can be exported, serialized to XML or RDF for
instance, without the need to translate from a different internal storage
model to the OPM.

3.4.1 Requirements for provenance implementations

Groth [21] points out four non-functional requirements for provenance
implementations in his PhD thesis. These are scalability, client indepen-
dence, ease of installation and feature integration. The implementation

30 | Chapter 3 - Improvements to e-BioFlow

proposed here, based on a PostgreSQL database, meets all of these re-
quirements. Sahoo et al. [37] have taken a similar approach, using a
relational database back-end as well. The most important requirement
is a functional requirement: the archive should be optimised for efficient
provenance queries. A relational database implementation in PostgreSQL
provides a query language for the OPM, expressed in SQL. The SQL
standard defines recursive queries since its fourth dialect, ISO SQL:1999
[14]. In the sixth and latest standard, ISO SQL:2008, recursive queries
are referred to as Common Table Queries (CTE). CTE is supported in
Postgres since the latest release of July 2009, version 8.4. Recursive
queries can be used to query complete derivation trails, an example of
this is given in §5.1.3.

3.4.2 Database Design

From the OPM specification, version 1.01. [31], an Entity Relationship
Diagram (ERD) was derived, which is presented in Figure 3.3. Recall
§2.2.1 for an explanation of the structure of the OPM itself.

The ERD is based on the Timeless Formal Model of the OPM specifica-
tion. As a result of the 3rd Provenance Challenge workshop, the OPM
specification is currently reviewed and one of the change proposals is to
remove time from the OPM specification. Instead it is suggested to put
the time formalism in a profile 2, such as the one presented in §3.5. The
proposed time model in the OPM specification is indeed rather complex.
In this implementation a started and finished timestamp is added only
to processes.

Inheritance is used for the entities ELEMENT and RELATION. ELEMENT is the
supertable of ARTIFACT, AGENT and PROCESS and RELATION has subtables
USED, WASCONTROLLEDBY, WASTRIGGEREDBY and WASGENERATEDBY. The use
of inheritance allows generic queries over all elements and relations, as
well as specific queries over only a certain type of elements or relations.

For each OPM relation, foreign keys are specified for the columns cause
and effect. In the supertable ELEMENT both foreign keys reference the id
in the supertable ELEMENT. In the subtables, specific references to the cor-
responding subtables are made. For example, the foreign key constraint
for the column cause of the USED table states it references the id of table

2OPM Wiki - Change proposals. Last visited September 2009. http://twiki.ipaw.
info/bin/view/OPM/ChangeProposalMoveTimeToProfile

http://twiki.ipaw.info/bin/view/OPM/ChangeProposalMoveTimeToProfile
http://twiki.ipaw.info/bin/view/OPM/ChangeProposalMoveTimeToProfile

3.5 Provenance Recording: an OPM-profile | 31

Relation

PK id
FK1
FK2

cause
effect
runid

Element

PK id
value
runid

Used

FK1
FK2

cause
effect
role

WasControlledBy

FK1
FK2

cause
effect
role

WasTriggeredBy

FK1
FK2

cause
effect
role

WasGeneratedBy

FK1
FK2

cause
effect
role

Process

PK id
started
finished

Agent

PK id

Artifact

PK id

FK data_id

Account

PK id
name
runid

Overlap

PK,FK1
PK,FK2

parent
child

Refinement

PK,FK1
PK,FK2

generic
detailed

element_account

PK,FK1
PK,FK2

account_id
element_id

relation_account

PK,FK1
PK,FK2

account_id
relation_id

Data

PK id
shortitemvalue
itemvalue

Foreign key

Inheritance
Relation

PK id
FK1
FK2

cause
effect
runid

Element

PK id
value
runid

Used

FK1
FK2

cause
effect
role

WasControlledBy

FK1
FK2

cause
effect
role

WasTriggeredBy

FK1
FK2

cause
effect
role

WasGeneratedBy

FK1
FK2

cause
effect
role

Process

PK id
started
finished

Agent

PK id

Artifact

PK id

FK data_id

Account

PK id
name
runid

Overlap

PK,FK1
PK,FK2

parent
child

Refinement

PK,FK1
PK,FK2

generic
detailed

element_account

PK,FK1
PK,FK2

account_id
element_id

relation_account

PK,FK1
PK,FK2

account_id
relation_id

Data

PK id
shortitemvalue
itemvalue

Foreign key

Inheritance

Figure 3.3: Database diagram (Entity Relationship Diagram) of the
Open Provenance Model.

PROCESS. By similar argument, the effect column references an id of table
ARTIFACT.

The ERD in its turn is used to devise a database schema for PostgreSQL.
The schema can be found in Table 3.3. The first table, T0, already ex-
isted in e-BioFlow for storing input/output data in a database, instead of
keeping this data in memory during workflow execution (see §3.2).

3.5 Provenance Recording: an OPM-profile

The OPM has some limitations because of its generality. Although it is
intuitive to map a workflow run to the OPM, such a mapping is not part of
the OPM specification, since the OPM intends to be technology-agnostic.
It is ambiguous what is actually being captured in the model, how to
capture provenance data during workflow execution. To disambiguate,
an OPM profile needs to be defined, that makes the mapping between an
application and the OPM explicit.

Kwasnikowska and van den Bussche have proposed an OPM profile for
the NRC Dataflow Model [24]. This profile is a formal specification,

32 | Chapter 3 - Improvements to e-BioFlow

Table 3.3: OPM Database table specification

T0 DATA(ID int, VALUE)

T1 ELEMENT(ID int sequence (ELEMENT_SEQ) not null,
VALUE varchar(255),
RUNID int not null,
primary key (ID))

T2 RELATION(ID int sequence (RELATION_SEQ) not null,
RUNID int not null,
CAUSE int references ELEMENT(ID) not null,
EFFECT int references ELEMENT(ID) not null,
primary key (ID))

T3 PROCESS(STARTED timestamp, FINISHED timestamp) inherits ELEMENT

T4 AGENT() inherits ELEMENT

T5 ARTIFACT(DATA_ID int references DATA(ID) not null) inherits ELEMENT

T6 WASTRIGGEREDBY(
CAUSE int references PROCESS(ID),
EFFECT int references PROCESS(ID)

) inherits RELATION

T7 USED(ROLE varchar(255) not null,
CAUSE int references PROCESS(ID),
EFFECT int references ARTIFACT(ID)

) inherits RELATION

T8 WASGENERATEDBY(ROLE varchar(255) not null,
CAUSE int references ARTIFACT(ID),
EFFECT int references PROCESS(ID)

) inherits RELATION

T9 WASCONTROLLEDBY(ROLE varchar(255) not null,
CAUSE int references ARTIFACT(ID),
EFFECT int references PROCESS(ID)

) inherits RELATION

T10 ACCOUNT(ID serial, VALUE varchar(255), RUNID int, primary key (ID))
T11 OVERLAP(PARENT int references ACCOUNT(ID),

CHILD int references ACCOUNT(ID), primary key (PARENT,CHILD))
T12 REFINES(DETAILED int references ACCOUNT(ID),

GENERIC int references ACCOUNT(ID), primary key

(GENERIC,DETAILED))
T13 ELEMENT_ACCOUNT(

ELEMENT_ID int references ELEMENT(ID)
ACCOUNT_ID int references ACCOUNT(ID),
primary key (ELEMENT,ACCOUNT))

T14 RELATION_ACCOUNT(
RELATION_ID int references RELATION(ID)
ACCOUNT_ID int references ACCOUNT(ID),
primary key (RELATION,ACCOUNT))

3.5 Provenance Recording: an OPM-profile | 33

based on the older v1.0 specification of the OPM (where the REFINES re-
lationship was not yet defined). An implementation for this formal map-
ping still needs to be designed.

Therefore, an OPM profile is proposed here that makes the mapping ex-
plicit between the OPM and workflows executed by any hierarchal work-
flow system. This OPM-profile is implemented in e-BioFlow.

Table 3.4 presents and explains the OPM-profile. The left, middle and
right column specify the workflow events that occur, the OPM entities
that are created during the event and the workflow values that are as-
signed to these entities, respectively. The profile maps workflow tasks
to processes, actors (services) to agents and data to artifacts. In the
event of a task being executed, a USED relation is created for each input
port, between the process and artifact corresponding to the task and data
item. The role of the USED relation is given the name of the input port.
Likewise WASGENERATEDBY relations are created in the event of a finished
task, for each output port. In the event of a control flow link being fol-
lowed between two tasks, a WASTRIGGEREDBY relation is created between
the corresponding processes. For each service that executes a certain
task, a WASCONTROLLEDBY relation is created between the corresponding
agent and process. The role of the task is assigned to the role of the
WASCONTROLLEDBY relation.

Accounts are used to capture different levels of execution detail. For each
composite task, two accounts are being created, a coarse grained and a
fine grained account. The first one, containing the composite task itself,
has low detail and contains the process corresponding to the composite
task and all related artifacts. The second provides more detail: it contains
all the processes corresponding to tasks executed by the subworkflow, but
it does not contain the composite task itself. Between these two accounts,
a refinement relation is specified. The two created accounts overlap the
account belonging to the (sub)workflow the composite task was executed
by, which can be seen as the parent account of the two newly created
accounts. This parent/child relationship between accounts is captured
in the overlap relation. This relationship represents a tree of accounts,
which is further referred to as the Refinement Tree (RT).

The OPM-profile is successfully employed in e-BioFlow. Provenance data
is captured automatically during workflow execution and stored in a
PostgreSQL database.

34 | Chapter 3 - Improvements to e-BioFlow

Table 3.4: The OPM-profile. Mapping OPM entities during workflow
execution in e-BioFlow.

Workflow Event Actions Value assignments

Main workflow
Wmain started

Instantiate OPM graph
Create ACCOUNT Ac1 for workflow
Wmain

Task T part of
(sub)workflow W

started

Create PROCESS P for task T
Record start time for process P
Create AGENT Ag
Create WASCONTROLLEDBY(R,Ag,P)
Wcb
Create ARTIFACT Ai

Create USED(Ri,P ,Ai) Ui for each in-
put port i
Fetch account Ac1 for workflow W
Add all P , Ai, Ui and Wcb to Ac1
In case T is a composite task:
Create ACCOUNT Ac2 for task T
Add all P , Ai, Ui and Wcb to Ac2
Create OVERLAPS (Ac1, Ac2)

P = Task name
Ag = Agent name
R = Role name
Ai = Input data
Ri = Name of in-

put port i

Subworkflow Wsub

started by
composite task T ,

T part of
(sub)workflow

Wparent

Create ACCOUNT Ac1 for workflow
Wsub

Fetch ACCOUNT Ac2 of task T
Create REFINES (Ac1, Ac2)
Fetch ACCOUNT Ac3 for workflow
Wparent

Create OVERLAPS (Ac1, Ac3)
Task T part of

(sub)workflow W
completed

Fetch PROCESS P for task T
Fetch ACCOUNT Ac1 for workflow W
Record finish time for process P
Create ARTIFACT Ai

Create WASGENERATEDBY(Ri,P ,Ai)
Wgbi for each output port i
Add all Ai, Wgbi to Ac1
In case T is a composite task:
Fetch ACCOUNT Ac2 of task T
Add all Ai and Wgbi to Ac2

Ai = Output data
Ri = Name of out-

put port i

Link followed from
task T1 part of

(sub)workflow W1

to task T2 part of
(sub)workflow W2

Fetch processes P1, P2 for tasks T1,T2

Fetch ACCOUNT Ac1 for workflow W1

Fetch ACCOUNT Ac2 for workflow W2

Create WASTRIGGEREDBY(P1,P2) Wtb
Add Wtb to Ac1 and Ac2

3.5 Provenance Recording: an OPM-profile | 35

jobid:int

jobid:int

probes:string results:string

status =
”finished”

status!=”finished”

Select probes BLAST

status

jobid
jobidjobid jobid

probes sequences results

sequences

Submit BLAST

value

results

View

Poll BLAST job
Fetch job Result

jobid:int

BLAST Subworkflow

Composite task

`BLAST submit’ role
`BLAST poll’ role

`BLAST retrieve’ role

Figure 3.4: Workflow specification performing an asynchronous BLAST
job on selected probes. The BLAST task is a composite task,
the subworkflow it executes is presented below. Input and
output ports are labeled italic. Predicates specifying which
control flow links are enabled are italic too and positioned
above the corresponding edge.

WGB(probes)

W
GB(jobid)

W
G

B(status)

Us
ed

(jo
bi

d)

wasTriggeredBy

W
G

B
(r

es
ul

t)

Us
ed

(jo
bi

d)

wasTriggeredBy

W
G

B(status)

W
GB(jobid)

w
asTriggeredBy

U
sed(sequ..)

W
GB(jobid) Us

ed
(jo

bi
d)

wasTriggeredBy

wasTriggeredBy

Used(sequences)

wasTriggeredBy

Us
ed

(v
alu

e)WGB(results)

w
as

Tr
ig

ge
re

dB
y

Select
Probes BLAST View

Submit
BLAST

Poll
BLAST

job

Poll
BLAST

job

Fetch
job

Result

ATCG
TCGAC

TTA
Result

300 300 300

Running Finished

Bio
MOBY
http://

Root account
Account of composite task BLAST

Refined account of composite task BLAST

W
C
B
(B

LA
S
T

su
bm

it
)

Bio
MOBY
http://

W
C
B
(B

LA
S
T

po
ll)

Bio
MOBY
http://

W
C
B
(B

LA
S
T

po
ll)

Bio
MOBY
http://

W
C
B
(B

LA
S
T

re
tr

ie
ve

)

Figure 3.5: OPM graph of the execution of the workflow presented in
Figure 3.4 captured using the OPM-profile. Three accounts
were generated, the root account and two for the compos-
ite task. The rectangle indicating the account correspond-
ing to the subworkflow of the composite task is dashed.
Note these accounts overlap: they both contain the arti-
facts used and generated by the composite task. The root
account is the parent of the other two accounts in the RT.

36 | Chapter 3 - Improvements to e-BioFlow

Example Figure 3.4 presents a screenshot of a workflow that executes
an asynchronous BLAST job. The first task selects probes from an oligo
library. The second task, BLAST, is a composite task that BLASTs all
probes. The results are visualised in the third task. The subworkflow
that corresponds to the composite task submits the BLAST job to the
grid, polls until the job is finished and retrieves the results. The prove-
nance graph generated during execution of this workflow is presented in
Figure 3.5. To illustrate how the profile should be used, the first eight
workflow events of the execution of this workflow are given that lead to
the creation of the first three tasks of this provenance graph and their
dependencies and accounts:

1. Main workflow is started.
Create ACCOUNT(‘Main’) AcMain.

2. Task ‘Select probes’ started, part of workflow ‘Main’.
Create PROCESS(‘Select probes’) P .
Record start time for process P .
Create AGENT(‘Perl actor’) Ag.
Create WASCONTROLLEDBY(‘Script role’,P,Ag) Wcb.
Fetch account Acmain for workflow ‘Main’.
Add P , Ag, Wcb to Acmain.

3. Task ‘Select probes’ part of workflow ‘Main’ completed.
Fetch process P for task ‘Select probes’.
Fetch account AcMain for workflow ‘Main’.
Record finish time for process P .
Create ARTIFACT(’ACTGCAGA’) A1 for datavalue of outputport 1.
Create WASGENERATEDBY(‘Probes’,P ,A1) Wgb1 for output 1.
Add A1, Wgb1 to Acmain.

4. Composite task ‘BLAST’, part of workflow ‘Main’ is started.
Create PROCESS(‘BLAST’) P .
Record start time for process P .
Create AGENT(‘Workflow engine’) Ag.
Create WASCONTROLLEDBY(‘Composite task’,P ,Ag) Wcb.
Fetch artifact A1 for inputport 1.
Create USED(‘sequences’,P ,A1) U1 for input port 1.
Fetch account AcMain for workflow ‘Main’.
Add P , Ag, Wcb to Acmain.
Create ACCOUNT(‘BLAST generic’) Acgeneric for task P .
Add P , A1, U1 and Wcb to Acgeneric.
Create OVERLAPAcMain, Acgeneric.

5. Link followed from task ‘Select probes’ part of (sub)workflow ‘Main’ to task ’BLAST’
part of workflow ‘Main’.
Fetch process ‘Select probes’ Peffect.
Fetch process ‘BLAST’ Psource.
Fetch account Acmain for workflow ‘Main’. (Both workflows are the same.)
Create WASTRIGGEREDBY(Peffect,Psource) Wtb1.
Add Wtb1 to Acmain.

3.6 Running OligoRAP: results | 37

6. Subworkflow ‘BLAST subworkflow’ started by composite task P , P part of workflow
‘Main’.
Create ACCOUNT(‘BLAST detailed’) Acdetailed for workflow ‘BLAST subworkflow’.
Fetch account Acgeneric of task P .
Create REFINES(Acgeneric,Acdetailed).
Fetch account Acmain for workflow ‘Main’.
Create OVERLAP(Acmain, Acdetailed)

7. Task ‘Submit BLAST’ started, part of subworkflow ‘BLAST subworkflow’.
Create PROCESS(‘Submit BLAST’) P .
Record start time for process P .
Create AGENT(‘BioMOBY BLAST service’) Ag.
Create WASCONTROLLEDBY(‘BLAST’,P,Ag) Wcb.
Fetch artifact A1 for inputport 1.
Create USED(‘sequences’,P ,A1) U1 for input port 1.
Fetch account Acdetailed for workflow ‘BLAST subworkflow’.
Add P , Ag, U1 Wcb to Acdetailed.

8. Link followed from task ‘Select probes’ part of (sub)workflow ‘Main’ to task ’Submit
BLAST’ part of subworkflow ‘BLAST subworkflow’.
Fetch process ‘Select probes’ Peffect.
Fetch process ‘BLAST’ Psource. Fetch Account Acmain for workflow ‘Main’.
Fetch Account Acdetailed for subworkflow ‘BLAST subworkflow’.
Create WASTRIGGEREDBY(Peffect,Psource) Wtb.
Add Wtb to Acmain.
Add Wtb to Acdetailed

9. ...

3.6 Running OligoRAP: results

OligoRAP was run three times: first using the Perl client, second using
e-BioFlow without provenance collection but with all data (intermediate
and final results) stored in a database, and third using e-BioFlow with
provenance capturing enabled. For each run, the same configuration pa-
rameters were used. The final results generated by the runs, the quality
assessment of the oligos, were compared to each other, to validate the
implementation of the workflow: since the configuration is the same,
the results should be identical between all runs. Amongst the results of
the OligoRAP pipeline is the generation of several pie charts that give an
overview of the quality of the microarray. Per run twelve pie charts were
generated. All pie charts of the Perl client were identical to those gener-
ated by the workflow run. Two of the matching pie charts are shown in
Figure 3.6.

Statistics of all the generated (intermediate) results of the three runs, in
terms of duration and storage size can be found in Table 3.5. A great

38 | Chapter 3 - Improvements to e-BioFlow

advantage of PostgreSQL (and most DMBS) is that it compresses data
on-the-fly in the storage layer. Therefore, the table lists compressed and
uncompressed size: a Postgres database uses a simple form of LZ com-
pression for text storage, which is fast and pretty efficient for text. Since
most data is formatted in XML, a good compression ratio can be achieved.
The OligoRAP Perl client does not use compression. Of course all files
generated by an OligoRAP run can be compressed in the script, this is
a small adaptation, but when they are needed to be read or searched
through (which usually was performed using commandline tools by the
end-user running OligoRAP), they have to be uncompressed again.

Perl In the first run, the Perl client stores 3.3Gb of data, divided over a
total of 994 xml files, grouped in directories per service. Additionally a
log file is created. Because the Perl client does not use compression, the
compressed storage size is not available. The run takes almost six hours
to execute.

e-BioFlow run without provenance The second run by e-BioFlow, where
no provenance is collected, stores all (intermediate) results in the database.
The total (compressed) storage size on disk of the Data table is 345MB.
A database dump, using pg dump, was performed on the database, which
contains only this Data table, resulting in a text file containing all data.
The file size of the dump was 2.5GB.

e-BioFlow run with provenance In the third run, e-BioFlow stores
over 2.9Gb of uncompressed data in the database. These are all the
generated (intermediate) results of the OligoRAP run including all extra
provenance information. The size is measured again using a dump of
the database to a text file. The run takes about three hours to execute.
The compressed storage is 392MB, 47MB more than the first run, which
corresponds to an overhead in storage size of about 12%. See Table 3.6
for more detailed statistics about the number of created provenance ele-
ments and their size.

It might be noted that the (uncompressed) storage size is less for the
provenance run than that of the Perl client. This is because the workflow
handles intermediate results more efficiently than the Perl client. BLAST
and OligoMergeXML are only executed if some oligos are not found
with BLAT. OligoMergeXML merges the output of BLAT and BLAST. The

3.6 Running OligoRAP: results | 39

Property Perl run e-BioFlow run Provenance run

Duration 5:56:42 2:50:14 3:03:02
Compressed size NA 345MB 392MB
Uncompressed size 3.3Gb 2.5Gb 2.9Gb
Files 994 0 0

Table 3.5: Storage sizes and durations of three OligoRAP runs of the
Perl client, e-BioFlow without provenance collection and
e-BioFlow with provenance collection.

Orphan :: Background Signal TC (10.1%)

Gene Specific :: Reduced Signal TC (3.9%)
Non-specific :: Mixed Signal TC (1.2%)

Gene-specific :: Maximum Signal TU (67.5%)

Gene-specific :: Maximum Signal TC (8.6%)
Non-specific :: Maximum Signal TU (4.9%)

Non-specific :: Maximum Signal TC (2.9%)
Others (1.0%)

Gene-specific :: Maximum Signal TU (67.5%)

Gene-specific :: Maximum Signal TC (8.6%)

Gene Specific :: Reduced Signal TC (3.9%)
Non-specific :: Maximum Signal TU (4.9%)

Non-specific :: Maximum Signal TC (2.9%)
Non-specific :: Mixed Signal TC (1.2%)

Orphan :: Background Signal TC (10.1%) Others (1.0%)

Perl e-BioFlow

Figure 3.6: Matching pie charts of the microarray quality: transcrip-
tome probe specificity for Mus musculus microarray Com-
pugen Mouse standard + extension with lenient primary
and secondary hits generated by the Perl client (left) and
e-BioFlow workflow (right).

merged result is used by the OligoAnnotationAnalyser. The Perl client
stores the result of BLAT, as well as the input of the OligoAnnotationAnal-
yser. In case all oligos are found with BLAT, the input of the OligoAnnota-
tionAnalyser is identical to the output of BLAT. The Perl client stores this
identical data twice, the workflow passes the intermediate result directly
to the OligoAnnotationAnalyser, and the data is stored only once.

The Perl client and the workflow were run several times. The Perl client
was executed 4 times, and all results were very close to 6 hours, the
fastest being 05:56:42, the slowest 06:03:54.

The provenance run was repeated ten times. The fastest run finished in
02:57:03, the slowest took 04:10:03 due to high server load. Most of
the time, the servers were not very busy and the results very close to 3
hours. On average, the provenance run finished in 3:13:09.

40 | Chapter 3 - Improvements to e-BioFlow

Table 3.6: Provenance data statistics

Table Rows Size (in bytes) % of total
∑

%

Data 64329 361324544 87,87

Artifact 64329 8994816 2,19
Task 36704 4325376 1,05
Agent 33835 3710976 0,90 4,14

WASGENERATEDBY 56063 6356992 1,55
WASTRIGGEREDBY 53080 5709824 1,39
USED 50710 5537792 1,35
WASCONTROLLEDBY 33835 3645440 0,89 5,18

Account 5739 696320 0,17
Overlap 5738 409600 0,10
Refines 2869 212992 0,05
Element_account 153745 10297344 2,50 2,82

Total (392MB) 411222016 100 12,13

CPU usage During one of the OligoRAP runs, the CPU load of e-Bio-
Flow was measured using JConsole 3. Figure 3.7 shows a graph of the
measured CPU load. The first 20 minutes show a high CPU load, on aver-
age about 62%. In this period, the XML is parsed and divided in chunks
and for each chunk a separate subworkflow is started that processes it.
Then the CPU load decreases and remains low for a rather long period,
around 10%, until 00:02:40. Here the graph peaks shortly, this is where
all the results are merged together and the subworkflows of the process
chunks are finished. The OligoQualityAnalyser job is started, which takes
about 8 minutes during which e-BioFlow is only busy with polling once
every 30 seconds, and then a final peak is shown: the pie charts are
decompressed.

3.7 Discussion

e-BioFlow supports, amongst others, loops and invocation of BioMOBY
services and it can handle large amounts of data, by storing the data in an
SQL database and pass the data by reference during workflow execution.

3JConsole. Last visited September 2009. http://java.sun.com/developer/
technicalArticles/J2SE/jconsole.html

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

3.7 Discussion | 41

CPU Usage

60

70

CPU Usage

50

60

70

CPU Usage

30

40

50

60

70

CPU Usage

20

30

40

50

60

70

CPU Usage

0

10

20

30

40

50

60

70

CPU Usage

0

10

20

30

40

50

60

70

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00 1:15:00 1:30:00 1:45:00 2:00:00 2:15:00 2:30:00 2:45:00 3:00:00

CPU Usage

0

10

20

30

40

50

60

70

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00 1:15:00 1:30:00 1:45:00 2:00:00 2:15:00 2:30:00 2:45:00 3:00:00

CPU Usage

Figure 3.7: CPU load of e-BioFlow during an OligoRAP run.

Using an SQL database has other advantages too. The proven technology
is robust and allows optimised querying using indices. The SQL database
can easily be extended. The Artifacts table references the already existing
Data table so data is not stored redundantly.

OPM-profile. How to store parameters in the OPM is ambiguous. The
distinction between parameters and inputs might seem obvious, but,
as of many ‘obvious’ distinctions, they become fuzzier as one discusses
them. According to the OPM specification, anything that controls the pro-
cess in some way should be modelled using agents and WASCONTROLLEDBY

relations. e-BioFlow on the other hand does not treat parameters as enti-
ties that control the process but serve as input. The e-BioFlow approach
is followed in the OPM-profile, therefore parameters are not explicitly
specified but treated as inputs in this OPM-profile.

With this OPM-profile, the mapping between workflows and the OPM is
unambiguous. This profile can be adopted by other hierarchical SWfMS
as well. The event of a control flow link being followed might not exist in
a truly data oriented workflow system, but then it can simply be ignored,
resulting in a less rich but still profile-conformant provenance archive.

42 | Chapter 3 - Improvements to e-BioFlow

First OPM implementation. This is one of the first direct OPM imple-
mentations. It uses the OPM as the underlying storage model. Other
systems, such as Taverna and Kepler, use their own storage models and
translate their models to the OPM when they export provenance data.

Overhead. Groth mentions an overhead of the provenance data ver-
sus intermediate and final results of about 13% determined by 6 use
cases [21]. Of course, the overhead depends on the use case. Large data
items, and few tasks generate a small overhead, many tasks but small
data items generate a large overhead. Further, it depends on the prove-
nance implementation what information is being stored exactly and how
efficiently the data is stored. There are a lot factors involved, therefore
it is an interesting result that a similar overhead was measured of about
12%.

BLAT duration. That BLAT is a faster implementation than BLAST was
confirmed by the provenance data collected in the first run. On average,
the duration of a BLAT task in the first run was 50 seconds, whereas the
average BLAST job took 80 seconds to complete, and the BLAST was only
performed on a small subset of the oligos processed by BLAT. However,
since no two BLAT tasks can be performed in parallel because the server
cannot handle the load, these BLAT jobs were performed in ‘sequence’
rather than parallel. This has probably great influence on the total work-
flow duration. Summing op all BLAT durations totalled 2 hours and 38
minutes.

Those who cannot remember the past are condemned to
repeat it.

George Santayana, 1863 - 1952

Chapter 4

Using provenance as cache

In this chapter a caching scheme for workflow tasks is proposed that uses
the provenance archive of the OPM implementation as cache. If a work-
flow is executed multiple times, perhaps with slight parameter changes,
some or all of its tasks will be executed with identical input, and gener-
ate identical results as in a previous execution. Tasks whose output can
be predicted based on its input are called deterministic. If provenance
data is collected during workflow execution and a deterministic task is
going to be reexecuted, the provenance archive can be queried for previ-
ous executions of such a task. If a previous execution is found, the result
(output) of the task can be retrieved from the provenance archive, and
as from a cache, used directly instead of executing the task again.

In this chapter a caching scheme for workflow tasks is proposed. The
scheme has successfully been implemented in e-BioFlow, making use of
the OPM implementation described in §3.4. In the following section the
caching scheme is described in more detail, followed by implementation
details in §4.2. The effectiveness of the cache implementation is mea-
sured by caching BLAT tasks in OligoRAP. The queries used for retrieving
provenance data for use as cache are optimised, which is described in
§4.3.

4.1 Caching scheme

A requirement of any cache implementation is that it is fast. In a work-
flow context, the lookup and retrieval of results from cache should take

46 | Chapter 4 - Using provenance as cache

no longer than the execution time of the task itself, otherwise caching
would be ineffective or even prolong execution time.

Another requirement for caching workflow tasks is that the output of
these tasks can be predicted based on the input. In other words: the
task should be deterministic. This requirement holds for atomic as well
as composite tasks. Even when the composite task itself hides non-
deterministic tasks it can still be deterministic. An example of such a
deterministic composite task, is given in the subworkflow in Figure 3.4.
The input of the composite task consists of some oligos, the output con-
sists of the matching results. Although the intermediate results might
differ every time the tasks are executed (the job-id) and even the con-
trol flow might differ (the loop can be repeated any number of times,
polling until the job is finished), the final result of the subworkflow is
always identical; assuming that the database and BLAST algorithm have
not changed.

It is not always desirable to cache workflow tasks. Caching non-deter-
ministic tasks might result in incorrect workflow execution. If the poll
task would have been cached and the first time the poll result status
is ‘running’, the workflow would livelock since the poll task will never
return the status ‘finished’.

It is very hard if not impossible to determine automatically whether or
not a task is deterministic. Therefore, a caching scheme for workflow
tasks is proposed here, in which the user determines which tasks are
deterministic. Once the workflow is running and a deterministic task
is about to be executed, the workflow engine determines whether the
results can be fetched from cache.

The scheme for retrieving results from cache presented here consists of
two phases.

4.1.1 Cache phase 1

A check is performed whether or not a certain task, that is about to be
executed by the workflow engine, is already present in the provenance
archive. Not only should the task itself be present in the archive, but
its input should equal the input of the task that is going to be executed.
Additionally, the actor or service that is going to execute the task should
also be the same. The set consisting of such a task, its input and its actor
are further referred to as a cache candidate. The provenance archive is

4.1 Caching scheme | 47

Wgb()Used()
val1I

val2I

role1I

valAg

roleO
valP valO

Us
ed

(

)

ro
le
2

I

W
cb

(

)

ro
le

P
Figure 4.1: Provenance graph of a cache candidate. The provenance

archive can be queried for task executions matching this
cache candidate using query 1.

queried for previous task executions that match a cache candidate. If a
match is found, the task of such a match is returned, so that it can be used
in phase 2. Multiple matches can exist in the provenance archive, but
only one match is needed. Since the tasks queried for are deterministic,
the output of these tasks should be identical for all found matches. If
no match is found, the workflow engine signals the actor that it should
execute the task, as would have normally been the case when the task
was not marked deterministic.

Tasks are defined to be a match if all of the following requirements hold:

1. Tasks have identical names
2. Tasks are (going to be) executed by an identical Actor and have

identical task roles
3. Tasks have identical input and output ports
4. Tasks have identical data values for each input port
5. Tasks are finished (they have been executed completely)

4.1.2 Cache phase 2

If a task is found in phase one, the output of this task can be retrieved
from the provenance archive and used directly by the workflow engine,
instead of executing the task again. The output of a task can consist of
multiple data items, depending on the number of output ports. Therefore
the provenance archive is queried for all data items of the found task,
corresponding to each output port.

48 | Chapter 4 - Using provenance as cache

Table 4.1: Query used in cache phase 1

Query 1. Phase 1, fetching process ids Pid of matching process named
Pval with role Prole, actor named Agval, input values Ival1 and Ival2,
input roles Irole1 and Irole2 and output role Orole:

SELECT p.id as Pid

FROM process as p, used as u, used as u2, wasgeneratedby as wgb,

artifact a1, artifact a2, datacompare as d1,

datacompare as d2, agent ag, wascontrolledby as wcb

WHERE p.value=Pval AND ag.value=Agval

AND d1.item1=Ival1 and a1.dataid=d1.item2 AND

AND d2.item1=Ival2 AND a2.dataid=d2.item2

AND wcb.cause=ag.id AND wcb.effect=p.id AND wcb.role=Prole

AND u.effect=a1.id AND u.cause=p.id AND u.role=Irole

AND u.effect=a2.id AND u.cause=p.id AND u.role=Irole

AND wgb.effect=p.id AND wgb.role=Orole

AND NOT p.finished IS NULL

AND (SELECT count(u.id) FROM used as u WHERE u.cause=p.id)=2

AND (SELECT count(wgb.id) FROM wasgeneratedby as wgb WHERE

wgb.effect=p.id)=1

LIMIT 1

4.2 Implementation

The caching scheme is successfully implemented in e-BioFlow for atomic
tasks. In theory, the caching scheme can also be used for composite tasks.
However, implementing the caching scheme for composite tasks in e-Bio-
Flow would require changes to its workflow engine YAWL. Therefore it
was chosen to only implement the caching scheme for atomic tasks. See
the discussion section for more details on the difficulties on implement-
ing the caching scheme for composite tasks using YAWL.

The user-interface (workbench) and workflow model of e-BioFlow have
been extended with an option for the user to mark certain tasks deter-
ministic. The engine has been extended as well. All tasks marked de-
terministic become cache candidates during workflow enactment. The
provenance archive is queried for executions matching the cache candi-
date, and if such a task is found the output of this task is used directly by
the workflow engine. Two SQL queries are defined for the provenance
implementation described in §3.4, one for each cache phase.

4.2 Implementation | 49

4.2.1 Query for cache phase 1

The first query retrieves a single task execution that is present in the
provenance archive and matches a cache candidate. Figure 4.1 presents
a provenance graph representation of a cache candidate that can be
queried using query 1. This cache candidate has two input ports and
only one output port (which are stored in the provenance archive in USED

and WASGENERATEDBY relations in combination with an artifact for the data
value). An example query template is presented in Table 4.1. The query
returns the identifier (Pid) of a task that matches the property values of a
cache candidate, such as task name, actor name etc. These property val-
ues are substituted in the query template. Similar query templates can be
defined for tasks that have different number of input- or output ports. In
e-BioFlow the query template for any task is generated automatically by
iterating over the input and output ports and extending the query with
the necessary USED or WASGENERATEDBY relations and conditions.

Input- and output port names, input data, actor names and task roles
and name, should be substituted in the template with the proper values
of the cache candidate that is going to be executed. How these values
should be substituted in query 1 is explained here, per requirement (as
defined in §4.1):

1. The first requirement, equality of name, is specified in the query
using Pval. Pval should be substituted with the name of the task
that is going to be executed. By a similar argument Agval should be
substituted with the name of the actor and Prole with the role of the
task.

2. The second requirement, equality of actor, is specified in the query
using the WASCONTROLLEDBY relation between the specific process
(the effect of the WASCONTROLLEDBY relation) and an actor named
Agval (the cause of the WASCONTROLLEDBY relation). The role Prole of
the WASCONTROLLEDBY should be substituted by the role name of the
workflow task.

3. The third requirement, identical input and output ports, is a bit
harder to specify. In the OPM-profile input port names are mapped
to the role of the USED relation, and output ports to the role of
the WASGENERATEDBY relation. By substituting Irole and Orole with
the corresponding input and output port names for the USED and
WASGENERATEDBY relations respectively, it is assured a found task has
identical input and output ports. However, a task in the provenance

50 | Chapter 4 - Using provenance as cache

archive could have been executed with even more input or output
ports, and still match the query. Therefore, the last two conditions
in the where clause of the query check whether the total number of
input and output ports is the same.

4. The fourth requirement, tasks having identical data values for each
input port, is specified using an artifact that refers to a data item
in the data table (using the dataid column). This data item corre-
sponds to the actual value of the data item of the input port. This
artifact in its turn is the effect of the USED relation corresponding to
the input port. In query 1, only the identifier of the data items has
to be substituted (the identifiers Ival1 and Ival2), see §4.2.1 how this
data comparison is implemented.

5. The last requirement, tasks have to be finished, is specified in the
query by checking that the task has a finished timestamp.

Data comparison
If an actor is about to execute a task, its input has already been stored in
the database (and the corresponding artifacts already created, either at
the moment the data was generated by a previous task, or at the moment
the current task was instantiated). Since all data and artifacts are already
stored in the database at this point, in query 1 only the item references
have to be substituted in the query, instead of substituting the complete
item values in the query.

Query 1 makes use of a view called ‘datacompare’. This view is used
to match stored data items that are equal. Short and long represen-
tations of data items are stored in the data table, in columns named
‘shortitemvalue’ and ‘itemvalue’ respectively. The long representation is
the complete data value in e-BioFlow XML format, containing metadata
such as its syntactic and semantic type. This long representation can be
very large. In theory the maximum size that can be stored is of vari-
able unlimited length according to the PostgreSQL documentation 1. The
short representation is a simple string representation of a data item that
is no longer than 255 chars. This short representation is generated by
the engine at storage time and is used mainly for visualisation, so that
data can be represented quickly, but not all data has to be fetched from
the database if unneeded. The short item representation can be seen
as a (non-unique) hash value of the complete data item, but in a user
understandable representation.

1http://www.postgresql.org/docs/8.4/interactive/datatype-character.
html, last visited September 2009

http://www.postgresql.org/docs/8.4/interactive/datatype-character.html
http://www.postgresql.org/docs/8.4/interactive/datatype-character.html

4.2 Implementation | 51

Table 4.2: View used for data comparison.

View 1. A view for matching data items using an index on shortitem-
value.
CREATE view datacompare AS

SELECT d1.id AS item1, d2.id AS item2

FROM data d1, data d2

WHERE d1.shortitemvalue = d2.shortitemvalue

AND d1.itemvalue = d2.itemvalue

CREATE INDEX shortitemindex ON data USING btree(shortitemvalue)

View 2. A view of matching data items using an index on itemvalue.
CREATE view datacompare AS

SELECT d1.id AS item1, d2.id AS item2

FROM data d1, data d2

WHERE d1.itemvalue = d2.itemvalue

CREATE INDEX completitemindex ON data USING hash(itemvalue)

The data comparison can be performed efficiently by creating an index
on itemvalue. However, the data values used in OligoRAP turned out
to be too large, trying to create a btree index (which is the default and
fastest index according to the same PostgreSQL documentation as above)
over the data values of an OligoRAP run resulted in the error that the
index row size was too large. Creating a hash index was tried instead
on PostgreSQL 7.4 (which was the version present on the commodity
pc used for all experiments), but this resulted in a similar failure. By
exporting the database and importing it in a PostgreSQL 8.4 database
on another machine, a btree index could still not be created over the
complete data values, but a hash index did work.

It would be preferred if the data comparison is supported in older database
versions as well. Using a view provides a flexible solution for this prob-
lem. The actual comparison of data items is realised using a view called
‘datacompare’, see View 1 in Table 4.2.

By defining two conditions, equality of the shortitemvalue as well as the
itemvalue itself in the where clause greatly enhances performance if an
index is created on shortitemvalue, since shortitemvalue is a good hash
value of the complete itemvalue. This method can be used on (older)

52 | Chapter 4 - Using provenance as cache

Table 4.3: Query used in cache phase 2

Query 2. Phase 2, retrieving output role Orole and output value Oval
based on process id Pid:

SELECT wgb.value as Orole, a.value as Oval

FROM wasgeneratedby as wgb, artifact as a

WHERE wgb.cause=a.id AND wgb.effect=Pid

database implementations that do not support the creation of an index
over the complete data value.

If PostgreSQL 8.4 is used as back-end, this view can be easily replaced
for one that compares data only using the complete itemvalue, instead
of both shortitemvalue and complete itemvalue. See View 2 in Table
4.2. It is expected that view 2 is faster than View 1, since in view 1 we
need to recheck all matching shortitemvalues, while in view 2 this is not
necessary. The difference in performance between those two views is
measured and described in §4.3.

4.2.2 Query used in cache phase 2

In Table 4.3 the query for cache phase 2 is presented. It retrieves the
output of one of the tasks found in phase 1, which can be used directly
by the workflow engine instead of performing the task again. It uses the
found Pid of query 1 to retrieve all output port names (in the example
only one, Orole) and its corresponding item value identifier (since data
items are passed by reference), which is stored in the provenance archive
in the WASGENERATEDBY relation. This item reference is then used directly
by the workflow engine.

4.3 Optimising performance of phase 1 cache
queries

The cache implementation was first tested with some small workflows,
consisting of a single atomic task that performed the addition of two
integers. Once the small examples worked correctly, the implementation

4.3 Optimising performance of phase 1 cache queries | 53

was tested more thouroughly by running OligoRAP and cache BLAT and
Download tasks.

Since BLAT is one of the tasks that can not be executed in parallel due to
server overload, together with its rather long duration, it makes an ideal
candidate for shortening the total duration of the workflow if cached.
The Download result task has no limitations on parallel execution.

Two variants of BLAT are used in OligoRAP, one for the Genome and one
for the Transcriptome. The BLAT variant for the Genome uses two extra
parameters to increase its sensitivity. This BLAT task is further referred
to as ‘BLAT extra’.

Thus in total three tasks were cached, BLAT, BLAT Extra and Download.
These three tasks have different numbers of input/output ports, which
results in different query templates. BLAT has four input ports and five
output ports, BLAT Extra has six input ports and five output ports and
Download has only one input port and one output port. Thus in total
three different query templates were used.

All OligoRAP services, among which the BLAT service, do not return ac-
tual data, but only the URL where the actual data can be retrieved. The
Download task retrieves this actual data. If both the BLAT task and the
Download task are cached, the data does not have to be downloaded
again since it is already present in the provenance archive. A new arti-
fact is created that uses a reference to the previous data item in the data
table, so the data item is not stored redundantly, saving storage space.
Note that some task URLs in the subsequent run for the download task
cannot be retrieved from cache (URLs newly generated by other tasks for
example that were not cached, like BLAST). Again, all queries and query
durations are logged during the OligoRAP run, so they can be analysed
afterwards.

Unfortunately, whilst running OligoRAP for the first time with caching
enabled, the workflow seemed to hang, due to the fact that the query
for phase 1 for the BLAT task was running. After 5 minutes of running,
it was interrupted, since the query was ineffective for caching purposes:
a normal BLAT execution normally takes 2 minutes. Clearly the query
presented was ineffective for caching purposes, and optimisations were
needed.

Two different ways of optimising phase 1 cache queries were used: first
by rewriting the query in two other forms, query form 2 and 3 respec-
tively, which is described in §4.3.2. Using query form 2, query perfor-

54 | Chapter 4 - Using provenance as cache

mance was improved and running OligoRAP with cache became possible.
A second way of optimising query performance was achieved by creating
several indices, which is described in §4.3.3. All performance differences
of the different proposed optimisations are measured using a representa-
tive query set against a database containing the provenance data of two
complete OligoRAP runs (a run with and without cache).

4.3.1 Query set and database used in measurements

As described earlier, during execution of an OligoRAP run, all phase 1
and phase 2 cache queries are logged. For the performance evaluation
presented in the following sections, it would be rather inefficient to rerun
OligoRAP over and over again and measure the performance difference.
Instead, a subset of the logged queries of the first successful OligoRAP
run was selected, containing all phase 1 queries of the tasks BLAT, BLAT
extra and Download tasks that successfully retrieved a previous task exe-
cution from the provenance archive in the second run (the queries of the
Download task that did not match any results were not included). This
resulted in a total of 109 different queries for the query template of BLAT
tasks, 109 different queries for the query template of the BLAT extra task
and 218 different queries for the Download task.

In all performance measurements, the queries were executed using a
simple PHP script that measured the query duration. The queries were
executed against the provenance archive containing both OligoRAP runs.
Thus, for every query executed, two different previous task executions
are present in the provenance archive.

To measure the performance difference between a hash index over the
complete data items and btree index over the shortitemvalues, the data-
compare view was adapted as described in §4.2.1. Since both OligoRAP
runs were performed initially on a 7.4 database, and the hash index can
only be generated on 8.4, the complete database was exported and im-
ported into a PostgreSQL 8.4 database, running on another commodity
pc.

4.3.2 Optimising using subqueries

The one BLAT query that was ineffective for caching purposes, in query
form 1, can be found in Appendix A, Query A.1. Postgres returned a

4.3 Optimising performance of phase 1 cache queries | 55

Query 4.1: Deriving query form 2 from query form 1.
Query form 1:

SELECT * FROM process p,

used AS u1 , artifact AS a1, dcompare AS d1,

...

wasgeneratedby AS wgb1 ,

...

WHERE

t.id = u1.cause AND u1.role=role 1 AND

u1.effect=a1.id AND a1.dataid=d1.d1id AND d1.d2id=data id 1

...

AND t.id = wgb1.effect AND wgb1.role=role 2

...

LIMIT 1

Query form 2:

SELECT * FROM process p

WHERE

p.id IN (

SELECT u.cause FROM used AS u WHERE u.role=role 1 AND u.effect IN (

SELECT a.id FROM artifact AS a, dcompare AS d WHERE

a.dataid=d.d1id AND d.d2id = data id 1

)

...

AND p.id IN (

SELECT wgb.effect FROM wgb WHERE wgb.role=role 2

)

...

LIMIT 1

diversity of query plans for this query, each time a slightly different strat-
egy was chosen. One of these strategies is presented in Appendix B,
Query plan B.1. All the strategies have in common that the planner op-
timises them by relating USED causes and/or WASGENERATEDBY effects to
each other, since these are both matched to the same value, namely the
id of the process. A sequential scan is performed over the USED and WAS-
GENERATEDBY relations in the query plan at an early stage. Note that in
Appendix B those parts in the query plan that are costly or inefficient are
colored red and in a bold font, and parts that are improved, either by an
index or by rewriting the query, are colored green and underlined.

Phase 1 query form 2
In theory, a more optimal query strategy would be to use the (fast) data
comparison using the created index and datacompare view as a first step
in the query plan. These can be joined with their corresponding artifacts,
which would result in only a couple of matching artifacts. The artifacts in
turn can be joined with a corresponding USED relation, on the condition
that this artifact is the effect of the relation. Then those tasks that are
the cause of the relations can be joined. With this idea in mind, the
query was rewritten, using subqueries. See Query 4.1 for the derivation
of query form 2 from query form 1.

Query A.1 was rewritten into Query A.2, which can both be found in

56 | Chapter 4 - Using provenance as cache

Appendix A. A corresponding query plan for Query A.2 can be found in
Appendix B, Query plan B.2. It shows that the index and artifact compari-
son is now performed as the initial step in the query plan (underlined and
green). The ineffective query, executed manually, never returned a result
in less than 813 seconds, sometimes running for over 1400 seconds, de-
pending on the query strategy used. The new query form resulted in
an enormous performance improvement: the query took on average 23
seconds.

Since the new query duration is shorter than the duration of a BLAT task,
it can be used effectively for caching purposes. The query is almost six
times faster than the actual BLAT execution (which takes on average one
and a half minute). Detailed results of cache runs can be found in §4.4.
Still, 23 seconds for retrieving data from cache is quite a lot and can be
optimised, as we will show, for it is desirable to reduce the query duration
even more.

Phase 1 query form 3

Query plan B.2, of Query A.2 shows that the subqueries for counting
the number of input and output ports were performed at a very early
stage in the query plan. Since selecting and counting all used relations
for a certain process is a costly operation, this operation should be per-
formed preferably over a small set of processes. In other words, at a
late stage in the query plan, where only tasks matching all other prop-
erties remain. A trick that seems to work, is to place all subqueries for
counting input and output ports in the SELECT clause. This has two
drawbacks however. First, the application should check the total num-
ber of input/output ports. Second, the LIMIT clause has to be removed,
because the application has to check all tasks that are returned, and this
in its turn can even result in a reduction of performance instead of gain.
The query form having subqueries moved to the SELECT clause and the
LIMIT clause removed, is referred to as query form 3.

In Query 4.2 is shown how query form 3 can be derived form query form
2. A rewritten example of the original form 2 cache Query A.2 in form
3 can be found in Appendix A, A.3. In Query plan B.3 a query plan is
shown for Query A.3. Indicated in green and underlined is the desired
behaviour, the slow count operations are performed at the last stage in
the query plan.

4.3 Optimising performance of phase 1 cache queries | 57

Query 4.2: Deriving query form 3 from query form 2. A relatively
slow operation (counting number of used relations for in-
stance) is performed only over a select group of processes
that match all other conditions in the where clause.

Query form 2:

SELECT * FROM

process p WHERE

conditions(p)

AND (count inputports(p))=x

AND (count outputports(p))=y

limit 1

Query form 3:

SELECT p.id ,

(count inputports(p)) AS inputports ,

(count outputports(p)) AS outputports

FROM process p WHERE

conditions(p)

Performance difference between query forms and views
In this section, the performance difference is evaluated between query
forms 2 and 3 in combination with data view 1 and 2 as described in the
previous sections. All form 2 queries in the query set described above
were rewritten into form 3, resulting in two query sets. The difference in
performance was measured in four runs. Both query sets were executed
against both view implementations. The two query sets were executed
against the same PostgreSQL 8.4 database containing two OligoRAP runs,
a run without cache, and a run with cache (during which the queries
were logged). The view in the database was adapted accordingly and
the extra index over all itemvalues created, in case performance was
measured using view 2.

Additionally, index sizes are measured for the indices used for data com-
parison.

Results
The index sizes of both the short (shortitemindex) and long item rep-
resentations (completeitemindex) are presented in Table 4.4 and their
sizes are compared with respect to the total database size (provenance
data plus data items included) and provenance structure data only (with-
out data items). The hash index over the complete item value takes less
space than the btree of the shortitemindex. Compared to the total prove-
nance archive including data items, both indices only take about one
percent of total storage space. In respect to the provenance data, with-

58 | Chapter 4 - Using provenance as cache

out the actual data table, the indices take on average 7.5% of the total
storage space.

The results of the performance measurements of form 1 and form 2
query sets (F1 and F2) executed using views 1 and 2 (V1, and V2) can
be found in Table 4.5. The total query duration, average query dura-
tion and standard deviation are calculated over all queries, and over the
specific queries of a query template (BLAT, BLAT Extra, Download).

As expected, query form 2 using view 1 performed the worst, which is
essentially the same configuration as for the first OligoRAP cache run.

View 2 (V2) has a performance improvement factor over View 1 (V1)
of 16335.99

13935.34
= 1.17, using query form 2. View 2 (V2) has a performance

improvement factor over View 1 (V1) of 12010.05
10045.43

= 1.20, using query form
3.

Query form 3 (F3) has a performance improvement over query form 2
(F2) of 16335.99

12010.05
= 1.36, using view 1. Query form 3 (F3) has a performance

improvement over query form 2 (F2) of 13935.34
10045.43

= 1.39, using view 2.

The improvement factor of both the combination of V2 and F3 over the
combination of V2 and F2 is 2911.69

195.56
= 1.63.

In all measurements the Download query contributed the most to the
total query duration. It has the largest average query duration.

The download query does not seem to benefit at all from the faster data
comparison method, which is strange. See discussion for an explanation.
It does improve slightly from query form 3, with a factor 11309.29

9856.19
= 1.15,

the average drops from about 52 seconds to 45 seconds. The standard
deviation of the Download task in query form 3 is much lower, it drops
from about 38 seconds to only 2 seconds (on average between view 1
and 2).

The BLAT and BLAT Extra queries contribute the most to the overall
performance improvement. As expected, especially the combination of
view 2 and query form 3 is effective, a performance improvement of
2291.76
80.61

= 28.43 respectively 2716.80
98.50

= 27.58 was reached for BLAT and
BLAT Extra.

Discussion
The query duration of BLAT tasks was improved using query form 3, and
the query duration of Download tasks only slightly. This can have two
possible causes. One, there exist more Download executions in the prove-
nance archive than MobyBlat executions, 1746 against 436 respectively.

4.3 Optimising performance of phase 1 cache queries | 59

Index size % of total (661 Mb) % of provenance (86 Mb)

View 1, shortitemindex 7400 1.09% 8.47%
View 2, completeitemindex 5640 0.83% 6.46%

Table 4.4: Item value index sizes.

Query Set V1,F2 V2,F2 V1,F3 V2,F3∑
All 16335.99 13935.34 12010.05 10045.43

µ 37.47 31.96 27.55 23.04
σ 30.95 34.03 18.08 22.32∑

BLAT extra 2716.80 1524.48 1108.84 98.50
µ 24.92 13.99 10.17 0.90
σ 9.50 9.53 1.47 0.32∑

BLAT 2291.76 1090.55 1034.15 80.61
µ 21.03 10.01 9.49 0.74
σ 6.94 6.78 1.02 0.05∑

Download 11309.29 11319.19 9780.77 9856.19
µ 52.12 52.16 45.07 45.42
σ 37.77 37.98 3.89 1.03

Table 4.5: View 1 and 2 (V1, V2) and Form 2 and 3 (F2, F3) query statis-
tics.

Two, the BLAT and BLAT Extra tasks have four, respectively six input
ports, against one input port for the Download task. Therefore, the BLAT
tasks can benefit most from the combination of these two optimisations.

The Download task does not benefit from view 2, which is an unexpected
result. The query plan of this query (see Appendix B, Query plan B.5)
shows a sequential scan over the role of all used relations, matching the
role name. Since there exist 1746 Download tasks in the provenance
archive, which all have the same input port (and thus role name), all
task instances are matched. The results are joined with the result of
a sequential scan over all WASCONTROLLEDBY relations, also matching the
role name, which are then matched against the process identifier itself;
although the completeitemindex is used in the plan, the query does not
benefit because of its inefficient query strategy.

The query strategy chosen in the optimal combination, view 2 query form
3, is stable, the standard deviation is small for both the Download as
well as the BLAT tasks. This is desirable behaviour for caching. If the
retrieval from cache would take a long time in certain cases, this will
influence overall performance. Especially whilst caching workflow tasks,
since other tasks run in parallel and wait for synchronisation to continue.

60 | Chapter 4 - Using provenance as cache

4.3.3 Optimising using indices

In Appendix B, Query plan B.3, it is shown that there are many sequential
scans performed in a BLAT query. If an index is created on the specific
table column present in the condition of the sequential scan, an index
scan can be performed instead, which improves query performance.

In an iterative approach, per iteration an index is created based on the
query plan of a BLAT query. A sequential scan is indicated, and an index
created accordingly. After each created index, all form 3 queries are
executed against the same database as used in the previous section, using
view 2 (the fastest combination), and their query durations measured.

If an index results in performance loss instead of gain, the index is re-
moved and a new index created corresponding to another sequential scan
indicated in the query plan. This is repeated until no more costly steps
in the query plan can be pointed out.

Results
In seven iterations, seven indices were created. All created indices and
their sizes are presented in 4.6. The names in the table match those
found in the query plans presented in Appendix B, B.1-B.9. In these
query plans, costly steps in the plan are marked bold and in red, efficient
use or improvements in the query plan are underlined and colored green.

The results of the performance measurements of the indices can be found
in Table 4.6. The total query duration, average query duration and stan-
dard deviation are calculated over all queries, and per query template
(BLAT, BLAT Extra, Download).

The first index created, I1 is an index over the cause column of the used
relation, named usedcause. Total query duration of the query set took
197 seconds. Compared to the total duration of the previous section
of query form 3 using view 2 the performance improvement factor is
10045.43
196.98

= 50.99.

The BLAT and BLAT extra tasks improved with a factor 21.03
0.66

= 31.86 and
24.92
0.76

= 32.78.

The Download task improved by a factor 52.12
0.19

= 274.32.

The performance of the queries was increased even more with the cre-
ation of the three indices I2-I4 by a factor 196.98

115.12
= 1.71

Two of the created indices resulted in a performance reduce instead of
improvement, these are indices I5, and I6, having an improvement factor

4.3 Optimising performance of phase 1 cache queries | 61

Table 4.6: Created indices and their size

Index Name Column Size(Kb)

I1 usedcause USED(cause) 1856
I2 wgbeffect WASGENERATEDBY(effect) 1896
I3 artdataid ARTIFACT(dataid) 2264
I4 wcbrole WASCONTROLLEDBY(role) 1704
I5 wgbrole WASGENERATEDBY(role) 3216
I6 usedrole USED(role) 2784
I7 processvaluefinished PROCESS(value, finished) 2368

Total 16088

of 121.59
115.12

= 0.94 and 1426.7
115.12

= 0.08 respectively. Both indices I5 and I6 were
removed.

The last created index, I7, improved performance by a factor 115.12
108.31

=
1.06.

This results in a total performance improvement factor of 10045.43
108.31

= 92.75.

The effective indices are I1-I4 and I7. The total index size of these indices
is 10088 Kb. In combination with the hash index used in view 2, the
completeitemindex, this yields a total index size of 15728 Kb. The size of
the total provenance archive containing two runs is 661Mb, and 676Mb
with the indices included. The indices thus form 2.27% overhead with
respect to the total provenance archive.

The total size of the OPM tables, without the data table, is 85Mb. With
indices, this yields a total of 100Mb. The indices thus form 15.27% over-
head with respect to the OPM entities alone.

Discussion
The first index, usedcause, was created initially because it was indicated
in Query plan B.3 that a sequential scan was performed in Subplan 1, the
counting of input ports. The large improvement factor, a 50 times faster
than the same queryset without this index, is not only caused by the
more efficient way of counting. Instead a new query strategy is chosen,
where the usedcause index is used in an early stage in the query plan.
Two used relations are joined together on the condition that their causes
are a match. This query plan can be found in Appendix B, Query plan
B.4. Indices I1-I4 and I7 were present in the database. Note that there are
still many sequential scans used over the USED relations and artifacts. The
creation of index I6 leads indeed to an improvement on the average query

62 | Chapter 4 - Using provenance as cache

I1 I1, I2 I1, I3 I1-I4 I1-I5 I1-I4,I6 I1-I4,I7∑
All 196.98 138.39 131.45 115.12 121.59 1426.70 108.31

µ 0.45 0.32 0.30 0.26 0.28 3.27 0.25
σ 0.27 0.20 0.22 0.21 0.22 2.93 0.21∑

BLAT Extra 82.85 61.19 62.16 58.30 61.72 46.24 55.92
µ 0.76 0.56 0.57 0.53 0.57 0.42 0.51
σ 0.10 0.05 0.03 0.03 0.03 0.01 0.05∑

BLAT 72.21 49.59 49.56 42.13 44.35 32.96 39.51
µ 0.66 0.45 0.45 0.39 0.41 0.30 0.36
σ 0.08 0.05 0.02 0.02 0.02 0.01 0.04∑

Download 40.86 26.59 18.70 13.75 14.54 1346.61 11.83
µ 0.19 0.12 0.09 0.06 0.07 6.21 0.05
σ 0.03 0.01 0.02 0.01 0.01 0.22 0.02

Table 4.7: Statistics of all indices. Per query template (All, BLAT, BLAT
extra, Download and Tab2Multi) the total query duration∑

, average query duration µ and standard deviation σ is
calculated.

duration of BLAT tasks, but has a negative influence on the Download
task. If I6 is created, it is used in both query strategies for BLAT as well
as Download, see for their query plans B.7 and B.8 respectively.

The Download query factor improved most of all, with an improvement
factor of 275. A query plan showing the query strategy for the Download
task without indices can be found in Query plan B.5, and one with indices
can be found in Query plan B.6. All indices are being used in this query
plan. It is interesting to note that this is not the case in the query plan
for BLAT tasks, where I3, the index on the data id, is not being used.
Apparently, the query planner decides that the query has been optimised
enough and starts executing the plan. Using the index however would
probably lead to a better query performance for BLAT as well, as is the
case with the Download query.

4.3.4 Performance of querying non-cached tasks

Querying previous task executions that do not exist in a provenance
archive can take a long time to execute, even longer than querying tasks
that do exist in cache, since all tasks have to be searched through. This
especially applies to queries that benefit from a LIMIT clause, since no
early results are found and the query keeps on running. The LIMIT clause
was removed in query form 3, thus this is not the case for phase 1 cache
queries of form 3.

4.3 Optimising performance of phase 1 cache queries | 63

Task View 1 View 2∑
Download 4.118 3.650

µ 0.008 0.007
σ 0.0008 0.0005

Table 4.8: Query performance of non-cached Download processes.

The performance of phase 1 cache queries is measured using a query set
that consists of all the Download queries (such as the retrieval of the
results of the non-cached BLAST tasks) that were not available in cache
during run 2. In total the set consists of 547 queries.

The queries are rewritten into form 3 and executed against a database
only containing provenance data of the first run (not the results of the
second cache run, otherwise previous task executions would be found).
All effective indices are created (I1-I4,I7). The set was executed twice,
once using view 1, once using view 2.

Results
The results of both executions can be found in Table 4.8. As expected,
this query also benefits from the faster data comparison in view 2, by a
factor 4.118

3.650
= 1.13.

Discussion
Tasks that do not remain in cache are no bottleneck for the cache im-
plementation presented here. Compared to the results of the Download
queries that did retrieve a result (see §4.3.3), the non-cached Download
queries performed on average ten times faster than the queries that did
retrieve a result. It must be noted that the non-cached Download queries
were executed against a smaller database, containing only the single run,
thus the actual improvement factor is not measured.

4.3.5 Performance of Phase 2 queries

The performance of phase 2 queries is no bottleneck for the cache imple-
mentation either, the query can be performed very efficiently, by combin-
ing the indices on the effect of WASGENERATEDBY (index I2, see Table 4.6)
and the automatically generated index on the primary key of ARTIFACT. A
query plan for a phase 2 query can be found in Appendix B, Query plan
B.9.

64 | Chapter 4 - Using provenance as cache

Task Duration∑
Download 0.4271

µ 0.0010
σ 0.0003

Table 4.9: Query performance of phase 2 queries.

All 436 phase 2 cache queries are executed against the database con-
taining the normal provenance run and the cached run, and all effective
indices are created (I1-I4,I7). The results can be found in Table 4.9.

4.4 Caching tasks in OligoRAP

As was already mentioned in the previous sections, the first complete Oli-
goRAP cache run was achieved by rewriting the query to query form 2,
see §4.3.2. But, it was not successful in terms of performance improve-
ment. Instead, the workflow finished in 4 hours and 21 minutes, which
is almost one and half hour longer than the query duration of a normal
run without cache. Using the optimisations as described in the previous
sections, two new cache runs were performed, using the data comparison
view 1 and view 2.

In total, OligoRAP was run three times. In each run the complete Oli-
goRAP workflow was executed and its duration measured. During the
first run caching was disabled (no tasks were marked deterministic) but
provenance data was collected, filling the archive so that it can be used
as cache in the second run. In the two subsequent runs the three tasks,
BLAT, BLAT Extra and Download were marked deterministic, becoming
cache candidates. To measure the effect of the two different views on
OligoRAP, view 1 was used in the second run and view 2 in the third.
In cache run 2 and 3, the provenance archive serving as cache contained
initially only run 1, which was achieved by exporting the database after
run 1, and import it again for run 3.

4.4.1 Results

In Table 4.10 the total duration of the three runs is shown and the calcu-
lated sum and average duration of the BLAT tasks, and Download tasks,
was calculated.

4.4 Caching tasks in OligoRAP | 65

Table 4.10: Durations of OligoRAP run without cache, with cache and
with optimised cache.

Duration No cache Cache (V1) Cache (V2)

Total 02:58:45 02:25:08 02:46:07∑
BLAT 02:36:26 00:27:56 00:09:17

µ 00:01:26 00:00:15 00:00:05∑
Download 00:55:56 01:35:06 00:42:59

µ 00:00:04 00:00:07 00:00:03

The second run finished 33 minutes faster than the first run, in which
results were fetched from cache and view 1 was used. Compared to
a total duration of three hours of the first run, a relative performance
improvement of about 19% was achieved.

The third run finished almost 10 minutes faster than the first, a perfor-
mance improvement of 7%.

It is strange that the faster cache implementation using view 2 performed
worse than the cache implementation of view 1. See discussion for an
explanation.

4.4.2 Discussion

Faster cache implementation, slower OligoRAP
Although the total duration of the BLAT tasks is almost 20 minutes less
in cache run V2 over run V1, OligoRAP itself performs worse. Since the
BLAT tasks finish faster, more of the subsequent tasks, such as OligoAn-
notationAnalyse, are submitted simultaneously. This leads to higher load
on the server, resulting in worse performance. That the server was busy
is supported by the fact that some of the OligoMergeXML tasks triggered
a timeout. Timeouts only occured in the fasteset cache run. When a time-
out occurs, e-BioFlow tries to execute the task again. Cache run V2 was
repeated another time, resulting in a duration of 02:48:02, which is very
close to the first result. In this run timeouts occurred as well. Apparently,
the scheduling of tasks whilst using the faster cache implementation is
unlucky for an OligoRAP run.

66 | Chapter 4 - Using provenance as cache

Parallelism
Because of parallelism, the impact of caching is less (the total time saved
for all BLAT tasks is 2:08:30, yet the total time saved on total workflow
is execution is 00:33:37. If all tasks were executed in sequence by the
OligoRAP workflow, the effect of caching would have been greater than
19%, since the total workflow duration would not have been influenced
by synchronisation tasks. By a similar argument, if more tasks were ex-
ecuted in parallel, the relative effect of caching would be less. It is hard
to predict beforehand what the relative effect of caching will be on total
workflow duration, but if retrieving a task from cache is faster than the
normal execution time of a cached task, this will usually lead to perfor-
mance gain.

Composite tasks
The caching scheme could, in theory, be applied for composite tasks as
well, but the design of YAWL [46], the workflow engine used in e-Bio-
Flow, is hard to extend. One of the difficulties is that a composite task
itself does not have inputs nor outputs in YAWL, due to the fact that it
is based on Petri nets. It uses global and local (net) variables to store
data, and uses these variables to exchange data between tasks, which
are modelled as places. e-BioFlow has built its own data layer, using
the global and local variables and mappings of YAWL to overcome this
problem.

YAWL starts the first task of the subworkflow in a seperate thread (a new
net in YAWL terms) for each composite task, and that is basically all that
happens. A composite task is not started (‘checked out of the engine’
in YAWL terms) or finished (‘checked into the engine’). To implement
caching for composite tasks in YAWL, if a task is found in cache, all tasks
enabled after the composite task should be started. This implementa-
tion requires an in-depth understanding of the core of YAWL and how
it uses Petri nets and tokens exactly, without breaking its formal funda-
ment. A simple solution to this problem is to add an extra task in the
workflow specification that checks whether or not the composite task ex-
ists in cache. This is not a very elegant solution, since it would generate
divergent provenance data.

Influence of other processes on query times
It can be argued that the long query duration was influenced by the fact
that e-BioFlow and other processes were running simultaneously, and in-
deed e-BioFlow demands quite a lot of CPU power orchestrating all the
tasks needed to process the chunks in parallel, especially in the beginning

4.4 Caching tasks in OligoRAP | 67

when all chunks are processed and parallel tasks are started (see §3.6).
Therefore all queries were reexecuted manually without e-BioFlow run-
ning when testing the performance improvements of the optimisations,
and a large number of queries having identical query templates were
executed to measure the average duration per query template.

Test environment vs. OligoRAP
In the test environment, all queries were executed against a database
that contained the provenance data of two runs. The first run without
cache and the second with caching enabled. Any cache candidate that
was found during the second run, thus has at least two matching previ-
ous executions in the database. This is slightly different from an actual
OligoRAP run, where the provenance archive grows during the second
OligoRAP run and only a single previous execution of a task is present
per cache candidate. For the measurements of the performance improve-
ment of all optimisations, our main interest is in the relative difference
(the improvement factor). Therefore the difference between test envi-
ronment and OligoRAP is not important.

Significance of performance
The first OligoRAP cache run was run only once, and the second cache
run twice. Therefore it might be argued that the difference in perfor-
mance is not significant. However, the provenance run itself was run ten
times (see §3.6) with an average of 3:13:09 and the fastest run finished
in 02:57:03. The duration of both cache runs is less, which makes it ac-
ceptable that caching is the reason for both performance improvements.

Correct workflow execution
To test the correct behaviour of the implementation whilst caching work-
flow tasks, the results of the cached OligoRAP run were validated by
comparing the final output of both OligoRAP runs. The pie charts and
the generated XML data in the second run were matched against the
results of the first run (see §3.6 for a similar comparison of these pie
charts). All results were identical.

Try out your ideas by visualising them in action.
David Seabury, 1885 - 1960

Chapter 5

Provenance Visualisation

Being able to easily inspect and validate results of scientific experiments
is of great importance. If provenance data is collected while running sci-
entific experiments, the structure of the provenance model can aid whilst
navigating through results. The proposed OPM-profile in §3.5 captures
the hierarchical structure of workflows in the provenance data using ac-
counts, refinements and overlaps, called the Refinement Tree (RT). The
hierarchical structure captured in the RT intuitively follows from the hi-
erarchy of the workflow, by specifying both a coarse and fine grained
view of the provenance data of each (sub)workflow. These views are
called accounts in OPM terminology.

In this chapter, a provenance browser is introduced, that uses the hierar-
chical structure in provenance data for browsing and navigating through
a provenance archive, visualising data on demand.

5.1 Provenance Browser

The primary visualisation of the provenance data uses the graph structure
of the OPM, as described in §3.5. If an interesting actor or process is
found, double-clicking it shows its properties. For processes a summary
of all input and output ports is presented. The data of Artifacts can
be visualised using specific viewers for their corresponding data types.
e-BioFlow is improved with several data viewers (see §3.2), such as an
SVG viewer which is used for the visualisation of the pie charts generated
by OligoRAP, and an XML viewer that highlights XML data, improving
readability. The data viewer component supports multiple data types for

70 | Chapter 5 - Provenance Visualisation

a single artifact. An SVG picture can be rendered, but its XML can also
be inspected.

In addition to the primary visualisation, four more techniques have been
designed that help the user navigate through a provenance archive. First,
the structure of the RT can be used to navigate a provenance graph, using
account views. Second, three perspectives can be chosen from which the
provenance data can be viewed. Third, a query interface is presented,
which allows a user to express a provenance query that returns artifacts,
processes, and/or agents and visualises the results directly. Fourth, the
browser can be instructed to load and highlight neighbours of any vis-
ible artifact, process or agent. These four techniques are explained in
more detail in the following sections, but first the concept of neighbour
elements is defined more precisely.

Neighbours. A neighbour of an OPM element, being either a process,
artifact or agent, is an OPM element that is directly related to it, by
a WASCONTROLLEDBY, WASGENERATEDBY or WASTRIGGEREDBY or USED relation.
The element can be the cause or effect in such a relation, the neighbour
of a cause is its effect and vice versa. First order neighbours are direct
neighbours. Second order neighbours are the neighbours of neighbours,
etc. When an element is selected in the provenance browser, all ele-
ments except its neighbours and the selected element itself are painted
in grayscale, thus highlighting the colored selected elements and their
neighbours. The user can directly see which elements are first order
neighbours, which is hard to determine when many relations exist be-
tween elements.

5.1.1 Navigating the Refinement Tree

As was previously shown in §3.6, provenance graphs can become very
large. During an OligoRAP run over 3 × 105 elements and relations are
created. Showing the complete graph for such an OligoRAP run would
not be a very clear representation of the provenance data. Finding a
single interesting artifact or process is as time consuming as browsing a
log file. Instead of showing the complete graph, the provenance browser
makes use of levels of detail specified in the RT to navigate through ac-
counts. Once an interesting account is found, the elements belonging to
this account are visualised. Only that part of the total provenance graph
the user is interested in is shown.

5.1 Provenance Browser | 71

Refinement Tree Structure. Figure 5.1 presents an example refine-
ment tree. A refinement tree starts at a root (main) account. In the
example given, the main account overlaps the accounts G1,D1,G2,D2,G3
and D3. D1 in its turn overlaps with G4 and D4, D2 with G5 and D5,
etcetera. The structure of the refinement tree presented here is charac-
teristic of an RT generated by the OPM-profile presented in §3.5: refine-
ments form groups of two accounts, a generic and detailed account. This
is specified in the refinement relation. Only detailed accounts are parent
accounts, which is specified by the overlap relation.

The OPM-profile distributes the composite task and inputs and outputs
over the generic account and detailed account. An example of such a dis-
tribution is visualised in Figure 5.2. The generic account only contains
the composite task and its input and output. The detailed account does
not contain the composite task, but does contain its input and output,
since the input and output is used and generated by the subworkflow of
the composite task. Thus the input and output of the composite tasks
is contained in both generic and detailed account. Additionally, the de-
tailed account contains all tasks and intermediate results of the subwork-
flow. The parent account (in Figure 5.2 the main account) of the detailed
and generic account contains all the elements of both child accounts.

Account navigator. The complete RT is visualised in a component called
the Account Navigator. If an account is selected in the Account Navigator,
all elements and relations of this account are shown in the provenance
browser. If the selected account is a parent account, all elements of its
child accounts are shown as well.

If two child accounts form a refinement pair, only the elements of the
generic account of the refinement pair are shown, the elements of the
detailed account remain hidden.

Expanding and collapsing generic accounts A generic account view
can be expanded to the detailed account view with which it forms a re-
finement pair. If the user expands an account, all elements of the generic
account will be hidden and the elements of the detailed account shown.
Elements that are contained by both remain visible. Thus, at first only the
selected account and its overlapping generic accounts are shown, but it is
possible to switch between the generic account view and detailed account
views, hiding coarse grained and showing more fine grained provenance
information.

72 | Chapter 5 - Provenance Visualisation

G1 G3G2D1 D3D2

G4 D4 D5G5 G6 D6

D7 D8G8G7

Main Root Account

Generic Account

Detailed Account

Refinement

Overlap

Figure 5.1: The structure of the refinement tree. Detailed accounts are
named Dx, generic accounts Gx.

In a similar fashion, detailed accounts can be collapsed to a generic ac-
count view with which it forms a refinement pair. All elements of the
detailed view are hidden, and the elements of the generic account are
shown. Elements contained by both remain visible.

5.1.2 Perspectives

Hiding non-interesting entities results in a clearer view, providing detail
on demand. e-BioFlow has adopted this idea in its user interface for
designing workflows. It distinguishes between data flow, resource and
control flow perspectives of workflows [52]. Similar perspectives can be
used for visualising a provenance graph.

Normal perspective. Initially, the provenance browser shows all ele-
ments and relations. In Figure 3.5 the provenance graph of the asyn-
chronous BLAST job subworkflow is presented in normal perspective. In
Figure 5.3 the graph is presented in data flow, control flow, and resource
perspective, which are now explained in more detail. See Figure 5.4(a)
for a screenshot of this perspective in the provenance browser imple-
mented in e-BioFlow.

Data flow perspective. When designing workflows in e-BioFlow in data
flow perspective, processes and their input and output ports are shown.

5.1 Provenance Browser | 73

A1 Ag

T2

A2

Ag

T3

A3

Detailed Account

A1 A3

T1

Main Account

Generic Account

A1 A3T0 T4

T1

Ag

T2

A2 Ag

T3

Figure 5.2: Refinement tree with provenance elements for the three
accounts. Note that the provenance elements are contained
by multiple accounts. The main account, that overlaps the
generic and refined account, contains all elements of both
accounts, plus two additional atomic tasks T0 and T4. The
generic account only has artifact A1 and A3 in common with
the detailed account. They do not share the composite task
T1.

74 | Chapter 5 - Provenance Visualisation

W
GB(jobid)

W
G

B(status)

Use
d(

jo
bi

d)

Use
d(

jo
bi

d)

W
G

B(status)

W
GB(jobid)

W
GB(jobid) Use

d(
jo

bi
d)

Submit
BLAST

Poll
BLAST

job

Poll
BLAST

job

Fetch
job

Result

300 300 300

Running Finished

(a) Data flow perspective: only artifacts, processes, WASGENERATEDBY and USED relations
are shown.

wasTriggeredBy wasTriggeredBywasTriggeredBySubmit
BLAST

Poll
BLAST

job

Poll
BLAST

job

Fetch
job

Result

Bio
MOBY
http://

W
C
B
(B

LA
S
T

su
bm

it
)

Bio
MOBY
http://

W
C
B
(B

LA
S
T

po
ll)

Bio
MOBY
http://

W
C
B
(B

LA
S
T

po
ll)

Bio
MOBY
http://

W
C
B
(B

LA
S
T

re
tr

ie
ve

)

(b) Resource perspective: only processes, agents WASCONTROLLEDBY, and WASTRIGGEREDBY

relations are shown.

wasTriggeredBy wasTriggeredBywasTriggeredBySubmit
BLAST

Poll
BLAST

job

Poll
BLAST

job

Fetch
job

Result

(c) Control flow perspective: only processes and WASTRIGGEREDBY relations are shown.

Figure 5.3: Provenance perspectives.

5.1 Provenance Browser | 75

Links between processes indicate the flow of data, connecting output
ports to input ports.

When this perspective is placed in provenance context, only artifacts
(data) and processes are shown. The links that exist between processes
and artifacts are WASGENERATEDBY, USED and WASTRIGGEREDBY. Of these only
the WASGENERATEDBY and USED relations are shown in this perspective. The
WASTRIGGEREDBY relation captures control flow information, connecting
two processes, and is therefore hidden. Agents tell something about the
service or resource that is being used, nothing about the data flow, and
are therefore hidden as well (and any corresponding WASCONTROLLEDBY re-
lation too). See Figure 5.3(a) for an example representation, and 5.4(b)
for a screenshot of the provenance browser in e-BioFlow using this per-
spective.

Control flow perspective. When designing workflows in e-BioFlow in
control flow perspective, processes are shown, input and output ports are
hidden. Instead, control flow constructs, such as XOR-, AND- and OR-
splits and -joins are shown. Links between processes indicate the control
flow between processes.

When this perspective is placed in provenance context, only processes
are visible. Agents and artifacts are hidden. The only relation between
processes is WASTRIGGEREDBY, and therefore the only visible relation. See
Figure 5.3(c) for an example representation, and 5.4(d) for a screenshot
of the provenance browser in e-BioFlow using this perspective.

Resource perspective. When designing workflows in e-BioFlow in re-
source perspective, this is the same view as the control flow perspective,
but additionally, roles are visualised. A role of a task determines which
actor (service) is assigned during workflow enactment.

When this perspective is placed in provenance context, the resource per-
spective is similar to the control flow perspective, but additionally agents
(which correspond to services according to the OPM-profile presented
in §3.5) are visible. The relation between processes and agents, WAS-
CONTROLLEDBY, is visible as well. Artifacts, USED and WASGENERATEDBY rela-
tions are hidden. See Figure 5.3(b) for an example representation, and
5.4(a) for a screenshot of the provenance browser in e-BioFlow using this
perspective.

76 | Chapter 5 - Provenance Visualisation

(a) Normal perspective

(b) Data flow perspective

Figure 5.4: Screenshots of perspectives in e-BioFlow of a partial graph
retrieved using a recursive query executed by the query
panel.

5.1 Provenance Browser | 77

(c) Resource perspective

(d) Control flow perspective

Figure 5.4: continued.

78 | Chapter 5 - Provenance Visualisation

5.1.3 Query interface

Navigating and browsing through a provenance graph helps in finding
results. Being able to search for a specific process, artifact or agent would
also be of great advantage while inspecting provenance data. In our use
case OligoRAP, it would be very useful to retrieve all generated pie charts
of a specific run. Since each pie chart is generated in a subworkflow, for
which an account is generated using the OPM-profile, it is not a very hard
task to find the corresponding accounts with the Account Navigator.

A drawback of this approach is that the accounts can not be loaded and
visualised at the same time in the browser, giving a clear overview of
all generated pie charts. Therefore, the provenance browser is extended
with a query panel. In the query panel the user can formulate a query in
SQL, based on the OPM database implementation as presented in §3.4. A
requirement for queries formulated in the query panel is that they should
select the id of an OPM element, either from the supertable element it-
self, or one of its subtables artifact, task or agent. The query is adapted
automatically, so that first order neighbours are also retrieved. Further,
all the relations of the corresponding elements are loaded into the prove-
nance browser, as well as the accounts to which they belong.

Example queries. Two examples are presented here, retrieving pie charts,
and deriving all elements to the root using a recursive query.

Example 1. Using the query panel it becomes possible to visualise all
generated pie charts of a single run at once. It is known from the work-
flow, that the last step in generating the pie chart is an unzip operation,
performed by a workflow task named ‘UngzipRole’. If a query is formu-
lated that retrieves these processes for a certain run, and this query is
executed by the query panel, their first order neighbours are loaded as
well, which are the artifacts. In natural language, the query would read:
retrieve all processes named ’UngzipRole’ of run 1. The corresponding
query expressed in SQL can be found in Query 5.1. Query A represents
the query as formulated by the user, query B is the adapted query that
also retrieves the first order neighbours.

The result is a cross section of the provenance graph, consisting of twelve
unconnected graphs. Each graph contains both the unzip process and
(since first order neighbours are retrieved) the generated pie chart arti-
fact, grouped together by their corresponding account. Twelve pie charts
are generated in this OligoRAP run, six for the genome, and six for
the transcriptome. The query can be extended to retrieve only the pie

5.1 Provenance Browser | 79

Query 5.1: Query for retrieving SVG pie charts in the query panel.
Query A:

S E L E C T wgb . cause FROM process AS p , wasgeneratedby AS wgb WHERE
p . value =’UngzipRole ’ AND wgb . e f f e c t=p . id AND p . run=1

Query B, neighbours included:

S E L E C T ∗ FROM element WHERE
id I N (Query 1) or
id I N (S E L E C T cause FROM r e l a t i o n WHERE e f f e c t I N (Query 1)) or
id I N (S E L E C T e f f e c t FROM r e l a t i o n WHERE cause I N (Query 1))

Query C, Transcriptome pie charts only:

S E L E C T a . id FROM process AS p , wasgeneratedby AS wgb ,
a r t i f a c t AS a , data AS d WHERE

p . value =’UngzipRole ’ AND wgb . t a r g e t=p . id AND
p . run=1 AND a . id=wgb . source AND

a . data id=d . id AND d . i temvalue ˜ ’ Transcriptome ’

charts of the transcriptome, by matching the word ‘Transcriptome’ in the
datavalue of the artifact of the pie chart. This works, because SVG data is
stored as XML, and the word Transcriptome is contained in a string in the
SVG picture. See Figure 5.5 for a screenshot of the partial provenance
graphs in the provenance browser of e-BioFlow of both queries A (Figure
5.5(a)) and C (Figure 5.5(b).

Example 2. Recursive queries are implemented in PostgreSQL since ver-
sion 8.4 and prove very valuable in the following example, for which the
query in natural language would read: retrieve all elements from which
artifact A was derived.

The result of such a query are all the elements leading from artifact A
to the first task executed in the workflow. This query expressed in SQL
can be found in Query 5.2. The recursive query can be easily adapted to
limit the number of retrieved elements to the nth-order neighbour. This
is expressed in query B of Query 5.2. A screenshot of the provenance
browser of e-BioFlow showing a partial provenance graph retrieved using
a recursive query is presented in Figure 5.4, where the partial graph is
visualised in four perspectives. The leftmost task is the start task of the
workflow, the rightmost task the task queried for (with id 45).

80 | Chapter 5 - Provenance Visualisation

(a) All pie charts of run 1

(b) Only Transcriptome pie charts of run 1

Figure 5.5: Screenshots of pie charts in e-BioFlow retrieved with the
query panel.

5.1 Provenance Browser | 81

Query 5.2: Recursive query for retrieving a derivation trail to the start
task of the workflow, from an element identified by ‘45’.

Query A:

WITH R E C U R S I V E subelement AS (

S E L E C T 45 AS id

UNION A L L

S E L E C T m. id FROM element AS m, r e l a t i o n AS r , subelement AS sub
WHERE r . e f f e c t = m. id AND r . cause = sub . id

) S E L E C T ∗ FROM subelement

Query B, limited to the 6th-order neighbour:

WITH R E C U R S I V E subelement AS (

S E L E C T 45 AS id ,1 AS n

UNION A L L

S E L E C T m. id , n+1 AS n FROM element AS m, r e l a t i o n AS r , subelement AS sub
WHERE r . e f f e c t = m. id AND r . cause = sub . id AND n<=6

) S E L E C T id FROM subelement

5.1.4 Loading neighbours

When elements are loaded by the provenance browser, either by select-
ing an account in the Account Navigator or using the query interface,
not all first order neighbours are loaded. Neighbours can belong to an
account at a higher level in the RT, or if the query panel was used to load
elements using the query interface, only the elements queried for and
their first order neighbours are loaded. Only a partial provenance graph
is loaded in these cases. Especially the root elements of the partial graph
loaded for a particular account of a subworkflow will have neighbours in
higher level accounts. By a similar argument, the last tasks and gener-
ated artifacts are used by other processes, belonging to other accounts.
For these elements, the provenance browser provides the possibility to
extend the visual partial graph by loading the neighbours of a specific
element.

If a user wants to determine which process generated some particular
artifact, and this process is not yet loaded by the provenance browser,
the provenance browser can be instructed to load the neighbours of this
artifact. Similarly, this action can be performed for processes and agents
as well. In the provenance browser, this action can be invoked by right

82 | Chapter 5 - Provenance Visualisation

clicking an element. A menu appears where the load neighbours action
can be selected. The provenance browser queries the provenance archive
for the neighbours of the selected task and adds the newly loaded neigh-
bours to the partial graph. In an iterative approach where the neighbours
of the newly added elements are loaded, this will lead eventually to the
first task executed.

5.2 Browsing through an OligoRAP run

By starting at the root account and descending the Account Navigator,
the user is able to select an interesting account, based on its name that
follows from the workflow that was executed. Then, only the elements
belonging to this account have to be retrieved and shown instead of the
complete graph. This way very large graphs can be navigated, like the
graph generated by an OligoRAP run, which consists of over 3 × 105

elements and relations.

If the OPM-profile is used, the hierarchy in the RT and thus the lev-
els of detail provided in the provenance data follow from the hierar-
chy specified in the workflow. The hierarchy specified in the workflow
specification of OligoRAP is intuitive, but designed having provenance
navigation in mind: the use of composite tasks and specification of sub-
workflows was chosen strategically. Each service invocation, including
the data transformation steps needed for the specific service, like con-
structing the XML data items, are all defined in a subworkflow. Further,
a single subworkflow is used that provides all configuration items. In ad-
dition, the parallel invocation of the processing of all chunks is defined in
a subworkflow and the main workflow consists of only three composite
tasks.

In §3.6 it was shown that an OligoRAP run generates 5739 accounts and
2869 refinements. All accounts, except the root account, form a refine-
ment pair (5739 = 2869 × 2 + 1). 5738 of these accounts are child ac-
counts (except the root account). 997 accounts are parent accounts. The
average number of accounts per child is 5.7, with a standard deviation of
6.8. This high standard deviation is mainly due to the fact that the pro-
cess chunk subworkflow invokes twelve composite tasks, which results
in 24 child accounts for the parent account that executes the composite
task.

When browsing and navigating through provenance data this way, it is

5.3 Debugging with the Provenance Browser | 83

µ childs #instances Composite task name Subworkflow name

10 1 Main
6 1 Tab 2 Multi Seq Fasta

Chunks
Tab2MultiSeqFastaChunks

24 1 Process chunks Loop
24 108 Loop Loop

4 109 Analyse Genome OligoAnnotationAnalyser
4 109 Analyse UMT OligoAnnotationAnalyser
2 109 BLAT BLAST GENOME BLAT and BLAST

10 109 BLAT BLAST UMT BLAT and BLAST
2 218 BLAT BLAT
2 109 BLAST BLAST
2 109 Merge Genome and UMT

results
Oligo Merge XML

6 1 Quality Analysis Oligo Quality Analyser
24 1 Make pie charts Make all pie charts

2 12 Moby Pie Create Moby Pie Chart

Table 5.1: Accounts created during an OligoRAP run

desirable for the RT to be deep, varying from a very coarse grained to a
very fine grained granularity.

If the RT has a small average branching factor (an account does not have
too many child accounts) with little deviation (there does not exist a
small set of parent accounts that overlap many others, while others do
not overlap any), then the OPM entities are balanced over all accounts,
keeping the number of entities per account equally divided.

5.3 Debugging with the Provenance Browser

Services can be (temporarily) unavailable for various reasons, reasons
the workflow system unfortunately cannot control. Network problems
can occur or high server load can cause time-outs and connection prob-
lems; services become of age and are not being properly maintained any
more. See the PhD thesis of Wassink [49] for an analysis of the availabil-
ity of webservices in Taverna workflows present at myExperiment [36].
Although OligoRAP is properly maintained, running OligoRAP was not
always a smooth ride. The BioMOBY services used in OligoRAP are de-
signed to be robust, in terms of uptime and load balancing, using a GRID
approach. However, when e-BioFlow was submitting more jobs simul-
taneously than the original Perl implementation has stressed the server

84 | Chapter 5 - Provenance Visualisation

with, unforeseen problems were caused. As was mentioned before, the
synchronous (BLAT) jobs cannot be performed in parallel, causing a very
high server load leading to time-outs. This was solved by not running
these services in parallel. A problem encountered with asynchronous
services was already shortly addressed in §3.3.2, but is explained here in
more detail, showing how the provance browser can be used for debug-
ging purposes.

During the runs with caching enabled, an error occurred: the Oligo-
MergeXML could not parse XML data that was submitted to it. The input
of the OligoMergeXML has two XML files as input. Which of these two
XML files caused the problem? Was the XML malformed, and if so, which
process produced this malformed XML?

Using the provenance browser, the specific OligoMergeXML task could
be identified by browsing through the Account navigator, loading the
OligoMerge account and navigate the graph until the OligoMergeXML
process was found. The artifacts containing (the URL of the) XML data
used as input for this task could then be directly examined, which were
related to this process by a USED dependency. It turned out the XML of
the Genome was incomplete, causing the parse error. But what was the
cause for the incomplete XML data? Following the WASGENERATEDBY rela-
tions of the artifact that contained the incomplete XML the processes this
artifact was generated by were indicated and inspected, and by loading
their neighbours (since some of them occurred in higher level accounts)
the specific asynchronous OligoAnnotationAnalyser process that created
this malicious XML data was found. Although the last poll task indicated
the service was finished (which is why the workflow continued), the ar-
tifact of the service notes of the Poll process contained an error message:
the maximum connection limit to the database was reached, causing a
connection error. Since this message is present in the service notes, the
error occurred on server side. The asynchronous services, such as the
Oligo Annotation Analyser, are designed to be executed all in parallel, so
that jobs can be scheduled on a GRID. A GRID manager is responsible for
scheduling jobs efficiently, preventing problems such as these.

Since the problem occurs on server side, it can not be solved by the work-
flow system and was therefore submitted to the maintainers. They re-
sponded quickly, and it turned out the GRID manager was ill configured,
causing jobs to start at several nodes and appear in multiple queues,
causing too many connections to their Ensembl database. After reconfig-
uration of the GRID manager, OligoRAP was running without encounter-

5.4 Discussion | 85

ing any further problems.

5.4 Discussion

The levels of detail that can be addressed in an OPM graph depend on the
level of granularity, specified by the RT. Users intuitively use hierarchy
whilst designing workflows. The OPM-profile captures the hierarchical
structure of the workflow automatically in the provenance data, by defin-
ing both a coarse and fine grained account view towards the provenance
data of each (sub)workflow.

The RT structure depends on the number of composite tasks and how
they are used in the workflow. When a workflow uses loops or iterations,
the provenance graph of a single account can still become very large.
Good workflow design practice would be to divide loops and iterations
in subworkflows, so that the provenance data of the processing of the
items itself is captured at a deeper level.

How to use composite tasks is something to consider at workflow design
time. Workflow designers use the hierarchy of subworkflows intuitively
to keep the specification simple and arranged. This automatically con-
tributes to a finer level of granularity of the generated provenance data.

The provenance browser works in theory with any OPM graph, also with
provenance graphs generated by others, yet there is no import function
present in e-BioFlow at the moment. The provenance graph visualised by
the provenance browser does not necessarily have to be generated using
the OPM-profile. To fully benefit of the Account Navigator, and being able
to intuitively collapse and expand refinements, the provenance graph
should make use of a similar account structure as presented in §5.1.1.

A conclusion is the place where you got tired of thinking.

Harold Fricklestein

Chapter 6

Conclusion

This chapter summarises this thesis by briefly discussing the conclusions
of the previous chapters and the most important directions for future
work.

6.1 Summary

Several improvements were made to the workflow tool e-BioFlow in or-
der to run the case study OligoRAP, such as the storage of data values
in a database back-end, pass data as reference in the workflow engine,
the integration of BioMOBY and the data viewer component. All these
advancements have made e-BioFlow a far more mature SWfMS. With
its intuitive way of designing workflows and easy way of implement-
ing new services, e-BioFlow has evolved from a proof-of-concept into a
powerful research prototype. The case study proved that a large-scale
data-intensive use case such as OligoRAP can successfully be casted as a
workflow in e-BioFlow. By using parallelism already a huge performance
improvement was achieved by a factor 2 and more than 3GB of data was
generated and processed.

All four provenance challenges mentioned by Davidson and Freire [11]
have been addressed: information management infrastructure and infor-
mation overload, interoperability, analyse and visualise provenance data,
connecting database and workflow provenance.

88 | Chapter 6 - Conclusion

Information management and dealing with information overload is
achieved by using e-BioFlow and by implementing the OPM into a rela-
tional database management system, persistently storing the provenance
data. Provenance data was captured successfully using the OPM-profile
and stored in this provenance archive. The stored provenance data can
be queried efficiently using queries expressed in SQL. e-BioFlow is now
a complete provenance aware scientific workflow management system.

To speed up workflow execution and benefit workflow design, a mech-
anism is proposed that employs captured provenance data as cache and
the proposed caching scheme for deterministic atomic tasks was success-
fully applied in the case study. For the end-user, caching tasks is easy as
marking them deterministic.

Queries are defined for the implemented provenance archive to deter-
mine whether a task execution already exists in cache and retrieve the
output of such a task if found. The queries have been optimised by
rewriting them, and by creating strategic indices in the database. This
has resulted in a performance improvement of 19% for an OligoRAP run
where BLAT and Download tasks were cached.

Davidson and Freire state that information management systems are no-
toriously hard to use, therefore the usability aspect is of paramount im-
portance. Since the structure of the provenance archive follows directly
from the structure of the workflow if the OPM-profile is used, the prove-
nance browser forms an intuitive interface for end-users to analyse and
manage large amounts of provenance data.

Interoperability is improved by defining an OPM-profile, a profile to
use the OPM for hierarchical SWfMS. This profile preserves the hierar-
chy of composite tasks (subworkflows) in the generated provenance data
by means of overlapping accounts and refinements. The proposed profile
is used in the provenance implementation of e-BioFlow to collect prove-
nance data during workflow execution.

Analysing and visualising large provenance graphs is achieved in e-Bio-
Flow by introducing a provenance browser that uses the graph structure
of the OPM as primary visualisation. In addition, instead of representing
a complete provenance graph which is hard to navigate, four additional
techniques are designed that helps the user navigate and browse through
large provenance graphs. These techniques are:

6.1 Summary | 89

• An account navigator that uses the hierarchy captured by the OPM-
profile using composite tasks and subworkflows to visualise a tree
structure of generic and detailed views towards the provenance
data. By descending the RT, a tree of accounts that defines mul-
tiple levels of detail in the OPM, starting at the root account and
expanding refinements when needed. The OPM-profile facilitates
the generation of an RT that has a tree structure optimised for nav-
igating a provenance graph.

• The provenance browser can use several perspectives towards prove-
nance data, namely data flow, control flow and resource perspec-
tives, similar to the perspectives used towards workflows in e-Bio-
Flow. This enables the end-user to show detail on demand.

• A query panel that enables the end-user to specify a provenance
query. The result of the query is directly visualised in the prove-
nance browser, allowing the end-user to query for certain data
items, tasks or even complete derivation trails.

• Retrieve tasks or data items that are not yet loaded by the prove-
nance browser, but are neighbours of currently visible tasks or data
items. This expands the current graph presented in the provenance
browser, enabling the end-user to start searching at some point,
and determine how some data item was derived.

The techniques proved to be very useful whilst debugging OligoRAP: er-
ror messages, and more interestingly, their cause, can be easily identi-
fied using the provenance browser, and the provenance archive can be
queried using the query panel for all generated pie charts, presenting a
clear overview of the result of the run.

Connecting database and workflow provenance is not tackled in the
sense that workflow and databases are treated uniformly across sev-
eral applications. However, by implementing the OPM into a relational
database and using the OPM-profile, the way in which provenance data
is stored in the database is known. This provenance data can be queried
and reused by other database applications or workflow systems. The
OPM implementation and OPM-profile can serve as the framework in
which database operators and workflow modules can be treated uni-
formly.

90 | Chapter 6 - Conclusion

6.2 Future Work

Provenance queries formulated for this OPM implementation and profile
are unambiguous. It would be a good thing to have a common OPM-
profile standard for SWfMS. Combining the advantages of such a stan-
dard OPM-profile, the OPM, cache and the provenance browser makes it
possible to exchange and interpret provenance data of experiments exe-
cuted by other SWfMS, and their results can be reused and analysed as
well.

A query language for the OPM would benefit reasoning over provenance
data and would greatly improve interoperability between provenance
aware systems. The OPM implementation provided here can be used
as such. The SQL query language is Turing-complete since the latest SQL
standards that support recursion, and probably most provenance queries
can be expressed with it. However, the queries can become very large and
hard to interpret. Davidson et al. [10] argue for a high level query lan-
guage for searching and visualising provenance data using concepts that
are familiar to the end-user. The provenance browser already presents
results in an intuitive manner, a mapping from a high level query lan-
guage to the OPM implementation presented here can provide a solution
for intuitive searching. In addition, if several provenance aware systems
adopt the same query language, these systems can be compared to each
other. One system might perform better than another. A provenance
benchmark can be devised, defining a proper provenance data set and a
diversity of queries.

A major interoperability challenge that remains for the OPM, is how to
serialise a graph, and especially the values of artifacts, such that it can
be interpreted by others. This became clear during my visit to the 3rd

provenance challenge held in Amsterdam, and still after this challenge,
it remains an open research issue. Teams were able to generate XML
serialisations, but the values were represented differently, even though
the same XML schema was used. Reasoning over imported data is still
a challenge. An agreement about a set of standard common data types
should be used, however, if (bio)informaticians are allowed to use their
own data types, they will.

The OPM or the OPM-profile can be extended with a standard way of
defining errors that occur during execution. Errors can be modelled as
artifacts, or as tasks. The provenance browser can use errors as a starting
point, which helps during the debugging of a workflow or service, such

6.2 Future Work | 91

as the problem described in §5.3.

In this research, the structure of the OPM was used to efficiently and ef-
fectively query provenance data. By storing additional data the retrieval
of previous tasks executions can probably be optimised even further, with
the drawback of some redundancy. A simple example of such would be to
store the number of input and output ports in the PROCESS table directly,
instead of querying them. A more complex but probably more efficient
way of querying would be to calculate a hash value over all the input and
output ports, input data, task and actor values and store this hash in the
PROCESS table. The current phase 1 query can then be extended using this
hashvalue, improving its performance even more.

During the development of the OPM implementation and discussing its
use, the idea for a new way of designing workflows was born, called
ad-hoc workflow design [50]. Instead of the traditional workflow life
cycle, where a workflow is first composed, then mapped to resources,
then executed and finally results inspected using provenance, an itera-
tive approach is taken. During design a single task is executed. Based
on the output of this task, a next step or task in the workflow is selected.
This task can then in turn be executed, creating a workflow specification
on-the-fly. Intermediate results can be fetched directly from the prove-
nance archive. This iterative design approach brings together the design,
execution and provenance cycle of a workflow.

Appendices

Appendix A

Queries

Query A.1: Cache query for MobyBlat in query form 1. Ineffective for
caching purposes due to long execution time.

SELECT

t.id FROM process AS t ,

used AS u1, artifact AS a1, dcompare AS d1,

used AS u2, artifact AS a2, dcompare AS d2,

used AS u3, artifact AS a3, dcompare AS d3,

used AS u4, artifact AS a4, dcompare AS d4,

wasgeneratedby AS wgb1 ,

wasgeneratedby AS wgb2 ,

wasgeneratedby AS wgb3 ,

wasgeneratedby AS wgb4 ,

wasgeneratedby AS wgb5 ,

wascontrolledby AS wcb ,

agent AS a

WHERE t.value=’MobyBlat ’ AND

t.id=u1.cause AND u1.role=’user ’ AND u1.effect=a.id AND

a1.dataid=d1.d1id AND d1.d2id =’48966’ AND

t.id=u2.cause AND u2.role=’q’ AND u2.effect=a.id AND

a2.dataid=d2.d1id AND d2.d2id =’48984’ AND

t.id=u3.cause AND u3.role=’out ’ AND u3.effect=a.id AND

a3.dataid=d3.d1id AND d3.d2id =’48985’ AND

t.id=u4.cause AND u4.role=’input ’ AND u4.effect=a.id AND

a4.dataid=d4.d1id AND d4.d2id =’48951’ AND

t.id=wgb1.effect AND wgb1.role=’user ’ AND

t.id=wgb2.effect AND wgb2.role=’serviceNotes ’ AND

t.id=wgb3.effect AND wgb3.role=’result ’ AND

t.id=wgb4.effect AND wgb4.role=’output ’ AND

t.id=wgb5.effect AND wgb5.role=’no_hits ’ AND

t.id=wcb.effect AND wcb.cause=a.id AND

wcb.role=’MobyBlat ’ AND a.value=’MobyBlat ’

AND NOT t.finished is NULL AND

(SELECT count(u.id) FROM used AS u WHERE u.cause=t.id)=4 AND

(SELECT count(wgb.id) FROM wasgeneratedby AS wgb WHERE wgb.effect=t.id)=5

LIMIT 1

96 | Appendix A

Query A.2: Cache query for MobyBlat in query form 2
SELECT t.id

FROM process AS t WHERE

t.value=’MobyBlat ’ AND

t.id IN (SELECT u.cause FROM used AS u WHERE

u.role=’user ’ AND u.effect IN (

SELECT a.id FROM artifact AS a,dcompare AS d WHERE

a.dataid=d.d1id AND d.d2id =’48966 ’)) AND

t.id IN (SELECT u.cause FROM used AS u WHERE

u.role=’q’ AND u.effect IN (

SELECT a.id FROM artifact AS a,dcompare AS d WHERE

a.dataid=d.d1id AND d.d2id =’48984 ’)) AND

t.id IN (SELECT u.cause FROM used AS u WHERE

u.role=’out ’ AND u.effect IN (

SELECT a.id FROM artifact AS a,dcompare AS d WHERE

a.dataid=d.d1id AND d.d2id =’48985 ’)) AND

t.id IN (SELECT u.cause FROM used AS u WHERE

u.role=’input ’ AND u.effect IN (

SELECT a.id FROM artifact AS a,dcompare AS d WHERE

a.dataid=d.d1id AND d.d2id =’48951 ’)) AND

t.id IN (

SELECT wgb.effect FROM wasgeneratedby AS wgb WHERE

wgb.role=’user ’) AND

t.id IN (

SELECT wgb.effect FROM wasgeneratedby AS wgb WHERE

wgb.role=’serviceNotes ’) AND

t.id IN (

SELECT wgb.effect FROM wasgeneratedby AS wgb WHERE

wgb.role=’result ’) AND

t.id IN (

SELECT wgb.effect FROM wasgeneratedby AS wgb WHERE

wgb.role=’output ’) AND

t.id IN (

SELECT wgb.effect FROM wasgeneratedby AS wgb WHERE

wgb.role=’no_hits ’) AND

t.id IN (

SELECT wcb.effect FROM wascontrolledby AS wcb , agent AS a WHERE

wcb.cause=a.id AND wcb.role=’MobyBlat ’ AND a.value=’MobyBlat ’) AND

NOT t.finished is NULL AND

(SELECT count(u.id) FROM used AS u WHERE u.cause=t.id)=4 AND

(SELECT count(wgb.id) FROM wasgeneratedby AS wgb WHERE wgb.effect=t.id)=5

LIMIT 1

Queries | 97

Query A.3: Cache query for MobyBlat in query form 3.
SELECT t.id,

(SELECT count(u.id) FROM used AS u WHERE

u.cause=t.id) AS inputport ,

(SELECT count(wgb.id) FROM wasgeneratedby AS wgb WHERE

wgb.effect=t.id) AS outputport

WHERE t.value=’MobyBlat ’ AND

t.id IN (SELECT u.cause FROM used AS u WHERE

u.role=’user ’ AND u.effect IN (

SELECT a.id FROM artifact AS a,dcompare AS d WHERE

a.dataid=d.d1id AND d.d2id =’48966 ’)) AND

t.id IN (SELECT u.cause FROM used AS u WHERE

u.role=’q’ AND u.effect IN (

SELECT a.id FROM artifact AS a,dcompare AS d WHERE

a.dataid=d.d1id AND d.d2id =’48984 ’)) AND

t.id IN (SELECT u.cause FROM used AS u WHERE

u.role=’out ’ AND u.effect IN (

SELECT a.id FROM artifact AS a,dcompare AS d WHERE

a.dataid=d.d1id AND d.d2id =’48985 ’)) AND

t.id IN (SELECT u.cause FROM used AS u WHERE

u.role=’input ’ AND u.effect IN (

SELECT a.id FROM artifact AS a,dcompare AS d WHERE

a.dataid=d.d1id AND d.d2id =’48951 ’)) AND

t.id IN (

SELECT wgb.effect FROM wasgeneratedby AS wgb WHERE

wgb.role=’user ’) AND

t.id IN (

SELECT wgb.effect FROM wasgeneratedby AS wgb WHERE

wgb.role=’serviceNotes ’) AND

t.id IN (

SELECT wgb.effect FROM wasgeneratedby AS wgb WHERE

wgb.role=’result ’) AND

t.id IN (

SELECT wgb.effect FROM wasgeneratedby AS wgb WHERE

wgb.role=’output ’) AND

t.id IN (

SELECT wgb.effect FROM wasgeneratedby AS wgb WHERE

wgb.role=’no_hits ’) AND

t.id IN (

SELECT wcb.effect FROM wascontrolledby AS wcb , agent AS a WHERE

wcb.cause=a.id AND wcb.role=’MobyBlat ’ AND a.value=’MobyBlat ’) AND

NOT t.finished is NULL

Query A.4: Cache query for Download url process.
SELECT

(SELECT count(u.id) FROM used AS u WHERE

u.cause=t.id) AS inputport ,

(SELECT count(wgb.id) FROM wasgeneratedby AS wgb WHERE

wgb.effect=t.id) AS outputport ,t.id

FROM process AS t

WHERE t.value=’Download url ’ AND

t.id IN (SELECT u.cause FROM used AS u WHERE

u.role=’url ’ AND u.effect IN (

SELECT a.id FROM artifact AS a,dcompare AS d WHERE

a.dataid=d.d1id AND d.d2id =’82971 ’)) AND

t.id IN (

SELECT wgb.effect FROM wasgeneratedby AS wgb WHERE

wgb.role=’content ’) AND

t.id IN (

SELECT wcb.effect FROM wascontrolledby AS wcb , agent AS a WHERE

wcb.cause=a.id AND wcb.role=’ScriptINg Role ’ AND

a.value=’Perl agent localhost ’) AND

NOT t.finished is NULL

Appendix B

Query plans

• Parts in the query plans that are costly or inefficient are colored red
and in bold font (like sequential scans). These lines are marked
using the symbol ×.

• Parts that are improved in respect to a previous query plan are col-
ored green and underlined (like index scans that increase perfor-
mance). These lines are marked using the symbol

√
.

100 | Appendix B

Query plan B.1: Query plan for BLAT cache query A.1 in query form 1,
datacompare view 2 (completeitemindex).

limit (cost =44000.69..52096.96 rows=1 width =4)

-> Nested Loop (cost =44000.69..52096.96 rows=1 width =4)

Join Filter: ((t.id=u1.cause) and (wcb.cause=u1.effect))

-> Nested Loop (cost =0.00..5232.57 rows=1 width =12)

-> Seq Scan on wascontrolledby wcb (cost=0.00..1262.74 rows=1 width=8) ×
Filter: (role=’MobyBlat ’:: text)

-> index Scan using process_pkey on process t (cost =0.00..3969.82 rows=1 width =4)

index Cond: (t.id=wcb.effect)

Filter: ((not (t.finished is null)) and (t.value=’MobyBlat ’:: text)

and ((SubPlan 1)=4) and ((SubPlan 2)=5))

SubPlan 1

-> Aggregate (cost =1936.91..1936.92 rows=1 width =4)

-> Seq Scan on used u (cost=0.00..1936.90 rows=2 width=4) ×
Filter: (cause=$0)

SubPlan 2

-> Aggregate (cost =2024.61..2024.62 rows=1 width =4)

-> Seq Scan on wasgeneratedby wgb (cost=0.00..2024.60 rows=2 width=4) ×
Filter: (effect=$0)

-> Hash Join (cost =44000.69..46864.20 rows =13 width =56)

Hash Cond: (a4.dataid=d1.id)

-> Seq Scan on artifact a4 (cost=0.00..2479.00 rows=102500 width=4) ×
-> Hash (cost =44000.51..44000.51 rows =15 width =60)

-> Hash Join (cost =37024.37..44000.51 rows =15 width =60)

Hash Cond: (a2.dataid=d1.id)

-> Hash Join (cost =36863.90..43836.70 rows =426 width =64)

Hash Cond: (a3.dataid=d1.id)

-> Hash Join (cost =36703.44..43579.07 rows =12387 width =68)

Hash Cond: (u1.effect=a.id)

-> Nested Loop (cost =35449.34..41816.72 rows =102500 width =64)

-> Hash Join (cost =35449.34..38312.72 rows=1 width =60)

Hash Cond: (a1.dataid=d1.id)

-> Seq Scan on artifact a1 (cost=0.00..2479.00 rows=102500 width=4) ×
-> Hash (cost =35449.32..35449.32 rows=1 width =64)

-> Merge Join (cost =18592.56..35449.32 rows=1 width =64)

Merge Cond: (u1.cause=u2.cause)

Join Filter: (u2.effect=u1.effect)

-> Nested Loop (cost =10510.62..27111.05 rows =102500 width =44)

-> Merge Join (cost =10510.62..23607.05 rows=1 width =40)

Merge Cond: (u1.cause=u4.cause)

Join Filter: (u4.effect=u1.effect)

-> Nested Loop (cost =6337.27..19422.25 rows =3927 width =28)

-> Merge Join (cost =6332.79..19271.60 rows=1 width =24)

Merge Cond: (u1.cause=u3.cause)

Join Filter: (u3.effect=u1.effect)

-> Nested Loop (cost =4385.13..15801.65 rows =569415 width =16)

-> Merge Join (cost =4269.82..4298.05 rows =145 width =12)

Merge Cond: (wgb1.effect=u1.cause)

-> Sort (cost =2249.94..2259.42 rows =3791 width =4)

Sort Key: wgb1.effect

-> Seq Scan on wasgeneratedby wgb1 (cost=0.00..2024.60 rows=3791 width=4) ×
Filter: (role=’user ’:: text)

-> Sort (cost =2019.88..2023.79 rows =1564 width =8)

Sort Key: u1.cause

-> Seq Scan on used u1 (cost=0.00..1936.90 rows=1564 width=8) ×
Filter: (role=’user ’:: text)

-> Materialize (cost =115.31..154.58 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =48966)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue=d2.itemvalue)

-> Bitmap index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> Sort (cost =1947.66..1948.33 rows =267 width =8)

Sort Key: u3.cause

-> Seq Scan on used u3 (cost=0.00..1936.90 rows=267 width=8) ×
Filter: (role=’out ’:: text)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =48951)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue=d2.itemvalue)

-> Bitmap index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> Sort (cost =4173.35..4173.94 rows =238 width =12)

Sort Key: u4.cause

-> Hash Join (cost =2141.88..4163.95 rows =238 width =12)

Hash Cond: (u4.cause=wgb2.effect)

-> Seq Scan on used u4 (cost=0.00..1936.90 rows=1035 width=8) ×
Filter: (role=’input ’:: text)

Query plans | 101

-> Hash (cost =2024.60..2024.60 rows =9382 width =4)

-> Seq Scan on wasgeneratedby wgb2 (cost=0.00..2024.60 rows=9382 width=4) ×
Filter: (role=’servicenotes ’:: text)

-> Seq Scan on artifact a3 (cost=0.00..2479.00 rows=102500 width=4) ×
-> Sort (cost =8081.95..8081.95 rows=1 width =20)

Sort Key: u2.cause

-> Nested Loop (cost =4004.03..8081.94 rows=1 width =20)

Join Filter: (u2.cause=wgb4.effect)

-> Hash Join (cost =4004.03..6035.27 rows=1 width =16)

Hash Cond: (wgb3.effect=u2.cause)

-> Seq Scan on wasgeneratedby wgb3 (cost=0.00..2024.60 rows=1768 width=4) ×
Filter: (role=’result ’:: text)

-> Hash (cost =4003.96..4003.96 rows=6 width =12)

-> Hash Join (cost =1940.24..4003.96 rows=6 width =12)

Hash Cond: (wgb5.effect=u2.cause)

-> Seq Scan on wasgeneratedby wgb5 (cost=0.00..2024.60 rows=868 width=4) ×
Filter: (role=’no_hits ’:: text)

-> Hash (cost =1936.90..1936.90 rows =267 width =8)

-> Seq Scan on used u2 (cost=0.00..1936.90 rows=267 width=8) ×
Filter: (role=’q’:: text)

-> Seq Scan on wasgeneratedby wgb4 (cost=0.00..2024.60 rows=1765 width=4) ×
Filter: (wgb4.role=’output ’:: text)

-> Seq Scan on artifact a2 (cost=0.00..2479.00 rows=102500 width=4) ×
-> Hash (cost =1251.74..1251.74 rows =189 width =4)

-> Seq Scan on agent a (cost=0.00..1251.74 rows=189 width=4) ×
Filter: (role=’MobyBlat ’:: text)

-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =48985)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue=d2.itemvalue)

-> Bitmap index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =48984)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue=d2.itemvalue)

-> Bitmap index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

index Cond: (d1.itemvalue=d2.itemvalue)

102 | Appendix B

Query plan B.2: Query plan for BLAT cache query A.2 in query form 2,
datacompare view 2 (completeitemindex)

limit (cost =14533.79..2608246.24 rows=1 width =4)

-> Nested Loop Semi Join (cost =14533.79..2608246.24 rows=1 width =4)

Join Filter: (t.id=wcb.effect)

-> Nested Loop Semi Join (cost =14533.79..2606975.20 rows=1 width =40)

Join Filter: (t.id=u.cause)

-> Nested Loop Semi Join (cost =11046.22..2601520.98 rows=1 width =36)

Join Filter: (t.id=wgb.effect)

-> Nested Loop Semi Join (cost =11046.22..2599448.99 rows=1 width =32)

Join Filter: (t.id=wgb.effect)

-> Nested Loop Semi Join (cost =11046.22..2597307.12 rows=1 width =28)

Join Filter: (t.id=wgb.effect)

-> Nested Loop Semi Join (cost =11046.22..2595260.42 rows=1 width =24)

Join Filter: (t.id=wgb.effect)

-> Nested Loop Semi Join (cost =11046.22..2593213.75 rows=1 width =20)

Join Filter: (t.id=wgb.effect)

-> Nested Loop Semi Join (cost =11046.22..2591178.30 rows=1 width =16)

Join Filter: (u.effect=a.id)

-> Nested Loop Semi Join (cost =10885.76..2587690.74 rows=1 width =20)

Join Filter: (t.id=u.cause)

-> Nested Loop (cost =5453.79..2580317.50 rows=1 width =8)

-> HashAggregate (cost =5453.79..5460.28 rows =649 width =4)

-> Hash Semi Join (cost =3487.56..5449.88 rows =1564 width =4)

Hash Cond: (u.effect=a.id)

-> Seq Scan on used u (cost =0.00..1936.90 rows =1564 width =8)

Filter: (role=’user ’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid=d1.id)

-> Seq Scan on artifact a (cost =0.00..2479.00 rows =102500 width =8)

-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =48966)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue=d2.itemvalue)

-> Bitmap index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> index Scan using process_pkey on process t (cost =0.00..3967.41 rows=1 width =4)

index Cond: (t.id=u.cause)

Filter: ((not (t.finished is null)) and (t.value=’MobyBlat ’:: text) and

((SubPlan 1)=4) and ((SubPlan 2)=5)) ×
SubPlan 1

-> Aggregate (cost =1936.91..1936.92 rows=1 width =4)

-> Seq Scan on used u (cost=0.00..1936.90 rows=2 width=4) ×
Filter: (cause=$0)

SubPlan 2

-> Aggregate (cost =2024.61..2024.62 rows=1 width =4)

-> Seq Scan on wasgeneratedby wgb (cost=0.00..2024.60 rows=2 width=4) ×
Filter: (effect=$0)

-> Hash Join (cost =5431.97..7369.90 rows =267 width =12)

Hash Cond: (u.cause=u.cause)

-> Seq Scan on used u (cost =0.00..1936.90 rows =267 width =8)

Filter: (role=’out ’:: text)

-> Hash (cost =5430.58..5430.58 rows =111 width =4)

-> HashAggregate (cost =5429.47..5430.58 rows =111 width =4)

-> Hash Semi Join (cost =3487.56..5428.80 rows =267 width =4)

Hash Cond: (u.effect=a.id)

-> Seq Scan on used u (cost =0.00..1936.90 rows =267 width =8)

Filter: (role=’q’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid=d1.id)

-> Seq Scan on artifact a (cost =0.00..2479.00 rows =102500 width =8)

-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =48984)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue=d2.itemvalue)

-> Bitmap index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid=d1.id)

-> Seq Scan on artifact a (cost =0.00..2479.00 rows =102500 width =8)

-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =48985)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue=d2.itemvalue)

Query plans | 103

-> Bitmap index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> Seq Scan on wasgeneratedby wgb (cost =0.00..2024.60 rows =868 width =4)

Filter: (wgb.role=’no_hits ’:: text)

-> Seq Scan on wasgeneratedby wgb (cost =0.00..2024.60 rows =1765 width =4)

Filter: (wgb.role=’output ’:: text)

-> Seq Scan on wasgeneratedby wgb (cost =0.00..2024.60 rows =1768 width =4)

Filter: (wgb.role=’result ’:: text)

-> Seq Scan on wasgeneratedby wgb (cost =0.00..2024.60 rows =9382 width =4)

Filter: (wgb.role=’servicenotes ’:: text)

-> Seq Scan on wasgeneratedby wgb (cost =0.00..2024.60 rows =3791 width =4)

Filter: (wgb.role=’user ’:: text)

-> Hash Semi Join (cost =3487.56..5441.28 rows =1035 width =4)

Hash Cond: (u.effect=a.id)

-> Seq Scan on used u (cost =0.00..1936.90 rows =1035 width =8)

Filter: (role=’input ’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid=d1.id)

-> Seq Scan on artifact a (cost =0.00..2479.00 rows =102500 width =8)

-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =48951)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue=d2.itemvalue)

-> Bitmap index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> Nested Loop (cost =0.00..1271.03 rows=1 width =4)

-> Seq Scan on wascontrolledby wcb (cost =0.00..1262.74 rows=1 width =8)

Filter: (role=’MobyBlat ’:: text)

-> index Scan using agent_pkey on agent a (cost =0.00..8.28 rows=1 width =4)

index Cond: (a.id=wcb.cause)

Filter: (a.value=’MobyBlat ’:: text)

104 | Appendix B

Query plan B.3: Query plan for BLAT cache query A.3 in query form 3,
datacompare view 2 (completeitemindex)

Hash Semi Join (cost =33411.50..38846.73 rows=1 width =4)

Hash Cond: (t.id=wcb.effect)

-> Hash Join (cost =32140.46..33613.64 rows =192 width =40)

Hash Cond: (t.id=wgb.effect)

-> Hash Join (cost =30065.90..31536.21 rows =192 width =36)

Hash Cond: (t.id=u.cause)

-> Hash Join (cost =24612.36..26080.02 rows =192 width =32)

Hash Cond: (t.id=wgb.effect)

-> Hash Join (cost =22464.13..23928.44 rows =192 width =28)

Hash Cond: (t.id=wgb.effect)

-> Hash Join (cost =20416.24..21877.90 rows =192 width =24)

Hash Cond: (t.id=wgb.effect)

-> Hash Join (cost =18368.37..19827.39 rows =192 width =20)

Hash Cond: (t.id=wgb.effect)

-> Hash Join (cost =16332.33..17788.71 rows =192 width =16)

Hash Cond: (t.id=u.cause)

-> Hash Join (cost =10900.36..12354.10 rows =192 width =12)

Hash Cond: (t.id=u.cause)

-> Hash Join (cost =5468.39..6919.49 rows =192 width =8)

Hash Cond: (t.id=u.cause)

-> Seq Scan on process t (cost=0.00..1448.46 rows=192 width=4) ×
Filter: ((not (finished is null)) and (role=’MobyBlat ’:: text))

-> Hash (cost =5460.28..5460.28 rows =649 width =4)

-> HashAggregate (cost =5453.79..5460.28 rows =649 width =4)

-> Hash Semi Join (cost =3487.56..5449.88 rows =1564 width =4)

Hash Cond: (u.effect=a.id)

-> Seq Scan on used u (cost=0.00..1936.90 rows=1564 width=8) ×
Filter: (role=’user ’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid=d1.id)

-> Seq Scan on artifact a (cost=0.00..2479.00 rows=102500 width=8) ×
-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =48966)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue=d2.itemvalue)

-> Bitmap index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> Hash (cost =5430.58..5430.58 rows =111 width =4)

-> HashAggregate (cost =5429.47..5430.58 rows =111 width =4)

-> Hash Semi Join (cost =3487.56..5428.80 rows =267 width =4)

Hash Cond: (u.effect=a.id)

-> Seq Scan on used u (cost=0.00..1936.90 rows=267 width=8) ×
Filter: (role=’out ’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid=d1.id)

-> Seq Scan on artifact a (cost=0.00..2479.00 rows=102500 width=8) ×
-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =48985)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue=d2.itemvalue)

-> Bitmap index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> Hash (cost =5430.58..5430.58 rows =111 width =4)

-> HashAggregate (cost =5429.47..5430.58 rows =111 width =4)

-> Hash Semi Join (cost =3487.56..5428.80 rows =267 width =4)

Hash Cond: (u.effect=a.id)

-> Seq Scan on used u (cost=0.00..1936.90 rows=267 width=8) ×
Filter: (role=’q’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid=d1.id)

-> Seq Scan on artifact a (cost=0.00..2479.00 rows=102500 width=8) ×
-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =48984)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue=d2.itemvalue)

-> Bitmap index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> Hash (cost =2030.89..2030.89 rows =412 width =4)

-> HashAggregate (cost =2026.77..2030.89 rows =412 width =4)

-> Seq Scan on wasgeneratedby wgb (cost=0.00..2024.60 rows=868 width=4) ×
Filter: (role=’no_hits ’:: text)

Query plans | 105

-> Hash (cost =2037.39..2037.39 rows =838 width =4)

-> HashAggregate (cost =2029.01..2037.39 rows =838 width =4)

-> Seq Scan on wasgeneratedby wgb (cost=0.00..2024.60 rows=1765 width=4) ×
Filter: (role=’output ’:: text)

-> Hash (cost =2037.41..2037.41 rows =839 width =4)

-> HashAggregate (cost =2029.02..2037.41 rows =839 width =4)

-> Seq Scan on wasgeneratedby wgb (cost=0.00..2024.60 rows=1768 width=4) ×
Filter: (role=’result ’:: text)

-> Hash (cost =2092.58..2092.58 rows =4452 width =4)

-> HashAggregate (cost =2048.06..2092.58 rows =4452 width =4)

-> Seq Scan on wasgeneratedby wgb (cost=0.00..2024.60 rows=9382 width=4) ×
Filter: (role=’servicenotes ’:: text)

-> Hash (cost =5448.17..5448.17 rows =430 width =4)

-> HashAggregate (cost =5443.87..5448.17 rows =430 width =4)

-> Hash Semi Join (cost =3487.56..5441.28 rows =1035 width =4)

Hash Cond: (u.effect=a.id)

-> Seq Scan on used u (cost=0.00..1936.90 rows=1035 width=8) ×
Filter: (role=’input ’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid=d1.id)

-> Seq Scan on artifact a (cost=0.00..2479.00 rows=102500 width=8) ×
-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =48951)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue=d2.itemvalue)

-> Bitmap index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> Hash (cost =2052.07..2052.07 rows =1799 width =4)

-> HashAggregate (cost =2034.08..2052.07 rows =1799 width =4)

-> Seq Scan on wasgeneratedby wgb (cost=0.00..2024.60 rows=3791 width=4) ×
Filter: (role=’user ’:: text)

-> Hash (cost =1271.03..1271.03 rows=1 width =4)

-> Nested Loop (cost =0.00..1271.03 rows=1 width =4)

-> Seq Scan on wascontrolledby wcb (cost=0.00..1262.74 rows=1 width=8) ×
Filter: (role=’MobyBlat ’:: text)

-> index Scan using agent_pkey on agent a (cost =0.00..8.28 rows=1 width =4)

index Cond: (a.id=wcb.cause)

Filter: (a.value=’MobyBlat ’:: text)

SubPlan 1
√

-> Aggregate (cost =1936.91..1936.92 rows=1 width =4)

-> Seq Scan on used u (cost=0.00..1936.90 rows=2 width=4) ×
Filter: (cause=$0)

SubPlan 2
√

-> Aggregate (cost =2024.61..2024.62 rows=1 width =4)

-> Seq Scan on wasgeneratedby wgb (cost=0.00..2024.60 rows=2 width=4) ×
Filter: (effect=$0)

106 | Appendix B

Query plan B.4: Query plan for query A.3 with all effective in-
dices. Created indices: i1usedcause, i2wgbeffect,
i3artdataid, i4wcbrole, i7processvaluefinished. Query
form 3, datacompare view 2 (completeitemindex).

Hash Semi Join (cost =20615.04..27831.32 rows=1 width =4)

Hash Cond: (t.id = wcb.effect)

-> Nested Loop Semi Join (cost =20598.47..27797.52 rows =192 width =40)

-> Nested Loop Semi Join (cost =20598.47..26447.18 rows =192 width =36)

-> Nested Loop Semi Join (cost =20598.47..25096.84 rows =192 width =32)

-> Hash Join (cost =20598.47..23746.50 rows =192 width =28)

Hash Cond: (t.id = u.cause)

-> Nested Loop Semi Join (cost =15144.92..18290.31 rows =192 width =24)

-> Nested Loop Semi Join (cost =15144.92..16939.97 rows =192 width =20)

-> Hash Semi Join (cost =15144.92..15589.63 rows =192 width =16)

Hash Cond: (u.effect = a.id)

-> Hash Semi Join (cost =11657.36..12098.95 rows =192 width =20)

Hash Cond: (t.id = u.cause)

-> Hash Join (cost =5474.14..5905.17 rows =192 width =8)

Hash Cond: (t.id = u.cause)

-> Bitmap Heap Scan on task t (cost =5.75..434.14 rows =192 width =4)

Recheck Cond: (value = ’MobyBlat ’:: text)

Filter: (NOT (finished IS NULL))

-> Bitmap Index Scan on i7processvaluefinished (cost=0.00..5.70 rows=192 width=0)
√

Index Cond: (role = ’MobyBlat ’:: text)

-> Hash (cost =5460.28..5460.28 rows =649 width =4)

-> HashAggregate (cost =5453.79..5460.28 rows =649 width =4)

-> Hash Semi Join (cost =3487.56..5449.88 rows =1564 width =4)

Hash Cond: (u.effect = a.id)

-> Seq Scan on used u (cost=0.00..1936.90 rows=1564 width=8) ×
Filter: (role = ’user ’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid = d1.id)

-> Seq Scan on artifact a (cost=0.00..2479.00 rows=102500 width=8) ×
-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> Index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

Index Cond: (id = 48966)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue = d2.itemvalue)

-> Bitmap Index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

Index Cond: (d1.itemvalue = d2.itemvalue)

-> Hash (cost =6179.88..6179.88 rows =267 width =12)

-> Nested Loop (cost =5429.47..6179.88 rows =267 width =12)

-> HashAggregate (cost =5429.47..5430.58 rows =111 width =4)

-> Hash Semi Join (cost =3487.56..5428.80 rows =267 width =4)

Hash Cond: (u.effect = a.id)

-> Seq Scan on used u (cost=0.00..1936.90 rows=267 width=8) ×
Filter: (role = ’q’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid = d1.id)

-> Seq Scan on artifact a (cost=0.00..2479.00 rows=102500 width=8) ×
-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> Index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

Index Cond: (id = 48984)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue = d2.itemvalue)

-> Bitmap Index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

Index Cond: (d1.itemvalue = d2.itemvalue)

-> Index Scan using i1usedcause on used u (cost=0.00..6.74 rows=1 width=8)
√

Index Cond: (u.cause = u.cause)

Filter: (u.role = ’out ’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid = d1.id)

-> Seq Scan on artifact a (cost=0.00..2479.00 rows=102500 width=8) ×
-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> Index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

Index Cond: (id = 48985)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue = d2.itemvalue)

-> Bitmap Index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

Index Cond: (d1.itemvalue = d2.itemvalue)

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..7.02 rows=1 width=4)
√

Index Cond: (wgb.effect = t.id)

Filter: (wgb.role = ’no_hits ’:: text)

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..7.02 rows=1 width=4)
√

Query plans | 107

Index Cond: (wgb.effect = t.id)

Filter: (wgb.role = ’output ’:: text)

-> Hash (cost =5448.17..5448.17 rows =430 width =4)

-> HashAggregate (cost =5443.87..5448.17 rows =430 width =4)

-> Hash Semi Join (cost =3487.56..5441.28 rows =1035 width =4)

Hash Cond: (u.effect = a.id)

-> Seq Scan on used u (cost=0.00..1936.90 rows=1035 width=8) ×
Filter: (role = ’input ’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid = d1.id)

-> Seq Scan on artifact a (cost=0.00..2479.00 rows=102500 width=8) ×
-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> Index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

Index Cond: (id = 48951)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue = d2.itemvalue)

-> Bitmap Index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

Index Cond: (d1.itemvalue = d2.itemvalue)

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..7.02 rows=1 width=4)
√

Index Cond: (wgb.effect = t.id)

Filter: (wgb.role = ’result ’:: text)

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..7.02 rows=1 width=4)
√

Index Cond: (wgb.effect = t.id)

Filter: (wgb.role = ’serviceNotes ’:: text)

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..7.02 rows=1 width=4)
√

Index Cond: (wgb.effect = t.id)

Filter: (wgb.role = ’user ’:: text)

-> Hash (cost =16.56..16.56 rows=1 width =4)

-> Nested Loop (cost =0.00..16.56 rows=1 width =4)

-> Index Scan using i4wcbrole on wascontrolledby wcb (cost=0.00..8.28 rows=1 width=8)
√

Index Cond: (role = ’MobyBlat ’:: text)

-> Index Scan using agent_pkey on agent a (cost =0.00..8.28 rows=1 width =4)

Index Cond: (a.id = wcb.cause)

Filter: (a.value = ’MobyBlat ’:: text)

SubPlan 1

-> Aggregate (cost =8.32..8.33 rows=1 width =4)

-> Index Scan using i1usedcause on used u (cost=0.00..8.31 rows=2 width=4)
√

Index Cond: (cause = $0)

SubPlan 2

-> Aggregate (cost =8.37..8.38 rows=1 width =4)

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..8.37 rows=2 width=4)
√

Index Cond: (effect = $0)

108 | Appendix B

Query plan B.5: Query plan for query A.4, Download url task. data-
compare view 2 (completeitemindex).

Nested Loop Semi Join (cost =4758.59..12839.72 rows=1 width =4)

Join Filter: (t.id=wgb.effect)

-> Nested Loop Semi Join (cost =4758.59..6811.86 rows=1 width =12)

Join Filter: (t.id=u.cause)

-> Nested Loop (cost =1271.03..1279.33 rows=1 width =8)

-> HashAggregate (cost =1271.03..1271.04 rows=1 width =4)

-> Nested Loop (cost =0.00..1271.03 rows=1 width =4)

-> Seq Scan on wascontrolledby wcb (cost=0.00..1262.74 rows=1 width=8) ×
Filter: (role=’Scripting Role ’:: text)

-> index Scan using agent_pkey on agent a (cost =0.00..8.28 rows=1 width =4)

index Cond: (a.id=wcb.cause)

Filter: (a.value=’Perl agent localhost ’:: text)

-> index Scan using process_pkey on process t (cost =0.00..8.28 rows=1 width =4)

index Cond: (t.id=wcb.effect)

Filter: ((not (t.finished is null)) and (t.value=’Download url ’:: text))

-> Hash Semi Join (cost =3487.56..5485.55 rows =3759 width =4)

Hash Cond: (u.effect=a.id)

-> Seq Scan on used u (cost=0.00..1936.90 rows=3759 width=8) ×
Filter: (role=’url ’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid=d1.id)

-> Seq Scan on artifact a (cost=0.00..2479.00 rows=102500 width=8) ×
-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =82971)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue=d2.itemvalue)

-> Bitmap index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> Seq Scan on wasgeneratedby wgb (cost=0.00..2024.60 rows=3338 width=4) ×
Filter: (wgb.role=’content ’:: text)

SubPlan 1

-> Aggregate (cost =1936.91..1936.92 rows=1 width =4)

-> Seq Scan on used u (cost=0.00..1936.90 rows=2 width=4) ×
Filter: (cause=$0)

SubPlan 2

-> Aggregate (cost =2024.61..2024.62 rows=1 width =4)

-> Seq Scan on wasgeneratedby wgb (cost=0.00..2024.60 rows=2 width=4) ×
Filter: (effect=$0)

Query plans | 109

Query plan B.6: Query plan for query A.4 with all effective in-
dices. Created indices: i1usedcause, i2wgbeffect,
i3artdataid, i4wcbrole, i7processvaluefinished. Query
form 3, datacompare view 2 (completeitemindex).

Nested Loop Semi Join (cost =1618.72..2381.00 rows=1 width =4)

-> Hash Semi Join (cost =1618.72..2359.83 rows=1 width =12)

Hash Cond: (u.effect=a.id)

-> Hash Semi Join (cost =74.23..803.09 rows =754 width =16)

Hash Cond: (t.id=u.cause)

-> Bitmap Heap Scan on process t (cost =49.31..765.36 rows =1684 width =4)

Recheck Cond: (role=’Download url ’:: text)

Filter: (not (finished is null))

-> Bitmap Index Scan on i7processvaluefinished (cost=0.00..48.89 rows=1684 width=0)
√

index Cond: (role=’Download url ’:: text)

-> Hash (cost =24.91..24.91 rows=1 width =12)

-> Nested Loop (cost =16.57..24.91 rows=1 width =12)

-> HashAggregate (cost =16.57..16.58 rows=1 width =4)

-> Nested Loop (cost =0.00..16.56 rows=1 width =4)

-> Index Scan using i4wcbrole on wascontrolledby wcb (cost=0.00..8.28 rows=1 width=8)
√

index Cond: (role=’Scripting Role ’:: text)

-> Index Scan using agent_pkey on agent a (cost =0.00..8.28 rows=1 width =4)

index Cond: (a.id=wcb.cause)

Filter: (a.value=’Perl agent localhost ’:: text)

-> Index Scan using i1usedcause on used u (cost=0.00..8.32 rows=1 width=8)
√

index Cond: (u.cause=wcb.effect)

Filter: (u.role=’url ’:: text)

-> Hash (cost =1500.40..1500.40 rows =3527 width =4)

-> Nested Loop (cost =0.00..1500.40 rows =3527 width =4)

-> Nested Loop (cost =0.00..117.34 rows =3927 width =4)

-> Index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =82971)

-> Index Scan using completeitemindex on data d1 (cost=0.00..108.73 rows=26 width=223)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> Index Scan using i3artdataid on artifact a (cost=0.00..0.34 rows=1 width=8)
√

index Cond: (a.dataid=d1.id)

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..4.45 rows=1 width=4)
√

index Cond: (wgb.effect=t.id)

Filter: (wgb.role=’content ’:: text)

SubPlan 1

-> Aggregate (cost =8.32..8.33 rows=1 width =4)

-> Index Scan using i1usedcause on used u (cost=0.00..8.31 rows=2 width=4)
√

index Cond: (cause=$0)

SubPlan 2

-> Aggregate (cost =8.37..8.38 rows=1 width =4)

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..8.37 rows=2 width=4)
√

index Cond: (effect=$0)

110 | Appendix B

Query plan B.7: Query plan for query A.3, BLAT task. Created indices:
I1-I6. Query form 3, datacompare view 2.

Hash Semi Join (cost =17175.46..25403.41 rows=1 width =4)

Hash Cond: (t.id = wcb.effect)

-> Hash Join (cost =17158.88..25369.61 rows =192 width =40)

Hash Cond: (t.id = u.cause)

-> Nested Loop Semi Join (cost =12668.78..20876.87 rows =192 width =36)

-> Nested Loop Semi Join (cost =12668.78..19526.52 rows =192 width =32)

-> Nested Loop Semi Join (cost =12668.78..18176.18 rows =192 width =28)

-> Nested Loop Semi Join (cost =12668.78..16825.84 rows =192 width =24)

-> Nested Loop Semi Join (cost =12668.78..15475.50 rows =192 width =20)

-> Hash Join (cost =12668.78..14125.16 rows =192 width =16)

Hash Cond: (t.id = u.cause)

-> Hash Join (cost =8586.10..10039.84 rows =192 width =12)

Hash Cond: (t.id = u.cause)

-> Hash Join (cost =4503.41..5954.51 rows =192 width =8)

Hash Cond: (t.id = u.cause)

-> Seq Scan on process t (cost=0.00..1448.46 rows=192 width=4) ×
Filter: ((NOT (finished IS NULL)) AND (value = ’MobyBlat ’:: text))

-> Hash (cost =4495.30..4495.30 rows =649 width =4)

-> HashAggregate (cost =4488.81..4495.30 rows =649 width =4)

-> Hash Semi Join (cost =3527.95..4484.90 rows =1564 width =4)

Hash Cond: (u.effect = a.id)

-> Bitmap Heap Scan on used u (cost =40.38..971.92 rows =1564 width =8)

Recheck Cond: (role = ’user ’:: text)

-> Bitmap Index Scan on i6usedrole (cost=0.00..39.99 rows=1564 width=0)
√

Index Cond: (role = ’user ’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid = d1.id)

-> Seq Scan on artifact a (cost=0.00..2479.00 rows=102500 width=8) ×
-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> Index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

Index Cond: (id = 48966)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue = d2.itemvalue)

-> Bitmap Index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

Index Cond: (d1.itemvalue = d2.itemvalue)

-> Hash (cost =4081.30..4081.30 rows =111 width =4)

-> HashAggregate (cost =4080.19..4081.30 rows =111 width =4)

-> Hash Semi Join (cost =3497.90..4079.52 rows =267 width =4)

Hash Cond: (u.effect = a.id)

-> Bitmap Heap Scan on used u (cost =10.33..587.62 rows =267 width =8)

Recheck Cond: (role = ’out ’:: text)

-> Bitmap Index Scan on i6usedrole (cost=0.00..10.27 rows=267 width=0)
√

Index Cond: (role = ’out ’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid = d1.id)

-> Seq Scan on artifact a (cost=0.00..2479.00 rows=102500 width=8) ×
-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> Index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

Index Cond: (id = 48985)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue = d2.itemvalue)

-> Bitmap Index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

Index Cond: (d1.itemvalue = d2.itemvalue)

-> Hash (cost =4081.30..4081.30 rows =111 width =4)

-> HashAggregate (cost =4080.19..4081.30 rows =111 width =4)

-> Hash Semi Join (cost =3497.90..4079.52 rows =267 width =4)

Hash Cond: (u.effect = a.id)

-> Bitmap Heap Scan on used u (cost =10.33..587.62 rows =267 width =8)

Recheck Cond: (role = ’q’:: text)

-> Bitmap Index Scan on i6usedrole (cost=0.00..10.27 rows=267 width=0)
√

Index Cond: (role = ’q’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid = d1.id)

-> Seq Scan on artifact a (cost=0.00..2479.00 rows=102500 width=8) ×
-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> Index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

Index Cond: (id = 48984)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue = d2.itemvalue)

-> Bitmap Index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

Index Cond: (d1.itemvalue = d2.itemvalue)

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..7.02 rows=1 width=4)
√

Index Cond: (wgb.effect = t.id)

Filter: (wgb.role = ’no_hits ’:: text)

Query plans | 111

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..7.02 rows=1 width=4)
√

Index Cond: (wgb.effect = t.id)

Filter: (wgb.role = ’output ’:: text)

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..7.02 rows=1 width=4)
√

Index Cond: (wgb.effect = t.id)

Filter: (wgb.role = ’result ’:: text)

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..7.02 rows=1 width=4)
√

Index Cond: (wgb.effect = t.id)

Filter: (wgb.role = ’serviceNotes ’:: text)

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..7.02 rows=1 width=4)
√

Index Cond: (wgb.effect = t.id)

Filter: (wgb.role = ’user ’:: text)

-> Hash (cost =4484.73..4484.73 rows =430 width =4)

-> HashAggregate (cost =4480.43..4484.73 rows =430 width =4)

-> Hash Semi Join (cost =3515.85..4477.84 rows =1035 width =4)

Hash Cond: (u.effect = a.id)

-> Bitmap Heap Scan on used u (cost =28.29..973.46 rows =1035 width =8)

Recheck Cond: (role = ’input ’:: text)

-> Bitmap Index Scan on i6usedrole (cost=0.00..28.03 rows=1035 width=0)
√

Index Cond: (role = ’input ’:: text)

-> Hash (cost =3443.48..3443.48 rows =3527 width =4)

-> Hash Join (cost =160.47..3443.48 rows =3527 width =4)

Hash Cond: (a.dataid = d1.id)

-> Seq Scan on artifact a (cost=0.00..2479.00 rows=102500 width=8) ×
-> Hash (cost =111.38..111.38 rows =3927 width =4)

-> Nested Loop (cost =4.48..111.38 rows =3927 width =4)

-> Index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

Index Cond: (id = 48951)

-> Bitmap Heap Scan on data d1 (cost =4.48..102.77 rows =26 width =223)

Recheck Cond: (d1.itemvalue = d2.itemvalue)

-> Bitmap Index Scan on completeitemindex (cost=0.00..4.47 rows=26 width=0)
√

Index Cond: (d1.itemvalue = d2.itemvalue)

-> Hash (cost =16.56..16.56 rows=1 width =4)

-> Nested Loop (cost =0.00..16.56 rows=1 width =4)

-> Index Scan using i4wcbrole on wascontrolledby wcb (cost=0.00..8.28 rows=1 width=8)
√

Index Cond: (value = ’MobyBlat ’:: text)

-> Index Scan using agent_pkey on agent a (cost =0.00..8.28 rows=1 width =4)

Index Cond: (a.id = wcb.cause)

Filter: (a.value = ’MobyBlat ’:: text)

SubPlan 1

-> Aggregate (cost =8.32..8.33 rows=1 width =4)

-> Index Scan using i1usedcause on used u (cost=0.00..8.31 rows=2 width=4)
√

Index Cond: (cause = $0)

SubPlan 2

-> Aggregate (cost =8.37..8.38 rows=1 width =4)

-> Index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..8.37 rows=2 width=4)
√

Index Cond: (effect = $0)

112 | Appendix B

Query plan B.8: Query plan for query A.4, Download task. Created
indices: I1-I6. I6, usedrole, reduces performance for
Download queries.

Nested Loop Semi Join (cost =1654.45..2726.98 rows=1 width =4)

-> Nested Loop Semi Join (cost =1654.45..2705.81 rows=1 width =12)

Join Filter: (t.id=u.cause)

-> Nested Loop (cost =16.57..24.87 rows=1 width =8)

-> HashAggregate (cost =16.57..16.58 rows=1 width =4)

-> Nested Loop (cost =0.00..16.56 rows=1 width =4)

-> index Scan using i4wcbrole on wascontrolledby wcb (cost=0.00..8.28 rows=1 width=8)
√

index Cond: (role=’Scripting Role ’:: text)

-> index Scan using agent_pkey on agent a (cost =0.00..8.28 rows=1 width =4)

index Cond: (a.id=wcb.cause)

Filter: (a.value=’Perl agent localhost ’:: text)

-> index Scan using process_pkey on process t (cost =0.00..8.28 rows=1 width =4)

index Cond: (t.id=wcb.effect)

Filter: ((not (t.finished is null)) and (t.value=’Download url ’:: text))

-> Hash Semi Join (cost =1637.88..2633.95 rows =3759 width =4)

Hash Cond: (u.effect=a.id)

-> Bitmap Heap Scan on used u (cost =93.40..1028.38 rows =3759 width =8)

Recheck Cond: (role=’url ’:: text)

-> Bitmap index Scan on i6usedrole (cost=0.00..92.46 rows=3759 width=0) ×
index Cond: (role=’url ’:: text)

-> Hash (cost =1500.40..1500.40 rows =3527 width =4)

-> Nested Loop (cost =0.00..1500.40 rows =3527 width =4)

-> Nested Loop (cost =0.00..117.34 rows =3927 width =4)

-> index Scan using data_pkey on data d2 (cost =0.00..8.28 rows=1 width =219)

index Cond: (id =82971)

-> index Scan using completeitemindex on data d1 (cost=0.00..108.73 rows=26 width=223)
√

index Cond: (d1.itemvalue=d2.itemvalue)

-> index Scan using i3artdataid on artifact a (cost=0.00..0.34 rows=1 width=8)
√

index Cond: (a.dataid=d1.id)

-> index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..4.45 rows=1 width=4)
√

index Cond: (wgb.effect=t.id)

Filter: (wgb.role=’content ’:: text)

SubPlan 1

-> Aggregate (cost =8.32..8.33 rows=1 width =4)

-> index Scan using i1usedcause on used u (cost=0.00..8.31 rows=2 width=4)
√

index Cond: (cause=$0)

SubPlan 2

-> Aggregate (cost =8.37..8.38 rows=1 width =4)

-> index Scan using i2wgbeffect on wasgeneratedby wgb (cost=0.00..8.37 rows=2 width=4)
√

index Cond: (effect=$0)

Query plan B.9: Query plan for a phase 2 query.
Nested Loop (cost =0.00..25.37 rows=2 width =11)

-> Index Scan using wgbeffect on wasgeneratedby wgb (cost=0.00..8.80rows=2 width=11)
√

Index Cond: (effect = 94076)

-> Index Scan using artifact pkey on artifact a (cost=0.00..8.27 rows=1 width=8)
√

Index Cond: (a.id = wgb.cause)

Bibliography

[1] ALTINTAS, I., BARNEY, O., AND JAEGER-FRANK, E. Provenance collection sup-
port in the Kepler scientific workflow system. MOREAU, L., AND FOSTER, I.,
Eds., vol. 4145 of Lecture Notes in Computer Science, Springer, pp. 118–132, 2006.
DOI: 10.1007/11890850_14.

[2] ALTINTAS, I., BERKLEY, C., JAEGER, E., JONES, M., LUDÄSCHER, B., AND MOCK,
S. Kepler: an extensible system for design and execution of scientific workflows.
HATZOPOULOS, M., AND MANOLOPOULOS, Y., Eds., SSDBM’04: 16th International
Conference on Scientific and Statistical Database Management, pp. 423–424, 2004.
DOI: 10.1109/ssdm.2004.1311241.

[3] ALTSCHUL, S. F., MADDEN, T. L., SCHÄFFER, A. A., ZHANG, J., ZHANG, Z.,
MILLER, W., AND LIPMAN, D. J. Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Research, 25(17):3389–3402,
1997. DOI: 10.1093/nar/25.17.3389.

[4] BARGA, R. S., AND DIGIAMPIETRI, L. A. Automatic generation of workflow prove-
nance. MOREAU, L., AND FOSTER, I., Eds., vol. 4145 of Lecure Notes in Computer
Science, pp. 1–9, 2006. DOI: 10.1007/11890850_1.

[5] BARGA, R. S., JACKSON, J., ARAUJO, N., GUO, D., GAUTAM, N., GROCHOW, K.,
AND LAZOWSKA, E. Trident: Scientific workflow workbench for oceanography.
SERVICES ’08: Congress on Services - Part I, IEEE Computer Society, pp. 465–466,
2008. DOI: 10.1109/services-1.2008.101.

[6] BOWERS, S., MCPHILLIPS, T., RIDDLE, S., ANAND, M., AND LUDÄSCHER, B.
Kepler/pPOD: scientific workflow and provenance support for assembling the
tree of life. vol. 5272 of Lecture Notes in Computer Science, pp. 70–77, 2008.
DOI: 10.1007/978-3-540-89965-5_9.

[7] BRAZMA, A., HINGAMP, P., QUACKENBUSH, J., SHERLOCK, G., SPELLMAN, P.,
STOECKERT, C., AACH, J., ANSORGE, W., BALL, C. A., CAUSTON, H. C., GAASTER-
LAND, T., GLENISSON, P., HOLSTEGE, F. C. P., KIM, I. F., MARKOWITZ, V.,
MATESE, J. C., PARKINSON, H., ROBINSON, A., SARKANS, U., SCHULZE-KREMER,
S., STEWART, J., TAYLOR, R., VILO, J., AND VINGRON, M. Minimum information
about a microarray experiment (MIAME)-toward standards for microarray data.
Nature genetics, 29(4):365–371, 2001. DOI: 10.1038/ng1201-365.

http://dx.doi.org/10.1007/11890850_14
http://dx.doi.org/10.1109/ssdm.2004.1311241
http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1007/11890850_1
http://dx.doi.org/10.1109/services-1.2008.101
http://dx.doi.org/10.1007/978-3-540-89965-5_9
http://dx.doi.org/10.1038/ng1201-365

116 | Bibliography

[8] CALLAHAN, S. P., FREIRE, J., SANTOS, E., SCHEIDEGGER, C. E., SILVA, C. T.,
AND VO, H. T. Vistrails: visualization meets data management. HRISTIDIS,
V., AND POLYZOTIS, N., Eds., SIGMOD ’06: Proceedings of the 2006 ACM SIG-
MOD international conference on Management of data, ACM, pp. 745–747, 2006.
DOI: 10.1145/1142473.1142574.

[9] DA CRUZ, S. M. S., CAMPOS, M. L. M., AND MATTOSO, M. Towards a taxon-
omy of provenance in scientific workflow management systems. IEEE Congress on
SERVICES - I, 0:259–266, 2009.

[10] DAVIDSON, S. B., BOULAKIA, S. C., EYAL, A., LUDÄSCHER, B., MCPHILLIPS, T. M.,
BOWERS, S., ANAND, M. K., AND FREIRE, J. Provenance in scientific workflow
systems. IEEE Data Engineering Bulletin, 30(4):44–50, 2007.

[11] DAVIDSON, S. B., AND FREIRE, J. Provenance and scientific workflows: challenges
and opportunities. SIGMOD’08: SIGMOD International conference on Management
of data, ACM, pp. 1345–1350, 2008. DOI: 10.1145/1376616.1376772.

[12] DEELMAN, E., GANNON, D., SHIELDS, M., AND TAYLOR, I. Workflows and e-
science: An overview of workflow system features and capabilities. Future Gener-
ation Computer Systems, 25:528–540, 2008. DOI: 10.1016/j.future.2008.06.012.

[13] DOLGERT, A., GIBBONS, L., JONES, C. D., KUZNETSOV, V., RIEDEWALD, M.,
RILEY, D., SHARP, G. J., AND WITTICH, P. Provenance in high-energy
physics workflows. Computing in Science and Engineering, 10(3):22-29, 2008.
DOI: 10.1109/mcse.2008.81.

[14] EISENBERG, A., AND MELTON, J. SQL:1999, formerly known as SQL3. ACM
SIGMOD Record, 28(1):131–138, 1999. DOI: 10.1145/309844.310075.

[15] FLICEK, P., AKEN, B. L., BEAL, K., BALLESTER, B., CACCAMO, M., CHEN, Y.,
CLARKE, L., COATES, G., CUNNINGHAM, F., CUTTS, T., DOWN, T., DYER, S. C.,
EYRE, T., FITZGERALD, S., FERNANDEZ-BANET, J., GRÄF, S., HAIDER, S., HAM-
MOND, M., HOLLAND, R., HOWE, K. L., HOWE, K., JOHNSON, N., JENKINSON, A.,
KÄHÄRI, A., KEEFE, D., KOKOCINSKI, F., KULESHA, E., LAWSON, D., LONGDEN,
I., MEGY, K., MEIDL, P., OVERDUIN, B., PARKER, A., PRITCHARD, B., PRLIC, A.,
RICE, S., RIOS, D., SCHUSTER, M., SEALY, I., SLATER, G., SMEDLEY, D., SPUDICH,
G., TREVANION, S., VILELLA, A. J., VOGEL, J., WHITE, S., WOOD, M., BIRNEY,
E., COX, T., CURWEN, V., DURBIN, R., FERNANDEZ-SUAREZ, X. M., HERRERO, J.,
HUBBARD, T. J., KASPRZYK, A., PROCTOR, G., SMITH, J., URETA-VIDAL, A., AND

SEARLE, S. Ensembl 2008. Nucleic acids research, 36(Database issue):D707-D714,
2008. DOI: 10.1093/nar/gkm988.

[16] FREIRE, J., KOOP, D., AND MOREAU, L., Eds. Second International Provenance
and Annotation Workshop, IPAW’08, vol. 5272 of Lecture Notes in Computer Sci-
ence, Springer. 2008.

[17] GIL, Y., DEELMAN, E., ELLISMAN, M., FAHRINGER, T., FOX, G., GANNON, D.,
GOBLE, C. A., LIVNY, M., MOREAU, L., AND MYERS, J. Examining the challenges
of scientific workflows. Computer, 40(12):24–32, 2007. DOI: 10.1109/MC.2007.421.

http://dx.doi.org/10.1145/1142473.1142574
http://dx.doi.org/10.1145/1376616.1376772
http://dx.doi.org/10.1016/j.future.2008.06.012
http://dx.doi.org/10.1109/mcse.2008.81
http://dx.doi.org/10.1145/309844.310075
http://dx.doi.org/10.1093/nar/gkm988
http://dx.doi.org/10.1109/MC.2007.421

| 117

[18] GOBLE, C. A. Position statement: Musings on provenance, workflow and (se-
mantic web) annotations for bioinformatics. ZHAO, Y., Ed., Workshop on Data
Derivation and Provenance, 2002.

[19] GOBLE, C. A., AND DE ROURE, D. C. myExperiment: social networking for
workflow-using e-scientists. DEELMAN, E., AND TAYLOR, I., Eds., WORKS ’07:
Proceedings of the 2nd workshop on Workflows in support of large-scale science,
ACM, pp. 1–2, 2007. DOI: 10.1145/1273360.1273361.

[20] GREENWOOD, M., GOBLE, C. A., STEVENS, R., ZHAO, J., ADDIS, M., MARVIN,
D., MOREAU, L., AND OINN, T. Provenance of e-science experiments - experience
from bioinformatics. COX, S., Ed., Proceedings of UK e-Science All Hands Meeting
2003, pp. 223–226, 2003.

[21] GROTH, P. The Origin of Data: Enabling the Determination of Provenance in Multi-
institutional Scientific Systems through the Documentation of Processes. PhD thesis,
University of Southampton, 2007.

[22] KAWAS, E., SENGER, M., AND WILKINSON, M. D. BioMoby extensions to the
Taverna workflow management and enactment software. BMC bioinformatics,
7(523):1–13, 2006. DOI: 10.1186/1471-2105-7-523.

[23] KENT, W. J. BLAT: The BLAST-like alignment tool. Genome Research, 12(4):656–
664, 2002. DOI: 10.1101/gr.229202.

[24] KWASNIKOWSKA, N., AND VAN DEN BUSSCHE, J. Mapping the NRC Dataflow
Model to the Open Provenance Model. vol. 5272 of Lecture Notes in Computer
Science, pp. 3–16, 2008. DOI: 10.1007/978-3-540-89965-5_3.

[25] LUDÄSCHER, B., ALTINTAS, I., BERKLEY, C., HIGGINS, D., JAEGER, E., JONES, M.,
LEE, E. A., TAO, J., AND ZHAO, Y. Scientific workflow management and the Kepler
system. Concurrency and Computation: Practice and Experience, 18(10):1039–
1065, 2006. DOI: 10.1002/cpe.994.

[26] MAGLOTT, D., OSTELL, J., PRUITT, K. D., AND TATUSOVA, T. Entrez gene:
gene-centered information at ncbi. Nucleic Acids Research, 33:54–58, 2005.
DOI: doi:10.1093/nar/gki031.

[27] MOREAU, L., AND FOSTER, I., Eds. International Provenance and Annotation
Workshop, IPAW 2006, vol. 4145 of Lecture Notes in Computer Science, Springer.
2007.

[28] MOREAU, L., FREIRE, J., FUTRELLE, J., MCGRATH, R., MYERS, J., AND PAULSON,
P. The Open Provenance Model: An overview. vol. 5272 of Lecture Notes in
Computer Science, pp. 323–326, 2008. DOI: 10.1007/978-3-540-89965-5_31.

[29] MOREAU, L., GROTH, P., MILES, S., VAZQUEZ, J., IBBOTSON, J., JIANG, S.,
MUNROE, S., RANA, O., SCHREIBER, A., TAN, V., AND VARGA, L. The Provenance
of Electronic Data. Communications of the ACM, 51(4):52–58, 2008.

http://dx.doi.org/10.1145/1273360.1273361
http://dx.doi.org/10.1186/1471-2105-7-523
http://dx.doi.org/10.1101/gr.229202
http://dx.doi.org/10.1007/978-3-540-89965-5_3
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/doi:10.1093/nar/gki031
http://dx.doi.org/10.1007/978-3-540-89965-5_31

118 | Bibliography

[30] MOREAU, L., AND LUDÄSCHER, B., Eds. Special Issue: The First Provenance Chal-
lenge, vol. 20(5) of Concurrency and Computation: Practice and Experience, Wiley.
2008.

[31] MOREAU, L., PLALE, B., MILES, S., GOBLE, C. A., MISSIER, P., BARGA, R. S.,
SIMMHAN, Y. L., FUTRELLE, J., MCGRATH, R., MYERS, J., PAULSON, P., BOWERS,
S., LUDÄSCHER, B., KWASNIKOWSKA, N., VAN DEN BUSSCHE, J., ELLKVIST, T.,
FREIRE, J., AND GROTH, P. The Open Provenance Model (v1.01). Technical
report, University of Southampton, 2008.

[32] NEERINCX, P. B. T., RAUWERDA, H., NIE, H., GROENEN, M. A. M., BREIT, T. M.,
AND LEUNISSEN, J. A. M. OligoRAP - An Oligo Re-Annotation Pipeline to improve
annotation and estimate target specificity. BMC Proceedings, 3(Suppl 4):S4, 2009.
DOI: 10.1186/1753-6561-3-S4-S4.

[33] NEWCOMER, E. Understanding Web Services: XML, WSDL, SOAP, and UDDI.
Addison-Wesley, 2002.

[34] OINN, T., ADDIS, M., FERRIS, J., MARVIN, D., SENGER, M., GREENWOOD, M.,
CARVER, T., GLOVER, K., POCOCK, M. R., WIPAT, A., AND LI, P. Taverna: A tool
for the composition and enactment of bioinformatics workflows. Bioinformatics,
20(17):3045–3054, 2004. DOI: 10.1093/bioinformatics/bth361.

[35] OINN, T., GREENWOOD, M., ADDIS, M., ALPDEMIR, M. N., FERRIS, J., GLOVER,
K., GOBLE, C. A., GODERIS, A., HULL, D., MARVIN, D., LI, P., LORD, P., POCOCK,
M. R., SENGER, M., STEVENS, R., WIPAT, A., AND WROE, C. Taverna: lessons in
creating a workflow environment for the life sciences: Research articles. Con-
currency and Computation: Practice and Experience, 18(10):1067–1100, 2006.
DOI: 10.1002/cpe.993.

[36] ROURE, D. D., GOBLE, C., AND STEVENS, R. Designing the myexperiment virtual
research environment for the social sharing of workflows. Third IEEE Interna-
tional Conference on e-Science and Grid Computing (e-Science 2007):603-610,
2007. DOI: 10.1109/e-science.2007.29.

[37] SAHOO, S. S., BARGA, R. S., GOLDSTEIN, J., AND SHETH, A. P. Provenance
algebra and materialized view-based provenance management. Technical report,
Microsoft Research, 2008.

[38] SELTZSAM, S., HOLZHAUSER, R., AND KEMPER, A. Semantic caching for web ser-
vices. BENATALLAH, B., CASATI, F., AND TRAVERSO, P., Eds., vol. 3826 of Lecture
Notes in Computer Science, Springer, pp. 324–340, 2005. DOI: 10.1007/11596141_25.

[39] SENGER, M., RICE, P., AND OINN, T. Soaplab - a unified sesame door to analysis
tools. UK e-Science All Hands Meeting, pp. 509–513, 2003.

[40] SIMMHAN, Y. L., PLALE, B., AND GANNON, D. A survey of data provenance in
e-science. ACM SIGMOD Record, 34(3):31–36, 2005. DOI: 10.1145/1084805.1084812.

[41] STEVENS, R., ZHAO, J., AND GOBLE, C. Using provenance to manage knowl-
edge of In Silico experiments. Briefings in Bioinformatics, 8(3):183–194, 2007.
DOI: 10.1093/bib/bbm015.

http://dx.doi.org/10.1186/1753-6561-3-S4-S4
http://dx.doi.org/10.1093/bioinformatics/bth361
http://dx.doi.org/10.1002/cpe.993
http://dx.doi.org/10.1109/e-science.2007.29
http://dx.doi.org/10.1007/11596141_25
http://dx.doi.org/10.1145/1084805.1084812
http://dx.doi.org/10.1093/bib/bbm015

| 119

[42] TAYLOR, I. Triana generations. E-SCIENCE ’06: Second IEEE International Con-
ference on e-Science and Grid Computing, IEEE Computer Society, p. 143, 2006.
DOI: 10.1109/e-science.2006.146.

[43] TAYLOR, I., HARRISON, A., MASTROIANNI, C., AND SHIELDS, M. Cache for work-
flows. WORKS’07: 2nd workshop on Workflows in support of large-scale science,
ACM, pp. 13–20, 2007. DOI: 10.1145/1273360.1273363.

[44] TAYLOR, I., SHIELDS, M., WANG, I., AND HARRISON, A. Visual grid workflow in
Triana. Grid Computing, 3(3):153–169, 2005. DOI: 10.1007/s10723-005-9007-3.

[45] TAYLOR, I., SHIELDS, M., WANG, I., AND HARRISON, A. The Triana workflow
environment: Architecture and applications. TAYLOR, I., DEELMAN, E., GAN-
NON, D., AND SHIELDS, M., Eds., Workflows for e-Science, pp. 320–339, 2007.
DOI: 10.1007/978-1-84628-757-2_20.

[46] VAN DER AALST, W. M. P., ALDRED, L., DUMAS, M., AND TER HOFSTEDE, A. H. M.
Design and implementation of the YAWL system. GOOS, G., HARTMANIS, J.,
AND VAN LEEUWEN, J., Eds., CAiSE’04: 16th International Conference on Advanced
Information Systems Engineering, pp. 142–159, 2004.

[47] VAN DER AALST, W. M. P., AND TER HOFSTEDE, A. H. M. Yawl: yet
another workflow language. Information Systems, 30(4):245 - 275, 2005.
DOI: doi:10.1016/j.is.2004.02.002.

[48] VAN DER AALST, W. M. P., TER HOFSTEDE, A. H. M., KIEPUSZEWSKI, B., AND

BARROS, A. P. Workflow patterns. Distributed and Parallel Databases, 14(1):5-51,
2003. DOI: 10.1023/A:1022883727209.

[49] WASSINK, I. Work flows in life science. PhD thesis, Group of Human Media Inter-
action, Department of Electrical Engineering, Mathematics and Computer Science
(EEMCS), University of Twente, 2009. In press.

[50] WASSINK, I., OOMS, M. J., AND VAN DER VET, P. E. Designing workflows on
the fly using e-BioFlow. Joint ICSOC&ServiceWave 2009 Conference, p. 15, 2009,
accepted.

[51] WASSINK, I., RAUWERDA, H., NEERINCX, P. B. T., VAN DER VET, P. E., BREIT,
T. M., LEUNISSEN, J. A. M., AND NIJHOLT, A. Using R in Taverna: RShell v1.2.
BMC Research Notes, 2(138):1–8, 2009. DOI: 10.1186/1756-0500-2-138.

[52] WASSINK, I., RAUWERDA, H., VAN DER VET, P. E., BREIT, T. M., AND NIJHOLT, A.
e-BioFlow: Different perspectives on scientific workflows. ELLOUMI, M., KÜNG,
J., LINIAL, M., MURPHY, R. F., SCHNEIDER, K., AND TOMA, C., Eds., vol. 13
of Communications in Computer and Information Science, Springer, pp. 243–257,
2008. DOI: 10.1007/978-3-540-70600-7_19.

[53] WILKINSON, M. D., AND LINKS, M. BioMOBY: an open source biologi-
cal web services proposal. Briefings in Bioinformatics, 3(4):331–341, 2002.
DOI: 10.1093/bib/3.4.331.

http://dx.doi.org/10.1109/e-science.2006.146
http://dx.doi.org/10.1145/1273360.1273363
http://dx.doi.org/10.1007/s10723-005-9007-3
http://dx.doi.org/10.1007/978-1-84628-757-2_20
http://dx.doi.org/doi: 10.1016/j.is.2004.02.002
http://dx.doi.org/10.1023/A:1022883727209
http://dx.doi.org/10.1186/1756-0500-2-138
http://dx.doi.org/10.1007/978-3-540-70600-7_19
http://dx.doi.org/10.1093/bib/3.4.331

120 | Bibliography

[54] WONG, S. C., MILES, S., FANG, W., GROTH, P., ZAUNER, K.-P., AND

MOREAU, L. Provenance-based validation of e-science experiments. Web Se-
mantics: Science, Services and Agents on the World Wide Web, 5(1):28–38, 2007.
DOI: 10.1016/j.websem.2006.11.003.

[55] ZHAO, J., GOBLE, C. A., AND STEVENS, R. Semantically linking and browsing
provenance logs for e-science. BOUZEGHOUB, M., GOBLE, C. A., KASHYAP, V.,
AND SPACCAPIETRA, S., Eds., Springer, pp. 158–176, 2004.

http://dx.doi.org/10.1016/j.websem.2006.11.003

	Summary
	Preface
	List of Figures
	List of Tables
	List of Queries and Query Plans
	Introduction
	Provenance as Cache
	Provenance visualisation
	Outline of this thesis

	Provenance in Scientific Workflows
	Scientific Workflow Management Systems
	Provenance
	The Open Provenance Model
	Provenance archive as cache

	Improvements to e-BioFlow
	Motivation for the use of e-BioFlow
	Improvement implementation details
	Proof-of-principle case: OligoRAP
	Motivation
	Casting OligoRAP as a Workflow in e-BioFlow

	Provenance implementation
	Requirements for provenance implementations
	Database Design

	Provenance Recording: an OPM-profile
	Running OligoRAP: results
	Discussion

	Using provenance as cache
	Caching scheme
	Cache phase 1
	Cache phase 2

	Implementation
	Query for cache phase 1
	Query used in cache phase 2

	Optimising performance of phase 1 cache queries
	Query set and database used in measurements
	Optimising using subqueries
	Optimising using indices
	Performance of querying non-cached tasks
	Performance of Phase 2 queries

	Caching tasks in OligoRAP
	Results
	Discussion

	Provenance Visualisation
	Provenance Browser
	Navigating the Refinement Tree
	Perspectives
	Query interface
	Loading neighbours

	Browsing through an OligoRAP run
	Debugging with the Provenance Browser
	Discussion

	Conclusion
	Summary
	Future Work

	Queries
	Query plans
	Bibliography

