
Parallel Preconditioners for Stokes Flow

A. Wildeman

August 27, 2009

NACM
Applied Mathematics
University of Twente

Master’s Thesis

Parallel Preconditioners
for Stokes Flow

Author:
Albert Wildeman

Supervisors:
Prof.dr.ir. J.J.W. van der Vegt

Dr. M.A. Bochev

August 27, 2009

Contents

1 Introduction 4

2 Amphi3D 6
2.1 Diffuse Interface Method . 6
2.2 Finite Element Formulation . 8
2.3 Adaptive Mesh Generation . 10
2.4 Parallelization of Amphi3D . 10

3 Parallel Algebraic Preconditioning 12
3.1 Incomplete decomposition . 15
3.2 Sparse approximate inverses . 17

3.2.1 Frobenius norm minimization 17
3.2.2 Biconjugation . 18

3.3 Algebraic multigrid . 19

4 Stokes flow test case 21
4.1 Description of algorithm . 21

4.1.1 The Governing Equations and Boundary Conditions 21
4.1.2 Weak Formulation and discretization 23

4.2 Solution of the linear systems . 25
4.2.1 Properties of the linear systems 26
4.2.2 Reordering . 27
4.2.3 Symmetric diagonal scaling 27
4.2.4 Use of BiCGStab(`) . 28

4.3 Parallel Preconditioners . 28
4.3.1 Block Jacobi . 28
4.3.2 PILUT . 29
4.3.3 ParaSAILS . 32

1

5 Software issues 35
5.1 Reordering and scaling . 35
5.2 Larger grid sizes . 36
5.3 HYPRE . 36

6 Results 38

7 Conclusions 43

Appendix:

A Derivation of the weak formulations 45
A.1 Amphi3D . 45

A.1.1 The momentum equation 45
A.1.2 The continuity equation . 47
A.1.3 The stress equation . 47
A.1.4 The Cahn-Hilliard equation 47

A.2 Stokes flow . 49
A.2.1 The momentum equation 49
A.2.2 The penalized continuity equation 49

B The integration of PETSc in Amphi3D 50
B.1 Initialization, input and output . 50
B.2 PETSc datastructures . 51
B.3 Matrix memory preallocation . 52
B.4 Matrix Assembly . 54

2

Summary

This report compares parallel preconditioners for 3D Stokes flow. Its motivation
lies in Amphi3D, a diffuse interface algorithm simulating three dimensional inter-
facial dynamics of complex fluids, the parallelization of which has to date been in-
effective due to the lack of an efficient parallel preconditioner. The approach taken
here is to evaluate the Block Jacobi, Parallel ILU and Sparse approximate inverse
parallel preconditioners on the reduced problem of Stokes flow for a small range
of Reynolds numbers. Although surprisingly good results are achieved without
preconditioning, it is the sparse approximate inverse preconditioner that delivers
the most promising results.

3

Chapter 1

Introduction

Amphi (Adaptive Meshing for φ, the phase-field parameter) is a numerical algo-
rithm for the solution of two-phase complex fluid flows. The use of a phase field
parameter to distinguish between the two phases is its key feature, but the ex-
tremely fine mesh this requires for adequate resolution of the thin interfacial layer
results in very large meshes, despite the use of adaptive meshing. As this require-
ment is even more pronounced in 3D, only very small 3D problems can be modeled
with sufficient accuracy at reasonable computation times. In order to enable its
application in the exploration of new and physically relevant flow problems, a
parallel version of the algorithm was recently implemented. The approach was to
leave the sequential code largely intact, and handle only the solution of the linear
systems, which accounts for the bulk of the overall computational load, in parallel.
The set-up of the linear systems and preconditioners, as well as the application of
Krylov iterative solvers, is done through PETSc, a Portable, Extensible Toolkit
for Scientific Computation [4]. This is essentially a library of functions, such as
parallel linear and nonlinear solvers, built on top of MPI, the Message Passing
Interface.

In this parallel code, the preconditioners available through PETSc were prob-
lematic and ineffective, but their parameter spaces are vast and were not fully
explored. The goal of this project is to test and evaluate parallel preconditioners
for Stokes flow on unstructured grids. Because Stokes flow is an important building
block of the system of equations arising in Amphi3D, evaluation of parallel pre-
conditioners on this simpler problem can subsequently serve as a basis for further
selection or development of an effective preconditioner. Once it is clear how dif-
ferent preconditioners perform for Stokes flow, an effective preconditioner for the
full equations can be determined in a structured manner by gradually increasing
the complexity of the equations while re-selecting or modifying the preconditioner
and its parameters.

4

Several surveys [13, 57, 106] of parallel preconditioners have been published,
but publications featuring direct numerical comparison of multiple parallel pre-
conditioners are less common. Two papers by Ma [84, 85] approach the nature of
this report, but the lack of the Stokes flow case and, much more imporantly, the
dominant role of the reordering schemes associated with regular grids prevent a
meaningful comparison to these papers.

After an introductory description of the Amphi3D algorithm and a general
discussion of parallel algebraic preconditioning, the Stokes flow test case is detailed
as well as the particular preconditioners tested. The concluding chapters contain
the results obtained, a review of their performance and an evaluation of their
potential.

5

Chapter 2

Amphi3D

In a system of two immiscible fluids, the interface plays a central role in the fluid
dynamics and rheology. The mathematics of such a system is generally compli-
cated by the movement of the interface, even more so when break-up or coalescence
have to be accounted for. Two general strategies have emerged to encompass the
evolution of the interface; interface tracking and phase-field methods. The former
is a Lagrangian approach which directly tracks the interface with a fixed set of
gridpoints, a process which becomes problematic when break-up or coalescence
occur. In contrast, these phenomena are incorporated naturally in a phase-field
framework such as Amphi, where the morphology is described by a continuous
phase-field parameter. Furthermore, a diffuse interface is more physical in the
sense that real interfaces have a finite thickness, or mixing region. The interfacial
thickness used in simulations is, however, unphysically large for numerical rea-
sons, but it leads to an energy-based variational formalism which allows a natural
inclusion of complex fluid rheologies, on the condition that they can be described
by a free energy.

Amphi3D can essentially be split into three different parts: the diffuse interface
method, its finite element formulation and the adaptive meshing scheme.

2.1 Diffuse Interface Method

The diffuse interface model was previously described by [3, 82, 69] and extended
to incorporate non-Newtonian fluids by [131, 133]. The mixture of a Newtonian
and an Oldroyd-B fluid will be used to outline their results. The two fluids are
immiscible except for a very thin interfacial region, where some mixing does occur
and mixing energy is contained. An Oldroyd-B fluid is a dilute suspension of
polymer chains modeled as Hookean dumbbells in a Newtonian solvent. The free
energy of the mixture comprises both the elastic energy of these dumbbells and the

6

mixing energy. The phase-field variable φ is defined to indicate the concentrations
of the Newtonian and the Oldroyd-B fluid with (1+φ)/2 and (1−φ)/2, respectively.
The mixing energy takes the Ginzburg-Landau form [24]:

fmix(φ,∇φ) =
1
2
λ|∇φ|2 +

λ

4ε2
(φ2 − 1)2 (2.1)

where λ represents the mixing energy density and ε is the capillary width, propor-
tional to the width of the diffuse interface. The surface tension can be extracted
from the ratio λ/ε as ε→ 0 [69, 131]:

σ =
2
√

2
3

λ

ε
(2.2)

Through Young’s equation, σ cos θS = σw2−σw1, the fluid-solid interfacial tensions
σw1 and σw2 for the two fluids determine the static contact angle θS . The diffuse-
interface wall energy thus becomes [35, 70, 132]

fw(φ) = −σ cos θS
φ(3− φ2)

4
+
σw1 + σw2

2
. (2.3)

The evolution of φ is governed by the Cahn-Hilliard equation:

∂φ

∂t
+ v · ∇φ = γ∇2G (2.4)

where the chemical potential reads

G =
δ
∫
fmix dΩ
δφ

= λ

[
−∇2φ+

φ(φ2 − 1)
ε2

]
(2.5)

and γ is the mobility [131].
The elastic energy of the Oldroyd-B fluid is described in [24]:

fd =
1 + φ

2

∫
R3

(
kT ln Ψ +

1
2
HQ ·Q

)
Ψ dQ (2.6)

with n denoting the number density of the dumbbells, k the Boltzmann constant,
T the temperature, H the elastic spring constant, Ψ(Q) the configuration distri-
bution and Q is the vector connecting both ends of the spring.

The stress tensor τd is obtained by applying a variational procedure to the
total free energy, and satisfies the Maxwell equation [131, 133]:

τd + λHτd(1) = µp[∇v + (∇v)T] (2.7)

7

where λH = ζ/(4H) is the relaxation time, the subscript(1) denotes the upper
convected derivative, ζ is the friction coefficient between the dumbbell beads and
the suspending solvent and µp = nkTλH is the polymer viscosity. Upon addition
of the viscous stresses, the total stress tensor without the contribution of the
mixing energy becomes

τ =
(

1− φ
2

µn +
1 + φ

2
µs

)
[∇v + (∇v)T] +

1 + φ

2
τd (2.8)

with µn and µs denoting the viscosities of the Newtonian component and the
Newtonian solvent, respectively. With this stress tensor, the equations of motion
can be written as

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · (−pI + τ) +G∇φ+ ρg (2.9)

∇ · v = 0 (2.10)

where ρ = 1+φ
2 ρn + 1−φ

2 ρs with ρn and ρs the densities of the Newtonian and
Oldroyd-B fluids, respectively, and similarly µ = 1+φ

2 µs + 1−φ
2 µn.

Furthermore, g is the gravitational acceleration and G∇φ is the interfacial
stress, the diffuse-interface representation of the inertial forces on both fluids [131].

The boundary conditions come to

v − vw = 0 (2.11)

on the solid wall boundary (∂Ω)u, with vw denoting the velocity of the wall, and

n · ∇G = 0 (2.12)

λn · ∇φ+ f
′
w(φ) = 0 (2.13)

on the entire boundary ∂Ω, with n denoting the unit normal to the boundary. The
no-slip condition, (2.11), leaves Cahn-Hilliard diffusion as the sole source of contact
line motion. Mass conservation of both fluids follows from (2.12), which ensures
zero flux through the solid wall and mass conservation of each fluid. Finally, (2.13)
is the natural boundary condition from the variation of the wall energy fw, and
the left-hand side represents the surface chemical potential. Thus, this condition
entails that the fluid layer is always at equilibrium with the solid substrate.

2.2 Finite Element Formulation

The discretization of the governing equations follows the standard Galerkin for-
malism [66]. However, the use of C0 elements, which are smooth within in each

8

element and continuous across element boundaries, do not accomodate the repre-
sentation of spatial derivates of order higher than two. To circumvent this issue,
the Cahn-Hilliard equation (2.4) is decomposed into two second-order equations:

∂φ

∂t
+ v · ∇φ =

γλ

ε2
∆(ψ + sφ) (2.14)

ψ = −ε2∆φ+ (φ2 − 1− s)φ (2.15)

The parameter s was introduced to enhance stability of the numerical method and
in all applications to date [133, 135], s = 0.5 has been adequate. A convenient
side effect of this value is that it reduces the chemical potential to G = λ (ψ + sφ).

The weak solution sought is (v, p, τd, φ, ψ) ∈ U × P × T × S × S, where for
3D flows, the solution spaces satisfy U ∈ H1(Ω)3, P ∈ L2(Ω), T ∈ L2(Ω)6,
and S ∈ H1(Ω). The weak form of the governing equations with basis functions
(ṽ, p̃, τ̃ , φ̃, ψ̃), is derived in appendix A.1:∫

Ω

{[
ρ

(
∂v

∂t
+ v · ∇v − g

)
−G∇φ

]
· ṽ + (−pI + τ) : ∇ṽ

}
dΩ = 0 (2.16)∫

Ω
(∇ · v)p̃ dΩ = 0 (2.17)∫

Ω

{
τd + λHτd(1) − µp

[
∇v + (∇v)T

]}
: τ̃ dΩ = 0 (2.18)∫

Ω

[(
∂φ

∂t
+ v · ∇φ

)
φ̃+

γλ

ε2
∇(ψ + sφ) · ∇φ̃

]
dΩ = 0 (2.19)∫

Ω

{[
ψ − (φ2 − 1− s)φ

]
ψ̃ − ε2∇φ · ∇ψ̃

}
dΩ−

∫
∂Ω

ε2

λ
f ′w(φ)ψ̃ dS = 0 (2.20)

The associated boundary conditions take the following form:

v − vw = 0 on (∂Ω)u (2.21)
(−pI + τ) · n = 0 on (∂Ω)τ (2.22)

τd − τin = 0 on (∂Ω)in (2.23)
∇φ · n+ f ′w(φ)/λ = 0 on ∂Ω (2.24)
∇(ψ + sφ) · n = 0 on ∂Ω (2.25)

where ∂Ω = (∂Ω)u
⋃

(∂Ω)τ , (∂Ω)u
⋂

(∂Ω)τ = ∅ and (∂Ω)in is the inflow boundary.
Note that the natural boundary condition (2.24) was used in the derivation of
(2.20).

Piecewise quadratic (P2) elements for v, φ and ψ and piecewise linear (P1)
elements for p and τd are used for the spatial discretization on an unstructured

9

tetrahedral mesh. Upon spatial discretization of (2.16-2.20) the nonlinear algebraic
system is cast in the form

Λ ·
(
∂U

∂t

)n+1

+ F
(
Un+1

)
= 0 (2.26)

whereU is the solution vector, Λ a diagonal matrix with only zeros and ones on the
diagonal, depending on the appearance of the corresponding component of U in a
time derivative. All other terms are collected in F . A fully implicit second-order
scheme is applied to discretize the time derivative, upon which (2.26) is solved
with an inexact Newton method using backtracking for improved convergence and
stability, as described in [53]. The common technique of using the Jacobian matrix
within the Newton method for a number of iterations rather than updating it for
every iteration is employed to reduce the computational effort.

2.3 Adaptive Mesh Generation

To achieve fine resolution of the interface with realistic mesh sizes, Amphi employs
the GRUMMP (Generation and Refinement of Unstructured, Mixed-Element Meshes
in Parallel) adaptive meshing scheme [59]. Rather than tracking the interface, the
mesh is principally static but coarsened and refined as the interface moves through
the domain. As GRUMMP takes a scalar field LS to control the mesh size using
Delaunay refinement, it is natural to use the gradient of the phase-field variable
φ to determine this scalar field. Specifically, the form used for the 2D algorithm
is left unaltered in the 3D version:

LS(x, y, z) =
1

|∇φ|
√

2
C + 1

h∞

, (2.27)

where C is a parameter controlling the resolution of the interface and h∞ is the
mesh size in the bulk. At the interface, the thickness of which scales with ε, LS
becomes h1 ≈ C · ε. So far, simulations have been run with values for C ranging
from 0.5 to 1, and proper mesh resolution was achieved for C = h1 ≤ ε. As
the interface has a thickness of approximately 7.5ε, it will be covered by roughly
10 gridpoints. Furthermore, h∞ is actually split into h2 and h3 to allow different
mesh densities in the bulk of each fluid, and there is another parameter controlling
the sensitivity of the intended mesh density to the distance from the interface.

2.4 Parallelization of Amphi3D

The original sequential implementation of Amphi3D suffers from severe compu-
tational limits on its mesh sizes, both in memory and computational effort, and

10

it is for this reason that a parallel version of the code was designed. To this
end, it was decided to employ PETSc, a Portable, Extensible Toolkit for Scientific
Computation [4].

The PETSc manual states quite clearly that parallelization through the use
PETSc should not take the form where PETSc is called to solve a linear system
in parallel in an otherwise sequential code [4], as matrix assembly will take too
much time in this scenario. Instead, PETSc, and therefore parallelization, should
be involved at least in the matrix assembly.

In brief, the Amphi3D algorithm combines a finite-element flow solver and the
GRUMMP adaptive meshing scheme. Combined with a Crank-Nicholson temporal
discretization, this leads to a nonlinear system which is solved by an inexact
Newton method. Importantly, the nonlinear system is not explicitly available in
the code, and it would take considerable effort to write a function representing
this nonlinear system. However, such a function is prerequisite to invocation of
a PETSc nonlinear solver. Therefore, PETSc has to be involved at a lower level,
that is within the inexact Newton method. Each Newton iteration consists of the
assembly of a system matrix and the solution of the corresponding linear system,
which, as mentioned earlier, is also the lowest level at which PETSc parallelization
can be efficient. This motivated the decision to use PETSc, that is to parallelize, at
the level of matrix assembly and solution of the linear system within each Newton
iteration. Details of the incorporation of PETSc in the parallel code are collected
in appendix B.

The solution of the linear systems is handled by KSP, the interface which
provides access to all Krylov linear solvers within PETSc. The primary choices to
be made are those for a specific Krylov iterative solver and preconditioner. Both
the sequential and parallel codes use BiCG (Biconjugate gradient method [10])
and GMRES (Generalized minimal residual method [104]) Krylov solvers. Much
more importantly, the sequential ILU preconditioner is not available for parallel
application, and a different preconditioner therefore has to be used. To date,
this has proven challenging and no preconditioner has been found which provides
increased performance over the sequential code, or even the parallel code running
on a single processor.

11

Chapter 3

Parallel Algebraic
Preconditioning

The convergence rate of Krylov subspace methods is depends strongly on the
properties of the linear system it is applied to. In particular, performance improves
as the eigenvalues are more tightly clustered and often as they are closer to unity.
Preconditioning is the process of transforming the original linear system Ax = b
to an equivalent one, with favorable properties facilitating the convergence of a
Krylov subspace method applied to solve the system.

Preconditioning is widely regarded as the most important part in the design
of an efficient iterative solution strategy [57, 73] as well as the most difficult to
parallelize [13, 124]. In fact, solution of many problems only becomes feasible
upon its application. The importance of preconditioning was sharply indicated by
Trefethen and Bau in [119]:

In ending this book with the subject of preconditioners, we find
ourselves at the philosophical center of the scientific computing of the
future. (...) Nothing will be more central to computational science in
the next century than the art of transforming a problem that appears
intractable into another whose solution can be approximated rapidly.
For Krylov subspace matrix iterations, this is preconditioning.

Preconditioning is usually effected by a matrix called the preconditioner. This
nonsingular matrix, M , can be applied to the original linear system to transform
it into

M−1Ax = M−1b (3.1)

Which does not alter the solution x but is intended to improve the convergence
rate of the Krylov subspace method if the spectral properties of (3.1) are superior

12

to those of the original linear system. When M−1 is explicitly known, such as
for polynomial or sparse approximate inverse preconditioners, M itself is never
constructed. On the other hand, M−1 is usually never explicitly formed if M is
given. System (3.1) is the result of left preconditioning, but right preconditioning,
resulting in

AM−1y = b, x = M−1y (3.2)

and split preconditioning,

M−1
1 AM−1

2 y = M−1
1 b, x = M−1

2 y (3.3)

are also commmonly used, the latter intended primarily to preserve symmetry or
near-symmetry when it is present in the orginal system. Note that in (3.3), the
preconditioner is M = M1M2. Which of these types of preconditioning is most ef-
fective depends primarily on the Krylov subspace method used and the properties
of the system matrix. GMRES, for example, tends to favor right precondition-
ing [13]. The system matrices of the transformed systems, M−1A, AM−1 and
M−1

1 AM−1
2 are similar and therefore have the same spectrum. As a result, the

convergence of the CG method in exact arithmetic is identical for each system if
both A and M are symmetric positive definite. On the other hand, the behavior
of GMRES and other Krylov subspace methods can depend strongly on left or
right positioning of the same preconditioner [123]. A striking example of such
dependence can be found on p.66 of [79].

Importantly, the system matrices of the transformed systems are never explic-
itly calculated. Rather, matrix-vector products and the solution of linear systems
of the form Mz = b suffice, and in the case where M−1 is known explicitly only
matrix-vector products are required.

The choice for a particular preconditioner is necessarily a compromise between
three base criteria [13, 122]:

• The Krylov subspace method should converge rapidly for the preconditioned
system

• The preconditioner should be inexpensive to construct

• The operator M−1 should be inexpensive to apply

The first property aims at a reduction of the number of iterations necessary to
solve a particular linear system with prescribed accuracy; this is the raison d’etre
of preconditioners. Ideally, M−1 = A−1, such that the system matrix of the trans-
formed system is the identity and the solution of the system is trivial. However,
the construction of such a preconditioners constitutes the extremely costly inver-
sion of the original matrix A, the evasion of which is the very motivation for Krylov

13

subspace methods and preconditioners to begin with. Therefore, the second and
third property voice the concern for excessive overhead before the iterative pro-
cess can commence and the overhead in each iteration, respectively. Naturally, the
balance between these issues is aimed at minimization of the overall computing
time. Although most preconditioning techniques are aimed at the approximation
M−1 ≈ A−1, or equivalently, at bringing all eigenvalues of the preconditioned
linear systems to unity, interesting exceptions exist; see [92] for an example. Situ-
ations where a series of linear systems with identical system matrix and different
right-hand sides has to be solved constitute a strong shift in this balance, as the
expense of preconditioner construction can be amortized by its application to re-
peated solves. This tends to be the case when the linear systems arise from some
variant of Newton’s method.

For parallel preconditioners, great care must be taken to limit the amount of
cross-process communication, both in its construction and application. The latter
suggests that the preconditioner should be as close to block diagonal as possible,
with each block corresponding to the unknowns on one processor.

A first classification of preconditioners can be made in terms of generality.
Many applications involving PDEs employ preconditioners which are near-optimal
for a very narrow set of problems. These are generally based on complete knowl-
edge of the underlying problem; not only in terms of its governing equations, but
also with respect to the geometry, the boundary conditions and the details of
the discretization. Preconditioners based on a simplified version of the governing
equations or lower order discretization belong to this class. Multigrid precondi-
tioners are often employed in this manner [91], but can also be fully algebraic
[115].

The primary drawbacks of the problem-specific approach is that it requires
the solver developer to have a complete understanding of the problem, and that
the often considerable effort in designing the preconditioner can be applied only
to a very narrow range of problems as a result of the sensitivity of the effective-
ness of these preconditioners to the details of the problem. These arguments have
motivated the enduring quest for widely applicable, purely algebraic precondition-
ing methods which use nothing but the system matrix. Although this approach
cannot be expected to rival the quality of application-specific preconditioners,
they can achieve reasonable efficiency and offer greater flexibility when details of
the underlying problems are altered. They are particularly well-suited for prob-
lems with unstructured meshes, and often can be fine-tuned to fit the underlying
problem, thus blurring the distinction between general and application-specific
preconditioners. Furthermore, specific preconditioners are generally based on ex-
isting algebraic methods, as exemplified by [125].

Application-specific preconditioners are beyond the scope of this report, and

14

the focus of this chapter lies with the three primary classes of algebraic pre-
conditioners: incomplete factorization, sparse appoximate inverses and algebraic
multigrid.

3.1 Incomplete decomposition

Incomplete decomposition preconditioning techniques are among the oldest and
most frequently used, in both sequential en parallel settings. Guassian elimi-
nation generally generates considerable fill-in when decomposing a sparse matrix.
Sparsity-preserving pivoting techniques have been developed, but for many classes
of linear systems, the resulting sparse direct method tends to be far too costly,
primarily in terms of memory, to execute for large sparse matrices. Incomplete
decomposition is based on the notion of dropping part of the fill-in which is in
some sense unimportant to the quality of the decomposition; creating a precondi-
tioner M = L̃Ũ , with L̃ and Ũ denoting the approximate, or incomplete, factors
of A, respectively. The primary distinction between variants of incomplete factor-
ization techniques concerns the criteria upon which fill entries are dropped from
the factors.

For symmetric matrices, incomplete Cholesky factorization or IC is used, but
this chapter will focus on incomplete LU factorization, ILU, as the matrices of
both Amphi3D and the Stokes flow test case at hand are nonsymmetric. A family
of ILU preconditioners known as ILU(k), was introduced in [64, 128] and allows
fill-in up to level k. A thorough exposition on fill levels is available in [13]. Another
popular ILU variant is ILU(τ), which simply drops any fill entries whose absolute
value is smaller than the threshold τ . The difficulty of predicting the amount of
fill and associated memory requirement is a drawback of both ILU(l) and ILU(τ),
and motivated the development of the dual threshold ILUT(τ ,p) algorithm [101],
which employs a drop tolerance like ILU(τ) but adds the requirement that only p
fill-in entries are kept in each row of the incomplete LU factors.

In principle, increasing fill-in improves the convergence rate of the Krylov
solver, but there have been observations [49] of non-monotonic improvement of
the convergence with increasing fill-in in the preconditioner.

With the introduction of parallel computation, the subject of parallel precondi-
tioning immediately arose, as the prevalent ILU techniques are not readily suited
for such application by the inherent sequential nature of Gaussian elimination.
Furthermore, the forward and backward solves that have to be conducted at each
iteration are highly sequential.

On many occasions [103, 109, 96, 126, 47, 10, 34, 78], the parallel algorithm
simply deletes any coupling, that is off-diagonal entries, in the preconditioner
matrix. Though this is a simple and highly parallel approach, the quality of the

15

preconditioners deteriorates rapidly as the number of processors increases.
No-fill ILU can also be parallelized to fair extent through the application of

graph coloring techniques, but it too is generally insufficient to achieve a satisfac-
tory rate of convergence in the Krylov subspace solver. Better convergence can
be achieved by allowing some fill-in, but this drastically increases cross-process
communication.

Another approach to the parallelization of ILU preconditioning is to embed the
factorization in domain decomposition. The Additive Schwarz method [113], or
ASM, constructs a preconditioner by dividing the problem domain into a number
of possibly overlapping subdomains and subsequently combining the subdomain
preconditioners. The communication between the subdomains through the over-
lap can be realized in any of a number of ways [50], or the overlap can be set
to zero; reducing the preconditioner to Block Jacobi. Note that although incom-
plete decomposition techniques are prevalent, Additive Schwarz methods can use
any preconditioner for its subdomains. Regardless of the internal preconditioner,
however, the convergence of the iterative solver is often poor as a consequence of
the relatively crude coupling of the subdomains. One approach to reinforce global
coupling is the addition of an extra layer on top of Additive Schwarz in the form
of a coarse-grid correction, resulting in a multilevel method [113].

Techniques where reordering is applied with the goal of assigning numbers that
are not too far apart to neighbouring grid points or unknowns were first introduced
in [52, 121]. Recent versions of this idea can be found in [110, 1, 90, 67, 68] and
have been shown to be quite efficient for select problems. The algorithm sug-
gested in [68] is scalable, which means that the work involved in constructing the
preconditioner remains constant when the problem size and number of processors
are increased with equal factors. The algorithm divides the factorization problem
into a number of non-overlapping subproblems of roughly equal size which can
be solved in parallel. Each subproblem is divided into edge elements and interior
elements; first, only the interior of each subdomain is factored, thereafter rows
corresponding to boundary elements are factored. The latter step requires cross-
process communication, the limitation of which depends strongly on the possibility
of a clean cut, or relatively small total edge length, between the subdomains.

Efficient parallel versions of ILU preconditioning have been achieved, but re-
quire considerable sophistication and adaptation, and more importantly, have a
narrow area of application with a heavy bias towards 2D problems with regular
grids. These issues as well as the inherent instability, due to possible breakdown
of the incomplete factorization, have motivated the development of a completely
different approach to preconditioning through sparse approximate inverses.

16

3.2 Sparse approximate inverses

The central idea of sparse approximate inverse preconditioning is that the pre-
conditioner is an explicitly computed approximation to the inverse of the system
matrix A; M−1 ≈ A−1. Importantly, the construction of such a preconditioner is
fully parallel when the approximation is executed on suitable criteria. Further-
more, there is no inherent risk of breakdown as for ILU and the approach is very
robust. Even though the inverse of a sparse matrix is generally dense, and it can
even be proven that irreducible sparse matrices have structurally dense inverses
[51], many entries of the inverse of a sparse matrix tend to be small in absolute
value; creating the opportunity for a close sparse approximation.

Two basic types of approximate sparse inverse preconditioning exist; one where
M is a single matrix and one where it is the product of any number of matrices.
The latter approach is commonly referred to as factored sparse approximate in-
verses and is related to the LU factorization of A:

M = MLMU , where ML ≈ L and MU ≈ U (3.4)

assuming A has an LU decomposition. For both the factored and unfactored cases,
two manners of approximation have emerged: Frobenius norm minimization and
incomplete (bi-)conjugation.

3.2.1 Frobenius norm minimization

The oldest form of sparse approximate inverses dates back to the seventies [11,
58, 12] and employs the Frobenius norm to compute an approximate inverse M−1

[62]:

||AM−1 − I||2F =
n∑
k=1

||(AM−1 − I)ek||22 (3.5)

Crucially, minimizing in the Frobenius norm is completely parallel as it can be
split into

min(M−1)k ||A(M−1)k − ek||2, k = 1, ..., n (3.6)

Each of these minimizations reduces to a small least squares problem once an initial
sparsity structure for M−1 has been predetermined. The difficulty, then, lies in
the algorithm generating a sparsity structure for M−1. This sparsity structure
must capture the larger elements in the unknown inverse of A, but must also be
constructed at acceptable cost. Whereas earlier papers [81, 75, 76] on Frobenius
minimized sparse approximate inverses used fixed sparsity patterns, the algorithm
of [62] assumes a very basic initial sparsity structure with which a first version
of M−1 is constructed and subsequently augments it by adding precisely those

17

elements which contribute most to the minimization (3.6), up to the point where
a maximum number of nonzeros for the row has been reached or the row is close
enough to the corresponding row in the inverse of A to meet a certain tolerance.
Although all the algorithms within the general framework discussed in this section
are sparse approximate inverse methods, the abbreviation SPAI is associated with
[62] specifically. This algorithm has proven to be the most successful of its kind and
can result in very good convergence of the Krylov solver, but parallelization is far
from trivial, as illustrated by the parallel implementations [9, 8], and construction
of the preconditioner is very expensive [20].

The latter issue formed the motivation for the introduction of the Minimal
Residual method [42], which replaces the exact minimization of (3.6) by a few
iterations of a minimal residual method. An added benefit of this approach is
that, contrary to SPAI, there is no prescribed initial sparsity pattern required.
On the other hand, this technique was observed to be less robust [20]. A yet
different class of algorithms has been developed where an effective sparsity pattern
is automatically generated, the most notable of which is ParaSAILS, the subject
of Section (4.3.3).

A factored, Frobenius-norm minimization approximate inverse preconditioner,
FSAI or Factored sparse approximate inverse, was introduced in [75]. It has
performed very well forsymetric positive definite (SPD) matrices [14, 76]; retaining
the SPD property for the preconditioner of such matrices and therefore enabling
the use of the conjugate gradient Krylov method. The preconditioner, M =
MLM

T
L , is conceptually constructed by a sparse approximation to the Cholesky

factor of the system matrix; however, it is computed using only the values A
and the Cholesky factor is never computed. Details involved with the parallel
implementation of FSAI can be found in [23, 41, 46, 55]. Notwithstanding the
symmetric roots of FSAI, extension to general sparse matrices has been realized.
However, its application to nonsymmetric matrices has proven both unreliable
and ineffective [15], with AINV (Approximate inverse), which will be described
shortly, consistently achieving superior efficiency.

3.2.2 Biconjugation

Biconjugation is a generalization of the Gram-Schmidt process which allows the
computation of a triangular factorization of the inverse of A, rather than A itself,
using information from A exclusively. The sparse approximation of such a de-
composition lies at the heart of AINV [17, 19], an efficient algorithm for factored
sparse approximate inverses. The method does, however, share the susceptibility
to breakdown [18] of ILU preconditioners. In reaction, an altered algorithm includ-
ing an evasion of this issue, known as stabilized AINV or SAINV, was developed

18

independently by [14] and [72].
Although the application of the preconditioner is easily parallelized, its con-

struction is, not unlike ILU, inherently sequential. The rather crude solution of
constructing the preconditioner in a sequential manner and subsequently broad-
casting it to all other processes as in [22] is simple, but time-consuming and
possible only when the problem size is sufficiently small for this to approach to
be viable in terms of its memory requirement. Parallel construction of this pre-
conditioner has been achieved through graph partioning [16, 21] and compared
favorably to a number of multigrid methods [13, 114]. Further developments of
AINV have been presented in [29, 30, 31, 22, 23, 26, 86, 87, 88, 60, 97].

3.3 Algebraic multigrid

Algebraic multigrid methods, or AMG [99], are best understood as a generaliza-
tion of geometric multigrid methods, which in turn are an extension of geometric
two-grid methods. The latter is based on the introduction of a coarse grid in
addition to the grid with the resolution of the desired solution. The solution
strategy then consists of alternating reduction of the error on the fine grid, known
as smoothing, and reduction of the error on the reduced grid, known as coarse
grid correction. In algebraic multigrid, the coarse and fine grid distinction is
no longer based on the physical domain of the problem, but extracted from the
system matrix. As such, there is no direct link between the algebraic multigrid
approach and Krylov subspace methods or preconditioners. However, the two ap-
proaches, though conceptually and historically distinct, have been combined in
various froms; including the use of multigrid solvers within block preconditioners
for Krylov solvers [127] and the application of preconditioners designed for Krylov
solvers as smoothers for multigrid. In the latter category, incomplete factorization
has been applied [129], but recent work in this area has focused on the applica-
tion of sparse approximate inverses in this manner [33, 32, 117, 116]. Conversely,
the difficulty of scalability of preconditioners for Krylov solvers has motivated the
quest for variants which include elements of the multigrid approach. Although
no particular algorithm has surfaced as the fastest or most robust, a lot of work
has been done on multigrid variants of incomplete factorization preconditioners
[100, 107, 108, 98, 5, 7, 6, 28, 48, 80, 94, 95, 105, 120, 134] and sparse approximate
inverse preconditioners [25, 87, 88, 93].

Although parallelization of algebraic coarsening has proven troublesome, par-
allel AMG is a young [43] but active field of research [77, 63, 65, 89, 130]. However,
little has been achieved in their application to indefinite matrices, or systems aris-
ing from three dimensional partial differential equations.

One multigrid method, Finite Element method of Tearing and Interconnecting

19

or FETI method has been extensively developed in parallel and enjoys considerable
popularity and widespread application. However, it is reliant on information of
the underlying application and is therefore not a purely algebraic method.

20

Chapter 4

Stokes flow test case

As alluded to in the introduction and illustrated in the previous chapter, the op-
tions for parallel preconditioning of a complex system of equations in algorithms
like Amphi3D are plenty. However, finding an effective preconditioner for Am-
phi3D has proven very difficult. Rather than through trial and error, this project
approaches the situation by comparing parallel preconditioners on the much re-
duced problem of Stokes flow, anticipating that evaluation of preconditioner per-
formance for this problem will provide a solid basis for a more structured, educated
and hopefully more fruitful process of preconditioner selection. Instead of writing
a new code, a third party Matlab code was selected to serve as the framework for
the simulations and generate linear systems to serve as test cases for parallel pre-
conditioners. This code, NS3D_FEM (Navier-Stokes 3D, finite element method)[27],
does, however, use a different formulation of the problem. This chapter opens
with a discussion of that algorithm, followed by a discussion of the details of the
linear systems as well as the parallel preconditioners tested on these systems.

4.1 Description of algorithm

4.1.1 The Governing Equations and Boundary Conditions

The problem at hand is steady-state and does not include gravity, but is techni-
cally a low Reynolds number Navier-Stokes flow rather than a pure Stokes flow.
The starting point is comprised of the usual steady, incompressible Navier-Stokes
equations with zero body force:

−ν∇2v + v · ∇v +∇p = 0 (4.1)
∇ · u = 0 (4.2)

21

where ν is the kinematic viscosity, v is the velocity vector and p is the pressure.
The test case describes flow around a sphere in a cylinder; the domain Ω used in
these simulations is a cylinder around the z-axis with a radius of 2 and ranging
from z = −2 to z = 7. The sphere is situated at the origin and has a radius of 1

2 .
The inflow boundary (∂Ω)in is situated at z = −2, the outflow boundary (∂Ω)out
at z = 7 and the no-slip boundary (∂Ω)wall is comprised of the wall of the cylinder
x2 + y2 = 4 and the sphere at the origin, x2 + y2 + z2 = 1/2. The boundary
conditions come to

v =
[
0, 0, 1− 1

4
(
x2 + y2)

)]T
on (∂Ω)in (4.3)

ν
∂v

∂n
+ np = 0 on (∂Ω)out (4.4)

v = 0 on (∂Ω)wall (4.5)

-2 -1 0 1 2

-2

-1

0

1

2

3

4

5

6

7
X Y

Z

z

y

Figure 4.1: A cross section of the domain along x = 0. The greyscale indicates
velocity in the z-direction, with lighter shades corresponding to higher velocities.
Re = 1.

22

4.1.2 Weak Formulation and discretization

Rather than a traditional weak formulation based directly on Equations (4.1) and
(4.2), the algorithm of NS3D_FEM includes the addition of a penalty term to the
continuity equation, restating the system of equations as

−ν∇2v + v · ∇v +∇p = 0 (4.6)

∇ · v +
ε

ν
p = 0 (4.7)

where ε is the penalty parameter. Through the derivation of appendix A.2.1, this
results in the weak formulation∫

Ω
ν∇v : ∇ṽ + (v · ∇v) · ṽ − p∇ · ṽ dΩ = 0, (4.8)∫

Ω
(∇ · v +

ε

ν
p)p̃ dΩ = 0. (4.9)

The nonlinear term ∇v · ṽ necessitates the use of a Newton method, as is the case
in Amphi3D. This results in a series of iterates (vk, pk), k ∈ 1, 2, ... converging,
in principle, to the solution of the weak formulation. The initial guess (v0, p0) in
the NS3D_FEM code satisfies the boundary conditions. Given the iterate (vk, pk),
the nonlinear residual (Rk, rk) associated with the momentum part of the weak
formulation reads:

Rk =
∫

Ω
−(vk · ∇vk) · ṽ − ν∇vk : ∇ṽ + pk∇ · ṽ dΩ (4.10)

rk =
∫

Ω
−p̃(∇ · vk +

ε

ν
pk) dΩ (4.11)

With v = vk + δvk and p = pk + δpk the solution of the weak formulation, it
follows that

D(vk, δvk, ṽ) +
∫

Ω
ν∇δvk : ∇ṽ − δpk∇ · ṽ dΩ = Rk(ṽ) (4.12)∫

Ω
p̃(∇ · δvk +

ε

ν
δpk) dΩ = rk(ṽ) (4.13)

where D(vk, δvk, ṽ) is the difference in the nonlinear terms and can be expanded
as

D(vk, δvk, ṽ) =
∫

Ω
(δvk + vk) · ∇(δvk + vk) · ṽ − (vk · ∇vk) · ṽ dΩ (4.14)

=
∫

Ω
(δvk · ∇δvk) · ṽ + (δvk · ∇vk) · ṽ + (vk · ∇δvk) · ṽ dΩ. (4.15)

23

Dropping the quadratic term, (4.15) is plugged back into (4.12), yielding the
linear equations∫

Ω
(δvk · ∇vk) · ṽ + (vk · ∇δvk) · ṽ + ν∇δvk : ∇ṽ − δpk∇ · ṽ dΩ = Rk(ṽ), (4.16)∫

Ω
p̃(∇ · δvk +

ε

ν
δpk) dΩ = rk(ṽ). (4.17)

As usual for discretizations of the Navier-Stokes equation, mixed finite elements
are used in the spatial discretization, and

vk+1,h =
nu∑
j=1

vjk+1φj (4.18)

pk+1,h =
nu+np∑
j=nu+1

pjk+1ψj (4.19)

where φk is the set of vector-valued basis functions for the velocity, and ψk the set
of pressure basis fuctions. Furthermore nu holds the number of velocity degrees
of freedom, three times the total number of velocity nodes minus those associated
with the Dirichlet boundary conditions, and np similarly denotes the number of
pressure degrees of freedom. Substituting (4.18, 4.19) into (4.16, 4.16) results in
the system of linear equations[

A BT

B C

]
[x] =

[
f
g

]
(4.20)

where x = [v1
k+1, ...,v

nu
k+1, p

nu+1
k+1 , ..., p

nu+np
k+1]T and

A(i, j) =
∫

Ω
{φj · ∇vk,h + vk,h · ∇φj} · φi + ν∇φj : ∇φi dΩ (4.21)

B(i, j) =
∫

Ω
ψi∇ · φj dΩ (4.22)

C(i, j) =
∫

Ω

ε

ν
ψiψj dΩ (4.23)

f(i) =
∫

Ω
−{vk,h · ∇vk,h} · φi − ν∇vk,h : ∇φi + pk,h∇ · φi dΩ (4.24)

g(i) =
∫

Ω
(∇ · vk,h +

ε

ν
pk,h)ψi dΩ (4.25)

(4.26)

24

The element matrices and element vectors arising form this system are immediately
apparent, as their form is identical to the matrix and right hand side, respectively,
of (4.20). In fact, the only difference is that the domain of integration is the
element rather than the entire domain, and that the integration is performed by
a 5-point Gauss quadrature rule. The use of terahedral Taylor-Hood elements
implies that the element matrices are 34× 34 and the element vectors have length
34.

Taylor-Hood Elements

The Taylor-Hood element [118] was designed for mixed finite element problems,
and the tetrahedral version features 10 nodes for the velocity components, one on
each vertex and one in the center of each edge, and 4 pressure nodes, one on each
vertex. In three dimensions, then, each element has 34 degrees of freedom in total.

where)(uA is the advection and diffusion matrix, B is the pressure gradient
matrix, TB is the divergence matrix and I is the identity matrix. The vectors u
and p form the velocity and the pressure discrete solution respectively. The mesh
size is denoted by h . The scalar α is used for numerical convenience, which is
typically in the range 107-1010 (Zienkiewicz and Taylor, 1992) to account for the
lack of pivoting technique. In most cases, this system is large, sparse, non
symmetric (however for Stokes problem the matrix is symmetric) and ill
conditioned due to the zero entries that appear in the diagonal pressure block-
matrix.

a) b)

c) d)

Figure 2 : Tetrahedral finite elements for fluid flow problems (velocity nodes left;
pressure nodes right): a) P2-P1 (Taylor-Hood); b) P2+-P1 (Crouzeix-Raviart); c)

P1+-P1 (MINI); d) P1+-P0.

It is worth noting that the above discretized form may be modified to
account for time varying problems. An appropriate temporal discretization must
be used like unconditionally stable implicit first order Euler and second order
Crank-Nicholson and Gear schemes, or an explicit scheme associated with a time
step tΔ restriction obeying the Courant-Friedrichs-Lewy (1928) condition:

1≤
Δ
h

tu (7)

Implicit schemes are usually preferred against explicit ones because they are more
robust. It must also be highlighted that mesh regularity is an important parameter

5

Heniche and Tanguy: Finite Element Modeling of Viscous Mixing: A Review

Published by The Berkeley Electronic Press, 2008

Figure 4.2: The 3D Taylor-Hood element. The dots and crosses in the left tetra-
hedron represent the vertex and edge velocity nodes respectively; the circles in the
right tetrahedron represent the presssure nodes.

4.2 Solution of the linear systems

For the preconditioner tests of this report, the first linear system arising in the
Matlab code NS3D_FEM is written out as an ascii file and transferred to the Sara
Huygens system. Subsequently, a Fortran code including the PETSc libraries is
ran which reads the linear system, constructs the preconditioner and executes the
Krylov solver. Although this is naturally not a viable option when running actual
simulations, it does not affect the timings as the crucial steps, construction of
the preconditioner and execution of the Krylov solver, would be identical in an
all-Fortran code.

Sara Huygens is an IBM pSeries 575, clustered SMP (Symmetric Multipro-
cessing) system consisting of 104 nodes, 16 dual core processors (IBM Power6, 4.7
GHz) per node, either 128 GByte or 256 GByte of memory per node. The smaller
memory nodes are sufficient for these calculations. Huygens uses simultaneous

25

multithreading and recommends the usage of 64 MPI tasks per node. Use of this
guideline means that jobs using more than 64 MPI tasks use multiple nodes, which
implies the addition of slower, cross-nodal communication. Throughout the rest
of this report, MPI tasks are referred to as processors for simplicity, although this
is not strictly correct.

4.2.1 Properties of the linear systems

Calculations are executed for Reynolds numbers 1, 10 and 50. With the standard
grid size, the problem has 4.1 · 104 elements and 5.9 · 104 nodes. By the use of
Taylor-Hood elements, this results in 1.6·105 velocity and 7.9·103 pressure degrees
of freedom, a square matrix of size 1.6·105 and 1.5·107 nonzeros. Grid sizes double
and eight times the standard size with correspondingly larger matrix dimensions
were also tested.

The matrix is not symmetric, but does have a symmetric nonzero pattern.
An important difference between the matrices arising here within NS3D_FEM and
within Amphi3D is that the diagonal entries corresponding to the pressure degrees
of freedom are nonzero as a result of the penalty term (see Section 4.1.2).

26

4.2.2 Reordering

The first operation performed on the linear systems is Reverse Cuthill-McKee
reordering [61], which is aimed at the concentration of all nonzeros around the
main diagonal. This is particularly important when solving the system in parallel
as it reduces the number of connections between the variables across processors.
The implementation of NS3D_FEM inherently produces a matrix where the velocity
components are already ordered in such a fashion, whereas the pressure nodes
are segregated and unordered. The primary effect of the reordering, therefore, is
the placement of the pressure degrees of freedom among the velocity degrees of
freedom of the same nodes, as illustrated in Figure 4.3.

Figure 4.3: The sparsity structure of coefficient matrix before and after Reverse
Cuthill-McKee reordering.

4.2.3 Symmetric diagonal scaling

After reordering of the linear system, symmetric diagonal scaling is applied to the
linear system Ax = b:

D−1/2AD−1/2x̃ = D−1/2b (4.27)

where x̃ = D1/2x, andD1/2 andD−1/2 are diagonal matrices with entriesD1/2(i, i) =
|A(i, i)| and D−1/2(i, i) = |A(i, i)|−1. It is this scaled linear system that is passed
on to the preconditioners and BiCGStab(`).

27

4.2.4 Use of BiCGStab(`)

In preliminary runs, BiCGStab(`) [111, 112], ` = 2 surfaced as the fastest Krylov
iterative solver for these matrices, and all further tests were conducted with this
solver.

As the PETSc implementation of BiCGStab(`) only allows left preconditioning,
all preconditioners tested are applied from the left. The iterations are said to have
converged when the relative residual reaches below 1 · 10−6; in other words, when
||r||2 < 1 · 10−6||b||2, where r and b denote the residual and the right hand side of
the linear system, respectively.

4.3 Parallel Preconditioners

As the symmetric diagonal scaling described in Section 4.2.3 is applied to the
system matrices before all solves, they are reasonably conditioned even before a
preconditioner is applied. This makes the solution of the system without further
preconditioning feasible, and causes its inclusion in the comparisons to be more
than a trivial point of reference. Apart from the unpreconditioned system, three
preconditioners available through PETSc are tested. Block jacobi is included
as it is the simplest of parallel preconditioners. PILUT has been included to
represent the incomplete factorization class of preconditioners. This is a legacy
code and no longer supported, but is the only preconditioner of this class available
through PETSc outside Euclid, which was the first choice but foregone when it
consistently crashed during preconditioner construction. PETSc offers access to
two parallel approximate inverse preconditioners, SPAI and ParaSAILS (parallel
sparse approximate inverse, least squares). The latter was selected as it is both
the most efficient, according to a comparison in [40], and the most stable of the
two.

4.3.1 Block Jacobi

As mentioned in Section 3.1, Block Jacobi preconditioning simply separates the
linear system into several subsystems between which no dependency exists and
which are subsequently preconditioned by a local preconditioner. This is enforced
by reducing the system matrix to a block diagonal matrix. The most common
choice, also used in the calculations of this report, for the number of blocks is one
per processor, motivated by the relatively low cost of preconditioning the local
part of the matrix. Both inexact and exact factorization are popular methods
to precondition the blocks, but exact factorization has been selected here for its
simplicity and lack of further parameters. An interesting side effect of this choice
is that when running on a single processor, the system is solved exactly.

28

4.3.2 PILUT

PILUT, introduced in [71], is a parallelization of the ILUT(m,t) algorithm of
[101]. This warrants a consideration of the ILU(m,t) algorithm before the parallel
aspects of PILUT are discussed.

The sequential algorithm: ILUT(m,t)

In order to limit the cost of both its construction and application, ILUT(m,t) em-
ploys a dual dropping strategy. The general algorithm and the point of application
for both dropping stages is illustrated in Figure 4.4.

1 for i = 1,...,n
2 w = a(i,*)
3 for k = 1,...,i-1
4 if w(k) != 0
5 w(k) = w(k)/a(k,k)
6 Apply first dropping rule to w(k)
7 if w(k) != 0
8 w = w - w(k)*u(k,*)
9 endif
10 endif
11 endfor
12 Apply second dropping rule to w
13 for j = 1,...,i-1
14 L(i,j) = w(j)
15 endfor
16 for j = 1,...,n
17 U(i,j) = w(j)
18 endfor
19 w = 0
20 endfor

Figure 4.4: The ILUT(m,t) algorithm

In this algorithm, w is a working row used to accumulate linear combinations
of sparse rows in the elimination. The first dropping rule, applied in Line 6 of
Figure 4.4, simply sets any element of w to zero when it is smaller than the relative
tolerance ti, the product of the parameter t and the 2-norm of the ith row of A.
Line 12 features the second dropping rule, which initially one again drops all values
below the relative tolerance ti, but additionally employs the second parameter m
to delete all but the m largest elements of the L part of the row as well as all but the

29

m largest elements of the U part of the row. This results in m+1 elements per row
of both L and U as the diagonal elements are not subject to any dropping criteria.
A discussion of proper data structures for efficient sequential implementation of
this algorithm is featured in [101, 102].

The parallel algorithm: PILUT

The central idea of the PILUT algorithm of [71] is to separate those rows of
the coefficient matrix which are internal to processor’s domain, that is have no
connections to nonlocal rows, and those that do have such connections. The
former category of rows is branded interior, whereas nodes, or rows, within the
latter category are known as interface nodes.

The first step of the algorithm consists of each processor factoring its set of
interior nodes, which is an entirely sequential process. Note that this is where the
connection between PILUT and ILUT(m,t) resides; all the factorizations discussed
in this Section are implemented as ILUT(m,t) factorizations. The values for the
paramaters m and t used for the calculations of this report are the HYPRE default
values of m = 20 and t = 1 · 10−4, respectively. In the second step, the interior
nodes of all processors are eliminated from A, thus forming the reduced matrix
AI featuring only interface nodes. Factoring AI is subsequently executed by all
processors cooperating, and it is in this phase that the communication resides, as
well as the distinction between most parallel ILU algorithms.

PILUT performs the parallel factorization of AI in phases, where during each
phase l = 0, 1, ... the processors cooperate to factor a set Sl of rows of AIl (AI =
AI0), and removing these rows from AIl to produce AIl+1. These cycles come to a
halt only when all rows of AI have been factored. As they are expensive in terms
of communication, it is important to note that the number of cycles required
to perform the entire factorization depend on the maximum number of nonzeros
permitted in each row and the threshold of the incomplete fatorization.

The next issue at hand is the construction of the set Sl. PILUT takes the
approach of choosing each Sl as a maximal independent set of the rows of AIl ,
thus ensuring that the nodes it represents are not connected in the matrix AIl .
The algorithm to derive Sl is a parallel formulation [71] of the Luby’s algorithm
[83].

Subsequently, AIl is permuted so that the rows in Sl are at the top, followed by
the factorization of those rows by the ILUT(m,t) algorithm. The reduced matrix
for the next level, AIl+1, is then formed with the algorithm of Figure 4.5, which once
again is based on ILUT(m,t). This algorithm is applied after the permutation of
AIl , and eliminates the first n(l+1)-n(l)+1 unknowns to produce another square
matrix AIl+1 of size n-n(l+1)+1. Here, n(l) is interpreted as the number rows

30

already factored out of AIl , rather than the lth element of a vector n.

1 for i = n(l+1),...,n
2 w = a(i,*)
3 for k = n(l),...,n(l+1)-1
4 if w(k) != 0
5 w(k) = w(k)/a(k,k)
6 Apply first dropping rule to w(k)
7 if w(k) != 0
8 w = w - w(k)*u(k,*)
9 endif
10 endif
11 endfor
12 w = w + L(i,*)
13 L(i,*) = 0
14 a(i,*) = 0
15 Apply modified dropping rule to w
16 for j = i,...,n(l+1)-1
17 L(i,j) = w(j)
18 endfor
19 for j = n(l+1),...,n
20 a(i,j) = w(j)
21 endfor
22 w = 0
23 endfor

Figure 4.5: The algorithm used to form successive reduced matrices.

For each row i in AIl Sl, the algorithm performs linear combinations in Line 8
of Figure 4.5 only with rows that are in Sl, as illustrated by the range for k defined
in Line 3. Once the construction of w is completed, using a treshold dropping rule
in Line 6 exactly like that used in Line 6 of 4.4, it is merged with the ith row of
L in Line 12. Line 15 consists of a modified dropping rule, which features both
the threshold and maximum nonzeros per row dropping criteria like the second
dropping rule of the ILUT(m,t) algorithm, but applies only those elements of w
corresponding to nodes which have already been factored, that is whose index is
smaller than n(l+1). Line 17 sees the elements of w that correspond to the ith
row of L copied back, while those corresponding to the unfactored part of the
matix are copied back to the ith row of AIl , which becomes the ith row of AIl .

Whereas the construction of Sl inherently requires communication, the ILUT
factorization in Figure 4.5 is performed separately, with each processor factoring

31

the locally stored rows within Sl. As these rows are independent by construction,
this merely requires the creation of the rows of U for each local row. Subsequently,
each processor generates the rows of the next level reduced matrix AIl+1 that
correspond to the locally stored nodes with the algorithm of Figure 4.5. In partic-
ular, for each row i, the processor needs to perform linear combinations with all
rows U(k,*), for which A(i,k) 6= 0 and n(l) ≤ k < l+1. Some communication
is required here as not all U(k,*) are necessarily stored locally. However, the
non-local rows required by each processor can be determined and sent before per-
forming the associated computations, as the linear combinations they contribute
to do not create any fill elements. After this communication has taken place, each
processor essentially executes the algorithm of Figure 4.5, updating L and creating
AIl+1. The cycles are terminated when all rows in AIl+1 are independent, as this
immediately enables their fully parallel elimination.

4.3.3 ParaSAILS

Also implemented as part of the HYPRE package is ParaSAILS, a parallel sparse
approximate inverse preconditioner proposed in [40, 41]. As mentioned in Section
(3.2.1), ParaSAILS autmatically generates the sparsity pattern for the precondi-
tioner without the requirement of an externally supplied initial sparsity pattern.
The basic approach consists taking the sparsity pattern of a positive integer power
of A, an idea motivated by the Neumann series expansion of the inverse of A. High
powers generally result in good converge, but can be quite expensive to compute.
However, ParaSAILS is more sophisticated as the technique consists of reducing
the sparsity pattern of A and subsequently taking a power of the resulting sparsity
pattern. This approach tends to work best when the square of the reduced sparsity
pattern of A is used [40], and this is the default for the HYPRE implementation
of ParaSAILS and used for the calculations of this report.

Recall from Section (3.2.1) that ParaSAILS belongs to the class of sparse ap-
proximate inverse preconditioners which is based on Frobenius norm minimization.
However, the algorithm attempts to construct the preconditioner by seeking M−1

such that M−1A = I rather than AM−1 = I, as in (3.2.1). This is a minor dif-
ference, but does result in an altered algorithm, seeking the preconditioner M−1

through the minimization of

||M−1A− I||2F =
n∑
k=1

||mk
TA− ekT ||22 (4.28)

where ek and mk
T are the kth rows of the identity matrix and M−1, respectively.

This is easily rearranged and split into n independent minimizations,

minmk ||mk
TA− ekT ||2, k = 1, ..., n (4.29)

32

Which yields the ideal preconditioner M−1 = A−1 when no additional constraints
are placed upon M−1. This would however be extremely costly, which is remedied
by the constraint that all mk

T are sparse.
Rather than taking the adaptive approach, where a very sparse initial structure

is assumed and augmented until a satisfactory preconditioner has been found, thus
going through various iterations of calculating both the sparsity pattern and values
of the nonzeros of M−1, the ParaSAILS algorithm constructs a sparsity pattern
directly, thus decoupling the calculation of the structure of the preconditioner
and its nonzero values. This was motivated by the very high cost of adaptive
preconditioner construction, and [40] contains a comparing study of ParaSAILS
and SPAI, the most common adaptive algorithm, which indicates that ParaSAILS
produces very similar preconditioner quality when compared to SPAI, but is much
cheaper to construct.

The general idea is that the sparsity pattern for the preconditioner is the pat-
tern of a power L of the sparsified system matrix, as previously considered in
[2, 117, 56, 40], that is the pattern of ÃL. Sparsification is achieved through drop-
ping all entries of the system matrix whose absolute value lies below a threshold.
In the calculations of this report, the default threshold value of 0.1 was used. Al-
though the optimal value for the threshold is in general very problem-dependent,
much of this dependency is eliminated by the application of symmetric diagonal
scaling. Whereas the threshold effectively selects the most important direct inter-
actions represented by the matrix, taking a power L of ÃL ensures that ”nearby”
interactions are included. For the comparative tests of the report, L = 2 was
used as this is both recommended in [40, 41] and the default for the HYPRE
implementation.

The algorithm can therefore be summarized as follows [41]:

• Threshold A to produce Ã

• Compute the pattern ÃL for M−1

• Compute the nonzero entries in M through minimization of ||M−1A− I||2F

An additional post-processing step filtering small values out of the precondi-
tioner is available, intended to speed up the application of the preconditioner in the
Krylov iterations. This step, however, is not part of the HYPRE implementation
of ParaSAILS by default and was therefore not used for the calculations.

Concerning the thresholding procedure, it should be noted that thresholding
is best conducted only after symmetric diagonal scaling has been applied, as is
the case in the code used here (see Section(4.2)). At the very least, care must be
taken to ensure that the diagonal entries are retained in the sparsity pattern even
when their absolute value lies below the threshold.

33

The subsequent construction of the pattern ÃL is conceptually straightforward,
but inherently a parallel process and responsible for the bulk of communication
required in the set-up of the ParaSAILS preconditioner. Finally, the computation
of the nonzero values of M−1, is split such that each processor k solves the least
squares problem

minmk ||mk
TA− ekT ||2, k ∈ 1, ..., n (4.30)

by QR factorization. As mk
T is sparse and tends to have its nonzeros concen-

trated around the kth entry, this phase of the algorithm requires relatively little
communication between processors.

34

Chapter 5

Software issues

5.1 Reordering and scaling

The reordering and scaling, as described in Sections 4.2.2 and 4.2.3 respectively,
are both executed within Matlab for the standard grid size. The reordering is
performed directly with the Matlab function symrcm. However, a laptop with 2 GB
of memory was used for Matlab calculations, and the larger matrices which arise
from grids double or 8 times the standard size take too much memory to be held in
Matlab workspace, despite their sparse format. The assembly of the unpermuted,
unscaled matrices and writing them to file is still possible by assembling the matrix
in partitions, saving a partition to a file and clearing it from memory before
proceeding to the next. However, the unavailability of the entire matrix does
complicate its permutation and scaling.

For each matrix arising from either of the larger grid sizes, the permutation
vector is generated with a modified version of the code. As assembly of the system
matrix is impossible, a logical matrix is assembled instead, which reduces its mem-
ory requirement to a fraction of that of the original. This matrix does not contain
the nonzero values, but does represent the sparsity structure of the matrix. As the
symrcm function depends only on the matrix structure, the permutation for the
actual system matrix can be obtained by calling symrcm upon the logical matrix.
The resulting permutation vector is written to a separate file.

A separate Fortran code was written to read the unpermuted and unscaled
matrices, as well as the corresponding right hand sides and permutation vectors
from file. This code applies the permutation and symmetric diagonal scaling to
the matrix and right hand side and subsequently writes the reordered and scaled
matrix and vector out to file. The resulting files are equivalent to the files that
are written directly from Matlab for the standard grid size.

35

5.2 Larger grid sizes

Although the techniques of the last section enable preconditioner testing on the
larger linear systems associated with the increased grid sizes, the solution of these
linear systems with PETSc proved to be very troublesome. Although the memory
requirement is no issue on the Sara Huygens system as described in Section 4.2,
the attempted solution of these systems consistently resulted in various errors,
with or without preconditioning.

The memory requirement prevents a validation of these systems by solving
them within Matlab, but checks were performed to verify, for example, that the
matrices and right hand sides have a finite 1-norm, that the matrix has no zeros
on the diagonal and that its structure is qualitatively equal to that of the smaller
systems which are reordered and scaled within Matlab and can be solved with
PETSc.

However, problems were encountered with all preconditioners when attempting
to solve these larger systems. The issue arising for the unpreconditioned case is as
follows. The Fortran code executing the solve with PETSc first instructs PETSc
to solve the linear system with BiCGS(L), and subsequently calls another PETSc
function to request a flag representing the reason BiCGS(L) has stopped iterating.
The regular values for this flag represent either convergence or divergence for
various reasons, but the flag returned in this case states BiCGS(L) is still iterating.
At this point there is no indication as to the cause of this problem.

Use of the PILUT preconditioner consistently led to a segmentation violation
during preconditioner construction, exactly like it did for the smaller grid size cases
on many occasions, as illustrated in Tables 6.1 to 6.3. Furthermore, Block Jacobi
resulted in a different error during preconditioner construction (exceeded maximum
number of blocks), and ParaSAILS construction simply never completed, or at
least not within a few hours. These issues were encountered across the range
of both Reynolds numbers and number of processors. Their cause is unclear at
this point, but the problem for the unpreconditioned case seems to indicate that
the problem might lie outside of the individual preconditioners, even if the error
messages they present are different.

5.3 HYPRE

Segmentation violations are encountered in PILUT both for quite a few of the
smaller grid size cases and for all of the larger grid size cases. The reason that
the legacy implementation PILUT is, is that segmentation violations occurred in
all cases even for the smaller grid sizes when using Euclid, a new parallel ILU
implementation which is now recommended over PILUT in the HYPRE manual

36

[54]. ParaSAILS, also part of HYPRE, in contrast is quite robust for the smaller
grid size problems, encountering a problem in just one of the test cases, where
the preconditioner construction never ended, as in all the larger grid size cases.
Furthermore, ParaSAILS only reacted occasionally to non-default parameter val-
ues; identical calls with non-default parameters were often incorrectly executed
with default parameters on one occasion, and after logging out and back in would
result in correct use of the custom parameters. This, however, did not affect the
results presented in Chapter 6 as default parameters were used.

37

Chapter 6

Results

All results were obtained using BiCGStab(`), L = 2, and left preconditioning.
The results for linear systems arising from the smallest grid size are collected in
Tables 6.1 to 6.3, which lists the performance of each preconditioning method
for 1 to 1024 processors. As described in Section 5.2, various issues prevented
meaningful results for the larger grid sizes. The tables list the number of itera-
tions of BiCGStab(`) required upon application of the preconditioner, the time
required for the construction of the preconditioner, the time spent in iterations of
BiCGStab(`) and the total time, summing the two.

The total time for solution without the use of any preconditioner are surpris-
ingly good when compared to the preconditioned solution times; in fact, the fastest
total solution time is achieved without preconditioning and using 256 processors
for each of the 3 Reynolds numbers. Note, however, that symmetric diagonal
scaling (Section 4.2.3) is still applied in the unpreconditioned case, and this does
constitute a very basic form of preconditioning. The truly unpreconditioned case,
without diagonal scaling, would likely result in far inferior performance.

Although not the case in the NS3D_FEM code, it is important to keep in mind
that in many applications, including Apmhi3D, multiple solves are performed for
each matrix but with different right hand sides. This has a strong influence on
the choice of preconditioner, as the preconditioner only needs to be constructed
once for such a string of solves. Consequently, these applications will favor more
expensive, better preconditioners as the Krylov solve time becomes much more
important than the preconditioner construction time. The advantage of solving
the unpreconditioned system interestingly dissolves for these applications, as both
PILUT and ParaSAILS yield Krylov solve times very similar to the unprecondi-
tioned case for Re = 1, PILUT is faster in this respect for Re = 50 and ParaSAILS
is faster for both Re = 10 and Re = 50.

These observations, however, consider only the optimal number of processors

38

for each case. The scalability of the preconditioners is an entirely different is-
sue, and likely has a greater influence on their ultimate potential than absolute
performance for these test cases. Starting with the sensitivity of preconditioner
setup time to the number of processors, Block Jacobi gets cheaper to construct as
the number of processors increases. This is a d1irect consequence of the fact that
its construction is entirely parallel, and consists of the exact solution of a linear
system the size of which is inversely proportional to the number of processors
used(see Section 4.3.1). With that in mind however, the speed-up in this respect
is actually disappointing, as best illustrated in the case for Re = 50. Illustrative
of the nature of parallel ILU preconditioners, the construction cost for PILUT
is hardly dependent on the number of processors used. ParaSAILS reacts much
better to the addition of processors, showing significantly decreasing setup times
even though the dependence is rather erratic.

The Krylov solve times for both the unpreconditioned case and ParaSAILS are
shortest for 256 processors. The lack of benefit from the jump to 1024 is likely to
be partially caused by the significant increase in communication between nodes
this requires (see Section 4.2), and it is therefore not unlikely that the addition of
yet more processors would once again speed up the Krylov solves in these cases.
The scalability of PILUT is disappointing in terms of the Krylov solve time as
well, with the fastest solves achieved using just 16 processors. Block Jacobi, too,
is unsurprisingly poor in this respect as it is a very poor preconditioner on a larger
number of processors. This is illustrated in particular by the iteration counts for
the cases Re = 1 and Re = 50 on 16 and 64.

ParaSAILS is quite striking in terms of the iteration counts it yields, as these
are roughly constant across the board. Whereas Block Jacobi is very good in this
respect when using very few processors and horrible when using many, PILUT is
fine up to 16 and drops off very dramatically at 64. The unpreconditioned case
is independent of the number of processors but suffers for the higher Reynolds
numbers. The steady ParaSAILS iteration count is poor for Re = 1, but quite
good for Re = 50. Iterations counts for PILUT seem completely unpredictable in
contrast, particularly for Re = 1, where good iteration counts are achieved with
1 or 16 processors, but the use 4 results in divergence of BiCGS(L).

Finally, note that the results for Block Jacobi are as expected, with precondi-
tioner setup times independent of the Reynolds number as, the reduction to slow,
direct solution of the linear system by LU decomposition when running with one
processor and very poor iteration counts when using higher numbers of processors.

39

Preconditioner Proc. Iter. Setup time Krylov time Total time

None
1 814 − 9.00 · 101 9.00 · 101

4 840 − 2.30 · 101 2.30 · 101

16 844 − 3.84 · 101 3.84 · 101

64 808 − 3.05 · 100 3.05 · 100

256 860 − 2.94 · 100 2.94 · 100

1024 836 − 3.93 · 100 3.93 · 100

Block Jacobi
1 err − − −
4 34 1.52 · 102 1.67 · 102 3.19 · 102

16 80 3.48 · 100 7.98 · 100 1.15 · 101

64 1134 1.74 · 100 1.01 · 101 1.18 · 101

256 div − − −
1024 div − − −

PILUT
1 192 7.82 · 100 3.27 · 101 4.05 · 101

4 div − − −
16 154 2.96 · 100 2.96 · 100 5.39 · 100

64 div − − −
256 err − − −
1024 err − − −

ParaSAILS
1 err − − −
4 686 1.95 · 102 2.64 · 101 2.21 · 102

16 674 5.05 · 101 4.31 · 100 5.48 · 101

64 788 2.10 · 101 3.79 · 100 2.48 · 101

256 742 7.45 · 100 3.17 · 100 1.06 · 101

1024 712 4.00 · 100 4.67 · 100 8.67 · 100

Table 6.1: Preconditioner performance for Re = 1, on a grid of 4.1 · 104 elements
and 5.9 · 104 nodes. The coefficient matrix is a square matrix of size 1.6 · 105 and
contains 1.5 · 107 nonzeros.

40

Preconditioner Proc. Iter. Setup time Krylov time Total time

None
1 1330 − 1.46 · 102 1.46 · 102

4 1356 − 3.70 · 101 3.70 · 101

16 1304 − 5.95 · 100 5.95 · 100

64 1332 − 4.79 · 100 4.79 · 100

256 1330 − 3.43 · 100 3.43 · 100

1024 1360 − 1.02 · 101 1.02 · 101

Block Jacobi
1 err − − −
4 38 1.52 · 102 1.68 · 102 3.20 · 102

16 104 3.55 · 100 9.30 · 100 1.29 · 101

64 div − − −
256 div − − −
1024 div − − −

PILUT
1 div − − −
4 div − − −
16 528 3.27 · 100 8.26 · 100 1.15 · 101

64 7874 5.03 · 100 2.01 · 102 2.06 · 102

256 err − − −
1024 err − − −

ParaSAILS
1 778 6.39 · 102 1.04 · 102 7.43 · 102

4 838 1.95 · 102 3.16 · 101 2.27 · 102

16 850 5.13 · 101 5.28 · 100 5.66 · 101

64 940 8.70 · 101 4.20 · 100 9.12 · 101

256 832 2.82 · 101 2.75 · 100 3.10 · 101

1024 920 9.54 · 100 5.52 · 100 1.51 · 101

Table 6.2: Preconditioner performance for Re = 10, on a grid of 4.1 · 104 elements
and 5.9 · 104 nodes. The coefficient matrix is a square matrix of size 1.6 · 105 and
contains 1.5 · 107 nonzeros.

41

Preconditioner Proc. Iter. Setup time Krylov time Total time

None
1 1334 − 1.47 · 102 1.47 · 102

4 1322 − 3.56 · 101 3.56 · 101

16 1314 − 6.04 · 100 6.04 · 100

64 1296 − 4.70 · 100 4.70 · 100

256 1446 − 3.48 · 100 3.48 · 100

1024 1342 − 5.64 · 100 5.64 · 100

Block Jacobi
1 − 2.48 · 103 − 2.48 · 103

4 38 1.52 · 102 1.68 · 102 3.20 · 102

16 94 3.53 · 100 8.76 · 100 1.23 · 101

64 1428 2.15 · 100 1.21 · 101 1.43 · 101

256 div − − −
1024 div − − −

PILUT
1 404 7.85 · 100 6.81 · 101 7.60 · 101

4 144 3.90 · 100 6.53 · 101 1.04 · 101

16 106 3.00 · 100 1.69 · 100 4.69 · 100

64 8292 4.49 · 100 2.12 · 102 2.16 · 102

256 err − − −
1024 err − − −

ParaSAILS
1 754 6.37 · 102 1.01 · 102 7.38 · 102

4 772 1.95 · 101 2.96 · 101 2.25 · 102

16 730 5.04 · 100 4.60 · 100 5.50 · 101

64 744 2.12 · 100 3.66 · 100 2.49 · 101

256 770 7.56 · 100 3.23 · 100 1.08 · 101

1024 844 4.05 · 100 5.09 · 100 9.14 · 100

Table 6.3: Preconditioner performance for Re = 50, on a grid of 4.1 · 104 elements
and 5.9 · 104 nodes. The coefficient matrix is a square matrix of size 1.6 · 105 and
contains 1.5 · 107 nonzeros.

42

Chapter 7

Conclusions

• There is a lot of room for improvement both in terms of the performance
and the stability of parallel preconditioners for Stokes flow. PETSc itself,
too, has proven problematic.

• Software issues in general are a major impedience, particularly because of
the lack of a clear root for many of the errors encountered

• The limitations of the Block Jacobi approach have manifested very clearly
in the divergence of all tests with this rather primitive form of parallel pre-
conditioning using 256 or more processors.

• PILUT performs slightly better in this respect, but its erratic performance
and lack of stability complicate the review of its performance. This and
the legacy status of the implementation used implies that further research
should still consider parallel ILU.

• Although the performance achieved without preconditioning is remarkable
for the tests conducted, ParaSAILS arises as the most promising of the pre-
conditioners tested here. It is the fastest method for the two larger Reynolds
number cases tested in terms of the time required for the iterative solution
of the preconditioned system it yields, and does so while the cost of pre-
conditioner construction significantly declines as more processors are used.
Of particular interest is that contrary to the unpreconditioned case the it-
eration count for the solution of the ParaSAILS preconditioned systems is
barely dependent on the Reynolds number. The aim of this project, func-
tioning as a starting point for preconditioner selection for more complex
systems of equations, puts a lot of emphasis on the apparent lack of sensi-
tivity of ParaSAILS to the nature of the equations being solved. Further
confirmation of the scope of sparse approximate inverse preconditioning in

43

general is found in its successful application to the solution of dense linear
systems [2, 36, 37, 38, 39, 44, 45, 74].

Ultimately, the Stokes flow test case indicates that sparse approximate inverse
preconditioning has the most potential for more complex problems even though
software issues prevent a clear negative verdict concerning parallel incomplete
factorization preconditioners in general.

44

Appendix A

Derivation of the weak
formulations

A.1 Amphi3D

A.1.1 The momentum equation

To derive the weak formulation of the momentum equation, we collect all terms of
(2.9) on the left-hand side, multiply with the vector basis function ṽ and integrate
over the entire domain:∫

Ω

{
ρ

(
∂v

∂t
+ v · ∇v

)
−∇ · (−pI + τ)−G∇φ− ρg

}
· ṽ dΩ = 0 (A.1)

which, defining Q = −pI+τ to simplify further manipulation, can be rewritten
as ∫

Ω

{
ρ

(
∂v

∂t
+ v · ∇v − g

)
−G∇φ

}
· ṽ − {∇ ·Q} · ṽ dΩ = 0 (A.2)

Let us focus on the last term, bearing in mind that the colon product reduces
to the sum of the elementwise multiplication of its operands for second tensor rank

45

real tensors:

{∇ ·Q} · ṽ =
∑
i

ṽi

∑
j

∂Qij
∂xj

 (A.3)

=
∑
j

[∑
i

ṽi
∂Qij
∂xj

]
(A.4)

=
∑
j

∑
i

[
∂

∂xj
(ṽiQij)−Qij

∂ṽi
∂xj

]
(A.5)

=
∑
j

[
∂

∂xj

(∑
i

ṽiQij

)]
−
∑
i,j

Qij
∂ṽi
∂xj

(A.6)

= ∇ · (Qṽ)−
∑
i,j

Qij (∇ṽ)ij (A.7)

= ∇ · (Qṽ)−Q : ∇ṽi (A.8)

Which, plugged back into (A.2) yields

∫
Ω

{
ρ

(
∂v

∂t
+ v · ∇v − g

)
−G∇φ

}
· ṽ+Q : ∇ṽi dΩ−

∫
Ω
∇ · (Qṽ) dΩ = 0 (A.9)

where the term ∇ · (Qṽ) was separated from the main integral, as it follows from
the divergence theorem that∫

Ω
∇ · (Qṽ) dΩ =

∫
∂Ω

(Qṽ) · n d∂Ω (A.10)

=
∫

(∂Ω)u

(Qṽ) · n d(∂Ω)u +
∫

(∂Ω)τ

(Qṽ) · n d(∂Ω)τ (A.11)

Both these integral vanish, as the first, over the solid wall part of the boundary,
equals zero due to the boundary condition v = 0 on (∂Ω)u, and the other part is
set to zero [133], implying the boundary condition (2.22)

(−pI + τ) · n = 0 (∂Ω)τ (A.12)

To wrap up, the last term of (A.9) vanishes, and with the expansion of Q the weak
formulation ensues (2.16):∫

Ω

{[
ρ

(
∂v

∂t
+ v · ∇v − g

)
−G∇φ

]
· ṽ + (−pI + τ) : ∇ṽ

}
dΩ = 0 (A.13)

46

A.1.2 The continuity equation

The weak formulation of the continuity equation ∇ · v = 0 follows directly upon
its multiplication by p̃ and integration over the domain:∫

Ω
(∇ · v)p̃ dΩ = 0 (A.14)

A.1.3 The stress equation

The idea of deriving the weak formulation of a vector equation by means of a dot
product with a vector basis function is a simple and effective way to reduce the
vector equation to a scalar weak formulation. This approach is naturally extended
to real second tensor rank tensor equations when the dot product is replaced by
the colon product as described in appendix A.1.1. Thus, the weak formulation of
(2.7) follows as the colon product of its terms collected on the left-hand side with
τ̃ and subsequent integration over Ω:∫

Ω

{
τd + λHτd(1) − µp

[
∇v + (∇v)T

]}
: τ̃ dΩ = 0 (A.15)

A.1.4 The Cahn-Hilliard equation

The first half of the decomposed Cahn-Hilliard equation (2.14), once collected on
the left-hand side, multiplied by φ̃ and integrated over Ω, comes to∫

Ω

{
∂φ

∂t
+ v · ∇φ− γλ

ε2
∆(ψ + sφ)

}
φ̃ dΩ = 0 (A.16)

The Laplacian term can be simplified further, as

−
∫

Ω
∆(ψ + sφ)φ̃ dΩ = −

∫
Ω
∇ · [∇(ψ + sφ)] φ̃ dΩ (A.17)

= −
∫

Ω
∇ ·
[
∇(ψ + sφ)φ̃

]
−∇(ψ + sφ) · ∇φ̃ dΩ (A.18)

= −
∫
∂Ω
∇(ψ + sφ)φ̃ · n d∂Ω +

∫
Ω
∇(ψ + sφ) · ∇φ̃ dΩ

(A.19)

When G = λ (ψ + sφ), as determined in Section (2.2), is substituted into the
boundary condition (2.12), the boundary integral vanishes, yielding (2.19):∫

Ω

[(
∂φ

∂t
+ v · ∇φ

)
φ̃+

γλ

ε2
∇(ψ + sφ) · ∇φ̃

]
dΩ = 0. (A.20)

47

Collection on the left-hand side, multiplication with the basis function ψ̃ and
integration of the second half of the decomposed Cahn-Hilliard equation (2.15)
gives ∫

Ω

{
ψ + ε2∆φ− (φ2 − 1− s)φ

}
ψ̃ dΩ = 0 (A.21)

Again, focus lies with the second order term∫
Ω

{
ε2∆φ

}
ψ̃ dΩ =

∫
Ω
ε2∇ · (∇φψ̃)− ε2∇φ∇ψ̃ dΩ (A.22)

=
∫
δΩ
ε2∇φψ̃ · n d∂Ω−

∫
Ω
ε2∇φ∇ψ̃ dΩ (A.23)

= −
∫
δΩ

ε2

λ
f
′
w(φ)ψ̃ · n d∂Ω−

∫
Ω
ε2∇φ∇ψ̃ dΩ (A.24)

Where the last line was derived with the boundary condition (2.13). Plugging this
back into (A.21) immediately results in (2.20):∫

Ω

{[
ψ − (φ2 − 1− s)φ

]
ψ̃ − ε2∇φ · ∇ψ̃

}
dΩ−

∫
∂Ω

ε2

λ
f ′w(φ)ψ̃ dS = 0 (A.25)

48

A.2 Stokes flow

A.2.1 The momentum equation

To derive the weak formulation of the momentum equation, all terms of (4.6)
are collected on the left-hand side, multiplied by the vector basis function ṽ and
integrated over the entire domain:∫

Ω

{
−ν∇2v + v · ∇v +∇p

}
· ṽ dΩ = 0 (A.26)

The first term within the integral can be rewritten using the divergence theorem,∫
Ω

{
−ν∇2v

}
· ṽ dΩ = −ν

∫
Ω
∇ · (∇v · ṽ)−∇v : ∇ṽ dΩ (A.27)

= −
∫
∂Ω
ν
∂v

∂n
· ṽ d∂Ω +

∫
Ω
ν∇v : ∇ṽ dΩ (A.28)

and similarly the second term of Equation (A.26) is be rewritten as∫
Ω
∇p · ṽ dΩ =

∫
Ω
∇ · (pṽ)− p∇ · ṽ dΩ (A.29)

=
∫
∂Ω
np · ṽ d∂Ω−

∫
Ω
p∇ · ṽ dΩ (A.30)

At this point, Equations (A.28) and (A.30) are plugged back into (A.26), yielding∫
Ω
ν∇v : ∇ṽ + (v · ∇v) · ṽ − p∇ · ṽ dΩ +

∫
∂Ω

{
np− ν ∂v

∂n

}
· ṽ d∂Ω = 0 (A.31)

However, ṽ vanishes on (∂Ω)in and (∂Ω)wall by the homogeneous equivalent of
boundary condition (4.3) and (4.5), respectively. As furthermore np − ν ∂v

∂n = 0
on (∂Ω)wall by boundary condition (4.4), the entire boundary integral vanishes.
This immediately leads to Equation (4.8).

A.2.2 The penalized continuity equation

The weak formulation of the penalized continuity equation ∇ · v + ε
ν p = 0 follows

directly upon its multiplication by p̃ and integration over the domain:∫
Ω

(∇ · v +
ε

ν
p)p̃ dΩ = 0 (A.32)

49

Appendix B

The integration of PETSc in
Amphi3D

This appendix presents the primary software issues encountered during the par-
allelization of Amphi3D with PETSc, which serve as examples of the kind of
considerations involved with parallelization through PETSc.

B.1 Initialization, input and output

As Amphi3D is implemented in Fortran 90, the include statements that PETSc
necessitates in the sourcefiles require a C preprocessor. This is handled by PETSc
through compile rules which are imported into the Amphi3D makefiles by further
include statements. The first commands in Amphi3D initialize PETSc; explicitly
initializing MPI is not required as PETSc does so automatically. As in the sequen-
tial code, an input file with various parameters has to be read by the program,
and in the parallel version each process simply reads its local copy of this file. The
next step in initializing the calculations is reading the domain boundary data and
generating an initial mesh with GRUMMP. As GRUMMP is a sequential code and
works with files which are written and read several times throughout the creation
of the initial mesh, it was necessary to circumvent the issue of multiple processes
writing to one file at the same time by either letting each process develop its own
initial mesh or let one process do the honors and have all the other processes wait
and then read the initial mesh it produced. The former option was attempted,
but consistently led to a slightly different initial mesh on one of the processes.
After an extenstive investigation of the GRUMMP source code, this approach was
abandoned considering the limited effect the initialization as a whole has on the
overall performance of the code. Thus, the code was modified to have only one

50

process read the boundary data and call GRUMMP to develop the initial mesh.
It writes this mesh and some related data to file, upon which these are read by all
other processes. To force the other processes to wait on the writing process, an
MPI barrier is inserted between the two, which forces all processes to reach that
point before moving on. This barrier is one of the few functions used in the code
where MPI is interfaced directly, rather than through PETSc.

Amphi3D updates the mesh whenever the interface has moved too far for the
mesh to capture it accurately, which generally takes something in the order of 10
timesteps. When this occurs, the situation is handled identically to the initial
mesh, with only one process employing GRUMMP to update the mesh and all
others waiting for it to finish doing so. Throughout the program, pure output is
generated by one process only.

B.2 PETSc datastructures

As PETSc is involved only in solving the linear systems in the code, very few
of the original datastructures have been converted to PETSc types. The most
important four are the system matrix, a vector for the right-hand side and two
solution vectors.

The right-hand side vector and one of the solution vectors are parallel vectors,
which PETSc automatically distributes evenly over the processors at their cre-
ation. The matrix is of type MPIAIJ, which is PETSc’s default type for a parallel
matrix. It stores the matrix in CSR format as did the original Amphi3D code,
and assigns each process a consecutive range of rows. The number of rows owned
by each process can be explicitly supplied, or left for PETSc to determine. In the
latter case, PETSc splits the matrix such that each process owns corresponding
portions of both the matrix and vectors of the same size which already exist, in
this case the right-hand side vector and one of the solution vectors. As the matri-
ces which appear within Amphi3D exhibit no natural sections or decomposition,
there is no incentive to alter this distribution of data.

The second solution vector is a local copy on each of the processors of the
distributed solution vector, created upon each solution of a linear system. It is
necessitated by KSP, PETSc’s environment of Krylov Subspace methods, which
does not allow a mixture of a distributed matrix with a sequential solution matrix
on one hand and the necessity of access to the entire solution vector required by
each process to continue the inexact Newton method on the other. The sequential
vector is filled with a vector scatter. Though there are possibilities to access
off-process data in a distributed vector, those suitable for Fortran 90 only work
with select compilers and compatibility issues prevented switching to one of them.
Though keeping two versions of the same data seems cumbersome and wasteful of

51

memory, it was tested and confirmed to take a negligible amount of time and as a
sequential solution vector is inherently required, the excess use of memory on each
process is limited to its portion of the distributed vector. Vector data generally
requires negligible memory compared to the system matrix, and furthermore the
local portion of the vector dwindles as the number of processes is increased.

B.3 Matrix memory preallocation

The PETSc manual [4] urges the user to employ memory preallocation when
creating large matrices. Though this requires some work to predetermine the
amount of memory the matrix will require, it prevents all or most of the dynamic
memory allocation, which is inherently a very slow process. To do so, one has
to supply the routine creating the matrix with the expected number of nonzeros
per row in the diagonal and off-diagonal part of the matrix seperately. On each
process, the diagonal part of the matrix is the restriction of the local, rectangular
submatrix such that the column range equals the range of local rows, and the
off-diagonal part consists of all other columns of the local submatrix.

The expected number of nonzeros can be supplied in the form of two integers,
each being an estimate for the number of nonzeros of each type in every row, or
in the form of two vectors, allowing different numbers of nonzeros to be specified
for each row. The length of these vectors, therefore, is the number of rows that
each process owns.

This choice constitutes a trade-off between time spent predetermining the ma-
trix structure on the one hand and time spent in the actual assembly of the matrix.
The approach taken was to aim at exact preallocation first and later investigate
whether the performance could be improved by shifting the balance towards a
lighter preallocation algorithm. Thus, the first step was to devise a scheme to
calculate the number of nonzeros in each row and how many off these are in the
diagonal and off-diagonal parts of the matrix.

The simplest way to determine the nonzero structure of the matrix would be to
assemble it. However, the very purpose here is to determine it before the matrix is
created. The approach taken here is to mimic the assembly process and retain only
its loops creating and placing the element matrices while omitting all calculations
concerned with their values, thus marginalizing the work involved. This scheme
is dubbed preassembly and its implementation is shown in Figure B.1.

In the assembly process, the nonzero elements are generally a sum of contribu-
tions from different element matrices. Therefore, it does not suffice to count the
number of times a matrix element is written in each row. Rather, it is necessary
to construct, for each row, a list containing the column numbers of the elements
which have so far been classified as nonzero. Then, each time an element which

52

would be a nonzero is selected, it has to be checked whether it is already in the
list. If it is, no further action is taken; otherwise it is appended to the list.

In order to keep track of diagonal and off-diagonal nonzeros in each row, there
are two possibilities. The first would be to keep one list for both and to count the
number of nonzeros of each type upon completion of the list. The other option
is to keep two separated lists for diagonal and off-diagonal nonzeros. The latter
approach is taken here as it decreases the average length of the search which is con-
ducted to check whether a nonzero entry is already in the list. This was confirmed
to yield a significant performance improvement over keeping a single list. There is
no additional memory required for this approach, as both lists can be kept in the
same vector, simply letting each start at a different end of the vector. In either
case, the length of this vector has to be sufficient to accomodate the largest num-
ber of nonzeros in any particular row. It is important to have a reasonably tight
estimate the maximum number of nonzeros in order to save memory allocation
time. However, an overly conservative estimate will not increase the overall mem-
ory requirement of the program as these vectors of the relatively cheap real∗4
data type are deleted before the system matrix is created. The check to ensure
the list was large enough is executed once it is completed. As such a list needs to
be kept for each row, they can be conveniently combined into a matrix.

In Line 1 of the code extract detailing the preallocation, Figure B.1, this ma-
trix, nonzeros, is allocated the number of rows of the matrix that a process owns,
iEnd-iStart, and a number of columns corresponding to an estimated upper limit,
maxnz, for the number of nonzeros in each row. Note that iStart is the first row
owned by a process, but iEnd is the last row owned plus one. This is a PETSc
convention. The next two lines set diagnz and offdiagnz to zero. These vectors
count the number of diagonal and offdiagonal nonzeros in each row, respectively.
Line 4 starts the main loop over all elements. For each element, FORMiglo is called
to determine which global variable each variable of the current element refers to.
Line 6, then, starts the loop over the rows of the element matrices and in Line 7
the local row i is translated into a global row in. Line 8 applies a permutation
of the global variables, like the real assembly, which is designed to concentrate
the matrix’s nonzeros around the diagonal. Line 9 determines whether the rows
in question belongs to the local process, and abandons further calculations if it is
not. Lines 10 through 13 do for the columns what Line 6 through 9 did for the
rows. However, Line 13 determines whether nonzeros found in the current column
would be diagonal or off-diagonal, but does not cancel further calculations either
way.

Lines 14 and 15 check whether the column at hand, jk, equals any of those
previously recorded as nonzeros, stored in the first diagnz(ik-iStart) elements
of nonzeros(ik-iStart,:). If so, the loop is broken by skipping to Line 19. If,

53

on the other hand, the column at hand wasn’t previously recorded as nonzero,
diagnz(ik-iStart) is increased by 1 in Line 17 and the column number is placed
in nonzeros(ik-iStart,diagnz(ik-iStart)) in Line 18. Though by Line 20
the diagonal columns have been filtered out, it is still necessary to use an elseif
statement to ensure that the columns are within the range of the matrix. Columns
outside of the matrix are associated with boundary conditions and require no
consideration here. Lines 21 through 26 do for the offdiagonal columns what
lines 14 through 19 did for the diagonal columns. Note that both use the same
matrix nonzeros but offdiagonal nonzeros are placed at the end rather than the
at start of each row. This code has been tested and consistently resulted in exact
preallocated memory.

The variation of the number of nonzeros between rows is considerable, due in
part to the mixture of linear (P1) and quadratic (P2) elements used in the finite
element formulation (2.2). Therefore, it is no surprise that attempts to calcalute
only an average or maximal number of nonzers, in other words use integers instead
of vectors to preallocate memory, resulted in decreased performance of the overall
code. Another argument for exact preallocation is that the work involved for each
process decreases with the number of processors whereas the cost of inexact matrix
preallocation during matrix assembly does not.

B.4 Matrix Assembly

The matrix assembly was only slightly modified from the sequential code, in the
sense that the generation of the element matrices remains unchanged and only
their placement in the system matrix was altered. In fact, it was simplified as
the translation between the natural row and column indices are now translated
into CSR data by PETSc, whereas this was formerly explicit in the assembly of
the system matrix. The code in Figure B.2 shows the assembly, which is largely
identical to the preassembly in Figure B.1. Line 1 simply opens the loop over
the elements and lines 3 through 13 check whether any of the global variables
associated with it correspond to rows of the system matrix owned by the local
process. If not, further calculations for this element are skipped by means of the
goto statement in Line 12 to avoid unnecessary work. If, on the other hand, any
or all of the element’s variables are relevant to the current process, the values of
the element matrix are calculated (this occurs between Line 13 and 14 of Figure
B.2). Finally, lines 14 through 21 determine the global position of the variables in
the element matrix exactly as in the preassembly, line 21 verifies that it lies within
the bounds of the matrix and the values of the element matrix st are added to
the system matrix Apet in line 22. Please note that ione is simply an integer
with value one and that this is subtracted from the indices as PETSc uses 0-based

54

1 allocate (nonzeros(iEnd-iStart,maxnz))
2 diagnz=0
3 offdiagnz=0
4 do m = 1,nelem
5 call FORMiglo (m, iglo, [...])
6 do i = 1,nvel
7 in = iglo(i)
8 ik = iperm(in)
9 if((ik.gt.iStart) .and. (ik.le.iEnd)) then
10 do j = 1,nvel
11 jn = iglo(j)
12 jk = iperm(jn)
13 if((jk.gt.iStart) .and. (jk.le.iEnd))then
14 do k = 1,diagnz(ik-iStart)
15 if(jk.eq.nonzeros(ik-iStart,k)) goto 11
16 enddo
17 diagnz(ik-iStart) = diagnz(ik-iStart) +1
18 nonzeros(ik-iStart,diagnz(ik-iStart)) = jk
19 11 continue
20 elseif((jk.gt.0) .and. (jk.le.neq))then
21 do k = maxnz, maxnz-offdiagnz(ik-iStart)+1, -1
22 if(jk.eq. nonzeros(ik-iStart,k))goto 12
23 enddo
24 offdiagnz(ik-iStart) = offdiagnz(ik-iStart)+1
25 nonzeros(ik-iStart,maxnz-offdiagnz(ik-iStart)+1) = jk
26 12 continue
27 endif
28 enddo
29 endif
30 enddo
31 enddo

Figure B.1: Preassembly for the matrix

55

indices wheres Fortran is principally 1-based. Attempts to forego calculations
concerning specific variables in element matrices which are only partially relevant
to the local process were abandoned as this added more computational work in
the form of selecting if-statements than it would prevent in not calculating unused
values.

1 do m = 1,nelem
[...]
2 call FORMiglo (m, iglo, [...])
3 relevant = .false.
4 do i = 1,nvel
5 in = iglo(i)
6 ik = iperm(in)
7 if((ik .gt. iStart) .and. (ik .le. iEnd))then
8 relevant = .true.
9 goto 13
10 endif
11 enddo
12 goto 14
13 13 continue
[...]
14 do i=1,nvel
15 in = iglo(i)
16 ik = iperm(in)
17 if((ik .gt. iStart) .and. (ik .le. iEnd))then
18 do j=1,nvel
19 jn = iglo(j)
20 jk = iperm(jn)
21 if((jk.gt.0) .and. (jk.le.neq))then
22 call MatSetValues(Apet,ione,ik-ione,ione,

& jk-ione,st(i,j),ADD_VALUES,ierr)
23 endif
24 enddo
25 endif
26 enddo
27 14 continue
28 enddo

Figure B.2: Matrix and vector assembly

56

Bibliography

[1] J. I. Aliaga, M. Bollhöfer, A. F. Mart́ın, and E. S. Quintana-Ort́ı. Design, tuning and
evaluation of parallel multilevel ILU preconditioners. In VECPAR, pages 314–327, 2008.

[2] G. Alléon, M. Benzi, and L. Giraud. Sparse approximate inverse preconditioning for dense
linear systems arising in computational electromagnetics. Numer. Algorithms, 16, 1997.

[3] D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in fluid
mechanics. Annual Review of Fluid Mechanics, 30:139–165, 1998.

[4] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-95/11
- Revision 2.1.5, Argonne National Laboratory, 2004.

[5] R. E. Bank and R. K. Smith. The incomplete factorization multigraph algorithm. SIAM
J. Sci. Comput., 20(1349), 1999.

[6] R. E. Bank and R. K. Smith. An algebraic multilevel multigraph algorithm. SIAM J. Sci.
Comput., 23(1572), 2002.

[7] R. E. Bank and C. Wagner. Multilevel ILU decomposition. Numer. Math., 82(543), 1999.

[8] S. T. Barnard, L. M. Bernardo, and H. D. Simon. An MPI implementation of the SPAI
preconditioner on the T3E. Int. J. High Perform. Comput. Appl., 13(2):107–123, 1999.

[9] S. T. Barnard and R. L. Clay. A portable MPI implementation of the SPAI preconditioner
in ISIS++. In M. H. et al., editor, Proceedings of the Eighth SIAM Conference on Parallel
Processing for Scientific Computing, Philadelphia, 1997. SIAM. CD-ROM.

[10] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the solution of linear systems: Building
blocks for iterative methods. SIAM, Philadelphia, 1994.

[11] M. W. Benson. Iterative solution of large scale linear systems. Master’s thesis, Lakehead
Univ., Thunder Bay, 1973.

[12] M. W. Benson and P. O. Frederickson. Iterative solution of large sparse linear systems
arising in certain multidimensional approximation problems. Util. Math., 22(127), 1982.

[13] M. Benzi. Preconditioning techniques for large linear systems: A survey. Journal of
Computational Physics, 182(2):418 – 477, 2002.

[14] M. Benzi, J. K. Cullum, and M. Tu̇ma. Robust approximate inverse preconditioning for
the conjugate gradient method. SIAM J. Sci. Comput., 22(1318), 2000.

[15] M. Benzi, W. Joubert, and G. Mateescu. Numerical experiments with parallel orderings
for ILU preconditioners, 1999.

57

[16] M. Benzi, J. Maŕın, and M. Tu̇ma. A two-level parallel preconditioner based on sparse
approximate inverses. In D. R. Kincaid and A. C. Elster, editors, Iterative Methods in
Scientific Computation IV, New Brunswick, NJ, 1993. IMACS.

[17] M. Benzi, C. D. Meyer, and M. Tu̇ma. A sparse approximate inverse preconditioner for
the conjugate gradient method. SIAM J. Sci. Comput., 17(1135), 1996.

[18] M. Benzi and M. Tu̇ma. An assessment of some preconditioning techniques in shell prob-
lems. Commun. Numer. Methods Eng., 14(897), 1998.

[19] M. Benzi and M. Tu̇ma. A sparse approximate inverse preconditioner for nonsymmetric
linear systems. SIAM J. Sci. Comput., 19(968), 1998.

[20] M. Benzi and M. Tu̇ma. A comparative study of sparse approximate inverse precondition-
ers. Appl. Numer. Math., 30(305), 1999.

[21] M. Benzi and M. Tu̇ma. A parallel solver for large-scale Markov chains. Appl. Numer.
Math., 41(135), 2002.

[22] L. Bergamaschi, G. Pini, and F. Sartoretto. Approximate inverse preconditioning in the
parallel solution of sparse eigenproblems. Numer. Linear Algebra Appl., 7(99), 2000.

[23] L. Bergamaschi, G. Pini, and F. Sartoretto. Parallel preconditioning of a sparse eigensolver.
Parallel Comput., 27(963), 2001.

[24] R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager. Dynamics of Polymeric
Liquids, Vol. 2. Kinetic Theory. Wiley, New York, 1987.

[25] M. Bollhöfer and V. Mehrmann. Algebraic multilevel methods and sparse approximate
inverses. SIAM J. Matrix Anal. Appl., 24(1):191–218, 2002.

[26] M. Bollhöfer and Y. Saad. A factored approximate inverse preconditioner with pivoting.
SIAM J. Matrix Anal. Appl., 23(692), 2002.

[27] J. Borggaard and T. Burkardt. NS3D FEM: Steady Navier
Stokes equations in 3D - Finite Element solution, May 2009.
http://people.sc.fsu.edu/~burkardt/m_src/ns3d_fem/ns3d_fem.html.

[28] E. F. F. Botta and F. Wubs. Matrix renumbering ILU: An effective algebraic multilevel
ILU preconditioner for sparse matrices. SIAM J. Matrix Anal. Appl.

[29] R. Bridson and W. P. Tang. Ordering, anisotropy and factored sparse approximate inverses.
SIAM J. Sci. Comput., 21(867), 1999.

[30] R. Bridson and W. P. Tang. Refining an approximate inverse. J. Comput. Appl. Math.,
22(1527), 2000.

[31] R. Bridson and W. P. Tang. Multiresolution approximate inverse preconditioners. SIAM
J. Sci. Comput., 23(463), 2001.

[32] O. Bröker and M. J. Grote. Sparse approximate inverse smoothers for geometric and
algebraic multigrid. Appl. Numer. Math., 41(61), 2002.

[33] O. Bröker, M. J. Grote, C. Mayer, and A. Reusken. Robust parallel smoothing for multigrid
via sparse approximate inverses. SIAM J. Sci. Comput., 23(1395), 2001.

[34] A. M. Bruaset. A survey of preconditioned iterative methods. Longman Scientific and
Technical, Harlow, 1995.

[35] J. W. Cahn. Critical point wetting. The Journal of Chemical Physics, 66(8):3667–3672,
1977.

58

[36] B. Carpentieri, I. S. Duff, L. Giraud, and M. M. monga Made. Sparse symmetric precon-
ditioners for dense linear systems in electromagnetics. Technical Report TR/PA/01/35,
CERFACS, Toulouse, France, 2001.

[37] K. Chen. On a class of preconditioning methods for dense linear systems from boundary
elements. SIAM J. Sci. Comput., 20, 1998.

[38] K. Chen. Discrete wavelet transforms accelerated sparse preconditioners for dense boundary
element systems. Electron. Trans. Numer. Anal., 8, 1999.

[39] K. Chen. An analysis of sparse approximate inverse preconditioners for boundary integral
equations. SIAM J. Matrix Anal. Appls., 22, 2001.

[40] E. Chow. A priori sparsity patterns for parallel sparse approximate inverse preconditioners.
SIAM J. Sci. Comput., 21(1804), 2000.

[41] E. Chow. Parallel implementation and performance characteristics of sparse approximate
inverse preconditioners with a priori sparsity patterns. Int. J. High-Perform. Comput.
Appl., 15(56), 2001.

[42] E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse iterations.
SIAM J. Sci. Comput., 19(995), 1998.

[43] A. J. Cleary, R. D. Falgout, V. E. Henson, and J. E. Jones. Coarse-grid selection for
parallel algebraic multigrid. In Workshop on Parallel Algorithms for Irregularly Structured
Problems, pages 104–115, 1998.

[44] E. Darve. The fast multipole method. I. Error analysis and asymptotic complexity. SIAM
J. Numer. Anal., 38, 2000.

[45] E. Darve. The fast multipole method: Numerical implementation. J. Comput. Phys., 160,
2000.

[46] E. de Doncker and A. K. Gupta. Coarse grain preconditioned conjugate gradient solver for
large sparse systems. In J. Lewis, editor, Proceedings of the Seventh SIAM Conference on
Parallel Processing for Scientific Computing, page 472, Philadelphia, 1995. SIAM.

[47] E. de Sturler. Incomplete block LU preconditioners on slightly overlapping subdomains for
a massively parallel computer. Appl. Numer. Math., 19(1-2):129–146, 1995.

[48] J. C. Dı́az and K. Komara. Incomplete multilevel cholesky factorizations. SIAM J. Matrix
Anal. Appl., 22(895), 2000.

[49] J. J. Dongarra, L. S. Duff, D. C. Sorensen, and H. A. V. Vorst. Numerical Linear Algebra
for High Performance Computers. SIAM, Philadelphia, PA, USA, 1998.

[50] M. Dryja and O. B. Widlund. Domain decomposition algorithms with small overlap. SIAM
Journal on Scientific Computing, 15(3):604–620, 1994.

[51] I. S. Duff, A. M. Erisman, C. W. Gear, and J. K. Reid. Sparsity structure and Gaussian
elimination. SIGNUM Newsl., 23(2):2–8, 1988.

[52] I. S. Duff and G. Meurant. The effect of ordering on preconditioned conjugate gradients.
BIT, 29(635), 1989.

[53] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton method.
SIAM J. Sci. Comput, 17:16–32, 1996.

[54] R. D. Falgout and U. M. Yang. Hypre: A library of high performance preconditioners. In
Lecture Notes in Computer Science, pages 632–641, 2002.

59

[55] M. Field. a parallel factorised sparse approximate inverse preconditioner with improved
choice of sparsity pattern. Technical Report HDL-TR-99-214 Hitachi Dublin Laboratory,
Dublin, Ireland.

[56] M. Field. An efficient parallel preconditioner for the conjugate gradient algorithm. Tech-
nical Report HDL-TR-97-175 Hitachi Dublin Laboratory, Dublin, Ireland.

[57] J. Ford. A black box at the end of the rainbow: searching for the perfect preconditioner.
Phil. Trans. Royal Soc. London A, 361(1813):2665–2680, 2003.

[58] P. O. Frederickson. Fast approximate inversion of large sparse linear systems. Math. Report,
7, 1975.

[59] L. A. Freitag and C. Ollivier-Gooch. Tetrahedral mesh improvement using swapping and
smoothing. International Journal for Numerical Methods in Engineering, 40:3979–4002,
1997.

[60] S. Fujino and Y. Ikeda. An improvement of SAINV and RIF preconditionings of CG method
by double dropping strategy. pages 142–149, July 2004.

[61] A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite Systems.
Prentice Hall, Englewood Cliffs, NJ, 1981.

[62] M. J. Grote and T. Huckle. Parallel preconditioning with sparse approximate inverses.
SIAM J. Sci. Comput, 18:838–853, 1997.

[63] S. R. Gundolf Haase, Michael Kuhn. Parallel AMG on distributed memory computers.
SIAM Journal on Scientific Computing, 24(2):410–427, 2000.

[64] I. Gustafsson. A class of first order factorization methods. BIT, 18(142), 1978.

[65] V. E. Henson and U. M. Yang. BoomerAMG: A parallel algebraic multigrid solver and
preconditioner. Appl. Numer. Math., 41(155), 2002.

[66] H. H. Hu, N. A. Patankar, and M. Y. Zhu. Direct numerical simulations of fluid-solid
systems using the arbitrary Lagrangian-Eulerian technique. Journal of Computational
Physics, 169:427–462, May 2001.

[67] D. Hysom. New Sequential and Scalable Parallel Algorithms for Incomplete Factor Precon-
ditioning. PhD thesis, Old Dominion Univ., Norfolk, Va, 2001.

[68] D. Hysom and A. Pothen. A scalable parallel algorithm for incomplete factor precondi-
tioning. SIAM J. Sci. Comput., 22(6):2194–2215, 2001.

[69] D. Jacqmin. Calculation of two-phase Navier-Stokes flows using phase-field modeling. Jour-
nal of Computational Physics, 155(1):96–127, October 1999.

[70] D. Jacqmin. Contact-line dynamics of a diffuse fluid interface. Journal of Fluid Mechanics,
402(-1):57–88, 2000.

[71] G. Karypis and V. Kumar. Parallel threshold-based ILU factorization. Technical Report
061, University of Minnesota, Department of Computer Science/Army HPC Research Cen-
ter, Minneapolis, 1998.

[72] S. A. Kharchenko, L. Y. Kolotilina, A. A. Nikishin, and A. Y. Yeremin. A robust AINV-
type method for constructing sparse approximate inverse preconditioners in factored form.
Numer. Linear Algebra Appl., 8(165), 2001.

[73] D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: a survey of ap-
proaches and applications. Journal of Computational Physics, 193(2):357 – 397, 2004.

[74] L. Y. Kolotilina. Explicit preconditioning of systems of linear algebraic equations with
dense matrices. J. Sov. Math., 43, 1988.

60

[75] L. Y. Kolotilina and A. Y. Yeremin. Factorized sparse approximate inverse preconditionings
I: theory. SIAM J. Matrix Anal. Appl., 14(1):45–58, 1993.

[76] L. Y. Kolotilina and A. Y. Yeremin. Factorized sparse approximate inverse preconditionings
II: Solution of 3D FE systems on massively parallel computers. Int. J. High Speed Comput.,
7(191), 1996.

[77] A. Krechen and K. Stüben. Parallel algebraic multigrid based on subdomain blocking.
Parallel Comput., 27(1009), 2001.

[78] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to parallel computing; design
and analysis of algorithms. Benjamin/Cummings, Redwood City, 1994.

[79] S. L. Lee. Krylov methods for the numerical solution of initial-value problems in differential-
algebraic equations. Technical report, Champaign, IL, 1993.

[80] N. Li, Y. Saad, and M. Sosonkina. pARMS: A parallel version of the algebraic recursive
multilevel solver. Technical Report UMSI-2001-100, Minnesota Supercomputer Institute,
Univ. Minnesota, Minneapolis, 2001.

[81] J. B. Lifschitz, A. A. Nikishin, and A. Y. Yeremin. Sparse approximate inverse precondi-
tionings for solving 3D CFD problems on massively parallel computers. In R. Beauwens
and P. de Groen, editors, Proceedings of the IMACS International Symposium, pages 83–84,
Brussels, 1992.

[82] J. Lowengrub and L. Truskinovsky. Quasi-incompressible Cahn-Hilliard fluids and
topological transitions. Proceedings: Mathematical, Physical and Engineering Sciences,
454(1978):2617–2654, 1998.

[83] M. Luby. A simple parallel algorithm for the maximal independent set problem. In STOC
’85: Proceedings of the seventeenth annual ACM symposium on Theory of computing, pages
1–10, New York, NY, USA, 1985. ACM.

[84] S. Ma. Comparisons of the ILU(0), Point-SSOR, and SPAI preconditioners on the CRAY-
T3E for nonsymmetric sparse linear systems arising from PDEs on structured grids. Int.
J. High Perform. Comput. Appl., 14(1):39–48, 2000.

[85] S. Ma. A performance comparison of the parallel preconditioners for iterative methods for
large sparse linear systems arising from partial differential equations on structured grids.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E91-A(9):2578–2587, 2008.

[86] G. A. Meurant. Computer solution of large linear systems. Studies in Mathematics and Its
Applications, 28, 1999.

[87] G. A. Meurant. Numerical experiments with algebraic multilevel preconditioners. Electron.
Trans. Numer. Anal., 12(1), 2001.

[88] G. A. Meurant. A multilevel AINV preconditioner. Numer. Algorithms, 29(107), 2002.

[89] T. Mifune, T. Iwashita, and M. Shimasaki. A parallel algebraic multigrid solver for fast
magnetic edge-element analyses. ieee transactions on Magnetics, 41(5), 2005.

[90] M. M. monga Made and H. A. van der Vorst. Parallel incomplete factorizations with
pseudo-overlapping subdomains. Parallel Comput., 27(989), 2001.

[91] V. A. Mousseau, D. A. Knoll, and W. J. Rider. Physics-based preconditioning and the
Newton-Krylov method for non-equilibrium radiation diffusion. Journal of Computational
Physics, 160(2):743 – 765, 2000.

[92] M. F. Murphy, G. H. Golub, and A. J. Wathen. A note on preconditioning for indefinite
linear systems. SIAM J. Sci. Comput., 21(6):1969–1972, 1999.

61

[93] Y. Notay. Using approximate inverses in algebraic multilevel methods. Numer. Math.,
80(397), 1998.

[94] Y. Notay. A multilevel block incomplete factorization preconditioning. Appl. Numer. Math.,
31(209), 1999.

[95] A. Padiy, O. Axelsson, and B. Polman. Generalized augmented matrix preconditioning
approach and its application to iterative solution of ill-conditioned algebraic systems. SIAM
J. Matrix Anal. Appl., 22(793), 2001.

[96] G. Radicati and Y. Robert. Parallel conjugate gradient-like algorithms for solving sparse
non-symmetric linear systems on a vector multiprocessor. Parallel Comput., 11:223–239,
1989.

[97] A. Rafiei and F. Toutounian. New breakdown-free variant of AINV method for nonsym-
metric positive definite matrices. Journal of Computational and Applied Mathematics,
219(1):72 – 80, 2008.

[98] A. Reusken. A multigrid method based on incomplete Gaussian elimination. Numer. Linear
Algebra Appl., 3(369), 1996.

[99] J. W. Ruge and K. Stüben. Algebraic multigrid (AMG). In S. F. McCormick, editor, Multi-
grid Methods, Applied Mathematics volume 3, pages 73–130, Philadelphia, 1987. SIAM.

[100] Y. Saad. Highly parallel preconditioners for general sparse matrices. In Recent Advances
in Iterative Methods, page 165, New York, 1994. Springer-Verlag.

[101] Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numer. Linear Algebra
Appl., 1(387), 1994.

[102] Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM, Philadelpha,
PA, 2003.

[103] Y. Saad and M. H. Schultz. Parallel implementation of preconditioned conjugate gradient
methods. In W. Fitzgibbon, editor, Mathematical and Computational Methods in Seismic
Exploration and Reservoir Modeling.

[104] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solv-
ing nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing,
7(3):856–869, 1986.

[105] Y. Saad and B. Suchomel. ARMS: An algebraic recursive multilevel solver for general
sparse linear systems. Numer. Linear Algebra Appl., 9(359), 2002.

[106] Y. Saad and H. A. van der Vorst. Iterative solution of linear systems in the 20th century.
J. Comput. Appl. Math., 123(1-2):1–33, 2000.

[107] Y. Saad and J. Zhang. BILUM: Block versions of multielimination and multilevel precon-
ditioner for general sparse linear systems. SIAM J. Sci. Comput., 20(2103), 1999.

[108] Y. Saad and J. Zhang. BILUTM: A domain-based multilevel block ILUT preconditioner
for general sparse matrices. SIAM J. Sci. Comput., 21(279), 1999.

[109] M. K. Seager. Parallelizing conjugate gradient for the CRAY X-MP. Parallel Comput.,
3(1):35–47, 1986.

[110] C. Shen and J. Zhang. Parallel two level block ILU preconditioning techniques for solving
large sparse linear systems. Paral. Comput, 28:2002, 2002.

[111] G. L. G. Sleijpen and D. R. Fokkema. BiCGStab(`) for linear equations involving unsym-
metric matrices with complex spectrum. ETNA, 1:11–32, 1993.

62

[112] G. L. G. Sleijpen and H. A. van der Vorst. An overview of approaches for the stable
computation of hybrid BiCG methods. Appl. Numer. Math., 19(3):235–254, 1995.

[113] B. F. Smith, P. E. Bjrstad, and W. D. Gropp. Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations. Cambridge Univ. Press, Cambridge,
1996.

[114] R. D. Smith, J. K. Dukowicz, and R. C. Malone. Parallel ocean general circulation modeling.
Phys. D, 60(38), 1992.

[115] K. Stüben. A review of algebraic multigrid. Journal of Computational and Applied Math-
ematics, 128:281–309, 2001.

[116] M. Sunhaloo, A. Gopaul, R. Boojhawon, and M. Bhuruth. Sparse approximate inverse
smoothing for multigrid solution of nine-point approximations for convection-diffusion
problems. In Proceedings of the 2005 International Conference on Scientific Computing,
pages 52–58, 2005.

[117] W. P. Tang and W. L. Wan. Sparse approximate inverse smoother for multigrid. SIAM J.
Matrix Anal. Appl., 21(1236), 2000.

[118] H. P. Taylor, C. A numerical solution of the Navier-Stokes equations using the finite
element technique. Computers and Fluids, 1(1):73–100, 1973.

[119] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[120] A. van der Ploeg, E. F. F. Botta, and F. W. Wubs. Nested grids ILU-decomposition
(NGILU). J. Comput. Appl. Math., 66(515), 1996.

[121] H. A. van der Vorst. Large tridiagonal and block tridiagonal linear systems on vector and
parallel computers. Parallel Comput., 5(45), 1987.

[122] H. A. van der Vorst. High performance preconditioning. SIAM J. Sci. Stat. Comput.,
10(6):1174–1185, 1989.

[123] H. A. van der Vorst. Iterative Krylov methods for large linear system. Cambridge University
Press, 2003.

[124] C. Vuik, R. R. P. van Nooyen, and P. Wesseling. Parallelism in ILU-preconditioned GM-
RES. Parallel Computing, 24(14):1927 – 1946, 1998.

[125] J. S. Warsa, T. A. Wareing, and J. E. Morel. Solution of the discontinuous P1 equations in
two-dimensional Cartesian geometry with two-level preconditioning. SIAM J. Sci. Comput.,
24(6):2093–2124, 2002.

[126] T. Washio and K. Hayami. Parallel block preconditioning based on SSOR and MILU.
Numerical Linear Algebra with Applications, 1(6):533–553, 1994.

[127] A. J. Wathen. Preconditioning and fast solvers for incompressible flow, 2004. Numerical
Analysis Group Research Report, Oxford University, NA-04/08.

[128] J. Watts. A conjugate gradient truncated direct method for the iterative solution of the
reservoir simulation pressure equation. Soc. Petrol. Eng. J., 21(345), 1981.

[129] G. Wittum. On the robustness of ILU-smoothing. SIAM J. Sci. Stat. Comput., 10(699),
1989.

[130] U. M. Yang. Parallel algebraic multigrid methods - high performance preconditioners. In
A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equations
on Parallel Computers, pages 209–236. Springer-Verlag, 2006.

[131] P. Yue, J. J. Feng, C. Liu, and J. Shen. A diffuse-interface method for simulating two-phase
flows of complex fluids. Journal of Fluid Mechanics, 515(-1):293–317, 2004.

63

[132] P. Yue, C. Zhou, and J. J. Feng. Can the Cahn-Hilliard model quantitatively describe
moving contact lines? J. Fluid Mech., submitted, 2008.

[133] P. Yue, C. Zhou, J. J. Feng, C. F. Ollivier-Gooch, and H. H. Hu. Phase-field simulations
of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing.
J. Comput. Phys., 219(1):47–67, 2006.

[134] J. Zhang. Sparse approximate inverse and multilevel block ILU preconditioning techniques
for general sparse matrices. Appl. Numer. Math., 35(67), 2000.

[135] C. Zhou, P. Yue, J. J. Feng, C. Ollivier-Gooch, and H. H. Hu. 3D phase-field simulations of
interfacial dynamics in viscoelastic fluids with variable contact angles using finite elements
with adaptive meshing. J. Comput. Phys., submitted, 2009.

64

