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Abstract 

This research is done at the department Oil, Gas, and Chemicals at ORTEC, a planning 
software company. We study the distribution of gas to commercial and residential 
customers that are not connected to a network of gas pipelines. These customers receive 
gas deliveries under a Vendor Managed Inventory (VMI) contract, which gives gas 
companies the flexibility to determine when and what volume to deliver, and what routes 
to choose. The decision problem that is associated with VMI for a large set of customers 
is the Inventory Routing Problem (IRP). Additionally, gas companies want to control the 
effects of the large seasonal peak in gas demand, to use the available resources efficiently. 
This research assumes customer usage to be deterministic, and we develop a solution for 
a region with multiple depots and vehicles with varying capacity (heterogeneous fleet). 

Introduction 

To design a solution methodology to minimize distribution costs in the IRP for gas distribution, and 
mitigate the seasonal peak in customer deliveries.  
 
We propose a solution methodology that increases the volume per kilometre, since it is an 
important indicator of distribution costs. Additionally, we balance the delivery volume in 
the planning period, to use the available resources efficiently. To mitigate the seasonal 
peak, we balance the delivery volume over a relatively long period, so that the workload 
is more equally divided over the year. 

Objective 

An algorithm is developed to select a certain delivery day in the planning period for every 
customer. The algorithm focuses on finding delivery days for customers that can receive 
a relatively large delivery compared to the customer’s capacity, while minimizing total 
travel distance. Customers that require a delivery in the planning period must be planned, 
and the customers that do not require a delivery in the planning period are planned 
according to the impact of the delivery on total travel distance and on future planning 
periods. The delivery volume is balanced according to the available vehicle capacity to 
efficiently use the available workforce and to smoothen the delivery volume over the 
course of a year. 

Solution 

Actual delivery data from a large gas company are used to test the algorithm in a planning 
period of seven days. The computational experiments show that the solution increases 
the delivered volume per kilometre by more than 21%. The delivery volume is balanced on 
the short-term and long-term, and is responsive to changes in the vehicle capacity in the 
planning period. 

Results 

The solution decreases the costs for gas distribution, and requires an acceptable 
computation time. The long-term balance in delivery volume flattens the customer 
delivery curve, and thus helps in mitigating the seasonal peak.  
 

Conclusions 
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Definitions 
This research is about propane gas, and we refer to propane gas simply with gas. 
Propane gas is used for heating residential and company buildings. 
 
An order is an intention to buy or sell a certain amount of goods. An order can be 
pulled, meaning that an order is an instruction from the buyer that he wants to buy. If an 
order is pushed, an order is forecasted by the seller, and delivered to the buyer. A 
delivery is a planned and scheduled order, waiting to be delivered, and an actual 
delivery is a completed delivery. 
 
Volatility is the standard deviation in demand. A volatile good refers to a good that has 
a relatively unstable demand curve with many peaks. The safety stock is a certain 
amount of stock that is kept to buffer against stock outs. In a highly volatile market, 
safety stock should be chosen to be relatively high, because peaks in demand are larger, 
and thus the risk of a stock out is larger (Brown et al., 2002). A seasonal profile reflects 
the volatility of a good in a year, for instance an increase in demand in the winter period. 
 
Workload balancing has the objective to balance the volume of work over periods of 
time, to have a relatively constant flow of work, and to mitigate the influence of volatility. 
 
A client is a customer of ORTEC. In this thesis the gas companies are clients. A 
customer needs to be replenished by ORTEC’s client. A location is a customer that 
needs to be visited in the routing problem.  
 
A ‘must-go’ customer requires a delivery in the planning period, because the customer 
will reach safety stock otherwise. A ‘may-go’ customer will not reach safety stock in the 
planning period, but may be delivered to create efficient routes. 
 
The visit frequency is the number of visits per period that are needed to replenish a 
certain customer. Slow-movers are customers that have a relatively low visit frequency, 
for instance once per year. Fast-movers have a relatively high visit frequency, for 
instance once per week.  
 
A truck is a lorry without a trailer. The trailer is a compartment to store and transport 
goods in. In our thesis, the trailer is a large tank, which is pulled by a truck. A driver is an 
employee that drives the truck to its destination. A vehicle is a combination of a truck, a 
trailer, and a driver. Vehicle capacity may vary, and a certain vehicle type indicates a 
vehicle with a certain load capacity. 
 
A depot is a central location in a region with a large stock of gas, and where vehicles can 
load and unload. In this thesis, it is assumed that depots have infinite stock. 
 
A trip is a set of orders that can be delivered by a vehicle in one haul, with the 
restrictions on the driver’s work time and the vehicle’s capacity taken into account. A 
vehicle can perform multiple trips per day. 
 
A network is a set of locations that are called nodes, and paths between these nodes that 
are called arcs. An arc between two locations can for instance be depicting the distance 
between these two locations.  
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1 Introduction 
Gas is a commodity, which is of crucial importance to our daily lives. Gas is used for 
heating our houses or work environment. To deliver gas to their customers, gas 
companies make a complex set of decisions in exploration, production, and distribution. 
Although most customers are connected to large national networks of pipelines, some 
customers are not. For these customers, gas is supplied by trucks and stored in large 
tanks at the customer’s location. To make transportation by truck more efficient, gas 
companies supply gas to their customers according to a Vendor Managed Inventory 
(VMI) agreement. With VMI, the decision to deliver gas lies with the gas company, and 
not with the individual customer. 
 
When a customer agrees with a VMI contract, a gas company can choose how often, 
when, and in what quantities the customer is replenished. In return, the gas company 
ensures that the customer will never run out of stock. In order to do this, a gas company 
needs to forecast and monitor the customer’s gas usage. This gas usage is influenced by 
the outside temperature, meaning that usage rises when temperature is low and vice 
versa. Due to this dependence, there is a high peak in gas demand in the winter months. 
This increases pressure on the gas company’s resources, and eventually leads to stock 
outs at customers in periods of high demand.  
 
This research proposes a solution methodology to find a better distribution strategy 
when a gas company has the freedom that comes with VMI, and to mitigate the delivery 
peak in the winter months. The structure and lay-out of the thesis is discussed in 
Paragraph 1.1. This research has been done at ORTEC; we discuss the company in 
Paragraph 1.2. Paragraph 1.3 describes the problem, and Paragraph 1.4 states the 
research objective. The scope of the project is discussed in Paragraph 1.5, and Paragraph 
1.6 clarifies the research questions. 

1.1 Thesis structure 
• Chapter 1 states an overview of the research. The company ORTEC is described, and 

we give a description of the problem. 
• In Chapter 2, we analyze the context of the problem. We discuss the main problem, 

gas distribution, the involved software suites, and the background solution currently 
in place. 

• Chapter 3 describes the literature that applies to the research questions in this thesis. 
• Chapter 4 describes our solution, based on the information from Chapters 2 and 3.  
• In Chapter 5, we discuss the computational results and a sensitivity analysis. 
• In Chapter 6, we discuss the conclusions and the recommendations. We also discuss 

the scientific contributions of our report, and state ideas for future research. 

1.2 ORTEC 
This research is done by the Oil, Gas and Chemicals department of ORTEC. ORTEC is 
a consultancy company founded in 1981. The company is specialized in advanced 
planning and scheduling solutions, and is also active in financial risk management. 
ORTEC has 15 offices in Europe and North America and more than 800 customers 
worldwide. The fast-growing company employs over 700 people and delivers products in 
various industries: aviation, healthcare, transport, oil, gas, etc. The Oil, Gas and 
Chemicals department in the Dutch headquarters in Gouda, consists of 15 employees 
and is involved in large international projects at major oil and gas companies. 
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1.3 Problem description 
Gas companies supply gas to their customers according to a VMI agreement. The gas 
company can optimize its decisions on the condition that at least a minimum stock of gas 
is always available to the customer. This minimum stock is called the safety stock, and it 
serves as a buffer to prevent stock outs. Because of VMI, gas companies forecast the 
customer usage, and have more freedom in creating their distribution plan. Additionally, 
customers do not need to dedicate resources to inventory management.  
 
ORTEC provides a software solution called ORION to support gas companies in 
forecasting gas usage with historical delivery data. From the forecasted usage, orders are 
generated which are exported to SHORTREC, a software product that creates solutions 
for large instances of the Vehicle Routing Problem (VRP). The VRP is the problem of 
selecting a set of routes for a certain vehicle fleet in such a way that all orders are 
delivered at minimal costs (Dantzig and Ramser, 1959).  
 

 
Figure 1.1. The two distinct phases in planning and scheduling of all customer deliveries. 
 
ORION and SHORTREC decompose the problem of planning and scheduling into two 
clear phases that are illustrated in Figure 1.1. 
 
ORION plans the delivery date of an order with an algorithm that minimizes the number 
of visits. This means a customer is served as late as possible, just before the customer 
reaches safety stock. According to Campbell and Savelsbergh (2004), this approach 
maximizes the volume deliverable to a customer, but may not create an optimal solution 
on the long-term, since it does not recognize geographical synergies between customers. 
The savings in synergy may be higher than the savings in minimizing the number of 
visits, for instance if two customers are located not far from each other, but should be 
visited on a different day according to ORION. Figure 1.2 illustrates this problem. 
 

ORION plan for day one ORION plan for day two

depot depot

 
Figure 1.2. The blue arrow indicates that the order (in red) is more efficiently delivered, 

when it is delivered on the same day as customers in close vicinity. 

Phase 1 - Planning 
Generating orders in  

ORION 

Phase 2 - Scheduling 
Scheduling orders to vehicles 

and trips in SHORTREC 
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Figure 1.3. The actual weekly delivery volumes of gas in the Northern-England region 

(NE-region) clearly show the seasonal peak in demand in the winter months 
 
Figure 1.3 illustrates a large and long lasting peak in the demand for gas in the winter 
months; all other peaks and disturbances are explained in Paragraph 2.2. On average, the 
volume delivered to customers in the winter months is 1,5 times as high as the amount 
delivered in the summer months. The workload balance over a full year is offset by the 
large peak in demand in the winter months. This leads to stock outs at customers during 
the winter months and, in combination with a fixed fleet over the year, to unused trucks 
in the summer months. If we want to balance the workload over a full year, it is 
important to consider the expected demand in a longer period in the short-term plan. 
Currently, there is no available method in ORION or SHORTREC to plan and schedule 
orders, taking future total demand in the region into account. 
 
Additionally, we study the problem of unstable workload balance on the short-term. To 
explain this problem, we provide an example: if fewer orders are planned on Wednesday 
than on Friday, we do not need all trucks on Wednesday. Then on Saturday, we need an 
emergency truck, since not all orders can be delivered on Friday, and this results in high 
costs. 
 
In the literature, the problem described in this paragraph is referred to as an Inventory 
Routing Problem (IRP). The IRP is similar to a VRP with two additional questions: (1) 
when to serve a customer, and (2) how much to deliver to this customer. Paragraph 2.1 
describes the IRP in detail. We extend the IRP with the problem of the seasonal peak in 
demand. 

1.4 Objective 
We identify two separate problems, the IRP, and the problem of the seasonal peak in 
demand in the winter period. We state a research objective that is directly applicable to 
these problems: 
 
To design a solution methodology to minimize distribution costs in the IRP for gas distribution, and to 
mitigate the seasonal peak in customer deliveries.  

Actual delivery volumes in the Northern-England region
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1.5 Scope 
We examine the first of the two phases in Figure 1.1: the generation of orders. More 
specifically, we investigate the interaction in the first phase between the ORION and 
SHORTREC suites. We do not focus on the usage forecasting, but specifically on the 
translation of this usage forecast to orders. Additionally, our objective is not to find 
improvements in the optimization algorithms in SHORTREC. We exclude the problem 
of multiple tank compartments, which is common in the oil industry, and we investigate 
the situation with one compartment, because this setting is common in gas distribution.  

1.6 Research questions 
We set apart the seasonal peak problem from the IRP, because the seasonal peak 
problem is an extension of the IRP. Literature on the IRP with methods to solve the 
seasonal peak is not available.  

The IRP  
The answer to RQ1 analyzes the context of the IRP. RQ2 studies the available methods 
in theory and practice to solve the IRP. RQ3 connects the IRP to a short-term workload 
balance. RQ4 relates to the implementation and evaluation of our solution.  
 
RQ1. How can we describe the classical IRP? [Paragraph 2.1] 

a. What restrictions follow from the gas market? [Paragraph 2.2] 
b. What is the background solution? [Paragraph 2.4] 
c. What are the solution requirements? [Paragraph 2.5] 
 

RQ2. How can we solve the classical IRP? [Paragraph 3.2] 
a. When to serve a customer? [Paragraph 3.1] 
b. How to reflect the long-term effect of a short-term decision? [Paragraph 3.1] 
c. How can we apply this method to our extension of the IRP? [Chapter 4] 
d. How to include the multi-depot problem? [Chapter 4] 
e. What decision model can we use? [Paragraph 3.5] 

 
RQ3. How to balance the short-term workload in the IRP? [Paragraph 3.2] 

a. What criterion for balancing the workload should we use? [Paragraph 3.2] 
 
RQ4. How can we apply our solution to ORION and SHORTREC? [Paragraph 6.2] 

a. What is the function of ORION and SHORTREC? [Paragraph 2.3] 
b. How should the performance of our solution be measured? [Paragraph 3.3] 
c. What are the best settings for our solution? [Paragraph 5.3] 

The seasonal peak 
The answer to RQ5 results in a solution to the seasonal peak problem, since the 
workload is better balanced over a full year. 
 
RQ5. How can we balance the workload in the IRP for a full year? [Paragraph 3.4] 
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2 Context analysis 
This chapter discusses the background of the problem. Paragraph 2.1 describes the IRP 
as stated in the literature. Paragraph 2.2 discusses the gas market and its properties. 
Paragraph 2.3 goes into ORION and SHORTREC, and Paragraph 2.4 describes the 
current solution for the problem: the Period Scheduler. Paragraph 2.5 gives a set of 
solution requirements to guide our literature research in Chapter 3. 

2.1 The Inventory Routing Problem 
Campbell and Savelsbergh (2004) describe the IRP as the distribution of a single product 
from a single depot, to a set of N customers over a given planning horizon of length T, 
possibly infinity. Customer i consumes the product at a given rate Ui (volume per day), 
and its storage capacity is given by Ci. The start inventory at customer i is Ii

0 at day t is 0. 
A fleet of M homogeneous vehicles, meaning the vehicles are all the same, is available for 
the distribution of the product. The vehicles have a fixed capacity Q. The objective is to 
minimize the distribution costs without causing stock outs at the customers, which is the 
same as the objective of VMI. In the IRP, three decisions play an important role: 
 
(1) When to serve a customer? 
(2) How much to deliver to a customer? 
(3) What delivery route to use? 
 
When the size and date of the delivery are determined, the question what delivery route 
to use remains. This means a VRP for every day in the planning needs to be solved. Since 
the VRP is a generalization of the Travelling Salesman Problem1

(1) In our IRP the vehicle fleet is not homogeneous, i.e. we have trucks with varying 
capacity.  

 (TSP) and the TSP is 
NP-hard, the VRP is NP-hard as well (Garey and Johnson, 1979). An NP-hard problem 
is usually not solvable within polynomial time, meaning it can only be solved within 
reasonable time with a heuristic algorithm. Because of its complexity, the IRP is NP-hard 
as well, and we can only solve the IRP within reasonable time with a heuristic algorithm. 
 
The classical IRP, which we described above, differs from our IRP on three points: 
 

(2) Some customers can only be visited by a certain type of vehicle in our IRP. 
(3) Multiple depots need to be considered when solving the problem in our IRP.  
 
The IRP is a long-term dynamical control problem. It is dynamical, since a decision today 
affects the situation tomorrow. This long-term dynamical control problem is hard to 
formulate and to solve. Therefore, approaches to solve the IRP are focused on solving a 
short-term planning problem. Two questions are important in these approaches: 
 
(1) How to model and account for the long-term effect of short-term decisions? 
(2) What customers to include in the short-term planning period?  
 
Following a short-term approach results in postponing as many deliveries as possible to a 
following planning period. This leads to problems in following planning periods. 
                                                 
1 The objective in the TSP is to find an optimal route with minimal travel distance for a 
salesman, who must visit a number of locations and has to return to his starting point.  
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Figure 2.1. Distance in 
kilometres in the IRP example. 

 

2.1.1 The IRP in an example 
To illustrate the dynamics of the IRP, Bell et al. (1983) describe a simple example with 
four customers and one depot. Each customer has a fixed demand per day, a maximum 
capacity, and a starting inventory which is equal to its capacity; Table 2.1 displays the 
properties of all customers. Figure 2.1 illustrates the distances between the customers and 
the depot. There is one vehicle with a capacity of 5000 litres. Customers use the gas up to 
noon, and the vehicle starts delivering after noon. The vehicle can perform two trips per 
day, and we need a plan for the next two days. 
 
 

 
 
 
 

Customer Daily usage 
(litres) 

Capacity 
(litres) 

Start inventory 
(litres) 

A 1000 5000 5000 
B 3000 3000 3000 
C 2000 2000 2000 
D 1500 4000 4000 

 
 
 
 
 

The obvious solution to this problem would be to deliver Customers A and B on the first 
trip and Customers C and D on a second trip, both trips on both days. We would deliver 
7500 litres per day, and drive 420 kilometres per day.  
 
A better solution is to deliver to Customers B and C on the first day, and deliver to 
Customers A and B, and

A B

C

D

100

100

100100

140

10

10

Depot

 to Customers C and D on the second day. Figure 2.2 illustrates 
this, where a circle illustrates a trip and the different colours display different days. We 
can deliver volume for two days to Customers A and D and for one day to Customers B 
and C in this solution, in a total of three trips spread out over two days. We get an 
average of 380 kilometres and 7500 litres per day. 
 

 
Figure 2.2. Geographical display of the better solution. 

 
Customer A B C D Total distance (km) Total volume (litres) 
Trip 1 (Day 1) - 3000 2000 - 340 5000 
Trip 2 & 3 (Day 2) 2000 3000 2000 3000 420 10000 
Average per day         380 7500 

Table 2.2. The better solution for the example. 

A B

C

D

100

100

100100

140

10

10

Depot

Table 2.1. Daily usage and maximum 
delivery for each customer 
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2.2 Gas distribution 
Gas is found in oil or gas fields, and it follows an intensive production process at a 
refinery before it is stored. From this storage, it can be supplied to depots in the market 
area by means of pipeline, boat, train or truck, in compressed or liquefied form. For 
customers that are not connected to the national grid, depots deliver gas by tank truck. 
This is also done for commercial customers, such as gas stations, who are selling gas to 
car owners. The customer stores the gas in a tank, and each customer requires a delivery 
between several times per week and once per year. Planners at the depots are responsible 
for the planning of these deliveries to make sure all customers have sufficient stock. 
 

 
Figure 2.3. Forecasted weekly usage and actual weekly delivery volumes of gas in the 

Northern-England region in the weeks 2006-49 to 2007-48. The graph is different from 
Figure 1.3, because these data only represent customers that are in the VMI program. 

 
Figure 2.3 illustrates the annual demand curve which shows a large seasonal peak in 
demand in the winter months. This is caused by additional heating due to the lower 
temperature. The graph is constructed from actual delivery data of three depots in the 
Northern-England region in the UK (NE-region). These three depots serve 3.188 
customers, of which 60% are in the VMI program, and deliveries are controlled by the 
gas company. The other 40% of the customers are not in the VMI program, and the 
demand of these customers is not forecasted, meaning these customers order gas 
themselves. We use the data of the NE-region frequently in this research. 
 
In the graph of Figure 2.3, all customers that have no forecasted usage are excluded. This 
concerns (1) new customers, since there are insufficient data to determine their usage 
rates, and (2) customers that are not in the VMI program. Grain farms are customers that 
are not in the VMI program, because their demand depends on many factors that are 
difficult to forecast. Grain farms have a relatively large demand in the months August 
and September, to dry the harvested grain. 
 
The large drop in actual deliveries in week 51 is because of Christmas, which is an official 
holiday, and thus holds a lower amount of available resources. The large peak in actual 
deliveries in week 26 is due to a data error in ORION. Based on this data error, ORION 
underestimated the expected demand of the customers, and thus proposed expected 
delivery dates that were too late. To make up for this error, many deliveries had to be 
made in the weeks 25, 26, and 27. The forecasted usage in Figure 2.3 is determined in 
2008, so it is based on corrected data. All other peaks and disturbances in the actual 
delivery curve can be explained by the volatility in planning the orders, or the volatility in 
available resources. 
 



 

How VMI Can Be Successful in Gas Distribution, Peter Hulshof  
 

14 

Due to safety regulations, the maximum capacity at a customer is 85% of the customer’s 
tank capacity. An emergency delivery is scheduled, when a customer is out of stock, or 
nearly out of stock. The exact definition of an emergency delivery, is a delivery where the 
customer tank level is below 15%, and the order is added after a trip was created. There 
were 132 emergency deliveries in the period December 2006 until November 2007, and 
these are 0,8% of all orders in this period (15.929 orders). August and September have 
increased emergency deliveries, since grain farms have high and volatile demand in this 
period. Figure 2.4 illustrates the distribution of emergency orders over the year.  
 

 
Figure 2.4. The number of emergency orders in the NE-region in the period December 

2006 - November 2007. 

Trips and restrictions 
The average number of customers per trip in the NE-region is nine. This high number of 
stops per trip increases the complexity of calculating an optimal trip in the corresponding 
VRP. Many standard constraints apply to the calculation of these trips. Customers can be 
visited in time windows that are only bounded by the hours of daylight, and there is no 
need for customers to be available for the delivery. Additionally, two important 
restrictions apply in gas distribution: vehicle restrictions and equipment restrictions. 
Vehicle restrictions restrict the type of vehicle by which a customer can be visited. For 
instance, a customer that lives in an area that is very difficult to reach can only be visited 
by the smallest vehicle, since the other vehicles are too large for the roads to the 
customer. Equipment restrictions require certain equipment to be available in the vehicle 
to deliver to a customer. Although this restriction is not used in the NE-region, we add it 
to the solution requirements, since it is common in gas distribution. 

2.2.1 The economics of gas distribution 
The costs of gas distribution are mainly driven by volatility, travelled kilometres, and the 
number of visits to customers. 

Volatility costs 
Vehicle contracts are settled for a full year, so resources are fixed over the year. Volatility 
is a strong driver of cost, since the resources are fixed, but demand is not. Volatility is a 
cause for idle, or for emergency resources, and minimizing the effects of volatility is one 
of the objectives. 

Vehicle fleet and travelled kilometres 
In gas distribution, costs are specifically driven by the vehicle fleet, and the number of 
kilometres this fleet has to travel to deliver the gas. 
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Number of visits 
The number of visits to a customer should be kept to a minimum, since a visit means 
additional kilometres, and thus additional costs. The optimal number of visits to a 
customer can be calculated by dividing the customer’s usage by its capacity. This is 
optimal when a vehicle can only visit one customer per trip, but in gas distribution there 
are nine stops per trip. A customer can not be observed as an individual, but should be 
observed as a system, where customers in the vicinity influence the number of visits to 
this customer as well. This trade-off between minimizing the number of visits and 
minimizing the kilometres travelled is the crucial element of the IRP in gas distribution.  

2.2.2 Solution requirements for gas distribution 
The solution requirements for gas distribution are based on this paragraph: 
 
(1) Travel to different areas in the region on a single day to be able to respond to 

emergency orders. 
(2) Multi-depot approach, since a planner is usually responsible for a region with 

multiple depots in gas distribution. 
(3) Heterogeneous fleet approach, because there are different types and sizes of vehicles 

in real-life instances of the IRP in gas distribution. 
(4) Take in consideration vehicle and equipment restrictions. 
(5) Balance the workload to decrease volatility in deliveries. 

2.3 ORION and SHORTREC 
ORION and SHORTREC are two decision support software suites that communicate 
with each other by exchanging files. The suites are used by end-users at ORTEC’s clients, 
and they find good results with relatively low computation times.  
 
Planners plan gas deliveries for a certain planning period, usually one day. Based on 
historical data of tank measurements (dip levels) and deliveries (drop sizes), ORION 
forecasts gas usage in the future. With the information on usage, ORION generates the 
orders just before a customer reaches safety stock, with the objective to minimize the 
number of visits. Figure 2.5 illustrates the ideal curve of a customer’s stock level. 
 

stock level

time

maximum stock level

safety stock level

 
Figure 2.5. The ideal curve of a customer’s stock level to minimize the number of visits. 

The vertical lines are deliveries, and the diagonal lines illustrate usage. The top and 
bottom horizontal lines illustrate the maximum stock level and the safety stock level. 

 
ORION generates two types of orders; a ‘must-go’ and a ‘may-go’ order. A ‘must-go’ 
customer requires a delivery before a certain day in the planning period, because the 
customer will reach safety stock otherwise. A ‘may-go’ customer will not reach safety 
stock in the planning period, but may be delivered to create efficient routes. 
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Based on the orders from ORION, SHORTREC solves the VRPs for all orders that are 
planned on a specific day. SHORTREC produces a routing schedule that is created with 
a (1) constructive heuristic, and is optimized with (2) an improvement heuristic. A 
SHORTREC-user can select the savings-based or insertion heuristics as described in 
Poot et al. (2002). At the start of the algorithm, a trip is created for the customer that is 
farthest away from a depot. The main idea is to insert customers into this trip. These 
insertions come with certain costs in distance, and the customer with the lowest insertion 
costs is chosen. When a vehicle is filled, a new trip is started with the customer that is the 
farthest away from the depot. With SHORTREC, many restrictions can be taken into 
account: time windows, vehicle capacity, driver schedules, restricted routes, etc. 

2.4 The background solution: Period Scheduler 
The Period Scheduler is an algorithm that is created for the Period Vehicle Routing 
Problem (PVRP) for a large beverage company. This paragraph describes the Period 
Scheduler adjusted for gas distribution.  
 
From the complete geographical area that is serviced by one depot, n separate seed points 
are chosen for every day of the planning period, so when there are five days, there are 
five seed points. These seed points are the centres of gravity of all customers, so they are 
fixed. The days of the planning period are assigned to the seed points according to their 
creation order, i.e. Seed 1 is assigned to Monday and Seed 2 to Tuesday, etc. See 
Appendix A for the detailed seed creation process. 
 
Every customer is connected to a set of delivery scenarios, which contain percentages of 
the customer’s tank size that can be delivered on a certain day in the planning period. 
The Period Scheduler assigns one of the scenarios to the customer by solving an Integer 
Linear Programming problem (ILP), which is given in Appendix B. An ILP is a Linear 
Programming problem (LP) with a restriction to the possible values of one or more 
variables. The restricted variables can only be integer values. An ILP is NP-hard, where 
an LP is not (Garey and Johnson, 1979). An ILP where the integer restriction is ignored 
is called an LP relaxation. The ILP in the Period Scheduler is solved by rounding the 
outcome of the LP relaxation to integers. 
 
The ILP has the objective to minimize the driving distance between the customer and 
the seed points, which are connected to a certain delivery day. For a ‘may-go’ customer a 
comparison between a delivery this week and a delivery next week is incorporated in the 
cost function. The cost function for not visiting the ‘may-go’ customer this week, and 
forwarding the delivery into the future, is given in Equation 2.1.  
 

                   
10 44

3

B
Act
⋅

=  for t = 6    (2.1) 

 
A is the percentage of customer’s capacity that can be delivered the next week, if there is 
no delivery this week. B is the distance to the nearest ‘must-go’ customer in the current 
week. A low distance between the ‘may-go’ customer and its nearest ‘must-go’ customer 
increases the costs for forwarding the customer. Additionally, a relatively large delivery 
next week decreases the costs for forwarding the customer, since it has a relatively higher 
urgency.  
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The workload is balanced by delivery volume per day in 
the ILP. The average expected usage per week is 
calculated for 13 weeks into the future, and this is set as 
the workload for the current week. The end-user can set 
the percentage of the workload that has to be delivered on 
every day of the week. For instance, the end-user can plan 
fewer orders on Friday to reserve capacity for expected 
pull orders. If the expected demand has an increasing 
curve in the next 13 weeks, we will deliver more in the 
current week than only the expected demand for the 
current week, and thus we get a moving average on the 
long term that takes into account the expected demand for 
the next 13 weeks. Figure 2.7 illustrates the customer 
assignment to five seed points. 

2.4.1 Background solution analysis 
In our solution, we consider the following aspects: 
 
(1) The distance minimization of the Period Scheduler is a short-term perspective on 

cost. A long-term perspective on costs is only in the cost function for forwarding a 
‘may-go’ customer by including the percentage of a ‘may-go’ customer’s capacity that 
can be delivered next week. Can this long-term approach also be incorporated in the 
cost function for delivery days within the planning period? 

(2) The Period Scheduler lacks flexibility, since only one seed point is selected for each 
day. In case of emergencies outside the seed point’s region, it is difficult to 
reschedule a truck.  

(3) The Period Scheduler can not cope with multiple depots in the planning region. 
(4) The Period Scheduler does not balance the workload considering vehicle capacity at a 

depot on a certain day in the planning period, but uses manual balancing parameters. 
It is beneficial to connect the availability of resources to the workload that should be 
planned on a specific day. 

2.5 Solution requirements 
We describe the main requirements for our solution, based on Chapters 1 and 2:  
 
(1) Relatively low computation times for real-life instances. 
(2) The workload is balanced to cope with volatility on the short-term and the long-term. 
(3) Travel to different areas in the region on a single day to be able to respond to 

emergency orders. 
(4) Multi-depot approach, since a planner is responsible for a region with multiple 

depots in gas distribution. 
(5) Heterogeneous fleet approach, because there are different types and sizes of vehicles 

in real-life instances of the IRP in gas distribution. 
(6) The solution is implemented and tested in the ORION and SHORTREC suites. 

Figure 2.7. Colours 
mark the different days. 
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3 Literature analysis 
This chapter analyzes the literature on the IRP and seasonal peak mitigation. For the 
reader that is merely interested in the main insights, a summary is given in Paragraph 3.6. 
Paragraph 3.1 discusses key principles, which form the basis for finding a solution 
methodology for any type of IRP. Additionally, we discuss five solution methodologies in 
Paragraph 3.2. Paragraph 3.3 discusses performance measurement for the IRP, and 
Paragraph 3.4 illustrates the seasonal peak problem in the literature. Paragraph 3.5 
discusses the available decision models that are frequently used in the literature on the 
IRP. The reader is referred to Appendix C for the summaries of the articles discussed in 
this chapter. 

3.1 Key principles in solving the IRP 
The key principles form a better understanding of the trade-off between long-term and 
short-term costs. When deliver an order earlier than its optimal delivery point? 
 
Dror and Ball (1987) 
Dror and Ball (1987) propose a short-term planning solution, in which the long-term 
effect of a short-term decision is reflected. They find that the relative delivery size is a key 
indicator of the impact of a short-term decision on the long-term cost. If the relative 
delivery size is small, it means the delivery size is far from optimal, and costs are higher. 
Their idea for relative delivery size is also used in the Period Scheduler. The relative 
delivery is calculated by dividing the delivery for the customer by its capacity: 
 

Capacity
lumeelivery VoPossible D   (3.1) 

 
Campbell, Clarke, Kleywegt, and Savelsbergh (1997) 
Campbell et al. (1997) propose two assumptions to guide decisions in solving the IRP: 
 
(1) Always try to maximize the quantity delivered, since this minimizes the number of 

visits to a customer on the long-term. 
(2) Always try to send out a full truck load, since this maximizes utilization. 
 
Yugang, Haozun, and Feng (2008) 
Yugang et al. (2008) approach transportation cost in a way that includes distance as detour 
distance, the additional distance that should be travelled if a customer is added to a trip. 
This is illustrated in Figure 3.1, a trip between the Depot and Customer 1 will be: 2 * 100 
= 200, and a trip including Customer 2 will be: 100 + 30 + 90 = 220. This means we 
increase the distance of the trip with 20. 
 

Depot

Customer 2

Customer 1100

3090

 
Figure 3.1. Detour distance is the extra distance by adding Customer 2 to the trip. 
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We state three measures for distance: 
 
(1) Euclidean distance, distance that is given by measuring a straight line on a map 

between two locations. 
(2) Real distance, distance that is given by measuring the minimum travel distance 

through a network of roads between two locations. 
(3) Detour distance, distance that is given by the additional travel distance when a certain 

customer is inserted in an existing trip. This is measured as a real distance. 

3.2 Solution methodology for the IRP 
Bell et al. (1983), Federgruen and Zipkin (1984), Golden et al. (1984), and Blumenfeld et 
al. (1987) are among the first authors to describe a solution methodology for the IRP. 
Since then, researchers have defined approaches to solve the IRP for different problem 
instances. The main differences in these approaches are: 
 
(1) A deterministic versus a stochastic approach, where customer usage is assumed to be 

either deterministic or stochastic. ORION uses deterministic customer usage. 
(2) A decomposition versus an integrated approach, where a decomposition approach 

tries to find a solution for the IRP in a phased approach. The first phase finds a 
timing and quantity for a delivery, and the second phase solves the resulting VRPs. 
The integrated approach deals with the decision when and how much to deliver, and 
the VRPs, at the same time.  

(3) Different decision models are used in the literature. Where most authors use an ILP 
to minimize cost or maximize revenue; other authors solve the IRP with Dynamic 
Programming (DP), or with heuristics.  

 
All authors design solution methodologies for a homogeneous fleet. Although some 
methodologies cope with satellite reload facilities, no article has a multi-depot approach, 
where vehicles start and finish a day at multiple locations. 
 
Golden, Assad, and Dahl (1984) 
Golden, Assad, and Dahl (1984) state that the IRP is optimized along (1) a spatial 
dimension (distance) and (2) a temporal dimension (delivery timing). The authors use 
relative delivery size as a measure to reflect the temporal dimension. The distance is 
minimized and the relative delivery size is maximized. The authors use Equation 3.2 to 
select customers that have an opportunity to be delivered in a planning period. 
 

α≥
Capacity

lumeelivery VoPossible D  (3.2) 

 
Dror and Trudeau (1988) 
Dror and Trudeau (1988) investigate a stochastic IRP. The stochastic approach gives the 
opportunity to model route failures and stock outs in a simulation model. A route failure 
is a mismatch between the expected delivery volumes in a trip and the actual volumes, 
resulting in a trip with too little or too many customers. In our deterministic approach, it 
is difficult to test a solution for stock outs, since one can not simulate actual usage.  
 
We deal with route failures by adding customers at the end of a trip with a flexible 
delivery. If the customers are not visited, there is no stock out at the customer, and if we 
do visit the customer, the delivery should be above a minimum economic delivery size. 
This method is similar to the method used in practice by the planners. 
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Bard, Huang, Jaillet, and Dror (1998) 
Bard et al. (1998) discuss a decomposed approach for the IRP with satellite reload 
facilities. The bi-criteria approach they propose is applicable to our IRP, since it 
combines the maximization of the relative delivery size with the objective to minimize 
the distance travelled. Bi-criteria problems can be approached in two ways: 
 
(1) Both criteria are optimized simultaneously, by finding correct weights. 
(2) Optimize the criteria sequentially by first optimizing one criterion and than the other. 
 
The authors use the second, separate optimization approach, and this approach is similar 
to the current set-up of ORION and SHORTREC, where ORION always generates an 
order when safety stock is almost reached, and SHORTREC minimizes distance. Since 
we want to have a combination of both, we need to minimize distance, and maximize the 
relative delivery in one evaluation step. The authors use volume as a factor to balance the 
workload over the week, and every day should have an equal volume to be delivered. 
 
Campbell and Savelsbergh (2004) 
Campbell and Savelsbergh (2004) propose a methodology that is appropriate for our 
IRP. The methodology consists of two phases that resemble the current planning and 
scheduling in ORION and SHORTREC.  
 

Phase II: SchedulingPhase I: Planning

Cluster
generation

Reducing the 
customer set

Selection 
of routes

ILP 1
Set Partitioning

Critical
Impending

Balance

ILP 2
Aggregation/

Relaxation

Trip 
construction

Insertion
Heuristic

 
Figure 3.2. The solution methodology of Campbell and Savelsbergh (2004) 

 
The authors reduce the problem size by creating clusters based on the knowledge that it 
should be possible to serve a cluster with one vehicle for a long period. They calculate 
the clusters once and re-calculate them when a new customer is added, or when customer 
usage patterns change. This form of ‘fixed pre-clustering’ requires large computation 
times, and is interesting in problem instances that are relatively small, since the customer 
set in these instances does not change often. With the high variability in customer usage 
curves and the many changes in the customer set in our IRP, we would update the 
clusters daily. We cluster in a different way, since we do want to use the distance 
minimization provided by clustering. ‘Must-go’ customers are the starting point for 
creating our clusters, since they form the basis for a solution methodology (Campbell and 
Savelsbergh, 2004). Clustering is also used by Jung and Mathur (2007) to minimize 
distances between customers before solving an actual VRP. 
 
The authors reduce the customer set, which minimizes long-term costs and makes the 
algorithm faster. They only consider customers that can receive a certain relative delivery 
(Golden et al., 1984; Dror and Ball, 1987; Bard et al., 1998), or are very far from other 
customers. These customers are called impending and critical customers respectively. 
Additionally, h nearest neighbours to each of these customers are added as balance 
customers, to balance the workload equally over the days. The authors estimate and use 
working times to balance the workload in Phase I.  
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Kleywegt, Nori, and Savelsbergh (2004) 
Kleywegt et al. (2004) use an integrated approach. The authors apply Dynamic 
Programming (DP), where the solution space is enumerated in an intelligent way, thereby 
creating good results. Although their results look promising, it is not useful yet. Kleywegt 
et al. (2004) apply their methodology to a problem where trips consist of three stops or 
less, and solution times already take multiple days. Trips in gas distribution have on 
average nine stops, and since their computation times grow exponentially with the 
number of stops per trip; we can not use their solution methodology. This was noted by 
Campbell and Savelsbergh (2004) as well. 

3.3 Performance measurement for the IRP 
The IRP is an NP-hard problem, and because of its complexity, we have no optimal 
solution to compare our heuristic with. Usually, a lower bound can be calculated for an 
NP-hard problem, which is a good solution to a simple derivation of the actual problem. 
A lower bound for our IRP will be very weak, because the large number of customers 
and the large number of stops per trip result in a prohibitively large number of options to 
calculate (Song and Savelsbergh, 2007). Song and Savelsbergh (2007) are the only authors 
that study performance measurement for the IRP, and they state that volume per kilometre is 
the best measure to compare IRP solution methodologies for equal problem instances.  

Solution performance measures 
Other authors in the IRP literature define transportation cost by the factors in Table 3.1. 
 

Factor Measure(s) Available after activity 

Transported volume / Total used truck capacity 
Truck utilization 

Scheduling 

Number of trucks needed Scheduling 

Kilometres travelled Distance Scheduling 

Total planned volume 

Volume 

Planning 

Transport cost per volume Scheduling 

Volume per order Planning 

Volume per kilometre Scheduling 

Working time 
Driver cost 

Scheduling 

Driving time Scheduling 

Relative delivery (Delivery volume / Customer Capacity) Number of customer visits Planning 

Table 3.1. Factors that influence transportation cost and measures to quantify them. 
Some measures are available after the planning phase, and others require the scheduling 

phase to be completed as well. 

3.4 Seasonal peak problem 
Although some authors describe the seasonal demand peak (Dror and Ball, 1987), no 
author has ever written about a strategy to cope with this peak in gas distribution. Welch 
et al. (1971) propose five solutions for the seasonal peak in the production of gas, of 
which one is applicable to the distribution of gas as well. 
 
Welch et al. (1971) state that a gas company should hold sufficient stock in peak periods, 
to cope with the higher demand. Thus if a gas company ensures that customers have 
sufficient stock during the peak period, it has to make fewer visits in the peak period. In 
the current situation, an order is generated as late as possible, and there is no connection 
to the peak in future demand of all customers. 
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We propose two methods to mitigate the seasonal peak in demand: 
 
(1) Take into account the future demand of all customers when assigning the orders to 

days. Use a workload constraint that balances the workload over a longer period than 
the planning period. This is also used in the Period Scheduler. 

(2) Ensure customers with a large flexibility do not require a delivery in peak times, by 
forcing orders for these customers in quieter times. For example, customers that 
need one delivery per year receive a delivery in summer, to avoid deliveries when the 
peak is at its highest, in the middle of winter. 

 
We study the use of Option (1) to balance the workload over a full year, because this 
solution methodology is connected to the IRP. The graphs in Appendix D illustrate that 
(2) is not used, it is recommended for future research. 

3.5 Decision models to optimize the IRP solution 
The IRP is frequently solved with an ILP in the literature. Next to ILP, we discuss other 
models that are used: Mixed Integer Linear Programming (MILP), and DP. 

3.5.1 Integer Linear Programming 
An ILP is NP-hard, but can be solved fast with efficient heuristics. These heuristics are 
found in programs like CPLEX and AIMMS, but these programs can not be 
implemented in our solution, since their license costs are relatively high. We must use a 
solver that has no license costs. To find alternative methods, we discuss branch-and-
bound, Lagrangian relaxation, and rounding. 
 
Branch-and-bound 
In branch-and-bound (Winston, 1994, page 502-532) the feasible solutions to an ILP are 
systematically enumerated, such that the optimal integer solution is found. This is done 
by solving an LP relaxation, and setting the solution to the upper bound of the problem 
(in a maximization problem). By making use of a tree-like setup, and determining the 
upper bound of each node in the tree, one can determine if it is still useful to evaluate the 
branches that lie below a node. We can only use branch-and-bound for small problem 
instances, since our solver uses prohibitively long computation times for larger instances. 
 
Lagrangian relaxation 
The main idea behind Lagrangian relaxation of an ILP is to incorporate the interfering 
constraints into the objective function, with a certain weight or penalty if the constraint is 
not satisfied. The problem can be solved by finding the best weights and the lowest 
upper bound for the maximization problem. We do not use this method in our 
algorithm, since the application of Lagrangian relaxation is studied in a future graduation 
thesis at ORTEC. 
 
Rounding 
A very fast approach to solve an ILP is to round the solution of the connected LP 
relaxation (Winston, 1994, page 466). In an LP relaxation, the integer constraint is 
dropped from an ILP, which makes it much easier to find a solution. Rounding the LP 
relaxation for the assignment problem would mean that the largest fraction is set to 1, 
and the other decision variables for a specific assignment are set to 0. This can result in a 
solution that does not satisfy all constraints anymore, which is less important in large, 
practical problems, where a very high accuracy is not required. 
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3.5.2 Mixed Integer Linear Programming 
A Mixed Integer Linear Programming problem (MILP) is an LP where a subset of the 
decision variables is set to binary integer variables. Usually, an MILP is solved faster than 
an ILP, because an MILP is less constrained. An MILP can be solved with Lagrangian 
relaxation and branch-and-bound. 

3.5.3 Dynamic Programming 
Dynamic Programming (DP) is used by Kleywegt et al. (2004). Since the computation 
time of their solution is prohibitively high, it is not an alternative for our solution. 

3.6 Main conclusions from the literature 
The literature provides us with five main insights: 
 
(1) A decomposed approach, which separates the planning procedure from the 

scheduling procedure, is better than an integrated approach. The integrated 
approach tries to combine planning and scheduling in one step, meaning the timing 
and size of the deliveries is combined with the creation of trips for all deliveries. This 
increases the problem’s complexity and uses a prohibitively large computation time. 

 
(2) The long-term effect of a short-term decision can best be reflected by relative 

delivery size, which is the size of the delivery to a customer divided by the capacity 
of this customer. Relative delivery size illustrates the ‘earliness’ of an order, the lower 
it is, the more the delivery is pulled forward. Since pulling an order forward is costly, 
because it increases the number of visits to a customer, the relative delivery size 
should be maximized. 

 
(3) The short-term costs are mainly driven by the distance that needs to be 

travelled. This distance can be expressed in three ways: Euclidean distance, real 
distance, and detour distance. 
 

(4) To have an equal workload balance on the short-term, we should balance the 
total daily delivery volume in the planning period. A different balancing 
criterion, such as working time or travelled distance, requires an integrated approach, 
and a calculation of routes together with the timing of the order. Since we use a 
decomposed approach, we balance on volume. 

 
(5) To mitigate the seasonal peak in demand, we balance the workload over a 

longer period than just one week. We take into account the future demand in this 
long-term workload balance, to stock customer such that they do not require a 
delivery during the peak in demand. In this way, we anticipate on knowledge about 
future peaks in demand.  
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4 Solution 
Based on Chapters 2 and 3, we design an algorithm in this chapter, which is the solution 
to our problem. Paragraph 4.1 summarizes the main considerations in designing the 
algorithm and Paragraph 4.2 illustrates the complete algorithm. Paragraph 4.3 displays 
the alternative designs of the algorithm. We discuss the distance types and settings of the 
algorithm in Paragraphs 4.4 and 4.5. 

4.1 Algorithm design 
We summarize the main insights drawn from Chapters 2 and 3, which show that the 
design has four important objectives: 
 
(1) Create an efficient plan on the short-term, maximize the volume per kilometre. 
(2) Create an efficient plan on the long-term, minimize the number of visits. 
(3) Balance the workload on the short-term, to use the available resources efficiently. 
(4) Balance the workload on the long-term, to mitigate the seasonal peak. 
 
The volume per kilometre measures the efficiency of the plan on the short-term. The 
relative delivery is a measure for the long-term efficiency, the higher the relative delivery, 
the fewer the number of visits to this customer. The workload can be balanced on the 
short-term by equalizing the volume that has to be delivered per day. An equal workload 
balance on the long-term is achieved by calculating the average demand per period for a 
number of periods into the future, and delivering that volume in the current planning 
period. Peaks in demand are foreseen, and customers are replenished before this peak in 
demand.  
 
Paragraph 4.1.1 and Paragraph 4.1.2 give the solution requirements and the assumptions 
that are used as input for the design of the algorithm. 

4.1.1 Solution requirements 
(1) Relatively low computation times for real-life instances. 
(2) The workload is balanced to cope with volatility on the short-term and the long-term. 
(3) Travel to different areas in the region on a single day to be able to respond to 

emergency orders. 
(4) Multi-depot approach, since a planner is responsible for a region with multiple 

depots in gas distribution. 
(5) Heterogeneous fleet approach, because there are different types and sizes of vehicles 

in real-life instances of the IRP in gas distribution. 
(6) The solution is implemented and tested in the ORION and SHORTREC suites. 

4.1.2 Assumptions 
(1) Holding costs at the depot and at the customer are not taken into account. 
(2) Depots have an infinite supply of gas. 
(3) Depots are not assigned to a customer; the algorithm is free to choose by which 

depot a customer is served. 
(4) Customer usage is considered deterministic. 
(5) There is only one bulk product. 
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4.2 Algorithm description 
We summarize the algorithm and illustrate the motivation behind the separate steps in 
Paragraph 4.2.1 and Figure 4.1. Paragraph 4.2.2 describes the algorithm in detail. 

4.2.1 Algorithm overview 
We start the algorithm with a set of customers, with certain start inventories and 
historical data, to calculate future usage. We finish the algorithm with a set of planned 
orders for a selection of these customers, on specific days in the planning period. 
 
Step 1: Customer selection 
We select the set of customers for the algorithm. We only select those customers that can 
at least receive a relative delivery size of α . 
Motivation: To minimize the long-term cost, we have to minimize the number of visits 
to each customer. A high relative delivery size decreases the number of visits, since the 
optimal relative delivery size is 100% (Dror and Ball, 1987; Golden et al., 1984). 
 
Step 2: Flexible clustering 
We create clusters based on the set of ‘must-go’ customers. 
Motivation: To minimize short-term cost, we have to minimize the distance travelled. By 
creating clusters based on distance, we aim to minimize the travelled distance (Campbell 
and Savelsbergh, 2004; Jung and Mathur, 2007). 
 
Step 3: Generate schedules 
We generate all possible delivery schedules for the customers that are in a cluster. A 
delivery schedule contains the relative delivery sizes per day of the planning period. For 
‘may-go’ customers, it also contains a relative delivery size that corresponds with the end 
of the following planning period. 
Motivation: The ILPs in Steps 4 and 5 need these schedules as input. 
 
Step 4: Assignment of seed customers with an ILP 
An ILP assigns seed customers to delivery schedules. The ILP plans all seed customer 
deliveries on a specific day and balances the number of seed customer deliveries over the 
depots and the planning period, with regards to the available vehicle capacity. 
Motivation: The ILP has the objective to minimize the long-term cost by maximizing the 
relative delivery size (Dror and Ball, 1987; Bard et al., 1998). The number of seed 
deliveries is balanced, and not the volume, since we want to spread out the number of 
clusters, and thus the number of seeds, over the planning period. The volume is balanced 
in Step 5. 
 
Step 5: Assignment of clustered customers with an ILP 
An ILP assigns clustered customers to delivery schedules. The ILP plans all customer 
deliveries on a specific day in this step and balances the total volume of seed customer 
deliveries and clustered customer deliveries over the planning period, with regards to the 
available vehicle capacity. 
Motivation: Balancing the workload is done by balancing the delivery volume per day in 
the planning period (Bard et al., 1998). We calculate the average demand for a number of 
planning periods into the future to balance the workload over a longer period. Thereby, 
the algorithm mitigates the seasonal peak in customer deliveries. 
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Step 1: Customer
selection

Step 2: Flexible
clustering

Step 3: Generate
schedules

Step 4: Assignment of  
seed customers (ILP)

Step 5: Assignment of 
clustered customers (ILP)

Objectives:
(1) Maximize relative delivery size

(2) Decrease size of the problem

Objectives:  
(1) Minimize travel distance

(2) Decrease size of the problem

Objectives:
(1) Maximize relative delivery size

(2) Minimize travel distance
(3) Balance workload on short-term
(4) Balance workload on long-term

 
Figure 4.1. An overview of the steps in the algorithm and their objectives. 

4.2.2 The algorithm in detail 
This paragraph explains the details of the separate steps in the algorithm and presents 
mathematical models that are used. Appendix E illustrates all mathematical symbols that 
are used in this chapter. 

4.2.2.1 Step 1: Customer selection 
The driver for long-term costs in the IRP is relative delivery size (Golden et al., 1984; 
Dror and Ball, 1987). The relative delivery size is given in the left term of Equation 4.1, 
and to maximize it, we choose to only consider customers that can receive a relative 
delivery above α . This is the approach of Golden et al. (1984). 
 

α≥
Capacity

lumeelivery VoPossible D  (4.1) 

 
In Equation 4.1, maximum stock is the capacity of the customer’s tank that can be used 
because of safety reasons and regulations, and it is 85% of the total capacity of the 
customer’s tank. We can not set α  too high, since it would result in stock outs. 

‘Must-go’ customers 
Additionally, all customers that need to receive a delivery in the planning period are 
added to the set of selected customers. This group holds forecasted ‘must-go’ customer 
that are pushed and in the VMI-program, and customers with pull- or call-in orders, that 
place the order themselves. Pull-orders are delivered within a time period after the call, 
which is agreed in a contract. We add these pull orders to the set of ‘must-go’ customers. 
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4.2.2.2 Step 2: Flexible clustering 
In order to minimize travel distance, clustering is a tool that is widely applied in the 
literature (Campbell and Savelsbergh, 2004; Jung and Mathur, 2007). Clustering is done 
based on distance between a customer and a certain reference point, which is called a 
seed.  
 
In the literature, clustering is usually done before the actual planning phase and is no 
daily activity of a planner. In a large customer set, information on the customer base 
changes continuously, thus to ensure that clusters are up to date, clustering should be 
part of the planning process. In our solution, clusters are created in a fast procedure, by 
selecting a seed and adding other customers to this seed’s cluster. The closest customer is 
added first, and we add customers until the distance between a customer and the seed is 
above a certain threshold. All customers that are in the selection of customers can be 
selected into the clusters, including ‘must-go’ customers. These flexible clusters are 
computationally fast and based on the latest knowledge about the customer base.  
 
The ‘must-go’ customers form the foundation of the problem (Campbell and 
Savelsbergh, 2004) and are therefore the basis for creating the clusters. The ‘must-go’ 
customer list is sorted, and the first customer on the sorted ‘must-go’ customer list is 
selected as a seed for the first cluster. We proceed until we have clustered all ‘must-go’ 
customers, either as a seed for a cluster or a customer that is selected in a cluster. A 
cluster can not include customers that were clustered earlier. 

Sorting the ‘must-go’ customer list 
The ‘must-go’ customer list is sorted on three criteria, which are explained in detail later: 
 
(1) The number of days between the start of the planning period and the latest day of 

delivery of the customer: in ascending order. 
(2) The number of deliveries for a customer in the planning period: in descending order. 
(3) The number of vehicle types that can visit the customer: in ascending order. 
 

Rank Customer  
Days between start 
of planning period 

and delivery 

Number of 
deliveries in 

planning period 

Number of 
vehicle 
types 

1 Customer A 3 2 1 

2 Customer B 3 2 >1 

3 Customer C 3 1 >1 

4 Customer D 4 1 1 

5 Customer E 4 1 >1 

Table 4.1. An example of a sorted ‘must-go’ customer list. 
 
Table 4.1 illustrates a sorted ‘must-go’ customer list with five ‘must-go’ customers. 
Customers on the ‘must-go’ customer list can also be selected in a cluster. To optimize 
the use of clusters, we do not want a customer in a cluster to have a latest delivery date 
earlier than the seed of that cluster, because that would cause problems in assigning the 
orders to days. The seed customers are assigned first, and if the seed customer is assigned 
to a later day than the latest delivery day of another customer in that cluster, we would 
lose the added value of clustering, since the other customer can not be assigned to the 
same day as the seed customer anymore. 
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A customer that requires multiple deliveries in the planning horizon should be a seed 
customer, since the size of its cluster is larger to be able to deal with the multiple 
deliveries. This is explained in the part on cluster constraints below. 
 
Additionally, we want to select the most restricted customers as a seed first, because it 
makes it easier to combine several ‘must-go’ customers into one cluster. All customers 
can be added to a seed that can be visited by only one vehicle type, and fewer customers 
can be added to a seed that can be visited by all vehicles. This is explained in the part on 
restrictions below. 

Restrictions 
In Paragraph 2.2, we pointed out that vehicle and equipment restrictions are specific to 
gas distribution. For both of these restrictions there is a simple rule to follow in creating 
the flexible clusters. The seed of a cluster is the most important customer in the cluster, 
since it is the ‘must-go’ customer on which the cluster is founded. To make sure that a 
complete cluster can be visited by one vehicle, we need to make sure the vehicle that will 
visit the seed customer can also visit all the other customers in the cluster. This simple 
rule makes it easy to evaluate if a certain customer can be added to a cluster. 

Cluster constraints 
Constraint parameters for the clusters are used. A maximum distance between the seed 
and the customer will ensure proximity of clustered customers to the seed customer. A 
minimum and maximum number of customers in one cluster are used to control the size 
of the cluster. This minimum and maximum number of customers is multiplied by the 
number of required deliveries of the seed customer to ensure the cluster is large enough. 

Number of seeds per day 
Additionally, we ensure that every day has at least one or more seeds, by first generating 
one or more clusters for every day in the planning period. We select the first ‘must-go’ 
customer on the list which has a latest delivery day that matches the day in the planning 
period, for which we are currently selecting a seed customer. We proceed with the next 
day in the planning period with the same procedure. If there are no ‘must-go’ customers 
left for a certain day, a ‘may-go’ customer may be selected as a seed customer. It is 
beneficial to find multiple seeds per day in the planning period, since this geographically 
spreads the customers throughout the region, which is good to handle emergency 
deliveries, and which helps in balancing the workload throughout the region for the 
depots. 

4.2.2.3 Step 3: Generation of schedules 
After clustering, there are seed customers and clustered customers. We have selected 
these customers on relative delivery size and on distance to the seed customers. All 
customers that are not selected or not clustered are not considered further to keep the 
problem small and tractable. 
 
To plan orders for the seed and clustered customers, we have to generate schedules 
which reflect the evolution of demand throughout the planning period. These schedules 
give the relative delivery size on a day in the planning period and an example is given in 
Table 4.2. The schedules F111 are for a ‘must-go’ customer requiring two deliveries, 
where the schedule with index 1 has a delivery of 75% of the customer’s maximum 
capacity on Monday and 35% on Tuesday. The schedules F222 are for a ‘must-go’ 
customer requiring one delivery, but with no delivery window on Wednesday.  
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The schedules F333 are for a ‘may-go’ customer with no delivery window on Sunday, and 
the 86% in the schedule with index 7 indicates that if the customer is not visited in this 
planning period, the customer requires a delivery of 86% of its maximum capacity by the 
end of the next planning period. 
 

Schedule Index Monday Tuesday Wednesday Thursday Friday Saturday Sunday 
End of next 

planning 
period 

F111 1 75% 35% 0 0 0 0 0 0 
F111 2 75% 0 50% 0 0 0 0 0 
F111 3 75% 0 0 65% 0 0 0 0 
F222 1 60% 0 0 0 0 0 0 0 
F222 2 0 65% 0 0 0 0 0 0 
F222 3 0 0 0 75% 0 0 0 0 
F333 1 50% 0 0 0 0 0 0 0 
F333 2 0 53% 0 0 0 0 0 0 
F333 3 0 0 56% 0 0 0 0 0 
F333 4 0 0 0 59% 0 0 0 0 
F333 5 0 0 0 0 62% 0 0 0 
F333 6 0 0 0 0 0 65% 0 0 
F333 7 0 0 0 0 0 0 0 86% 

Table 4.2. An example with 13 schedules illustrating the delivery percentages per day in 
the planning period. 

4.2.2.4 Step 4: Schedule assignment with an ILP for seed customers 
Seed customers are the distance reference points for assigning the clustered customers in 
Step 5, thus we assign the seed customers to schedules first. 
 
An ILP is used to assign the seed customers to a schedule. The schedules are connected 
to a certain day of delivery, or when there are multiple deliveries for a customer in the 
planning period, to certain days of the planning period. A seed customer is nearly always 
a ‘must-go’ customer, and a seed customer can not be forwarded to a following period, 
since we need the seed customers as a distance reference for the clustered customers.  
 
We want to balance the number of clusters per day and per depot throughout the 
planning period, to ensure efficient use of capacity. Therefore we balance the number of 
seed deliveries, and not their delivery volume. We use seed deliveries, and not seed 
customers, since a seed customer may have multiple deliveries in the planning period. 

Workload calculation 
Appendix F explains these procedures in detail, but we explain the concepts here. We 
balance the number of seed deliveries over the planning period and over the depots, and 
the maximum workload is calculated by multiplying the total number of seed deliveries 
with the fraction of the total available vehicle capacity in the planning period, that is 
available at the specific depot, on the specific day. We select the maximum of this 
workload, and the expected number of seed deliveries for a depot and a day to ensure the 
problem is feasible. We can add a certain percentage of the maximum workload that can 
be used as a bandwidth for feasibility, but we do not use it in this part of the thesis.  
 
The use of a minimum workload for an ILP will result in an even balance of the number 
of seed deliveries over the week, since it forces the number of seed deliveries to be at 
least a certain number of deliveries on a specific day. We calculate a minimum workload 
in the same way as the maximum workload. 
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Multiple deliveries 
Multiple deliveries are taken into account in the approach, since the total number of seed 
deliveries is used as input for the workload constraints and every day of delivery in a 
delivery schedule is considered. 

Vehicle capacity 
If there is no vehicle capacity available at any of the depots that can serve customer c on 
the day of delivery in schedule s, the combination of schedule s and customer c is 
excluded from the analysis. If there is no possible schedule left for customer c, the 
schedule will be allowed to ensure the ILP is feasible. 
 
Figure 4.2 illustrates the ILP to assign seed customers to schedules. The objective is to 
maximize the total relative delivery volume, and to use the distance to the depots to 
balance the workload over the depots. 
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Variables 
  Xscp binary variable that equals 1 if delivery schedule s is  

assigned to customer c, and depot p 
  
 Data 
   yts relative delivery size on day t in schedule s (%) 

   dcp distance contribution to assign customer c to depot p 
  tpwmax  maximum number of seed deliveries on day t, depot p 

  tpwmin  minimum number of seed deliveries on day t, depot p 

  stm  1 if there is a delivery on day t in schedule s, 0 otherwise 
   Sc set of allowed delivery schedules for customer c 
   SC set of seed customers 
   D set of depots  
   T number of days in the planning horizon 
 

Figure 4.2. The ILP to assign the seed customers to delivery schedules balances the 
number of seeds over the days in the planning period. 

 
The ILP has the objective to maximize the relative delivery size to the seed customers 
(Dror and Ball, 1987). Additionally, the distance to the depots is included in the objective 
function to balance the number of seed deliveries over the depots and to choose the 
closest depot for each seed. These two measures are incorporated into one objective 
function, which is tested in practice and works best in this form. 
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Constraint 4.3 is added to ensure that one of the delivery schedules is chosen, because we 
need the seed deliveries as distance reference points for Step 5. Constraint 4.4 requires 
that the number of seeds assigned to a day and a depot is between a certain minimum 
and maximum workload. Constraint 4.5 outlines the binary property of the decision 
variables. Since it is a small problem instance, branch-and-bound is fast and can be used. 

4.2.2.5 Step 5: Schedule assignment with an ILP for clustered customers 
We have assigned the seed customers to delivery schedules in Step 4. Thus in this step, 
we use the knowledge on the planning of the seed deliveries as a distance reference.  
 
We assign the clustered customers with an ILP, and the objective of this step is to 
minimize the distance travelled, by minimizing the distance between a clustered customer 
and a seed delivery. Therefore, we assign a clustered customer to a delivery schedule and 
to a seed delivery, which increases the number of variables. 
 
We create a proper workload balance for the planning period, by balancing on delivery 
volume. The workload is restricted by a minimum and maximum workload per seed 
delivery, and the balance over the planning period depends on the available vehicle 
capacity at a depot on a certain day. The workload is calculated to balance the delivery 
volume not only over the week, but also over a longer period. This is done by making use 
of the forecasted demand in the longer period. We explain this later in this paragraph. 

Costs for excluding ‘may-go’ customers from the planning period 
‘May-go’ customers can be forwarded to a future planning period, and they have a 
delivery schedule that represents this forwarding decision. The costs for excluding 
customers from the planning period are used to determine which ‘may-go’ customers 
should be planned in the current planning period. Equation 4.6 illustrates the forwarding 
cost function for ‘may-go’ customers. This expression is also used in the Period 
Scheduler. 
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cy~ is the relative delivery size when customer c is not delivered in this planning period, 

this is the relative delivery size at the end of the following planning period. cd~ is the 
distance from customer c to its nearest seed delivery. CC is the set of clustered 
customers. Equation 4.6 is based on the notion that a customer with a higher relative 
delivery next week is more urgent, and thus more interesting to include in the current 
planning period. Additionally, a customer that is relatively close to a seed customer in the 
current planning period is more interesting to include as well, since the increase in total 
travel distance when the customer is added is low. The term offers an exponential growth 
in costs if the relative delivery decreases, or the distance to the nearest seed delivery 
increases. 

Workload calculation 
The total delivery volume for the week is determined by calculating the average demand 
per planning period for the next n planning periods. This is used in the Period Scheduler 
as well, to cope with peaks in future demand and to ensure that customers have sufficient 
stock so they require fewer deliveries when the real peak in demand is there (Welch et al., 
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1971). This total delivery volume needs to be adjusted if the volume for ‘must-go’ 
customers is higher than the calculated average demand per planning period. This may 
happen when the demand is decreasing in the next n weeks. 
 
The workload is balanced evenly over the depots and the days in the planning period, 
depending on the available vehicle capacity at a depot on the specific day in the planning 
period. We have already balanced the seed customer deliveries with the same philosophy. 
We calculate the workload per depot and per day in the planning period by multiplying 
the total delivery volume for the week with the fraction of the total available vehicle 
capacity in the planning period that is available at the specific depot, on the specific day. 
We select the maximum of this workload, and the expected volume per depot and day, to 
ensure the problem is feasible. We add a certain percentage of the maximum workload 
that is used as a bandwidth β for feasibility. 
 
Now that we have calculated the workload per depot and per day, we can easily transfer 
this to a workload per seed delivery, since we know the assignment of the seed delivery 
to depots and days. We divide the workload per depot and day by the number of seed 
deliveries assigned to this depot on this day. Additionally, we subtract the delivery 
volume of the specific seed delivery to get the workload per seed delivery. 
 
Next to a maximum workload, a minimum workload is added to the ILP to find a well-
balanced plan. The calculation of the minimum workload is based on the same principles 
as the maximum workload, but the bandwidth β is now subtracted. Appendix G explains 
these procedures in detail. 

Multiple deliveries 
Multiple deliveries in one week are rare in the gas industry, but do occur. Customers with 
multiple deliveries will not be in the clustered set, but in the seed customer set. This is 
because the clustering is done in a specific order, in which a customer with multiple 
deliveries is chosen as a seed customer before a customer with a single delivery. If it does 
occur that a customer with multiple deliveries is in the clustered set, we add all deliveries 
after the first delivery to the closest seed on the specific day of the delivery. Thus the 
distance contribution of assigning a customer to a seed delivery and schedule is raised 
with the additional distance for the deliveries after the first delivery in the schedule. The 
volume that is expected to be delivered on that specific day in the assigned schedule is 
also added as a volume contribution for that nearest seed delivery. 

Vehicle capacity 
If there is no vehicle available at any of the depots that can serve customer c on the day 
of delivery in schedule s, the combination of schedule s and customer c is excluded from 
the analysis. If there is no other possible schedule left for customer c, the schedule will be 
allowed to ensure the ILP is feasible. The customer is then assigned to a day where there 
is no vehicle capacity for the customer. 
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Figure 4.3 illustrates the ILP to assign clustered customers to schedules. 
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 where t = 1,..,T ; ktp ∈SCD 
 stsck rX tp ≤    where t = 1,..,T, ktp ∈SCD, c∈CC (4.10) 

 0=cX    where c ∈CCmustgo (4.11) 
 { }1,0∈tpsckX   where s ∈Sc, c ∈CC, ktp ∈SCD (4.12) 

 { }1,0∈cX    where c ∈CC (4.13) 
 
Variables 

 tpsckX  binary variable that equals 1 if delivery schedule s is assigned to 
customer c, and seed delivery ktp, 0 otherwise 

 cX   binary variable that equals 1 if customer c is excluded from the 
current planning horizon, 0 otherwise 

 Data 
  cy~  relative delivery size if customer c is forwarded, the relative  

delivery size at the end of the next planning period (%) 

  tpckd  distance contribution to assign customer c to seed delivery ktp 

  cd~  is the distance from customer c to its nearest seed delivery 
   ktp seed delivery k that is assigned to day t, and depot p 
  tpk

v
max

 maximum workload for seed delivery ktp 

  tpk
v

min
 minimum workload for seed delivery ktp 

  str  integer variable for the delivery volume on day t in schedule s 
   Sc set of allowable delivery schedules for customer c 
  tpskR  volume for the deliveries after the first delivery in schedule s  

that is assigned to seed ktp 
   SCD set of seed customer deliveries 
   CC set of clustered customers 
   CCmustgo set of clustered customers that are ‘must-go’ customers  
   T number of days in the planning horizon 

 
Figure 4.3. The ILP to assign the clustered customers to schedules balances the delivery 

volume over the planning period. 
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The ILP has the objective to minimize the distance between the seed and the customer. 
An expression is added for the ‘may-go’ customers, since they have the option to be 
excluded from the planning period, which comes with certain costs. Constraint 4.8 is 
added to ensure that only one schedule is chosen. Constraint 4.9 ensures that the total 
volume that is assigned to a seed customer delivery is between the minimum and 
maximum workload. Because we do not want a schedule s to be assigned to a seed 
customer delivery ktp if there is no delivery to the customer on day t in that schedule, 
Constraint 4.10 is added. Constraint 4.11 ensures that a ‘must-go’ customer can not be 
forwarded to a future planning period. Constraints 4.12 and 4.13 outline the binary 
property of the two decision variables. We round the LP relaxation of this ILP to solve 
it, since the number of decision variables is relatively high. 

Scheduling 
After assigning every customer to a schedule, the day for every customer delivery is 
calculated. The next step is to schedule these orders with SHORTREC. SHORTREC 
finds a trip schedule for every day in the planning period. One can decide to eventually 
only use the schedule for the first day. In this way, we get a rolling horizon, similar to the 
solution of Bard et al. (1998), in which the algorithm is performed every day, but the 
customer deliveries are balanced over the long-term and the short-term. 

4.3 Alternative algorithm designs 
Five alternative algorithm designs are given, and they are tested in Chapter 5. 

Balance customers 
Campbell and Savelsbergh (2004) state that a vehicle should always leave the depot filled 
up completely, but due to route failures, the exact delivery size of a trip is not known in 
advance (Dror and Trudeau, 1988). By adding a balance customer at the end of every trip 
with a flexible delivery volume, we increase utilization and we have a higher probability 
of emptying the vehicle before returning to the depot. Since a balance customer is a 
‘may-go’ customer, there is no real problem if the delivery can not be made. The 
application of this concept is explained in Appendix I. 

Alternative objective functions 
We have created six different designs for the objective function in the ILP for assigning 
clustered customers to schedules and seed customer deliveries. The six different objective 
functions are given in Appendix J. 

Check for customer combinations 
Since distance should be minimized, we ensure that the vehicle that visits the seed 
customer may also visit all other customers in a cluster. Therefore, we check if a 
customer can be delivered by the same type of vehicle as the seed customer before 
assigning the customer to the seed customer. Appendix K illustrates the ILP for clustered 
customers in this case. 

Vehicle type knowledge 
Additionally, we can make use of the knowledge about vehicle type restrictions per 
customer. Thus, if a customer can be visited by a single type of vehicle, we are certain 
that this type of vehicle is needed for this customer. If a customer can be visited by more 
than one vehicle, this certainty is lost, since there are multiple options, and therefore, we 
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can only separate between groups of customers that can be visited by one vehicle type 
and customers that can be visited by more than one vehicle type. 
 
We use the knowledge about the capacity of these vehicles to determine the total amount 
of workload that can be assigned to the seed customer. By doing so, the workload for a 
vehicle type is more equally divided over the week and over the depots. 

Period Scheduler seed selection procedure 
We test the seed selection procedure of the Period Scheduler, explained in Paragraph 2.4 
and Appendix A. The seed selection procedure selects as many seed customers around a 
depot as there are days in the planning period. The seed selection procedure replaces 
Step 2, the flexible clustering in the algorithm. The seed customers are assigned to days 
and depots in Step 4, and not assigned to days randomly like in the original Period 
Scheduler seeds selection procedure. Therefore, we have no certainty that there is an 
equal balance of clusters in the planning period. 

4.4 Distance types 
The several distance types that can be used in the tests are the following distance types: 
 
(1) Euclidean distance, distance that is given by measuring a straight line on a map 

between two locations. 
(2) Real distance, distance that is given by measuring the minimum travel distance 

through a given network between two locations.  
a. The distance measured in travelled kilometres. 
b. The distance measured in travelled time, by computing the expected travel time 

between two locations. 
(3) Detour distance, distance that is given by the additional real travel distance when a 

certain customer is inserted in an existing trip between a seed order and the depot. 
 
Detour distance can not be used for the ILP for seed customers, since there is no other 
customer to use as a reference. Table 4.3 shows the distance types applicable to the ILPs. 
 

ILP Euclidean Real kilometres Real time Detour 

Step 4: ILP for seed customers     

Step 5: ILP for clustered customers     

Table 4.3. The distance types that can be used for the ILPs. 

4.5 Parameters of the algorithm 
Table 4.4 displays the steps and parameters of the algorithm. 
 

Algorithm Parameters 

Step 1: Customer selection α, T 

Step 2: Flexible clustering minimum distance, minimum cluster size, maximum cluster size, minimum number of 
seeds per day, distance type 

Step 3: Generate schedules - 

Step 4: ILP for seed customers distance type 

Step 5: ILP for clustered customers β (bandwidth clustered customers), n (workload is average of n planning horizons of 
forecasted demand), distance type 

Table 4.4. The algorithm, and the parameters that can be set at each specific step. 
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5 Computational results 
The algorithm is tested through a series of steps: 
 
(1) Paragraph 5.1 explains the computational experiments and analyses the dataset. 
(2) Paragraph 5.2 compares the results of the algorithm with what is planned in practice. 
(3) Paragraph 5.3 tests the sensitivity of several settings in the algorithm. 
(4) Paragraph 5.4 tests the alternative designs of the algorithm. 
 
We only compare the algorithm’s results and the base scenario’s results on a weekly basis; 
the algorithm plan of a week is not fed back into ORION to use as a basis for the next 
week. We could not develop a test version that copes with feedback loops in this 
research. The most important measure on the short-term is the volume per kilometre, and 
the most important measure on the long-term is the average relative delivery size, which is the 
average relative delivery size for all planned orders. 

5.1 Experimental design 
For the experiments, we make use of actual data. The customers, usage curves, and 
inventory levels are obtained from a database that also stores actual deliveries. We 
compare the planning results of the algorithm with the actual deliveries to see if there is 
any improvement. We can not compare to the originally planned deliveries, since they 
were overwritten by the actual deliveries in the database. An Intel Pentium 4 computer 
with a 3.0 GHz CPU and 2.0 GB internal memory (RAM) is used for the experiments. 
This paragraph discusses the algorithm settings, the dataset, and the general assumptions. 

5.1.1 Algorithm settings 
Appendix L illustrates the settings used to compare the results for configuration of the 
model. Some of these settings, such as the number of seeds per day, were found by tests 
that are not illustrated here. 

5.1.2 Dataset 
The data are taken from a real-life dataset 
and concerns a region with three depots in 
the Northern-England region (NE-region) 
depicted in Figure 5.1. These three depots 
serve around 3.100 customers, and 
distribute around 12,8 million liters 
annually. The number of vehicles is 
different throughout the year, but generally 
there are two vehicles per depot per day. 
On Saturdays there are fewer vehicles 
available, and on Sundays there are usually 
no vehicles available. This fluctuation is a 
result of the volatility of gas demand, and it 
requires that vehicles are available on 
Sunday in the winter for instance. The 
vehicle capacity is also different per vehicle. 
For an overview of vehicles with their 
capacity, see Appendix M. 
 

Figure 5.1. The location of the depots, 
and an illustration of the NE-region. 

Depot 2 
Depot 3 

Depot 1 
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60% of the customers are in the VMI-program, and their demand is forecasted by 
ORION. For the customers that are not in the VMI-program demand is not forecasted, 
and we expect that their demand is proportional to the demand of the VMI customers. 
Table 5.1 illustrates the data for VMI-, and non-VMI-customers in the NE-region. 
 
 

Customer type Total demand in 
2007 (litres) Relative 

VMI customers 12.069.935 94,35% 

Non-VMI customers 723.342 5,65% 

Total 12.793.277 100,00% 

Table 5.1. Exactly 94,35% of the total demand is from VMI-customers. This is used in 
calculating the expected total average demand for a specific planning period. 

 
To find the total expected demand, we assume that the seasonal pattern of the non-VMI 
customers is equal to the VMI customers, and we divide the total expected forecasted 
demand by the percentage of volume for VMI-customers that is observed in historical 
data. Thus in the case of the NE-region, we divide a total expected forecasted demand of 
12,1 million litres by 94,35%, and we get a total expected demand of 12,8 million litres. 
 
On average, nine stops per trip occur, and a vehicle can perform multiple trips. Most 
customers can have a delivery every day of the week, except for Sundays. The delivery 
windows are from 6:00hrs in the morning until 18:00 hrs in the evening. The working 
time of the depots is between 6:00 hrs and 22:00 hrs. Drivers work between 6:00 hrs and 
18:00 hrs, and they have a lunch break between 12:00 hrs and 13:00 hrs of 45 minutes.  
 
The planners use ORION to generate orders, but they do not use SHORTREC to 
schedule routes. Their program does not consider any trip restrictions, so their routes can 
not be used for an equal comparison. Therefore, we copy all delivered orders, and only 
use the date of delivery. We schedule these orders with SHORTREC to find feasible and 
efficient routes. We only consider the customers that were originally assigned to the three 
depots and not the customers outside this region. We can compare our results to these 
routes, which we call the ‘base scenario’. Appendix M illustrates a comparison between 
the schedules made by the planners and the schedules created with SHORTREC. 
 
The data from weeks 40, 41, and 42 in the year 2007 are chosen, since these are busy 
weeks with many pull orders, just before the winter peak period. The data for other 
weeks (weeks 14-17, 27-30, and 48-50) can not be used, because the forecast data were 
adjusted in 2008. This means the forecasts are higher than originally used, and as a result, 
many inventory levels are already too low before the start of the week. This causes the 
algorithm to plan around 50% of the total volume for a planning period on the first day. 
This is very unrealistic, and therefore not a good representation of an actual week. 
 
With the settings described in Paragraph 5.1.1, the total average demand per week, the 
volume of must-go orders, and the total volume of selected orders is given by Table 5.2. 
 

Week 
Expected average 

total weekly 
demand (litres) 

Total 'must-
go' volume 

(litres) 

Total volume in 
customer 

selection (litres) 

Total number 
of customers in 

clusters 

40 307.660 190.885 434.456 480 
41 312.649 184.174 433.727 466 
42 321.215 161.519 450.962 505 

Table 5.2. The volumes to calculate the workload for the ILP for clustered customers. 
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5.1.3 Assumptions 
(1) The relationship between the demand of non-VMI customers and VMI-customers is 

the same on every day of the year, and can be found by analyzing historical data. 
(2) Vehicle capacity is equal on every day of the week, except for Sundays when it is 

zero. We also test a set-up where Saturdays have 50% of the vehicle capacity in 
Paragraph 5.2.3. 

(3) Supply at depots is unlimited. 
(4) Driver overtime is not allowed. 

5.2 Comparison base scenario and algorithm 
This paragraph compares the performance measures of the algorithm plans with the 
actual plans. Paragraph 5.2.1 presents the comparison and illustrates the geographical 
results to show that the algorithm balances the workload over the depots. Paragraph 
5.2.2 illustrates the workload balance on the short-term and the long-term. Paragraph 
5.2.3 discusses the results when the vehicle capacity is differently set-up, to illustrate the 
responsiveness of the algorithm to available vehicle capacity.  

5.2.1 Weekly comparison 
Table 5.3 illustrates that the algorithm causes an increase in the average relative delivery, 
which results in fewer visits on the long-term. Additionally, there is an increase in volume 
per kilometre, which results in a more efficient plan on the short-term. The decrease in 
cost per litre concerns a decrease in fictive costs used by SHORTREC, and indicates an 
improvement in overall costs. 
 

Scenario Volume 
(litres) 

Dist.  
(km) 

Volume/ 
kilometre 

(litres/km) 

Cost/ 
litre 

Veh.  
used 

Average 
relative 
delivery 

Volume/ 
kilometre 
improve. 

Cost/ 
litre 

savings 

Base scenario 718.457 13.448 53,4248 0,0581 56 53,55% - - 

Algorithm 981.942 15.095 65,0508 0,0507 68 59,77% 21,76% 

Table 5.3. The results illustrate that the algorithm performs better than the base scenario 
in weeks 40, 41, and 42. The separate week results are illustrated in Appendix O. 

12,85% 

Geographical results 
Table 5.4 illustrates that the workload is equally divided over the depots in the planning 
period, according to the available vehicle capacity. 
 

Depot Available vehicle 
capacity (%) 

Planned volume 
algorithm (%) 

Planned volume 
base scenario (%) 

Depot 1 40,91 37,50 37,28 

Depot 2 30,68 29,44 32,50 

Depot 3 28,41 33,06 30,22 

Table 5.4. The equal workload balance over the depots in the planning period. 
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In addition to the results in figures, the geographical results are important to determine 
the spread of the workload through the region. Figure 5.2 illustrates the geographical 
results, and one customer block can hold more customers of all different types (seed and 
clustered customers) that are in the same postcode area. 
 

 
Figure 5.2. In the geographical spread of the algorithm results in week 42 can be 

observed that the workload is spread throughout the region. 
 

The orders are evenly spread over the depots in the region, and on each day there is 
workload for all depots. The next paragraph illustrates the equal spread of workload over 
the planning period. 

5.2.2 Workload balance 
One of the objectives is to balance the workload on the long-term and short-term. 

Long-term workload balance 
The long-term workload balance is important in mitigating the seasonal winter peak. By 
setting the algorithm workload equal to the average demand for the next 13 weeks, a 
peak can be anticipated, and certain volumes can be delivered before the peak reaches its 
highest point. Since the algorithm plans a higher delivery volume in the early stages of 
the winter peak (weeks 40, 41, and 42), more volume is already delivered before the real 
busy times start. Additionally, the higher average relative delivery in the algorithm 
ensures that only the most urgent customers are visited. As a result, we ensure a lower 
stress on capacity in future periods, and lower volumes need to be delivered during the 
highest point of the winter peak.  
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Figure 5.3. The algorithm follows the 13 week average expected demand. 

 
Figure 5.3 illustrates the difference in delivery volume if we use a 13 week average 
demand. Paragraph 5.3.2 describes the sensitivity of the number of weeks used for 
calculating the average. 

Short-term workload balance 
Figure 5.4 illustrates the workload balance in the planning periods for the algorithm 
plans. Figure 5.5 illustrates the plans of the base scenario. The Monday stands out in 
Figure 5.4, because the usage data were adjusted in the beginning of 2008, after the actual 
planning periods. The adjusted usage data influence the due dates of the customers, and 
for most customers, the due date is now earlier than the planning period. Therefore, all 
these customers are planned on the first day in the planning period. The workload 
balance of the algorithm for the other days is a lot better than the plans of the base 
scenario. This workload balance is influenced by the bandwidth β. The sensitivity of this 
parameter is tested in Paragraph 5.3.3. 
 

 
Figure 5.4. The workload volume is evenly distributed by the algorithm.  

 



 

How VMI Can Be Successful in Gas Distribution, Peter Hulshof  
 

41 

 
Figure 5.5. The graph illustrates the workload balance of the base scenario.  

 
The available capacity on Saturday is lower than during the week in the base scenario. 
Therefore, there is no planned volume on Saturday in week 41 and little volume in week 
42. The available capacity during the other days of the week is equal. In Figure 5.5, 
Monday does not stand out like in Figure 5.4, because the planners used different usage 
curves since they were adjusted in 2008. Appendix P illustrates the working time balance 
for both the base scenario and the algorithm plans. The working time balance of the 
algorithm is also quite equal, which indicates there is a connection between the balance in 
delivery volume and the balance in working time. 

5.2.3 Different vehicle capacity set-up 
Figure 5.6 illustrates the responsiveness of the algorithm to the available vehicle capacity. 
Table 5.5 illustrates that the results are slightly better when the Saturday vehicle capacity 
for each depot is 50% of the vehicle capacity on any other day, which is a common 
setting in the NE-region. Appendix Q illustrates the weekly and the geographical results, 
which show that there is workload at every depot on every day of the planning period. 
 

Scenario Volume 
(litres) Dist. (km) 

Volume/ 
distance 

(litres/km) 

Cost/ 
litre 

Veh. 
used 

Average 
relative 
delivery 

Volume/ 
distance 
improve. 

Cost/ 
volume 
savings 

Base scenario 718.457 13.448 53,4248 0,0581 56 53,55% - - 
Algorithm: Saturday 100% 981.942 15.095 65,0508 0,0507 68 59,77% 21,76% 12,85% 
Algorithm: Saturday 50% 961.790 14.751 65,2017 0,0506 66 59,49% 22,04% 

Table 5.5. The results of running the algorithm with a different set-up of capacity. 
 

12,92% 

 
Figure 5.6. The graph illustrates that the workload balance is adjusted according to the 

vehicle capacity adjustment. 
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5.3 Sensitivity analysis 
We study the sensitivity of the main settings of the algorithm in this paragraph. 
Paragraph 5.3.1 describes the sensitivity of setting α  in customer selection. Paragraph 
5.3.2 illustrates the effects of different settings for the number of weeks we look into the 
future to calculate the average delivery volume. Paragraph 5.4.3 describes the sensitivity 
of setting the bandwidth that used to calculate the minimum and maximum workload for 
the ILP for clustered customers. We discuss the distance types in Paragraph 5.4.4. 
 
Other settings, such as the number of seeds per day and the threshold distance in the 
clustering phase, are found by trial and error, and depend heavily on the geographical 
area for which the algorithm is used. The settings we discuss below have the highest 
impact on algorithm results. 

5.3.1 Setting α in customer selection 
We use the parameter α  to select customers as the first step of the algorithm. The 
higher α , the lower the number of customers that is selected. Figure 5.7 shows the 
volume per kilometre and the average relative delivery as a function of α . Week 40 is 
not included, since the weeks 41 and 42 already illustrate the effects. Figure 5.8 displays 
the algorithm run time and the number of customers as a function of α . The algorithm 
run time does not include order and demand calculation in ORION, and scheduling of 
orders in SHORTREC. α  is between 0 and 1, but most customers have a safety stock 
level of at least 20%, and a maximum capacity of 85%. Therefore, α  leaves out all 
customers that are not emergency customers when α  is set higher or equal to 0,765 ((85 
– 20) / 85). Appendix R illustrates the separate results, as well as the number of 
customers in the selection, and the algorithm run times per setting of α . 
 

 
Figure 5.7. The graph illustrates the volume per kilometre (on the right axis) and the 
average relative delivery (on the left axis) as a function of α  in the weeks 41 and 42. 

 
The results for volume per kilometre are best if α  is set to 0,40, but the long-term 
indicator of average relative delivery performs better with a higher setting for α . 
Additionally, a setting for α  of 0,45 would diminish algorithm run time to below 600 
seconds, or 10 minutes as can be seen in Figure 5.8. Therefore, an α  between 0,40 and 
0,45 is suitable for use when the algorithm is run frequently.  
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Figure 5.8. The graph illustrates the number of selected customers (on the left axis), and 

the algorithm run time (on the right axis) as a function of α  in the weeks 41 and 42. 
 
Since the demand pattern is not stable over time, α  needs to be determined for multiple 
periods in the year. The problem in our dataset is the adjusted usage curves, which make 
it difficult to find an α  that is generally applicable. Figure 5.9 illustrates this. We expect 
that the summer week selection (week 2007-27) holds fewer customers than the winter 
week selection (week 2007-50) with the same α , due to the higher demand in the winter 
period, but the opposite is true. The test is therefore inconclusive on which α  to use in 
which part of the year. 
 
For the period under observation (weeks 41 and 42) the number of customers for the 
week should be between 450 and 500, as we can see in Figure 5.8. An alternative to the 
use of α  would be to select the best 400 ‘may-go’ customer with regards to relative 
average delivery, in addition to the ‘must-go’ customers. In that way, we do not need α  
as a separate setting anymore, and we have a fast algorithm which obtains good results. 
 

 
Figure 5.9. The graph illustrates the number of customers in the customer selection for 

different settings of α  in different weeks of the year. 
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5.3.2 Long-term workload balance 
The maximum workload for every planning period is calculated with an average demand 
n weeks into the future. The long-term workload balance is based on this concept, and 
the higher n, the flatter the curve of the delivery volume. Figure 5.10 illustrates the curves 
of the delivery volume with different values of n. The curve for 26 weeks stops at week 
40, because there was insufficient data to calculate 26 weeks into the future beyond that 
point.  
 

 
Figure 5.10. The graph illustrates the demand curves for n weeks into the future.  

 
Figure 5.10 illustrates that, with the use of a 13 week average, the demand curve is still a 
steep curve, and that the peak reaches a high point even in the case of a 26 week average. 
Table 5.6 displays the results of using a 13 week average or a 26 week average. The 26 
week average for week 49 (343.091 litres) is estimated by using the shape of the curves of 
the weekly average demand for lower n. 
 

Week Scenario Average weekly 
demand (litres) 

Volume 
(litres) 

Average 
relative delivery 

2007-17 Base scenario - 258.581 54,23% 
2007-17 13 week average* 190.507 267.900 71,04% 
2007-17 26 week average* 181.323 267.900 71,04% 
2007-30 Base scenario - 236.659 49,52% 
2007-30 13 week average* 172.137 259.541 65,77% 
2007-30 26 week average 251.057 280.466 
2007-40 

65,08% 
Base scenario - 257.604 53,29% 

2007-40 13 week average 307.660 319.827 60,30% 
2007-40 26 week average 324.272 327.952 
2007-49 

60,11% 
Base scenario - 388.162 57,51% 

2007-49 13 week average 353.376 366.939 65,73% 
2007-49 26 week average 343.091 65,92% 356.694 

* 'Must-go' volume is larger than calculated average weekly demand, thus the 
delivered volume is much higher. 

 

Table 5.6. The table illustrates the results of testing a 13 and 26 week average. 
 

The results of using a 26 week average results in a higher volume to be planned for week 
30 and 40, and therefore these weeks show a slight decrease in average relative delivery. 
Week 50 shows a decrease in planned volume when 26 weeks are used, and therefore an 
increase in average relative delivery. We can conclude that the application of the 26 week 
average works well for this dataset, since the average relative delivery does not decrease 
dramatically. 
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5.3.3 Short-term workload balance 
By setting the bandwidth for the ILP for clustered customers (β), the short-term 
workload balance is influenced. A higher bandwidth increases the workload freedom, and 
thus the standard deviation of the delivery volume in the planning period. Figure 5.11 
illustrates the results in standard deviation over the week as a function of the bandwidth 
setting. One curve holds the standard deviation including Monday, and the other 
excluding Monday. The delivery volume on Monday is significantly higher than on the 
other days, due to the adjusted usage curves. Appendix S displays the results for volume 
per kilometre and average relative delivery, which show almost no change if the 
bandwidth changes.  
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Figure 5.11. The graph shows the standard deviation in volume per day of the planning 

period for week 42. 
 

By using the relaxation and a rounding procedure in stead of an exact ILP solution 
procedure, some decision variables can cause disturbances in the workload volume per 
day. The total number of customers that are rounded during the rounding procedure is 
30 customers, or 6,38% of the total number of customers of 470. These 30 customers 
represent 14,08% of the total volume that is assigned in the ILP, which shows that 
especially the larger deliveries have to be rounded after solving the LP relaxation. 
Although the effect is not large, an improvement of the ILP solution method leads to an 
improvement in the control of the short-term workload balance. 

5.3.4 Distance types 
Several distance types for the ILP for clustered customers are tested. The results in Table 
5.7 indicate that detour distance is better than the other distance types. Appendix T 
illustrates the separate results per week, and the geographical results for real distance in 
kilometres and detour distance. These results illustrate that the use of detour distance 
assigns more customers between a depot and a seed. 
 

Distance type Volume 
(litres) 

Dist. 
(km) 

Volume/ 
kilometre 

(litres/km) 

Cost/ 
litre 

Veh. 
used 

Average 
relative 
delivery 

Volume/ 
kilometre 
improve. 

Cost/ 
volume 
savings 

Base scenario* 718.457 13.448 53,4248 0,0581 56 53,55% - - 
Real distance (km) 951.115 15.528 61,2516 0,0525 68 14,65% 60,77% 9,64% 
Real distance (time) 1.018.789 19.540 52,1386 0,0609 78 59,26% -2,41% -4,70% 
Euclidean distance 975.112 16.004 60,9293 0,0531 72 60,16% 14,05% 8,65% 

Detour distance 981.942 15.095 65,0508 0,0507 68 59,77% 21,76% 
* The base scenario was planned by the planners, and therefore has no such setting. 

12,85% 
    

 

Table 5.7. The results for the weeks 40, 41, and 42 illustrate that detour distance is most 
efficient on the short-term measure volume per kilometre. 
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5.4 Testing alternative algorithm designs 
We discuss the results of testing the alternative algorithm designs. The separate tests are 
given in Appendix U. 

Balance customers 
The tests illustrate that the use of balance customer is inefficient, since the average 
relative delivery and the volume per kilometre are lower. The average relative delivery is 
higher if no balance customers are used, since balance customers can receive a delivery 
that is lower than their maximum delivery. The vehicle utilization is higher when balance 
customers are used, because we maximize the balance customers, and fill up the vehicles 
after scheduling.  
 
The use of balance customers is a more practical planning solution to cope with route 
failures, and its effect is better measured in a stochastic environment, where actual 
delivery volumes can be simulated. The extension can also be used for marketing or 
implementation purposes, since it is comparable to planning methods used in practice. 

Objective functions 
We test the different objective functions mentioned in Appendix J. The objective 
function used in the ILP in Step 5 of the algorithm performs best according to the tests 
in Appendix U.  

Check for customer combinations 
The results in Appendix U for using a customer combination check illustrate that it is 
better to leave the additional constraint out. Therefore, this functionality is not used in 
the algorithm. 

Vehicle type knowledge 
Paragraph 4.3 explains the use of knowledge about vehicle type restrictions to determine 
the total workload. The results in Appendix U illustrate that we obtain worse results 
when we use this functionality.  

Period Scheduler seed selection method 
We test the seed selection method used in the Period Scheduler. The seed selection 
procedure obtains worse results, but the lower number of seeds (18 seeds when there is 
one seed per depot per day) makes the customer assignment phase a lot faster. The time 
for this phase reduces from around 1200 seconds (20 minutes), to 260 seconds (4,3 
minutes).  
 
A disadvantage of the Period Scheduler clustering method with 18 seeds is that all 
vehicles go to one area on each day. One of the solution requirements is that the vehicle 
should go to multiple areas on one day, to cope with emergency orders.  
 
Another disadvantage is that the workload is not spread perfectly across the depots and 
days, but this can be solved by improving the seed selection procedure, with a check if 
every depot has a seed for every day of the planning period. This improvement would 
make this seed selection procedure more interesting. 
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6 Conclusions and recommendations 
This research is done by ORTEC’s Oil, Gas, and Chemicals department. It has the 
objective to design a solution methodology to minimize distribution costs in the 
Inventory Routing Problem (IRP) for gas distribution, and to mitigate the seasonal peak 
in customer deliveries. We develop an algorithm to reach this objective, and we test the 
algorithm in computational experiments. In this chapter, we discuss the main 
conclusions, scientific contributions, recommendations, and ideas for future research. 

6.1 Conclusions 
The flexibility offered by Vendor Managed Inventory (VMI) in gas distribution can be 
fully utilized by integrating the inventory and routing decisions. In the current situation, 
the two decisions are separated by the two software suites offered by ORTEC: ORION 
(inventory) and SHORTREC (routing). We develop an algorithm based on the 
requirements in the gas industry to integrate the inventory and routing decisions. 
 
The algorithm consists of three distinct phases, where the first phase selects all customers 
that can receive a relatively large delivery compared to the customer’s capacity, the relative 
delivery size. The second phase creates clusters of customers around the customers that 
require a delivery in the planning period: the ‘must-go’ customers. The third phase 
assigns all customers to a delivery day in the planning period, with the objective to 
minimize total distance between customers. The algorithm considers the impact of a 
certain delivery on future planning periods, by evaluating the relative delivery size of 
customers that do not require a delivery in the planning period: the ‘may-go’ customers. 
 
An equal workload balance improves the efficient use of the available resources. In the 
third phase, we also balance the workload on the short-term and the long-term, by 
adding a delivery volume constraint. This delivery volume constraint is connected to the 
vehicle capacity on a certain day. The maximum delivery volume for a planning period is 
calculated by averaging the forecasted weekly demand in the next n weeks. This moving 
average in demand flattens the demand curve and mitigates the seasonal peak. We test 
the algorithm with n equal to 13 and 26, where n equal to 26 flattens the curve more.  
 
We compare the results of the algorithm plans with plans created by planners at a gas 
company. These tests illustrate that the algorithm delivers 21% more volume per kilometre 
than the actual plans, and decreases costs for gas distribution with at least 12% (the 
decrease in distribution costs due to fewer visits is not considered in this percentage). 
Additionally, all customers require fewer visits, which not only decreases distribution 
costs, but also improves customer satisfaction. The algorithm uses between 600 to 1.000 
seconds to run, which is acceptable in a region with three depots, 3.000 customers, and a 
planning period of seven days. The four main benefits of the solution are: 
 
(1) Decrease in distribution costs, due to increased efficiency of route plans and fewer 

customer visits. 
(2) Increase in customer satisfaction, because there are fewer customer visits. 
(3) Improved workload balance in the planning period. 
(4) A mitigation of the seasonal peak in demand in the winter months. 
 
Concluding, we provide a solution methodology that integrates the inventory and routing 
decisions to effectively utilize the business potential of VMI. This solution methodology 
improves the efficiency of gas distribution and mitigates the seasonal peak in demand. 
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6.2 Recommendations 
Based on the conclusions from the previous paragraph, we state the long-term and short-
term recommendations. The short-term recommendation is a short-term solution that is 
relatively easy to implement. 

6.2.1 Long-term recommendations 
(1) The algorithm should be implemented in ORION and SHORTREC, where ORION 

is responsible for selecting the orders, the clustering, and the generation of schedules, 
and SHORTREC performs the assignment of the customers to delivery schedules. 
The single interaction between the two programs in this case decreases the 
complexity of the solution for the planners. Planners can work with the software 
suites in a similar way as they currently do. A plan should be created for at least a 
number of days, to get an equal workload. One can use the routes for the first day 
only, to get the effect of a rolling horizon, or use the routes of the complete planning 
period. The latter is efficient, because a planner can run the algorithm on a complete 
region for a planning period of seven days in 10 to 18 minutes. 

(2) ORION should calculate the demand of non-VMI customers as well. This is 
especially interesting if a peak in demand occurs for non-VMI customers. The 
demand of these customers can then be used to calculate a better average demand 
per week, and thus we improve the anticipation on demand peaks to come. To 
implement this idea, ORION should separate the functions of order generation and 
demand calculation, which are currently combined. 

6.2.2 Short-term recommendation 
The customer selection procedure proposed in this research can be used to select the set 
of possible ‘may-go’ customers in the planning process. In this way, the quality of the 
long-term planning is preserved and customer visits are kept to a minimum, since we 
only consider customers with a relative delivery size above α . In our computational 
experiments, we found that is difficult to find settings for α  for every period of the year, 
due to peaks in demand and adjusted usage curves. The problem of setting α  is avoided 
when we always select the 400 customers with the highest values for α , since 400 
customers is the number of customers we found to yield good results in the algorithm. 

6.3 Scientific contributions 
(1) The IRP with multiple depots is not described in the literature before. Several articles 

describe a solution with satellite facilities (Bard et al., 1998; Jaillet et al., 2002), but at 
these facilities vehicles can not start or finish a day, they can only reload. We have 
created an algorithm that balances the workload over multiple depots according to 
the available vehicle capacity at a depot. 

(2) The IRP with a seasonal peak in demand is described in the literature (Dror and Ball, 
1987), but no author ever proposed solutions to mitigate this seasonal peak. Our 
algorithm uses a methodology that balances delivery volumes over a longer period, 
and thus flattens the demand curve effectively. 

(3) The algorithm works with a flexible clustering methodology, which is performed 
every time the algorithm is run. The literature only describes clustering 
methodologies for the IRP that are separated from the planning process and need to 
be re-run every time a change is made to customer data (usage curves, new 
customers, etc.). Therefore, the existing clustering methodologies are difficult to use 
in a real-life problem instance, where customer data are updated regularly. Flexible 
clustering provides a solution for real-life instances, since it is computationally fast. 
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(4) This research proposes a solution for the problem of route failures. A route failure is 
a difference between the expected delivery volume in a trip and the actual delivery 
volume. A route failure results in either too little or too many customers in the pre-
planned trips. The problem decreases utilization and this leads to a lower efficiency. 
Although Dror and Trudeau (1988) use the notification of route failures in their 
stochastic models, no author has described a practical solution to cope with these 
route failures. We propose balance customers with a flexible delivery volume, which 
are planned at the end of a trip, to cope with these route failures. 

(5) As mentioned earlier, the algorithm balances the workload according to vehicle 
capacity at a specific depot on a specific day in the planning period. This type of 
workload balancing in the IRP, based on the distribution of vehicle capacity in the 
planning period, is never described in the literature before. 

6.4 Future research 
(1) We should test the algorithm in a feedback loop of multiple planning periods, where 

delivery information from one planning period is fed back into ORION, to calculate 
new due dates for following planning periods. 

(2) We propose balance customers with a flexible delivery volume to cope with route 
failures. We should study the balance customers in a stochastic environment, where 
route failures can be simulated, to draw conclusions about the actual effects. 

(3) We can improve computation times with the Period Scheduler seed selection 
procedure (Appendix A). The seed selection procedure should be improved to have 
an equal balance of seed points in the planning period. Additionally, the procedure 
selects a fixed region per depot and day, and this makes it difficult to plan emergency 
deliveries. We found that the number of emergency deliveries is not as high as 
expected (~0,8% of all orders), so this may not pose a large problem.  

(4) We use flexible clustering in the algorithm; clusters are created based on the ‘must-
go’ customers, the so-called seeds. The algorithm selects at least a certain minimum 
number of seed options per day in the planning period, by matching the latest 
delivery date of a customer with the current planning day we are selecting the 
minimum number of seed options for. We should adapt the current method, such 
that not only customers with a latest delivery date that matches exactly with the 
current planning day are considered, but also the customers that have a latest delivery 
date later than the current planning day. 

(5) To solve large ILPs, the current LP solver works with rounding, where the outcomes 
of the LP relaxation are rounded up. A better method, such as Lagrangian relaxation 
can improve, above all, the control of the short-term workload balance. A future 
research at ORTEC should study the use of Lagrangian relaxation to solve the ILPs. 

(6) We should study further integration of the two software suites ORION and 
SHORTREC. For instance, the swapping of orders between days after scheduling 
may be beneficial for the efficiency of trips. Currently, this is not possible, since 
ORION holds the required usage data, while SHORTREC schedules the routes. 

(7) We should study the use of forced orders for customers with a lower visit frequency 
than six times per year. We can force these orders in quiet times, such that these 
customers do not require a visit in the winter peak. 

(8) In evaluating the impact of a ‘may-go’ delivery on future planning periods, the ILP 
uses a forwarding cost function. We propose a tuning parameter for this cost 
function. For instance, in fall, the total delivery volume should be higher than in 
spring. Therefore, the costs for forwarding a customer should be lower in fall than in 
spring, such that fewer ‘may-go’ orders are forwarded to a future planning period, 
and the delivery volume is higher. This flattens the curve over the course of a year. 
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Appendix A:  The Period Scheduler: Seed selection procedure 
 

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4  
Figure A.1. Iterations to find the seed points for the Period Scheduler. 

 
Figure A.1 illustrates an example of the seed selection procedure. The crosses indicate 
the seed points, and the triangles, circles, and rectangles indicate the customers. The 
procedure selects three random seed points and assigns every customer to one seed 
point, with the objective to minimize the total sum of the distances between the 
customers and the seed point. A different shape indicates a different seed assignment 
(Figure A.1.a). Based on this information, new seed points are calculated by calculating 
the centre of gravity for each of the three regions, and setting this centre as the new seed 
point. The customer assignment is repeated with the new seed points (Figures A.1.b and 
A.1.c), and again distance is minimized. The last step is repeated until the seed points 
stop changing (Figure A.1.d). The Period Scheduler prevents large differences in the total 
delivery volume per region by basing the assignment of a customer to a seed point not 
only on distance, but also on delivery volume. 
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Appendix B:  The Period Scheduler: ILP model 
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Variables 
  Xij binary variable that equals 1 if delivery schedule j is  

assigned to customer i 
  
 Data 
   dij distance contribution (i.e. costs) to assign delivery  

schedule j to customer i 
  kwmax  maximum workload on day k in terms of size m 
  ijkq  quantity delivered on day k, when schedule j is assigned  

to customer i 
   Si set of allowable delivery schedules for customer i 
   n number of customers 
   J number of different delivery schedules 
   K number of days 

 
Figure B.1. The ILP model in the Period Scheduler (Hoendervoogt, 2006)  

 
The ILP model in the Period Scheduler has the objective to minimize distribution costs 
in Equation B.1. Constraint B.2 guarantees that we have a schedule for each customer. 
Constraint B.3 balances the workload per day by setting the total sum of the delivery 
volume lower than or equal to the maximum workload. The binary property of the 
variable Xij is set in Constraint B.4. 
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Appendix C:  Extended literature summary 
This appendix summarizes the used literature in this thesis. Paragraph C.1 discusses key 
principles, which form the basis for finding a solution methodology for any type of IRP. 
Additionally, we discuss nine solution methodologies in Paragraph C.2. Paragraph C.3 
discusses performance measurement for the IRP, and Paragraph C.4 discusses the 
seasonal peak problem in the literature. 

C.1 Key principles in solving the IRP 
A solution methodology for the IRP is not straightforward. Four important articles 
describe the problem and propose key principles, or guidelines, for designing a solution 
methodology. Dror and Ball (1987) start with analyzing a single customer case. In order 
to solve the problem, they define cost functions for orders that fall either within or 
outside the planning period. The two types of orders they describe, correspond exactly 
with the mentioned ‘must-go’ and ‘may-go’ orders used in this thesis. Callego and 
Simchi-Levi (1990) study the strategy to only consider routes that exist of one customer: 
a direct-shipping strategy. Campbell et al. (1997) discuss the single customer case as well. 
The authors also give two strong guidelines that are very important in designing a 
solution for the IRP. Yugang et al. (2008) describe an interesting measure for defining 
travel distance, which is the main aspect of transportation costs in their approach. The 
articles are ordered by publication year. 

C.1.1 Dror and Ball (1987) 
Dror and Ball (1987) analyze the IRP for a supplier in heating oil. The authors observe a 
seasonal peak in customer usage and incorporate it into the customer usage functions. 
The authors state that the objective of the IRP is to minimize the long-term distribution 
costs, while making sure no customer runs out of stock. Two major practical problems 
arise when trying to reach this objective for a long period:  
 
(1) The validity of a formulation over a long period of time is questionable because 

parameter values are uncertain over such a long period (new customers, etc.).  
(2) The number of constraints and variables is prohibitively high. 
 
Therefore, the procedure for reducing the long-term optimization problem and selecting 
the set of customers that is actually replenished in the short-term is of major importance 
in developing a solution for the IRP. According to the authors, the key element in 
reducing the long-term optimization problem to a short-term problem is to include 
penalty costs within the short-term model that reflect the long-term effect of a decision. 
 
The authors consider the single customer problem. In this case, the optimal policy would 
be to refill the customer’s tank exactly at the time it would reach a zero level. The optimal 
t* can be calculated by dividing the inventory level at the beginning of the considered 
period I0 by the daily usage μ: 

µ

0

* It =    (C.1) 

The authors model the cost increase when a customer is not replenished at t*, but at t (t 
< t*). They define two groups of customers, one group where the optimal delivery falls 
within the considered time period of m days: ‘must-go’ ( 00 <−⋅ Im µ ), and a second 
group where the optimal delivery falls outside the considered time period: ‘may-go’ 
( 00 ≥−⋅ Im µ ).  



 

How VMI Can Be Successful in Gas Distribution, Peter Hulshof  
 

56 

They define the cost for a ‘must-go’ order as the optimal volume (I0) minus the delivery 
we can do if we pull the order forward (μt). The ‘missed’ delivery volume is then the cost 
for pulling an order forward. They divide this volume by the customer’s tank capacity, C, 
to get the relative size of the missed delivery as a percentage of capacity, which 
represents the long-term effect of a decision to deliver on the short-term. Equation C.2 
illustrates the cost for not delivering the optimal volume, ct. 
 

b
C

tIct
µ−

=
0

  (C.2) 

 
Where b is the cost for a delivery. Equation C.2 shows that the authors minimize ct by 
maximizing the amount delivered and choosing a delivery day t as close to t* as possible.  
 
The ‘may-go’ orders do not receive a penalty, but an incentive to force these orders in 
the considered time period. This is because their model has no other incentive to plan 
the ‘may-go’ orders in the considered time period. The authors use Equation C.3 to 
calculate the cost gt for planning a ‘may-go’ order in this period, under the assumption 
that the optimal policy is used afterwards. This cost gt is actually a reward, since it has a 
negative sign in the overall cost function, thus gt is a decrease in total cost. The equation to 
calculate gt is based on ct,, and the smaller ct, the larger the incentive to plan a ‘may-go’ 
order. Equation C.2 defines ct, and we can see that ct is small when I0 is small and t is 
large. Therefore, it is more attractive to pull forward a ‘may-go’ order that is close to its optimal delivery 
point (large t). It is also more attractive to pull an order forward from a customer with a 
small initial inventory (small I0). The model assigns as many ‘may-go’ orders as possible, 
since gt is a decrease in total cost, and ct is smaller than b for all ‘may-go’ orders. 
 
   gt = b - ct   (C.3) 

C.1.2 Callego and Simchi-Levi (1990) 
Callego and Simchi-Levi (1990) investigate the long-term effectiveness of direct shipping 
(separate loads to each customer). They conclude that direct shipping is at least 94% 
effective over all inventory routing strategies when the minimal economic lot size is at 
least 71% of truck capacity. The effectiveness deteriorates as the economic lot size gets 
smaller. Hall (1992) points out that direct shipping only performs well when fixed 
transportation costs are negligible. 

C.1.3 Campbell, Clarke, Kleywegt, and Savelsbergh (1997) 
Similar to Dror and Ball (1987), the authors state that in the single customer problem, it 
is optimal to refill the customer’s tank precisely at the time it becomes empty. The cost vt 
for replenishing a single customer for a planning period of time T is calculated as follows: 
 

.)
),min(

,0max( c
QC
ITuvt 







 −
=  (C.4) 

 
Where C is the customer capacity and Q is the vehicle capacity. The delivery costs are 
given by c, and the usage is defined by u. The initial inventory is given by I.  
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For the multiple customer problem, the decision who needs to be visited, and how much 
should be delivered, should be guided by the following assumptions: 
 
(1) Always try to maximize the quantity delivered. 
(2) Always try to send out vehicles with a full load. 
 
These assumptions are straightforward, since maximizing the quantity delivered will yield 
a better performance on the long run, as shown in the single customer problem in Dror 
and Ball (1987) and Campbell et al. (1997). Since we incur fixed costs when we send out a 
vehicle, its effectiveness is maximized by only sending out the vehicle with a full load.  

C.1.4 Yugang, Haoxun, and Feng (2008) 
The authors point out that transportation costs include the fixed usage costs that are 
related to vehicle insurance, depreciation and rewards for drivers, but also the variable 
transportation costs depending on the travel distance and the delivery quantity. The 
authors make use of the triangle inequality, where, in a set of two customers and a depot, a 
trip through the depot and the two customers is always larger than, or at least as large as, 
a trip between the depot and one of the two customers. This is illustrated in Figure C.1, a 
trip between the Depot and Customer 1 will be: 2 * 100 = 200, and a trip including 
Customer 2 will be: 100 + 30 + 90 = 220. This means we increase distance by adding 
customers that are far from Customer 1, but that the increase is only to be measured as 
distance of the trip with one depot and two customers minus the distance of the trip with 
one depot and one customer. In Figure C.1, the additional distance when Customer 2 is 
added to the trip would be: 90 + 30 – 100 = 20, or: 220 – 200 = 20. 
 

Depot

Customer 2

Customer 1100

3090

 
Figure C.1. Trips can be seen as triangles. 

C.2 Solution methodology for the IRP 
Bell et al. (1983), Federgruen and Zipkin (1984), Golden et al. (1984), and Blumenfeld et 
al. (1987) are among the first authors to describe a solution methodology for the IRP. 
Since then, researchers have tried to define heuristics to solve the IRP for different 
problem instances. The main differences in these approaches are: 
 
(1) A deterministic versus a stochastic approach, where customer usage is assumed to be 

either deterministic or stochastic.  
(2) A decomposition versus an integrated approach, where a decomposition approach 

tries to find a solution for the IRP in a phased approach, where the first phase will 
result in a time and quantity for a delivery, and the second phase solves the resulting 
VRPs. The integrated approach deals with the decision when and how much to 
deliver, and the VRPs, at the same time.  

(3) Different decision models are used in the literature, where most authors use an ILP 
to minimize cost or maximize revenue; other authors solve the IRP with Dynamic 
Programming (DP), or with heuristics.  
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Additionally, many differences in problem aspects arise, such as length of the planning 
period, number of products, inventory holding costs, safety stock levels, maximum stock 
levels, fleet aspects, multiple reload facilities, size of the customer instance, and workload 
balancing. Table C.1 illustrates an overview of the articles discussed in this paragraph. We 
discuss the authors in the order of year of publication. 
 

Author(s) Planning 
period Industry Customer 

usage 
Number of 
customers 

Satellite 
facilities 

Decomposition 
or Integrated 

Decision 
model 

Golden, Assad, and 
Dahl (1984) 1 day Liquid 

propane Deterministic 3000 No Decomposition - 

Dror and Ball 
(1987) 1 week Heating oil Stochastic >1000 No Decomposition ILP 

Dror and Trudeau 
(1988) 1 week Heating oil Stochastic 2077 No Decomposition ILP 

Bard, Huang, 
Jaillet, and Dror 
(1998) 

1 week Liquid 
propane Deterministic 500 Yes Decomposition ILP 

Jaillet, Bard, 
Huang, and Dror 
(2002) 

1 week Liquid 
propane Deterministic 500 Yes Decomposition ILP 

Bertazzi, Paletta, 
and Speranza 
(2002) 

30 days Echelon 
network Deterministic 50 No Integrated Heuristic 

Campbell and 
Savelsbergh (2004) 3 days Liquid 

propane Deterministic 150 No Decomposition ILP 

Kleywegt, Nori, 
and Savelsbergh 
(2004) 

1 day Liquid 
propane Stochastic 20 No Integrated DP 

Jung and Mathur 
(2007) - Echelon 

network Deterministic 1000 No Decomposition Nonlinear IP 

Table C.1. An overview of the solution methodologies discussed in Paragraph C.2.  

C.2.1 Golden, Assad, and Dahl (1984) 
Golden et al. (1984) investigate the deterministic IRP at a large propane distribution 
company. They consider a district with 3.000 customers and have little data to base 
forecasts and calculations on. They propose an integrated solution methodology where 
the relative delivery size for all customers is calculated by dividing the possible delivery to 
the customer by its capacity, the left term in Equation C.5. All customers that can receive 
a minimum relative delivery size in the planning horizon are considered in the current 
planning horizon. This minimum relative delivery size can be set with α in Equation C.5. 
 

α≥
Capacity

meliveryVoluPossibleDe  (C.5) 

 
If Equation C.5 holds for a certain customer and certainα , the customer is selected for 
the potential customer set in the current planning horizon. The authors study the 
sensitivity of the setting ofα . Whenα  is close to 1, orders are only accepted for 
customers that have no gas left, meaning the number of visits is lower, and thus 
transportation costs are lower, but the number of stock outs will rise, resulting in an 
overall increase in distribution costs. The authors claim that stock outs are expensive 
since there are two cost factors: (1) the high cost of an emergency delivery, and (2) the 
extra cost for an unhappy customer. Whenα is close to 0,5, the final solution will be 
more expensive, since we put orders in the potential customer set that can only receive 
50% of their optimal delivery volume. 
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Golden et al. (1984) use the following solution methodology: 
 
STEP 1:  Select customers for the potential customer set by settingα . 
STEP 2:  Calculate distance and profit matrix for all potential customers. 
STEP 3:  Select customers in a trip by adding a customer to a TSP tour with a maximum 

length: a TSP with Time Constraint (TSPTC). 
STEP 4:  Construct trips with Clarke-Wright algorithm2

C.2.2 Dror and Ball (1987) 

. 
STEP 5:  Assign trips to trucks. 
STEP 6:  Check feasibility, if not feasible, add overtime and/or increase the maximum 

length in Step 3. 
 
The authors describe two dimensions along which the optimization in an IRP must 
proceed. The authors state that the IRP optimization is done on a spatial dimension and a 
temporal dimension. The spatial dimension requires the minimization of distance travelled. 
The temporal dimension involves the timing of deliveries so that both early and late 
deliveries are discouraged, since these deliveries are inefficient. For the temporal 
dimension, they use the relative delivery size. 

Most of the article by Dror and Ball (1987) is discussed in the Paragraph C.1.1. Their 
algorithm solves the stochastic IRP in three steps: 
 
STEP 1:  Assign customers to days solving an assignment problem with an LP. 
STEP 2:  Solve a VRP for each day using a modified Clarke-Wright algorithm. 
STEP 3:  Improve the solution by inter-route and inter-day customer exchanges. 

C.2.3 Dror and Trudeau (1988) 
Dror and Trudeau (1988) study the stochastic IRP for the distribution of propane. The 
authors claim that the actual optimal replenishment should occur a certain probabilistic 
time before the customer becomes empty, since the cost curve rises steeply in these last 
moments due to the risks of a stock out. They also consider route failures in their 
probabilistic analysis. A route failure is a failure, where the vehicle’s route has either too 
little or too many customers. Since the propane industry works with a ‘top-up’ policy, in 
which a customer is filled up to its maximum capacity, the actual delivery to a customer is 
only known after the delivery is made. Therefore, a delivery might be larger or smaller 
than expected, and a route failure can occur, since the vehicle is out of stock before it 
reaches the last client in the trip or still has stock after visiting the last client.  

C.2.4 Bard, Huang, Jaillet, and Dror (1998) 
Bard et al. (1998) propose a heuristic to solve the deterministic IRP with satellite facilities 
in the propane industry. They consider a planning horizon of two weeks and they select 
all customers that have to be visited in this period. Additionally, they balance the daily 
delivery volume and schedule all routes in the m homogeneous vehicles for the first week 
only. The planning horizon is then shifted with a week and the complete process is 
repeated. The assignment problem is solved with a Mixed Integer Linear Program 
problem (MILP) with two objectives: (1) minimize the distance travelled, and (2) 
minimize the added costs that arise because the customer is not delivered at the optimal 

                                                 
2 Since the routing step is out of scope for this thesis, we will not explain the Clarke-
Wright algorithm, the reader is referred to Clarke and Wright (1964). 
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point in time, the incremental costs. An MILP is an LP, where a subset of decision variables 
has an integer constraint. Rather than combining the two measures into a single value, 
the authors optimize in two steps. Although it may be possible to translate distance into 
cost, the results may not be directly additive with the incremental costs, because the 
incremental costs may have an intangible aspect corresponding to quality of service and 
customer retention. 
 
Their heuristic solves the IRP in five steps: 
 
STEP 1: Identify all customers whose optimal replenishment day falls within the 

planning horizon of two weeks. 
STEP 2: Assign each customer from Step 1 to a day by solving a balanced assignment 

problem with an MILP, with the objective of minimizing incremental costs. 
STEP 3: For each day in the planning horizon, find a good solution by solving a VRP 

with Satellite Facilities (VRPSF), with the objective to minimize total distance. 
STEP 4: Improve the solution by swapping customers between routes. 
STEP 5: Improve the solution by examining the trade-off between incremental costs 

and route lengths, by swapping customers between different days of the plan.  
 
A VRPSF is a VRP with satellite facilities. A satellite facility differs from a depot in that a 
vehicle can only reload at a satellite facility, and it can not start or finish there. The 
heuristics tested in Step 3 – 5 are the Clarke-Wright algorithm, a GRASP algorithm, and 
a revised Sweep Algorithm. The Clarke-Wright algorithm performs best in a VRPSF, but 
all algorithms have acceptable computation times. 

C.2.5 Jaillet, Bard, Huang, and Dror (2002) 
Jaillet et al. (2002) use an identical approach as Bard et al. (1998). The objective is to 
minimize cost on the long run, by determining the cost for delivering the order earlier 
than the optimal delivery interval for every customer in a planning period of n days. The 
authors determine the expected cost in case the delivery interval is not the optimal 
interval, but a shorter or longer period.  

C.2.6 Bertazzi, Paletta, and Speranza (2002) 
Bertazzi et al. (2002) consider a deterministic IRP in a two-echelon network with one 
depot, one vehicle, and multiple retailers. They consider holding costs, maximum 
inventory levels, and they accept no stock outs. They propose a heuristic to solve the IRP 
with an integrated approach. They generate a list of all customers ranked in the non-
decreasing order of the average number of time units needed to consume their inventory, 
which is calculated with Equation C.6.  
 

DailyUsage
kSafetyStocckMaximumSto −  (C.6) 

 
With the list, they generate a starting solution, by adding customers to a vehicle trip at 
time t, where the interval between deliveries must be equal to the number of time units 
the customer needs to consume their inventory. After they have filled all vehicles, and 
planned all customers, they improve the solution by removing customers from trips, and 
inserting the customer in a new trip at time t', where t' is calculated with the knowledge 
from the initial solution. 
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C.2.7 Campbell and Savelsbergh (2004) 
Campbell and Savelsbergh (2004) propose a method to solve the deterministic IRP in the 
commercial gas industry. They propose two separate phases. In Phase 1, deliveries are 
assigned to days over the k-days horizon. In Phase 2, deliveries are assigned to days and 
minutes, over the j-days horizon, where j < k, and trips are scheduled. The decisions 
made in Phase 1 are not engraved in stone, but are used as guidelines.  
 

Phase II: SchedulingPhase I: Planning

Cluster
generation

Reducing the 
customer set

Selection 
of routes

ILP 1
Set Partitioning

Critical
Impending

Balance

ILP 2
Aggregation/

Relaxation

Trip 
construction

Insertion
Heuristic

 
Figure C.2. The solution methodology of Campbell and Savelsbergh (2004) 

Phase I: Assign deliveries to days over the k-day horizon 
In Phase I, they create routes, containing customers that are served together, and they 
choose the best routes with an ILP. A route is different from a trip, in that a route does 
not prescribe the order in which the customers should be served. The objective is to 
minimize total distribution costs, and the cost of a route cr is considered to be the 
distance of the optimal TSP-tour through all customers in the route. All deliveries in one 
route on one day, can not exceed the homogeneous truck capacity, and the total work 
that can be done is restricted by the total working time available. 
 

(1) Generate a large set of possible clusters. 

Clustering 
A problem in this approach is the large number of available routes; this was also noted by 
Bell et al. (1983). To limit the number of possible routes, groups of customers are 
created, which are called clusters. Clusters are groups of customers that can be served 
cost effectively by a single vehicle for a long period of time. Clusters are constructed after 
a change to the customer set, for instance a change of customer usage patterns. The 
following approach is used to identify a set of disjoint clusters covering all customers: 
 

(2) Estimate the costs of serving each cluster. 
(3) Solve a set-partitioning problem to select clusters. 
 
Cluster costs are estimated by calculating the distribution costs for serving the customer 
in a cluster for a certain period. An ILP is used to generate the costs for a cluster, and the 
reader is referred to Campbell and Savelsbergh (2004) for this ILP. The minimal TSP 
tour through all customers in a cluster should be below a certain time threshold, but 
cluster costs do not only depend on distance, but also on compatible inventory capacities 
and usage rates of the customers. For example, five customers that need a full truckload 
per day will not be combined into one cluster.  
 

Additionally, the authors reduce the customer to reduce the problem size. Campbell and 
Savelsbergh (2004) identify several groups that are included. The first group are critical 
customers. Critical customers have a large impact on the efficiency of the schedule and 
include those customers that have high demand or are very distant from any other 

Reducing the customer set 



 

How VMI Can Be Successful in Gas Distribution, Peter Hulshof  
 

62 

customers or the depot. The second group are the impending customers, which require a 
delivery in the next several days. The third group are the balance customers to improve 
workload balance. Balance customers are customers that do not need a delivery 
imminently, but are near and in the same cluster as those customers that are critical or 
impending. The h nearest neighbours for every critical or impending customer within the 
cluster are included, that can receive a delivery of a minimum size in the next few days. 
Phase I has a higher probability for finding good routes when these balance customers 
are included. 

Phase II: Scheduling of routes 
The routes that are selected in Phase I are then scheduled in Phase II. This is done for 
several days with an insertion heuristic. The Phase I results are considered as an advice in 
Phase II, to keep flexibility in scheduling. Since we do not consider the scheduling in our 
thesis, we do not discuss Phase II in detail. The reader is referred to Campbell and 
Savelsbergh (2004).  

C.2.8 Kleywegt, Nori, and Savelsbergh (2004) 
Kleywegt, Nori, and Savelsbergh consider a stochastic IRP with a single vendor, multiple 
customers, multiple vehicles, and a homogeneous fleet. An optimal value function is 
defined to find a solution to the IRP. In their formulation, the authors include a reward 
per litre delivered, costs for traversing a certain arc in the network, inventory holding 
costs, and stock out penalties. 
 
To approximate the optimal value function, they decompose the IRP into sub problems, 
each designed to have two properties: (1) it provides an accurate representation of a 
portion of the overall problem, and (2) it is relatively easy to solve.  The sub problems are 
problems that need to be solved for subsets of customers, and the combined sub 
problems give an accurate representation of the total problem. A customer can be in one 
or more subsets. They use Dynamic Programming (DP) to generate policies that are 
feasible and a good approach to the optimum. For each policy, they consider all feasible 
decisions which contain information about (1) when to deliver to a customer, (2) how 
much to deliver to a customer, and (3) how to combine customers in vehicle routes. For 
more information on the application of DP in the IRP, see Kleywegt et al. (2004). 
 
To proof their findings, they simulate a problem instance with 50 customers and they 
consider subsets of one, two, and three customers only. The authors state that this is a 
good assumption in the petroleum and air industry, since routes usually contain one 
customer, and not more than three customers. Since the number of options rise, the 
solutions improve when the authors consider a higher number of customers per route. 
Table C.2 illustrates that a negative effect of a high number of customers per subset is a 
strong increase in computation times. The authors note that this is an approach where 
the complete customer set is considered, one could easily reduce the number of two or 
three customer routes by eliminating all subsets of two or three customer routes that can 
not be visited together. 
 

Number of customers per route Computation time 
1 customer  0,5 seconds 
2 customer  318,5 seconds 
3 customer  668.360 seconds (7,73 days) 

Table C.2. An overview of the computation times for solving all sub problems where 
there is a possibility to include one, two, and three customers in one sub problem. 
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C.2.9 Jung and Mathur (2007) 
Jung and Mathur study a two-echelon deterministic IRP with one warehouse and N 
retailers. They consider the problem with holding costs at the retailer and at the 
warehouse, and homogeneous vehicles to visit the retailers. To solve the problem, they 
cluster the retailers in such a way, that all retailers in one cluster can be visited together 
for a longer period of time by a single vehicle. The clusters only have to be made when 
there is a change in the customer set. They use stationary policies, or fixed visit schemes, 
in which a cluster’s reorder interval is exactly 0,5 or 2 times the reorder interval of the 
warehouse. According to the authors, this makes the problem tractable. The fixed 
reorder intervals form the basis of solving the complete problem, since solving the exact 
reorder intervals for every customer and for the warehouse is their objective. 

C.3 Performance measurement for the IRP 
An evaluation of a solution methodology for the IRP is not obvious. It is a difficult, NP-
hard problem, and because of its complexity, we have no optimal solution to compare 
our heuristic with. In most cases, a lower bound can be calculated for an NP-hard 
problem, which is a solution to a problem that is a more simple derivation of the actual 
problem. A lower bound for the IRP can be calculated, but this is a complicated task and 
an increase in complexity of the IRP will yield a weaker lower bound. The weaker a lower 
bound, the less useful it becomes. Song and Savelsbergh (2007) discuss the lower bound 
for the IRP and the performance measures one can use in evaluating a solution 
methodology for the IRP.  

C.3.1 Song and Savelsbergh (2007) 
A popular performance measure for the IRP is the volume per mile measure. Since the 
volume that has to be delivered in the IRP is given by customer usage, a company tries to 
minimize the distribution cost to deliver this volume. An important driver for 
distribution cost is distance travelled, and therefore maximizing volume per mile is an 
important measure. Song and Savelsbergh (2007) state that this practical performance 
measure is very effective in measuring relative performance, but inadequate in measuring 
absolute performance, because geography of customer locations and customer usage 
patterns vary across problem instances. Despite the inadequacy in measuring absolute 
performance, the measure is valuable for monitoring the performance in a single region 
over time. If the region has a stable customer set, and customer usage patterns do not 
fluctuate much, then an increase in volume per mile indicates that distribution planning is 
improving.  
 
The authors propose an upper bound for the IRP is weak in a problem instance when 
customer capacity is substantially smaller than vehicle capacity. For this reason, a more 
complex upper bound is developed, which is useful when the typical number of stops on 
a delivery route is small. When the typical number of stops on a delivery route is large, 
the computational requirements become prohibitive. The reader is referred to Song and 
Savelsbergh (2007) for this complex upper bound. 
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C.4 Seasonal peak problem 
Where the IRP is well represented in the literature, the seasonal peak problem in 
distribution is a problem that has never been addressed before. Articles about forecasting 
inventory demand for a US auto parts distributor are available (Gardner and Diaz-Saiz, 
2002), but the distribution strategy that evolves from a forecast has never been described. 
An article from Welch, Smith, Pix, and Reader (1971) studies the seasonal peak problem 
in the production of gas, and some of their concepts are applicable to the seasonal peak 
in the distribution of gas. 

C.4.1 Welch, Smith, Pix, and Reader (1971) 
The authors propose five solutions to cope with the seasonal peak problem in 
production. We transfer these solutions to distribution in the last section of this 
paragraph.  
 
(1) Stocking of goods prior to peak period. 
(2) Fluctuating production rates through the year, with consequent idle capacity at off-

peak times. 
(3) Failing to meet some of the demands at peak times. 
(4) Producing a mix of products, such that the demand patterns of some are 

complementary to others. 
(5) Seasonal pricing or seasonal contracts to reduce demand at peak times. 
 
Option (1) can solve the seasonal peak problem for distribution as well. When stock at 
the customer is sufficient to balance the usage in the peak period, no delivery has to be 
made in the peak period. Option (2) is currently a method to cope with this problem; 
resources are purchased based on the winter period, with idle capacity in summer. 
Option (3) is something we would like to prevent from happening. Option (4) is a 
production opportunity, but might be feasible in gas distribution as well. If the idle 
capacity in summer would be used to deliver fuel products (oil products) the deliveries 
might be balanced better throughout the year. Since this is outside the scope of this 
thesis, we will not consider this option further. Option (5) is also outside the scope of 
this thesis. 
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Appendix D:  Forecasted and actual customer usage curves 
This appendix illustrates the forecasted usage and actual deliveries for different groups of 
customers. The theoretical visit frequency (VF) for a year is calculated by dividing the 
total usage for a customer in a year by the maximum capacity minus the safety stock. 

 

 
Figure D.1. Forecasted weekly usage and actual weekly delivery volumes of gas in the 

NE-region for all customers with a visit frequency of one visit per year. 
 

 
Figure D.2. Forecasted weekly usage and actual weekly delivery volumes of gas in the 

NE-region for all customers with a visit frequency of two visits per year. 
 

 
Figure D.3. Forecasted weekly usage and actual weekly delivery volumes of gas in the 

NE-region for all customers with a visit frequency of three visits per year. 
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Figure D.4. Forecasted weekly usage and actual weekly delivery volumes of gas in the 

NE-region for all customers with a visit frequency of four visits per year. 
 

 
Figure D.5. Forecasted weekly usage and actual weekly delivery volumes of gas in the 

NE-region for all customers with a visit frequency of five visits per year. 
 

 
Figure D.6. Forecasted weekly usage and actual weekly delivery volumes of gas in the 

NE-region for all customers with a visit frequency of six visits per year. 
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Figure D.7. Actual weekly delivery volumes of gas in the NE-region for all customers 

with no usage forecasted (non-VMI customers (grain farms, regular customers) and new 
VMI customers). The grain farm peak, due to increased drying of the harvested grain, is 

clearly visible around week 37. 
 

 
Figure D.8. Forecasted weekly usage and actual weekly delivery volumes of gas in the 

NE-region for all customers with the seasonal profile ‘Holiday Park’. 
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Appendix E:  Symbols used in mathematical formulations 
  

Variables used in the algorithm 
 

 scpX  binary variable that equals 1 if delivery schedule s is assigned to 
customer c, and depot p 

 tpsckX  binary variable that equals 1 if delivery schedule s is assigned to 
customer c, and seed delivery ktp, 0 otherwise 

 cX   binary variable that equals 1 if customer c is excluded from the 
current planning horizon, 0 otherwise 

  
 Data used in the algorithm 
 
   yts relative delivery size in percentage on day t in schedule s 

  cy~  relative delivery size in percentage if customer c is forwarded, the 
relative delivery size at the end of the next planning period 

   dcp distance contribution to assign customer c to depot p 
  tpckd  distance contribution to assign customer c to seed delivery ktp 

  cd~  is the distance from customer c to its nearest seed delivery 
   ktp seed delivery k that is assigned to day t, and depot p 
  tpwmax  maximum number of seed deliveries on day t, depot p 

  tpwmin  minimum number of seed deliveries on day t, depot p 

  tpk
v

max
 maximum workload for seed delivery ktp on day t 

  tpk
v

min
 minimum workload for seed delivery ktp on day t 

  stm  1 if there is a delivery on day t in schedule s, 0 otherwise 
  str  integer variable for the delivery volume on day t in schedule s 
   Sc set of allowable delivery schedules for customer c 
  tpskR  volume for the deliveries after the first delivery in schedule s  

that is assigned to seed ktp 
   SC set of seed customers 
   SCD set of seed customer deliveries 
   CC set of clustered customers 
   CCmustgo set of clustered customers that are ‘must-go’ customers 
   D set of depots  
   T number of days in the planning horizon 
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 Data used in workload calculation 
 
  tpVC  available vehicle capacity at depot d on day t 
  cF  number of deliveries in the planning period for customer c 
  seedβ  bandwidth used for seed customer workload calculation 
  β  bandwidth used for clusterered customer workload calculalation 
  total

tD  total number of depots opened on day t 
  total

cS  total number of delivery schedules available to customer c 
  tpwexp  total expected number of seed deliveries on day t and depot p 
  tpvexp  total expected delivery volume on day t and depot p 
  maxΩ  total maximum delivery volume for a planning period 
  mustgoΩ  total expected delivery volume for all ‘must-go’ customers 

  forecastedΩ   total expected average demand over the next n planning periods 

  seedΩ  total expected delivery volume for all seed customers 
  clusteredΩ  total expected delivery volume for all clustered customers 

 
 Data used in the alternative designs of the algorithm 
 
    BC set of balance customers 
   λ, μ,κ  objective function setting parameters 
  ck tpς  is 1 if the customer c can be assigned to seed delivery ktp, 0 

otherwise 
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Appendix F:  Workload calculation: Step 4 
The maximum workload calculation for Step 4, the assignment of seed customers to 
schedules, is explained in Paragraph F.1, and the minimum workload calculation is 
explained in Paragraph F.2. 

F.1 Maximum workload  
The maximum workload per depot and day can be calculated with Equation F.1, which is 
rounded up. 
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Where t indicates the day in the planning period, and p indicates the depot. VCtp is the 
vehicle capacity on day t for depot p. SC is the set of seed customers, and D is the set of 
depots. T is the number of days in the planning period, and Fc is the number of deliveries 
for customer c in the planning period. 
 
The maximum workload calculated with Equation F.1 can still lead to an infeasible ILP. 
A problem arises when there are more seed customers that need a delivery on Monday 
than the volume calculated with Equation F.1 for Monday. More specifically, the 
problem can even occur when n seed deliveries have to take place on Monday or 
Tuesday, but we have less than 0,5n maximum workload calculated for Monday, as well 
as Tuesday. Therefore, we calculate the minimum for the maximum number of seed 
deliveries by assuming that for a single customer every allowed schedule has an equal 
probability of being chosen. If we multiply this probability with a 1 if there is a delivery 
on the specific day, and a 0 if there is no delivery, we get the expected number of 
deliveries on a specific day for a single customer. Summing all expected numbers of 
deliveries over all customers results in Equation F.2, where tpwexp  is calculated: 
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Where mst is 1 if there is a delivery on day t in schedule s, and 0 if there is no delivery on 
day t in schedule s. total

cS  is the number of schedules that are allowed for customer c. 
total
tD  is the number of opened depots on day t. The result of Equation F.2 is a number 

that equals the total expected number of deliveries for day t, and depot p. 
 
The maximum number of seed deliveries per depot, day, and vehicle type set is the 
maximum of Equations F.1 and F.2:  

 
 ( )tptptp www expmaxmax ,max ′=

  

 
(F.3) 



 

How VMI Can Be Successful in Gas Distribution, Peter Hulshof  
 

71 

F.2 Minimum workload  
The minimum number of seed deliveries is calculated with Equation F.4, which is a 
function that is similar to Equation F.1, the function to calculate the maximum workload 
with. The difference is that the equation is rounded down. 
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When the expected number of seed deliveries, equal to the value of a rounded down 
Equation F.2 is below the outcome of Equation F.4 for a day and a depot, the minimum 
number of seeds for this day and depot is set to the value of Equation F.2 rounded 
down. This is done to ensure the ILP is feasible, and the minimum workload constraint 
can be met. Equation F.5 illustrates this. 
 

 ( )tptptp www expminmin ,min ′=  (F.5) 

F.3 Improving the balance of the workloads 
When the minimum (or maximum) workload for a certain day and depot is calculated 
with Equation F.2, and not with Equation F.4 (or F.1), the total minimum (or maximum) 
workload does not equal the summation of all tpwmin′  (or tpwmax′ ) over all days and depots 
anymore. We have to correct all the workload calculations for the other days and depots, 
such that the total workload is equal to this summation again. This problem is also 
apparent in the assignment of clustered customers to delivery schedules, and Appendix H 
explains the method that is used for this procedure. It is best to read Appendix H after 
understanding the assignment of clustered customers in Step 5. 
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Appendix G:  Workload calculation: Step 5 
The workload is balanced evenly over the depots and the days in the planning period, 
depending on the available vehicle capacity at a depot on a specific day in the planning 
period. To obtain this, we calculate a maximum and a minimum workload. 

G.1 Maximum workload 
Equation G.1 illustrates the balancing of the volume of clustered customers. We calculate 
the workload for every seed customer delivery, and it is based on the day of the delivery 
and the depot assignment of the seed customer.  
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Where t indicates the day in the planning period, and p indicates the depot. β is a 
bandwidth to ensure the problem is feasible; it is also used in the minimum workload. 
VCtp is the vehicle capacity on day t for depot p, and D is the set of depots. T is the 
number of days in the planning period, and Ωmax is the maximum volume that should or 
can be delivered in the planning period. To obtain Ω max, the minimum of the average 
expected demand over the next n planning periods, and the total expected selected 
volume ( clusteredseed Ω+Ω ) is calculated. We use the average expected demand over the 
next n planning periods, to balance the workload over a long period of time. We use the 
minimum of the two terms, since we can not plan more volume than we have available in 
our customer selection. 
 
 ( )( )( )clusteredseedforecastedmustgo Ω+ΩΩΩ=Ω ,min,maxmax  (G.2) 
 
Additionally, the maximum of the minimum outcome and the expected delivery volume 
of all ‘must-go’ customers is Ωmax, as illustrated in Equation G.2. If the forecasted volume 
is not sufficient to plan all ‘must-go’ customers, the ILP is infeasible, since the workload 
constraint can not be satisfied. Therefore, the expected volume for all deliveries to ‘must-
go’ customers is added, and the maximum of these two is chosen for the workload 
balance. 
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To ensure feasibility, we have to calculate the expected volume for a certain day per 
depot with Equation G.3.  
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Where mst is 1 if there is a delivery on day t in schedule s, and 0 if there is no delivery on 
day t in schedule s. total

cS  is the number of schedules that are allowed for customer c. 
Customer c is in the total customer set C, thus it includes seed customers as well as 
clustered customers. This is done, since we want to include the seed customers in 
balancing the volume equally, the seed volume is subtracted from the workload in later 
stage. total

tD  is the number of opened depots on day t. rst is the volume that is planned in 
schedule s on day t, calculated by multiplying the relative delivery size with the customers 
capacity. The result of Equation G.3 is the volume that equals the total expected delivery 
volume for day t, and depot p. 
 
The maximum delivery volume per depot, day, and vehicle type set is the maximum of 
Equations G.1 and G.3:  
 

 ),max( expmaxmax tptptp vvv ′=  (G.4) 
 

Now that we have calculated the workload per depot and per day, we can easily transfer 
this to a workload per seed delivery, since we know the assignment of the seed delivery 
to depots. We divide the workload per depot and day by the number of seed deliveries 
assigned to this depot on this day. Additionally, we subtract the delivery volume of the 
specific seed delivery to get the workload per seed delivery. 
 
After calculating all tpvmax for all days and , we can select the appropriate maximum 

workload for every seed delivery, by dividing tpvmax  by the number of seeds that is 
assigned to day t, and depot d. The customer seed delivery volume is subtracted, since 
that is already known. By doing so, we get tpk

v
max

, which is the maximum workload for 
seed delivery ktp, a seed delivery k assigned to day t and depot p. 



 

How VMI Can Be Successful in Gas Distribution, Peter Hulshof  
 

74 

G.2 Minimum workload 
Next to a maximum workload, a minimum workload is added to the ILP to find a well-
balanced plan. The calculation of the minimum workload is based on the same principles 
as the maximum workload. Equation G.5 illustrates this.  
 

 max

1

min )1( Ω⋅



















⋅−=

∑∑
∈ =Dj

T

i
ij

tp
tp

VC

VC
v β  (G.5) 

 
When the expected delivery volume, calculated with Equation G.3 is below the outcome 
of Equation G.5 for a day and a depot, the minimum workload for this day and depot is 
set to the value of Equation G.3. This is done to ensure the ILP is feasible, and the 
minimum workload constraint can be met. Equation G.6 illustrates this. 
 

),min( expminmin tptptp vvv ′=  (G.6) 
 

G.3 Improving the balance of the workloads 
When the minimum (or maximum) workload for a certain day and depot is calculated 
with Equation G.2, and not with Equation G.4 (or G.1), the total minimum (or 
maximum) workload does not equal the summation of tpwmin′  over all days t, and depots 
p anymore. We have to correct all the workload calculations for the other days and 
depots, such that the total workload is equal to this summation again. This problem is 
also apparent in the assignment of clustered customers to delivery schedules, and 
Appendix H explains the method that is used for this procedure. 
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Appendix H:  Workload calculation: Improving the balance 
After calculating the workload settings for every day, we need to make sure the complete 
volume is balanced. Therefore, the sum of all workloads per day and depot must equal 
the total workload calculated for the entire planning period. This is the total number of 
seed deliveries for the assignment of seed customers times (1 + βseed), and Ωmax times (1 + 
β) for the assignment of clustered customers. 
 
We explain this with an example for improving the balance of the workloads for the 
assignment of clustered customers. The sum of all tpwmax must equal max)1( Ω⋅+ β , and 
the sum of all tpwmin must equal max)1( Ω⋅− β . To do this, we evaluate every tpwmax and 

tpwmin , and see if the expected volume of ‘must-go’ customers for a certain day and 
depot is not higher than tpwmax or that the total volume of ‘must-go’, and ‘may-go’ 
customers is not lower than tpwmin . If that is the case, we reset tpwmax or tpwmin for a 
certain day t, and recalculate all other tpwmax or tpwmin . By subtracting the amount that 
was just set for day t from the total workload amount, and recalculating with the new 
workload, we eventually find the best achievable workload balance. Table I.1 illustrates 
an example of this method. 
 

Day Depot Calculated workload Volume ‘must-go’ 
per depot Percentage of vehicle capacity New workload 

1 1 1000 1200 12,50% 1200 

1 2 1000 1200 12,50% 1200 

2 1 500 300 6,25% 400 

2 2 1500 300 18,75% 1200 

3 1 1000 1100 12,50% 1100 

3 2 1000 1100 12,50% 1100 

4 1 1000 900 12,50% 900 

4 2 1000 900 12,50% 900 

Total - 8000 7000 100% 8000 

Table H.1. An example of the calculation procedure of the maximum workload for a day 
and a depot.  
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The calculated workload is based on Equation I.1, which is defined in Appendix G. For 
the ILP to be feasible, the maximum workload of Days 1 and 3 need to be raised, the 
total raise is 600, this is subtracted from the workload on Days 2 and 4, by dividing the 
subtraction equally over all the available days and depots from which a subtraction still 
can take place, according to the relation of their vehicle capacity. If we calculate it for 
Day 4, we get 850 litres ((12,50 / (12,50 + 12,50 + 18,75 + 6,25)) * 600 = 150; 1000 – 
150 = 850), thus the new workload is set to 900 litres for both depots on Day 4, since the 
‘must-go’ volume is larger than this 850 litres. The total raise is still 400 litres. The new 
workload for Day 2 and Depot 1 can be calculated with (6,25 / (18,75 + 6,25)) * 400 = 
100; 500 – 100 = 400). With this procedure, feasibility of the ILPs with regards to 
workload is guaranteed. 
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Appendix I:  Alternative designs: Balance customers 
Balance customers are designed to cope with route failures, which occur in gas 
distribution. A route failure is a difference between the expected delivery volume in a 
trip, and the actual delivery volume. A route failure results in either too little or too many 
customers in the pre-planned trips. The problem decreases utilization and this leads to a 
lower volume per kilometre measure. Therefore, an alternative design that includes 
balance customers that are added as the last stop in a trip with a flexible delivery volume. 
This flexible delivery volume is given by a minimum and a maximum delivery. The 
minimum delivery is given by the minimum delivery for which a delivery is still 
economically feasible. The maximum delivery is given by the maximum delivery that can 
still fit in the balance customer’s tank. A balance customer is always a ‘may-go’ customer, 
thus there is no problem if we can not deliver to the customer due to a route failure. 
Figure I.1 illustrates the alternative design of the algorithm with balance customers.  
 

 
Figure I.1 An illustration of the alternative design of the algorithm with balance 

customers. The green blocks are the newly added steps. 



 

How VMI Can Be Successful in Gas Distribution, Peter Hulshof  
 

77 

After selecting set of customers that is considered in the algorithm, we select the balance 
customers in order to cope with the problem of route failures (Dror and Ball, 1987; Dror 
and Trudeau, 1988). To ensure that the last stop in a trip is not of high cost, the balance 
customers are selected around the depots, this means the customer can be easily added as 
the last customer in a trip, since the vehicle has to return to the depot at the end of a trip. 

Step 1a: Select balance customers 

The assignment of a balance customer to a schedule and a seed delivery is very similar to 
the assignment of a clustered customer, but the workload is calculated differently.  

Step 5a: Schedule assignment with an ILP for balance customers 

Workload constraint 
A balance customer is always the last customer in a scheduled trip if it is in the trip. We 
assign a single balance customer to a seed customer delivery, since we do not know how 
many trips we will have after scheduling. Therefore, we use the number of seed deliveries 
as an indication for the number of trips. We could also use the number of vehicles 
available, but as we said before, we do not have exact information about the number of 
trips these vehicles will perform.  

Vehicle capacity 
If there is no vehicle available at any of the depots that can serve customer c on the day 
of delivery t in schedule s that is connected to customer c, the combination of schedule s 
and customer c is excluded from the analysis. If there is no possible schedule left for 
customer c, the schedule will be allowed to ensure the ILP is feasible. The customer is 
then assigned to a day where there is no vehicle capacity for the customer. 
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Figure I.2 illustrates the ILP that is used to assign the balance customers to a schedule 
and a seed customer delivery. We use the assigned seed customers in Step 4 as a 
reference point for the distance calculations in assigning the balance customers to 
schedules.  
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∈ ∈BCc Ss
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tpX    where t = 1,..,T ; ktp ∈SCD  (I.3) 

 stsck
rX tp ≤    where t = 1,..,T, ktp ∈SCD, c∈BC (I.4) 

 { }1,0∈tpsckX   where s ∈Sc, c ∈BC, ktp ∈SCD (I.5) 

 { }1,0∈cX   where c ∈BC (I.6) 
Variables 

 tpsck
X  binary variable that equals 1 if delivery schedule s is assigned to 

customer c, and seed delivery ktp, 0 otherwise 
 cX   binary variable that equals 1 if customer c is excluded from the 

current planning horizon, 0 otherwise 
 Data 
  cy~  relative delivery size in percentage if customer c is forwarded 

  tpckd  distance contribution to assign customer c to seed delivery ktp 

  cd~  is the distance from customer c to its nearest allowed seed delivery 

  str  integer variable for the delivery volume on day t in schedule s 
   ktp seed delivery k that is assigned to day t and depot p 
   Sc set of allowable delivery schedules for customer c 
   SCD set of seed customer deliveries 
   BC set of balance customers  
   T number of days in the planning horizon 
 

Figure I.2. The ILP to assign the balance customers to schedules, while satisfying the 
constraints and balancing the number of balance customers over the planning period. 

 
The ILP has the objective to minimize the additional distance of adding a customer to a 
seed. The cost for forwarding a balance customer is the same as for a clustered customer. 
Constraint I.2 is added to ensure a schedule is chosen, or the customer is forwarded to a 
future planning period. Constraint I.3 ensures that every seed customer delivery has only 
one balance customer assigned. Constraint I.4 ensures a schedule can not be assigned a 
balance customer and a seed customer delivery if there is no delivery on the same day as 
the seed customer delivery in schedule s for customer c. Constraints I.5 and I.6 ensure the 
decision variables satisfy the binary properties. For the ILP for balance customers, we 
can use the same distance types as in the ILP for clustered customers. 
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The balance customers are scheduled at the end of a trip. The actual delivery volume will 
be somewhere between the volume that can be delivered to the customer, and the 
volume that is generally applied as a minimum for a delivery. The use of balance 
customers in this way ensures a high utilization of vehicles, and ensures a full vehicle can 
leave the depot for a trip. Additionally, the balance customer serves as a buffer in actually 
driving the trip. This buffer can be used when route failures occur (Dror and Trudeau, 
1988). If there are too many customers in the trip, we just skip the balance customer, 
since it is a ‘may-go’ customer. If there are too little customers in the trip, we can deliver 
up to the balance customer’s maximum delivery. Figure I.3 illustrates this idea, where the 
green colour signifies the balance customer that can receive a volume between 200 litres 
and 850 litres. Eventually, the customer is calculated to receive 300 litres, since that fills 
up the vehicle entirely. The algorithm can have more balance customers per trip, but we 
use one balance customer per trip, because that already illustrates the idea of using the 
last customer as a buffer for the complete trip.  

 

Step 5b: Maximize balance customers 

Variable Volume 

Minimum economic delivery size 200 

Vehicle size 2000 

Table I.1. The variables for the example of maximizing the balance customers. 
 

Customer Volume 

Customer 1 500 

Customer 2 300 

Customer 3 400 

Customer 4 500 

Balance customer 200 - 850 

Table I.2. The customers in the example for maximizing the balance customers. 

500 400300500 300

Customer 1 Customer 2

Customer 3

Customer 4 Balance customer  
Figure I.3. The figure illustrates how the last customer in the vehicle is the balance 

customer with the flexible delivery volume. The delivery volume to the balance customer 
in this example is 300. 
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Appendix J:  Alternative designs: Different objective functions 
We test six different set-ups for the objective functions in the ILP for assigning clustered 
customers. We test an objective function that simply divides the relative delivery size by 
the distance measure. This is a combination of the volume per kilometre measure, and 
the relative delivery. The objective function maximizes the relative delivery per kilometre. 
Equation J.1 illustrates this, and the negative sign for forwarding a ‘may-go’ customer 
ensures that we plan as many ‘may-go’ customers as possible. 
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Where tsy  is the relative delivery size of schedule s on day t., and tpckd is the distance 

between the customer c and the seed delivery ktp. cy~  is the relative delivery if the 

customer c is forwarded to a future planning period, and cd~  is the distance to the nearest 
seed delivery. tpsckX  is the decision variable that assigns a customer c to a schedule s, and 

a seed delivery ktp. cX  is the decision variable that forwards a customer c. 
 
Additionally we test an objective function with a bi-criteria approach, in which we can 
influence the importance of either relative delivery or distance by setting parameters λ 
and μ respectively. Equation J.2 illustrates the bi-criteria objective function, and the 
negative sign for forwarding a ‘may-go’ customer ensures that we plan as many ‘may-go’ 
customers as possible. 
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Additionally, these objective functions are tested with a positive value for forwarding a 
‘may-go’ customer to the next period, because in the Equations J.1 and J.2, the ILP will 
always plan the maximum volume. Equations J.3 and J.4 are the objective functions in 
Equations J.1 and J.2 with a positive forwarding value. 
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The forwarding expression in Equation J.3 differs from the expression in Equation J.2 in 
that the distance and relative delivery size are exchanged. The forwarding expression in 
Equation J.4 differs from the expression in Equation J.2 in that κ  now is the parameter 
to set the importance of the relative delivery size. Furthermore, the relative delivery size 
is subtracted from 100, and the distance measure is not divided by μ anymore. These 
changes are necessary, because we want to push ‘may-go’ customers that have a high 
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distance to their nearest delivery, or a relatively low relative delivery size, to a following 
planning period. 
 
Additionally, we have created an objective function based on Equation J.4, but with a 
more complex forwarding function. This complex forwarding expression has the 
objective to have an exponential growth of the value for forwarding a ‘may-go’ customer 
when the relative delivery gets lower, or the distance to the nearest seed customer 
delivery gets higher. Equation J.5 illustrates this objective function, and it is found by 
simulating the relative delivery size and the distance to the nearest seed customer delivery 
for a small set of customers. 
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We also test the objective function used in the Period Scheduler, and in Step 5 of the 
algorithm in this thesis. It is given in Equation J.6. 
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Appendix K:  Alternative designs: ILP with combination check 
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 where t = 1,..,T ; ktp ∈SCD 
 stsck

rX tp ≤    where t = 1,..,T, ktp ∈SCD, c∈CC (K.4) 

 cksck tptpX ς≤    where ktp ∈SCD, c∈CC (K.5) 

 0=cX    where c ∈CCmustgo (K.6) 
 { }1,0∈tpsckX   where s ∈Sc, c ∈CC, ktp ∈SCD (K.7) 

 { }1,0∈cX   where c ∈CC (K.8) 
Variables 

 tpsck
X  binary variable that equals 1 if delivery schedule s is  

assigned to customer c, and seed delivery ktp, 0 otherwise 
 cX   binary variable that equals 1 if customer c is excluded  

from the current planning horizon, 0 otherwise 
 Data 
  tsy  relative delivery size in percentage on day t in schedule s 
  cy~  relative delivery size in percentage if customer c is forwarded 

  tpckd  distance contribution to assign customer c to seed delivery ktp 

  cd~  is the distance from customer c to its nearest allowed seed delivery 
   ktp seed delivery k that is assigned to day t, and depot p 
  tpk

v
max

 maximum workload for seed delivery ktp on day t 

  tpk
v

min
 minimum workload for seed delivery ktp on day t 

  str  the delivery volume as an integer on day t in schedule s 
  ck tpς  is 1 if the customer c can be assigned to seed delivery ktp, 0 

otherwise 
   Sc set of allowable delivery schedules for customer c 
  tpskR  volume after the first delivery in schedule s that is  

assigned to seed ktp 
   SCD set of seed customer deliveries 
   CC set of clustered customers 
   CCmustgo set of clustered customers that are ‘must-go’ customers  
   T number of days in the planning horizon 
Figure K.1. The ILP to assign the clustered customers to schedules, while satisfying the 

customer combination constraint in Equation K.5. We set ck tpς to 1 if a clustered 
customer c can be assigned to seed customer delivery ktp, and we set it to 0 otherwise. 
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Appendix L:  Settings used in the computational tests 
 

Setting Value 
α (the minimum relative delivery) 0,40 
Number of weeks forecasted volume 13 weeks 
Distance type clusters Real distance 
Minimum cluster size 0 
Maximum cluster size 15 
Threshold distance cluster 15 km 
Minimum number of seeds per day 5 
β (bandwidth for clustered customers) 0,05 
Solution procedure ILP seed customers Branch-and-bound 
Solution procedure ILP clustered customers Rounding 
Distance type ILP seed customers Real distance 
Distance type ILP clustered customers Detour distance 
Schedule algorithm Insertion 

Table L.1. Settings used to compare the actually driven plans with the calculated plans of 
the algorithm. 
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Appendix M:  Dataset overview 
 

Vehicle Capacity 
(litres) 

Start 
time 
(hrs) 

End 
time 
(hrs) 

Lunch 
break 
(mins) 

Depot 

CL04 11.764 06:00 18:00 45 Depot 2 

CL05 16.823 06:00 18:00 45 Depot 2 

CL06 12.352 06:00 18:00 45 Depot 2 

NW02 17.058 06:00 18:00 45 Depot 3 

NW03 11.882 06:00 18:00 45 Depot 3 

NW05 12.353 06:00 18:00 45 Depot 3 

PE06 14.117 06:00 18:00 45 Depot 2 

PE08 9.411 06:00 18:00 45 Depot 1 

SW05 12.352 06:00 18:00 45 Depot 1 

SW06 16.470 06:00 18:00 45 Depot 1 

Figure M.1. Vehicles available in the Northern-England region (NE-region). 
 

Depot Gates Opening times (hrs) 

Depot 1 1 06:00 - 22:00 

Depot 2 1 06:00 - 22:00 

Depot 3 1 06:00 - 22:00 

Figure M.2. Depots available in the NE-region. 
 

Description Fictive cost Working time 

Unloading at a customer (fixed cost) - 5 minutes 

Unloading at a customer (variable cost) - 1 minute per 1.000 litres 

Loading at the depot (fixed cost) - 20 minutes 

Loading at the depot (variable cost) - - 

Per driven kilometre (variable cost) 1 - 

Per worked minute (variable cost) 1 - 

Per worked minute overtime (variable cost) 2 - 

Per vehicle per day (fixed cost) 100 - 

Per trip (fixed cost) 500 - 

Figure M.3. Fictive costs in the NE-region. 
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Appendix N:  Comparison actual routes and SHORTREC routes 
This appendix illustrates the difference between the actually driven routes and the routes 
SHORTREC would have calculated. The actually driven routes are scheduled by the 
planners, and the kilometres for the actually driven routes are calculated with 
SHORTREC. Additionally, we let SHORTREC calculate routes with an insertion 
heuristic described in Poot et al. (2002). We use the vehicles that are used by the planners 
as the available vehicles for the SHORTREC planning. Table N.1 illustrates the 
significant gains that SHORTREC can provide to the planners. In the SHORTREC 
plans, constraints such as vehicle capacity, time windows, and allowed vehicle types are 
checked, which are not checked by the planners. 

 
Scheduling 

Method 

Num. 
of 

orders 

Volume 
(litres) 

Dist. 
(km) 

Volume/ 
kilometre 

(litres/km) 

Cost 
(fictive) Cost/Litre Veh. 

used 
Veh. 

Utiliz. 

Work 
Time 
(hrs) 

Volume/ 
kilometre 
Improve. 

Cost/ 
Volume 
Savings 

Year 2007 Week 49 

Actual 378 388.162 7.237 53,6358 23.181 0,0597 35 76,57% 207,40 - - 
SHORTREC 378 388.162 6.279 61,8191 20.358 0,0524 29 79,05% 186,32 15,26% 12,18% 

Year 2007 Week 50 

Actual 375 383.121 7.659 50,0223 23.874 0,0623 35 71,41% 208,51 - - 

SHORTREC 364 373.272 6.305 59,2025 20.124 0,0539 28 78,27% 183,65 18,35% 13,48% 

Table N.1. The differences between the resulting volume per kilometre, vehicles used, 
and costs per litre indicate that the use of SHORTREC provides great wins. 

 

 
Figure N.1. The results in a graph illustrate the benefits of using SHORTREC. 
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Appendix O:  Computational results: The weekly comparison 
 

Setting 
Num. 

of 
orders 

Volume 
(litres) 

Dist.  
(km) 

Volume/ 
distance 

(litres/km) 

Cost 
(fictive) 

Cost/ 
litre 

Veh.  
used 

Veh.  
utiliz- 
ation 

Average 
relative 
delivery 

Volume/ 
distance 
improve. 

Cost/ 
litre 

savings 

Week 40 

Base scenario 212 226.248 4.236 53,4108 13.286 0,0587 19 64,15% 53,56% - - 

Algorithm 311 319.827 4.860 65,8080 16.027 0,0501 23 69,62% 60,30% 23,21% 

Week 41 

14,66% 

Base scenario 217 257.604 4.784 53,8470 14.622 0,0568 19 74,65% 53,29% - - 

Algorithm 316 327.388 5.022 65,1908 16.444 0,0502 22 68,14% 59,29% 21,07% 

Week 42 

11,51% 

Base scenario 219 234.605 4.428 52,9822 13.853 0,0590 18 71,11% 53,80% - - 

Algorithm 351 334.727 5.213 64,2101 17.273 0,0516 23 71,16% 59,74% 21,19% 

Table O.1. The individual results separated by week. 
 

12,61% 

 
Figure O.1. The volume per kilometre measures for the algorithm, for weeks 40, 41, and 

42, are better than the base scenario. 
 

 
Figure O.2. The average relative delivery results for the algorithm in weeks 40, 41, and 

42, are better than the base scenario. 
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Appendix P:  Computational results: The working time balance 
The working time balance for the algorithm plans are not perfect, but especially week 42 
shows a connection to the workload balance.  
 

 
Figure P.1. The working time balance for the algorithm plans. 

 

 
Figure P.2. The working time balance for the actual plans. 
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Appendix Q: Computational results: A different vehicle set-up 
This appendix illustrates the separate weekly results and the geographical results for week 
42, for the algorithm where the vehicle capacities are set-up differently. Saturday has 50% 
of the vehicle capacity of the other days in the planning period. The geographical results 
illustrate that there is workload at every depot on every day of the planning period. 
 

Scenario 
Num. 

of 
orders 

Volume 
(litres) 

Dist. 
(km) 

Volume/ 
distance 

(litres/km) 

Cost 
(fictive) 

Cost/ 
litre 

Veh. 
used 

Veh. 
utiliz- 
ation 

Average 
relative 
delivery 

Volume/ 
distance 
improve. 

Cost/ 
volume 
savings 

Week 40 

Base scenario 212 226.248 4.236 53,4108 13.286 0,0587 19 64,15% 53,56% - - 
Algorithm: 

Saturday 100% 310 319.827 4.860 65,8080 16.027 0,0501 23 69,62% 60,30% 23,21% 14,66% 

Algorithm: 
Saturday 50% 312 312.986 4.805 65,1376 15.883 0,0507 23 73,57% 60,04% 21,96% 

Week 41 

13,58% 

Base scenario 217 257.604 4.784 53,8470 14.622 0,0568 19 74,65% 53,29% - - 
Algorithm: 

Saturday 100% 316 327.388 5.022 65,1908 16.444 0,0502 22 68,14% 59,29% 21,07% 11,51% 

Algorithm: 
Saturday 50% 316 324.166 5.021 64,5620 16.347 0,0504 21 72,73% 59,14% 19,90% 

Week 42 

11,16% 

Base scenario 219 234.605 4.428 52,9822 13.853 0,0590 18 71,11% 53,80% - - 
Algorithm: 

Saturday 100% 351 334.727 5.213 64,2101 17.273 0,0516 23 71,16% 59,74% 21,19% 12,61% 

Algorithm: 
Saturday 50% 354 324.638 4.925 65,9163 16.451 0,0507 22 72,57% 59,33% 24,41% 

Table Q.1. The separate weekly results of setting the vehicle capacity on Saturday to 
50%. 

 

14,18% 

 
Figure Q.2. The geographical results for setting the vehicle capacity on Saturday to 50% 

in week 42. Note that one customer block can exist of several customers. 
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Appendix R:  Computational results: α parameter 
 

α Volume Distance Average relative 
delivery 

Algorithm run 
time (seconds) 

Volume/ 
kilometre 

(litres/km) 

Number of selected 
customers 

0,35 327.415 5.464 57,56% 1.854 59,9222 630 

0,40 327.388 5.022 59,29% 1.183 65,1908 499 

0,45 307.267 4.860 60,84% 492 63,2237 401 

0,50 253.169 4.701 63,48% 107 53,8543 301 

0,55 232.923 4.908 64,62% 29 47,4578 223 

Figure R.1. The α  setting results for week 41 indicate the increasing performance 
measure of average relative delivery, but show the weaker results for the volume per 

kilometre measure. 
 

α Volume 
(litres) 

Distance 
(km) 

Average relative 
delivery 

Algorithm run 
time (seconds) 

Volume/ 
kilometre 

(litres/km) 

Number of selected 
customers 

0,35 318.772 5.137 58,65% 2.996 62,0541 678 

0,40 334.727 5.213 59,74% 1.181 64,2101 530 

0,45 304.968 5.272 61,47% 542 57,8467 417 

0,50 259.014 4.957 63,79% 166 52,2522 312 

0,55 212.710 4.282 65,29% 58 49,6754 237 

Figure R.2. The α  setting results for week 42 clearly indicate the strongly decreasing run 
time, but also decreasing volume per kilometre performance measure. 
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Appendix S:  Computational results: Bandwidth parameter 
 

Bandwidth 
Num. 

of 
orders 

Volume 
(litres) 

Dist. 
(km) 

Volume/ 
kilometre 

(litres/km) 

Cost 
(fictive) 

Cost/ 
litre 

Veh. 
used 

Veh. 
utiliz- 
ation 

Average 
relative 
delivery 

Volume/ 
kilometre 
improve. 

Cost/ 
volume 
savings 

Base 
scenario* 219 234.605 4.428 52,9822 13.853 0,0590 18 71,11% 53,80% - - 

0,01 347 328.150 5.083 16.949 64,5583 0,0517 23 70,92% 21,85% 59,77% 12,53% 

0,02 347 328.974 5.078 16.873 64,7842 0,0513 23 71,32% 22,28% 59,72% 13,14% 

0,03 349 331.927 5.170 17.208 64,2025 0,0518 24 71,28% 21,18% 59,72% 12,20% 

0,04 350 332.775 5.158 17.154 64,5163 0,0515 23 70,70% 21,77% 59,68% 12,70% 

0,05 351 334.727 5.213 17.273 64,2101 0,0516 23 71,16% 21,19% 59,74% 12,61% 

0,06 351 334.826 5.201 17.329 64,3772 0,0518 24 68,99% 21,51% 59,76% 12,35% 

0,07 352 335.430 5.193 17.294 64,5927 0,0516 24 70,42% 21,91% 59,67% 12,69% 

0,08 352 335.359 5.234 17.339 64,0732 0,0517 23 69,40% 20,93% 59,67% 12,44% 

0,09 355 326.992 5.054 16.938 64,6996 0,0518 24 71,19% 22,12% 59,61% 12,28% 

0,10 354 323.616 5.048 16.883 64,1078 0,0522 23 71,43% 21,00% 59,68% 11,65% 

* The base scenario was planned by the planners, and therefore has no such setting. 
 

Table S.1. The results show that the volume per kilometre, and the average relative 
delivery are almost constant when the bandwidth changes. 
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Figure S.1. The graph illustrates the consistent results of volume per kilometre and 

average relative delivery. 
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Appendix T:  Computational results: Distance type parameter 
All the separate results for detour distance are better on volume per kilometre in every 
week. The average relative delivery is better if we use real distance (km). This appendix 
shows that detour distance performs stable in all three weeks. The geographical results 
for real distance and detour distance are given in Figures S.1 and S.2, and they illustrate 
that the workload is spread out over the days and the depots. 
 

Distance type 
Num. 

of 
orders 

Volume 
(litres) 

Dist. 
(km) 

Volume/ 
kilometre 

(litres/km) 

Cost 
(fictive) 

Cost/ 
litre 

Veh. 
used 

Veh. 
utiliz- 
ation 

Average 
relative 
delivery 

Volume/ 
kilometre 
improve. 

Cost/ 
volume 
savings 

Base scenario* 212 226.248 4.236 53,4108 13.286 0,0587 19 64,15% 53,56% - - 
Real distance (km) 274 312.649 5.170 60,4737 16.554 0,0529 23 69,74% 13,22% 61,70% 9,84% 
Real distance (time) 345 328.080 6.627 49,5066 20.760 0,0633 25 69,99% 59,76% -7,31% -7,76% 
Euclidean distance 276 314.038 5.251 59,8054 16.806 0,0535 24 74,79% 61,48% 11,97% 8,87% 

Detour distance 311 319.827 4.860 65,8080 16.027 0,0501 23 69,62% 60,30% 23,21% 
* The base scenario was planned by the planners, and therefore has no such setting. 

14,66% 

 

Table T.1. The individual results for week 40 for different distance types. 
 

Distance type 
Num. 

of 
orders 

Volume 
(litres) 

Dist. 
(km) 

Volume/ 
kilometre 

(litres/km) 

Cost 
(fictive) 

Cost/ 
litre 

Veh. 
used 

Veh. 
utiliz- 
ation 

Average 
relative 
delivery 

Volume/ 
kilometre 
improve. 

Cost/ 
volume 
savings 

Base scenario* 217 257.604 4.784 53,8470 14.622 0,0568 19 74,65% 53,29% - - 
Real distance 

(km) 293 316.114 5.170 61,1439 16.472 0,0521 23 73,26% 13,55% 60,06% 8,20% 

Real distance 
(time) 361 344.222 6.607 52,0996 20.708 0,0602 25 77,90% 59,08% -3,25% -5,99% 

Euclidean 
distance 312 327.358 5.357 61,1085 17.268 0,0527 24 70,72% 59,17% 13,49% 7,07% 

Detour distance 316 327.388 5.022 65,1908 16.444 0,0502 22 68,14% 59,29% 21,07% 
* The base scenario was planned by the planners, and therefore has no such setting. 

11,51% 

 

Table T.2. The individual results for week 41 for different distance types. 
 

Distance type 
Num. 

of 
orders 

Volume 
(litres) 

Dist. 
(km) 

Volume/ 
kilometre 

(litres/km) 

Cost 
(fictive) 

Cost/ 
litre 

Veh. 
used 

Veh. 
utiliz- 
ation 

Average 
relative 
delivery 

Volume/ 
kilometre 
improve. 

Cost/ 
volume 
savings 

Base scenario* 219 234.605 4.428 52,9822 13.853 0,0590 18 71,11% 53,80% - - 
Real distance (km) 320 322.352 5.188 62,1342 16.931 0,0525 22 70,37% 17,27% 60,63% 11,05% 
Real distance (time) 400 346.487 6.306 54,9456 20.534 0,0593 28 77,49% 59,00% 3,71% -0,36% 
Euclidean distance 344 333.716 5.396 61,8451 17.702 0,0530 24 71,62% 60,00% 16,73% 10,17% 

Detour distance 351 334.727 5.213 64,2101 17.273 0,0516 23 71,16% 59,74% 21,19% 
* The base scenario was planned by the planners, and therefore has no such setting. 

12,61% 

 

Table T.3. The individual results for week 42 for different distance types. 
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Figure T.1. The geographical results for week 42 when the real distance (km) is used. 

 

 
Figure T.2. The geographical results for week 42 when the detour distance is used. 
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Appendix U:  Computational results: Alternative designs 

U.1 Balance customers 
The balance customers are tested to illustrate how planners cope with route failures 
currently. We test the balance customers with a minimum economic delivery of 200 litres. 
Table U.1 illustrates that this method is inefficient, since the average relative delivery and 
the volume per kilometre are lower. 
 

Balance 
customers 

Volume 
(litres) 

Dist. 
(km) 

Volume/ 
kilometre 

(litres/km) 

Cost 
(fictive) 

Cost/ 
litre 

Veh. 
used 

Veh. 
utiliz- 
ation 

Average 
relative 
delivery 

Volume/ 
kilometre 
improve. 

Cost/ 
volume 
savings 

Week 40 
Base scenario* 226.248 4.236 53,4108 13.286 0,0587 19 64,15% 53,56% - - 

Off 312.649 5.170 60,4737 16.554 0,0529 23 69,74% 61,70% 13,22% 
On 

9,84% 
301.350 5.074 59,3910 16.252 0,0539 22 73,20% 61,55% 11,20% 8,16% 

Week 41 
Base scenario* 257.604 4.784 53,8470 14.622 0,0568 19 74,65% 53,29% - - 

Off 316.114 5.170 61,1439 16.472 0,0521 23 73,26% 60,06% 13,55% 
On 

8,20% 
320.365 5.513 58,1108 17.444 0,0545 24 73,00% 59,51% 7,92% 4,07% 

Week 42 
Base scenario* 234.605 4.428 52,9822 13.853 0,0590 18 71,11% 53,80% - - 

Off 322.352 5.188 62,1342 16.931 0,0525 22 70,37% 60,63% 17,27% 
On 

11,05% 
320.678 5.339 60,0633 17.069 0,0532 22 74,34% 13,37% 60,98% 9,86% 

* The base scenario was planned by the planners, and therefore this setting is not applicable. 
 

Table U.1. The table displays the results of using balance customers in the algorithm. 
 

 
Figure U.1. The geographical spread in week 42 illustrates that the balance customers are 

in close proximity of the depots. 
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U.2 Objective functions 
We test the different objective functions mentioned in Appendix J as Equations J.1 to 
J.6. Table U.2 shows the combined results of testing the different equations in the weeks 
40, 41, and 42. We used real distance for these tests. Equation J.6 is the best objective 
function with 7,33% savings in fictive costs per litre, and a 10,76% increase in volume 
per kilometre. Even more interesting is the high average delivery of 60,65%, against a 
53.55% average delivery of the base scenario. This results in lower cost from a long-term 
perspective, since a lower number of total visits have to be made (Dror and Ball, 1987). 
The algorithm run time does not depend on the shape of the objective function. 
 

Objective 
function Setting 

Num. 
of 

orders 

Volume 
(litres) 

Dist. 
(km) 

Volume/ 
kilometre 

(litres/km) 

Cost 
(fictive) 

Cost/ 
litre 

Veh. 
used 

Average 
relative 
delivery 

Volume/ 
kilometre 
improve. 

Cost/ 
volume 
savings 

Base 
scenario* - 648 718.457 13.448 53,4248 41.761 0,0581 56 53,55% - - 

J.1 - 1137 1.050.362 18.060 58,1596 58.257 0,0555 75 57,93% 8,86% 4,58% 

J.2 λ = 0.7  
μ = 400 1174 1.050.100 18.459 56,8882 60.276 0,0574 80 57,56% 6,48% 1,25% 

J.3 - 1040 1.042.757 18.167 57,3984 58.953 0,0565 78 57,17% 7,44% 2,74% 

J.4 
λ = 0.7  
μ = 400  
κ = 4 

836 927.472 16.975 54,6375 52.969 0,0571 72 60,98% 2,27% 1,75% 

J.5 λ = 0.7  
μ = 400 933 964.157 18.090 53,2978 57.158 0,0593 78 60,74% -0,24% -1,99% 

J.6 - 884 942.393 15.926 59,1732 50.765 0,0539 68 60,65% 10,76% 
* The base scenario was planned by the planners, and therefore has no objective function. 

7,33% 
    

Table U.2. The experimental results of the different objective functions tested for the 
weeks 40, 41, and 42.  

U.3 Check for customer combinations 
Table U.3 displays the results of testing this additional constraint. The figures show that 
when the additional constraint is left out, the algorithm obtains slightly better results.  
 

Combination 
check 

Num. 
of 

orders 

Volume 
(litres) 

Dist. 
(km) 

Volume/ 
kilometre 

(litres/km) 

Cost 
(fictive) 

Cost/ 
litre 

Veh. 
used 

Average 
relative 
delivery 

Volume/ 
kilometre 
improve. 

Cost/ 
volume 
savings 

Week 40 
Base scenario* 212 226.248 4.236 53,4108 13.286 0,0587 19 53,56% - - 

Off 272 301.350 5.074 59,3910 16.252 0,0539 22 11,20% 61,55% 
On 

8,16% 
277 302.415 5.082 59,5071 16.313 0,0539 24 60,97% 8,14% 11,41% 

Week 41 
Base scenario* 217 257.604 4.784 53,8470 14.622 0,0568 19 53,29% - - 

Off 303 320.365 5.513 58,1108 17.444 0,0545 24 59,51% 7,92% 4,07% 
On 302 319.985 5.500 58,1791 17.334 0,0542 23 59,69% 8,05% 

Week 42 
4,56% 

Base scenario* 219 234.605 4.428 52,9822 13.853 0,0590 18 53,80% - - 
Off 309 320.678 5.339 60,0633 17.069 0,0532 22 60,98% 13,37% 
On 

9,86% 
312 321.349 5.384 59,6859 17.321 0,0539 22 60,76% 12,65% 8,72% 

* The base scenario was planned by the planners, and therefore has no combination check. 
 

Table U.3. The experimental results of leaving out the constraint for weeks 40, 41, and 
42 are slightly better. 
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U.4 Vehicle type knowledge 
Chapter 4 explained the use of knowledge about vehicle type restrictions to determine 
the total workload. Table U.4 displays the results of the tests with the use of knowledge 
about vehicle type restrictions, and without. The figures show that the use of this 
additional information obtains very unstable and worse results over time. 
 

Vehicle 
restrictions 

Num. 
of 

orders 

Volume 
(litres) 

Dist. 
(km) 

Volume/ 
kilometre 

(litres/km) 

Cost 
(fictive) 

Cost/ 
litre 

Veh. 
used 

Average 
relative 
delivery 

Volume/ 
kilometre 
improve. 

Cost/ 
volume 
savings 

Week 40 
Base scenario* 212 226.248 4.236 53,4108 13.286 0,0587 19 53,56% - - 

Off 272 301.350 5.074 59,3910 16.252 0,0539 22 11,20% 61,55% 8,16% 
On 278 306.922 5.107 60,0983 16.314 0,0532 22 60,56% 12,52% 

Week 41 
9,48% 

Base scenario* 217 257.604 4.784 53,8470 14.622 0,0568 19 53,29% - - 
Off 303 320.365 5.513 58,1108 17.444 0,0545 24 59,51% 7,92% 
On 

4,07% 
278 296.978 5.341 55,6034 16.579 0,0558 22 3,26% 59,94% 1,65% 

Week 42 
Base scenario* 219 234.605 4.428 52,9822 13.853 0,0590 18 53,80% - - 

Off 309 320.678 5.339 60,0633 17.069 0,0532 22 60,98% 13,37% 
On 

9,86% 
304 314.916 5.397 58,3502 17.197 0,0546 23 60,90% 10,13% 7,52% 

* The base scenario was planned by the planners, and therefore this setting is not applicable. 
 

Table U.4. The results of testing the use of vehicle type knowledge show that it is better 
to not use this knowledge, since the results are not stable and overall worse. 

U.5 Period Scheduler seed selection method 
We test the seed selection method used in the Period Scheduler. The balancing criterion 
is the number of customers in a region. We test one and two centres per depot per day in 
the planning period. Figure U.2 illustrates the seed selection procedure of the Period 
Scheduler versus the seeds points in flexible clustering. 

 

 
 

 

Figure U.2. The seeds are given in red, the depots are green, and all the orders are blue. 
(a) represents the seed selection procedure of the Period Scheduler, balanced on one visit 

per depot per day, (b) represents the flexible clustering method. 

(a) (b) 
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Clustering 

method 

Num. 
of 

orders 

Volume 
(litres) 

Dist. 
(km) 

Volume/ 
kilometre 

(litres/km) 

Cost 
(fictive) 

Cost/ 
litre 

Veh. 
used 

Average 
relative 
delivery 

Volume/ 
kilometre 
improve. 

Cost/ 
volume 
savings 

Base scenario* 648 718.457 13.448 53,4248 41.761 0,0581 56 53,55% - - 
Flexible clustering 978 981.942 15.095 65,0508 49.744 0,0507 68 59,77% 21,76% 
PS cluster 18 seeds 

12,85% 
922 956.837 15.191 62,9871 50.072 0,0523 72 59,55% 17,90% 9,97% 

PS cluster 36 seeds 976 988.631 16.538 59,7794 53.198 0,0538 69 11,89% 59,94% 7,43% 

* The base scenario was planned by the planners, and therefore has no clustering method.  
 

 

Table U.5. The results illustrate that the method for clustering used in the Period 
Scheduler does not lead to more savings in volume per kilometre, but is close. 

 
Additionally, the lower number of seeds (18 seeds when there is one seed per depot per 
day) makes the customer assignment phase a lot faster. The time for this phase reduces 
from around 1.000 seconds (~18 minutes), to 260 seconds (~4,3 minutes). When we use 
36 seeds, the algorithm run time is the same as in the flexible clustering case. 
 
A disadvantage of the Period Scheduler clustering method with 18 seeds is that all 
vehicles go to one area on each day. One of the solution requirements is that the vehicle 
should go to multiple areas on one day, to cope with emergency orders if they exist. 

 
Figure U.3. The geographical spread for week 42 with the clustering method of the 

Period Scheduler and 18 seeds illustrate that Tuesday has one depot without workload. 
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