ESE 55

Twenle Research & Education Universitv of Twente
on Soitware Engineering Enschede - The Netherlands

Impact Analysis of Changes in Functional
Requirements in the Behavioral View of
Software Architectures

Master thesis
Looman, S.A.M.
August 17, 2009

Committee

A. Goknil, Msc.

dr. I. Kurtev

dr.ir. K.G. van den Berg
prof.dr.ir. M. Aksit

Research group

University of Twente

Faculty of Electrical Engineering, Mathematics and Computer Science
Software Engineering

Abstract

In software development, customer requirements are the driver for the produced
system. The requirements are ultimately translated by software engineers into
a solution. An architecture is created based on the requirements. The architec-
ture describes the system at a high level of abstraction using one or more views.
During and after the process of creating the solution, the customer needs often
evolve resulting in changed requirements. The architecture has to be changed
accordingly to satisfy the changed requirements. Change impact analysis will
help changing the architecture to support the satisfaction of the changed require-
ments. Currently, performing change impact analysis is hard, because both the
requirements and the architecture are not formalized.

We propose an approach on how to perform change impact analysis in soft-
ware architectures. This approach is based on the validation of functional re-
quirements. The functional requirements are transformed into a formal behavior
description. This formal behavior description states the behavior which must
be present, or absent, in the behavior of the architecture. If one or more of the
formal behavior descriptions fail, we can identify which requirements are not
satisfied by the architecture. Based on traces between the requirements and
architecture, and the requirements which are not satisfied by the architecture,
we can identify the components of the architecture which are not satisfying the
requirements.

In order to validate requirements, we need to derive the behavior of the ar-
chitecture. The behavior of the architecture is derived by building a simulatable
model based on the architecture. AADL is used to record the architecture itself.
The architecture is annotated with additional properties to specify the behavior
of individual components. The simulation of the architecture is performed using
the modeling language Alloy. Using the simulation in Alloy, we derive the state
space which represents the behavior of the architecture. After simulation of the
architecture, we can assert whether the architecture satisfies the requirements.

Given the derived state space through simulation, satisfaction of functional
requirements, and traces from functional requirements to architecture compo-
nents, we perform change impact analysis. We provide several guidelines for
different activities of this process. To identify strengths and weaknesses of the
approach, the apporoach is evaluated by performing five change scenarios in an
existing project. The results of the change scenarios are discussed afterwards.

From this research we can conclude that the proposed approach is promising.
However, Alloy imposes limitation on the size of the architecture and length of
simulation. Also, Alloy is slow when simulating architectures. Other directions
are given for future research.

ii

Acknowledgments

I would like to thank the people who have helped me during this research project.

Arda Goknil, my first supervisor, helped me by guiding me during this work
and often giving constructive feedback which helped me greatly. Ivan Kurtev,
my second supervisor, for providing many directions on the research. Klaas
van den Berg, my third supervisor, for very helpful providing comments on the
thesis. Also, Klaas and Ivan, for providing the Advanced Design in Software
Architectures course, which made me enthusiastic about model driven engineer-
ing.

My parents and siblings for being supportive in many ways. My parents
for making it possible to study at Twente University in many ways. Joris for
showing interest in my research and providing helpful comments.

My fellow students from the room 5066 (formerly 5070), who provided a
pleasant working place and atmosphere. We had numerous enjoyable discussions
which gave further insight into problems and possibilities.

My fellow colleagues at Atos Origin — Technical Automation, specifically
Herbert Reesink and Marcel Winkelhorst. Without them, I would not have an
example architecture, which made this research further possible.

Steven Looman, August 2009, Enschede

iii

v

Contents

1 Introduction

1.1
1.2
1.3
14
1.5

Introduction
Problem statement
Approach
Contributions
Outline of this thesis

2 Basic concepts

2.1 Imtroduction Lo
2.2 Model driven engineering
2.2.1 Models and meta-models
2.2.2 Model driven architecture
2.2.3 Meta-modeling architectures
2.3 Software requirements oL L
2.3.1 Functional requirements
2.3.2 Non-functional requirements
2.4 Software architectures
2.4.1 Architectural views 0oL
2.4.2 Architectural styles/patterns
2.4.3 Modeling software architectures
2.4.4 Software architecture analysis techniques
2.5 Change impact analysis
2.5.1 Causes of software change
2.5.2 Semantics in Change Impact Analysis
2.6 Conclusion
3 Approach
3.1 Imtroduction
3.2 Validation of requirements
3.2.1 Simulation of the architecture
3.2.2 Formalization of informal functional requirements.
3.2.3 Validation of functional requirements
3.3 Performing change impact analysis
3.4 Evaluation of approach
3.5 Supporting framework
3.6 Conclusion

SN NEGVEE R

© © 0w~~~

10
10
10
12
14
15
17
19
19
19
20

vi

4 Introducing AADL and Alloy

4.1 Introduction

4.2 AADL
4.2.1 Language abstractions
4.2.2 Software components
4.2.3 Execution platform components
4.2.4
4.2.5 Component interaction
426 Modes
4.2.7 Flows
4.2.8 Properties and annexes

4.3 Rationale for AADL
4.3.1 Supported AADL subset

4.4 Remote patient monitoring

4.5 Alloy
4.5.1 Signatures and fields
452 Facts.
4.5.3 Functions and predicates
4.5.4 Scope
4.5.5 Assertions
4.5.6

4.6 Rationale for Alloy

4.7 Conclusion

5 Simulating architectures

5.1 Introduction.
5.2 Architecture structure
5.2.1 Components
5.2.2 Features
5.2.3 Connections
5.24 Datatypes
5.3 Discrete event simulation
5.3.1 States
5.3.2 Transition function
5.3.3 Architecture invariants
5.3.4 Simulation constraints
5.3.5 Executable scenarios
5.3.6 Statespace
5.3.7 Example simulation
5.4 Parallel simulation
5.4.1 Example simulation
5.5 Benchmarks
5.5.1 Number of states
5.5.2 Size of architecture
5.6 Limitations of implementation
5.6.1 Size of architecture and state space
57 Conclusion

System structure and instantiation

State space exploration using Alloy

CONTENTS

CONTENTS

6 Performing change impact analysis

6.1 Introduction
6.2 Validation of functional requirements
6.2.1 Formalization of functional requirements
6.2.2 Validation of formalized requirements
6.2.3 The use of counter examples
6.3 Performing change impact analysis
6.3.1 Tterative process
6.3.2 Example.
6.4 Induction of elements in architectures
6.4.1 Induction of port connections
6.4.2 Induction of data access connections
6.4.3 Induction of other elements
6.5 Conclusion

Evaluation of change impact analysis process
7.1 Imtroduction.
7.2 Change scenario 1l
7.2.1 Changes to requirements
7.2.2 Iterative processo
7.2.3 Evaluation L.
7.3 Change scenario 2
7.3.1 Changes to requirements
7.3.2 Iterative process
7.3.3 Evaluation L.
7.4 Change scenario 3 e
7.4.1 Changes to requirements
7.4.2 Tterative processo
7.4.3 Evaluationo oL
7.5 Changescenario 4 o
7.5.1 Changes to requirements
7.5.2 TIterative process
7.5.3 Evaluation oL,
7.6 Change scenario b
7.6.1 Changes to requirements
7.6.2 Tterative processo
7.6.3 Evaluation 0L
7.7 Conclusion

Related work

8.1 Introduction

8.2 Behavior analysis Lo oL
8.2.1 Statecharts
8.2.2 Control flow graphs oL
8.2.3 Labeled Transition Systems

8.3 Requirements validation 0.
8.3.1 Goal monitoring system L.
8.3.2 Requirements sequence diagrams
8.3.3 Behaviortrees

8.4 Change impact analysis

vii

81
81
81
81
85
86
89
90
90
91
91
93
94
95

97

97

98

98

98
102
103
103
103
105
106
106
106
107
107
107
108
109
110
110
110
116
116

viii CONTENTS

8.4.1 Architectural slicing and chopping 124

8.4.2 Dependency matrix 125

8.4.3 Extended use of slices 126

8.5 Conclusion 126

9 Conclusion and future work 129
9.1 Summary e e 129
9.2 Answering the research question 130
9.3 Future work 132
9.3.1 Extending the simulation 132

9.3.2 Stepping away from Alloy 133

9.3.3 Further automating the process 134
Bibliography 137
A AADL meta-model in Alloy 143
B Remote Patient Monitoring 145
B.1 Informal requirements 145
B.2 Architecture 145
B.2.1 AADL description 147

B.3 Formalized requirements and scenarios 163
B.4 Traces from requirements to architecture 172

C SD system instance in Alloy 175

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

4.11

5.1
5.2

5.3
5.4
5.5
5.6

Traceability in system development 2
Thesisoutline oL)
Generic meta-modeling architecture 8
Examples of meta-modeling architectures 9
IEEE 1471-2000 conceptual model for software architectures[IEE00] 12
Layered architectural style[GS92] 15
C2 architectural style[UCI] 15
General approach for requirements validation 23
AADL/Alloy specific approach 25
AADL/Alloy specific approach with counter example 27
Change impact analysis after evolved requirements 28
Change impact analysis after evolved architecture 28
Activity diagram for performing change impact analysis 29
Overview of the RPM architecture 31
Activity diagram for building supporting framework 33
AADL core language concepts|FGHO6] 36
AADL graphical notation of components[FGHO6] 36
Conceptual AADL hierarchy 38
AADL graphical notation of ports[FGHO6] 39
Semantic connection between thread instances[FGHO6] 39
Data access example[FGHO6] 40
Example architecture in AADL 44
Instance of FileSystem model (based on [AlIO9]) 49
Resulting instance of move-predicate (based on [ALI09]) 49
Counter example found by the removeOkay-assertion (based on

[ALIO9]) 50
Approaches in state space exploration using Alloy 51
Graphical representation of AADL module in Alloy 54
Graphical representation of trace from scenario in example archi-

tecture L Lo 69
Simulation results of basic simulation and parallel simulation . . 72
Architecture used for benchmarking 73
Benchmark 1results 75
Benchmark 2 resultso oL 77

ix

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

B.1

LIST OF FIGURES

Activity diagram for formalization of functional requirements . . 82
Trace-relations L 85
Activity diagram for validation of requirements 86
Activity diagram for the use of counter examples 88
Example architecture with removed port connection 88
Example architecture with removed data access connection . .. 94
Change scenario 1 - iteration O 98
Change scenario 1 - iteration 1 99
Change scenario 1 - iteration 3 102
Change scenario 2 - iteration 1 104
Change scenario 3 - iteration 2 107
Change scenario 4 - iteration 1 108
Change scenario 5 - iteration 1 111
Change scenario 5 - iteration 3 114

Original RPM architecture 147

List of Tables

2.1

4.1
4.2

5.1
5.2

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7

B.1
B.2
B.3

B.4

Example causes of software change[Boh02] 19
Supported AADL concepts 43
Alloy operators 47
Benchmark 1 results 74
Benchmark 2 results 0oL 76
Behavior description for R1 oL 83
Change scenario 1 - added requirements 98
Change scenario 2 - updated requirements 103
Change scenario 2 - updated traces 104
Change scenario 4 - added requirements 108
Change scenario 4 - iteration 1 - new traces 109
Change scenario 5 - updated requirements 111
Change scenario 5 - updated traces 114
Selected requirements for RPM system 146
Informal RPM requirements translated to solution domain 164
Informal RPM requirements translated to solution domain (con-

tinued) L 165
Traces from requirements to architecture 173

xi

xii LIST OF TABLES

Chapter 1

Introduction

1.1 Introduction

In software development, customer requirements are the driver for the produced
system. The requirements are ultimately translated by software engineers into
a solution which fulfills the customers’ needs and wishes. An architecture is cre-
ated based on the requirements. This architecture describes the to-be-system
software at a high level of abstraction using one or more views. During the
process, however, the customer needs often evolve resulting in changes to the
requirements. Because the architecture is driven by the requirements, the ar-
chitecture has to be changed accordingly to fulfill the evolved requirements.

Known as the ripple effect, a single change to a part of the system can result
in changes to other parts of the system. Change impact analysis has to be
performed to investigate which parts of the system are affected by the initial
change and which parts of the system need maintenance.

Also, given that the architecture is a high-level abstraction of the whole
system, verifying that the updated architecture conforms to the changed re-
quirements in an early phase decreases the cost of the maintenance. If the
changes first would have to be fully implemented and tested, danger exists that
the updated system does not satisfy the updated requirements and the system
has to be modified again. As such, testing if the architecture conforms to the
new requirements, defects of the updated system can be identified early and
maintenance cost can be saved.

This research is conducted in the line of the QuadREAD project. The
QuadREAD tries to improve the alignment of the earlier phases of system de-
velopment, requirements engineering and architectural design, as shown by the
circle in figure 1.1. As the later phases of software development are depen-
dent on the earlier phases, improving the quality of the earlier phases improves
the quality of the later phases. The project tries to bridge the gap between
requirements engineering and architectural design.

The QuadREAD project tries to fulfill this goal by researching traceability
between requirements and architectural design choices. Relations are created
between different requirements and architectural elements. Given that the re-
lations between requirements and architecture are valid, related architecture
elements can be identified when one or more requirements are changed. This

2 CHAPTER 1. INTRODUCTION

Business evolves to Business
Model Model

realized in_..----—-—"""""" ---realized in

realized in realized in

Architectural Architectural
~_ Design Design |7

realized N~ ---Téalized in

Detailed Detailed
Design Design

realized in realized in

Figure 1.1: Traceability in system development

research focuses on the evolution of architectural designs, driven by the evolu-
tion of requirements.

1.2 Problem statement

The architecture should fulfill the requirements. When either the requirements
or the architecture itself evolves, the (evolved) architecture should be validated
against the (evolved) requirements to verify that the architecture still fulfills its
purpose. The requirements engineer and the architect should be able to validate
if the architecture satisfies the requirements in order to determine design defects
in the early stages of the software development process.

In the current state of the practice, software architectures are often informal
descriptions and/or figures consisting of boxes and arrows without clear seman-
tics. Validating the architecture against the requirements becomes a manual,
time consuming, and error-prone task which cannot be automated or even aided
by a tool. Instead, the system is validated against the requirements after the
system itself has been built. As a result, performing change impact analysis
based on the architecture hardly possible, if possible at all.

To be able to improve change impact analysis, the architecture needs clear
semantics. To provide clear semantics of the architecture, the architecture has
to be formalized. Change to one part of the system can result in a ripple effect
throughout the entire system. This can be due to introduced incompatibility of
communication protocols, which can be detected by static analysis. However,
a change can also introduce new behavior in the architecture. The change in
behavior is only detectable through architecture behavior analysis. For example,
the result of a change in behavior can cause a possible dead lock situation within
the architecture. Static and behavior semantics of the architecture must be
taken into account when performing change impact analysis.

The main research question of this study is as follows:

1.3. APPROACH 3

How can the validation of requirements in software architectures
and performing change impact analysis in software architectures be
improved?

The main research question is divided into a number of sub questions:

e What kind of system properties can be checked in the architectural design
level?

e How can we reformulate requirements in terms of solution domain (archi-
tecture) in order to validate requirements in the architecture?

e How can we use the validation of requirements in architecture to perform
change impact analysis?

e What tool(s)/method(s) can be used, if there are any at all, to support
change impact analysis?

e Which parts of requirements validation and change impact analysis can
be automated?

e Does the requirements validation and change impact analysis result in a
simple yes/no analysis? If not, what kind of additional information can
we provide as a result of this analysis?

1.3 Approach

The approach taken for this project is as follows. At first, we conducted lit-
erature research to investigate the current state of the art. Different materials
related to software architectures, such as standards (IEEE-1471[IEE00]), archi-
tecture description languages (Acme[GMW97, Mon01], xADL2.0[DvdHT01a),
and AADLJFei]), and other related material (the 4+1 view model[Kru95] and
classification framework for ADLs[MTO00]) were investigated. From this mate-
rial, static and behavioral properties were extracted.

Secondly, an architecture description language is chosen to record the archi-
tectures. Several criteria were chosen which the architecture description lan-
guage has to support. For example, the architecture description language has
to be actively being used, provide a basic toolset, and promises to be power-
ful enough to express the static and behavioral properties which are required in
our context. Chapter 4 introduces the chosen architecture description language,
AADL.

Thirdly, we formalize the selected static and behavioral semantics. To the
largest extent possible, the semantics are derived from the literature. If the
literature was lacking, we introduced semantics ourselves. These semantics are
used for the simulation of architectures through which we derive the architecture
behavior. Chapter 5 describes the simulation of AADL architectures.

A method is proposed to validate the architecture against the functional
requirements and perform change impact analysis based on the simulation of
the architecture. The method to perform change impact analysis is based on the
satisfaction of requirements by the software architecture. Chapter 6 describes
the validation of functional requirements, and change impact analysis.

4 CHAPTER 1. INTRODUCTION

Finally, a case study is carried out to identify the strengths and weaknesses of
the proposed method. An example project is provided by Atos Origin - Technical
Automation. We use the requirements and architecture from this project. The
architecture itself is re-specified in the chosen architecture description language.
Based on the requirements and architecture, we define change scenarios which
we use to investigate the proposed method. The results of the case study can
be found in chapter 7.

A more elaborate description of the approach is given in chapter 3.

1.4 Contributions

The contributions from this research are as follows. First, we have formalized the
semantics of AADL. The formalization of semantics allows us formally specify
the behavior of the architecture. As a result, tools can be developed which use
the behavior of the architecture and reason about it.

Secondly, we show how an architecture is simulated using Alloy. Simulation
of an architecture gives early insights in the behavior of an architecture, instead
of having this ability only in a later phase of software development, such as
the implementation phase. This provides a means to predict properties of the
system under design based on the architecture.

Thirdly, based on the simulation of the architecture, we show how require-
ments are validated in the architecture. The simulation is used to derive the
behavior of the architecture. As the simulation gives insight in the behavior of
the architecture, functional requirements can be validated against the architec-
ture.

Finally, we proposed a method to perform change impact analysis. By pro-
viding details of this method, we show how to perform change impact analysis
in an architecture based on its behavior. This method can be used as a basis for
future work. A case study is performed to identify the strengths and weaknesses
of this method.

1.5 Outline of this thesis

The outline of this thesis is given in figure 1.2. It gives the chapters in this
thesis and the relations between the chapters.

Chapter 1 is the introduction of the thesis.

Chapter 2 introduces the basic concepts which are essential for understanding
this work. The concepts which are explained in this chapter are: Model
driven engineering, software architectures, and change impact analysis.

Chapter 3 describes the approach taken for this research. A method to vali-
date functional requirements in software architectures is given. Based on
the validation of functional requirements, a process to perform change im-
pact analysis is proposed. A short description of the supporting framework
to perform change impact analysis is given.

Chapter 4 gives an introduction to AADL and Alloy. A description of the
concepts of AADL is given. The rationale behind the choice for AADL is

1.5. OUTLINE OF THIS THESIS

Chapter 1
Introduction

used in
Chapter 4
Chgap;ir 2 Introducing
concepts AADL and
P Alloy

used in

A 4

Chapter 3
Approach

elaborated ing‘;

L

elaborated in

Chapter § F?t:lr?tfrtrﬁ:ne
Simulating —used in—p| ming
y change impact
architectures 5
analysis
T
used in
A 4
Chapter 7
Case study
]
v
Chapter 9
Conclusions
and future
work

—based on—]

use

P—>
d in

Chapter 8
Related work

Figure 1.2: Thesis outline

6 CHAPTER 1. INTRODUCTION

explained. Furthermore, an example architecture is given which is used
throughout the thesis. Also, the concepts of Alloy are given, together with
the rationale behind the choice for Alloy.

Chapter 5 describes the simulation of the architecture specified in AADL us-
ing Alloy. The concepts of the simulation are explained, together with
examples. A different approach, which allows for parallel simulation, is
also given. From the basic simulation and parallel simulation, benchmarks
are derived to test the implementation of the simulation. Also, limitations
of the implementation are given.

Chapter 6 explains how, given the requirements and the architecture, change
impact analysis is performed. Different parts of the approach given in
chapter 3 are elaborated. An example supports the explanation of the
approach. Also, a method to partially synthesize an architecture which
fulfills its requirements is described.

Chapter 7 evaluates five change scenarios. Each change scenario is performed
using the proposed method. After each change scenario, a discussion on
the usability of the proposed method is given.

Chapter 8 describes the related research for change impact analysis in soft-
ware architectures. The related work is split into: behavior analysis of
software architectures, requirements validation in software architectures,
and change impact analysis in software architectures.

Chapter 9 concludes the thesis and reflects on the research. The research
questions given in this chapter are answered. Furthermore, the chapter
proposes directions for future work.

Appendix A gives the Alloy module used by the simulation. The Alloy module
is derived from the AADL standard and meta-model.

Appendix B describes the RPM architecture used by the example in chapter
4, and the case study in chapter 7. The appendix includes: informal
requirements, architecture in AADL, formalized requirements, and traces
from requirements to architecture.

Appendix C contains a part of the RPM architecture in Alloy.

Chapter 2

Basic concepts

2.1 Introduction

This chapter provides the basic concepts needed to understand this research.
The chapter elaborates on model driven engineering in section 2.2. Section 2.4
introduces the concepts relevant for software architectures. In section 2.5 the
concepts of change impact analysis are provided. Finally, section 2.6 concludes
this chapter.

2.2 Model driven engineering

The main focus of model driven engineering is the creation of models of the
problem domain, in which the problem has to be solved by a given system
under development. Rather than focusing on the computing domain, the focus
is on the problem domain.

Model driven engineering increases productivity in various ways. For ex-
ample, it simplifies the design as it is close to the problem domain. It also
maximizes compatibility between systems, due to the abstraction of the (possi-
bly different) solution domains.

[Ken02] introduces the notion of a software development process and mod-
eling space for the organization of models. Three proposed dimensions for the
organization of models are: degree of abstractness or concreteness of models, the
subject area the models belong to, and organizational issues such as authorship,
versioning, and location over models.

2.2.1 Models and meta-models

Multiple definitions of the term model exist. For example, the MDA guide[Obj03]
defines a model as: “A formal specification of the function, structure and/or be-
havior of an application or system.". Kleppe et al.[KWBO03| defines a model as:
“a description of (a part of) a system in a well-defined language". Another def-
inition of model, by Kurtev[Kur05], is: “A model represents a part of the reality
called the object system and is expressed in a modeling language. It provides
knowledge for a certain purpose that can be interpreted in terms of the object
system.”

8 CHAPTER 2. BASIC CONCEPTS

Instance-of

Meta-meta-model

i

Instance-of

M2 Meta-model

I

Instance-of

M1

Figure 2.1: Generic meta-modeling architecture

To be successful, a model should provide a number of properties to be
successful[Sel03]. A model should provide an abstraction of the real world.
The model captures the core of the problem and abstracts away from irrelevant
details. The model should be understandable by humans. The model should
accurately represent the real world. Furthermore, if the model is accurate, the
model can be used to reason about, or predict, properties of the system. Finally,
analysis of a model should cost less resources than the analysis of a real system,
low cost.

Models are instances of their meta-models. For meta-models, Kurtev[Kur05]
provides the following definition: “a model of a modeling language”. A meta-
model gives an abstract syntax, or structure, to which its models must conform.
If a model conforms to the allowed structure by the meta-model, a model is said
to be an instance of the meta-model.

2.2.2 Model driven architecture

In 2001, the Object Management Group (OMG) launched the Model Driven
Architecture (MDA) framework. The MDA guide[Obj03] describes an overview
of the framework and gives definitions for the terms used in MDA. The MDA
framework tries to address two main problems found in software engineering:
Portability, and interoperability.

The first problem, portability, results from the fact that each time a new
and ’hot’ technology appears, companies are forced to port their applications
to this technology. For example, a shift is observed in the use of middle-ware
technology. CORBA is partially replaced by the newer Web Services. Many
existing systems need to be ported to make use of this new technology, while
their functionality remains unmodified. The resources required for porting an
existing system to a new technology can result in a large effort.

Secondly, MDA tries to address the interoperability problem. Larger systems
are built in a modular fashion, where the whole system is divided into several
smaller modules. These smaller modules are often implemented using the tech-
nology which suits the problem best. Given the use of different technologies,
interoperability between these modules is hard to maintain.

MDA tries to cope with the first problem by introducing modeling and mod-
els, and by the separation of specification of a system and the details of the
implementation of a system. The specification of a system is more abstract,
while the details of the implementation of a system are more concrete. The
concrete details of the implementation, for each technology, are derived from

2.3. SOFTWARE REQUIREMENTS 9

Instance-of Instance-of

LN [N

MOF ‘ ‘ ECore ‘

M3

T
Instance-of Instance-of

M2 uML DSL

Instance-of Instance-of

UML model ‘ ‘ DSL model ‘

M1

Figure 2.2: Examples of meta-modeling architectures

the abstract specification, which is defined once.
The main concepts MDA introduces are:

Platform Independent Model A platform independent model is a view of a
system from the platform independent viewpoint.

Platform Specific Model A platform specific model is a view of a system
from the platform specific viewpoint.

The abstract specification of a system is recorded in a Platform Independent
Model (PIM). The Platform Specific Model (PSM), containing the concrete
details of the implementation, is based on the platform independent model.
Model transformations are used to convert a PIM to a PSM. MDA aims at
automating this process, but the transformation can also be done manually.

2.2.3 Meta-modeling architectures

Several meta-modeling architectures exist. The foundation for these meta-
modeling architectures is given in figure 2.1. In this figure, a meta-model itself
is considered to be a model, which conforms to a given meta-meta-model. The
meta-meta-model is, in practice, expressed in itself, instead of using higher level
models. The meta-meta-model is said to be self-reflective.

Several meta-modeling architectures exist, as shown in figure 2.2. The OMG
provides the Meta Object Facility (MOF). It uses it to express UML meta-
models and UML models, shown on the left. Shown on the right in the figure,
the Eclipse Modeling Foundation is another example of a meta-modeling archi-
tecture.

2.3 Software requirements

In [KS98], the following definition for software requirements is given:

Software requirements express the needs and constraints placed on a
software product that contribute to the solution of some real-world
problem.

The SWEBOK[AMBDO04] gives the following definition of a software require-
ment:

At its most basic, a software requirement is a property which must
be exhibited in order to solve some problem in the real world.

10 CHAPTER 2. BASIC CONCEPTS

A software requirements is a property that describes constraints on the software
that will be used to solve a problem. A problem can be the automation of a
task, or to support a business process.

An important property of software requirements is that these must be verifi-
able. Other important properties are ones such as: maintainability, verifiability,
completeness, and correctness. [MK95| provides a technique to assist in prop-
erly constructing requirements. The paper specifies that requirements have to
be SMART. SMART requirements are: Specific, Measurable, Attainable, Real-
izable, and Time bounded.

Software requirements can impose constraints on both the product (the soft-
ware to be developed), and the process which is used to develop the software.
An example of a product requirement is that the software has to be verify that
a student meets all prerequisites before he/she can register for a course. An
example of a process requirement is that the product has to be written in C+-+.

Software requirements can generally be divided into two categories: func-
tional and non-functional requirements.

2.3.1 Functional requirements

Functional requirement specify required functionality, or behavior, of the sys-
tem. These can be calculations, technical details, data manipulation and pro-
cessing. For example, a functional requirement may state that the system must
be able to modulate a signal. A synonym for functional requirements is capa-
bilities.

A use case can be generated from a set of functional requirements. The use
case specifies how the system shall act on a certain input, as described by the
chosen set of functional requirements.

2.3.2 Non-functional requirements

Non-functional requirements are requirements which constrain the system un-
der development. A synonym for non-functional requirements is constraints or
quality requirements. For example, a non-functional requirement can state that
the software built for a call-center must be able to handle 100 concurrent calls.

[AMBDO04] specifies that non-functional requirements can be further classi-
fied into groups, such as: performance requirements, maintainability require-
ments, safety requirements, and reliability requirements.

2.4 Software architectures

The IEEE 1471-2000 standard [IEE00] gives the following definitions of terms
applicable to software architectures:

Acquirer An organization that procures a system, software product, or soft-
ware service from a supplier. (The acquirer could be a buyer, customer,
owner, user, or purchaser.)

Architect The person, team, or organization responsible for systems architec-
ture.

2.4. SOFTWARE ARCHITECTURES 11

Architecting The activities of defining, documenting, maintaining, improving,
and certifying proper implementation of an architecture.

Architectural description A collection of products to document an architec-
ture.

Architecture The fundamental organization of a system embodied in its com-
ponents, their relationships to each other, and to the environment, and
the principles guiding its design and evolution.

Life cycle model A framework containing the processes, activities, and tasks
involved in the development, operation, and maintenance of a software
product, which spans the life of the system from the definition of its re-
quirements to the termination of its use.

System A collection of components organized to accomplish a specific function
or set of functions.

System stakeholder An individual, team, or organization (or classes thereof)
with interests in, or concerns relative to, a system.

View A representation of a whole system from the perspective of a related set
of concerns.

Viewpoint A specification of the conventions for constructing and using a
view. A pattern or template from which to develop individual views by
establishing the purposes and audience for a view and techniques for its
creation and analysis.

Figure 2.3 gives the conceptual model as it is defined by the IEEE 1471-2000
standard.

A system can be seen as an individual application, a system with multiple
subsystems, a product line, or even a whole enterprise. A system is inhabited in
an environment, or context, which influences the system. Influences come, either
directly or indirectly, from other systems which interact with the system under
development. The boundaries of the system under development are determined
by the environment.

FEach system has one or more stakeholders, which all have a concern in the
system. An example of a concern is a consideration such as performance or
reliability. The system has one or more missions which the system is intended
to fulfill for one or more stakeholders.

Every system has an architecture which is described by an architectural
description. An architectural description contains one or more views, which
describe the concerns of one or more stakeholders of the system. A viewpoint
specifies the template for a view to which it must conform. A view consists of
at least on architectural model.

Stakeholders include clients, users, architects, developers, testers and the
like. Each stakeholder has at least one role in the creation and use of a software
architecture description. The key roles for stakeholders are the client and the
architect.

12 CHAPTER 2. BASIC CONCEPTS

Mission
fulfills 1.%
influences has an
Environment System Architecture
inhabits
described by
has 1.* 1
is important to identifies
1. 1. Architectural provides
Stakeholder Description Rationale
s v
is addressed to o // ,’/ \‘..‘ participates in
1. - S / \
T / / \
A P / \
— ~ 'fc rganized by \
F— - P /)
:nas ;dermfles - " sel IRK \
- 1.4
— \
- |
o conforms to \
Concem Viewpoint View "\
\
usedto \
cover 1.." T \
T participates in consists of \
~. . . \
Qa: source ~_ 1 1 \ mogregates
. ~ 4 1.0
— \
vl':‘::;:_‘t establishes methads for Model
1

Figure 2.3: IEEE 1471-2000 conceptual model for software architectures[IEE0Q]

2.4.1 Architectural views

Different stakeholders have different concerns. If a single diagram for the whole
the system would be given, the information would be overwhelming and incom-
prehensible to the stakeholders. Therefore, an architecture is usually composed
of multiple views, or a representation of (a part of) the system from a single
perspective. A view consists of a model. The viewpoint gives the meta-model
for the view. While several predefined viewpoints exist, an architect is by no
means restricted to those viewpoints. New viewpoints can be created when
appropriate.

The book Software Architecture in Practice - Second Edition[CKO03] specifies
three common categories for views,/viewpoints:

e Module structures;
e Component and connector structures;
e Allocation structures.

The Modules structures category describes different modules of the system. This
category represents a static structure in a code-based way of the system; the
modules of a system are defined as units of implementation.

The component and connector structures category focuses on the run-time
components of a system. The elements in this category are components and
connectors.

2.4. SOFTWARE ARCHITECTURES 13

Finally, the allocation structures category describes the relationships be-
tween the elements of the system and the environment of the system.

IEEE-1471 example views

[IEE00] provides examples of viewpoints and examples of views for the view-
points. One of the example viewpoints is called the structural viewpoint. It
provides a language with the entities components (individual units of computa-
tion), components have ports (interfaces), connectors (interconnection between
components), and connectors have roles (attachments to components). This
viewpoint addresses the concerns related to the structure of the system. It can
be used to analyze attachments of connectors and type consistencies.

A second example of a viewpoint is the behavioral viewpoint. Elements
of the language provided by this viewpoint are events, processes, states, and
operations on the given entities. The concerns it addresses are related to the
behavior of the system. Some of the analytic methods which can be applied are
Communicating Sequential Processes [C.A78], and the pi-calculus [Mil99].

A third example viewpoint, physical interconnect viewpoint, addresses the
concerns related to the physical communication within the system. The lan-
guage vocabulary consists of physically identifiable node, point-to-point link,
and a shared link. This viewpoint focuses on the structure of a system, but
unlike the structural viewpoint it focuses on the physical implementation of the
system.

4+1 view model

Kruchten gives in the paper [Kru95| a framework consisting of different views.
The "4" in "4+1" represents four views. The logical view represents the func-
tional requirements of the system, divided into several key abstractions taken
from the problem domain. Secondly, the process view is used to represent the
non-functional requirements such as performance and availability. This view
shows the communicating programs in the system, possibly described at several
levels of abstractions. The development view is used to cut the software into
small chucks and represents internal requirements. This view can again be lay-
ered across several levels of abstractions. Finally, the physical view represents
non-functional requirements with regard to availability and reliability. It gives
the network of nodes on which the system executes. All of the above views
are supported by their own notation, often based on or derived from existing
notations.

The "+1" in "4+1" stands for the scenarios view and is a view which is
mostly redundant with the other views. This view is used to discover architec-
tural elements. The discovery of elements is supported by a proposed scenario-
driven approach. This approach consists of several steps to create an initial
architecture from a small number of key-scenarios and use further iterations to
extend the architecture by introducing more scenarios. Secondly, the scenario
view is also used to illustrate and validate the architecture after the architecture
design is complete.

The given views are overlapping as elements in one view and another view
are connected with each other. Several heuristics are given to map elements
from one view to another view.

14 CHAPTER 2. BASIC CONCEPTS

Component and Connector view

The component and connector view consists of three main concepts: compo-
nents, connectors, and configuration. The following definitions for the three
elements come from [MT00]:

Component A component in an architecture is a unit of computation or a
data store. Therefore, components are loci of computation and state.

Connector Connectors are architectural building blocks used to model inter-
actions among components and rules that govern those interactions.

Configuration Architectural configurations, or topologies, are connected graphs
of components and connectors that describe architectural structure.

In [CBBT02], components and connectors at least have two properties: name,
type. The name is used for identification of a component or connector. It should
also suggest the nature of the functionality or interaction, for a component or
connector, respectively. Dependent on the need to model other properties, the
components and connectors can be annotated with domain specific properties,
such as performance and reliability values.

In a configuration, the component and connector types are instantiated.
The component and connector instances have a runtime manifestation, are con-
suming execution resources, and contributing to the execution behavior of that
system|CBB'02]. A configuration, together with its components and connec-
tors, conforms to a specific style.

2.4.2 Architectural styles/patterns

A style specifies rules to which an architecture must conform. An architectural
style specifies the vocabulary that can be used to build an architecture, but
also specifies constraints on how the elements of the vocabulary may be inter-
connected (for example, no cycles), or constraints on the execution semantics
of the elements found in the vocabulary. A synonym for architectural style is
architectural pattern.

A style dictates a form for an architecture, restricting many of the possible
design choices and preventing possible errors in the design. Also, it serves as
a vehicle for communication, because when an architect talks about a style,
another stakeholder who knows the style quickly knows what the architect is
talking about. Furthermore, tools can aid the architect when building an ar-
chitecture in a specific style as the tool imposes constraints provided by the
viewpoint.

A commonly seen example of a style is layered style[GS92]. The style requires
that a system has two or more layers stacked upon each other. A layer n is only
allowed to communicate with the layer n-1 or the layer n+1, in other words,
with the layers it has direct contact with. A layer provides services to the layer
above it and is a client to the layer below it. Figure 2.4 provides a graphical
representation of the layered style.

Another example of an architectural style is the C2 stylef]MORT96]. The
C2 style vocabulary contains components and connectors. Each component
has two ports, an upper port and a lower port. Components can only send
requests through the upper port and send notification through the lower port.

2.4. SOFTWARE ARCHITECTURES 15

Usually
procecure

</

Composites of
various elements

Users

Figure 2.4: Layered architectural style[GS92]

A connector connects two or more components, or directly connects to another
connector. An example of the C2 style can be seen in the figure 2.5.

Legend:

Component

= (onnector
| Cormruni carion
Link

Requests
§
Notifications

Figure 2.5: C2 architectural style[UCI]

2.4.3 Modeling software architectures

Software architectures are recorded by the use of architecture description lan-
guages (ADL). An ADL defines a set of types in which the architecture can be
expressed (meta-model), and a way to represent the architecture. The archi-
tecture can be recorded through the use of a textual or graphical specification.
Roughly two generations of ADLs can be defined.

First generation architecture description languages

The first generation languages all have a focus on a specific domain. Because of
this focus, one ADL might fit the needs for one project, but not the needs for
another project. Examples of first generation languages and their scopes are as
follows [MT00]:

Aesop Specification of architectures in specific styles

16 CHAPTER 2. BASIC CONCEPTS

C2 Architectures of highly-distributed, evolvable, and dynamic system

Darwin Architectures of highly-distributed systems whose dynamism is guided
by strict formal underpinnings

MetaH Architectures in the guidance, navigation and control (GN&C) domain

Rapide Modeling and simulation of the dynamic behavior described by an
architecture

SADL Formal refinement of architectures across levels of detail

UniCon Glue code generation for interconnecting existing components using
common interaction protocol

Weaves Data-flow architectures, characterized by high-volume of data and
real-time requirements on its processing

Wright Modeling and analysis (specifically, deadlock analysis) of the dynamic
behavior of concurrent systems

[MTO00] provides a classification framework for these ADLs consisting of three
elements: components, connectors, and configuration. The research shows that
each of the ADLs roughly conforms to the classification.

Second generation architecture description languages

The second generation ADLs focus more on the general component and con-
nector style. They also focus on extendability of the language itself. This can
be either through the annotation of the architecture with key-value-pairs, or by
extending /altering the meta-model. Examples of second generation languages
are: Acme, xADL2.0, and AADL.

Acme/Armani|[GMW97, Mon01] is designed to be an interchange language
for several existing ADLs. Using Acme, one should be able to model an archi-
tecture in one language and use the tools of another language to analyze the
model. Apart from this main goal, Acme was designed to provide an easy way
for development of new tools for analysis and visualization, provide a foundation
for new (domain specific) ADLs, define a standard for architectural information
and be human readable and writable. The elements found in the Acme language
can be annotated by key-value-pairs.

xADL 2.0[DvdHTO014] is built upon XML and schemas. The default schema
provides the concepts of component, connector, interfaces, and configuration.
The language can be easily extended by extending the existing schema. Several
schemas are already provided by the xADL2.0 team.

AADL[FGHO6] is a language developed by CMU, and is standardized by the
SAE[SAE(04, SAE09]. AADL stands for Architecture Analysis and Description
Language. The language was originally developed as the Avionics and Aviation
Description Language, and thus has a focus on embedded systems. Yet, it
provides component types relevant for general software development such as
process, and thread. The language can be extended through the use of key-
value-pairs and annexes. An annex is a complete sub-language which can be
embedded in the AADL itself.

2.4. SOFTWARE ARCHITECTURES 17

2.4.4 Software architecture analysis techniques

Different kind of software architecture analysis techniques exist[DN02]. Three
types of techniques are given in this subsection: inspection and reviews, model-
based analysis, and simulation-based analysis.

Inspection and reviews

Inspection and reviews of software architectures are a manual technique. A
person, or a group of persons, inspect and review the architecture. Examples
of different methods which have been proposed are SAAM and ATAM. A short
overview of both SAAM and ATAM are given below.

Scenario-based Architecture Analysis Method (SAAM) is a scenario-based
analysis technique to evaluate software architectures. The SAAM consists of
five stages. A short description of each stage is as follows:

Describe candidate architecture The architecture is recorded by the use of
an ADL. It should clearly identify the components and connectors.

Develop scenarios Scenarios are developed to show what kind of activities the
architecture must support. These scenarios should capture all important
uses of the system. This means that scenarios should include tasks relevant
to all different holders, such as end users, system administrators, and
developers. Scenarios can thus include testing functionality of the system,
but also modifying the system itself.

Perform scenario evaluations Each of the change-scenarios, modifications
to the architecture are recorded, together with the estimated cost of the
modification.

Reveal scenario interaction If two scenarios require the modification of the
same component(s) or connector(s), these scenarios interact.

Overall evaluation Each scenario is given a weight, and an overall ranking
for each scenario is determined, determined by its interactions and relative
importance.

In the end, SAAM provides a collection of small metrics. Given the metrics,
competing architectures can be evaluated on a per-scenario basis and tradeoffs
can be made.

The Architecture Tradeoff Analysis Method[KKC00, CK03] (ATAM) is a
method to evaluate software architectures. ATAM is based on SAAM. The
method is aimed at evaluating quality goals, and the tradeoffs between different
quality goals within the architecture.

The ATAM requires participation of three groups. The first group, the eval-
uation team, is external to the project and consists of competent and unbiased
outsides. The second group, the project decision makers, are the people who
have the authority to make change the direction of the project. Finally, the
architecture stakeholders, are the stakeholders of the architecture, such as de-
velopers, testers, and users of the system.

Two phases are defined in the ATAM. The first phase is used to present
the ATAM, present the business objectives of the architecture, present the ar-
chitecture, identify architectural approaches, generate quality attribute utility

18 CHAPTER 2. BASIC CONCEPTS

tree, and analyze the architectural approaches. The second phase continues the
evaluation of the architecture. The second phase consists of brainstorming and
prioritization of scenarios, analyzing architectural approaches, and presenting
the results.

The whole process is manual and aimed at evaluating quality attributes
of the architecture. ATAM is not meant for evaluation of the requirements,
neither is it meant for code evaluation or actual system testing. Also, ATAM
identifies possible areas of risk in the software architecture, and is not a precise
instrument.

Model-based analysis

Model-based analysis of software architectures uses the model as defined by the
software architecture to perform analysis| EKHLO03|. This type of analysis is
usually automatic. Model-based analysis can be used to analyze a number of
properties of the system to be built, such as structural properties, behavioral
properties, and non-functional properties.

An example of structural analysis is the analysis of compatibility of interfaces
between components.

The behavior of an architecture is often specified by state chart for the com-
ponents contained by the architecture. These state charts are used to analyze
the architecture for different behavioral properties, such as deadlock freedom.
[EKHLO3| provides analysis by transforming state charts, a behavior specifi-
cation, into CSP, a process algebra, and exhaustively check this model for a
number of properties.

Finally, an example of a non-functional property is the time required to
perform a certain action after an event in the environment has been detected,
by analyzing the time required by the individual components in the architecture
involved in performing the action.

Simulation-based analysis

Simulation-based analysis of software architectures is used to analyze the soft-
ware architecture through simulation of the architecture. The results of the
simulation can be manually inspected by a person or automatically by a pro-
gram. The simulation gives information about behavioral properties, and non-
functional properties of the architecture.

Manual inspection of the simulation can be used in several ways. One exam-
ple is to get familiar with the system. Another example is the manual validation
of behavior of the architecture.

Automatic inspection can be performed if a number of rules have been spec-
ified to which the simulation must conform. For example, in [LHS08], traces are
tested against a number of defined specification behavior patterns. Types of pro-
posed behavior patterns are: occurrence, order, and compound. These pattern
types are divided into several more specific patterns. For example, from the oc-
currence type, the patterns absence, and existence are derived. These patterns
require that behavior is absent or must exist in the simulation, respectively.

2.5. CHANGE IMPACT ANALYSIS 19
Changes Changes Changes Changes
during during design | during imple- during test
requirements mentation
Enhanced Design Design error Design changes
functionality trade-offs
requirements
Deleting Timing issues Algorithm Redefining test
obsolete coding cases
requirements adjustments

Table 2.1: Example causes of software change[Boh02]

2.5 Change impact analysis

When a single part of software is changed, other parts of the software are pos-
sibly subject to change as well. To investigate which parts of the software are
to be changed, change impact analysis is performed. Bohner defines change
impact analysis as: “The determination of potential effects to a subject system
resulting from a proposed software change"[Boh02].

When no change impact analysis is performed, the ripple-effect can cause un-
foreseen consequences. These unforeseen consequences can cost a large amount
of resources. Software systems are more and more developed in a distributed-
platform base. Problems of interoperability between elements of distributed
software systems arise. The benefit of performing change impact analysis is
that one can predict the cost of performing a change to a software system.

Bohner identifies three basic software change activities: understanding soft-
ware with respect to the change, implementing the change, and retesting the
newly modified system. The first activity is important to find the impacted
parts, and find other possible impacted parts. The second activity requires us
to be aware of the riple-effect. Finally, the third activity, requires us to do
regression testing of the system, and possibly creating new tests based on new
requirements.

2.5.1 Causes of software change

Changes to software can be introduced during the whole software engineering
process. Bohner provides four basic categories: changes during requirements,
changes during design, changes during implementation, and changes during test.
Examples of causes of software change are given in table 2.1.

2.5.2 Semantics in Change Impact Analysis

In the same paper, Bohner states the need for the use of semantics when per-
forming change impact analysis. An example is given when only dependency
relations are used. A graph is used to represent the structure of a software
system. Nodes represent parts of the software system, directly edges are depen-
dency relations between the nodes. Using the structural information, a reacha-
bility graph can be built and used for change impact analysis. This reachability
graph can be built using Warshall’s algorithm|War62]. However, when no ad-

20 CHAPTER 2. BASIC CONCEPTS

ditional semantics are used, the number of impacted parts explodes, as every
part of the system will be impacted by the other parts, and, recursively, will be
impacted again.

Bohner states that there are three challenges in change impact analysis:
information source volume, change semantics, and analysis methods. The first
challenge can be addressed by the use of automated assistance to lower the
time needed for analysis and improve the error rate. The last challenge can
be address by change impact analysis methods which can be classified in the
groups: semantically guided, heuristically guided, stochastically guided, hybrid
guidance, and unguided/exhaustive.

In [GKvdBO08], static semantics are used to perform change impact analysis
in requirements models. Four formalized types of relations between require-
ments are given: requires relation, refines relation, contains relation, and con-
flicts relation. Based on these formalized relations, impact rules are defined to
identify actual impacted requirements, and candidate impacted requirements.
The paper classifies two types of changes in the requirements model: changes
to the requirement entities, and changes in the requirements relations. Based on
this classification, several rules are given to identify the actual and candidate
impacted requirements.

Change impact analysis can be performed at the different artifacts involved
with software engineering, such as requirements and architectures. For example,
in [FMO06] a formalism is given to describe components, their interfaces, and the
relationships among the components and interfaces. Based on the composition
of the components, a model is derived which describes the dynamic interac-
tion among the components. A taxonomy for changes is introduced. Roughly,
this taxonomy discriminates between atomic and composite changes as well as
changes between and within components. Atomic changes consist of changes
such as adding or removing interfaces to a component and adding/removing
methods to existing interfaces. The two proposed concepts are put together to
be able to perform dynamic change impact analysis.

In [RST104], a formalism is given in which atomic changes to Java source
code are defined, such as added class (AC), deleted class (DC), added method
(AM) and the like. Adding a method might affect the dynamic dispatch in a
program. As such, to be able to reason about changes which affect dynamic
dispatch (LC), functions are defined which are used to look up the dynamic dis-
patches. Using these atomic changes, syntactic dependency graphs for changes
in source code can be calculated. The dependency graphs can, in turn, be used
to identify changes to retain a syntactically correct program.

Impacted tests are identified by use of a call graph for each test, for the
original and the changed program. The call graphs can be built statically,
through source code analysis, or dynamically, through runtime analysis. These
call graphs are compared to identify tests which are impacted by the changes
made in the program.

2.6 Conclusion
In this chapter we have given the basic concepts needed to understand the con-

tent of the thesis. In section 2.2, Model Driven Engineering and the Model
Driven Architecture are introduced. It aims at improving the software develop-

2.6. CONCLUSION 21

ment process by introducing the modeling concept. Modeling aims at creating
models which abstract away unneeded details, such that one can better reason
about the details which do matter. Meta-modeling frameworks are introduced
to support the modeling process.

In section 2.4, the definition of a software architectures is given, as specified
in the IEEE-1471 standard. Software architectures are described by multiple
views. Using a single view to describe the whole software architecture would
make the software architecture incomprehensible, given the amount of detail
available. FExamples of different views are given. Each view of the architec-
ture conforms to a specific viewpoint. A viewpoint contains its own vocabulary
(meta-model) to describe each view, and a set of rules (style) to which the ar-
chitecture must conform. Different Architecture Description Languages (ADLs)
exist to record the software architecture. Only a handful of the older ADLs have
evolved and are still in use. Most of the current ADLs aim at being extensible,
such that the architect can introduce his own semantics.

Finally, section 2.5 introduces the concepts of change impact analysis. Change
impact analysis is the process of finding impacted elements, based on an initial
change. Change impact analysis can be performed at different artifacts, such
as a requirements model, or source code. There is a clear need for semantics in
change impact analysis. Without semantics, it is hard to determine the actual
impacted set of elements. Only an overestimation of impacted elements can be
safely made when the semantics are lacking.

22

CHAPTER 2. BASIC CONCEPTS

Chapter 3

Approach

3.1 Introduction

This chapter elaborates the approach found in section 1.3. Section 3.2 we elab-
orate on the validation of behavior in architectures. In section 3.3 we give the
process to perform change impact analysis. Section 3.4 gives a short overview
of the case study. In section 3.5 we elaborate on the supporting framework to
perform change impact analysis. Finally, this chapter is concluded in section
3.6.

3.2 Validation of requirements

Validating the functional requirements of the architecture is one key activity in
our approach to perform change impact analysis. The functional requirements
represent behavior which the architecture must satisfy. The informal functional
requirements are reformulated as formal behavior descriptions. The behavior of
the architecture is derived from the architecture by simulating the architecture.
The formal behavior descriptions are tested against the derived behavior, in
order to validate the presence (or absence) of behavior. A graphical overview
of this is given in figure 3.1. In this figure, boxes represent artifacts, arrows
represent general relations between the artifacts.

We define the problem domain as the domain in which the problem lives

Functional Formal
Requirements ——Reformulate— beh‘l':m'or
descriptions
Satisfies? Uses Conforms to?
Architecture Simulate—» Archltec_ture
behavior

Figure 3.1: General approach for requirements validation

23

24 CHAPTER 3. APPROACH

which needs to be solved. The solution domain is the system (architecture),
which is created to solve the problem as defined in the problem domain. The
IEEE Standard Glossary of Software Engineering Terminology[IEE90] defines
“validation” as:

The process of evaluating a system or component during or at
the end of the development process to determine whether it satisfies
specified requirements.

We define the validation of a software architecture as:

Testing whether the software architecture satisfies its functional
requirements.

The following list gives a description of the artifacts found in the figure:

Functional requirements The functional requirements of the system to be
built. This is a collection of functional requirements specified in a natural
language. Given that the requirements are given in natural language, the
requirements cannot be interpreted directly by a program/algorithm. The
requirements are specified in the problem domain.

Formal behavior description The formal description of the required behav-
ior of the architecture. Given that the informal requirements are not in-
terpretable by a program, the informal requirements need to be formalized
such that these become interpretable. The formal behavior description is
in the solution domain, and based on the informal functional requirements.

Architecture The architecture of the system to be built. This is an architec-
ture specified in an architecture description language, possibly annotated
with additional properties to increase the level of detail. The architecture
is in the solution domain, and driven by the requirements.

Architecture behavior The behavior of the architecture. The architecture
itself incorporates behavior. This behavior can be expressed in multi-
ple ways. This artifact represents the behavior of the architecture. The
architecture behavior is in the solution domain.

The artifacts found in figure 3.1 are related to each other. The relations are
given by the arrows between the artifacts. The description of the relations is as
follows:

Reformulate The informal requirements are reformulated into formal behavior
descriptions. This also includes a translation from the problem domain to
the solution domain. Given that the formal behavior description is based
on the architecture, the architecture itself is used.

Satisfies? The satisfies relation is the validation of the functional requirements
against the architecture. Le., if the architecture supports the behavior
specified by the functional requirements. Given that the requirements
are informal descriptions, we have to manually validate the architecture
against the requirements. Also, the requirements are in the problem do-
main, while the architecture is in the solution domain.

3.2. VALIDATION OF REQUIREMENTS 25

Fun_ctlonal Reformulat Predicates
Requirements (Alloy)
Satisfies? Uses Conforms to?
Architecture . State space
(AADL) Simulate— a0y

Figure 3.2: AADL/Alloy specific approach

Conforms to? The conforms-to relation represents the validation of the ar-
chitecture behavior against the formal behavior descriptions. I.e., the
architecture behavior has to conform to the behavior described by the for-
mal behavior descriptions. Both the formal behavior description and the
architecture behavior are in the solution domain.

Uses The formal behavior description states facts about the behavior of the
architecture. The architecture behavior states facts over the components
and other elements found in the architecture. The architecture behavior
itself is derived from the architecture. Therefore, the formal behavior
description is specific for the architecture itself.

Simulate To derive the architecture behavior from the architecture itself, the
architecture is simulated. The architecture behavior, derived through sim-
ulation of the architecture, is stored in the architecture behavior artifact.

We use AADL to record architectures. AADL is an architecture description
language. It provides a toolset, OSATE, which we use to convert a textual
specification into an architecture model. Additional properties which describe
the behavior of the individual components, and invariants are added to the
architecture. More information about AADL is given in section 4.2.

To simulate the architecture, we use Alloy. The simulation is a discrete
event simulation. This form of simulation introduces a state space. This state
space is explored using Alloy. An overview of Alloy is given in section 4.5. Also,
given that the behavior of the architecture is expressed as an Alloy model, Alloy
predicates are used to represent the formal behavior descriptions. Figure 3.2
introduces the uses of AADL and Alloy.

Three key activities are shown in figure 3.1. The key activities are: simu-
lating the architecture, formalization of informal functional requirements, and
validating functional requirements. The following subsections elaborate on each
individual key activity.

3.2.1 Simulation of the architecture

The simulation of the architecture is a discrete event simulation. Discrete event
simulation introduces the notion of events, states, and state space. Events are
actions which occur within the architecture. A state describes the loci of data
values within the architecture. Two states are possibly connected by a transition.

26 CHAPTER 3. APPROACH

All states are captured by the state space. The behavior of the architecture is
expressed as a sequence of events. Alloy is used to simulate the architecture.
The simulation is fully automatic and does not need any interaction during
the simulation itself. A more elaborate description of the simulation of the
architecture is given in chapter 5.

As Alloy is a declarative language, only pre- and post-conditions are required
to describe the behavior of the components. The Alloy Analyzer tries to find the
state space where the pre- and post-conditions are satisfied for each subprogram.
An example of the behavior a component can contain is that it performs a
computation based on a received data value, and sends the results to another
component. The architecture is also subject to invariants. For example, an
invariant might state that a data instance can only hold data values of a specific
type. These invariants are expressed as Alloy predicates.

We introduce scenarios to capture the detection of the occurrence of an
observed event in either the environment or architecture. A scenario describes
the first state after the detection of an environment or architecture event. From
the first state, the simulator derives the other states of the state space. An
example of an environment event is that a button is pushed. A sensor in the
architecture is triggered and an event is generated. Likewise, an example of an
architecture event is the expiration of a timer. In this case, the timer generates
an event. Guidelines to create scenarios are given in chapter 5.

3.2.2 Formalization of informal functional requirements

The informal functional requirements are not interpretable by a program. To
be able to automatically validate the behavior of the architecture against the
requirements, we need to reformulate the informal functional requirements such
that these are interpretable by a program. We use Alloy to find the state space
which represents the behavior of the architecture. Also, we use Alloy to validate
the behavior of the architecture against the formalized requirements. Therefore,
we need to express the informal functional requirements as Alloy predicates.
The predicates are used to test the state space for the presence, or absence, of
required behavior.

Also, the informal functional requirements are in the problem domain. The
predicates are in the solution domain. This translation from problem domain to
solution domain is manual. The predicates representing the informal functional
requirements are closely related to the architecture. For example, a predicate
can explicitly state the presence of a data value at a port found in the architec-
ture. As such, the architecture is used when specifying the predicates.

Chapter 6 elaborates on the formalization of informal functional require-
ments. Guidelines are given for the translation of informal functional require-
ments to Alloy predicates. Also, the method to test requirements against the
state space is shown.

3.2.3 Validation of functional requirements

The validation of the functional requirements is represented by the conforms
to?-relation in figure 3.3. The state space describes the behavior of architecture.
Predicates are used to describe the required functionality of the architecture,
expressed as formulas over the state space. Scenarios are extended to test a

3.3. PERFORMING CHANGE IMPACT ANALYSIS 27

Functional Predicates +
Requirements ——Reformulate—» assertion
(Alloy)
Does not satisfy Conforms to?

Counter example
Uses P

Architecture . State space
(AADL) ——Simulate—» (Alloy)

Figure 3.3: AADL/Alloy specific approach with counter example

number of requirements. These requirements are bound to the scenario. I.e.,
the requirements are bound to the detection of an event in the environment or
architecture.

We use an assertion to test that, after the detection of an environment or
architecture event, a number of requirement predicates hold. If one or more
of the predicates do not hold for the simulation, the state space is returned as
a counter example by the Alloy Analyzer. This is described by the Counter
example-relation in figure 3.3, from the Assertion-artifact to the State space-
artifact. To find the unsatisfied requirement, we use the Alloy Analyzer to test
individual requirement predicates against the counter example.

Architecture invariants are tested using the same construct. All architecture
invariants need to hold in each scenario at all times. I.e., for all the scenarios,
each invariant must hold for every state of the state space for that scenario. If
an architecture invariant does not hold, the state space is returned as a counter
example by the Alloy Analyzer. To find the violated invariant, we use the Alloy
Analyzer to test individual invariant predicates against the counter example.

Chapter 6 elaborates on the validation of functional requirements and in-
variants in software architectures.

3.3 Performing change impact analysis

When performing change impact analysis, either the original requirements arti-
fact is changed, or the original architecture is changed. This is shown in figure
3.4 and figure 3.5, respectively.

In figure 3.4, the requirements are changed. The requirements specify func-
tionality, which is either added, updated, or removed. To be able to check
the new functionality, the changed requirements have to be (re)formulated as
assertions.

These changed requirements are validated against the generated state space.
If one or more of the changed requirements fail, a counter example is given. This
shows us that the old architecture does not satisfy the evolved requirements and
the architecture has to be changed in order to satisfy the new requirements. As
the requirements are formulated as Alloy predicates, we use Alloy to query
individual requirements against the counter example and find the requirements
which are not satisfied. Since functional requirements specify functionality, we

28 CHAPTER 3. APPROACH

Changed predicaies
refu;fél;r;ar:ts ——Reformulate—» assertion

q (Alloy)
Still satisfies? Uses Still satisfies?
Architecture . State space

(AADL) ———Simulate——» (Alloy)

Figure 3.4: Change impact analysis after evolved requirements

Functional Predicates +
Requirements ——Reformulate—» assertion
(Alloy)
Still satisfies? Uses Still satisfies?
Changed Changed state
architecture ———Simulate——) space
(AADL) (Alloy)

Figure 3.5: Change impact analysis after evolved architecture

find which part of the required functionality is not (correctly) implemented in
the architecture.

Figure 3.5 describes the situation when the architecture itself is changed. To
restrict the scope of this thesis, we do not consider this case.

The process of performing change impact analysis is shown in figure 3.6. The
activity diagram shows the activities for performing change impact analysis
in architectures. In this figure, change is defined as the addition, update, or
deletion of an entity. The description of the activities shown in the activity
diagrams is as follows:

Change requirements The informal functional requirements are changed. The
new /updated informal requirements describe the new/update required be-
havior of the architecture.

Change architecture The architecture is changed by the architect. The ar-
chitect modifies a part of the architecture. Examples of changes are adding
new components, altering existing components, or deleting existing com-
ponents.

Change requirement predicates The changed informal functional require-
ments result in changed requirement predicates. Dependent on the changes
to the architecture, existing requirement predicates might need to be up-
dated to reflect the changes in the architecture. New functional require-
ments result in adding requirement predicates. Deleted requirements re-
sults in removing requirement predicates.

3.3. PERFORMING CHANGE IMPACT ANALYSIS

Change requirements

Find impacted components

[not satisfied]

> Change architecure
Change requirement
predicates
Update traces requirement predicates
to architecture components
Transform architecture to
executable Alloy code
Simulate architecture,
validate requirements

Architecture
satisfies

requirements?
[satisfied]

Figure 3.6: Activity diagram for performing change impact analysis

29

30 CHAPTER 3. APPROACH

Update traces requirement predicates to architecture components The
traces from the changed requirement predicates to architecture compo-
nents are updated. Updated requirement predicates might impact other
components, after the changes.

Transform architecture to executable Alloy code The architecture is trans-
formed to executable Alloy code. This Alloy code is used to simulate
the architecture and validate the requirements. The transformation from
AADL architectures to Alloy code is automatic. The supporting frame-
work for the transformation is given in section 3.5.

Simulate architecture, validate requirement predicates The architecture
is simulated to derive the behavior of the architecture. This simulation
is fully automatic; no interaction during the simulation itself is required.
Chapter 5 elaborates on the simulation of the architectures. Behavior of
the architecture is validated against the requirement predicates. Chapter
6 elaborates on the validation of requirements.

Find impacted components In case one or more formalized functional re-
quirements are not satisfied by the architecture, we try to find the im-
pacted components by use of traces from requirement predicates to com-
ponents in the architecture. Chapter 6 elaborates on finding impacted
components, based on the counter example.

The process is iterative. It is possible that a single change to the architecture
does not result in satisfaction of its requirements. Therefore, the process might
have to be performed multiple times until the architecture satisfies its require-
ments again. This is shown by the control flow from the last branch back to the
change architecture activity.

3.4 Evaluation of approach

We evaluated the proposed approach by performing a case study. This case
study applies the process found in section 3.3 to the Remote Patient Monitor-
ing project. It was a project at Atos Origin Technical Automation. The re-
quirements and architecture used in this thesis are a subset of the real Remote
Patient Monitoring system. The case study evaluates five change scenarios. The
results of the case study are found in chapter 7.

The stakeholders of the system are the following: patients, doctors, system
administrator. The patients are the stakeholders who are being monitored. The
doctors are the stakeholders who keep track of the patients’ situation. Finally,
the system administrator is the stakeholder who administers the system.

The Remote Patient Monitoring system has several main goals. The first
goal is the ability to monitor patients’ temperature. Periodically, the system
has to perform a temperature measurement at a patient. The patient carries
a device which does this. Each temperature measurement is transferred to a
central system which stores the temperature measurement. The requirements
R1 to R3 found in table B.1 of chapter B describe this.

The doctors are able to review the temperature measurements performed
by the system. They can access the temperature measurements through a web-
interface. The web-interface provides graphs and tables with the temperature

3.4. EVALUATION OF APPROACH 31

CPC

= = =y B o o w

Figure 3.7: Overview of the RPM architecture

measurements from a patient. This is described by the requirements R15 and
R16 in table B.1 of chapter B.

Also, the doctors are able to set a temperature threshold for a patient. If
this threshold is exceeded, the system triggers an alarm which is received by the
doctor at his alarm receiving device (a program running at his computer). The
ability to set a temperature threshold for a patient is specified by requirements
R9 to R11, found in table B.1 of chapter B. Requirements R4 to R8 found in
table B.1 of chapter B specify the ability to generate alarms and send them to
the doctors’ computer. The doctors are also able to review the temperature
alarms of a patient.

The system uses ZigBee for wireless communication between the device car-
ried by the patient and the central system. ZigBee is a wireless protocol meant
for devices which must be able to run on a single battery for a long time span.
It is often used in sensor networks with multiple nodes and the required mainte-
nance to those nodes has to be as low as possible. Requirements R12 and R13,
table B.1 in chapter B, specify the use of ZigBee and a dedicated central node
which performs the task of network coordination.

The architecture derived from the requirements is given in figure 3.7. A full
specification in AADL of the architecture is given in listing B.1 of chapter B.
For brevity and readability, the figure does not give the full refinement of all
components. The architecture consists of several components.

The SD component is the device which is carried by the patient. It performs
temperature measurements at a regular interval. If required, it sends the tem-
perature measurement to the HPC component through the SDC' component.
If a temperature threshold is exceeded, the SD components sends an alarm to
the SDC component, which forwards it to the HPC' component.

The SDC component is the ZigBee network coordinator. It forwards the
temperature measurements and temperature alarms from the SD component
to the HPC component. Furthermore, it forwards temperature thresholds from
the HPC' component to the SD component. The details of the real coordinating
task are omitted in the architecture description.

The HPC (Host PC) component consists of several subcomponents. It con-
tains the SDM (Sensor Device Manager) components which interfaces with the
SDC' component. If the SDM component received a temperature measurement
it stores it in the temperature_measurements database. If it receives an alarm,
the alarm is stored in the temperature alarms database, and forwarded to the
AS component (Alarm Service). The HPC component also contains the WS

32 CHAPTER 3. APPROACH

(Web Server) component, which serves the web-interfaces for the doctors. The
AS component, contained by the HPC' component, forwards the alarms it re-
ceives to the CPC component.

The CPC (Client PC) component is the system which the doctors use to
monitor the patients. The CPC contains two subcomponents. The first sub-
component is the WC (Web Client). This is a normal web browser and is used
to access the web-interface provided by the WS component, found in the HPC
component. The second subcomponent is the AR (Alarm Receiver). As a web-
interface does not provide a means for instant data updates pushed by the web
server, a separate program is required. The AR component is a stand-alone
program which receives the requirements and notifies the doctors.

From this case study, we identify the strengths and weaknesses of the ap-
proach. After each change scenario, an evaluation is given and results are dis-
cussed. Chapter 9 gives the final conclusion based on the case study as well as
the other chapters.

3.5 Supporting framework

In order to automate the simulation of the architecture and validation of the
requirements, we build a supporting framework. This framework consists of
a transformation from an AADL instance model to a simulatable model of the
architecture in Alloy. The activity diagram of the creation of the support frame-
work is given in figure 3.8. It consists of the following activities:

Define structural semantics in Alloy The AADL meta-model expressed in
ECore[EMF] and the AADL standard[SAEQ9] are used for this activity.
The AADL meta-model describes the allowed structure of the architec-
tures. Where the AADL meta-model is lacking, we use the AADL stan-
dard to further formalize the architecture. The result of this activity is
an Alloy module which defines the AADL meta-model. The simulatable
models of the architecture are based on this Alloy module. Section 5.2
gives the results of this activity.

Define behavioral semantics in Alloy The simulation is based on the be-
havioral semantics of AADL. The AADL standard[SAEQ9] serves as a
basis for the definition of the behavioral semantics. Where the AADL
standard is lacking, we introduce self-defined semantics. The result of this
activity is the basis for discrete event simulation of AADL models in Alloy.
Section 5.3 gives the results of this activity.

Build transformation from AADL to Alloy We build a model-to-text trans-
formation from AADL instance models to Alloy code. The structural and
behavioral semantics are used as a basis for the transformation. The out-
put of this activity is a transformation which transforms AADL instance
models into simulatable Alloy models. We use XPand2 as a transformation
engine, which is part of the openArchitectureWare[ope] platform.

3.6. CONCLUSION 33

~
—~
7Geﬂne structural semantics in AIIO§
e

Architecture MM (ECore)

7 ~
AADL standard K T
standar
e N = AADL MM (Alloy)
~
N) L — — 7
A@eﬁne behavioral semantics in AIIoDé/
-
-
T
_ - Behavioral semantics (Alloy)

Z -
Build transformation AADLY ~_ — —
XPand2 transformation </ to executable Alloy

Figure 3.8: Activity diagram for building supporting framework

3.6 Conclusion

In this chapter we give an overview of the approach for this research project.
Section 3.2 describes the validation of requirements against the architecture.
To be able to do this, three key activities have been identified. The first key
activity is formalizing the requirements into formal behavior descriptions. The
second key activity is the simulation of the architecture in order to derive its
behavior, which results in a state space. The third key activity is the validation
of the presence (or absence) of the formal behavior descriptions (requirements)
in the state space.

In section 3.3 we described the process of performing change impact analysis,
through an activity diagram. The activities include changing the requirements,
changing the architecture, changing the formal behavior descriptions, simulating
the architecture, validating the formal behavior descriptions, and, in case of a
counter example, finding the impacted elements by use of the counter example.

Section 3.5 describes the supporting framework which we use to simulate the
architecture. The supporting framework includes the definition of the structural
and behavioral semantics of AADL in Alloy, and a model-to-text transformation
to automatically convert AADL instance models to an Alloy model. Using the
supporting framework, we can easily and quickly take an AADL specification
and automatically convert it into a simulatable model.

34

CHAPTER 3. APPROACH

Chapter 4

Introducing AADL and Alloy

4.1 Introduction

This chapter will introduce the architecture description language AADL[Fei] and
the model finder/checker Alloy Analyzer[MIT]. AADL and Alloy are introduced
to provide a better understanding the concepts found in the later chapter.

Section 4.2 will give an introduction to the basic concepts AADL. The ra-
tionale for the choice of AADL is given section 4.3. An example architecture,
which is used throughout the thesis, is given in section 4.4. In section 4.5, we
give a short overview of the basic concepts of Alloy and the Alloy Analyzer.
The rationale for the choice of Alloy is given in section 4.6. Finally, this chapter
is concluded by section 4.7.

4.2 AADL

AADL is an architecture description language developed by the Software Engi-
neering Institute (SEI) at the Carnegie Mellon University (CMU). The Society
of Automotive Engineers (SAE) released the aerospace standard AS5506[SAEQ9]
in November 2004, which describes the first version of AADL. In January 2009,
the SAE released the standard AS5506A[SAE09]|, which is the second version of
the AADL. The document [FGHO6] provides an introduction into AADL, based
on the first standard.

4.2.1 Language abstractions

Figure 4.1 shows the core language concepts of AADL. Components are defined
by component types and component implementation declarations. The exter-
nally visible interface and observable attributes are defined by the component
type. The internal structure of the components is defined by the component
implementation. The internal structure is composed of sub components, con-
nection, call sequences, modes, flows, and properties.

Three categories exist for components: Software, execution platform, and
composite components. The first group is composed of the components: Data,
subprogram, thread, thread group, and process. The execution platform group

35

36 CHAPTER 4. INTRODUCING AADL AND ALLOY

data

Component Type " ; - subprogram
identifier v : :::::g o
- extends {component_type} H H : group

featureSuamamnnnsmnmemnnn : raccess
- flows ¢ *subprogram

- properties : - parameter

* . processor
+bus

Package
public

Component implementation . declarations
Property Set identifier private
property types - extends {component implementation} - declarations
property definitions - refines type
Constants - subcomponents

- connectionsssss=suss FETTPTTITrTrrS
- call sequences

Library

: +mode transitions :

Legend more details references

G Ko ———— q

Figure 4.1: AADL core language concepts|[FGHOG6]

consists of the components: Memory, device, processor, and bus. Finally, the
composite components group is defined by the component System.

Property Sets are used to annotate the system with additional data through
one or more properties (key-value pairs). An Annex Library can be used when
the property sets are insufficient. Sublanguages can be introduced through an
Annex Library.

AADL provides both a textual and a graphical notation for the specification
of architectures. An overview of the components of the graphical notation is
given in figure 4.2. An example architecture specified using the textual notation
can be found in appendix B.

Application Software Execution Platform

Composite

system

Figure 4.2: AADL graphical notation of components|FGHO6|

4.2. AADL 37

4.2.2 Software components

AADL provides the following software components abstractions:

Process Processes are used to represent a protected address space. This pro-
cess space contains: Executable binary image; Executable binary images
from its subcomponents; Server subprograms and data which are refer-
enced by external components.

Thread The thread component is used to represent a concurrent schedulable
unit of sequential execution. Multiple threads can be used to represent
concurrent execution within the architecture. Threads can be dispatched
periodically, or when events are received at event, or event data ports. A
thread implementation can contain data, and subprogram subcomponents.

Thread group Thread groups are used to logically organize threads, data, and
thread groups within a process. The thread groups are used to provide a
means for the separation of concerns. Thread group implementations are
allowed to contain data, thread, and thread group subcomponents.

Data The data component is used in multiple ways. Firstly, it is used to define
application data types. Secondly, data components are used to define the
substructure of data types via data implementation subcomponents. Fi-
nally, a data component can be used to represent a data instance within
the architecture. A data component implementation is only allowed to
have data subcomponents. A data type is used to define the data asso-
ciated with ports and parameters. Strong typing of elements allows for
verification of the architecture. Data subcomponents can be used to define
the substructure of a data type. A data instance is represented by the use
of a data subcomponent within another component implementation.

Subprogram Finally, the subprogram component is used to represent sequen-
tially executable source text. Subprograms are used to model: A method
call for operation on data; Basic programs calls and call sequences; Remote
service/procedure calls.

4.2.3 Execution platform components

The following execution platform components are defined in AADL: Processor,
Memory, Bus, and Device. These components are used to represent compu-
tational and interfacing resources within a system. Software components are
mapped onto execution platform components within a system. Using this map-
ping, the locations of the execution of code and the storage of data are specified
in the system.

Processor The processor component is used to represent an abstraction of
hardware and software responsible for the scheduling and executing soft-
ware components. An example of a processor can be a server which runs
Linux as its operating system. A processor component implementation
can have memory subcomponents.

Memory A memory component represents memory such as RAM, ROM, but
also storage such as hard disks.

38 CHAPTER 4. INTRODUCING AADL AND ALLOY

AADL meta-
model

l

AADL
specification

l

AADL instance
model

Figure 4.3: Conceptual AADL hierarchy

Bus Busses are used to represent hardware and an associated communication
protocol. A bus enables interaction between different execution platform
components. For example, two threads each bound to a different processor
required to communicate with each other, a bus is used to provide the
means for communication between the threads. A bus cannot have any
subcomponents.

Device A device is used to represent entities that interface with the external
environment, such as sensors and actuators. Devices are often complex
elements, but do not need to be modeled as such in an architecture. Device
component implementations cannot have any subcomponents.

4.2.4 System structure and instantiation

The system component abstraction is used to represent a composite of the soft-
ware, execution platform components, or system components. Systems can be
used to represent a complex system of systems, or the integrated software and
hardware components of a dedicated application system. A complete system
specification includes the binding of software components to execution platform
components. For example, a process component must be bound to a memory
component and a thread component must be bound to a processor component.

From the architecture specification, a system instance is generated. The
architecture specification conforms to the AADL meta-model. This system in-
stance represents the run-time architecture of a physical system. The system
instance is created by instantiating the top-level system instance, and then re-
cursively instantiates the contained subcomponents, and their subcomponents,
and so on. The architecture instance model conforms to the architecture speci-
fication. A graphical overview of this hierarchy is given in figure 4.3.

4.2.5 Component interaction

A port connection represents an explicit relationship declared between two ports,
or two port groups which allows for directional exchange of data and events
between components. The directions of ports can be either incoming, outgoing,
or both incoming and outgoing.

4.2. AADL 39

} Data port
in
in out

) Event port

» Event data port

Figure 4.4: AADL graphical notation of ports|[FGHO6]

connection declarations

/A

scale_thread /

- z
[VA 4 Y A
collect_data_process scale_data_process
K Esemantic connection

Figure 4.5: Semantic connection between thread instances|FGHO6]

Application System

Three different types of ports are specified by the AADL. The different ports
are shown in figure 4.4. The following port types are available:

Data port The data port is used for (typed) data transmission, and does not
contain a queue.

Event port An event port is a port which is used for the communication of
events. Events can be raised by subprograms, thread, processors, or de-
vices. An event port can provide a queue which can store multiple events.
An example of an event is an alarm which is triggered by a device.

Event data port The event data port is used for transmission of events with
data, also called messages. Event data ports can be queues. An example
where an event data port can be used is when sensors are used to trigger
an alarm, annotated with a concrete value when a threshold is violated.

In case of a fully specified system instance models, semantic port connections
represent direct communication channels between two thread instances, a thread
instance and a processor instance, or a thread instance and device instance.
The port connections declarations are abstracted in favor of the semantic port
connections. Figure 4.5 shows several port connection declarations and the
semantic port connection between two threads.

The subcomponents data and bus are made accessible through the use of
component access features. Data subcomponents can be accessed by other com-
ponents through the use of a data access feature. For example, a subprogram
can be given access to a data instance contained within another component
through data access features and data access connections. The access direction
of a component access feature is either provides or requires. Figure 4.6 gives a
graphical example where a data instance is used by several threads. The data
access connections are annotated with properties.

40 CHAPTER 4. INTRODUCING AADL AND ALLOY

requires data access to
comm_error_log
(logs.error_logs — read_write)

provides data access to
comm_error_log
(logs.error_logs)

rror_monitor <
4 .
rsd requires data access to
J /7 comm_error_log
(logs.error_logs — read_only)

Figure 4.6: Data access example[FGHO6]

Busses can be made accessible through a similar construct, called bus access
features and bus access connections. The access direction of a component access
feature is either provides or requires.

Subprograms are called by the use of a call sequences within a thread or
subprogram implementation. A call sequence calls one or more subprograms.

Subprograms can exchange with other components through parameters, and
data access. Parameters represent the call and return data from a subprogram
call. A subprogram can have one or multiple parameters. Parameters are con-
nected to other parameters or ports through the use of parameter connections.
The parameter connections are similar to the port connections.

Subprograms can also have data access features which are used to specify
access to data instances.

4.2.6 Modes

In AADL, modes are used to represent different run time configurations for
components. In a cruise control system, for example, the modes can be ini-
tializing, inactive, and active. Each of these modes specifies a different set of
active threads and connections among those threads. Mode switches are driven
by events received at event ports.

A state within a state machine is used to represent a mode. The states in the
state machine represent the different configurations of the mode-specification. A
model-specification must at least include two states, where one state is declared
as the initial state.

4.2.7 Flows

Flow specifications in AADL give a detailed description of the data flow path
through a component. A flow starts at a source and ends at a sink, flowing
through subcomponents.

A port or parameter can be declared as a flow source. Similarly, a port or
parameter can be declared as a flow sink. A flow path is used to represent a data
flow from one feature of a component to another feature of the same component.
The specification of data flows can be used for analysis of the architecture.

4.3. RATIONALE FOR AADL 41

4.2.8 Properties and annexes

Properties sets are used to annotate the architecture with project-specific infor-
mation. A property set consists of one or more properties, which are key-value
pairs. Elements annotated with properties can be used by tools for analysis and
verification, as well as additional specification of elements.

An annex is a more elaborate version of the property. An annex is used to in-
troduce a sublanguage into AADL. For example, a formal language can be used
to describe behavior of a component. Tools can use this behavior description for
deeper analysis to verify correctness of the architecture. Examples of three dif-
ferent annexes that are provided by the SEI are the behavioral annex, the error
model annex, and the programming language API annex. The behavioral an-
nex allows for a more elaborate description of the behavior of components found
in an architecture. The error model annex is used to declare error models for
components. The programming language API annex defines language-specific
rules for source texts to be compliant with the architecture.

4.3 Rationale for AADL

This section gives the rationale for the choice of AADL as the language to record
architectures. Several criteria were specified in order to find the ADL best suited
to our needs:

e The architecture description language has to supply behavioral semantics
of the architecture elements;

e The architecture description language has to support annotation of the
architecture elements;

e The architecture description language must have an actively supported
toolset.

During the literature research, the architecture description languages AADL[Fei],
xADL2.0[DvdHT01a, DvdHTO01b], and ACME/Armani|GMW97, Mon01] were
investigated. Older languages, such as C2SADL, Wright, and Darwin, are in-
vestigated, but not thoroughly as these seem to be no longer in use and do not
have an actively supported toolset.

From the literature research, we chose AADL as it provides the largest set
of pre-defined behavioral semantics. In contrast to the other languages, special-
ized components types are given, such as Process, Thread, and Subprogram.
This differentiation gives us a richer set of semantics compared to the other lan-
guages. In other aspects, it is also more elaborate, such as the different port and
connection types. Also, it is standardized by the SEI, as AS5506A /1[SAE09].
The architecture in AADL can be annotated by properties. When properties
are lacking, AADL can be even further annotated /extended through the uses of
annexes.

The language xADL2.0 is a language which only provides the basic concepts
of Component, Connector, Interfaces, and Configuration. The language itself
does not specify any semantics for these elements, but rather lets the architect
specify these. The language is meant for extension by altering/adding XML
schemas. This means that new elements can be added, all with their own

42 CHAPTER 4. INTRODUCING AADL AND ALLOY

properties as described in the XML schemas. In our case, given that it does
not provide any behavioral semantics, it is not very usable for us. The language
itself is very extendable, however.

ACME/Armani is also a language which primarily provides the basic con-
cepts found in architectures, based on the component & connector view: Compo-
nents, Connectors, and Systems/Configuration. As with xADL2.0, it is meant
to be extended by the architect using custom properties. But in contract to
xADL2.0, where entirely new elements can be added, the existing elements
can be annotated with key-value pairs. ACME/Armani does provide a (lim-
ited) semantic framework, but this framework can only be used to reason about
structure.

The older architectural languages, such as Wright[AG96] and Darwin[KM85],
also provide only the basic concepts of architecture: Components, Connectors,
and Configurations. Although some of the languages are very formal, these
languages tend to focus on one domain. A comparison of these languages is
given in [MT00].

The UniCon architecture description language[Zel96], a first generation lan-
guage, provides specialized components. Specialized components include Com-
putation, Filter, and Process. These specialized components have more precise
semantics, compared to the abstract components. However, this language ap-
pears to be no longer in use and the supported toolset is no longer available.

4.3.1 Supported AADL subset

To limit the scope of the research, only a subset of all the AADL elements are
supported. In addition, certain concepts are simplified or omitted for the same
reason. For example, AADL supports two generic types of components, the
execution platform (hardware) components and software components. The exe-
cution platform components and its related features are not considered, except
for the system component. Software components are the main target in this
prototype. Elements which are not considered as core concepts, but provide
grouping mechanisms are also removed. Furthermore, some features such as
event ports are omitted.

The AADL provides a divergence between component types and component
implementations. A component type specifies its interface and attributes which
are externally visible, while a component implementation defines the compo-
nents inner structure - similar to the black box/white box approach. These two
concepts have been merged into a single concept, as this separation does not
provide any gain for this prototype. The same divergence also comes forward
in the flow concept, and is merged as well.

The supported elements can be found in table 4.1.

Certain limitations are also imposed on the AADL models under considera-
tion. The constraints on the source models are as follows:

e All components must be refined to the level of subprograms;
e All ports and data accesses are typed;
e Only the elements found in 4.1 are supported;

e Modes are not supported.

4.4. REMOTE PATIENT MONITORING 43

Category Elements
Components System, data instance, process, thread,

subprogram
Features Data port, event port, event data port,

parameter, data access
Connections Data port connection, event data port
connection, parameter connection, data access
connection
Call sequence Subprogram call

Table 4.1: Supported AADL concepts

The components must be refined to the level of subprograms. In our approach,
the subprograms are the components for which we define the behavior. The
system, process, and thread components are not annotated with additional be-
havioral properties. We do not support modes because we do not cover dynamic
configuration of software architectures in this thesis.

4.4 Remote patient monitoring

Throughout the following chapters, an example architecture is used to clarify
different concepts. This section gives the example architecture. The example
architecture is a small part of the architecture given in appendix B. The example
architecture implements the first three requirements, also found in appendix B.

Figure 4.7 gives the graphical representation of the architecture. The exam-
ple architecture consists of three subsystems called SD, SDC, and HPC. The SD
represents a device which is carried by a patient. This device performs a temper-
ature measurement on regular intervals and sends the temperature measurement
to the SDC. The SDC is a device which supports all the communication be-
tween the SD and HPC. Although not visible in the architecture presented here,
it performs some network supporting tasks. The temperature measurement re-
ceived by the SDC from the SD is forwarded to the HPC. The HPC system
represents a central system which serves as the central system which performs
several tasks, such as storing the measurements. The HPC system contains a
process called SDM. This process receives the temperature measurement, and
stores the temperature measurement in the data instance which it has access to,
as shown in the figure. All the processes in the architecture are refined to the
level of subprogram. Unless otherwise noted, the default name for a process,
thread, and subprogram are proc1, threadl, cl1, respectively.

A naming scheme is used to identify the different components in the archi-
tecture. For example, the device Sensor!, as shown in figure 4.7, is referred
to as: SD.Sensorl. SD is the parent of the device, and Sensor! is the name
of the device itself. Another example is hpc.sdm.threadl.c1, which is the full
name for the subprogram (indirectly) contained by the HPC' system. Features,
such as event data ports, are also identified by this naming scheme. For ex-
ample, the thread sdc.procl.thread! contains the two event data ports called
sdc.procl.threadl.measurement in and sdc.procl.threadl.measurement out.

The systems SD, SDC, and HPC, are also contained by a system, called

44 CHAPTER 4. INTRODUCING AADL AND ALLOY

Figure 4.7: Example architecture in AADL

RPM, but the RPM part of the identifiers is omitted here.

4.5 Alloy

Alloy is a modeling language which can be used to model one or more aspects
of the system. Alloy is based on first order logic and is a declarative language.
This means that instead of specifying behavior using operational or imperative
semantics (how to accomplish a task), pre- and post conditions are specified to
detect a task has happened. Being a declarative language, it allows for smaller
and more concise models. Alloy is comparable to Z[Spi87], OCL[OCLO06|, and
VDM]|Jon90].

Alloy is both a model finder and a model checker. Given a specification
and constraints, it finds models. In turn, the found models can then be checked
against formulas. If the model does not conform to the given formulas, a counter
example is returned. The examples presented below are based on [MIT, All09].

For this section, a separation between modeling structure, modeling behav-
ior, and validating behavior is made. Subsections 4.5.1 and 4.5.2 are generally
used to model the structure of a model. Subsection 4.5.3 and 4.5.4 are used to
model the behavior of the model. Sections 4.5.4, 4.5.5, and 4.5.6 are used to
validate the behavior of a model.

4.5.1 Signatures and fields

Throughout this section, we will use an example Alloy model which is also used
in the Tutorial for Alloy Analyzer 4.0[A1109]. The model describes a file system,
which consists of files, directories, and one root directory. The Alloy model of
the file system is given in listing 4.1.

An Alloy model is described using paragraphs. Each paragraph describes a
part of the model. A signature paragraph describes a basic type, together with
a number of fields for that signature. The identifier of the signature represents
a set of atoms which can be accessed by the identifier. The example model gives
4 signatures: FSObject, File, Dir, FileSystem.

A field of a signature represents a relation from an atom of the signature
to another atom. The FileSystem signature has four fields: root, live, contents,
parent. The root field represents the relation from FileSystem— Dir. Relations
with an arity higher than two are described by the -> symbol. The parent field

4.5. ALLOY

Listing 4.1: Alloy file system example[All09]
abstract sig FSObject { }

sig File, Dir extends FSObject { }

sig FileSystem {
root: Dir,
live: set FSObject,
contents: Dir lone—> FSObject,
parent: FSObject —>lone Dir
P A
no root.parent
live = root.*xcontents
contents in live—>live
parent = “contents

}

pred example {}
run example for exactly 1 FileSystem , 4 FSObject

pred move [fs, fs’: FileSystem, x: FSObject, d: Dir] {
(x + d) in fs.live
fs ’. parent = fs.parent — x—>(x.(fs.parent)) + x—>d

}

run move for 2 FileSystem , 4 FSObject

pred remove [fs, fs’: FileSystem, x: FSObject] {
x in (fs.live — fs.root)
fs 7. parent = fs.parent — x—>(x.(fs.parent))

}

assert removeOkay {
all fs, fs’: FileSystem, x: FSObject |
remove [fs , fs’, x| => fs’.live = fs.live — x
}

check removeOkay for 2

45

46 CHAPTER 4. INTRODUCING AADL AND ALLOY

Listing 4.2: Alloy fact example[All09]

fact ProperFileSystems {
all fs: FileSystem |
no (fs.root).(fs.parent) and
fs.live = (fs.root).*(fs.contents) and
fs.contents in fs.live—>fs.live and
fs.parent = “(fs.contents)

of the FileSystem signature describes the relation FileSystem— Dir— FSObject.
An atom is a unary-relation.

Signatures can extend other signatures, much like the inheritance of objects
in the object oriented-paradigm. In the example model, the File and Dir signa-
ture extend the abstract FSObject signature. The File and Dir signature both
represents a subset of the FSObject signature. If two or more signatures ex-
tend a signature, these sets are disjoint from each other. Following the example
model, the sets of atoms of the File and Dir signatures are disjoint. Abstract
signatures are not instantiated to atoms.

Quantifiers can be added to restrict the number of relations for a field. The
quantifiers are: lone, one, some, set. These quantifiers limit the models to:
less than or one, exactly one, one or more, zero or more, respectively. In no
quantifier for a field is given, the default of exactly one is used.

The model consists of four signatures. The FSObject signature is abstract
and never used directly. The File and Directory signatures represent the files
and directories of the file system, respectively. Finally, the FileSystem signature
represents the container for the file system.

The fields of the FileSystem are: root, live, contents, and parent. The root
field represents the directory which is the root of the file system. The live field
contains all the FSObjects (Files and Directories) present in the file system.
The contents field is used to specify the structure of the FSObjects held by
each Directory. Finally, each item in the FileSystem has no or one parent,
which is described by the parent field.

4.5.2 Facts

Facts are used to constrain the models. A fact paragraph is an assumption over
the model which always holds. A fact paragraph consists of expressions which
always hold for the model.

Facts over models can be given in two manners. The first manner is to
describe a fact by using the fact keyword. An example is given in listing 4.2.
The second manner is to append the fact to a signature. This fact then describes
constraints of the model over this signature. An example of this is given in listing
4.1, appended to the FileSystem signature. Both the facts given in listing 4.2 and
in listing 4.1 represent the same constraints. Note that the fact appended after
the FileSystem signature constraints the model with regard to the FileSystem
signature only, and does not explicitly have to state the use of the FileSystem
signature.

4.5. ALLOY 47
] Keyword Description ‘
|, &&, ! Disjunction, conjunction, negation
+,-, & Union, difference, intersection
=, <=> Implication, bi-implication
++ Override
Composition
in, = Subset, equality
no, lone, one, No, zero or one, exactly one, one or more, zero or more
some, set
Tk Relational transpose, reflexive transitive closure,
transitive closure.
all, some, one, universal, existential, singleton, none
no
Table 4.2: Alloy operators
Expressions

The fact appended to the FileSystem signature in listing 4.1 has four expressions.
The first expression specifies that the root directory does not have a parent. The
no-keyword is a quantifier and, in this case, is used to restrict the number of
relations for an atom.

The .-keyword is the relational join operator. p.q represents the relational
join of p to ¢. The result is the combination of every element in p and every
element in ¢, if any exists. p and ¢ may not both be unary relations (atoms).
Given that Alloy is typed, the right type of p must match the left type of ¢. In
this case, the relation Dir is combined with the relation F'SObject— Dir. Given
that Dir extends from FSObject, the join is valid. The join yields the relational
image of root in parent.

The second expression states that all the FSObjects contained by the FileSys-
tem signature is equal to the contents of the root directory, and its sub direc-
tories. The =-operator specified the equality of two relations. The *-operator
denotes the reflexive transitive closure. The ~-operator denotes the transitive
closure. * is equivalent to (iden + ~contents) where iden is the keyword to
represent the ’current’ atom.

Thirdly, the expression states that the structure (contents) of the file system
must be a subset of the relations between the product of all the elements in the
file system. The in-operator specifies the left operand of the in-operator is a
subset of the right operand. The —-operator denotes the product operation of
the concatenation of the combination of the left-operand with the right-operand.
In this case, all the contents-relations must be contained in the product of the
live-relation with itself.

Finally, the last expression states that the parent-relation is the transpose
of the contents relation. The ~-operator denotes the transpose of a relation.

A summary of all the operators in Alloy with a short description is given in
table 4.2.

48 CHAPTER 4. INTRODUCING AADL AND ALLOY

Listing 4.3: Example Alloy function

fun between [lower:Int, upper:Int|: Int {
{ answer: Int | lower < answer && answer < upper }
}

4.5.3 Functions and predicates

A function paragraph, indicated by the fun-keyword, is a formula which can
be invoked from somewhere else. A function takes a zero or more arguments.
Quantifiers can be added to the arguments, but are not enforced by the Alloy
Analyzer. A function returns a number relations conformant to the given return-
type. The body of the function is an expression which must result in set of
relations. Note that a relation can also be a unary relation. Functions are
typically useful to define commonly used code and structure the code.

An example of a function is given in listing 4.3. This function takes two
arguments, lower and upper, and returns a set of Int. The body of the function
states that the result of the function are the Int atoms which are bigger than
the lower-argument, and smaller than the upper-argument.

A predicate paragraph, indicated by the pred-keyword, is a function which
evaluates to true or false. An example of a predicate is given in listing 4.1, named
move. The move predicate takes two FileSystem atoms (fs, fs’), a FSObject
atom (x), and a Dir atom (d), and describes the moving of the FSObject atom
to the Dir atom. The parameter fs represents the filesystem before the move,
fs’ represents the filesystem after the model.

4.5.4 Scope

The Alloy Analyzer can be used to automatically analyze the model within a
finite scope. The scope restricts the number of atoms for each signature, and
is user-defined. The Alloy Analyzer instantiates up to a number of atoms for a
signature, or exactly a number of atoms for a signature. The command example,
in listing 4.1, defines a scope of exactly one FileSystem atom, and up to four
FSObject atoms.

The analysis performed by the Alloy Analyzer is sound and incomplete, since
it only checks for within a given scope. However, no guarantees can be made
for a larger scope, without actually analyzing the larger scope. The idea behind
this approach is the “small scope hypothesis”. This hypothesis states that if a
failure will happen, it will most likely happen within a small scope.

Figure 4.8 gives the found model when running the ezample-predicate in the
given example model. It shows a file system which contains two directories and
one file. A second file is in the model, but not contained by the file system.

Figure 4.9 gives an instance of a model for running the move-command.
It shows two FileSystem atoms, one Dir atom, and one File atom. The first
FileSystem atom (FileSystem1) contains the File atom, the second FileSystem
atom (FileSystem0) does not. The File is removed from FileSysteml. In this
case, FileSystem1 and FileSystem2 represent two different states of the file sys-
tem.

4.5. ALLOY 49

FileSystem

onte| rent [FileO]

live live root

Dir1 FileO File1

Figure 4.8: Instance of FileSystem model (based on [All09])

FileSystem1 FileSystemO
($remove_fs) ($remove_fs')

File
($remove_x)

Figure 4.9: Resulting instance of move-predicate (based on [A1l09])

50 CHAPTER 4. INTRODUCING AADL AND ALLOY

FileSystem0 FileSystem1
($removeOkay_fs') ($removeOkay_fs)
root live [liveroot
ive ontents [D(r0]
Dir1

Dir0

($removeOkay_x)

Figure 4.10: Counter example found by the removeOkay-assertion (based on
[A1109])

4.5.5 Assertions

In contrast to a fact, which forces all models to conform to that fact, an as-
sertion is used to claim something that must already be true for the model. If
an assertion is violated over a model, the Alloy Analyzer will return the model
as a counter example. An example of an assertion is given in listing 4.1, called
removeOkay. The assertion states that for all two FileSystems, and one FSOb-
ject, the remove predicate implies the actual removal of the object from the file
system.

Checking the removeOkay assertion results in a counter example. The output
from the Alloy Analyzer is given in figure 4.10. This counter example shows
that in the pre-state (FileSysteml), Dir0 is the root of the filesystem, Dirl is
the directory which is to be removed. In the post state (FileSystem0), Dir0 is
removed, but Dirl is chosen as the new root, which is incorrect.

Counter examples helps us to identify models which are invalid and tells us
why these models are invalid. A model can be under constrained, meaning that
it is not constrained enough by facts. A model can also be over constrained,
meaning that it is too constrained by facts. Assertions are used to check whether
the model is correct given a number of formulas.

The use of assertions allows us to incrementally build the specification. We
start with a minimal model, and perform checks over the model using assertions.
If the model is under constrained or over constrained, a counter example will
be given. From the counter example, we can correct the model and re-run the
verification. If all assertions hold, we can further extend the model.

The evaluator of the Alloy Analyzer is used to query the counter examples.
The evaluator allows us to evaluate formulas over the model which has been
found.

4.5.6 State space exploration using Alloy

Alloy can be used to explore the state space of a discrete event based simulation.
Basically, two approaches are possible. The first approach is generating the
whole state space at once. Each state could have zero or more subsequent
states. Only a single model is returned by the Alloy Analyzer.

The second approach generates traces from the whole state space. The Alloy
Analyzer returns multiple models, which together represent the whole state
space. Each state now has zero or one subsequent state, instead of multiple

4.6. RATIONALE FOR ALLOY o1

Figure 4.11: Approaches in state space exploration using Alloy

states. The ordering-module is used to impose an ordering over the states. This
allows for optimizations by the Alloy Analyzer, resulting in faster state space
exploration. If the state space is tested against predicates, the Alloy Analyzer
tests the predicates against each of the found predicates.

Figure 4.11 gives a graphical overview of the two approaches. The whole
state space consists of the five states Sy, S1, S, S3, and S4. Sg is considered to
be the initial state. Using the first approach, the Alloy Analyzer would return
the complete state space as a single model. Using the second approach, the Alloy
Analyzer returns two models representing two traces. The first trace consists of
the states Sy, S1, and So; the states captured by the dashed line. The second
trace consists of the states Sp, Sz, and Sy; captured by the dotted line.

4.6 Rationale for Alloy

To be able to reason about the architecture a semantic framework is needed.
In our case, the reasoning about the architectures consists of generating a state
space and validating the existence or lack of existence of behavior. We have
defined several criteria to find the semantic framework best suited for our pur-
poses. The criteria are as follows:

e The framework must return a counter example if an assertion is violated;
e The framework must support state space exploration;
e The framework must support fully automatic analysis.

Given these criteria, Alloy was chosen as it suites our needs. The Alloy Analyzer
returns a counter example, in case an assertion is violated. We use this counter
example to find the predicates which are not satisfied by the architecture. Alloy
also provides a way of formally specifying requirements. These requirements
state behavior which is to be found in the architecture. Also, the Alloy Analyzer
promises to be very fast at doing its job.

Prolog[Wie09] can be used as an alternative, but was hardly investigated.
It also provides a first order logic language, and can be used as a model check-
er/finder. To us, however, the AlloyAnalyzer appears to be more suited to our
needs. Other alternatives, such as Z, OCL, and VDM are not usable. For ex-
ample, Z is not automatically analyzable. There are no tools for VDM which
support model checking as Alloy does. For OCL, no counter examples are gen-
erated, and also seems less suited to our needs.

52 CHAPTER 4. INTRODUCING AADL AND ALLOY

4.7 Conclusion

In this chapter, a description of AADL is given. AADL is used in the automotive,
avionics and aerospace industries to specify architectures of complex systems.
Companies which use AADL include Ford, Toyota, Boeing, and ESA. A num-
ber of tools for AADL are available. These tools are used to reason different
properties about the architecture, such as real-time schedule analysis and code
generation. Examples of tools include OSATE, Ocarina, and PolyORB-HI-C.

Section 4.2 introduced the concepts of AADL. In section 4.3 we gave the
rationale behind the choice for AADL. Section 4.4 describes an example archi-
tecture, which is used throughout the thesis to explain different concepts.

Alloy is used to perform complex structural and behavioral analysis over
models. The language is based on declarative first-order logic. Being declar-
ative, we can write statements to specify that an event has occurred, instead
of specifying how an event occurs. Alloy also allows for automatic analysis, in
contrast to Z and OCL. Alloy has been used for several case studies, includ-
ing the analysis of the Firewire specification, analysis of a flash filesystem, and
validating compliance with privacy legislation.

In section 4.5 we have introduced Alloy. The main concepts of Alloy are
given, and we have shown how to use these concepts. Section 4.6 gives the
rationale for the choice behind Alloy.

Chapter 5

Simulating architectures

5.1 Introduction

This chapter introduces the simulation of AADL architectures using Alloy. The
representation of the static structure of the architecture in Alloy is given. A
discrete event simulation is introduced to derive the behavior of architectures.
Section 5.2 gives the representation of the static structure of AADL ar-
chitectures in Alloy. A discrete event simulation of architectures in AADL is
introduced in section 5.3. In section 5.4 we give an extended version of the sim-
ulator. Results of benchmarks for both the simple as well as the parallel version
of the simulator are given in section 5.5. Section 5.6 gives a discussion about
the limitations of the simulation. Finally, section 5.7 concludes this chapter.

5.2 Architecture structure

This section describes the Define structural semantics in Alloy activity, found
in figure 3.8 of section 3.5. The structure of the architecture is based on the
component and connector view. An overview of the component and connector
view is given in section 2.4.1.

Alloy is used to simulate AADL architectures. To simulate the behavior
of the architecture, we need to represent the structure of the architecture in
Alloy. For each supported element in the AADL meta-model, we have created
an abstract signature in Alloy. The structure of the Alloy module is as close as
possible to the AADL meta-model, although simplifications have been applied.
This allows for a transparent mapping from the AADL instance models to Alloy
models.

The full Alloy module is given in appendix A. Throughout this section,
excerpts are given of the Alloy module. Figure 5.1 gives a graphical overview
of the module. An example of a part of the RPM architecture, found appendix
B, in Alloy is given in appendix C.

The transformation of the architecture structure from AADL instance mod-
els to Alloy code is fully automatic. This transformation is created in the Build
transformation from AADL to Alloy activity, found in section 3.5. The trans-
formation consists of an XPand2 model-2-text transformation. However, for
brevity, we omit description of the transformation itself.

33

CHAPTER 5. SIMULATING ARCHITECTURES

54

INO uopoaIIqHod

uj” uopoalIgHod

SpusIxa\ Spusxs

uodeleq uonoaliguod Jsjoweled

Spusxa

mecﬂ welboidgng

lepwesboidgns

wajsAs $S8001d

Spuaixa Spuaxa\ Sspuaixg spusixe

sjusuodwonHgns!

SpusXe

peaiyl 8omeQ

salnjes)

jusuodwo)

Hoduang

Spusixe| spusixe

Hod

SpuUsX

alnjea4

SpusIxa

1sp

palinbay uooaIIQSSa00Y

papIAOId UOROBII(SS800Y

mvcmz/ mvg

HOdBlequsAT uonoBIISS820Y sseooyele(

uono m7w pu mu&

souejsuleleq

$s820VIUsuodwon

1Sp| 2Js

uon28UUODHOd UOoNO8UUODSSE00VEIE(]

Spusxe spusxe

adA1ejeg uonosuUU0)

Figure 5.1: Graphical representation of AADL module in Alloy

5.2. ARCHITECTURE STRUCTURE 55

Listing 5.1: Components in Alloy

abstract sig Component {
features: set Feature,
subComponents: set Component,

}

abstract sig Process extends Component {
A
subComponents in Datalnstance + Thread
features in DataPort + EventPort + EventDataPort -+
DataAccess

5.2.1 Components

A single abstract signature, called Component, is used as a basis for the Pro-
cess, Thread, Subprogram, Datalnstance, and System component signatures.
The signature is given in listing 5.1. This signature has two fields: features
and subComponents. The features-field records the features of the component.
The subComponent-field records the subcomponents for the component. As a
component is not required to have any features or subcomponents, we use the
set-quantifier for both fields.

The abstract Process signature is given as an example in listing 5.1. The
signature extends the Component signature, and thus has the features and sub-
Components-fields. Facts are added to the Process signature to enforce correct-
ness of the architecture structure. The fact attached to the Process signature
describes two constraints. The first constraint is that a process can only have
data instance and thread subcomponents. The second constraint describes that
a process can only have data port, event port, event data port, and data access
features.

The signatures representing other component types are shown in listing A.1.

The naming scheme proposed in section 4.4 is used, but altered, to identify
the different component instances. Because Alloy does not allow dots (.) to be
used in the signature names, we replace the dots by an underscore (). Thus,
the name of subprogram sd.procl.threadl.cl1, found in the example architecture
from section 4.4, becomes sd_procl threadl c1. As an example, the signature
for the thread hpc.sdm.procl.threadl is given in listing 5.2. The thread instance
contains one subcomponent, two features and one subprogram call. It has to be
noted that the OSATE toolset prefixes the names with a name, based on the
model. In the example, this prefix is RPM _RPM i Instance_ .

5.2.2 Features

Similar to components, a single abstract feature which is extended by the other
feature types. The supported features are: data port, event port, event data
port, parameter, and data access. An excerpt of the Alloy module regarding
features is given in listing 5.3. The abstract Feature signature does not contain
any fields. The data port, event port, event data port, and parameter features

56 CHAPTER 5. SIMULATING ARCHITECTURES

Listing 5.2: Code for hpc.sdm.procl.threadl in Alloy

one sig RPM_ RPM i Instance hpc sdm threadl extends Thread {
FA

subComponents = none

+ RPM_RPM _i_Instance hpc_sdm_threadl cl
features = none

+ RPM_RPM i Instance hpc_ sdm_threadl measurement in

+ RPM_RPM i Instance hpc_sdm _threadl temperature measurements
subprogramCall = none

+ RPM_RPM i Instance hpc_sdm_threadl cl

Listing 5.3: Features in Alloy

abstract sig Feature {

}

enum PortDirection {
PortDirection In,
PortDirection_Out

}

abstract sig Port extends Feature {
direction: one PortDirection ,
}

abstract sig DataPort extends Port {

}

all extend from the abstract Port signature. This abstract signature contains
one field called direction. It represents the direction of the port which is either
incoming or outgoing. The enumerator PortDirection is used to specify the
direction of the port. The DataPort signature is given as an example in listing
5.3. The signature extends the Port signature. No constraints are added to the
signature.

Again, the naming scheme proposed in section 4.4 is used. Again, dots are re-
placed by an underscore. Listing 5.4 shows the Alloy code for the
hpc.sdm.proci.threadl.measurement in features, from the example architecture
given in section 4.4. The direction of the event data port is incoming.

Listing 5.4: Code for hpc.sdm.procl.threadl.measurement in in Alloy

one sig RPM_RPM i Instance hpc sdm _ threadl measurement in extends
EventDataPort {

P
direction = PortDirection In
all s: State | this.(s.eventDataPortValues) in Measurement i

5.2. ARCHITECTURE STRUCTURE o7

Listing 5.5: Connections in Alloy

fun portConnections|[] : Port —> Port {
DataPortl —> DataPort2
}
fun dataAccessConnections || : (Datalnstance + DataAccess) —>

DataAccess {
Datalnstancel —> DataAccessl +
DataAccessl —> DataAccess2

}

abstract sig Connection {

}

abstract sig PortConnection extends Connection {
src: one Port,
dst: one Port,

}

abstract sig DataAccessConnection extends Connection {
src: one Datalnstance + DataAccess,
dst: one DataAccess,

}

5.2.3 Connections

Connections in architectures can be represented by two different methods. The
first method is by a function, as shown by the first two functions on the top in
listing 5.5. The first function, portConnections/], returns a set of relations of
the type Port— Port. This relation represents a port connection from a source
port to a target port. The dataAccessConnections/] function is used to represent
the data access connections in the architecture. The function returns a set of
relations of the type (Datalnstance+DataAccess)— DataAccess.

The second method is to extend the abstract PortConnection and DataAc-
cessConnection signatures, for port connections and data access connections re-
spectively. Similar to the portConnections/] and dataAccessConnectionsf] func-
tions, these signatures capture the source port and destination port, or source
data instance/data access and target data access for the port or data access
connection, respectively. The field src is used to represent the source feature
of the port and data access connection. The dst field is used to represent the
destination feature of the port and data access connection. The rationale for
the use of the two different methods is to increase the speed of the simulation,
and the need to be able to induce connections. The induction of connections is
found in section 6.4.

Using the example architecture as given in 4.4, listing 5.6 gives an excerpt
of the port connection function.

5.2.4 Data types

For each data type defined in the architecture, a signature is generated. The
generated data type signatures extend from the abstract DataType signature,
given in listing 5.7. The data types in the architecture can be annotated with
additional fields, through the use of the relations-property. For example, in

58 CHAPTER 5. SIMULATING ARCHITECTURES

Listing 5.6: Port connections function for example architecture in Alloy

fun portConnections|[] : Port —> Port {
none —> none

+ (RPM_RPM i Instance sd sensorl measurement —>
RPM_RPM _i_Instance_sd_procl_threadl sensorl_in)

+ (RPM_RPM i Instance sd_ procl threadl measurement out —>
RPM_RPM i Instance sdc_procl threadl measurement in)

+ (RPM_RPM i Instance_sd_procl_ threadl alarm_ out —>
RPM_ RPM i Instance sdc_procl threadl alarm in)

Listing 5.7: Data types in Alloy
abstract sig DataType {

}

appendix B in listing B.1, the Measurement.i data type contains additional
fields.

5.3 Discrete event simulation

In section 3.5, we gave the different activities of building the supporting frame-
work. This section describes the Defining behavioral semantics in Alloy activity.

To simulate architectures, several approaches can be taken. Our simulation
is a discrete event simulation|BC84]. The simulation of the architecture is driven
by events that occur within the architecture. The state of the architecture is
recorded between these events. The state space of a simulation is defined as all
the states discovered during the simulation of the architecture, together with
transitions between these states.

The same transformation from AADL instance models to Alloy code is used
to create (parts of) the simulator. We have created this transformation in the
Build transformation from AADL to Alloy activity, found in section 3.5. The
transformation consists of an XPand2 model-2-text transformation. However,
for brevity, we omit description of the transformation itself.

5.3.1 States

In section 3.2, we stated that the architecture behavior is captured in a state
space. The state space contains all the states in which an architecture can
be during the simulation of the architecture. A state records the data values,
events, and messages bound to data ports, event ports, event data ports, or
data instances in the architecture, and the subprograms which are queued for
dispatch, at a given time during the simulation.

Given that we are using Alloy for the simulation of the architecture, we
define a State signature which represents a state in Alloy. The State signature
is given in listing 5.8. The State signature has the following fields:

dataPortValues The dataPortValues-field gives the data values which are
bound to data ports in the architecture. A data port can be bound to

5.3. DISCRETE EVENT SIMULATION 59

no or one data value.

eventPortValues The eventPortValues-field records the events which are bound
to event port in the architecture. An event port can be bound to no or one
data value. The AADL standard specifies that event ports can be queues.
We limit the queue size of an event port to at most one, to improve the
speed of the simulation.

eventDataPortValues The eventDataPortValues-field gives the messages (a
data value associated with an event) which are bound to event data ports
in the architecture. An event data port can be bound to no or one data
value. Note that events are omitted in this field. In the AADL standard,
event data ports are queues. For simplicity, we limit the queue size of an
event data port to at most one, to improve the speed of the simulation.
Note that we make no explicit differentiation between data values and
messages in the simulation.

parameterValues The parameterValues-field records the data values which
are bound to parameters in the architecture. A parameter can be bound
to no or one data value.

dataInstanceValues The datalnstance Values-field gives the data values which
are bound to data instances. Data instances can be bound to a set of data
values.

toDispatch The toDispatch-field records the set of subprograms which are
scheduled for dispatch.

A signature is created for each of the data types found in the architecture.
These signatures extend the abstract DataType signature, found in listing 5.8.
The data type signatures are used to represent zero or more data values in
the architecture. The Fvent signature is a special signature which extends the
DataType signature. It is used to represent an event. It is instantiated once.
The Event signature is used by the eventPortValues-field of the State signature.

The Alloy Analyzer provides the ordering-module which imposes a linear
ordering over a specific signature. The ordering-module adds a next-relation to
the signature it is imposed on. This next-relation is used to describe the relation
to the next state, from the current state. When using the ordering-module on

Listing 5.8: State signature in Alloy
abstract sig DataType {}

one sig Event extends DataType {}

sig State {
dataPortValues: DataPort —> lone DataType,
eventPortValues: EventPort —> lone Event,
eventDataPortValues: EventDataPort —> lone DataType,
parameterValues: Parameter —> lone DataType,
datalnstanceValues: Datalnstance —> DataType,
toDispatch: set Subprogram,

60 CHAPTER 5. SIMULATING ARCHITECTURES

the state signature, the scope of the state signature becomes strict. This means
that the Alloy Analyzer can no longer check up to a number of states, but only
check for a specific number of states. As a result, if a simulation consists of 10
states, we have to specify this number before the simulation. When the exact
number of states is not known beforehand, a trial-and-error approach has to be
taken to find the exact number of states.

As a remedy to the strict scope with regard to the number of states, we
can introduce stuttering states]RR98|. A stuttering is a transition between two
states which has no observable effect. The result of a stuttering transition is
that the two states connected by the stuttering transition are equivalent. If
we only allow stuttering to happen at the tailing states of the state space, we
ensure different simulations (with a different number of states) result in the
same behavior, as long as the number of states is overestimated. Consequently,
we can over-estimate the number of states and the scope is no longer strict.

As an example, assume that the full simulation of an arbitrary architecture
would consist of exactly 10 states. If we introduce the stuttering transition to
the simulation and overestimate the number of states to 15, the last 5 states will
be stuttering states and equivalent to the 10th state. When we overestimate
the number of states to 20, the last 10 states will be stuttering states. In both
examples, the first 10 states, which describe the behavior of the architecture,
are present in the state space.

5.3.2 Transition function

The transition function describes how a state is altered from the current state
to the next state. A transition represents the happening of one or more events
during the simulation. An event is a notable occurrence within the architecture
during simulation of the architecture.

Two different kinds of events are defined: events introduced by the AADL
standard, and events introduced by the architect. These two kinds are described
in this subsection.

Events introduced by AADL

Different types of events can occur within the architecture, as defined by the
AADL standard[SAEQ9]. The events given here are all based on the transfer of
data values, events, or messages from one port to another port through a port
connection, or the scheduling of dispatch of a subprogram. As the behavioral
properties of subprograms are specified by the architect, no events can be defined
for these.

All the events introduced by AADL are extracted from the AADL standard.
For each of the events listed below, a reference to the related section in the
AADL standard is given.

e Transfer of a data value from a data port to another, through a data port
connection: section 9.2;

e Transfer of an event from an event port to another event port, through an
event port connection: section 9.2;

e Transfer of a message from an event data port to another event data port,
through an event data port connection: section 9.2;

5.3. DISCRETE EVENT SIMULATION 61

e Transfer of a data value from a data port to a parameter, through a
parameter connection: section 9.3;

e Transfer of a message from an event data port to a parameter, through a
parameter connection: section 9.3;

e Transfer of a data value from a parameter to another parameter, through
a parameter connection: section 9.3;

e Transfer of a data value from a parameter to a data port, through a
parameter connection: section 9.3;

e Transfer of a data value from a parameter to an event data port, through
a parameter connection: section 9.3;

e Enqueue dispatch of a subprogram: section 5.2, section 5.4.

Listing 5.9: Transition function in Alloy

pred transition[s, s’: State] {
s’.dataPortValues =
dp2dp[s.dataPortValues| + p2dp[s.parameterValues|

s’.eventPortValues =

e2e[s.eventPortValues| + producedEps|s]
s ’.eventDataPortValues =
edp2edp [s.eventDataPortValues| + p2edp|s.parameterValues| +
producedEdps|s]
s ’. parameterValues =
p2p|[s.parameterValues| + edp2p|s.eventDataPortValues| +
producedParams [s]
s’.datalnstanceValues =
s.datalnstanceValues + producedDatalnstanceValues[s] —
removedDatalnstanceValues |[s|
s’.toDispatch =
enableDispatch|[s] + { s.toDispatch.next }

In the simulation, we use a single transition function. This transition func-
tion is given in listing 5.9. This transition function captures all the events
described in this section. The transition predicate describes the previous state
(parameter s) and the next state (parameter s’) which are connected by the
transition. The post-condition of the transition (parameter s’) is described
by several functions. Each of these functions represent the events given be-
fore, with the exception of the producedEps, producedEdps, producedParams,
producedDatalnstance Values, and removedDatalnstance Values functions.

An excerpt of the functions is given in listing 5.10. The first function, dp2dp,
returns the resulting set of data values bound to data ports, from a given state.
Its parameter, (r), is a set of relations from the previous state. The function
returns a set of relations DataPort— DataType which describe the set of data
values bound to data ports in the next state. The result is computed by finding
all combinations of data port (dp) and data values (dt) for which there is a
relation in the set of bindings from data port to data value in the original state
(r), and the port holding the data value is connected to the new port (dp) by a
port connection (dp. “portConnections/f).

62 CHAPTER 5. SIMULATING ARCHITECTURES

Listing 5.10: Events introduced by AADL in Alloy

fun dp2dp|[r: DataPort —> DataType| : DataPort —> DataType {
{ dp: DataPort, dt: DataType |
one (dp. portConnections|[|] — dt & r) }
}
fun p2dp[r: Parameter —> DataType| : DataPort —> DataType {
{ dp: DataPort, dt: DataType |
one (dp.” portConnections|[] —> dt & r) }
}
fun ep2ep|r: EventDataPort —> DataType| : EventPort —> Event {
{ ep: EventPort, e: Event |
one (ep. portConnections|[] — e & r) }
}
fun enableDispatch[s: State]| : set Subprogram {
{ sp: Subprogram | one t: Thread, edp: EventDataPort |
sp = t.subprogramCall and edp in t.features and edp.direction =
PortDirection In and edp in univ. (s.eventDataPortValues)
}
}

The other functions are similar to the dp2dp function. The p2dp differs from
the p2dp function in that it transfers the data value from a parameter to a data
port. The parameter r takes a set of relations from parameters to data values,
while the result is a set of relations from data ports to data values. The ep2ep
function transfers the special event type from one event port to another event
port.

Finally, the enableDispatch function schedules subprograms to be dispatched.
If a thread receives an event or message at an incoming event or event data port,
and the thread contains a subprogram, the subprogram is scheduled for dispatch
in the next state.

Events introduced by architect

Subprograms in the architecture are considered the components that perform
actual manipulation of data. To specify this computation, subprograms need
to be annotated with pre- and post-conditions. The pre-conditions state the
conditions of a state before the subprogram can be dispatched. The post-
conditions of a subprogram describe how a state is altered when the subprogram
is dispatched. For example, if a data value bound to a parameter and the
subprogram is dispatched, the subprogram can produce a new message at one
of its outgoing event data ports. Another example is that the subprogram writes
the received parameter to a data instance. A subprogram can alter a state in
the following way, upon dispatch:

e A subprogram can output an event through an event port;
e A subprogram can output an message through an event data port;
e A subprogram can output a data value through a parameter;

e A subprogram can store one or more data values at a data instance;

5.3. DISCRETE EVENT SIMULATION 63

e A subprogram can remove one or more data values from a data instance.

The AADL standard does not give a way to model behavior. In order to define
the behavior of a subprogram into the architectures, we use a property set.
An excerpt of this AADL property set is given in listing 5.11. For each of
the effects given before, a property is introduced. The post_ep property is
used to describe the effects of the subprogram dispatch on the eventPort field
of a state. These properties correspond with the producedEps, producedEdps,
producedParams, producedDatalnstance Values, and removedDatalnstance Values
functions, used in the transition function in listing 5.9.

Listing 5.11: Property set to specify subprogram behavior in AADL
property set Alloy is

post _ep: aadlstring applies to (subprogram);

post _edp: aadlstring applies to (subprogram);

post param: aadlstring applies to (subprogram);
post diProduced: aadlstring applies to (subprogram);
post diRemoved: aadlstring applies to (subprogram);

end Alloy;

The subprogram effect on a state are introduced into the architecture by
annotating the subprograms in the AADL specification with properties. These
annotation are used by the simulator to describe the behavior of the subpro-
grams. An example subprogram is given in listing 5.12. This is transformed to
a single function in the Alloy model. The function subpl::post_edps describes
the results of dispatching the subprogram, in the Alloy model. The resulting
function is given in listing 5.13. In this example, if a data value is received at
the parameter subpl sensorl in, the data value is forwarded to the event data
port subpl measurement out.

Listing 5.12: Subprogram annotated with behavioral properties in AADL

subprogram subpl
features
sensorl in: in parameter Measurement.i;
measurement out: out event data port Measurement.i;
end subpl;

subprogram implementation subpl.i
properties
Alloy :: post _edp => "
one subpl sensorl in.(s.parameterValues) =>
{ subpl_measurement_out —> subpl_sensorl_in.(s.
parameterValues) }
else

none —> none

n.
)

end subpl.i;

The effects of a subprogram on a state are taken into account by the pro-
ducedEps, producedEdps, producedParams, producedDatalnstance Values, and re-

64 CHAPTER 5. SIMULATING ARCHITECTURES

Listing 5.13: Predicate defining subprogram behavior in Alloy

fun subpl i::post edps|[s: State| : EventDataPort —> DataType {
one subpl sensorl in.(s.parameterValues) =>
{ subpl measurement out —> subpl sensorl in.(s.parameterValues)

else
none —> none

Listing 5.14: Grouping of subprogram effects in Alloy

fun producedEdps[s: State| : EventDataPort —> DataType {
none —> none
+ (subpl i in s.toDispatch => subpl i.post edps[s]| else none —>
none)
+ (subp2 i in s.toDispatch => subp2 i.post edps[s] else none —>
none)

movedDatalnstance Values functions. These functions group the effects of the
subprograms in the architecture. An example of the producedEdps function is
given in listing 5.14. This grouping function collects the results with regard to
produced message for the event data ports it contains of the two subprograms
subpl and subp2.

5.3.3 Architecture invariants

The architecture can be annotated with architecture invariants. An architecture
invariant is a formula over a subprogram or data instance which asserts correct
behavior. Thus, architecture invariants are used to validate the behavior of
individual components within the architecture. An example of an architecture
invariant is that a given data instance can hold up to four data values. If this
property is violated, the architecture is invalid.

Subprogram and data instance invariants are recorded through properties
in the AADL models. Listing 5.15 gives an excerpt of the property set used
to annotate the invariants of data instance and subprograms. The listing also
gives an example of an annotated data instance in AADL. In this example, the
data instance can hold at most four data values.

The invariant-property is used to annotate subprograms and data instances
with Alloy code. For each data instance, this property is transformed into a
predicate. This predicate must hold for over all the states of the state space.
Based on listing 5.15, the generated Alloy code from the invariant-property is
shown in listing 5.16. This predicate gives the property that there can be up to
four data values in the data instance dil, for the given state s. The predicate
is tested against all the states of the state space. If one or more invariants are
violated, we can use the Alloy Analyzer to return the state space as a counter
example.

5.3. DISCRETE EVENT SIMULATION 65

Listing 5.15: Property set to annotate elements with invariants in AADL
property set Alloy is

invariant: aadlstring applies to (subprogram, data);
end Alloy;

system implementation S.i
subcomponents
dil: data DataType.i {
Alloy ::invariant => #this.(s.datalnstanceValues) <= 4";

I
end S.1;

Listing 5.16: Invariant for data instance in Alloy

pred dil::invariant[s: State] {
#this .(s.datalnstanceValues) <= 4

}

5.3.4 Simulation constraints

To ensure correct simulation, further constraints are imposed on the architec-
tures. The ports in the architecture are typed. Given the way the Alloy Analyzer
works, it can generate a state where a port would be bound to a data value from
a different data type. This is invalid. A fact is attached to each port signature,
as found in listing 5.17.

This fact describes that for each state, the port can only be bound to data
values of type Measurement. Measurement is a signature which extends the
DataType signature. A similar fact is added to data instance signatures, as
shown in figure 5.18.

Again, this fact describes that each data instance can only be bound to data
values of the type Measurement.

5.3.5 Executable scenarios

Section 3.2 introduced the notion of a scenario. This section elaborates on the
creation and use of scenarios. Scenarios will be further extended in chapter 6.
For now, a scenario contains the initial state of the architecture after a stimulus
in the environment has been detected. Furthermore, scenarios are used to test
the architecture invariants during the simulation.

Using the simulation implemented in Alloy, we need to define an initial state
to the simulator. This initial state describes the state of the architecture and

Listing 5.17: Fact attached to a port signature
one sig portl extends EventDataPort {

HA

all s: State | this.(s.eventDataPortValues) in Measurement

}

66 CHAPTER 5. SIMULATING ARCHITECTURES

Listing 5.18: Fact attached to a data instance signature

one sig dil extends Datalnstance {

P A

all s: State | this.(s.datalnstanceValues) in Measurement

}

data values, events, and messages within the architecture at the beginning of the
simulation. From this initial state, the simulation is continued and subsequent
states are generated by the simulator.

Two main guidelines can be given for the scenarios. The first guideline is
that a scenario should be used to describe the occurrence of an event in the envi-
ronment. Events in the environment are observed by architecture components.
This can be a device representing a sensor, or a subprogram which models a
program which is used by an end-user. The initial state of the scenario de-
scribes that there is an event at an outgoing event port. This event represents
the observation of the event.

The second guideline is that a scenario should be used to describe the
occurrence of an event in the architecture. For example, a timer can expire.
The initial state of the change scenario describes that there is an event at an
outgoing event port of a component representing a timer.

We give another guideline to find the number of data values for a specific
data type used in the simulation. If the data type is not used during the sim-
ulation as described by the scenario, the scope is to be restricted to 0 for that
data type. If the data type is used, we start at 1. Following the executing of
the data flow, we end up with a set of subprograms which are executed. If a
subprogram alters the data value, we increase the scope for that data type by
1. If the subprogram only forwards or stores the data value, we do not increase
the scope.

Note that the number of data values for a data type can be safely over-
estimated. The result of the overestimation is a slower simulation, while the
behavior of the architecture will remain the same. Underestimation of the num-
ber of data values for a data type will result in a incomplete simulation, as the
resulting state space will not have enough data values. After all the data values
have been used, the simulation will stop.

5.3.6 State space

We use the Alloy Analyzer to generate the state space which represents the be-
havior of the architecture. As we use to ordering module of the Alloy Analyzer,
we generate individual traces which, together, form the complete state space for
a given scenario. This concept is given in section 4.5.6.

If the behavior of the architecture is deterministic, only one trace is generated
by the Alloy Analyzer. This trace is the complete state space for the given
scenario, as no choices are to be made during the simulation of the architecture.
No choices during the simulation means that there is no state which has to two
direct subsequent states.

If the architecture is non-deterministic, the Alloy Analyzer will generate
multiple traces. During the simulation, one or more choices are to be made.

5.3. DISCRETE EVENT SIMULATION 67

Listing 5.19: Scenario for example architecture in Alloy

pred scenariol initial[s: State| {
no s.dataPortValues

no s.eventPortValues

no s.parameterValues

no s.datalnstanceValues
no s.toDispatch

one s.eventDataPortValues

}
Run_scenariol : run {

StateTransitions and scenariol initial[so/first]
} for

0 DataType,

0 Component ,

0 Feature,

0 Connection,

exactly 25 State,
exactly 1 Measurement i

These choices result in one or more states which have multiple direct subsequent
states.

5.3.7 Example simulation

For the example simulation, the example architecture given in section 4.4 is used.
We create a scenario which describes the initial state of the simulation. In this
scenario, we simulate the occurrence of the event that a sensor has measured
temperature at a patient. The initial state describes that there is a data values
of the Measurement.i at the outgoing event data part of the device Sensorl.
This data value represents the measurement which the sensor has measured.
The scenario, together with the Alloy command to execute the simulation, is
given in listing 5.19.

The predicate scenariol initial describes the initial state. The event data
port RPM RPM i Instance sd sensorl measurement is bound to a data
value. This data value is of type Measurement.i, as constrained by the facts
given in subsection 5.3.4. The Alloy command Run_ scenariol runs the sim-
ulation. The Alloy Analyzer tries to find a model for which the predicates
scenariol _initial (initial state) and StateTransitions (correct simulation) both
hold.

The result of the simulation is given in listing 5.20. The listing gives the
trace, describe by all the states in the state spaces, resulting from the simulation
of the scenario. For example, State$0 describes the initial state, the outgoing
event data port of sensorl holds a data value. In State$1, the measurement is
transferred from the device to the thread in the SD. In State$2, the subprogram
of the SD is scheduled for dispatch, while the parameter of the subprogram of
the SD is bound to the measurement. In State$3, the subprogram of the SD
is dispatched and sent the measurement to its outgoing event data port. A
graphical representation of the trace is given in figure 5.2.

The stuttering of states is observable in State$11 and State$12. Both State$11

68 CHAPTER 5. SIMULATING ARCHITECTURES

Listing 5.20: Textual representation of trace from scenario in example architec-
ture

State$0 :
Event data ports:
RPM_ RPM i Instance sd_ sensorl measurement$0 : Measurement i$0
State$1l:

Event data ports:
RPM_RPM _i_Instance_sd_procl_threadl_sensorl_in$0
Measurement _i$0
State$2:
Parameters:
RPM_ RPM i Instance sd procl threadl c¢l sensorl in$0
Measurement _i$0
To dispatch:
RPM_RPM i Instance sd_procl threadl c130
State$3:
Event data ports:
RPM_RPM _i_Instance_sd_procl_threadl cl_measurement out30
Measurement i$0
State$4 :
Event data ports:
RPM_RPM _i_Instance_sd_procl_threadl measurement_out$0
Measurement i$0
State$5s:
Event data ports:
RPM_ RPM i Instance sdc procl threadl measurement in$0
Measurement _i$0
State$6:
Parameters:
RPM_ RPM i Instance sdc_ procl threadl c¢l measurement in$0
Measurement _i$0
To dispatch:
RPM_RPM i Instance sdc_procl threadl c¢1$0
State$7:
Event data ports:
RPM_RPM i Instance sdc_procl threadl cl measurement out$0
Measurement i$0
State$8:
Event data ports:
RPM_RPM_i_Instance_sdc_procl_threadl measurement_out$0
Measurement _i$0
State$9:
Event data ports:
RPM_RPM i Instance hpc sdm_ threadl measurement in$0
Measurement _i$—
State$10:
Parameters:
RPM_RPM i Instance hpc_sdm_threadl cl_measurement in$0
Measurement i$0
To dispatch:
RPM_RPM i Instance hpc sdm_threadl c¢1$0
State$11:
Data instances:
RPM_RPM i Instance hpc temperature measurements$0
Measurement _i$0
State$12:
Data instances:
RPM_RPM i Instance hpc temperature measurements$0
Measurement _i$0

5.3. DISCRETE EVENT SIMULATION 69

Figure 5.2: Graphical representation of trace from scenario in example archi-
tecture

Listing 5.21: Validating architecture invariants for example architecture in Alloy

pred scenariol initial[s: State] {
no s.dataPortValues
no s.eventPortValues

no s.parameterValues

no s.datalnstanceValues

no s.toDispatch

one s.eventDataPortValues

}

Check scenariol : check {
(StateTransitions and scenariol initial[so/first]) =>
Architecturelnvariants
} for
0 DataType,
0 Component ,
0 Feature,
0 Connection,
exactly 25 State,
exactly 1 Measurement i

and State$12 describe that there is a data value in the same data instance, and
thus are equal to each other. No observable event has occurred between these
states. We have omitted State$13 to State$24, as these states are all stuttering
states and equal to State$11.

To validate that the architecture invariants are not violated during the simu-
lation, we need to adapt the Run_ scenariol command. The adapted version is
given listing 5.21. The command is now a check-command, which Alloy uses to
validate assertions over a model. The new command consists of an implication.
The left part of the implication is the old command, simulate the architecture
from the given initial state. The right part of the implication states that all
architecture invariants must hold. If the implication fails, a counter example
is given by the Alloy Analyzer. In this case, the architecture satisfies all the
invariants and thus no counter example is returned.

70 CHAPTER 5. SIMULATING ARCHITECTURES

Listing 5.22: Main transition function for parallel simulator in Alloy

pred StateTransitions {
all s: State — so/last |
dp2dp|s, s.next| or dp2p[s, s.next| or
ep2ep s, s.next| or edp2edp|s, s.next]| or
p2dp[s, s.next| or p2edp|s, s.next| or
prepareDispatchByEventPort[s, s.next] or
prepareDispatchByEventDataPort[s, s.next] or
— custom subprogram transitions
subpl.transition[s, s.next]| or
subp2.transition[s, s.next] or
stutter s, s.next]

all s: State — so/last | stutter[s, s.next| =>
all s’: s."next | stutter|s, s’]

5.4 Parallel simulation

We name the previously introduced simulation the basic simulation. In the basic
version of the simulation, multiple events can occur during the same transition
from one state to the next state. For example, if two distinct event ports hold
an event in a state and are both connected to another event port through a port
connection, the events will both be transferred to the connected event ports in
the next state. Using this approach, the simulator cannot find all the possible
interleavings. To be able to find all interleavings, the parallel version of the
simulation is introduced. This version is not explained in detail in this thesis,
for brevity.

To find all the interleavings, we need to modify the transition function. The
updated transition function allows only one event to occur at the same time.
Listing 5.22 describes the updated transition function. The updated transition
function specifies that one of the transitions is taken. The semantics derived
from the AADL standard found in subsection 5.3.2 are in the updated transition
function. The predicates dp2dp, dp2p, ep2ep, edp2edp, p2dp, p2edp, prepareDis-
patchByFEventPort, and prepareDispatchByFEventDataPort describe this. The
stuttering predicate is also present, named stutter. For each subprogram, the
dispatch of that subprogram is given its own transition. This transition function
is described in the AADL model by the architect. In listing 5.22, the transitions
for the dispatch of two subprograms are included, shown by the subp1.transition
and subp2.transition predicates. Before one of the subprogram transitions can
be taken, the subprogram itself has to be scheduled for dispatch.

Given the atomic events, the simulation finds all interleavings. As such,
we can simulate queues for event and event data ports. The State signature
is modified, such that the seq quantifier is used for the eventPortValues and
eventDataPortValues field of the State signature. The updated part of the
State signature is shown in listing 5.23.

As an example, the dp2dp predicate is given in listing 5.24. This predicate
describes that all the fields of the State signature, except for the dataPortValues
field, remain the same. Only the dataPortValues field is updated, such that one
data value is transferred from one data port to another data port, which are
connected by a port connection.

5.4. PARALLEL SIMULATION 71

Listing 5.23: Updated state signature in Alloy
sig State {

eventPortValues: EventPort —> (seq Event),
eventDataPortValues: EventDataPort —> (seq DataType),

Listing 5.24: Transition function for data port to data port transfer in Alloy
pred dp2dp[s, s’: State] {

s’.eventPortValues = s.eventPortValues
s’.eventDataPortValues = s.eventDataPortValues
s’. parameterValues = s.parameterValues
s’.datalnstanceValues = s.datalnstanceValues
s’.toDispatch = s.toDispatch

one dp: DataPort |
some dp.portConnections || and
one dp.(s.dataPortValues) and
s ’. dataPortValues = s.dataPortValues
— dp —> dp.(s.dataPortValues)
— dp.portConnections [|] —> DataType
+ dp.portConnections[] —> dp.(s.dataPortValues)

Compared to the basic simulator, the dp2dp-transition predicate is different
in the sense that only a single data value is transferred from one data port to
another data port. In the basic simulator, the function takes all the bindings
from data values to data ports, and returns the resulting bindings from data
values to data ports, where the data value is transferred from one data port
to another data port, when the two data ports are connected through a port
connection.

A constraint is added such that only the tailing states of the state space are
allowed to stutter, as shown by the last two lines of the transition predicate in
listing 5.22. No stuttering states can be introduced during the simulation itself.
If we do not use this constraint, the stutter-transition can be taken while other
transition can also be taken. We only allow the stutter-transition to be taken,
if all the following transitions are stutter-transitions.

For example, the simulation of an arbitrary architecture, consisting of five
states, could result in a state space for which the transitions taken are as fol-
lows: dp2dp, dp2dp, dp2dp, and stutter. We do not want stuttering when other
transitions are also possible, as it might result in an incomplete simulation. For
example, without the constraint, we could end up with the taken transitions
during the simulation of the same architecture: dp2dp, stutter, stutter, dp2dp.
One dp2dp-transition is replaced by a stutter transition. This results in an
incomplete simulation.

5.4.1 Example simulation

To give a clearer overview of the parallel simulation, we give a comparison of the
basic simulation versus the parallel simulation in figure 5.3. The architecture

72 CHAPTER 5. SIMULATING ARCHITECTURES

p
A
Ay
\
S S S, Ss3 Sy S S; S3 Sy Ss
(a) Resulting trace from basic simulation (b) Resulting trace from parallel simulation

Figure 5.3: Simulation results of basic simulation and parallel simulation

in the figure consists of one device, and two processes which are refined to the
subprogram level. The outgoing event data port of the device is connected to
both the incoming event data ports of the processes.

Traces found by both the simulations are given in the figures. As shown in
figure 5.3.a, the trace consists of four distinguishable states. In the initial state,
So, a message is bound to the outgoing event data port of the device. In state
S1, the message is transferred to the incoming event data ports of both threads.
Then, in S3, the message is transferred to the incoming parameters of both
subprograms. Both subprograms are also scheduled for dispatch, although this
is omitted in the figure. Finally, in Sythe subprograms have been dispatched
and the message are consumed by the subprograms. The simulator only returns
this trace, no different interleavings are found. This is due to the fact that all
events happen at the same time in the architecture.

Figure 5.3.b gives one of the six traces found by the parallel simulation.
Again, there is an message bound to the outgoing event data port of the device.
Equal to the basic simulation, the message is transferred from the device to the
incoming event data ports of the threads, in state S;. However, in states S to
S3, the upper message is transferred to the upper subprogram and the upper
subprogram is dispatched, while the lower message remains at its position. From
state Sy to S5, the lower message is transferred to the lower subprogram and
the lower subprogram is dispatched.

5.5 Benchmarks

Two benchmarks are performed to investigate the properties of the basic and
parallel versions of the simulators. Two variables are tested in two benchmarks.
The first variable the number of states specified in the simulation. We define
the number of states in the simulation as follows: the number of states the
simulation is enforced to explore. This can include stuttering states.

The second variable is the size of the architecture. We define the size of the
architecture as follows: number of component instances + number of feature
instances + number of port connections. The number of component instance,
feature instances, and port connections are extracted from the AADL instance
models.

5.5. BENCHMARKS 73

Figure 5.4: Architecture used for benchmarking

The benchmark tests the time in milliseconds needed for the simulation,
dependent on the variables. Memory consumption is not measured. We run
each benchmark for both the basic version and the parallel version. The runs
for each benchmarks are executed three times. The average is taken from the
three runs.

The benchmarks are done on a Intel Core 2 Duo, Q9400, running at 2.66GHz,
and 4GB of memory, running Windows XP Professional, service pack 2. We
use version 4.1.10 of the Alloy Analyzer, together with the Sun Java Runtime
Environment 1.6.0 13. The memory limit for the Alloy Analyzer is set to
1024M. We use the MiniSat solver.

The benchmarks are based on a simple architecture, which is given in listing
5.4. The architecture consists of two data flows, starting at the devices Dev! and
Dewv2, respectively, and ending at subprogram Csp. The devices are connected to
the subprogram of two processes (SpI and Sp2, respectively), by an event data
port connection. These subprograms are connected to the central subprogram
Csp through an event data port connection. The subprograms Sp! and Sp2
simply forward received message from the device to the Csp subprogram. The
subprogram Csp consumes the messages it receives.

The two variables seem closely related to each other. If the architecture size
grows, it is likely that the number of states required for complete simulation
also grows. However, this does not always have to be the case. For example, if
we introduce new functionality to the architecture, not related to the existing
functionality, we do not have to increase the number of states for the existing
scenarios. Given the initial state of the existing scenarios, and the unaltered
relevant part of the architecture for those scenarios, the simulation remains
unaltered. Only if existing functionality is extended, we need to increase the
number of states for the simulation.

5.5.1 Number of states

The length of the simulation is defined by the number of states the simulator
is forced to explore. In this benchmark, we use the proposed architecture, and
execute the scenario. For each subsequent run, we increase the number of states
by 10. The first run simulates 10 states; the last run simulates 100 states. We
expect that when the number of states is increased linearly, the time taken to
complete the simulation increases exponentially.

The results of the benchmark are shown in figure 5.5. The figure shows
the expected results. The time taken for the parallel simulator grows faster
than the time taken for the basic simulator, if the number of states is increased

74 CHAPTER 5. SIMULATING ARCHITECTURES

| Number of states | Simulation time (ms) |

10 240
20 391
30 578
40 802
50 1078
60 1349
70 1651
80 2015
90 2375
100 2781

(a) Basic simulation, architecture size = 38

| Number of states [Simulation time (ms) |

10 5364

20 14213
30 29910
40 53713
50 82718
60 105833
70 143729
80 180360
90 229198
100 300922

(b) Parallel simulation, architecture size = 38

Table 5.1: Benchmark 1 results

linearly. This can be explained by the fact that the parallel simulator has
multiple transition functions versus the single transition function of the basic
simulator. For each subsequent state generated by the parallel simulation, the
Alloy Analyzer has to test if either of the transition functions match. For the
basic simulator, the Alloy Analyzer only has to test one transition function.

5.5.2 Size of architecture

Each state can hold several bindings. An example is the binding of a data value
to a data port. The more architecture elements there are, the more potential
bindings exist. This benchmark tests the size of the architecture versus the sim-
ulation time. The number of states for each run is equal. The earlier introduced
architecture (figure 5.4) is used. We start with an architecture which consists
of only one data flow. This means that the components Dev2, and Sp2 are
removed for the first run. We increase the size of the architecture by adding a
device, a process (refined to the level of subprogram), and port connections to
the architecture. For each run of the architecture, we add three devices, three
processes, and connect the introduced devices to the introduced processes, and
the introduced processes to the existing central process.

For the basic simulation, the transition function is extended. For the par-

5.5. BENCHMARKS

Architecture size — 38

3000

2500

2000

1500

Simulation time (ms)

1000

500

State count

(a) Basic simulation

Architecture size = 38

350000

300000

250000

200000

150000

Simulation time (ms)

100000

50000

State count

(b) Parallel simulation

Figure 5.5: Benchmark 1 results

76 CHAPTER 5. SIMULATING ARCHITECTURES

| Architecture size | Simulation time (ms) |

23 255
68 2646
113 11427
158 33406

(a) Basic simulation, states = 30

’ Architecture size \ Simulation time (ms) ‘

23 17708
68 55312
113 131505
158 264626

(b) Parallel simulation, states = 30

Table 5.2: Benchmark 2 results

allel version of the simulator, the extra subprogram results in the addition of a
transition function. Given that we increase the number of potential transition
functions, we expect to see a steep growth in simulation time for the parallel
simulator. For the basic simulator, we expect an exponential growth as well,
but less steep.

The results of the benchmark are shown in figure 5.6. As expected, the
time taken by the parallel simulator grows faster than the time taken by the
basic simulator. This is due to increased complexity of the simulation, by the
addition of a transition function. Given the increased number of elements in the
architecture, the number of signatures in the Alloy model is increased as well.
This results in more potential bindings per state, as explained before. As such,
there are more potential states to be examined by the Alloy Analyzer.

5.6 Limitations of implementation

The implementation of the simulator in Alloy has shortcomings. The shortcom-
ings are discussed in this section.

Event and event data ports cannot hold multiple values in the basic version
of the simulator. In the AADL, an event port and event data port are queues
which can hold multiple values. A queue is an ordered collection. Given that
multiple events can occur at the same time (for example, an event data port
receives two values at the same time), no order of arrival can be specified and
therefore we cannot make any statements about this order. The parallel version
of the simulator supports queues.

If an event can happen in the architecture at a state, it will have happened
after the next transition. This means that two data values can be transferred
at the same time during the simulation. No different interleavings are found
through the basic simulation. As such, it is harder - if not impossible - to test
any properties related to concurrency and synchronization. The parallel version
of the simulator does find all interleavings and thus makes it possible to reason
about properties related to concurrency and synchronization.

5.6.

LIMITATIONS OF IMPLEMENTATION T

States = 30

Simulation time (ms)

40000

35000

30000

25000

20000

15000

10000

5000

23 68 113 158
Architecture size

(a) Basic simulation

States = 30

Simulation time (ms)

300000

250000

200000

150000

100000

50000

23 68 113 158
Architecture size

(b) Parallel simulation

Figure 5.6: Benchmark 2 results

78 CHAPTER 5. SIMULATING ARCHITECTURES

The detection of the occurrence of environment or architecture events during
the simulation is not supported. The effects of environment or architecture
events are described by the initial state of a scenario. We are not able to
introduce the observation of an event during the simulation. This means we
are not able to simulate two events being observed at different times. We can,
however, simulate the behavior of the architecture after the observation of two
events at the same time.

The process of checking/finding a model using the Alloy Analyzer consists
of two steps. The first step is generating the CNF formula. CNF stands for
conjunctive normal form, and is a standard notation for SAT-solvers. The sec-
ond step is the actual solving. For the RPM architecture, found in appendix B,
generating the CNF formula takes by far the largest amount time. As an ex-
ample, for generating a state space consisting of 25 states, the CNF generation
step takes 25 seconds on the benchmark machine, while the solving step takes
less than one second. Time improvements can be gained by replacing fields
from signatures by functions. The portConnections-function found in section
5.2 is an example of this. When using the function instead of a PortConnection
signature, CNF generation time is reduced dramatically.

Before we can run a simulation, we need to estimate the number of states
which will be required for the full simulation. If the estimated number of states
is too low, the simulation will be incomplete. If the estimated number of states
is too high, running the simulation/finding the state space will take longer than
necessary. Also, we need to give a strict scope for the data values used. Exactly
specifying this can be a hard task, if the exact behavior of the subprograms is
unknown.

5.6.1 Size of architecture and state space

The Alloy Analyzer imposes limits on the number of atoms and the arity of the
largest relation in the model. In the parallel simulation, the State signature
contains the field eventDataPortValues. This field results in a relation with the
arity of 4 (State— EventDataPort— Int— DataType). As a result, the Alloy Ana-
lyzer calculates the following Cartesian product: atomsx atomsx atomsx atoms,
where atoms is the set of all the atoms in the model. The size of the resulting
set has to be smaller than 23!, or the Alloy Analyzer will return an error. As
a result, the number of atoms for the parallel simulator can at most be 215
(215% < 231). Note that each state also results in a single atom. Also, the Alloy
Analyzer introduces 16 atoms through the Int signature. In the basic simulator,
the largest relation has an arity of 3. These relations result from the fields, ex-
pect for toDispatch, from the State signature. By applying the same reasoning,
we find the limit of 1290 atoms (12903 < 231).

Each feature and component in the architecture results in a single atom.
Also, each state introduces an atom. This allows us to identify an upper limit
of the architecture and the state space. Using the basic simulator, given the
largest relation with an arity of 3, the maximum number of atoms is 1290 — 16.
The 16 atoms are introduced by the Alloy Analyzer through the Int signature.
This gives us the following limit for the basic simulator:

architecture size + number of states < 1290 — 16

5.7. CONCLUSION 79

For the parallel simulator, given the largest relation with an arity of 4, the
maximum number of atoms is 215. This gives us the following limit for the
parallel simulator:

architecture size + number of states < 215 — 16

5.7 Conclusion

This chapter describes the simulation of AADL architectures. In section 5.2,
the representation of the architecture structure in Alloy is given. Signatures are
introduced which represent the AADL components, features, connections, and
data types. Facts are added to constrain the Alloy models, such that only valid
architectures can be modeled.

Section 5.3 introduces a discrete event simulation for the simulation of AADL
architectures. Each state describes the loci of the data values in the architecture.
A single transition function is given which describes the transition from one
state to another state. This transition function captures all of the events which
can occur in the architecture. Different events are given which describe the
behavioral semantics of the architecture. One part of the behavioral semantics
is extracted from the AADL standard. The behavioral semantics are formalized
using several Alloy functions. The second part of the behavioral semantics of
the architecture is introduced by the subprograms. Architecture invariants are
introduced to validate the correctness of the behavior of subprograms and data
contained by data instances. Scenarios are used to describe the initial state after
the system observes an event in either the environment or in the architecture
itself.

In section 5.4, we describe an extension of the discrete event simulation. The
extended version allows for a simulation which performs all events atomically.
Different interleavings now come forward in the state space. Based on the
different interleavings, properties related to concurrency can now be verified in
a more elaborate manner.

Section 5.5 benchmarks the two different simulation types. Limitations of
the simulations are identified and discussed in section 5.6. The benchmarks
show that simulation of the architecture becomes exponentially harder when
the size of the architecture, or the number of states for the simulation is in-
creased linearly. Also, a hard upper limit is identified with regard to the size of
the architecture and the number of states used for simulation. This raises the
question whether Alloy is suitable for simulation of architectures.

80

CHAPTER 5. SIMULATING ARCHITECTURES

Chapter 6

Performing change impact
analysis

6.1 Introduction

This chapter elaborates on performing change impact analysis in software ar-
chitecture. Functional requirements are validated against the behavior of the
architecture. Using this approach, we can find impacted components.

Section 6.2 elaborates on the formalization and validation of functional re-
quirements. In section 6.3 we use the evaluation of functional requirements to
perform change impact analysis. The induction of elements in architectures to
satisfy requirements is given in section 6.4. Finally, section 6.5 concludes this
chapter.

6.2 Validation of functional requirements

This section elaborates on the approach given in section 3.2.

For an architecture to be valid, the architecture must satisfy its requirements.
A graphical overview is given in figure 3.1. In this research, we only consider
functional requirements. Functional requirements specify required behavior in
the architecture. An example of a functional requirement, found in appendix B
in table B.1, R2, is that when a measurement is performed at the patient, the
measurement must be transferred to a central system. A functional requirement
can also restrict behavior. The restricted behavior is not allowed to occur in the
architecture. If such behavior does occur in the architecture, the architecture
does not satisfy the requirement.

The behavior of the architecture is recorded by the state space, as specified
in figure 3.2. The state space is derived from the architecture by the use of
simulation, found in chapter 5. Before the state space can be validated against
the requirements, we need to re-formulate the requirements into predicates.

6.2.1 Formalization of functional requirements

This subsection elaborates on the formalization of requirements, as given in
subsection 3.2.2.

81

82 CHAPTER 6. PERFORMING CHANGE IMPACT ANALYSIS

~
Create behavior descriptions

~

—
Create Alloy predicates

Figure 6.1: Activity diagram for formalization of functional requirements

Informal requirements

\—> Behavior descriptions

—

> Alloy predicates

The functional requirements found in the requirements document are often
textual specifications. These textual specifications are not formalized and not
interpretable by a program. Also, these requirements are in the problem do-
main. To be able to verify these informal functional requirements against the
architecture, two steps need to be performed. The first step is the formalization
of the functional requirements such that requirements can be validated against
the state space. This step is represented by the activity Create behavior descrip-
tions in figure 6.1. The activity takes the informal requirements and produces
behavior descriptions.

Using Alloy as a formalism, we translate informal requirements into Alloy
predicates which asserts allowed or disallowed behavior of the architecture. This
step is represented by activity Create Alloy predicates in figure 6.1. The activ-
ity takes the behavior descriptions and produces Alloy predicates. Using the
simulator, we can test the predicates against the generated state space. Fig-
ure 6.1 gives the complete activity diagram for the formalization of functional
requirements.

Behavioral patterns

We define a number of patterns which describes properties of behavior over
an architecture through behavior descriptions. The first pattern describes the
properties that must hold for a single state. An example is that at one state,
there must be a data value at a specific data port. There are variations of this
pattern: the property must hold for no state, some states, and all states.

The second pattern describes properties which must hold for a sequence of
states. Usually, the sequence only consists of two ore more directly connected
states. A variant of this pattern is that the states do not have to be connected
directly, but are connected indirectly.

To capture these behavior descriptions, we define the following format:

e Data type;
e From port (feature instance in model);

e Next or subsequent state (— or =, respectively);

6.2. VALIDATION OF FUNCTIONAL REQUIREMENTS 83

e To port (feature instance in model).

The next or subsequent state specifies whether the data value must be at the
to-port in directly the next state, or must be at the to-port in a subsequent
state. If the next or subsequent state and to-port are not present, it means that
the binding of a data value to the from-port must be satisfied for only one state.

These patterns can be regarded as a form of leightweight LTL[Muk97|. The
only operators we are using are the next operator, and the future operator. The
patterns can be extended if needed.

From problem domain to solution domain

The translation from the problem domain to the solution domain (architec-
ture) is performed by hand. The architect knows both the problem and solu-
tion domain and thus can translate between these two domains. When build-
ing the architecture, the architecture records the rationale for all the elements
in the architecture. The rationale for each element is (at least) backed up
by one or more requirements. These are also the traces from requirements
to architecture, used in subsection 6.2.3. In appendix B, the informal func-
tional requirements are given in table B.1. From these informal functional
requirements, we extract informal, but structured, behavior descriptions, con-
formant to the previously defined patterns. These behavior descriptions live
in the solution domain, and thus describe properties over the architecture ele-
ments. Table 6.1 gives the behavior description(s) for requirement R1, based
on the example architecture found in section 4.4. The behavior description
states that in one state, there must be a temperature measurement at the port
sd.sensorl.measurement, and in s subsequent state, the temperature measure-
ment must be at the sd.proci.threadl.cl.measurement out port. Table 6.1 also
gives the refinement of the requirement R1. The behavior descriptions for all
the requirements can be found in table B.2.

Req. | Ref. req. Description

R1 Temperature measurement: sd.sensorl.measurement
= sd.procl.threadl.cl.measurement out

R1 a Temperature measurement: sd.sensorl.measurement
— sd.procl.threadl.cl.sensorl in

R1 b Temperature measurement:
sd.procl.threadl.cl.sensorl in —
sd.procl.threadl.cl.measurement out

Table 6.1: Behavior description for R1

From behavioral descriptions to Alloy predicates

The two proposed patterns can easily be translated to Alloy predicates. The first
pattern describes a property over no, one or more states. The Alloy predicate
constrains the state space such that there must be exactly one state for which
the formula holds. The resulting predicate constraining the state space is as
follows:

84 CHAPTER 6. PERFORMING CHANGE IMPACT ANALYSIS

pred R {
one s: State | formula—over—s
}

The variants of the first pattern can be created by replacing the one-quantifier
in the predicate to no, one, some, or all.

The second pattern describes that a property at one state (s) a formula must
hold, and in the next state (s.next) another property must hold. The predicate
constraining the state space is as follows:

pred R {
one s: State | formula—over—s and formula—over—s.next
}

The variant of this pattern which specifies that the states do not have to
be directly connected. The difference is in the number of allowed transitions
between the two states. The variation allows for multiple transitions to occur
between the current and subsequent states. Alloy allows for this construct using
the non-reflexive transitive closure operator (~). The future state is specified
as (s. “next). The predicate is as follows:

pred R {
one s: State | formula—over—s and formula—over—s.” next
}

Adding traces

Given the translation from the requirements (problem domain) to the architec-
ture components (solution domain), we define traces between the requirements
and the predicates, and the predicates and the architecture. These traces are
used when interpreting the counter example and discovering the impacted com-
ponents, as shown in section 6.2.3.

The translation from the problem domain to the solution domain is already
performed when describing the formal behavior descriptions, based on the func-
tional requirements. The formal behavior description describes the ports, which
are involved in the behavior. These ports are connected to a specific compo-
nent. The components that contain the port are the components that the formal
behavior description (and the requirement) traces to.

A single requirement can result in multiple formal behavior descriptions.
Thus, a single requirement can trace to multiple formal behavior descriptions.
Each formal behavior description is transformed into a single predicate. Figure
6.2 gives the relations between the informal functional requirements, formal
behavior descriptions and predicates.

It has to be emphasized that defining the traces is an important step. The
coarseness of the traces from requirement to architecture components is impor-
tant with regard to the accuracy of the change impact analysis results. If a
requirement traces to many components, the not-satisfaction of that require-
ment by the architecture will result in a large number of impacted components
and thus the results are likely to be inaccurate.

Example

Listing 6.1 shows the requirement predicate for requirement R1. This require-
ment is based on the formal behavior description given in table 6.1, and uses

6.2. VALIDATION OF FUNCTIONAL REQUIREMENTS 85

Informal [Formal PR
functional behavior Predicate
requirement description

Figure 6.2: Trace-relations

Listing 6.1: Requirement predicate R1

pred R1 {
one s: State |
one RPM_RPM i Instance sd_sensorl measurement.(s.
eventDataPortValues) and
one RPM_RPM _i_Instance_sd_procl_threadl cl_measurement_out.(s.
next.eventDataPortValues)

the variation of the second behavioral pattern. The predicate states that there
must be a state for which there is a data value bound to the event data port
sd.sensorl.measurement. In a future state (s. “next), the value must be bound
to the event data port sd.procl.threadl.cl.measurement out.

In listing 5.20 an example trace is shown. The trace shows the behavior
of the example architecture, introduced in section 4.4. The behavior required
for requirement R1, as found in table B.1 of appendix B, is visible in first four
states of the trace. The example trace can be used to create the behavior
descriptions and Alloy predicates. However, it should be noted that using the
existing behavior can introduce a bias towards the existing behavior, compared
to the wanted behavior as expressed by the functional requirements.

6.2.2 Validation of formalized requirements

This subsection elaborates on subsection 3.2.3. In that subsection we gave a
definition for the term scenario. We extend this definition in this subsection.

Using the formalized requirements, we can validate the behavior of the ar-
chitecture against the predicates (formalized requirements). Alloy can be used
to find models which violate an assertion. Using the simulator, if an assertion
does not hold, Alloy will give a counter example. If an assertion is not violated,
no counter example is given.

We extend of scenarios, as described in section 5.3.5, to validate the re-
quirement predicates. Like the validation of architecture invariants, we can use
scenarios to validate the behavior of an architecture. A scenario describes the
initial state which is used by the simulation. We extend the scenario by validat-
ing that one or more requirements must hold over the derived state space. We
formulate this as an Alloy assertion. The assertion states that if the initial state
holds, the requirements must also hold. If one or more of the of the requirement
predicates do not hold, a counter example is given by the Alloy Analyzer. The
new definition for scenario is as follows: A scenario contains the initial state of
the architecture after a stimulus in the environment has been detected, and one
or more requirements which must hold during the simulation of the architecture.
Furthermore, scenarios are used to test the architecture invariants during the
simulation.

86 CHAPTER 6. PERFORMING CHANGE IMPACT ANALYSIS

Scenario

Simulate architecture Architecture

=< /§ State space
Validate predicates ‘é/
~

Figure 6.3: Activity diagram for validation of requirements

Alloy predicates |~ __

Verdict £

Figure 6.3 gives the activities for the validation of the requirements encoded
as predicates. The activity diagram consists of two activities: Simulate archi-
tecture, and Validate predicates. The simulate architecture activity consists of
simulating the architecture by use of the Alloy Analyzer. This activity takes the
architecture and one scenario as input. The output of the activity is the state
space. Because we use the Alloy Analyzer, the state space consists of multiple
traces. These traces are returned by the Alloy Analyzer as individual traces,
and not as a complete state space.

The second activity, validate predicates, takes the state space and the Alloy
predicates (formalized requirements) as an input. These output of the activity
is a verdict. This verdict state whether all the Alloy predicates are satisfied by
the state space. If one or more predicates do not hold, the verdict is negative. In
this case, the verdict consists of the state space for which one or more predicates
are not satisfied. If all predicates are satisfied, the verdict is that all predicates
are satisfied and no state space is returned.

An example of a scenario and validating requirements is given in listing 6.2.
This scenario is used to test the requirement R1 the example architecture found
in section 4.4. The example scenario consists the predicates R, scenariol _initial,
and the assertion Check_scenariol. The predicate R1 is a partial formalization
of requirement R1, found in table B.1. The predicate describes that at one state,
a measurement is received by the subprogram of the SD system. And at a future
state, the subprogram of the SD must forward the measurement through its
outgoing measurement out event data port. The scenariol initial predicate
specifies the initial state. Finally, the assertion Check_scenariol provides the
check-command for the Alloy Analyzer. The check-command validates that the
predicates R1 and Architecturelnvariants hold, over the state space. If either
of those predicates does not hold, a counter example is returned by the Alloy
Analyzer.

6.2.3 The use of counter examples

In this subsection, we elaborate the use of counter examples. The activity dia-
gram found in figure 6.4 continues after the activity diagram presented in figure
6.4. If the verdict of activity diagram in figure 6.4 is that one or more predicates

6.2. VALIDATION OF FUNCTIONAL REQUIREMENTS 87

Listing 6.2: Scenario to validate a requirement

pred R1 {
one s: State |
one RPM_ RPM i Instance sd procl threadl cl sensorl in.(s.
parameterValues) and
one RPM_ RPM i Instance sd procl threadl cl measurement out.(s.”
next.eventDataPortValues)
}
pred scenariol initial[s: State| {
no s.dataPortValues

no s.eventPortValues
no s.parameterValues
no s.toDispatch

one s.eventDataPortValues

one RPM_RPM i Instance sd_ sensorl measurement. (s.
eventDataPortValues) .zaM

one m: Measurement i | m.zaM = ZigBeeAddress i

Check scenariol : check {
(StateTransitions and scenariol initial[so/first]) =>
(Architecturelnvariants and Rl)

} for
0 DataType, 0 Component, 0 Feature, 0 Connection,
exactly 25 State,
exactly 1 Measurement i, exactly 1 ZigBeeAddress i

Listing 6.3: Querying a counter example

R1
false

are not satisfied, this activity diagram is executed to find the components which
are malfunctioning. If the verdict of the activity diagram in figure 6.4 is that
all predicates are satisfied, no further action is taken.

The activity diagram for using counter examples is given in figure 6.4. Two
activities are given in the activity diagram: Find violated predicates, and Trace
predicates to components. The first activity, Find violated predicates, takes the
counter example, and predicates as input. The counter example consists of the
state space for which one or more predicates were not satisfied. The predicates
are the predicates which represent the formalized requirements. The output of
the activity is the set of wiolated predicates, i.e. the predicates which are not
satisfied by the counter example.

We use the evaluator of the Alloy Analyzer, given in section 4.5.5, to find the
predicates which are not satisfied by the counter example. An example based on
the example architecture, found in section 4.4, of testing requirement predicates
is given in listing 6.3. In this example, we have removed the connection between
the sd.sensorl.measurement and sd.procl.threadl.sensorl in ports, as shown
in figure 6.6. As a result, we expect that requirement predicate R1 will fail.
The listing shows that this is the case, after querying the predicate R1.

The second activity, trace predicates to components, takes the set of violated
predicates and traces from predicates to components as input. The activity

88 CHAPTER 6. PERFORMING CHANGE IMPACT ANALYSIS

Counter example

Predicates

Traces predicates
to components

N
Violated predicates

Malfunctioning |/~
components

A SD

P
"Sensor1 E>
L

Figure 6.5: Example architecture with removed port connection

traces from the requirements to the components which are not satisfying the
requirements. The result of the activity is the set of malfunctioning components.

The statement "garbage in = garbage out" is important when defining and
using the traces from requirements to architecture. If the requirements trace
to a large number of the architecture components, it is hard to identify the
component which is causing the invalid behavior.

The counter example consists of a trace describing the behavior of the ar-
chitecture. The names of the Alloy signatures can easily be mapped back to
their respective AADL component instance names. As given in section 5.2, the
naming scheme consists of replace dots with underscores. Reversing this re-
placement results in the AADL component instance names, which are used to
identify the components in the AADL instance model.

For example, requirement R2 of the RPM project, found in table B.1, states
that temperature measurements must be transferred from the patient to the
central system. The relevant part of the architecture is given in figure 4.7.
A coarse grained version of the formalized requirement, given in listing 6.4,
specifies that at a state (s) there must be a value at the measurement_out port
of the SD system, and in a future state (s. “next) there must be a value at the
measurement_in port of the SDM subprogram. If we inspect the architecture,
we see that the SDC' system is also involved in the measurement data flow. As
a result, the SDC' component has to be included in the traces from requirement
R2 to the architecture components. When the SDC' system is malfunctioning
and the measurement data value is never forwarded, we can only state that
the SD and SDC systems and the HPC.SDM process are impacted. It is not

6.3. PERFORMING CHANGE IMPACT ANALYSIS 89

Listing 6.4: Coarse grained version of requirement R2

pred R2 {
one s: State |
one RPM_ RPM i Instance sd procl threadl cl measurement out.(s.
eventDataPortValues) and
one RPM_RPM i Instance hpc sdm threadl ¢l measurement in.(s.
next.parameterValues)

possible to pinpoint the SDC directly.

To overcome the lack of preciseness, we have to decrease the granularity
of the trace from predicate to architecture component. This can be done by
splitting the requirement into multiple predicates. To improve the previous
example, we define predicates which test if the measurement is transmitted
from the SD to the SDC, handled by the SDC, and transmitted from the SDC
to the HPC/SDM. A more elaborate version formalized requirement is provided
in listing B.2. If we get a counter example, we test the predicates R2_a, R2_,
or R2 c¢. If R2 a holds, but R2 b does not hold, we know the SDC is not
handling the measurement correctly.

A note with regard to dependencies between the formalized requirements
has to be made. In case of R2, the SDC can only handle the measurement if
it actually receives it. So R2_ b is dependent on R2 a. These dependencies
between requirements are not considered in this research.

6.3 Performing change impact analysis

This section elaborates on the process given in section 3.3. Using the validation
of functional requirement over an architecture, as given in section 6.2, we can
perform change impact analysis in architecture.

Change impact analysis has to be performed in two cases. In the first case,
the requirements evolve and the architecture remains the same. This case is
given in figure 3.4. As the architecture is unchanged, the behavior of the
architecture, and thus the state space, also remains the same. The evolved
requirements need to be re-formalized and tested against the state space to find
the state space which violates one or more requirements, if there are any.

In the second case, the architecture evolves while the requirements remain
unchanged. This case is given in figure 3.5. As the architecture is changed, its
behavior is also likely to be changed. As a result, the generated state space based
on the architecture is also changed. The (unchanged) formalized requirements
have to be validated against the new state space. Re-running the simulator
will give state space as a counter example if any of the existing requirement
predicates (formalized requirements) fail.

Note that the traces from the requirements to the architecture also need to
be checked and, where required, updated, in either case. Evolved requirements
may be traced to additional or other architecture components. For example,
functionality may be moved from one component to another component in the
architecture.

90 CHAPTER 6. PERFORMING CHANGE IMPACT ANALYSIS

6.3.1 Iterative process

The process of performing change impact analysis is an iterative process. If a
component is changed, the data flow through this component may be changed
as well. For example, it can send data to another output port. As a result,
the architecture has to be re-simulated to generate the new state space. The
activity diagram given in figure 3.6.

The process starts by applying a change to the architecture. Along with
changing the architecture, the formalized requirements might need to be up-
dated as well, along with the traces from the requirements to architecture.

The (new) architecture can now be validated against the (new) formalized
requirements by running the simulator again. The simulator will generate the
(new) state space, and test the (new) formalized requirements against it. If
all formalized requirements are satisfied by the state space, the simulator will
not return a counter example. If the state space does not satisfy the formalized
requirements, the simulator returns a counter example. Using the counter exam-
ple, the formalized requirements, and the traces from formalized requirements
to architecture, we can identify the components which do not satisfy the require-
ments. Individual formalized requirements can be queried against the counter
example to identify the failing formalized requirements. When one (or more)
failing formalized requirements are identified, the components are identified by
using the traces between the requirements and architecture elements.

If a failing component has been identified, the component is suspect to
change. It is possible that the identified component has to be updated. When
the component is updated, the whole process has to be performed again, as the
behavior of the architecture might have changed. If the last change results in a
satisfying architecture, the process is complete.

6.3.2 Example

In chapter 7, we perform a case study. This subsection will give a short example
of performing change impact analysis, using one of the change scenarios from
that chapter.

In this example, we introduce three new requirements. The requirements R1
to R3, found in table B.1 of appendix B, state that the system must be able to
measure temperature and store those measurements. We copy requirements R1
to R3, and replace 'temperature measurement’ by 'blood pressure measurement’.

The iterative process starts by changing the example architecture, as found
in section 4.4. We add a blood pressure sensor to the SD system, similar to
the temperature sensor. The added blood pressure sensor is connected to the
subprogram of the SD system. The resulting architecture is given in figure 7.2.

We formalize the new requirements. The new formalized requirements are
similar to the formalized requirement for the temperature-related requirements,
but constrain the state space with regard to the behavior of the new blood
pressure sensor and its measurements. The formalized requirements are given
in listing 7.1. The formalized requirement RI1’ a traces to the components
sd.sensor2 and sd.procl.threadl.c1, given in table B.4. The requirement predi-
cate R1’_b traces to the sd.procl.threadl.c1 subprogram.

Simulating the changed example architecture, and validating the new re-
quirements, the Alloy Analyzer returns a counter example. The requirement

6.4. INDUCTION OF ELEMENTS IN ARCHITECTURES 91

predicate R1’ b is not satisfied by the architecture. Using the traces, we find
the sd.proci.threadl.cl subprogram, and mark it as impacted. The subprogram
is investigated in the next iteration of the process.

This process is repeated until the requirements are satisfied by the architec-
ture.

6.4 Induction of elements in architectures

Alloy models are defined by signatures, facts, and a scope. Alloy tries to find
instances of the model which conform to the restrictions found in the model. A
scope limits the number of instances generated from a signature.

For the simulation of the architecture, the structure of the architecture is
static. The scope of the static structure is strict in the sense that no additional
components can be introduced by Alloy. The dynamicity of the architecture
in the simulator is in the generated state space. For each state, for example,
different relations from ports to data values are tested such that these conform
to the defined models.

We can use Alloy to try to find new components, for example. If we increase
the scope and specify that all the found models must conform to a given sce-
nario, we let Alloy find models (architectures) which conform to the scenario.
If a model is found, we can extract the new induced elements from the model,
which might provide a possible fix. We define induction as trying to find an
architecture which satisfies its requirements by increasing the scope with regard
to a certain element type.

6.4.1 Induction of port connections

In chapter 5 we have given the formalized architecture. Port connections are
recorded through the use of a function portConnectionsf/. This function provides
a set of binary relations between two ports, which represent the port connections
in the architecture. The relations returned by the function are entirely static.
Thus no new relations can be induced by Alloy, as Alloy can only increase the
scope for signatures, and not relations returned by a function. As such, we
need an abstract PortConnection signature which provides a means to record
the port connections in the architecture. This abstract signature was already
given in listing 5.5, but is given again in listing 6.5. The source port of the port
connections is recorded by the src field, the target port of the port connection
is recorded by the dst field.

Given the new PortConnection signature, we need to update the existing
behavioral semantics to include the new PortConnection signature. In our case,
we need to update the transitions which transfer data from one port to another
port, over a port connection. The updated semantics for the transfer of a
data value from one event data port to another event data port are given in
the second part of listing 6.5. The new edpZedp function takes the original
portConnections/] function as well as the new PortConnection signature into
account.

If we set the scope for the PortConnection signature to zero or one, Alloy
will try to find all models which satisfy the scenario predicates and architecture
invariants. The scope may be increased to induce more port connections. If

92 CHAPTER 6. PERFORMING CHANGE IMPACT ANALYSIS

Listing 6.5: PortConnection signature and updated semantics
abstract sig Connection { }
abstract sig PortConnection extends Connection {

src: one Port,
dst: one Port,

}
fun edp2edp|[r: EventDataPort —> DataType| : EventDataPort —>
DataType {
{ edp: EventDataPort, dt: DataType |
one (edp.” portConnections|[] —> dt & r) } +

{ edp: EventDataPort, dt: DataType | one pc: PortConnection |
edp = pc.dst and one (pc.src —> dt & r) }

Listing 6.6: Changed scenario predicate

Run_scenariol : run {
(StateTransitions and scenariol initial[so/first])
(Architecturelnvariants and
R1 and R2 and R3)

} for

)
exactly 1 PortConnection

Alloy finds a satisfying model, it will be returned and allows us to query the
new induced PortConnection signature, together with its relations, the source
and target port.

It should be noted that we can only infer new port connections, and not
alter existing or removing port connections all together. The portConnections/]
function itself is static and cannot be altered during the solving process. Also,
only new PortConnection signature instances can be inferred.

As an example, we take the architecture given in section 4.4 and remove the
port connection between
sd.procl.threadl.measurement out and sdc.procl.threadl.measurement in event
data ports, by removing the appropriate line from the portConnections/] func-
tion. The architecture is given in figure 6.6. We extend original scenario 1
(found in listing B.2). We replace the implication by a formula which states
that the predicates State Transitions, scenariol _initial, Architecturelnvariants,
and the requirements must hold. Furthermore, we increase the scope by adding
a port connection signature. The resulting command is given in listing 6.6.

The Alloy Analyzer will try to find an architecture and state space for which
the architecture invariants and requirements R1, R2, and R3 hold. The Alloy
Analyzer is allowed to introduce a port connection to the architecture. Running
the Run_ scenariol command, the Alloy Analyzer finds a model for which the
architecture invariants and requirements are satisfied. We can query this model
using the evaluator of the Alloy Analyzer, as shown in listing 6.7. The src field of
the PortConnection$0 signature atom gives the port
sd.procl.threadl.measurement _out. The dst field of the PortConnection$30 sig-
nature atom gives the port

6.4. INDUCTION OF ELEMENTS IN ARCHITECTURES 93

Listing 6.7: Querying the Alloy architecture model for the induced port connec-
tion
PortConnection

aadl meta/PortConnection$0
aadl meta/PortConnection$0.src

{RPM_RPM i Instance sd procl threadl measurement out}
aadl meta/PortConnection$0.dst

{RPM_RPM i Instance sdc_ procl threadl measurement in}

Listing 6.8: DataAccessConnection signature and getDatalnstance function
abstract sig Connection { }
abstract sig DataAccessConnection extends Connection {

src: one Datalnstance + DataAccess,
dst: one DataAccess,

}
fun getDatalnstance|[da: one DataAccess| : Datalnstance {
da.” ~dataAccessConnection & Datalnstance +
{ di: Datalnstance | one dac: DataAccessConnection | dac.dst = da
and dac.src = di }
}

sdc.procl.threadl.measurement in. This is the port connection which we have
removed earlier.

6.4.2 Induction of data access connections

The same approach taken for inducing port connections can be taken to induce
data access connections. The same function-construct is used to record data
access connections. This function provides a set of relations from a data instance
or data access, to another data access. The signature, already given in listing
5.5, is listed again in listing 6.8 is used to record data access connections.

As with the port connection induction, the semantics need to be updated.
In this case, the updated semantics are entirely structural. The getDatalnstance
function is used to get a data instance component which is (indirectly) from a
data access feature. The second line in the function has been added to include
the DataAccessConnection signatures. Again, we need to increase the scope
such that one or more additional data access connections are induced, such that
Alloy will try to find models which satisfy all the predicates. If Alloy finds a
satisfying instance, it will return the instance and the newly induced data access
connection can be extracted from it.

Only new data access connection can be induced. Existing data access con-
nections cannot be altered or removed. The reason is the same as for the port
connections, the use of the static dataAccessConnection function.

As an example of inducing a data access connection, we take the example ar-
chitecture and remove the data access connection between the
hpc.temperature _ measurements data instance and the
hpc.sdm.procl.temperature measurements data access. The resulting architec-

94 CHAPTER 6. PERFORMING CHANGE IMPACT ANALYSIS

Figure 6.6: Example architecture with removed data access connection

Listing 6.9: Querying the Alloy architecture model for the induced data access-
connection

DataAccessConnection
aadl meta/DataAccessConnection$0
aadl meta/DataAccessConnection$0. src
{RPM_RPM i Instance hpc temperature measurements}
aadl meta/DataAccessConnection$0. dst
{RPM_RPM i Instance hpc procl temperature measurements}

ture is given in figure 6.6. We use the a scenario similar to the one found in
listing 6.6, but change the scope such that instead of a PortConnection atom,
it will add a DataAccessConnection atom.

After executing the scenario, we query the found model and find the data
access connection which was originally removed, as found in listing 6.9.

6.4.3 Induction of other elements

In the current form of the architecture and simulation, it is not possible to induce
other elements than port connections and data access connections. Inducing
other elements, such as features or even whole components does not seem to be
useful. Inducing of features or components will not introduce new behavior, as
the behavior of the subprograms remains unaltered. As a result, the complete
behavior of the architecture remains unaltered.

Altering the behavior of the architecture requires introducing, updating,
or deleting subprograms and their behavior. The behavior of subprograms,
however, is specified by the architect as pre/post-conditions.

Using Alloy to induce pre/post-conditions is not possible for (new) subpro-
grams. Another, more limited, approach is possible however. We can specify
a number of standard subprograms with predefined behavior, such as store the
incoming data value into a data instance, or translate the incoming value by the
use of a data instance and forward it. If we have a number of default subpro-
grams, we can use Alloy to link these together and possibly find an architecture
which satisfies the requirements. However, it should be noted that the pre-
defined subprograms can only provide a limited set of functionality. Often the
subprograms, which are specified by the architect, perform more complex tasks
than any combination of the pre-defined subprograms can provide.

6.5. CONCLUSION 95

6.5 Conclusion

In this chapter we describe the process of performing change impact analysis in
AADL architecture models. In section 6.2, we describe the process of validation
of functional requirements in a software architecture, mentioned in section 3.2.
This consists of two activities: formalization of functional requirements, and the
validation of the formalized functional requirements based on the simulation of
the architecture. The formalized requirements can be verified by the simulator,
given in chapter 5. Whenever a formalized requirement is violated, the Alloy
Analyzer will return the state space which violates one or more requirements as
a counter example.

Section 6.3 elaborates the process of performing change impact analysis,
mentioned in section 3.3. Individual formalized requirements can be tested
against the counter example. By using traces from the formalized requirements
to the architecture components, we can identify which component is violating a
requirement and thus likely to be impacted. The whole process of performing
change impact analysis is an iterative process. If the behavior of one component
is modified, the simulation has to be run again to find the new state space. From
this new state space, other impacted components can be found and possibly
updated.

Finally, section 6.4 introduces the concept of inducing port connections and
data access connections by the Alloy Analyzer. We can increase the scope
of the model such that one (or more) extra port connection(s) is added to
the simulated model. If the Alloy Analyzer then finds an model for which
all the requirements and architecture invariants holds, we can extract the new
port or data access connection from that model. This allows us to use the
Alloy Analyzer to automatically synthesize a satisfying architecture for the given
requirements. Although the current approach is limited to port connections and
data access connections, other options might be possible to further synthesize
an architecture.

96

CHAPTER 6. PERFORMING CHANGE IMPACT ANALYSIS

Chapter 7

Evaluation of change impact
analysis process

7.1 Introduction

Based on the approach to perform change impact analysis found in chapter 6,
this chapter evaluates for the proposed approach.

Several change scenarios for the RPM architecture are defined and performed
by the use of the proposed approach. The end-result of each change scenario is
evaluated to analyze strengths and defects of the approach.

Sections 7.2 to 7.6 describe five change scenarios, the iterative process to
perform change impact analysis, and a evaluation of the result. Section 7.7
concludes the chapter.

For each of the change scenarios, we describe the following:

e Changes to requirements;

e Following the iterative process, until the architecture satisfies all require-
ments:

Changes to the architecture;

Changes to the requirement predicates and traces from requirement
predicates to architecture components;

— Validation of the requirements in the architecture;

In case of a counter example: finding the impacted components by
using the traces from requirement predicates to architecture compo-
nents.

e Evaluation of the process for this change scenario.

The evaluation of the process for each scenario discusses the proposed process.
Also, the results of the process are compared to the results of a data flow based
approach. The data flow based approach uses the data flows which flow through
a changed component, and mark all the involved components as impacted.

97

98CHAPTER 7. EVALUATION OF CHANGE IMPACT ANALYSIS PROCESS

] ID \ Requirement ‘
R1’ The system must measure blood pressure from a patient
R2’ The system must transfer the blood pressure measurements
from the patient to the central system
R3’ The system must store blood pressure measurements for a
patient in a central database

Table 7.1: Change scenario 1 - added requirements

(
"Sensor1 b

Figure 7.1: Change scenario 1 - iteration 0

7.2 Change scenario 1

This change scenario describes the additional for support for measuring blood
pressure, next to temperature. Only support for blood pressure measurements is
added. Adding support for blood pressure alarms and blood pressure threshold
is similar to adding support for blood pressure measurements and is omitted for
brevity.

This change scenario is used to evaluate the addition of requirements to the
system.

7.2.1 Changes to requirements

The requirements R1, R2, and R3, found in appendix B, are copied and "temper-
ature’ is replaced by 'blood pressure’, as shown in table 7.1. These requirements
are added and do not replace the original temperature related requirements, new
functionality is added to the system.

7.2.2 Tterative process

The relevant part of the base architecture for this change scenario is given in
figure 7.1. The data flow from the sd.sensor! device (temperature) to the
hpc.sdm.thread1.c1 subprogram is shown. Details of the sd system and sdc
system, such as the data instances, are omitted as these are not relevant for this
change scenario.

Iteration 1

In the first iteration, we add the blood pressure sensor to the sd system in the ar-
chitecture. An additional parameter is added to the sd.proc1.threadl.c1 subpro-
gram, and a connection is created between the new sd.sensor2 and

7.2. CHANGE SCENARIO 1 99

R
“Sensor1

| "Sensor2 p>

Figure 7.2: Change scenario 1 - iteration 1

Listing 7.1: Change scenario 1 - formalized requirements

pred R1’ {
R1’ _a and R1’_b

pred R1’ a {
some s: State |
one CS1 iteration0 RPM i Instance sd sensor2 measurement.(s.
eventDataPortValues) and
one CS1_ iteration0 RPM i Instance sd procl threadl cl
sensor2 in.(s.” next.parameterValues)

pred R1’ b {
some s: State |
one
CS1_iteration0_RPM _i_ Instance sd_procl_threadl cl_sensor2_in
.(s.parameterValues) and
one CS1 iteration0 RPM i Instance sd_ procl threadl cl
measurement out.(s.” next.eventDataPortValues)

sd.procl.threadl.c1 subprogram. The result is shown in figure 7.2. We do
not add any event data ports and parameter, and create connections between
the ports/parameters, as the sdc.procl.threadl.c1 and hpc.sdm.thread!.cl com-
ponents is supposed to abstract from the measurement type. The system was
built with this kind of extension in mind.

At the same time, we formalize the new requirements. Given that the sys-
tem abstracts from the measurement type ’after’ the sd.procl.thread.c1 sub-
program, we re-use the original formalization of the requirements R2 and R3.
The formalization of the requirement R1’ is given in listing 7.1. The formal-
ization states that the measurement must be transferred from the sd.sensor2
device to the sd.procl.threadl.cl subprogram (R1’_a), from sd.procI.threadl
to sd.procl.threadl.c1 (R1’_Db), and that the subprogram sd.procl.threadl.cl
must process the received measurement (R1’_c).

The traces from requirements to architecture components for the require-
ment predicates R2” and R3’ are copied from the requirements R2 and R3. The
traces for requirement R1’ are similar to the traces for requirement R1: R1’_a
traces to the components sd.sensor2 and sd.procl.threadl.cl, R1’ b traces to
the components sd.proc!.threadl and sd.procl.threadl.cl, and R1’ b traces to
the component sd.procl.threadl.cl.

Verification of the requirements R1, R2, and R3 can be done by running
the Alloy command Check scenariol. Running the simulation does not give a

100CHAPTER 7. EVALUATION OF CHANGE IMPACT ANALYSIS PROCESS

counter example, and thus the requirements R1, R2, and R3 are still satisfied
by the architecture.

To verify the new requirements R1’, R2’, and R3’, we create a new scenario.
The new scenario has a different initial state compared to the original scenario; a
measurement is at sd.sensor2.measurement, instead of sd.sensorl.measurement.
Also, the validation of requirements R1, R2, and R3 has been replaced by R1’,
R2’, and R3’.

Running the command Check scenariola results in a counter example. We
query the counter example to identify the requirements which are failing. This is
easily done by bringing up the counter example in Alloy, open the evaluator, and
test the predicates R1’, R2’, and R3’. All of the predicates evaluate to false,
which means that none of the requirements are satisfied by the architecture.
However, a dependency relation can be identified between R1’ and R2’, and
R2’ and R3’. Before R2’ can be satisfied, R1’ needs to be satisfied. The blood
pressure measurement cannot be transported from the SD to the SDM (R2’),
before the measurement is created (R1’). As no semantics are added to the
requirements themselves, we are not able to express this relation, and have to
keep track of it manually. As R3’ depends on R2’, and R2’ depends on R1’,
using reflexivity, we can say R3’ depends also on R1’.

Given that R1’ is the first requirement which fails, we use the traces from R1’
to the architecture to identify the failing components. The predicate R1’ consists
of three sub-predicates: R1’_a, R1’_b and R1’ _c¢. Using Alloy to evaluate
these two predicates against the counter example, we see that R1’ aand R1’ b
evaluates to true, but R1’_c evaluates to false. The predicate R1’_c traces to
the sd.proci.threadl.cl subprogram, and is the next point of investigation, in
the next iteration.

Iteration 2

When inspecting the SD subprogram, we see that the default implementation
does not handle values received at the new parameter
sd.procl.threadl.c1.sensor2_in. To make the sd.procl.threadl.cl subprogram
handle the new parameter, we need to update the Alloy::post_edps property of
the sd.procl.threadl.c1 subprogram, as shown in listing 7.2.

The formalized requirements and traces from the formalized requirements to
the architecture remain unaltered.

We again verify the architecture using the Alloy command Check scenariola.
A counter example is returned by Alloy. The requirements R1°, R2’, and R3’ are
all satisfied by the architecture. Further investigation of the counter example
shows that the Architecturelnvariants predicate evaluates to false, specifically
invariant of the data instance hpc.temperature_measurements data instance is
violated. The invariant for this data instance states that all contained measure-
ments should be produced by the device sd.sensorl. However, the stored blood
pressure measurement is produced by the device sd.sensor2.

The hpc.sdm.threadl.c1 subprogram stores the value in the data instance
hpc.temperature _measurements. The hpc.sdm.threadl.cl subprogram and the
hpc.temperature_measurements data instance are the next points of investiga-
tion.

7.2. CHANGE SCENARIO 1 101

Listing 7.2: Change scenario 1 - iteration 2 - update to SD subprogram

subprogram implementation SD_ Subp.i

properties
Alloy :: post_edp => "
one

CS1_iteration2 RPM i Instance_sd_procl threadl cl sensorl in
.(s.parameterValues) and no GenerateAlarm i =>

CS1_iteration2 RPM i Instance sd_procl threadl cl1 measurement out
—>

CS1_iteration2_ RPM i Instance sd_procl_ threadl cl1_ sensorl in
.(s.parameterValues) }

else one
CS1_ iteration2 RPM i Instance sd_procl threadl cl1 sensor2 in

.(s.parameterValues) and no GenerateAlarm i =>
{
CS1_iteration2_ RPM_i_Instance_sd_procl_threadl_cl_measurement_out
—>
CS1_iteration2_ RPM_i_Instance_sd_procl_threadl_cl_sensor2_in
.(s.parameterValues) }

else one
CS1_iteration2_ RPM _i_Instance_ sd_procl_threadl cl1_ sensorl_ in

.(s.parameterValues) and one GenerateAlarm i =>
{
CS1_iteration2 RPM i Instance sd_procl threadl c1_ alarm_out
—> { a: Alarm_1i [a.sensorA =
CS1 _iteration2 RPM i Instance_sd_procl threadl cl_ sensorl in
.(s.parameterValues).sensorM and one a.zaA } }
else

none —> none

n.
)

end SD_Subp.i;

102CHAPTER 7. EVALUATION OF CHANGE IMPACT ANALYSIS PROCESS

R
| "Sensor1
| ‘Sensor2 >

Figure 7.3: Change scenario 1 - iteration 3

Iteration 3

Two options exist to repair the architecture. The first option is to add a
new data instance hpc.bloodpressure_measurements to the architecture, ded-
icated to blood pressure measurements. If the new data instance is added,
the hpc.sdm.threadl.cl subprogram needs to be given access to the data in-
stance by data access features and connections. Also, the semantics for the
hpc.sdm.thread.c1 subprogram needs to be updated to write the blood pressure
measurements to the new data instance. The second option is to make the
hpc.temperature_measurements data instance less strict such that it also sup-
ports blood pressure measurements. To make this happen, we need to update
the invariant for hpc.temperature measurements data instance, and - preferably
- rename the data instance to give it a better name. We choose the first option
and add the new hpc.bloodpressure_ measurements data instance to the archi-
tecture, connect the data instance to the hpc.sdm.threadl.c1 subprogram, and
update the semantics for the hpc.sdm.threadl.c1 subprogram. The structure of
the new architecture is shown in figure 7.3.

Also, we update the formalized requirement R3’ to state that the blood pres-
sure measurements need to be stored in the hpc.bloodpressure measurements
data instance, instead of the old hpc.temperature measurements data instance.

Running the simulation again does not give a counter example. This means
that the new requirements R1’, R2’, and R3’ are satisfied, as well as all the
architecture invariants. The architecture is now able to support blood pressure
measurements.

7.2.3 Evaluation

In iteration 1, the sd.procl.threadl.cl subprogram is identified as an impacted
component. Iteration 2 gave us the components hpc.sdm.threadl.c1, and
hpc.temperature _measurements. During this change scenario, we have actually
changed the following components: sd.procl.threadl.cl1, and hpc.sdm.threadl.cl1.
Also, we have added a new data instance to the hpc system. This shows that the
candidate impacted set over-estimated, as the actual impacted set is a subset
of the candidate impacted set.

In iteration 3 all the requirements are satisfied, but an architecture invariant
is violated. The counter example is used to identify the violating component,
much like the formalized requirements and traces from formalized requirements
to architecture are used to identify components.

Had we used the data flow of requirements R1, R2, and R3, we had marked

7.3. CHANGE SCENARIO 2 103

] ID \ Requirement ‘

R12’ | The system must use WiFi for the wireless connection between
the patient device and the central system

Table 7.2: Change scenario 2 - updated requirements

the components sd.sensorl, sd.procl.threadl.cl, sdc.procl.threadl.cl,
hpc.sdm.threadl.c1, and hpc.temperature measurements as impacted compo-
nents. This set is larger than the actual impacted set of components.

7.3 Change scenario 2

ZigBee is used for the communication between the SDs and central system. Zig-
Bee requires that there is a coordinator node (the SDC in the RPM architecture)
which coordinates the ZigBee network. Another technique for communication
between devices is 802.11b/g, or better known as WiFi. When using WiFi, a
similar coordinator node is used (called an access point), but this node does not
impose any functionality relevant for the architecture and is abstracted from.

This change scenario is used to test the approach when deleting requirements,
and updating requirements.

7.3.1 Changes to requirements

The requirement R13 is removed, as there is no need for an explicit coordina-
tor role anymore, and requirement R12 is updated to state the use of WiFi.
The updated version of requirement R12 (R12’) is given is table 7.2. Given
that requirement R12 is a non-functional requirement, the requirement is not
formalized. Also, no traces are created from the formalized requirement to the
architecture.

7.3.2 Iterative process
Iteration 1

In the first iteration, we remove the complete sdc system, and connect the ports
related to measurements, alarms, and thresholds from the sd system directly to
the hpc system. An excerpt of the updated architecture, showing the data flow
from sd.sensorl to hpc.sdm.threadl.cl1 for temperature measurements, is shown
in figure 7.4.

The formalized versions of the requirements R2, R5, and R10 need to be up-
dated. The formalizations of these requirements referred to the
sdc.procl.threadl.c1 subprogram, which no longer exists. The formalizations
of the requirements and the traces from the formalized requirements to archi-
tecture are updated. The updated traces are given in table 7.3.

To validate that the architecture satisfies the requirements, we run scenario
1, 2, and 3. Running scenario 1, results in a counter example. Querying the
counter example shows that requirements R1 and R2 are satisfied by the archi-
tecture, but R3 is not. Using table B.4, we see that R3 traces to the components

104CHAPTER 7. EVALUATION OF CHANGE IMPACT ANALYSIS PROCESS

o

] Req. \ Pred. \ Component ‘
’ R2 ‘ R2 ‘ sd.procl.threadl.c1, hpc.sdm.threadl.cl (pc) ‘
] R5 \ R5 \ sd.procl.threadl.cl, hpc.procl.threadl.cl (pc) ‘
R10 | R10_a cpe.we.threadl.cl, hpe.ws.threadl.cl (pc)

R10 b hpc.ws.threadl.cl

R10 ¢ hpc.ws.threadl.cl, hpc.sdm.threadl.cl (pc)

R10 _d hpc.sdm.threadl.cl

R10_e hpe.sdm.threadl.cl, sdc.procl.threadl.cl (pc)

Table 7.3: Change scenario 2 - updated traces

hpc.sdm.threadl.c1 and hpc.temperature_ measurements. Also, the invariant for
the subprogram hpc.sdm.threadl.cl is violated.

Running scenario 2 does not result in a counter example. This is unexpected,
as scenario 2 is similar to scenario 1, but tests if the alarm-related requirements
are satisfied by the architecture. For now, we assume the requirements R4-R8
are satisfied by the architecture.

Scenario 3 also gives a counter example. The predicates for the requirements
R9, R10, and R10 all evaluate to true. Further inspection of the counter exam-
ple shows the architecture invariant for the sd.procl.threadl.c1 subprogram is
violated. From this scenario, we mark the sd.procl.threadl.cl as impacted.

The iteration gives wus the components hpc.sdm.threadl.cl,
hpc.temperature _measurements, and sd.procl.threadl.cl as impacted compo-
nents. However, it is unclear in what way these components are failing. Further
investigation of the counter examples from the previous iteration is needed to
discover why the subprogram invariants are violated.

In the counter example of first scenario, the sd.proci.threadl.cl subpro-
gram sends a temperature measurement. The measurement is the identified
by a ZigBee-id. The hpc.sdm.thread.c1 subprogram, however, expects to re-
ceive a measurement identified by a device-id. As a result, the invariant for
the hpc.sdm.threadl.c1 subprogram is violated. In the original architecture, the
sde.procl.thread.c1 subprogram would translate the ZigBee-id to a device-id. As
the sdc.procl.threadl.c1 subprogram is no longer involved in the measurements
data flow, this task is no longer performed.

Inspection of the counter example of the third scenario shows a similar re-
sult. The sd.procl.threadl.c1 subprogram receives a threshold message, for
which a device-id is set. However, the sd.procl.threadl.c1 subprogram expects

7.3. CHANGE SCENARIO 2 105

to receive a message for which a ZigBee-id is set. As a result, the invariant for
the sd.procl.threadl.c1 subprogram is violated. Again, in the original architec-
ture, the sdc.proci.threadl.cl subprogram would translate the ZigBee-id to a
device-id. But the sdc.procl.threadl.c1 subprogram is no longer involved in the
threshold data flow.

From this iteration, we mark the sd.proci.threadl.cl and
hpc.sdm.procl.threadl.c1 subprograms, and the hpc.temperature_ measurements
data instance as impacted elements.

Iteration 2

Following the previous iteration, we choose to alter either or both the
sd.procl.threadl.c1 or/and hpc.sdm.procl.threadl.c1 subprogram. The
hpc.temperature _measurements data instance is ignored for now. We have iden-
tified the missing task of translating between ZigBee-id and device-id, and vice
versa. We choose to alter the hpc.sdm.threadl.c1 subprogram, such that it does
not translate between the patient-id and device-id, but patient-id and ZigBee-id.

The behavior of the hpc.sdm.threadl.c1 subprogram is updated. Also, the
data types related to device-id are removed from the architecture, and a data
type used to couple patient-id to ZigBee-id is introduced. The data instance
hpc.dp_ coupling is renamed to hpc.zp _ coupling and its data type is updated to
ZigBeePatient.i.

Running the three scenarios now results in no counter examples. The archi-
tecture satisfies all the formalized requirements.

7.3.3 Evaluation

The device-id/ZigBee-id mismatch could also have been identified by enforcing
more strict typing and static analysis. In the architecture, all ports related to
measurements have the data type Measurement.i. If the Measurement.i data
type had been split up into sub-types, one for each domain, static analysis
would already give a type-mismatch when connecting the measurement ports
of the sd.procl.threadl.c1 to the hpc.sdm.threadl.cl subprograms. However, in
this case a generic type was used, with added behavioral semantics. Change
impact analysis was only possible because the architecture itself was simulated
and requirements and invariants were checked.

Scenario 2 did not give any counter example. This is unexpected, as the
alarms data flow is similar to the measurements data flow. Translation be-
tween the ZigBee-id and device-id is also required for alarms. When inspect-
ing the scenario and the simulator itself, we see what happened. The seman-
tics of the hpc.sdm.threadl.c1 subprogram appear to be invalid. In the sim-
ulation, the hpc.sdm.threadl.c1 subprogram receives an alarm message at the
hpc.sdm.threadl.c1.alarm_in parameter, for which the ZigBee-id is set. Upon
execution of the hpc.sdm.threadl.c1 subprogram, it output to data values to the
hpc.sdm.threadl.c1.alarm_ out event data port, as shown in listing 7.3.

The Alloy State signature is restricted in the sense that it can have at most
one DataType instance per EventDataPort (lone’ quantifier.) The
hpc.sdm.threadl.c1 subprogram, however, gives two DataType instances. The
restriction on the State signature is violated, and thus Alloy discards the gen-
erated model/trace. This shows the simulator can easily be broken, which is

106CHAPTER 7. EVALUATION OF CHANGE IMPACT ANALYSIS PROCESS

Listing 7.3: Change scenario 2 - breaking the simulator

let s = State$6 |
{ CS2_iterationl RPM _i_ Instance hpc_sdm_threadl cl_alarm_out —> {
a: Alarm i | a.patA =
CS2_iterationl RPM_i_Instance_hpc_sdm_threadl_cl_alarm_in.(s.
parameterValues) .devA.(getDatalnstance |
CS2_iterationl RPM i Instance hpc sdm threadl cl dp coupling
|.(s.datalnstanceValues).deviceToPatient) } }

{CS2_iterationl RPM _i_ Instance_ hpc_sdm_threadl cl_alarm_out$0 —>
Alarm_i$0,
CS2_iterationl RPM_i_Instance_hpc_sdm_threadl cl_alarm_out$0 —>
Alarm i$2}

clearly a problem.

We do not support the hardware components of AADL. Although for simu-
lating behavior, in our case, this does not seem to be important, we were unable
to specify whether ZigBee or WiFi hardware is used to communicate. It is hard
- if possible at all - to identify this from the architecture.

If we had used the data flows which all flow through the sdc system, and
marked the components involved in those data flows as impacted, we would have
marked the whole architecture as impacted. Thus, this greatly overestimates
the impacted set of components.

7.4 Change scenario 3

The ZigBee standard specifies the need for a separate node to coordinate the
ZigBee network. During the design of the architecture, it was decided to separate
the coordinator functionality from the central hpc system by the use of an extra
system, the sdc system. The coordination task can also be done by the hpc
system itself, if the hpc is given a ZigBee radio and additional functionality.

This change scenario tests how maintenance from the architecture itself can
be handled, no requirements are changed.

7.4.1 Changes to requirements

The requirements R12 and R13, found in table B.1, are relevant for this change
scenario. Because these requirements are considered non-functional require-
ments, the requirements are not formalized. Also, no traces are defined from
the requirements to the architecture.

7.4.2 Tterative process
Iteration 1

The first iteration is identical to the first iteration of change scenario 2. Needless
to say, the results are the same as the iteration 1 of change scenario 2. The
candidate impacted elements are considered to be the sd.procl.threadl.c1 and
hpc.sdm.procl.threadl.c1 subprograms, and the hpc.temperature_measurements
data instance.

7.5. CHANGE SCENARIO 4 107

R
- (
Sensor1 it

Figure 7.5: Change scenario 3 - iteration 2

Iteration 2

From the previous iteration we know the translation step is no longer performed.
Also, given that the hpc system is given a ZigBee radio, it needs a process to
drive this radio. As a solution, we move the sdc.procl process to the hpc system.
Also, the data instance used to store the translation table (between ZigBee-id
and device-id), is migrated to the hpc system. The updated architecture is given
in figure 7.5.

The formalized requirements mneed to be re-updated, as the
sdc.procl.threadl.cl subprogram now exists again. Thus, the formalized ver-
sions of requirements R2, R5, and R10 can be used from the original archi-
tecture, except that the sdc.proci.threadl.cl subprogram is now identified by
hpc.sdc.threadl.cl.

When we run the scenarios 1, 2, and 3, we see that the architecture satisfies
the requirements and the process ends.

7.4.3 Evaluation

As in change scenario 2, we are not able to model any hardware in the architec-
ture. It is unclear that hpc system is given a ZigBee radio, and thus the need
for a driver of the ZigBee radio in the hpc system is not clear.

Again, if we would have used the data flows to find the impacted set of
components, the whole architecture would have been marked as impacted.

7.5 Change scenario 4

Change scenario 4 adds additional functionality to the system. The alarms data
flow is elaborated such that alarms are sent to both the existing alarm receiver
subprogram (cpc.ar.procl.thread1.c1) and to the newly added cell phone device.

7.5.1 Changes to requirements

Two requirements are added, derived from the R7 and R8. The added require-
ments are shown in table 7.4.

108CHAPTER 7. EVALUATION OF CHANGE IMPACT ANALYSIS PROCESS

] ID \ Requirement ‘

R7 The system must transfer the temperature alarm (R4) form
the patient to the doctors cell phone

R8’ | The system must show the doctor the temperature alarm (R4)
at the doctors cell phone

Table 7.4: Change scenario 4 - added requirements

hpc.temperature_alarms
.

Figure 7.6: Change scenario 4 - iteration 1

7.5.2 Iterative process
Iteration 1

In the first iteration we add a cell phone (¢p) device to the architecture, and
create a connection from the hpc.as.threadl.c1 subprogram to the new cp device.
The cell phone is regarded a device, as we do not consider the cell phones
internals. We make the assumption that when the cell phone receives an alarm,
it will show the alarm. The updated architecture is shown in figure 7.6.

After we have updated the architecture, we formalize the requirements R7’
and R8’. These requirements are similar to R7 and RS&, and as such, so are their
formalized counterparts. The new formalized requirements are shown in listing
7.4.

Additional traces from the formalized requirements to the architecture are
created. Table 7.5 gives the traces for R7’ and R8’ to the architecture.

The Alloy command Check scenario2 is updated to verify R7’ and RS,
next to the original R4, R5, R6, R7, and R8 predicates. When we check the

Listing 7.4: Change scenario 4 - formalized requirements

pred R7’ {
some s: State |
one CS4 iterationl RPM _i_Instance_sd_procl_threadl alarm_out.(s
.eventDataPortValues) and
one CS4_iterationl RPM _i_Instance_cp_alarm_in.(s.” next.
eventDataPortValues)

4
pred R8’ {
some s: State |
one CS4 iterationl RPM i Instance cp_alarm_in.(s.
eventDataPortValues)

7.5. CHANGE SCENARIO 4 109

] Req. \ Pred. \ Component ‘
R7 R7 sd.procl.threadl.cl, sdc.procl.threadl.cl,
hpe.sdm.threadl.cl, hpc.as.threadl.cl, cp (pc, comp)
R®’ RS’ cp

Table 7.5: Change scenario 4 - iteration 1 - new traces

architecture by running the Check scenario2 command, a counter example is
returned. Checking the requirements against the counter example shows that
the original R4-R8 predicates are satisfied, but the new requirements R7’ and
RS&’ are not.

Using the traces from table 7.5 for requirement R7’, we get the following im-
pacted elements: sd.procl.threadl.cl, sdc.procl.threadl.cl, hpc.sdm.threadl.cl,
hpc.as.threadl.c1, and cp. Requirement R8’ traces to the cp device, which was
already found through requirement R7’.

The impacted set of elements is large, compared to the architecture. The
requirement R7’, which was not further split up like R2, R5, and R10, is traced
to a large number of elements.

Iteration 2

The impacted elements found through the traces from R7’ is a large set and
makes it hard to find the real impacted element(s). To overcome this problem,
the requirement R7’ is further split up into several sub-requirements, as done
with R2, R5, and R10. Using the same scenario, but with the finer grained
version of R7’, we can now identify the hpc.as.threadl.cl subprogram as the
failing component. When the subprogram receives an alarm, it does not send a
value to the hpc.as.threadl.cl.alarm_out cp event data port.
We mark the subprogram hpc.as.threadl.c1 as the impacted component.

Iteration 3

Using the results from iteration 2, we investigate the hpc.as.threadl.c1 sub-
program. When checking the semantics for this subprogram, it shows that
the subprogram lacks functionality. As already identified in iteration 2, the
hpc.as.threadl.cl subprogram does not send an alarm to
hpc.as.threadl.c1.alarm_out_cp event data port. The behavioral semantics for
this subprogram are updated, as shown in listing 7.5.

Running scenario 2 again gives no counter example and the architecture
satisfies the old and new requirements.

7.5.3 Evaluation

The lesson learned from this change scenario is that the coarseness of require-
ment perdicates and the traces from the requirement predicates to the architec-
ture are important. If a single formalized requirement (predicate) traces to a
large number of components, it is hard to find the actual impacted component.
Using the finer grained predicates for requirement R7’, we were able to more
accurately identify the component which was actually impacted.

110CHAPTER 7. EVALUATION OF CHANGE IMPACT ANALYSIS PROCESS

Listing 7.5: Change scenario 4 - iteration 3 - updated semantics for
hpc.as.threadl.cl

subprogram implementation AS Subp.i
properties
Alloy ::post _edp => "
one CS4 iteration3 RPM i Instance hpc_as threadl cl1 alarm_in
.(s.parameterValues) =>
{ CS4_ iteration8 RPM i Instance hpc_as_ threadl c1 alarm_out

—>

CS4_iteration3 RPM _ i Instance_ hpc_as_ threadl cl1 _alarm_in
.(s.parameterValues) } +

{
CS4 iteration3 RPM 14 Instance hpc as_threadl c1 alarm_out cp
—>
CS4 iteration3 RPM i Instance hpc_as threadl c1 alarm_in
.(s.parameterValues) }
else

none —> none

n.
)

end AS Subp.i;

Using the data flow-based approach, we would have identified the
sd.procl.threadl.cl1, sdc.procl.threadl.c1, hpc.sdm.threadl.c1, hpc.as.threadl.cl,
and
cpe.ar.threadl.c1 components as impacted.

7.6 Change scenario 5

In this change scenario, the system is changed such that there does not need
to exist a permanent link between the patient and the central system. The
patient device will temporarily store the temperature measurements, and trans-
mits them at a later point to the central system.

7.6.1 Changes to requirements

The requirements are updated to support the non-persistent connection between
the patient device and the central system. Requirement R2 is replaced by the
requirements from table 7.6. The updated requirements introduce differentiation
of the existence or non-existence of the port connection used for measurements
between the patient device and the central system.

7.6.2 Iterative process

The requirements given in table 7.6 are not all implemented directly. A staged
approach is taken to implement the requirements in the architecture. First, the
two requirements R2a’ and R2b’ will be implemented in the architecture. Then,
requirement R2c’” will be implemented.

This change scenario introduces dynamicity in the architecture. In AADL,
dynamicity of the architecture is modeled through the use of modes. Modes,
however, are not supported by our simulator. As a result, we need to either

7.6. CHANGE SCENARIO 5 111

] ID \ Requirement ‘

R2a’ If there is a connection between the patient device and the
central system, the system must transfer temperature

measurements (R1) from the patient to the central system

R2b’ If there is no connection between the patient device and the

central system, the system must store the temperature

measurements (R1) at the patient

R2¢’ If there is a connection between the patient device and the
central system, and the central system requests the stored

measurements from the patient device (R1), the patient device

must transfer the stored measurements to the central system

Table 7.6: Change scenario 5 - updated requirements

Figure 7.7: Change scenario 5 - iteration 1

manually alter the generated Alloy file, or keep different versions of the same
model. We have chosen the first approach.

Iteration 1

In the first iteration, we add a data instance sd.temperature_measurements to
the sd system to support the storage of temperature measurements, and connect
it to the sd.proci.threadl.cl subprogram. The result is shown in figure 7.7.

Given the updated behavior, the formalization of requirements R1 needs to
be updated. R1 states that a measurement must be created. The old formaliza-
tion check if the measurement was transports from sd.sensorl.measurement to
sd.procl.threadl.cl.sensorl in, and if the subprogram sd.proc1.threadl.c1 pro-
duced a value at the sd.proci.threadl.cl.measurement_out event data port. In
the new architecture, the measurement is either produced at
sd.procl.threadl.cl.measurement out, or stored at the data instance
sd.temperature_measurements. Listing 7.6 gives the new formalization of re-
quirement R1.

The formalization of requirements R2a’ and R2b’ are shown in listing 7.7.
The original formalization of R2 can be re-used for the requirement R2a’. How-
ever, the formalization of requirement R2 cannot be used for the formaliza-
tion of requirement R2b’. Requirement R2 states that is a measurement is
received by the sd.proci.thread.cl subprogram, it will be sent to event data
port sd.procl.threadl.cl.measurement out. This is not the case for R2b’, as
instead, it will be stored in the data instance sd.temperature measurements,

112CHAPTER 7. EVALUATION OF CHANGE IMPACT ANALYSIS PROCESS

Listing 7.6: Change scenario 5 - iteration 1 - formalized requirements R1

pred R1 {
R1_a
one
CS5_iterationl RPM _i_Instance_sd_procl_threadl measurement_out
.portConnections []| =
R1_b
else
R1 ¢

pred Rl a {
some s: State |
one CS5 iterationl RPM i Instance sd_ sensorl measurement.(s.
eventDataPortValues) and

one
CS5 _iterationl RPM i Instance sd procl threadl cl sensorl in
.(s."next.parameterValues)
pred R1_b {
some s: State |
one
CS5 _iterationl RPM i Instance sd_procl threadl cl_sensorl in
.(s.parameterValues) and
one
CS5_iterationl RPM i Instance sd procl threadl cl measurement out
.(s."next.eventDataPortValues)
pred Rl1_c {
some s: State |
one

CS5 _iterationl RPM i Instance sd_procl threadl cl_sensorl in
.(s.parameterValues) and

one CS5_iterationl RPM_i_ Instance_sd_temperature measurements. (
s.datalnstanceValues)

and not sent to event data port sd.procl.threadl.cl.measurement_out.

Requirement R3 is also updated, such that it only needs to hold whenever
there is a connection between the sd.proci.threadl.cl.measurements out and
sdc.procl.threadl.cl.measurements_in. The updated formalization is given in
listing 7.7.

After the formalization of the new requirements, we update the traces from
the formalized requirements to the architecture. The traces are given in table
7.7.

The first scenario is updated, such that it checks the new and updated re-
quirements. We now execute the scenario twice. The first time we execute
the command, we make sure the sd.proci.threadl.cl.measurements out and
sdc.procl.threadl.cl.measurements_in ports are connected by a port connec-
tion. No counter example is given by the simulator. This means that the
architecture satisfies the requirements.

After breaking the port connection (by removing the line which connects the
two ports from the portConnection function), we get a counter example. Investi-
gation of the counter example shows that requirements R1, R2b’, and R3 are not
satisfied by the architecture. We know that before R3 can be satisfied, R1 has to

7.6. CHANGE SCENARIO 5 113

Listing 7.7: Change scenario 5 - iteration 1 - formalized requirements R2 and
R3

pred R2a’ {
one
CS5_iterationl RPM i Instance sd procl threadl measurement out
.portConnections [] => R2a’_a and R2a’_b and R2a’_c

pred R2a’ a {
some s: State
one

CS5_iterationl RPM i Instance_sd_procl_ threadl cl_ measurement_out
.(s.eventDataPortValues) and

one
CS5_iterationl RPM i Instance sdc_procl threadl cl measurement in
.(s.” next.parameterValues)

pred R2a’ b {
some s: State |

one
CS5_iterationl RPM_i_Instance_sdc_procl_ threadl cl_measurement _in
.(s.parameterValues) and

one
CS5 iterationl RPM i Instance sdc_ procl threadl ¢l measurement out
.(s. " next.eventDataPortValues)

}
pred R2a’ ¢ {
some s: State |

one
CS5_iterationl RPM_i_Instance_sdc_procl threadl_ cl_measurement_out
.(s.eventDataPortValues) and
one
CS5_iterationl RPM i Instance hpc_sdm_threadl cl measurement_in
.(s.” next.parameterValues)
}
pred R2b’ {
no CS5_iterationl RPM _i_Instance_ sd_procl_ threadl measurement_out
.portConnections [| =>
some s: State |
one

CS5 iterationl RPM i Instance sd procl threadl cl sensorl in
.(s.parameterValues) and

one CS5 iterationl RPM i Instance sd temperature measurements
.(s.datalnstanceValues)

}
pred R3 {
one
CS5_iterationl RPM i Instance sd_ procl threadl measurement out
.portConnections [| =>
some s: State |
one
CS5 iterationl RPM i Instance hpc sdm threadl cl measurement in
.(s.parameterValues) and
one

CS5_iterationl RPM _i_Instance hpc_temperature measurements
.(s."next.datalnstanceValues)

114CHAPTER 7. EVALUATION OF CHANGE IMPACT ANALYSIS PROCESS

] Req. \ Pred. \ Component ‘
R1 R1 a sd.sensorl, sd.procl.threadl.cl (pc)
R1 b sd.procl.threadl.cl
R1 ¢ sd.procl.threadl.cl, sd.temperature measurements
R2a’ | R2a’_a sd.procl.threadl.cl, sdc.procl.threadl.cl (pc)
R2a’ b sdc.procl.threadl.cl
R2a’ ¢ sdc.procl.threadl.cl, hpc.sdm.threadl.cl (pc)
R2b’ R2b’ sd.procl.threadl.cl, sd.temperature measurements
R3 R3 hpc.sdm.threadl.cl, hpc.temperature measurements

Table 7.7: Change scenario 5 - updated traces

Y "
[}

Figure 7.8: Change scenario 5 - iteration 3

be satisfied first, is R3 is ignored for now. Further investigation of R1 shows that
predicate R1 _a and R1 b evaluate to true, but R1 c evaluates to false. Using
the traces from table 7.7, we can identify the components sd.proci.threadl.c1,
and sd.temperature_ measurements as impacted components.

Iteration 2

In iteration 1, the subprogram sd.procl.threadi.c! and the data instance
sd.temperature_measurements are identified as impacted components. At first,
we inspect the semantics of the subprogram sd.proci.threadl.cl. We see the
subprogram is lacking semantics. After we have updated the semantics of the
subprogram, as shown in listing 7.8, we run the verification of the architec-
ture again twice. One time with the existence of a port connection between the
sd.procl.threadl.cl.measurement out and sdc.procl.threadl.c1l.measurement in
features, and one time without a port connection between the features.

Running the simulator does not give a counter example. Thus, the require-
ments R1, R2a’, R2b’, and R3 are satisfied by the architecture.

Iteration 3

Requirement R2c¢’ states that if there is a connection between the sd and sdc
systems, and the sdc system requests the temperature measurements from the
sd system, the sd system must send the stored temperature measurements to
the sdc system. To implement this requirement, we add an event port to the
sdc.procl.threadl.cl and sd.procl.threadl.cl subprograms and connect these
new event ports. The result is shown in figure 7.8.

7.6. CHANGE SCENARIO 5 115

Listing 7.8: Change scenario 5 - iteration 2 - updated semantics for
sd.procl.threadl.cl

subprogram implementation SD_Subp.i
properties
Alloy :: post _diProduced => "
one
CS5_iteration2 RPM _i_ Instance sd_procl_ threadl cl_threshold in
.(s.parameterValues) =>
{ getDatalnstance |
CS5 iteration2 RPM i Instance sd_ procl threadl cl temperature threshold
| —
CS5_iteration2 RPM i Instance sd_procl threadl cl threshold in
.(s.parameterValues) }
else one
CS5 iteration2 RPM i Instance sd procl threadl cl sensorl in
.(s.parameterValues) and no
CS5_iteration2 RPM i Instance sd procl threadl measurement out
.portConnections [| and no GenerateAlarm i =>
{ getDatalnstance |
CS5 _iteration2 RPM i Instance sd procl threadl cl temperature measurements
| —
CS5 _iteration2 RPM i Instance sd procl threadl cl sensorl in
.(s.parameterValues) }
else
none —> none

"n.
)

end SD Subp.i;

Lessons learned from change scenario 4, the requirements R2c¢’ is formalized
in a fine grained manner, as shown in listing 7.9. The predicate R2c’_a traces
to the sdc.procl.threadl.cl and sd.procl.threadl.cl subprograms. The predi-
cate R2¢’ b traces to the sd.procl.threadl.cl subprogram. A new scenario is
created to verify the new behavior. The initial state for the new scenario states
that the sdc.procl.threadl.cl.measurements_request out event port holds an
event. Furthermore, the sd.temperature_measurements contains one tempera-
ture measurement. The requirements R2a’, R2¢’, and R3 are verified by this
scenario.

Running the scenario results in a counter example. Testing the predicates,
R2¢’ _a evaluates to true, but R2¢’ b evaluates to false. Using the traces, we
identify the sd.procl.threadl.c1 subprogram as an impacted component.

Iteration 4

After inspection of the sd.procl.threadl.c1 subprogram, we conclude the subpro-
gram lacks the proper behavioral semantics. After implementing the behavior
for the subprogram, we run the scenario again. Needless to say, the formalized
requirements are unaltered.

The simulator does not give any counter example, which means the archi-
tecture now satisfies the requirements.

116CHAPTER 7. EVALUATION OF CHANGE IMPACT ANALYSIS PROCESS

Listing 7.9: Change scenario 5 - iteration 3 - updated formalized requirement
R2

pred R2c’ {
R2c’ _a and R2c’ b

pred R2c’ a {
some s: State |

one
CS5_iteration3 RPM _i_ Instance_ sdc_procl_ threadl measurements request_out
.(s.eventPortValues) and

one
CS5_iteration3 RPM i Instance sd_ procl threadl measurements request in
.(s.”next.eventPortValues)

pred R2c’ b {
some s: State |

one
CS5_iteration3 RPM _i_ Instance_sd_procl_threadl measurements_ request_in
.(s.eventPortValues) and

one
CS5 iteration3 RPM i Instance sd procl threadl cl measurement out
.(s. " next.eventDataPortValues)

7.6.3 Evaluation

The lack of modes in the simulator proved to be a small barrier here. Fortu-
nately, we could easily omit this by breaking the connection manually. However,
in a more elaborate architecture, it might not be satisfactory to simply break a
connection and re-run the simulation. Often, connections are broken or created
during the simulation itself.

The candidate impact set found by the process are the sd.procl.threadl.cl,
and sd.temperature _measurements components. The actual impacted set is
sd.procl.threadl.c1. It shows that the candidate impact set overestimates the
actual impact set.

Using the data flow based approach, we would have marked the
sd.procl.threadl.cl, sdc.procl.threadl.cl, hpc.sdm.threadl.cl,
hpc.temperature_measurements components as impacted.

7.7 Conclusion

This chapter describes the case study which is performed to test the effectiveness
of the approach. Five change scenarios are given and performed to identify
strengths and weaknesses of the approach. From this case study, a number
of important aspects come forward. The first is that the coarseness of the
formalized requirements and the traces from the formalized requirements to the
architecture is important with regard to the accuracy of the resulting set of
impacted components.

Secondly, data instances are often identified as candidate impacted compo-
nents, but are often not actually impacted components. In other words, impacts
of data instances are often overestimated. Finally, architecture invariants are,
next to requirements, an important tool to identify impacted components. Of-

7.7. CONCLUSION 117

ten architecture invariants fail, while requirements do hold in the simulation.
The failures of the invariants is often a result of invalid data values received by
subprograms, or stored in data instances.

The proposed approach proves to be more accurate than simply taking all
the components involved in the data flow defined by the changed requirements.
Using the data flow to find impacted components usually over-estimates the set
of impacted components.

118CHAPTER 7. EVALUATION OF CHANGE IMPACT ANALYSIS PROCESS

Chapter 8

Related work

8.1 Introduction

This chapter investigates the works of others related to our work. Briefly, the
related work is investigated with regard to several defined aspects. After that,
for each work, a comparison is given to our work.

In section 8.2 related works with regard to behavioral analysis of architec-
tures is given and compared. Section 8.3 elaborates on the validation of require-
ments within an architecture. Change impact analysis methods are compared
in section 8.4. Finally, this chapter is concluded in section 8.5.

8.2 Behavior analysis

This section investigates the related work with regard to behavior analysis of
software architectures. The following aspects will be investigated in the related
work, and compared to our work:

e Notations used to specify the architecture and behavior;
e Technology used for analysis of the behavior of the architecture;
e Depth of analysis/analysis possibilities;

e Whether the analysis is architecture based or implementation based.

8.2.1 State charts

In [DV00, VDROO0], the C2 architecture description language is used to record
the architecture. To specify the behavior of the components found in archi-
tectures, the components are augmented with state charts. The (un)desired
behavior properties are expressed in LTL.

A tool, called Argus-I, is used to perform analysis on the architecture. On the
(individual) component level, the tool allows for structural analysis, static be-
havioral analysis (model checking), and simulation. Model checking is achieved
by converting the state chart of a component to a Promela model. The SPIN
model checker[Hol97] is used to validate properties over the behavior of the
architecture. The properties are expressed in LTL.

119

120 CHAPTER 8. RELATED WORK

At the architecture level, dependency analysis, interface mismatch, behav-
ioral analysis (model checking), and simulation is performed. To perform model
checking of the whole architecture, all the state charts of the components are
converted to concurrent processes in a Promela model. This model is then tested
against given LTL properties by the SPIN model checker. Simulation is used to
explore and visualize the behavior of the architecture.

Possibilities of behavioral analysis include checking properties related to non-
determinism of the state chart, deadlock analysis in the architecture, and reach-
ability analysis.

Furthermore, the actual component implementation, in Java, is tested and
validated against the state chart-based specification of the component. The
complete architecture implementation is validated through the observation of
events between components by use of a debugger and monitor. The discovered
traces are visualized in the architecture model. Finally, validation of the confor-
mance of architecture implementation against architecture specification is made
possible by use of the monitor tools, and parallel simulation of the components
state charts.

Discussion

A state chart uses events as its driver. The events do not carry any data.
As a result, no deep inspection is possible with regard to the messages/events
exchanged between the components. In our work, different types of messages
are used such as data value, event, and event data. As such, we can perform a
deeper type of analysis based on the data carried by the messages.

On the other hand, the components are annotated with state charts. A single
state chart can model complex behavior. Deadlocks can occur when two systems
are running in parallel. Given the ability to model this complex behavior, and
the analysis tools, dead locks can be identified. In our work, subprograms
- the components which perform actual computation in the simulation - are
annotated with pre- and post-conditions. The post-condition is executed as an
atomic action. Not only is it harder to model complex behavior using pre- and
post-conditions, deadlock detection also becomes harder.

In the analysis of the architecture, only the processes are taken into account.
The structure of the architecture, such as port connections and their properties,
are ignored when analyzing the architecture. In our approach, the simulator
takes the delay of data value propagation through the architecture - introduced
by port connections - into account.

8.2.2 Control flow graphs

[WSMDO08| provides a complete framework to specify and analyze architectures.
It uses its own meta-model for the structure of the architecture, but is based
on the main architectural elements: component, connector, port. Component
contracts are used to specify structural, behavioral, and data flow properties.
The behavior of each component is specified by its Control Flow Graph (CFG).
A CFG specifies the order of all messages sent and received by a component. An
edge in a CFG represents the sending or receiving of a message. Nodes represent
operators. Complex behavior is modeled by use of operators such as sequence,
alternative, fork, and merge. Given that each node in the CFG contains the

8.2. BEHAVIOR ANALYSIS 121

exchanged-message history, the CFGs are context-sensitive. Data flow prop-
erties are used to specify the allowed ranges of incoming and outgoing values.
Assumptions and guarantees are used to specify these properties, respectively.

The CALICO framework is introduced in order to analyze the behavior of
the architecture. The framework introduces its own type of analysis. From the
individual CFGs, one large CFG of the whole architecture is computed by the
CALICO framework. As the component CFGs are annotated with guarantees
and assumptions, it is possible to reason about the guarantees and assumptions
in the architecture. In the CFG, guarantees are propagated forward, assump-
tions are propagated backward. Based on the forward/backward propagation,
the assumptions and guarantees are validated at other nodes in the CFG.

At the platform level (implementation level), CALICO is used to analyze
the messages sent in the system. The messages sent between the components
are intercepted by special components called interceptors, and validated for
conformance with the architecture. This approach thus allows for analysis at
both the architecture level and the platform level.

Discussion

This paper proposes a way to model the behavior of the components with re-
gard to the messages sent and received. Data flows within the architecture are
extracted from the configuration of the architecture and the components behav-
ior. The difference with our work is that the architecture itself is not simulated,
but analyzed by the use of model composition and reasoning. In our work, we
have the ability to specify pre-conditions for sub-programs which are checked
by the simulator. Pre-conditions are comparable to the assumption properties
in the CFGs. Post-conditions of subprograms are comparable to the guarantee
properties in the CFGs.

Like in the previous approach, the structure of the architecture itself is not
taken into account. Port connections are abstracted away and thus properties
of these port connections are not taken into account during the verification. At
the platform level, of course, the connections are taken into account.

8.2.3 Labeled Transition Systems

In [MKG99], architectures are recorded through the Darwin architecture de-
scription language. The behavior of individual components is specified by the
textual notation Finite State Processes (FSP). A FSP is a simple process algebra
which includes guarded choices, local processes and conditional processes. The
FSP of a component is translated to a Labeled Transition System (LTS). The
structure of the architecture is used to combine the processes of all the compo-
nents. Combining all the behavior specifications of the components results in
one large concurrent FSP.

The resulting FSP is converted to a LTS. A tool called Labeled Transition
System Analyzer (LTSA) is used to simulate the architecture based on the LTS.
Also, LTSA is used to validate behavioral properties over the whole system.
The tool can also be used as a simulator to animate the architecture and ex-
plore different scenarios manually. Behavioral properties, such as reachability
analysis, checking of safety properties, and checking of liveness properties, are
validated by model checking based on the LTS.

122 CHAPTER 8. RELATED WORK

Discussion

Similar to the state chart approach, the behavior analysis is based on events.
No deep analysis of the data flow, like in the second approach, is possible with
this method. Similar to the state chart approach, this approach provides a
more elaborate way to specify complex behavior. Our approach uses pre- and
post-conditions which are considered atomic actions in the simulator.

8.3 Requirements validation

In this section, we investigate the related work with regard to requirements
validation in software architectures. The following criteria are investigated, and
compared to our work:

e Notations used to specify the requirements;
e Notations used to specify the architecture and behavior, if any;

e Technology /techniques used to analyze the behavior of the architecture
and validate the requirements;

e Whether the analysis is architecture based or implementation based.

8.3.1 Goal monitoring system

In [Rob08|, Goal-oriented requirements engineering is used to model goals of an
architecture. Goal modeling is used to describe behavior of the system. The
behavior is described through the specification of input and outputs. Inputs are
complex objects, exchanged by components. The approach works at the level
of implementation. The architecture of the system is not recorded through any
notation.

The requirements on the stream of input are specified using OCLTy, an ex-
tended version of OCL 2.0. TM stands for Temporal Message logic. Extensions
are in the form of specification over received messages, linear temporal logic
operators such as next state, prior state, always in the future, and improved
syntax. Additionally, operators specifying timeouts are added to the language.
Using the monitors and OCLty; expressions, the requirements satisfaction of a
system can be determined based on the satisfaction of the OCLT); expressions.

A monitoring system is proposed which monitors the behavior of the imple-
mentation. The monitors determine the state of the requirement satisfaction of
a system from the stream of inputs and the OCLy)\; specification.

Discussion

Requirements are expressed in the OCLty; language. The approach allows for
much more elaborate specification of requirements, compared to our approach.
For example, based on an incoming event, a time limit is specified in which
the system must react. Our simulation of architecture does not take time into
account. Also, the OCL language provides a rich set of LTL operators. Our
approach does not support any LTL related-operators, but requires the speci-
fication of temporal properties using Alloy predicates. These Alloy predicates

8.3. REQUIREMENTS VALIDATION 123

consist of statements over individual states and their (indirect) predecessor and
successor states.

The implementation of the architecture itself is monitored; no model of the
architecture is simulated/verified. This imposes the need for a (partially) im-
plemented architecture. No predictions are made based on the models, only
validation.

8.3.2 Requirements sequence diagrams

[F1e99] proposes a way to formalize the requirements, which can then be check
against the architecture. The requirements are recorded using a structured use
case. A template is given for the structured use cases. The template records
the following information: goal, pre-condition, post-condition, actions, main
scenario, optional alternative scenarios, variations, exceptions, and notes. The
architecture is specified using the RAPIDE and ROOM. The architecture is
specified through three views: the structure model, the communication model,
and the execution model.

Based on the structured use cases, requirements sequence diagrams are de-
rived. Requirements sequence diagrams describe the causal ordering of mes-
sages between components, and timing requirements for the causal ordering.
The transformation from structured use cases to requirements sequence dia-
grams is manual. Using the behavioral specification of individual components,
the component model itself is simulated. The simulation returns a sequence
diagram.

The requirements sequence diagram and the sequence diagram derived through
simulation of the architecture are then compared to each other. Differences are
returned. A difference means that the behavior of the architecture and the
required behavior to not comply.

Discussion

The approach taken in this paper is similar to our approach. At first the re-
quirements are formalized in a machine-understandable way. Then, a simulation
is performed to derive the actual interaction among the components in the ar-
chitecture. Finally, the formalized requirements are tested against the derived
interaction. The formalized requirements of both approaches are in the solution
domain.

The approach differs in the sense that here a clear method is given for the
recording of the scenarios for each requirement. Exchanges messages are made
explicit by the structured use cases, while in our approach the developer is free
in which events he wants to monitor/verify. Also, sequence diagrams also seem
to be a more natural way of specifying behavior, compared to specifying first
order logic predicates.

8.3.3 Behavior trees

[Dro03] takes an entirely different approach. The article proposes a process to
derive a component based system from a set of functional requirements, based
on behavior trees. A behavior tree is a formal, tree-like, specification of behavior
of individual or networks of entities. A node in the structure represents a state

124 CHAPTER 8. RELATED WORK

of the system. Different semantics for the nodes are given, such as if-state,
when-state, and data-out state. Functional requirements are expressed using
the behavior tree notation, called requirements behavior trees (RBTS).

A software engineering process, called the genetic software engineering method,
is introduced. This process is used to derive a system specification from a set
of functional requirements, by integrating RBTs into a design behavior trees
(DBTs). The process of integrating two behavior trees is given by a number of
axioms.

From the final DBT, which lives in the problem domain, a software archi-
tecture is derived. The DBT contains information about the components found
in the architecture (structure), as well as the behavior of the individual com-
ponents. Given that both the structure of the architecture, and behavior of in-
dividual components and interaction among components are derived, interfaces
are specified automatically. The architecture is specified using a component
based notation. Implementation is not considered by this approach.

Discussion

Given that the architecture is directly derived from the requirements, the ar-
chitecture always satisfies the requirements. As such, the architecture does not
have to be validated against the requirements. However, faults in the formal-
ization of requirements will result in an architecture which is broken. In our
work, the formalization of requirements and the design of architecture are two
different processes. Given that there are two manual processes, faults may creep
in the formalized requirements and/or architecture.

8.4 Change impact analysis

Finally, in this section we investigate the related work with regard to change
impact analysis in software architectures. The following points are investigated
and compared to our approach:

e Notations used to specify the architecture and behavior;
e Technology/algorithms used to perform change impact analysis;

e Preciseness of analysis.

8.4.1 Architectural slicing and chopping

In [ZYXX02] change impact analysis is performed on a Wright architecture.
Wright uses CSP to model the behavior of the components.

Two techniques, called slicing and chopping, are applied to perform change
impact analysis. Backward slicing is used to find the subset of the architecture
that might directly or indirectly affect the behavior of a component. Forward
slicing is used to find the subset of the architecture that might be directly or
indirectly affected by the behavior of a component. Finally, chopping is used to
find the subset of the architecture involved in the communication between two
components.

8.4. CHANGE IMPACT ANALYSIS 125

To apply these techniques, an Architectural Flow Graph (AFG) is derived
from the architecture. In an AFG, ports and roles of components and connec-
tors, respectively, are represented by nodes. Edges represent interaction among
the components through the ports and roles. Algorithms are given to find the
slices and chops over the architecture. From the given set of nodes and edges,
the subset of the architecture can be computed.

The analysis results in a subset of the architecture. This subset includes
the components, connectors, ports, roles, and connections which are relevant
for the behavior. The analysis is precise in the sense that all the elements of
the architecture involved in the behavior are returned.

Discussion

Using this technique, it is easy to find the relevant parts of the architecture
which provides a subset of the complete functionality. The technique only uses
the architecture itself, and does not need other artifacts such as formalized
requirements, or traces from requirements to architecture.

However, this technique can only be used to identify a subset of the architec-
ture involved in some functionality. The architecture is not verified against the
requirements, and as such, other possible impacted elements will not be found.

8.4.2 Dependency matrix

[MZL07] uses a Component Dependence Graph (CDG) to specify the weight of
interaction among different components. Interaction weight is calculated based
on scenarios, the probability of the scenario being executed, and the number
of times interaction occurs between two components based on those scenarios.
From the CDG, a Component Dependence Matrix (CDM) can be constructed.
The CDM is a representation of the CDG in matrix form.

Based on the CDM, the probability of impact is calculated for components.
Different algorithms are given to calculate the probability, based on whether
the initial change occurs in a single component, or multiple components. As a
result, the approach is not precise, but based on probability theory.

Discussion

The approach presented in this paper does not directly rely on a scenario to
perform change impact analysis, like in our work. Instead, it does use scenarios,
but only to calculate the likeliness of interaction between two components. If the
likeliness of interaction between two components is high, the second component
is likely to be impacted when the first component is changed. However, it does
not have to be impacted for certain, it is a clue that the component is likely
to be impacted. Likewise, a component might actually be impacted, while the
approach might mark the possibility of impact low.

Our approach performs change impact analysis by direct execution of the
architecture, based on one or more scenarios. This does seem to give a more
reliable result. Although, as noted in chapter 7, the quality of the result does
depend on the requirements.

126 CHAPTER 8. RELATED WORK

8.4.3 Extended use of slices

In [FMO6], architectures are specified consisting of components, provides or re-
quires interfaces, and methods. A component contains one or more interfaces,
and an interface contains one or more methods. Rules are given for the com-
position components of the architecture. Component Interaction Traces (CITs)
are used to specify the interaction among the components in the architecture.
CITs are similar to (message) sequence diagrams.

To perform change impact analysis in the architecture, a taxonomy of atomic
changes to the architecture is defined. Examples of atomic changes include
adding a method to an interface, and deleting an empty interface from a com-
ponent. Based on the atomic changes, a number of impact rules are given.

To perform dynamic change impact analysis, a slicing technique is applied to
identify the impacted elements. The slicing algorithms use the static structure
of the architecture and the CIT. The slicing technique is similar to the one
proposed in [ZYXX02], but takes individual methods of interfaces into account
as well.

Discussion

Compared to [ZYXXO02], the architecture is more detailed in [FMO06]. The in-
terfaces of the components (ports/roles) contain one or more methods. The
slicing technique proposed in this paper is more elaborate than the one pro-
posed in [ZYXX02]. However, this technique still only uses the architecture
itself. Formalized requirements are not verified.

8.5 Conclusion

In this chapter, Parts of our approach are compared to other approaches. Three
different aspects are compared: behavioral analysis of architectures, testing
requirements against architectures, and change impact analysis in architectures.

The first aspect, behavioral analysis, is given in section 8.2. Two of the
approaches use a process algebra/formalism to describe the behavior of the
architecture: state charts and labeled transition systems. These approaches
allow for deep analysis of the behavior, such as dead lock analysis. However,
these approaches do not take properties of the data flow into account. The third
approach uses control flow graphs, annotated with assumptions and guarantees,
to verify the correctness of the data flow.

The second aspect, validating requirements in architectures is given in sec-
tion 8.3. The first approach tests requirements, expressed as OCLty state-
ments, over the architecture. The statements describe properties of the data
received and sent from a component. OCL7y is an extended version of OCL,
with additional temporal properties. In the second approach message sequence
charts are used to describe the functional requirements of the architecture. Us-
ing a simulator, the actual behavior is extracted. The actual behavior and
wanted behavior are then compared. Finally, the last approach is a total differ-
ent approach. Requirements are expressed as behavior trees. A behavior tree
describes the behavior of the architecture. From these trees, an architecture is
generated which conforms to the behavior trees.

8.5. CONCLUSION 127

The last aspect, performing change impact analysis, is given in section 8.4.
The first approach uses architectural slicing and chopping to get a subset of the
architecture involved in some behavior. This approach identifies the involved
components in a data flow, but does not verify the correctness of the components
themselves. The second approach uses a dependency matrix to identify impacted
components. Weights between components are calculated by the use of scenarios
and the likelihood of interaction between two components.

128 CHAPTER 8. RELATED WORK

Chapter 9

Conclusion and future work

9.1 Summary

In software development, customer requirements are the main driver for the
produced product. The requirements are provided by the customer and are
ultimately translated by software engineers into a solution. During and after the
process of requirements analysis, an architecture is created. This architecture
describes the system at a high level of abstraction in one or more ways. During
the process however, the customer needs often evolve resulting in changes to
the requirements. Because the architecture is driven by the requirements, the
architecture has to be changed accordingly to fulfill the evolved requirements.
Change impact analysis will help changing the architecture.

We propose an approach to perform change impact analysis in software ar-
chitectures in chapter 3. This approach is based on the validation of functional
requirements in the software architecture. In order to validate the functional
requirement, we need to derive the behavior of the architecture. Also, we need
to reformulate the (informal) functional requirement to a formal behavior de-
scription. These behavior descriptions can then be tested against the derived
behavior of the architecture. Using the results of the behavior descriptions, and
traces from requirement to architecture components, we can identify individual
components which do not satisfy the requirements.

In order to derive the behavior of the architecture, we simulate the archi-
tecture. AADL is used to record the architecture. Structural and behavioral
semantics are derived from the AADL standard. Alloy is used for the simulation
of the architecture. The simulation of the architecture results in a state space,
which represents the behavior of the architecture. Benchmarks are performed to
test the feasibility of simulating architectures using Alloy. Alongside, an upper
limit is identified, making the simulation of larger architectures questionable.

To be able to validate functional requirements over the state space, the
requirements need to be reformulated as Alloy predicates. These predicates
assert the presence or absence of behavior in the derived state space. Guidelines
are given for the reformulation of functional requirements to Alloy predicates. If
one or more requirements are not satisfied by the architecture, a counter example
is returned by the Alloy Analyzer. This counter example includes the state space
resulting from the simulation. We query the counter example to identify which

129

130 CHAPTER 9. CONCLUSION AND FUTURE WORK

requirements are not satisfied. Using the results of the requirements and traces
from requirements to architecture, we are able to identify failing components.
The failing components are marked as impacted. An iterative process is used
to identify all the impacted components.

A case study is performed to identify the strengths and weaknesses of the
approach. From the case study, we have learned the lesson that the coarseness
of the requirements is an important aspect with regard to the preciseness of the
approach. Also, the approach sometimes overestimates the impacted component
set.

The proposed approach is compared to other works on three different levels:
behavioral analysis, requirements validation, and change impact analysis. As-
pects of other approaches are comparable to our approach. Some approaches
provide a more elaborate behavioral analysis, compared to our approach. For
requirements validation, other approaches use a more user-friendly notation for
the specification of functional requirements, such as sequence charts. Finally,
for change impact analysis, our approach seems to allow for more elaborate
analysis.

9.2 Answering the research question

The main research question of this study is as follows:

How can validation of requirements in software architectures and
performing change impact analysis in software architectures be im-
proved?

We answered this question by proposing a process to perform change im-
pact analysis, as given in chapter 3 and elaborated upon in chapters 5 and
6. Functional requirements are reformulated in as Alloy predicates, such that
these can be automatically validated against the behavior of the architecture.
We simulate the architecture in Alloy to derive the behavior of the architecture,
based the on the static and behavioral semantics of AADL. The derived behav-
ior is expressed as a state space. Using the derived behavior and the formalized
requirements, we come to a verdict whether the architecture satisfies the func-
tional requirements. Using the verdicts and traces from formalized requirements
to architecture, we identify the impacted components of the architecture.

The main research question is split into sub questions. Each sub question is
answered below.

“What kind of system properties can be checked in the architectural design
level?"

In chapter 5, we have shown how to simulate the behavior of the architec-
ture. By using this simulation, we are able to validate a number of behavioral
properties. Structural properties, not involving any behavior, are not considered
in this research. The formalized requirements state properties on the behavior
of the architecture. For example, a functional requirement can state causality:
if event A happens, event B must happen afterward. Using the simulator, we
can validate whether this behavioral property is present in the behavior of the
architecture.

9.2. ANSWERING THE RESEARCH QUESTION 131

The correctness of data flows through the architecture can also be validated,
as shown in chapter 7. Subprograms and data instances can be annotated with
invariants. These invariants state properties over the components which must
always hold. For example, an invariant can restrict the allowed inputs of a
subprogram, comparable to a pre-condition of a function. Using the simulated
architecture, we can validate whether the data value does or does not violate
the invariant of the subprogram.

Also, architecture invariants can be used to state restrictions on the data
values a data instance can hold. As shown in section 7.2, the simulator was
used to check whether all the data values for a data instance were valid. A
counter example was given, as the architecture invariant was violated.

“How can we use the validation of requirements in architecture to perform
change impact analysis?"

Using the simulator, as presented in chapter 5, we derive the behavior of
the architecture. This behavior is expressed as a state space. Requirements are
used to find invalid or missing behavior of the architecture, as shown in chapter
6. When the simulator finds a part of the state space for which one or more
requirements do not hold, a counter example is returned. This counter example
represents the invalid behavior. Individual requirements can be tested against
the counter example. By doing this, we can identify exactly which requirement
is not satisfied by the architecture.

In chapter 6 we use traces from the individual formalized requirements to
components of the architecture. By using the unsatisfied requirements and the
traces and, we can identify which components are responsible for the invalid or
missing behavior.

It has to be stressed that in order to get accurate results for change impact
analysis, the traces have to be accurate. If the traces are not accurate enough,
the resulting set of impacted components found through change impact analysis
will be over-estimated.

“What tool(s)/method(s) can be used, if there are any at all, to support
change impact analysis?"

OSATE is used to record the architecture. OSATE provides a parser which
converts the textual specification of an AADL architecture into an EMF model.
This EMF model conforms to the given AADL meta-model, also provided by
OSATE. Furthermore, OSATE is used to create an AADL instance model from
an AADL specification. openArchictectureWare/XPand2 is used to transform
the AADL instance model to a simulatable architecture. The simulatable archi-
tecture is expressed in Alloy, and is executable by the Alloy Analyzer, as shown
in chapter 5.

“Which parts of requirements validation and change impact analysis can be
automated?"

A number of steps of the process described in chapter 3 have been automated.
First, simulation of the architecture, chapter 5, is fully automatic. The Alloy
Analyzer is used to derive the behavior of the architecture. This behavior is
expressed in a state space. Formalized requirements can be automatically tested
against the state space, also performed by the Alloy Analyzer.

132 CHAPTER 9. CONCLUSION AND FUTURE WORK

In the implementation of this research, a number of steps are not automated
and have to be performed manually. An example of a manual process is finding
the components by use of the traces from formalized requirements to architecture
components. This step can be automated by writing a program which traces
formalized requirements to architecture components.

“Does the requirements validation and change impact analysis result in a
simple yes/no analysis? If not, what kind of additional information can we
provide as a result of this analysis?"

The validation of requirements results in a simple yes/no analysis, as shown
in chapter 6. However, we can derive components from failing formalized re-
quirements by using traces from formalized requirements to architecture com-
ponents. This process is given in chapter 6, subsection 6.2.3.

9.3 Future work

This section provides the ideas for future work. Several different directions are
given which can be further investigated.

9.3.1 Extending the simulation

The simulation can be extended in several ways.

Supporting more AADL semantics

The simulation presented in this thesis only supports a subset of AADL. For
example, only the software components are supported, hardware components
are not supported. Also, only subprograms directly impose behavior; other
components are containers used to (indirectly) hold the subprograms and data
instances. More semantics can be derived from the AADL standard to comple-
ment simulation of architectures.

For example, the AADL standard describes complex behavior for thread
scheduling and dispatching in the form of a state machine. These semantics can
be used in the simulation. Also, port connections have different characteristics,
such as immediate and delayed transfer of data values. In the current approach,
all port connections are considered to be delayed port connections.

Additionally, modes and mode transitions play an important role in the spec-
ification of the dynamicity of an architecture. The simulator can be extended
to take this into account.

Supporting events from the environment

A scenario describes the initial state of the simulation. This initial state de-
scribes the location of data, after an event has been detected by the architecture.
During the simulation itself, no other external events can be introduced into the
simulation. This limits the simulation of the architecture, in the sense that it
is harder /impossible to validate the correctness of the architecture with regard
to concurrency and synchronization. Allowing for events to occur during the
simulation itself would allow for more elaborate behavioral analysis possibilities.

9.3. FUTURE WORK 133

In order to achieve this, the parallel simulation can be extended. An extra
transition function can be added which describes the detection of an occur-
rence by the architecture. The Alloy model can be restricted such that the
transition function is taken at most once during simulation of the architecture.
The resulting state space describes the occurrence of the original detection of
the occurrence of the event through the initial state, and the detection of the
occurrence of the event through the additional transition function.

Subprograms as white-boxes

The behavior of subprograms is specified as pre- and post-conditions. While
effective, as shown in chapter 5, it only allows for simple behavioral specification.
It is impossible to model complex behavior. As a result, it is harder to reason
about the complete behavior of the architecture. A different approach to model
the complex behavior of a subprogram is to use a process algebra. Algebras such
as Milner’s m-calculus[Mil99] or Hoare’s CSP[C.A78] provide formal semantics
which can be simulated /executed.

Another approach to model complex behavior is to use finite state machines.
The AADL Behavioral Annex[BDF106| provides an annex used to describe the
behavior of components through finite state machines. The semantics of the
state machines of the AADL Behavioral Annex can be transformed into an
Alloy model. The current version of the simulation can be extended such that
state machines are used to specify the behavior of subprograms.

Optimizing the simulation

It is possible that techniques such slicing and/or chopping, as shown in chapter
8, can be applied to the architecture as a preprocessing step. Using these tech-
niques, we can identify the relevant components, features, and connection of
the architecture. Only the selected components, features, and port connections
have to be transformed to a simulatable architecture. The benchmarks from
chapter 5 show that decreasing the size of the architecture increases the speed
of the simulation. Also, decreasing the size of the simulated architecture allows
for a simulation with more states, as shown in chapter 5.

Another possibility is to simulate the architecture iteratively. Instead of sim-
ulating the architecture using a large number of states, we can instruct the Alloy
Analyzer to only simulate two states. The first state would be the initial state,
or the last discovered state from the last iteration. The newly discovered state is
the next state, from the current state. After each simulation-iteration, the next
state is extracted from the Alloy Analyzer, and set as the initial state/current
state for the next simulation-iteration. This way, the number of states for each
iteration is always two. The benchmarks from chapter 5 show that simulation
using a small number of states is fast. The downside of this approach is that
the model discovered by the Alloy Analyzer has to be interpreted after each
iteration.

9.3.2 Stepping away from Alloy

In section 5 we described the simulation of architecture using the Alloy Analyzer.
The benchmarks provided in that chapter give insight into the speed of the

134 CHAPTER 9. CONCLUSION AND FUTURE WORK

simulator. The results show an exponential growth in time required to perform
the simulation when the number of simulated states is increased linearly. Also,
the Alloy Analyzer introduces an upper limit for the size of the architecture and
the number of states used for simulation. Complex behavior, as proposed in
subsection 9.3.1, can result in a state space explosion. The result of the state
space explosion is that simulation of the architecture will become infeasible, if
possible at all, given the limits of the Alloy Analyzer. On the other hand, it
may be argued that an architecture is supposed to be abstract and simulation
should be possible using a small number of states.

Other approaches to perform simulation and model checking seem to be
more suited for the purpose of behavior analysis. Examples include SPIN[Hol03,
Hol97], LTSA|MKG99] and Maude|[CDE*02, CDE*08]. Although a SPIN spec-
ification only describes processes and not architecture structure, as in our ap-
proach, process analysis can be used to validate requirements. The functional
requirements would be translated to LTL formulas, which are validated over the
state space by the SPIN model checker. SPIN returns a counter example if the
LTL property is violated. LTSA came forward in chapter 8. LTSA provides a
counter example if one of the safety properties is violated. It provides a means
to validate properties over labeled transition systems. Maude is a rewriting logic
programming language used to model systems and actions within those systems.
LTL is also used to specify properties which must hold. Maude returns a counter
example if an LTL property is violated.

Abstract away from Alloy-related notation

Currently, the formalized requirements are specified as Alloy predicates. This
requires knowledge of the Alloy notation (and workings) to specify the for-
malized requirements. The same holds for the specification of the behavior of
subprograms, and the invariants for the subprograms and data instances.

Another, more intuitive, notation can be used to specify the required func-
tionality of the architecture. One possibility is Linear Temporal Logic (LTL).
LTL is a model temporal logic to describe temporal properties over paths in
graph structures. Another possibility, as seen in chapter 8, is the use of se-
quence diagrams. Sequence diagrams provide a graphical notation to specify
interactions between components. This notation is very intuitive, and does not
require knowledge of a formal notation which can be hard to understand.

The behavior of the subprograms is also expressed as Alloy-statements.
AADL provides the AADL Behavior Annex|BDF106] to describe the behav-
ior of individual components. The annex makes use of the state chart notation.
State charts are commonly used to describe behavior, for example in UML.

9.3.3 Further automating the process

The process can be further automated. A meta-model can be created which al-
lows one to record the traces between the requirements, requirement predicates,
and architecture components. To record the requirements, the meta-model de-
fined by Goknil et al.[GKvdBO08| can be used. Either this meta-model can be
extended to support the recording of the requirement predicates, or a new meta-
model can be defined for this purpose. AADL is used to record the architec-
ture. A model which records the traces between the requirements, requirement

9.3. FUTURE WORK 135

predicates, and architecture components, would reference the requirements, re-
quirements predicates, and architecture models.

Using the information from the previously defined models, one could further
automate the process of performing change impact analysis. A tool can be
developed which reads the models, transform the architecture model - using
the existing transformation - to an Alloy model. The tool then calls Alloy
to validate the architecture, and, in case of a counter example, queries the
counter example to identify the unsatisfied requirement predicates. The model
containing the traces from requirement predicates to architecture components
is used to identify the failing architecture components, given the unsatisfied
requirement predicates.

The tool could be used to automate the activities simulate architecture,
verify formalized requirements, and find impacted components found in chapters
3 and 6.

136 CHAPTER 9. CONCLUSION AND FUTURE WORK

Bibliography

[AGY6|

[ALI09]
[AMBD04]

[BC84]

[BDF+06]

[Boh02]

[C.ATS]

[CBB+02]

[CDE+02]

[CDE+08

[CKO3]

Robert Allen and David Garlan. The Wright architectural speci-
fication language. CMU-CS-96-TB, School of Computer Science,
Carnegie Mellon University, Pittsburgh, September 1996.

Tutorial for alloy analyzer 4.0, 07 2009.

Alain Abran, James W. Moore, Pierre Bourque, and Robert
Dupuis. Guide to the software engineering body of knowledge.
Technical report, IEEE Computer Society, 2004.

J. Banks and J. S. Carson. Discrete-Event System Simulation.
Prentice-Hall, Englewood Cliffs, N.J., 1984.

Jean-Paul Bodeveix, Pierre Dissaux, @ Mamoun Filali,
Pierre Gaufillet, and F. Vernadat. AADL behavioural
annex. In Data Systems In Aerospace (DASIA), Berlin-
Germany, 22/05/2006-25/05/2006, page (electronic medium),
http://www.esa.int /publications, 2006. European Space Agency
(ESA Publications).

Shawn A. Bohner. Software change impacts - an evolving perspec-
tive. In ICSM, pages 263-272. IEEE Computer Society, 2002.

C.A.R. Hoare. Communicating sequential processes. Communica-
tions of the ACM, 21(8):666-677, August 1978.

Paul Clements, Felix Bachmann, Len Bass, David Garlan, James
Ivers, Reed Little, Robert Nord, and Judith Stafford. Document-
ing Software Architectures: Views and Beyond. Addison-Wesley
Professional, 2002.

Clavel, Duran, Eker, Lincoln, Marti-Oliet, Meseguer, and Que-
sada. Maude: Specification and programming in rewriting logic.
TCS: Theoretical Computer Science, 285, 2002.

Manual Clavel, Francisco Duran, Steven Eker, Patrick Lincoln,
Narciso Marti-Oliet, Jose Meseguer, and Carolyn Talcott. Maude
Manual (Version 2.4), October 2008.

Paul Clements and Rick Kazman. Software Architecture in Prac-
tices. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003.

137

138

[DN02|

[Dro03]

[DV00]

[DvdHTO1a]

[DvdHTO1D)

[EKHLO3]|

[EMF]
[Fei]

[FGHO6]

[Fle99)]

[FMO6]

[GKvdBO8]

[GMW97]

BIBLIOGRAPHY

Liliana Dobrica and Eila Niemeld. A survey on software architec-
ture analysis methods. IEEE Trans. Software Eng, 28(7):638-653,
2002.

R. Geoff Dromey. From requirements to design: Formalizing the
key steps. In SEFM, page 2. IEEE Computer Society, 2003.

Marcio S. Dias and Marlon E. R. Vieira. Software architecture
analysis based on statechart semantics. In IWSSD, pages 133—
140. IEEE Computer Society, 2000.

Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. A
highly-extensible, XML-based architecture description language.
In WICSA ’01: Proceedings of the Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA’01), page 103, 2001.

Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. A
highly-extensible, XML-based architecture description language.
In WICSA, pages 103-112. IEEE Computer Society, 2001.

Gregor Engels, Jochen Malte Kiister, Reiko Heckel, and Marc
Lohmann. Model-based verification and validation of properties.
Electr. Notes Theor. Comput. Sci, 82(7), 2003.

Eclipse modeling framework.

Peter Feiler. SAE AADL: An industry standard for embedded

systems engineering.

Peter H. Feiler, David P. Gluch, and John J. Hudak. The Archi-
tecture Analysis € Design Language (AADL): An Introduction, 2
2006.

Wolfgang Fleisch. Applying use cases for the requirements valida-
tion of component-based real-time software. Universitéit Stuttgart;
Fakultat Informatik, Elektrotechnik und Informationstechnik. In-
stitut fiir Automatisierungs- und Softwaretechnik, May 1999.

Tie Feng and Jonathan I. Maletic. Applying dynamic change im-
pact analysis in component-based architecture design. In Yeong-
Tae Song, Chao Lu, and Roger Lee, editors, Seventh International
Conference on Software Engineering, Artificial Intelligence, Net-
working and Parallel/Distributed Computing (SNPD 2006), 19-20
June 2006, Las Vegas, Nevada, USA, pages 43-48. IEEE Com-
puter Society, 2006.

A. Goknil, I. Kurtev, and K. G. van den Berg. Change impact anal-
ysis based on formalization of trace relations for requirements. In
J. Oldevik, G. K. Olsen, T. Neple, and R. Paige, editors, ECMDA
Traceability Workshop (ECMDA-TW), Berlin, Germany, pages
59-75, Trondheim, Norway, June 2008. SINTEF Report.

D. Garlan, R. T. Monroe, and D. Wile. Acme: An architecture
description interchange language. In Proceedings of CASCON’97,
pages 169-183, Toronto, Ontario, November 1997.

BIBLIOGRAPHY 139

[GS92|

[Hol97]

[Hol03)]

[IEE90]

[IEE00]

[Jon90]

[Ken02]

[KKCOO]

[KMS85|

[Kru95|

[KS98]|

[Kur05]

[KWBO03]

[LHSO08]

[Mil99]

D. Garlan and M. Shaw. An introduction to software architec-
ture. In V. Ambriola and G. Tortora, editors, Advances in Soft-
ware Engineering and Knowledge Engineering, pages 1-40. World
Scientific Publishing Co., 1992.

Gerard J. Holzmann. The model checker spin. IEEE Transactions
on Software Engineering, 23(5):279-295, May 1997.

G.J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley, Boston, Massachusetts, USA, 2003.

IEEE Standards Board. IEEE standard glossary of software engi-
neering terminology—IEEE std 610.12-1990, 1990.

IEEE. IEEE recommended practice for architectural description
for software-intensive systems. Technical report, The Architecture
Working Group of the Software Engineering Committee, October
2000.

Cliff B. Jones. Systematic Software Development Using VDM.
Prentice Hall, second edition, 1990.

Stuart Kent. Model driven engineering. In Michael J. Butler,
Luigia Petre, and Kaisa Sere, editors, IFM, volume 2335 of Lecture
Notes in Computer Science, pages 286-298. Springer, 2002.

Rick Kazman, Mark Klein, and Paul Clements. ATAM: Method
for architecture evaluation. Technical report, September 05 2000.

J. Kramer and J. Magee. Dynamic configuration for distributed
systems. IEEE Transactions on Software Engineering, 11(4):424—
436, April 1985.

Philippe Kruchten. Architecture blueprints - the "441" view
model of software architecture. In TRI-Ada Tutorials, pages 540—
555, 1995.

Gerald Kotonya and Ian Sommerville. Requirements Engineering
: Processes and Techniques (Worldwide Series in Computer Sci-
ence). John Wiley & Sons, September 1998.

I. Kurtev. Adaptability of Model Transformations. University of
Twente, Enschede, 05 2005.

Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Ezplained:
The Model Driven Architecture— Practice and Promise. Addison-
Wesley, 2003.

Jiexin Lian, Zhaoxia Hu, and Sol M. Shatz. Simulation-based
analysis of UML statechart diagrams: methods and case studies.
Software Quality Journal, 16(1):45-78, 2008.

Robin Milner. Communicating and Mobile Systems: The w-
calculus. Cambridge University Press, 1999.

140

[MIT|
[MKO5]

[MKG99]

[Mon01]

[MORTY6]

[MT00]

[Muk97]

[MZLO07|

[Obj03]
[OCL06]

[ope]
[Rob08]

[RR9S]

[RSTT04]

[SAE04]

BIBLIOGRAPHY

MIT Software Design Group. The Alloy Analyzer homepage.

Mike Mannion and Barry Keepence. SMART requirements. ACM
SIGSOFT Software Engineering Notes, 20(2):42-47, April 1995.

Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou. Behaviour
analysis of software architectures. In Patrick Donohoe, editor,
WICSA, volume 140 of IFIP Conference Proceedings, pages 35—
50. Kluwer, 1999.

Robert T. Monroe. Capturing software architecture design exper-
tise with armani version 2.3, 01 2001.

Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and
Richard N. Taylor. Using object-oriented typing to support archi-
tectural design in the C2 style. In SIGSOFT FSE, pages 24-32,
1996.

Nenad Medvidovic and Richard N. Taylor. A classification and
comparison framework for software architecture description lan-
guages. IEEFE Transactions on Software Engineering, 26(1):70-93,
jan 2000.

Madhavan Mukund. Linear-time temporal logic and Biichi au-
tomata. Tutoriala talk, Winter School on Logic and Computer
Science, January 1997.

Chengying Mao, Jinlong Zhang, and Yansheng Lu. Matrix-based
change impact analysis for component-based software. In COMP-
SAC, pages 641-642. IEEE Computer Society, 2007.

Object Management Group, Framingham, Massachusetts. MDA
Guide Version 1.0.1, June 2003.

Object Modeling Group. Object Constraint Language Specifica-
tion, verston 2.0, 05 2006.

openarchitectureware - the leading platform for professional
model-driven software development.

William N. Robinson. Extended OCL for goal monitoring. FCE-
ASST, 9, 2008.

Wolfgang Reisig and Grzegorz Rozenberg, editors. Lectures on
Petri nets: advances in Petri nets. Part 1. Basic Models, volume
1491 of Lecture Notes in Computer Science, pub-SV:adr, 1998.
Springer-Verlag Inc. “Based on the Advanced Course on Petri
Nets, held in Dagstuhl (Germany) in September 1996”.

X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: A
tool for change impact analysis of Java programs. ACM SIGPLAN
Notices, 39(10):432-448, 2004.

SAE Aerospace. Architecture Analysis & Design Language
(AADL) AS5506, 11 2004.

BIBLIOGRAPHY 141

[SAE09)

[Sel03]

[Spi8&7]
[ucCy
[VDROO|

[War62]

[Wie09]

[WSMDOS]

[Zel96]

[ZYXX02|

SAE Aerospace. Architecture Analysis € Design Language
(AADL) AS5506A, 01 2009.

Bran Selic. Model-driven development of real-time software using
OMG standards. In ISORC, pages 4—6. IEEE Computer Society,
2003.

Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1987.
Uci isr software architecture research.

Marlon E. R. Vieira, Marcio S. Dias, and Debra J. Richardson.
Analyzing software architectures with argus-I. In ICSE, pages
758-761, 2000.

Stephen Warshall. A theorem on boolean matrices. J. ACM,
9(1):11-12, 1962.

Jan Wielemaker. SWI-Prolog 5.7.11 Reference Manual. Depart-
ment of Social Science Informatics (SWI), Universiteit Amster-
dam, 2009.

Guillaume Waignier, Prawee Sriplakich, Anne-Frangoise Le Meur,
and Laurence Duchien. A model-based framework for statically
and dynamically checking component interactions. In Krzysztof
Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus
Volter, editors, MoDELS, volume 5301 of Lecture Notes in Com-
puter Science, pages 371-385. Springer, 2008.

Gregory Zelesnik. The UniCon Language Reference Manual.
Carnegie Mellon University, May 1996.

Jianjun Zhao, Hongji Yang, Liming Xiang, and Baowen Xu.
Change impact analysis to support architectural evolution. Jour-
nal of Software Maintenance, 14(5):317-333, 2002.

142 BIBLIOGRAPHY

10

15

20

25

30

35

40

Appendix A

AADL meta-model in Alloy

Listing A.1: AADL meta-model

module aadl meta

abstract sig DataType {

}

abstract sig Component {
features: set Feature,
subComponents: set Component,

}

abstract sig Process extends Component {
FA
subComponents in Datalnstance + Thread
features in DataPort + EventPort + EventDataPort + DataAccess

}

abstract sig Thread extends Component {
subprogramCall: lone Subprogram,
P A
subComponents in Datalnstance + Subprogram
features in DataPort + EventPort + EventDataPort + DataAccess

}

abstract sig Datalnstance extends Component {
FA

no subComponents

no features

}

abstract sig Subprogram extends Component {
next: lone Subprogram
}
no subComponents
features in EventPort 4+ EventDataPort + Parameter + DataAccess
all p: features & (EventPort + EventDataPort) | p.direction =
PortDirection_Out
all ca: features & DataAccess | ca.direction =
AccessDirection _Required
}

abstract sig Device extends Component {

A

143

144 APPENDIX A. AADL META-MODEL IN ALLOY

subComponents = none
features in DataPort 4+ EventPort + EventDataPort

}

45 abstract sig System extends Component {

P A

subComponents in Datalnstance + Process + Device 4+ System
features in DataPort + EventPort + EventDataPort + DataAccess

}

abstract sig Feature {

}

enum PortDirection {
55 PortDirection_In,
PortDirection Out

}

abstract sig Port extends Feature {
60 direction: one PortDirection ,

}

abstract sig DataPort extends Port {

}

50

65

abstract sig EventPort extends Port {

}

abstract sig EventDataPort extends Port {
70}

abstract sig Parameter extends Port {

}

75 abstract sig ComponentAccess extends Feature {
direction: one AccessDirection ,
}

enum AccessDirection {
80 AccessDirection Provided ,
AccessDirection Required
}

abstract sig DataAccess extends ComponentAccess {
85 }

abstract sig Connection {

}

90 abstract sig PortConnection extends Connection {
src: one Port,
dst: one Port,

}

95 abstract sig DataAccessConnection extends Connection {
src: one Datalnstance + DataAccess,
dst: one DataAccess,

}

100 fact NoDescendentOfSelf {
all c¢: Component | ¢ not in c.”subComponents
}

Appendix B

Remote Patient Monitoring

An existing project, called Remote Patient Monitoring, is used as an example
throughout the thesis. From this project, a number of selected requirements and
the architecture are used. As the name suggests, the system monitors patients.
It does this by measuring temperature at patients, and when required sends
an alarm to the doctor(s). Doctors can also view the historical data from the
patients.

B.1 Informal requirements

Table B.1 lists a subset of the requirements for the RPM system. Duplicate
requirements, mostly providing similar functionality, are omitted.

B.2 Architecture

The original architecture is presented in figure B.1. The architecture is not spec-
ified using any ADL, and thus hardly, if any at all, semantics can be extracted
from it. While different figures are used for different elements, no concrete facts
are attached to these figures. As a result, the architecture is only usable for
communication and informal reasoning.

145

146 APPENDIX B. REMOTE PATIENT MONITORING

’ ID \ Requirement ‘

R1 The system must measure temperature from a patient

R2 The system must transfer temperature measurements (R1)

from the patient to the central system
R3 The system must store temperature measurements (R1) for a
patient in a central database
R4 The system must generate an alarm if the temperature
threshold is violated
R5 The system must transfer the temperature alarm (R4) from

the patient to the central system

R6 | The system must store the generated temperature alarm (R4)
when a temperature threshold is violated in a central database
R7 The system must transfer the temperature alarm (R4) form
the patient to the doctors computers

R8 | The system must show the doctor the temperature alarm (R4)
at the doctors computers

R9 A doctor must be able to set the temperature threshold at a
patient

R10 | The system must transfer the temperature threshold (R9) from
the doctors computer to the patient

R11 The system must store the temperature threshold (R9) for a
patient at the patients sensor device

R12 The system must use ZigBee for the wireless connection
between the sensor and central database
R13 The system must use a ZigBee network coordinator

R14 Communication between the SDC and SDM occurs through
the use of RS-232

R15 A doctor must be able to retrieve all the stored temperature
measurements for a patient

R16 A doctor must be able to retrieve all the stored temperature
alarms for a patient

Table B.1: Selected requirements for RPM system

147

B.2. ARCHITECTURE

(seplesyag wealsls

sapo0

W|

Od e

JUCTEEETTY

alesjddy
anenbiyJosy

JENTERTE N
uLEpy

Japoa

Od 18D

UETELENTY

JBNBS gEp,

Jan@aey
ULy

Japoq

Od 18D

UETELENTY

aAEE
repy

Jan@aey
ey

2800

Eoojosd SMEIUNWWCD YameN diidaL
jeonjed BlEdUNUALICS [B8LI8S ZEESY
ananp afessay) Yosap DS
IBAUP UOGIBULDD BSEQEIE] (A0

jushed

SSEQEIEQ]
(|gauonda)
Bejspey
waned
JojeuIpIong)
Jafieuepy
aoinag
losuss
jusned
oS

(|2auonda)
Bejspey

Figure B.1: Original RPM architecture

B.2.1 AADL description

AADL is used to re-specify the architecture. Additional properties are added

to give more semantics to the architecture, such as the behavior of certain

148 APPENDIX B. REMOTE PATIENT MONITORING

components. By adding these additional properties, we make the architecture
executable. The text and figures below give a brief overview of the architecture.
On the other hand, certain details are omitted from the architecture, such as
hardware specific details. An example of this is the use of RS-232. The original
RPM architecture specifies the use of RS-232 as a cloud-figure, while this is
represented by a simple port connection in the re-specified architecture.
The architecture can be found in program listing B.1.

Listing B.1: RPM architecture in AADL

data GenerateAlarm
end GenerateAlarm;

data implementation GenerateAlarm. i
end GenerateAlarm.i;

data ZigBeeAddress
end ZigBeeAddress;

data implementation ZigBeeAddress.i
end ZigBeeAddress.i;

data Dev
end Dev;

data implementation Dev. i
end Dev.i;

data Patient
end Patient;

data implementation Patient.i
end Patient.i;

data Measurement
end Measurement ;

data implementation Measurement. i
properties
Alloy :: fields => "
sensorM : one Device,
zaM: lone ZigBeeAddress i,
devM: lone Dev 1,
patM: lone Patient 1,
n.
7
Alloy :: facts => "one (zaM + devM + patM)";
end Measurement. i;

data Alarm
end Alarm;

data implementation Alarm. i
properties
Alloy :: fields => "
sensorA: one Device,
zaA: lone ZigBeeAddress i,
devA: lone Dev 1,
patA: lone Patient 1,
n.
Alloy :: facts => "one (zaA + devA + patA)";
end Alarm.i;

B.2. ARCHITECTURE

data ZigBeeDevice
end ZigBeeDevice;

data Threshold
end Threshold;

data implementation Threshold. i
properties
Alloy :: fields => "
sensorT: one Device,
zaT: lone ZigBeeAddress 1,
devT: lone Dev_ 1,
patT: lone Patient 1,
n.
Alloy :: facts => "one (zaT + devT + patT)";
end Threshold.i;

data implementation ZigBeeDevice. i
properties

149

Alloy :: fields => "zigBeeToDevice: ZigBeeAddress i —> one Dev 4"

end ZigBeeDevice.i;

data DevicePatient
end DevicePatient;

data implementation DevicePatient.i
properties
Alloy :: fields => "deviceToPatient: Dev_i —> one Patient 1",
end DevicePatient.i;

data MeasurementsRequest
end MeasurementsRequest;

data implementation MeasurementsRequest. i
properties
Alloy :: fields => "
sensorMR: one Device
n.

K
end MeasurementsRequest.i;

data AlarmsRequest
end AlarmsRequest;

data implementation AlarmsRequest. i
properties
Alloy :: fields => "
sensorAR: one Device
n.

end AlarmsRequest.i;

—— SD ——
system SD
features
measurement out: out event data port Measurement.i;
alarm out: out event data port Alarm.i;
threshold in: in event data port Threshold.i;
end SD;

system implementation SD. i
subcomponents

150 APPENDIX B. REMOTE PATIENT MONITORING

sensorl: device Sensor.Temperature;
procl: process SD_ Proc.i;
temperature threshold: data Threshold.i {

Alloy ::invariant => "all t: this.(s.datalnstanceValues) | t.

sensorT = RPM RPM i Instance sd_sensorl”;
I

connections

pcl: event data port sensorl.measurement —> procl.sensorl in;
pc2: event data port procl.measurement out —> measurement out;

pc3: event data port procl.alarm out —> alarm_out;
pc4: event data port threshold in —> procl.threshold in;

dacl: data access temperature threshold —> procl.
temperature threshold;
end SD.1i;

device Sensor
features
measurement : out event data port Measurement.i;
flows
flow source measurement: flow source measurement;
end Sensor;

device implementation Sensor.Temperature
flows
flow source measurement: flow source measurement;
end Sensor.Temperature;

process SD_Proc
features
sensorl in: in event data port Measurement.i;
threshold in: in event data port Threshold.i;
measurement out: out event data port Measurement.i;
alarm out: out event data port Alarm.i;

temperature threshold: requires data access Threshold.i;
end SD Proc;

process implementation SD_ Proc. i
subcomponents
threadl: thread SD_Thread.i;
connections
pcl: event data port sensorl in —> threadl.sensorl in;

pc2: event data port threadl.measurement out —> measurement out

pc3: event data port threadl.alarm out —> alarm out;
pc4: event data port threshold in —> threadl.threshold in;

dacla: data access temperature_ threshold —> threadl.
temperature_ threshold;
end SD Proc.i;

thread SD_ Thread
features
sensorl in: in event data port Measurement.i;
threshold in: in event data port Threshold.i;
measurement out: out event data port Measurement.i;
alarm out: out event data port Alarm.i;

temperature threshold: requires data access Threshold.i;
end SD_Thread;

B.2. ARCHITECTURE 151

thread implementation SD_Thread. i
calls
callsl: {
cl: subprogram SD_ Subp.i;
}s
connections
pcl: parameter sensorl in —> cl.sensorl in;
pc2: event data port cl.measurement out —> measurement out;
pc3: event data port cl.alarm out —> alarm_out;
pc4: parameter threshold in —> cl.threshold in;

dacl: data access temperature_threshold —> cl.
temperature threshold;
end SD Thread.i;

subprogram SD _Subp
features
sensorl in: in parameter Measurement.i;
measurement out: out event data port Measurement.i;
alarm out: out event data port Alarm.i;
threshold in: in parameter Threshold.i;

temperature threshold: requires data access Threshold.i;
end SD_Subp;

subprogram implementation SD_ Subp.i
properties
Alloy ::invariant =>
all m: RPM_RPM 4 Instance_sd_procl_threadl cl_sensorl_in.(s.
parameterValues) | one m.zaM
all t: RPM_RPM_i_Instance_sd_procl_threadl c1_threshold_in. (s
.parameterValues) [one t.zaT

n

n.
Alloy :: post_edp => "
one RPM RPM i Instance sd_procl threadl c1 sensorl in.(s.
parameterValues) and no GenerateAlarm_ i =>
— send temperature measurement
{ RPM_RPM_i_Instance_sd_procl_threadl cl_measurement_out —>
RPM _RPM i Instance_sd_procl threadl c1 sensorl in.(s.
parameterValues) }
else one RPM RPM 4 Instance_sd_procl threadl cl sensorl in.(s.
parameterValues) and one GenerateAlarm_i =>
— send temperature alarm
{ RPM_RPM_i_Instance_sd_procl_threadl_cl_alarm_out —> { a:
Alarm_1 | a.sensorA =
RPM RPM i Instance sd_procl threadl cl sensorl in.(s.
parameterValues).sensorM and one a.zaA } }
else
none —> none
n.
Alloy :: post diProduced => "
one RPM_RPM i_Instance_sd_procl_threadl cl_threshold_in.(s.
parameterValues) =>
— store temperature threshold
{ getDatalnstance/[
RPM_RPM i Instance_sd_procl threadl cl1_temperature_threshold
| —> RPM_ RPM i Instance_sd_procl threadl cl_threshold in
.(s.parameterValues) }
else
none —> none
n.

end SD_Subp.i;

152 APPENDIX B. REMOTE PATIENT MONITORING

— SDC ——
system SDC
features
measurement in: in event data port Measurement.i;
measurement out: out event data port Measurement.i;
alarm in: in event data port Alarm.i;
alarm_out: out event data port Alarm.i;
threshold in: in event data port Threshold.i;
threshold out: out event data port Threshold.i;
end SDC;

system implementation SDC. i
subcomponents
procl: process SDC_ Proc.i;

zd coupling: data ZigBeeDevice.i;
connections
pcl: event data port measurement in —> procl.measurement in;
pc2: event data port procl.measurement out —> measurement out;
pc3: event data port alarm_in —> procl.alarm_in;
pc4: event data port procl.alarm out —> alarm_out;
pcb: event data port threshold in —> procl.threshold in;
pc6: event data port procl.threshold out —> threshold out;

dacl: data access zd coupling —> procl.zd_ coupling;
end SDC.i;

process SDC_ Proc
features

measurement in: in event data port Measurement.i;
measurement out: out event data port Measurement.i;
alarm _in: in event data port Alarm.i;
alarm_out: out event data port Alarm.i;
threshold in: in event data port Threshold.i;
threshold out: out event data port Threshold.i;

zd coupling: requires data access ZigBeeDevice.i;
end SDC_Proc;

process implementation SDC_Proc. i

subcomponents
threadl: thread SDC_ Thread.i;

connections
pcl: event data port measurement in —> threadl.measurement in;
pc2: event data port alarm_in —> threadl.alarm in;
pc3: event data port threadl.measurement out —> measurement out

b

pc4: event data port threadl.alarm out —> alarm_ out;
pcd: event data port threshold in —> threadl.threshold in;
pc6: event data port threadl.threshold out —> threshold out;

dacl: data access zd_ coupling—> threadl.zd coupling;
end SDC_Proc.i;

thread SDC_Thread
features
measurement in: in event data port Measurement.i;
measurement out: out event data port Measurement.i;
alarm in: in event data port Alarm.i;
alarm_out: out event data port Alarm.i;

B.2. ARCHITECTURE 153

threshold in: in event data port Threshold.i;
threshold out: out event data port Threshold.i;

zd coupling: requires data access ZigBeeDevice.i;
end SDC_Thread;

thread implementation SDC_Thread. i

calls

callsl: |

cl: subprogram SDC_ Subp.i;
}s
connections

pcl: parameter measurement in —> cl.measurement in;

pc2: event data port cl.measurement out —> measurement out;

pc3: parameter alarm_ in —> cl.alarm_in;

pcd: event data port cl.alarm out —> alarm_out;

pcd: parameter threshold in —> cl.threshold inj;

pc6: event data port cl.threshold out —> threshold out;

dacl: data access zd coupling —> cl.zd_ coupling;
end SDC_ Thread.i;

subprogram SDC_Subp
features

measurement in: in parameter Measurement.i;
measurement out: out event data port Measurement.i;
alarm in: in parameter Alarm.i;
alarm out: out event data port Alarm.i;
threshold in: in parameter Threshold.i;
threshold out: out event data port Threshold.i;

zd coupling: requires data access ZigBeeDevice.i;
end SDC_Subp;

subprogram implementation SDC_Subp. i
properties
Alloy ::invariant =>
all m: RPM_RPM_i_lInstance_sdc_procl_threadl cl_measurement_in
.(s.parameterValues) | one m.zaM
all a: RPM_RPM i Instance_ sdc_procl threadl cl alarm_in.(s.
parameterValues) | one a.zaA
all t: RPM RPM i Instance_ sdc_procl threadl c1 threshold in.(
s.parameterValues) [one t.devT

n

n.
Alloy :: post_edp => "
one RPM RPM i Instance sdc_procl threadl cl measurement in.(s.
parameter Values) =>
— send temperature measurement
{ RPM_RPM_i_Instance_sdc_procl_threadl_cl_measurement_out —>
{ m: Measurement i | m.devM =
RPM RPM i Instance sdc_procl threadl cl measurement in
.(s.parameterValues).zaM.(getDatalnstance [
RPM_RPM 4 Instance sdc_procl threadl c1 zd_ coupling]. (s
.datalnstanceValues).zigBeeToDevice) } }
else one RPM RPM i Instance sdc_procl threadl cl alarm_in.(s.
parameterValues) =>
— send temperature alarm
{ RPM_RPM_i_Instance_sdc_procl_threadl_cl_alarm_ out —>
{ a: Alarm_i | a.devA =
RPM RPM i Instance sdc_procl threadl cl alarm_ in.(s.
parameterValues).zaA.(getDatalnstance [
RPM RPM i Instance_sdc_procl threadl cl_zd_ coupling]. (s

154 APPENDIX B. REMOTE PATIENT MONITORING

.datalnstanceValues).zigBeeToDevice) } }
else one RPM_RPM i Instance_sdc_procl threadl cl_threshold in.(
s.parameterValues) =>
— send temperature threshold
{ RPM_RPM_i_Instance_sdc_procl_threadl_cl_threshold_out —>
{ t: Threshold i | t.zaT =
RPM RPM i Instance sdc_procl threadl cl threshold in. (s
.parameterValues).devT. (getDatalnstance [
RPM RPM i Instance_sdc_procl threadl cl_zd_ coupling]|. (s
.datalnstanceValues).zigBeeToDevice) } }
else
none —> none
n.

end SDC_ Subp.i;

— HPC ——
system HPC
features
measurement in: in event data port Measurement.i;

alarm in: in event data port Alarm.i;
alarm_out: out event data port Alarm.i;

threshold in: in event data port Threshold.i;
threshold out: out event data port Threshold.i;

measurements request in: in event data port MeasurementsRequest
L
alarms request in: in event data port AlarmsRequest.i;

measurements out: out event data port Measurement.i;
alarms out: out event data port Alarm.i;
end HPC;

system implementation HPC. i
subcomponents
sdm: process SDM Proc.i;
as: process AS Proc.i;
ws: process WS Proc.i;

temperature measurements: data Measurement.i {
Alloy ::invariant => "all m: this.(s.datalnstanceValues) | m.
sensorM = RPM RPM i Instance sd_sensorl”;
}
temperature alarms: data Alarm.i {
Alloy ::invariant => "all a: this.(s.datalnstanceValues) | a.
sensorA = RPM_RPM i Instance_sd_sensorl”;

s

dp coupling: data DevicePatient.i {
Alloy ::invariant => "";
s
connections

pcl: event data port measurement in —> sdm.measurement in;

pc2: event data port alarm_in —> sdm.alarm _in;
pc3: event data port sdm.alarm out —> as.alarm in;
pc4: event data port as.alarm out —> alarm_out;

pcb: event data port threshold in —> ws.threshold in;
pc6: event data port ws.threshold out —> sdm.threshold in;

B.2. ARCHITECTURE 155

pc7: event data port sdm.threshold out —> threshold out;

pc8: event data port measurements request in —> ws.
measurements request in;
pc9: event data port alarms request in —> ws.alarms request in;

pcl0: event data port ws.measurements out —> measurements out;
pcll: event data port ws.alarms out —> alarms_out;

dacl: data access temperature_measurements —> sdm.
temperature measurements;
dac2: data access temperature alarms —> sdm.temperature alarms;

dac3: data access temperature measurements —> ws.
temperature measurements;
dac4: data access temperature alarms —> ws.temperature alarms;

dacb: data access dp coupling —> sdm.dp_ coupling;
end HPC.i;

— SDM —
process SDM_Proc
features

measurement _in: in event data port Measurement.i;
alarm _in: in event data port Alarm.i;
alarm out: out event data port Alarm.i;
threshold in: in event data port Threshold.i;
threshold out: out event data port Threshold.i;

temperature measurements: requires data access Measurement.i;
temperature alarms: requires data access Alarm.i;

dp coupling: requires data access DevicePatient.i;
end SDM_Proc;

process implementation SDM_Proc. i
subcomponents
threadl: thread SDM_Thread. i;
connections
pcl: event data port measurement in —> threadl.measurement in;

pc2: event data port alarm_ in —> threadl.alarm_ in;
pc3: event data port threadl.alarm out —> alarm_ out;

pc4: event data port threshold in —> threadl.threshold inj;
pc5: event data port threadl.threshold out —> threshold out;

dacl: data access temperature measurements —> threadl.
temperature measurements;

dac2: data access temperature alarms —> threadl.
temperature alarms;

dac3: data access dp coupling —> threadl.dp coupling;
end SDM_Proc. i;

thread SDM_Thread
features
measurement in: in event data port Measurement.i;

alarm in: in event data port Alarm.i;
alarm out: out event data port Alarm.i;

156 APPENDIX B. REMOTE PATIENT MONITORING

threshold in: in event data port Threshold.i;
threshold out: out event data port Threshold.i;

temperature measurements: requires data access Measurement.i;
temperature alarms: requires data access Alarm.i;

dp coupling: requires data access DevicePatient.i;
end SDM_ Thread;

thread implementation SDM _Thread. i
calls
callsl: {
cl: subprogram SDM_Subp.i;
s
connections
pcl: parameter measurement in —> cl.measurement in;

pc2: parameter alarm_ in —> cl.alarm in;
pc3: event data port cl.alarm out —> alarm out;

pc4: parameter threshold in —> cl.threshold inj;
pcb: event data port cl.threshold out —> threshold out;

dacl: data access temperature measurements —> cl.
temperature measurements;
dac2: data access temperature alarms —> cl.temperature alarms;

dac3: data access dp_ coupling —> cl.dp coupling;
end SDM_Thread. i ;

subprogram SDM _Subp
features
measurement in: in parameter Measurement.i;
alarm _in: in parameter Alarm.i;
alarm out: out event data port Alarm.i;
threshold in: in parameter Threshold.i;
threshold out: out event data port Threshold.i;

temperature measurements: requires data access Measurement.i;
temperature alarms: requires data access Alarm.i;

dp coupling: requires data access DevicePatient.i;
end SDM_Subp;

subprogram implementation SDM_Subp. i
properties
Alloy ::invariant =>
all m: RPM _ RPM i Instance hpc_sdm_threadl cl measurement in.(
s.parameterValues) | one m.devM
all a: RPM_RPM i Instance_hpc_sdm_threadl c1_alarm_in.(s.
parameter Values) | one a.devA
all t: RPM_RPM i_Instance_hpc_sdm_threadl cl_threshold_in.(s.
parameterValues) | one t.patT

n

n.
Alloy :: post _edp => "
one RPM RPM i Instance_hpc_sdm_threadl cl1 alarm_in.(s.
parameterValues) =>
— send temperature alarm
{ RPM_RPM i_Instance_hpc_sdm_threadl c1_alarm_out —>
{ a: Alarm_i | a.patA =
RPM_RPM_i_Instance_hpc_sdm_threadl cl1_alarm_in.(s.
parameter Values).devA.(getDatalnstance [

B.2. ARCHITECTURE 157

RPM_RPM_i_Instance_hpc_sdm_threadl_c1_dp_coupling]. (s.
datalnstanceValues). deviceToPatient) } }
else one RPM RPM i Instance hpc_sdm_threadl c1 threshold in.(s.
parameterValues) =>
— send temperature threshold
{ RPM_RPM_i_Instance_hpc_sdm_threadl_c1_threshold_out —>
{ t: Threshold i | t.devT =
RPM_RPM_i_Instance_hpc_sdm_ threadl cl_threshold_in. (s.
parameterValues).patT. (getDatalnstance [
RPM RPM _ i Instance_ hpc sdm_threadl c1 dp coupling].(s.
datalnstanceValues). deviceToPatient) } }
else
none —> none
n.
Alloy :: post _diProduced => "
one RPM RPM i Instance_ hpc sdm_threadl cl measurement in.(s.
parameterValues) =>
— store temperature measurement
{ getDatalnstance][
RPM_RPM_i_Instance_hpc_sdm_threadl_cl1_temperature_measurements
] —>
{ m: Measurement i [m.patM =
RPM RPM i Instance_hpc_sdm_threadl c1 measurement in. (s
.parameterValues).devM.(getDatalnstance [
RPM RPM _ i Instance_hpc_sdm_threadl c1 dp coupling]. (s.
datalnstanceValues). deviceToPatient) } }
else one RPM_RPM i Instance_hpc_sdm_threadl c1_alarm_in. (s.
parameterValues) =>
— store temperature alarm
{ getDatalnstance/
RPM_RPM_i_Instance_hpc_sdm_threadl cl_temperature_ alarms|
—>
{ a: Alarm_t¢ | a.patA =
RPM_RPM i Instance hpc_sdm_threadl cl_alarm_in.(s.
parameterValues).devA.(getDatalnstance [
RPM_RPM_i_Instance_hpc_sdm_threadl c1_dp_coupling]. (s.
datalnstanceValues). deviceToPatient) } }
else

none —> none
n.

end SDM_Subp.i;

—_ AS —
process AS Proc
features
alarm _in: in event data port Alarm.i;

alarm out: out event data port Alarm.i;
end AS_ Proc;

process implementation AS Proc. i
subcomponents
threadl: thread AS_ Thread.i;
connections
pcl: event data port alarm_ in —> threadl.alarm_in;
pc2: event data port threadl.alarm out —> alarm out;
end AS Proc.i;

thread AS Thread
features
alarm in: in event data port Alarm.i;

alarm out: out event data port Alarm.i;
end AS Thread;

158 APPENDIX B. REMOTE PATIENT MONITORING

thread implementation AS_ Thread. i
calls
callsl: {
cl: subprogram AS Subp.i;
}s
connections
pcl: parameter alarm_in —> cl.alarm_in;
pc2: event data port cl.alarm out —> alarm_out;
end AS Thread.i;

subprogram AS Subp
features
alarm in: in parameter Alarm.i;
alarm_out: out event data port Alarm.i;
end AS Subp;

subprogram implementation AS Subp.i
properties
Alloy :: invariant =>
all a: RPM_ RPM i Instance_ hpc_as_ threadl cl alarm_in.(s.
parameterValues) | one a.patA

n

n.
Alloy ::post _edp => "
one RPM_RPM i Instance_hpc_as_threadl cl_alarm_in.(s.
parameterValues) =>
— send temperature alarm
{ RPM_RPM_i_lInstance_hpc_as_threadl cl_alarm_out —>
RPM_RPM_i_Instance_hpc_as_threadl_c1_alarm_in.(s.
parameter Values) }
else

none —> none
n.

end AS Subp.i;

WS —
process WS _Proc
features
threshold in: in event data port Threshold.i;
threshold out: out event data port Threshold.i;

measurements request in: in event data port MeasurementsRequest
L
alarms request in: in event data port AlarmsRequest.i;

measurements out: out event data port Measurement.i;
alarms out: out event data port Alarm.i;

temperature measurements: requires data access Measurement.i;
temperature alarms: requires data access Alarm.i;
end WS _Proc;

process implementation WS _Proc. i
subcomponents
threadl: thread WS Thread.i;
connections
pcl: event data port threshold in —> threadl.threshold inj;
pc2: event data port threadl.threshold out —> threshold out;

pc3: event data port measurements request in —> threadl.
measurements request in;
pc4: event data port alarms_ request in —> threadl.

B.2. ARCHITECTURE 159

alarms_request_in;

pcH: event data port threadl.measurements out —>
measurements out;
pc6: event data port threadl.alarms out —> alarms out;

dacl: data access temperature measurements —> threadl.
temperature measurements;
dac2: data access temperature alarms —> threadl.
temperature alarms;
end WS_Proc.i;

thread WS_Thread
features
threshold in: in event data port Threshold.i;
threshold out: out event data port Threshold.i;

measurements request in: in event data port MeasurementsRequest
L
alarms request in: in event data port AlarmsRequest.i;

measurements out: out event data port Measurement.i;
alarms out: out event data port Alarm.i;

temperature measurements: requires data access Measurement.i;
temperature alarms: requires data access Alarm.i;
end WS_Thread;

thread implementation WS_Thread. i

calls

callsl: {

cl: subprogram WS Subp.i;
}s
connections

pcl: parameter threshold in —> cl.threshold in;

pc2: event data port cl.threshold out —> threshold out;

pc3: parameter measurements request in —> cl.
measurements request in;
pc4: parameter alarms request in —> cl.alarms request in;

pcd: event data port cl.measurements out —> measurements out;
pc6: event data port cl.alarms out —> alarms_ out;

dacl: data access temperature measurements —> cl.
temperature measurements;
dac2: data access temperature alarms —> cl.temperature alarms;
end WS Thread. i;

subprogram WS _Subp
features
threshold in: in parameter Threshold.i;
threshold out: out event data port Threshold.i;

measurements request in: in parameter MeasurementsRequest.i;
alarms request in: in parameter AlarmsRequest.i;

measurements out: out event data port Measurement.i;
alarms out: out event data port Alarm.i;

temperature measurements: requires data access Measurement.i;
temperature alarms: requires data access Alarm.i;

160 APPENDIX B. REMOTE PATIENT MONITORING

end WS Subp;

subprogram implementation WS Subp. i
properties
Alloy ::invariant => "
all t: RPM_RPM _i_Instance_hpc_ws_threadl cl_threshold_in.(s.
parameter Values) | one t.patT
n.
Alloy :: post _edp => "
one RPM_ RPM i Instance hpc_ws_threadl c1 threshold in.(s.
parameterValues) =>
— send temperature threshold
{ RPM_RPM i _Instance_hpc_ws_threadl cl1_threshold out —>
RPM RPM i Instance hpc ws_threadl c1 threshold in.(s.
parameterValues) }
else one
RPM _RPM _i_Instance_hpc_ws_threadl cl_ measurements request_in
.(s.parameterValues) =>
— send temperature measurement
{ RPM_RPM i Instance_hpc_ws_threadl c1_measurements out —>
getDatalnstance [
RPM_RPM_i_Instance_hpc_ws_threadl cl1_temperature_measurements
].(s.datalnstanceValues) }
else one
RPM RPM i Instance hpc_ws_threadl c1 alarms_request_in. (s
.parameterValues) =>
— send temperature alarm
{ RPM_RPM_i_lInstance_hpc_ws_threadl_cl_alarms_out —>
getDatalnstance [
RPM _ RPM i Instance hpc ws threadl cl temperature alarms
. (s.datalnstanceValues) }
else

none —> none
n.

end WS Subp.i;

— CPC —
system CPC
features
alarm _in: in event data port Alarm.i;
threshold out: out event data port Threshold.i;

measurements request out: out event data port
MeasurementsRequest . i;

alarms request out: out event data port AlarmsRequest.i;

measurements in: in event data port Measurement.i;
alarms in: in event data port Alarm.i;
end CPC;

system implementation CPC. i
subcomponents
wc: process WC_ Proc.i;
ar: process AR Proc.i;
connections
pcl: event data port alarm_ in —> ar.alarm_in;
pc2: event data port wc.threshold out —> threshold out;

pc3: event data port wc.measurements request out —>
measurements request out;
pc4: event data port wc.alarms request out —>

B.2. ARCHITECTURE 161

alarms_request_out;

pcH: event data port measurements in —> wc.measurements in;
pc6: event data port alarms in —> wc.alarms_in;
end CPC.i;

—— AR —
process AR_Proc
features

alarm in: in event data port Alarm.i;
end AR _ Proc;

process implementation AR _ Proc. i
subcomponents
threadl: thread AR_Thread.i;
connections
pcl: event data port alarm_ in —> threadl.alarm_in;
end AR_Proc.i;

thread AR_Thread
features
alarm in: in event data port Alarm.i;
end AR _Thread;

thread implementation AR_Thread. i
calls
callsl: {
cl: subprogram AR Subp.i;
s
connections

pcl: parameter alarm in —> cl.alarm_in;
end AR Thread.i;

subprogram AR _Subp
features
alarm in: in parameter Alarm.i;
end AR Subp;

subprogram implementation AR _ Subp. i
properties
Alloy ::invariant =>
all a: RPM _ RPM i Instance cpc_ar_ threadl cl1 alarm_in.(s.
parameterValues) | one a.patA

n

n.

end AR Subp.i;

— WO —
process WC_ Proc
features
threshold out: out event data port Threshold.i;

measurements request out: out event data port
MeasurementsRequest . i;
alarms request out: out event data port AlarmsRequest.i;

measurements_in: in event data port Measurement.i;
alarms _in: in event data port Alarm.i;
end WC_Proc;

process implementation WC_Proc. i
subcomponents
threadl: thread WC_Thread.i;

162 APPENDIX B. REMOTE PATIENT MONITORING

connections
pcl: event data port threadl.threshold out —> threshold out;

pc2: event data port threadl.measurements request out —>
measurements request_out;

pc3: event data port threadl.alarms request out —>
alarms request out;

pcd: event data port measurements in —> threadl.measurements in
>
pcd5: event data port alarms in —> threadl.alarms in;
end WC_Proc. i;

thread WC_Thread
features
threshold out: out event data port Threshold.i;

measurements request out: out event data port
MeasurementsRequest . i;
alarms request out: out event data port AlarmsRequest.i;

measurements in: in event data port Measurement.i;
alarms in: in event data port Alarm.i;
end WC_Thread;

thread implementation WC_Thread. i
calls
callsl: {
cl: subprogram WC_ Subp.i;
I
connections
pcl: event data port cl.threshold out —> threshold out;

pc2: event data port cl.measurements request out —>
measurements request_out;

pc3: event data port cl.alarms request out —>
alarms request out;

pc4: parameter measurements in —> cl.measurements in;
pc5: parameter alarms in —> cl.alarms_in;
end WC_ Thread. i ;

subprogram WC_Subp
features
threshold out: out event data port Threshold.i;

measurements request out: out event data port
MeasurementsRequest.i;
alarms request out: out event data port AlarmsRequest.i;

measurements in: in parameter Measurement.i;
alarms in: in parameter Alarm.i;
end WC_Subp;

subprogram implementation WC_Subp. i
end WC_Subp.i;

- RPM ——
system RPM
end RPM;

B.3. FORMALIZED REQUIREMENTS AND SCENARIOS 163

system implementation RPM. i

subcomponents
sd: system SD.i;
sdc: system SDC.i;
hpc: system HPC.i;
cpc: system CPC.i;

connections
pcl: event data port sd.measurement out —> sdc.measurement in;
pc2: event data port sdc.measurement out —> hpc.measurement in;

pc3: event data port sd.alarm out —> sdc.alarm in;
pcd: event data port sdc.alarm out —> hpc.alarm in;
pcH: event data port hpc.alarm out —> cpc.alarm_in;

pc6: event data port cpc.threshold out —> hpc.threshold in;
pc7: event data port hpc.threshold out —> sdc.threshold in;
pc8: event data port sdc.threshold out —> sd.threshold in;

pc9: event data port cpc.measurements request out —> hpc.
measurements request in;

pcl0: event data port cpc.alarms request out —> hpc.
alarms_request in;

pcll: event data port hpc.measurements out —> cpc.
measurements_in;
pcl2: event data port hpc.alarms out —> cpc.alarms_in;

properties
Alloy :: scenarios => "...";
end RPM. i;

B.3 Formalized requirements and scenarios

The informal requirements, are translated into the solution domain. For each
requirement (Req.), a refinement (Ref. req.) and a formal behavior description
is given. The following format for each formal behavior description is used:

e Data type;

e From port (feature instance in model), or data instance;
e Next or subsequent state (— or =, respectively);

e To port (feature instance in model), or data instance.

The next or subsequent state specifies whether the data value must be at the
to-port in directly the next state, or must be at the to-port in a subsequent
state. If the next or subsequent state and to-port are not present, it means that
the binding of a data value to the from-port must be satisfied for only one state.

An informal description has been omitted in this table for brevity. One is
able to extract an informal description based on the formal behavior description
by looking at the involved ports and data instances.

The requirement predicates and scenarios validating the requirement predi-
cates of the RPM architecture are given in the listing below.

Listing B.2: Formalized RPM requirements and scenarios

—— Requirements ——
pred R1 {

164

APPENDIX B. REMOTE PATIENT MONITORING

’ Req. \ Ref. req. \

Formal behavior description

R1

Temperature measurement: sd.sensorl.measurement
= sd.procl.threadl.cl.measurement out

R1

Temperature measurement: sd.sensorl.measurement
— sd.procl.threadl.sensorl in

RI_

Temperature measurement:
sd.procl.threadl.sensorl in —
sd.procl.threadl.cl.sensorl in

R1

Temperature measurement:
sd.procl.threadl.cl.sensorl in —
sd.procl.threadl.cl.measurement out

R2

Temperature measurement:
sd.procl.threadl.cl.measurement out =
hpc.sdm.threadl.cl.measurement in

R2

Temperature measurement:
sd.procl.threadl.cl.measurement out =
sdc.procl.threadl.cl.measurement in

R2_

Temperature measurement:
sdc.procl.threadl.cl.measurement in —
sdc.procl.threadl.cl.measurement out

R2_

Temperature measurement:
sdc.procl.threadl.cl.measurement out =
hpc.sdm.threadl.cl.measurement in

R3

R3

Temperature measurement:
hpc.sdm.threadl.cl.measurement in —
hpc.temperature measurements

R4

Temperature alarm: sd.sensorl.measurement =-
sd.procl.threadl.cl.alarm_out

R4

Temperature measurement: sd.sensorl.measurement
— sd.procl.threadl.cl.sensorl in

R4

Temperature alarm: sd.procl.threadl.cl.sensorl in —
sd.procl.threadl.cl.alarm out

RS

Temperature alarm: sd.procl.threadl.cl.alarm out =
hpc.sdm.threadl.cl.alarm _in

Rb_

a

Temperature alarm: sd.procl.threadl.cl.alarm out —
sdc.procl.threadl.cl.alarm in

R5

b

Temperature alarm: sdc.procl.threadl.cl.alarm in —
sdc.procl.threadl.cl.alarm _out

R5

C

Temperature alarm: sdc.procl.threadl.cl.alarm out
— hpc.sdm.threadl.cl.alarm in

R6

R6

Temperature alarm: hpc.sdm.threadl.cl.alarm in —
hpc.temperature alarms

R7

R7

Temperature alarm: sd.procl.threadl.cl.alarm out =
cpc.ar.threadl.cl.alarm in

R8

R8

Temperature alarm: cpc.ar.threadl.cl.alarm_in

R9

R9

Temperature threshold:
cpc.we.threadl.cl.threshold out

Table B.2: Informal RPM requirements translated to solution domain

B.3. FORMALIZED REQUIREMENTS AND SCENARIOS

165

] Req. \ Ref. req. \

Formal behavior description

R10

Temperature threshold:
cpc.we.threadl.cl.threshold out =
sd.procl.threadl.cl.threshold in

R10 _a

Temperature threshold:
cpc.we.threadl.cl.threshold out —
hpc.ws.threadl.cl.threshold in

RI10_b

Temperature threshold:
hpc.ws.threadl.cl.threshold in —
hpc.ws.threadl.cl.threshold out

R10 ¢

Temperature threshold:
hpc.ws.threadl.cl.threshold out —
hpc.sdm.threadl.cl.threshold in

R10_d

Temperature threshold:
hpc.sdm.threadl.cl.threshold in —
hpc.sdm.threadl.cl.threshold out

R10 e

Temperature threshold:
hpc.sdm.threadl.cl.threshold out —
sdc.procl.threadl.cl.threshold in

RIO_f

Temperature threshold:
sdc.procl.threadl.cl.threshold in —
sdc.procl.threadl.cl.threshold out

RIO g

Temperature threshold:
sdc.procl.threadl.cl.threshold out —
sd.procl.threadl.cl.threshold in

R11

R11

Temperature threshold:
sd.procl.threadl.cl.threshold in —
sd.temperature threshold

R15

R15

Temperature measurement request:

cpc.we.threadl.measurements request out =

cpe.we.threadl.measurements in

R16

R16

Temperature alarm request:
cpc.we.threadl.alarms _request _out =
cpc.we.threadl.alarms_in

Table B.3:
ued)

Informal RPM requirements translated to solution domain (contin-

166 APPENDIX B. REMOTE PATIENT MONITORING

one s: State |
one RPM_RPM i Instance sd_ sensorl measurement.(s.
eventDataPortValues) and
one RPM_RPM i Instance sd_procl_ threadl cl measurement out.(s.
next.eventDataPortValues)

pred Rl a {
one s: State |
one RPM_ RPM i Instance sd_ sensorl measurement. (s.
eventDataPortValues) and
one RPM_RPM i Instance sd procl threadl sensorl in.(s.next.
eventDataPortValues)

}
pred R1 b {
one s: State |
one RPM_ RPM i Instance sd procl threadl sensorl in.(s.
eventDataPortValues) and
one RPM_RPM i Instance sd_ procl threadl cl sensorl in.(s.next.
parameterValues)

pred Rl ¢ {
one s: State |
one RPM_ RPM i Instance sd procl threadl cl sensorl in.(s.
parameterValues) and
one RPM_RPM i Instance sd_ procl threadl ¢l measurement out.(s.
next.eventDataPortValues)

}

pred R2 {
one s: State |
one RPM_RPM _i_Instance_sd_procl_threadl cl_measurement_out.(s.
eventDataPortValues) and
one RPM_ RPM i Instance hpc sdm threadl cl measurement in.(s.
next.parameterValues)

}
pred R2 a {
one s: State |
one RPM_RPM i Instance_ sd_procl_threadl cl_ measurement_out.(s.
eventDataPortValues) and
one RPM_RPM i Instance sdc_procl threadl cl measurement in.(s.
next.parameterValues)

}
pred R2 b {
one s: State |
one RPM_RPM i Instance_sdc_procl threadl cl_measurement in.(s.
parameterValues) and
one RPM_RPM_i_Instance_sdc_procl_threadl cl_measurement_out.(s.
next.eventDataPortValues)

}
pred R2_c {
one s: State |
one RPM_RPM i Instance_sdc_procl threadl cl_measurement_ out.(s.
eventDataPortValues) and
one RPM_RPM _i_Instance_hpc_sdm_threadl cl_measurement_in.(s.
next.parameterValues)

}

pred R3 {
one s: State |
one RPM RPM i Instance hpc sdm threadl cl measurement in.(s.
parameterValues) and

B.3. FORMALIZED REQUIREMENTS AND SCENARIOS 167

one RPM_RPM _i_ Instance hpc_temperature_measurements.(s.next.
datalnstanceValues)

pred R4 {
one s: State |
one RPM_ RPM i Instance sd_ sensorl measurement. (s.
eventDataPortValues) and
one RPM_ RPM i Instance sd_ procl threadl cl alarm out.(s.” next.
eventDataPortValues)

pred R4 a {
one s: State |
one RPM_ RPM i Instance sd_ sensorl measurement. (s.
eventDataPortValues) and
one RPM RPM i Instance sd_ procl threadl cl sensorl in.(s.next.
parameterValues)

}

pred R4 b {
one s: State |
one RPM_RPM i Instance_sd_procl_threadl cl_sensorl in.(s.
parameterValues) and
one RPM_RPM _i_Instance_sd_procl_threadl cl_alarm_out.(s.next.
eventDataPortValues)

}

pred R5 {
one s: State |
one RPM_ RPM i Instance sd procl threadl cl alarm out.(s.
eventDataPortValues) and
one RPM_ RPM i Instance hpc sdm threadl ¢l alarm in.(s.” next.
parameterValues)

pred R5 a {
one s: State |
one RPM_ RPM i Instance sd procl threadl cl alarm out.(s.
eventDataPortValues) and
one RPM_ RPM i Instance sdc_procl threadl ¢l alarm in.(s.next.
parameterValues)

pred R5 b {
one s: State |
one RPM_RPM i Instance sdc_ procl threadl cl alarm in.(s.
parameterValues) and
one RPM_ RPM i Instance sdc_ procl threadl cl alarm out.(s.next.
eventDataPortValues)

pred R5 c {
one s: State |
one RPM_RPM i Instance sdc_ procl threadl cl alarm out.(s.
eventDataPortValues) and
one RPM RPM i Instance hpc sdm threadl cl alarm in.(s.next.
parameterValues)

pred R6 {
one s: State |
one RPM_RPM i Instance hpc_sdm_threadl cl_alarm in.(s.
parameterValues) and
one RPM_RPM _i_ Instance_hpc_temperature alarms.(s.next.
datalnstanceValues)

168 APPENDIX B. REMOTE PATIENT MONITORING

}

pred R7 {
one s: State |
one RPM_RPM i Instance sd procl threadl alarm out.(s.
eventDataPortValues) and
one RPM_ RPM i Instance cpc ar threadl cl alarm in.(s. next.
parameterValues)

}

pred R8 {
some s: State |
one RPM_RPM i Instance cpc_ar threadl cl_ alarm in.(s.
parameterValues)

}
pred R9 {
some s: State |
one RPM_RPM i Instance cpc_wc_threadl threshold out.(s.
eventDataPortValues)
}
pred R10 {

one s: State |
one RPM_ RPM i Instance cpc_wc_threadl cl threshold out.(s.
eventDataPortValues) and
one RPM_RPM i Instance_ sd_procl threadl cl_ threshold in.(s."
next.parameterValues)

}
pred R10_a {
one s: State |
one RPM_ RPM i Instance cpc_wc_threadl cl threshold out.(s.
eventDataPortValues) and
one RPM_RPM i Instance hpc_ ws_ threadl cl threshold in.(s.next.
parameterValues)

}
pred R10 b {
one s: State |
one RPM_ RPM i Instance hpc ws threadl cl threshold in.(s.
parameterValues) and
one RPM_RPM i Instance hpc ws_ threadl cl threshold out.(s.next.
eventDataPortValues)

}
pred R10 c¢ {
one s: State |
one RPM_ RPM i Instance hpc ws threadl cl threshold out.(s.
eventDataPortValues) and
one RPM_ RPM i Instance hpc sdm threadl cl threshold in.(s.next.
parameterValues)

}
pred R10 d {
one s: State |
one RPM_ RPM i Instance hpc sdm threadl cl threshold in.(s.
parameterValues) and
one RPM_RPM i Instance hpc sdm threadl cl threshold out.(s.next
.eventDataPortValues)

}
pred R10 e {
one s: State |
one RPM_ RPM i Instance hpc sdm threadl cl threshold out.(s.
eventDataPortValues) and

B.3. FORMALIZED REQUIREMENTS AND SCENARIOS 169

one RPM_RPM _i_Instance_sdc_procl_threadl cl_threshold in.(s.
next.parameterValues)

}
pred R10_f {
one s: State |
one RPM_RPM i Instance_ sdc_procl_threadl cl_threshold in.(s.
parameterValues) and
one RPM_RPM _i_Instance_sdc_procl_threadl cl_threshold out.(s.
next.eventDataPortValues)

pred R10 g {
one s: State |
one RPM_RPM i Instance sdc_procl threadl cl_threshold out.(s.
eventDataPortValues) and
one RPM_RPM _i_Instance_sd_procl_threadl cl_threshold in.(s.next
.parameterValues)

}

pred R11 {
one s: State |
one RPM RPM i Instance sd procl threadl cl threshold in.(s.
parameterValues) and
one RPM RPM i Instance sd temperature threshold.(s.next.
datalnstanceValues)

}

pred R15 {
one s: State |
one

RPM_ RPM i Instance cpc wc_ threadl cl measurements request out
.(s.eventDataPortValues) and

one RPM_RPM i Instance cpc_wc_ threadl ¢l measurements in.(s.
next.parameterValues)

}

pred R16 {
one s: State |
one RPM_RPM _ i Instance cpc_wc_threadl cl_alarms_request_out.(s.
eventDataPortValues) and
one RPM_RPM i Instance cpc_wc_threadl cl alarms in.(s.” next.
parameterValues)

}

—— Scenario 1: perform measurement ——
pred scenariol initial[s: State]| {
no s.dataPortValues

no s.eventPortValues
no s.parameterValues
no s.toDispatch

one s.eventDataPortValues
one RPM_RPM _i_Instance sd_sensorl measurement.(s.
eventDataPortValues) .zaM

all m: Measurement i m.sensorM = RPM_RPM _i_Instance_sd_sensorl
one m: Measurement i | m.zaM = ZigBeeAddress i

one m: Measurement i | m.devM = Dev_ i

one m: Measurement i | m.patM = Patient i

no (Datalnstance — RPM_RPM i Instance sdc_zd_coupling —
RPM_RPM i Instance hpc dp coupling).(s.datalnstanceValues)

one RPM_RPM i Instance sdc_zd_coupling.(s.datalnstanceValues)

one RPM RPM i Instance hpc dp coupling.(s.datalnstanceValues)

170 APPENDIX B. REMOTE PATIENT MONITORING

Check scenariol : check {
(StateTransitions and scenariol initial[so/first]) =>
(Architecturelnvariants and
R1 and R2 and R3)
— R1_a and RI_b and R2 a and R2_b and R2 c¢ and R3)
} for
0 DataType,
0 Component ,
0 Feature,
0 Connection ,
exactly 25 State,
exactly 3 Measurement i, exactly 0 Alarm i, exactly 0 Threshold i
, exactly 0 GenerateAlarm i, exactly 1 ZigBeeAddress i,
exactly 1 Dev i, exactly 1 Patient i, exactly 1
ZigBeeDevice i, exactly 1 DevicePatient i, exactly 0
MeasurementsRequest i, exactly 0 AlarmsRequest i

—— Scenario 2: send alarm ——
pred scenario2 initial[s: State] {
no s.dataPortValues
no s.eventPortValues
no s.parameterValues
no s.toDispatch

one s.eventDataPortValues
one RPM_RPM i Instance sd_sensorl measurement.(s.

eventDataPortValues) .zaM

Measurement i.sensorM = RPM_ RPM i Instance sd sensorl

all a: Alarm_i | a.sensorA = RPM_RPM i Instance_sd_sensorl
one a: Alarm i | a.zaA = ZigBeeAddress i

one a: Alarm i | a.devA = Dev i

one a: Alarm i | a.patA = Patient i

no (Datalnstance — RPM_RPM i Instance_sdc_zd_coupling —
RPM_RPM i Instance hpc dp coupling).(s.datalnstanceValues)
one RPM_RPM i Instance sdc_zd coupling.(s.datalnstanceValues)
one RPM_ RPM i Instance hpc dp coupling.(s.datalnstanceValues)
}
Check scenario2 : check {
(StateTransitions and scenario2 initial[so/first]) =>
(Architecturelnvariants and
R4 and R5 and R6 and R7 and RS)
— R4_a and R4_b and R5_a and R5_b and R5 ¢ and R6 and R7 and RS8)
} for
0 DataType,
0 Component ,
0 Feature,
0 Connection ,
exactly 25 State, exactly 1 Measurement i, exactly 3 Alarm i,
exactly 0 Threshold i, exactly 1 GenerateAlarm i, exactly 1
ZigBeeAddress i, exactly 1 Dev i, exactly 1 Patient i,
exactly 1 ZigBeeDevice i, exactly 1 DevicePatient i, exactly
0 MeasurementsRequest i, exactly 0 AlarmsRequest i

—— Scenario 3: set threshold —

pred scenario3 initial[s: State] {
no s.dataPortValues

s.eventPortValues

no s.parameterValues

no s.toDispatch

B.3. FORMALIZED REQUIREMENTS AND SCENARIOS

one s.eventDataPortValues
one RPM_RPM i Instance cpc_ wc_threadl cl threshold out.(s.
eventDataPortValues) .patT

all t:
one t: Threshold
one t:
one t: Threshold

patT

Patient i

no (Datalnstance — RPM_RPM i Instance sdc_zd coupling —
RPM_RPM i Instance hpc_dp coupling).(s.datalnstanceValues)
one RPM_RPM i Instance sdc_zd coupling.(s.datalnstanceValues)
one RPM_RPM i Instance hpc_dp_coupling.(s.datalnstanceValues)

Check _scenario3
(StateTransitions and scenario3 initial[so/first]) =

(Architecturelnvariants and

check {

R9 and R10 and RI11)
— RY9 and R10_a and R10_b and R10 c and R10_d and R10 e and RI10 _f

and R10_g and RI11)

} for

0 DataType,
0 Component ,
0 Feature,
0 Connection,
exactly 25 State, exactly 0 Measurement i, exactly 0 Alarm i,

exactly 3 Threshold i, exactly 0 GenerateAlarm i,

171

Threshold i | t.sensorT = RPM_RPM i Instance sd sensorl
i | t.zaT = ZigBeeAddress i
Threshold i | t.devT = Dev i
i|ot.

exactly 1

ZigBeeAddress i, exactly 1 Dev i, exactly 1 Patient i,

exactly 1 ZigBeeDevice i, exactly 1 DevicePatient i, exactly
0 MeasurementsRequest i, exactly 0 AlarmsRequest i
—— Scenario 4: request measurements ——
pred scenario4 initial[s: State| {
no s.dataPortValues
no s.eventPortValues
no s.parameterValues
no s.toDispatch
no (EventDataPort —
RPM_RPM i Instance cpc_wc_ threadl cl measurements request out

all r:

).(s.eventDataPortValues)
one RPM_ RPM i Instance cpc_wc_ threadl cl measurements request out
.(s.eventDataPortValues)

MeasurementsRequest i

| r.sensorMR =

RPM_RPM_i_Instance_ sd_sensorl

no (Datalnstance —

}

RPM_ RPM i Instance hpc temperature measurements).(s.

datalnstanceValues)
one RPM_RPM i Instance hpc_temperature measurements. (s.
datalnstanceValues)
all m: Measurement i | m.patM = Patient i

Check _scenario4
(StateTransitions and scenario4 initial[so/first]) =

(ArchitectureIlnvariants and

R15)

} for

0 DataType,

0 Component ,
0 Feature,

0 Connection,

check {

172 APPENDIX B. REMOTE PATIENT MONITORING

exactly 25 State, exactly 1 Measurement i, exactly 0 Alarm i,
exactly 0 Threshold i, exactly 0 GenerateAlarm i, exactly 0
ZigBeeAddress i, exactly 0 Dev i, exactly 1 Patient i,
exactly 0 ZigBeeDevice i, exactly 0 DevicePatient i, exactly
1 MeasurementsRequest i, exactly 0 AlarmsRequest i

—— Scenario 5: request alarms ——
pred scenario5 initial[s: State] {
no s.dataPortValues

no s.eventPortValues
no s.parameterValues
no s.toDispatch

no (EventDataPort —
RPM_RPM _i_Instance_cpc_wc_threadl cl_alarms_request_out).(s
eventDataPortValues)

one RPM_RPM i Instance cpc_wc_threadl cl alarms request out.(s.
eventDataPortValues)

all r: AlarmsRequest i | r.sensorAR =
RPM_RPM_i_ Instance sd_sensorl

no (Datalnstance — RPM_RPM i Instance hpc_temperature_ alarms).(s.
datalnstanceValues)
one RPM_RPM _i_Instance_ hpc_temperature_alarms.(s.
datalnstanceValues)
all a: Alarm i | a.patA = Patient i
}
Check scenario5 : check {
(StateTransitions and scenariob initial[so/first]) =>
(Architecturelnvariants and
R16)
} for
0 DataType,
0 Component ,
0 Feature,
0 Connection ,
exactly 25 State, exactly 0 Measurement i, exactly 1 Alarm i,
exactly 0 Threshold i, exactly 0 GenerateAlarm i, exactly 0
ZigBeeAddress i, exactly 0 Dev_ i, exactly 1 Patient i,
exactly 0 ZigBeeDevice i, exactly 0 DevicePatient i, exactly
0 MeasurementsRequest i, exactly 1 AlarmsRequest i

B.4 Traces from requirements to architecture

Table B.4 gives the trace-relations from the requirements to the component
instances of the RPM instance model given in listing B.1. The names of the
formalized versions of the requirements are given in the column predicates. Some
of the formalized versions of the requirements have been split in two or more
predicates, to improve the traceability from the requirements to the architecture.

The requirements R12, R13, and R14 are not traced to any components.
These requirements are non-functional requirements, and thus cannot be vali-
dated by our approach.

B.4. TRACES FROM REQUIREMENTS TO ARCHITECTURE

173

’ Req. \ Pred. \ Component ‘
R1 R1 a sd.sensorl, sd.procl.threadl.cl (pc)
R1 b sd.procl.threadl, sd.procl.threadl.cl (pc)
R1 ¢ sd.procl.threadl.cl
R2 R2 a sd.procl.threadl.cl, sde.procl.threadl.cl (pc)
R2 b sdc.procl.threadl.cl
R2 ¢ sde.procl.threadl.cl, hpc.sdm.threadl.cl (pc)
R3 R3 hpc.sdm.threadl.cl, hpc.temperature _measurements
R4 R4 a sd.sensorl, sd.procl.threadl.cl (pc)
R4 b sd.procl.threadl.cl
R5 R5 a sd.procl.threadl.cl, sde.procl.threadl.cl (pe)
R5 b sdc.procl.threadl.cl
R5 ¢ sdec.procl.threadl.cl, hpc.sdm.threadl.cl (pc)
R6 R6 hpc.sdm.threadl.cl, hpc.temperature alarms
R7 R7 sd.procl.threadl.cl, sdc.procl.threadl.cl,
hpc.sdm.threadl.cl, hpc.as.threadl.cl,
cpe.ar.threadl.cl (pc, comp)
R8 R8 cpc.ar.threadl.cl
R9 R9 cpec.we.threadl.cl
R10 | R10_a cpc.we.threadl.cl, hpe.ws.threadl.cl (pc)
R10 b hpc.ws.threadl.cl
R10_c¢ hpc.ws.threadl.cl, hpc.sdm.threadl.cl (pc)
R10 d hpc.sdm.threadl.cl
R10_e hpc.sdm.threadl.cl, sde.procl.threadl.cl (pc)
R10_f sdc.procl.threadl.cl
R10_g sde.procl.threadl.cl, sd.procl.threadl.cl (pc)
R11 R11 sd.procl.threadl.cl, sd.temperature threshold
’ R15 \ R15 a \ cpe.we.threadl.cl, hpc.ws.threadl.cl ‘
’ R16 \ R16 a \ cpe.we.threadl.cl, hpc.ws.threadl.cl ‘

Table B.4: Traces from requirements to architecture

174 APPENDIX B. REMOTE PATIENT MONITORING

10

15

20

25

30

Appendix C

SD system instance in Alloy

The architecture given in listing B.1 is transformed into an Alloy model. The
part representing the SD system of the resulting Alloy model, together with for-
malized requirements R1 and R4, and a scenario to validate these requirements
is given in the listing below.

Listing C.1: SD system instance represented in Alloy

open aadl meta
open util/ordering|State| as so

—— State machine signatures/facts ——

sig State {
dataPortValues: DataPort —> lone DataType,
eventPortValues: EventPort —> lone Event,
eventDataPortValues: EventDataPort —> lone DataType,
parameterValues: Parameter —> lone DataType,

datalnstanceValues: Datalnstance —> DataType,

toDispatch: set Subprogram,

}

one sig Event extends DataType { }

pred StateTransitions {

—— proper transitions
all s: State — so/last |
transition s, s.next|

}
pred transition[s, s’: State] {

s’.dataPortValues = dp2dp|[s.dataPortValues| + p2dp[s.
parameterValues|

s’.eventPortValues = e2e[s.eventPortValues| + producedEps|s]

s’.eventDataPortValues = edp2edp|s.eventDataPortValues| + p2edp|s
.parameterValues| + producedEdps|[s]

s ’. parameterValues = dp2p|[s.dataPortValues| + edp2p|s.
eventDataPortValues| 4+ p2p[s.parameterValues]| +
producedParams [s |

s’.datalnstanceValues = s.datalnstanceValues +
producedDatalnstanceValues|[s| — removedDatalnstanceValues|s]

s’.toDispatch = scheduleDispatchByEventPort|[s] +
scheduleDispatchByEventDataPort[s] + { s.toDispatch.next }

}

175

35

40

45

50

55

60

65

70

75

80

85

90

176 APPENDIX C. SD SYSTEM INSTANCE IN ALLOY

fun dp2dp|[r: DataPort —> DataType]

{ dp: DataPort, dt: DataType

one (dp.” portConnections|[] — dt & r) } +

{ dp: DataPort, dt: DataType

one pc:

PortConnection

dp = pc.dst and one (pc.src —> dt & r) }

fun e2e[r: EventPort —> Event]
{ ep: EventPort, e: Event |

EventPort —> Event {

one (ep.” portConnections|[|] —> e & r) } +

{ ep: EventPort, e: Event | one pc:

PortConnection |

ep = pc.dst and one (pc.src —> e & r) }

fun dp2p|[r: DataPort —> DataType]

{ p: Parameter, dt: DataType

Parameter —> DataType {

one (p. portConnections|[] —> dt & r) } +

{ p: Parameter, dt: DataType

one pc:

PortConnection

p = pc.dst and one (pc.src —> dt & r) }

fun p2dp|r: Parameter —> DataType]

{ dp: DataPort, dt: DataType

one (dp.” portConnections[] —> dt & r) } +

{ dp: DataPort, dt: DataType

one pc:

PortConnection

dp = pc.dst and one (pc.src —> dt & r) }

fun ep2ep|r: EventDataPort —> DataType|

{ ep: EventPort, dt: Event |

EventPort —> Event {

one (ep. portConnections|[] — dt & r) } +

{ ep: EventPort, dt: DataType | one pc:

PortConnection

ep = pc.dst and one (pc.src —> dt & r) }

fun edp2edp|r: EventDataPort —> DataType|

DataType {

{ edp: EventDataPort, dt: DataType |
one (edp.” portConnections|[] — dt & r) } +

{ edp: EventDataPort, dt: DataType

| one pc:

EventDataPort —>

edp = pc.dst and one (pc.src —> dt & r) }

fun edp2p|r: EventDataPort —> DataType]

{ p: Parameter, dt: DataType

Parameter —> DataType {

one (p. portConnections|[] —> dt & r) } +
{ p: Parameter, dt: DataType | one pc:
p = pc.dst and one (pc.src —> dt & r) }

fun p2edp[r: Parameter —> DataType]

{ edp: EventDataPort, dt: DataType |
one (edp.” portConnections|[] —> dt & r) } +

{ edp: EventDataPort, dt: DataType | one pc:

PortConnection

edp = pc.dst and one (pc.src —> dt & r) }

fun p2p|r: Parameter —> DataType]

{ p: Parameter, dt: DataType

Parameter —> DataType {

one (p. portConnections|[] — dt & r) } +

{ p: Parameter, dt: DataType

one pc:

PortConnection

DataPort —> DataType {

DataPort —> DataType {

PortConnection

PortConnection

EventDataPort —> DataType {

95

100

105

110

115

120

125

130

135

140

145

150

p = pc.dst and one (pc.src —> dt & r) }

fun scheduleDispatchByEventPort|[s: State| : set Subprogram {

{ sp: Subprogram | one t: Thread, ep: EventPort |

sp = t.subprogramCall and ep in t.features and ep.direction
PortDirection In and one ep.(s.eventPortValues)

177

fun scheduleDispatchByEventDataPort|[s: State]| : set Subprogram {

{ sp: Subprogram | one t: Thread, edp: EventDataPort

sp = t.subprogramCall and edp in t.features and edp.direction =
PortDirection In and one edp.(s.eventDataPortValues)

}
}

fun getDatalnstance[da: one DataAccess| : Datalnstance {

da.” ~dataAccessConnection & Datalnstance +
{ di: Datalnstance | one dac: DataAccessConnection
and dac.src = di }

—— Model —
—— Data types
sig ZigBeeAddress i extends DataType { }

sig Alarm i extends DataType {
sensorA: one Device,
zaA: lone ZigBeeAddress i,
devA: lone Dev i,
patA: lone Patient i,

A
one (zaA + devA + patA)

}

sig GenerateAlarm i extends DataType { }

sig AlarmsRequest i extends DataType {
sensorAR: one Device

}

sig Measurement i extends DataType {
sensorM : one Device,
zaM: lone ZigBeeAddress i,
devM: lone Dev i,
patM: lone Patient i,

A
one (zaM + devM + patM)

}

sig Threshold i extends DataType {
sensorT: one Device,
zaT: lone ZigBeeAddress i,
devT: lone Dev i,
patT: lone Patient i,
FA

one (zaT + devT + patT)

}

sig MeasurementsRequest i extends DataType {

dac. dst

= da

155

160

165

170

175

180

185

190

195

200

205

210

178 APPENDIX C. SD SYSTEM INSTANCE IN ALLOY

sensorMR: one Device

A
}

— Structure —

one sig RPM_ RPM i Instance extends System {

{

subComponents = none
+ RPM_RPM i Instance sd
+ RPM_RPM i Instance sdc

i
+ RPM_RPM i Instance hpc

+ RPM_RPM i Instance_cpc
features = none

}

one sig RPM_RPM i Instance sd extends System {
FA
subComponents = none
+ RPM_RPM _i_Instance_ sd_sensorl
+ RPM_RPM i Instance sd procl
+ RPM_RPM _i_Instance_sd_temperature_threshold
features = none
+ RPM_RPM_i_Instance_sd_measurement_out
+ RPM_RPM i Instance sd alarm out
+ RPM_RPM i Instance sd_threshold in
}

one sig RPM_RPM _i_ Instance_sd_measurement out extends EventDataPort

P

direction = PortDirection Out
all s: State | this.(s.eventDataPortValues) in Measurement i

}

one sig RPM_RPM i Instance sd_alarm_ out extends EventDataPort {

P A

direction = PortDirection_Out
all s: State | this.(s.eventDataPortValues) in Alarm i

}

one sig RPM_RPM i Instance sd threshold in extends EventDataPort {

P A

direction = PortDirection In
all s: State | this.(s.eventDataPortValues) in Threshold i

}

one sig RPM_RPM i Instance sd_sensorl extends Device {

{

subComponents = none
features = none
+ RPM_RPM_i_Instance_sd_sensorl_ measurement

}

one sig RPM_ RPM i Instance sd sensorl measurement extends
EventDataPort {
A

direction = PortDirection Out
all s: State | this.(s.eventDataPortValues) in Measurement i

}

one sig RPM_RPM i Instance sd procl extends Process {

215

220

225

230

235

240

245

250

255

260

265

179

HA

subComponents = none
+ RPM_RPM i Instance sd_procl threadl
features = none

+ RPM_ RPM i Instance sd procl sensorl in

+ RPM_RPM_i_ Instance_sd_procl_threshold_in

+ RPM_RPM i Instance sd procl measurement out

+ RPM_RPM_i _Instance_sd _procl_alarm_out

+ RPM_RPM i Instance sd procl temperature threshold

}

one sig RPM_ RPM i Instance sd procl sensorl in extends
EventDataPort {
FA

direction = PortDirection In
all s: State | this.(s.eventDataPortValues) in Measurement i

}

one sig RPM_RPM i Instance sd procl threshold in extends
EventDataPort {
P A

direction = PortDirection In
all s: State | this.(s.eventDataPortValues) in Threshold i

}

one sig RPM_RPM i Instance sd_ procl measurement out extends
EventDataPort {
FA

direction PortDirection_Out
all s: State | this.(s.eventDataPortValues) in Measurement i

}

one sig RPM_RPM i Instance sd_ procl alarm_ out extends EventDataPort

{
A
direction = PortDirection_Out
all s: State | this.(s.eventDataPortValues) in Alarm i

}

one sig RPM_RPM i Instance sd procl temperature threshold extends
DataAccess {
FA

direction

}

one sig RPM_RPM i Instance sd procl threadl extends Thread {

HA

AccessDirection Required

subComponents = none
+ RPM_RPM_i_Instance_sd_procl_threadl_cl
features = none

+ RPM_RPM i Instance sd procl threadl sensorl in
+ RPM RPM i Instance sd __procl threadl threshold in
+ RPM RPM i Instance “sd procl “threadl measurement _out
+ RPM_RPM i Instance sd __procl _threadl “alarm out
+ RPM_RPM i Instance sd procl threadl temperature threshold
subprogramCall = none
+ RPM_RPM i Instance sd_procl threadl cl
}

one sig RPM_ RPM i Instance sd procl threadl sensorl in extends
EventDataPort {
FA

180 APPENDIX C. SD SYSTEM INSTANCE IN ALLOY

direction = PortDirection In
all s: State | this.(s.eventDataPortValues) in Measurement i
270}

one sig RPM_ RPM i Instance sd procl threadl threshold in extends
EventDataPort {
A

direction = PortDirection In
275 all s: State | this.(s.eventDataPortValues) in Threshold i
}
one sig RPM_ RPM i Instance sd procl threadl measurement out extends

EventDataPort {

A

280 direction = PortDirection_Out
all s: State | this.(s.eventDataPortValues) in Measurement i
¥

one sig RPM_ RPM i Instance sd procl threadl alarm out extends
EventDataPort {
285 } {
direction = PortDirection_Out
all s: State | this.(s.eventDataPortValues) in Alarm i

}

290 omne sig RPM_RPM i Instance sd_ procl threadl temperature threshold
extends DataAccess {
A

direction = AccessDirection_Required

295 one sig RPM_RPM i Instance sd procl threadl ¢l extends Subprogram {

A
subComponents = none
features = none
+ RPM_RPM _i Instance sd_procl_threadl cl_sensorl in
300 + RPM_RPM i Instance sd procl threadl cl threshold in
+ RPM_RPM _i_Instance_sd_procl_threadl_cl_measurement_out
+ RPM_RPM i Instance sd_procl threadl cl alarm out
+
RPM_RPM i Instance_ sd_procl_ threadl cl temperature threshold
next = none
305 }

one sig RPM_RPM i Instance sd_ procl threadl cl sensorl in extends
Parameter {
P A

direction = PortDirection In
310 all s: State | this.(s.parameterValues) in Measurement i

}

one sig RPM_ RPM i Instance sd procl threadl cl threshold in extends
Parameter {
FA

315 direction = PortDirection In
all s: State | this.(s.parameterValues) in Threshold i
}

one sig RPM RPM i Instance sd procl threadl cl measurement out
extends EventDataPort {
320 } {

181

direction = PortDirection_Out
all s: State | this.(s.eventDataPortValues) in Measurement i

}

325 omne sig RPM RPM i Instance sd procl threadl cl alarm out extends
EventDataPort {
FA

direction = PortDirection Out
all s: State | this.(s.eventDataPortValues) in Alarm i
}
330
one sig
RPM_ RPM i Instance sd_ procl threadl cl temperature threshold
extends DataAccess {
FA
direction = AccessDirection Required
}
335
one sig RPM_ RPM i Instance sd_ temperature threshold extends
Datalnstance {
}
all s: State | this.(s.datalnstanceValues) in Threshold i
}
340
—— Connections ——
fun portConnections|] : Port —> Port {
none —> none
+ (RPM_RPM i Instance sd sensorl measurement —>
RPM_ RPM i Instance sd procl threadl sensorl in)
345 + (RPM_RPM i Instance sd procl threadl sensorl in —>
RPM_ RPM i Instance sd procl threadl cl sensorl in)
+ (RPM_RPM i Instance sd_ procl threadl threshold in —>
RPM_RPM i Instance sd_ procl threadl cl threshold in)
+ (RPM_RPM i Instance sd procl threadl cl measurement out —>
RPM_ RPM i Instance sd procl threadl measurement out)
+ (RPM_RPM i Instance sd procl threadl c¢l alarm out —>
RPM_ RPM i Instance sd procl threadl alarm out)
}
350
fun dataAccessConnection|] : (Datalnstance + DataAccess) —> (
DataAccess) {
none —> none
+ (RPM_RPM i Instance sd_temperature threshold —>
RPM_RPM i Instance sd procl threadl temperature threshold)
+ (RPM_RPM _i_Instance_sd_procl_threadl temperature threshold —>
RPM_RPM _i_Instance_sd_procl_threadl cl_temperature_threshold
)
355 }
—— Predicates for data instances —
pred RPM_RPM i Instance_sd_temperature threshold::invariants|[s:
State] {
all t: this.(s.datalnstanceValues) | t.sensorT =
RPM_RPM i Instance sd sensorl
360 }

—— Predicates and functions for subprograms
pred RPM_RPM i Instance sd_procl threadl cl::invariants|[s: State] {

365 all m: RPM_RPM i Instance_sd_procl_threadl cl_sensorl in.(s.
parameterValues) | one m.zaM

370

375

380

385

390

395

400

405

182 APPENDIX C. SD SYSTEM INSTANCE IN ALLOY

all t: RPM_RPM _i_ Instance_sd_procl_threadl cl_threshold_in.(s.
parameterValues) | one t.zaT

}

fun RPM_RPM _i_ Instance_sd_procl_threadl cl::post_eps|[s: State]
EventPort —> Event {
none —> none

}

fun RPM_RPM i Instance sd procl threadl cl::post edps|[s: State]
EventDataPort —> DataType {
one RPM_RPM i Instance_ sd_procl threadl cl_sensorl in.(s.
parameterValues) and no GenerateAlarm i =>
— send temperature measurement
{ RPM_RPM i Instance sd procl threadl cl measurement out —>
RPM_RPM i Instance sd_ procl threadl cl sensorl in.(s.
parameterValues) }
else one RPM_RPM i Instance sd_ procl threadl cl sensorl in.(s.
parameterValues) and one GenerateAlarm i =>
— send temperature alarm
{ RPM_RPM i Instance sd procl threadl cl alarm out —> { a:
Alarm i | a.sensorA =
RPM_RPM _i_Instance_sd_procl_threadl cl_sensorl in.(s.
parameterValues).sensorM and one a.zaA } }
else
none —> none

}

fun RPM_RPM i Instance sd procl threadl cl::post params|[s: State]
Parameter —> DataType {
none —> none

}

fun RPM_RPM i Instance sd procl threadl cl::post diProduced|s:
State| : Datalnstance —> DataType {
one RPM_ RPM i Instance sd procl threadl cl threshold in.(s.
parameterValues) =>
— store temperature threshold
{ getDatalnstance |
RPM_RPM i Instance sd_procl threadl cl_ temperature threshold
| — RPM_RPM _i_Instance_sd_procl_threadl_cl_threshold_in. (s
.parameterValues) }
else
none —> none

}

fun RPM_RPM i Instance sd_ procl threadl cl::post_ diRemoved[s: State
| : Datalnstance —> DataType {
none —> none

}

fun producedEps[s: State| : EventPort —> Event {
none —> none
+ (RPM_RPM_i_Instance_sd_procl_threadl_cl in s.toDispatch =>
RPM_ RPM i Instance sd procl threadl cl.post eps|s] else
none —> none)

}

fun producedEdps[s: State| : EventDataPort —> DataType {
none —> none

410

415

420

425

430

435

440

445

450

455

460

183

+ (RPM_RPM_i_Instance_sd_procl_threadl_cl in s.toDispatch =>
RPM_RPM i Instance sd procl threadl cl.post edps[s] else
none —> none)

}

fun producedParams|s: State| : Parameter —> DataType {
none —> none
+ (RPM_RPM_i_Instance_sd_procl_threadl_cl in s.toDispatch =>
RPM_RPM i Instance sd procl threadl cl.post params|s] else
none —> none)

}

fun producedDatalnstanceValues|s: State| : Datalnstance —> DataType
{
none —> none
+ (RPM_RPM i Instance sd procl threadl cl in s.toDispatch =>
RPM_RPM i Instance sd procl threadl cl.post diProduced]|s|
else none —> none)

}

fun removedDatalnstanceValues|[s: State]| : Datalnstance —> DataType
{
none —> none
+ (RPM_RPM_i_Instance_sd_procl_threadl_cl in s.toDispatch =>
RPM_RPM i Instance sd procl threadl cl.post_ diRemoved|s]
else none —> none)

—— Avrchitecture invariants —
pred SubprogramlInvariants {
all s: State |
RPM_RPM i Instance sd procl threadl cl.invariants|s]
}

pred Datalnstancelnvariants {
all s: State |
RPM_RPM i Instance sd_ temperature threshold.invariants|[s]
}

pred Architecturelnvariants {
SubprogramInvariants
Datalnstancelnvariants

}

—— Commands and predicates ——
ShowArchitecture : run {
no State.dataPortValues
no State.eventPortValues
no State.eventDataPortValues
no State.parameterValues
no State.datalnstanceValues
no State.toDispatch
} for
0 DataType,
Component ,
Feature ,
Connection ,
State

[==}

—— Requirements ——
pred R1 {
Rl a

184 APPENDIX C. SD SYSTEM INSTANCE IN ALLOY

R1_Db
}
pred R1_a {
465 one s: State |

one RPM_RPM _i_Instance sd_sensorl measurement.(s.
eventDataPortValues) and

one RPM_RPM i_Instance_sd_procl_threadl_cl_sensorl_in.(s.” next.
parameterValues)

}

470 pred R1 b {
one s: State |
one RPM_ RPM i Instance sd procl threadl cl sensorl in.(s.
parameterValues) and
one RPM_RPM i Instance sd procl threadl c¢l measurement out.(s.
next.eventDataPortValues)

}

475
pred R4 {
R4 a
R4 b
¥
480
pred R4 a {
one s: State |
one RPM_RPM i Instance sd_sensorl measurement.(s.
eventDataPortValues) and
one RPM_RPM i Instance_sd_procl_threadl cl_sensorl_in.(s.” next.
parameterValues)
485 }

pred R4 b {
one s: State |
one RPM_ RPM i Instance sd procl threadl cl sensorl in.(s.
parameterValues) and
490 one RPM_ RPM i Instance sd procl threadl cl alarm out.(s.” next.
eventDataPortValues)
¥

—— Scenario 1: perform measurement ——
pred scenariol initial[s: State] {

495 no s.dataPortValues
no s.eventPortValues
no s.parameterValues
no s.toDispatch
500 one s.eventDataPortValues

one RPM_RPM i Instance sd_sensorl measurement.(s.
eventDataPortValues) .zaM

all m: Measurement i | m.sensorM = RPM_ RPM i Instance sd_sensorl
one m: Measurement i | m.zaM = ZigBeeAddress i
one m: Measurement i | m.devM = Dev i

505 one m: Measurement i | m.patM = Patient i

no (Datalnstance — RPM_RPM i Instance sdc_zd_coupling —
RPM_RPM i Instance hpc_dp_ coupling).(s.datalnstanceValues)
one RPM_RPM i Instance sdc_zd coupling.(s.datalnstanceValues)
one RPM_RPM i Instance hpc_dp_coupling.(s.datalnstanceValues)
510 }

Check scenariol : check {

185

(StateTransitions and scenariol _initial[so/first]) =>
(Architecturelnvariants and
515 R1 and R2 and R3)
} for
0 DataType,
0 Component ,
0 Feature,
520 0 Connection ,

exactly 25 State,
exactly 3 Measurement i, exactly 0 Alarm i, exactly 0 Threshold i

, exactly 0 GenerateAlarm i, exactly 1 ZigBeeAddress i,
exactly 1 Dev i, exactly 1 Patient i, exactly 1
ZigBeeDevice i, exactly 1 DevicePatient i, exactly 0
MeasurementsRequest i, exactly 0 AlarmsRequest i

