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 Executive Summary 

The purpose of this study is to investigate the effects of “downgrade momentum” in credit migration 

matrices that is observed in rating transition data. The downgrade momentum refers to a non-

Markovian effects in which recently downgraded obligors are at increasing risk of experiencing 

further downgrades. The developed extended transition matrices sensitive to downgrade momentum 

are used to compute the credit risks for long and short term horizons and later compared to an 

extended transition matrix insensitive to downgrade momentum. The insensitive extended transition 

matrix referred as benchmark for comparison has a one-to-one correspondence with the annual S&P’s 

transition matrix. The first model of the downgrade sensitive extended transition matrix has a one-to-

one correspondence with the annual transition matrix and recently downgraded probabilities 

increased by a factor of three for those that will be downgraded in the next period while the second 

model represents an adjustment of the first model such that it can be aggregated back to the initial 

annual S&P’s transition matrix. The calibration of the second model is based on the number of 

obligors within each rating category. In addition, these extended transition matrices are applied in the 

measurement of short-term credit migration risks referred in Basel II as Incremental Risk Charge. To 

maintain a constant level of risk, the portfolio is rebalanced each quarter to match with the initial 

portfolio with the condition that recently downgraded instruments cannot be sold on the market. We 

illustrate the significance of the downgrade momentum effects on credit migration matrices based on 

the algorithm developed in MatLab®. The implication of this research affects both short-term and 

long-term horizons portfolios which are strongly influenced by the dynamics of the rating transitions. 

The result of this study is relevant for Basel II because banks that neglect the downgrade momentum 

might underestimate the risk level of their positions. 

 

Keywords: Credit migration risk, rating drift, downgrade momentum, transition matrices, Value-at-

Risk 
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1. Introduction 

Over the past decade, banks have developed several techniques and tools to improve the 

measurement of the financial risks associated with their business activities. Particularly, banks have 

been interested to better capture the likelihood that borrowers will not be able to meet their 

financial obligations. The ability for borrowers to repay the interest and principal in a timely 

manner defined the credit quality of the borrowers. Credit risks refer to risk of default or of 

reduction in the value of debt instruments (e.g. loans) and credit-related securities due to 

unexpected changes in the underlying credit quality of the borrowers and counterparties over time, 

see Duffie and Singleton (2003). This special interest for banks to improve their measurement of 

credit risks stems from their high exposures to potential losses that may arise in the events of 

ratings migrations or default. The unprecedented growth of innovative financial products (e.g. 

Credit Default Swaps CDSs and Collateralized Debt Obligations CDOs) has increased significantly 

the exposure of banks to its credit portfolio. The inability to adequately measure the credit risks can 

rapidly lead banks to failure compare to market and operational risks where failure might lead to 

several small losses. Luigi Zingales (2008) shows how the recent bankruptcy of Lehman Brothers 

during the financial turmoil where due to the failure to measure the real exposures to CDS products. 

Lehman Brother sold protections or CDS to investors who will receive a certain payoff if a credit 

event occurs in particular when the instruments (e.g. mortgages) default in exchange for a series of 

payments. 

Current regulations encourage banks to assess their credit risks through the implementation of the 

Basel Capital Accord (Basel II), which provides a framework for modeling credit risks and 

encourages banks to develop internal credit risk models with the agreement from their respective 

supervisory authorities (Basel Committee on Banking Supervision, 2001). Such a framework helps 

to further strengthen the soundness and stability of banks and ensure the adequate flow of capitals 

to individuals and businesses. The supervisory authorities are concerned about the soundness of the 

financial system because financial products can significantly contribute to the improvement and 

growth of the entire economy when adequately controlled or can lead to financial turmoil with 

disastrous consequences to the local and global economies. 

Credit risk models differ in their fundamental assumptions. For example, credit losses can be 
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defined based on the default models (e.g. loan defaults) or on the multi-state models with ratings 

migrations from obligors (typically firms) over time amongst a set of possible states. In the case of 

default models, banks are concerned with the duration period that the borrowers will take to default. 

However in a multi-state model, banks that have a portfolio of loans are not only influenced by the 

potential default of their clients but also their earnings may be severely affected by the rating 

downgrades or upgrades of their clients. In the present study, the focus will be on credit losses 

arising from rating migrations that banks experiences due to the evolution of the creditworthiness of 

the borrowers or counterparties through time. 

Credit migration or rating transition matrix is defined as the likelihoods of changes in credit quality 

of obligors over a specific time period that is usually a year. Such changes lead to ratings upgrade 

or downgrade that affects the evaluation of the debt instruments as it is mark-to-market. Credit 

migrations affect the fees that banks charge to its clients and constitute an important source of 

revenues for banks where clients with high credit quality are charged relatively lesser fees than 

clients with low credit quality to account for the risks of non-repayments. It also affects the 

decisions to grant credit requests from different clients because banks aim to have a diversified 

portfolio. Andersson and Vanini (2008) illustrates that depending on the loans contracts, credit 

migrations might lead to losses in the event of default, opportunity of losses with the downgrades of 

obligors to non-default states which decreases the prices at which other banks are willing to 

purchase the same instruments, or potential gains with the upgrades of obligors which increases the 

prices at which the same instruments can be sold, The sophistication of the models developed by 

banks in modeling credit migration risks come from the straightforward implementation of Basel II 

framework which allow banks to determine the required amount of capitals that banks should hold 

based on the internal and external credit rating systems. Major providers of external credit 

migration or transition matrices are Moody’s, Standard & Poor’s, and Fitch’s.  These transition 

matrices are usually published for one, two, or five years and used as inputs to measure potential 

credit losses incurred or to determine the required level of capitals.  

The increasing reliance on rating systems as risk measurement tools emphasized the importance of 

adequate estimation of credit migration matrices which are major inputs. The downgrade 

momentum effects in credit risks can critically affect banks revenues and strategic positions. The 

fluctuations in obligors’ creditworthiness over time make that the interests received by banks might 
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be considerably less than current obligors’ risk levels. In addition, the fees collected to provide 

protections when trading credit derivatives may significantly lower due to underestimation the 

exposures. Regulations about the kind of instruments that some banks and professional investors 

are allowed to trade means that the effects of borrowers downgraded below certain ratings lead to 

the termination of some financial contracts. 

The outline of the paper is organized as follow. In section 2, we present the literature review on the 

modeling of credit migrations risks. Section 3 then provides the objective and contribution of the 

current research. Section 4 gives the description of the data and the sources used in the study. 

Section 5 describes in detail the extended state models. Section 6 presents the implementation of 

the algorithms for modeling of rating transition with downgrade momentum using MatLab. Section 

7 provides the results of the three different models used to simulate the migration risks caused by 

the downgrade momentum. Section 8 contains the results of the sensitivity analysis of the simulated 

random distribution of the initial portfolio. Section 9 gives the implementation of the extended 

transition matrices in measuring Incremental Risk Charge. Section 10 concludes the study. 

Appendix A contains the results of the transition matrices for the three different models. Appendix 

B contains detail description of the algorithms used for the different models. 
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2. Literature review 

Literature on the area of credit migration risks are based on the structural and reduced-form models. 

Earlier classical structural models are represented by circumstances under which a default occurs as 

soon as the asset value of a firm falls below the face value of its liabilities. Examples of Black and 

Scholes (1973) and Merton (1974) describe the asset value of the firm as a stochastic process (see 

Figure 1) under which  

dV (t) = (μ − γ) V (t)dt + σV (t)dW(t) 

where μ is the drift rate on the assets, γ is proportional cash payout rate, σ is the asset volatility, and 

W(t) is a standard wiener process. 

Figure 1. The Black-Scholes-Merton structural model of default 

 

Source: Duffie and Schaefer (2003) in Credit Risk: Pricing, Measurement and Management 

Unfortunately, the problems of using structural models come from the determination of the value 

and volatility of the firm’s assets, and to model the stochastic process driving the value of the firm 

adequately. In addition, the fact that both the drift rate and volatility of the firm’s assets can depend 

on the future economical environments is not considered in their evaluations. 

The reduced-form models represent modern approach of credit migration that captures not only the 

event to default but also ratings change. The first reduced form approach was introduced by Fons 

(1994) and later extended by several authors, including Jarrow et al (1997), Duffie and Singleton 

(1999). The discrete-time approach represents the most popular form which usually assumes a time-

homogeneous Markov model. The Markov property means that ratings migrations are independent 
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of the past ratings (stable, upgrade, and downgrade). The time-homogeneity means that the 

transition intensities given in the annual transition matrix are independent of time period 

considered. These two assumptions clearly affect the estimation of credit migration matrices. 

Furthermore, the time-homogeneity assumption neglects the cyclical effects of the economy (i.e. 

during periods of downturn of the economic, the likelihoods of further downgrades exceed those 

during periods of growth). Nickell et al., (2000), Bangia et al., (2002), Krüger et al., (2005) pointed 

out that transition matrices are not constant through time and different during periods of expansion 

and recession of the economy. These are due to the contagion effects in the economy where failure 

of an important organization threaten the stability and survival of others very sound organizations 

and might lead them to default as well. During periods of growth (with relative excess of funds) 

companies can obtain cheap credits from banks to help them fund their business activities and 

survive. In addition, Trück and Rachec (2005) show substantial effects on risk figures for credit 

portfolios when credit migration matrices take into account the cyclical effects. Lando and 

Skødeberg (2002) show that assuming that transition matrices follow a Markov property neglects 

past ratings movements which are important determinant of the likelihood of a downgrade versus 

that of an upgrade over a certain period of time. 

Discrete-time approach is based on the cohort method which estimate the migration matrices with 

the probability of migrating from the rating category i at the beginning of the year to the rating 

category j as  

ij
N
N

P
i

ij
ij ≠,≡ˆ

 

where Ni is the number of firms in the rating class i at the beginning of the year, Nij is the number 

of firms that started with rating class i and have migrated to the rating class j within the considered 

time period. 

These two assumptions have some useful consequences because annual transition matrices to the nth 

power generate n-year transition matrices. For example, Kreinin and Sidelnikova (2001) show that 

computing the six-month transition matrix can be performed by taking the square root of annual 

transition matrix. Unfortunately, despites the attractiveness of such feature in mathematical sense, 

the result might have little sense in risk assessment. Data quality of ratings transition observed 
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within shorter periods are either not available or too scarce to make a reliable estimate of the 

migration matrices because obligors usually take more than a year to default and keys financial data 

are provided at year end in annual reports. The mathematical limitations of fractional power occur 

when trying to estimate short-term transition matrices for less than a year because there is no 

guarantee that the transition matrices obtained are stochastic matrices. Transition matrices are 

stochastic matrices when they satisfied the two conditions: square matrices with nonnegative entries 

and row sums equal to 1. Typically, fractional powers generate matrices with negative entries 

despites having row sums still equal to 1, thus the resulting matrices cannot be considered 

stochastic matrices. In addition to these numerical problems, there might be more than one root to 

the transition matrices and it is not exactly clear which roots represent the right choice, see Higham 

and Lin (2009). 

To adjust some of the shortcomings of the discrete-time methods, it is possible to transform the 

discrete-time approach of the credit migration matrices into continuous-time approach through the 

use generators matrices. The research done by Lando and Skødeberg (2002) shows that continuous-

time approach are capable to better capture rare events in rating transition with more realistic non-

zero estimates for probabilities of rare events. It gives the advantage that the transition matrices are 

time-dependent with positive probability values for each rows summing into one. Credit migration 

matrices P(t) for arbitrary time horizons t for the continuous-time approach can be defined as 

0),exp()( ≥Λ≡ tttP  

where Λ  is the generator of a given annual transition matrix with discrete-time Markov property 

However, Israel et al. (2000) show that several discrete transition matrices cannot be transformed 

into continuous time method because there is no generator at all or a generator that has negative 

off-diagonal elements exist leading to negative transition probabilities for short time horizon. In 

most cases, approximation methods are required for generator matrices with negative off-diagonal 

elements. Israel et al. (2000) show that it is possible more than one generator exists and the 

transition matrix of the valid or unique generator if it exists must satisfy three conditions: 

determinant must be greater than 0.5, distinct positive eigenvalues, and distinct real eigenvalues. A 

preferred approach may be to directly estimate the generator from the data, then to estimate the 

transition matrices within the required time horizon. An important issue in continuous time 
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approach is that data (e.g. accounting report, external and internal ratings, etc.) are usually reported 

once a year. 

Lando and Skødeberg (2002) showed the non-Markov evolution (for instance, dependence on 

previous rating) of the transition matrices while still assuming the time homogeneity. Lando et al 

(2002) demonstrate the advantages of using continuous-time approach to capture the probabilities 

of rare events (e.g. default of a firm with AAA) that may not have yet occurred but could occur in 

the future compare to discrete-time approach which assume the probability values of zero. 

Christensen, et al (2004) introduce a continuous-time hidden Markov chain model to capture the 

non-Markov effect in which downgraded firms have an increasing probability of experiencing 

further downgrades. 

The present study could not fully summarize all the researches that have been conducted in the field 

of credit risks. Instead, it has attempted to summarize the most relevant literature that has emerged 

in the area of credit migration risks and particularly different existing models that capture the non-

Markov evolution of transition data. 
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3. Aims and contribution of this research 

In this study we attempt to accomplish four objectives. At first, we aim to provide insights about 

basic applications of credit migration matrices and its relevance in measuring credit migration risks. 

Second, to develop algorithms in MatLab that will serve to evaluate the effects of the downgrade 

momentum in a multi-period setting e.g. downgrade momentum increases the probability of further 

downgrade by a factor of about three as suggested by Lando and Skødeberg (2002). Third, to analyze 

the differences between the results of the respective models that will serve the influence of the 

number of portfolios in each rating. At last, to determine the impact of adjusting transition matrices to 

capture downgrade momentum in the measurement of Value-at-Risk for long-term portfolios. This 

adjusts some of the discrepancies observed in the Basel II framework due to lack of dynamics in 

those models to suggest the rating transition matrices will improve the measure of capital charges. 

Specifically, the purpose of the study is to answer the following questions: 

- What is the impact of capturing downgrade momentum in the estimate of credit migration 

matrices for measurement of short and long term portfolios? 

- Do the rating transitions matrices improve the ability of the value-at-risk to adequately 

measure the riskiness of a portfolio? 

The research made by Lando and Skødeberg (2002) is of particular relevance to this study. It 

provides insight into the modeling of credit migration matrices by showing the importance of prior 

rating in determining the transition intensities of downgrades versus those of stables and upgrades 

over a given time horizon. There is an apparent downward momentum effect in rating migrations 

data. This study implements some of the results obtained where it illustrates the significance of 

downgrade momentum in transition matrices. Their results can be summarize as follow: considering 

ratings migrations from current states to neighboring states, there is strong downgrade momentum 

showing that after reaching a rating through a downgrade, an obligor probability of experiencing 

further downgrades is increased in general by a factor of about three. Also, there is virtually no 

detectable upgrade momentum showing that after reaching a rating through upgrade, an obligor 

probability of experiencing further upgrade is unchanged in general. It is assumed that an obligor has 

reach a rating for a longtime become stable and does not have a momentum to move to a different 
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rating class. 

To implement the result, we need to know about the previous ratings of the obligors that we separate 

into three different states (stable rating, rating upgrade, and rating downgrade). This is a special case 

of the approach made by Christensen et al., (2004) where they introduced new ratings called “Excited 

states” besides the ratings provided by Moody’s which are called “Normal states”. The excited states 

refer to obligors that are currently downgraded in the extended state model. After a random amount 

of time within the excited state with the same rating, the obligor returns to the normal state. However, 

the disadvantage of that method is that it is not possible to observe the transition of an obligor from 

the excited state to the corresponding non-excited state due to the random amount of time. Our 

method avoids the problem of unobserved transition from excited states to the corresponding non-

excited state but also gives comprehensive view of all the potential scenarios that can occurs (stable, 

upgrade, downgrade). 

A simple one-to-one extension of the annual S&P’s transition matrix referred as benchmark 

represents a standard Markov time-homogeneous transition matrix insensitive to downgrade 

momentum. The first model of the extended transition matrix triples the transition intensities for 

recently downgraded obligors that will be further downgraded in the next period resulting in a 

different from the original S&P’s annual transition matrix when aggregated back. The calibration of 

the first model second model involved decrease in the corresponding transition intensities for stable 

and upgraded states that will be downgraded in the next period such that the aggregation of the 

extended transition matrix gives the original S&P’s transition matrix. In fact, this last construction is 

dependent on the initial number of obligors in each rating category. 

The current study attempts to contribute to the existing literature in three possible ways. First, we 

implement the statistical research performed by Lando and Skødeberg (2002) in determining the 

significance of downward momentum that is observed in credit migration matrices. Second, to 

develop extended transition matrices that capture this downward momentum based on observable 

ratings representing a special case of the findings of Christensen et al (2004) and the research of 

Güttler and Raupach (2007). Third, implement the results of the extended transition matrices in the 

measurement of Incremental Risk Charge, Basel Committees on Banking Supervision (2009). 
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4. Description of the rating transitions 

We will consider in this study the rating transition matrices provided by the Standard and Poor’s 

agency that are classified based on the obligor or counterparty credit quality into one of several 

discrete credit rating categories (see Table 1). 

Table 1. Classification of Standard and Poor’s long-term ratings obligation 

 Ratings Meanings 

Investment grades 

AAA Highest quality, minimal credit risk 

AA High quality 

A Strong payment capacity 

BBB Adequate protection, moderate risk 

Speculative grades 

BB Likely to pay, but ongoing uncertainty 

B High risk but limited margin of safety remains 

CCC High default risk, depend on sustained favorable economic conditions 

 D In default 

The annual transition matrix of the Standard &Poor’s covers the period of April 1996. It is estimated 

based on the cohort approach (see Table 2 below). In the simulations, the rating scales is replaced 

with an equivalent numerical scales giving for the total of 8 rating categories equal to: 

Pij = {AAA, AA, A, BBB, BB, B, CCC, D}  ↔  {1, 2, 3, . . . , 8} with i, j =1,2,...,8. 

Table 2. Probability of migrating from one rating quality to another within 1 year 

Initial 
rating 

Rating at year-end (transition probabilities in %) 

AAA AA A BBB BB B CCC D 

AAA 90.81 8.33 0.68 0.06 0.12 0 0 0 

AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0 

A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06 

BBB 0.02 0.33 5.95 86.93 5.30 1.17 1.12 0.18 

BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06 

B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.20 

CCC 0.2200 0 0.22 1.30 2.38 11.24 64.86 19.79 

D 0 0 0 0 0 0 0 100 

Source: Standard & Poor’s CreditWeek (15th April 1996). 

The transition matrix describes all possible migrations for obligors given their rating scales. For 

example, the notation P(AA → BBB) = 0.06 represents the transition probability for obligors with 

AA rating which will migrate to BBB rating in the next year. The rows of the transition matrix 
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correspond to the current ratings for the obligors and columns represent future ratings. The last row 

with rating D represents the absorbing default state, i.e. the probability for obligors to leave the 

default state once it is reached equals to zero. The AAA rating represents the highest rating in the 

first row of the transition matrix. All the elements below the diagonal represent the probabilities for 

upgrades while the elements above the diagonal represent the probabilities for downgrades. The 

elements of the last column with D rating represent the default probabilities for the different ratings. 

Finally, the diagonal elements represent the probabilities for the ratings to be preserved in the next 

period. 

In this study, we faced the problem of lack of data about the history of the ratings migration for the 

different obligors, for example within the total number of obligors at the beginning of a given year 

with AA rating; some obligors have reached the AA rating through downgrade from the AAA rating, 

some obligors have been stable at the AA rating, and finally some obligors have been upgraded to 

AA rating from one of the following ratings {A, BBB, BB, B, CCC}. It is important to note that 

such information may be readily available to rating agencies. Some banks may have obtained these 

data through their internally dealings with clients but it also depends on the management investment 

strategy. 
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5. Extended state models 

To capture the importance of past dependencies in the transition matrix with increasing probability of 

further ratings downgrade for obligors that were previously downgraded, we split the ratings into 

three states {s, u, d}, which respectively correspond for ratings that have been stable, reached through 

recent upgrade last year, and reached through recent downgrade last year. The normal transition 

matrix is thus extended into the following: 

P’
ij = {AAAs, AAAu, AAs, AAu, AAd, As, Au, Ad, BBBs, BBBu, BBBd, BBs, BBu, BBd, Bs, Bu, Bd, CCCs, CCCd, D} 

↔  {1, 2, 3, 4, 5, 6, 7, . . . , 20}   with i, j = 1,2,…,20. 

In addition, the rating categories AAA, CCC and D are considered as special rating categories. 

Therefore, no ratings can directly reach AAA rating through a downgrade because it is the highest 

possible rating. Also, no ratings can directly reach CCC rating through an upgrade because it is the 

lowest rating. The last rating D, which is an absorbing state can only be reach through a downgrade 

and once it is reached, it is not anymore possible to leave that state “absorbing state”, thus we do not 

discriminate between Ds and Dd and therefore simply keep it notations as D. We are focusing the 

analysis on a sequence of single notch downgrades instead of one multi-notch downgrade as it is the 

preference of Standard & Poor’s. 

5.1 Number of firms in the extended states 

The determination of the number of firms in the extended states stem from the need to aggregate the 

transition intensities of the extended transition matrix back to its original form as provided by S&P’s 

annual transition matrix. Let’s consider the portfolio distribution nk with k = 1,2,…,r representing the 

number obligors within the states (AAA, AA, …, CCC, D). The expected number of obligors with 

rating j within the stable, upgraded, and downgraded states are denotes respectively  , , and  

are assumed to follow a discrete Markov property and computes as follow: 

 

 

where Pij represents the 1-year transition matrix from rating i to j. 
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The interpretation of these computations is as follow. Having split the ratings into three different 

states (stable, upgrade, and downgrade), the number of obligors within each rating category are 

similarly split based on previous ratings. Given that the annual transition matrix Pij provides 

information about firms’ future rating changes, we assumed that the portfolio distribution in the 

previous section represents an expected average that remains constant through time.  To be constant 

through time, we also assume that banks will repurchase loans with stable ratings to replace those that 

have defaulted within each rating category.  

As a leading example, we consider an expected total portfolio of 295 obligors over the years. The 

portfolio are subdivided as follow into each of the rating categories: 20 obligors with AAA rating, 45 

obligors with AA rating, 45 obligors with A rating, 45 obligors with BBB rating, 45 obligors with BB 

rating, 45 obligors with B rating, 20 obligors with CCC rating, and no obligor has defaulted. Table 3 

below summarizes the result obtained for the different rating categories. 

Table 3. Distribution of the expected number of obligors within each states of the extended transition matrix  

Stable state 
AAAs AAs As BBBs BBs Bs CCCs 

19.5780 42.0515 38.2275 38.2840 38.8390 38.0675 17.2010 

Upgrade state 

AAAu AAu Au BBBu BBu Bu - 

0.4220 1.2825 3.1310 3.9320 3.3920 2.2480 - 

Downgrade state 

- AAd Ad BBBd BBd Bd CCCd 

- 1.6660 3.6415 2.7840 2.7690 4.6845 2.7990 

Let P(i,j) denotes the transition probability from i to j rating over a period of one year. The computations for the number of obligors with A rating are 

performed as follows. Let denotes nA be the number of firms with A rating, nA
s the number of firms that have held a stable A rating last year, nA

u the 

number of firms that have recently been upgraded to A rating last year, and nA
d the number of firms that have recently been downgraded to A rating last 

year. nA
u = nBBB*P(BBB,A) + nBB*P(BB,A) + nB*P(B,A) + nCCC*P(CCC,A) = 3.6415; nA

d = nAAA*P(AAA,A) + nAA*P(AA,A) = 3.1310; nA
s = nA - nA

u - 

nA
d = 38.2275. 
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5.2 Transition matrices in the extended state 

Let consider a simplified transition matrix denote as “P” with four rating categories {A, B, C, D} to 

provide a detail explanation of the procedures to create extended transition matrices P0, P1, and P2. 

The rating categories A, C, and D are considered special ratings which respectively represent the 

highest rating, the lowest rating, and the absorbing default state. 

P A B C D 

A 0.80 0.10 0.08 0.02 

B 0.05 0.85 0.07 0.03 

C 0.02 0.13 0.70 0.15 

D 0 0 0 1 

A positive consequence of this splitting method is that besides at the starting period, it is possible to 

observe the entrance of an obligor into another rating category for the different splits (stable, upgrade, 

and downgrade). The decision to split a rating category is based on the nature of this rating. Any 

rating besides special ratings can be split into three sub-ratings (stable, upgrade, and downgrade). 

We defined three possible methods of extension of the normal transition matrix P into the extended 

transition matrices P0, P1, and P2. The extended transition matrix P0 represents a simple extension of 

the annual transition matrix that is insensitive to the downgrade momentum effects and will serve as 

benchmark for the measurement of downgrade momentum. The extended transition matrices P1 and 

P2 are both sensitive to the downgrade momentum effects due to triply of the transition intensities for 

the rating categories Bd and Cd that will migrate to Bd, Cd, and D in the next period. The stable state 

of the extended matrices P0, P1, and P2 are readjusted such that the sum of each rows are 1, thus 

satisfying the condition of stochastic matrices. The structure of the allowed transitions is defined as 

follow: 

- The “stable state” defines firms that have kept the same rating categories. Firms within the 

stable state can either keep the same rating in the next period (As → As, Bs → Bs, Cs → Cs), or 

be upgrade in the next period if it does not currently hold the highest rating to (Bs → Au, Cs → 

Au, Cs → Bu), or be downgrade in the next period to (As → Bd, As → Cd, Bs → Cd), or simply 

default (As → D, Bs → D, Cs → D). 

- The “upgrade state” defines firms that have recently been upgraded into higher rating 

categories. Firms within the upgrade state can either keep the same rating categories in the 
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next period (Au → As, Bu → Bs), or be upgrade in the next period (Au → Au, Bu → Bu), or be 

downgrade (Au → Bd, Au → Cd, Bu → Cd), or default (Au → D, Bu → D). 

- The “downgrade state” defines firms that have recently been downgraded into lower rating 

categories. Firms within the downgrade state can either keep the same rating categories in the 

next period (Bd → As, Cd → Bs), or be upgrade in the next period (Bd → Au, Cd → Au, Cd → 

Bu), or be downgrade (Bd → Cd), or default (Bd → D, Cd → D). 

All possible direct rating migrations are reported for the extended transition matrix in Table 11 in 

Appendix A for rating categories AAA, AA… D on the form (stable, upgrade, and downgrade). 

The extended transition matrix P0 below represents a one-to-one split of the rating categories A, B, C, 

and D in the transition matrix P into rating categories (see Table 12 in Appendix A for the extended 

transition matrix of the benchmark with rating categories AAA, AA, A, BBB, BB, B, CCC, D). 

P0 As Bs Cs Au Bu Bd Cd D 

As 0.80 0 0 0 0 0.10 0.08 0.02 

Bs 0 0.85 0 0.05 0 0 0.07 0.03 

Cs 0 0 0.70 0.02 0.13 0 0 0.15 

Au 0.80 0 0 0 0 0.10 0.08 0.02 

Bu 0 0.85 0 0.05 0 0 0.07 0.03 

Bd 0 0.85 0 0.05 0 0 0.07 0.03 

Cd 0 0 0.70 0.02 0.13 0 0 0.15 

D 0 0 0 0 0 0 0 1 

 

Similarly, we derive the extended transition matrix P1 below. It is constructed such that P1 has a one-

to-one correspondence or split with the rating categories AAA, AA… D. However, it is sensitive to 

the downgrade momentum effects due to increase by three1 times of the transition intensities for 

recently downgraded firms which will experience further downgrade in the next period. Further, we 

also assumed that the increase in transition intensities come with decrease in transition intensities for 

recently downgrade firms that will keep the same rating in the next period. At the same time, the 

transition intensities for firms that will be upgraded in the next period remain unchanged (see Table 

13, Appendix A for the extended transition matrix of Model 1 with rating categories AAA, AA… D). 

                                                            
1 Result of the research performed by Lando and Skødeberg (2002) 
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P1 As Bs Cs Au Bu Bd Cd D 

As 0.80 0 0 0 0 0.10 0.08 0.02 

Bs 0 0.85 0 0.05 0 0 0.07 0.03 

Cs 0 0 0.70 0.02 0.13 0 0 0.15 

Au 0.80 0 0 0 0 0.10 0.08 0.02 

Bu 0 0.85 0 0.05 0 0 0.07 0.03 

Bd 0 0.65 0 0.05 0 0 0.21 0.09 

Cd 0 0 0.40 0.02 0.13 0 0 0.45 

D 0 0 0 0 0 0 0 1 

 

The extended transition matrix P2 represents a calibrated version of the extended transition matrix P1 

such that its aggregation back into a non-extended transition matrix form is identical to the initial 

transition matrix P. We also assumed that the transition intensities for firms that will be upgraded in 

the next period are not affected and remain unchanged as with the extended transition matrix P0. The 

increase in transition intensities due to tripling of transition intensities for recently downgrade firms 

that will be downgraded in the next period are matched with the decrease in transition intensities for 

recently downgrade firms that will be stable in the next period such that each row sums of the 

extended transition matrix are 1.  

Furthermore, transition intensities both for recently stable and upgraded firms that will be downgrade 

in the next period have to be decrease based on the proportion of firms recently downgrade to 

recalibrate the matrix such its aggregation back into non-extended form gives exactly the same 

transition matrix P. To account for the decrease in transition intensities for recently stable and 

upgraded that will be downgraded in the next period, the transition intensities for recently stable and 

upgraded firms that will be stable in the next period have to be increase such that each row sums of 

the extended transition matrix equal to 1 (see Table 14, Appendix A for the extended transition 

matrix with rating categories AAA, AA… D). 
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P2 As Bs Cs Au Bu Bd Cd D 

As 0.8000 0 0 0 0 0.1000 0.0800 0.02 

Bs 0 0.8621 0 0.0500 0 0 0.06152 0.0264 

Cs 0 0 0.7762 0.0200 0.1300 0 0 0.0738 

Au 0.8000 0 0 0 0 0.1000 0.0800 0.0200 

Bu 0 0.8621 0 0.0500 0 0 0.0615 0.0264 

Bd 0 0.6500 0 0.0500 0 0 0.21003 0.0900 

Cd 0 0 0.4000 0.0200 0.1300 0 0 0.4500 

D 0 0 0 0 0 0 0 1.0000 

To determine the proportion of firms within each rating classes of the extended transition matrix, we 

provide an example of the computation for the simplified case with 4 rating categories A, B, C, D. 

Assuming that banks have a portfolio consisting of 4 firms with highest A rating, 7 firms with B 

rating, 4 firms with C rating, and no firm has defaulted. Similar to Section 5.1, we compute the 

number of firms within the stable, upgraded, and downgraded state as follows:  

nAu = nc*P(C,A)+ nB*P(B,A) = 0.43; nAs = nA- nAu = 3.57; nBd = nA*P(A,B) = 0.4; nBu = nc*P(C,B) = 

0.52 ; nBs = nB- nBd -nBu = 6.08; nCd = nA*P(A,C)+ nB*P(B,C) = 0.81; nCs = nC- nCd = 3.19. Thus,the 

proportion of firms within the rating classes As, Au, Bs, Bu, Bd, Cs, Cu, Cd, D are respectively 0.8925, 

0.1075, 0.86858, 0.07428, 0.05714, 0.7975, 0.2025, 0. 

To sum up, the purpose of the extended transition matrices is to capture the downgrade momentum 

effects. In addition, to compute the number of firms in each split of ratings the annual transition 

matrix provides in average a rough estimate for the different rating classes. As we reintroduce the 

number of firms that have default as new firms that have been purchased with stable rating which 

means that the portfolio represents a long-term average. 

 

                                                            
2 Let ρB denotes the proportion of firms with B rating that are recently downgraded such that ρB = 0.05714 
  P(Bs → Cd) = P(Bu →Cd) = [P(B →C)* (1- 3ρB)]/(1- ρB) and  
3 P(Bd → Cd) = 3*P(B →C) 
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6. Implementation of the algorithm for the rating transitions 

In this section, we describe the implementation of the algorithm that will use past dependencies in 

the transition matrices to capture the downgrade momentum using Matlab4 coding. 

6.1 Long-term credit migration risks 

Figure 2 below summarizes with the activity diagram of the different processes involved in the 

programming. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The initial transition matrix, distribution of firms, and number of years constitutes the basic inputs 

that the user need. Furthermore, the user need to decide about the output she/he want to obtain which 
                                                            
4 Matlab® software 

Figure 2. Activity diagram for the construction of the long-term horizon credit migration risks 
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refer here as version. Selecting version ‘0’ refers to the routine “MatrixExt0” which represent a 

simple one-to-one extension of the initial annual transition matrix that is insensitive to the 

downgrade momentum. It serves to illustrate effects of the downgrade momentum and is referred in 

the report as benchmark (see Syntax 1 in Appendix B). Similarly, selecting version ‘1’ refers to the 

routine “MatrixExt1” which has one-to-one extension or correspondence with the initial annual 

transition matrix but captures the downgrade momentum by tripling the transition intensities that 

will be being downgraded in the next period given that they were previously downgraded (see 

Syntax 2 in Appendix B). The differences between these two distinct extensions provide simple but 

clear consequences about the effects of downgrade momentum in past ratings. Selecting version ‘2’ 

refers to the routine “MatrixExt2” which represents a more subtle calibration than “version 1” 

because after extension, aggregating the transition intensities of the extended transition matrix gives 

the identical transition matrix inputted by the user. The extended matrices are sensitive to the 

downgrade momentum and based on the proportion of obligors that reached the given rating (see 

Syntax 3 in Appendix B). The construction of the routine “MatrxExt2” necessitates the presence of 

two sub-routines. The subroutine “MUExt” (see Syntax 4 in Appendix B) splits the number of firms 

within each rating category based on classes (stable, upgraded, downgraded) and the sub-routine 

“MUFract” that generate the proportion of downgraded obligors for each rating categories besides 

the default (see Syntax 5 in Appendix B).  

Extending the initial annual transition matrix segregate states in the extended transition matrix into 

stable, upgrade, and downgrade classes (e.g. {AAAs, AAs, As, BBBs, BBs, Bs, CCCs}; {AAAu, AAu, Au , 

BBBu, BBu, Bu}; {AAd, Ad, BBBd,  BBd, Bd, CCCd}; {D}). The routine “MatrixBlock” (see Syntax 6 in 

Appendix B) shift the rows and columns such that the extended transition matrix is ranked into a 

single grouped extended transition matrix with credit quality from the highest to the lowest (e.g. 

AAAs, AAAu, AAs, AAu, AAd, …, CCCs, CCCd, D). 

Having obtained the initial extended transition matrix and number of firms within the different rating 

classes, the sub-routine “MatrixPowerExt” compute the power of the extended transition matrix to 

generate next year extended transition matrix. These extended transition matrices are multiplied with 

the number of firms of the same year to obtain the number of firms in the next year (see Syntax 7 in 

Appendix B). 

To be able to interpret the results which are in the extended states, we need to aggregate the 
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extended transition matrices and number of firms back into rating categories. The routine 

“MatrixShrink” (see Syntax 8 in Appendix B) serves to resize the extended transition matrices back 

into transition matrices (e.g. AAA, AA, A, BBB, BB, B, CCC, D) by aggregating the transition 

intensities based on the number of firms in extended state. The routine “MUShrink” (See Syntax 9 in 

Appendix B) aggregate the number of firms from the extended state to rating categories. 

The user has the opportunities to observe all these results above by selecting version ‘3’ and be able 

to see the effects of the downgrade momentum through comparison of the model 1 and model 2 with 

the benchmark. Thus, the routine “MatrixComp” (see Syntax 10 in Appendix B) contains all the 

above routines but also an additional to determine the effects of downgrade momentum. The routine 

for the graphical representation figs and figrs (Syntax 11 and Syntax 12 in Appendix B) give the 

bars code respectively for the portfolio and the downgrade momentum effects of the portfolio.  

The algorithm computes n successive transition matrices and number of firms that are either 

sensitive or insensitive to the downgrade momentum. The main program named “MatrixTrans” (see 

Syntax 13 in Appendix B) contains all the routines and sub-routines that are selected based on users’ 

decision about the required version. The main program returns the initial extended transition matrix, 

the aggregated transition matrices and number of firms at the first and nth year, and the bar plot of 

the distributions of firms which may in some case capture the effects of downgrade momentum. 
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6.2 Short-term credit migration risks 

The Figure 3 below summarizes the activity diagram involving the programming for the 

computation of the loss distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly like for the long-term migration risks, the extensions of the initial transition matrices are 

the same. However, before the extension of the initial transition matrix, the fractional power is 
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Figure 3. Activity diagram for the construction of the short-term horizon credit migration risks 
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performed giving the quarterly transition matrix which is referred to the routine “PowerFract” (see 

Syntax 17 in Appendix B). After obtaining the extended portfolio with the routine “MUExt”, the 

proportion of downgraded obligors with the subroutine “MUFract”, the different extended transition 

matrices with the routines “MatrxExt0, MatrxExt1, MatrxExt2”, and ranked the segregated extended 

transition matrices into single grouped with the routine “MatrixBlock” similar to the procedure for 

the long-term horizon. However, the extended transition matrices over the subsequent four quarters 

remain the same as initially due to the rebalancing. This is performed by the routine 

“UnMatrixPowerExt” (see Syntax 18 in Appendix B). The routine “UnNewRating” (see Syntax 19 

in Appendix B) determine the evolution of the current portfolio over the different quarters based on 

obligors’ specific risks and common risk factor. The routine “UnPricesExt” (see Syntax 20 in 

Appendix B) simply extend the prices from the rating categories to the extended states. The routine 

“UnexpMix” (see Syntax 21 in Appendix B) compute the loss distributions based on the strategy that 

only stable and recently upgraded obligors can be rebalanced while recently downgraded obligors 

cannot be sold unless a significant loss that the banks do not want to incur. The routine “UnFig” (see 

Syntax 22 in Appendix B) gives the graphical representation of the loss distribution. The routine 

“UnFigMoment” (see Syntax 23 in Appendix B) gives the histograms of the effects of downgrade 

momentum on the loss distributions of the portfolio. Finally, the main routine “UnexpLoss” (see 

Syntax 24 in Appendix B) gives an overview of the different graphical representations of loss 

distributions. 
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7. Effects of the downgrade momentum on the transition matrices 

In this section, we analyze the effects of the downgrade momentum on the transition matrices in risk 

management. Due to its construction, the 1-year transition matrix recalculated from the aggregation 

of the extended transition matrix (similar to extended transition matrix P0 in Section 5 based on the 

simplified transition matrix with four ratings A, B, C, and D) derived through simple one-to-one 

correspondence with the transition matrix provided by Standard & Poor’s (see Table 2) are identical 

with the original S&P’s transition matrix. The recalculation of the 1-year transition matrix serves the 

sole purpose to verify the correctness of the two different models. The 5-year transition matrix is 

derived by computing the 1-year extended transition matrix to the power of five (see Table 4 below). 

The 1-year and 4-year transition matrices obtained through this simple one-to-one correspondence 

with the annual transition matrix provided by Standard & Poor’s will serve as 1-year and 4-year 

transition matrices benchmark or reference in the measurement of the effects of downgrade 

momentum. 

Table 4. 4-year transition matrix insensitive to momentum labeled benchmark using S&P ratings 

 AAA AA A BBB BB B CCC D 

AAA 62.2020 28.5097 7.2989 1.1932 0.5139 0.2044 0.0382 0.0396 

AA 2.4412 63.0187 27.2193 5.1526 1.0329 0.7710 0.1681 0.1963 

A 0.4442 8.0414 66.3810 17.8493 4.1443 1.9013 0.5134 0.7252 

BBB 0.1511 2.0824 19.1755 51.8075 14.1764 6.7093 2.5840 3.3138 

BB 0.1284 0.8243 5.1225 19.9074 39.6634 21.9913 3.5852 8.7778 

B 0.0697 0.4688 1.5273 4.5261 15.9052 46.1225 6.9652 24.4151 

CCC 0.4438 0.2724 1.2532 3.8271 7.2781 19.3415 13.4007 54.1832 

D 0 0 0 0 0 0 0 100.0000 

The matrix represents the aggregated transition intensities of stable, upgrade, and downgrade states. The 4-year transition matrix is calculated following 

the discrete time Markov process by taking the fifth power of the initial extended transition matrix insensitive to downgrade momentum and aggregated 

based on the portfolio distribution. 

 

7.1 Downgrade-sensitive distance measures for transition matrices 

We use the methodology developed by Trueck and Rachev (2008) to measure the distances between 

two different transition matrices. The 1-year transition matrix (see Table 5 below) represents the 

result of the extended transition matrix of the first model that captures the downgrade momentum.  

Compared to the 1-year transition matrix of the benchmark, it can be noticed that the transition 
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intensities have shifted from the diagonal elements of the transition matrix to the upper side of the 

matrix corresponding to the downgrade. 

Table 5. 1-year transition sensitive to momentum labeled model 1  

 AAA AA A BBB BB B CCC D 

AAA 90.8100 8.3300 0.6800 0.0600 0.1200 0 0 0 

AA 0.7000 90.0095 8.3668 0.6874 0.0644 0.1504 0.0215 0 

A 0.0900 2.2700 89.9834 6.4134 0.8598 0.3021 0.0116 0.0697 

BBB 0.0200 0.3300 5.9500 84.9686 5.9558 1.3148 1.2586 0.2023 

BB 0.0300 0.1400 0.6700 7.7300 79.1886 9.9279 1.1231 1.1905 

B 0 0.1100 0.2400 0.4300 6.4800 81.5400 4.9174 6.2826 

CCC 0.2200 0 0.2200 1.3000 2.3800 11.2400 59.3108 25.3292 

D 0 0 0 0 0 0 0 100.0000 

The matrix represents the aggregated transition intensities of stable, upgrade, and downgrade states. The 1-year transition matrix is calculated following 

the discrete time Markov process by taking the power two of the initial extended transition matrix sensitive to downgrade momentum and aggregated 

based on the portfolio distribution. 

These shifts of transition intensities are significant in the measurement of Value-at-Risk because 

more firms will be downgrade to lower ratings or simply default compare to the transition matrix of 

the benchmark. The increases in the migration distances and distances to default from the first model 

compare to the benchmark indicates higher deterioration of the ratings credit quality. 

An important consequence of the shifts for the transition intensities away from the diagonal elements 

to the downgrade side of the transition matrix will have very severe effects when measuring for long 

term horizons because despites the fact that migration probabilities far away from the diagonal are 

small, their rates of increase will be much higher as t → , leading to more firms ratings migration 

from investment rating grades to become speculative rating grades. 
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Table 6. 4-year transition matrix with sensitive to momentum labeled model 1 

 AAA AA A BBB BB B CCC D 

AAA 62.1577 24.3147 9.6675 2.3083 0.7999 0.4527 0.1052 0.1939 

AA 2.4288 62.5757 24.5112 6.5462 1.7531 1.2280 0.3008 0.6561 

A 0.4429 7.9815 65.6643 15.8183 4.6829 2.8124 0.7121 1.8855 

BBB 0.1474 2.0575 18.9035 50.5896 11.8764 7.5617 2.0881 6.7757 

BB 0.1268 0.8044 5.0151 19.3992 38.0221 18.8937 2.9323 14.8063 

B 0.0580 0.4574 1.4797 4.3642 15.3498 43.8895 4.2107 30.1908 

CCC 0.3502 0.2210 1.0485 3.0897 5.8020 14.9628 8.8413 65.6845 

D 0 0 0 0 0 0 0 100.0000 

The matrix represents the aggregated transition intensities of stable, upgrade, and downgrade states. The 4-year transition matrix is calculated following 

the discrete time Markov process by taking the fourth power of the initial extended transition matrix sensitive to downgrade momentum and aggregated 

based on the portfolio distribution. 

As expected, the 5-year transition matrix of the first method (see Table 6) is sensitive to downgrade 

momentum with far higher distances to default and migration distances at the upper side compare to 

5-year transition matrix of the benchmark (see Table 4). It interesting to note that correspondingly, 

the transition intensities at the upgrade side of the matrix are lower than those in the transition matrix 

of the benchmark. It is important to note that these transition intensities are spread into the upper side 

of the matrix diagonal particularly for speculative rating grades. This has the severe consequence that 

it will be more likely for migration changes for ratings that are far in the left of the diagonal than near 

and also will fewer ratings upgrade compare to the transition matrix of the benchmark. 

The 1-year transition matrix derived in the first model is intuitively not very appealing because it 

should be expected that regrouping the different states (stable, upgrade, and downgrade) of a rating in 

the 1-year extended transition matrix should provide an identical standard transition matrix as 

provided by Standard & Poor’s while still capturing the downgrade momentum. A simplified 

example of an appealing calibration is given for the extended transition matrix P2 in Section 5. Using 

this calibration process, the 1-year transition matrix derived in the second model is identical to the 1-

year transition matrix of the benchmark (see Table 2). However, the differences observed in the 1-

year extended transition matrix leads to significant subtle effects in the long-term. 
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Table 7. 4-year transition matrix with sensitive to momentum labeled model 2 

 AAA AA A BBB BB B CCC D 

AAA 62.1587 24.5162 9.5896 2.2274 0.7814 0.4401 0.1004 0.1862 

AA 2.4596 64.7790 23.3090 5.9213 1.5655 1.1176 0.2667 0.5812 

A 0.4505 8.2641 69.3311 13.6002 3.9148 2.3372 0.5786 1.5236 

BBB 0.1473 2.1172 19.7454 52.9123 10.7441 6.7072 1.8728 5.7537 

BB 0.1275 0.8274 5.2228 20.3853 40.6747 17.5049 2.6018 12.6555 

B 0.0522 0.4810 1.5470 4.5452 16.5335 48.8329 3.7102 24.2981 

CCC 0.4033 0.2416 1.1840 3.5618 6.7871 18.3610 14.0302 55.4309 

D 0 0 0 0 0 0 0 100.0000 

The matrix represents the aggregated transition intensities of stable, upgrade, and downgrade states. The 4-year transition matrix is calculated following 

the discrete time Markov process by taking the fourth power of the initial extended transition matrix sensitive to downgrade momentum and aggregated 

based on the portfolio distribution. 

The 5-year transition matrix in the second model (see Table 7) has some very interesting 

characteristics compare to the 5-year transition matrix of the benchmark. The distances to default are 

greater than in the benchmark besides for B rating where the difference is considerably low. The 

higher distances to default obtained in the second model represent the effects of the downgrade 

momentum since in the long-term more firms will default that usually predicted by the transition 

matrix provided by Standard & Poor’s. The distances to default are significant for ratings AAA, AA, 

A, BBB, and BB which are about 1.5 times more than for the distances to default of the benchmark. 

We can conclude that distances to default are underestimated when using the transition matrix of the 

benchmark in particular for investment rating grades such as AAA and AA. Speculative grades rating 

such as B and CCC are well captured in 5-year transition matrix of the benchmark where the 

downgrade momentum does not have much effect. Migration distances at the lower side of the matrix 

which correspond to upgrades are relatively higher compared to the benchmark. The migration 

distances in ratings downgrades are less than in the benchmark for near migrations and higher than in 

the benchmark for far migrations. 

Distance measures 

To evaluate the effects of downgrade momentum in model 1 and 2, we need to apply more formal 

evaluation techniques. Based on the literature, we will select some techniques that are appropriate for 

in evaluating two migration matrices. Stefan Trück (2004) suggests four interesting evaluation 

techniques to evaluate two transition matrices.  
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It can be observed from these techniques that far migrations receive a higher weight than near 

migrations. Greater penalties are imposed on shift of the transition intensities in the downgraded side 

of the diagonal. The normalized difference imposes greater penalties on changes in small transition 

intensities corresponding to the downgrade and upgrade intensities of the migration matrices. Default 

probabilities are very small in particular for investment grade ratings but incorrect estimations of 

these probabilities have significant impact on the Value-at-Risk. These techniques can be useful in 

measuring the effects of downgrade momentum (only for cells where qij ≠ 0). The results of the 

different techniques are presented below as follows: 

 D1 D2 D3 D4 

Model 1 

T = 1 -13.7754 -5.6178 -36.7120 -2.3129 

T = 4 -82.8703 -38.6212 -417.7882 -34.7046 

Model 2 T = 4 -19.9112 -28.9205 -184.8164 -26.5333 
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7.2 Measurement of portfolio exposures 

To measure the portfolio risks based on the different transition matrices (benchmark, first model, and 

second model), we assumed that each of the 265 firms has an exposure of €1 million. Let’s consider 

the state vector nk(t) with k = 1, 2…, 8 as row vector containing the portfolio distribution apportioned 

by the ratings (AAA, AA, …, CCC, D) at time t. The number of elements nk corresponding to the 

different possible credit ratings are arranged in order from the highest to lowest rating with D as the 

default state. The expected portfolio distribution nk(t+1) is assumed to follow a discrete Markov 

process such that nk(t+1) = nk(t)*P where P represents the extended transition matrix for the time t. 

The results of the portfolio distribution in the first year and in the fourth year are presented in Table 

below. 

Table 8. Portfolio distributions for the different methods at a given period. 

 AAA AA A BBB BB B CCC D 

Benchmark 

t = 1 18.5840 43.7410 47.7450 45.3845 42.3995 44.4940 15.7690 6.8830 

T = 4 10.0840 34.6302 59.7815 44.8624 30.0559 31.8160 6.6951 47.0750 

Model 1 

t = 1 18.5840 43.4528 47.5246 45.3752 42.1469 44.2038 15.1616 8.5511 

T = 4 9.9952 32.9145 57.0456 42.6385 27.7753 29.3135 4.6885 60.6290 

Model 2 T = 4 10.0715 34.9120 60.5764 43.4386 29.0140 31.4260 4.8269 50.7346 

The number of obligors at time t+1 are calculated by multiplying the expected number of obligors with the transition matrix at time t. 

Given that we are either at the first or fourth year, our expositions to the obligors depending on 

default are as follows: we would expect in the first year losses of € 6.88 million and € 47.08 million 

in the fourth year corresponding to the transition matrix of the benchmark that is insensitive to 

downgrade momentum. In the first model, expected losses of € 8.55 million in the first year and € 

60.63 million in the fourth year corresponding to the value-at-risk values in the first model. The 

differences of € 1.67 million in the first year and € 13.55 million in the fourth year represent the 

effects of the downgrade momentum that is captured in the first model. The expected loss of € 50.73 

million in the fifth year corresponds to the value-at-risk in the second model and the difference of € 
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3.65 million represents the effects of the downgrade momentum that is captured in the second model. 

The graphical representations below summarizing the differences between the portfolio distributions 

apportioned by the ratings AAA, AA…, D for the two different models are as follow: 

Figure 4. Differences in the number of obligors after a year between the model 1 and benchmark 

1 2 3 4 5 6 7 8
-1

-0.5

0

0.5

1

1.5

2

Rating category

D
iff

er
en

ce
s 

in
 p

or
tfo

lio
 d

is
tri

bu
tio

n

 

Figure 4 depicts the differences in the number of obligors within each rating category after a year. 

These differences are measured by comparing the number of obligors obtained in the extended 

transition matrix of the first model with those of the benchmark. The higher number of obligors that 

go to default after a year in the first model compare to the benchmark is balanced with the higher 

number of obligors that migrate to BB, B, and CCC ratings. 
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Figure 5. Differences in the number of obligors at the fourth year between model 1 and benchmark 
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Figure 5 describes the difference in the number of obligors within each rating category in the fifth 

year between the first model and benchmark. The number of obligors that goes to default in the fifth 

year is far higher in first model than with the transition matrix of the benchmark. The increases in the 

number of defaults in the first model are comparatively represented by more migrations to non-

default states in the benchmark representing the extreme case. 
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Figure 6. Differences in the number of obligors at the fourth year between model 2 and benchmark 
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Figure 6 provides the differences in the number of obligors within each rating category in the fifth 

year between the second model and the benchmark. The number of obligors that go to default in the 

fifth year in the second model is more than for the benchmark. The effects of the downgrade 

momentum in the second model can be seen with higher migrations of number of obligors to non-

default states in AA and A ratings where obligors with BBB, BB, B, CCC ratings are lower than in 

the benchmark because more firms with low ratings are downgraded to the default state. 
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8. Sensitivity to change in the portfolio distribution 

In this section, we analyze the influence of the distributions of the number of obligors within each 

rating category. The variations of the number of obligors within each state of the extended transition 

matrix will serve to determine the robustness or stability of the results found. We randomly vary the 

initial number of obligors within each rating class of the extended transition matrix based on normal 

distribution with mean zero and standard deviation 1.  

We first aim to determine the effects of computing the portfolio distribution based on extended 

transition matrix of the benchmark and then aggregated back into its original form compare to the 

computation of the portfolio distribution based on S&P’s transition matrix (see Figure 7 below). As 

observed, there are significant differences in the number of obligors obtained between the two 

computation methods. The computation based on S&P’s transition matrix yields higher number of 

obligors within each rating categories than with the extended transition matrix. This helps us to 

deduce that when comparing the portfolio distribution between two different extended models, the 

importance should be based on the proportion of changes rather than on the absolute values of change 

because of their relatively very low values. 

Figure 7. Variability observes in the number of obligors in each rating category at the fourth year 
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The extended transition matrix of the benchmark insensitive to the downgrade momentum significantly reduces the 

number of obligors compare to the initial transition matrix. It can be observed that there are far less than 60 obligors in 

rating A for the extended matrix compare to transition matrix in the fourth year.  
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Figure 8 summarizes the variations between the average results obtained with random change in the 

portfolio distribution for the two downgrade momentum sensitive models compare to the benchmark 

that is insensitive to downgrade momentum. The low values obtained due to the variation in obligors 

by comparing the number of obligors in the first model and second model to the benchmark after a 

year and in the fourth year confirm the considerable low impacts of the fluctuation in the distribution 

of the initial number of obligors in the results. Thus, we can conclude that the variability of the 

distribution of the initial number of obligors does not have significant effects on the downgrade 

momentum effects through the extended transition matrices. 

Figure 8. Sensitivities of the extended transition matrices to change in portfolio distribution 
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Sensitivity to the Portfolio in Year 1
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Sensitivity to the Portfolio in Year 4

 

At time t = 1 and t = 4, the variation of initial number of obligors seems to have effects on the AA, A, and BBB ratings.  

The numerical values of the differences illustrating the downgrade momentum effects are presented 
in details in the Table 9 below. 

Table 9. Differences in the number of obligors between simulated downgrade sensitive and insensitive 

 Model 1-0 Model 2-0 

 Year 1 Year 4 Year 1 Year 4 

AAA 0 -0.0004 0 -0.0004 

AA -0.0144 -0.0420 -0.0144 -0.0399 

A 0.0121 0.0237 0.0121 0.0229 

BBB 0.0017 0.0112 0.0017 0.0103 

BB 0.0000 0.0029 0.0000 0.0027 

B 0.0005 0.0025 0.0005 0.0024 

CCC 0.0001 0.0007 0.0001 0.0006 

D 0.0000 0.0015 0.0000 0.0015 
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9. Measurement of the Incremental Risk 

In this section, we attempt to implement some of the ideas developed by the Basel Committee in the 

assessment of the incremental capital in the trading book for credit instruments. Credit risk-related 

products represent innovative financial products that can be held by banks to receive interest 

payments or it can be sold in the market to other financial institutions to fund other business 

activities. We intend to determine the effects of downgrade momentum in migration risks for a 

portfolio with short-term horizons through the application of extended transition matrices sensitive or 

insensitive to the downgrade momentum. To illustrate the effects of downgrade momentum, let us 

consider the same portfolio and rating distribution as for the long-term horizon. However, the time 

interval is 3 months or a quarter. We further make the assumption about the selling and buying prices 

of the different debt instruments depend on the ratings. For each instrument, the selling and buying 

prices are represented as follows: 100 and 105 euro for rating AAA; 97 and 110 euro for rating AA; 

88 and 115 euro for rating A; 84 and 120 euro for rating BBB; 70 and 125 euro for rating BB; 65 and 

140 euro for rating B, and 55 and 150 euro for rating CCC.  

Expected losses 

In the different scenarios developed, the portfolio is rebalanced each quarter. The simple rebalancing 

is the scenarios in which all the different instruments in the extended state (stable, upgrade, 

downgrade) are rebalanced to the initial period. The mix rebalancing is the scenario in which only the 

instruments in the stable and upgrade states are rebalanced. The mix rebalancing is more realistic 

because it will be very difficult to sell an instrument that has previously been downgraded without 

incurring significantly losses. We assumed that selling a recently downgraded portfolio is quite 

difficult without sustaining severe losses and sometime even impossible such as during market 

turmoil. As expected, the expected losses in the first model are higher in both scenarios compared to 

those of the benchmark and second model. It can be observed that the expected loss in the mix 

rebalancing where impose the condition that recently downgraded obligors cannot be sold almost 

double the total cost compare to the simple rebalancing (see Table 10 below). Moreover, the expected 

cost for the benchmark and second model are identical in both scenarios because the transition 

matrices considered only depend on the time interval of a quarter. 
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Table 10. Expected losses for the two different scenarios 

 Benchmark Model 1 Model 2 

Simple rebalancing 114.01 123.21 114.01 

Mix rebalancing 278.63 315.84 278.63 

 

Value-at-Risk 

In the spirit one of the most popular credit risk framework “CreditMetrics”, we used the threshold 

models which are an extension of the Merton’s (1974) firm-value model to compute the value-at-risk 

of the portfolio. In Merton’s model, a firm i is assumed to default if its assets values Xi fall below the 

value of its liabilities rendering the firm unable to meet its financial obligations at the end of the time 

period. A firm’s asset value Xi is modeled as a one factor model  where Y 

refers to the common factor such as the economical situations, ρi refers to the assets correlation, and 

Zi refers to the firm specific risk. The random variables Y and Zi are i.i.d and standard normal. 

The threshold models aims to randomly generate a profit and loss distribution (P\L using the Monte 

Carlo simulation. Just like in Merton’s model, we randomly generate the common factor Y and for 

each firm a specific factor Zi that are standard normal inverses. The standardized thresholds computed 

from the standard normal inverses of the cumulative transition intensities of the extended transition 

matrices (see Table 12, Table 13, and Table 14 in the Appendix B) serve to determine the migrations 

of the firm’s rating to future ratings at the end of different periods or quarters based on the randomly 

generated firm’s values Xi. The upper and lower limits thresholds respectively  and  of the 

different states are computed as follow: 

  and   

where P(i,j) denotes an extended transition matrix. With  and .  
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Interpretations of the evolution of firm’s value to future credit rating compare to the thresholds are as 

follow: high generated firm’s value compare to the upper limit of the threshold of rating lead to either 

downgrade or default. Low generated firm’s value compare to the lower limit of the threshold of 

rating lead to upgrade. Less sufficient variations in firm’s value compare to the thresholds of rating 

lead to stable rating. Thus, after the randomly generated firm’s value Xi within a given state, the 

rating within the threshold satisfying Xi corresponds to the firm’s new state at the next quarter. It 

should be note that we assumed that all individual obligors within a rating class k are correlated based 

on the Basel II condition: ( )kPD
k e ×+= 50-112.0ρ  where PDk is the probability of default of rating k. 

Furthermore, we do not take into account the defaulted obligors in the computation of the loss 

distributions. 

At the portfolio level, each simulation step consists of drawing all asset values according to firm-

value of the Merton model above by assigning new ratings using the different thresholds. Computing 

individual changes in firm’s expected values and aggregating them to a single random change of the 

portfolio’s expected value is referred as portfolio’s profit and loss (P/L). Repeating this procedure 

several times enable us to generate the P/L distribution. 

 

Figure 9. Simulated loss distributions for the benchmark in four successive quarters 
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First quarter (up left), second quarter (up right), third quarter (down left), fourth quarter (down right), signs for Loss (+) and Profit (-). 
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Figure 10. Simulated loss distributions for the first model in four successive quarters 
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First quarter (up left), second quarter (up right), third quarter (down left), fourth quarter (down right); signs for Loss (+) and Profit (-). 

 

Figure 11. Simulated loss distributions for the second model in four successive quarters 
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First quarter (up left), second quarter (up right), third quarter (down left), fourth quarter (down right); signs for Loss (+) and Profit (-) 

The following examples in Figure 9, Figure 10, and Figure 11 above correspond to the graphical 

representation of the simulated loss distributions. Comparing the loss distributions for the 
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successive four quarters in Figure 9, we can conclude that the distributions are very different 

with increasing cost over the quarter till the maximum loss of about 1500 euro. Similarly, Figure 

10 for the first model with a maximum loss of about 2000 euro and Figure 11 for the second 

model with a maximum loss of about 3500 euro have also very different loss distribution over 

the four quarters. It is very interesting to note that the losses in the second model yield relatively 

the highest losses. 

Figure 12 and Figure 13 show that not taking into account the downgrade momentum may lead 

to about 2000 Euro losses based on the first model and about 3000 Euro losses based on the 

second model in the fourth quarter. We can conclude that banks that do not take into account the 

downgrade momentum might underestimate their risk levels because the presence of the 

downgrade momentum in the transition matrices have a substantial impact on the associated 

credit risks of a portfolio. 

 

Figure 12. Effects of downgrade momentum in the losses distributions of the first model 
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Figure 13. Effects of downgrade momentum in the losses distributions of the second model 
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Due to the limited time, we have kept the same portfolio in the syntax “UnNewRating” which 
may have increased the round off errors and performed 200 simulation runs. Therefore, the 
current results may be influenced by these factors. 
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10. Conclusion 

In this study we have motivated the importance of credit migration matrices in risk management and 

in particular following the introduction of the Basel II framework. The Basel II represents an 

attractive tool that aim to adequately fit banking activities to its risk profile by requiring some capitals 

cushion. 

The present study has attempted to implement the evidence of the effect of downgrade momentum in 

measuring credit migration risks. The approach presented intends to extend the standard Markov 

model of rating transition intensities. Assuming a given initial portfolio distribution, we determine an 

expected portfolio distribution for the extended transition matrix. Using the transition matrix of the 

Standard & Poor’s for the period of 1996, we condition the transition intensities on previous ratings 

(stable, upgrade, and downgrade) and expected portfolio distribution in order to quantify the effects 

of the downgrade momentum on the credit migration risks. The transition matrix label benchmark 

represents a simple extension of the S&P’s transition matrix with rating intensities insensitive to the 

downgrade momentum. The transition matrix label model 1 is an extension of the S&P transition 

matrix with rating intensities sensitive to the downgrade momentum while model 2 represents a 

refinement of model 1 that is calibrated to be aggregated as the initial S&P transition matrix.  

In both the short and long terms, the results of the transition matrices show that the downgrade 

momentum affects the credit migration risks. In the long-term, we may incur an additional of 13.55 

million euro more that predicted by S&P’s transition matrices. Also, in the short-term, losses of about 

3000 euro more could be incurred in addition to what is predicted by the transition matrices provided 

by Standard & Poor’s. Investors who do not account for the downgrade momentum underestimate the 

migration risk compare to investors who do take. However, investors who account for the downgrade 

momentum based on the model 1 relatively overestimates the migration risk compare to those based 

on model 2. 
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12. Appendix A 
 

Table 11. Feasible direct migrations 
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AAAs ++             ++ ++ ++ ++ ++ ++ ++ 

AAs  ++      ++       ++ ++ ++ ++ ++ ++ 

As   ++     ++ ++       ++ ++ ++ ++ ++ 

BBBs    ++    ++ ++ ++       ++ ++ ++ ++ 

BBs      ++   ++ ++ ++ ++       ++ ++ ++ 

Bs      ++  ++ ++ ++ ++ ++       ++ ++ 

CCCs       ++ ++ ++ ++ ++ ++ ++       ++ 

AAAu ++             ++ ++ ++ ++ ++ ++ ++ 

AAu  ++      ++       ++ ++ ++ ++ ++ ++ 

Au   ++     ++ ++       ++ ++ ++ ++ ++ 

BBBu    ++    ++ ++ ++       ++ ++ ++ ++ 

BBu     ++   ++ ++ ++ ++       ++ ++ ++ 

Bu      ++  ++ ++ ++ ++ ++       ++ ++ 

AAd  ++      ++       ++ ++ ++ ++ ++ ++ 

Ad   ++     ++ ++       ++ ++ ++ ++ ++ 

BBBd    ++    ++ ++ ++       ++ ++ ++ ++ 

BBd     ++   ++ ++ ++ ++       ++ ++ ++ 

Bd      ++  ++ ++ ++ ++ ++       ++ ++ 

CCCd       ++ ++ ++ ++ ++ ++ ++       ++ 

D                    ++ 

Stable, upgrade, and downgrade states are tagged respectively with “s”, “u”, and “d”. The double plus sign “++” indicates feasible direct 
migrations in the initial extended transition matrix. The transition intensities may be positive only in these fields. 
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Table 12. Momentum insensitive for the initial extended matrix of the benchmark 

 AAAs AAAu AAs AAu AAd As Au Ad BBBs BBBu BBBd BBs BBu BBd Bs Bu Bd CCCs CCCd D 

AAAs 90.81 0 0 0 8.33 0 0 0.68 0 0 0.06 0 0 0.12 0 0 0 0 0 0 

AAAu 90.81 0 0 0 8.33 0 0 0.68 0 0 0.06 0 0 0.12 0 0 0 0 0 0 

AAs 0 0.70 90.65 0 0 0 0 7.79 0 0 0.64 0 0 0.06 0 0 0.14 0 0.02 0 

AAu 0 0.70 90.65 0 0 0 0 7.79 0 0 0.64 0 0 0.06 0 0 0.14 0 0.02 0 

AAd 0 0.70 90.65 0 0 0 0 7.79 0 0 0.64 0 0 0.06 0 0 0.14 0 0.02 0 

As 0 0.09 0 2.27 0 91.05 0 0 0 0 5.52 0 0 0.74 0 0 0.26 0 0.01 0.06 

Au 0 0.09 0 2.27 0 91.05 0 0 0 0 5.52 0 0 0.74 0 0 0.26 0 0.01 0.06 

Ad 0 0.09 0 2.27 0 91.05 0 0 0 0 5.52 0 0 0.74 0 0 0.26 0 0.01 0.06 

BBBs 0 0.02 0 0.33 0 0 5.95 0 85.93 0 0 0 0 5.30 0 0 1.17 0 1.12 0.18 

BBBu 0 0.02 0 0.33 0 0 5.95 0 85.93 0 0 0 0 5.30 0 0 1.17 0 1.12 0.18 

BBBd 0 0.02 0 0.33 0 0 5.95 0 85.93 0 0 0 0 5.30 0 0 1.17 0 1.12 0.18 

BBs 0 0.03 0 0.14 0 0 0.67 0 0 7.73 0 80.53 0 0 0 0 8.84 0 1.00 1.06 

BBu 0 0.03 0 0.14 0 0 0.67 0 0 7.73 0 80.53 0 0 0 0 8.84 0 1.00 1.06 

BBd 0 0.03 0 0.14 0 0 0.67 0 0 7.73 0 80.53 0 0 0 0 8.84 0 1.00 1.06 

Bs 0 0 0 0.11 0 0 0.24 0 0 0.43 0 0 6.48 0 83.47 0 0 0 4.07 5.20 

Bu 0 0 0 0.11 0 0 0.24 0 0 0.43 0 0 6.48 0 83.47 0 0 0 4.07 5.20 

Bd 0 0 0 0.11 0 0 0.24 0 0 0.43 0 0 6.48 0 83.47 0 0 0 4.07 5.20 

CCCs 0 0.22 0 0 0 0 0.22 0 0 1.30 0 0 2.38 0 0 11.24 0 64.85 0 19.79 

CCCd 0 0.22 0 0 0 0 0.22 0 0 1.30 0 0 2.38 0 0 11.24 0 64.85 0 19.79 

D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100.00 

The transition matrix is calculated using S&P credit migration matrix with discrete time Markov process. Transition intensities of obligors with last rating change as stable, 
upgrade, and downgrade are respectively assigned to the rating classes marked with ‘s’, ‘u’, and ‘d’. The ratings AAA, CCC, and D are exceptions and are considered special 
ratings. The ratings AAA and CCC cannot be entered respectively through downgrade and upgrade. Also, we assumed the default state D to be absorbing. 

 

Table 13. Momentum sensitive for the initial extended matrix of model 1 using S&P ratings  
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 AAAs AAAu AAs AAu AAd As Au Ad BBBs BBBu BBBd BBs BBu BBd Bs Bu Bd CCCs CCCd D 

AAAs 90.810 0 0 0 8.330 0 0 0.68 0 0 0.060 0 0 0.120 0 0 0 0 0 0 

AAAu 90.810 0 0 0 8.330 0 0 0.68 0 0 0.060 0 0 0.120 0 0 0 0 0 0 

AAs 0 0.700 90.650 0 0 0 0 7.790 0 0 0.640 0 0 0.060 0 0 0.140 0 0.020 0 

AAu 0 0.700 90.650 0 0 0 0 7.790 0 0 0.640 0 0 0.060 0 0 0.140 0 0.020 0 

AAd 0 0.700 73.350 0 0 0 0 23.370 0 0 1.920 0 0 0.180 0 0 0.420 0 0.060 0 

As 0 0.090 0 2.270 0 91.050 0 0 0 0 5.520 0 0 0.740 0 0 0.260 0 0.010 0.060 

Au 0 0.090 0 2.270 0 91.050 0 0 0 0 5.520 0 0 0.740 0 0 0.260 0 0.010 0.060 

Ad 0 0.090 0 2.270 0 77.870 0 0 0 0 16.560 0 0 2.220 0 0 0.780 0 0.030 0.180 

BBBs 0 0.020 0 0.330 0 0 5.950 0 85.930 0 0 0 0 5.300 0 0 1.170 0 1.120 0.180 

BBBu 0 0.020 0 0.330 0 0 5.950 0 85.930 0 0 0 0 5.300 0 0 1.170 0 1.120 0.180 

BBBd 0 0.020 0 0.330 0 0 5.950 0 70.390 0 0 0 0 15.900 0 0 3.510 0 3.360 0.540 

BBs 0 0.030 0 0.140 0 0 0.670 0 0 7.730 0 80.530 0 0 0 0 8.840 0 1.000 1.060 

BBu 0 0.030 0 0.140 0 0 0.670 0 0 7.730 0 80.530 0 0 0 0 8.840 0 1.000 1.060 

BBd 0 0.030 0 0.140 0 0 0.670 0 0 7.730 0 58.730 0 0 0 0 26.520 0 3.000 3.180 

Bs 0 0 0 0.110 0 0 0.240 0 0 0.430 0 0 6.480 0 83.470 0 0 0 4.070 5.200 

Bu 0 0 0 0.110 0 0 0.240 0 0 0.430 0 0 6.480 0 83.470 0 0 0 4.070 5.200 

Bd 0 0 0 0.110 0 0 0.240 0 0 0.430 0 0 6.480 0 64.930 0 0 0 12.210 15.600 

CCCs 0 0.220 0 0 0 0 0.220 0 0 1.300 0 0 2.380 0 0 11.240 0 64.850 0 19.790 

CCCd 0 0.220 0 0 0 0 0.220 0 0 1.300 0 0 2.380 0 0 11.240 0 25.270 0 59.370 

D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0 

 

 

 

Table 14. Momentum sensitive calibrate with initial extended matrix for the model 2 using S&P ratings 
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 AAAs AAAu AAs AAu AAd As Au Ad BBBs BBBu BBBd BBs BBu BBd Bs Bu Bd CCCs CCCd D 

AAAs 90.810 0 0 0 8.330 0 0 0.680 0 0 0.06 0 0 0.12 0 0 0 0 0 0 

AAAu 90.810 0 0 0 8.330 0 0 0.680 0 0 0.06 0 0 0.12 0 0 0 0 0 0 

AAs 0 0.700 91.315 0 0 0 0 7.191 0 0 0.591 0 0 0.055 0 0 0.129 0 0.018 0 

AAu 0 0.700 91.315 0 0 0 0 7.191 0 0 0.591 0 0 0.055 0 0 0.129 0 0.018 0 

AAd 0 0.700 73.350 0 0 0 0 23.370 0 0 1.920 0 0 0.180 0 0 0.420 0 0.060 0 

As 0 0.090 0 2.270 0 92.210 0 0 0 0 4.548 0 0 0.609 0 0 0.214 0 0.008 0.049 

Au 0 0.090 0 2.270 0 92.210 0 0 0 0 4.548 0 0 0.609 0 0 0.214 0 0.008 0.049 

Ad 0 0.090 0 2.270 0 77.870 0 0 0 0 16.560 0 0 2.220 0 0 0.780 0 0.030 0.180 

BBBs 0 0.020 0 0.330 0 0 5.950 0 86.955 0 0 0 0 4.601 0 0 1.016 0 0.972 0.156 

BBBu 0 0.020 0 0.330 0 0 5.950 0 86.955 0 0 0 0 4.601 0 0 1.016 0 0.972 0.156 

BBBd 0 0.020 0 0.330 0 0 5.950 0 70.390 0 0 0 0 15.900 0 0 3.510 0 3.360 0.540 

BBs 0 0.030 0 0.140 0 0 0.670 0 0 7.730 0 81.959 0 0 0 0 7.681 0 0.869 0.921 

BBu 0 0.030 0 0.140 0 0 0.670 0 0 7.730 0 81.959 0 0 0 0 7.681 0 0.869 0.921 

BBd 0 0.030 0 0.140 0 0 0.670 0 0 7.730 0 58.730 0 0 0 0 26.520 0 3.000 3.180 

Bs 0 0 0 0.110 0 0 0.240 0 0 0.430 0 0 6.480 0 85.624 0 0 0 3.124 3.992 

Bu 0 0 0 0.110 0 0 0.240 0 0 0.430 0 0 6.480 0 85.624 0 0 0 3.124 3.992 

Bd 0 0 0 0.110 0 0 0.240 0 0 0.430 0 0 6.480 0 64.930 0 0 0 12.210 15.600  

CCCs 0 0.220 0 0 0 0 0.220 0 0 1.300 0 0 2.380 0 0 11.240 0 71.291 0 13.349 

CCCd 0 0.220 0 0 0 0 0.220 0 0 1.300 0 0 2.380 0 0 11.240 0 25.270 0 59.370 

D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0 
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13.  Appendix B 
 
Syntaxes for the long-term migration risks 
 
Syntax 1. Expanded matrix(vs.0) one-to-one transition matrix without downgrade momentum 

function [Bg] = MatrixExt0(P) 
  
% GOAL: 
%   This program aims is to simply expand the annual transition matrix    into an extended transition matrix with a one-to-one correspondence. 
%   This extension does not capture the downgrade momentum effect. 
% 
% INPUT: 
%   P           P is square matrix {M x M} with minimum length of 4. Ratings are ranks from highest credit quality to default. 
%                 Example: {AAA AA A BBB BB CCC D}. 
%  
% OUTPUT: 
%   Bg          Bg returns the extended transition matrix {N x N} that is segregated into 3 classes (stable, upgrade, and downgrade). 
%                 Within each segregated class; ratings are ranks from the highest credit quality to lowest. Bg is recalibrated such 
%                  that the sums of each row is 1. 
%                 Example: {AAA* AA* A* BBB* BB* B* CCC*}; {AAA^ AA^ A^ BBB^BB^ B^}; {AA~ A~ BBB~ BB~ B~ CCC~ D}. 
%                
%               - star sign * refers to stable rating 
%               - power sign ^ refers to upgraded rating 
%               - tilde sign ~ refers to downgraded rating 
%    
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
[mm,nn] = size(P); 
if mm ~= nn 
    disp('Error: Matrix must be square'); 
    return, 
end; 
if mm < 4 
    disp('Error: Minimum matrix length is 4'); 
    return, 
end; 
l = length(P)-1; 
w = 2*l-1; 
  
% compute length of the segregated extended transition matrix Bg 
v = 3*l-1; 
  
% create 7x7 upper triangular matrix for ratings that previously held their ratings but will be downgraded in the next period. 
% Example: AAA*--> AA~, A*-->BB~, BBB*-->CCC~, B*-->D, CCC*-->D. 
for j = 1:l; 
    k = j+w; 
    m = v; 
    while k <= m 
        Bg(j,k) = P(j,k-w+1); 
        k = k+1; 
    end; 
end; 
  
% create 6x6 lower triangular matrix for ratings that previously held their ratings but will be upgraded in the next period.  
% Example: AA*--> AAA^, A*-->AAA^, BBB*-->A^, B*-->AA^, CCC*-->B^. 
for j = 2:l; 
    k = l+1; 
    m = j+l-1; 
    while k <= m 
        Bg(j,k) = P(j,k-l); 
        k = k+1; 
    end; 
end; 
  



48 | P a g e  
 

% create 7x7 diagonal matrix that represents ratings that have previously held the same ratings and will keep the same ratings in the next period. 
% Example: AAA*--> AAA*, AA*-->AA*, A*-->A*, BBB*-->BBB* 
for j = 1:l; 
    Bg(j,j) = 1-sum(Bg(j,l+1:v)); 
end; 
  
% create 6x7 upper triangular matrix for ratings that were previously  upgraded and will be downgraded in the next period. 
% Example: AAA^ --> AA~, AA^-->A~, A^-->B~, BB^-->A~, B^-->CCC~, BB^-->D 
for j = l+1:w; 
    k = j+w-l; 
    m = v; 
    while k <= m 
        Bg(j,k) = P(j-l,k-w+1); 
        k = k+1; 
    end; 
end; 
  
% create 5x5 lower triangular matrix for ratings that were previously upgraded and will also be upgraded in the next period. 
% Example: AA^ --> AAA^, A^-->AAA^, BBB^-->AA^, BB^-->A^, B^-->BB^ 
for j = l+1:w; 
    for k = l+1:j-1; 
        Bg(j,k) = P(j-l,k-l); 
    end; 
end; 
  
% create 6x6 diagonal matrix for ratings that were previously upgraded but will hold on into their ratings in the next period.  
% Example: AAA^ --> AAA*, AA^-->AA*, BBB^-->BBB*, BB^-->BB*, B^-->B* 
for j = 1:l-1; 
    Bg(j+l,j) = 1-sum(Bg(j+l,l+1:v)); 
end; 
  
% create 6x6 upper triangular matrix for ratings that were previously downgraded and also will be further downgraded in the next period. 
% Example: AA~ --> A~, A~ -->BB~, AA~ -->BBB~, BB~ -->B~, B~ -->CCC~ 
for j = w+1:v-1; 
    k = j+1; 
    m = v; 
    while k <= m 
        Bg(j,k) = P(j-w+1,k-w+1); 
        k = k+1; 
    end; 
end; 
Bg(v,v) = 1; 
  
% create 6x6 lower triangular matrix for ratings that were previously downgraded but will be upgraded in the next period. 
% Example: AA~ --> AAA^, A~ -->AA^, A~ -->AAA^, BBB~ -->A^, CCC~ -->B^ 
for j = w+1:v-1; 
    k = l+1; 
    m = j-w+l; 
    while k <= m 
        Bg(j,k) = P(j-w+1,k-l); 
        k = k+1; 
    end; 
end; 
  
% create 6x6 upper triangular matrix for ratings that were previously downgraded but will hold on into their ratings in the next period. 
% Example: AAA~ --> AAA*, AA~ -->AA*, A~ -->A*, BB~ -->BB*, B~ -->B* 
for j = w+1:v-1; 
    Bg(j,j-w+1) = 1-sum(Bg(j,l+1:v)); 
end; 
end 
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Syntax 2. Expanded matrix (vs.1) one-to-one transition matrix with downgrade momentum 

function [Bg] = MatrixExt1(P) 
  
% GOAL: 
%   This program aims to extend the annual transition matrix into an extended transition matrix based on one-to-one correspondence or split 
%   that capture the downgrade momentum effect. Transition intensities of firms that have been downgraded last year and that will be downgraded 
%   next year are tripled the transition intensities of the initial annual transition matrix. 
% 
% INPUT: 
%   P           P is square matrix {M x M} with minimum length of 4. Ratings are ranks from highest credit quality to default. 
%                Example: {AAA AA A BBB BB CCC D}. 
%  
% OUTPUT: 
%   Bg          Bg returns the extended transition matrix {N x N} that is segregatedinto 3 classes (stable, upgrade, and downgrade). Within each 
%                  segregated class, ratings are ranks from the highest credit quality to lowest. Bg is recalibrated such that the sums of each row is 1. 
%                  Example: {AAA* AA* A* BBB* BB* B* CCC*}; {AAA^ AA^ A^ BBB^BB^ B^}; {AA~ A~ BBB~ BB~ B~ CCC~ D}. 
%                
%               - star sign * refers to stable rating 
%               - power sign ^ refers to upgraded rating 
%               - tilde sign ~ refers to downgraded rating 
%    
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
[mm,nn] = size(P); 
if mm ~= nn 
    disp('Error: Matrix must be square'); 
    return,  
end; 
if mm < 4 
    disp('Error: Minimum matrix size is 4'); 
    return,  
end; 
l = length(P)-1; 
w = 2*l-1; 
  
% compute length of the segregated extended transition matrix Bg 
v = 3*l-1; 
  
% create 7x7 upper triangular matrix for ratings that previously held their ratings but will be downgraded in the next period. 
% Example: AAA*--> AA~,A*-->BB~, BBB*-->CCC~, B*-->D, CCC*-->D. 
for j = 1:l; 
    k = j+w; 
    m = v; 
    while k <= m 
        Bg(j,k) = P(j,k-w+1); 
        k = k+1; 
    end; 
end; 
  
% create 6x6 lower triangular matrix for ratings that previously held their ratings but will be upgraded in the next period. 
% Example: AA*--> AAA^, A*-->AAA^, BBB*-->A^, B*-->AA^, CCC*-->B^. 
for j = 2:l; 
    k = l+1; 
    m = j+l-1; 
    while k <= m 
        Bg(j,k) = P(j,k-l); 
        k = k+1; 
    end; 
end; 
  
% create 7x7 diagonal matrix that represents ratings that have previously held the same ratings and will keep the same ratings in the next period. 
% Example: AAA*--> AAA*, AA*-->AA*, A*-->A*, BBB*-->BBB* 
for j = 1:l; 
    Bg(j,j) = 1-sum(Bg(j,l+1:v)); 
end; 
  
% create 6x7 upper triangular matrix for ratings that were previously upgraded and will be downgraded in the next period. 
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% Example: AAA^ --> AA~, AA^-->A~, A^-->B~, BB^-->A~, B^-->CCC~, BB^-->D 
for j = l+1:w; 
    k = j+w-l; 
    m = v; 
    while k <= m 
        Bg(j,k) = P(j-l,k-w+1); 
        k = k+1; 
    end; 
end; 
  
% create 5x5 lower triangular matrix for ratings that were previously upgraded and will also be upgraded in the next period. 
% Example: AA^ --> AAA^, A^-->AAA^, BBB^-->AA^, BB^-->A^, B^-->BB^ 
for j = l+1:w; 
    for k = l+1:j-1; 
        Bg(j,k) = P(j-l,k-l); 
    end; 
end; 
  
% create 6x6 diagonal matrix for ratings that were previously upgraded but will keep the same ratings in the next period.  
% Example: AAA^ --> AAA*, AA^-->AA*, BBB^-->BBB*, BB^-->BB*, B^-->B*. 
for j = 1:l-1; 
    Bg(j+l,j) = 1-sum(Bg(j+l,l+1:v)); 
end; 
  
% create 6x6 upper triangular matrix for ratings that were previously downgraded but will be further downgraded in the next period. 
% Example: AA~ --> A~, A~ -->BB~, AA~ -->BBB~, BB~ -->B~, B~ -->CCC~ 
for j = w+1:v-1; 
    k = j+1; 
    m = v; 
    while k <= m 
        Bg(j,k) = 3*P(j-w+1,k-w+1); 
        k = k+1; 
    end; 
end; 
Bg(v,v) = 1; 
  
% create 6x6 lower triangular matrix for ratings that were previously downgraded but will be upgraded in the next period. 
% Example: AA~ --> AAA^, A~ -->AA^, A~ -->AAA^, BBB~ -->A^, CCC~ -->B^ 
for j = w+1:v-1; 
    k = l+1; 
    m = j-w+l; 
    while k <= m 
        Bg(j,k) = P(j-w+1,k-l); 
        k = k+1; 
    end; 
end; 
  
% create 6x6 upper triangular matrix for ratings that were previously downgraded but will keep the same ratings in the next period. 
% Example: AAA~ --> AAA*, AA~ -->AA*, A~ -->A*, BB~ -->BB*, B~ -->B* 
for j = w+1:v-1; 
    Bg(j,j-w+1) = 1-sum(Bg(j,l+1:v)); 
end; 
end 

  

Syntax 3. Expanded matrix (vs.2) proportional transition matrix with downgrade momentum 

function [Bg] = MatrixExt2(P,rhod) 
  
% GOAL: 
%   This program aims to extend the annual transition matrix into an extended transition matrix based on the proportions of prior downgraded 
%   firms to capture the downgrade momentum effect. Transition intensities of firms that have been downgraded last year and that will be 
%   downgraded next year are tripled the transition intensities in the annual transition matrix. 
% 
% INPUT: 
%   P           P is square matrix {M x M} with minimum length of 4. Ratings are ranks from highest credit quality to default. 
%                Example: {AAA AA A BBB BB CCC D} 
% 
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%   rhod        rhod returns the proportions of downgraded firms 
%                  Example: {AAA~ AA~ A~ BBB~ BB~ B~ CCC~} 
%  
% OUTPUT: 
%   Bg          Bg returns the extended transition matrix {N x N} that is segregated into 3 classes (stable, upgrade, and downgrade). Within each 
%                 segregated class, ratings are ranks from the highest credit quality to lowest. Bg is recalibrated such that the sums of each row is 1. 
%                 Example: {AAA* AA* A* BBB* BB* B* CCC*}; {AAA^ AA^ A^ BBB^BB^ B^}; {AA~ A~ BBB~ BB~ B~ CCC~ D} 
%                
%               - star sign * refers to stable rating 
%               - power sign ^ refers to upgraded rating 
%               - tilde sign ~ refers to downgraded rating 
%    
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
[mm,nn] = size(P); 
if mm ~= nn 
    disp('Error: Matrix must be square'); 
    return,  
end; 
if mm < 4 
    disp('Error: Minimum matrix size is 4'); 
    return,  
end; 
l = length(P)-1; 
w = 2*l-1; 
  
% compute length of the segregated extended transition matrix Bg 
v = 3*l-1; 
  
dd = 3*(length(rhod)+1)-4; 
  
if v ~= dd 
    disp('Error: Portfolio must be equal length as the Matrix length'); 
    return, 
end; 
  
% create 7x7 upper triangular matrix for the proportions of firms that held their ratings previously but will be downgraded in the next period. 
% Example: AAA*--> AA~, A*-->BB~, BBB*-->CCC~, B*-->D, CCC*-->D. 
for j = 1:l; 
    k = j+w; 
    m = v; 
    while k <= m 
        Bg(j,k) = (P(j,k-w+1)*(1-3*rhod(j)))/(1-rhod(j)); 
        k = k+1; 
    end; 
end; 
  
% create 6x6 lower triangular matrix for the proportions of firms that have held their ratings previously but will be upgraded in the next period. 
% Example: AA*--> AAA^, A*-->AAA^, BBB*-->A^, B*-->AA^, CCC*-->B^. 
for j = 2:l; 
    k = l+1; 
    m = j+l-1; 
    while k <= m 
        Bg(j,k) = P(j,k-l); 
        k = k+1; 
    end; 
end; 
  
% create 7x7 diagonal matrix for the proportions of firms that have previously held the same ratings and they will keep the same ratings in 
% the next period. Example: AAA*--> AAA*, AA*-->AA*, A*-->A*, BBB*-->BBB* 
for j = 1:l; 
    Bg(j,j) = 1-sum(Bg(j,l+1:v)); 
end; 
  
% create 6x7 upper triangular matrix for the proportions of firms that were previously upgraded and will be downgraded in the next period. 
% Example: AAA^ --> AA~, AA^-->A~, A^-->B~, BB^-->A~, B^-->CCC~, BB^-->D 
for j = l+1:w; 
    k = j+w-l; 
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    m = v; 
    while k <= m 
        Bg(j,k) = (P(j-l,k-w+1)*(1-3*rhod(j-l)))/(1-rhod(j-l)); 
        k = k+1; 
    end; 
end; 
  
% create 5x5 lower triangular matrix for the proportions of firms that were previously upgraded and will also be upgraded in the next period. 
% Example: AA^ --> AAA^, A^-->AAA^, BBB^-->AA^, BB^-->A^, B^-->BB^ 
for j = l+1:w; 
    for k = l+1:j-1; 
        Bg(j,k) = P(j-l,k-l); 
    end; 
end; 
  
% create 6x6 diagonal matrix for the proportion of firms that were previously upgraded but will keep the same ratings in the next period.  
% Example: AAA^ --> AAA*, AA^-->AA*, BBB^-->BBB*, BB^-->BB*, B^-->B* 
for j = 1:l-1; 
    Bg(j+l,j) = 1-sum(Bg(j+l,l+1:v)); 
end; 
  
% create 6x6 upper triangular matrix for the proportions of firms that were previously downgraded but will be further downgraded in the next period. 
% Example: AA~ --> A~, A~ -->BB~, AA~ -->BBB~, BB~ -->B~, B~ -->CCC~ 
for j = w+1:v-1; 
    k = j+1; 
    m = v; 
    while k <= m 
        Bg(j,k) = 3*P(j-w+1,k-w+1); 
        k = k+1; 
    end; 
end; 
Bg(v,v) = 1; 
  
% create 6x6 lower triangular matrix for the proportion of firms that were previously downgraded but will be upgraded in the next period. 
% Example: AA~ --> AAA^, A~ -->AA^, A~ -->AAA^, BBB~ -->A^, CCC~ -->B^ 
for j = w+1:v-1; 
    k = l+1; 
    m = j-w+l; 
    while k <= m 
        Bg(j,k) = P(j-w+1,k-l); 
        k = k+1; 
    end; 
end; 
  
% create 6x6 upper triangular matrix for the proportions of firms that were previously downgraded but will keep the same ratings in the next period. 
% Example: AAA~ --> AAA*, AA~ -->AA*, A~ -->A*, BB~ -->BB*, B~ -->B* 
for j = w+1:v-1; 
    Bg(j,j-w+1) = 1-sum(Bg(j,l+1:v)); 
end; 
end 

  

Syntax 4. Extended portfolio distribution 

function [mmu] = MUExt(P,muu) 
  
% GOAL: 
%   This program returns the number of firms that fit extended transition matrix by computing the expected number of firms within each rating 
%   class that comes from stable, upgrade, and downgrade. 
% 
% INPUT: 
%   P           P is square matrix {M x M} with minimum length of 4. Ratings are ranks from highest credit quality to default. 
%                Example: {AAA AA A BBB BB CCC D} 
% 
%   muu         muu is number of firms {1 x M} rank from the highest to the lowest rating based on the annual transition matrix P 
%  
% OUTPUT: 
%   mmu         mmu is matrix vector {1 x N} corresponding to the number of firms within the extended transition matrix 
% 
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% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
l = length(P); 
m = 3*l-4; 
  
for i = 1:l; 
    if i == 1 
        mudo(i) = 0; 
        muup(i) = 0; 
        for j = i+1:l; 
            muup(i) = muup(i)+muu(j)*P(j,i); 
        end; 
        must(i) = muu(i)-mudo(i)-muup(i); 
         
    elseif i>1 && i<l-1 
        mudo(i) = 0; 
        for j = 1:i-1; 
            mudo(i) = mudo(i)+muu(j)*P(j,i); 
        end; 
        muup(i) = 0; 
        for j = i+1:l; 
            muup(i) = muup(i)+muu(j)*P(j,i); 
        end; 
        must(i) = muu(i)-mudo(i)-muup(i); 
         
    elseif i == l-1 
        mudo(i) = 0; 
        for j = 1:i-1; 
            mudo(i) = mudo(i)+muu(j)*P(j,i); 
        end; 
        muup(i) = 0; 
        must(i) = muu(i)-mudo(i)-muup(i); 
         
    elseif i == l 
        mudo(i) = 0; 
    end; 
end; 
  
% Rank number of firm based on the extended transition matrix from  highest credit quality to default 
mmu(1,1) = must(1); 
mmu(1,2) = muup(1); 
s = 3; 
for k = 2:l-2; 
    mmu(1,s) = must(k); 
    mmu(1,s+1) = muup(k); 
    mmu(1,s+2) = mudo(k); 
    s = s+3; 
end; 
mmu(1,m-2) = must(l-1); 
mmu(1,m-1) = mudo(l-1); 
mmu(1,m) = mudo(l); 
end 

 

Syntax 5. Vector of downgraded proportion of portfolio distribution 

function [rhod] = MUFract(mmu) 
  
% GOAL: 
%   This program compute the proportions of downgraded firms within the extended transition matrix. 
% 
% INPUT: 
%   mmu         mmu is matrix vector {1 x N} corresponding to the number of firms within the extended transition matrix. 
%  
% OUTPUT: 
%   rhod        rhod returns the proportions of downgraded firms. Example: {AAA~ AA~ A~ BBB~ BB~ B~ CCC~} 
% 
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%               - star sign * refers to stable rating 
%               - power sign ^ refers to upgraded rating 
%               - tilde sign ~ refers to downgraded rating 
%    
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
% compute the length of the extended state 
dd = length(mmu); 
  
d = round(((dd+4)/3))-1; 
  
% compute proportions of firms with the highest ratings (AAA* and AAA^) 
for k = 1:2; 
    pan = 0; 
    for m = 1:2; 
        % sum number of firms in the ratings AAA* and AAA^ 
        pan = pan + mmu(1,m); 
    end; 
    pt(1,k) = mmu(1,k)/pan; 
end; 
  
% compute proportions of firms with non-special ratings. Example: {AA* AA^ AA~}; {A* A^ A~}; {BBB* BBB^ BBB~}; {BB* BB^ BB~} 
z = k+1; 
while z < dd-2; 
    for k = z:z+2; 
        pan = 0; 
        for m = z:z+2; 
            % sum number of firms each rating class 
            pan = pan + mmu(1,m); 
        end; 
        pt(1,k) = mmu(1,k)/pan; 
    end; 
    z = k+1; 
end; 
  
% compute proportions of firms with the lowest ratings (CCC* and CCC~) 
for k = dd-2:dd-1; 
    pan = 0; 
    for m = dd-2:dd-1; 
        % sum number of firms in the ratings CCC* and CCC~ 
        pan = pan + mmu(1,m); 
    end; 
    pt(1,k) = mmu(1,k)/pan; 
end; 
  
% returns the proportions of firms that are downgraded 
rhod(:,1) = 0; 
xx = 0; 
for j = 2:d-1                    
    rhod(:,j) = pt(:,xx+5); 
    xx = xx+3; 
end; 
rhod(:,d) = pt(:,dd-1); 
end 
 

Syntax 6. Block matrix for transforming three group into a single group 

function [PB] = MatrixBlock(Bg) 
  
% GOAL: 
%   This program shifts rows and columns of the segregated extended transition matrix into a single grouped extended transition matrix with rating 
%   classes starting from the highest credit quality to Default. 
% 
% INPUT: 
%   Bg          Bg returns the extended transition matrix {N x N} that is segregated into 3 classes (stable, upgrade, and downgrade). 
%               Within each segregated class, ratings are ranks from the 



55 | P a g e  
 

%               highest credit quality to lowest. Bg is recalibrated such that the sums of each row are 1. 
%               Example: {AAA* AA* A* BBB* BB* B* CCC*}; {AAA^ AA^ A^ BBB^  BB^ B^}; {AA~ A~ BBB~ BB~ B~ CCC~ D} 
%  
% OUTPUT: 
%   PB          PB returns the extended transition matrix {N x N} that is single grouped from highest to default. BB^ BB~ CCC* CCC~ D}. 
% 
%               - star sign * refers to stable rating 
%               - power sign ^ refers to upgraded rating 
%               - tilde sign ~ refers to downgraded rating 
% 
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
[mm,nn] = size(Bg); 
if mm ~= nn 
    disp('Error: Matrix must be square'); 
    return,  
end; 
if mm < 8 
    disp('Error: Minimum matrix size is 8'); 
    return,  
end; 
m = length(Bg); 
l = round(((m+4)/3))-1; 
jj = (l+1)-4; 
kk = 2*((l+1)-4); 
  
% shift matrix columns from highest to lowest ratings 
temp = Bg; 
Bg(:,2) = temp(:,jj+4); 
Bg(:,3) = temp(:,2); 
Bg(:,4) = temp(:,jj+5); 
Bg(:,5) = temp(:,kk+6); 
Bg(:,6) = temp(:,3); 
ss = 5; 
rr = 6; 
uu = 3; 
zz = 7; 
for u = 1:jj; 
    Bg(:,zz) = temp(:,jj+ss+1); 
    Bg(:,zz+1) = temp(:,kk+rr+1); 
    Bg(:,zz+2) = temp(:,uu+1); 
    zz = zz+3; 
    ss = ss+1; 
    rr = rr+1; 
    uu = uu+1; 
end; 
% shift matrix rows from highest to lowest ratings. 
tempo = Bg; 
Bg(2,:) = tempo(jj+4,:); 
Bg(3,:) = tempo(2,:); 
Bg(4,:) = tempo(jj+5,:); 
Bg(5,:) = tempo(kk+6,:); 
Bg(6,:) = tempo(3,:); 
ss = 5; 
rr = 6; 
uu = 3; 
zz = 7; 
for u = 1:jj; 
    Bg(zz,:) = tempo(jj+ss+1,:); 
    Bg(zz+1,:) = tempo(kk+rr+1,:); 
    Bg(zz+2,:) = tempo(uu+1,:); 
    zz = zz+3; 
    ss = ss+1; 
    rr = rr+1; 
    uu = uu+1; 
end; 
PB = Bg; 
end 
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Syntax 7. Compute the extended portfolios and extended transition matrices for the n years 

function [PB,mmu] = MatrixPowerExt(PB,mmu,n) 
  
% GOAL: 
%   This program compute extended transition matrices and the number of firms for n successive years. 
% 
% INPUT: 
%   PB          PB is the initial extended transition matrix {N x N} with min length of 8. 
%                  Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB*BB+ BB- CCC* CCC- D} 
% 
%   mmu         mmu is matrix vector {1 x M} at t =0 of the number of firms for the initial extended transition matrix 
% 
%   n              n is the number of years 
%  
% OUTPUT: 
%   PB          PB returns the extended transition matrices {N x N x n} with min length of 8 for n successive years. 
%                 Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D} 
% 
%   mmu         mmu is the vectors {1 x M x n} that returns the number of firms for the n years extended transition matrices. 
% 
%               - star sign * refers to stable rating 
%               - power sign ^ refers to upgraded rating 
%               - tilde sign ~ refers to downgraded rating 
%    
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
mmu(:,:,1) = mmu(:,:); 
PB(:,:,1) = PB(:,:); 
for i = 2:n+1;  
    % compute the number of portfolio in each rating for the n-1 years 
    mmu(:,:,i) = mmu(:,:,i-1)*PB(:,:,i-1);  
    % compute the extended transition matrices for the n-1 years 
    PB(:,:,i) = PB(:,:,1)*PB(:,:,i-1); 
end; 
end 

 

Syntax 8. Transform the extended transition matrices into transition matrices 

function [PR] = MatrixShrink(PB,mmu,n) 
  
% GOAL: 
%   This program returns the aggregated transition matrices. The transition intensities of the n extended transition matrices are aggregated back 
%   into transition matrices. 
% 
% INPUT: 
%   PB         PB are extended transition matrices {N x N x n} with minimum length of 8.  
%                 Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB*BB+ BB- CCC* CCC- D}. 
% 
%   mmu       mmu is a vector {1 x M} corresponding to the number of portfolio in the extended transition matrix. 
% 
%   n             n is the number of years 
%  
% OUTPUT: 
%   PR          PR returns n years aggregated transition matrices {M x M} with minimum length 4 ranked ratings from highest to default 
%                 Example: {AAA AA A BBB BB CCC D} 
% 
%               - star sign * refers to stable rating 
%               - power sign ^ refers to upgraded rating 
%               - tilde sign ~ refers to downgraded rating 
% 
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
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[mm,nn] = size(PB(:,:,1)); 
dd = length(mmu(:,:,1)); 
for i = 2:n+1; 
    if mm ~= size(PB(:,:,i),1) || nn ~= size(PB(:,:,i),2) 
        disp('Error: All matrices must be equal sizes'); 
        return, 
    end; 
    if dd ~= length(mmu(:,:,i)); 
        disp('Error: All secsiurities vectors must be equal length'); 
        return, 
    end; 
end; 
if mm ~= nn 
    disp('Error: Matrix must be square'); 
    return, 
end; 
v = length(PB(:,:,1)); 
for i = 2:n+1; 
    if v ~= length(PB(:,:,i)) 
        disp('Error: All n-matrices must be equal length'); 
        return, 
    end; 
end; 
if v < 8 
    disp('Error: Minimum matrix size is 8'); 
    return, 
end; 
if v ~= dd 
    disp('Error: Portfolio must be equal length to the Matrix'); 
    return, 
end; 
  
% Ensure that all values in the matrices are non-negatives 
for i = 1:n+1; 
    for j = 1:v; 
        for k = 1:v; 
            if PB(j,k,i)<0 
                disp('Error: Matrix components must be positive'); 
                return, 
            end; 
        end; 
    end; 
end; 
  
% compute the length of the transition matrix less default rating 
l = round(((v+4)/3))-1; 
  
% resize extended transition matrices into transition matrices 
for i = 1:n+1; 
    q = 0; 
    % reduce matrix rows into its original form (Ex: AAA AA ... CCC D) 
    for j = 1:l+1; 
        z = 0; 
        % reduce matrix columns into its original form (Ex: AAA AA ... CCC D) 
        for k = 1:l+1; 
            if j == 1 
                 
                % reduce ratings AAA* and AAA^ into single rating AAA 
                if k == 1 
                    int = 0; 
                    penn = 0; 
                    for m = 1:2; 
                        pan = 0; 
                        for s = 1:2; 
                            % sum each rows of the highest ratings AAA* and AAA^ 
                            pan = pan + PB(m,s,i); 
                        end; 
                        % sum numbers of securities in ratings class AAA* AAA^ 
                        int = int + mmu(1,m,i); 
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                        penn = penn + pan*mmu(1,m,i); 
                    end; 
                    % compute transition probability of AAA -> AAA 
                    PR(j,k,i) = penn/int; 
                    z = s+1; 
                 
                % reduce ratings {AA* AA^ AA~},{A* A^ A~}... {B* B^ B~} into single ratings AA, A, ..., B. 
                elseif k>1 && k<l 
                    int = 0; 
                    penn = 0; 
                    for m = 1:2; 
                        pan = 0; 
                        for s = z:z+2; 
                            % sum sub-ratings of each rating class 
                            pan = pan + PB(m,s,i); 
                        end; 
                        % sum numbers of securities in ratings class AAA* AAA^ 
                        int = int + mmu(1,m,i); 
                        penn = penn + pan*mmu(1,m,i); 
                    end; 
                    % compute transition probabilities of AAA->AA, AAA->A,... AAA->B 
                    PR(j,k,i) = penn/int; 
                    z = s+1; 
                 
                % reduce ratings CCC* and CCC~ into single rating CCC 
                elseif k == l 
                    int = 0; 
                    penn = 0; 
                    for m = 1:2; 
                        pan = 0; 
                        for s = z:z+1; 
                            % sum each rows of the highest ratings CCC* CCC~ 
                            pan = pan + PB(m,s,i); 
                        end; 
                        int = int + mmu(1,m,i); 
                        penn = penn + pan*mmu(1,m,i); 
                    end; 
                    % compute transition probability of AAA -> CCC 
                    PR(j,k,i) = penn/int; 
                 
                % default state is unique  
                elseif k == l+1 
                    int = 0; 
                    penn = 0; 
                    for m = 1:2; 
                        % sum numbers of securities in ratings class AAA* AAA^ 
                        int = int + mmu(1,m,i); 
                        penn = penn + PB(m,v,i)*mmu(1,m,i); 
                    end; 
                    % compute transition probability of AAA -> D 
                    PR(j,k,i) = penn/int; 
                    q = m+1; 
                end; 
             
            elseif j>1 && j<l 
                % reduce ratings AAA* and AAA^ into single rating AAA 
                if k == 1 
                    int = 0; 
                    penn = 0; 
                    for m = q:q+2; 
                        pan = 0; 
                        for s = 1:2; 
                            pan = pan + PB(m,s,i); 
                        end; 
                        % sum numbers of securities in each rating classes. Example: {AA* AA^ AA~},{A* A^ A~}... {B* B^ B~} 
                        int = int + mmu(1,m,i); 
                        penn = penn + pan*mmu(1,m,i); 
                    end; 
                    % compute transition probabilities of AA->AAA,A->AAA,...,B->AAA  
                    PR(j,k,i) = penn/int; 
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                    z = s+1; 
                     
                % reduce ratings {AA* AA^ AA~},{A* A^ A~}... {B* B^ B~} into single ratings AA, A, ..., B. 
                elseif k>1 && k<l 
                    int = 0; 
                    penn = 0; 
                    for m = q:q+2; 
                        pan = 0; 
                        for s = z:z+2; 
                            pan = pan + PB(m,s,i); 
                        end; 
                        % sum numbers of securities in each rating classes. Example: {AA* AA^ AA~},{A* A^ A~}... {B* B^ B~} 
                        int = int + mmu(1,m,i); 
                        penn = penn + pan*mmu(1,m,i); 
                    end; 
                    % compute transition probabilities for ratings (eg. AA->AA,AA->A,...,AA->B; ...; B->AA,B->A,...,B->B) 
                    PR(j,k,i) = penn/int; 
                    z = s+1; 
                 
                % reduce ratings {CCC* CCCC~} into single rating CCC 
                elseif k == l 
                    int = 0; 
                    penn = 0; 
                    for m = q:q+2; 
                        pan = 0; 
                        for s = z:z+1; 
                            pan = pan + PB(m,s,i); 
                        end; 
                        % sum numbers of securities in each rating classes. Example: {AA* AA^ AA~},{A* A^ A~}... {B* B^ B~} 
                        int = int + mmu(1,m,i); 
                        penn = penn + pan*mmu(1,m,i); 
                    end; 
                    % compute transition probabilities for the ratings (eg. AA->CCC, A->CCC, BBB->CCC, BB->CCC, B->CCC) 
                    PR(j,k,i) = penn/int; 
                 
                % default state has single rating D 
                elseif k == l+1 
                    int = 0; 
                    penn = 0; 
                    for m = q:q+2; 
                        % sum numbers of securities in each rating classes. Example: {AA* AA^ AA~},{A* A^ A~}... {B* B^ B~} 
                        int = int + mmu(1,m,i); 
                        penn = penn + PB(m,v,i)*mmu(1,m,i); 
                    end; 
                    % compute transition probabilities for ratings (eg. AA->D, A->D, BBB->D, BB->D, B->D) 
                    PR(j,k,i) = penn/int; 
                    q = m+1; 
                end; 
                 
            elseif j == l 
                % reduce ratings AAA* and AAA^ into single rating AAA 
                if k == 1 
                    int = 0; 
                    penn = 0; 
                    for m = v-2:v-1; 
                        pan = 0; 
                        for s = 1:2; 
                            pan = pan + PB(m,s,i); 
                        end; 
                        % sum numbers of securities in ratings class CCC* CCC~ 
                        int = int + mmu(1,m,i); 
                        penn = penn + pan*mmu(1,m,i); 
                    end; 
                    % compute transition probability of CCC->AAA 
                    PR(j,k,i) = penn/int; 
                    z = s+1; 
                 
                % reduce ratings {AA* AA^ AA~},{A* A^ A~}... {B* B^ B~} into single ratings AA, A, ..., B. 
                elseif k>1 && k<l 
                    int = 0; 
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                    penn = 0; 
                    for m = v-2:v-1; 
                        pan = 0; 
                        for s = z:z+2; 
                            pan = pan + PB(m,s,i); 
                        end; 
                        % sum numbers of securities in ratings class CCC* CCC~ 
                        int = int + mmu(1,m,i); 
                        penn = penn + pan*mmu(1,m,i); 
                    end; 
                    % compute transition probabilities of CCC->AA,CCC->A,...,CCC->B 
                    PR(j,k,i) = penn/int; 
                    z = s+1; 
                 
                % reduce ratings {CCC* CCCC~} into single rating CCC 
                elseif k == l 
                    int = 0; 
                    penn = 0; 
                    for m = v-2:v-1; 
                        pan = 0; 
                        for s = z:z+1; 
                            pan = pan + PB(m,s,i); 
                        end; 
                        % sum numbers of securities in ratings class CCC* CCC~ 
                        int = int + mmu(1,m,i); 
                        penn = penn + pan*mmu(1,m,i); 
                    end; 
                    % compute transition probability of CCC -> CCC 
                    PR(j,k,i) = penn/int; 
                 
                % default state has single rating D 
                elseif k == l+1 
                    int = 0; 
                    penn = 0; 
                    for m = v-2:v-1; 
                        % sum numbers of securities in ratings class CCC* CCC~ 
                        int = int + mmu(1,m,i); 
                        penn = penn + PB(m,v,i)*mmu(1,m,i); 
                    end; 
                    % compute transition probability of CCC -> D 
                    PR(j,k,i) = penn/int; 
                end; 
                 
            elseif j == l+1 
                m = v; 
                % reduce ratings AAA* and AAA^ into single rating AAA 
                if k == 1 
                    pan = 0; 
                    for s = 1:2; 
                        pan = pan + PB(m,s,i); 
                    end; 
                    penn = pan*mmu(1,m,i); 
                    % compute transition probability of D -> AAA 
                    PR(j,k,i) = penn; 
                    z = s+1; 
                 
                % reduce ratings {AA* AA^ AA~},{A* A^ A~}... {B* B^ B~} into single ratings AA, A, ..., B. 
                elseif k>1 && k<l 
                    pan = 0; 
                    for s = z:z+2; 
                        pan = pan + PB(m,s,i); 
                    end; 
                    penn = pan*mmu(1,m,i); 
                    % compute transition probabilities of D->AA,D->A,...,D->B 
                    PR(j,k,i) = penn; 
                    z = s+1; 
                 
                % reduce ratings {CCC* CCCC~} into single rating CCC 
                elseif k == l 
                    pan = 0; 
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                    for s = z:z+1; 
                        pan = pan + PB(m,s,i); 
                    end; 
                    penn = pan*mmu(1,m,i); 
                    % compute transition probability of D -> CCC 
                    PR(j,k,i) = penn; 
                 
                % default state has single rating D 
                elseif k == l+1 
                    penn = PB(m,v,i); 
                    % compute transition probability of D -> D 
                    PR(j,k,i) = penn; 
                end; 
            end; 
        end; 
    end; 
end; 
end 

 
Syntax 9. Transform the extended portfolio distribution into Portfolio distribution  

function [musrk] = MUShrink(mmu,n) 
  
% GOAL: 
%   This program compute the proportions of downgraded firms within the extended transition matrix. 
% 
% INPUT: 
%   mmu         mmu is matrix vector {1 x N} corresponding to the number of firms within the extended transition matrix 
% 
%   n             n is the number of years 
%  
% OUTPUT: 
%   musrk       musrk returns the aggregated number of firms within the transition matrices 
%                  Example: {AAA AA A BBB BB B CCC} 
%    
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
m = length(mmu(:,:,1)); 
l = round((m+4)/3); 
  
% Portfolio distribution for the extended transition matrix 
for j = 1:n+1; 
    for k = 1:m; 
        mnmu(k,j) = mmu(1,k,j); 
    end; 
end; 
  
% Portfolio distribution for the standard transition matrix 
for i = 1:n+1; 
    for k = 1:l; 
        if k == 1; 
            rest = 0; 
            for s = 1:2; 
                rest = rest+mnmu(s,i); 
            end; 
            musrk(k,i) = rest; 
            z= s+1; 
  
        elseif k>1 && k<l-1 
            rest = 0; 
            for s = z:z+2; 
                rest = rest+mnmu(s,i); 
            end; 
            musrk(k,i) = rest; 
            z = s+1; 
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        elseif k == l-1 
            rest = 0; 
            for s = z:z+1; 
                rest = rest+mnmu(s,i); 
            end; 
            musrk(k,i) = rest; 
            z = s+1; 
        else 
            musrk(k,i) = mnmu(z,i); 
        end; 
    end; 
end; 
end  

 

Syntax 10. Compute the all the three possible transition matrices and portfolio distributions  

function [PBB,PRB,musrk,fig,D1,D2,D3,D4] = MatrixComp(P,muu,n) 
  
% GOAL: 
%   This program aims to provide an overview with comparison of the different version. It computes n years extended transition matrices,  
%   aggregated number of firms, and transition matrices. 
% 
% INPUT: 
%   P           P is square matrix {M x M} with minimum length of 4. Ratings are ranks from highest credit quality to default. 
%                Example: {AAA AA A BBB BB CCC D} 
% 
%   muu         muu is number of firms {1 x M} ranked from the highest to the lowest rating based on the annual transition matrix P 
% 
%   n             n is the number of years 
%  
% OUTPUT: 
%   PBB         PBB are extended transition matrices {N x N x n} with minimun length of 8.  
%                    Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D}. 
% 
%   PRB         PRB returns n years aggregated transition matrices {M x M} with minimun length 4 ranked ratings from highest to default 
%                   Example: {AAA AA A BBB BB CCC D} 
% 
%   musrk       musrk returns the aggregated number of firms for n years 
% 
%   fig         fig returns the figures of the distribution of firms and also the effects of the downgrade momentum 
%                
%               - star sign * refers to stable rating 
%               - power sign ^ refers to upgraded rating 
%               - tilde sign ~ refers to downgraded rating 
%    
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
% version 0: identical with one-to-one extension of the transition matrix 
[Bg] = MatrixExt0(P); 
[PB] = MatrixBlock(Bg); 
[mmu] = MUExt(P,muu); 
[PB,mmu] = MatrixPowerExt(PB,mmu,n); 
[PR] = MatrixShrink(PB,mmu,n); 
PB0(:,:,1) = 100*PB(:,:,1); 
PR0(:,:,1) = 100*PR(:,:,1); 
PR0(:,:,2) = 100*PR(:,:,n+1); 
[musrk0] = MUShrink(mmu,n); 
  
% version 1: one-to-one extension of the matrix and downgrade momentum 
[Bg] = MatrixExt1(P); 
[PB] = MatrixBlock(Bg); 
[mmu] = MUExt(P,muu); 
[PB,mmu] = MatrixPowerExt(PB,mmu,n); 
[PR] = MatrixShrink(PB,mmu,n); 
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PB1(:,:,1) = 100*PB(:,:,1); 
PR1(:,:,1) = 100*PR(:,:,1); 
PR1(:,:,2) = 100*PR(:,:,n+1); 
[musrk1] = MUShrink(mmu,n); 
  
% version 2: proportion of firms in the extended matrix and downgrade momentum 
[mmu] = MUExt(P,muu); 
[rhod] = MUFract(mmu); 
[Bg] = MatrixExt2(P,rhod); 
[PB] = MatrixBlock(Bg); 
[PB,mmu] = MatrixPowerExt(PB,mmu,n); 
[PR] = MatrixShrink(PB,mmu,n); 
PB2(:,:,1) = 100*PB(:,:,1); 
PR2(:,:,1) = 100*PR(:,:,1); 
PR2(:,:,2) = 100*PR(:,:,n+1); 
[musrk2] = MUShrink(mmu,n); 
  
PBB(:,:,1) = PB0; 
PBB(:,:,2) = PB1; 
PBB(:,:,3) = PB2; 
  
PRB(:,:,1,1) = PR0(:,:,1); 
PRB(:,:,2,1) = PR0(:,:,2); 
PRB(:,:,1,2) = PR1(:,:,1); 
PRB(:,:,2,2) = PR1(:,:,2); 
PRB(:,:,1,3) = PR2(:,:,1); 
PRB(:,:,2,3) = PR2(:,:,2); 
  
musrk(:,:,1) = musrk0(:,:); 
musrk(:,:,2) = musrk1(:,:); 
musrk(:,:,3) = musrk2(:,:); 
  
[fig] = figrs(musrk0,musrk1,musrk2,n); 
[D1,D2,D3,D4] = Tech(PR0,PR1,PR2); 
end 

 
Syntax 11. Graph of the portfolio distributions 

function [fig] = figs(musrk,n) 
  
l = length(musrk(:,1)); % length of transition matrix 
  
for j = 1:l; 
    xx(1,j) = j; 
end; 
  
fig1 = figure; 
bar(xx,musrk(:,n+1)); 
grid on; 
xlabel('Rating category'); 
ylabel('Portfolio distribution'); 
xlim([xx(1,1) xx(1,l)]); 
  
fig = fig1; 
end 

  

Syntax 12. Graph of the of the portfolio distributions and the downgrade momentum effects on portfolios 

function [fig] = figrs(musrk0,musrk1,musrk2,n) 
  
l = length(musrk0(:,1)); % length of standard transition matrix 
  
for j = 1:l; 
    xx(1,j) = j; 
end; 
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musrk10 = musrk1-musrk0; 
musrk20 = musrk2-musrk0; 
  
fig1 = figure; % Portfolio distribution 
bar(xx,musrk0(:,n+1)); 
grid on; 
xlabel('Rating categories'); 
xlim([0 l+1]); 
ylabel('Portfolio distribution'); 
ylim([0 62]); 
  
fig2 = figure; 
bar(xx,musrk1(:,n+1)); 
grid on; 
xlabel('Rating categories'); 
xlim([0 l+1]); 
ylabel('Portfolio distribution'); 
  
fig3 = figure; 
bar(xx,musrk2(:,n+1)); 
grid on; 
xlabel('Rating categories'); 
xlim([0 l+1]); 
ylabel('Portfolio distribution'); 
  
% Difference between portfolio distribution 
fig4 = figure; 
bar(xx,musrk10(:,2)); 
grid on; 
xlabel('Rating categories'); 
xlim([0 l+1]); 
ylabel('Differences in portfolio distribution'); 
  
fig5 = figure; 
bar(xx,musrk10(:,n+1)); 
grid on; 
xlabel('Rating categories'); 
xlim([0 l+1]); 
ylabel('Differences in portfolio distribution'); 
  
fig6 = figure; 
bar(xx,musrk20(:,n+1)); 
grid on; 
xlabel('Rating categories'); 
xlim([0 l+1]); 
ylabel('Differences in portfolio distribution'); 
  
fig = [fig1;fig2;fig3;fig4;fig5;fig6]; 
end 

 
Syntax 13. Main program for selecting the outputs 

function [PBB,PRB,musrk,fig] = MatrixTrans(P,muu,n,vs) 
  
% GOAL: 
%   This program aims to compute n successive years of extended transition matrices, transition matrix, and number of firms. 
% 
% INPUT: 
%   P           P is square matrix {M x M} with minimum length of 4. Ratings are ranks from highest credit quality to default. 
%                Example: {AAA AA A BBB BB CCC D} 
% 
%   muu         muu is number of firms {1 x M} rank from the highest to the lowest rating based on the annual transition matrix P 
% 
%   vs          vs is the version number {0,1,2,3}. vs = 1 is the one-to-one extended matrix that does not capture past effects; vs = 2 
%               is the one-to-one extended matrix that capture downgrade momentum; vs = 3 is based on the proportion firm in the 
%               extended matrix that capture downgrade momentum 
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% 
%   n           n is the number of years 
%  
% OUTPUT: 
%   PBB         PBB are extended transition matrices {N x N x n} with minimum length of 8.  
%                    Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D}. 
% 
%   PRB         PRB returns n years aggregated transition matrices {M x M} with minimun length 4 ranked ratings from highest to default 
%                    Example: {AAA AA A BBB BB CCC D} 
% 
%   musrk       musrk returns the aggregated number of firms for n years 
% 
%   fig         fig returns the figures of the distribution of firms and also the effects of the downgrade momentum 
%                
%               - star sign * refers to stable rating 
%               - power sign ^ refers to upgraded rating 
%               - tilde sign ~ refers to downgraded rating 
%    
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
  
switch vs 
    case {0, 1, 2} 
        % Split the number of firms based on prior ratings 
        [mmu] = MUExt(P,muu); 
        % version 0: identical with one-to-one extension of the transition matrix 
        if vs == 0 
            [Bg] = MatrixExt0(P); 
  
        % version 1: one-to-one extension of the transition matrix and downgrade momentum 
        elseif vs == 1 
            [Bg] = MatrixExt1(P); 
  
        % version 2: proportional extension of the matrix and downgrade momentum 
        elseif vs == 2 
            [rhod] = MUFract(mmu); 
            [Bg] = MatrixExt2(P,rhod); 
        end; 
  
        % Transform the partitioned (stable,upgrade,downgrade) or segregated initial extended transition matrix into a single grouped from highest to default 
        [PB] = MatrixBlock(Bg); 
  
        % Create n transition matrices and number of firms 
        [PB,mmu] = MatrixPowerExt(PB,mmu,n); 
  
        % Aggregate the extended transition matrices into transition matrices 
        [PR] = MatrixShrink(PB,mmu,n); 
  
        PBB = 100*PB(:,:,1); 
        PRB(:,:,1) = 100*PR(:,:,1); 
        PRB(:,:,2) = 100*PR(:,:,n+1); 
         
        % Aggregate back the n extended number of firms 
        [musrk] = MUShrink(mmu,n); 
        [fig] = figs(musrk,n); 
  
    case {3} 
        % Get overview of all results and comparisons 
        [PBB,PRB,musrk,fig] = MatrixComp(P,muu,n); 
  
    otherwise 
        disp('Error: Select either 0 or 1 or 2 or 3'); 
        return, 
end 
end 
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Additional Syntaxes for the short-term migration risks 
Syntax 14. Compute expected losses with simple extended portfolio rebalancing 

function [PL_Exp] = SimpleRebalance(PB,mmu,PbuyExt,PsellExt,n) 
  
% GOAL: 
%   This program returns the Portfolio Expected Loss of the sum of obligors expected losses in each quarter. A simple rebalancing is performed in 
%   which after each quarter, we match extended portfolio with the initial extended portfolio. 
% 
% INPUT: 
%   PB             PB returns the extended transition matrix {v x v} that is single grouped from highest to default. 
%                    Example: {AAA* AAA^ AA* AA^ AA~ A* A^ A~ BBB* BBB^ BBB~ BB*BB^ BB~ CCC* CCC~ D} 
% 
%   mmu         mmu is matrix vector {1 x N} corresponding to the number of  firms within the extended transition matrix 
% 
%   PbuyExt     PbuyExt is extended price vector {1 x v} with min length of 8 at which banks can purchase on the market. 
%                     Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D} 
% 
%   PsellExt    PsellExt is extended price vector {1 x v} with min length of 8 at which banks can sell on the market. 
%                    Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D} 
% 
%   n           n is the number of quarters 
%  
% OUTPUT: 
%   PL_Exp      PL_Exp is matrix vector {v x 1} corresponding to the Expected Portfolio Loss with simple rebalancing that is matched to the initial extended portfolio 
% 
%               star sign * refers to stable rating 
%               power sign ^ refers to upgraded rating 
%               tilde sign ~ refers to downgraded rating 
% 
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
v = length(PB); 
  
PB(:,:,1) = PB; 
mmu(:,:,1) = mmu; 
  
for i = 2:n+1; 
    mmu(:,:,i) = mmu(:,:,1)*PB(:,:,i-1); 
    % The transition matrices are considered at the starting of each quarter due to rebalancing 
    PB(:,:,i) = PB(:,:,1); 
end; 
  
for i = 1:n+1; 
    for j = 1:v-1; 
        mmur(1,j,i) = mmu(1,j,i)-mmu(1,j,1); 
        if mmur < 0 
            Buy(1,j,i) = (-1)*mmur(1,j,i)*PbuyExt(1,j); 
            Sell(1,j,i) = 0; 
        else 
            Sell(1,j,i) = mmur(1,j,i)*PsellExt(1,j); 
            Buy(1,j,i) = 0; 
        end; 
        Tol(j,i) = Buy(1,j,i) + Sell(1,j,i); 
    end; 
    % The expected total profits and losses 
    PL_Exp(i,1) = sum(Tol(1:v-1,i)); 
end; 
  
end 

 

Syntax 15. Compute expected losses with mix extended portfolio rebalancing 

function [PL_ExpMix] = MixRebalance(PB,mmu,PbuyExt,PsellExt,n) 
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% GOAL: 
%   This program returns the Expected Portfolio Loss of the sum of obligors expected losses in each quarter. The portfolio is rebalanced after each quarter, 
%   where we match the new extended portfolio with the initial extended portfolio. As rebalancing rule, obligors that have been currently downgraded cannot be sold. 
% 
% INPUT: 
%   PB            PB returns the extended transition matrix {v x v} that is single grouped from highest to default. 
%                     Example: {AAA* AAA^ AA* AA^ AA~ A* A^ A~ BBB* BBB^ BBB~ BB* BB^ BB~ CCC* CCC~ D} 
% 
%   mmu         mmu is matrix vector {1 x N} corresponding to the number of firms within the extended transition matrix 
% 
%   PbuyExt     PbuyExt is extended price vector {1 x v} with min length of 8 at which banks can purchase on the market. 
%                      Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D} 
% 
%   PsellExt    PsellExt is extended price vector {1 x v} with min length of 8 at which banks can sell on the market. 
%                    Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D} 
% 
%   n              n is the number of quarters 
%  
% OUTPUT: 
%   PL_ExpMix   PL_ExpMix is matrix vector {v x 1} corresponding to the Expected Portfolio Loss with rebalancing where the 
%               portfolio should be matched to the initial extended portfolio 
% 
%               star sign * refers to stable rating 
%               power sign ^ refers to upgraded rating 
%               tilde sign ~ refers to downgraded rating 
% 
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
v = length(PB); 
l = round((v+4)/3); 
  
PB(:,:,1) = PB; 
mmu(1,:,1) = mmu; 
  
for i = 2:n+1; 
    mmu(1,:,i) = mmu(1,:,1)*PB(:,:,i-1); 
    PB(:,:,i) = PB(:,:,1); 
end; 
  
% Sell only stable and currently upgraded loans 
for i = 2:n+1; 
    PL_ExpMix(i,1) = 0; 
    for k = 1:2; 
        mmur(1,k,i) = mmu(1,k,i)-mmu(1,k,1); 
        if mmur(1,k,i) < 0 
            Buy(1,k,i) = mmur(1,k,i)*PbuyExt(1,k); 
            Sell(1,k,i) = 0; 
        else 
            Sell(1,k,i) = mmur(1,k,i)*PsellExt(1,k); 
            Buy(1,k,i) = 0; 
        end; 
        PL_ExpMix(i,1) = PL_ExpMix(i,1)+Buy(1,k,i)+Sell(1,k,i); 
    end; 
    s = k+1; 
  
    for k = 2:l-2; 
        mmur(1,s,i) = mmu(1,s,i)-mmu(1,s,1); 
        if mmur(1,s,i) < 0 
            Buy(1,s,i) = mmur(1,s,i)*PbuyExt(1,s); 
            Sell(1,s,i) = 0; 
        else 
            Sell(1,s,i) = mmur(1,s,i)*PsellExt(1,s); 
            Buy(1,s,i) = 0; 
        end; 
        PL_ExpMix(i,1) = PL_ExpMix(i,1)+Buy(1,s,i)+Sell(1,s,i); 
  
        mmur(1,s+1,i) = mmu(1,s+1,i)-mmu(1,s+1,1); 
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        if mmur(1,s+1,i) < 0 
            Buy(1,s+1,i) = mmur(1,s+1,i)*PbuyExt(1,s+1); 
            Sell(1,s+1,i) = 0; 
        else 
            Sell(1,s+1,i) = mmur(1,s+1,i)*PsellExt(1,s+1); 
            Buy(1,s+1,i) = 0; 
        end; 
        PL_ExpMix(i,1) = PL_ExpMix(i,1)+Buy(1,s+1,i)+Sell(1,s+1,i); 
  
        if i == 2 
            mmur(1,s+2,i) = mmu(1,s+2,i)-mmu(1,s+2,1); 
            if mmur(1,s+2,i) < 0 
                Buy(1,s+2,i) = mmur(1,s+2,i)*PbuyExt(1,s+2); 
                Sell(1,s+2,i) = 0; 
                mmut(1,s+2,i)= 0; 
            else 
                Buy(1,s+2,i) = 0; 
                Sell(1,s+2,i) = 0; 
                mmut(1,s+2,i)= mmur(1,s+2,i); 
            end; 
        else 
            mmur(1,s+2,i) = (mmu(1,s+2,i)-mmu(1,s+2,1))+mmut(1,s+2,i-1); 
            if mmur(1,s+2,i) < 0 
                Buy(1,s+2,i) = mmur(1,s+2,i)*PbuyExt(1,s+2); 
                Sell(1,s+2,i) = 0; 
                mmut(1,s+2,i) = 0; 
            else 
                Buy(1,s+2,i) = 0; 
                Sell(1,s+2,i) = 0; 
                mmut(1,s+2,i) = mmur(1,s+2,i); 
            end; 
        end; 
        PL_ExpMix(i,1) = PL_ExpMix(i,1)+Buy(1,s+2,i)+Sell(1,s+2,i); 
        s = s+3; 
    end; 
  
    mmur(1,v-2,i) = mmu(1,v-2,i)-mmu(1,v-2,1); 
    if mmur(1,v-2,i) < 0 
        Buy(1,v-2,i) = mmur(1,v-2,i)*PbuyExt(1,v-2); 
        Sell(1,v-2,i) = 0; 
    else 
        Sell(1,v-2,i) = mmur(1,v-2,i)*PsellExt(1,v-2); 
        Buy(1,v-2,i) = 0; 
    end; 
    PL_ExpMix(i,1) = PL_ExpMix(i,1)+Buy(1,v-2,i)+Sell(1,v-2,i); 
  
    if i == 2 
        mmur(1,v-1,i) = mmu(1,v-1,i)-mmu(1,v-1,1); 
        if mmur(1,v-1,i) < 0 
            Buy(1,v-1,i) = mmur(1,v-1,i)*PbuyExt(1,v-1); 
            Sell(1,v-1,i) = 0; 
            mmut(1,v-1,i)= 0; 
        else 
            Buy(1,v-1,i) = 0; 
            Sell(1,v-1,i) = 0; 
            mmut(1,v-1,i)= mmur(1,v-1,i); 
        end; 
    else 
        mmur(1,v-1,i) = (mmu(1,v-1,i)-mmu(1,v-1,1))+mmut(1,v-1,i-1); 
        if mmur(1,v-1,i) < 0 
            Buy(1,v-1,i) = mmur(1,v-1,i)*PbuyExt(1,v-1); 
            Sell(1,v-1,i) = 0; 
            mmut(1,v-1,i) = 0; 
        else 
            Buy(1,v-1,i) = 0; 
            Sell(1,v-1,i) = 0; 
            mmut(1,v-1,i) = mmur(1,v-1,i); 
        end; 
    end; 
    PL_ExpMix(i,1) = PL_ExpMix(i,1)+Buy(1,v-1,i)+Sell(1,v-1,i); 
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end; 
  
end 

 

Syntax 16. Compute the expected losses with mix and simple extended portfolio rebalancing scenarios 

function [Pr_min,PL_Exp,PL_ExpMix] = ExpLoss(P,muu,Pbuy,Psell,n) 
  
% GOAL: 
%   This program aims to returns the Portfolio Expected Losses in each quarter for simple rebalancing and mix rebalancing rules. 
% 
% INPUT: 
%   P              P is annual transition matrix {M x M} with minimum length of 4. Ratings are ranks from highest credit quality to default. 
%                   Example: {AAA AA A BBB BB CCC D} 
% 
%   muu         muu is number of firms {1 x M} rank from the highest to the lowest rating based on the annual transition matrix P 
% 
%   Pbuy        Pbuy is the price vector {1 x l} with minimum length of 4 at which banks can purchase on the market. Ratings are 
%                   ranks from highest credit quality to default. Example: {AAA AA A BBB BB CCC D} 
% 
%   Psell        Psell is the price vector {1 x l} with minimum length of 4 at which banks can sell on the market. Ratings are ranks 
%                   from highest credit quality to default. Example: {AAA AA A BBB BB CCC D} 
% 
%   n            n is the number of quarters 
%  
% OUTPUT: 
%   Pr_min             Pr_min returns the lowest negative values in the transition matrix after taking its fraction power (1/n) 
% 
%   PL_Exp            PL_Exp is matrix vector {v x 1} corresponding to the Expected Portfolio Loss with simple rebalancing where it is 
%                           matched to the initial extended portfolio 
% 
%   PL_ExpMix     PL_ExpMix is matrix vector {v x 1} corresponding to the Expected Portfolio Loss with rebalancing where the 
%                           portfolio should be matched to the initial extended portfolio 
% 
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
[Pr,Pr_min] = PowerFract(P,n); 
[mmu] = MUExt(Pr,muu); 
[Bg] = MatrixExt0(Pr); 
[PB] = MatrixBlock(Bg); 
[PbuyExt,PsellExt] = PricesExt(Pbuy,Psell); 
[PL_Exp] = SimpleRebalance(PB,mmu,PbuyExt,PsellExt,n); 
PL_Exp0 = PL_Exp; 
[PL_ExpMix] = MixRebalance(PB,mmu,PbuyExt,PsellExt,n); 
PL_ExpMix0 = PL_ExpMix; 
  
[Pr,Pr_min] = PowerFract(P,n); 
[mmu] = MUExt(Pr,muu); 
[Bg] = MatrixExt1(Pr); 
[PB] = MatrixBlock(Bg); 
[PbuyExt,PsellExt] = PricesExt(Pbuy,Psell); 
[PL_Exp] = SimpleRebalance(PB,mmu,PbuyExt,PsellExt,n); 
PL_Exp1 = PL_Exp; 
[PL_ExpMix] = MixRebalance(PB,mmu,PbuyExt,PsellExt,n); 
PL_ExpMix1 = PL_ExpMix; 
  
[Pr,Pr_min] = PowerFract(P,n); 
[mmu] = MUExt(Pr,muu); 
[rhod] = MUFract(mmu); 
[Bg] = MatrixExt2(Pr,rhod); 
[PB] = MatrixBlock(Bg); 
[PbuyExt,PsellExt] = PricesExt(Pbuy,Psell); 
[PL_Exp] = SimpleRebalance(PB,mmu,PbuyExt,PsellExt,n); 
PL_Exp2 = PL_Exp; 
[PL_ExpMix] = MixRebalance(PB,mmu,PbuyExt,PsellExt,n); 
PL_ExpMix2 = PL_ExpMix; 
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PL_Exp(:,1) = -PL_Exp0; 
PL_Exp(:,2) = -PL_Exp1; 
PL_Exp(:,3) = -PL_Exp2; 
  
PL_ExpMix(:,1) = -PL_ExpMix0; 
PL_ExpMix(:,2) = -PL_ExpMix1; 
PL_ExpMix(:,3) = -PL_ExpMix2; 
  
end 

 

Syntax 17. Fractional power transformation of the annual to quarterly transition matrix 

function [Pr,Pr_min] = PowerFract(P,n) 
  
% GOAL: 
%   This program compute fractional transition matrix from the annual transition matrix. In this example, we compute the quarterly transition matrix with n = 4. 
% 
% INPUT: 
%   P           P is annual transition matrix {M x M} with minimum length of 4. Ratings are ranks from highest credit quality to default. 
%                Example: {AAA AA A BBB BB CCC D} 
% 
%   n           n is the number of quarters 
%  
% OUTPUT: 
%   Pr          Pr is quarterly transition matrix {M x M} with minimum length of 4. Ratings are ranks from highest credit quality to default. 
%                Example: {AAA AA A BBB BB CCC D} 
% 
%   Pr_min      Pr_min is the transition intensity with most negative elements for a quarterly transition matrix. 
%    
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
l = length(P); 
  
[V,D] = eig(P); 
Pr = V*D^(1/n)*inv(V); 
  
% Transform low negative values into zeroes 
Pr0 = -10^30; 
for j = 1:l; 
    for k = 1:l; 
        if Pr(j,k)<0 
            if Pr(j,k) < Pr0 
                Pr0 = Pr(j,k); 
            end; 
            Pr(j,k) = 0; 
        end; 
    end; 
end; 
Pr_min = Pr0; 
  
% Recalibrate rows sum of the transition matrix to 1 
for j = 1:l; 
    rest = 0; 
    rett = 0; 
    for k = 1:l; 
        if j < k 
            rest = rest + Pr(j,k); 
        end; 
        if j > k 
            rett = rett + Pr(j,k); 
        end; 
    end; 
    Pr(j,j) = 1-(rest+rett); 
end; 
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end 

 

Syntax 18. Compute similar quarterly matrices for the four successive quarters 

function [PB] = UnMatrixPowerExt(PB,n) 
  
% GOAL: 
%   This program compute extended transition matrices and the number of firms for n successive quarters. 
% 
% INPUT: 
%   PB          PB is the initial extended transition matrix {N x N} with min length of 8. 
%                  Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D} 
% 
%   n           n is the number of quarters 
%  
% OUTPUT: 
%   PB          PB returns the extended transition matrices {N x N x n} with min length of 8 for n successive quarters. 
%                  Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D} 
% 
%                 star sign * refers to stable rating 
%                 power sign ^ refers to upgraded rating 
%                 tilde sign ~ refers to downgraded rating 
%    
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
PB(:,:,1) = PB; 
for i = 2:n+1; 
    % The rebalancing at the end of each quarter mean using identical extended transition matrices 
    PB(:,:,i) = PB(:,:,1)^(1); 
end; 
  
end 

 

Syntax 19. Randomly generate the evolution of the initial portfolio based on the thresholds 

function [mmu_new] = UnNewRating(PB,mmu,n,sm) 
  
% GOAL: 
%   This program compute simulated number of firms in each rating class of the extended transition matrices for n successive quarters. 
% 
% INPUT: 
%   PB          PB is the initial extended transition matrix {v x v} with minimum length of 8. 
%                 Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D} 
% 
%   mmu       mmu is the initial extended portfolio distribution {1 x v} with minimum length of 8. 
% 
%   n           n is the number of years 
% 
%   sm          sm is the number of simulation runs 
% 
% OUTPUT: 
%   mmu_new     mmu_new return the extended portfolio distribution {1 x v} with minimum length of 8 for the n successive quarters. 
% 
%               star sign * refers to stable rating 
%               power sign ^ refers to upgraded rating 
%               tilde sign ~ refers to downgraded rating 
% 
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
  
v = length(PB(:,:,1)); 
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for i = 2:n+1; 
    if v ~= length(PB(:,:,i)) 
        disp('Error: All Extended Transition Matrices must be equal length'); 
        return, 
    end; 
end; 
  
% ensure that the random numbers are different from 0 and 1 
tt = rand(1); 
while tt == 1 || tt == 0 
    tt = rand(1); 
end; 
% common factor 
Y = norminv(tt,0,1); 
  
for j = 1:sm; 
    mmu_new(v,1,j) = 0; 
    for k = 1:v-1; 
        % multiply by 100 to reduce round off errors 
        mmu_new(k,1,j) = round(100*mmu(1,k)); 
        for t = 1:mmu_new(k,1,j); 
            rating(t,k,1,j) = k; 
        end; 
    end; 
    for i = 2:n+1; 
        rett(v,i,j) = 0; 
        for k = 1:v-1; % k is the row number 
            % correlation for each rating 
            rho(k,i,j) = 0.12*(1+exp(-50*PB(k,v,i))); 
            for m = 1:v; % compute thresholds for different ratings 
                low_limit(k,m,i) = sum(PB(k,1:m-1,i)); 
                up_limit(k,m,i) = sum(PB(k,1:m,i)); 
            end; 
            for t = 1:mmu_new(k,i-1,j); % the number of companies in rating k at year i 
                % ensure that the random numbers are different from 0 and 1 
                het = rand(1); 
                while het == 1 || het == 0 
                    het = rand(1); 
                end; 
                Zi(t,k,i,j) = norminv(het,0,1); % generate specific factor 
                Xi(t,k,i,j) = sqrt(rho(k,i,j))*Y + sqrt(1-rho(k,i,j))*Zi(t,k,i,j); 
                for m = 1:v; 
                    if Xi(t,k,i,j)>= norminv(low_limit(k,m,i),0,1) && Xi(t,k,i,j)< norminv(up_limit(k,m,i),0,1) 
                        rating(t,k,i,j) = m; % Generate new ratings 
                         
                        % compute the number of obligors in each rating classes 
                        rett(m,i,j) = rett(m,i,j)+1; 
                        mmu_new(m,i,j) = rett(m,i,j); 
                    end; 
                end; 
            end; 
        end; 
    end; 
end; 
  
mmu_new = 100*mmu_new; % rescale portfolio to original level 
  
end 

 

Syntax 20. Extension of the prices vectors to fit the extended transition matrices 

function [PbuyExt,PsellExt] = UnPricesExt(Pbuy,Psell) 
  
% GOAL: 
%   This program extended the different prices matrix to fit the extended transition matrix. 
% 
% INPUT: 
%   Pbuy        Pbuy is the price vector {1 x l} with minimum length of 4 at which banks can purchase on the market. Ratings are ranks from highest credit quality 
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%                   to default. Example: {AAA AA A BBB BB CCC D} 
% 
%   Psell       Psell is the price vector {1 x l} with minimum length of 4 at which banks can sell on the market. Ratings are ranks from highest credit quality to default. 
%                 Example: {AAA AA A BBB BB CCC D} 
%  
% OUTPUT: 
%   PbuyExt     PbuyExt is extended price vector {1 x v} with min length of 8 at which banks can purchase on the market. 
%                     Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D} 
% 
%   PsellExt    PsellExt is extended price vector {1 x v} with min length of 8 at which banks can sell on the market. 
%                    Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D} 
% 
%               star sign * refers to stable rating 
%               power sign ^ refers to upgraded rating 
%               tilde sign ~ refers to downgraded rating 
% 
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
  
l = length(Pbuy); 
if l ~= length(Psell) 
    disp('Error: All Matrices Prices length must be equal'); 
    return, 
end; 
  
for k = 1:2; 
    PbuyExt(1,k) = Pbuy(1,1); 
    PsellExt(1,k) = Psell(1,1); 
end; 
s = k+1; 
for k = 2:l-2; 
    PbuyExt(1,s) = Pbuy(1,k); 
    PsellExt(1,s) = Psell(1,k); 
    PbuyExt(1,s+1) = Pbuy(1,k); 
    PsellExt(1,s+1) = Psell(1,k); 
    PbuyExt(1,s+2) = Pbuy(1,k); 
    PsellExt(1,s+2) = Psell(1,k); 
    s = s+3; 
end; 
for k = l-1:l-1; 
    PbuyExt(1,s) = Pbuy(1,k); 
    PsellExt(1,s) = Psell(1,k); 
    PbuyExt(1,s+1) = Pbuy(1,k); 
    PsellExt(1,s+1) = Psell(1,k); 
end; 
s = s+2; 
PbuyExt(1,s) = Pbuy(1,l); 
PsellExt(1,s) = Psell(1,l); 
  
end 

 
Syntax 21. Compute the profits and losses distribution 

function [PL] = UnexpMix(mmu_new,PbuyExt,PsellExt,n,sm) 
  
% GOAL: 
%   This program aims to compute the profit & loss ditribution that will serve to determine the portfolio value-at-risk. The rebalancing rule 
%   concern recently downgraded obligors that cannot to sold in the market. 
% 
% INPUT: 
%   mmu_new     mmu_new return the extended portfolio distribution {1 x v} with minimun length of 8 for the n successive quarters. 
% 
%   PbuyExt     PbuyExt is extended price vector {1 x v} with min length of 8 at which banks can purchase on the market. 
%                      Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D} 
% 
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%   PsellExt    PsellExt is extended price vector {1 x v} with min length of 8 at which banks can sell on the market. 
%                    Example: {AAA* AAA+ AA* AA+ AA- A* A+ A- BBB* BBB+ BBB- BB* BB+ BB- CCC* CCC- D} 
% 
%   n           n is the number of years 
% 
%   sm          sm is the number of simulation runs 
% 
% OUTPUT: 
%   PL          PL return the simulated portfolio loss ditributions {n x sm} in after quarter. 
% 
%               star sign * refers to stable rating 
%               power sign ^ refers to upgraded rating 
%               tilde sign ~ refers to downgraded rating 
% 
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
v = length(mmu_new(:,:,1)); 
% for i = 2:n+1; 
%     if v ~= length(mmu_new(:,:,i)) 
%         disp('Error: All Extended portfolios must be equal length'); 
%         return, 
%     end; 
% end; 
l = round((v-4)/3); 
  
% Sell only stable and upgraded firms 
for j = 1:sm; 
    for i = 2:n+1; 
        PL(i,j) = 0; 
        for k = 1:2; 
            mmur(k,i,j) = mmu_new(k,i,j)-mmu_new(k,1,j); % rebalance portfolio to initial level 
            if mmur(k,i,j) < 0 
                Buy(k,i,j) = mmur(k,i,j)*PbuyExt(1,k); 
                Sell(k,i,j) = 0; 
            else 
                Sell(k,i,j) = mmur(k,i,j)*PsellExt(1,k); 
                Buy(k,i,j) = 0; 
            end; 
            PL(i,j) = PL(i,j)+Buy(k,i,j)+Sell(k,i,j); 
        end; 
        s = k+1; 
         
        for k = 2:l-2; 
            mmur(s,i,j) = mmu_new(s,i,j)-mmu_new(s,1,j); % rebalance portfolio to initial level 
            if mmur(s,i,j) < 0 
                Buy(s,i,j) = mmur(s,i,j)*PbuyExt(1,s); 
                Sell(s,i,j) = 0; 
            else 
                Sell(s,i,j) = mmur(s,i,j)*PsellExt(1,s); 
                Buy(s,i,j) = 0; 
            end; 
            PL(i,j) = PL(i,j)+Buy(s,i,j)+Sell(s,i,j); 
             
            mmur(s+1,i,j) = mmu_new(s+1,i,j)-mmu_new(s+1,1,j);  % rebalance portfolio to initial level 
            if mmur(s+1,i,j) < 0 
                Buy(s+1,i,j) = mmur(s+1,i,j)*PbuyExt(1,s+1); 
                Sell(s+1,i,j) = 0; 
            else 
                Sell(s+1,i,j) = mmur(s+1,i,j)*PsellExt(1,s+1); 
                Buy(s+1,i,j) = 0; 
            end; 
            PL(i,j) = PL(i,j)+Buy(s+1,i,j)+Sell(s+1,i,j); 
             
            if i == 2 
            mmur(s+2,i,j) = mmu_new(s+2,i,j)-mmu_new(s+2,1,j); % rebalance portfolio to initial level 
                if mmur(s+2,i,j) < 0 
                    Buy(s+2,i,j) = mmur(s+2,i,j)*PbuyExt(1,s+2); 
                    Sell(s+2,i,j) = 0; 
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                    mmut(s+2,i,j)= 0; 
                else 
                    Buy(s+2,i,j) = 0; 
                    Sell(s+2,i,j) = 0; 
                    mmut(s+2,i,j)= mmur(s+2,i,j); % keep downgraded obligors to next period 
                end; 
            else 
                mmur(s+2,i,j) = (mmu_new(s+2,i,j)+mmut(s+2,i-1,j))-mmu_new(s+2,1,j); % rebalance portfolio to initial level 
                if mmur(s+2,i,j) < 0 
                    Buy(s+2,i,j) = mmur(s+2,i,j)*PbuyExt(1,s+2); 
                    Sell(s+2,i,j) = 0; 
                    mmut(s+2,i,j) = 0; 
                else 
                    Buy(s+2,i,j) = 0; 
                    Sell(s+2,i,j) = 0; 
                    mmut(s+2,i,j) = mmur(s+2,i,j); % keep downgraded obligors to next period 
                end; 
            end; 
            PL(i,j) = PL(i,j)+Buy(s+2,i,j)+Sell(s+2,i,j); 
            s = s+3; 
        end; 
         
        mmur(v-2,i,j) = mmu_new(v-2,i,j)-mmu_new(v-2,1,j); % rebalance portfolio to initial level 
        if mmur(v-2,i,j) < 0 
            Buy(v-2,i,j) = mmur(v-2,i,j)*PbuyExt(1,v-2); 
            Sell(v-2,i,j) = 0; 
        else 
            Sell(v-2,i,j) = mmur(v-2,i,j)*PsellExt(1,v-2); 
            Buy(v-2,i,j) = 0; 
        end; 
        PL(i,j) = PL(i,j)+Buy(v-2,i,j)+Sell(v-2,i,j); 
         
        if i == 2 
            mmur(v-1,i,j) = mmu_new(v-1,i,j)-mmu_new(v-1,1,j); % rebalance portfolio to initial level 
            if mmur(v-1,i,j) < 0 
                Buy(v-1,i,j) = mmur(v-1,i,j)*PbuyExt(1,v-1); 
                Sell(v-1,i,j) = 0; 
                mmut(v-1,i,j)= 0; 
            else 
                Buy(v-1,i,j) = 0; 
                Sell(v-1,i,j) = 0; 
                mmut(v-1,i,j)= mmur(v-1,i,j); 
            end; 
        else 
            mmur(v-1,i,j) = (mmu_new(v-1,i,j)+mmut(v-1,i-1,j))-mmu_new(v-1,1,j); % rebalance portfolio to initial level 
            if mmur(v-1,i,j) < 0 
                Buy(v-1,i,j) = mmur(v-1,i,j)*PbuyExt(1,v-1); 
                Sell(v-1,i,j) = 0; 
                mmut(v-1,i,j) = 0; 
            else 
                Buy(v-1,i,j) = 0; 
                Sell(v-1,i,j) = 0; 
                mmut(v-1,i,j) = mmur(v-1,i,j); 
            end; 
        end; 
        PL(i,j) = PL(i,j)+Buy(v-1,i,j)+Sell(v-1,i,j); 
    end; 
end; 
  
end 

 
Syntax 22. Graphical representation of the histogram of losses distributions at the different quarters 

function [fig] = UnFig(PL,n) 
  
% GOAL: 
%   This program aims to provide the graphical representation of the profit & loss ditribution (P\L). 
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% 
% INPUT: 
%   PL          PL return the simulated portfolio loss ditributions {n x sm} in after quarter. 
% 
%   n           n is the number of years 
% 
% OUTPUT: 
%   fig         fig return the histogram of the simulated portfolio loss ditributions 
% 
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
% Portfolio distribution 
fig1 = figure; 
subplot(2,2,1); 
histfit(-PL(2,:)); 
grid on; 
xlabel('Profits & Losses'); 
ylabel('Frequency'); 
  
subplot(2,2,2); 
histfit(-PL(3,:)); 
grid on; 
xlabel('Profits & Losses'); 
ylabel('Frequency'); 
  
subplot(2,2,3); 
histfit(-PL(n,:)); 
grid on; 
xlabel('Profits & Losses'); 
ylabel('Frequency'); 
  
subplot(2,2,4); 
histfit(-PL(n+1,:)); 
grid on; 
xlabel('Profits & Losses'); 
ylabel('Frequency'); 
  
fig = fig1; 
  
end 

 
Syntax 23. Graphical representation of the downgrade momentum effects on the loss distributions 

function [fig] = UnFigMomemt(PL0,PL1,PL2,n) 
  
% GOAL: 
%   This program aims to provide the graphical representation of the downgrade momentum effects on the loss ditributions (P\L). 
% 
% INPUT: 
%   PL0         PL0 return the simulated portfolio loss ditributions {n x sm} in after quarter based on the benchmark. 
% 
%   PL1         PL1 return the simulated portfolio loss ditributions {n x sm} in after quarter based on the first model. 
% 
%   PL2         PL2 return the simulated portfolio loss ditributions {n x sm} in after quarter based on the second model. 
% 
%   n             n is the number of years 
% 
% OUTPUT: 
%   fig         fig return the histogram of the simulated portfolio downgrade momentum effects on the loss ditributions 
% 
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
PL10 = PL1-PL0; % Downgrade momemtum effects between the first model and benchmark 
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PL20 = PL2-PL0; % Downgrade momemtum effects between the second model and benchmark 
  
% Portfolio distribution 
fig1 = figure; 
subplot(2,2,1); 
histfit(-PL10(2,:)); 
grid on; 
xlabel('Profits & Losses'); 
ylabel('Frequency'); 
  
subplot(2,2,2); 
histfit(-PL10(3,:)); 
grid on; 
xlabel('Profits & Losses'); 
ylabel('Frequency'); 
  
subplot(2,2,3); 
histfit(-PL10(n,:)); 
grid on; 
xlabel('Profits & Losses'); 
ylabel('Frequency'); 
  
subplot(2,2,4); 
histfit(-PL10(n+1,:)); 
grid on; 
xlabel('Profits & Losses'); 
ylabel('Frequency'); 
  
fig2 = figure; 
subplot(2,2,1); 
histfit(-PL20(2,:)); 
grid on; 
xlabel('Profits & Losses'); 
ylabel('Frequency'); 
  
subplot(2,2,2); 
histfit(-PL20(3,:)); 
grid on; 
xlabel('Profits & Losses'); 
ylabel('Frequency'); 
  
subplot(2,2,3); 
histfit(-PL20(n,:)); 
grid on; 
xlabel('Profits & Losses'); 
ylabel('Frequency'); 
  
subplot(2,2,4); 
histfit(-PL20(n+1,:)); 
grid on; 
xlabel('Profits & Losses'); 
ylabel('Frequency'); 
  
fig = [fig1;fig2]; 
  
end 

 
Syntax 24. Graphical representation of the loss distributions and the downgrade momentum effects of the losses 

function [Pr_min,fig1,fig2] = UnexpLoss(P,muu,Pbuy,Psell,n,sm) 
  
% GOAL: 
%   This program aims to provide an overview with the graphical representation of the Portfolio Expected Losses in each quarter and 
%   also of the downgrade momentum effects. 
% 
% INPUT: 
%   P             P is annual transition matrix {M x M} with minimum length of 4. Ratings are ranks from highest credit quality to default. 
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%                  Example: {AAA AA A BBB BB CCC D} 
% 
%   muu         muu is number of firms {1 x M} rank from the highest to the lowest rating based on the annual transition matrix P 
% 
%   Pbuy        Pbuy is the price vector {1 x l} with minimum length of 4 at which banks can purchase on the market. Ratings are 
%                   ranks from highest credit quality to default. Example: {AAA AA A BBB BB CCC D} 
% 
%   Psell       Psell is the price vector {1 x l} with minimum length of 4 at which banks can sell on the market. Ratings are ranks 
%                  from highest credit quality to default. Example: {AAA AA A BBB BB CCC D} 
% 
%   n             n is the number of quarters 
% 
%   sm          sm is the number of simulation runs 
%  
% OUTPUT: 
%   Pr_min      Pr_min returns the lowest negative values in the transition matrix after taking its fraction power (1/n) 
% 
%   fig1           fig1 return the histogram of Portfolio Loss distribution that matches portfolio to the initial extended portfolio 
%                    based on the rebalancing rule where recently downgrade obligors cannot be sold. 
% 
%   fig2          fig2 return the histogram of the downgrade momentum effects of the Portfolio Loss distributions that matches portfolio 
%                   to the initial extended portfolio based on the rebalancing rule where recently downgrade obligors cannot be sold.  
% 
% EDITING INFORMATION: 
%   Author: Vivien Djiambou (FEM), 2009 
%   Last update: September 8, 2009 
  
[Pr,Pr_min] = PowerFract(P,n); 
[mmu] = MUExt(Pr,muu); 
[Bg] = MatrixExt0(Pr); 
[PB] = MatrixBlock(Bg); 
[PB] = UnMatrixPowerExt(PB,n); 
[mmu_new] = UnNewRating(PB,mmu,n,sm); 
[PbuyExt,PsellExt] = UnPricesExt(Pbuy,Psell); 
[PL] = UnexpMix(mmu_new,PbuyExt,PsellExt,n,sm); 
[fig] = UnFig(PL,n); 
fig0 = fig; 
  
[Pr,Pr_min] = PowerFract(P,n); 
[mmu] = MUExt(Pr,muu); 
[Bg] = MatrixExt1(Pr); 
[PB] = MatrixBlock(Bg); 
[PB] = UnMatrixPowerExt(PB,n); 
[mmu_new] = UnNewRating(PB,mmu,n,sm); 
[PbuyExt,PsellExt] = UnPricesExt(Pbuy,Psell); 
[PL] = UnexpMix(mmu_new,PbuyExt,PsellExt,n,sm); 
[fig] = UnFig(PL,n); 
PL1 = PL; 
fig1 = fig; 
  
[Pr,Pr_min] = PowerFract(P,n); 
[mmu] = MUExt(Pr,muu); 
[rhod] = MUFract(mmu); 
[Bg] = MatrixExt2(Pr,rhod); 
[PB] = MatrixBlock(Bg); 
[PB] = UnMatrixPowerExt(PB,n); 
[mmu_new] = UnNewRating(PB,mmu,n,sm); 
[PbuyExt,PsellExt] = UnPricesExt(Pbuy,Psell); 
[PL] = UnexpMix(mmu_new,PbuyExt,PsellExt,n,sm); 
[fig] = UnFig(PL,n); 
PL2 = PL; 
fig2 = fig; 
  
fig = [fig0;fig1;fig2]; 
fig1 = fig; 
[fig] = UnFigMomemt(PL0,PL1,PL2,n); 
fig2 = fig; 
  
end 
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