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ABSTRACT 
Coastal areas are generally intensely used areas with high population density and economic activity. 
On a basin scale the tide directly determines water levels and currents in a basin. These flow 
characteristics furthermore determine the shape of the basin itself, for example the forming and 
evolution of tidal sandbanks, which in turn influences the flow pattern. Because of its importance for 
various human and natural activities the modelling of tidal flow has been studied by many authors in 
the past. This has lead to depth-averaged (2DH) and 3D models amongst others  

The first analytical 3D-model that describes tidal flow in a semi-enclosed basin using Kelvin and 
Poincaré modes with partial slip was created for this research. For this the method devised by 
Mofjeld (1980) for 3D tidal flow along a single coast with viscosity and no-slip was extended, thereby 
following Taylor’s approach (1921).  

As a reference situation the Northern Part of the North Sea was modeled and the properties of the 
Kelvin and Poincaré modes described. Also the flow and shear stress properties were studied. The 
flow properties were also compared to an equivalent 2DH model but for this first values for the 
friction parameter had to be determined. For this various methods were adopted with varying 
success in approximating the 3D properties. It is clear that that 3D structure is important to be able 
to precisely determine the flow properties. The value for the friction parameter that gives the best 
results of the methods employed was that be found by fitting the Kelvin dissipation factor of the 3D 
model (using viscosity and slip parameters) with the 2DH model (using a friction parameter).  

The fitting of the Kelvin dissipation factor lead to a friction parameter of 1.7*10-3 m/s for the 
reference case (the 3D model had a slip parameter of 0.005 m/s and a viscosity parameter of 0.09 
m2/s). With this parameter the 2DH model results were compared with the 3D model results, 
showing that 3D structure is indeed important. Eventually this friction lead to an average error in 
predicting 3D longitudinal bottom shear stress amplitude with a 2DH model of 13% while the 
theoretically best result would have been 3%.  

This all leads to the conclusion that continued research in this area can further improve 3D and 2DH 
modeling. 
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FOREWORD 
This thesis was written as the culmination of my Master study Water Engineering & Management at 
the University of Twente. An important aspect of this study is relating the technical knowledge 
gained to practical and societal needs. Though this research was rather mathematical, it still had a 
solid practical context which helped in making the research itself understandable, useful and more 
pleasurable.  

A second very important part during my research was the guidance of my supervisors, Suzanne, Henk 
and Pieter. Their insight and years of experience regarding the handled subjects was invaluable in 
bringing this research to a good end and making it scientifically and practically valid. Though I have to 
admit it was sometimes boggling to hear them discuss what lied behind things I handled lightly and 
didn’t explain or explore in depth, all in all this meant that I learned much more than I would have 
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was almost always available for guidance and answers.  
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of course meant that there was enough to discuss, talk about and laugh during lunch breaks, coffee 
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the primarily individual undertaking the writing of a Master thesis is. The various activities that were 
organized/instigated like wadwalking, barbecues and even a think-tank-competition by certain 
individuals (Wiebe, Bert, Erwin, Frank, Daniël, I hope I’m not forgetting someone...) also greatly 
helped in making this an enjoyable time. Furthermore I would especially like to thank Wiebe for 
being my support in all things mathematical and tidal; it would have been lonely without you! But of 
course, all other fellow students also deserve praise for their support and good company!  
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daily scientific endeavours. Most of all I thank Annick, for being an unexpected but dearly loved light 
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I hope you enjoy reading what I’ve written about three dimensional tidal flow structure in semi-
enclosed basins! 

Olav van Duin,  
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1 INTRODUCTION 
Coastal areas are generally intensely used areas with high population density and economic activity. 
This is partly because of the vicinity of the sea, which offers great opportunities for human 
development. But the sea does not only offer opportunities, it can also be a threat. On a basin scale 
tidal flow directly determines water levels and currents in a basin. These flow characteristics 
furthermore determine the shape of the basin itself, for example the formation and evolution of tidal 
sandbanks, which in turn influences the flow pattern.  

It is important to understand flow properties in these areas for functions like ecology, safety and 
transport. This research focuses on a tidal flow in a specific marine environment, namely semi-
enclosed basins with widths and lengths in the order of hundreds of kilometres and depths in the 
order of tens of meters. It is important to examine the 3D aspects of flow in these basins as they for 
example determine the near-bed flow which controls sediment transport (Prandle, 1997) and the 
formation of bed features like sand waves (Hulscher, 1996 and Gerkema, 2000). Differences in 3D 
flow properties can be significant in semi-enclosed basins, which is observed for instance in the 
Chignecto Bay (Tee, 1982). Furthermore the Long Island Sound – Block Island Sound channel shows 
tidally induced residual currents (Ianniello, 1981), which can have  a large influence on net sediment 
transport. Besides the more general expected behaviour lateral flow circulations are expected for 
tidal flow which controls the dispersion of pollutants and salt water (Prandle, 1982 and Huijts et al., 
2009). Equation Section 1 

In the ideal situation a fully 3D model is available that incorporates all physical processes and can be 
used to study flow in semi-enclosed basins. However, incorporating all these aspects requires a large 
amount of work and the resulting model would be rather complex and time-consuming to use. Also, 
because of the inherently complex nature of the mathematics associated with this type of flow the 
model would have to be numerical which makes it hard to exactly distinguish between the effects of 
different aspects and properties. To be able to study which processes are most important to 
incorporate, it is valuable to make (increasingly complex) analytical models which allow for an easier 
interpretation of the results. Such a model can be used to determine which processes are relevant in 
which situation and therefore which are most important to include in a numerical model. This study 
aims to produce a 3D analytical model that is a logical extension of the work done in the past. In the 
following paragraphs this will be explained in detail.  

1.1 PROBLEM DESCRIPTION 
Consider a shallow sea that is largely constrained on three sides by coasts. The tidal pattern in such a 
basin is affected by the three boundaries as well as driving forces. The tidal wave enters the basin 
from open deep sea and propagates between the two parallel coasts until it reaches the closed 
lateral boundary. Because of the presence of this boundary the tidal wave turns around and 
propagates back towards the open end. Because a Kelvin wave, a simple representation of a tidal 
wave, cannot make this turn an additional type of wave modes is needed to represent the flow near 
the lateral boundary. These additional modes are called Poincaré modes. In the figure below a very 
rough approximation of this tidal wave movement can be seen. 

 
Figure 1: schematization of the tidal wave movement 
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If the basin is sufficiently large, Coriolis effects will occur. This fictitious force originates from the 
Earth’s rotation, deflecting flow to the right on the Northern hemisphere. Due to continuity and the 
boundaries this deflection will cause circulation in the vertical.  This and the fact that particles tend 
to corkscrew in and out of the basin (Winant, 2007) indicate that a depth-averaged (2DH) approach 
will lose important properties of the flow.  

Furthermore vertical viscosity means that the tidal wave experiences dissipation while moving 
through the basin. In a depth-averaged model bed friction is a parameterization of this 3D-effect. A 
solid representation of the vertical pattern of currents is especially important for morphological 
studies where for instance the velocity derivatives at the bed are used for the calculation of bottom 
shear stress which in turn determines the morphological development of the sea bottom.  

It is expected that a combination of an incoming and outgoing Kelvin wave and a truncated set of 
Poincaré modes can describe the tidal dynamics in a semi-enclosed basin sufficiently well to get a 
good idea of the processes at work and the consequences for bottom shear stress. In the following 
chapters the application of and the mentioned wave modes themselves will be explained in more 
detail.  

1.2 RESEARCH CONTEXT 
Because of its importance for various human and natural activities the modelling of tidal flow has 
been studied by many authors in the past. A quick overview will be given of the relevant studies 
which incorporate some of the processes that will be modelled in this study, though none of them 
individually contains all of these aspects.  

The propagation of a tidal wave in a semi-enclosed basin is referred to as the ‘Taylor problem’; this 
author investigated how a Kelvin wave is reflected in a rectangular semi-enclosed basin (Taylor, 
1921). The analytical solution presented does not take dissipation into account and is depth-
averaged. To model the closed lateral boundary Taylor found Poincaré modes to complement the 
incoming and outgoing Kelvin waves. Hendershott & Speranza (1971) expanded on Taylor’s work by 
allowing the boundary at the head of the basin to absorb energy, thus introducing a mechanism for 
dissipation. Opposed to dissipation localized at the lateral boundary, dissipation throughout the 
basin was modelled by Rienecker & Teubner (1980) by introducing friction terms. Mofjeld (1980) 
examined 3D properties of tidal flow along a single straight coast with a flat bottom, incorporating 
Coriolis and vertical viscosity effects. For this the author used Kelvin waves to represent the tidal 
flow. Constant viscosity is assumed and a no-slip condition is applied at the bottom. Pedlosky (1982) 
presents a solution for the depth-averaged tidal flow in an infinite channel (a shallow stretch of sea 
with two parallel boundaries) which leads to Poincaré and Kelvin wave modes. The basin shape was 
studied in 2DH and a flat bottom was used. The author took Coriolis effects into account, but no bed 
friction (as a 2DH-representation of vertical viscosity). Davies & Jones (1995) also studied the basin 
shape that is studied for this research. They made a numerical model for a semi-enclosed basin with 
a sloping bottom as well as a flat bottom. The authors incorporated nonlinear terms (advection), 
non-constant viscosity and Coriolis effects. They were the only ones mentioned here that studied a 
partial-slip condition as well as a no-slip condition. Winant (2007) also looked at tidal flow in an 
elongated semi-enclosed basin, but for a bottom that is parabolic-shaped in the transverse. The 
author has explained the lateral flow circulations in a semi-enclosed basin with a 3D basin-model that 
incorporates Coriolis as well as vertical viscosity effects. However, this solution is only applicable to 
basins that are narrow and it is unclear whether this approach will work with a non-parabolic 
bottom.  

This research strives to make the first analytical 3D-model that describes tidal flow in a semi-
enclosed basin using Kelvin and Poincaré modes with partial slip. A drawback of this approach is that 
it can only be applied to flat bottoms, eddy viscosity is constant and that only linear terms are taken 
into account. On the plus side this model has no condition that the basin must be narrow like that of 
Winant (2007). Also, the chosen analytical approach with Kelvin and Poincaré modes makes that the 
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final model is easily understood and the influence of various parameters can be easily investigated. 
Furthermore the assumption of constant viscosity actually implies use of a partial slip condition to 
get realistic velocities and shear stresses (Hulscher, 1996 and Hulscher & Van den Brink, 2001), so use 
of this combination is more correct than the original work of Mofjeld (1980). The use of a partial slip 
condition allows for a relatively simple though effective calculation of bottom shear stress (Gerkema, 
2000); it avoids solving the complex processes in the near-bottom boundary layer described in 
Bowden (1978).  

1.3 RESEARCH QUESTIONS 
 The research questions that will be investigated in the following report are:  

1. In what way can Mofjeld’s (1980) analysis and the approach documented by Pedlosky (1982) 
be combined and extended to find Kelvin and Poincaré modes in an infinite channel of finite 
width as a solution to 3D tidal flow including a partial slip condition?  

1.a What are the typical properties of these wave modes? 

1.b Which values of the friction parameter in an equivalent depth-averaged model should be 
chosen to get the same properties given a certain combination of the viscosity and slip 
parameters? 

1.c How should these wave modes described above be combined to simulate tidal flow in a 
semi-enclosed basin (i.e. the Taylor problem)? 

2. Using the combined wave modes; what are the 3D tidal flow properties (elevation, currents, 
bottom shear stresses) in the Northern part of the North Sea? 

2.a How do these properties differ in the vertical? And for varying slip parameter and vertical 
viscosity?  

2.b Using the friction parameters found before; how well does the depth-averaged model 
correspond to the 3D model concerning flow properties? Which method produces the 
best results?  

1.4 APPROACH 
In short the goal of this research is to set up a mathematical model to calculate the 3D flow field in a 
semi-enclosed basin, investigate its properties and see if an equivalent depth-averaged model can 
achieve similar results. The processes that are included are the pressure gradient, Coriolis force and 
eddy viscosity. A partial-slip condition will be applied at the sea bottom. The complete model setup is 
described in chapter 2.  

The method applied by Mofjeld (1980) for tidal flow along a single coast is extended to an infinite 
channel (also following the method described by Pedlosky, 1982) and wave modes are sought that 
satisfy the boundary conditions and governing equations (see chapter 3). The depth-averaged 
versions of these modes are presented, as well as a numerical method which combines these wave 
modes in such a way that the condition at the closed lateral boundary is satisfied (see chapter 4). The 
properties of the wave modes and the quasi-analytical model which represents the tidal flow of a 
semi-enclosed basin are also examined and an attempt is made to fit an equivalent depth-averaged 
model to these properties (see chapter 5).  The quasi-analytical model is used to predict the bottom 
shear stress and this is also compared to the equivalent depth-averaged model (see chapter 6). The 
final chapters handle the discussion, conclusion and recommendation. Appendices are included with 
additional information.  
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2 MODEL FORMULATION OF TIDAL FLOW IN A SEMI-ENCLOSED BASIN 
In this chapter the setup of the model will be described. First an impression will be given of what 
basins are modelled. After that the governing equations and boundary conditions are derived from 
the full Navier-Stokes equations by making appropriate assumptions for the kind of basins described 
before. After that the equations are scaled and the linear versions are found. Equation Section 2 

2.1 DESCRIPTION OF THE MODELLED BASIN  
The basin shape (see Figure 2) that will be used for this study is that of a semi-enclosed semi-infinite 
rectangular basin with width B*, and constant undisturbed water depth H*. It should be noted that 
there is no condition imposed on the dotted lines, it is just to signify that the basin extends infinitely 
beyond the dotted lines. The horizontal velocity parallel to the alongshore direction x* is called u*, 
the horizontal velocity parallel to the cross shore direction y* is called v* and the upward vertical 
velocity parallel to the vertical direction z* is called w*. The displacement of the water surface with 
respect to the undisturbed water depth is called η*, which depends on x*, y* and time t*. The origin 
of the coordinate system lies at the bottom of the basin in the lower left corner as shown in Figure 2.  

 

N.H.

f*

O

B*

O

η*(x*,y1*,t*)

η*(x*,y2*,t*)
H*

y*

z*

y*

x*

 
Figure 2: side view (top) and top view (bottom) of a semi-enclosed basin (not to scale) 

 

This basin will be modelled on the f-plane (a local approximation of the spherical Earth) and lies on 
the Northern Hemisphere. The former implies that the Coriolis deflection is constant, while the latter 
implies that the tide will rotate counter-clockwise. The tidal flow enters the basin on the right side of 
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Figure 2 and exits on the left side; this basic tidal movement will be represented by an incoming and 
outgoing Kelvin wave. At the closed lateral boundary the tidal wave will have to turn, this will 
generate so-called Poincaré modes. The incoming Kelvin wave will be imposed while the other wave 
modes (the outgoing Kelvin wave and the Poincaré modes) will follow from the solution method. 
These modes have no depth-integrated normal flow through the longitudinal boundaries. The model 
will adjust the amplitudes of the possible modes to ensure there is no normal depth-averaged flow at 
the closed lateral boundary when the used modes are superimposed.  

 

200km

 
Figure 3: section of the North Sea that will be modeled (source: http://visibleearth.nasa.gov) 

 

The model will be tailored to basins with a length and width in the hundreds of kilometres and a 
depth in the tens of meters. The latitude will be around 50 degrees and the modelled tidal 
constituent will be the M2-tide. Actual physical values are presented when the properties of the 
model are investigated as a reference case. Because the aim of this study is not to model a specific 
basin properly, the exact physical values are not relevant now. Later in this thesis the model will be 
applied to the Northern part of the North Sea, as can be seen in the figure above.  

http://visibleearth.nasa.gov)


Modelling the three-dimensional flow structure in semi-enclosed basins                                          Olav van Duin 

 

25 September 2009                                                                                                                                             Page 13 of 58 

2.2 MODIFYING THE GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 
In this paragraph the governing equations and boundary conditions that will be used to describe tidal 
flow in a semi-enclosed basin are presented. The governing equations follow from the type of basin 
that will be modeled and the original full Navier-Stokes equations, see appendix A for details. In the 
following paragraph these equations and the boundary conditions will be scaled.  

2.2.1 GOVERNING EQUATIONS 

Under the conditions sketched in appendix A the momentum equations and the continuity equation 
are as follows. An asterisk denotes that the dimensional version of the parameter or variable is 
meant; in paragraph 2.3 the non-dimensional versions will be introduced.  

*************
******* zzvxzyxt uAgvfuwuvuuu +−=−+++ η      [2.1] 

*************
******* zzvyzyxt vAgufvwvvvuv +−=++++ η      [2.2] 

0***
*** =++ zyx wvu           [2.3] 

Here the parameter f* denotes the Coriolis parameter, Av* vertical eddy viscosity and g* the gravity 
acceleration. The subscripts x*, y*, z*, t* denote the derivative of that variable to the respective 
coordinate.  

2.2.2 BOUNDARY CONDITIONS 

At the walls of the basin a condition is imposed that there can be no depth-integrated normal flow 
through the wall. A stronger condition would be that all flow is zero at the coast, this however means 
that the complex flow in the boundary layer at the coast needs to be resolved (Mofjeld, 1980). 
Mofjeld (1980) explains that this condition can be replaced by disregarding these side-layers and only 
considering the region seawards of those layers, this will therefore also be done here. It should be 
noted that the fact that by disregarding these horizontal side-layers horizontal viscosity is implicitly 
neglected (in appendix A horizontal viscosity was disregarded beforehand). From now on, when the 
coastal boundary conditions are mentioned actually near-coastal boundary conditions are meant.  

∫
+

=
**

0

** 0
ηH

dzv  at  ** ,0 By =          [2.4] 

∫
+

=
**

0

** 0
ηH

dzu  at  0* =x           [2.5] 

The condition at the parallel walls will be satisfied by the wave modes individually, while the 
condition at the lateral wall will be satisfied by the wave modes collectively (by use of a collocation 
method). At the free water surface a no-stress dynamic boundary condition and a kinematic 
boundary condition is applied. These conditions will be met by the wave modes individually. It should 
be noted that the upper expression is an approximation of the actual condition which uses the 
derivatives along the surface normal. Because of the assumption of long waves (surface elevation is 
small compared to tidal wave length), the surface normal points almost exactly upward (i.e. parallel 
to the vertical axis z*) and this approximation can be used.  







++=

=
******

**

***

** 0,

yxt

zz

vuw

vu

ηηη
 at *** η+= Hz       [2.6] 
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A dynamic boundary condition (partial slip, which approaches no slip when the stress parameter s* 
goes to infinity) is applied at the bed, as well as a kinematic boundary condition. These conditions 
will also be met by the wave modes individually. Using a partial slip condition makes the assumption 
of constant eddy viscosity reasonable (Hulscher, 1996). It should be noted that the partial slip 
condition actually uses the derivatives along the bottom normal, but because a flat bottom is used 
the bottom normal is parallel to the z*-axis, so this version can be used.  










=

=

=

0*

****

****

*

*

w

vsvA

usuA

zv

zv

 at 0* =z         [2.7] 

2.3 SCALING THE FLOW EQUATIONS AND BOUNDARY CONDITIONS 
The dimensions and variables are scaled with certain scaling parameters which are typical values for 
the dimensions or variable they are applied to. By doing this the resulting dimensionless parameters 
are more relatable to the system and its flow properties than the original parameters were. Also, 
when the equations are scaled, the order of magnitude of the terms can be more easily compared 
thereby making it easier to see which are most significant. The expressions for the dimensionless 
parameters can be found below.  

**tt σ=  [2.8] ( ) ( )*** ,, yxKyx =  [2.9] ** Hzz =  [2.10] 

*
0

* ηηη =  [2.11] ( ) ( ) *** ,, Uvuvu =  [2.12] ** Www =  [2.13] 

Here the tidal frequency *σ , tidal elevation amplitude *
0η , maximum horizontal velocity 

***
0

* HgU η=  [2.14], wave number **** HgK σ=  [2.15] and the vertical velocity scale 
*
0

***** ησ== UHKW  [2.16]  (this follows from applying the previous scaling parameters to the 

continuity equation [2.3]) are used. Both U* and K* are typical for inviscid 2D Kelvin waves (Pedlosky, 
1982).  W* is the maximum horizontal velocity adjusted for the relative difference in vertical and 
horizontal length scale. An additional interpretation is that W* is the amplitude divided by the tidal 
period. This all means that 1 unit of t equals the tidal period, 1 unit of x or y equals the Kelvin wave 
length divided by 2π, 1 unit of z equals the water depth, 1 unit of η equals the Kelvin elevation 
amplitude, 1 unit of u or v equals the Kelvin velocity amplitude and 1 unit of w equals the speed of 
going up with a speed of one amplitude per tidal cycle.  

After substituting the scaled parameters new scaled versions of the original equations and boundary 
conditions are found. These are used to derive the linear system of equations in the following 
paragraph.  

2.3.1 SCALED GOVERNING EQUATIONS 

Introduction of the non-dimensional parameters and some rearranging yields the following for the 
equations of motion and the continuity equation.  

[ ] zz
v

xzyxt ufvwuvuuuu
2

2δ
ηε +−=−+++        [2.17] 

[ ] zz
v

yzyxt vfuwvvvuvv
2

2δ
ηε +−=++++        [2.18] 

0=++ zyx wvu           [2.19] 
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Here the dimensionless parameters ** σff =  [2.20] (ratio of inertial and tidal frequency), 
*** 21 σδ vv AH=  [2.21] (square of the Stokes number) and the Froude 

number *****
0 HgUH == ηε [2.22] are used.  

2.3.2 SCALED BOUNDARY CONDITIONS 

The boundary conditions at the coast transform to the following form.  

∫
+

=
εη1

0

0vdz  at  By ,0=          [2.23] 

∫
+

=
εη1

0

0udz  at  0=x           [2.24] 

Here the non-dimensional width **BKB =  is used. The dimensionless boundary conditions at the 
surface is given by  

[ ]



++=
=

yxt

zz

vuw
vu

ηηεη
0,

 at εη+= 1z       [2.25] 

The boundary conditions at the bottom read  









=
=

=
−

−

0

1

1

w
vvs
uus

z

z

 at 0=z  ,        [2.26] 

where ( )***1 sHAs v=−  [2.27].  

2.4 LEADING-ORDER SYSTEM OF EQUATIONS 
Because usually the Froude number ε<<1, the system of equations can be developed as a power 
series in ε. For this study the lowest order contribution in the Froude number (i.e. at O(ε0)) is 
considered, which means that all non-linear terms are dropped from the equations and the upper 
vertical domain boundaries are greatly simplified. First the governing equations and then the 
boundary conditions will be handled.  

2.4.1 LINEAR SYSTEM OF EQUATIONS 

Substituting ε=0 in the governing equations it follows that no advective contribution is found and the 
governing equations reduce to the following linear system of equations: 

zz
v

xt ufvu
2

2δ
η +−=− ,         [2.28] 

zz
v

yt vfuv
2

2δ
η +−=+ ,         [2.29] 

0=++ zyx wvu .          [2.30] 

The boundary conditions at the side walls reduce to  
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∫ =
1

0

0vdz  at  By ,0= ,         [2.31] 

∫ =
1

0

0udz  at  0=x   .        [2.32] 

At the free water surface the kinematic boundary condition is adjusted because the non-linear 
contribution reduces to zero, while the dynamic boundary condition stays the same. The location of 
the boundary reduces to z=1.  





=
=

t

zz

w
vu
η

0,
 at 1=z          [2.33] 

The dynamic boundary condition at the flat bed, as well as the kinematic boundary condition does 
not change due to taking ε=0.  









=
=

=
−

−

0

1

1

w
vvs
uus

z

z

 at 0=z          [2.34] 

  

 



Modelling the three-dimensional flow structure in semi-enclosed basins                                          Olav van Duin 

 

25 September 2009                                                                                                                                             Page 17 of 58 

3 FINDING WAVE MODES IN AN INFINITE CHANNEL 
In this chapter wave solutions will be sought for an infinitely long channel. First the velocity will be 
transformed to rotating velocity components to aid in solving the depth-dependency of the 
equations. After that, relations between the longitudinal wave number and the displacement are 
derived. These relations are used to find a single condition which leads to two possible types of wave 
solutions, Kelvin waves and Poincaré modes. For these wave modes the displacement equations are 
found which are then used to translate the rotating velocity components back to the normal velocity 
components. Equation Section 3 

3.1 THE SOLUTION IN ROTATING VELOCITY COMPONENTS 
In this paragraph the depth-dependency is found by solving equations for rotating velocity 
components. First the original equations are split to facilitate the solution method, after that the 
actual transformation is applied. The depth-independent part of the rotating components is solved 
first after which the depth-dependent part is also solved. The expressions for the rotating 
components still implicitly contain a dependency on x and y which will be handled in paragraph 3.3. 

3.1.1 SPLITTING THE GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The original equations of motion (see [2.28]-[2.29]) are split by defining the velocities as u=u0+u1 and 
v=v0+v1 respectively. The velocities with index 0 signify the part of the velocity that is assumed not to 
vary in the vertical direction, leading to the following equations (after Danielson & Kowalik, 2005): 

xt fvu η−=− 0;0 ,          [3.1] 

yt fuv η−=+ 0;0 .          [3.2] 

The depth-dependent equations with index 1 read (after Danielson & Kowalik, 2005): 

zz
v

t ufvu ;1

2

1;1 2
δ

=− ,          [3.3] 

zz
v

t vfuv ;1

2

1;1 2
δ

=+ .          [3.4] 

To solve the equations for the rotating velocity components (which will be shown in the next 
paragraph) the dynamic boundary conditions for the horizontal velocities at the bottom and surface 
also have to be split. The slip condition becomes as follows (with s-1=0 for no slip and s>0 for partial 
slip).  

( )
( )





−+=

−+=
−

−

010
1

1

010
1

1

vvvsv

uuusu

z

z   at 0=z       [3.5] 

The surface conditions become  

( ) 010 =+ zuu  and ( ) 010 =+ zvv  at 1=z       [3.6] 

3.1.2 TRANSFORMATION TO ROTATING VELOCITY COMPONENTS 

The following rotating components are introduced which (when summed) represent the current 
ellipses formed by the orthogonal velocities in a more convenient way (Mofjeld, 1980). Here q is the 
clockwise component and r is the counter clockwise component, which correspond with the distinct 
counter rotating layers in the bottom layer (Mofjeld, 1980). Note that q=q0+q1 [3.7] and r=r0+r1 [3.8] 

and that the expressions below hold for index 0 and index 1 separately. 

ivurivuq −=+= ,           [3.9] 
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From the above it follows that 

2
rqu +

= ,
i
rqv

2
−

=           [3.10] 

To represent the periodicity of the tidal flow the time-dependency of q, r and η is given by exp(-it). 
The second equation of motion ([3.2] and [3.4]) multiplied with the imaginary unit i is added to the 
first equation of motion ([3.1] and [3.3]) to yield the following: 

( )yx i
f
iq ηη +

−
−

=
10 ,          [3.11] 

( ) zz
v q

f
iq ;1

2

1 12 −
=

δ
.          [3.12] 

Hereby the splitting in depth-dependent and depth-independent parts will facilitate solving the 
equations later (see 3.1.3). When instead of an addition a subtraction is carried out the following is 
found: 

( )yx i
f

ir ηη −
+
−

=
10 ,          [3.13] 

( ) zz
v r

f
ir ;1

2

1 12 +
=

δ
.          [3.14] 

The boundary condition at the bottom translates as follows (using the same methodology as for the 
governing equations). It should be noted that the derivatives of q0 and r0 to z are both zero, which 
follows from the equation for q0 and r0 above. This condition and the condition at the surface are 
applied in 3.1.3.  

0;1
1

1

0;1
1

1

rrsr

qqsq

z

z

−=

−=
−

−

  at 0=z        [3.15] 

The surface condition becomes as follows.  

0;1 =zq  and 0;1 =zr   at 1=z        [3.16] 

The translation of the depth-integrated continuity equation [2.30] to rotating velocity components 
yields the following. For this no difference is made between the depth-dependent and the depth-
independent parts. This is because the terms that do depend on depth are integrated over depth.  
This condition is used in subsection 3.2.1. 

( ) ( )∫ =++−+−
1

0

0
2
1 dzirriqqi yxyxη        [3.17] 

The translation of boundary conditions at the coasts [2.31] into rotating components yields the 
following. Also this equation does not need to be split in depth-dependent and depth-independent 
parts. This boundary condition is used in subsection 3.2.2. 

( )∫ =−
1

0

0
2
1 dzrq
i

 at  By ,0=        [3.18] 
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3.1.3 SOLVING THE ROTATING VELOCITY COMPONENTS 

The expressions for the depth-independent rotating components [3.11] and [3.13]  are solved, but 
the solutions for the depth-dependent components [3.12] and [3.14] are still needed. When these 
are found the total solution for the rotating velocity components can be derived (by adding the 
different parts). In the following paragraphs those expressions will be used to find the equations for 
η, u, v and w. To find the solutions for q1 and r1 first the general solution for a second-order linear 
ordinary differential equation is applied to the equations [3.12] and [3.14]: 

( ) ( )zczcq qq αα −+= expexp 211 ,         [3.19] 

( ) ( )zczcr rr αα −+= expexp 431 ,         [3.20] 

with parameters αq and αr defined as  

( ) 2/111 fi
v

q −
−

=
δ

α ,          [3.21] 

( ) 2/111 fi
v

r +
−

=
δ

α .          [3.22] 

Applying the surface boundary condition at z=1 yields  

( ) ( ) qqqqqzz ccccq ααααα 2exp0expexp 122111 =→=−−=
=

,    [3.23] 

( ) ( ) rrrrrzz ccccr ααααα 2exp0expexp 344311 =→=−−=
=

.    [3.24] 

At the bottom the slip condition is applied. This yields  

( ) ( ) ( ) ( ) 0
1

2
1

1021
1

211 110 qscscqccsccq qqq −=++−→−−=+= −−− ααα ,   [3.25] 

( ) ( ) ( ) ( ) 0
1

4
1

3043
1

431 110 rscscrccsccr rrr −=++−→−−=+= −−− ααα .   [3.26] 

Applying the condition for c2 and c4 found above gives the following result.  

[ ]

( )
[ ]

[ ]











+

−
=

+

−−
=

→
−++

−
=

−

−

−

qqq

q

qqq

q

qqq

s
q

c

s
q

c

s
qc

ααα

α

ααα

α

ααα
sinhcosh2

exp

sinhcosh2
exp

12exp2exp1
1

0
2

1
0

1

1
0

1    [3.27] 

[ ]

( )
[ ]

[ ]








+
−

=

+
−−

=

→
−++

−
=

−

−

−

rrr

r

rrr

r

rrr

s
rc

s
rc

s
rc

ααα
α

ααα
α

ααα
sinhcosh2

exp
sinhcosh2

exp

12exp2exp1
1

0
4

1
0

3

1
0

3    [3.28] 

This is put back in the previously found equations for q1 and r1 to yield the final results. 

( )[ ]
qqq

q

s
z

qq
ααα

α

sinhcosh
1cosh

101 −+

−
−=         [3.29] 

( )[ ]
rrr

r

s
zrr

ααα
α

sinhcosh
1cosh

101 −+
−

−=         [3.30] 

Using [3.7], [3.11] and [3.29] the following is found:  
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( )( )Qi
f
iq yx −+

−
−

= 1
1

ηη  [3.31]  with ( ) ( )[ ]
qqq

q

s
z

zQ
ααα

α

sinhcosh
1cosh

1−+

−
=  [3.32] 

And analogous to the above for [3.8], [3.13] and [3.30] the following is found.  

( )( )Ri
f

ir yx −−
+
−

= 1
1

ηη   [3.33]  with ( ) ( )[ ]
rrr

r

s
zzR

ααα
α

sinhcosh
1cosh

1−+
−

=  [3.34] 

Here the new parameters Q and R determine the vertical pattern of the rotating velocity 
components. The expressions for Q and R reduce to those found by Mofjeld (1980) if s-1=0 (no slip), 
though in non-dimensional form. 

3.2 DETERMINING WAVENUMBER RELATIONS 
In this paragraph a dispersion relation and a new version of the coastal boundary conditions will be 
derived which define the relation between the longitudinal wave number and the displacement. 
These relations are used in the next paragraph.  

3.2.1 DISPERSION RELATION 

The rotating components q and r are substituted in the depth-integrated continuity equation [2.30], 
which, after some manipulation, yields the following result.  

01 2

=
−

++ ηηη
e

yyxx H
f

         [3.35] 

For clarity a new parameter He was introduced, which is shown below.  

( )
[ ]

( )
[ ]









+
−

+
+

+
−= −−

rrrr

r

qqqq

q
e s

f
s

f
H

αααα
α

αααα

α

sinhcosh
sinh1

sinhcosh
sinh1

2
11 11    [3.36] 

This dispersion equation is the same as the inviscid dispersion equation except that this equation is 
corrected with the parameter He which accounts for viscous effects and the effects of the partial slip 
condition. As can be expected the expression for He reduces to the expression found by Mofjeld 
(1980) when derived from the dimensional form of the dispersion relation and with s-1=0 (no slip). 
Equation [3.35] allows for solutions of the following form, where ( )yη  is a y-dependent function and 
k the wave number of this wave solution.  

( ) ( )( )[ ]tkxiy −ℜ= expηη          [3.37] 

This wave equation is substituted in [3.35] to obtain the dispersion relation. 

e

yy

H
fk

2
2 1−

=−
η

η
  or  01 2

2

=







−

−
+ ηη k

H
f

e
yy     [3.38] 

3.2.2 NEAR-COASTAL BOUNDARY CONDITIONS 

Applying the near-coastal boundary condition ([3.18]) yields the following after some manipulation.  

0=+ η
γ

η
e

y H
k   at  By ,0=        [3.39] 

Here the parameters He and γ were substituted into the equation to yield the final result. He was 
already shown in the previous paragraph, while γ is shown below.  
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( )
[ ]

( )
[ ]









+
−

−
+

+
−= −−

rrrr

r

qqqq

q

s
f

s
f

f
αααα

α
αααα

α
γ

sinhcosh
sinh1

sinhcosh
sinh1

2
1

11    [3.40] 

This parameter is similar to He but is a correction applied to f rather than to 1. As can be expected the 
expression for γ reduces to the expression found by Mofjeld (1980) when made dimensional again 
and with s-1=0 (no slip).  

3.3 SOLVING THE WAVENUMBER RELATIONS  
The general solution to [3.38] reads  

yDyC ααη cossin +=  [3.41]  with 2
2

2 1 k
H

f
e

−
−

=α .   [3.42] 

Substituting this solution into the boundary condition ([3.39]), 

( ) ( ) 0cossinsincos =++− yDyC
H

kyDyC
e

αα
γ

ααα   at  By ,0= .  [3.43] 

Substituting y=0,B in [3.43] yields the following set of equations for C and D: 

0=+ D
H

kC
e

γ
α ,          [3.44] 

0sincossincos =







−+








+ BB

H
kDB

H
kBC

ee

ααα
γ

α
γ

αα .    [3.45] 

This system of equations leads to nontrivial solutions for C and D when the determinant equals zero. 
Taking the determinant, substituting the relation for α [3.42] and rearranging, leads to the following 
condition for nontrivial solutions: 

( )
0sin

1 2
22

2

=











−

−

−
Bk

H
Hf

e

e α
γ

 .        [3.46] 

In the following paragraphs the two cases will be analysed for which the condition above is met.  

3.3.1 SATISFYING WAVENUMBER RELATIONS WITH KELVIN WAVES 

The condition [3.46] is met when k0 (index 0 signifies the Kelvin wave) satisfies (derived from [3.46]) 

( )
22

2
2
0

2 1
γ−

−
==

e

e

H
Hfkk  or 

( ) 1/22

0 2 2

1 e

e

f H
k

H γ

 − =  −  
.      [3.47] 

The positive root for k0 is chosen, so that the wave travels in the positive x-direction (it therefore 
represents the outgoing Kelvin wave). With a negative wave number the wave would travel in the 
negative x-direction (and would be the incoming Kelvin wave). The above combined with the relation 
for α yields the following.  

2 2
2 2 0

0 2
e

k
H

γ
α α= = −  or 0

0
e

ki
H

γ
α =         [3.48] 

Also here the positive root is chosen, because the negative root gives no extra information (it would 
be the same as choosing a negative value for k0 above, also see Pedlosky, 1982 and De Swart, 2008). 
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To find the equation for the free surface displacement, the first equation for C and D [3.44] is 
transformed.  

D
H

k
C

e0

0

α
γ

−=           [3.49] 

Value of D is for now set to unity, as η will be re-scaled with η0* eventually to find η*. The parameter 
D therefore serves no real function, as the actual amplitude will be determined by η0*. The relation 
for C is substituted in the relation for η  [3.41]. After substituting the relation for α [3.48] for which a 
Kelvin wave is found and some final rearranging, the expression for the lateral dependency of the 
surface displacement is found to be 

( ) ( )eHyky γη 0exp −= ,         [3.50] 

which is used in equation [3.37]. 

To transform the rotating velocity components back into the normal velocity components the spatial 
derivatives of the surface displacement are needed. These are substituted into the equations for the 
rotating components [3.31] and [3.33]. Using the relation between the normal and rotating velocity 
components [3.10] the following is eventually found for the velocity components.  

( )( )




























++








−

−
ℜ=

ee H
Z

H
Ztxkiiku γγη

1ˆ1
2

exp 00      [3.51] 

( )( )




























+−








−

−
ℜ=

ee H
Z

H
Ztxkikv γγη

1ˆ1
2

exp 00      [3.52] 

Here ( ) ( )[ ]( ) 111 −−−−= fzQizZ  [3.53] and ( ) ( )[ ]( ) 111ˆ −+−−= fzRizZ  [3.54], with Q and R 
defined in [3.32] and [3.34] respectively. To find the vertical velocity w the spatial derivatives of the 
velocities u and v are needed (see the continuity equation [2.30]). The bottom and surface boundary 
conditions are used to find the final expression for w, which reads:  

( ) ( )( )





















−

−
ℜ= Z

H
txkiyk

w
e

~1
2

exp
2

2
0

2
0 γη ,       [3.55] 

with  

( ) ( )[ ] ( )[ ]








+

+−
−

+
−

+










+

+−
−

−
−

= −−
rrr

rr

rqqq

qq

q s
zz

f
i

s
z

z
f
izZ

ααα
αα

αααα

αα

α sinhcosh
sinh1sinh1

1sinhcosh
sinh1sinh1

1
~

11 . [3.56] 

3.3.2 SATISFYING WAVENUMBER RELATIONS WITH POINCARÉ MODES 

The condition 0sin =Bα  follows from expression [3.46] and is met when  

,...3,2,1, === n
B

n
n

π
αα .        [3.57] 

Herein αn=0 is not a valid solution because [3.41] then reduces to ( )y Dη = , which means it will 

have no lateral variation. The lateral velocity is however non-zero; both factors combined means that 
such a wave cannot meet the condition of vanishing depth-integrated normal flow through the walls 
(Pedlosky, 1982). Combining the relation above with the previously found equation for α2 [3.42] gives 
the following.  
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2

22
2

2
2 1

B
nk

H
f
e

n
π

α =−
−

=          [3.58] 

As in the previous section here the positive root of α is chosen. For this problem the tidal frequency 
is given (M2-tide), but the wavenumber is unknown so the relation above is transformed to find the 
wavenumber  

2/1

2

2221









−
−

±==
B

n
H

fkk
e

n
π

.        [3.59] 

As in the previous section here the positive root is chosen. To find the equation for the free surface 
displacement the relation [3.44] for α is transformed.  

D
H

k
C

en

n

α
γ

−=           [3.60] 

The parameter D is called ηn (with ηn= ηn
*/η0

 *) from now on. The relation for C is substituted in the 
relation for nη  [3.41] (the subscript n is added for clarity). After substituting the relation [3.58] for α 

for which Poincaré modes are found and some final rearranging the expression for the lateral 
dependency of the surface displacement is found.  
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To transform the rotating velocity components back into the normal velocity components the spatial 
derivatives of the surface displacement are needed. These are substituted into the equations for the 
rotating components [3.31] and [3.33]. Using the relation between the normal and rotating velocity 
components [3.10] the following is found for the velocity components.  
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where ( ) ( ) ( )ˆ sin cosn n n n
e

ny y k y
B H
π γ
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      [3.63] 

To find w the spatial derivatives of the velocities u and v are needed (see the continuity equation 
[2.30]. The bottom and surface boundary conditions are used to find the final expression for w, which 
reads: 
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with Z~  as defined before in equation [3.56].  

 

 

 



Modelling the three-dimensional flow structure in semi-enclosed basins                                          Olav van Duin 

 

25 September 2009                                                                                                                                             Page 24 of 58 

4 WAVE MODES IN SEMI-ENCLOSED BASINS 
In this chapter a solution for tidal flow in a semi-enclosed basin is found. The Kelvin wave described 
before travels along the positive x-direction and is therefore the outgoing Kelvin wave. In the first 
paragraph the expressions for the incoming Kelvin wave are derived. After that, depth-averaged 
versions of the expressions for the outgoing Kelvin wave are presented (the incoming versions can be 
derived analogously). In the final paragraph these depth- averaged expressions will be used to find 
the amplitudes of the different wave modes by applying the lateral boundary condition [2.32] with a 
collocation method. Equation Section 4 

4.1  KELVIN WAVES 
The expressions that were derived before ([3.50], [3.51], [3.52] and [3.55]) apply to the outgoing 
Kelvin wave in an infinite channel but could have been derived for an incoming Kelvin wave as well. 
Because this incoming wave is needed as well the necessary adjustments to the original expressions 
are described below.    

The incoming Kelvin wave enters the system from the right and travels towards the lateral boundary 
at x=0 (see Figure 2). The direction of the horizontal velocities of the incoming wave must be 
opposite to that of the outgoing wave. The expressions for the outgoing wave can be easily adjusted 
by taking the negatives of these velocities.  

The incoming wave has its highest amplitude there were it enters the system, because due to the 
viscosity terms in the governing equations the wave experiences energy dissipation over distance, 
see paragraph 5.1.2. To ensure that the longitudinal dependency is correct the negative wave 
number k0 is used for the incoming wave (ik0xà-ik0x).   

The amplitude of the incoming Kelvin wave’s elevation and velocities must decrease with decreasing 
y (i.e. when moving away from the upper coast, see Figure 2). The expressions for the outgoing Kelvin 
wave of course let the amplitude decrease with increasing y (i.e. when moving away from the lower 
coast); therefore a negative lateral coordinate is used for the lateral dependency. Furthermore, to 
ensure that both the incoming and outgoing Kelvin waves have the same value for η at the upper 
and lower coast respectively (i.e. to ensure symmetry), the argument of expression [3.50] for η of 
the incoming wave is adjusted (yàB-y).  

These transformations are applied to the expressions found in 3.3.1 ([3.50], [3.51], [3.52] and [3.55]), 
resulting in the following equations for the incoming Kelvin wave:  
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For the outgoing Kelvin wave the original expressions are of course still correct and will be used to 
describe tidal flow in a semi-enclosed basin. It should be noted that due to dissipation the outgoing 
wave will have a lower amplitude than the incoming wave. To make sure this can be modelled 
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accordingly the incoming expressions are multiplied by a reflection coefficient R; the value of this 
coefficient will be calculated with a collocation method (see paragraph 4.3).   

4.2 THE DEPTH-AVERAGED MODEL 
In this paragraph depth-averaged equations for the horizontal velocities of the Kelvin waves and 
Poincaré modes will be derived. To ensure there is no normal depth-averaged flow through the 
lateral boundary, the numerical approach presented in paragraph 4.3 will use the expression for the 
longitudinal velocity.  

4.2.1 DEPTH-AVERAGED VELOCITIES OF A KELVIN WAVE 

The horizontal along channel velocity u of a Kelvin wave will be integrated over the entire water 
column. For this only the part between square brackets in the following expression will be integrated 

as only the Z  and Ẑ parameters are dependent on the vertical position.  
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After integration, substitution of the parameters k, γ and He and some rearranging the following 
result is obtained. 
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The depth-averaged horizontal lateral velocity v of a Kelvin wave is derived in similar manner.  
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After integration and some rearranging the following result is obtained. 
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This shows that boundary condition of zero normal depth-integrated flow at the channel boundaries 
is indeed satisfied by a Kelvin wave. This condition even leads to the property that the depth-
averaged lateral velocity is zero over the entire width of the basin.  

4.2.2 DEPTH-AVERAGED VELOCITIES OF POINCARÉ MODES 

The horizontal along channel velocity u of a Poincaré mode is integrated analogous to that of the 
Kelvin wave.  
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After integration and some rearranging the following result is obtained. 
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Also the horizontal lateral velocity v of a Poincaré mode is integrated over the entire water column.  
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After integration and some rearranging the following result is obtained.  
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The above shows that the depth-integrated lateral velocity of a Poincaré mode is not zero for all x, y 
and t (as opposed to a Kelvin wave). However, substituting y=0,B shows that the depth-integrated 
normal flow is indeed zero at the boundaries for a Poincaré mode.  

4.3 SUPERIMPOSING THE WAVE SOLUTIONS 
Here a solution to the tidal flow problem in a semi-enclosed basin is presented as a superposition of 
an incoming Kelvin wave, an outgoing Kelvin wave (with a reflection coefficient R) and an infinite 
number of Poincaré modes (where the amplitude depends on n). It should however be noted that for 
calculations not the infinite set of Poincaré modes is included (which would of course be impossible), 
but a truncated set of N Poincaré modes, which means that a total of N + 2 modes will be summed. 
For increasing N the solution comes closer to the exact solution, but it is expected that a set in the 
order of tens of Poincaré modes will lead to good results. The expressions for total displacement and 
velocities are as follows.  
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Of the N+2 modes the amplitude of the incoming Kelvin wave is a given. The relative amplitudes of 
the remaining N+1 modes (R and η0;n/η0) will be sought with the method described below. For this 
method conditions will be derived which the depth-integrated normal velocity must meet at the 
lateral boundary (at x=0). This leads to the following expression for utotal as function of y and t.  
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The collocation method finds the appropriate amplitudes of the separate modes by minimising the 
depth-integrated normal velocity for a fixed set of points at the lateral boundary. The N+1 collocation 
points have the following (x,y)-coordinates.  

( )my,0   with B
N

mym
1−

=   for 1,...,2,1 += Nm    [4.18] 

The depth-integrated velocity in the x-direction (alongshore) must be zero at these N+1 collocation 
points. The aforementioned translates to the following desired state (which should be met for all t).  

( ) ( ) 1,...,2,1for,0,at0 +=== Nmyyxu mtotal     [4.19] 
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Because this condition must be met all moments during the tidal cycle an expression for <utotal> that 
only depends on the lateral coordinate y is needed. Using equations [4.17] and [4.19] the following is 
derived:  
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This must hold at myy =  for 1,...,2,1 += Nm . The condition is written in the following form for 

simplicity.  
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Hereby AK;in, AK;out and AP are defined as (with expressions for η , nη  and nη̂ substituted): 
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In matrix-form the previous condition is as follows:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

( )
( )






















−
−

−
−

=













































+++++ 1;

;

2;

1;

2

1

1111;

;

2222;

1111;

*

,2,1,
,2,1,

,2,1,
,2,1,

NinK

NinK

inK

inK

NNPNPNPNoutK

NPNPNPNoutK

PPPoutK

PPPoutK

yA
yA

yA
yAR

NyAyAyAyA
NyAyAyAyA

NyAyAyAyA
NyAyAyAyA

L

M

M

M

KOKKK

M

M

η

η
η

 . [4.23] 

The amplitude vector is then determined using standard techniques in The MathworksTM MATLAB®.  
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5 FLOW PROPERTIES OF THE SOLUTION 
Properties of the wave solutions have been examined for the Northern part of the North Sea (see 
Figure 3), as that basin approximately is a semi-enclosed basin and has dimensions that match the 
assumptions and conditions used to derive the governing equations and boundary conditions. The 
basin is approximately 500 km wide and has an average depth of 65 m (taken from Davies & Jones 
(1995), also see figure below). The model derived uses a constant Coriolis frequency, therefore an 
average latitude of 55° is used. Equation Section 5 

 

 
Figure 4: bathymetry of the North Sea in meters (source: http://www.ifm.zmaw.de/) 

 

The Coriolis frequency then follows from *** sin2 θΩ=f  [5.1], with Ω* the angular frequency of the 
Earth’s rotation and θ* latitude. The vertical viscosity parameter Av* is calculated with 

*** 0.0025 HUAv =  [5.2]; this relation taken from Bowden (1967) models the observed maximum 

eddy viscosity in tidal currents in homogeneous water. The author actually uses the depth-mean 
amplitude of the current instead of the typical Kelvin wave velocity U*, with the latter probably 
smaller than the former. It is assumed this is compensated because the maximum eddy viscosity 
parameter instead of an average is taken.  For this case the principal semidiurnal tidal constituent as 
caused by the gravitational pull of the Moon (M2 tide) is used as the tidal forcing. The period T* of 

this constituent is 12 hours and 25 minutes and the tidal frequency is defined as ** 2 Tπσ = . The 

http://www.ifm.zmaw.de/)
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gravity constant g* is 9.81m/s2
 for this part of the Earth. The amplitude of tidal elevation η0* is a 

suitable value for that part of the North Sea taken from Sinha & Pingree (1997). The value for the slip 
parameter s* is taken from Davies & Jones (1995). In the table below the dimensional values are 
given for the mentioned parameters. 

 
 Value 

H* 65 m 
B* 500 km 
θ* 55 ° 

f* 1.19E-04 s-1 

Av* 0.0947 m2/s 

η0* 1.5 m 

σ* 1.41E-04 s-1 

g* 9.81 m/s2 

s* 0.005 m/s 

Table 1: model parameters of the Northern part of the North Sea 

 

The model is implemented in The MathworksTM MATLAB® and runs with a truncated set of Poincaré 
modes (N=20). Properties of the wave numbers, individual wave modes and the total solution will be 
presented in the following paragraphs.  

5.1 PROPERTIES OF THE INDIVIDUAL MODES 
In this paragraph properties of the individual modes are studied. First the wave numbers are 
handled, then certain aspects of Kelvin and Poincaré modes are examined and finally a translation is 
made between the used 3D friction model (with Av* and s*) and a depth-averaged model (2DH, using 
a friction parameter rfr*).  

5.1.1 WAVE NUMBERS OF KELVIN AND POINCARÉ MODES 

In the following wave number plots the results for different values of the viscosity Av* (with different 
markers) are plotted for the different wave modes (see Figure 5 and Figure 6). The resulting wave 
numbers have been made dimensional again; see Appendix B  for how various parameters are made 
dimensional again. Av* varies between 0.013 and 10 times the reference value mentioned above, the 
lower limit is chosen because MATLAB could not compute the results for lower values.  
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Figure 5: wave numbers k0* in the complex wave number plane for different values of Av* [m2/s] 

 

In the figure above the wave numbers k0* of only the Kelvin wave are plotted, alongside the inviscid 
wave number K* and (as a reference) the wave number k0;2DH* of a depth-averaged Kelvin wave (for 
varying friction parameter rfr*). It should be noted that for all depth-averaged calculations the model 
presented by Rienecker & Teubner (1980) is used (see Appendix C).  

For the Kelvin wave the real and imaginary part of the wave number increases with increasing 
viscosity and friction parameter (the former is also observed by Mofjeld, 1980). This signifies that the 
Kelvin wave shows increased dissipation while also its propagating character becomes stronger. This 
can be explained by looking at the expression for the wave number [3.47], which uses the 
parameters He [3.36] and γ [3.40]. These parameters have a depth-integrated contribution of the 
clockwise and counter clockwise components Q [3.32] and R [3.34]. This complex interaction (with 
hyperbolic cosines and sines) leads to the development of the wave number and also causes the 
‘bump’ in the graph above for the 3D model.  In paragraph 5.1.2 it will be investigated what the net 
effect (more dissipation or more propagation) of increasing Av* is on the 3D Kelvin wave. With 
decreasing Av* and rfr*, the imaginary part of the wave number of the Kelvin wave approaches zero 
and the real part approaches the inviscid wave number K*. This is to be expected, because when 
these values decrease the dissipation mechanism is ‘shut down’ and the properties should resemble 
that of an inviscid wave.  

In the following figure the wave numbers for all Kelvin and Poincaré modes are plotted in the 
complex plane for varying viscosity (the rate in the legend is multiplied with Av* of the reference case 
to get the used value). 
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Figure 6: wave numbers in the complex wave number plane for different values of Av* [m2/s] 

 

In the figure above, per value of Av* (the value in the legend multiplied with Av* of the reference 
case), the mode with n=0 (the Kelvin wave) has the highest real part of the wave number and the 
lowest imaginary part (they all plot in the lower right corner of the plot). With increasing n 
(increasingly higher Poincaré modes) the imaginary part increases, while the real part decreases. This 
signifies that the dissipative character of higher modes is stronger than that of lower modes. The 
Poincaré modes have a wave number that is partly real and partly imaginary. If the wave number 
would be purely imaginary the Poincaré modes would only exist directly at the coast, they would be 
bound. With a purely real wave number they would freely propagate throughout the channel, they 
would be free. In this case they are neither completely free nor bound, but because the imaginary 
part is generally much bigger than the real part their influence in the basin is limited to a small area 
and they can be practically called bound.  
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Figure 7: Poincaré wave numbers (n=1,2) in the complex wave number plane for varying Av*/Av;ref* 

 

The following can be more clearly observed in the figures above for two separate Poincaré modes 
than in the plot with all wave numbers. With increasing Av* the real part becomes larger for all 
Poincaré modes while the imaginary part shows a slight decrease, but only on the left side of the plot 
(for the smaller viscosity). On the right side of the plot there is a (slight increase) of the imaginary 
part with increasing A* before dropping off when the viscosity gets very high. This is due to the 
interaction between the clockwise and counter clockwise components Q and R, which in depth-
integrated form influence the Poincaré wave number through He (see expressions [3.32], [3.34] and 
[3.36].).  

5.1.2 PROPERTIES OF THE KELVIN WAVE 

The wave length of the Kelvin wave λ is determined by rek ;0/2πλ =  [5.3] with k0 the wave number 

of the Kelvin wave. The wave length indicates the progressive character of the Kelvin wave. The ratio 
D of the Kelvin wave amplitudes at two locations separated by one wavelength in the longitudinal 
direction shows the relative effect of the dissipation caused by inclusion of viscosity terms. This is 
given by ( )reim kkD ;0;0 /2exp π−= [5.4]. In the table below rate=Av*/Av*ref where the values with 

subscript ‘ref’ are from the reference case. Furthermore the resulting values for the wave number k0, 
wave length λ and decay ratio D are given.  

 
rate 0.01 0.1 1 2 5 10 

k0 (m
-1) 

5.61e-006+ 
5.52e-008i 

5.68e-006+ 
1.76e-007i 

5.70e-006+ 
5.21e-007i 

5.69e-006+ 
8.00e-007i 

5.80e-006+ 
1.55e-006i 

6.15e-006+ 
2.59e-006i 

λ (km) 1119 1107 1102 1105 1084 1022 
D 0.94 0.82 0.56 0.41 0.19 0.07 

Table 2: Kelvin wave properties 

 

The table shows that for increasing viscosity (the increasing parameters increase linearly with 
increasing Av*), the wave length first increases and then decreases, showing that the propagative 
character in itself first becomes stronger and then weaker which is due to the development of the 
Kelvin wave number (see 5.1.1). However, as the decay factor D keeps getting smaller regardless of 
whether propagation increases or decreases, the increase of dissipation is stronger.  
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5.1.3 PROPERTIES OF THE POINCARÉ MODES 

In the inviscid case for B<Bcrit with ( ) 121 −
−= fBcrit π  all Poincaré modes have a purely imaginary 

wave number (and are therefore bound, also see 5.1.1). However due to the addition of viscous 
effects the free modes gain a slightly dissipative character (the wave number is no longer purely 
real), while the bound modes gain a slightly propagating character (the wave number is no longer 
purely imaginary), like mentioned in Roos & Schuttelaars (2009) for horizontal viscous effects. The 
authors state that for small values of the horizontal viscosity and friction these modifications are 
small so that the condition B<Bcrit used in the inviscid case that says whether Poincaré modes are free 
or bound can still be used. It is assumed that this also applies for the current case (vertical viscosity). 
In the reference case Bcrit* is 1071 km and B* is 500 km, so all Poincaré modes are bound.  

In the table below the Poincaré wave numbers as well as the e-folding decay lengths are given 

(determined by 1
;

−= imnn kL ). In this table it can be seen that increasingly higher Poincaré modes 

have less influence in the channel as they decay over a smaller distance.  
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n kn (m-1) Ln (km) 

1 4.05e-007+5.52e-006i 181.000 
2 1.83e-007+1.22e-005i 82.000 
3 1.20e-007+1.86e-005i 53.700 
4 8.97e-008+2.50e-005i 40.100 
5 7.15e-008+3.13e-005i 32.000 
6 5.95e-008+3.76e-005i 26.600 
7 5.10e-008+4.39e-005i 22.800 
8 4.46e-008+5.02e-005i 19.900 
9 3.96e-008+5.65e-005i 17.700 
10 3.56e-008+6.28e-005i 15.900 
11 3.24e-008+6.90e-005i 14.500 
12 2.97e-008+7.53e-005i 13.300 
13 2.74e-008+8.16e-005i 12.300 
14 2.54e-008+8.79e-005i 11.400 
15 2.37e-008+9.42e-005i 10.600 
16 2.23e-008+1.00e-004i 9.950 
17 2.10e-008+1.07e-004i 9.370 
18 1.98e-008+1.13e-004i 8.850 
19 1.87e-008+1.19e-004i 8.380 
20 1.78e-008+1.26e-004i 7.960 

Table 3: Poincaré mode properties 

 

In the figure below the e-folding decay lengths are given for varying values of Av*, divided by the 
maximum decay length per Poincaré mode for the complete range of values. This shows that (in 
general) the decay length increases with increasing viscosity, but that the variation is small (no more 
than 9% for a rate between 0.01 and 10). Some modes achieve a local maximum at a rate of about 
0.5 and then decrease slightly to start increasing again for higher rates. That the influence of the 
Poincaré modes extends further when the viscosity increases seems a paradox, but apparently is a 
property of these modes. This can be observed in the wave number plot of figure Figure 6. For higher 
viscosity the real part of the wave number gets relatively higher (compared to the imaginary part), 
though it remains relatively small. But because this ratio changes its influence along the basin gets 
larger. 
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Figure 8: Poincaré decay length Ln for varying viscosity divided by Ln;max per value of n 

  

5.1.4 TRANSLATION OF WAVE MODE PROPERTIES TO 2DH FRICTION 

The 2DH model presented by Rienecker & Teubner (1980) can be seen as a simplification of the 3D 
model presented here. The only difference is that their model is depth-averaged and therefore does 
not use a slip condition and has a friction term that is a parameterization of the friction term used 
here. This means that there is no viscosity parameter or slip parameter but a single friction 
parameter rfr*. The question is which value for rfr* should be chosen to approximate the 3D flow 

properties. A first simple approximation based on velocity properties is given by ( ) ** 38 UCr dfr π=  

[5.5] (the Lorentz linearization of a quadratic friction law, see Zimmerman 1982) which gives 
rfr*=0.0012 m/s. This could be a reasonable approximation as it is directly based on the physical 
properties of the basin that still apply to the depth-integrated model.  

Another way to find values for rfr* is by trying to approximate the properties of the individual wave 
modes mentioned above. For this ranges of values for Av* and s* are used to determine the Kelvin 
wave length λ (a), Kelvin dissipation factor D (b) and the e-folding decay-length of the first Poincare 
mode L1 (c). These properties are also determined for a range of values of rfr*. Per combination of Av* 
and s* a value for rfr* is then found which has the smallest absolute difference with respect to λ, D 
and L1. These results can be observed in the plot below.  
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Figure 9: results for rfr* [m/s] for combinations of Av* and s* by fitting on (a) λ*, (b) D* and (c) L1* 

 

It should be noted that the ranges chosen for Av* and s* in the figure above are based on the range 
of typical values for the North Sea in Besio et al. (2008). This range was between 0.01 and 0.05 m2/s, 
but was extended to between slightly above zero and almost 0.20 m2/s (approximately 2 times Av;ref*) 
to show something more of the development of rfr*. The range reported for s* was between 0.005 
and 0.01 m/s, but was extended to between slightly above zero and 1 m/s because the development 
of rfr* below 0.01 m/s was quite minimal for the dissipation factor and decay length plot. It should 
also be noted that the horizontal scale is logarithmic.  

In the figure above it can be seen that in general with increasing Av* and s the friction parameter rfr* 
becomes higher. This is because friction and viscosity both cause energy dissipation and because the 
slip parameter also limits the flow throughout the water column by limiting the flow at the bottom. 
The Kelvin wave length and dissipation factor plots show a continuous development of rfr* which is to 
be expected as those parameters are closely related to dissipation effects.  

For the decay length plot a large combination of slip and viscosity parameters lead to a value of zero 
for rfr*. This means that only an inviscid depth-averaged Poincaré mode can approach the desired 3D 
decay length. This is probably because the imaginary part of the Poincaré wave number and thereby 
the decay length only lightly responds to changes in viscosity (see Figure 6 through Figure 7). Only 
with higher viscosities than about 0.15 m2/s (about 1.4 times Av;ref*) the decay length of the first 
Poincaré mode becomes lower than it was for zero viscosity (see Figure 8) and for somewhat higher 
values there is more development of rfr* in the figure above. This means that the decay length is 
always lower for the 3D model until viscosity is high enough (largely regardless of s*).  

With the reference case mentioned in the introduction of this chapter it is found that rfr* equals 
4.1*10-3, 1.7*10-3 and 0 m/s for the fitting parameters (a), (b) and (c) respectively. Even the largest of 
these values is still a factor 3 smaller than that found with expression [5.5] and the three fitted values 
themselves also differ significantly; this at least signifies that the 4 methods are distinct, which leads 
to the best results depends on what is deemed most important. In the following paragraphs and 
chapters this is explored further.  

5.2 PROPERTIES OF THE TOTAL SOLUTION 
In this chapter properties of the total solution are given in the form of elevation and current 
amphidromic systems. The solution is constructed by use of the collocation method described in 
paragraph 4.3; this method determines the relative amplitudes (R for the outgoing Kelvin wave and 
ηn for all used Poincaré modes) in such a way that there is no depth-averaged normal flow at the 
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lateral boundary. The amphidromic systems are compared to an equivalent depth-averaged model 
with the values for rfr* derived before.      

In general the amplitude is determined by removing the time-dependent component of the 
expression (for u, v, w or η) and taking the absolute value (complex modulus). This gives an 
expression that gives the amplitude per x,y-location. This can be seen in the expression below for the 
fictional parameter p (which can be replaced with u, v, w or η).  

( ) ( ) ( ) ( )∑
=

++−−=
N

n
ntotalp yxpyxRpyBxpyxr

1
00; ,,,,      [5.6] 

Instead of taking the absolute value also the phase can be determined which yields the following 
expression. Coordinates with the same phase reach their maximum value at the same moment in the 
tidal period.  

( ) ( ) ( ) ( )







++−−= ∑

=

N

n
ntotalp yxpyxRpyBxpyx

1
00; ,,,arg,θ      [5.7] 

5.2.1 ELEVATION AMPHIDROMIC SYSTEM OF THE TOTAL SOLUTION 

In the figure below the elevation amphidromic system is given; in this figure the coloured lines signify 
the contours of a certain tidal elevation in m while the black lines denote the phase at which that 
point reaches its highest elevation. In general this tidal pattern looks like what can be expected in a 
semi-enclosed basin.  

 

 
Figure 10: amplitude and phase of η [m] 

 

The one produced by Davies and Jones (1995) looks similar. The phase pattern has a similar shape 
but has a phase shift of about 300 degrees. The amphidromic points (where the amplitude is zero) lie 
at roughly the same location and the amplitude development looks very similar as well. This 
strengthens the trust in performance of the model as those authors used a more complex numerical 
3D model. In the following plots the elevation amphidromic system of the basin is plotted for the 
depth-averaged model. For this the four values of rfr* derived in paragraph 5.1.4 are used.  
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Figure 11: amplitude and phase of η [m] in the depth-averaged model 

 

From the amphidromic plots it can be seen that the depth-averaged model has widely differing 
results for the four values of rfr*. Those found with the Lorentz linearization and Kelvin dissipation 
factor D come rather close, but those based on the Kelvin wave length and the first Poincaré decay 
length do not. It should be noted that the approach with the largest friction (based on Kelvin wave 
length) gets the highest amplitudes because the amplitude of the elevation (and velocities) of the 
incoming Kelvin wave is fixed at the lateral coast for all variants and increases with distance from the 
lateral coast. Because friction is high, the decrease when moving towards the boundary is large and 
therefore the increase when moving away from the boundary is large. Therefore the amplitudes near 
the upper coast and the basin entrance (where the influence of the incoming Kelvin wave is 
strongest) become very large.  

Plots of the elevation amphidromy for varying viscosity and slip parameter are found in appendix D. 

5.2.2 LONGITUDINAL CURRENT AMPHIDROMIC SYSTEM 

In the figure below the longitudinal current amphidromic system is given (at the bottom). This shows 
that the current amphidromic points are localized between the elevation amphidromic points, which 
is because the elevation gradients are minimal there and the velocities must become very small as 
well (this relation derives from the governing equations). 
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Figure 12: amplitude and phase of u [m/s] (at the bottom) 

 

In the following plots the longitudinal current amphidromic system of the basin is plotted for the 
depth-averaged model with values for rfr* as found before.  

 

 
Figure 13: amplitude and phase of u in the depth-averaged model 

This shows a similar comparison of 3D and 2DH as for elevation. Again the approaches based on 
Kelvin dissipation and Lorentz linearization perform best.  

To compare the 3D approach with the 2DH approach the amplitude and phase across the water 
column at x*=354 km and y*=244km are plotted below. This location was chosen because no 
amphidromic point appears there and the figures are just meant to illustrate the differences between 
3D and 2DH for a ‘neutral’ location.  
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Figure 14: comparison of amplitude and phase of u across the channel 

 

This figure shows that there is a clear phase and amplitude difference between the 2DH and 3D 
approaches, but also along the vertical for the 3D approach as well. This signifies the importance of a 
3D approach in determining the precise structure of flow.  

5.2.3 LATERAL CURRENT AMPHIDROMIC SYSTEM 

In the figure below the lateral current amphidromic system is given (at the bottom). The 
amphidromic points are very different from those of the longitudinal current system and it can be 
seen that the influence of the Poincaré modes (which appear mostly in the left part of the basin) is 
stronger than that of the Kelvin waves (which dominate in the right part of the basin).  

 

 
Figure 15: amplitude and phase of v (at the bottom) 
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6 BOTTOM SHEAR STRESS MODELLING IN A SEMI-ENCLOSED BASIN 
In this chapter bottom shear stress is calculated for the 3D model as well as the 2DH model (with the 
values for rfr* found before). After that better values for the friction parameter are sought by fitting 
the bottom shear stress amphidromy of 2DH to that of the 3D case by adjusting the friction 
parameter.   Equation Section 6 

6.1 BOTTOM SHEAR STRESSES OF THE 3D MODEL 
To calculate the horizontal bottom shear stress the following formula is applied; 

( ) ( )
0

*

0

***
;

*
;

* ,,
==

==
ztotalztotalybxbb vusτττv  [6.1]. The amphidromic plot of these bottom shear stresses 

can be seen below.  

 

 
Figure 16: bottom shear stress (m2/s2) amphidromy in horizontal direction (3D model) 

 

These plots of course have the same shape as the horizontal velocity plots of before. Only the values 
differ with a factor of s*.  In analogy to the velocity plots it is observed that the stresses in x-direction 
are greater than those in the y-direction in the majority of the basin. Only at the lateral boundary the 
lateral stresses are greater, because there the longitudinal velocity at the bottom is limited by the 
boundary condition that there can be no normal depth-integrated longitudinal velocity at the 
boundary. The shear stresses in the lateral direction are probably largely dominated by the Poincaré 
modes, given the pattern. Because the influence of the lateral shear stress is generally limited 
throughout the basin it is not taken into account in the following comparison with the depth-
averaged model.  

6.2 BOTTOM SHEAR STRESSES OF THE DEPTH-AVERAGED MODEL 
To find out how the results of the 3D case compare with the 2DH case shear stress is also calculated 
with the depth-averaged model. Herein it is assumed that the resulting velocities apply at the water 

bottom. The shear stress is then calculated with ( ) ( )*
2

*
2

*

2

*

2

*

2

* ,, DHDHfrDHyDHxDH
vur== τττv  [6.2]. 

This leads to the following results (with the values for rfr* found before).   
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Figure 17: 2DH shear stress amphidromy in x-direction fitted on Lorentz and wave mode properties 

 

In the figure above it can be seen that the shear stresses of the 2DH model differ little to a lot with 
those of the 3D model. The rfr* based on Lorentz leads to 3 times too low amplitudes, rfr* based on 
the Kelvin wave length leads to 3 times too high amplitudes, rfr* based on the Kelvin dissipation 
factor leads to about 1.3 times too low amplitudes and rfr* based on the first Poincaré decay length 
gives no shear stress at all (because rfr*=0, see [6.2]). In general the 2DH model is weak in correctly 
predicting shear stresses, though the approach based on dissipation factor D* gives a reasonable 
result.  

6.3 VALIDITY OF 2DH BOTTOM SHEAR STRESSES 
To check how well the different 2DH approaches match the 3D shear stresses a basin error function is 
defined. This function is shown in the following expression:  

( )
1/22

* * * *
;* * 2 3

1
avg x x bDH D

BE dx dy
B L

τ τ = −  ∫ ∫ .       [6.3] 

Here L* is the plotting domain used before, which is somewhat smaller than the 3D Kelvin wave 
length for the reference case (see paragraph 5.1.2). The integral is taken over the entire plotting 
domain, though it is solved numerically rather than analytically. To have some references values to 
compare with the 2DH results of individual wave modes expression [6.3] for the bottom shear 
stresses of the full 2DH Taylor solution is minimized by finding the best fitting value for rfr*. Because 
previous results seem to signify that the Kelvin dissipation factor is a good measure of the full 
solutions shear stresses the same is also done for just the incoming 2DH Kelvin wave (which is of 
course compared with the shear stresses caused by the incoming 3D Kelvin wave). It should be noted 
that both results are just used as references; they serve as a kind theoretical best match between 
2DH and 3D bottom shear stresses. The results of these two optimizations can be seen in the figure 
below.  
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Figure 18: 2DH shear stress (m2/s2) amphidromy in x-direction fitted on bottom shear stress 

 

In the figure above it can be seen that both methods lead to similar results. The values found for rfr* 
differ less than 1% and the amphidromic patterns are almost indistinguishable. This means that by 
just looking at the incoming Kelvin wave values for rfr* can be found that comes very close to the one 
found when looking at the full Taylor solution. The stresses also compare well to the bottom shear 
stresses in x-direction as calculated for the 3D model (see Figure 16). The resulting individual wave 
mode properties of the 4 2DH approximations, the 2 2DH basin error function optimizations and the 
3D model are presented below. Also the maximum amplitude calculated for the basin (absolute and 
as a percentage of the 3D maximum amplitude) and the value for BEavg are given (absolute and as a 
percentage of the 3D maximum amplitude).  

 
Based on r*  

[m/s] 
λ*  
[km] 

D*  
[-] 

L1*  
[km] 

Max |τb;x| 
[m2/s2] 

Max |τb;x| 
[%] 

BEavg 
[m2/s2] 

BEavg 
 [%] 

Lorentz 1.24E-03 1126 0.65 180 1.01E-03 42 5.14E-04 21 
λ* 4.11E-03 1102 0.26 179 7.71E-03 319 1.39E-03 58 
D* 1.68E-03 1124 0.56 180 1.57E-03 65 3.17E-04 13 
L1* 0 1129 1.0 180 0 0 9.78E-04 40 
Kelvin in 2.27E-03 1120 0.46 180 2.52E-03 104 7.45E-05 3 
Taylor solution 2.28E-03 1120 0.46 180 2.54E-03 105 7.42E-05 3 
3D - 1102 0.56 181 2.41E-03 100 - - 

Table 4: summary of results of various methods 

 

The table clearly shows that the two references cases derived in this paragraph work best (as 
expected, as they are meant to do just that) and also by themselves they work quite well (an average 
error throughout the basin of 3%). Also, the difference between the one based on the full Taylor 
solution and just the incoming Kelvin wave is very small. This further signifies that the incoming 
Kelvin wave is a very important measure of the full solution. An explanation for this is that the 
incoming Kelvin wave itself of course determines how the outgoing Kelvin wave Poincaré modes turn 
out. The information of that incoming wave therefore strongly determines the total solution.  

Furthermore the quality of the Kelvin dissipation factor approach is once again confirmed. Its error is 
significant but still reasonable (13%) and all individual wave mode properties correspond well with 
the 3D case. After that the Lorent linearization gives the best result (21%), followed from afar by the 
Poincaré decay length approach (40%) and Kelvin wave length approach (58%). It should however be 
noted that the decay length approach in itself is very weak, as it defaults to a value of rfr*=0 m/s in a 
lot of cases (see 5.1.4). Its meaning is therefore virtually non-existent, which is confirmed by the fact 
that it cannot even exactly approach the parameter it was based on in the first place! It does have 
the best fit (the numbers are rounded down), but it does not have an exact fit for its own parameter 
like the wave length and dissipation factor approaches do have.  
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7 DISCUSSION 
The model presented in this paper has certain smaller and greater drawbacks. The chosen approach 
can only be applied to flat bottoms, while the influence of a sloping bottom can be significant (Davies 
& Jones, 1995). As there is no way to implement this in an analytical model this cannot be easily 
fixed. However, the model presented still leads to expected tidal behaviour so this may not be a big 
problem in this case. This also signifies that the assumptions (idealized basin shape, long waves et 
cetera) underlying the derivation of the linear governing equations and boundary conditions (starting 
from the Navier-Stokes equations) were reasonable for tidal flow in a semi-enclosed basin.  

It could be argued that the turbulence model is too simple, though it is still an improvement 
compared to Mofjeld’s work (1980). No variation of viscosity is allowed while that does occur. But 
still, the turbulence model at least gives 3D information and can be further tweak by adjusting the 
slip parameter so it is probably the best possible for an analytical model.  

The models performance with other tidal constituents is unfortunately unknown. Also the validity of 
some parameters and especially the used reference slip parameter is unknown and may be relatively 
weak. This is one of the reasons it was not compared in great detail to more complex models or 
compared at all to actual basins.  

It was assumed that a limited number of Poincaré modes would still lead to good results. For the 
reference case a truncated set of 20 Poincaré modes was used. In appendix E the relative amplitudes 
of the outgoing Kelvin wave and Poincaré modes of the 3D and 2DH model can be found. This shows 
that the higher Poincaré modes have a very small contribution compared to the lower Poincaré 
modes, which makes the use of a small set of Poincaré modes reasonable.  

Furthermore this model was developed under the assumption that the Froude number is very small. 
For the used reference case the Froude number turns out to be 0.02 (with η0*=1.5 m and H*=65m), 
so that assumption was reasonable.  

Also it was assumed that only long waves are dealt with. As the Kelvin wave length turns out to be 
larger than 1000 km and the tidal elevation is 1.5 m this assumption was very reasonable.  

 

 



Modelling the three-dimensional flow structure in semi-enclosed basins                                          Olav van Duin 

 

25 September 2009                                                                                                                                             Page 45 of 58 

8 CONCLUSION AND RECOMMENDATIONS 
8.1 CONCLUSION 
New expressions have been derived for the 3D flow field of a Kelvin wave experiencing vertical eddy 
viscosity in an infinite channel of finite width with a partial slip condition at the bottom. With these 
expressions the entire flow field can be calculated, which means the first research question is 
answered. The properties of that Kelvin wave have been investigated by delving into the expressions 
and the underlying parameters (wave number, et cetera). The Kelvin wave in general behaves as 
expected; it experiences increased dissipation with increased viscosity and has no depth-integrated 
lateral flow. One unexpected result was that though the Kelvin wave in general has decreasing wave 
length with increasing viscosity it still shows increasing wave length sometimes. This suggests its 
propagating character is increasing instead of decreasing. However, it should be noted that because 
of more rapidly increasing dissipation the net effect is still that it experiences increasing dissipation.  

Mofjeld’s (1980) analysis and the approach documented by Pedlosky (1982) were extended and 
indeed Poincaré modes were found to describe tidal flow in an infinite channel of finite width. For 
this new expressions were derived which eventually led to a condition (found by coupling the 
dispersion relation and near-coastal boundary condition) that allowed Poincaré modes. By using a 
partial-slip condition instead of a no-slip condition as done by the two mentioned authors the 
solution changed with respect to the parameters that describe the vertical dependency; this holds for 
the Kelvin waves as well as the Poincaré modes. This can easily be transformed back to the 
expressions for no-slip when the slip-parameter is set to infinity. The Poincaré modes also experience 
dissipation and are only active in a limited part of the basin. These modes do contribute to the depth-
integrated lateral flow. Higher Poincaré modes decay over a shorter distance, but increasing viscosity 
leads to greater decay lengths. 

By fitting the individual wave mode properties (Kelvin wave length, Kelvin dissipation factor and the 
first Poincaré decay length) of a depth-averaged model to those found for the 3D model values for 
friction parameters were found for ranges of viscosity and slip parameter values. This was applied to 
a reference basin (the North Sea) to find three specific friction parameters for further analysis. Also a 
value for the friction parameter was calculated from Lorentz linearization of the linear friction law. 
These were used in the depth-averaged model to compare a 3D approach with a 2DH approach.   

By using a collocation method the Kelvin and Poincaré modes were combined to simulate tidal flow 
in a semi-enclosed basin. This method calculates the amplitudes of the outgoing Kelvin wave and 
Poincaré modes so that no depth-integrated normal flow is present at the lateral boundary. This 
quasi-analytical solution compares well to the numerical model results of Davies & Jones (1995). 
Between the 3D and 2DH version of the model there are significant differences in amplitude of the 
elevation and currents. This signifies the importance of a 3D approach. This means that (as expected) 
for correct shear stress calculations a 3D approach is more appropriate as stress depends on the 
current properties.  

However, it is possible to approximate the shear stresses of the 3D model with a 2DH model 
reasonably well. A theoretically lowest average error of 3% was found by fitting the entire shear 
stress pattern as a reference. The friction parameter found with the Kelvin dissipation factor lead to 
an error of 13% (rfr* was about 1.7*10-3), while the one found with the Lorentz linearization lead to 
an error of 21% (rfr* was about 1.2*10-3). This is a promising result that can be improved further with 
the use or inclusion of more parameters. Especially parameters that relate to the (dissipation of) the 
incoming Kelvin wave will be of great relevance.  

All in all the construction of the first analytical 3D-model that describes tidal flow in a semi-enclosed 
basin using Kelvin and Poincaré modes with partial slip has lead to a valuable and promising 
instrument in further improving 3D and 2DH modelling. 
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8.2 RECOMMENDATIONS 
Although the model seems to perform well, it can be further validated by doing more sensitivity 
checks and more comparison with the mentioned and other authors. For instance Mofjeld (1980) 
describes more properties of the found Kelvin wave, such as the behaviour of the co-phase lines 
under influence of changing tidal frequency. Furthermore the behaviour in the boundary layers, the 
effects of a changing slip parameter on the individual wave modes and the tidal ellipses can be 
studied. The influence of the amplitude of the tidal elevation at the open end relative to the 
maximum depth and the influence of basin dimensions is found to be important by Winant (2007). 
Also the ability of the model to correctly include viscous effects can be checked by investigating if it 
reproduces the anticlockwise component of flow (Davies & Jones, 1995).  This all was not done in this 
research because it was outside the initial scope and could not be investigated quickly to add it later.  

Some properties that were investigated can be studied more thoroughly. For instance it is interesting 
to check how the (current) amphidromic plots change when amongst others the viscosity and tidal 
frequency (i.e. different tidal constituents) are adjusted. Also the lateral bottom shear stresses, 
tidally averaged bottom shear stresses can be of interest as well as the (dominant) direction of these 
stresses. 

A possible weakness of the model is its greatly idealized basin shape and parameters that are 
assumed to be constant (e.g. the eddy viscosity). It is therefore advised to investigate how important 
these aspects are for this particular model. This can be done by (as mentioned before) checking it 
with more other models, but also by trying to simulate basins that are closer (Gulf of California, see 
Carbajal & Backhaus, 1997) or further removed from the idealized basin shape. Also it is 
recommended to find better values for certain parameters, especially the slip parameter.  

The quasi-analytical approach also allows for the coupling of separate semi-enclosed basins with 
different dimensions and parameters. Coupling the Northern part (Davies & Jones, 1995) with the 
Southern Bight (Roos & Schuttelaars, 2009) is possible and may lead to interesting results. If this 
works out well the models applicability greatly increases. It may also be possible to couple a semi-
enclosed basin like an estuary with a single-coast basin like a shelf sea as done by Ye & Garvine 
(1998), but that requires some extra work for the single-coast basin as that is not supported by the 
current version of the model. 

The translation of 3D properties to a well-performing 2DH model can be further improved. It follows 
from the analysis presented here that the Kelvin wave and especially the Kelvin dissipation are a 
good measure of the total 3D solution. Other parameters that say something about the Kelvin wave 
could be used as the dissipation factor has been in this study to find a well-fitting friction parameter. 
For instance the amplitude of bottom shear stress at the lateral boundary could be used or the 
Rossby deformation radius. Maybe a combination of different parameters (dissipation factor 
combined with bottom shear stress amplitude) in a mixed fitting algorithm can lead to even better 
results. Especially in shallower basins or with greatly veering flow it is recommended to also include 
the lateral bottom shear stress in the analysis as that will increase in magnitude.  
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LIST OF SYMBOLS 
The symbols used in the main text of this thesis and their meaning can be found below.  

 
Scaled Dimensional Units Meaning 
A - - amplitude of depth-averaged velocity at the coast 

Ah Ah* m2/s horizontal eddy viscosity 

Av Av* m2/s vertical eddy viscosity 
B B* m basin width 
CD BEavg*  average error throughout basins between 3D and 2DH 
 CD - viscosity coefficient 

f f* s-1 Coriolis parameter / ration of inertial and tidal frequency 

g g* m/s2 gravitational constant 
H H* m undisturbed water depth 

He - - correction on 1 incorporating vertical structure (see γ) 

K K* m-1 typical inviscid Kelvin wave number 
k0 - - Kelvin wave number 

kn - - Poincaré wave number 
L L* m basin length 
m - - collocation number 
n - - Poincaré number 
N - - used number of Poincaré modes 
q - - clockwise rotating velocity component 
Q - - clockwise rotating depth-dependence of elevation 
r - - counter clockwise rotating velocity component 
R - - counter clockwise rotating depth-dependence of elevation 
rfr r fr* m/s 2DH friction parameter 

rp - - amplitude of placeholder parameter p (replaceable with u, v, w or η) 

s-1 s* m/s ratio of slip and vertical viscosity parameter / slip parameter 
t t* s time 
u u* m/s alongshore horizontal velocity 
U U* m/s typical inviscid Kelvin velocity 
v v* m/s lateral horizontal velocity 
w w* m/s upwards vertical velocity 
W W* m/s vertical velocity scale 
x x* m alongshore horizontal coordinate 
y y* m lateral horizontal coordinate 

ym  - lateral collocation coordinates 
z z* m upwards vertical coordinate 

Z  - - clockwise rotating depth-dependence of horizontal velocity 

Ẑ ^ - - counter clockwise rotating depth-dependence of horizontal velocity 

Z~  - - rotating depth-dependence of vertical velocity 
α0 - - Kelvin wave number root parameter 

αn - - Poincaré wave number root parameter 

αq - - clockwise rotating root parameter 

αr - - counter clockwise rotating root parameter 

γ - - correction on f incorporating vertical structure (see He) 

δh - - ratio of horizontal boundary layer and typical inviscid Kelvin wave length 
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δv - - square of Stokes number 
ε - - Froude number 
η η* m sea level elevation 
η  - - lateral dependence of elevation amplitude 

η̂  - - lateral dependence of Poincaré velocity amplitude 

η0 η0* m elevation amplitude factor 
θ θ* ° latitude 

θp - - phase of placeholder parameter p (replaceable with u, v, w or η) 

σ σ* s-1 tidal frequency 

Ω Ω* s-1 angular frequency of the Earth's rotation 

Table 5: symbols used in this thesis 
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APPENDICES 
A. MODIFYING THE NAVIER-STOKES EQUATIONS AND BOUNDARY CONDITIONS 
It is assumed that the flow is incompressible. Therefore the continuity equation reduces to the 
following because density ρ* now is constant, the density derivative becomes zero and the density 
parameter can be divided from the original equation: Equation Section  1 

0***
*** =++ zyx wvu .         [App.1] 

Incompressible flow coupled with the assumption of constant dynamic viscosity µ and gravity makes 
that the momentum equations reduce to the following:  

( ) ( )* * * * * * * * * * *
* * * * * * * * * * * * *

t x y z x x x y y z z
u u u v u w u p u u uρ µ+ + + = − + + + ,   [App.2] 

( ) ( )* * * * * * * * * * *
* * * * * * * * * * * * *

t x y z y x x y y z z
v u v v v w v p v v vρ µ+ + + = − + + + ,   [App.3] 

( ) ( )* * * * * * * * * * *
* * * * * * * * * * * * *

t x y z z x x y y z z
w u w v w w w p w w wρ µ+ + + = − + + + .   [App.4] 

Because the water depth is small compared to tidal wave length (long waves) vertical velocity w is 
relatively small, as are its derivatives and the momentum equation for w reduces to the following: 

( )*
* * * * * * * *

z
g p p g Hρ ρ η= → = + ,       [App.5] 

which is the expression for hydrostatic pressure. This can be put back in the momentum equations 
for u* and v* to find the following (H* drops from the equation because its derivative is zero): 

( ) ( )* * * * * * * * * * *
* * * * * * * * * * * * * * *

t x y z x x x y y z z
u u u v u w u g u u uρ ρ η µ+ + + = − + + + ,   [App.6] 

( ) ( )* * * * * * * * * * *
* * * * * * * * * * * * * * *

t x y z y x x y y z z
v u v v v w v g v v vρ ρ η µ+ + + = − + + + .    [App.7] 

By dividing these equations with the density parameter and replacing µ*/ρ* with the kinematic 
viscosity A the following expressions are found: 

( ) ( )* * * * * * * * * * *
* * * * * * * * * * * * *
t x y z x x x y y z z

u u u v u w u g A u u uη+ + + = − + + + ,   [App.8] 

( ) ( )* * * * * * * * * * *
* * * * * * * * * * * * *
t x y z y x x y y z z

v u v v v w v g A v v vη+ + + = − + + + .    [App.9] 

The viscosity must also incorporate additional supramolecular turbulence due to the nature of tidal 
flow (eddy viscosity). These additional turbulence effects are different for vertical and horizontal 
movement because the horizontal and vertical scales are very different, so horizontal and vertical 
viscosity parameters are distinguished.  

( )* * * * * * * * * * *
* * * * * * * * * * * * * *

h vt x y z x x x y y z z
u u u v u w u g A u u A uη+ + + = − + + + ,   [App.10] 

( )* * * * * * * * * * *
* * * * * * * * * * * * * *

h vt x y z y x x y y z z
v u v v v w v g A v v A vη+ + + = − + + + .   [App.11] 

Horizontal viscosity is typically small compared to vertical viscosity and other parameters, so the 
horizontal viscosity terms have a limited contribution. Furthermore the length scale horizontal 
viscosity operates on is very large while vertical viscosity operates on a limited length scale (water 
depth). The variation along the horizontal viscosity scale is much smaller than that of the vertical 
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viscosity scale, the velocity derivatives are small and these terms are therefore dropped from the 
expressions.  

* * * * * * *
* * * * * * * * * * *

vt x y z x z z
u u u v u w u g A uη+ + + = − + ,      [App.12] 

* * * * * * *
* * * * * * * * * * *

vt x y z y z z
v u v v v w v g A vη+ + + = − + .      [App.13] 

The flow is modelled on the f-plane which leads to the following expressions (including a Coriolis 
term and a Coriolis parameter which is constant): 

*************
******* zzvxzyxt uAgvfuwuvuuu +−=−+++ η ,    [App.14] 

*************
******* zzvyzyxt vAgufvwvvvuv +−=++++ η .    [App.15] 

Expressions [App.1], [App.14] and [App.15] are used as the starting equations in paragraph 2.2.1.  
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B. RESCALING OF SEVERAL PARAMETERS AND VARIABLES 
Some parameters have to be made dimensional again to supply dimensional results in the main text 
of this thesis. The expressions for these parameters derive from making the governing and derived 
equations dimensional again.  

**
qq H αα =           [App.16] 

**
rr H αα =            [App.17] 

** HHH ee =           [App.18] 

** Hγγ =           [App.19] 

** Kkk =           [App.20] 

** Kkk nn =           [App.21] 
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C. THE DEPTH-AVERAGED MODEL 
The following expressions to describe depth-averaged tidal flow in an infinite channel are taken from 
Rienecker & Teubner (1980) and are adjusted to most closely resemble the 3D expressions derived 
for this research. The expressions presented here are dimensional, as can be seen by the use of 
asterisks like in the main text of this thesis. The governing equations the expressions for 
displacement and longitudinal velocity are based on the linear depth-integrated shallow water 
momentum and mass equations described below: 

*

**
*****

** H
urgvfu xt +−=− η ,        [App.22] 

*

**
*****

** H
vrgufv yt +−=+ η .        [App.23] 

( )* * *
* * * * 0
t x y

H u vη + + = .        [App.24] 

The following boundary conditions also apply. 

∫
+

=
**

0

** 0
ηH

dzv  at  ** ,0 By =         [App.25] 

∫
+

=
**

0

** 0
ηH

dzu  at  0* =x          [App.26] 

The expressions for η* and u* and the collocation approach referred to in the main text are 
presented below.  

C.I. DISPLACEMENT 

The total displacement is calculated as follows.  

( ) ( )( ) ( )( )
( )( )

















−








−

+−−

+−+−+−−−=

∑
=

*

*
**

*

*
**

1
****

*****

**
0

****
0

*
0

***
0

****
0

*
0

*

sincos
exp

expexp

B
ynkf

B
yn

kif
txki

ytxkiRyBtxki

nn

N

n nn

nn ππ
αβ

αβ
ση

ασηασηη

, [App.27] 

 

with the newly introduced parameters: 

( )2*2*
***

*
2*2*2**

*
*

**

**
*
0*

*
0

*
*
0

****

β
β

σ
α

π
α

βσ
β

ασβ

+=+==

=
−

=−=

f
Hg

ikkk
B
in

Hg
ikkifiHr

nnn

fr

.   [App.28] 

Here rfr* is the only really new parameter; it is the friction parameter in m/s.  

C.II. VELOCITY 

The total longitudinal velocity is calculated with: 
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( ) ( )( ) ( ) ( )( )

( )( )


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
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ασ
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,           [App.29] 

with 

****

**
*

nn
n kHg

if
α
σ

φ = .          [App.30] 

C.II.i VELOCITY FOR COLLOCATION 

As for the 3D model in paragraph 4.3 here the expressions to determine the amplitudes of the wave 
modes are given.  

( ) ( )( ) 0expsincosexp ***
0*

*
0

1
*

*
*

*

*

****

***
*
0*

*
0 =−−


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
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yB
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π
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α
α

[App.31] 

at   

**
myy =    for   1,...,2,1 += Nm        [App.32] 

The equivalent in matrix form yields:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

( )
( )
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

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,[App.33] 

with 

( )( )

( )













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π
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.    [App.34] 

The amplitude vector is then determined using standard techniques in The MathworksTM MATLAB®.  
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D. ELEVATION AMPHIDROMY WITH VARYING VISCOSITY AND SLIP PARAMETERS 
In the figure below the elevation amphidromy under influence of changing viscosity parameter can 
be seen (rate = Av*/Av;ref*). 

 

 
Figure 19: amphidromic system of η [m] for varying viscosity 

 

This figure clearly shows a shift of the amphidromic points. This is because dissipation is stronger and 
therefore the relative influence of the incoming Kelvin wave (as opposed to the outgoing) is stronger 
along the lateral direction, and the line the amphidromic points lie on rotates towards the lower 
coast. 

In the following figure the elevation amphidromy under influence of changing slip parameter can be 
seen (rate = s*/sref*). 

 



Modelling the three-dimensional flow structure in semi-enclosed basins                                          Olav van Duin 

 

25 September 2009                                                                                                                                             Page 57 of 58 

 
Figure 20: amphidromic system of η [m] for varying slip parameter 

 

This figure slows a similar shift of amphidromic points with increasing slip parameter, though the 
effect is less pronounced than with a changing viscosity parameter. This signifies that the relative 
magnitude of the viscosity parameter is more important in determining the elevation pattern.  
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E. AMPLITUDES OF THE KELVIN AND POINCARÉ MODES 
For this study five sets of Kelvin and Poincaré modes were used. Their relative amplitudes were 
derived with a collocation method forced by an incoming Kelvin wave with an amplitude of 1.5 m. 
The resulting amplitude factors can be found in the table below. Multiplied with the amplitude of the 
incoming wave the actual amplitude of the respective mode is found.  

 
2DH Mode 3D 

Lorentz λ* D* L1* 

Outgoing 
Kelvin 

R  5.25e-001+ 
6.35e-001i 

 6.37e-001+ 
7.07e-001i 

 6.37e-001+ 
6.07e-001i 

 6.32e-001+ 
6.91e-001i 

 6.63e-001+ 
7.49e-001i 

1 -3.41e-001+ 
5.12e-001i 

-5.18e-001+ 
9.83e-001i 

-5.50e-001+ 
8.27e-001i 

-5.30e-001+ 
9.58e-001i 

-4.72e-001+ 
1.05e+000i 

2 -9.45e-002-
8.69e-002i 

-1.99e-001-
1.13e-001i 

-1.57e-001-
1.27e-001i 

-1.92e-001-
1.17e-001i 

-2.16e-001-
9.74e-002i 

3 -8.67e-003+ 
2.05e-002i 

-1.37e-002+ 
4.03e-002i 

-5.71e-003+ 
4.14e-002i 

-1.22e-002+ 
4.05e-002i 

-1.79e-002+ 
3.96e-002i 

4 -1.12e-002- 
9.99e-003i 

-2.39e-002- 
1.26e-002i 

-1.97e-002- 
1.31e-002i 

-2.33e-002- 
1.28e-002i 

-2.55e-002- 
1.15e-002i 

5 -2.21e-003+ 
4.89e-003i 

-3.33e-003+ 
9.74e-003i 

-1.35e-003+ 
9.83e-003i 

-2.97e-003+ 
9.78e-003i 

-4.32e-003+ 
9.60e-003i 

6 -3.40e-003- 
3.02e-003i 

-7.27e-003- 
3.78e-003i 

-6.01e-003- 
3.86e-003i 

-7.08e-003- 
3.84e-003i 

-7.74e-003- 
3.49e-003i 

7 -8.82e-004+ 
1.92e-003i 

-1.31e-003+ 
3.83e-003i 

-5.30e-004+ 
3.85e-003i 

-1.17e-003+ 
3.84e-003i 

-1.70e-003+ 
3.78e-003i 

8 -1.51e-003- 
1.34e-003i 

-3.23e-003- 
1.67e-003i 

-2.67e-003- 
1.70e-003i 

-3.14e-003- 
1.70e-003i 

-3.44e-003- 
1.55e-003i 

9 -4.53e-004+ 
9.74e-004i 

-6.68e-004+ 
1.95e-003i 

-2.71e-004+ 
1.95e-003i 

-5.97e-004+ 
1.96e-003i 

-8.67e-004+ 
1.92e-003i 

10 -8.31e-004- 
7.38e-004i 

-1.78e-003- 
9.21e-004i 

-1.47e-003- 
9.35e-004i 

-1.73e-003- 
9.35e-004i 

-1.89e-003- 
8.53e-004i 

11 -2.73e-004+ 
5.84e-004i 

-4.01e-004+ 
1.17e-003i 

-1.63e-004+ 
1.17e-003i 

-3.59e-004+ 
1.17e-003i 

-5.21e-004+ 
1.16e-003i 

12 -5.28e-004- 
4.69e-004i 

-1.13e-003- 
5.85e-004i 

-9.35e-004- 
5.93e-004i 

-1.10e-003- 
5.93e-004i 

-1.20e-003- 
5.42e-004i 

13 -1.85e-004+ 
3.94e-004i 

-2.71e-004+ 
7.90e-004i 

-1.10e-004+ 
7.91e-004i 

-2.43e-004+ 
7.93e-004i 

-3.52e-004+ 
7.81e-004i 

14 -3.72e-004- 
3.31e-004i 

-7.97e-004- 
4.13e-004i 

-6.60e-004- 
4.18e-004i 

-7.76e-004- 
4.19e-004i 

-8.48e-004- 
3.82e-004i 

15 -1.37e-004+ 
2.92e-004i 

-2.01e-004+ 
5.85e-004i 

-8.13e-005+ 
5.85e-004i 

-1.79e-004+ 
5.86e-004i 

-2.60e-004+ 
5.77e-004i 

16 -2.86e-004- 
2.54e-004i 

-6.12e-004- 
3.17e-004i 

-5.07e-004- 
3.21e-004i 

-5.96e-004- 
3.21e-004i 

-6.51e-004- 
2.93e-004i 

17 -1.09e-004+ 
2.32e-004i 

-1.60e-004+ 
4.66e-004i 

-6.47e-005+ 
4.66e-004i 

-1.43e-004+ 
4.67e-004i 

-2.07e-004+ 
4.60e-004i 

18 -2.36e-004- 
2.09e-004i 

-5.04e-004- 
2.61e-004i 

-4.18e-004- 
2.64e-004i 

-4.91e-004- 
2.65e-004i 

-5.37e-004- 
2.42e-004i 

19 -9.26e-005+ 
1.98e-004i 

-1.36e-004+ 
3.96e-004i 

-5.48e-005+ 
3.97e-004i 

-1.21e-004+ 
3.97e-004i 

-1.76e-004+ 
3.91e-004i 

Po
in

ca
ré

 m
od

es
 

20 -1.04e-004-
9.20e-005i 

-2.22e-004-
1.15e-004i 

-1.84e-004- 
1.16e-004i 

-2.16e-004- 
1.16e-004i 

-2.36e-004- 
1.06e-004i 

Figure 21: relative amplitudes of the outgoing Kelvin wave and Poincaré modes for 3D and 2DH (friction 
parameters based on four different methods) 


