M.Sc. Thesis

A Design of Software Architecture for

“SHAPE” Workforce Management Game

An external assignment at IBM Netherlands

By Xiaobo He and Elisabeth E. Mayasari

Software Engineering Group
Department of Computer Science
University of Twente

The Netherlands

Graduation Committee:
Prof. Dr. Ir. Mehmet Aksit (Software Engineering, University of Twente)
Keimpe Zandvliet (I'T Organization Consultancy Team, IBM Netherlands)

Ir. Joost Noppen (Software Engineering, University of Twente)

Enschede, August 2003

IBM Netherlands restricted
© 2003 International Business Machines Corporation

ABSTRACT

This M.Sc. thesis describes the design of software architecture for the SHAPE (Steering Human
Achievement and Purpose Effectuation) Workforce Management Game. SHAPE Workforce
Management Game (SHAPE WMG) is a game that simulates the effects of its player’s decisions in
an environment that can represent the actual business situation of the company where the player
works in.

The software architecture of this application is designed with a method called Synthesis-Based
Software Architecture Design (Synbad) that is developed by the Software Engineering chair of
Computer Science Department at University of Twente. Synbad translates the requirement
specification into technical problems, and if necessary decomposes each problem into sub-
problems, solve each sub-problem, and integrate the solutions into an overall solution which
represents the software architecture. This process involves identifying solution domains for every
sub-problem in which the existing knowledge of the relevant domains can be used to form the
architecture.

The method starts with requirements analysis that aims to understand the stakeholder requirements
and to define the system functional architecture that explains what operations should be performed
to meet the system requirements. The process continues with technical problem analysis. In this
phase, the requirements are mapped to technical problems. The requirements are generalized and
then decomposed into several sub-problems. In the next phase, the solution domain analysis phase,
a solution domain model is identified for each sub-problem. Then the knowledge sources are
identified for each solution domain. The next phase used in this project is the architecture
specification. This phase includes extracting semantics of the architecture and defining the dynamic
behavior of the architecture.

After designing the software architecture for the SHAPE WMG, the architecture is evaluated to
prove that it is a stable and reusable architecture. The evaluation is done by using the scenatio-
based architectural analysis where several evolution scenarios are defined for the system.

The project is then continued by implementing the architecture which results in a prototype of the
SHAPE WMG. A testing procedure is applied to test and validate the prototype in the final stage of
this project.

Through all the steps that are made in this project, the main objective is reached. That is to design
architecture for SHAPE WMG that can simulate the effects of its player’s decision based on the
current condition of the department using Synthesis-Based Software Architecture Design (Synbad)

method.

IBM Restricted i

ACKNOWLEDGEMENTS

We are very grateful that we have finally reached the completion of our thesis. We would like to
express our gratitude to the following people, without them this thesis would have been impossible
and improbable. First, we would like to give our gratitude to the graduation committee: Prof. Dr. Ir.
Mehmet Aksit who has given us high academic level guidance on the method and the solutions that
are used in this project, Keimpe Zandvliet, Ir. Joost Noppen, and Hans Van Dijk who have given
us very useful advice and support, and also kept us focusing on our design. We appreciate the time
they have spent to review our design and thesis and to give feedback on our work.

We are also very grateful that we had the opportunity to do our final project at IBM Netherlands,
which have brought a perfect ending to our Master of Science study in Telematics. The open
atmosphere at IBM and flexible working style has enabled us to learn and work freely. Many thanks
to Teunis Westbroek, who helped us in using WebSphere Development Tool and Java techniques
during our implementation phase. We also would like to thank Anna van Nouhuys and John

Timmermans, who joined the testing session and gave us many useful suggestions.

Xiaobo He wonld like to thank:

My family and my friends; I always feel lucky that I have such a nice family and a lot of good
friends. They always encourage me and offer me great help when I was in trouble or frustrated.
Dad and Mom, I love you. Also thanks to Elisabeth Mayasari, Nan Shi, Lin Li, Hong Chen, Rui
Wang and Shu Sheng.

Elisabeth Mayasari would like to thank:

My beloved Hananto Setiawan: for his constant care, love, and support. Thanks for believing in me.
My dad, mom, brothers and sisters in Indonesia: for the encouragement that has kept me going.
Xiaobo “Kevin” He: for such a good work that we have done together. Lina Marliani and Erlangga
P. Dharma: for taking really good care of me during the difficult times. My bible study friends: for
the constant prayers and the good times that always put me in a better mood. Last but certainly not
least, my God: for showing His love and faithfulness. Blessing, honour and glory only unto His

name.

August 15, 2003
Xiaobo He and Elisabeth Mayasari
Enschede, The Netherlands

IBM Restricted 1

TABLE OF CONTENTS

1 0L 76 10 T T o 1
1.1 Back@round ... e 1
1.2 Problem StatemMeEnt. ..o ss s 1
1.3 The ASSIZNMENT. ..o sssenas 3
1.4 The Development APProach........cciniciniicininieicciiecieieiesessssessssssesesaesesenees 3
1.5 Outline of the ThesiS ..o 4

2 Background WOork ...ttt 5
2.1 INHOAUCHON ettt 5
2.2 Decision SUPPOLt SYSIEMS c..cuuvucviviiriiieiitie sttt ssans 5

221 Group Decision SUpport SYStEMSc.cvrvimriimninniiiiciisisicsssssssessessssssees 6
2.2.2 Executive Information Systems or Executive Support Systems.........cceucueene. 6
223 Intelligent SUPPOLL SYSTEMS ...cuuvuvrieiiriieiiiriieieieieireieieisse ettt ssssessens 7
2.3 Software Development Methods ... 7
2.3.1 Artifact-driven Architecture Desigh. ..o 8
2.3.2 Use-Case driven Architecture Design ... 8
2.3.3 Domain- driven Architecture DesiZncocviurieiriericinienincinicineisiccsieceeinne 9
2.3.4 Pattern- driven Architecture Designcocvvviuvivieniiiininiiinccs 10
2.4 Synthesis-Based Software Architecture Design.......ccocvivivcivivcininininininicsiiennes 10
241 THe PrOCESS...cuiuiiiiiiciiicii s sas 11
242 Requirements ANALYSIS ..ottt sessessesens 11
2.4.3 Technical Problem ANalysiS......ccccooviviiiniiiininiiiiiiisscssssssssssssnns 12
244 Solution Domain ANALYSIS.....ccericriericrnieieinieeenieieeeeesstienessssessessssessesesennes 12
2.4.5 Alternative Design Space ANalysis.......ovevierininienimnieneirienieeeseseseeeseeeenenes 12
2.4.6 Architecture SPECHICAtION ...c.vucvuiuieciiericiiiietrecieie et 12

3 Requirements ANalySiS......cccceueeiiieiiiuieiiieiiiieinnieniiieninecteecnieessnessssessssesssseesnnes 14
3.1 INtOAUCHON ...ttt 14
3.2 Informal Requirements SPecification........ccccuiiiiiivinninicniiicsssssssssssssssns 14

3.2.1 Objective of the GaMEc.cuiiiciiiciicce s 15
322 Game Set-UpP Phase ... 15
323 Game Playing Phase ... 17
3.3 Use-Case and Scenario ANALYSISccccciiiiiiiimiiiincssssssssssssssssssssssssssssnns 18
3.3.1 Use Case Model and Scenatio for Game Set-Up Phase........cccccvcuvirviirinvcncnnce. 19
3.3.2 Use Case Model and Scenatio for Game Playing Phase.........cccoocvivvinincenennce. 21
3.4 State Transition DIagram ..ot 23

4 Technical Problem and Solution Domain Analysis........cceceerverueniunenseensnennensnnenne 25
41 INHOQUCHON .o s es 25
4.2 Technical Problem ANalysis.......ccccviriirieiniinieiniiieinieieiieeisieiesesessssessessssessssesessssnns 25

421 Requirements GeneraliZation ... 26
42.2 Guideline to Identify the Sub-Problems........c.coccvieeicinieiniinicrnieerernieinerniennes 26
4.2.3 Sub-Problems Identification and Specificationc..cvevcuvcuveereeneenerneerenreenennns 27
424 Sub-Problems PriofitiZation........c.cciuriecunieeiniinieiniisieiieieseiessesesesseessesesessssns 30
4.3 Solution Domain ANALYSIScceviviiiiiiiiiiiiiiiii s 31
4.3.1 Solution Domains Identification and Priofitizationc.ecueeeeeeiencicienieeinnns 31
43.2 Knowledge Sources Identification and Priofitizationcecveveeveevcerevreerennne 34

IBM Restricted 1i1

5 Architecture SPeCifiCationuueieeeeiciieiiiieiniienrenrece e 35

5.1 INOAUCHON ettt 35
5.2 CoNtrol SYStEMcuuiviiiviiiiciiiiciiiiissssssss s 36
5.3 Application of Control System to SHAPE WMGcccocvivivininininininiinicniennns 36
531 CONLLONEL ..ottt 37

53.2 Controlled SYStem......ccviiiiiiiiiriciiieieiieieiiesisieisiesesse s ssssesaes 38

5.3.3 ENVIFONMENT ...ttt bbb sssasses 39

5.3.4 High Level CoNtrollercoiiiiiiiiiiiiiieiecisensisnsessssessssssesssssessnes 40

54 SHAPE WMG ALCRIECTULEuvuuiuiieieiiieieieieeieeieeeieisesesesesesessse s sssssesssssssssssssssessens 41
5.4.1 Internal Structure of Business Modeling Component...........cccuveueueeureecuncerennn. 44

5.4.2 Internal Structure of Business Reference Model Componentcccecuuece. 47

543 Internal Structure of Correction COMPONENL......cwiiieuireiiirinsciririeeeneneenaes 47

544 SHAPE WMG Architecture as Decision Support System.......c.cecevcevcurcucnnce 49

5.5 Semantics Extraction of the ArchiteCtureccocvieuiiriciniiriciniiciciiceceiesciienaes 50
5.5.1 Game Setup Phase......ciiiiiiiicsnnes 50

5,52 Game PlayIng Phase ..o ssssssssnes 54

5.6 Dynamic Behavior of the AfChIteCture. ... 61
5.6.1 Game Setup Phase......cceciciiiniciiiniciciicicicciie e 61

5.6.2 Game Playing Phase ..o ssssssssnns 62

6 Evaluation of ArChiteCtULEueevereeeeriteeitictenteentee et saesaeessaees 65
0.1 INEIOAUCHON w.eeeieie ettt 65
0.2 Software Architecture Evaluation Method..........cociviivininininininiinincisiisiinens 05
0.3 Evaluation on SHAPE WMG AfCRItECTULEeuvvuivrcrieiieicieiiiiseiciseieiensesenceseneeen 65
0.3.1 Scenarios Development ..ot 65

6.3.2 Evaluation on Evolution SCENATIOSc.cuvveuivrieeirivrieiniieieineieieiseeeesseseseesesenne 66

0.3.3 Evaluation on Changes Required........cccccoeuriiininininininisicicisicicicieenennes 68

6.3.4 Overall Evaluation ... 68

7 Implementation and Testingccueveereriienieinieniiiniinienrcreniee e ssesees 69
7.1 INOAUCHON . 69
7.2 Game Setup IMplementation.......ceiniciiniiiiiese s 09
721 Class DIagram ...t ssssssssesans 70

7.2.2 Coding of the Game SEtup ..o 74

7.3 Game Play IMplementation ... sessessessesssssssaens 78
7.3.1 Class DIagram ...t sssisssssaes 79

7.3.2 Coding of the Game Playing.........cccocoeuccuviiivciniciniinicininicnicesieeeiceeieineas 82

TA TESHNG oo s 86
741 Game Setup Test CaASES ...t ssssaes 88

7.4.2 Game Play Test Cases ... ssssssesssssaes 89

8 Conclusions and Future WOorksoueeieeieiiiiniennienieniiiieniecienieceeseecnnennennns 92
8.1 INLIOQUCHON coeereierieeriiceieiii et ss s st sase s 92
8.2 CONCIUSIONS ..ttt bbb 92
8.2.1 Conclusions on Architecture Designcccvuviririiririiinisiciiicceeicnenes 92

8.2.2 Conclusions on Desigh Methodology..........ccuviiniviininiinininininininiiniianns 93

8.3 Recommendations for Future WOrks........covvvivinininininininiciceecee e 93
8.3.1 Future Works on Architecture Design ... 93

8.3.2 Recommendations for Synbad ... 94

IBM Restricted iv

A Scenarios for Use Cases in the Game Setup Phase.........cccoeveuieicnrennenecneeecnnnennnn. 95
B Knowledge Sources for Solution Domains.........eeeeeeeeniennnenneeniienneennennneneennnen. 102
C Test Cases for the Testing Procedureeiieiniinienniiiniinneenienninniennennene. 104
D 0110111 0 o 109
ReEfEIENCES .uuiiitiiiitiiiitiiiiitctct bbb s ba e e baaeas 116

IBM Restricted

Chapter 1

INTRODUCTION

11 Background

Over the years, IBM has helped pioneer information technology (IT). With the changes in the
industry, its scope and impact has also widened throughout the years: not only to develop
hardware, but also to expand their business to the development of software and services. Its
existence for over 100 years in this area has made IBM a very much experienced and
knowledgeable company. One of the services given by IBM is the Integrated Technology Services
(I'TS) whose mission is to assist its clients in achieving their e-business goals and ensure that their e-
business infrastructure is scalable, available, manageable and secure. I'TS provides the people, the
processes and the tools to help its clients deliver their expected business results.

The IT Organization Consultancy Team of ITS at IBM has recently tried to develop a new
approach to help their clients in understanding several workforce management issues that often
come up in their human resource situation. The idea is to let the managers of the client company to
play a game that can simulate the effects of their decisions in an environment that can represent the
actual business situation in the real world. This game is called “SHAPE” (Steering Human
Achievement and Purpose Effectuation) Workforce Management Game. The design and
implementation of this project was organized in a Master of Science project which results in the
writing of this thesis.

The architecture of this application is designed in this project with a method called Synthesis-Based
Software Architecture Design (Synbad). This method is developed by the Software Engineering
chair of the computer science department at the University of Twente. The approach used in this
method is to translate the requirement specification into technical problems, and if necessary
decompose each problem into sub-problems, solve each sub-problem, and integrate the solutions
into an overall solution which represents the software architecture. This process involves
identifying solution domains in which the existing knowledge of the relevant domains can be used

to form the architecture.

1.2 Problem Statement

Professional decisions can be confusing and making an inappropriate decision can cause serious
consequences. Making good decisions is one of the most important factors in successfully achieving
a company’s goal. One of the challenges that a company has to face is how to optimally make use

of its available resources to improve their business. A wrong allocation and false use of its resources

IBM Restricted 1

can result in high cost expenses with a minimum positive impact, while a better resource planning
could give the company a much better result with a much lower cost using the same domain of
available resources.

In fulfilling the mission to help its clients deliver their expected business results, the IT
Organization Consultancy Team of ITS in IBM came up with the idea to develop a game called
SHAPE Workforce Management Game (SHAPE WMG) that aims to help a company to
overcome the resource planning problems by evaluating the manager’s decision based on the
allocated budget, investment decision, and operational cost. This is done by showing the effects of
the manager’s decision that might lead to several unexpected results. The goal is to make the
manager aware of the actions that he makes based on the current situation. The more SHAPE
WMG represents the actual business situation of the department, the more things that can be
learned by the manager. SHAPE WMG acts as a tool used in the learning process of the decision-
making activities of its player in a form of a game. The game support the learning process by
simulating the effects of the game player’s decisions and giving feedback on why certain things
happen caused by the decisions. SHAPE WMG will be played in a workshop given by IBM IT
Consultants to their client. The game will be the core material in the workshop instead of the
support tool, where the game players, i.e. the I'T department managers, are guided throughout the
game by the consultants to be able to reach the purpose of the game. Figure 1.1 depicted the

interaction between the game player, SHAPE WMG and IBM Consultant that happen in the

workshop.
SHAPE WMG)
% Play Result %
7) >
Department Manager IBM Consultant
T Feedback

Figure 1.1 SHAPE WMG Workshop

Figure 1.1 shows a department manager that interacts with SHAPE WMG by playing the game.
The game receives input from the department manager who acts as the game player. The input
represents the player’s decisions to achieve the objective of the department based on the current
situation of the department that is given in the game. The game then simulates the effects of these

decisions. The IBM consultant, who gives the workshop, sees the results together with the game

IBM Restricted 2

player and gives feedback to the player on how to make better decisions and to consider some

factors that were not yet thought of by the game player.

1.3 The Assignment

The purpose of this MSc project is to design the architecture of SHAPE WMG which is depicted
in Figure 1.1. To implement such an application, a software design method is needed. In the start
of the project, Synbad was chosen as the software architecture design approach used in developing
SHAPE WMG because one of the purposes of the project is to discover the value and applicability
of Synbad in an applied research environment. Therefore the application of Synbad method is
evaluated at the end of this project to see how well the software architecture that is built using the
method can fulfil the requirements. The assessment of the design methodology is to provide
assurance of the ease of use of the Synbad method.

SHAPE WMG needs an architecture with which it can create an environment that resembles the
real condition of the player’s environment, i.e. the department in which the player works. The
architecture should also make it possible for the player to make decisions on what to do with the
current situation of the department. The effects of these decisions should also be simulated
according to the real situations that can happen in the real world. The assessment of the
architecture is to see how well the architecture solves all the problems arise in the game playing
requirements. But the more important requirement of this project is to create a stable and reusable
game architecture that allows future extension and configurations. Therefore, the assessment of the

architecture is mainly to prove the stability and reusability aspect of the architecture.

From the description above, we can formulate the main objective of this thesis as follows:

To design architecture for SHAPE Workforce Management Game (SHAPE WMG) that can simulate the effects
of the player’s decision based on the current condition of the department using Synthesis-Based Software Architecture
Design (Synbad) method.

There is a preliminary work of SHAPE WMG which was carried out in the previous year as a four-
month project [Jol02]. The work ends in the description of user requirements and a prototype of
the game. This thesis continues the work by analyzing the requirements, formulating the problems,

finding the solutions and continuing with a design that leads to the implementation of the game.

1.4 The Development Approach
During the project we used an architecture design approach that aims to scope the architecture

boundaries from a systematic problem-solving perspective. The method is called Synthesis-Based

IBM Restricted 3

Software Architecture Design Approach (Synbad) [TekOO]. There are four main steps in this
approach that are carried out in this project:

1. Requirement analysis

2. Technical problem analysis

3. Solution domain analysis

4. Architecture specification
The object-oriented analysis and design methods that we used in applying the Synbad are the
Unified Modeling Language [Boo99] and Design Pattern approach [Gam95].
The next step in this project is then to implement the SHAPE WMG based on the developed
design. The game is implemented with Java programming language using IBM WebSphere
Application Developer ®.

1.5 Outline of the Thesis

The rest of this thesis will be organized as follows:

Chapter 2 describes the background work that is related to this thesis. This chapter gives
introduction on Decision Support Systems, several software development methods, and description
on what Synthesis-Based Software Architecture Design is and how this design is used in developing
software.

Chapter 3 describes the user requirements of the system that is developed, in this case, from the
IBM point of view. This will be the basic requirements of the whole process of software
development.

Chapter 4 gives the problem and solution domain analysis as part of the steps applied in the design
of the system.

Chapter 5 describes the architecture of the system, all the components that are involved in the
system and the interaction between them.

Chapter 6 explains the justification of the architecture design described in the previous chapter.
Chapter 7 presents the implementation and testing of the game.

Chapter 8 ends this thesis report by giving conclusions of the project and some suggestions for

future work.

IBM Restricted 4

Chapter 2

BACKGROUND WORK

2.1 Introduction

This chapter will describe background work that is related to the system that was developed in this
thesis. Section 2.2 gives introduction about the definition of Decision Support Systems (DSS) and
the three types of DSS. Section 2.3 gives introduction on software development methods and
description of several architecture design methods. Section 2.4 closes this chapter with the
description of Synthesis-Based Software Architecture Design which is used as the approach in the

development of this project.

2.2 Decision Support Systems

Decision Support Systems (DSS) are information systems that support business and organizational
decision-making activities. It is intended to help decision makers make use of information from raw
data, documents, personal knowledge, or business models to identify and solve problems and make

decisions. The structure of the components is shown in Figure 2.1.

Decision Maker

A
DSS 4
Dialog Manager
A
External v v v
Datab
N i Data Knowledge Model
.| Management [T 7| Management [T 7| Management
Internal >
Database A 4

Figure 2.1 DSS Components

There are four main components that build DSS: data management, model management,
knowledge management, and dialogue manager. Data management includes internal or external
database that contain relevant data for the decision situation. Model management includes software
with financial, statistical analysis, graphical, project management, or other quantitative models.
Knowledge management provides knowledge for solution of the problem; it either supports the
other subsystems or acts as an independent component. The dialogue manager is the user interface

that enables the users to communicate with and command the DSS.

IBM Restricted 5

DSS exist in many different areas which usually include the following key components: data input,
data acquisition system, historical database, and main processing system. In general, there are three
types of DSS: Group Decision Support Systems, Executive Information Systems or Executive
Support Systems, and Intelligent Support Systems. Sections 2.2.1 to 2.2.3 describe the type of DSS

into more detail.

2.2.1 Group Decision Support Systems

Group Decision Support Systems (GDSS) are designed to assist joint decision making process by
helping members of the group to share information, exchange ideas and compare alternative
solutions. The systems consist of a set of software, hardware, language components, and
procedures that support a group of people engaged in a decision-related meeting. The meeting can
be in one location or several locations that happens concurrently or at different time. Typical
applications of GDSS include email, awareness and notification systems, videoconferencing, chat
systems, multi-player games, and meditation systems. The use of GDSS can help improving group
productivity and decision quality by improving the members’ participation in a meeting. The
decision support technologies that are used for GDSS include: decision-modeling methods such as
decision trees and risk analysis, structured group methods such as brainstorming, Nominal Group,
and Delphi techniques, and rules for directing group discussion. An example of a GDSS software
application is IBM’s Lotus Notes. With Lotus Notes, the users can have access to a central
database, communicate with each other, schedule a meeting, etc.

At the current stage, we do not plan to design a GIDSS. At a later stage, however, group decision
could be a relevant requirement. For example, SHAPE WMG could be developed to support
several department managers to play the game together and make the decisions as group decisions

instead of individual decisions.

2.2.2 Executive Information Systems or Executive Support Systems

Executive Information Systems (EIS) are designed to provide information to the top level
management of an organization in a highly summarized, convenient, and easy-to-use form. An EIS
can facilitate routine management reporting, year-end preview, control and review of major
projects, budget preparation, strategic planning, and a general review of the economic outlook. EIS
consists of software, hardware, procedure, information, and people. The system gathers, analyze,
and integrate internal and external data into information following a set of procedures that is then
shown to the executive in a very user-friendly form. It helps the executive find problems and/or
opportunities, and then the analysts and middle managers can use a DSS to suggest solutions to the

problems and/or what to do with the opportunities. The methods that ate used for finding

IBM Restricted 6

information needs in EIS include: by-product method, null method, key indicator method, total
study method, and Critical Success Factors (CSF) method. Examples of EIS software products are
Pilot Software’s Command Center and Comshare’s Commander Tools.

As EIS, the project we carried out is also designed to help the executives of a company in their
decision-making process. Currently, the design does not yet consider providing the executives with
access to integrated data that can help them in making decisions. The information given to the
department manager is simply numbers that represent several department properties. In the future,
it might be desired for SHAPE WMG to provide richer information that can higher the quality in

the decision making process.

2.2.3 Intelligent Support Systems

Intelligent Support Systems (ISS) are designed to support decision making with the use of Artificial
Intelligence, supported by a combination of databases, knowledge bases, experience and expertise.
The systems represent knowledge, offer intelligent advice or take intelligent decisions for the
problems found. One example of ISS is Expert Systems (ES). The goal of ES is to imitate human
intelligence in solving problems. ES can either support decision makers or completely replacing
them. ES combine several human experts from several individual human experts and compile these
into broad knowledge bases. Components of an ES are knowledge base, blackboard (the
workplace), inference engine (computer program that provides methodology for reasoning), user
interface, explanation subsystem (for explaining ES’ behavior), and a knowledge-refining system
(for analyzing, learning, and improving the system performance). The technologies that are used in
ISS include: neural networks, and fuzzy logic.

As mentioned before, ISS is used to replace human experts in making decisions. This can also be
the further development that could be applied in SHAPE WMG. The current requirement focus
on how the decision making is based mainly on the game player’s experiences in handling a certain
situation to achieve the objective of the department. In the future, it might be interesting to use
Artificial Intelligence in the application to offer intelligent advices that can help the department

manager to make decisions and at the same time to learn new strategy in achieving the objective.

2.3 Software Development Methods

A software development method is used to create a software architecture that is able to meet both
the functional and non-functional requirements in a precise and constructive manner. In addition,
the software architecture should be able to provide good quality of software such as correctness,
robustness, adaptability, reusability and maintainability. Today, there are many methods that can be

used in developing software. In [Tek00], software development methods are classified as either

IBM Restricted 7

artifact-driven, use-case driven, domain-driven or pattern-driven architecture design approaches.

Each of these approaches will be generally described in the following sub-sections.

2.3.1 Artifact-driven Architecture Design

An artifact is a general term for any kind of information created, produced, changed, or used by
workers in developing a system. The artifact-driven architecture design approaches are the approaches that
exctract the architecture description from the artifact descriptions of the method [Tek00]. A well-known method
of this approach is OMT (Object Modeling Technique) [Rum91].

OMT is an object-oriented development technique that consists of analysis phase and design phase.
The analysis phase starts with a problem statement that describes the requirement specification. It
will then continue with the search and the description of artifacts, the interaction between these
artifacts and the methods of the system from the perspective of data flow. The analysis phase
generates a set of artifacts instances. The analysis phase is then followed by system design phase,
where the overall architecture is defined. The artifacts are grouped into subsystems which form the
architectural components. Therefore, the software architecture consists of a composition of

subsystems.

2.3.2 Use-Case driven Architecture Design

In a use-case driven architecture driven method, the main focus is on descriptions of typical system
usage, known as use cases. In [Boo99] a use case is described as follows: A use case is a description of set
of sequence of actions that a system performs that yields an observable result of value to a particular actor. In this
description an actor is an entity that can interact with the system. Such an entity is mostly referred
as a role. The use case driven approaches are described in [Tek00] as follows: The use-case driven
architecture design approaches use the use cases as the primary artifacts for deriving the architectural abstractions.
This means that based on the use case model, developers create a series of design and
implementation models that realize the use-cases. The developers then review each successive
model for conformance to the use-case model.

An example of this approach is the Unified Process [Jac99]. The unified process can be described in
two dimensions. According to the first dimension, which is the time dimension, the process is
divided into four phases representing the dynamic aspect of the process: inception, elaboration,
construction, and transition phases. The goal of the inception phase is to capture all user
requirements in the context of use cases. The main activity of the elaboration phase is designing the
system in details. At the end of this phase, the design of dynamic and static view of the system is
completed. The implementation and the integration of the system are done in the construction

phase. The last phase is the transition of the product to its users. The second dimension divides the

IBM Restricted 8

process into six core workflows which represent the static aspect of the process: business modeling,
requirements, analysis and design, implementation, test and deployment workflows. Use cases play

a role in each of these six core workflows that compose the Unified Process.

Phases
Workflows | | Inception Elaboration Construction Transition

Business Modeling
Requirements

|

J

i

II
\
Y
|
I
|
,rl

Analysis & Design

i

Implementation = —
Deployment

)

i

Configuration
& Change Mgmt

Project Management
Environment |

'i
{

Initial Elab #1 | | Elab £2 || Const | Const
iy #1 #2

Iterations

g
i
3
{

o
=
%
[

Figure 2.2 Two Dimensions of the Unified Process [Kru01]

In the business modeling workflow, a business model is built to describe the business processes of
an organization. The requirement workflow captures the client’s requirements as use cases. Use
cases are identified to build use-case model which represents the system’s behavior. In the analysis
and design workflow, the use-cases realizations are created, which describe how the objects interact
with each other to help in identifying the artifacts. The identified artifacts are then represented in a
design model. During the implementation workflow, the design model is the implementation
specification where the use cases are implemented in terms of classes. In the test workflow, the
system is verified by performing each use case. The deployment workflow aims at producing

product releases and delivering the software to its end users.

2.3.3 Domain- driven Architecture Design

A domain model is a collection of structural information describing the properties of and
constraints of a domain. In [TekO00] they are characterized as: The domain-driven architecture design
approaches are the approaches that derive the architectural design abstractions from domain models. One example
of the approach that we will discuss in this chapter is DSSA (Domain-Specific Software

Architecture). DSSA consists of domain model, reference requirements, and reference architecture.

IBM Restricted 9

The domain model is obtained as the result of the domain analysis phase. The domain analysis
phase is done on a set of applications with common problems or functions. The elements of a
domain model are customer needs statement, scenarios, domain dictionary, context (block)
diagrams ER diagrams, data flow models, state transition models, and object models. Reference
requirements are requirements that apply to the entire domain. There are composed of functional
requirements, non-functional requirements, design requirements, and implementation
requirements. Reference architecture describes all systems in a domain based on the constraints of

reference requirements.

2.3.4 Pattern- driven Architecture Design

Design patterns are descriptions of communicating objects and classes that are customized to solve
a general design problem in a particular context [Gam95|. The pattern-driven architecture design approaches
are the approaches that derive the architectural abstractions from pattern [Tek00]. This approach starts with
requirement specification that represents a specification of a problem that may be solved using a
pattern. Then a search for a suitable pattern is carried on for the given problem description. The
search continues with Architectural Pattern Description which describes an architectural pattern. If
the rationale for applying a certain pattern is relevant with the given problem and the situation that
gives rise to the problem of the pattern matches the situation of the given problem, then the
process continues with applying the pattern to the given problem. The result of this phase is
Architectural Pattern which will then incorporated to the architecture description. Difficulties might
be found with this approach when there is no existing pattern that can solve a particular problem.

In this case, a non-pattern solution should be found to solve that particular problem.

2.4 Synthesis-Based Software Architecture Design

In [Tek00] synthesis is described in the following manner: Synthesis in terms of engineering means a process
in which a problem specification is transformed to a solution by first decomposing the problem into loosely conpled sub-
problems that are independently solved and integrated into an overall solution. In other words, synthesis is the
process between the concepts Problem Description to Solution Description in the whole software
development process. Problem Description is the result of the process of formulating the user
requirements into more well-defined problem statement to be able to describe the problem as clear
as possible. Solution Description is the representation of the solution suggested to the problems
described in the Problem Description. In software engineering the concept Problem Description
corresponds to the requirement specification that formulates the client needs in developing certain
software applications. The concept Solution Description corresponds to the software architecture

design that are ready to be implemented into the real product, ie. the software. The problem

IBM Restricted 10

description is first decomposed into several sub-problems. Every sub-problem is then solved
independently before being integrated into the overall solution.

A synthesis-based design process is defined as a finite sequence of synthesis states, resulting in a terminal state
[TekOO]. There are two possibilities of terminal state: successful design where solution is found for
the problem or unsuccessful design where neither design nor the specification can be modified.
This chapter will discuss the synthesis-based software design approach: all of the processes

involved in the method and how it is applied in a design of software.

2.41 The Process
In Synthesis-Based Software Architecture Design, a distinction can be made between five basic

steps, which are depicted in Figure 2.3.

Y Y
1 Technical 2 Solution 3 Alternative 4 5
Requirements »| Problem »| Domain p| Design Space p| Architecture
Analysis Analysis Analysis Analysis Specification

A

Figure 2.3 Synthesis-Based Software Architecture Design Approach [Tek00]

The lines with arrows in Figure 2.3 connect tasks. The direction of the arrow indicates the sequence
of the tasks. The diamond shaped symbol with a question mark represents the validation of a step.

The description for each basic process will be explained in section 2.4.2 to section 2.4.6.

2.4.2 Requirements Analysis

The goal of this phase is to understand the stakeholder (e.g. managers, software developers,
maintainers, end-users, customers, etc.) requirements and to define the system functional
architecture that explains what operations should be performed to meet the system requirements.
This phase usually begins with informal requirement specifications; which can be in the form of
textual document as a result of interaction with the client to understand the requirements. From
these requirements, the functional requirements of the system are then captured with use cases
technique. The use cases are used to model how the system will interact with the users. Scenarios
are instances of use cases that represent sequence of actions performed by the system. Afterwards,
state transition diagrams can be used to describe the dynamic behavior of the system in terms of

services.

IBM Restricted 11

2.4.3 Technical Problem Analysis

The next phase is to map the client requirements defined in the previous step to technical
problems. First the requirements are abstracted to provide more general and broader view of the
problems. Then the generalized problem is decomposed into several sub-problems. Each sub-
problem is given a name, initial state and goal. The prioritization and the order of solving the sub-
problems is then determined according to the client’s requirement or to the solution domain itself,

i.e. some sub-problems may required other sub-problems to be solved first before it can be solved.

2.4.4 Solution Domain Analysis

This phase tries to provide a solution domain model that will be used to derive the architectural
abstractions. The phase begins with identifying and prioritizing the solution domains for each sub-
problem. Every solution domain could have varied range of knowledge sources. Therefore, the
next step will be to identify the knowledge sources for each solution domain and to prioritize them
based on objectivity and relevancy. After identifying the knowledge sources, the process to gain the
knowledge can then begin. The activities involved in this process are to extract the knowledge and
then form solution domain concepts to describe the common properties of a set of instances.
These solution domain concepts are then structured using association relations, where every relation
is also derived from the solution domains. Another step in the solution domain analysis is refining
the solution domain concepts. This is necessary when a sub-problem has a complex structure that
needs to be solved in a more detailed level. The order of sub-problem refinement process is

determined by the previously determined prioritization.

2.4.5 Alternative Design Space Analysis

The goal of this phase is to provide a set of possible solutions that can be used for every solution
domain concept. First, the alternatives for every concept are defined. If a concept has a complex
structure, then it will be necessary to decompose it into several sub-concepts and then define the
alternative solutions for each sub-concept. The process continues with describing the constraints
between alternatives. This is done to control the number of all possible combination of alternative

solutions that could be very large and also to define the right architectural decomposition.

2.4.6 Architecture Specification

This phase begins with extracting semantics of the architecture. This is done for each concept to
provide more formal specification. The semantics for an operation of a concept defines the name
of the operation, the pre-condition of the concept values prior to the beginning of the operation,
and the post-condition of the variables value before the termination of the operation. The next step

is defining dynamic behavior of the architecture. Collaboration diagrams are used to illustrate this

IBM Restricted 12

dynamic view of the system. It models the interaction between components and therefore shows

how the components work together.

Further details and examples on the Synthesis-Based Software Architecture Design approach can
be found in [TekO00]. This thesis explains only the general view of the approach and the use of this
approach in designing the game application developed during the final project. Due to the demand
of implementing the application as soon as possible before the end of the project and the time
spent to learn the Synbad approach and several new concepts in developing software, a phase in
Synbad is skipped. The phase that is skipped in this project is the alternative design space analysis
phase. This means that for every concept formed in the solution domain analysis phase, one
solution is offered in the architecture specification phase without secking for other alternatives
solution. This one solution is obtained based on the existing knowledge of the people that are

involved in this project.

IBM Restricted 13

Chapter 3

REQUIREMENTS ANALYSIS

3.1 Introduction
As mentioned in the previous chapter, the goal of this phase is to understand the stakeholder
requirements and to define the system functional architecture that explains what operations should

be performed to meet the system requirements. The steps for this phase can be seen in Figure 3.1.

SYNBAD
Technical 2 Solution 3 Alternative 4 5
Problem »| Domain p»| Design Space p| Architecture
Analysis Analysis Analysis Specification

Requirements Analysis Phase

Specify 1 Use-Case 2 3 Define 4
Informal »| and Scenario »| Building p| Formal
Requirements Analysis Prototype Models

Figure 3.1 Requirements Analysis Phase of Synbad [Tek00]

The phase begins with informal requirement specifications as the starting point in describing the
user requirements. These requirements are then described in a more precise and broader
perspective by using use cases and scenarios. The step continues with building a prototype based
on the user requirements. At the start of this project, there is already a simple prototype that is built
using Lotus Approach ®. The prototype gives several ideas on how the user interfaces could be like
and the operations that can be done by the user of the application. The last step in this phase is
defining formal models. This thesis uses state transition diagrams to describe the dynamic behavior
of the system.

This chapter will discuss the requirements analysis phase that are carried on during the SHAPE
WMG project. Section 3.2 describes the informal requirements specification, section 3.3 describes
the functional requirements of the system using use cases and scenarios, and section 3.4 illustrates

the dynamic behavior of the system by using state transition diagram.

3.2 Informal Requirements Specification
The initial requirements of this project were given by I'T Organization consulting team of IBM. The

idea of this project is to develop a game called SHAPE WMG (Workforce Management Game)

IBM Restricted 14

that can simulate the effects of the player’s decisions in an environment that can represent the

actual business situation of the company where the player works in.

3.21 Objective of the Game
The game takes place in a department of a certain company. The department requires several
professions. Fach profession can be carried out by company’s own employees, subcontractors,
and/or outsourcers. Every profession in the department has an objective that is represented by a
productivity number of that profession. The productivity corresponds to the real netto production
that the different type of people produces. The objective of playing the game is to reach the
demanded productivity of every profession that exists in the department. This productivity should
be reached without exceeding the budget that is allocated to the department. Whether a game
player wins the game or not are based on that objective. A game player is said to win the game if he
fulfill one of the following condition:
- the game player is able to reach the productivity of most of the professions in the entire
game without exceeding the budget
- the game player is able to improve his decision making from the beginning until the end of
the game without exceeding the budget at the end of the game and finally reach the
productivity of most of the professions
A game player is said to lose the game if he cannot fulfill one of the above conditions.
The game is divided into two main phases: game set-up phase, where the game world is set, and

game playing phase, where the game is actually played.

3.2.2 Game Set-Up Phase

For the game to be able to provide current information of the department, then there should be a
phase where the game receives those information from a game manager. The game manager is a
consultant from the IT Organization consulting team of IBM who obtains this information by
interviewing the manager of the client’s department. The task of a game manager is to give input on

all the necessaries information:

Game-related Information
These are the information that is determined by the consultants themselves in order to give the
most suitable learning experience to the managers. The game should be able to allow the game
manager to give input to the following information:
- The length of a game period: the beginning of a game period is marked by the player submitting
his decisions and the ending of a game period is marked by the simulation of the effects of those

decisions.

IBM Restricted 15

The number of periods: represents the maximum number of game periods that can be played
from the beginning until the end of the game.

The disaster for every period: unexpected disturbance that is assigned to every game period. The
game manager should be able to choose one of the three possible disturbances: attrition rate

change, illness rate change, and budget change and set the changed value.

Business-related Information

These are the information about the current situation of the department that will be played in the

game. The information includes:

1.

Department information
The game should be able to allow the game manager to give input to the following department
information:
- For every employee per year: education days, vacation days, learning curve for employees,
education cost, recruitment cost, retention cost and golden handshake rate.
- For the whole department per year: total budget and budget change.
Business strategy information
The game should be able to allow the game manager to give input on the game strategy
description that should be applied to the department for every game period.
Profession information
The professions which are included in the game
- The game should be able to display a list of professions which the game manager can
include in the game. We will call this list available professions list.
- The game should be able to allow game manager to add a new profession that are not in
the available professions list or remove a profession from the list.
- The game should be able to allow game manager to include or exclude professions that are
displayed in the available professions list to or from the game.
For the employees in a profession
There are three defined types of employee:
a. Full Time Regular (FTR) employee: an employee of the own company who fulfills a forty
(40) men-hours a week.
b. Full Time Subcontracted (FTS) employee: a subcontractor who fulfills a forty (40) men-
hours a week
c. Full Time Outsourced (FTO) employee: an outsourcer from other company who fulfills a

forty (40) men-hours a week

IBM Restricted 16

For every profession which is included in the game

There are three defined types of profession:

a. Fixed profession: a profession whose configuration cannot be changed during the game.
The number of employees for this profession will remained the same for the whole game.
The type of employee in this type of profession is the FTR employee: productive FTR, an
employee who gives productivity to the company. The game should be able to allow the
game manager to give the following input for this type of profession:

- For every employee per year: compensation and compensation change per year
- For the whole department per year: number of employees.

b. Changeable and uncontractable profession: a profession whose configuration can be
changed during the game, but whose tasks can only be assigned to the company’s own
employees. The type of employee in this type of profession is the FTR employee: productive
FTR and obsolete FTR, an employee who is idle (doesn’t give any productivity). The game
should be able to allow the game manager to give the following input for this type of
profession:

- For every employee per year: compensation and compensation change per year

- For the whole department per year: number of productive and obsolete employees,
illness rate, attrition rate, and list of professions whose employees can be reeducated and
relocated to this profession.

c. Changeable and contractable profession: a profession whose configuration can be changed
during the game and whose tasks can be assigned to subcontractors or outsourcers. The
types of employee in this type of profession are the FTR employee (productive FTR and
obsolete FTR), the FTS employee, and the FTO employee. The game should be able to
allow the game manager to give the following input for this type of profession:

- For every type of employee (own employee, subcontractor, or outsourcer) per year:
compensation and compensation change per year

- TFor own employee in the whole department per year: number of productive and
obsolete employees, illness rate, attrition rate, and list of professions whose employees
can be reeducated and relocated to this profession.

- TFor subcontractor and outsourcer in the whole department per year: number of

subcontractor and outsourcet.

3.2.3 Game Playing Phase
SHAPE WMG is meant to be played by managers of a company. The decisions that can be made

by the game player are related to the configuration of employees in his department. The manager

IBM Restricted 17

should use their knowledge and skill to determine how many people to employ or dismiss and
whether those employees are from their own company, subcontractors or outsourcers to be able to
reach the objective of the company. During the game playing phase, the system should be able to
do the following tasks:
- display the length of the game period and the number of periods that are played in the game
- display the business strategy of the current game period at the beginning of the game period to
the game player
- display the current department information
- allow the game player to change the education days and/or retention cost values of the
department
- display the list of professions that are currently exist in the department
- display the detail information of every profession that are in the list
- allow the game player to hire and/or fire own employee, contract and/or terminate
subcontractor and/or outsourcer, and reeducate obsolete employee or from other profession
- allow the game player to change his decisions before he decides to submit all of his decisions as
final decisions
- display the result of the player’s decisions in the department level

- display the result of the player’s decisions in the profession level

Further and more detailed requirements on this project are documented in [Jol02] and [Zan02].

3.3 Use-Case and Scenario Analysis

After studying the basic requirements of the project, the next step is to express these basic
requirements in use cases and scenarios to denote the functional requirements. As described in
[Boo99), a use case is a description of set of sequence of actions that a system performs that yields an observable result
of value to a particular actor. An actor is the user of the system and therefore is external to the system.
A use case diagram models the behavior of the system from the user’s point of view. The purpose
is to define what the system should do. A use case scenario is an instance of a use case. It describes
a particular sequence of activities within a use case. The game is divided into two parts: game set-up
and game playing. The use case model and use case scenario will be described for each of these
phases.

The use case diagram is depicted using the graphical notations from Unified Modeling Language
(UML) [Bo099]. The rectangle represents the system boundary, the stick figures represent actors,
and the ovals represent the use cases. The line connecting actor with a use case means that the

actors initiate the events involved in that use case. The line with triangle in one end represents

IBM Restricted 18

generalization. The triangle is pointing to the superclass. The dashed-line with arrow represents the
extend- or include-relationship. An extend relationship from use case A to use case B indicates that
an instance of use case B may include the behavior specified by use case A. An include relationship
from use case A to use case B indicates that an instance of the use case A will also include the

behavior as specified by use case B.

3.3.1 Use Case Model and Scenario for Game Set-Up Phase
The use case model for the game setup phase of SHAPE WMG is depicted in Figure 3.2.

Time model (7\>
/ Read content
IT Consultant Look up helpv\\ S?imh
<<inc|ude>\ < >
\Read tutorial
— N -
\ﬂ;lude» . < % e >
- - N

Import game setup WVaIidate user Check password

<<include>> / <f‘>
/ <<extend>>——

/Setup game periods

Game Manager

L "
(==

Setup game manually\ Setup business strategies

<<extend>> >
/ / 7 <<exte$ < *‘>

<<extend>>

Ve '7‘\ <’7 <’7‘\Setup disasters
NS o)] -
Setup departmentdet}ilsvSetup professions Add profession details

] \ %

Y
e O
Add new profession —
Setup objectives
O O
_) C C D
Remove profession ncyde profession Exclude profession

Figure 3.2 Use Case Model for Game Set-Up Phase in SHAPE WMG

Figure 3.2 shows an actor named Game Manager that is a specialization of another actor named T
Consultant. The Game Manager is associated with three use cases: Look Up Help, Import Game Setup and
Setup Game Mannally. The three of these use cases include use case VValidate User. This use case is

responsible for verifying the identity of the user. The specialized use case of the use case [alidate

IBM Restricted 19

User that is used in the system is Check Password. Use case Check Password verifies the user identity by
checking a textual password.

The use case Look Up Help describes the look up help actions: the Game Manager can either read the
help content (use case Read Content), search help using keywords (use case Search), or read the game
setup tutorial (use case Read Tutorial).

The use case Setup Game Mannally describes the operations needed in setting up all the information
one by one: the length and number of periods (use case Serup Game Periods), game strategy for every
period (use case Setup Game Strategies), disaster for every period (use case Setup Disasters), the
properties of the department (use case Setup Department Details), and the professions included in the
game and the properties of every profession (use case Setup Profession). There are several actions in
setting up the profession: add new profession to the available professions list (use case .Add New
Profession), remove profession from the available professions list (use case Renove Profession), include
profession to the game (use case Include Profession), exclude profession from the game (use case
Excclude Profession), sets up profession details (use case Setup Profession Details), and sets up objectives
for every profession (use case Setup Objectives).

The use case Import Game Setup invokes the operation to read a setup file containing all the data to
be mapped to the required information. The scenario for Use Case Import Game Setup is described

below.

Scenarios for Import Game Setup Use Case
Scenario 1: System sets up all the values based on the imported game setup file

1. Game manager chooses the “import game setup” action.

2. Game manager selects a file.

3. System checks to see if the imported file is a valid game setup file.

4. 'The imported file is a valid file, system then loads the game setup file.

5. The setup values are set to the values that are in the game setup file.
Scenario 2: System fails to set the values since the imported file is not a valid game setup file

1. Game manager chooses the “import game setup” action.

2. Game manager selects a file.

3. System checks to see if the imported file is a valid game setup file.

4. 'The imported file is not a valid file.

5. System informs the game manager that the file cannot be loaded.
Scenario 3: There are no values set since the game manager cancels the import file action

1. Game manager chooses the “import game setup” action.

2. Game manager cancels the action.

IBM Restricted 20

3. System rolls the game manager back to the previous state before the game manager chooses

to import game setup.

The scenarios for the rest of the use cases in the game setup phase are described in Appendix A.

3.3.2 Use Case Model and Scenario for Game Playing Phase
The use case model for the game playing phase of SHAPE WMG is depicted in Figure 3.3.

SHAPE WMG .
(Game Playing Phase) <)

% / Read content
Department (, ; — (,,D

Manager Look up help\/\ Search

Read tutorial

\\\\ S
T <<extend>;/< >

Game Player ~ _ .

Q > Make department decisions
IS

.. \;
Make decisions <<extend>s— (f*)

Make profession decisions

Figure 3.3 Use Case Model for Game Playing Phase in SHAPE WMG

The use case model shows an actor named Game Player that is a specialization of a Department
Manager. The Game Player is associated with two use cases: Look Up Help and Make Decisions. As in
the use case model for game setup phase, the use case Look Up Help describes the look up help
actions: the Game Player can either read the help content, search help using keywords or read the
game playing tutorial. The use case Make Decisions describes the actual game play operations where
the game player gives input to the system as their decisions: use case Make Department Decisions
describes the operation to change several properties of the department and use case Make Profession
Decisions describes the operation to change the configuration of the professions included in the

game. The scenatio for every use case is described below.

Scenarios for Look Up Help Use Case
The scenarios for this use case are the same as that of use case Look Up Help in the game setup
phase. The difference is the content of the help: in the game setup phase the help content is related

to the game setup, while in the game playing phase the help content is related to game playing.

IBM Restricted 21

Scenarios for Make Decisions Use Case

Normal course:

1
2.
3

4.

Game player chooses the ““start game” action.
Game player gives inputs as his decisions.
Game player submits the decisions as final decisions.

System simulates the results of the game player’s decisions.
Y g play

Alternate course:

1
2
3.
4
5

Game player chooses the “start game” action.

Game player gives inputs as his decisions.

Game player changes his decisions.

Game player submits the decisions as final decisions.

System simulates the results of the game player’ decisions.

Scenarios for Make Department Decisions Use Case

Scenario 1: System sets new values of the department details

1.
2.
3.
4.

Game player chooses the “start game” action.
System displays the current details of the department
Game player changes education days and/or retention budget of the department.

System sets the current values to the values inserted by the game player.

Scenario 2: System fails to set new values of the department details since the game player cancels the action

1.
2.
3.
4.

Game player chooses the “start game” action.
System displays the current details of the department
Game player changes education days and/or retention budget of the department.

Game player resets the values, therefore cancels the changes.

Scenarios for Make Profession Decisions Use Case

Scenario 1: System sets profession decisions values based on game player’s input

—_

oA

Game player chooses the “start game” action.

System displays the list of professions that exist in the current game period.

Game player selects a profession from the list.

Game player choose the “see profession details” action.

System displays the current details of the professions including the objective for the current
game period.

Game player makes decisions by entering the number of employees that are going to be

hired or fired or reeducated.

IBM Restricted 22

7. System sets the current decisions as temporary decisions.

Scenario 2: System sets profession decision values as zero

3.4

1. Game player chooses the “start game” action.

2. System displays the list of professions that exist in the current game period.

3. Game player selects a profession from the list.

4. Game player choose the “see profession details” action.

5. System displays the current details of the professions including the objective for the current
game period.

6. Game player makes no decisions to hire or fire or reeducate any employee.

7. System sets the values of the decisions as zero.

State Transition Diagram

In this phase, we use State Transition Diagram to illustrate the state space of the system and the

possible transition from one state to another in the game playing phase. The game playing phase

can be divided into three main stages:

1.

Make decisions on department level

When the game starts a new period, it will first display the business strategy of the department
for that period. After that, the game player can read the details of the department properties for
the current game period. There are two properties of the department that can be changed by
the game player: education days and retention cost. The display of the department details also
includes the list of professions exist in the department. The game player can choose to read one
of the profession listed there.

Make decisions on profession level

After the game player chooses a profession from the list, the game displays the details of the
profession properties. Depends on the type of the profession, the game player can then make a
decision to reconfigure the current profession. For the configurable type of profession, the
following decisions can be made: hire FTR, fire FTR, re-educate obsolete, and re-educate from
other profession. For the contractable type of profession, the following additional decisions can
be made: make new or terminate FTS or FTO contract. The game player can still change his
decisions before he submits them as final decisions.

Commit decision and see results

After the game player submits the final decisions, the system will then show the result of the
decisions in the department level. The game player can choose a profession to view more detail
results in the profession level. After seeing the results, the game player can then move to the

next game period.

IBM Restricted 23

This dynamic behavior of the game in the game playing phase is depicted in Figure 3.4. The figure
uses the graphical notations from Unified Modeling Language (UML) [Boo99]. Each rectangle with
round corners represents a state, which is a point where some events need to take place before an
activity can continue. Exceptional are made for the start and the end state. The start state is drawn
as a solid black dot, while the end state is drawn as a solid black dot enclosed within a circle. The
lines with arrows model the transitions between states. A diamond represents a transition to

different branches.

Start new

period

Read business =
strategy
$ w
g
Change Read department Change hje}
education days details retention cost ¢}
—_—
Select
profession
—
—
Read profession
details
w
Sy
Hire FTR - Fire FTR Reeducate Read Make new FTS Terminate FTS ~[Make new FTO Terminate FTO ¥Q
obsolete Interchangeability contract contract contract contract o
[\
Reeducate from
other profession
—
Submit -
decision
w
g
y 8
Read profession Read department
results results O

—
Jg_ast period?
No

Yes

Figure 3.4 State Transition Diagram for SHAPE WMG

IBM Restricted 24

Chapter 4

TECHNICAL PROBLEM AND SOLUTION DOMAIN ANALYSIS

4.1 Introduction

After defining the user requirements, the next step in Synbad is to map these requirements to
technical problems that describe the actual problems specification to be solved. This phase is called
the Technical Problem Analysis. For every sub-problem defined in the Technical Problem Analysis,
a solution domain need to be searched. This phase is called Solution Domain Analysis.

This chapter will discuss the two phases and the necessary steps in more detail. Section 4.2
describes the Technical Problem Analysis phase and section 4.3 describes the Solution Domain

Analysis phase.

4.2 Technical Problem Analysis
The steps for this phase can be seen in Figure 4.1.

SYNBAD
1 Technical 2 Solution 3 Alternative 4 5
Requitements Problem Domain p| Design Space p| Architecture
Analysis Analysis Analysis Analysis Specification
Technical Problem Analysis Phase
1 2 3 4
General p| Identify »| Specify p| Prioritize
Requirements Sub-Problems Sub-Problems Sub-Problems

.

Figure 4.1 Requirements Analysis Phase of Synbad [Tek00]

First of all, the requirement specification is generalized and then mapped to technical problems. If
necessary, each sub-problem is then identified and specified. Before moving to solve the problems,
however, prioritization is done to determine which sub-problem needs to be solved first.

Subsection 4.2.1 describes the general requirements and subsection 4.2.2 describes the guideline
that is used to identify the sub-problems. The identification and the specification of the sub
problems are explained in subsection 4.2.3 and the prioritization of the sub-problems is described

in subsection 4.2.4.

IBM Restricted 25

4.2.1 Requirements Generalization
Referring to the main objective of this project described in section 1.3, the general problem of
SHAPE WMG was:

How 1o design architecture for SHAPE Workforce Management Game (SHAPE WMG) that can simulate

the effects of the player’s decision based on the current condition of the department?

The technical problems analysis defines every problem with an initial state and a goal that describes
the desired state, which is when the problem is solved. The initial state and the goal of the general

problem are:

Initial State: There was no application that designed for the purpose of simulating the decisions
of a department manager
Goal: Design an application that can simulate the effects of a player’s decisions in an

environment that can represent the actual business situation in the real world

The relevant solution domain for the general problem is simulation game. The solution domain
explains that the product of the project is a game that can simulate the input received from its
player. In the context of SHAPE WMG, the game represents the department where the game
player works in. The game player gives input in the form of decisions that are made to reach the
department objective. The game then simulates the effects of the decisions and updates the current
condition of the department based on those effects.

After defining the general problem and solution domain for SHAPE WMG, it is found necessary
to identify the sub-problems to be able to identify the real problems that will arise in the
implementation of the application. The identification of the sub-problems is carried out by using a

guideline that is explained in the following subsection.

4.2.2 Guideline to Identify the Sub-Problems
The guideline that is used to identify the sub-problems is by considering the following
categorization of problems:
1. Business problems
The problems in this category concern with the business aspect of developing an application;
the key factors to satisfy the client that initiates the development of the application
2. Application specific problems
The problems in this category concern with the modeling of the fundamental components that

are specific to the application being developed.

IBM Restricted 26

3. User-application interaction problems
The problems in this category concern with handling the interaction between the application
and the user.

4. Mathematical problems
The problems in this category concern with designing the mathematical model that is necessary
in the application.

5. Computer science problems
The problems in this category concern with modeling the business solution that refers to
knowledge on the computer science solution.

6. Quality requirement problems
The problems in this category concern with providing application design that is stable and

reusable while still is able to provide the proper functionality.

4.2.3 Sub-Problems Identification and Specification

The next step is to identify and specify the sub problems of the general problem described above.
Each sub problem is presented with label, name, initial state, and goal. The label consists of the
letter ‘P’ and a number that uniquely identifies the problem. The name describes the name of the

problem. The initial state and goal have the same meaning as used in defining the general problem.

Business Problems
o P1
Name: Resources planning
Initial State: Department managers find problems in making use of the available resources to
achieve the department goals.
Goal: Improve the department managers’ skill and knowledge in making decisions for resource
planning and make them aware of the possible effects on their decisions.
o P2
Name: Market change
Initial State: Department managers often not aware of the market condition that change rapidly
Goal: Increase the department manager’s awareness of several type of changes that can happen
in the market
o P3
Name: Business strategy
Initial State: Department managers find difficulties in applying the business strategy of their

department to the current situation

IBM Restricted 27

Goal: Improve the department manager skill in evaluating the current situation of the
department and applying the business strategy based on the current situation

P4

Name: Periodical decision making

Initial State: In order to learn decision making process and the effects, department managers
would first have to experience the negative effects of their decision in the real world

Goal: Provide learning experience where the game player has a chance to apply the new

knowledge and strategy learned in the previous period to the period after

Application Specific Problems

P5

Name: Timing

Initial State: A department evaluates the results of their work in every certain period of time
Goal: Specify the duration of a period and the number of periods that will be played in the game
Pc

Name: Game world

Initial State: The game is meant to be played by department managers of the company

Goal: Provide a game environment that resembles the real condition of the department where
the department managers belong to

pP7

Namze: Game units

Initial State: A department consists of several elements that build the department

Goal: Represent the elements that build the department as the game units that build the game
world

Ps

Name: Game rules

Initial State: In the beginning of the project, there were already game playing rules defined for
SHAPE WMG

Goal: Apply the game playing rules to the related game units

P9

Name: Game authoring mechanism

Initial State: There are possibilities to develop the game with new requirements in the future
Goal: Provide authoring functions to make it possible for the game to be defined incrementally,

for example to add or remove game units, activate or deactivate functions

IBM Restricted 28

User-Application Interaction Problems

P10

Name: Interface definition and location

Initial state: There are two phases needed for SHAPE WMG: game setup and game playing
Goal: Provide different user interfaces for different needs

P11

Name: Functions of the interface

Initial State: Every phase in SHAPE WMG presents different activities

Goal: Provide different functions for different type of user interface

P12

Name: Entities modeling of the interface

Initial State: Every phase in SHAPE WMG can invoke the same or different functions from the
same or different game units

Goal: Detine the links between the user interface and the different functions of the game units
P13

Name: Interface requirements

Initial State: There was a prototype built to give idea of what the user interface would look like
Goal: Design user interface that is easy to understand by its user about what is asked from the

user to do and provide clear information that are required by the user

Mathematical Problems

P14
Name: Simulation problems
Initial State: Several calculations are defined to simulate the effects of the decision

Goal- Provide realistic simulation that can imitate the real situation in the real world

Computer Science Problems

P15
Napse: System structure
Initial State: No design structure technique is defined to model the system

Goal: Model the game by using the system structure that can represent the nature of the game

Quality Requirement Problems

Pie6
Name: Evolution problems

Initial State: The game is expected to evolved in the future

IBM Restricted 29

Goal: Provide software architecture design that makes it possible for the system to evolved in
the future without having to redesign the whole system
o P17
Name: Performance requirements
Initial State: The game is expected to function propetly according the user requirements

Goal: Design software architecture that models the requirements of the game

4.2.4 Sub-Problems Prioritization
Every sub-problem is given a priority number that ranges from 1 to 3, with 1 being the highest
priority and 3 being the lowest priority. The prioritization of the sub-problems is shown in the

following Table 4.1.

Table 4.1 Prioritization of the Sub Problems

ID Name Priority
P1 Resources planning 3
P2 Market change 3
P3 Business strategy 3
P4 Periodical decision making 3
P5 Timing 3
Po6 Game wotld 2
P7 Game units 2
P8 Game rules 2
P9 Game authoring mechanism 1
P10 Interface definition and location 2
P11 Functions of the interface 2
P12 Entities modeling of the interface 2
P13 Interface requirements 2
P14 Simulation problems 2
P15 System structure 1
P16 Evolution problems 1
P17 Performance requirements 1

The objective of this project is to design the software architecture for SHAPE WMG. Although the
current requirements demand only simple business model to be applied in the game, the design of
the architecture is aiming to give stability and reusability that allows future extension and
configurations of more complex business model. Therefore, the highest priority in this project is
given to the computer science problems, quality requirements problems, and game authoring
mechanism problem. The other problems are given lower priorities, which means that in this

project the game playing and business aspects of the game are implemented in a very simple way

IBM Restricted 30

but the stable and reusable architecture makes it possible to implement the business model and the

simulation of the decision making process in a more sophisticated way for future needs.

4.3 Solution Domain Analysis

The steps for this phase can be seen in Figure 4.2.

SYNBAD

1 Technical 2 Solution 3 Alternative 4 5
Requirements »| Problem Domai Design Space p| Architecture
Analysis Analysis Analysis Analysis Specification

Solution Domain Analysis Phase

Identify and 1 Identify and 2 Extract 3 Define 4
Prioritize p| Prioritize p| Solution Domain »| Conceptual
Solution Domains Knowledge Sources Concepts Structure

A

Figure 4.2 Solution Domain Analysis Phase of Synbad [Tek00]

The phase starts with identifying and prioritizing the solution domains for every sub-problem
defined in the technical problem analysis phase. Then for each solution domain, knowledge sources
are defined and prioritized. After studying and analyzing the solution domain knowledge, the
fundamental concepts are extracted from it. The concepts are then structured using relations that
are derived from the solution domains. The activities continue with refining the solution domain
concepts. This activity is shown in Figure 2.3 as the arrow directed from solution domain analysis
phase to requirement analysis phase.

The remainder of this section is organized as follows. Subsection 4.3.1 describes the identification
and the prioritization of solution domains and subsection 4.3.2 describes the identification and the
prioritization of knowledge resources. The extraction of solution domain concepts, the definition
of the conceptual structure, and the refinement of solution domains concepts are not described in
this chapter, but is combined with the description of architecture specification which is described in

chapter 5.

4.3.1 Solution Domains Identification and Prioritization

For the sub-problems defined in the technical problem analysis phase, solution domains are
identified. These solution domains are shown in Table 4.2. As in the prioritization of the sub-
problems, the prioritization of the solution domains is defined by a number that ranges from 1 to 3,

with 1 being the highest priority and 3 being the lowest priority. The priority was given based on

IBM Restricted 31

the considering the importance of solving the sub-problems, which is also related to the

prioritization that was made for the sub-problems.

Table 4.2 Prioritization of the Solution Domains

ID Name Solution Domain Priority
P1 Resources planning
P2 Market change Assessment and simulation technique | 3
P3 Business strategy
P4 Periodical decision making
P5 Timing Game playing modeling 3
P8 Game rules
P6 Game wotld Business modeling 2
P7 Game units
P9 Game authoring mechanism Object-oriented design 1
P10 Interface definition and location
P11 Functions of the interface User interface 2
P12 Entities modeling of the interface
P13 Interface requirements
P14 Simulation problems Calculation
P15 System structure Control system 1
P16 Evolution problems Quality management 1
P17 Performance requirements

The solution domains Control system, Quality management and Object-oriented design are given the highest
priority. The reason is because the design of the application should provide a stable and reusable
architecture to support future development, therefore these solution domains should be considered
in detail. The solution domains Business modeling, User interface, and Calenlation are given second
priorities because it should be built on a reusable and stable architecture. Therefore, these solution
domains are considered after defining the stable architecture. The solution domains Gawze playing
modeling and _Assessment and simulation technigue are given lowest priority because of the limited time
available to do the project and the emphasis of the project to provide stable architecture. Therefore,
in this project the implementation is intended to fulfill the minimum requirement of the game. The

explanation of each solution domain is described in the following paragraphs.

Solution domain Control system

The solution domain Control system covers the nature of the game. The game must be able to present
the relevant business model to the player, to control the decision-making actions based on the
business model by the player, and to simulate the results of the decisions which is also based on the
business model. In additional, the stability and robustness of the game architecture are also covered

by this solution domain.

IBM Restricted 32

Solution domain Quality management

The solution domain Quality management covers the quality requirements issues. The design of the
game should make it possible to develop the game further in the future. This means that the design
should be able to keep up with the possible future requirements of IBM in fulfilling their clients’
needs. The game should also give the proper performance that helps the IBM clients in their

learning process.

Solution domain Object-oriented design
The solution domain Object-oriented design covers the issues to provide game authoring functions.
This means that the main architecture of the game can still be used while continuously modifying,

updating, and completing the game components.

Solution domain User Interface

The solution domain User Interface covers the interaction between the user and the game. Since there
are two kinds of user, there should also be two kinds of user interfaces: the game setup interface for
the game manager and the game play interface for the game player. The user should be able to

understand clearly what is asked for the user to do and how the game works.

Solution domain Calculation
The solution domain Calulation covers all the calculation that is involved in simulating the effects of
the game player’s decisions. This calculation should represent the consequences in the real business

situations that occur in the real world.

Solution domain Business modeling
The solution domain Business modeling covers the representation of the business world in the game.
For example the representation of a department, professions exist in the department, etc belong to

this solution domain.

Solution domain Game playing modeling
The solution domain Game playing modeling covers the way the game is played. The game should be
able to give clear definition on the objective for the game player in playing the game and also on

how to reach the objective.

Solution domain Assessment and simulation technique

The solution domain Assessment and simulation technigne covers the issue related to evaluating the
behavior of the game player in the decision making process. The game is then able to give feedback
to the game player on the steps that were made to reach the objective. The game should also apply

simulation technique to give realistic effects that resembles the real situation in the real world.

IBM Restricted 33

4.3.2 Knowledge Sources Identification and Prioritization

The next step is to identify and prioritize the knowledge sources for every solution domain
identified in the previous step. The solution domain knowledge is prioritized according to the
objectivity and relevancy factors. The knowledge source that has high objectivity factor means that
it has the detailed and reliable knowledge that can be used to solve a problem. The knowledge
source that has high relevancy factor means that it gives the same concern of knowledge that is
needed to solve the problem. The knowledge source that has higher objectivity and relevancy
factors than the others is utilized first to solve the problem. This knowledge source is then called to
have the higher priority than the others.

For the overall solution domain, the knowledge sources are given in Table 4.3. Every knowledge
source is presented with the description of its ID, Knowledge Sounrce, and Form. ID gives the
identifications of the knowledge source, Knowledge Source gives the title of the knowledge source, and

Form gives the format of the knowledge source. The knowledge sources are ordered according to

the priority.
Table 4.3 Knowledge Sources for the Overall Solution Domain

ID Knowledge Source Form
KS1 | IBM SHAPE Workforce Management Game External Design [Zan02] | Document
KS2 | SHAPE Workforce Management Game [Jol02] Thesis report
KS3 | Meeting with supervisors of UT Person
KS4 | Meeting with supervisors of IBM Person
KS5 | A QoS-Control Architecture for Object Middleware [Ber00] Paper

After studying the knowledge sources for the overall problem, the work continues with identifying
the knowledge sources for every sub-problem to look into the overall problem in more detail.
However, since searching for knowledge sources is a time-consuming work, there was not enough
time to explore all related knowledge sources for the identified solution domains and still be able to
finish the project, including the implementation, on time. In order to speed up the work in
identifying the knowledge sources, meetings are carried out with the supervisors of the university as
the main knowledge source. With the help of their knowledge and experience, solutions for the
problems can be reached in time. The knowledge resources for every solution domain can be seen

in Appendix B.

IBM Restricted 34

Chapter 5

ARCHITECTURE SPECIFICATION

5.1 Introduction

The last step defined in Synbad is architecture specification. The following Figure 5.1 depicts this

phase.
SYNBAD
1 Technical 2 Solution 3 Alternative 4
Requirements »| Problem »| Domain p| Design Space
Analysis Analysis Analysis Analysis

Architecture Specification Phase

1 2
Extract Semantics »| Define
Of Architecture Dynamic Behavior
A A

Figure 5.1 Architecture Specification Phase of Synbad [Tek00]

As shown in Figure 5.1, architecture specification phase consists of two sub-processes: extracting
semantics of the architecture and defining dynamic behavior of the architecture. The first sub-
process derives the semantic of each concept from the solution domains to provide a more formal
specification. The second sub-process derives the dynamic behavior of the system from the pre-
defined specifications of the architectural components.

Before defining the semantics and dynamic behavior of the architecture, this chapter will first
describe the overall and internal architecture of SHAPE WMG by deriving from the solution
domains identified in the previous step. From the main objective of this project to provide stable
and reusable architecture and also expressed in the prioritization of the solution domain, the
dominating architecture of SHAPE WMG. Therefore, this chapter will first describe the generic
control system in section 5.2 and then describe the application of the control system in the context
of SHAPE WMG in section 5.3. Section 5.4 gives the overall and internal architecture of SHAPE
WMG. This chapter will then continue with section 5.5 that focuses on extracting the semantics of
the architecture and section 5.6 that describes the dynamic behavior of the architecture. To define

the dynamic behavior of the architecture, collaboration diagram are used [Boo99].

IBM Restricted 35

5.2 Control System

A control system consists of a controlled system in combination with a controller [Berg00]. The
interaction between the controlled system and the controller consists of observation and manipulation
performed by the controller on the controlled system. The building blocks of the control process

are shown in Figure 5.2.

Output
r-——— 77~ T
A4 I Observation I
Environment |* 1 Controller Controlled ||
Control Informationl S_yS tem I
- Manipulation g I
| 7 |
| Control System |]

Differehce and State

Figure 5.2 Building Blocks of a Control Process

The generic control model abstracts from the type of observation and the type of manipulation that
can be employed by the controller on the controlled system. The relationship between the
controlled system and the controller can be realised using different strategies. With a feed-forward
control strategy, manipulation through control actions is determined based on manipulation of the
input to the controlled system. A feed-back control strategy can be applied for behaviour optimisation.
According to this strategy, measurements of the output delivered by the controlled system are
compared with a desired behaviour (a reference) and the difference between them is used by the

controller to decide on the control actions to be taken.

5.3 Application of Control System to SHAPE WMG
Referring to the solution domains that were discussed in subsection 4.3.1 and the control system as
the dominating architecture for SHAPE WMG, the composition of the solution domains for

SHAPE WMG is shown in Figure 5.3.

IBM Restricted 36

—_——

”””” \ design /)
P . Gl ~o _ <
/7 \ e : ______ - ~N N
/ User \ P ~< SO
I | / ity N
\ interface S Quality \ I A -
Ne 7 \ management / - T~
I~ N o - _ /\4 -~ >
| i Control System ™~
v / AN
/ , \
Environment |, ! Controller | Observaton | Controlled
l T
Control Informz}gion P Sy et /
\ N . . /
N Manipulation e
¥ A ¥ -
~< I N A | -
- ~&_ N -
- ~——— N A \
e | TN ———— / \
- I N / \
- N
———————— Z /—-'—I—\ N —/ /’A—\
P ~< P -~ -~ =~ e IO
e e . ~N s/ . N .
(Assessment and \, / Game playing N\ v Calculation \ 7/ Business \\
N simulation technique % \\ modeling /' \\ /’ \ modeling
~
S~ _ - - SNe -7 No 7 N ~ - g

Figure 5.3 SHAPE WMG Solution Domains Composition

Based on the identified solution domains and generic control system theory, the building blocks of

the control system in the context of SHAPE WMG are described in the following subsections.

5.3.1 Controller
The Controller of SHAPE WMG is responsible to provide decision making control and optimize

the decision making process. The relations between the components are shown in Figure 5.4.

Decisions
y
. »
Tltgel 7 Cortrection
mode (Game Playing) p State Difference
and State
Business EEE—
Reference Model
Error
) ‘ Business Prime
P Manipulation Model
A
Observation
» Business Measurer
Controller

Figure 5.4 Controller of SHAPE WMG

IBM Restricted 37

The controller consists of seven components: Business Measurer, Business Prime Model, Business Reference
Model, Comparator, Error, Correction, and State. Business Measurer senses the observation and
interprets observation in order to get the measurement. Business Measurer senses the observation and
interprets observation in order to get the measurement. Afterwards, measurement is sent to Business
Prime Model, which represents the current business situation. Through C (Comparator), comparison
has been made between Business Reference Model and Business Prime Model. The difference is
represented by Ermr. Meanwhile, the capturing of the decision making actions are sent to State,
which describes the state of game playing. Both difference and S7ate are sent to High Level Controller
in order to obtain the advanced control function. New decisions are made by the Environment based
on the evaluated output from High Level Controller. These decisions are sent to Correction in order to
make an improved manipulation on the Controlled System. In additional, T7ze Mode/ provides time

controlling during the game playing. The concept of every component is presented in Table 5.1.

Table 5.1 Concepts of Controller

Sub-Concept Description of Concept

Business Measurer The concept Business Measurer provides the mechanism for
getting observation and interpreting observation into
measurement.

Business Prime Model The measurement of the current business situation makes up
Business Prime Model.

Business Reference Model The predefined ideal business situation is represented by the
concept Business Reference Model.

Business Model Comparator The concept Comparator provides the mechanism to compare the

same aspects between the business prime model and the
business reference model

Business Error The concept Business Error shows the differences found when
comparing the ideal business model with the actual business
model

Cortrection The concept Correction represents the game player attempt in

correcting the error during the game playing. It could have a
collection of control actions.

State The concept State represents the state of a game player in a
certain time and the possible decisions that can be made at that
point in time

Time Model The concept Time Model/ models the game that is divided into
several game periods with a certain length of time. Which could
be a time controlling for the concept Correction.

5.3.2 Controlled System
The Controlled System of SHAPE WMG basically is the Business Model, which is used to represent
the real business. The components of SHAPE WMG controlled system is shown in Figure 5.5.

IBM Restricted 38

Manipulation Observation
A

> Business Model

Input A

Disaster Scenario

Controlled System

Figure 5.5 Controlled System of SHAPE WMG

Controlled system of SHAPE WMG consists of Business Mode! and Disaster Scenario. Input is coming
through the Game Manager Ul that creates Business Model and Disaster Scenario during the game
setup phase. Disaster Scenario will apply disasters to Business Model. These disasters are actually set of
adjustment values for the department properties in Business Model. When Business Model and Disaster
Scenario are up, observation can be sensed by Controller and new manipulation based on the
observation will be carried out in Business Model. Afterwards, Business Mode/ will reorganize itself
based the manipulation. The concept of each component of the Controlled System is described in

Table 5.2.

Table 5.2 Concepts of Controlled System

Concept Description of Concept

Business Model The concept Business Model represents the business world in the
game whose is created by Environment during the game setup.

Disaster Scenario The concept Disaster Scenario represents the scenario that is
created by Environment to add unexpected event (from the
player point of view) that can occur during the game.

5.3.3 Environment
Environment consists of two types of user interface. The components of Environment are

depicted in Figure 5.6.

Environment

Input Game Manager Ul Game Player Ul Decisions

»
»

\ 4

Difference

Figure 5.6 Environment of SHAPE WMG

IBM Restricted 39

The architecture of Environment of SHAPE WMG models the game users UI, which basically is
divided into Game Manager Ul and Game Player UI. The game setup information is sent to
Controlled System through Game Manager UL while the decisions during the game playing are sent
to Controller through Game Player UL, However, Game Player Ul also gets the evaluated difference
from High Level Controller. New control actions (decisions) will be taken based on those evaluated

difference. The concept of each component of the Environment is described in Table 5.3.

Table 5.3 Concepts of Environment

Concept Description of Concept

Game Manager Ul The concept Game Manger U represents the user interface which
is between the game manger and Controlled System. Setup input
is sent to Controlled System through Game Manager Ul

Game Player UI The concept Game Player Ul represents the user interface which
is between the game player and Controller. Control information
is exchanged through Game Player UL

5.3.4 High Level Controller

High Level Controller of SHAPE WMG provides advanced decision making control actions. The
advanced control actions mainly come from the evaluated difference between Game Player
Reference Model and Game Play Prime Model. The components of the High Level Controller are

shown in Figure 5.7.

< Difference Fvaluation B
Game Player
Reference Model
Error
Game Player
Prime Model
A
Difference
and State
> Game Player Measurer
High Level
Controller

Figure 5.7 High Level Controller of SHAPE WMG

High Level Controller provides an advanced control on game player model that can be modeled by
the difference and state, which are sent by the Controller. The difference and state are measured by

Game Player Measurer and the measurement is used to make up Game Player Prine Model. The situation

IBM Restricted 40

of current game player is represented by Game Player Prime Model. By comparing it with the Game
Player Reference Model, the difference can be shown as Ermwr. After Error is evaluated by Evaluation,
which apply some evaluation rules, the evaluated difference is sent back to Game Player Ul and
Game Player UI gives input on new improved control actions (decisions) based on the evaluated

difference. The concept of each component of the High Level Controller is described in Table 5.4.

Table 5.4 Concepts of High Level Controller

Concept Description of Concept

Game Player Measurer The concept Game Player Measurer provides the mechanism for
getting observation from the lower level controller and
interpreting observation into the measurement of current game

playing.

Game Player Prime Model The concept Game Player Prime Model models the current game
player behavior in making decision in attempt to correct the
errors based on the input measurements.

Game Player Reference Model | The concept Ganmze Player Reference Mode/ models the ideal game
player behavior that could correct the errors. This model is set
by the game manager

Game Player Comparator The concept Comparator provides the mechanism to compare the
same aspects between the game player prime model and the
game player reference model

Game Player Error The concept Game Player Error shows the differences found
when comparing the ideal game player model with the actual
game player model

Evaluation The concept Evaluation gives evaluation to the game player based
on the errors made by the game player through the user interface

5.4 SHAPE WMG Architecture

The overall architecture groups all solution concepts into four parts according to the grouping of
the concepts described in the previous subsection. The overall architecture is shown in Figure 5.8.
One component that is put outside those four parts is Hejp component. This is the component that
provides information to the user about the game. As described before, the game has two phases:
game setup phase which involves game manager as the user of the game and game playing phase
which involves game player as the user of the game. The architecture will be explained based on the

two phases and how the modeling processes are carried on during the phase.

IBM Restricted 41

! Game Player

Game Manager

Business Modeling

q Ul D
Time > c ¢) Evaluation L.
Model orrection <
: (Game Playing) State
A
Game Player
~ Busi Reference Model
> usiness I
v Reference Model > Error
Error
Help > Game Player
'y Business Prime ~ |— Prime Model
Model A
A
Game Player
Measurer
Business Measurer
Simulation Modeling Ganme Player Modeling
U o _
Disaster Business Model Figure 5.8 Overall Architecture of SHAPE WMG
» Scenario g

Game Setup Phase

The following paragraphs will explain how the game setup phase takes part in modeling the
architecture parts. Before the game play starts, the game setup should be done first. The game
manager sets up the game through the user interface. The input from the game manager could be

sent to four different components.

Business Modeling

The primary setup input is sent to the business model, where the business environment, business
roles, finances and business rules are stored. The unexpected disasters can be set and sent to the
disaster scenario component. The disaster scenarios component gives the surprise aspect to the
game player as already mentioned in chapter 3. One disaster can be an adjustment value for an
existing setup in a certain game period. The game manager inputs a set of adjustment values for the

whole game as the disaster scenarios.

Simulation Modeling

The game manager gives input to the length of the game period and also how many times that
period will be played in the game. The game manager also gives input to the business goals and
business strategies that are considered to be the ideal business situation. These setups are sent to
the business reference model. These values are needed to simulate the result of the game in

determining whether or not the player reaches the expected business goals.

Game Player Modeling
The other input of the game manager goes to the ideal game player modeling. This model
represents the optimal decisions that can be expected from a game player to make. This ideal game

player model is called the reference game player model.

Looking Up Help
During the whole game setup phase, the game manager can look up for help to get information

that are related to setting up the game.

Game Playing Phase
After the game setup, the game player starts the game play phase. The game player plays the game

through the user interface.

Simulation Modeling
The game is divided into several game periods where each represents a certain period of time. The
game player is presented with the current condition of the department (from the business prime

model component) and the objective that should be achieved to reach the business goal for the

IBM Restricted 43

current game period (from the business reference model component). All game play inputs are sent
directly to the correction component as an attempt to make the best decision in order to achieve
the ideal business situation. The result of the game player’s decisions can only be simulated if the
game player submitted his decisions as final decisions. So before the submission is made, the game

player can still change his decisions.

Business Modeling

Once the game player submits his final decisions, these decisions are sent to the business model
component. The business model applies business rules to its business entities based on the final
decisions. The result is then compared to the objective of the current period represented by the
business reference model component. The difference between the result and the objective is
presented to the game player as a success or failure indicator. The game player is then moved to the

next game period and repeats the same process until he reaches the last game period.

Game Player Modeling

Every decision-making action of the game-playing phase in a certain game period is caught by the
state component. The game player measurer component measures the errors found in the business
model and the decisions made by the game player to correct the errors. This measurement results in
a game player prime model that represents the game player behavior in making certain decisions
when facing a certain error. This model is compared with a game player reference model that
represents the ideal game player behavior that is set by the game manager. The difference of this
model is then evaluated. The result of analyzing the different behavior is delivered to the game
player through the user interface. The modeling of the game player behavior is out of the scope of
this project. However, the implementation of this model can be developed in the future to give the

game player more materials in the learning process.
Looking Up Help
The game player can look up for help to get information about how to play the game and how to

interpret the result shown in the user interface.

5.4.1 Internal Structure of Business Modeling Component
The internal structure of the Business Mode/ combined with Disaster Scenario components is shown in

Figure 5.9.

IBM Restricted 44

AbstractBusinessRoles
WsetType()
SgetType()
¥setName()
AbstractDepartment SgetName()
SsetProperties()
—®setProperties() ‘getPropenig§O
SgetProperties) FgetProductivity()
FupdateModel() SupdateModel()
Dep:erf;ent LeafProfession
~ Di%g;rritsnt ConcreteProfession
1 L.n
i 1
Disasters 1 1/, \ 11 1)1
SsetDisaster()
FgetDisaster() 1.n
SupdateModel() 1 0 Finance BusinessProduct
- 0.n -N 1 1
BusinessRules Business Business FsetFTRCost() BsetStrategy()
Facility Task $setRetCost() SgetiStratgy()
SicalculateConfiguration() SsetRecruitCost() SupdateModel()
ScalculateEffects() SsetEduCost()
ScalculateCost() $setGHSCost()
ScalculateAchievedProd() SsetFTSCost()
ScalculateNewValues() WsetFTOCost()
SisetTotalCost()

Figure 5.9 Internal Structure of Business Mode/ Combined with Disaster Scenario Component

Each component of this internal architecture can be seen as a structured concept. There are two
main components: Abstract Department and Abstract Business Roles. The abstract department is the
place where the business is running. It generalizes a Conerete Department. A concrete department can
also generalize one or more other departments. It implements the parent-child relationship. If a
concrete department doesn’t generalize another concrete department, then this concrete
department is called a Leaf Department. The same principle applies to the Abstract Business Role with
the Ieaf Business Roles and the Concrete Business Roles. One department could consist of several
business roles. Each business role will produce one or more Business Product. Every business role has
a Finance component that specifies the cost spent for that particular business role for a certain game
period. Every department also has a Finance component that specifies the cost spent for all business
roles that exist within the department. The Disasters component, which is used to create exceptional
effects on the business, consists of one or more disaster scenarios. A disaster scenario is assigned to
a department, one for each period. Since the department is the place where the business is running,
Business Rules for the running business should be kept in the target department. The specification of

each component in this architecture can be found in Table 5.5.

IBM Restricted 45

Table 5.5 Specification of Business Model Components

Component Specification of Component

Abstract Department An Abstract Department defines the basic characters and signatures of a
department. It does not have any concrete structures and is never
instantiated. From this component, a concrete department can be
specified.

Concrete Department A Concrete Department is the specification of a department and inherits
the basic characters and signatures of the abstract department. Besides
the basic characters are the same, each concrete department can add its
own properties and operations. Furthermore it can have sub-
departments which are also concrete departments.

Leaf Department A Leaf Department represents a concrete department that doesn’t have
any sub-department. There is no concrete department that can be
specified by this type of department.

Abstract Business Roles An Abstract Business Role defines the basic characters and signatures of a
business role In our case it is defined as a profession. The abstract
business role has no concrete structure and doesn’t represent any real
profession. It defines the primary properties and operations. From this
component, a concrete business role can be specified.

Concrete Business Role A Concrete Business Role is specified from an abstract business role and
inherits basic characters from it. Each concrete business roles have own
properties and can specify other concrete business roles.

Leaf Business Role A Leaf Business Role is a concrete business role that doesn’t have any
specification of other concrete business roles. There is no concrete
business role that can be specified by this type of business role.

Finance A Finance component represents the business cost that is spent on the
profession and department level. The total budget for the department,
the cost of business roles and the cost of each business activities are
calculated and saved into this component.

Business Rules A Business Rules component represents the business rules that are
applied to the business model based on the game player’s decisions
done and the properties of the business model. The activities such as
firing employee, changing education days can affect the business model.
The business properties such as attrition rate, education cost also can
affect business model.

Business Product A Business Product is produced by a business role. In our case, the
business product is the productivity, which is used to represent the
capability of the business role. The productivity is related with some
primary factors like: education days, compensation cost of a
FIR/FTS/FTO, attrition rate and illness rate, etc

Business Facility A Business Facility represents the facilities and equipments of the
department. It could be computers, chairs and development tools etc.
In this project, this component is left for further development of the
application.

IBM Restricted 46

Business Task A Business Task represents the missions that the department has. Tasks
are carried out by the business roles. Therefore, business task is
indirectly linked to the business roles. In this project, this component is
left for further development of the application.

Disasters A Disasters component represents the disaster scenarios that are applied
to the business model and set by game manager. Disasters will be used
to affect the properties of the department for the target game period.
The disasters in our case can be illness rate and attrition rate change.

5.4.2 Internal Structure of Business Reference Model Component

The internal structure of the Business Reference Model component is depicted in Figure 5.10.

gtlizlzgisess Objectives
Concrete Concrete
Department BusinessRole WgetObjective()
:segira:egyg ! 1 1 L.n 1 1 |[#%setObjective()
getStrategy -]
BupdateModel() updateModel()

Figure 5.10 Internal Structure of Business Reference Mode/ Component

Every concrete department has Business Strategies for one or more periods of time. As already been
explained before, a concrete department can consist of one or more concrete business roles. Every
concrete business role has Objectives that represent array of objectives that must be achieved for
every game period. The business strategy for a certain period is used to achieve the objective of
every profession in that period of time. The specification of each component in the Business

Reference Model component is described in Table 5.6.

Table 5.6 Specification of Business Model Components

Component Specification of Component

Business Strategies A Business Strategies component defines the business strategies of the
department for every game period. This strategy is translated into
business requirements for the department.

Objectives An Olbjective component defines the productivities of a certain
profession that needs to be accomplished in every game period.

5.4.3 Internal Structure of Correction Component

The internal structure of the Correction component is shown in Figure 5.11.

IBM Restricted 47

Game

WgetPeriodLength()
FgetNoOfPeriods()
getPeriod()
T
1.n
Period
®getPeriodid() ConcreteDepartment ConcreteBusinessRole
SgetDepartment()|1 1.n 1 1.n
WgetStrategy() 1
WgetDisaster() 1
1
BusinessRoleDecision BusinessRoleResult
1 FgetHiredFTR() SlgetProdFTR()
DepartmentResult — SgetFiredFTR() ®getObsFTR()
DepartmentDecision SgetEducatedObsolete() VgetFTS()
FgetAchieved() ®getEducatedOther() SgetFTO()
getNotAchieved() SgetEducationDays() SgetNewFTS() 1 1| ®getAttritionRate()
VisBudgetExceeded() L 1 SlgetRetentionCost() ¥getTerminatedFTS() FgetllinessRate()
W¥setExceedsBudget() FgetNewFTO() SgetProductivity()
SgetTerminatedFTO() WgetOtherLeavers()
FgetNewObsolete()

Figure 5.11 Internal Structure of Correction Component

The Game represents the game that is played by the game player of the SHAPE WMG. The game
consists of one or more game Period. The number of game period is determined in the game setup
phase beforehand. There can be one or more Departments that are played in the game. The game
player can make decision for every department played which is represented by Department Decision.
This is the department level decision. Department Result represents the result of the game player’s
decision in the department level. Every department that is played in the game consists of one or
more Business Role. The game player can also make decision for every profession as the profession
level decision, represented by Business Role Decision. The result of every profession decision is
represented by Business Role result. The specification of each component in this architecture can be

found in Table 5.7.

IBM Restricted 48

Table 5.7 Specification of Correction Components

Component Specification of Component

Game A Game represents the game that is played by the game player in
SHAPE WMG

Period A Period represents a session in SHAPE WMG whose beginning is

marked by the game player making decision and the end is marked by
the simulation of the decision effects.

Concrete Department

A Concrete Department represents the current department situation that is
played by the game player.

Department Decision

A Department Decision represents the decision that the game player made
by changing one or more department properties that are allowed by the
game to be changed.

Department Result

A Department Result represents the result of the decision that are made
by the game player in the department level

Concrete Business Role

A Concrete Business Role represents the current profession situation that is
played by the game player.

Business Role Decision

A Business Role Decision represents the decision that the game player
made by reconfiguring the number of employees that are currently exist
for a certain business role

Business Role Result

A Business Role Result represents the result of the decision that are made
by the game player in the profession level

5.4.4 SHAPE WMG Architecture as Decision Support System

To see how SHAPE WMG fits into the structure of Decision Support Systems that were discussed

in section 2.2, Figure 5.12 depicts the components of DSS.

External
Database

Decision Maker

A

A 4

Internal
Database

A 4

DSS
Dialog Manager
A
A 4 A 4 A 4
i Data Knowledge Model
Management [Management [Management
'y X

Figure 5.12 DSS Components

IBM Restricted

49

The decision maker shown in the figure corresponds to the game player of SHAPE WMG. The
dialog manager is the user interface for the game player that connects the game player with the
application. The data management corresponds to the business prime model, business reference
model than can be accessed by the game player and business model that is updated by the game
player decisions. The database corresponds to the object that stores the details of the game units of
SHAPE WMG. The knowledge management and the model management are not yet covered by
SHAPE WMG, but it is possible to add these components in SHAPE WMG architecture in the

future.

5.5 Semantics Extraction of the Architecture

In this phase, the semantics is derived from the solution domain by considering the concepts
separately. As mentioned before, this project concentrates on the modeling of the business and the
simulation. The modeling of the game player is left out for further development of the application.
Section 5.5.1 describes the architecture specification of the game setup phase and Section 5.5.2

describes the architecture specification of the game playing phase.

5.5.1 Game Setup Phase
This section describes the architecture specification of the components and their operations that
take part in the Game Setup Phase. Those components are: Departiment, BusinessRole, BusinessStrategies,

Disasters and Objectives.

Department
The architecture component Department represents the department that is played in the game.

Example semantics of Department is shown in the following figure.

Department::setAllProperties(prop: atray of integer)
posteondition:
for (i=0 to noOfProperties - 1)
properties[i] = propli]
Department::setRecruitCost(newCost: integer)

posteondition:
this.recruitCost = newCost

// additional operations

Figure 5.13 Specification of the Interface of Departiment

Variable properties represents array of the department properties. Operation se£A/Properties sets all of
the department properties to the given values. It is also possible to set only a certain property of the

department instead of all of the properties. In the example shown in Figure 5.13 Operation

IBM Restricted 50

setRecruitCost sets the value of the recruitCost, that represents the recruitment cost for every new

employee of the department, to the given value.

BusinessRole

The architecture component BusinessRole represents each game period that is played in the game.

Example semantics of BusinessRole is shown in the following figure.

BusinessRole::setAllProperties(prop: array of integer)
posteondition:
for (i=0 to noOfProperties - 1)

properties[i] = propli|
BusinessRole::setAttritionRate(attrRate:integer)
posteondition:
this.sttritionRate = attrRate
BusinessRole::setProductivty(prod:double)

posteondition:
this.productivity = prod

// additional opetations

Figure 5.14 Specification of the Interface of BusinessRole

As in the department, operation sezA/Properties sets all of the business role properties to the given
values. It is also possible to set a certain property of the business role. In the example shown in
Figure 5.14, operations sezAttritionRate and setProductivity respectively set the value of the attritionRate

and productivity to the given values.

BusinessStrategies
The architecture component BusinessStrategies represents the business strategies of the department

for every game period. Example semantics of BusinessStrategies is shown in the following figure.

BusinessStrategies::setStrategies(noOfPeriods: integer, s: array of String)
posteondition:
for (i=0 to noOfPeriods-1)
this.strategies[i] = si]

// additional opetations

Figure 5.15 Specification of the Interface of BusinessStrategies

The strategies variable represents array of business strategies for every game period. Operation

setStrategies sets the strategies of the department to the given description of the strategies.

IBM Restricted 51

Disasters
The architecture component Disasters represents disaster scenatios that are applied for one more
game periods and set by the game manager. Example semantics of Disasters is shown in the
following figure.

Disasters::setDisasters(d1,d2,d3,d4,d5:array of String)

posteondition:
this.disaster] = d1, this.disaster2 = d2, this.disaster3 = d3, this.disaster4 = d4, this.disastet5 = d5

// additional opetations

Figure 5.16 Specification of the Interface of Disasters

Variables disasterl, disaster?, disaster3, disasterd, and disaster5 respectively represent the disaster
scenarios for game period 1, 2, 3, 4, and 5. In the example specification shown in Figure 5.16, there
are five disaster scenarios for five game periods. Operation sezDisasters sets the names and the values

of the disaster scenarios to the given names and values.

Objectives
The architecture component Objectives represents the objectives of every profession that are set for

every game period. Example semantics of Obyectives is shown in the following figure.

Objectives::setObjectives(noOfPeriods: integer, obj: atray of integer)
posteondition:
for (i=0 to noOfPetiods-1)
this.objectives[i] = obji]

// additional operations
Figure 5.17 Specification of the Interface of Obyjectives

The objectives variable represents array of objectives of the business role for every game period.

Operation setObjectives sets the objectives of the business role to the given values.

IBM Restricted 52

Overall Interface Specification

To see how the interfaces described above take place in the architecture design, the components

that take part in the Game Setup phase are shown again in Figure 5.18.

Business

Time P Reference Model
Model

A
5

Business Measurer

A\ 4

Ul

Business Model
Disaster

3 Scenatio

A 4

A 4

Game Manager

Figure 5.18 Components of the Game Setup Phase

The number shown in Figure 5.18 indicates the interface number to help describing each interface.

By referring to the above figure, example of the overall Java interface specification of the game

setup phase is described in Table 5.8.

Table 5.8 Interface Specification of the Game Setup Phase

Interface

Java Interface Specification

Interface 1

Department.setAllProperties(int[] properties)
BusinessRole.setAllProperties(int[] properties)

Interface 2

BusinessStrategies.setBusinessStrategies(int noOfPeriods, String[] s)
Objectives.setObjectives(int noOfPeriods, int[] s)

Interface 3

Disasters.setDisasters(String[] di, String[]l d2, String[] d3, String[] d4,
String[] d5)

Interface 4

BusinessRole.countProductivity()

Interface 5

BusinessRole.getProductivity()

Interface 6

GamePeriodProperties.setPeriodLength(int n)
GamePeriodProperties.setNoOfPeriods(int n)

IBM Restricted

53

5.5.2 Game Playing Phase

This section describes the architecture specification of the components and their operations that
take part in the Game Playing Phase. Those components are: Game, Period, DepartmentDecision.
BusinessRoleDecision, ~ DepartmentResult, ~ BusinessRoleResult, Finance, BusinessRules, Department, and

BusinessRole.

Game
The architecture component Game represents the container of the whole game entities that take

part in the game playing phase. Example semantics of Gazze is shown in the following figure.

Game::createDepartment(dept:Department)
posteondition:
for (i=0 to noOfPeriods-1)
Period]i].getDepartment() = dept
Game::createDisaster(dis:Disaster)
posteondition:
for (i=0 to noOfPeriods-1)
Period]i].getDisaster() = dis]i]
Game::createDeptDecision(nl,n2:integer)
posteondition:
Period[periodIndex|.getDepartment().getDecision().getEduDays() = n1,
Period[periodIndex|.getDepartment().getDecision().getRetCost() = n2
Game::incrementIndex()
posteondition:
periodIndex is incremented
Game::start()

posteondition:
the game is started with first period

// additional opetations

Figure 5.19 Specification of the Interface of Game

A game includes an array of Period that means that it contains of one or more game periods. The
variable #0OfPeriods represents the total number of periods that will be played in the game.
Operation createDepartment creates department for each game period all with the same values, which
are the initial values of the department in the beginning of the game. A Disaster contains an array of
disasters for every game period. Operation createDisaster sets every disaster to the appropriate game
period. The variable periodlndex points to the identification of the current game period. Operation
createDeptDecision creates the department decision component for the current game period and set
the values of the department decision on education days and retention cost to the received values.
Operation incrementIndex increments the periodlndex of the game, which means that the periodlndex is

now pointing at the next game period. Operation start starts the game with the first game period.

IBM Restricted 54

Period
The architecture component Period represents each game period that is played in the game.

Example semantics of Period is shown in the following figure.

Period::setStrategy(str:String)
posteondition:

this.getStrategy() = str
Period::setDepartment(dept:Department)
posteondition:

this.getDepartment() = dept
Period::setDisaster(disaster:String][])
posteondition:

this.getDisaster() = disaster
Period::addProfession(prof:Profession)

posteondition:
department.getProfessions().get(n) = prof

// additional operations
Figure 5.20 Specification of the Interface of Period

A period has strategy variable that represents the business strategy of the period. Operation sezStrategy
sets the strategy for the period. The variable department represents the department that is played in
the period. Operation setDepartment sets a department to the game period. A period has disaster
variable that represents the disaster scenario that is assigned to the game period by the game
manager during the game setup phase. A disaster scenario contains of a name (attrition rate change
or illness rate change) of the disaster and the value of that disaster. Operation setDisaster sets the
given disaster values to the game period. Operation addProfession adds a profession that exists in the
department in that game period. In this project, it is assumed that all professions exist from the
beginning until the end of the game. In the future, it should be possible to determine the period
where a profession starts to exist in the game, e.g. professions that will be needed by the company

in the future.

DepartmentDecision
The architecture component DepartmentDecision represents the game player’s decision in the

department level. The semantics of DepartmentDecision is shown in the following figure.

DepartmentDecision::getEduDays(): integer
precondition:
decision on new number of education days is defined

DepartmentDecision::getRetCost(): integer

precondition:
decision on new retention cost is defined

Figure 5.21 Specification of the Interface of DepartmentDecision

IBM Restricted 55

A department decision has two variables: eduDays, representing the new number of education days,
and refCost, representing the new retention cost. If the game player decided to keep the initial values
and did not decide to change them, then the values of eduDays and refCost are set to those initial
values. The operations getEduCost and getRetCost respectively returns the decisions made on the

number of education days and on retention cost.

BusinessRoleDecision
The architecture component BusinessRoleDecision represents the game player’s decision made for a
certain profession. Example semantics of BusinessRoleDecision is shown in the following figure.
BusinessRoleDecision::setValues(nl,n2,n3,n4,n5,n6,n7:integer)
posteondition:

this.hiredFTR = n1, this.firedFTR = n2, this.eduObs = n3,
this.newFTS = n4, this.tetFTS = n5, this.newFTO = n6, this.tetFTO = n7

// additional opetations

Figure 5.22 Specification of the Interface of DepartimentDecision

A business role decision has seven variables: JiredETR, representing the number of FTR that are
hired, firedF TR, representing the number of FTR that are fired, eduObs, representing the number of
obsolete FTR that are reeducated, #ewl'TS, representing the number of new FTIS contract, zrFTS,
representing the number of FTS contract that are terminated, #ewEFTO, representing the number of
new FTO contract, and #rFT0O, representing the number of FT'O contract that are terminated.
Operation setl alues sets all of those variables to the given values. If the game player decided not to

make decision on any of the variables, those variables will be set to zero.

DepartmentResult
The architecture component DepartmentResult represents the result of the game player’s decision in
the department level. Example semantics of DepartmentResult is shown in the following figure.
DepartmentResult::getAchieved(): integer
precondition:
the number of professions whose productivity are achieved is defined
DepartmentResult::setExceedsBudget()
precondition:
this.exceedsBudget = false

prostondition:
this.exceedsBudget = true

// additional opetations

Figure 5.23 Specification of the Interface of DepartmentResult

IBM Restricted 56

A department result has three vatiables: achzevedProfessions, representing the number of professions
that exist in the department whose productivity is achieved, notAchievedProfessions, representing the
number of professions that exist in the department whose productivity is not achieved, and
exceedsBudget, representing the value of whether or not the cost spent based on the game playet’s
decisions exceed the budget allocated to the department. Operation gezAchieved returns the number
of professions whose productivity is achieved. Operation sesExceedsBudget set the exceedsBudget

variable to #ue, which means that the player’s decisions results in costs that exceed the budget.

BusinessRoleResult
The architecture component BusinessRoleResult represents the result of the game player’s decision for
a certain profession. Example semantics of BusinessRoleResult is shown in the following figure.
BusinessRoleResult::setNewObsolete(n:integer)
posteondition:
this.getNewObsolete = n
BusinessRoleResult::setProductivity(n:double)
posteondition:
this.getProductivity = n
BusinessRoleResult::setObjectiveReached()
precondition:
this.objectiveReached = false

posteondition:
this. objectiveReached = true

// additional operations

Figure 5.24 Specification of the Interface of Profession Result

A profession result has newObsolete variable that represents the number of new obsolete people.
Operation setNewObsolete sets the number of the new obsolete people to the given value. Another
variable of profession result is productivity that represents the achieved productivity. Operation
setProductivity sets the productivity of the profession to the given value. Variable objectiveReached
describes whether or not the achieved productivity reaches the objective. Operation
setObjectiveReached set the objectiveReached variable to #rue, which means that the productivity of the

profession has reached the objective.

Finance
The architecture component Finance represents the cost spent on the profession and department

level. Example semantics of Finance is shown in the following figure.

IBM Restricted 57

DepartmentResult::getFTRCost(): integer
precondition:
the FTR cost spent is already defined
DepartmentResult::getTotalCost(): integer
precondition:
the total cost spent for the entire profession or department

// additional operations

Figure 5.25 Specification of the Interface of Finance

A department result has variable FTRCost that represents the cost spent to pay all of the FTR
employees that exist in the profession or the department. Operation gesl'TRCost returns the value of
the FTRCost variable. The #otalCost represents the total cost spent on employees exist in the entire

profession or department. Operation gef1vta/Cost variable returns the value of the #o7a/Cost variable.

BusinessRules
The architecture component BusinessRules represents the business rules that are applied to the
department based on the game player’s decision. The semantics of BusinessRules is shown in the

following figure.

BusinessRules::calculateConfiguration(br:BusinessRole)
posteondition:
the new configuration of employee in the profession is calculated and set as the result of the profession
BusinessRules::calculateEffects(period:Period, br:BusinessRole)
posteondition:
the other effects on the profession level is calculated and set as the result of the profession
BusinessRules::calculateCost(dept:Department,bs:BusinessRole)
posteondition:
the cost spent for the profession is calculated and set as the finance of the profession
BusinessRules::calculateAchievedProd (dept:Department)
postcondition:
the number of professions that achieve and don’t achieve their productivities are calculated and set as the
result of the department
BusinessRules::calculateNewValues(game:Game)

posteondition:
the new values for the next period is calculated and set to the next game period

Figure 5.26 Specification of the Interface of BusinessRules

Operation calenlateConfignration calculates the new configuration of the given profession based
directly on the game player’s decision, creates BusinessRoleResult with those values and set it to the
BusinessRole. Operation calculateEffects calculates the other effects that are not directly related to
player’s decision on reconfiguring the number of employees, whether it is because of changing a
certain parameter in the department level or a disaster scenario that are applied to the current game
period. The operation then sets those values to the BusinessRoleResult of the BusinessRole. Operation

calenlateAchievedProd calculates the number of professions that achieved their productivities and

IBM Restricted 58

those who don’t, then creates DepartmentResult with those values and set it to the Department.
Operation calenlateNewl alues calculates the new values on the department and profession level for

the next game period and sets those values to the next Period.

Department
The architecture component Department represents the department that is played in the game.

Example semantics of Department is shown in the following figure.

Department::addProfession(prof:BusinessRole)
posteondition:

this.professions.get(n) = prof
Department::setDecision(dd:DepartmentDecision)
posteondition:

this.decision = dd
Department::setFinance(f: Finance)
postcondition:

this.finance = f
Department::setResult(dr:DepartmentResult)

posteondition:
this.result = dr

// additional operations

Figure 5.27 Specification of the Interface of Departiment

A department has professions variable that represents array of professions exist in the department.
Operation addProfession adds a given profession to the array of professions. The decision variable
represents the decisions that are made by the game player in the department level. Operation
setDecision sets the value of the decision to the given value. A department has finance variables
represents the cost spent in the department level as the consequences of the decisions. The resuit
variable represents the result of the decisions on the number of professions that achieved their
objectives and those who are not. Operations setFznance and setResult respectively sets the finance and

result variables to the given values.

BusinessRole
The architecture component BusinessRole represents each game period that is played in the game.

Example semantics of BusinessRole is shown in the following figure.

IBM Restricted 59

BusinessRole::setDecision(brd:BusinessRoleDecision)

posteondition:

this.decision = brd

Department::setFinance(f:Finance)

posteondition:

this.finance = f

Department::setResult(brr:BusinessRoleResult)

posteondition:

this.result = brr

// additional operations

Figure 5.28 Specification of the Interface of BusinessRole

As a department, a business role has variables decision, finance, and result that represent the decisions,

the cost spent, and the result of the decisions that are made in the profession level. Operations

setDecision, setFinance and sefResult respectively set the decision, finance and result variables to the given

values.

Overall Interface Specification

To see how the interfaces described above take place in the architecture design, the components

that take part in the Game Playing phase are shown again in Figure 5.29.

Time
Model

Game Player

!

Ul

A

2 v

Correction

Disaster
Scenatio

(Game Playing)

Business

Reference Model 3
> Error

Business 4
Prime Model

4
8

Business Measure
A

7

6 Business Model

v

Figure 5.29 Components of the Game Playing Phase

IBM Restricted

60

The number shown in Figure 5.29 indicates the interface number to help describing each interface.
By referring to the above figure, example of the overall Java interface specification of the game

setup phase is described in Table 5.9.

Table 5.9 Interface Specification of the Game Playing Phase

Interface Java Interface Specification
Interface 1 1. Game.createDepartment(Department department)
2. Game.createBusinessRole(BusinessRole profession)
3. DepartmentResult.getAchieved(): int
4. DepartmentResult.getNotAchieved() : int
5. DepartmentResult. isBudgetExceeded(): Boolean
. Game.createStrategies(BusinessStrategies strategies
Interface 2 1. G S ies(Busi S i i
Interface 3 1. BusinessRole._getObjective(): double
Interface 4 1. BusinessRole._getProductivity(): double

2. BusinessRoleResult.getProductivity(): double

Interface 5 Game .createDeptDecision(int nl, int n2)

1.
2. Department.setDecision(DepartementDecision deptDecision)
3. BusinessRole.setDecision(BusinessRoleDecision profDecision)

Interface 6 1. Game.createDisaster(Disasters disasters)
2. Period.setDisaster(String[] dis)

Interface 7

1. DepartmentDecision.getEduDays()

2. DepartmentDecision.getRetDays()

3. BusinessRole.getNewObsolete()
Interface 8 1. BusinessRole.getProductivity()

2. Department.setResult()

Interface 9 1. Game.incrementindex()

5.6 Dynamic Behavior of the Architecture

In order to model the dynamic behavior of the architecture, collaboration diagrams are used. To
make a complete and understandable collaboration diagram, based on the interface specification
described in the previous section. Therefore, the relationship and message flows among these
components can be clarified. The collaboration diagrams are described for the game setup phase

and the game playing phase.

5.6.1 Game Setup Phase
The collaboration diagram for the game setup phase of the SHAPE Workforce Management Game
is depicted in Figure 5.30.

IBM Restricted 61

1.1: update()—» 2.1 : update()—» 3.1 update()—»

gpp:GamePeriodProperties| |dth:DeQartment| |bs:BusinessStrategies
4 N
S N
g &
S "
(8]
N

. SetupAgent
o1
o
[J]
5}
1o
X ¢ 5.2 : create()—»
d:Disasters br:BusinessRole 0:Objectives
<—()srepdn: Ty <«—(orepdn: TG <«—()orepdn: 1Z'g

Figure 5.30 Collaboration Diagram of Game Setup

Figure 5.30 shows the flow of control involved in setting up the game environment during the
game setup phase. The Sezup.Agent creates the five objects that will be involved in the game: a
GamePeriodProperties, a Department, a BusinessStrategies, a Disasters, and a BusinessRole. Each of the
objects will invoke the #pdate operation on itself whenever a change is made to one of its values.
The BusinessRole object will also create an Odbjectives object that represents the objective of the
business role for each game period. The Objectives objects also will invoke the #pdate operation on

itself whenever a change is made to one of its values.

5.6.2 Game Playing Phase

The collaboration diagram for the game playing phase of the SHAPE Workforce Management
Game is depicted in Figure 5.31.

IBM Restricted 62

7.1: createResult()—»
AW) 13 1 8.1 : setAttrRate()—»

- 8.2 : setLeavers()—»
8.3 : setProdFTR()—»
8.4 : setlllRate()—»
8.5 : setProductivity()—»

f1:Finance

br:BusinessRules brr:BusinessRoleResult|

4—9.1 : createProfFinance()

f2:Finance

4—9.1.1 : setFinance()
<4—7.1.1 : setResult()

4.1 : addProfession()—»
<G

br:BusinessRole

10 : createDeptFinance()—»

6 : createProfDecision()—»

p:Period g:Game Ibrd:BusinessRoIeDecision

<4 : addProfession()
43 : setDisaster()
<42 : setStrategy()

<—1.1: setDepartment()

‘cn e,
alep,
GDI‘De Cis;
/0,7 ()
A

Xapujjuawaloul :
+Oxepun el dd:DepartmentDecision

Figure 5.31 Collaboration Diagram for Game Play

There are ten objects shown in Figure 5.31: a Game, a Period, a Department, a BusinessRole, a
DepartmentDecision, a BusinessRoleDecision, a BusinessRules, a DepartmentResult, a BusinessRoleResult, and a
Finance. 1t specifies the flow of control involved in making decisions in department level, making
decisions on one business role in that department, calculate all the effects of those decisions, and
then go to the next game period. The action begins with the Game creating a Department object and
setting the department to the Period. The game will also set the strategy and the disaster to the
period. The game then adds the business role that exists in that period and the period adds the
business role to the department where the profession belongs to. During the game playing, the
game player makes decisions in the department level. The game creates a DepartmentDecision object
that contains the decisions of the game player and sets the decision to the department. The game
player also makes decisions on a BusinessRole that exists in that department. To store these decisions,
the game creates a BusinessRoleDecision object and then sets the decision to the profession. After the

game player decides to commit the decisions as final decisions, the game invokes first

IBM Restricted 63

calentateConfignration on BusinessRules object who calculates the new configuration of the business role
based straight on the game player’s decision. Based on the result of the calculation, a
BusinessRoleResult object is created and this result is set to the business role. The next operation of
the business rules invoked by the game is cakulateEffects, who calculates other effects that are not
caused directly by the game player’s decisions. Based on the result of the calculation, the business
rules will then set the new attrition rate (setA#rRate), the number of other leavers besides those
employees who are fired (sefl_eavers), the new number of productive FTR (setProdF'TR), the new
illness rate (setl//Rate), and the current productivity (setProductivity) to the business role result. The
third operation of the business rules is cakulateCost who calculates the cost spent for that business
role based on the player’s decision and other effects. A Finance object is created to store the details
of the cost spent and then set to the business role. After calculating the cost spent for all business
roles, the game creates another Finance object to store the total cost spent for all business roles. In
the example of Figure 5.31, since the player only make decisions one business role in the
department, the game creates the Finance object after calculating the cost for that business role and
then set it to the department. The game continues with invoking calculatingAchievedProd operation
which calculates the number of business roles in the department that achieved their productivity
and those who did not. The number calculated is used to create the DepartmentResult object which is
then set to the department. The last business rules operation that is invoked is calulateNewV alnes
that calculates the new values of department and business role properties that will be applied in the
next period. After setting these new values, the game then go to the next period first by invoking
incrementlndex operation on itself. The similar flow will then repeated for the next game period with

the new values acquired from the previous one.

IBM Restricted 64

Chapter 6

EVALUATION OF ARCHITECTURE

6.1 Introduction

The architecture of SHAPE Workforce Management Game is evaluated in this chapter. The
evaluation is a quality assessment process. The quality assessment is made up by several aspects, like
robustness, reusability, adaptability, flexibility and security etc. This chapter will describe the
architecture-level analysis that focuses on the stability and reusability aspects of the architecture. By
comparing with the quality demand on those aspects, this chapter will show why the architecture is
considered a stable architecture. Section 6.2 will describe the method that is used to evaluate the

architecture and section 6.3 will describe the evaluation of the architecture.

6.2 Software Architecture Evaluation Method

The method that is used in this project to analyze the software architecture of this project consists
of four steps. The first step is to develop several evolution scenarios. An evolution scenario is a
description of some anticipated use of a system in the future. Each of these scenarios is then
evaluated to see what kind of changes required for the system to perform the scenario. The third
step is to find out which scenarios require changes in the same component of the system. This step
is done to measure the level of separation of concerns supported by the architecture. Then the last

step is to make the overall evaluation on the stability and reusability of the architecture.

6.3 Evaluation on SHAPE WMG Architecture
This section describes the analysis of SHAPE WMG Architecture using the method described
previously. As explained before, there are four steps involved in the evaluation process. Each of

these steps in the context of SHAPE WMG will be explained from section 6.3.1 to section 6.3.4.

6.3.1 Scenarios Development

The first step in the evaluation of the architecture design is to develop several evolution scenarios
for different stakeholders. The scenarios should illustrate the kinds of activities the system must
support and the kind of changes must be made to the system. In this project, four types of
stakeholders are considered: wsers, maintainers, system administrator, and developers. Every type of these
stakeholders has different concerns for the system. The users concern with the functionality and
usability of the system, the maintainers concern with the maintainability and the ability to locate

places of changes, the system administrators concern with the ease in finding source of operational

IBM Restricted 65

problems, and the developers concern with the clarity and the completeness of the architecture.
The scenarios for each of the stakeholders involved in this project are described as follows:
Users (game managers):

1. Add more parameters for disaster scenarios

2. Generate random disaster scenatios

3. Include a profession from a certain period

4. Add other parameters to represent objective

5. Change the business rules
Users (game players):

6. Print out the game playing results

7. Record game playing steps and replay the game

8. Have a scoring system to indicate success or failure
Maintainers:

9. Make modifications to the user interface

10. Connect the game to external storage or printer

11. Prevent game user for giving input to unreasonable data
Administrators:

12. Change access permissions in the setup phase

13. Add function to recover from system failure
Developers:

14. Add artificial intelligence to support decision making process

15. Support multiple players playing at the same time as competitors

6.3.2 Evaluation on Evolution Scenarios
Every evolution scenario described in the previous section is then evaluated based on the kind of
changes that is required for the scenario to be supported by the system. The changes are classified

into one of the following categories:
A. No change required
B. Interface boundary is the same, new operation is required
C. Interface boundary is the same, change required in the implementation
D. Interface boundary is the same, change required in the function
E. Change required in the interface boundary

The evaluation for all of the scenarios based on the above categorization is shown in Table 6.1.

IBM Restricted 66

Table 6.1 Scenario Evaluation

Scenario | Desctiption Type of Change | Changes Required
1 Add more parameters for | C No additional component required, the changes
disaster scenarios should be made in the implementation level to
determine how the disasters influence the
application of the business rules
2 Generate random disaster | C No additional component required, the changes
scenarios should be made in the implementation of
disaster scenario component that can also
functions as a random generator
3 Include a profession from a | A
certain period
4 Add other parameters to | D No additional component required, the changes
represent objective should be made in the internal architecture of
the business reference model for example by
adding a new class to represent the objective
5 Change the business rules B No additional component required, the changes
should be made in the class business rules for
example by adding new operations
6 Print out the game playing results | A
7 Record game playing steps and | D No new component required, the changes
replay the game should be made in changing the function of the
game player modeling where the game player
measurer can record the game player state and
give these steps as input to business model to
be replayed.
8 Have a scoring system to indicate | B No additional component required, the changes
success o failure should be made by adding functions to score
the results, for example by creating a new class
in the error component
9 Make modifications to the user | A
interface
10 Connect the game to external | A
storage or printer
11 Prevent game user for giving | B No additional component required, the changes
input to unreasonable data should be made by adding validation function
when receiving input from the user
12 Change access permissions in the | A
setup phase
13 Add function to recover from | E A new component should be added, for
system failure example recovery manager, to guarantee that
the system save the data periodically so when a
system failure happen, several updates were
already saved and can be loaded
14 Add artificial intelligence to | D No additional component required, the changes
support decision making process should be made in the functions of the
components, for example the correction or the
evaluation component
15 Support multiple players playing | E A new component should be added to receive

at the same time as competitors

input results from other players and compare it
with the local player’s result, also other
component to handle the concurrency control

IBM Restricted

67

6.3.3 Evaluation on Changes Required

From the scenarios evaluation described previously, it is shown that several scenarios require
changes in several components or changes in the interface boundary. For the scenarios that require
no changes in the interface boundary, the architecture is then considered to be stable since the
architecture still can be used without having to make a severe change or add new component to the
architecture. For the scenarios that require changes in the interface boundary, further evaluation
should be made on whether or not the changes will affect the architecture that can result in
restructuring the architecture to adjust to the changes.

The first scenario that needs changes in the interface boundary is evolution scenario 13 to add
function to recover for system failure. This scenario will require a change in adding a recovery
manager to the architecture. This change will not give a big impact on the current architecture. A
recovery manager component can just be added into the architecture who receives and saves input
from the game player and game manager user interface periodically, so that when a failure happens,
the recovery manager can just refer to the last changes and upload it to the user interface.

The second scenario that needs to be evaluated further is evolution scenario 15 to support multiple
players to play at the same time as competitors. This scenario will require additional comparator to
compare the results and the decision made by the game players. The result could then be used as
parameters in scoring the game. This change will not required restructuring the architecture, since
the comparator can be added to connect the error components of each simulation modeling that
belongs to each player and then add another component to represent the result of comparing the

game player’s error COI’IlpOflCI’ltS.

6.3.4 Overall Evaluation

From the above evaluation, it can be seen that the current architecture is indeed stable and reusable
for future development. From the fifteen evolution scenarios described previously, only two
required changes in the interface boundary. It has been discussed that even with these scenarios the
changes required are relatively small and don’t require high cost and effort to add them. Although
not all scenarios are covered in this evaluation step, it can be seen that the current architecture is

stable enough and reusable for further development.

IBM Restricted 68

Chapter 7

IMPLEMENTATION AND TESTING

71 Introduction

The previous chapters describe the architecture design process, which is done based on the Synbad
method. This chapter will describe the implementation of the architecture which results in a
prototype of the SHAPE Workforce Management Game. A testing procedure is applied to test and
validate the prototype in the final stage of this project. One of the important principles in
developing software is that it should be maintainable. Maintenance is the most costly part in a
software life cycle. In order to keep this prototype maintainable, the development tool that is used
to implement SHAPE WMG is IBM WebSphere in Java on the Windows compatible platform.
WebSphere masks the complexity of J2EE by allowing software developers to visually assemble
applications from existing enterprise data. Its visual framework combines a J2EE development
methodology with the ability to leverage existing and future application components making
applications more maintainable and reusable.

The implementation consists of two important parts: the game setup part is focusing on the
business model, which mainly covers the Business Modeling area shown in Figure 5.8. The game
playing part mainly includes the business measurer, the business prime model, the business
reference model, the correction, and the business model, which covers the Simwulation Modeling area
shown in Figure 5.8. The outline of this chapter is as follows. Section 7.2 gives an overview of the
implementation of the game setup component. Section 7.3 gives an overview of the
implementation of the game play component. Section 7.4 ends this chapter by describing the

testing phase done for the implementation.

7.2 Game Setup Implementation

This section describes implementation of the game setup components depicted in Figure 5.8.
These components are shown again in Figure 7.1.

Section 7.2.1 will describe the class diagram for the game setup components and section 7.2.2 will

give the implementation of the classes in Java.

IBM Restricted 69

Business
Reference Model

A 4

A 4

Ul

Disaster Business Model

Scenatio

A 4
A 4

Game Manager

Figure 7.1 Components in the Game Setup Phase

7.2.1 Class Diagram

The class diagram depicted in Figure 7.2 describes the classes that are included in the three

components shown in Figure 7.1 (excluding the User Interface component). Those components are:

Business Model, Business Reference Model, and Disaster S cenario.

Obsenvable
(from util)
®Observable()
FaddObserver()
FdeleteObserver()
®notifyObservers()
®notifyObservers()
__|SideleteObsenvers()
#¥setChanged()
#¥clearChanged()
®hasChanged()
FcountObseners()
BusinessStrategy é Q
\
WsetStrategy() / \
SgetStrategy() / \\
SupdateModel() / \\
/
L.n / Objective
Disaster
] SsetObjective()
1 1 ¥setDisaster() ®getObjective() | 1..n
~N WoetDisast & AbstractBusiness
AbstractDepartm ‘ggdaltseal\joedre(z)l() updateModel() .
ent 1
SgetName() 1 |®¥setType()
,g g getType()
getProperties() .
BsctName() 1 1.n setName()
L
SsetProperties() ‘gztsiﬁjﬁ((:)tivit 0
BupdateModel() ‘g dateMod I(;l
updateModel
[TDepartment T Profession
[¥setProperties()
SgetProfession() 1.n 1/ @getProperties()

Figure 7.2 Class Diagram for Game Setup Phase Implementation

IBM Restricted 70

The Abstract Department class is an abstract class that is used as a foundation on which to build
department classes by extension. This project focuses on the implementation of I'l" Department class
which is implemented as the subclass of the Abstract Department class. This means that I'T Department
class inherits and implements the abstract method defined in _Abstract Department class. Each
department includes one or more business roles. As Abstract Department class, Abstract Business Role
class is also an abstract class that is used as a foundation on which to build profession class. As
already described, the subclasses for this class is the Conerete Profession class and the Leaf Profession
class. In this project, the implementation is made only for the Leaf Profession class. This class is
represented by the Profession class shown in Figure 7.2. The Professions class represents an array of
Profession class, since a department can contain more than one profession.

Each profession has its own objectives. Therefore, the Objective class has association with the
Abstraction Business Role class. The Business Strategy class represents the business strategy of a
department for a certain period. Therefore, the Abstraction Department class can have one to many
business strategies for one or more periods. The Disaster class gives exceptional effects on the
properties of the IT department. All these classes extend the observable class. This will be

explained more shortly. Some primary operations of each class are given in the class diagram.

Another game setup phase component that is shown in Figure 7.1 and has not been discussed yet is
the User Interface component. To build the user interface in this phase the Model/View/Controller
(MVC) pattern is used. In this pattern, the model component represents the classes shown in the
class diagram described above, the view component represents the user interface component, and
the controller component is the component that defines the way user interface reacts to user input.
Another pattern that is applied to the User Interface component is the Observer pattern. The
Observer pattern is used to model the objects that need to notify and update other objects when
they change state. In this case, the Observer is the user interface which observes the state changes
of its Subject. In Java term this Subject is called Observable. As already explained in the previous
paragraph, the Observable subjects are the classes that extend the Observable class.

The implementation of the game setup components are decomposed into five Java packages:
BusinessModel, Controller, 1 iew, TimeModel, and Tools packages. The diagram of these packages is

shown in Figure 7.3.

IBM Restricted 71

Time Model

. applied to
Game Setup Model Observable
update A extend A
notify notify
Controller
A observe observe
A 4 v
fnput View (
A
validate
Tools

Figure 7.3 Package Diagram for Game Setup Phase Implementation

The View component determines how to display the model components. For every setup phase,
there is a view component that displays all the required information to be filled in by the game

manager. The class diagram for the I7ew component is shown in Figure 7.4.

SetupPeriodView
®getPeriodLength()
FgetNoOfPeriod()
®setPeriodLength()
¥setNoOfPeriod()
SetupStrategyV
iew
— SetupDeptView
<<Interface>> - — SgetStrategy() \\\\
Observer — SsetStrategy() = setStrategy()
(tomiuil) % SsetProfession()
i/\\,\ SetupDisasterV 7| 8setDisaster()
®update() — iew . BsaveToFile()
A ®getDisaster()
¥setDisaster()
SetupProfListView
DeptinfoView
FaddProfession() i
removeProfession() Weditvalues()
FincludeProfession() | WstartGame()
®excludeProfession() i\\\\\
T~ SetupNewProfVie
w

®addProfession()

SetupObjectivey SetupProfDetailView
iew
®countProductivity()
_— SgetProductivit
:getObJ_ect!ve() ‘getProﬂ' ypeOyo
REODEEEY ®getProfProperties()

Figure 7.4 Class Diagram of View Component

IBM Restricted 72

All classes extends the JFrame class in order to provide a user friendly GUIL Those classes, except
Deptinfol iew class, also implement the Observer Interface to receive notifications. Basically
SetupDeptjew class has relation with the SetupPeriod) iew class, since SetupPeriodl iew creates the
SetupDeptljew and delivers the number of game period to the SeupDeptliew. From the
SetupDeptljew, four other interfaces can be started: SetupStrategyliew, SetupDisaster] iew,
SetupProfl stV iew, and Deptlnfol iew. So these four classes have relations with the SezupDeptliew. The
SetupNewProfl7ew 1s started when the game manager wants to add a new profession to the list
shown in the SezupProflistl iew. The SetupProfDetaill iew is also started when a certain profession is
chosen from the list also shown in the SempProfl istliew. From the SetupProfDetaill iew,
SetupOlbyectivelew 1s started to set the objectives of the profession. The Deptlnfol iew displays all the
values that have been set during the game setup phase, after saving the values into a file.

The Controller determines the actions that follow the game manager’s input. The Controller modifies
the Game Setup Model component. The class diagram for the Controller component is depicted in

Figure 7.5.

<<Interface>>
ActionListener
(from event)

SactionPerformed()

A

SetupController ProfSetupController

Figure 7.5 Class Diagram of Controller Component

The ProfessionSetupController class determines the actions that follow the game manager’s input on
the Profession List Setup (represented by SetupProfl istliew class) and Profession Details Setup
(represented by SezupProfDetailliew class) interfaces. This controller is separated by the other
controller because it is more complex than the others. The controller for the rest of the interfaces
in the game setup phase is combined in one class called SezupController class.

The class diagram of the Timing Controller package is shown in the following figure. This package
only includes one class, Game Period Properties. 1t is used to set up the game time and give time

controlling to the game play.

IBM Restricted 73

GamePeriodProperties
(from DataModel)

[SisetNumberofPeriod()
[SisetLengthofPeriod()
[¥getNumerofPeriod()
[SigetLengthofPeriod()
SlupdateModel()

Figure 7.6 Class diagram of the Time Model Package

7.2.2 Coding of the Game Setup
According to the package diagram in Figure 7.3, five packages are defined within the project. Based
on the class diagram described in the previous section, related classes are created those packages.

The screen capture in Figure 7.7 shows the packages and classes organization in the project

SHAPE_WMG.

12 Projects - X ol w X || W Types - ¥
[-1@# SHAPE_WMG " IEusinessModel @ pbstractbusinesshols
% Contraller (1] AbstractDepartment
3 GameFlayModsl @ BusinessRules
H# Timetodel @ Business3trategy
3 Tools @ Dpisaster
H}'u'iew G Finance
G ITDepartment
@ Objective
@ Frofession
@ Professions

Figure 7.7 Packages and Classes Organization of the Project SHAPE_WMG

Remarkes: the game play model is used for the game play phase. So the business model, controller, time model, tools
and view are the five packages which are used to compose the game setup.
In order to explain the coding process, the I'T department setup is given as an example. The table

7.1 presents the classes and their corresponding packages for the I'T department setup.

Table 7.1 Classes and Packages for I'T Department Setup

Class Corresponding Package
ITDepartment.java Business Model
SetupController.java Controller
SetupDeptView.java View

Parts of java codes of the above classes are given in the following Figure 7.8, Figure 7.9 and Figure
7.10.

IBM Restricted 74

Fi IToep X l J SetupCantraller.java | A, SetupDeptiisw. java

pacage BuzinessHodel ; -

import java.util. Obserwvable:
mport java. util Vector:

import java. io.Serializable:
import GamePlavModel DeptDecizion:

SEE

*# @author Kevin He & Elisabeth Haya
*

*

public cla=zss ITDepartment extends Ch=zervable implements AbstractDepartment. Serial

private int[] allprop = new int[11]:
private String namne:

private Vector professions = new Vector():
private Finance finance:

private DeptDecision decision:

S CONSTRUCTOR

public ITDepartment(){

allprop[0] = 10; S education davs
allprop[l] = 28; S wacation davs
allprop[2] = 90; s learning curve FTE
allprop[3] = 21: < learning curve FTS
allprop[d] = 21: < learning curve obzolete
allprop[5] = 10000; <7 education cost
allprop[e] = 3000; </ retention cost
allprop[?] = 5000; S recrultment cost
allprop[8] = 1000000; »» total budget
allprop[9] = 3: <+ budget change
allprop[l0] = 50; s+ golden handshake rate

h

< QUERIES

public int[] getillProp()

{ return allprop: * =
«| | »

Figure 7.8 Example Codes of I'TDepartment.java

From the above figure, all the properties of the I'T department and the constructor are shown. This
class extends Observable class and implements the abstract department. So it inherits the properties
and operations of the abstract department and can be observed by the view class. In order to save
objects, this class implements the serializable interface. When any changes take place in this class,
methods: setChange () and notifyObservers () will be invoked to ask the user interface to refresh the

display.

IBM Restricted 75

J] ITDepartment. java Ki Setu X | 5 SetupDeptiiew. java

import BusinessHModel *;

SR
* Kewin He & Eli=zabeth Hava
*
*7

public class SetupController implements Actionlistensr |

private SetupStarter s=sView:
private DeptInfoView diView;
private SetupleptViewv sdView:
private SetupPeriodView =spVWiew;
private SetupStrategyView strView:
private SetuplizasterView disView;
private Varningleszage wnView:
private Dizaster disaster;
private ITDepartment department:
private Busines=Strategy strategy:
private GameFPeriodPropertie=s gamePeriod:

public SetupController{SetupStarter ==)
{ ==View = ==

public SetupController(DeptInfoView di)
{ diView = di: }

public SetupController{GanePericdFProperties gpp, SetupPeriocdView =sp)
gamnsPeriocd = gpp:
=p¥Wiew = =p;

public SetupController{Warningdessage wn)
{ wnView = wm;

public SetupController{IThepartment dept, SetupleptView =d) {
department = dept:
=dView = =d;

al I

L2

Fs

3

Figure 7.9 Example Codes of SetupController.java

This class implements ActionListener. This means that when a certain action happens in the user

interface, for instance clicking a button, the SetupController.java captures this action and carries out

the corresponding handling. There are five possible actions that could be done in the department

setup user interface: Back (go back to the game period setup), S#ategy (setup the business strategy

for every game period), Profession (setup the professions that are going to be included in the game),

Disaster (setup the disaster scenario to be applied in every game period), and Finish (complete the

whole setup phase and save the setup values in a file).

IBM Restricted

76

J] ITDepartment . java | J] SetupController.java

*
*

package View;

import java.io.¥;

import java.util. Observer:

import java.util.Ob=zervable;
import javax. s=wing. *:

mport Tools. *;

import TimeModel . *:

import BusinessHodel *;

import Controller SetupController:

IR

Kevin He & Eli=abeth Mava

*

public class SetupDeptView extends JFrame implements Ohs=srver

private javax. swing.JPanel jContentPane = null;
private javex.swing.JLabel jlabel = null:
private javax. swing.JLabsl jLabesll = null;
private javex.swing.JTextField jTextField = null:
private javax. swing.JLabsl jLabel? = null;

private javex.swing.JLabel jlabeld = null:
private javax swing. JTextField jTextFieldl = null;
private javax.swing.JLabel jlabeld = null:

private javax. swing.JLabsl jLabsl5 = null;
private javax.swing.JTextField jTextField? = null:
private javax . swing.JLabel jLabelt = null;

private javax.swing.JLabel jLabel? = null:

private javax swing. JTextField jTextField3 = null;
private javax.swing.JLabel jLabeld = null:
private javax . swing.JLabel jLabeld = null;
private javax.swing.JTextField jTextField4
private javax . swing.JLabel jLabelll = null;
private javax.swing.JLabel jLlabelll = null:
private javax swing. JTextField jTextField5 = null;

null:

public void startProfView()

{ SetupFroflLi=tView py = new SetupProflistView({pmodel number, this, nodel)

public void startStrategyView()
{ SetupStrategyView bsv = new SetupStrategyView(bsmodel . number. this); }

public void startDizasterView()
{ SetuplizasterView dv = new SetuplizasterView{dmodel.numnber, this): 1

public void startDeptInfoView()

{ DeptInfoView div = new DeptlnfoView({gpmodel. L model.bsnodel dmnodel pnodel)

Figure 7.10 Example Codes of SetupDeptView.java

L

b

This class is actually used to create the user interface of the department setup. It extends the

JFrame class to provide a user friendly GUI It also extends the Observer in order to receive

notification from the observable classes. The operations given in the above screen capture are used

to start other setup user interfaces. The following Figure 7.11 is the screen capture of IT

department setup interface.

IBM Restricted

77

IT Department Setup

Frimary Properties Area

Education cost: ELFDS

Education days: 15 [N Retention cost: ELIFOS

wacation day M days Recruitment cost: ELros

Learning curve FTE: M d Total budget: EUros
20

5

Learning curve FTE: 21 |l Budget change: _ %
Learning curve obsol .. MEEE days Golden hiandshz a... _ %

Advanced Properties Area

BusinessStrateqy Setup Frofessions Setup Disaster Setup

Figure 7.11 I'T Department Setup Interface

7.3 Game Play Implementation

Referring to Figure 5.8, the components that take part in the game playing phase and are
implemented in this project are shown again in Figure 7.12. As in the previous section, this section
will first describe the class diagrams for all related components in the game playing phase. The class
diagrams are also modeled using the Model-View-Controller pattern and Observable-Observer

relation in UML. Then it is followed by the coding of the game playing phase in Java.

IBM Restricted 78

Game Player

!

Ul

A

vy

A 4

Correction
(Game Playing)

Business

Reference Model
> Error

Business Prime
Model

T

Business Measurer

Disaster Business Model
Scenatio

A 4

Figure 7.12 Components in the Game Playing Phase

7.3.1 Class Diagram

The class diagram depicted in Figure 7.13 describes the classes that are included in the seven
components shown in Figure 7.12 (excluding User Interface component). Those components are:
Disaster Scenario, Business Model, Business Measurer, Business Prime Model, Business Reference Model, Error,

and Correction.

IBM Restricted 79

Observable

®obsenable()
[®addObserver()
[®deleteObsener()
®notifyObservers()
[®setChanged()
[®clearChanged()
[®hasChanged()
®countObseners()

ProfDecision
BusinessRules ESetHiredFTR()
getHire
Game DeptDecision 3
2 [®calculateConfiguration() EgetriredFTRO
[®getPeriod() 8 getEduDays() EScalculateEfiects(=gzt§g:/2$’z(())
[®getPeriodindex() ®getRetCost() 1=z§:zﬂ::$§gj;\(/)alueso ProfResult 1 [®getTerFTS()
®incrementindex() 1 [®getNewFTO()
[BcreateStrategy() [®getTerFTO()
[®createDepartmenty() 1 1 | MigetProdFTR) updateModel()
1 =
A 1 'getObsFTR()
[®createProfession()
[®createDisaster() SgetFTS(1
[®getFTO()
1 [®getAttrRate()
1.n [SgetlliRate()
Finance [®getProductivity()
[®getNewObsolete()
®getLeavers()
1
1.n
1 1
: 1 1
Reriod ITDepartment 1 Profession
i etTotalCost
[®getPeriodid() I®getDecision() & 0 ®getDecision()
[®getDepartment() : 1 ;
[®getFinance() [®getFinance()
[®getStrategy() -
; ®getProfessions() [®getResult()
[®getDisaster() |1 1 > 1.n .
[®setDepartment() .selD_eusmnO .setD_eusmno
®setFinance() ®setFinance()
Wsetstrategy(®addProfession() [®setResult()
[®setDisaster() T
1 1
1 \ 1 1
Dicasier BusinessStrate Objective
9y
®getDisaster() Boetstrategy) ®getObjective()

Figure 7.13 Class Diagram for Game Playing Phase Implementation

The Game class represents an instantiation of one game session. A Game can consists of one to
many game periods. The Period class represents each of these game periods. Every Period has a
Disaster and Business Strategy that has been set in the game setup phase. Every Period includes an
ITDepartment in the game. An I'TDepartment can have at least one Profession class. Every Profession has
an objective for every period. This Obyjective is set in the game setup phase.

During a game period, a game player can make decisions on the department level or the profession
level. These decisions are represented by DeptDecision and ProfDecision classes. The ProfDecision class
extends Observable class. BusinessRules class represents the rules that are applied to the department
and profession decisions. The result of applying these business rules are represented by two classes:
Finance and ProfResult. The Finance class represents the detail and total cost spent in a certain period
for every Profession and for the whole I'T Department. The ProfResult class represents the result of the
player’s decisions on the current situation of every Profession in terms of employee configuration.

As in the game setup phase, the game playing phase also uses the Model/View/Controller (MVC)

pattern to build the user interface.

IBM Restricted 80

The implementation of the game play components are decomposed into six Java packages:
BusinessModel, GamePlayModel, Controller, View, TimeModel, and Tools packages. The diagram of the
packages is shown in Figure 7.14.

applied to
Business Model [« Time
A
update v applied to
Game Play Model Obsetvable
> >
. A extend A
input update
v notify notify
Controller
A observe observe
i A 4 v
fnpue View (
»
»
A
validate
Tools

Figure 7.14 Package Diagram for Game Playing Phase Implementation

The View component determines how to display the model components. The class diagram for the

View component is shown in Figure 7.15.

<<Interface>>
Observer
JFrame Supdate()

“EXT ON CLOSE :int =3

f&rootPaneCheckingEnabled : boolean

f&grootPane : JRootPane

f&daccessibleContext : AccessibleConte... PlayProfView
:jirameg WsaveDecision()

rame
®IFrame() l/
¥ IFrame()

@framelnit() PlayDeptView

@ createRootPane()

@ processKeyEvent() ®submit()

i processWindowEvent() — Wreset()
®setDefaultCloseOperation() | B®seeDetails()
:gethttefe(\)uItCIoseOperation() e SsaveDecision()

update .
FsetIMenuBar() <} Sy
$getIMenuBar() — T Play StrategyView
®isRootPaneCheckingEnabled() \}\\]

{®setRootPaneCheckingEnabled() T~ E—

@addimpl() T
:reTLove() 0 " PlayDeptResultview

setLayou
$getRootPane() :

&)

f¥setRootPane() jexReriof)
WgetContentPane()
®setContentPane()
WgetLayeredPane() PlayProfRes
‘setLayeredPane() ultView
SgetGlassPane()
WsetGlassPane() &.

#paramString() showinfo)
WgetAccessibleContext()

CostInfoView
—

Figure 7.15 Class Diagram of View Component

IBM Restricted 81

All classes extends the JFrame class in order to provide a user friendly GUIL The first user interface
shown to the game player is the PlayStrategyl zew class that displays the current game period number
and the business strategy of that period. After this the game player is shown the current department
situation through PlayDeptliew class. PlayDeptliew creates PlayProfliew class when a certain
profession is chosen from the list shown in PlayDeptl iew. PlayProfl iew class implements the
Observer Interface to receive notifications. When the game player commits the final decisions, the
results are then displayed. The first result shown is for the department level through
PlayDeptResultl iew class. PlayDeptResultl iew creates PlayProfResultl iew class when a certain
profession is chosen from the list shown in PlayDeptResultl iew to display the result in the
profession level. The Costlnfol iew displays the information of cost spent per employee to help the
game player in understanding the overall result of the profession.

The Controller determines the actions that follow the game player’s input. It modifies the Gamze Play
Model and Business Mode/ component. The class diagram for the Controller component is depicted in

Figure 7.16.

<<Interface>>
ActionListener

actionPerformed()
/\

|

PlayController

Figure 7.16 Class Diagram of Controller Component

The PlayController class determines the actions that follow the game player’s input during the whole
game playing phase. The actions that are done in different view components of the game playing

phase are all handled by this one controller.

7.3.2 Coding of the Game Playing

According to the package diagram in Figure 7.14, six packages are defined within the project for the
game playing phase. Based on the class diagram described in the previous section, related classes are
created in those packages. The screen capture in Figure 7.17 shows the packages and classes

organization in the project SHAPE_WMG.

IBM Restricted 82

12 Projects - X w* X || % Types - ¥
=l SHAPE_WHMG @ DeptDecision
“{Eh JRE_LIE - C:\Program Files\TEM|Websp ® came
@ pFericd
@ FrofDecdision
H# Tools @ pFrofResult
3 view
4| | »

Figure 7.17 Packages and Classes Organization of the Project SHAPE_WMG

In order to explain the coding process, Table 7.2 presents the classes and their corresponding

package for making decisions on the profession level.

Table 7.2 Classes and Packages for Making Decision on Profession Level

Class Corresponding Package
ProfDecision.java GamePlayModel
PlayController.java Controller
PlayProfView.java View

Parts of java codes of the above classes are given in the following Figure 7.18, Figure 7.19 and

Figure 7.20.

* I J] PlayController . java | L PlayProfiiew, java

public class ProfDeci=zion extends Cbservable implements Serializable | ;I

private int hiredFTE, {iredFTE, =dulbs;
private int newFTS, terFTS, newFTO. terFTO;

A COHNSTRUCTOR

public ProfDecisioni) {
hiredFTE a
firedFTR
edulbs
newkFTS
terFTS
newFTO
terFTO

o;

mwunwuw nn
oo oo o n o

¥
~ QUERIES

public int getHiredFTR()
{ return hiredFTE; }

public int getFiredFTR()
{ return f{iredFTR:

public int getEduCh=()
{ return sduChb=s; }

public i1nt getNewEFTS()
{ return n=wkFTS: }

public int getTerFTS()
{ return texrFTS; =
k| |

Figure 7.18 Example Codes of ProfDecision.java

IBM Restricted 83

Figure 7.18 shows the constructor of ProfDecision class. This class extends Observable class so it can
be observed by the view class. In order to save objects, this class implements the Serializable
interface. When any changes take place in this class, methods: setChange () and notifyObservers () will be

invoked to ask the user interface to refresh the display.

J] *PrafDedision. jawva

x l 4 FlayProfiisw. java

public class FlayController implements Actionlistener o ;I

private FlayStarter p=View;
private PlayDeptView pdView:
private FlayProfView ppView:
private CostInfoView ciView:
private FlayStrategyView =pView;
private PlayDeptFeszultView pdrView:
private FlayProfFesultView pprView;

public PlayController{PlavyStarter p=)
{ p=View = p=:

public PlayController(PlayStrategyView sp)
{ =p¥iew = =p: }

public FlayController(FPlayDeptView pd)
{ pdV¥iew = pd; }

publi_c: FlavController(FPlayFrofView pp)
{ pp¥iew = pp: 1}

public FlayController(PlayDeptResultView pdr)
{ pdrView = pdr;

public PlayController{PlavyFrofResultView ppr)
{ ppxView = ppr: }

public PlayController({CosztInfoView ci)
{ ciView = ci;

public wvoid actionPerformed(ActionEvent) 4
String command = e.getiActionCommandl):
if {command. equals{"HEXT1")) {
peView. dispose():
new PlayStrategyView(psView. getGane()):

1
else if (command. egual=({"NEXT2")) {
=pView. dispose():
new PlayDeptView(=pView. getGame()): _ILI
»

LT

Figure 7.19 Example Codes of PlayController.java

Figure 7.19 show that the PlayController class implements Actionl istener. Once certain actions happen
in the user interface, for instance click button and press enter etc, the PlayController.java captures
this action and carries out the corresponding handling. The PlayController class handles all actions

that happen during the game playing phase.

IBM Restricted 84

J| *ProfDecision.java | J] PlayContraller.java

package View:

import java.awt.event . *:

import java. text. %

import java.util. Observer;

import java.util. Obserwvable:
import javax. swing.JFrame:

import Tools TextFieldValidation;
import Tools . JTextFieldFilter:
import Tools MessageDisplayer:
import Controller PlayController;
import BusinessHodel Profession:
import GamePlayModel ProfDeci=zion:

R

* Eevin He & Eli=abeth Hawa
*

*.

private javax.swing.JPanel jContentPane = null:
private javax. swing.JLabel jlabsl = null;
private javax.swing.JLabel jlabell = onull:
private javax.swing.JLsbel jlabeslZ = null:
private javax. swing.JLabel jLlabel3 = null;
private javax.swing.JLabel jlabeld = null:
private javax.swing.JLsbel jlabeslt = null:
private javax. swing.JLabel jlabele = null;
private javax.szwing.JLabel jlabel? = mnull:
private javax.swing.JLsbel jlabeslf = null:
private javax. swing.JLabel jLabesl9 = null;
private javax.szwing.JLabel jlabelll = null:
private javax.swing.JLsbel jlLabelll = null:
private javax. swing.JLabel jlabell? = null;
private javax.szwing.JLabel jlabelll = null:
private javax.swing.JLsbel jlLabelld = null:

mmimata Gammaw owriwme ITshael SToshae11C w11 -

< |

Figure 7.20 Example Codes of PlayProfView.java

public class PlayProfViev extends JFrame implements Ohserver {

=il

The PlayProfliew class is used to create the user interface for making decisions on a certain

profession. It extends the [Frame class to provide a user friendly GUL It also extends the Observer

class in order to receive notification from the observable classes. The observable class of the

PlayProfliew 1s the ProfDecision class as seen in the following Figure 7.21.

public FlayProfView(Frofession p.int n) {
super("SHAFE WHE — Game Flav"):
controller = mew PlavControllerithis);
profession = p:
type = profession. getProfType():
periodHo = n;
initialize(}:;

FroflDecizion decision = profession. getDecisioni)

if {type = 13 {

profession . getlDecision() . addObserver(this)

updatei{profession . getlecision) . null’;

Figure 7.21 Constructor of PlayProfl iew class

Figure 7.21 show that PlayProfl iew class adds itself as the observer of the observable class

ProfDecision which is invoked by the method:

profession.getDecision().addObserver(this)

IBM Restricted

85

The following Figure 7.22 is the screen capture for making decisions on the profession level

[23 SHAPE WMG - Game Play

Java Programmer

Profession type : changable and contractahle

Current productivity : 6,80 Demanded productivity :

Full Time Regular Decisions on FTR
Compensation : F7500 euro Hire new : ID people
Compensation change : 3% Fire current : ID people
Humber of productives : 4 people Reeducate ohsolete : ID people

Humber of ohsoletes : 2 people
, Reeducate from : Choose people
lliness rate : 5%

Attrition rate : H 0

Full Time Subcontracter Decisions on FTS

Compensation ; 55000 euro Make new contract with : 0 people
Compensation change : Jh Terminate current contract for : 0 people
Mumber of subcontractor: 2 people

Full Time Outsourcer Decisions on FTO

Compensation : 45000 euro Make new contract with : 0 people
Compensation change : J Terminate current contract for : 0 people
Humber of outsourcer : 1 people

Cancel

Figure 7.22 Profession Level Decision Making Interface

The left side in Figure 7.22 shows the current situation of the profession “Java Programmer”. It
shows the configuration of employees that are currently working as Java Programmers and also
some properties related to the profession. The user interface also shows the current productivity of
the profession. In the right side of the interface, it shows several decisions that can be made for this
profession. The decisions made should be aiming to the demanded productivity that is shown on

top of the possible decisions area.

7.4 Testing

The final acceptance test was done with IBM consultants in a workshop. The main goal is to verify
that the prototype meets the requirements of SHAPE_WMG. Because making a complete and
automated testing procedure for the prototype is currently not the high priority, a basic black-box

test is carried out in a system test level. Other nonfunctional tests, for instance security testing,

IBM Restricted 86

performance testing, compatibility testing and usability testing are not yet considered in the current
stage. [Lev02], [V2ZM2], [Bei90], [Bei95], [Rop94], [Sie96], [Hut03]

The testing procedure consists of two stages, game setup tests and game play tests. The test cases
are basically made based on the use case scenarios, which are described in Chapter 3. By
categorizing and prioritizing the test cases, three typical test cases are presented: import game setup
file, make department decisions and make profession decisions. Other important test cases can be
found in Appendix C. The terms used in the testing procedure are explained in the follows:
[Dus03]

e Test Procedure ID: the following naming conventions are used: SO1 means the first test
case of the game setup and PO1 means the second test case of the game play test.

e Test Name: a description of the test procedure.

e Test Procedure Author: the developer of the test procedure.

e Test Objective: the objective of the test procedure.

® Related use Case(s): provide the related use case scenatio(s).

e Precondition/Assumption: define the conditions, with which must be satisfied before
executing the particular test procedure.

e Post condition: define the conditions, with which must be satisfied after executing the
particular test procedure.

e Verification Method include automated, certification, manual test or analysis.

e User Action (Inputs). the inputs, which are needed to create a test.

e Expected Results: define the results expected when executing the particular test
procedure.

e Trace Log Information: document the behavior of back-end components. For example,
write log entries detailing the functions they are executing and the major objects with which
they are interacting. In our case, the log information is displayed in the DOS command
window.

e Actual Result this field may have a default values, such as “Same as Expected Result”,
that is changed to describe that actual result if the test-procedure fails.

® Pass/Fail shows the test is passed or failed.

e Test Environment. in which environment this test has been done. For example: the

operation system and the computer equipments etc

IBM Restricted 87

7.41 Game Setup Test Cases

Table 7.3 shows the testing procedure of importing game setup file test case. This test case takes

place in the game setup phase. In order to reuse the previous setup file, the user can search for a

setup file and import it in the computer local disk. The setup file is identified with an “.obj

2

extension file. After this file is successfully imported, all setup values of this file will be used in the

game.
Table 7.3 Testing Procedure of Importing Game Setup File
Test Procedure ID S01
Test Name Import game setup file
Test Procedure Author Maya & Kevin
Test Objective To test if the setup values can be imported from the existing game setup file with
an “.obj” file extenstion.
Related Use Case(s) Scenarios for Import Game Setup Use Case (Chapter 3.3.1)

Preconditions/Assumptions

Two files exist in the local working directory. One game setup file with file name:
“Test.obj” and the other non game setup file with file name: “Test. Txt”.
Game setup starts and the first game setup window was prompted.

Vetification Method

Manual test

User Action(Inputs)

A

1. Click the “Load Setup File” button.

2. Select the directory, which has files “Test.obj” and “Test.txt”.
3. Select file “Test.obj” and Click “Open”.

4. Click “Start Game”.

B.

1. Click the “Load Setup File” button.

2. Select the directory, which has files “Test.obj” and “Test.txt”.
3. Select file “Test.txt” and click “Open”.

4. Click “Start Game”.

C.

1. Click the “Load Setup File” button.

2. Select the directory, which has files “Test.obj” and “Test.txt”.
3. Select file “Test.obj” and Click “Open”.

4. Click “Cancel”.

Expected Results

A.

Game setup file “Test.obj” is loaded successfully.

B.

Non game setup file “Test.txt” is not loaded successfully.
C.

Importing game setup file “Test.obj” is cancelled.

Trace Log Information

None.

Actual Results

Same as the expected result.

Post condition

A

The setup values outlook of Test.obj is displayed in the IT department outlook
window. Game play starts with all these setup values.

B. Error message” The file is not the proper object file” is shown.

C.

The setup values outlook of Test.obj is displayed in the IT department outlook
window. System goes back the game setup window and game play didn’t statt.

Pass/Fail

Pass

Test Environment

English Windows XP, IBM Notebook with P3 CPU, 256M Ram

IBM Restricted

88

Based on the use cases scenatios, which are described in the chapter 3.3.1, the above testing
procedure takes three possible series of user actions into account. Accordingly, three possible
expected/actual results and pre/post conditions ate described. The above test case is passed, since
the actual result and the expected result is same. There is no trace log information, because the

program is not coded to display extra information in the back-end DOS command window.

7.4.2 Game Play Test Cases

For the game play tests, we present two most important test cases. The detail is shown in the table
7.4 and 7.5 respectively. The testing procedure in table 7.4 describes a manual test for making
department decisions. In order to test if decisions can be made and the result of the decisions can

be obtained right away, the following testing procedure are made based on the user cases described

in section 3.3.2.

Table 7.4 Testing Procedure for Making Department Decision

Test Procedure ID P01

Test Name Make department decisions

Test Procedure Author Maya & Kevin

Test Objective To test if we can make decisions for the department properties and if the result of
the decision can be displayed right away. The current changeable department
properties are the education days and the retention budget.

Related Use Case(s) Scenarios for Make Department Decisions Use Case (Chapter 3.3.2)

Preconditions/Assumptions

1. “Test.obj” was loaded to game play.
2. IT department game play window was prompted.
3. IT department details and profession list were displayed in this window.

Verification Method

Manual test

User Action(Inputs)

A.

—_

Select education days input text field and input 20 for it.
Select retention budget input text field and input 2000 for it.
Click “Submit”.

Sl

Select education days input text field and input 20 for it.
Select retention budget input text field and input 2000 for it.
Click “Submit”.

Click “Reset”.

o e

Expected Results

A

Education days are changed to 20 and retention cost are changed to 2000.

B.

Before resetting, education days are changed to 20 and retention cost are changed
to 2000. After resetting, education days are recovered to 10 and retention cost is
recovered to 1000.

Trace Log Information None.

Actual Results Same as the expected result.

Post condition A.
The value of education days is displayed with 20 and the value of retention cost is
displayed with 2000. Department decision can be made and submitted again.
B.
The value of education days is displayed with 10 and the value of retention cost is
displayed with 1000. Department decision can be made and submitted again.

Pass/Fail Pass

Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram

IBM Restricted 89

Based on the use cases scenarios, which are described in section 3.3.2, user actions can be to submit

decisions or to reset the modified properties. Once the user submits the decisions or resets the

modified properties, those properties will be changed right away and displayed in the department.

The testing procedure in Table 7.5 describes a manual test for making profession decisions. The

decisions we made should be saved as a temporary decisions. The decisions will not be submitted

until we finish the current game period. Therefore, those temporary decisions can be modified or

cancelled until we finish the current game period. The decisions we made only take place just after

the current game period finishes. The result of decisions is displayed in the next game period by

recalculating the profession details. Therefore the next game period has the outlook about the

previous profession details, the decisions we made and the current profession details.

Table 7.5 Testing Procedure for Mafking Profession Decision

Test Procedure ID P02

Test Name Make profession decision

Test Procedure Author Maya & Kevin

Test Objective To test if we can make decisions for each selected profession and if these
decisions will take place just after this game period. We are going to test basic
decisions like, fire/fire, subcontract/terminate and Outsource/ Terminate.

Related Use Case(s) Scenarios for Make Profession Decisions Use Case (Chapter 3.3.2)

Preconditions/Assumptions

1. “Test.obj” was loaded to game play.

2. One profession was selected from the profession list and “details”
button was clicked. Here is profession “Development Managet”.

3. Current profession details of profession “Development Manager”
were displayed in the profession “Development Manager” window.
Basically there are 0 FTR, 0 obsolete FTR, 1 FTS and 0 FTO.

Verification Method

Manual test

User Action(Inputs) A.

1. Hire 3 new FTR employees. (fill 3 in the text field “hire new” FTR)

2. Terminate 1 people for FIS. (fill 1 in the text filed “terminate
cutrent contract for”)

3. Make new contract with 1 people for FTO. (fill 1 in the text field
“make new contract with”)

4. Click “Ok”.

5. Click”details” in the I'T department Game play window.

6. Click “Ok”.

7. Click “Finish” in the IT department Game play window.

8. Select “Development Manager”.

9. Click “View Detail”.

B.

1. Hire 3 new FTR employees. (fill 3 in the text field “hire new” FTR)

2. Terminate 1 people for FIS. (fill 1 in the text filed “terminate
current contract for”)

3. Make new contract with 1 people for FTO. (fill 1 in the text field
“make new contract with”)

4. Click “Cancel”.

5. Click” details” in the I'T department Game play window.

6. Click “Ok”.

7. Click “Finish” in the IT department Game play window.

IBM Restricted 90

8. Select “Development Manager”.
9. Click “View Detail”.

Expected Results

A.

Hire 3 new FTR, Terminate 1 FTIS and outsource 1 FTO are set as a
temporary decision in the current game period.

After entering the next game period, The decisions are carried out, and the
recalculated profession details are displayed.

In this case, we will have 2 FTR, 1 obsolete FTR, 0 FTS and 1 FTO; because
one of the 3 fired FTR becomes an obsolete people based on the business
rules.

B.

No temporary decisions are made and the system keeps the default value in
the current game petiod.

Since no decisions are made, The profession details recalculation will be done
based on the default values. In our case the new profession detail will be 0
FTR, 0 obsolete FTR, 1 FTS and 0 FTO.

Trace Log Information None.

Actual Results Same as the expected result.

Post condition A.
Game is in the next petiod. Profession details are displayed with 2 FTR, 1
obsolete FTR, 0 FTS and 1 FTO. It’s ready to make decision for the current
game period.
B.
Game is in the next period. Profession details are display with 0 FIR, 0
obsolete FTR, 1 FTS and 0 FTO. It’s ready to make decision for the current
game period.

Pass/Fail Pass

Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram

IBM Restricted 91

Chapter &

CONCLUSIONS AND FUTURE WORKS

8.1 Introduction
This chapter is going to present the conclusions of this project and suggest the possible future
works. Section 8.2 discusses the result of this project and makes conclusions. Section 8.3 gives the

recommendations of future works.

8.2 Conclusions

The main objective of this project is defined as following,

To create SHAPE Workforce Management Game (SHAPE WMG) that can simmulate the effects of the player’s
decision based on the current condition of the department by applying Synthesis-Based Software Architecture Design
(Synbad) method.

By going through the architecture design and implementation phase, this objective has been

accomplished.

8.2.1 Conclusions on Architecture Design

As described in section 1.3, there are several questions addressed on the assessment of the
architecture design:

- How well does the architecture solve all the problems arise in the game playing requirements?

- How stable is the architecture for changes that might happen in the future?

- How is the reusability aspect of the architecture?

From the testing that is done with the user, it has shown that the application that are implemented
based on the designed architecture is able to fulfill the game playing requirements that are described
by the user in the beginning of the project. The game is able to provide the business environment
that resembles the real business situation where the game player works in, by allowing IBM
consultants to set the game world in the game setup phase. The game is also able to perform the
tasks of simulating the results of the game player’s decisions by applying the business rules to the
current situation of the department where the game player works in.

The evaluation that was done on the architecture design proved that the architecture is indeed
stable and reusable. The changes that are required in a certain component to perform certain
evolution scenario do not result in big changes that should also be made in other components. The
existing components can also be used to add certain new functions or operations to give new

features in the game.

IBM Restricted 92

8.2.2 Conclusions on Design Methodology

As also described in section 1.3, the assessment of the design methodology is aiming at the ease of
use of the Synbad method.

While the user requirements analysis is used to understand and represent directly the problem of
concern, the technical problem analysis is used to identify the real problems that will arise in the
implementation of the application. The mapping from user requirements into technical problems
that was done in Synbad method has helped in identifying the core of the problems that were then
solved in the form of software architecture.

In searching for the solution domains for every sub-problem that was identified in the technical
problem analysis, several difficulties were found. Due to the limited time and experience that were
available to do both the design and implementation of the application, not all solution domain
concepts could be refined. However, the architecture design has been proved to be able to cover
the problems that were identified before. The clear definition of the solution domain concepts has
helped to give novel design solutions. These concepts can be further refined in the future to add

more functionality to the application.

8.3 Recommendations for Future Works

From the above conclusion, both architecture design and design methodology can be improved
and enhanced in the future. Section 8.3.1 gives recommendations for future works on the
architecture design and section 8.3.2 gives recommendations for Synbad as the design methodology

that is used in this project.

8.3.1 Future Works on Architecture Design

The Business Modelling and Simulation Modelling part of the overall SHAPE WMG architecture have
been developed with the internal structure analysis. The Game Player Modelling part which is also
shown in Figure 5.8, however, is not yet developed in the current stage. Further works should be
done to design the internal architectures of this part in the lower abstraction level.

In the future, a more complete and realistic business model should be designed. Therefore, the
solution domain analysis of the business model needs to be done in more detail. On one side, new
elements can be added into the business model, and on the other side, the current primary elements
can be enhanced and updated.

As mentioned before, the use of design pattern has helped in solving specific design problems and
has made object-oriented designs more reusable. However, since the principles of design patterns
are new for us to learn, there was not enough time to understand the concept, to find the pattern

that fits properly into the design of this project and to experience the design itself in the

IBM Restricted 93

implementation. The only design pattern that is applied in the architecture design is the Observer
pattern. For future development, some more architecture implementation patterns should also be
explored to see whether or not it can be applied in SHAPE WMG application in order to give
much higher level of reusability.

8.3.2 Recommendations for Synbad

Based on the experience in applying Synbad in this project, several recommendations are made:

e In the first process of doing the Synbad approach, there was issue discussed on whether to do
the technical problem and solution domain analysis with breadth-first approach or depth-first
approach. In breadth-first approach, all the problems are worked out in the higher level before
continuing with the lower level of defining problems and solution domains. The depth-first
approach suggests first to solve the problems with higher priority from the higher to the lower
level and then go to the next lower priority problems and solves it in the same manner. Since
this project was done by two people, every step of Synbad is always divided into two tasks that
can be assigned each one person. This includes the technical problem and solution domain
analysis step where parallel work was made to identify problems each in a specific area and find
the solution domains for each area. With this breadth-first approach, we found some difficulties
in having to redesign the solutions whenever the separate solution domains for each area are
combined and didn’t fit with each other. Therefore, we suggest that first-depth search is used to
save more time in solving the lower priority problems, since the higher ones are already solved

and can be used as the basis to solve the other problems.

e Another difficulty that we found in applying Synbad method is in trying to refine all the
concepts that were described when solving the problems in the solution domain analysis phase.
Since the project demands a deliverable implementation that is ready to use within a limited
time, we finally left out several concepts to be able to fulfil this demand but still able to support
high reusability of the design. Therefore, we think that Synbad method should provide a
flexible way to determine which part of the architecture should be developed first and which
part could be developed later on in order to save time in developing the application to fulfil first
the main functionality of the system.

e The searching of solution domain has taken quite an amount of time. Finding the right solution
domain concepts to be applied in a certain situation is very critical and needs a lot of experience
and knowledge. When the project is in the lack of time, some experts help in this area should
be used to make the process more effective and at the same time add more experience and

knowledge to the designers themselves.

IBM Restricted 94

Appendix A

SCENARIOS FOR USE CASES IN THE GAME SETUP PHASE

In this appendix, the scenarios are explained for every use cases that are exist in the game setup
phase. The description of scenarios is the result of the requirement analysis phase of the Synbad

method as described in Chapter 3.

Scenarios for Validate User Use Case
Scenario 1: User is validated successfully
1. User chooses start game set-up action.
2. System asks for user name and password.
3. User enters user name and password.
4. System looks up the user name and password in its password log.
5. The user name and password match with the entries in the log, the systems then validates
the user as the game manager.
Scenario 2: V alidation failed since the user is not an anthoriged game manager.
1. User chooses start game set-up action.
2. System asks for user name and password.
3. User enters user name and password.
4. System looks up the user name and password in its password log.
5. The user name and password don’t match with any entries in the log, the systems then
informs the user that validation fails.

6. System rolls the user back to the previous state before choosing to start game set-up action.

Scenarios for Look Up Help Use Case
Scenario 1: System displays the selected help content
1. Game manager chooses the “read help” action.
2. Game manager chooses to read help content.
3. Game manager chooses one of the help topics.
4. System displays the help content of the chosen topic.
Scenario 2: System shows the topics related to the keyword entered by the game manager
1. Game manager chooses the “read help” action.
2. Game manager chooses to search for topic.

3. Game manager enters a keyword.

IBM Restricted 95

4. System looks for topics that are related to the keyword.
5. System displays the topics related to the keyword entered.
Scenario 3: System cannot find any topic related to the keyword entered by the game manager
1. Game manager chooses the “read help” action.
2. Game manager chooses to search for topic.
3. Game manager enters a keyword.
4. System looks for topics related to the keyword
5. There are no topics related to the keyword, system then informs the user that there are no
topic found for the entered keyword.
Scenario 4: System displays the selected tutorial
1. Game manager chooses the “read help” action.
2. Game manager chooses to read tutorial.
3. Game manager chooses one of the tutorials.
4. System displays the chosen tutorial.
Scenarios for Import Game Setup Use Case
Scenario 1: System sets up all the values based on the imported game setup file
6 Game manager chooses the “import game setup” action.
7 Game manager selects a file.
8 System checks to see if the imported file is a valid game setup file.
9 The imported file is a valid file, system then loads the game setup file.
10 The setup values are set to the values that are in the game setup file.
Scenario 2: System fails to set the values since the imported file is not a valid game setup file
11 Game manager chooses the “import game setup’ action.
12 Game manager selects a file.
13 System checks to see if the imported file is a valid game setup file.
14 The imported file is not a valid file.
15 System informs the game manager that the file cannot be loaded.
Scenario 3: There are no values set since the game manager cancels the import file action
4. Game manager chooses the “import game setup” action.
5. Game manager cancels the action.
6. System rolls the game manager back to the previous state before the game manager

chooses to import game setup.

IBM Restricted 96

Scenarios for Manual Game Setup Use Case
Scenario 1: System saves the game setup based on the game manager input in a game setup file
1. Game manager chooses the “setup game manually” action.
2. System displays forms to be filled in by the game manager.
3. Game manager fills in all the required information.
4. Game manager finishes the game setup and sets or chooses a file name to save the game
setup.
5. System saves the game setup values in the game setup file.
Scenario 2: There are no values set since the game manager cancels the game setup
1. Game manager chooses the “setup game manually” action.
2. System displays forms to be filled in by the game manager.
3. Game manager fills in all the required information.
4. Game manager cancels the game setup.
5. System rolls the game manager back to the previous state before the game manager

chooses to setup the game manually.

Scenarios for Setup Game Period Use Case
Scenario 1: System sets the length and the number of game period based on game manager’s input
1. Game manager chooses the length and the number of game period.
2. System sets the chosen values as the length and the number of game period.
Scenario 2: System sets the length and number of game period based on default value
1. Game manager doesn’t change the default value of the length and the number of game
period that are displayed by the system.

2. System sets the default values as the length and the number of game period.

Scenarios for Setup Department Details Use Case
Scenario 1: System sets the department details values based on game manager’s input
1. Game manager gives inputs for all the required values of the department.
2. System sets the department details values as entered by the game manager.
Scenario 2: System sets the department details values based on default value
1. Game manager doesn’t change the default value of the department values that are displayed
by the system.

2. System sets the default values as the department details values of the game.

IBM Restricted 97

Scenarios for Setup Business Strategies Use Case
Scenario 1: System sets the business strategies entered by the game manager
Normal course:
1. Game manager chooses the “setup the game business strategies” action.
2. Game manager types the business strategies for all game periods.
3. System sets the business strategies description as entered by the game manager.
Alternative course:
1. Game manager chooses the “setup the game business strategies” action.
2. Game manager types the business strategies only for some game periods.
3. System informs the game manager that business strategies should be entered for all game
periods.
4. Game manager fills in the business strategies description for all game periods.
5. System sets the business strategies description as entered by the game manager.
Scenario 2: System fails to set the business strategies since the game manager cancels the business strategies setup
action
1. Game manager chooses the “setup the game business strategies” action.
2. Game manager types the business strategies for some or none game petiods.
3. Game manager cancels the business strategies setup.
4. System rolls the game manager back to the previous state before the game manager

chooses to setup the business strategies.

Scenarios for Setup Disasters Use Case
Scenario 1: System sets disasters parameter and value based on game manager’s input
1. Game manager chooses the “setup disasters” action.
2. Game manager chooses a disaster parameter and sets its value for a game period.
3. System sets the disasters parameter and value for that game period as entered by the game
manager.
Scenario 2: System sets the disasters parameters and values based on defanlt valne
1. Game manager chooses the “setup disasters” action.
2. Game manager doesn’t change the default setting for disaster for a certain game period that
is displayed by the system.

3. System sets the default value as the disaster setting for that particular game period.

IBM Restricted 98

Scenarios for Add New Profession Use Case
Scenario 1: System adds a new profession set by game manager to the list of avatlable professions
Normal course:
1. Game manager chooses the “setup profession” action.
2. System displays the available professions that can be included in the game.
3. Game manager adds the name of a new profession to the available professions list.
4. System adds the profession name to the available professions list.
Alternate course:
1. Game manager chooses the “setup profession” action.
2. System displays the available professions that can be included in the game.
3. Game manager adds the name of a new profession to the available professions list.
4. 'The name entered already exists in the list, system then informs the game manager that the
profession entered already exists in the list.
5. Game manager enters another profession name to be added.
6. The name entered doesn’t yet exist in the list, system then adds the profession name to the
available professions list.
Scenario 2: System fails to add new profession since the profession cancels the add new profession action
1. Game manager chooses the “setup profession” action.
2. System displays the available professions that can be included in the game.
3. Game manager adds the name of a new profession to the available professions list.
4. 'The name entered already exists in the list, system then informs the game manager that the
profession entered already exists in the list.

5. Game manager cancels adding new profession to the list.

o

System rolls the game manager back to the previous state before the game manager

chooses to add new profession.

Scenario for Remove Profession Use Case
1. Game manager chooses the “setup profession” action.

System displays the available professions that can be included in the game.

2

3. Game manager selects a profession from the list.

4. Game manager chooses the “remove profession” action.
5

System removes the selected profession from the available professions list.

IBM Restricted 99

Scenatios for Include Profession Use Case

Scenario 1: System adds a new profession to the list of professions that are included in the game

1.

2
3.
4
5

Game manager chooses the “setup profession” action.

System displays the available professions that can be included in the game.
Game manager selects a profession from the available professions list.
Game manager chooses the “include profession” action.

System adds the selected profession to the list of professions that are included in the game.

Scenario 2: System fails to add new profession since the selected profession is already included in the game

1.

2
3.
4
5

~

Game manager chooses the “setup profession” action.

System displays the available professions that can be included in the game.

Game manager selects a profession from the available professions list.

Game manager chooses the “include profession” action.

The profession selected is already in the list of professions that are included in the game,
system then informs the game manager that the selected profession is already included.
Game manager adds the name of a new profession to the available professions list.

System rolls the game manager back to the previous state before the game manager

chooses to add new profession.

Scenario for Exclude Profession Use Case

1.

2
3.
4
5

Game manager chooses the “setup profession” action.

System displays the list of professions that are included in the game.

Game manager selects a profession from the list.

Game manager chooses the “exclude profession” action.

System removes the selected profession from the list of professions that are included in the

game.

Scenarios for Setup Profession Details Use Case

Scenario 1: System sets the profession details values based on game manager’s input

1.

2
3
4.
5
6

Game manager chooses the “setup profession” action.
System displays the list of professions that are included in the game.
Game manager selects a profession from the list.
g p
Game manager chooses the “add profession details” action.
Game manager gives inputs for all the required values of the profession.
ger gl p q p

System sets the profession details values as entered by the game manager.

IBM Restricted 100

Scenario 2: System sets the department details values based on default value
1. Game manager chooses the “setup profession” action.
2. System displays the list of professions that are included in the game.
3. Game manager selects a profession from the list.
4. Game manager chooses the “add profession details” action.
5. Game manager doesn’t change the default value of the profession values that are displayed
by the system.

0. System sets the default values as the profession details values of the game.

Scenarios for Setup Objectives Use Case
Scenario 1: System sets the objectives values based on game manager’s input
1. Game manager chooses the “add profession details” action.
2. Game manager chooses the “setup objectives” action.
4. Game manager inputs the objectives of the profession for all game periods.
5. System sets the objectives values as entered by the game manager.
Scenario 2: System sets the objectives values based on defanlt valne
1. Game manager chooses the “add profession details” action.
2. Game manager chooses the “setup objectives” action.
3. Game manager doesn’t change the default values of the objectives that are displayed by the

system.

>

System sets the default values as the objectives value.

IBM Restricted 101

Appendix B

KNOWLEDGE SOURCES FOR SOLUTION DOMAINS

Table B.1 Knowledge Sonrces for the Solution Domain Control System

ID Knowledge Source Form
KS1 | A QoS-Control Architecture for Object Middleware [Ber00] Paper
KS2 | Meeting with supervisors of UT Person
KS3 | IBM SHAPE Workforce Management Game External Design [Zan02] Document
KS4 | Meeting with supervisors of IBM Person

Table B.2 Knowledge Sonrces for the Solution Domain Quality Management

ID Knowledge Source Form
KS1 | Meeting with supervisors of UT Meeting
KS2 | SHAPE Workforce Management Game [Jol02] Thesis report
KS3 | IBM SHAPE Workforce Management Game External Design [Zan02] Document
KS4 | Design Patterns: Elements of Reusable Object-Oriented Software [Gam95)] Textbook

Table B.3 Knowledge Sonrces for the Solution Domain Object-Oriented Design

ID Knowledge Source Form
KS1 | SHAPE Workforce Management Game [Jol02] Thesis report
KS2 | WebSphere Version 4 Application Develgpment Handbook [Wah01] Technical

handbook
KS3 | Java: How to Program [Dei99] Textbook
KS4 | An Introduction to Programming and Object-Oriented Design Using Java [Nin02] | Textbook
KS5 | Design Patterns: Elements of Reusable Object-Oriented Software |Gam95)] Textbook
KS6 | Applied Java Patterns [Ste02] Textbook

Table B.4 Knowledge Sonrces for the Solution Domain User Interface

ID Knowledge Source Form
KS1 | IBM SHAPE WMG prototype Prototype
KS2 | IBM SHAPE Workforce Management Game External Design [Zan02] Document
KS3 | SHAPE Workforce Management Gane []ol02] Thesis report
KS4 | Java: How to Program [Dei99) Textbook
KS5 | An Introduction to Programming and Object-Oriented Design Using Java [Nin02] | Textbook
KS6 | Design Patterns: Elements of Reusable Object-Oriented Software |Gam95] Textbook
KS7 | Applied Java Patterns [Ste02] Textbook

Table B.5 Knowledge Sources for the Solution Domain Caleulation

ID Knowledge Source Form
KS1 | IBM SHAPE Workforce Management Game External Design [Zan02] Document
KS2 | SHAPE Workforce Management Game [Jol02] Thesis report
KS3 | Meeting with supervisors of IBM Meeting

IBM Restricted 102

This knowledge sources for solution domains Business modeling, Game playing modeling, and Assessment

and Simulation technigue are the same and are given in the following Table B.6

Table B.6 Knowledge Sonrces for the Solution Domain Business Modeling, Ganme Playing Modeling, and
Assessment and Simulation Technigne

ID Knowledge Source Form
KS1 | IBM SHAPE Workforce Management Game External Design [Zan02] Document
KS2 | SHAPE Workforce Management Game [Jol02] Thesis report
KS3 | Meeting with supervisors of IBM Person
KS4 | Meeting with supervisors of UT Person

IBM Restricted 103

Appendix C

TEST CASES FOR THE TESTING PROCEDURE

This appendix describes the test cases used for the testing procedure explained in section 7.4 of

Chapter 7.

Table C.1 Testing Procedure for Game Period Setup

Test Procedure ID S02
Test Name Game period setup
Test Procedure Author Maya & Kevin
Test Objective To test if game period setup can be successfully done.
Related Use Case(s) Scenarios for Game Period Setup Use Case (Appendix A)
Preconditions /Assumptions “manual setup’ has been clicked.

Game period setup window was prompted.
Verification Method Manual test
User Action(Inputs) A

1. Choose 6 from the choice button] for the length of a game petiod.
2. Choose 2 from the choice button2 for the number of game periods.
3. Click “Next”.

B.

1. Leave the default values for both choice buttons.

2. Click “Next”.

C.

1. Choose 6 from the choice button] for the length of a game period.
2. Choose 2 from the choice button2 for the number of game periods.
3. Click “Back”.

Expected Results A.

The length of a game period is set to 6 months. The number of game periods is
set to 2.

B.

The default values are used. The length of a game period is 12 and the number
of game periods is 3.

C.

Game period setup is not done yet. System goes back to the first game setup
window.

Trace Log Information A.
The length of a game period is set to 6.
The number of game periods is set to 2.
B.

The length of a game period is set to 12.
The number of game periods is set to 3.
C.

None

Actual Results Same as the expected result.

Post condition A.

A warning message pops out: “Changing this setting will delete all setup values.
Continue?”

B.

A warning message pops out: “Changing this setting will delete all setup values.
Continue?”’

C.

Game Setup window is prompt.

Pass/Fail Pass

Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram

IBM Restricted 104

Table C.2 Testing Procedure for Business Strategy Setup

Test Procedure ID S03

Test Name Business strategy setup

Test Procedure Author Maya & Kevin

Test Objective To test if business strategy setup can be successfully done.
Related Use Case(s) Scenarios for Business Strategy Setup Use Case (Appendix A)

Preconditions /Assumptions

The number of game periods is 3.
IT department setup window was prompted.
“Business Strategy Setup” was clicked.

Verification Method

Manual test

User Action(Inputs)

A.

1. Input 3 business strategies for 3 game petiods respectively.

2. Click “Ok”.

B.

1. Input 2 business strategies for the first two game periods respectively.
2. Click “Ok”.

C.

1. Input 3 business strategies for 3 game periods respectively.

2. Click “Cancel”.

Expected Results

A.

Business strategies are set.

B.

Business strategies setup cannot be completed because one of game period has
not game strategy yet.

C.
No business strategies are set.
Trace Log Information None
Actual Results Same as the expected result.
Post condition A,
Business strategies setup window is closed and system goes back to IT
department setup window.
B.
A warning message pops out, “Please fill in all the required fields”.
C.
Business strategies setup window is closed and system goes back to IT
department setup window.
Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram
Table C.3 Testing Procedure for Disaster Setup
Test Procedure ID S04
Test Name Disaster setup
Test Procedure Author Maya & Kevin
Test Objective To test if disaster setup can be successfully done.
Related Use Case(s) Scenarios for Disaster Setup Use Case (Appendix A)

Preconditions/Assumptions

The number of game periods is 3.
IT department setup window was prompted.
“Disaster Setup” was clicked.

Verification Method

Manual test

User Action(Inputs)

A.

1. Select “Attrition Rate Change” and value is “2%” for the first game period.
2. Select “Illness Rate Change” and value is “3%” for the second game period.
3. Select “None” and value is “2%” for the third game period.

4. Click “Ok”.

B.

1. Leave all the default values.

2. Click “Cancel”.

IBM Restricted

105

Expected Results

A

In the first game petiod, attrition rate will be changed to 2%.

In the second period, the illness rate will be changed to 3%.

There is no any disaster for the third game period.

B.

No any changes to the default disaster scenarios. The cutrent default disaster
scenarios are all “None” with “Null” values.

Trace Log Information None
Actual Results Same as the expected result.
Post condition A.
Disaster setup window is closed and system goes back to IT department setup
window.
B.
Same as A.
Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram
Table C.4 Testing Procedure for Adding New Profession
Test Procedure ID S05
Test Name Add new profession
Test Procedure Author Maya & Kevin
Test Objective To test if a custom profession can be added into the profession list.
Related Use Case(s) Scenarios Add New Profession Use Case (Appendix A)

Preconditions /Assumptions

Profession setup window was prompted.
Default profession list was loaded.

Verification Method

Manual test

User Action(Inputs)

A.

1. Click “Add”.

2. Fill in a name for the new profession. In this case we fill in “Custom
profession”.

3. Click “Ok”.

B.

1. Click “Add”.

2. Fill in a name for the new profession. In this case we fill in “CEO”, which
already exists in the profession list.

3. Click “Ok”.

C.

1. Click “Add”.

2. Fill in a name for the new profession. In this case we fill in “CEO”, which
already exists in the profession list.

3. Click “Ok”.

4. Click “Ok”.

5. Click “Cancel”.

Expected Results

A

New profession “Custom profession” has been added into profession list.

B.

Since the new profession name already exists in the profession list. System gives
a warning message and ignores the “add” action.

C.

No new profession has been added, “Add” action is cancelled.

Trace Log Information

None

Actual Results

Same as the expected result.

Post condition

A.

System goes back to the profession setup window.

Profession list increases one and “Custom profession” appears in the end of
profession list.

B.

A Warning message pops out “The profession name you filled exists already.

IBM Restricted

106

Please choose other profession name to fill in”.

C.
System goes back to the profession setup window.
Nothing has been changed.
Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram
Table C.5 Testing Procedure for Removing a Profession
Test Procedure ID S06
Test Name Remove an existing profession
Test Procedure Author Maya & Kevin
Test Objective To test if a custom profession can be removed from the profession list.
Related Use Case(s) Scenarios Remove Profession Use Case (Appendix A)

Preconditions /Assumptions

Profession setup window was prompted.
Default profession list was loaded and at least one profession in the list.

Verification Method

Manual test

User Action(Inputs) A.
1. Select a profession. It is “Operator” in this case.
2. Click “Remove”.
Expected Results A.
Profession “Operator” is removed from the profession list.
Trace Log Information None
Actual Results Same as the expected result.
Post condition A.
Profession list decreased one and “Operator” has been removed.
Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram
Table C.6 Testing Procedure for Profession Detail Setup
Test Procedure ID S07
Test Name Profession details setup
Test Procedure Author Maya & Kevin
Test Objective To test if profession details can be setup successfully.
Related Use Case(s) Scenarios Setup Profession Details Use Case (Appendix A)

Preconditions/Assumptions

Profession Setup window was prompted.
At least two professions are included in the profession list.

Vetification Method

Manual test

User Action(Inputs)

A.

1. Select “CEO” from the included profession list.

2. Click “Add Details”.

3. Set profession type “Fixed”.

4. Fillin 1 for the number of productive FTR.

5. Click “Ok”.

B.

1. Select “CEO” from the included profession list.

2. Click “Add Details”.

3. Set profession type “Changeable and Uncontractable”.
4. Fillin 1 for the number of subcontractor.

5. Click “Count Productivity”.

6. Click “Ok”.

C.

1. Select “IT Manager” from the included profession list.
2. Click “Add Details”.

3. Set profession type “Changeable and Contractable”.

IBM Restricted

107

4. Fill in 1 for the number of productive FTR, 4% for attrition rate, 1 for the
number of outsourcet.

5. Click “Count Productivity”.

6. Click “Ok™.

D.

1. Select “CEO” from the included profession list.

2. Click “Add Details”.

3. Set profession type “Fixed”.

4.Fillin 1 for the number of productive FTR.

5. Click “Cancel”.

Expected Results

A.

Profession “CEO” has one productive FTR and the profession type is “fixed”.
B.

Profession “CEO” has one subcontractor and the profession type is
“Changeable and Uncontractable”. The counted productivity is 0.9.

C.

Profession “IT Manager” has one outsourcer, 4% attrition rate and the
profession type is “Changeable and Contractable”. The counted productivity is
1.0.

D.

No properties of profession “CEO” are changed yet, because the actions are
cancelled.

Trace Log Information None
Actual Results Same as the expected result.
Post condition A.
System goes back to the profession setup window.
B.
Same as A.
C.
Same as A.
D.
Same as A.
Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram
IBM Restricted 108

Appendix D

CALCULATION

As described in subsection 3.2.2, there are three types of profession that are defined in SHAPE
WMG:

1. Fixed profession: a profession whose number of employees cannot be changed during the
entire game and who can only consist of Full Time Regular employees. This profession will
be referred to as type 1 profession.

2. Changeable-uncontractable profession: a profession whose number of employees can be
changed during the game and who can only consist of Full Time Regular employees. This
profession will be referred to as type 2 profession

3. Changeable-contractable profession: a profession whose number of employees can be changed
during the game and who can consist of Full Time Regular employees, Full Time
Subcontractors, and Full Time Outsourcers. This profession will be referred to as type 3
profession.

This section will explain the order of calculation that is done in SHAPE WMG. For every
calculation step, it is explained to which type of profession it is applied to. The order of calculation

in simulating the effects of the decision is as follows:

D.1 Number of Employees Based on Player’s Decisions

This step is not applied for profession of type 1.
Full Time Regular
The steps:

1. If the player decided to re-educate obsolete FTR, then the number of the current obsolete
is reduced and the number of productive FTR is increased by the number of re-educated
obsolete.

2. If the player decided to fire FTR, then the number of remaining obsolete FTR will first be
reduced if it is less or equal to the number of fired FTR. If there is still remained a number
of fired FTR, then the number of productive FTR will be reduced by that remaining
number.

3. If the player decided to hire FTR, then the number of productive FTR is increased with the
number of hired FTR.

IBM Restricted 109

The algorithm:
if the player decided to re-educate obsolete FTR

new obsolete FTR = previous obsolete FTR — reeducated obsolete

new productive FTR = previous productive FTR + reeducated obsolete
else

new obsolete FTR = previous obsolete FTR

new productive FTR = previous productive FTR

if the player decided to fire FTR
if the number of fired FTR <= new obsolete FTR
new obsolete FTR = new obsolete FTR — fired FTR
else
new productive FTR = new productive FTR — (fired FTR — new obsolete FTR)
new obsolete FTR =0
new productive FTR = new productive FTR +hired FTR

Full Time Subcontractor
This step is only applied to profession of type 3.
The steps:
1. If the player decided to make new FIS contract, then the number of FTS will be increased
by the number of new FTS contract.
2. If the player decided to terminate FTS contract, then the number of FTS will be reduced by
the number of terminated FTS contract.

The algorithm:

new FIS = previous FIS +new FTS contract — terminated FTS contract

Full Time Outsourcer
This step is only applied to profession of type 3.
The steps:
1. If the player decided to make new FTO contract, then the number of FTO will be
increased by the number of new FTO contract.
2. If the player decided to terminate FTO contract, then the number of FTO will be reduced
by the number of terminated FTO contract.

The algorithm:
new FTO = previous FTO +new FTO contract — terminated FTO contract

IBM Restricted 110

D.2 Cost
This step is applied to all types of profession.
The steps:
1. Calculate the FTR costs
2. Calculate the retention costs based on the new retention cost that is altered by the player or
the initial retention cost if the player didn’t alter the cost
3. Calculate the education costs
4. If the profession type is not of type 1 and the player decided to hire FTR, calculate the
recruitment costs
5. If the profession type is not of type 1 and the player decided to fire FTR, calculate the
golden handshake costs
0. If the profession type is 3, calculate the FTS and FTO costs
The algorithm:
if profession type is 1
FTR costs = productive FTR * compensation FTR
retention costs = productive FTR * new retention cost
education costs = productive FTR * education cost
else
FTR costs = (new productive FTR + new obsolete FTR) * compensation FTR
retention costs = (new productive FTR + new obsolete FTR) * new retention cost
education costs = (new productive FTR + new obsolete FTR) * new education cost
if the player decided to hire FTR
recruitment costs = hired FTR * recruitment cost
if the player decided to fire FTR
golden handshake costs = fired FTR * (compensation FTR +
(golden handshake rate * compensation FTR))
if profession type is 3
FTS costs = new FTS * compensation FTS

FTO costs = new FTO * compensation FTO

D.3 Attrition Rate
This step is not applied to profession of type 1.
The steps:

1. If there is disaster scenario set to change the attrition rate, then the number of current

attrition rate is increased or decreased by the attrition rate change.

IBM Restricted 111

2. If the player decided to alter the number of education days, then the following rules will be
applied:
- if the new number is higher, then the attrition rate will increase 1 % for each 10 %
of the deviation between the previous and the new number of education days
- if the new number is lower, then the attrition rate will decrease 1 % for each 10 %
of the deviation between the previous and the new number of education days
3. If the player decided to alter the retention cost, then the following rules will be applied:
- if the new cost is higher, then the attrition rate will decrease 1 %
- if the new cost is lower, then the attrition rate will increase 2 %
The algorithm:
Based on Disaster
if there is disaster applied on attrition rate
new attrition rate = previous attrition rate + attrition rate change
else
new attrition rate = previous attrition rate
Based on Education Days Granted
if number of education days is altered
deviation = ((new education days — previous education days) / previous education days) *
100 %
new attrition rate = new attrition rate — (deviation / 10 %)
Based on Retention Cost Spent
if retention cost is altered
if new retention cost > previous retention cost
new attrition rate = new attrition rate — 1 %
else

new attrition rate = new attrition rate + 2 %

D.4 Other Leavers
This step is not applied to profession of type 1.
The steps:

1. Calculate the number of leavers by applying the attrition rate (obtained form the attrition
rate calculation in section 2)

2. If the player decided to fire FTR equal to or more than 50% of the total FTR, other FTR
that are 25 % of the initial number of FTR (before firing) will also leave.

3. Reduce the number of productive FTR by the number of other leavers.

IBM Restricted 112

The algorithm:
other leavers = new attrition rate * (new productive FTR + new obsolete FTR)
if player fired FTR more than 50 %
other leavers = other leavers + 25 % * (new productive FTR + new obsolete FTR)

new productive FTR = new productive FTR — other leavers

D.5 Illness Rate Based on Disaster Scenario
This step is not applied to profession of type 1.
The steps:
1. If there is disaster scenario set to change the illness rate, then the number of current illness
rate is increased or decreased by the illness rate change.
The algorithm:
if there is disaster applied on illness rate
new illness rate = previous illness rate + illness rate change
else

new illness rate = previous illness rate

D.6 Productivity
This step is not applied to profession of type 1.
The steps:
1. Calculate the current number of productive FTR by reducing it with the other leavers.
2. Calculate the productivity of FTR with three different formulas: for the newly hired FTR,
for the re-educated obsolete and for the remaining FTR:
3. Calculate the total FTR productivity
4. If the profession is of type 3, then calculate the productivity for FTS and FTO with three
different formulas: for new FTS, foe the remaining FTS, and for FTO
5. Calculate the total FTS productivity
6. Calculate the total productivity of the profession
The algorithm:
new productive FTR = new productive FTR — other leavers
hired FTR productivity = hired FTR * ((260.0 — new education days — vacation days —
learning curve FTR - (2.6 * new illness rate))/260.0)
re-educated FTR productivity = re-educated obsolete * ((260.0 — new education days — vacation

days — learning curve obsolete - (2.6 * new illness rate))/260.0)

IBM Restricted 113

remaining FTR productivity = (new productive FTR — hired FTR — re-educated obsolete) *
((260.0 — new education days — vacation days —
(2.6 * new illness rate))/260.0)

total FTR productivity = hired FTR productivity+ re-educated obsolete productivity +
remaining FTR productivity
total productivity = total FTR productivity
if profession type is 3
new FTS productivity = new FTS contract * ((260.0 — vacation days —

learning curve FTS)/260.0)
remaining FTS productivity = (new FTS —new FTS contract) * ((260.0 —

vacation days)/260.0
total FTS productivity = new FTS productivity + remaining FTS productivity
total FTO productivity = new FTO
total productivity = total productivity + total FIS productivity +

total FTO productivity

D.7 New Obsolete
This step is not applied to profession of type 1.
The steps:
1. If the accomplished productivity is more than the needed productivity, it will result in new
obsolete FTR which is the difference between those productivities
2. If the difference is less than or equal to the number of current productive FTR, then the
number of obsolete is increased by that difference and the number of productive FTR is
decreased also by that difference. If the difference is more than the number of current
productive FTR, then the number of obsolete FIR is increased by the number of
productive FTR and the number of productive FTR is set to zero.
The algorithm:
if the accomplished productivity is more than the needed productivity
new obsolete = accomplished productivity — needed productivity
if new obsolete <= new productive FTR
new productive FTR = new productive FTR — new obsolete
else
new obsolete = new productive FTR;

new productive FTR = 0

IBM Restricted 114

D.8 Illness Rate Based on Productivity

This step is not applied to profession of type 1.

The steps:
1. Calculate the deviation of the accomplished productivity from the needed productivity.
2. If the deviation is more than 10%, then first check the current game period:

- If the current period is 1, then the illness rate is increased by 3 %

- If the current period is 2 or larger, then check if the illness rate has never been
increased before or if it has but then decreased again. If so, then the illness rate is
increased by 3 %

3. If the deviation is less than or equal to 10%, then first check the current game period:

- If the current period is less than 3, then do nothing (because illness rate is only
decreased after it has been increased before and should be at least 2 periods apart)

- If the current period is 3 or larger, then check if the illness rate has already been
increased before at least two periods before and not decreased again afterwards. If
it has then the illness rate is not changed, but if it has not then the illness rate is
decreased by 3 %

The algorithm:
deviation = (accomplished productivity — needed productivity) / needed productivity
if the deviation > 10 %
if the current period is 1
new illness rate = new illness rate + 3 %
else
if the illness rate is not increased in previous periods or it was but then decreased
new illness rate = new illness rate + 3 %
else
if the current period is 3 or larger
if the illness rate is increased at least two periods before and not decreased then

new illness rate = new illness rate - 3 %

IBM Restricted 115

REFERENCES

[AksO2] Aksit, Mehmet and Bedir Tekinerdogan. Omntwerpen van Software Architecturen, Universiteit
Twente, July 2002.

[Bei90] Beizer, B., Software Testing Techniques (second edition), Thomson Computer, Press, Boston,
ISBN 1850328803, 1990

[Be195] Beizer, B., Black box testing: Technigues for Functional Testing of Software and Systems, John Wiley
& Sons inc., New York, ISBN 1-872582-17-6, 1995

[Ber00] Bergmans, L., A. van Halteren, L. Ferreira Pires, M. van Sinderen, and M.Aksit, A4 QoS-
Control Architecture for Object Middleware, CTTT, University of Twente, The Netherlands,
2000.

[Boo99] Booch, Grady, James Rumbaugh and Ivar Jacobson. The Unified Modeling 1angnage User
Guide, Addison-Wesley, 1999.

[Dei99] Deitel, H.M. and P.J. Deitel. Java: How to Program, Prentice Hall, 3" Edition, 1999.

[Dus03] Dustin, E (2003) Effective Software Testing, 50 specific ways to improve your testing,
Addison-Wesley, Pearson Education, Inc, ISBN 0-201-79429-2

[Gam95] Gamma, Erich, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[HutO3] Hutcheson, M, L (2003) Software Testing Fundamentals, Wiley Publishing Inc, Canada,
ISBN 0-471-43020-X

[Jac99] Jacobson, Ivar, Grady Booch, and James Rumbaugh. The Unified Software Development
Process, Addison-Wesley, 1999.

[JolO2] Joling, HM. SHAPE Workforce Management Game, Technische Informatica, Hogeschool
Drenthe, 2003.

[KruO1] Kruchten, Philippe. What is the Rational Unified Process?, The Rational Edge, 2001.
http://www.therationaledge.com/content/jan 01/f rup pk.html

[Lev02] Levitt, Kartl. Introduction to Software Engineering: class notes from Tuesday 5/14/02, 2002.
http://wwwesif.cs.ucdavis.edu/~cs160/ECS160A-notes-10%20copy.pdf.

[Nin02] Nifo, Jaime and Frederick A. Hosch. An Introduction to Programming and Object-Oriented
Design Using Java, John Wiley & Sons, Inc. , 2002.

[Rop94] Roper, M. (1994), Software Testing, McGraw-Hill, England, ISBN 0-07-707466-1Simmons,
T. (2000), A bug’s life, in: Professional Tester, Volume 1, and Issue No.4

[Sie96] Siegel, S (1996), Object Oriented Software Testing, A Hierarchical Approach, John Wiley & Sons,
Inc, Canada, ISBN 0-471-13749-9

IBM Restricted 116

http://www.therationaledge.com/content/jan_01/f_rup_pk.html
http://wwwcsif.cs.ucdavis.edu/%7Ecs160/ECS160A-notes-10 copy.pdf

[Ste02] Stelting, Stephen A. and Olav Maassen. Applied Java Patterns, Pearson Higher Education,

2002.

[TekOO] Tekinerdogan, Bedir and Mehmet Aksit. Synthesis-Based Software Architecture Design, Ph.D.
Thesis, Department of Computer Science, University of Twente, 2000.

[V2M2] Verification and Validation Maturity Model, Test Technigues and Methods, Faculteit
Technologie Management, Technische Universiteit Eindhoven.

http:/ /tmitwww.tm.tue.nl/research /v2m?2/workarea 2/ Test%20Techniques%20and
%20Methods.pdf.

[WahO1] Wahli, Ueli, Alex Matthews, Paula Coll Lapido, and Jean-Pierre Norguet. WebSpebere
Veersion 4 Application Development Handbook, IBM, 1% Edition, September 2001.

[Zan02] Zandvliet, Keimpe. IBM Shape Workforce Management Game External Design, 1IBM, 2002.

IBM Restricted 117

http://tmitwww.tm.tue.nl/research/v2m2/workarea/wp2/Test Techniques and Methods.pdf
http://tmitwww.tm.tue.nl/research/v2m2/workarea/wp2/Test Techniques and Methods.pdf

	Background
	Problem Statement
	The Assignment
	The Development Approach
	Outline of the Thesis
	Introduction
	Decision Support Systems
	Group Decision Support Systems
	Executive Information Systems or Executive Support Systems
	Intelligent Support Systems

	Software Development Methods
	Artifact-driven Architecture Design
	Use-Case driven Architecture Design
	Domain- driven Architecture Design
	Pattern- driven Architecture Design

	Synthesis-Based Software Architecture Design
	The Process
	Requirements Analysis
	Technical Problem Analysis
	Solution Domain Analysis
	Alternative Design Space Analysis
	Architecture Specification

	Introduction
	Informal Requirements Specification
	Objective of the Game
	Game Set-Up Phase
	Game Playing Phase

	Use-Case and Scenario Analysis
	Use Case Model and Scenario for Game Set-Up Phase
	Use Case Model and Scenario for Game Playing Phase

	State Transition Diagram
	Introduction
	Technical Problem Analysis
	Requirements Generalization
	Guideline to Identify the Sub-Problems
	Sub-Problems Identification and Specification
	Sub-Problems Prioritization

	Solution Domain Analysis
	Solution Domains Identification and Prioritization
	Knowledge Sources Identification and Prioritization

	Introduction
	Control System
	Application of Control System to SHAPE WMG
	Controller
	Controlled System
	Environment
	High Level Controller

	SHAPE WMG Architecture
	Internal Structure of Business Modeling Component
	Internal Structure of Business Reference Model Component
	Internal Structure of Correction Component
	SHAPE WMG Architecture as Decision Support System

	Semantics Extraction of the Architecture
	Game Setup Phase
	Game Playing Phase

	Dynamic Behavior of the Architecture
	Game Setup Phase
	Game Playing Phase

	Introduction
	Software Architecture Evaluation Method
	Evaluation on SHAPE WMG Architecture
	Scenarios Development
	Evaluation on Evolution Scenarios
	Evaluation on Changes Required
	Overall Evaluation

	Introduction
	Game Setup Implementation
	Class Diagram
	Coding of the Game Setup

	Game Play Implementation
	Class Diagram
	Coding of the Game Playing

	Testing
	Game Setup Test Cases
	Game Play Test Cases

	Introduction
	Conclusions
	Conclusions on Architecture Design
	Conclusions on Design Methodology

	Recommendations for Future Works
	Future Works on Architecture Design
	Recommendations for Synbad

	D.1 Number of Employees Based on Player’s Decisions
	Full Time Regular
	Full Time Subcontractor
	Full Time Outsourcer

	D.2 Cost
	D.3 Attrition Rate
	Based on Disaster
	Based on Education Days Granted
	Based on Retention Cost Spent

	D.4 Other Leavers
	D.5 Illness Rate Based on Disaster Scenario
	D.6 Productivity
	D.7 New Obsolete
	D.8 Illness Rate Based on Productivity

