

M.Sc. Thesis

A Design of Software Architecture for

“SHAPE” Workforce Management Game

An external assignment at IBM Netherlands

By Xiaobo He and Elisabeth E. Mayasari

Software Engineering Group

Department of Computer Science

University of Twente

The Netherlands

Graduation Committee:

Prof. Dr. Ir. Mehmet Aksit (Software Engineering, University of Twente)

Keimpe Zandvliet (IT Organization Consultancy Team, IBM Netherlands)

Ir. Joost Noppen (Software Engineering, University of Twente)

Enschede, August 2003

IBM Netherlands restricted
© 2003 International Business Machines Corporation

ABSTRACT

This M.Sc. thesis describes the design of software architecture for the SHAPE (Steering Human

Achievement and Purpose Effectuation) Workforce Management Game. SHAPE Workforce

Management Game (SHAPE WMG) is a game that simulates the effects of its player’s decisions in

an environment that can represent the actual business situation of the company where the player

works in.

The software architecture of this application is designed with a method called Synthesis-Based

Software Architecture Design (Synbad) that is developed by the Software Engineering chair of

Computer Science Department at University of Twente. Synbad translates the requirement

specification into technical problems, and if necessary decomposes each problem into sub-

problems, solve each sub-problem, and integrate the solutions into an overall solution which

represents the software architecture. This process involves identifying solution domains for every

sub-problem in which the existing knowledge of the relevant domains can be used to form the

architecture.

The method starts with requirements analysis that aims to understand the stakeholder requirements

and to define the system functional architecture that explains what operations should be performed

to meet the system requirements. The process continues with technical problem analysis. In this

phase, the requirements are mapped to technical problems. The requirements are generalized and

then decomposed into several sub-problems. In the next phase, the solution domain analysis phase,

a solution domain model is identified for each sub-problem. Then the knowledge sources are

identified for each solution domain. The next phase used in this project is the architecture

specification. This phase includes extracting semantics of the architecture and defining the dynamic

behavior of the architecture.

After designing the software architecture for the SHAPE WMG, the architecture is evaluated to

prove that it is a stable and reusable architecture. The evaluation is done by using the scenario-

based architectural analysis where several evolution scenarios are defined for the system.

The project is then continued by implementing the architecture which results in a prototype of the

SHAPE WMG. A testing procedure is applied to test and validate the prototype in the final stage of

this project.

Through all the steps that are made in this project, the main objective is reached. That is to design

architecture for SHAPE WMG that can simulate the effects of its player’s decision based on the

current condition of the department using Synthesis-Based Software Architecture Design (Synbad)

method.

IBM Restricted i

ACKNOWLEDGEMENTS

We are very grateful that we have finally reached the completion of our thesis. We would like to

express our gratitude to the following people, without them this thesis would have been impossible

and improbable. First, we would like to give our gratitude to the graduation committee: Prof. Dr. Ir.

Mehmet Aksit who has given us high academic level guidance on the method and the solutions that

are used in this project, Keimpe Zandvliet, Ir. Joost Noppen, and Hans Van Dijk who have given

us very useful advice and support, and also kept us focusing on our design. We appreciate the time

they have spent to review our design and thesis and to give feedback on our work.

We are also very grateful that we had the opportunity to do our final project at IBM Netherlands,

which have brought a perfect ending to our Master of Science study in Telematics. The open

atmosphere at IBM and flexible working style has enabled us to learn and work freely. Many thanks

to Teunis Westbroek, who helped us in using WebSphere Development Tool and Java techniques

during our implementation phase. We also would like to thank Anna van Nouhuys and John

Timmermans, who joined the testing session and gave us many useful suggestions.

Xiaobo He would like to thank:

My family and my friends; I always feel lucky that I have such a nice family and a lot of good

friends. They always encourage me and offer me great help when I was in trouble or frustrated.

Dad and Mom, I love you. Also thanks to Elisabeth Mayasari, Nan Shi, Lin Li, Hong Chen, Rui

Wang and Shu Sheng.

Elisabeth Mayasari would like to thank:

My beloved Hananto Setiawan: for his constant care, love, and support. Thanks for believing in me.

My dad, mom, brothers and sisters in Indonesia: for the encouragement that has kept me going.

Xiaobo “Kevin” He: for such a good work that we have done together. Lina Marliani and Erlangga

P. Dharma: for taking really good care of me during the difficult times. My bible study friends: for

the constant prayers and the good times that always put me in a better mood. Last but certainly not

least, my God: for showing His love and faithfulness. Blessing, honour and glory only unto His

name.

August 15, 2003

Xiaobo He and Elisabeth Mayasari

Enschede, The Netherlands

IBM Restricted ii

TABLE OF CONTENTS

1 Introduction...1
1.1 Background ..1
1.2 Problem Statement..1
1.3 The Assignment...3
1.4 The Development Approach..3
1.5 Outline of the Thesis ..4

2 Background Work .. 5

2.1 Introduction ...5
2.2 Decision Support Systems...5

2.2.1 Group Decision Support Systems ...6
2.2.2 Executive Information Systems or Executive Support Systems........................6
2.2.3 Intelligent Support Systems ..7

2.3 Software Development Methods ...7
2.3.1 Artifact-driven Architecture Design..8
2.3.2 Use-Case driven Architecture Design...8
2.3.3 Domain- driven Architecture Design ...9
2.3.4 Pattern- driven Architecture Design ...10

2.4 Synthesis-Based Software Architecture Design...10
2.4.1 The Process..11
2.4.2 Requirements Analysis ...11
2.4.3 Technical Problem Analysis..12
2.4.4 Solution Domain Analysis...12
2.4.5 Alternative Design Space Analysis...12
2.4.6 Architecture Specification ...12

3 Requirements Analysis..14

3.1 Introduction ...14
3.2 Informal Requirements Specification..14

3.2.1 Objective of the Game ..15
3.2.2 Game Set-Up Phase ...15
3.2.3 Game Playing Phase ...17

3.3 Use-Case and Scenario Analysis ...18
3.3.1 Use Case Model and Scenario for Game Set-Up Phase....................................19
3.3.2 Use Case Model and Scenario for Game Playing Phase....................................21

3.4 State Transition Diagram...23

4 Technical Problem and Solution Domain Analysis.. 25

4.1 Introduction ...25
4.2 Technical Problem Analysis ..25

4.2.1 Requirements Generalization ...26
4.2.2 Guideline to Identify the Sub-Problems...26
4.2.3 Sub-Problems Identification and Specification...27
4.2.4 Sub-Problems Prioritization..30

4.3 Solution Domain Analysis ...31
4.3.1 Solution Domains Identification and Prioritization ...31
4.3.2 Knowledge Sources Identification and Prioritization ..34

IBM Restricted iii

5 Architecture Specification.. 35
5.1 Introduction ...35
5.2 Control System ..36
5.3 Application of Control System to SHAPE WMG ...36

5.3.1 Controller ...37
5.3.2 Controlled System...38
5.3.3 Environment..39
5.3.4 High Level Controller ..40

5.4 SHAPE WMG Architecture ...41
5.4.1 Internal Structure of Business Modeling Component44
5.4.2 Internal Structure of Business Reference Model Component47
5.4.3 Internal Structure of Correction Component..47
5.4.4 SHAPE WMG Architecture as Decision Support System49

5.5 Semantics Extraction of the Architecture ..50
5.5.1 Game Setup Phase..50
5.5.2 Game Playing Phase ...54

5.6 Dynamic Behavior of the Architecture...61
5.6.1 Game Setup Phase..61
5.6.2 Game Playing Phase ...62

6 Evaluation of Architecture ... 65

6.1 Introduction ...65
6.2 Software Architecture Evaluation Method...65
6.3 Evaluation on SHAPE WMG Architecture ..65

6.3.1 Scenarios Development ...65
6.3.2 Evaluation on Evolution Scenarios ...66
6.3.3 Evaluation on Changes Required...68
6.3.4 Overall Evaluation..68

7 Implementation and Testing ... 69

7.1 Introduction ...69
7.2 Game Setup Implementation..69

7.2.1 Class Diagram..70
7.2.2 Coding of the Game Setup ...74

7.3 Game Play Implementation ..78
7.3.1 Class Diagram..79
7.3.2 Coding of the Game Playing...82

7.4 Testing ...86
7.4.1 Game Setup Test Cases ...88
7.4.2 Game Play Test Cases..89

8 Conclusions and Future Works ... 92

8.1 Introduction ...92
8.2 Conclusions ..92

8.2.1 Conclusions on Architecture Design ..92
8.2.2 Conclusions on Design Methodology...93

8.3 Recommendations for Future Works..93
8.3.1 Future Works on Architecture Design ...93
8.3.2 Recommendations for Synbad ...94

IBM Restricted iv

A Scenarios for Use Cases in the Game Setup Phase... 95

B Knowledge Sources for Solution Domains...102

C Test Cases for the Testing Procedure ..104

D Calculation…...109

References.. 116

IBM Restricted v

C h a p t e r 1

INTRODUCTION

1.1 Background

Over the years, IBM has helped pioneer information technology (IT). With the changes in the

industry, its scope and impact has also widened throughout the years: not only to develop

hardware, but also to expand their business to the development of software and services. Its

existence for over 100 years in this area has made IBM a very much experienced and

knowledgeable company. One of the services given by IBM is the Integrated Technology Services

(ITS) whose mission is to assist its clients in achieving their e-business goals and ensure that their e-

business infrastructure is scalable, available, manageable and secure. ITS provides the people, the

processes and the tools to help its clients deliver their expected business results.

The IT Organization Consultancy Team of ITS at IBM has recently tried to develop a new

approach to help their clients in understanding several workforce management issues that often

come up in their human resource situation. The idea is to let the managers of the client company to

play a game that can simulate the effects of their decisions in an environment that can represent the

actual business situation in the real world. This game is called “SHAPE” (Steering Human

Achievement and Purpose Effectuation) Workforce Management Game. The design and

implementation of this project was organized in a Master of Science project which results in the

writing of this thesis.

The architecture of this application is designed in this project with a method called Synthesis-Based

Software Architecture Design (Synbad). This method is developed by the Software Engineering

chair of the computer science department at the University of Twente. The approach used in this

method is to translate the requirement specification into technical problems, and if necessary

decompose each problem into sub-problems, solve each sub-problem, and integrate the solutions

into an overall solution which represents the software architecture. This process involves

identifying solution domains in which the existing knowledge of the relevant domains can be used

to form the architecture.

1.2 Problem Statement

Professional decisions can be confusing and making an inappropriate decision can cause serious

consequences. Making good decisions is one of the most important factors in successfully achieving

a company’s goal. One of the challenges that a company has to face is how to optimally make use

of its available resources to improve their business. A wrong allocation and false use of its resources

IBM Restricted 1

can result in high cost expenses with a minimum positive impact, while a better resource planning

could give the company a much better result with a much lower cost using the same domain of

available resources.

In fulfilling the mission to help its clients deliver their expected business results, the IT

Organization Consultancy Team of ITS in IBM came up with the idea to develop a game called

SHAPE Workforce Management Game (SHAPE WMG) that aims to help a company to

overcome the resource planning problems by evaluating the manager’s decision based on the

allocated budget, investment decision, and operational cost. This is done by showing the effects of

the manager’s decision that might lead to several unexpected results. The goal is to make the

manager aware of the actions that he makes based on the current situation. The more SHAPE

WMG represents the actual business situation of the department, the more things that can be

learned by the manager. SHAPE WMG acts as a tool used in the learning process of the decision-

making activities of its player in a form of a game. The game support the learning process by

simulating the effects of the game player’s decisions and giving feedback on why certain things

happen caused by the decisions. SHAPE WMG will be played in a workshop given by IBM IT

Consultants to their client. The game will be the core material in the workshop instead of the

support tool, where the game players, i.e. the IT department managers, are guided throughout the

game by the consultants to be able to reach the purpose of the game. Figure 1.1 depicted the

interaction between the game player, SHAPE WMG and IBM Consultant that happen in the

workshop.

IBM Consultant Department Manager

Feedback

Result Play
SHAPE WMG

Figure 1.1 SHAPE WMG Workshop

Figure 1.1 shows a department manager that interacts with SHAPE WMG by playing the game.

The game receives input from the department manager who acts as the game player. The input

represents the player’s decisions to achieve the objective of the department based on the current

situation of the department that is given in the game. The game then simulates the effects of these

decisions. The IBM consultant, who gives the workshop, sees the results together with the game

IBM Restricted 2

player and gives feedback to the player on how to make better decisions and to consider some

factors that were not yet thought of by the game player.

1.3 The Assignment

The purpose of this MSc project is to design the architecture of SHAPE WMG which is depicted

in Figure 1.1. To implement such an application, a software design method is needed. In the start

of the project, Synbad was chosen as the software architecture design approach used in developing

SHAPE WMG because one of the purposes of the project is to discover the value and applicability

of Synbad in an applied research environment. Therefore the application of Synbad method is

evaluated at the end of this project to see how well the software architecture that is built using the

method can fulfil the requirements. The assessment of the design methodology is to provide

assurance of the ease of use of the Synbad method.

SHAPE WMG needs an architecture with which it can create an environment that resembles the

real condition of the player’s environment, i.e. the department in which the player works. The

architecture should also make it possible for the player to make decisions on what to do with the

current situation of the department. The effects of these decisions should also be simulated

according to the real situations that can happen in the real world. The assessment of the

architecture is to see how well the architecture solves all the problems arise in the game playing

requirements. But the more important requirement of this project is to create a stable and reusable

game architecture that allows future extension and configurations. Therefore, the assessment of the

architecture is mainly to prove the stability and reusability aspect of the architecture.

From the description above, we can formulate the main objective of this thesis as follows:

To design architecture for SHAPE Workforce Management Game (SHAPE WMG) that can simulate the effects

of the player’s decision based on the current condition of the department using Synthesis-Based Software Architecture

Design (Synbad) method.

There is a preliminary work of SHAPE WMG which was carried out in the previous year as a four-

month project [Jol02]. The work ends in the description of user requirements and a prototype of

the game. This thesis continues the work by analyzing the requirements, formulating the problems,

finding the solutions and continuing with a design that leads to the implementation of the game.

1.4 The Development Approach

During the project we used an architecture design approach that aims to scope the architecture

boundaries from a systematic problem-solving perspective. The method is called Synthesis-Based

IBM Restricted 3

Software Architecture Design Approach (Synbad) [Tek00]. There are four main steps in this

approach that are carried out in this project:

1. Requirement analysis

2. Technical problem analysis

3. Solution domain analysis

4. Architecture specification

The object-oriented analysis and design methods that we used in applying the Synbad are the

Unified Modeling Language [Boo99] and Design Pattern approach [Gam95].

The next step in this project is then to implement the SHAPE WMG based on the developed

design. The game is implemented with Java programming language using IBM WebSphere

Application Developer ®.

1.5 Outline of the Thesis

The rest of this thesis will be organized as follows:

Chapter 2 describes the background work that is related to this thesis. This chapter gives

introduction on Decision Support Systems, several software development methods, and description

on what Synthesis-Based Software Architecture Design is and how this design is used in developing

software.

Chapter 3 describes the user requirements of the system that is developed, in this case, from the

IBM point of view. This will be the basic requirements of the whole process of software

development.

Chapter 4 gives the problem and solution domain analysis as part of the steps applied in the design

of the system.

Chapter 5 describes the architecture of the system, all the components that are involved in the

system and the interaction between them.

Chapter 6 explains the justification of the architecture design described in the previous chapter.

Chapter 7 presents the implementation and testing of the game.

Chapter 8 ends this thesis report by giving conclusions of the project and some suggestions for

future work.

IBM Restricted 4

C h a p t e r 2

BACKGROUND WORK

2.1 Introduction

This chapter will describe background work that is related to the system that was developed in this

thesis. Section 2.2 gives introduction about the definition of Decision Support Systems (DSS) and

the three types of DSS. Section 2.3 gives introduction on software development methods and

description of several architecture design methods. Section 2.4 closes this chapter with the

description of Synthesis-Based Software Architecture Design which is used as the approach in the

development of this project.

2.2 Decision Support Systems

Decision Support Systems (DSS) are information systems that support business and organizational

decision-making activities. It is intended to help decision makers make use of information from raw

data, documents, personal knowledge, or business models to identify and solve problems and make

decisions. The structure of the components is shown in Figure 2.1.

Decision Maker

DSS
Dialog Manager

Knowledge
Management

Data
Management

Model
Management

External
Database

Internal
Database

Figure 2.1 DSS Components

There are four main components that build DSS: data management, model management,

knowledge management, and dialogue manager. Data management includes internal or external

database that contain relevant data for the decision situation. Model management includes software

with financial, statistical analysis, graphical, project management, or other quantitative models.

Knowledge management provides knowledge for solution of the problem; it either supports the

other subsystems or acts as an independent component. The dialogue manager is the user interface

that enables the users to communicate with and command the DSS.

IBM Restricted 5

DSS exist in many different areas which usually include the following key components: data input,

data acquisition system, historical database, and main processing system. In general, there are three

types of DSS: Group Decision Support Systems, Executive Information Systems or Executive

Support Systems, and Intelligent Support Systems. Sections 2.2.1 to 2.2.3 describe the type of DSS

into more detail.

2.2.1 Group Decision Support Systems

Group Decision Support Systems (GDSS) are designed to assist joint decision making process by

helping members of the group to share information, exchange ideas and compare alternative

solutions. The systems consist of a set of software, hardware, language components, and

procedures that support a group of people engaged in a decision-related meeting. The meeting can

be in one location or several locations that happens concurrently or at different time. Typical

applications of GDSS include email, awareness and notification systems, videoconferencing, chat

systems, multi-player games, and meditation systems. The use of GDSS can help improving group

productivity and decision quality by improving the members’ participation in a meeting. The

decision support technologies that are used for GDSS include: decision-modeling methods such as

decision trees and risk analysis, structured group methods such as brainstorming, Nominal Group,

and Delphi techniques, and rules for directing group discussion. An example of a GDSS software

application is IBM’s Lotus Notes. With Lotus Notes, the users can have access to a central

database, communicate with each other, schedule a meeting, etc.

At the current stage, we do not plan to design a GDSS. At a later stage, however, group decision

could be a relevant requirement. For example, SHAPE WMG could be developed to support

several department managers to play the game together and make the decisions as group decisions

instead of individual decisions.

2.2.2 Executive Information Systems or Executive Support Systems

Executive Information Systems (EIS) are designed to provide information to the top level

management of an organization in a highly summarized, convenient, and easy-to-use form. An EIS

can facilitate routine management reporting, year-end preview, control and review of major

projects, budget preparation, strategic planning, and a general review of the economic outlook. EIS

consists of software, hardware, procedure, information, and people. The system gathers, analyze,

and integrate internal and external data into information following a set of procedures that is then

shown to the executive in a very user-friendly form. It helps the executive find problems and/or

opportunities, and then the analysts and middle managers can use a DSS to suggest solutions to the

problems and/or what to do with the opportunities. The methods that are used for finding

IBM Restricted 6

information needs in EIS include: by-product method, null method, key indicator method, total

study method, and Critical Success Factors (CSF) method. Examples of EIS software products are

Pilot Software’s Command Center and Comshare’s Commander Tools.

As EIS, the project we carried out is also designed to help the executives of a company in their

decision-making process. Currently, the design does not yet consider providing the executives with

access to integrated data that can help them in making decisions. The information given to the

department manager is simply numbers that represent several department properties. In the future,

it might be desired for SHAPE WMG to provide richer information that can higher the quality in

the decision making process.

2.2.3 Intelligent Support Systems

Intelligent Support Systems (ISS) are designed to support decision making with the use of Artificial

Intelligence, supported by a combination of databases, knowledge bases, experience and expertise.

The systems represent knowledge, offer intelligent advice or take intelligent decisions for the

problems found. One example of ISS is Expert Systems (ES). The goal of ES is to imitate human

intelligence in solving problems. ES can either support decision makers or completely replacing

them. ES combine several human experts from several individual human experts and compile these

into broad knowledge bases. Components of an ES are knowledge base, blackboard (the

workplace), inference engine (computer program that provides methodology for reasoning), user

interface, explanation subsystem (for explaining ES’ behavior), and a knowledge-refining system

(for analyzing, learning, and improving the system performance). The technologies that are used in

ISS include: neural networks, and fuzzy logic.

As mentioned before, ISS is used to replace human experts in making decisions. This can also be

the further development that could be applied in SHAPE WMG. The current requirement focus

on how the decision making is based mainly on the game player’s experiences in handling a certain

situation to achieve the objective of the department. In the future, it might be interesting to use

Artificial Intelligence in the application to offer intelligent advices that can help the department

manager to make decisions and at the same time to learn new strategy in achieving the objective.

2.3 Software Development Methods

A software development method is used to create a software architecture that is able to meet both

the functional and non-functional requirements in a precise and constructive manner. In addition,

the software architecture should be able to provide good quality of software such as correctness,

robustness, adaptability, reusability and maintainability. Today, there are many methods that can be

used in developing software. In [Tek00], software development methods are classified as either

IBM Restricted 7

artifact-driven, use-case driven, domain-driven or pattern-driven architecture design approaches.

Each of these approaches will be generally described in the following sub-sections.

2.3.1 Artifact-driven Architecture Design

An artifact is a general term for any kind of information created, produced, changed, or used by

workers in developing a system. The artifact-driven architecture design approaches are the approaches that

extract the architecture description from the artifact descriptions of the method [Tek00]. A well-known method

of this approach is OMT (Object Modeling Technique) [Rum91].

OMT is an object-oriented development technique that consists of analysis phase and design phase.

The analysis phase starts with a problem statement that describes the requirement specification. It

will then continue with the search and the description of artifacts, the interaction between these

artifacts and the methods of the system from the perspective of data flow. The analysis phase

generates a set of artifacts instances. The analysis phase is then followed by system design phase,

where the overall architecture is defined. The artifacts are grouped into subsystems which form the

architectural components. Therefore, the software architecture consists of a composition of

subsystems.

2.3.2 Use-Case driven Architecture Design

In a use-case driven architecture driven method, the main focus is on descriptions of typical system

usage, known as use cases. In [Boo99] a use case is described as follows: A use case is a description of set

of sequence of actions that a system performs that yields an observable result of value to a particular actor. In this

description an actor is an entity that can interact with the system. Such an entity is mostly referred

as a role. The use case driven approaches are described in [Tek00] as follows: The use-case driven

architecture design approaches use the use cases as the primary artifacts for deriving the architectural abstractions.

This means that based on the use case model, developers create a series of design and

implementation models that realize the use-cases. The developers then review each successive

model for conformance to the use-case model.

An example of this approach is the Unified Process [Jac99]. The unified process can be described in

two dimensions. According to the first dimension, which is the time dimension, the process is

divided into four phases representing the dynamic aspect of the process: inception, elaboration,

construction, and transition phases. The goal of the inception phase is to capture all user

requirements in the context of use cases. The main activity of the elaboration phase is designing the

system in details. At the end of this phase, the design of dynamic and static view of the system is

completed. The implementation and the integration of the system are done in the construction

phase. The last phase is the transition of the product to its users. The second dimension divides the

IBM Restricted 8

process into six core workflows which represent the static aspect of the process: business modeling,

requirements, analysis and design, implementation, test and deployment workflows. Use cases play

a role in each of these six core workflows that compose the Unified Process.

Figure 2.2 Two Dimensions of the Unified Process [Kru01]

In the business modeling workflow, a business model is built to describe the business processes of

an organization. The requirement workflow captures the client’s requirements as use cases. Use

cases are identified to build use-case model which represents the system’s behavior. In the analysis

and design workflow, the use-cases realizations are created, which describe how the objects interact

with each other to help in identifying the artifacts. The identified artifacts are then represented in a

design model. During the implementation workflow, the design model is the implementation

specification where the use cases are implemented in terms of classes. In the test workflow, the

system is verified by performing each use case. The deployment workflow aims at producing

product releases and delivering the software to its end users.

2.3.3 Domain- driven Architecture Design

A domain model is a collection of structural information describing the properties of and

constraints of a domain. In [Tek00] they are characterized as: The domain-driven architecture design

approaches are the approaches that derive the architectural design abstractions from domain models. One example

of the approach that we will discuss in this chapter is DSSA (Domain-Specific Software

Architecture). DSSA consists of domain model, reference requirements, and reference architecture.

IBM Restricted 9

The domain model is obtained as the result of the domain analysis phase. The domain analysis

phase is done on a set of applications with common problems or functions. The elements of a

domain model are customer needs statement, scenarios, domain dictionary, context (block)

diagrams ER diagrams, data flow models, state transition models, and object models. Reference

requirements are requirements that apply to the entire domain. There are composed of functional

requirements, non-functional requirements, design requirements, and implementation

requirements. Reference architecture describes all systems in a domain based on the constraints of

reference requirements.

2.3.4 Pattern- driven Architecture Design

Design patterns are descriptions of communicating objects and classes that are customized to solve

a general design problem in a particular context [Gam95]. The pattern-driven architecture design approaches

are the approaches that derive the architectural abstractions from pattern [Tek00]. This approach starts with

requirement specification that represents a specification of a problem that may be solved using a

pattern. Then a search for a suitable pattern is carried on for the given problem description. The

search continues with Architectural Pattern Description which describes an architectural pattern. If

the rationale for applying a certain pattern is relevant with the given problem and the situation that

gives rise to the problem of the pattern matches the situation of the given problem, then the

process continues with applying the pattern to the given problem. The result of this phase is

Architectural Pattern which will then incorporated to the architecture description. Difficulties might

be found with this approach when there is no existing pattern that can solve a particular problem.

In this case, a non-pattern solution should be found to solve that particular problem.

2.4 Synthesis-Based Software Architecture Design

In [Tek00] synthesis is described in the following manner: Synthesis in terms of engineering means a process

in which a problem specification is transformed to a solution by first decomposing the problem into loosely coupled sub-

problems that are independently solved and integrated into an overall solution. In other words, synthesis is the

process between the concepts Problem Description to Solution Description in the whole software

development process. Problem Description is the result of the process of formulating the user

requirements into more well-defined problem statement to be able to describe the problem as clear

as possible. Solution Description is the representation of the solution suggested to the problems

described in the Problem Description. In software engineering the concept Problem Description

corresponds to the requirement specification that formulates the client needs in developing certain

software applications. The concept Solution Description corresponds to the software architecture

design that are ready to be implemented into the real product, i.e. the software. The problem

IBM Restricted 10

description is first decomposed into several sub-problems. Every sub-problem is then solved

independently before being integrated into the overall solution.

A synthesis-based design process is defined as a finite sequence of synthesis states, resulting in a terminal state

[Tek00]. There are two possibilities of terminal state: successful design where solution is found for

the problem or unsuccessful design where neither design nor the specification can be modified.

This chapter will discuss the synthesis-based software design approach: all of the processes

involved in the method and how it is applied in a design of software.

2.4.1 The Process

In Synthesis-Based Software Architecture Design, a distinction can be made between five basic

steps, which are depicted in Figure 2.3.

 1
Requirements
Analysis

Technical 2
Problem
Analysis

Solution 3
Domain
Analysis

Alternative 4
Design Space
Analysis

?

 5
Architecture
Specification

Figure 2.3 Synthesis-Based Software Architecture Design Approach [Tek00]

The lines with arrows in Figure 2.3 connect tasks. The direction of the arrow indicates the sequence

of the tasks. The diamond shaped symbol with a question mark represents the validation of a step.

The description for each basic process will be explained in section 2.4.2 to section 2.4.6.

2.4.2 Requirements Analysis

The goal of this phase is to understand the stakeholder (e.g. managers, software developers,

maintainers, end-users, customers, etc.) requirements and to define the system functional

architecture that explains what operations should be performed to meet the system requirements.

This phase usually begins with informal requirement specifications; which can be in the form of

textual document as a result of interaction with the client to understand the requirements. From

these requirements, the functional requirements of the system are then captured with use cases

technique. The use cases are used to model how the system will interact with the users. Scenarios

are instances of use cases that represent sequence of actions performed by the system. Afterwards,

state transition diagrams can be used to describe the dynamic behavior of the system in terms of

services.

IBM Restricted 11

2.4.3 Technical Problem Analysis

The next phase is to map the client requirements defined in the previous step to technical

problems. First the requirements are abstracted to provide more general and broader view of the

problems. Then the generalized problem is decomposed into several sub-problems. Each sub-

problem is given a name, initial state and goal. The prioritization and the order of solving the sub-

problems is then determined according to the client’s requirement or to the solution domain itself,

i.e. some sub-problems may required other sub-problems to be solved first before it can be solved.

2.4.4 Solution Domain Analysis

This phase tries to provide a solution domain model that will be used to derive the architectural

abstractions. The phase begins with identifying and prioritizing the solution domains for each sub-

problem. Every solution domain could have varied range of knowledge sources. Therefore, the

next step will be to identify the knowledge sources for each solution domain and to prioritize them

based on objectivity and relevancy. After identifying the knowledge sources, the process to gain the

knowledge can then begin. The activities involved in this process are to extract the knowledge and

then form solution domain concepts to describe the common properties of a set of instances.

These solution domain concepts are then structured using association relations, where every relation

is also derived from the solution domains. Another step in the solution domain analysis is refining

the solution domain concepts. This is necessary when a sub-problem has a complex structure that

needs to be solved in a more detailed level. The order of sub-problem refinement process is

determined by the previously determined prioritization.

2.4.5 Alternative Design Space Analysis

The goal of this phase is to provide a set of possible solutions that can be used for every solution

domain concept. First, the alternatives for every concept are defined. If a concept has a complex

structure, then it will be necessary to decompose it into several sub-concepts and then define the

alternative solutions for each sub-concept. The process continues with describing the constraints

between alternatives. This is done to control the number of all possible combination of alternative

solutions that could be very large and also to define the right architectural decomposition.

2.4.6 Architecture Specification

This phase begins with extracting semantics of the architecture. This is done for each concept to

provide more formal specification. The semantics for an operation of a concept defines the name

of the operation, the pre-condition of the concept values prior to the beginning of the operation,

and the post-condition of the variables value before the termination of the operation. The next step

is defining dynamic behavior of the architecture. Collaboration diagrams are used to illustrate this

IBM Restricted 12

dynamic view of the system. It models the interaction between components and therefore shows

how the components work together.

Further details and examples on the Synthesis-Based Software Architecture Design approach can

be found in [Tek00]. This thesis explains only the general view of the approach and the use of this

approach in designing the game application developed during the final project. Due to the demand

of implementing the application as soon as possible before the end of the project and the time

spent to learn the Synbad approach and several new concepts in developing software, a phase in

Synbad is skipped. The phase that is skipped in this project is the alternative design space analysis

phase. This means that for every concept formed in the solution domain analysis phase, one

solution is offered in the architecture specification phase without seeking for other alternatives

solution. This one solution is obtained based on the existing knowledge of the people that are

involved in this project.

IBM Restricted 13

C h a p t e r 3

REQUIREMENTS ANALYSIS

3.1 Introduction

As mentioned in the previous chapter, the goal of this phase is to understand the stakeholder

requirements and to define the system functional architecture that explains what operations should

be performed to meet the system requirements. The steps for this phase can be seen in Figure 3.1.

 SYNBAD

 Requirements Analysis Phase

Specify 1
Informal
Requirements

Use-Case 2
and Scenario
Analysis

 3
Building
Prototype

Define 4
Formal
Models

 1
Requirements
Analysis

Technical 2
Problem
Analysis

Solution 3
Domain
Analysis

Alternative 4
Design Space
Analysis

 5
Architecture
Specification

Figure 3.1 Requirements Analysis Phase of Synbad [Tek00]

The phase begins with informal requirement specifications as the starting point in describing the

user requirements. These requirements are then described in a more precise and broader

perspective by using use cases and scenarios. The step continues with building a prototype based

on the user requirements. At the start of this project, there is already a simple prototype that is built

using Lotus Approach ®. The prototype gives several ideas on how the user interfaces could be like

and the operations that can be done by the user of the application. The last step in this phase is

defining formal models. This thesis uses state transition diagrams to describe the dynamic behavior

of the system.

This chapter will discuss the requirements analysis phase that are carried on during the SHAPE

WMG project. Section 3.2 describes the informal requirements specification, section 3.3 describes

the functional requirements of the system using use cases and scenarios, and section 3.4 illustrates

the dynamic behavior of the system by using state transition diagram.

3.2 Informal Requirements Specification

The initial requirements of this project were given by IT Organization consulting team of IBM. The

idea of this project is to develop a game called SHAPE WMG (Workforce Management Game)

IBM Restricted 14

that can simulate the effects of the player’s decisions in an environment that can represent the

actual business situation of the company where the player works in.

3.2.1 Objective of the Game

The game takes place in a department of a certain company. The department requires several

professions. Each profession can be carried out by company’s own employees, subcontractors,

and/or outsourcers. Every profession in the department has an objective that is represented by a

productivity number of that profession. The productivity corresponds to the real netto production

that the different type of people produces. The objective of playing the game is to reach the

demanded productivity of every profession that exists in the department. This productivity should

be reached without exceeding the budget that is allocated to the department. Whether a game

player wins the game or not are based on that objective. A game player is said to win the game if he

fulfill one of the following condition:

- the game player is able to reach the productivity of most of the professions in the entire

game without exceeding the budget

- the game player is able to improve his decision making from the beginning until the end of

the game without exceeding the budget at the end of the game and finally reach the

productivity of most of the professions

A game player is said to lose the game if he cannot fulfill one of the above conditions.

The game is divided into two main phases: game set-up phase, where the game world is set, and

game playing phase, where the game is actually played.

3.2.2 Game Set-Up Phase

For the game to be able to provide current information of the department, then there should be a

phase where the game receives those information from a game manager. The game manager is a

consultant from the IT Organization consulting team of IBM who obtains this information by

interviewing the manager of the client’s department. The task of a game manager is to give input on

all the necessaries information:

Game-related Information

These are the information that is determined by the consultants themselves in order to give the

most suitable learning experience to the managers. The game should be able to allow the game

manager to give input to the following information:

- The length of a game period: the beginning of a game period is marked by the player submitting

his decisions and the ending of a game period is marked by the simulation of the effects of those

decisions.

IBM Restricted 15

- The number of periods: represents the maximum number of game periods that can be played

from the beginning until the end of the game.

- The disaster for every period: unexpected disturbance that is assigned to every game period. The

game manager should be able to choose one of the three possible disturbances: attrition rate

change, illness rate change, and budget change and set the changed value.

Business-related Information

These are the information about the current situation of the department that will be played in the

game. The information includes:

1. Department information

The game should be able to allow the game manager to give input to the following department

information:

- For every employee per year: education days, vacation days, learning curve for employees,

education cost, recruitment cost, retention cost and golden handshake rate.

- For the whole department per year: total budget and budget change.

2. Business strategy information

The game should be able to allow the game manager to give input on the game strategy

description that should be applied to the department for every game period.

3. Profession information

 The professions which are included in the game

- The game should be able to display a list of professions which the game manager can

include in the game. We will call this list available professions list.

- The game should be able to allow game manager to add a new profession that are not in

the available professions list or remove a profession from the list.

- The game should be able to allow game manager to include or exclude professions that are

displayed in the available professions list to or from the game.

 For the employees in a profession

There are three defined types of employee:

a. Full Time Regular (FTR) employee: an employee of the own company who fulfills a forty

(40) men-hours a week.

b. Full Time Subcontracted (FTS) employee: a subcontractor who fulfills a forty (40) men-

hours a week

c. Full Time Outsourced (FTO) employee: an outsourcer from other company who fulfills a

forty (40) men-hours a week

IBM Restricted 16

 For every profession which is included in the game

There are three defined types of profession:

a. Fixed profession: a profession whose configuration cannot be changed during the game.

The number of employees for this profession will remained the same for the whole game.

The type of employee in this type of profession is the FTR employee: productive FTR, an

employee who gives productivity to the company. The game should be able to allow the

game manager to give the following input for this type of profession:

- For every employee per year: compensation and compensation change per year

- For the whole department per year: number of employees.

b. Changeable and uncontractable profession: a profession whose configuration can be

changed during the game, but whose tasks can only be assigned to the company’s own

employees. The type of employee in this type of profession is the FTR employee: productive

FTR and obsolete FTR, an employee who is idle (doesn’t give any productivity). The game

should be able to allow the game manager to give the following input for this type of

profession:

- For every employee per year: compensation and compensation change per year

- For the whole department per year: number of productive and obsolete employees,

illness rate, attrition rate, and list of professions whose employees can be reeducated and

relocated to this profession.

c. Changeable and contractable profession: a profession whose configuration can be changed

during the game and whose tasks can be assigned to subcontractors or outsourcers. The

types of employee in this type of profession are the FTR employee (productive FTR and

obsolete FTR), the FTS employee, and the FTO employee. The game should be able to

allow the game manager to give the following input for this type of profession:

- For every type of employee (own employee, subcontractor, or outsourcer) per year:

compensation and compensation change per year

- For own employee in the whole department per year: number of productive and

obsolete employees, illness rate, attrition rate, and list of professions whose employees

can be reeducated and relocated to this profession.

- For subcontractor and outsourcer in the whole department per year: number of

subcontractor and outsourcer.

3.2.3 Game Playing Phase

SHAPE WMG is meant to be played by managers of a company. The decisions that can be made

by the game player are related to the configuration of employees in his department. The manager

IBM Restricted 17

should use their knowledge and skill to determine how many people to employ or dismiss and

whether those employees are from their own company, subcontractors or outsourcers to be able to

reach the objective of the company. During the game playing phase, the system should be able to

do the following tasks:

- display the length of the game period and the number of periods that are played in the game

- display the business strategy of the current game period at the beginning of the game period to

the game player

- display the current department information

- allow the game player to change the education days and/or retention cost values of the

department

- display the list of professions that are currently exist in the department

- display the detail information of every profession that are in the list

- allow the game player to hire and/or fire own employee, contract and/or terminate

subcontractor and/or outsourcer, and reeducate obsolete employee or from other profession

- allow the game player to change his decisions before he decides to submit all of his decisions as

final decisions

- display the result of the player’s decisions in the department level

- display the result of the player’s decisions in the profession level

Further and more detailed requirements on this project are documented in [Jol02] and [Zan02].

3.3 Use-Case and Scenario Analysis

After studying the basic requirements of the project, the next step is to express these basic

requirements in use cases and scenarios to denote the functional requirements. As described in

[Boo99], a use case is a description of set of sequence of actions that a system performs that yields an observable result

of value to a particular actor. An actor is the user of the system and therefore is external to the system.

A use case diagram models the behavior of the system from the user’s point of view. The purpose

is to define what the system should do. A use case scenario is an instance of a use case. It describes

a particular sequence of activities within a use case. The game is divided into two parts: game set-up

and game playing. The use case model and use case scenario will be described for each of these

phases.

The use case diagram is depicted using the graphical notations from Unified Modeling Language

(UML) [Boo99]. The rectangle represents the system boundary, the stick figures represent actors,

and the ovals represent the use cases. The line connecting actor with a use case means that the

actors initiate the events involved in that use case. The line with triangle in one end represents

IBM Restricted 18

generalization. The triangle is pointing to the superclass. The dashed-line with arrow represents the

extend- or include-relationship. An extend relationship from use case A to use case B indicates that

an instance of use case B may include the behavior specified by use case A. An include relationship

from use case A to use case B indicates that an instance of the use case A will also include the

behavior as specified by use case B.

3.3.1 Use Case Model and Scenario for Game Set-Up Phase

Time model

IT Consultant
Look up help

Import game setup

Setup game manually

Game Manager Validate user

<<include>>

Check password

Search

Read content

Read tutorial

<<include>>

<<include>>

Setup department details

<<extend>>

Setup professions

Setup objectives

Setup disasters

<<extend>>

<<extend>>

Setup game periods

Setup business strategies

<<extend>>

<<extend>>

Add new profession

Remove profession Include profession Exclude profession

Add profession details

The use case model for the game setup phase of SHAPE WMG is depicted in Figure 3.2.

Figure 3.2 Use Case Model for Game Set-Up Phase in SHAPE WMG

Figure 3.2 shows an actor named Game Manager that is a specialization of another actor named IT

Consultant. The Game Manager is associated with three use cases: Look Up Help, Import Game Setup and

Setup Game Manually. The three of these use cases include use case Validate User. This use case is

responsible for verifying the identity of the user. The specialized use case of the use case Validate

IBM Restricted 19

User that is used in the system is Check Password. Use case Check Password verifies the user identity by

checking a textual password.

The use case Look Up Help describes the look up help actions: the Game Manager can either read the

help content (use case Read Content), search help using keywords (use case Search), or read the game

setup tutorial (use case Read Tutorial).

The use case Setup Game Manually describes the operations needed in setting up all the information

one by one: the length and number of periods (use case Setup Game Periods), game strategy for every

period (use case Setup Game Strategies), disaster for every period (use case Setup Disasters), the

properties of the department (use case Setup Department Details), and the professions included in the

game and the properties of every profession (use case Setup Profession). There are several actions in

setting up the profession: add new profession to the available professions list (use case Add New

Profession), remove profession from the available professions list (use case Remove Profession), include

profession to the game (use case Include Profession), exclude profession from the game (use case

Exclude Profession), sets up profession details (use case Setup Profession Details), and sets up objectives

for every profession (use case Setup Objectives).

The use case Import Game Setup invokes the operation to read a setup file containing all the data to

be mapped to the required information. The scenario for Use Case Import Game Setup is described

below.

Scenarios for Import Game Setup Use Case

Scenario 1: System sets up all the values based on the imported game setup file

1. Game manager chooses the “import game setup” action.

2. Game manager selects a file.

3. System checks to see if the imported file is a valid game setup file.

4. The imported file is a valid file, system then loads the game setup file.

5. The setup values are set to the values that are in the game setup file.

Scenario 2: System fails to set the values since the imported file is not a valid game setup file

1. Game manager chooses the “import game setup” action.

2. Game manager selects a file.

3. System checks to see if the imported file is a valid game setup file.

4. The imported file is not a valid file.

5. System informs the game manager that the file cannot be loaded.

Scenario 3: There are no values set since the game manager cancels the import file action

1. Game manager chooses the “import game setup” action.

2. Game manager cancels the action.

IBM Restricted 20

IBM Restricted 21

3. System rolls the game manager back to the previous state before the game manager chooses

to import game setup.

The scenarios for the rest of the use cases in the game setup phase are described in Appendix A.

3.3.2 Use Case Model and Scenario for Game Playing Phase

SHAPE WMG
(Game Playing Phase)

Department
Manager Search

Read content

Read tutorial

Look up help

Game Player

Make decisions

Make department decisions

Make profession decisions

<<extend>>

<<extend>>

The use case model for the game playing phase of SHAPE WMG is depicted in Figure 3.3.

Figure 3.3 Use Case Model for Game Playing Phase in SHAPE WMG

The use case model shows an actor named Game Player that is a specialization of a Department

Manager. The Game Player is associated with two use cases: Look Up Help and Make Decisions. As in

the use case model for game setup phase, the use case Look Up Help describes the look up help

actions: the Game Player can either read the help content, search help using keywords or read the

game playing tutorial. The use case Make Decisions describes the actual game play operations where

the game player gives input to the system as their decisions: use case Make Department Decisions

describes the operation to change several properties of the department and use case Make Profession

Decisions describes the operation to change the configuration of the professions included in the

game. The scenario for every use case is described below.

Scenarios for Look Up Help Use Case

The scenarios for this use case are the same as that of use case Look Up Help in the game setup

phase. The difference is the content of the help: in the game setup phase the help content is related

to the game setup, while in the game playing phase the help content is related to game playing.

Scenarios for Make Decisions Use Case

Normal course:

1. Game player chooses the “start game” action.

2. Game player gives inputs as his decisions.

3. Game player submits the decisions as final decisions.

4. System simulates the results of the game player’s decisions.

Alternate course:

1. Game player chooses the “start game” action.

2. Game player gives inputs as his decisions.

3. Game player changes his decisions.

4. Game player submits the decisions as final decisions.

5. System simulates the results of the game player’ decisions.

Scenarios for Make Department Decisions Use Case

Scenario 1: System sets new values of the department details

1. Game player chooses the “start game” action.

2. System displays the current details of the department

3. Game player changes education days and/or retention budget of the department.

4. System sets the current values to the values inserted by the game player.

Scenario 2: System fails to set new values of the department details since the game player cancels the action

1. Game player chooses the “start game” action.

2. System displays the current details of the department

3. Game player changes education days and/or retention budget of the department.

4. Game player resets the values, therefore cancels the changes.

Scenarios for Make Profession Decisions Use Case

Scenario 1: System sets profession decisions values based on game player’s input

1. Game player chooses the “start game” action.

2. System displays the list of professions that exist in the current game period.

3. Game player selects a profession from the list.

4. Game player choose the “see profession details” action.

5. System displays the current details of the professions including the objective for the current

game period.

6. Game player makes decisions by entering the number of employees that are going to be

hired or fired or reeducated.

IBM Restricted 22

7. System sets the current decisions as temporary decisions.

Scenario 2: System sets profession decision values as zero

1. Game player chooses the “start game” action.

2. System displays the list of professions that exist in the current game period.

3. Game player selects a profession from the list.

4. Game player choose the “see profession details” action.

5. System displays the current details of the professions including the objective for the current

game period.

6. Game player makes no decisions to hire or fire or reeducate any employee.

7. System sets the values of the decisions as zero.

3.4 State Transition Diagram

In this phase, we use State Transition Diagram to illustrate the state space of the system and the

possible transition from one state to another in the game playing phase. The game playing phase

can be divided into three main stages:

1. Make decisions on department level

When the game starts a new period, it will first display the business strategy of the department

for that period. After that, the game player can read the details of the department properties for

the current game period. There are two properties of the department that can be changed by

the game player: education days and retention cost. The display of the department details also

includes the list of professions exist in the department. The game player can choose to read one

of the profession listed there.

2. Make decisions on profession level

After the game player chooses a profession from the list, the game displays the details of the

profession properties. Depends on the type of the profession, the game player can then make a

decision to reconfigure the current profession. For the configurable type of profession, the

following decisions can be made: hire FTR, fire FTR, re-educate obsolete, and re-educate from

other profession. For the contractable type of profession, the following additional decisions can

be made: make new or terminate FTS or FTO contract. The game player can still change his

decisions before he submits them as final decisions.

3. Commit decision and see results

After the game player submits the final decisions, the system will then show the result of the

decisions in the department level. The game player can choose a profession to view more detail

results in the profession level. After seeing the results, the game player can then move to the

next game period.

IBM Restricted 23

IBM Restricted 24

Start new
period

Read business
strategy

Read department
details

Select
profession

Change
education days

Change
retention cost

Read profession
details

Hire FTR Fire FTR Reeducate
obsolete

Read
Interchangeability

Make new FTS
contract

Terminate FTS
contract

Make new FTO
contract

Terminate FTO
contract

Reeducate from
other profession

Submit
decision

Read department
results

Read profession
results

Last period?

Yes
No

This dynamic behavior of the game in the game playing phase is depicted in Figure 3.4. The figure

uses the graphical notations from Unified Modeling Language (UML) [Boo99]. Each rectangle with

round corners represents a state, which is a point where some events need to take place before an

activity can continue. Exceptional are made for the start and the end state. The start state is drawn

as a solid black dot, while the end state is drawn as a solid black dot enclosed within a circle. The

lines with arrows model the transitions between states. A diamond represents a transition to

different branches.

Stage 3
Stage 2

Stage 1

Figure 3.4 State Transition Diagram for SHAPE WMG

C h a p t e r 4

TECHNICAL PROBLEM AND SOLUTION DOMAIN ANALYSIS

4.1 Introduction

After defining the user requirements, the next step in Synbad is to map these requirements to

technical problems that describe the actual problems specification to be solved. This phase is called

the Technical Problem Analysis. For every sub-problem defined in the Technical Problem Analysis,

a solution domain need to be searched. This phase is called Solution Domain Analysis.

This chapter will discuss the two phases and the necessary steps in more detail. Section 4.2

describes the Technical Problem Analysis phase and section 4.3 describes the Solution Domain

Analysis phase.

4.2 Technical Problem Analysis

The steps for this phase can be seen in Figure 4.1.

 SYNBAD

 Technical Problem Analysis Phase

 1
General
Requirements

 2
Identify
Sub-Problems

 3
Specify
Sub-Problems

 4
Prioritize
Sub-Problems

 1
Requirements
Analysis

Technical 2
Problem
Analysis

Solution 3
Domain
Analysis

Alternative 4
Design Space
Analysis

 5
Architecture
Specification

Figure 4.1 Requirements Analysis Phase of Synbad [Tek00]

First of all, the requirement specification is generalized and then mapped to technical problems. If

necessary, each sub-problem is then identified and specified. Before moving to solve the problems,

however, prioritization is done to determine which sub-problem needs to be solved first.

Subsection 4.2.1 describes the general requirements and subsection 4.2.2 describes the guideline

that is used to identify the sub-problems. The identification and the specification of the sub

problems are explained in subsection 4.2.3 and the prioritization of the sub-problems is described

in subsection 4.2.4.

IBM Restricted 25

4.2.1 Requirements Generalization

Referring to the main objective of this project described in section 1.3, the general problem of

SHAPE WMG was:

 How to design architecture for SHAPE Workforce Management Game (SHAPE WMG) that can simulate

the effects of the player’s decision based on the current condition of the department?

The technical problems analysis defines every problem with an initial state and a goal that describes

the desired state, which is when the problem is solved. The initial state and the goal of the general

problem are:

Initial State: There was no application that designed for the purpose of simulating the decisions

of a department manager

Goal: Design an application that can simulate the effects of a player’s decisions in an

environment that can represent the actual business situation in the real world

The relevant solution domain for the general problem is simulation game. The solution domain

explains that the product of the project is a game that can simulate the input received from its

player. In the context of SHAPE WMG, the game represents the department where the game

player works in. The game player gives input in the form of decisions that are made to reach the

department objective. The game then simulates the effects of the decisions and updates the current

condition of the department based on those effects.

After defining the general problem and solution domain for SHAPE WMG, it is found necessary

to identify the sub-problems to be able to identify the real problems that will arise in the

implementation of the application. The identification of the sub-problems is carried out by using a

guideline that is explained in the following subsection.

4.2.2 Guideline to Identify the Sub-Problems

The guideline that is used to identify the sub-problems is by considering the following

categorization of problems:

1. Business problems

The problems in this category concern with the business aspect of developing an application;

the key factors to satisfy the client that initiates the development of the application

2. Application specific problems

The problems in this category concern with the modeling of the fundamental components that

are specific to the application being developed.

IBM Restricted 26

3. User-application interaction problems

The problems in this category concern with handling the interaction between the application

and the user.

4. Mathematical problems

The problems in this category concern with designing the mathematical model that is necessary

in the application.

5. Computer science problems

The problems in this category concern with modeling the business solution that refers to

knowledge on the computer science solution.

6. Quality requirement problems

The problems in this category concern with providing application design that is stable and

reusable while still is able to provide the proper functionality.

4.2.3 Sub-Problems Identification and Specification

The next step is to identify and specify the sub problems of the general problem described above.

Each sub problem is presented with label, name, initial state, and goal. The label consists of the

letter ‘P’ and a number that uniquely identifies the problem. The name describes the name of the

problem. The initial state and goal have the same meaning as used in defining the general problem.

Business Problems

• P1

Name: Resources planning

Initial State: Department managers find problems in making use of the available resources to

achieve the department goals.

Goal: Improve the department managers’ skill and knowledge in making decisions for resource

planning and make them aware of the possible effects on their decisions.

• P2

Name: Market change

Initial State: Department managers often not aware of the market condition that change rapidly

Goal: Increase the department manager’s awareness of several type of changes that can happen

in the market

• P3

Name: Business strategy

Initial State: Department managers find difficulties in applying the business strategy of their

department to the current situation

IBM Restricted 27

Goal: Improve the department manager skill in evaluating the current situation of the

department and applying the business strategy based on the current situation

• P4

Name: Periodical decision making

Initial State: In order to learn decision making process and the effects, department managers

would first have to experience the negative effects of their decision in the real world

Goal: Provide learning experience where the game player has a chance to apply the new

knowledge and strategy learned in the previous period to the period after

Application Specific Problems

• P5

Name: Timing

Initial State: A department evaluates the results of their work in every certain period of time

Goal: Specify the duration of a period and the number of periods that will be played in the game

• P6

Name: Game world

Initial State: The game is meant to be played by department managers of the company

Goal: Provide a game environment that resembles the real condition of the department where

the department managers belong to

• P7

Name: Game units

Initial State: A department consists of several elements that build the department

Goal: Represent the elements that build the department as the game units that build the game

world

• P8

Name: Game rules

Initial State: In the beginning of the project, there were already game playing rules defined for

SHAPE WMG

Goal: Apply the game playing rules to the related game units

• P9

Name: Game authoring mechanism

Initial State: There are possibilities to develop the game with new requirements in the future

Goal: Provide authoring functions to make it possible for the game to be defined incrementally,

for example to add or remove game units, activate or deactivate functions

IBM Restricted 28

User-Application Interaction Problems

• P10

Name: Interface definition and location

Initial state: There are two phases needed for SHAPE WMG: game setup and game playing

Goal: Provide different user interfaces for different needs

• P11

Name: Functions of the interface

Initial State: Every phase in SHAPE WMG presents different activities

Goal: Provide different functions for different type of user interface

• P12

Name: Entities modeling of the interface

Initial State: Every phase in SHAPE WMG can invoke the same or different functions from the

same or different game units

Goal: Define the links between the user interface and the different functions of the game units

• P13

Name: Interface requirements

Initial State: There was a prototype built to give idea of what the user interface would look like

Goal: Design user interface that is easy to understand by its user about what is asked from the

user to do and provide clear information that are required by the user

Mathematical Problems

• P14

Name: Simulation problems

Initial State: Several calculations are defined to simulate the effects of the decision

Goal: Provide realistic simulation that can imitate the real situation in the real world

Computer Science Problems

• P15

Name: System structure

Initial State: No design structure technique is defined to model the system

Goal: Model the game by using the system structure that can represent the nature of the game

Quality Requirement Problems

• P16

Name: Evolution problems

Initial State: The game is expected to evolved in the future

IBM Restricted 29

Goal: Provide software architecture design that makes it possible for the system to evolved in

the future without having to redesign the whole system

• P17

Name: Performance requirements

Initial State: The game is expected to function properly according the user requirements

Goal: Design software architecture that models the requirements of the game

4.2.4 Sub-Problems Prioritization

Every sub-problem is given a priority number that ranges from 1 to 3, with 1 being the highest

priority and 3 being the lowest priority. The prioritization of the sub-problems is shown in the

following Table 4.1.

Table 4.1 Prioritization of the Sub Problems

ID Name Priority

P1 Resources planning 3
P2 Market change 3
P3 Business strategy 3
P4 Periodical decision making 3
P5 Timing 3
P6 Game world 2
P7 Game units 2
P8 Game rules 2
P9 Game authoring mechanism 1
P10 Interface definition and location 2
P11 Functions of the interface 2
P12 Entities modeling of the interface 2
P13 Interface requirements 2
P14 Simulation problems 2
P15 System structure 1
P16 Evolution problems 1
P17 Performance requirements 1

The objective of this project is to design the software architecture for SHAPE WMG. Although the

current requirements demand only simple business model to be applied in the game, the design of

the architecture is aiming to give stability and reusability that allows future extension and

configurations of more complex business model. Therefore, the highest priority in this project is

given to the computer science problems, quality requirements problems, and game authoring

mechanism problem. The other problems are given lower priorities, which means that in this

project the game playing and business aspects of the game are implemented in a very simple way

IBM Restricted 30

but the stable and reusable architecture makes it possible to implement the business model and the

simulation of the decision making process in a more sophisticated way for future needs.

4.3 Solution Domain Analysis

The steps for this phase can be seen in Figure 4.2.

 SYNBAD

 Solution Domain Analysis Phase

Figure 4.2 Solution Domain Analysis Phase of Synbad [Tek00]

The phase starts with identifying and prioritizing the solution domains for every sub-problem

defined in the technical problem analysis phase. Then for each solution domain, knowledge sources

are defined and prioritized. After studying and analyzing the solution domain knowledge, the

fundamental concepts are extracted from it. The concepts are then structured using relations that

are derived from the solution domains. The activities continue with refining the solution domain

concepts. This activity is shown in Figure 2.3 as the arrow directed from solution domain analysis

phase to requirement analysis phase.

The remainder of this section is organized as follows. Subsection 4.3.1 describes the identification

and the prioritization of solution domains and subsection 4.3.2 describes the identification and the

prioritization of knowledge resources. The extraction of solution domain concepts, the definition

of the conceptual structure, and the refinement of solution domains concepts are not described in

this chapter, but is combined with the description of architecture specification which is described in

chapter 5.

Identify and 1
Prioritize
Solution Domains

Identify and 2
Prioritize
Knowledge Sources

Extract 3
Solution Domain
Concepts

 1
Requirements
Analysis

Technical 2
Problem
Analysis

Solution 3
Domain
Analysis

Alternative 4
Design Space
Analysis

 5
Architecture
Specification

Define 4
Conceptual
Structure

4.3.1 Solution Domains Identification and Prioritization

For the sub-problems defined in the technical problem analysis phase, solution domains are

identified. These solution domains are shown in Table 4.2. As in the prioritization of the sub-

problems, the prioritization of the solution domains is defined by a number that ranges from 1 to 3,

with 1 being the highest priority and 3 being the lowest priority. The priority was given based on

IBM Restricted 31

the considering the importance of solving the sub-problems, which is also related to the

prioritization that was made for the sub-problems.

Table 4.2 Prioritization of the Solution Domains

ID Name Solution Domain Priority

P1 Resources planning
P2 Market change
P3 Business strategy

Assessment and simulation technique

3

P4 Periodical decision making
P5 Timing
P8 Game rules

Game playing modeling

3

P6 Game world
P7 Game units

Business modeling 2

P9 Game authoring mechanism Object-oriented design 1
P10 Interface definition and location
P11 Functions of the interface
P12 Entities modeling of the interface
P13 Interface requirements

User interface

2

P14 Simulation problems Calculation 2
P15 System structure Control system 1
P16 Evolution problems
P17 Performance requirements

Quality management 1

The solution domains Control system, Quality management and Object-oriented design are given the highest

priority. The reason is because the design of the application should provide a stable and reusable

architecture to support future development, therefore these solution domains should be considered

in detail. The solution domains Business modeling, User interface, and Calculation are given second

priorities because it should be built on a reusable and stable architecture. Therefore, these solution

domains are considered after defining the stable architecture. The solution domains Game playing

modeling and Assessment and simulation technique are given lowest priority because of the limited time

available to do the project and the emphasis of the project to provide stable architecture. Therefore,

in this project the implementation is intended to fulfill the minimum requirement of the game. The

explanation of each solution domain is described in the following paragraphs.

Solution domain Control system

The solution domain Control system covers the nature of the game. The game must be able to present

the relevant business model to the player, to control the decision-making actions based on the

business model by the player, and to simulate the results of the decisions which is also based on the

business model. In additional, the stability and robustness of the game architecture are also covered

by this solution domain.

IBM Restricted 32

Solution domain Quality management

The solution domain Quality management covers the quality requirements issues. The design of the

game should make it possible to develop the game further in the future. This means that the design

should be able to keep up with the possible future requirements of IBM in fulfilling their clients’

needs. The game should also give the proper performance that helps the IBM clients in their

learning process.

Solution domain Objec -oriented design t

i

i

The solution domain Object-oriented design covers the issues to provide game authoring functions.

This means that the main architecture of the game can still be used while continuously modifying,

updating, and completing the game components.

Solution domain User Interface

The solution domain User Interface covers the interaction between the user and the game. Since there

are two kinds of user, there should also be two kinds of user interfaces: the game setup interface for

the game manager and the game play interface for the game player. The user should be able to

understand clearly what is asked for the user to do and how the game works.

Solution domain Calculation

The solution domain Calculation covers all the calculation that is involved in simulating the effects of

the game player’s decisions. This calculation should represent the consequences in the real business

situations that occur in the real world.

Solution domain Business modeling

The solution domain Business modeling covers the representation of the business world in the game.

For example the representation of a department, professions exist in the department, etc belong to

this solution domain.

Solution domain Game playing model ng

The solution domain Game playing modeling covers the way the game is played. The game should be

able to give clear definition on the objective for the game player in playing the game and also on

how to reach the objective.

Solution domain Assessment and simulat on technique

The solution domain Assessment and simulation technique covers the issue related to evaluating the

behavior of the game player in the decision making process. The game is then able to give feedback

to the game player on the steps that were made to reach the objective. The game should also apply

simulation technique to give realistic effects that resembles the real situation in the real world.

IBM Restricted 33

4.3.2 Knowledge Sources Identification and Prioritization

The next step is to identify and prioritize the knowledge sources for every solution domain

identified in the previous step. The solution domain knowledge is prioritized according to the

objectivity and relevancy factors. The knowledge source that has high objectivity factor means that

it has the detailed and reliable knowledge that can be used to solve a problem. The knowledge

source that has high relevancy factor means that it gives the same concern of knowledge that is

needed to solve the problem. The knowledge source that has higher objectivity and relevancy

factors than the others is utilized first to solve the problem. This knowledge source is then called to

have the higher priority than the others.

For the overall solution domain, the knowledge sources are given in Table 4.3. Every knowledge

source is presented with the description of its ID, Knowledge Source, and Form. ID gives the

identifications of the knowledge source, Knowledge Source gives the title of the knowledge source, and

Form gives the format of the knowledge source. The knowledge sources are ordered according to

the priority.

Table 4.3 Knowledge Sources for the Overall Solution Domain

ID Knowledge Source Form

KS1 IBM SHAPE Workforce Management Game External Design [Zan02] Document

KS2 SHAPE Workforce Management Game [Jol02] Thesis report

KS3 Meeting with supervisors of UT Person

KS4 Meeting with supervisors of IBM Person

KS5 A QoS-Control Architecture for Object Middleware [Ber00] Paper

After studying the knowledge sources for the overall problem, the work continues with identifying

the knowledge sources for every sub-problem to look into the overall problem in more detail.

However, since searching for knowledge sources is a time-consuming work, there was not enough

time to explore all related knowledge sources for the identified solution domains and still be able to

finish the project, including the implementation, on time. In order to speed up the work in

identifying the knowledge sources, meetings are carried out with the supervisors of the university as

the main knowledge source. With the help of their knowledge and experience, solutions for the

problems can be reached in time. The knowledge resources for every solution domain can be seen

in Appendix B.

IBM Restricted 34

C h a p t e r 5

ARCHITECTURE SPECIFICATION

5.1 Introduction

The last step defined in Synbad is architecture specification. The following Figure 5.1 depicts this

phase.

 SYNBAD

 Architecture Specification Phase

Figure 5.1 Architecture Specification Phase of Synbad [Tek00]

As shown in Figure 5.1, architecture specification phase consists of two sub-processes: extracting

semantics of the architecture and defining dynamic behavior of the architecture. The first sub-

process derives the semantic of each concept from the solution domains to provide a more formal

specification. The second sub-process derives the dynamic behavior of the system from the pre-

defined specifications of the architectural components.

Before defining the semantics and dynamic behavior of the architecture, this chapter will first

describe the overall and internal architecture of SHAPE WMG by deriving from the solution

domains identified in the previous step. From the main objective of this project to provide stable

and reusable architecture and also expressed in the prioritization of the solution domain, the

dominating architecture of SHAPE WMG. Therefore, this chapter will first describe the generic

control system in section 5.2 and then describe the application of the control system in the context

of SHAPE WMG in section 5.3. Section 5.4 gives the overall and internal architecture of SHAPE

WMG. This chapter will then continue with section 5.5 that focuses on extracting the semantics of

the architecture and section 5.6 that describes the dynamic behavior of the architecture. To define

the dynamic behavior of the architecture, collaboration diagram are used [Boo99].

 1
Extract Semantics
Of Architecture

 2
Define
Dynamic Behavior

 1
Requirements
Analysis

Technical 2
Problem
Analysis

Solution 3
Domain
Analysis

Alternative 4
Design Space
Analysis

 5
Architecture
Specification

IBM Restricted 35

5.2 Control System

A control system consists of a controlled system in combination with a controller [Berg00]. The

interaction between the controlled system and the controller consists of observation and manipulation

performed by the controller on the controlled system. The building blocks of the control process

are shown in Figure 5.2.

Figure 5.2 Building Blocks of a Control Process

The generic control model abstracts from the type of observation and the type of manipulation that

can be employed by the controller on the controlled system. The relationship between the

controlled system and the controller can be realised using different strategies. With a feed-forward

control strategy, manipulation through control actions is determined based on manipulation of the

input to the controlled system. A feed-back control strategy can be applied for behaviour optimisation.

According to this strategy, measurements of the output delivered by the controlled system are

compared with a desired behaviour (a reference) and the difference between them is used by the

controller to decide on the control actions to be taken.

Output

5.3 Application of Control System to SHAPE WMG

Referring to the solution domains that were discussed in subsection 4.3.1 and the control system as

the dominating architecture for SHAPE WMG, the composition of the solution domains for

SHAPE WMG is shown in Figure 5.3.

Environment Controller Controlled
System

Observation

Control Information

Manipulation

Difference and State

Control System

IBM Restricted 36

Figure 5.3 SHAPE WMG Solution Domains Composition

Based on the identified solution domains and generic control system theory, the building blocks of

the control system in the context of SHAPE WMG are described in the following subsections.

Control System

Environment Controller Controlled
System

Observation

Manipulation
Control Information

Business
modeling

Game playing
modeling

Calculation

User
interface Quality

management

Object-oriented
design

Assessment and
simulation technique

5.3.1 Controller

The Controller of SHAPE WMG is responsible to provide decision making control and optimize

the decision making process. The relations between the components are shown in Figure 5.4.

Figure 5.4 Controller of SHAPE WMG

Controller

Business Measurer

Business Prime
Model

Business
Reference Model

C Error

State
Correction

(Game Playing)

Decisions

Manipulation

Observation

Difference
and State

Time
model

IBM Restricted 37

The controller consists of seven components: Business Measurer, Business Prime Model, Business Reference

Model, Comparator, Error, Correction, and State. Business Measurer senses the observation and

interprets observation in order to get the measurement. Business Measurer senses the observation and

interprets observation in order to get the measurement. Afterwards, measurement is sent to Business

Prime Model, which represents the current business situation. Through C (Comparator), comparison

has been made between Business Reference Model and Business Prime Model. The difference is

represented by Error. Meanwhile, the capturing of the decision making actions are sent to State,

which describes the state of game playing. Both difference and State are sent to High Level Controller

in order to obtain the advanced control function. New decisions are made by the Environment based

on the evaluated output from High Level Controller. These decisions are sent to Correction in order to

make an improved manipulation on the Controlled System. In additional, Time Model provides time

controlling during the game playing. The concept of every component is presented in Table 5.1.

Table 5.1 Concepts of Controller

Sub-Concept Description of Concept
Business Measurer The concept Business Measurer provides the mechanism for

getting observation and interpreting observation into
measurement.

Business Prime Model The measurement of the current business situation makes up
Business Prime Model.

Business Reference Model The predefined ideal business situation is represented by the
concept Business Reference Model.

Business Model Comparator The concept Comparator provides the mechanism to compare the
same aspects between the business prime model and the
business reference model

Business Error The concept Business Error shows the differences found when
comparing the ideal business model with the actual business
model

Correction The concept Correction represents the game player attempt in
correcting the error during the game playing. It could have a
collection of control actions.

State The concept State represents the state of a game player in a
certain time and the possible decisions that can be made at that
point in time

Time Model The concept Time Model models the game that is divided into
several game periods with a certain length of time. Which could
be a time controlling for the concept Correction.

5.3.2 Controlled System

The Controlled System of SHAPE WMG basically is the Business Model, which is used to represent

the real business. The components of SHAPE WMG controlled system is shown in Figure 5.5.

IBM Restricted 38

Figure 5.5 Controlled System of SHAPE WMG

Controlled system of SHAPE WMG consists of Business Model and Disaster Scenario. Input is coming

through the Game Manager UI that creates Business Model and Disaster Scenario during the game

setup phase. Disaster Scenario will apply disasters to Business Model. These disasters are actually set of

adjustment values for the department properties in Business Model. When Business Model and Disaster

Scenario are up, observation can be sensed by Controller and new manipulation based on the

observation will be carried out in Business Model. Afterwards, Business Model will reorganize itself

based the manipulation. The concept of each component of the Controlled System is described in

Table 5.2.

Table 5.2 Concepts of Controlled System

Business Model

Disaster Scenario

Input

Manipulation Observation

Controlled System

Concept Description of Concept
Business Model The concept Business Model represents the business world in the

game whose is created by Environment during the game setup.
Disaster Scenario The concept Disaster Scenario represents the scenario that is

created by Environment to add unexpected event (from the
player point of view) that can occur during the game.

5.3.3 Environment

Environment consists of two types of user interface. The components of Environment are

depicted in Figure 5.6.

Figure 5.6 Environment of SHAPE WMG

Environment

Game Manager UIInput Game Player UI Decisions

Difference

IBM Restricted 39

The architecture of Environment of SHAPE WMG models the game users UI, which basically is

divided into Game Manager UI and Game Player UI. The game setup information is sent to

Controlled System through Game Manager UI, while the decisions during the game playing are sent

to Controller through Game Player UI. However, Game Player UI also gets the evaluated difference

from High Level Controller. New control actions (decisions) will be taken based on those evaluated

difference. The concept of each component of the Environment is described in Table 5.3.

Table 5.3 Concepts of Environment

Concept Description of Concept
Game Manager UI

The concept Game Manger UI represents the user interface which
is between the game manger and Controlled System. Setup input
is sent to Controlled System through Game Manager UI.

Game Player UI The concept Game Player UI represents the user interface which
is between the game player and Controller. Control information
is exchanged through Game Player UI.

5.3.4 High Level Controller

High Level Controller of SHAPE WMG provides advanced decision making control actions. The

advanced control actions mainly come from the evaluated difference between Game Player

Reference Model and Game Play Prime Model. The components of the High Level Controller are

shown in Figure 5.7.

Figure 5.7 High Level Controller of SHAPE WMG

High Level Controller provides an advanced control on game player model that can be modeled by

the difference and state, which are sent by the Controller. The difference and state are measured by

Game Player Measurer and the measurement is used to make up Game Player Prime Model. The situation

High Level
Controller

Difference
and State

Difference Evaluation

Game Player
Prime Model

ErrorC

Game Player
Reference Model

Game Player Measurer

IBM Restricted 40

of current game player is represented by Game Player Prime Model. By comparing it with the Game

Player Reference Model, the difference can be shown as Error. After Error is evaluated by Evaluation,

which apply some evaluation rules, the evaluated difference is sent back to Game Player UI and

Game Player UI gives input on new improved control actions (decisions) based on the evaluated

difference. The concept of each component of the High Level Controller is described in Table 5.4.

Table 5.4 Concepts of High Level Controller

Concept Description of Concept
Game Player Measurer The concept Game Player Measurer provides the mechanism for

getting observation from the lower level controller and
interpreting observation into the measurement of current game
playing.

Game Player Prime Model The concept Game Player Prime Model models the current game
player behavior in making decision in attempt to correct the
errors based on the input measurements.

Game Player Reference Model The concept Game Player Reference Model models the ideal game
player behavior that could correct the errors. This model is set
by the game manager

Game Player Comparator The concept Comparator provides the mechanism to compare the
same aspects between the game player prime model and the
game player reference model

Game Player Error The concept Game Player Error shows the differences found
when comparing the ideal game player model with the actual
game player model

Evaluation The concept Evaluation gives evaluation to the game player based
on the errors made by the game player through the user interface

5.4 SHAPE WMG Architecture

The overall architecture groups all solution concepts into four parts according to the grouping of

the concepts described in the previous subsection. The overall architecture is shown in Figure 5.8.

One component that is put outside those four parts is Help component. This is the component that

provides information to the user about the game. As described before, the game has two phases:

game setup phase which involves game manager as the user of the game and game playing phase

which involves game player as the user of the game. The architecture will be explained based on the

two phases and how the modeling processes are carried on during the phase.

IBM Restricted 41

Simulation Modeling

Game Player Modeling

Business Modeling

 Game Player

 Figure 5.8 Overall Architecture of SHAPE WMG

Game Manager

Business Measurer

Business Prime
Model

Business
Reference Model

Error

Correction
(Game Playing)

UI

State

UI

Business Model Disaster
Scenario

Game Player
Measurer

Game Player
Prime Model

Game Player
Reference Model

Error

Evaluation

Help

Time
Model

Game Setup Phase

The following paragraphs will explain how the game setup phase takes part in modeling the

architecture parts. Before the game play starts, the game setup should be done first. The game

manager sets up the game through the user interface. The input from the game manager could be

sent to four different components.

Business Modeling

The primary setup input is sent to the business model, where the business environment, business

roles, finances and business rules are stored. The unexpected disasters can be set and sent to the

disaster scenario component. The disaster scenarios component gives the surprise aspect to the

game player as already mentioned in chapter 3. One disaster can be an adjustment value for an

existing setup in a certain game period. The game manager inputs a set of adjustment values for the

whole game as the disaster scenarios.

Simulation Modeling

The game manager gives input to the length of the game period and also how many times that

period will be played in the game. The game manager also gives input to the business goals and

business strategies that are considered to be the ideal business situation. These setups are sent to

the business reference model. These values are needed to simulate the result of the game in

determining whether or not the player reaches the expected business goals.

Game Player Modeling

The other input of the game manager goes to the ideal game player modeling. This model

represents the optimal decisions that can be expected from a game player to make. This ideal game

player model is called the reference game player model.

Looking Up Help

During the whole game setup phase, the game manager can look up for help to get information

that are related to setting up the game.

Game Playing Phase

After the game setup, the game player starts the game play phase. The game player plays the game

through the user interface.

Simulation Modeling

The game is divided into several game periods where each represents a certain period of time. The

game player is presented with the current condition of the department (from the business prime

model component) and the objective that should be achieved to reach the business goal for the

IBM Restricted 43

current game period (from the business reference model component). All game play inputs are sent

directly to the correction component as an attempt to make the best decision in order to achieve

the ideal business situation. The result of the game player’s decisions can only be simulated if the

game player submitted his decisions as final decisions. So before the submission is made, the game

player can still change his decisions.

Business Modeling

Once the game player submits his final decisions, these decisions are sent to the business model

component. The business model applies business rules to its business entities based on the final

decisions. The result is then compared to the objective of the current period represented by the

business reference model component. The difference between the result and the objective is

presented to the game player as a success or failure indicator. The game player is then moved to the

next game period and repeats the same process until he reaches the last game period.

Game Player Modeling

Every decision-making action of the game-playing phase in a certain game period is caught by the

state component. The game player measurer component measures the errors found in the business

model and the decisions made by the game player to correct the errors. This measurement results in

a game player prime model that represents the game player behavior in making certain decisions

when facing a certain error. This model is compared with a game player reference model that

represents the ideal game player behavior that is set by the game manager. The difference of this

model is then evaluated. The result of analyzing the different behavior is delivered to the game

player through the user interface. The modeling of the game player behavior is out of the scope of

this project. However, the implementation of this model can be developed in the future to give the

game player more materials in the learning process.

Looking Up Help

The game player can look up for help to get information about how to play the game and how to

interpret the result shown in the user interface.

5.4.1 Internal Structure of Business Modeling Component

The internal structure of the Business Model combined with Disaster Scenario components is shown in

Figure 5.9.

IBM Restricted 44

LeafProfessionLeaf
Department

BusinessRules

calculateConfiguration()
calculateEffects()
calculateCost()
calculateAchievedProd()
calculateNewValues()

Disasters

setDisaster()
getDisaster()
updateModel()

Business
Facility

Business
Task

AbstractDepartment

setProperties()
getProperties()
updateModel()

BusinessProduct

setStrategy()
getStratgy()
updateModel()

AbstractBusinessRoles

setType()
getType()
setName()
getName()
setProperties()
getProperties()
getProductivity()
updateModel()

Concrete
Department

1

1

1

1

1 11 1

0..n

1

0..n

1

0..n

1

0..n

1

Finance

setFTRCost()
setRetCost()
setRecruitCost()
setEduCost()
setGHSCost()
setFTSCost()
setFTOCost()
setTotalCost()

1

1

1

1

ConcreteProfession
1..n1 1..n1

1..n

1

1..n

1

1

1

1

1

Figure 5.9 Internal Structure of Business Model Combined with Disaster Scenario Component

Each component of this internal architecture can be seen as a structured concept. There are two

main components: Abstract Department and Abstract Business Roles. The abstract department is the

place where the business is running. It generalizes a Concrete Department. A concrete department can

also generalize one or more other departments. It implements the parent-child relationship. If a

concrete department doesn’t generalize another concrete department, then this concrete

department is called a Leaf Department. The same principle applies to the Abstract Business Role with

the Leaf Business Roles and the Concrete Business Roles. One department could consist of several

business roles. Each business role will produce one or more Business Product. Every business role has

a Finance component that specifies the cost spent for that particular business role for a certain game

period. Every department also has a Finance component that specifies the cost spent for all business

roles that exist within the department. The Disasters component, which is used to create exceptional

effects on the business, consists of one or more disaster scenarios. A disaster scenario is assigned to

a department, one for each period. Since the department is the place where the business is running,

Business Rules for the running business should be kept in the target department. The specification of

each component in this architecture can be found in Table 5.5.

IBM Restricted 45

Table 5.5 Specification of Business Model Components

Component Specification of Component

Abstract Department An Abstract Department defines the basic characters and signatures of a
department. It does not have any concrete structures and is never
instantiated. From this component, a concrete department can be
specified.

Concrete Department A Concrete Department is the specification of a department and inherits
the basic characters and signatures of the abstract department. Besides
the basic characters are the same, each concrete department can add its
own properties and operations. Furthermore it can have sub-
departments which are also concrete departments.

Leaf Department A Leaf Department represents a concrete department that doesn’t have
any sub-department. There is no concrete department that can be
specified by this type of department.

Abstract Business Roles An Abstract Business Role defines the basic characters and signatures of a
business role In our case it is defined as a profession. The abstract
business role has no concrete structure and doesn’t represent any real
profession. It defines the primary properties and operations. From this
component, a concrete business role can be specified.

Concrete Business Role A Concrete Business Role is specified from an abstract business role and
inherits basic characters from it. Each concrete business roles have own
properties and can specify other concrete business roles.

Leaf Business Role A Leaf Business Role is a concrete business role that doesn’t have any
specification of other concrete business roles. There is no concrete
business role that can be specified by this type of business role.

Finance A Finance component represents the business cost that is spent on the
profession and department level. The total budget for the department,
the cost of business roles and the cost of each business activities are
calculated and saved into this component.

Business Rules A Business Rules component represents the business rules that are
applied to the business model based on the game player’s decisions
done and the properties of the business model. The activities such as
firing employee, changing education days can affect the business model.
The business properties such as attrition rate, education cost also can
affect business model.

Business Product A Business Product is produced by a business role. In our case, the
business product is the productivity, which is used to represent the
capability of the business role. The productivity is related with some
primary factors like: education days, compensation cost of a
FTR/FTS/FTO, attrition rate and illness rate, etc

Business Facility A Business Facility represents the facilities and equipments of the
department. It could be computers, chairs and development tools etc.
In this project, this component is left for further development of the
application.

IBM Restricted 46

Business Task A Business Task represents the missions that the department has. Tasks
are carried out by the business roles. Therefore, business task is
indirectly linked to the business roles. In this project, this component is
left for further development of the application.

Disasters A Disasters component represents the disaster scenarios that are applied
to the business model and set by game manager. Disasters will be used
to affect the properties of the department for the target game period.
The disasters in our case can be illness rate and attrition rate change.

5.4.2 Internal Structure of Business Reference Model Component

The internal structure of the Business Reference Model component is depicted in Figure 5.10.

Business
Strategies

setStrategy()
getStrategy()
updateModel()

Concrete
Department

11 11

Objectives

getObjective()
setObjective()
updateModel()

Concrete
BusinessRole

1..n1 1..n1 11 11

Figure 5.10 Internal Structure of Business Reference Model Component

Every concrete department has Business Strategies for one or more periods of time. As already been

explained before, a concrete department can consist of one or more concrete business roles. Every

concrete business role has Objectives that represent array of objectives that must be achieved for

every game period. The business strategy for a certain period is used to achieve the objective of

every profession in that period of time. The specification of each component in the Business

Reference Model component is described in Table 5.6.

Table 5.6 Specification of Business Model Components

Component Specification of Component

Business Strategies A Business Strategies component defines the business strategies of the
department for every game period. This strategy is translated into
business requirements for the department.

Objectives An Objective component defines the productivities of a certain
profession that needs to be accomplished in every game period.

5.4.3 Internal Structure of Correction Component

The internal structure of the Correction component is shown in Figure 5.11.

IBM Restricted 47

Game

getPeriodLength()
getNoOfPeriods()
getPeriod()

BusinessRoleResult

getProdFTR()
getObsFTR()
getFTS()
getFTO()
getAttritionRate()
getIllnessRate()
getProductivity()
getOtherLeavers()
getNewObsolete()

Period

getPeriodId()
getDepartment()
getStrategy()
getDisaster()

1..n

1

1..n

1

BusinessRoleDecision

getHiredFTR()
getFiredFTR()
getEducatedObsolete()
getEducatedOther()
getNewFTS()
getTerminatedFTS()
getNewFTO()
getTerminatedFTO()

11 11

DepartmentResult

getAchieved()
getNotAchieved()
isBudgetExceeded()
setExceedsBudget()

DepartmentDecision

getEducationDays()
getRetentionCost()11 11

ConcreteBusinessRole

1

1

1

1

ConcreteDepartment

1

1

1

1

1 1..n1 1..n 1..n1 1..n1

Figure 5.11 Internal Structure of Correction Component

The Game represents the game that is played by the game player of the SHAPE WMG. The game

consists of one or more game Period. The number of game period is determined in the game setup

phase beforehand. There can be one or more Departments that are played in the game. The game

player can make decision for every department played which is represented by Department Decision.

This is the department level decision. Department Result represents the result of the game player’s

decision in the department level. Every department that is played in the game consists of one or

more Business Role. The game player can also make decision for every profession as the profession

level decision, represented by Business Role Decision. The result of every profession decision is

represented by Business Role result. The specification of each component in this architecture can be

found in Table 5.7.

IBM Restricted 48

Table 5.7 Specification of Correction Components

Component Specification of Component

Game A Game represents the game that is played by the game player in
SHAPE WMG

Period A Period represents a session in SHAPE WMG whose beginning is
marked by the game player making decision and the end is marked by
the simulation of the decision effects.

Concrete Department A Concrete Department represents the current department situation that is
played by the game player.

Department Decision A Department Decision represents the decision that the game player made
by changing one or more department properties that are allowed by the
game to be changed.

Department Result A Department Result represents the result of the decision that are made
by the game player in the department level

Concrete Business Role A Concrete Business Role represents the current profession situation that is
played by the game player.

Business Role Decision A Business Role Decision represents the decision that the game player
made by reconfiguring the number of employees that are currently exist
for a certain business role

Business Role Result A Business Role Result represents the result of the decision that are made
by the game player in the profession level

5.4.4 SHAPE WMG Architecture as Decision Support System

To see how SHAPE WMG fits into the structure of Decision Support Systems that were discussed

in section 2.2, Figure 5.12 depicts the components of DSS.

Figure 5.12 DSS Components

Decision Maker

DSS
Dialog Manager

Knowledge
Management

Data
Management

Model
Management

External
Database

Internal
Database

IBM Restricted 49

The decision maker shown in the figure corresponds to the game player of SHAPE WMG. The

dialog manager is the user interface for the game player that connects the game player with the

application. The data management corresponds to the business prime model, business reference

model than can be accessed by the game player and business model that is updated by the game

player decisions. The database corresponds to the object that stores the details of the game units of

SHAPE WMG. The knowledge management and the model management are not yet covered by

SHAPE WMG, but it is possible to add these components in SHAPE WMG architecture in the

future.

5.5 Semantics Extraction of the Architecture

In this phase, the semantics is derived from the solution domain by considering the concepts

separately. As mentioned before, this project concentrates on the modeling of the business and the

simulation. The modeling of the game player is left out for further development of the application.

Section 5.5.1 describes the architecture specification of the game setup phase and Section 5.5.2

describes the architecture specification of the game playing phase.

5.5.1 Game Setup Phase

This section describes the architecture specification of the components and their operations that

take part in the Game Setup Phase. Those components are: Department, BusinessRole, BusinessStrategies,

Disasters and Objectives.

Department

The architecture component Department represents the department that is played in the game.

Example semantics of Department is shown in the following figure.

Figure 5.13 Specification of the Interface of Department

Variable properties represents array of the department properties. Operation setAllProperties sets all of

the department properties to the given values. It is also possible to set only a certain property of the

department instead of all of the properties. In the example shown in Figure 5.13 Operation

Department::setAllProperties(prop: array of integer)
postcondition:
 for (i=0 to noOfProperties - 1)
 properties[i] = prop[i]

Department::setRecruitCost(newCost: integer)
postcondition:
 this.recruitCost = newCost

…
// additional operations

IBM Restricted 50

setRecruitCost sets the value of the recruitCost, that represents the recruitment cost for every new

employee of the department, to the given value.

BusinessRole

The architecture component BusinessRole represents each game period that is played in the game.

Example semantics of BusinessRole is shown in the following figure.

As in

values

Figure

and pr

Busin

The a

for eve

The s

setStrat

IBM R
BusinessRole::setAllProperties(prop: array of integer)
postcondition:
 for (i=0 to noOfProperties - 1)
 properties[i] = prop[i]

BusinessRole::setAttritionRate(attrRate:integer)
postcondition:
 this.sttritionRate = attrRate

BusinessRole::setProductivty(prod:double)
postcondition:
 this.productivity = prod

…
// additional operations
Figure 5.14 Specification of the Interface of BusinessRole

the department, operation setAllProperties sets all of the business role properties to the given

. It is also possible to set a certain property of the business role. In the example shown in

 5.14, operations setAttritionRate and setProductivity respectively set the value of the attritionRate

oductivity to the given values.

essStrategies

rchitecture component BusinessStrategies represents the business strategies of the department

ry game period. Example semantics of BusinessStrategies is shown in the following figure.

Figure 5.15 Specification of the Interface of BusinessStrategies

trategies variable represents array of business strategies for every game period. Operation

egies sets the strategies of the department to the given description of the strategies.

BusinessStrategies::setStrategies(noOfPeriods: integer, s: array of String)
postcondition:
 for (i=0 to noOfPeriods-1)
 this.strategies[i] = s[i]

...
// additional operations

estricted 51

Disasters

The architecture component Disasters represents disaster scenarios that are applied for one more

game periods and set by the game manager. Example semantics of Disasters is shown in the

following figure.

Variab

scenar

are fiv

of the

Objec

The ar

every g

The o

Opera

IBM R
Disasters::setDisasters(d1,d2,d3,d4,d5:array of String)
postcondition:
 this.disaster1 = d1, this.disaster2 = d2, this.disaster3 = d3, this.disaster4 = d4, this.disaster5 = d5

…
// additional operations
Figure 5.16 Specification of the Interface of Disasters

les disaster1, disaster2, disaster3, disaster4, and disaster5 respectively represent the disaster

ios for game period 1, 2, 3, 4, and 5. In the example specification shown in Figure 5.16, there

e disaster scenarios for five game periods. Operation setDisasters sets the names and the values

disaster scenarios to the given names and values.

tives

chitecture component Objectives represents the objectives of every profession that are set for

ame period. Example semantics of Objectives is shown in the following figure.

Objectives::setObjectives(noOfPeriods: integer, obj: array of integer)
postcondition:
 for (i=0 to noOfPeriods-1)
 this.objectives[i] = obj[i]
…
// additional operations
Figure 5.17 Specification of the Interface of Objectives

bjectives variable represents array of objectives of the business role for every game period.

tion setObjectives sets the objectives of the business role to the given values.

estricted 52

Overall Interface Specification

To see how the interfaces described above take place in the architecture design, the components

that take part in the Game Setup phase are shown again in Figure 5.18.

Figure 5.18 Components of the Game Setup Phase

The number shown in Figure 5.18 indicates the interface number to help describing each interface.

By referring to the above figure, example of the overall Java interface specification of the game

setup phase is described in Table 5.8.

Table 5.8 Interface Specification of the Game Setup Phase

Game Manager

1

2

3

Business Model
Disaster
Scenario

5

Business
Reference Model Time

Model

4

Business Measurer

6

UI

Interface Java Interface Specification

Interface 1 7. Department.setAllProperties(int[] properties)
8. BusinessRole.setAllProperties(int[] properties)

Interface 2 4. BusinessStrategies.setBusinessStrategies(int noOfPeriods, String[] s)
5. Objectives.setObjectives(int noOfPeriods, int[] s)

Interface 3 1. Disasters.setDisasters(String[] d1, String[] d2, String[] d3, String[] d4,
String[] d5)

Interface 4 1. BusinessRole.countProductivity()

Interface 5 1. BusinessRole.getProductivity()

Interface 6 1. GamePeriodProperties.setPeriodLength(int n)
2. GamePeriodProperties.setNoOfPeriods(int n)

IBM Restricted 53

5.5.2 Game Playing Phase

This section describes the architecture specification of the components and their operations that

take part in the Game Playing Phase. Those components are: Game, Period, DepartmentDecision.

BusinessRoleDecision, DepartmentResult, BusinessRoleResult, Finance, BusinessRules, Department, and

BusinessRole.

Game

The architecture component Game represents the container of the whole game entities that take

part in the game playing phase. Example semantics of Game is shown in the following figure.

Figure 5.19 Specification of the Interface of Game

A game includes an array of Period that means that it contains of one or more game periods. The

variable noOfPeriods represents the total number of periods that will be played in the game.

Operation createDepartment creates department for each game period all with the same values, which

are the initial values of the department in the beginning of the game. A Disaster contains an array of

disasters for every game period. Operation createDisaster sets every disaster to the appropriate game

period. The variable periodIndex points to the identification of the current game period. Operation

createDeptDecision creates the department decision component for the current game period and set

the values of the department decision on education days and retention cost to the received values.

Operation incrementIndex increments the periodIndex of the game, which means that the periodIndex is

now pointing at the next game period. Operation start starts the game with the first game period.

Game::createDepartment(dept:Department)
postcondition:
 for (i=0 to noOfPeriods-1)
 Period[i].getDepartment() = dept

Game::createDisaster(dis:Disaster)
postcondition:
 for (i=0 to noOfPeriods-1)
 Period[i].getDisaster() = dis[i]

Game::createDeptDecision(n1,n2:integer)
postcondition:
 Period[periodIndex].getDepartment().getDecision().getEduDays() = n1,
 Period[periodIndex].getDepartment().getDecision().getRetCost() = n2

Game::incrementIndex()
postcondition:
 periodIndex is incremented

Game::start()
postcondition:

the game is started with first period

…
// additional operations

IBM Restricted 54

Period

The architecture component Period represents each game period that is played in the game.

Example semantics of Period is shown in the following figure.

Figure 5.20 Specification of the Interface of Period

A period has strategy variable that represents the business strategy of the period. Operation setStrategy

sets the strategy for the period. The variable department represents the department that is played in

the period. Operation setDepartment sets a department to the game period. A period has disaster

variable that represents the disaster scenario that is assigned to the game period by the game

manager during the game setup phase. A disaster scenario contains of a name (attrition rate change

or illness rate change) of the disaster and the value of that disaster. Operation setDisaster sets the

given disaster values to the game period. Operation addProfession adds a profession that exists in the

department in that game period. In this project, it is assumed that all professions exist from the

beginning until the end of the game. In the future, it should be possible to determine the period

where a profession starts to exist in the game, e.g. professions that will be needed by the company

in the future.

DepartmentDecision

The architecture component DepartmentDecision represents the game player’s decision in the

department level. The semantics of DepartmentDecision is shown in the following figure.

Period::setStrategy(str:String)
postcondition:
 this.getStrategy() = str

Period::setDepartment(dept:Department)
postcondition:
 this.getDepartment() = dept

Period::setDisaster(disaster:String[])
postcondition:
 this.getDisaster() = disaster

Period::addProfession(prof:Profession)
postcondition:
 department.getProfessions().get(n) = prof

…
// additional operations

IBM R
DepartmentDecision::getEduDays(): integer
precondition:
 decision on new number of education days is defined

DepartmentDecision::getRetCost(): integer
precondition:
 decision on new retention cost is defined
Figure 5.21 Specification of the Interface of DepartmentDecision

estricted 55

A department decision has two variables: eduDays, representing the new number of education days,

and retCost, representing the new retention cost. If the game player decided to keep the initial values

and did not decide to change them, then the values of eduDays and retCost are set to those initial

values. The operations getEduCost and getRetCost respectively returns the decisions made on the

number of education days and on retention cost.

BusinessRoleDecision

The architecture component BusinessRoleDecision represents the game player’s decision made for a

certain profession. Example semantics of BusinessRoleDecision is shown in the following figure.

A bus

hired,

obsole

repres

new F

Opera

make

Depar

The ar

the de

IBM R
BusinessRoleDecision::setValues(n1,n2,n3,n4,n5,n6,n7:integer)
postcondition:
 this.hiredFTR = n1, this.firedFTR = n2, this.eduObs = n3,
 this.newFTS = n4, this.terFTS = n5, this.newFTO = n6, this.terFTO = n7

…
// additional operations
Figure 5.22 Specification of the Interface of DepartmentDecision

iness role decision has seven variables: hiredFTR, representing the number of FTR that are

firedFTR, representing the number of FTR that are fired, eduObs, representing the number of

te FTR that are reeducated, newFTS, representing the number of new FTS contract, terFTS,

enting the number of FTS contract that are terminated, newFTO, representing the number of

TO contract, and terFTO, representing the number of FTO contract that are terminated.

tion setValues sets all of those variables to the given values. If the game player decided not to

decision on any of the variables, those variables will be set to zero.

tmentResult

chitecture component DepartmentResult represents the result of the game player’s decision in

partment level. Example semantics of DepartmentResult is shown in the following figure.

DepartmentResult::getAchieved(): integer
precondition:
 the number of professions whose productivity are achieved is defined

DepartmentResult::setExceedsBudget()
precondition:
 this.exceedsBudget = false
prostondition:
 this.exceedsBudget = true

…
// additional operations
Figure 5.23 Specification of the Interface of DepartmentResult

estricted 56

A department result has three variables: achievedProfessions, representing the number of professions

that exist in the department whose productivity is achieved, notAchievedProfessions, representing the

number of professions that exist in the department whose productivity is not achieved, and

exceedsBudget, representing the value of whether or not the cost spent based on the game player’s

decisions exceed the budget allocated to the department. Operation getAchieved returns the number

of professions whose productivity is achieved. Operation setExceedsBudget set the exceedsBudget

variable to true, which means that the player’s decisions results in costs that exceed the budget.

BusinessRoleResult

The architecture component BusinessRoleResult represents the result of the game player’s decision for

a certain profession. Example semantics of BusinessRoleResult is shown in the following figure.

A pro

Opera

variab

setProd

describ

setObje

profes

Finan

The a

level. E

IBM R
BusinessRoleResult::setObjectiveReached()
precondition:
 this.objectiveReached = false
postcondition:
 this. objectiveReached = true

…
// additional operations

BusinessRoleResult::setNewObsolete(n:integer)
postcondition:
 this.getNewObsolete = n

BusinessRoleResult::setProductivity(n:double)
postcondition:
 this.getProductivity = n

Figure 5.24 Specification of the Interface of Profession Result

fession result has newObsolete variable that represents the number of new obsolete people.

tion setNewObsolete sets the number of the new obsolete people to the given value. Another

le of profession result is productivity that represents the achieved productivity. Operation

uctivity sets the productivity of the profession to the given value. Variable objectiveReached

es whether or not the achieved productivity reaches the objective. Operation

ctiveReached set the objectiveReached variable to true, which means that the productivity of the

sion has reached the objective.

ce

rchitecture component Finance represents the cost spent on the profession and department

xample semantics of Finance is shown in the following figure.

estricted 57

Figure 5.25 Specification of the Interface of Finance

A department result has variable FTRCost that represents the cost spent to pay all of the FTR

employees that exist in the profession or the department. Operation getFTRCost returns the value of

the FTRCost variable. The totalCost represents the total cost spent on employees exist in the entire

profession or department. Operation getTotalCost variable returns the value of the totalCost variable.

BusinessRules

The architecture component BusinessRules represents the business rules that are applied to the

department based on the game player’s decision. The semantics of BusinessRules is shown in the

following figure.

Opera

directl

Busines

player’

certain

period

calculat

DepartmentResult::getFTRCost(): integer
precondition:
 the FTR cost spent is already defined

DepartmentResult::getTotalCost(): integer
precondition:
 the total cost spent for the entire profession or department
…
// additional operations

IBM R
BusinessRules::calculateConfiguration(br:BusinessRole)
postcondition:
 the new configuration of employee in the profession is calculated and set as the result of the profession

BusinessRules::calculateEffects(period:Period, br:BusinessRole)
postcondition:
 the other effects on the profession level is calculated and set as the result of the profession

BusinessRules::calculateCost(dept:Department,bs:BusinessRole)
postcondition:
 the cost spent for the profession is calculated and set as the finance of the profession

BusinessRules::calculateAchievedProd (dept:Department)
postcondition:
 the number of professions that achieve and don’t achieve their productivities are calculated and set as the
 result of the department

BusinessRules::calculateNewValues(game:Game)
postcondition:
 the new values for the next period is calculated and set to the next game period
Figure 5.26 Specification of the Interface of BusinessRules

tion calculateConfiguration calculates the new configuration of the given profession based

y on the game player’s decision, creates BusinessRoleResult with those values and set it to the

sRole. Operation calculateEffects calculates the other effects that are not directly related to

s decision on reconfiguring the number of employees, whether it is because of changing a

 parameter in the department level or a disaster scenario that are applied to the current game

. The operation then sets those values to the BusinessRoleResult of the BusinessRole. Operation

eAchievedProd calculates the number of professions that achieved their productivities and

estricted 58

those who don’t, then creates DepartmentResult with those values and set it to the Department.

Operation calculateNewValues calculates the new values on the department and profession level for

the next game period and sets those values to the next Period.

Department

The architecture component Department represents the department that is played in the game.

Example semantics of Department is shown in the following figure.

Figure 5.27 Specification of the Interface of Department

A department has professions variable that represents array of professions exist in the department.

Operation addProfession adds a given profession to the array of professions. The decision variable

represents the decisions that are made by the game player in the department level. Operation

setDecision sets the value of the decision to the given value. A department has finance variables

represents the cost spent in the department level as the consequences of the decisions. The result

variable represents the result of the decisions on the number of professions that achieved their

objectives and those who are not. Operations setFinance and setResult respectively sets the finance and

result variables to the given values.

BusinessRole

The architecture component BusinessRole represents each game period that is played in the game.

Example semantics of BusinessRole is shown in the following figure.

Department::addProfession(prof:BusinessRole)
postcondition:
 this.professions.get(n) = prof

Department::setDecision(dd:DepartmentDecision)
postcondition:
 this.decision = dd

Department::setFinance(f:Finance)
postcondition:
 this.finance = f

Department::setResult(dr:DepartmentResult)
postcondition:
 this.result = dr

…
// additional operations

IBM Restricted 59

Figure 5.28 Specification of the Interface of BusinessRole

As a department, a business role has variables decision, finance, and result that represent the decisions,

the cost spent, and the result of the decisions that are made in the profession level. Operations

setDecision, setFinance and setResult respectively set the decision, finance and result variables to the given

values.

Overall Interface Specification

To see how the interfaces described above take place in the architecture design, the components

that take part in the Game Playing phase are shown again in Figure 5.29.

Figure 5.29 Components of the Game Playing Phase

BusinessRole::setDecision(brd:BusinessRoleDecision)
postcondition:
 this.decision = brd

Department::setFinance(f:Finance)
postcondition:
 this.finance = f

Department::setResult(brr:BusinessRoleResult)
postcondition:
 this.result = brr

…
// additional operations

1

2

3

Business Measure

Business
Prime Model

Business
Reference Model

Error

Correction
(Game Playing)

UI

Business Model

8

7
Disaster
Scenario 6

9

5

4

Time
Model

Game Player

IBM Restricted 60

The number shown in Figure 5.29 indicates the interface number to help describing each interface.

By referring to the above figure, example of the overall Java interface specification of the game

setup phase is described in Table 5.9.

Table 5.9 Interface Specification of the Game Playing Phase

Interface Java Interface Specification

Interface 1 1. Game.createDepartment(Department department)
2. Game.createBusinessRole(BusinessRole profession)
3. DepartmentResult.getAchieved(): int
4. DepartmentResult.getNotAchieved() : int
5. DepartmentResult.isBudgetExceeded(): Boolean

Interface 2 1. Game.createStrategies(BusinessStrategies strategies)

Interface 3 1. BusinessRole.getObjective(): double

Interface 4 1. BusinessRole.getProductivity(): double
2. BusinessRoleResult.getProductivity(): double

Interface 5 1. Game.createDeptDecision int int (n1, n2)
2. Department.setDecision(DepartementDecision ptDecision) de
3. BusinessRole.setDecision(BusinessRoleDecision profDecision)

Interface 6 1. Game.createDisaster(Disasters disasters)
2. Period.setDisaster(String[] dis)

Interface 7 1. DepartmentDecision.getEduDays()
2. DepartmentDecision.getRetDays()
3. BusinessRole.getNewObsolete()

Interface 8 1. BusinessRole.getProductivity()
2. Department.setResult()

Interface 9 1. Game.incrementIndex()

5.6 Dynamic Behavior of the Architecture

In order to model the dynamic behavior of the architecture, collaboration diagrams are used. To

make a complete and understandable collaboration diagram, based on the interface specification

described in the previous section. Therefore, the relationship and message flows among these

components can be clarified. The collaboration diagrams are described for the game setup phase

and the game playing phase.

5.6.1 Game Setup Phase

The collaboration diagram for the game setup phase of the SHAPE Workforce Management Game

is depicted in Figure 5.30.

IBM Restricted 61

: SetupAgent

gpp:GamePeriodProperties dept:Department bs:BusinessStrategies

d:Disasters br:BusinessRole

1 create()

2
cr

ea
te

()

3 c
re

ate
()

4 cre
ate()

5
cr

ea
te

()

1.1 : update() 2.1 : update()

4.1 : update()

o:Objectives

5.1 : update()

5.2 : create()

5.2.1 : update()

3.1 update()

Figure 5.30 Collaboration Diagram of Game Setup

Figure 5.30 shows the flow of control involved in setting up the game environment during the

game setup phase. The SetupAgent creates the five objects that will be involved in the game: a

GamePeriodProperties, a Department, a BusinessStrategies, a Disasters, and a BusinessRole. Each of the

objects will invoke the update operation on itself whenever a change is made to one of its values.

The BusinessRole object will also create an Objectives object that represents the objective of the

business role for each game period. The Objectives objects also will invoke the update operation on

itself whenever a change is made to one of its values.

5.6.2 Game Playing Phase

The collaboration diagram for the game playing phase of the SHAPE Workforce Management

Game is depicted in Figure 5.31.

IBM Restricted 62

g:Game

d:Department

5.1 : setDecision()

1 createDepartm
ent()

p:Period

1.1 : setDepartment()
2 : setStrategy()
3 : setDisaster()

4 : addProfession()

4.
1

: a
dd

P
ro

fe
ss

io
n(

)

dd:DepartmentDecision

5 : createDeptDecision()

brd:BusinessRoleDecision

6 : createProfDecision()

br:BusinessRole

6.1 : setDecision()

br:BusinessRules

7 :
 ca

lcu
lat

eC
on

fig
ur

ati
on

()

8 :
 ca

lcu
lat

eE
ffe

cts
()

9 :
 ca

lcu
lat

eC
os

t()

11
 : c

alc
ula

te
Ac

hie
ve

dP
ro

d(
)

12
 : c

alc
ula

te
New

Va
lue

s()

brr:BusinessRoleResult

7.1 : createResult()
8.1 : setAttrRate()
8.2 : setLeavers()
8.3 : setProdFTR()

8.4 : setIllRate()
8.5 : setProductivity()

7.
1.

1
: s

et
R

es
ul

t()
9.

1.
1

: s
et

Fi
na

nc
e(

)

f1:Finance

9.1 : createProfFinance()

10
 :

cr
ea

te
D

ep
tF

in
an

ce
()

10.1 : setFinance()

dr:DepartmentResult
11.1 : createResult()11.1.1 : setResult()

13 : incrementIndex()

f2:Finance

Figure 5.31 Collaboration Diagram for Game Play

There are ten objects shown in Figure 5.31: a Game, a Period, a Department, a BusinessRole, a

DepartmentDecision, a BusinessRoleDecision, a BusinessRules, a DepartmentResult, a BusinessRoleResult, and a

Finance. It specifies the flow of control involved in making decisions in department level, making

decisions on one business role in that department, calculate all the effects of those decisions, and

then go to the next game period. The action begins with the Game creating a Department object and

setting the department to the Period. The game will also set the strategy and the disaster to the

period. The game then adds the business role that exists in that period and the period adds the

business role to the department where the profession belongs to. During the game playing, the

game player makes decisions in the department level. The game creates a DepartmentDecision object

that contains the decisions of the game player and sets the decision to the department. The game

player also makes decisions on a BusinessRole that exists in that department. To store these decisions,

the game creates a BusinessRoleDecision object and then sets the decision to the profession. After the

game player decides to commit the decisions as final decisions, the game invokes first

IBM Restricted 63

calculateConfiguration on BusinessRules object who calculates the new configuration of the business role

based straight on the game player’s decision. Based on the result of the calculation, a

BusinessRoleResult object is created and this result is set to the business role. The next operation of

the business rules invoked by the game is calculateEffects, who calculates other effects that are not

caused directly by the game player’s decisions. Based on the result of the calculation, the business

rules will then set the new attrition rate (setAttrRate), the number of other leavers besides those

employees who are fired (setLeavers), the new number of productive FTR (setProdFTR), the new

illness rate (setIllRate), and the current productivity (setProductivity) to the business role result. The

third operation of the business rules is calculateCost who calculates the cost spent for that business

role based on the player’s decision and other effects. A Finance object is created to store the details

of the cost spent and then set to the business role. After calculating the cost spent for all business

roles, the game creates another Finance object to store the total cost spent for all business roles. In

the example of Figure 5.31, since the player only make decisions one business role in the

department, the game creates the Finance object after calculating the cost for that business role and

then set it to the department. The game continues with invoking calculatingAchievedProd operation

which calculates the number of business roles in the department that achieved their productivity

and those who did not. The number calculated is used to create the DepartmentResult object which is

then set to the department. The last business rules operation that is invoked is calculateNewValues

that calculates the new values of department and business role properties that will be applied in the

next period. After setting these new values, the game then go to the next period first by invoking

incrementIndex operation on itself. The similar flow will then repeated for the next game period with

the new values acquired from the previous one.

IBM Restricted 64

C h a p t e r 6

EVALUATION OF ARCHITECTURE

6.1 Introduction

The architecture of SHAPE Workforce Management Game is evaluated in this chapter. The

evaluation is a quality assessment process. The quality assessment is made up by several aspects, like

robustness, reusability, adaptability, flexibility and security etc. This chapter will describe the

architecture-level analysis that focuses on the stability and reusability aspects of the architecture. By

comparing with the quality demand on those aspects, this chapter will show why the architecture is

considered a stable architecture. Section 6.2 will describe the method that is used to evaluate the

architecture and section 6.3 will describe the evaluation of the architecture.

6.2 Software Architecture Evaluation Method

The method that is used in this project to analyze the software architecture of this project consists

of four steps. The first step is to develop several evolution scenarios. An evolution scenario is a

description of some anticipated use of a system in the future. Each of these scenarios is then

evaluated to see what kind of changes required for the system to perform the scenario. The third

step is to find out which scenarios require changes in the same component of the system. This step

is done to measure the level of separation of concerns supported by the architecture. Then the last

step is to make the overall evaluation on the stability and reusability of the architecture.

6.3 Evaluation on SHAPE WMG Architecture

This section describes the analysis of SHAPE WMG Architecture using the method described

previously. As explained before, there are four steps involved in the evaluation process. Each of

these steps in the context of SHAPE WMG will be explained from section 6.3.1 to section 6.3.4.

6.3.1 Scenarios Development

The first step in the evaluation of the architecture design is to develop several evolution scenarios

for different stakeholders. The scenarios should illustrate the kinds of activities the system must

support and the kind of changes must be made to the system. In this project, four types of

stakeholders are considered: users, maintainers, system administrator, and developers. Every type of these

stakeholders has different concerns for the system. The users concern with the functionality and

usability of the system, the maintainers concern with the maintainability and the ability to locate

places of changes, the system administrators concern with the ease in finding source of operational

IBM Restricted 65

problems, and the developers concern with the clarity and the completeness of the architecture.

The scenarios for each of the stakeholders involved in this project are described as follows:

Users (game managers):

1. Add more parameters for disaster scenarios

2. Generate random disaster scenarios

3. Include a profession from a certain period

4. Add other parameters to represent objective

5. Change the business rules

Users (game players):

6. Print out the game playing results

7. Record game playing steps and replay the game

8. Have a scoring system to indicate success or failure

Maintainers:

9. Make modifications to the user interface

10. Connect the game to external storage or printer

11. Prevent game user for giving input to unreasonable data

Administrators:

12. Change access permissions in the setup phase

13. Add function to recover from system failure

Developers:

14. Add artificial intelligence to support decision making process

15. Support multiple players playing at the same time as competitors

6.3.2 Evaluation on Evolution Scenarios

Every evolution scenario described in the previous section is then evaluated based on the kind of

changes that is required for the scenario to be supported by the system. The changes are classified

into one of the following categories:

A. No change required

B. Interface boundary is the same, new operation is required

C. Interface boundary is the same, change required in the implementation

D. Interface boundary is the same, change required in the function

E. Change required in the interface boundary

The evaluation for all of the scenarios based on the above categorization is shown in Table 6.1.

IBM Restricted 66

Table 6.1 Scenario Evaluation

Scenario Description Type of Change Changes Required

1 Add more parameters for
disaster scenarios

C No additional component required, the changes
should be made in the implementation level to
determine how the disasters influence the
application of the business rules

2 Generate random disaster
scenarios

C No additional component required, the changes
should be made in the implementation of
disaster scenario component that can also
functions as a random generator

3 Include a profession from a
certain period

A

4 Add other parameters to
represent objective

D No additional component required, the changes
should be made in the internal architecture of
the business reference model for example by
adding a new class to represent the objective

5 Change the business rules

B No additional component required, the changes
should be made in the class business rules for
example by adding new operations

6 Print out the game playing results A

7 Record game playing steps and
replay the game

D No new component required, the changes
should be made in changing the function of the
game player modeling where the game player
measurer can record the game player state and
give these steps as input to business model to
be replayed.

8 Have a scoring system to indicate
success or failure

B No additional component required, the changes
should be made by adding functions to score
the results, for example by creating a new class
in the error component

9 Make modifications to the user
interface

A

10 Connect the game to external
storage or printer

A

11 Prevent game user for giving
input to unreasonable data

B No additional component required, the changes
should be made by adding validation function
when receiving input from the user

12 Change access permissions in the
setup phase

A

13 Add function to recover from
system failure

E A new component should be added, for
example recovery manager, to guarantee that
the system save the data periodically so when a
system failure happen, several updates were
already saved and can be loaded

14 Add artificial intelligence to
support decision making process

D No additional component required, the changes
should be made in the functions of the
components, for example the correction or the
evaluation component

15 Support multiple players playing
at the same time as competitors

E A new component should be added to receive
input results from other players and compare it
with the local player’s result, also other
component to handle the concurrency control

IBM Restricted 67

6.3.3 Evaluation on Changes Required

From the scenarios evaluation described previously, it is shown that several scenarios require

changes in several components or changes in the interface boundary. For the scenarios that require

no changes in the interface boundary, the architecture is then considered to be stable since the

architecture still can be used without having to make a severe change or add new component to the

architecture. For the scenarios that require changes in the interface boundary, further evaluation

should be made on whether or not the changes will affect the architecture that can result in

restructuring the architecture to adjust to the changes.

The first scenario that needs changes in the interface boundary is evolution scenario 13 to add

function to recover for system failure. This scenario will require a change in adding a recovery

manager to the architecture. This change will not give a big impact on the current architecture. A

recovery manager component can just be added into the architecture who receives and saves input

from the game player and game manager user interface periodically, so that when a failure happens,

the recovery manager can just refer to the last changes and upload it to the user interface.

The second scenario that needs to be evaluated further is evolution scenario 15 to support multiple

players to play at the same time as competitors. This scenario will require additional comparator to

compare the results and the decision made by the game players. The result could then be used as

parameters in scoring the game. This change will not required restructuring the architecture, since

the comparator can be added to connect the error components of each simulation modeling that

belongs to each player and then add another component to represent the result of comparing the

game player’s error components.

6.3.4 Overall Evaluation

From the above evaluation, it can be seen that the current architecture is indeed stable and reusable

for future development. From the fifteen evolution scenarios described previously, only two

required changes in the interface boundary. It has been discussed that even with these scenarios the

changes required are relatively small and don’t require high cost and effort to add them. Although

not all scenarios are covered in this evaluation step, it can be seen that the current architecture is

stable enough and reusable for further development.

IBM Restricted 68

C h a p t e r 7

IMPLEMENTATION AND TESTING

7.1 Introduction

The previous chapters describe the architecture design process, which is done based on the Synbad

method. This chapter will describe the implementation of the architecture which results in a

prototype of the SHAPE Workforce Management Game. A testing procedure is applied to test and

validate the prototype in the final stage of this project. One of the important principles in

developing software is that it should be maintainable. Maintenance is the most costly part in a

software life cycle. In order to keep this prototype maintainable, the development tool that is used

to implement SHAPE WMG is IBM WebSphere in Java on the Windows compatible platform.

WebSphere masks the complexity of J2EE by allowing software developers to visually assemble

applications from existing enterprise data. Its visual framework combines a J2EE development

methodology with the ability to leverage existing and future application components making

applications more maintainable and reusable.

The implementation consists of two important parts: the game setup part is focusing on the

business model, which mainly covers the Business Modeling area shown in Figure 5.8. The game

playing part mainly includes the business measurer, the business prime model, the business

reference model, the correction, and the business model, which covers the Simulation Modeling area

shown in Figure 5.8. The outline of this chapter is as follows. Section 7.2 gives an overview of the

implementation of the game setup component. Section 7.3 gives an overview of the

implementation of the game play component. Section 7.4 ends this chapter by describing the

testing phase done for the implementation.

7.2 Game Setup Implementation

This section describes implementation of the game setup components depicted in Figure 5.8.

These components are shown again in Figure 7.1.

Section 7.2.1 will describe the class diagram for the game setup components and section 7.2.2 will

give the implementation of the classes in Java.

IBM Restricted 69

Figure 7.1 Components in the Game Setup Phase

UI

Business Model Disaster
Scenario

Game Manager

Business
Reference Model

7.2.1 Class Diagram

The class diagram depicted in Figure 7.2 describes the classes that are included in the three

components shown in Figure 7.1 (excluding the User Interface component). Those components are:

Business Model, Business Reference Model, and Disaster Scenario.

ITDepartment

Observable

Observable()
addObserver()
deleteObserver()
notifyObservers()
notifyObservers()
deleteObservers()
setChanged()
clearChanged()
hasChanged()
countObservers()

(from util)

Disaster

setDisaster()
getDisaster()
updateModel()

Objective

setObjective()
getObjective()
updateModel() AbstractBusiness

Role

setType()
getType()
setName()
getName()
getProductivity()
updateModel()

1..n

1

1..n

1

Professions

getProfession()

Profession

setProperties()
getProperties()1..n 11..n 1

AbstractDepartm
ent

getName()
getProperties()
setName()
setProperties()
updateModel()

1..n

1

1..n

1

1..n1 1..1 n

BusinessStrategy

setStrategy()
getStrategy()
updateModel()

1..n

1

1..n

1

Figure 7.2 Class Diagram for Game Setup Phase Implementation

IBM Restricted 70

The Abstract Department class is an abstract class that is used as a foundation on which to build

department classes by extension. This project focuses on the implementation of IT Department class

which is implemented as the subclass of the Abstract Department class. This means that IT Department

class inherits and implements the abstract method defined in Abstract Department class. Each

department includes one or more business roles. As Abstract Department class, Abstract Business Role

class is also an abstract class that is used as a foundation on which to build profession class. As

already described, the subclasses for this class is the Concrete Profession class and the Leaf Profession

class. In this project, the implementation is made only for the Leaf Profession class. This class is

represented by the Profession class shown in Figure 7.2. The Professions class represents an array of

Profession class, since a department can contain more than one profession.

Each profession has its own objectives. Therefore, the Objective class has association with the

Abstraction Business Role class. The Business Strategy class represents the business strategy of a

department for a certain period. Therefore, the Abstraction Department class can have one to many

business strategies for one or more periods. The Disaster class gives exceptional effects on the

properties of the IT department. All these classes extend the observable class. This will be

explained more shortly. Some primary operations of each class are given in the class diagram.

Another game setup phase component that is shown in Figure 7.1 and has not been discussed yet is

the User Interface component. To build the user interface in this phase the Model/View/Controller

(MVC) pattern is used. In this pattern, the model component represents the classes shown in the

class diagram described above, the view component represents the user interface component, and

the controller component is the component that defines the way user interface reacts to user input.

Another pattern that is applied to the User Interface component is the Observer pattern. The

Observer pattern is used to model the objects that need to notify and update other objects when

they change state. In this case, the Observer is the user interface which observes the state changes

of its Subject. In Java term this Subject is called Observable. As already explained in the previous

paragraph, the Observable subjects are the classes that extend the Observable class.

The implementation of the game setup components are decomposed into five Java packages:

BusinessModel, Controller, View, TimeModel, and Tools packages. The diagram of these packages is

shown in Figure 7.3.

IBM Restricted 71

Figure 7.3 Package Diagram for Game Setup Phase Implementation

The View component determines how to display the model components. For every setup phase,

there is a view component that displays all the required information to be filled in by the game

manager. The class diagram for the View component is shown in Figure 7.4.

Observer

update()

(from util)

<<Interface>>

SetupObjectiveV
iew

getObjective()
setObjective()

SetupProfDetailView

countProductivity()
getProductivity()
setProfType()
getProfProperties()

SetupPeriodView

getPeriodLength()
getNoOfPeriod()
setPeriodLength()
setNoOfPeriod()

SetupStrategyV
iew

getStrategy()
setStrategy()

SetupDisasterV
iew

getDisaster()
setDisaster()

SetupDeptView

setStrategy()
setProfession()
setDisaster()
saveToFile()

DeptInfoView

editValues()
startGame()

SetupNewProfVie
w

addProfession()

SetupProfListView

addProfession()
removeProfession()
includeProfession()
excludeProfession()

Figure 7.4 Class Diagram of View Component

Game Setup Model

View

Controller

Observable

extendupdate

observeobserve

notify notify

validate

input

Tools

applied to

Time Model

IBM Restricted 72

All classes extends the JFrame class in order to provide a user friendly GUI. Those classes, except

DeptInfoView class, also implement the Observer Interface to receive notifications. Basically

SetupDeptView class has relation with the SetupPeriodView class, since SetupPeriodView creates the

SetupDeptView and delivers the number of game period to the SetupDeptView. From the

SetupDeptView, four other interfaces can be started: SetupStrategyView, SetupDisasterView,

SetupProfListView, and DeptInfoView. So these four classes have relations with the SetupDeptView. The

SetupNewProfView is started when the game manager wants to add a new profession to the list

shown in the SetupProfListView. The SetupProfDetailView is also started when a certain profession is

chosen from the list also shown in the SetupProfListView. From the SetupProfDetailView,

SetupObjectiveView is started to set the objectives of the profession. The DeptInfoView displays all the

values that have been set during the game setup phase, after saving the values into a file.

The Controller determines the actions that follow the game manager’s input. The Controller modifies

the Game Setup Model component. The class diagram for the Controller component is depicted in

Figure 7.5.

ActionListener

actionPerformed()

(from event)

<<Interface>>

ProfSetupControllerSetupController

Figure 7.5 Class Diagram of Controller Component

The ProfessionSetupController class determines the actions that follow the game manager’s input on

the Profession List Setup (represented by SetupProfListView class) and Profession Details Setup

(represented by SetupProfDetailView class) interfaces. This controller is separated by the other

controller because it is more complex than the others. The controller for the rest of the interfaces

in the game setup phase is combined in one class called SetupController class.

The class diagram of the Timing Controller package is shown in the following figure. This package

only includes one class, Game Period Properties. It is used to set up the game time and give time

controlling to the game play.

IBM Restricted 73

GamePeriodProperties

setNumberofPeriod()
setLengthofPeriod()
getNumerofPeriod()
getLengthofPeriod()
updateModel()

(from DataModel)

Figure 7.6 Class diagram of the Time Model Package

7.2.2 Coding of the Game Setup

According to the package diagram in Figure 7.3, five packages are defined within the project. Based

on the class diagram described in the previous section, related classes are created those packages.

The screen capture in Figure 7.7 shows the packages and classes organization in the project

SHAPE_WMG.

Figure 7.7 Packages and Classes Organization of the Project SHAPE_WMG

Remarks: the game play model is used for the game play phase. So the business model, controller, time model, tools

and view are the five packages which are used to compose the game setup.

In order to explain the coding process, the IT department setup is given as an example. The table

7.1 presents the classes and their corresponding packages for the IT department setup.

Table 7.1 Classes and Packages for IT Department Setup

Class Corresponding Package
ITDepartment.java Business Model
SetupController.java Controller
SetupDeptView.java View

Parts of java codes of the above classes are given in the following Figure 7.8, Figure 7.9 and Figure

7.10.

IBM Restricted 74

Figure 7.8 Example Codes of ITDepartment.java

From the above figure, all the properties of the IT department and the constructor are shown. This

class extends Observable class and implements the abstract department. So it inherits the properties

and operations of the abstract department and can be observed by the view class. In order to save

objects, this class implements the serializable interface. When any changes take place in this class,

methods: setChange () and notifyObservers () will be invoked to ask the user interface to refresh the

display.

IBM Restricted 75

Figure 7.9 Example Codes of SetupController.java

This class implements ActionListener. This means that when a certain action happens in the user

interface, for instance clicking a button, the SetupController.java captures this action and carries out

the corresponding handling. There are five possible actions that could be done in the department

setup user interface: Back (go back to the game period setup), Strategy (setup the business strategy

for every game period), Profession (setup the professions that are going to be included in the game),

Disaster (setup the disaster scenario to be applied in every game period), and Finish (complete the

whole setup phase and save the setup values in a file).

IBM Restricted 76

Figure 7.10 Example Codes of SetupDeptView.java

This class is actually used to create the user interface of the department setup. It extends the

JFrame class to provide a user friendly GUI. It also extends the Observer in order to receive

notification from the observable classes. The operations given in the above screen capture are used

to start other setup user interfaces. The following Figure 7.11 is the screen capture of IT

department setup interface.

IBM Restricted 77

Figure 7.11 IT Department Setup Interface

7.3 Game Play Implementation

Referring to Figure 5.8, the components that take part in the game playing phase and are

implemented in this project are shown again in Figure 7.12. As in the previous section, this section

will first describe the class diagrams for all related components in the game playing phase. The class

diagrams are also modeled using the Model-View-Controller pattern and Observable-Observer

relation in UML. Then it is followed by the coding of the game playing phase in Java.

IBM Restricted 78

Figure 7.12 Components in the Game Playing Phase

Business Measurer

Business Prime
Model

Business
Reference Model

Error

Correction
(Game Playing)

UI

Disaster
Scenario

Game Player

Business Model

7.3.1 Class Diagram

The class diagram depicted in Figure 7.13 describes the classes that are included in the seven

components shown in Figure 7.12 (excluding User Interface component). Those components are:

Disaster Scenario, Business Model, Business Measurer, Business Prime Model, Business Reference Model, Error,

and Correction.

IBM Restricted 79

Observable

Observable()
addObserver()
deleteObserver()
notifyObservers()
setChanged()
clearChanged()
hasChanged()
countObservers()

DeptDecision

getEduDays()
getRetCost()

ProfDecision

getHiredFTR()
getFiredFTR()
getEduObs()
getNewFTS()
getTerFTS()
getNewFTO()
getTerFTO()
updateModel()

ProfResult

getProdFTR()
getObsFTR()
getFTS()
getFTO()
getAttrRate()
getIllRate()
getProductivity()
getNewObsolete()
getLeavers()

Objective

getObjective()

Profession

getDecision()
getFinance()
getResult()
setDecision()
setFinance()
setResult()

1

1

1

11

1

1

1

1

1

1

1

Game

getPeriod()
getPeriodIndex()
incrementIndex()
createStrategy()
createDepartment()
createProfession()
createDisaster()

ITDepartment

getDecision()
getFinance()
getProfessions()
setDecision()
setFinance()
addProfession()

1

1

1

1

1..n1 1..n1

Disaster

getDisaster()

BusinessStrate
gy

getStrategy()

Period

getPeriodId()
getDepartment()
getStrategy()
getDisaster()
setDepartment()
setStrategy()
setDisaster()

1..n

1

1..n

1

11 11

1

1

1

1 1

1

1

1

BusinessRules

calculateConfiguration()
calculateEffects()
calculateCost()
calculateNewValues()

1

1

1

1

11 1111 11

1

1

1

1

1

1

1

1

Finance

getFTRCost()
getRetCost()
getRecruitCost()
getEduCost()
getGHSCost()
getFTSCost()
getFTOCost()
getTotalCost()

1

1

1

1

1

1

1

1

1..n

1

1..n

1

Figure 7.13 Class Diagram for Game Playing Phase Implementation

The Game class represents an instantiation of one game session. A Game can consists of one to

many game periods. The Period class represents each of these game periods. Every Period has a

Disaster and Business Strategy that has been set in the game setup phase. Every Period includes an

ITDepartment in the game. An ITDepartment can have at least one Profession class. Every Profession has

an objective for every period. This Objective is set in the game setup phase.

During a game period, a game player can make decisions on the department level or the profession

level. These decisions are represented by DeptDecision and ProfDecision classes. The ProfDecision class

extends Observable class. BusinessRules class represents the rules that are applied to the department

and profession decisions. The result of applying these business rules are represented by two classes:

Finance and ProfResult. The Finance class represents the detail and total cost spent in a certain period

for every Profession and for the whole IT Department. The ProfResult class represents the result of the

player’s decisions on the current situation of every Profession in terms of employee configuration.

As in the game setup phase, the game playing phase also uses the Model/View/Controller (MVC)

pattern to build the user interface.

IBM Restricted 80

The implementation of the game play components are decomposed into six Java packages:

BusinessModel, GamePlayModel, Controller, View, TimeModel, and Tools packages. The diagram of the

packages is shown in Figure 7.14.

Game Play Model

View

Controller

Observable

Time

applied to

extendupdate

applied to

update

input

Business Model

observeobserve

notify notify

validate

input

Tools

Figure 7.14 Package Diagram for Game Playing Phase Implementation

The View component determines how to display the model components. The class diagram for the

View component is shown in Figure 7.15.

Observer

update()

<<Interface>>

PlayStrategyView

PlayProfView

saveDecision()

PlayDeptView

submit()
reset()
seeDetails()
saveDecision()
showResult()

CostInfoView

JFrame
EXIT_ON_CLOSE : int = 3
rootPaneCheckingEnabled : boolean
rootPane : JRootPane
accessibleContext : AccessibleConte...

JFrame()
JFrame()
JFrame()
JFrame()
frameInit()
createRootPane()
processKeyEvent()
processWindowEvent()
setDefaultCloseOperation()
getDefaultCloseOperation()
update()
setJMenuBar()
getJMenuBar()
isRootPaneCheckingEnabled()
setRootPaneCheckingEnabled()
addImpl()
remove()
setLayout()
getRootPane()
setRootPane()
getContentPane()
setContentPane()
getLayeredPane()
setLayeredPane()
getGlassPane()
setGlassPane()
paramString()
getAccessibleContext()

PlayDeptResultView

nextPeriod()

PlayProfRes
ultView

showInfo()

Figure 7.15 Class Diagram of View Component

IBM Restricted 81

All classes extends the JFrame class in order to provide a user friendly GUI. The first user interface

shown to the game player is the PlayStrategyView class that displays the current game period number

and the business strategy of that period. After this the game player is shown the current department

situation through PlayDeptView class. PlayDeptView creates PlayProfView class when a certain

profession is chosen from the list shown in PlayDeptView. PlayProfView class implements the

Observer Interface to receive notifications. When the game player commits the final decisions, the

results are then displayed. The first result shown is for the department level through

PlayDeptResultView class. PlayDeptResultView creates PlayProfResultView class when a certain

profession is chosen from the list shown in PlayDeptResultView to display the result in the

profession level. The CostInfoView displays the information of cost spent per employee to help the

game player in understanding the overall result of the profession.

The Controller determines the actions that follow the game player’s input. It modifies the Game Play

Model and Business Model component. The class diagram for the Controller component is depicted in

Figure 7.16.

ActionListener

actionPerformed()

<<Interface>>

PlayController

Figure 7.16 Class Diagram of Controller Component

The PlayController class determines the actions that follow the game player’s input during the whole

game playing phase. The actions that are done in different view components of the game playing

phase are all handled by this one controller.

7.3.2 Coding of the Game Playing

According to the package diagram in Figure 7.14, six packages are defined within the project for the

game playing phase. Based on the class diagram described in the previous section, related classes are

created in those packages. The screen capture in Figure 7.17 shows the packages and classes

organization in the project SHAPE_WMG.

IBM Restricted 82

Figure 7.17 Packages and Classes Organization of the Project SHAPE_WMG

In order to explain the coding process, Table 7.2 presents the classes and their corresponding

package for making decisions on the profession level.

Table 7.2 Classes and Packages for Making Decision on Profession Level

Class Corresponding Package
ProfDecision.java GamePlayModel
PlayController.java Controller
PlayProfView.java View

Parts of java codes of the above classes are given in the following Figure 7.18, Figure 7.19 and

Figure 7.20.

Figure 7.18 Example Codes of ProfDecision.java

IBM Restricted 83

Figure 7.18 shows the constructor of ProfDecision class. This class extends Observable class so it can

be observed by the view class. In order to save objects, this class implements the Serializable

interface. When any changes take place in this class, methods: setChange () and notifyObservers () will be

invoked to ask the user interface to refresh the display.

Figure 7.19 Example Codes of PlayController.java

Figure 7.19 show that the PlayController class implements ActionListener. Once certain actions happen

in the user interface, for instance click button and press enter etc, the PlayController.java captures

this action and carries out the corresponding handling. The PlayController class handles all actions

that happen during the game playing phase.

IBM Restricted 84

Figure 7.20 Example Codes of PlayProfView.java

The PlayProfView class is used to create the user interface for making decisions on a certain

profession. It extends the JFrame class to provide a user friendly GUI. It also extends the Observer

class in order to receive notification from the observable classes. The observable class of the

PlayProfView is the ProfDecision class as seen in the following Figure 7.21.

Figure 7.21 Constructor of PlayProfView class

Figure 7.21 show that PlayProfView class adds itself as the observer of the observable class

ProfDecision which is invoked by the method:

profession.getDecision().addObserver(this)

IBM Restricted 85

The following Figure 7.22 is the screen capture for making decisions on the profession level

Figure 7.22 Profession Level Decision Making Interface

The left side in Figure 7.22 shows the current situation of the profession “Java Programmer”. It

shows the configuration of employees that are currently working as Java Programmers and also

some properties related to the profession. The user interface also shows the current productivity of

the profession. In the right side of the interface, it shows several decisions that can be made for this

profession. The decisions made should be aiming to the demanded productivity that is shown on

top of the possible decisions area.

7.4 Testing

The final acceptance test was done with IBM consultants in a workshop. The main goal is to verify

that the prototype meets the requirements of SHAPE_WMG. Because making a complete and

automated testing procedure for the prototype is currently not the high priority, a basic black-box

test is carried out in a system test level. Other nonfunctional tests, for instance security testing,

IBM Restricted 86

performance testing, compatibility testing and usability testing are not yet considered in the current

stage. [Lev02], [V2M2], [Bei90], [Bei95], [Rop94], [Sie96], [Hut03]

The testing procedure consists of two stages, game setup tests and game play tests. The test cases

are basically made based on the use case scenarios, which are described in Chapter 3. By

categorizing and prioritizing the test cases, three typical test cases are presented: import game setup

file, make department decisions and make profession decisions. Other important test cases can be

found in Appendix C. The terms used in the testing procedure are explained in the follows:

[Dus03]

• Test Procedure ID: the following naming conventions are used: S01 means the first test

case of the game setup and P01 means the second test case of the game play test.

• Test Name: a description of the test procedure.

• Test Procedure Author: the developer of the test procedure.

• Test Objective: the objective of the test procedure.

• Related use Case(s): provide the related use case scenario(s).

• Precondition/Assumption: define the conditions, with which must be satisfied before

executing the particular test procedure.

• Post condition: define the conditions, with which must be satisfied after executing the

particular test procedure.

• Verification Method: include automated, certification, manual test or analysis.

• User Act on (Inputs)i

l

t

: the inputs, which are needed to create a test.

• Expected Results: define the results expected when executing the particular test

procedure.

• Trace Log Information: document the behavior of back-end components. For example,

write log entries detailing the functions they are executing and the major objects with which

they are interacting. In our case, the log information is displayed in the DOS command

window.

• Actua Result: this field may have a default values, such as “Same as Expected Result”,

that is changed to describe that actual result if the test-procedure fails.

• Pass/Fail: shows the test is passed or failed.

• Tes Environment: in which environment this test has been done. For example: the

operation system and the computer equipments etc

IBM Restricted 87

7.4.1 Game Setup Test Cases

Table 7.3 shows the testing procedure of importing game setup file test case. This test case takes

place in the game setup phase. In order to reuse the previous setup file, the user can search for a

setup file and import it in the computer local disk. The setup file is identified with an “.obj”

extension file. After this file is successfully imported, all setup values of this file will be used in the

game.

Table 7.3 Testing Procedure of Importing Game Setup File

Test Procedure ID S01

Test Name Import game setup file
Test Procedure Author Maya & Kevin
Test Objective To test if the setup values can be imported from the existing game setup file with

an “.obj” file extenstion.
Related Use Case(s) Scenarios for Import Game Setup Use Case (Chapter 3.3.1)
Preconditions/Assumptions Two files exist in the local working directory. One game setup file with file name:

“Test.obj” and the other non game setup file with file name: “Test. Txt”.
Game setup starts and the first game setup window was prompted.

Verification Method Manual test
User Action(Inputs) A.

1. Click the “Load Setup File” button.
2. Select the directory, which has files “Test.obj” and “Test.txt”.
3. Select file “Test.obj” and Click “Open”.
4. Click “Start Game”.
B.
1. Click the “Load Setup File” button.
2. Select the directory, which has files “Test.obj” and “Test.txt”.
3. Select file “Test.txt” and click “Open”.
4. Click “Start Game”.
C.
1. Click the “Load Setup File” button.
2. Select the directory, which has files “Test.obj” and “Test.txt”.
3. Select file “Test.obj” and Click “Open”.
4. Click “Cancel”.

Expected Results A.
Game setup file “Test.obj” is loaded successfully.
B.
Non game setup file “Test.txt” is not loaded successfully.
C.
Importing game setup file “Test.obj” is cancelled.

Trace Log Information None.
Actual Results Same as the expected result.
Post condition A.

The setup values outlook of Test.obj is displayed in the IT department outlook
window. Game play starts with all these setup values.
B. Error message” The file is not the proper object file” is shown.
C.
The setup values outlook of Test.obj is displayed in the IT department outlook
window. System goes back the game setup window and game play didn’t start.

Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram

IBM Restricted 88

Based on the use cases scenarios, which are described in the chapter 3.3.1, the above testing

procedure takes three possible series of user actions into account. Accordingly, three possible

expected/actual results and pre/post conditions are described. The above test case is passed, since

the actual result and the expected result is same. There is no trace log information, because the

program is not coded to display extra information in the back-end DOS command window.

7.4.2 Game Play Test Cases

For the game play tests, we present two most important test cases. The detail is shown in the table

7.4 and 7.5 respectively. The testing procedure in table 7.4 describes a manual test for making

department decisions. In order to test if decisions can be made and the result of the decisions can

be obtained right away, the following testing procedure are made based on the user cases described

in section 3.3.2.

Table 7.4 Testing Procedure for Making Department Decision

Test Procedure ID P01
Test Name Make department decisions
Test Procedure Author Maya & Kevin
Test Objective To test if we can make decisions for the department properties and if the result of

the decision can be displayed right away. The current changeable department
properties are the education days and the retention budget.

Related Use Case(s) Scenarios for Make Department Decisions Use Case (Chapter 3.3.2)
Preconditions/Assumptions 1. “Test.obj” was loaded to game play.

2. IT department game play window was prompted.
3. IT department details and profession list were displayed in this window.

Verification Method Manual test
User Action(Inputs) A.

1. Select education days input text field and input 20 for it.
2. Select retention budget input text field and input 2000 for it.
3. Click “Submit”.

B.
1. Select education days input text field and input 20 for it.
2. Select retention budget input text field and input 2000 for it.
3. Click “Submit”.
4. Click “Reset”.

Expected Results A.
Education days are changed to 20 and retention cost are changed to 2000.
B.
Before resetting, education days are changed to 20 and retention cost are changed
to 2000. After resetting, education days are recovered to 10 and retention cost is
recovered to 1000.

Trace Log Information None.
Actual Results Same as the expected result.
Post condition A.

The value of education days is displayed with 20 and the value of retention cost is
displayed with 2000. Department decision can be made and submitted again.
B.
The value of education days is displayed with 10 and the value of retention cost is
displayed with 1000. Department decision can be made and submitted again.

Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram

IBM Restricted 89

Based on the use cases scenarios, which are described in section 3.3.2, user actions can be to submit

decisions or to reset the modified properties. Once the user submits the decisions or resets the

modified properties, those properties will be changed right away and displayed in the department.

The testing procedure in Table 7.5 describes a manual test for making profession decisions. The

decisions we made should be saved as a temporary decisions. The decisions will not be submitted

until we finish the current game period. Therefore, those temporary decisions can be modified or

cancelled until we finish the current game period. The decisions we made only take place just after

the current game period finishes. The result of decisions is displayed in the next game period by

recalculating the profession details. Therefore the next game period has the outlook about the

previous profession details, the decisions we made and the current profession details.

Table 7.5 Testing Procedure for Making Profession Decision

Test Procedure ID P02
Test Name Make profession decision
Test Procedure Author Maya & Kevin
Test Objective To test if we can make decisions for each selected profession and if these

decisions will take place just after this game period. We are going to test basic
decisions like, fire/fire, subcontract/terminate and Outsource/Terminate.

Related Use Case(s) Scenarios for Make Profession Decisions Use Case (Chapter 3.3.2)
Preconditions/Assumptions 1. “Test.obj” was loaded to game play.

2. One profession was selected from the profession list and “details”
button was clicked. Here is profession “Development Manager”.

3. Current profession details of profession “Development Manager”
were displayed in the profession “Development Manager” window.
Basically there are 0 FTR, 0 obsolete FTR, 1 FTS and 0 FTO.

Verification Method Manual test
User Action(Inputs) A.

1. Hire 3 new FTR employees. (fill 3 in the text field “hire new” FTR)
2. Terminate 1 people for FTS. (fill 1 in the text filed “terminate

current contract for”)
3. Make new contract with 1 people for FTO. (fill 1 in the text field

“make new contract with”)
4. Click “Ok”.
5. Click”details” in the IT department Game play window.
6. Click “Ok”.
7. Click “Finish” in the IT department Game play window.
8. Select “Development Manager”.
9. Click “View Detail”.

B.
1. Hire 3 new FTR employees. (fill 3 in the text field “hire new” FTR)
2. Terminate 1 people for FTS. (fill 1 in the text filed “terminate

current contract for”)
3. Make new contract with 1 people for FTO. (fill 1 in the text field

“make new contract with”)
4. Click “Cancel”.
5. Click” details” in the IT department Game play window.
6. Click “Ok”.
7. Click “Finish” in the IT department Game play window.

IBM Restricted 90

8. Select “Development Manager”.
9. Click “View Detail”.

Expected Results A.
Hire 3 new FTR, Terminate 1 FTS and outsource 1 FTO are set as a
temporary decision in the current game period.
After entering the next game period, The decisions are carried out, and the
recalculated profession details are displayed.
In this case, we will have 2 FTR, 1 obsolete FTR, 0 FTS and 1 FTO; because
one of the 3 fired FTR becomes an obsolete people based on the business
rules.
B.
No temporary decisions are made and the system keeps the default value in
the current game period.
Since no decisions are made, The profession details recalculation will be done
based on the default values. In our case the new profession detail will be 0
FTR, 0 obsolete FTR, 1 FTS and 0 FTO.

Trace Log Information None.
Actual Results Same as the expected result.
Post condition A.

Game is in the next period. Profession details are displayed with 2 FTR, 1
obsolete FTR, 0 FTS and 1 FTO. It’s ready to make decision for the current
game period.
B.
Game is in the next period. Profession details are display with 0 FTR, 0
obsolete FTR, 1 FTS and 0 FTO. It’s ready to make decision for the current
game period.

Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram

IBM Restricted 91

C h a p t e r 8

CONCLUSIONS AND FUTURE WORKS

8.1 Introduction

This chapter is going to present the conclusions of this project and suggest the possible future

works. Section 8.2 discusses the result of this project and makes conclusions. Section 8.3 gives the

recommendations of future works.

8.2 Conclusions

The main objective of this project is defined as following,

To create SHAPE Workforce Management Game (SHAPE WMG) that can simulate the effects of the player’s

decision based on the current condition of the department by applying Synthesis-Based Software Architecture Design

(Synbad) method.

By going through the architecture design and implementation phase, this objective has been

accomplished.

8.2.1 Conclusions on Architecture Design

As described in section 1.3, there are several questions addressed on the assessment of the

architecture design:

- How well does the architecture solve all the problems arise in the game playing requirements?

- How stable is the architecture for changes that might happen in the future?

- How is the reusability aspect of the architecture?

From the testing that is done with the user, it has shown that the application that are implemented

based on the designed architecture is able to fulfill the game playing requirements that are described

by the user in the beginning of the project. The game is able to provide the business environment

that resembles the real business situation where the game player works in, by allowing IBM

consultants to set the game world in the game setup phase. The game is also able to perform the

tasks of simulating the results of the game player’s decisions by applying the business rules to the

current situation of the department where the game player works in.

The evaluation that was done on the architecture design proved that the architecture is indeed

stable and reusable. The changes that are required in a certain component to perform certain

evolution scenario do not result in big changes that should also be made in other components. The

existing components can also be used to add certain new functions or operations to give new

features in the game.

IBM Restricted 92

8.2.2 Conclusions on Design Methodology

As also described in section 1.3, the assessment of the design methodology is aiming at the ease of

use of the Synbad method.

While the user requirements analysis is used to understand and represent directly the problem of

concern, the technical problem analysis is used to identify the real problems that will arise in the

implementation of the application. The mapping from user requirements into technical problems

that was done in Synbad method has helped in identifying the core of the problems that were then

solved in the form of software architecture.

In searching for the solution domains for every sub-problem that was identified in the technical

problem analysis, several difficulties were found. Due to the limited time and experience that were

available to do both the design and implementation of the application, not all solution domain

concepts could be refined. However, the architecture design has been proved to be able to cover

the problems that were identified before. The clear definition of the solution domain concepts has

helped to give novel design solutions. These concepts can be further refined in the future to add

more functionality to the application.

8.3 Recommendations for Future Works

From the above conclusion, both architecture design and design methodology can be improved

and enhanced in the future. Section 8.3.1 gives recommendations for future works on the

architecture design and section 8.3.2 gives recommendations for Synbad as the design methodology

that is used in this project.

8.3.1 Future Works on Architecture Design

The Business Modelling and Simulation Modelling part of the overall SHAPE WMG architecture have

been developed with the internal structure analysis. The Game Player Modelling part which is also

shown in Figure 5.8, however, is not yet developed in the current stage. Further works should be

done to design the internal architectures of this part in the lower abstraction level.

In the future, a more complete and realistic business model should be designed. Therefore, the

solution domain analysis of the business model needs to be done in more detail. On one side, new

elements can be added into the business model, and on the other side, the current primary elements

can be enhanced and updated.

As mentioned before, the use of design pattern has helped in solving specific design problems and

has made object-oriented designs more reusable. However, since the principles of design patterns

are new for us to learn, there was not enough time to understand the concept, to find the pattern

that fits properly into the design of this project and to experience the design itself in the

IBM Restricted 93

implementation. The only design pattern that is applied in the architecture design is the Observer

pattern. For future development, some more architecture implementation patterns should also be

explored to see whether or not it can be applied in SHAPE WMG application in order to give

much higher level of reusability.

8.3.2 Recommendations for Synbad

Based on the experience in applying Synbad in this project, several recommendations are made:

• In the first process of doing the Synbad approach, there was issue discussed on whether to do

the technical problem and solution domain analysis with breadth-first approach or depth-first

approach. In breadth-first approach, all the problems are worked out in the higher level before

continuing with the lower level of defining problems and solution domains. The depth-first

approach suggests first to solve the problems with higher priority from the higher to the lower

level and then go to the next lower priority problems and solves it in the same manner. Since

this project was done by two people, every step of Synbad is always divided into two tasks that

can be assigned each one person. This includes the technical problem and solution domain

analysis step where parallel work was made to identify problems each in a specific area and find

the solution domains for each area. With this breadth-first approach, we found some difficulties

in having to redesign the solutions whenever the separate solution domains for each area are

combined and didn’t fit with each other. Therefore, we suggest that first-depth search is used to

save more time in solving the lower priority problems, since the higher ones are already solved

and can be used as the basis to solve the other problems.

• Another difficulty that we found in applying Synbad method is in trying to refine all the

concepts that were described when solving the problems in the solution domain analysis phase.

Since the project demands a deliverable implementation that is ready to use within a limited

time, we finally left out several concepts to be able to fulfil this demand but still able to support

high reusability of the design. Therefore, we think that Synbad method should provide a

flexible way to determine which part of the architecture should be developed first and which

part could be developed later on in order to save time in developing the application to fulfil first

the main functionality of the system.

• The searching of solution domain has taken quite an amount of time. Finding the right solution

domain concepts to be applied in a certain situation is very critical and needs a lot of experience

and knowledge. When the project is in the lack of time, some experts help in this area should

be used to make the process more effective and at the same time add more experience and

knowledge to the designers themselves.

IBM Restricted 94

A p p e n d i x A

SCENARIOS FOR USE CASES IN THE GAME SETUP PHASE

In this appendix, the scenarios are explained for every use cases that are exist in the game setup

phase. The description of scenarios is the result of the requirement analysis phase of the Synbad

method as described in Chapter 3.

Scenarios for Validate User Use Case

Scenario 1: User is validated successfully

1. User chooses start game set-up action.

2. System asks for user name and password.

3. User enters user name and password.

4. System looks up the user name and password in its password log.

5. The user name and password match with the entries in the log, the systems then validates

the user as the game manager.

Scenario 2: Validation failed since the user is not an authorized game manager.

1. User chooses start game set-up action.

2. System asks for user name and password.

3. User enters user name and password.

4. System looks up the user name and password in its password log.

5. The user name and password don’t match with any entries in the log, the systems then

informs the user that validation fails.

6. System rolls the user back to the previous state before choosing to start game set-up action.

Scenarios for Look Up Help Use Case

Scenario 1: System displays the selected help content

1. Game manager chooses the “read help” action.

2. Game manager chooses to read help content.

3. Game manager chooses one of the help topics.

4. System displays the help content of the chosen topic.

Scenario 2: System shows the topics related to the keyword entered by the game manager

1. Game manager chooses the “read help” action.

2. Game manager chooses to search for topic.

3. Game manager enters a keyword.

IBM Restricted 95

4. System looks for topics that are related to the keyword.

5. System displays the topics related to the keyword entered.

Scenario 3: System cannot find any topic related to the keyword entered by the game manager

1. Game manager chooses the “read help” action.

2. Game manager chooses to search for topic.

3. Game manager enters a keyword.

4. System looks for topics related to the keyword

5. There are no topics related to the keyword, system then informs the user that there are no

topic found for the entered keyword.

Scenario 4: System displays the selected tutorial

1. Game manager chooses the “read help” action.

2. Game manager chooses to read tutorial.

3. Game manager chooses one of the tutorials.

4. System displays the chosen tutorial.

Scenarios for Import Game Setup Use Case

Scenario 1: System sets up all the values based on the imported game setup file

6 Game manager chooses the “import game setup” action.

7 Game manager selects a file.

8 System checks to see if the imported file is a valid game setup file.

9 The imported file is a valid file, system then loads the game setup file.

10 The setup values are set to the values that are in the game setup file.

Scenario 2: System fails to set the values since the imported file is not a valid game setup file

11 Game manager chooses the “import game setup” action.

12 Game manager selects a file.

13 System checks to see if the imported file is a valid game setup file.

14 The imported file is not a valid file.

15 System informs the game manager that the file cannot be loaded.

Scenario 3: There are no values set since the game manager cancels the import file action

4. Game manager chooses the “import game setup” action.

5. Game manager cancels the action.

6. System rolls the game manager back to the previous state before the game manager

chooses to import game setup.

IBM Restricted 96

Scenarios for Manual Game Setup Use Case

Scenario 1: System saves the game setup based on the game manager input in a game setup file

1. Game manager chooses the “setup game manually” action.

2. System displays forms to be filled in by the game manager.

3. Game manager fills in all the required information.

4. Game manager finishes the game setup and sets or chooses a file name to save the game

setup.

5. System saves the game setup values in the game setup file.

Scenario 2: There are no values set since the game manager cancels the game setup

1. Game manager chooses the “setup game manually” action.

2. System displays forms to be filled in by the game manager.

3. Game manager fills in all the required information.

4. Game manager cancels the game setup.

5. System rolls the game manager back to the previous state before the game manager

chooses to setup the game manually.

Scenarios for Setup Game Period Use Case

Scenario 1: System sets the length and the number of game period based on game manager’s input

1. Game manager chooses the length and the number of game period.

2. System sets the chosen values as the length and the number of game period.

Scenario 2: System sets the length and number of game period based on default value

1. Game manager doesn’t change the default value of the length and the number of game

period that are displayed by the system.

2. System sets the default values as the length and the number of game period.

Scenarios for Setup Department Details Use Case

Scenario 1: System sets the department details values based on game manager’s input

1. Game manager gives inputs for all the required values of the department.

2. System sets the department details values as entered by the game manager.

Scenario 2: System sets the department details values based on default value

1. Game manager doesn’t change the default value of the department values that are displayed

by the system.

2. System sets the default values as the department details values of the game.

IBM Restricted 97

Scenarios for Setup Business Strategies Use Case

Scenario 1: System sets the business strategies entered by the game manager

Normal course:

1. Game manager chooses the “setup the game business strategies” action.

2. Game manager types the business strategies for all game periods.

3. System sets the business strategies description as entered by the game manager.

Alternative course:

1. Game manager chooses the “setup the game business strategies” action.

2. Game manager types the business strategies only for some game periods.

3. System informs the game manager that business strategies should be entered for all game

periods.

4. Game manager fills in the business strategies description for all game periods.

5. System sets the business strategies description as entered by the game manager.

Scenario 2: System fails to set the business strategies since the game manager cancels the business strategies setup

action

1. Game manager chooses the “setup the game business strategies” action.

2. Game manager types the business strategies for some or none game periods.

3. Game manager cancels the business strategies setup.

4. System rolls the game manager back to the previous state before the game manager

chooses to setup the business strategies.

Scenarios for Setup Disasters Use Case

Scenario 1: System sets disasters parameter and value based on game manager’s input

1. Game manager chooses the “setup disasters” action.

2. Game manager chooses a disaster parameter and sets its value for a game period.

3. System sets the disasters parameter and value for that game period as entered by the game

manager.

Scenario 2: System sets the disasters parameters and values based on default value

1. Game manager chooses the “setup disasters” action.

2. Game manager doesn’t change the default setting for disaster for a certain game period that

is displayed by the system.

3. System sets the default value as the disaster setting for that particular game period.

IBM Restricted 98

Scenarios for Add New Profession Use Case

Scenario 1: System adds a new profession set by game manager to the list of available professions

Normal course:

1. Game manager chooses the “setup profession” action.

2. System displays the available professions that can be included in the game.

3. Game manager adds the name of a new profession to the available professions list.

4. System adds the profession name to the available professions list.

Alternate course:

1. Game manager chooses the “setup profession” action.

2. System displays the available professions that can be included in the game.

3. Game manager adds the name of a new profession to the available professions list.

4. The name entered already exists in the list, system then informs the game manager that the

profession entered already exists in the list.

5. Game manager enters another profession name to be added.

6. The name entered doesn’t yet exist in the list, system then adds the profession name to the

available professions list.

Scenario 2: System fails to add new profession since the profession cancels the add new profession action

1. Game manager chooses the “setup profession” action.

2. System displays the available professions that can be included in the game.

3. Game manager adds the name of a new profession to the available professions list.

4. The name entered already exists in the list, system then informs the game manager that the

profession entered already exists in the list.

5. Game manager cancels adding new profession to the list.

6. System rolls the game manager back to the previous state before the game manager

chooses to add new profession.

Scenario for Remove Profession Use Case

1. Game manager chooses the “setup profession” action.

2. System displays the available professions that can be included in the game.

3. Game manager selects a profession from the list.

4. Game manager chooses the “remove profession” action.

5. System removes the selected profession from the available professions list.

IBM Restricted 99

Scenarios for Include Profession Use Case

Scenario 1: System adds a new profession to the list of professions that are included in the game

1. Game manager chooses the “setup profession” action.

2. System displays the available professions that can be included in the game.

3. Game manager selects a profession from the available professions list.

4. Game manager chooses the “include profession” action.

5. System adds the selected profession to the list of professions that are included in the game.

Scenario 2: System fails to add new profession since the selected profession is already included in the game

1. Game manager chooses the “setup profession” action.

2. System displays the available professions that can be included in the game.

3. Game manager selects a profession from the available professions list.

4. Game manager chooses the “include profession” action.

5. The profession selected is already in the list of professions that are included in the game,

system then informs the game manager that the selected profession is already included.

6. Game manager adds the name of a new profession to the available professions list.

7. System rolls the game manager back to the previous state before the game manager

chooses to add new profession.

Scenario for Exclude Profession Use Case

1. Game manager chooses the “setup profession” action.

2. System displays the list of professions that are included in the game.

3. Game manager selects a profession from the list.

4. Game manager chooses the “exclude profession” action.

5. System removes the selected profession from the list of professions that are included in the

game.

Scenarios for Setup Profession Details Use Case

Scenario 1: System sets the profession details values based on game manager’s input

1. Game manager chooses the “setup profession” action.

2. System displays the list of professions that are included in the game.

3. Game manager selects a profession from the list.

4. Game manager chooses the “add profession details” action.

5. Game manager gives inputs for all the required values of the profession.

6. System sets the profession details values as entered by the game manager.

IBM Restricted 100

Scenario 2: System sets the department details values based on default value

1. Game manager chooses the “setup profession” action.

2. System displays the list of professions that are included in the game.

3. Game manager selects a profession from the list.

4. Game manager chooses the “add profession details” action.

5. Game manager doesn’t change the default value of the profession values that are displayed

by the system.

6. System sets the default values as the profession details values of the game.

Scenarios for Setup Objectives Use Case

Scenario 1: System sets the objectives values based on game manager’s input

1. Game manager chooses the “add profession details” action.

2. Game manager chooses the “setup objectives” action.

4. Game manager inputs the objectives of the profession for all game periods.

5. System sets the objectives values as entered by the game manager.

Scenario 2: System sets the objectives values based on default value

1. Game manager chooses the “add profession details” action.

2. Game manager chooses the “setup objectives” action.

3. Game manager doesn’t change the default values of the objectives that are displayed by the

system.

4. System sets the default values as the objectives value.

IBM Restricted 101

A p p e n d i x B

KNOWLEDGE SOURCES FOR SOLUTION DOMAINS

Table B.1 Knowledge Sources for the Solution Domain Control System

ID Knowledge Source Form
KS1 A QoS-Control Architecture for Object Middleware [Ber00] Paper
KS2 Meeting with supervisors of UT Person
KS3 IBM SHAPE Workforce Management Game External Design [Zan02] Document
KS4 Meeting with supervisors of IBM Person

Table B.2 Knowledge Sources for the Solution Domain Quality Management

ID Knowledge Source Form
KS1 Meeting with supervisors of UT Meeting
KS2 SHAPE Workforce Management Game [Jol02] Thesis report
KS3 IBM SHAPE Workforce Management Game External Design [Zan02] Document
KS4 Design Patterns: Elements of Reusable Object-Oriented Software [Gam95] Textbook

Table B.3 Knowledge Sources for the Solution Domain Object-Oriented Design

ID Knowledge Source Form
KS1 SHAPE Workforce Management Game [Jol02] Thesis report
KS2 WebSphere Version 4 Application Development Handbook [Wah01] Technical

handbook
KS3 Java: How to Program [Dei99] Textbook
KS4 An Introduction to Programming and Object-Oriented Design Using Java [Nin02] Textbook
KS5 Design Patterns: Elements of Reusable Object-Oriented Software [Gam95] Textbook
KS6 Applied Java Patterns [Ste02] Textbook

Table B.4 Knowledge Sources for the Solution Domain User Interface

ID Knowledge Source Form
KS1 IBM SHAPE WMG prototype Prototype
KS2 IBM SHAPE Workforce Management Game External Design [Zan02] Document
KS3 SHAPE Workforce Management Game [Jol02] Thesis report
KS4 Java: How to Program [Dei99] Textbook
KS5 An Introduction to Programming and Object-Oriented Design Using Java [Nin02] Textbook
KS6 Design Patterns: Elements of Reusable Object-Oriented Software [Gam95] Textbook
KS7 Applied Java Patterns [Ste02] Textbook

Table B.5 Knowledge Sources for the Solution Domain Calculation

ID Knowledge Source Form
KS1 IBM SHAPE Workforce Management Game External Design [Zan02] Document
KS2 SHAPE Workforce Management Game [Jol02] Thesis report
KS3 Meeting with supervisors of IBM Meeting

IBM Restricted 102

This knowledge sources for solution domains Business modeling, Game playing modeling, and Assessment

and Simulation technique are the same and are given in the following Table B.6

Table B.6 Knowledge Sources for the Solution Domain Business Modeling, Game Playing Modeling, and
Assessment and Simulation Technique

ID Knowledge Source Form

KS1 IBM SHAPE Workforce Management Game External Design [Zan02] Document

KS2 SHAPE Workforce Management Game [Jol02] Thesis report

KS3 Meeting with supervisors of IBM Person

KS4 Meeting with supervisors of UT Person

IBM Restricted 103

A p p e n d i x C

TEST CASES FOR THE TESTING PROCEDURE

This appendix describes the test cases used for the testing procedure explained in section 7.4 of

Chapter 7.

Table C.1 Testing Procedure for Game Period Setup

Test Procedure ID S02
Test Name Game period setup
Test Procedure Author Maya & Kevin
Test Objective To test if game period setup can be successfully done.
Related Use Case(s) Scenarios for Game Period Setup Use Case (Appendix A)
Preconditions/Assumptions “manual setup” has been clicked.

Game period setup window was prompted.
Verification Method Manual test
User Action(Inputs) A.

1. Choose 6 from the choice button1 for the length of a game period.
2. Choose 2 from the choice button2 for the number of game periods.
3. Click “Next”.
B.
1. Leave the default values for both choice buttons.
2. Click “Next”.
C.
1. Choose 6 from the choice button1 for the length of a game period.
2. Choose 2 from the choice button2 for the number of game periods.
3. Click “Back”.

Expected Results A.
The length of a game period is set to 6 months. The number of game periods is
set to 2.
B.
The default values are used. The length of a game period is 12 and the number
of game periods is 3.
C.
Game period setup is not done yet. System goes back to the first game setup
window.

Trace Log Information A.
The length of a game period is set to 6.
The number of game periods is set to 2.
B.
The length of a game period is set to 12.
The number of game periods is set to 3.
C.
None

Actual Results Same as the expected result.
Post condition A.

A warning message pops out: “Changing this setting will delete all setup values.
Continue?”
B.
A warning message pops out: “Changing this setting will delete all setup values.
Continue?”
C.
Game Setup window is prompt.

Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram

IBM Restricted 104

Table C.2 Testing Procedure for Business Strategy Setup

Test Procedure ID S03
Test Name Business strategy setup
Test Procedure Author Maya & Kevin
Test Objective To test if business strategy setup can be successfully done.
Related Use Case(s) Scenarios for Business Strategy Setup Use Case (Appendix A)
Preconditions/Assumptions The number of game periods is 3.

IT department setup window was prompted.
“Business Strategy Setup” was clicked.

Verification Method Manual test
User Action(Inputs) A.

1. Input 3 business strategies for 3 game periods respectively.
2. Click “Ok”.
B.
1. Input 2 business strategies for the first two game periods respectively.
2. Click “Ok”.
C.
1. Input 3 business strategies for 3 game periods respectively.
2. Click “Cancel”.

Expected Results A.
Business strategies are set.
B.
Business strategies setup cannot be completed because one of game period has
not game strategy yet.
C.
No business strategies are set.

Trace Log Information None
Actual Results Same as the expected result.
Post condition A.

Business strategies setup window is closed and system goes back to IT
department setup window.
B.
A warning message pops out, “Please fill in all the required fields”.
C.
Business strategies setup window is closed and system goes back to IT
department setup window.

Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram

Table C.3 Testing Procedure for Disaster Setup

Test Procedure ID S04
Test Name Disaster setup
Test Procedure Author Maya & Kevin
Test Objective To test if disaster setup can be successfully done.
Related Use Case(s) Scenarios for Disaster Setup Use Case (Appendix A)
Preconditions/Assumptions The number of game periods is 3.

IT department setup window was prompted.
“Disaster Setup” was clicked.

Verification Method Manual test
User Action(Inputs) A.

1. Select “Attrition Rate Change” and value is “2%” for the first game period.
2. Select “Illness Rate Change” and value is “3%” for the second game period.
3. Select “None” and value is “2%” for the third game period.
4. Click “Ok”.
B.
1. Leave all the default values.
2. Click “Cancel”.

IBM Restricted 105

Expected Results A.
In the first game period, attrition rate will be changed to 2%.
In the second period, the illness rate will be changed to 3%.
There is no any disaster for the third game period.
B.
No any changes to the default disaster scenarios. The current default disaster
scenarios are all “None” with “Null” values.

Trace Log Information None
Actual Results Same as the expected result.
Post condition A.

Disaster setup window is closed and system goes back to IT department setup
window.
B.
Same as A.

Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram

Table C.4 Testing Procedure for Adding New Profession

Test Procedure ID S05
Test Name Add new profession
Test Procedure Author Maya & Kevin
Test Objective To test if a custom profession can be added into the profession list.
Related Use Case(s) Scenarios Add New Profession Use Case (Appendix A)
Preconditions/Assumptions Profession setup window was prompted.

Default profession list was loaded.
Verification Method Manual test
User Action(Inputs) A.

1. Click “Add”.
2. Fill in a name for the new profession. In this case we fill in “Custom
profession”.
3. Click “Ok”.
B.
1. Click “Add”.
2. Fill in a name for the new profession. In this case we fill in “CEO”, which
already exists in the profession list.
3. Click “Ok”.
C.
1. Click “Add”.
2. Fill in a name for the new profession. In this case we fill in “CEO”, which
already exists in the profession list.
3. Click “Ok”.
4. Click “Ok”.
5. Click “Cancel”.

Expected Results A.
New profession “Custom profession” has been added into profession list.
B.
Since the new profession name already exists in the profession list. System gives
a warning message and ignores the “add” action.
C.
No new profession has been added, “Add” action is cancelled.

Trace Log Information None
Actual Results Same as the expected result.
Post condition A.

System goes back to the profession setup window.
Profession list increases one and “Custom profession” appears in the end of
profession list.
B.
A Warning message pops out “The profession name you filled exists already.

IBM Restricted 106

Please choose other profession name to fill in”.
C.
System goes back to the profession setup window.
Nothing has been changed.

Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram

Table C.5 Testing Procedure for Removing a Profession

Test Procedure ID S06
Test Name Remove an existing profession
Test Procedure Author Maya & Kevin
Test Objective To test if a custom profession can be removed from the profession list.
Related Use Case(s) Scenarios Remove Profession Use Case (Appendix A)
Preconditions/Assumptions Profession setup window was prompted.

Default profession list was loaded and at least one profession in the list.
Verification Method Manual test

User Action(Inputs) A.
1. Select a profession. It is “Operator” in this case.
2. Click “Remove”.

Expected Results A.
Profession “Operator” is removed from the profession list.

Trace Log Information None
Actual Results Same as the expected result.
Post condition A.

Profession list decreased one and “Operator” has been removed.
Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram

Table C.6 Testing Procedure for Profession Detail Setup

Test Procedure ID S07
Test Name Profession details setup
Test Procedure Author Maya & Kevin
Test Objective To test if profession details can be setup successfully.
Related Use Case(s) Scenarios Setup Profession Details Use Case (Appendix A)
Preconditions/Assumptions Profession Setup window was prompted.

At least two professions are included in the profession list.
Verification Method Manual test
User Action(Inputs) A.

1. Select “CEO” from the included profession list.
2. Click “Add Details”.
3. Set profession type “Fixed”.
4. Fill in 1 for the number of productive FTR.
5. Click “Ok”.
B.
1. Select “CEO” from the included profession list.
2. Click “Add Details”.
3. Set profession type “Changeable and Uncontractable”.
4. Fill in 1 for the number of subcontractor.
5. Click “Count Productivity”.
6. Click “Ok”.
C.
1. Select “IT Manager” from the included profession list.
2. Click “Add Details”.
3. Set profession type “Changeable and Contractable”.

IBM Restricted 107

4. Fill in 1 for the number of productive FTR, 4% for attrition rate, 1 for the
number of outsourcer.
5. Click “Count Productivity”.
6. Click “Ok”.
D.
1. Select “CEO” from the included profession list.
2. Click “Add Details”.
3. Set profession type “Fixed”.
4. Fill in 1 for the number of productive FTR.
5. Click “Cancel”.

Expected Results A.
Profession “CEO” has one productive FTR and the profession type is “fixed”.
B.
Profession “CEO” has one subcontractor and the profession type is
“Changeable and Uncontractable”. The counted productivity is 0.9.
C.
Profession “IT Manager” has one outsourcer, 4% attrition rate and the
profession type is “Changeable and Contractable”. The counted productivity is
1.0.
D.
No properties of profession “CEO” are changed yet, because the actions are
cancelled.

Trace Log Information None
Actual Results Same as the expected result.
Post condition A.

System goes back to the profession setup window.
B.
Same as A.
C.
Same as A.
D.
Same as A.

Pass/Fail Pass
Test Environment English Windows XP, IBM Notebook with P3 CPU, 256M Ram

IBM Restricted 108

A p p e n d i x D

CALCULATION

As described in subsection 3.2.2, there are three types of profession that are defined in SHAPE

WMG:

1. Fixed profession: a profession whose number of employees cannot be changed during the

entire game and who can only consist of Full Time Regular employees. This profession will

be referred to as type 1 profession.

2. Changeable-uncontractable profession: a profession whose number of employees can be

changed during the game and who can only consist of Full Time Regular employees. This

profession will be referred to as type 2 profession

3. Changeable-contractable profession: a profession whose number of employees can be changed

during the game and who can consist of Full Time Regular employees, Full Time

Subcontractors, and Full Time Outsourcers. This profession will be referred to as type 3

profession.

This section will explain the order of calculation that is done in SHAPE WMG. For every

calculation step, it is explained to which type of profession it is applied to. The order of calculation

in simulating the effects of the decision is as follows:

D.1 Number of Employees Based on Player’s Decisions

This step is not applied for profession of type 1.

Full Time Regular

The steps:

1. If the player decided to re-educate obsolete FTR, then the number of the current obsolete

is reduced and the number of productive FTR is increased by the number of re-educated

obsolete.

2. If the player decided to fire FTR, then the number of remaining obsolete FTR will first be

reduced if it is less or equal to the number of fired FTR. If there is still remained a number

of fired FTR, then the number of productive FTR will be reduced by that remaining

number.

3. If the player decided to hire FTR, then the number of productive FTR is increased with the

number of hired FTR.

IBM Restricted 109

The algorithm:

if the player decided to re-educate obsolete FTR

new obsolete FTR = previous obsolete FTR – reeducated obsolete

new productive FTR = previous productive FTR + reeducated obsolete

else

new obsolete FTR = previous obsolete FTR

new productive FTR = previous productive FTR

if the player decided to fire FTR

 if the number of fired FTR <= new obsolete FTR

new obsolete FTR = new obsolete FTR – fired FTR

 else

new productive FTR = new productive FTR – (fired FTR – new obsolete FTR)

new obsolete FTR = 0

new productive FTR = new productive FTR +hired FTR

Full Time Subcontractor

This step is only applied to profession of type 3.

The steps:

1. If the player decided to make new FTS contract, then the number of FTS will be increased

by the number of new FTS contract.

2. If the player decided to terminate FTS contract, then the number of FTS will be reduced by

the number of terminated FTS contract.

The algorithm:

new FTS = previous FTS +new FTS contract – terminated FTS contract

Full Time Outsourcer

This step is only applied to profession of type 3.

The steps:

1. If the player decided to make new FTO contract, then the number of FTO will be

increased by the number of new FTO contract.

2. If the player decided to terminate FTO contract, then the number of FTO will be reduced

by the number of terminated FTO contract.

The algorithm:

new FTO = previous FTO +new FTO contract – terminated FTO contract

IBM Restricted 110

D.2 Cost

This step is applied to all types of profession.

The steps:

1. Calculate the FTR costs

2. Calculate the retention costs based on the new retention cost that is altered by the player or

the initial retention cost if the player didn’t alter the cost

3. Calculate the education costs

4. If the profession type is not of type 1 and the player decided to hire FTR, calculate the

recruitment costs

5. If the profession type is not of type 1 and the player decided to fire FTR, calculate the

golden handshake costs

6. If the profession type is 3, calculate the FTS and FTO costs

The algorithm:

if profession type is 1

FTR costs = productive FTR * compensation FTR

retention costs = productive FTR * new retention cost

education costs = productive FTR * education cost

else

FTR costs = (new productive FTR + new obsolete FTR) * compensation FTR

retention costs = (new productive FTR + new obsolete FTR) * new retention cost

education costs = (new productive FTR + new obsolete FTR) * new education cost

if the player decided to hire FTR

 recruitment costs = hired FTR * recruitment cost

if the player decided to fire FTR

 golden handshake costs = fired FTR * (compensation FTR +

 (golden handshake rate * compensation FTR))

if profession type is 3

FTS costs = new FTS * compensation FTS

FTO costs = new FTO * compensation FTO

D.3 Attrition Rate

This step is not applied to profession of type 1.

The steps:

1. If there is disaster scenario set to change the attrition rate, then the number of current

attrition rate is increased or decreased by the attrition rate change.

IBM Restricted 111

2. If the player decided to alter the number of education days, then the following rules will be

applied:

- if the new number is higher, then the attrition rate will increase 1 % for each 10 %

of the deviation between the previous and the new number of education days

- if the new number is lower, then the attrition rate will decrease 1 % for each 10 %

of the deviation between the previous and the new number of education days

3. If the player decided to alter the retention cost, then the following rules will be applied:

- if the new cost is higher, then the attrition rate will decrease 1 %

- if the new cost is lower, then the attrition rate will increase 2 %

The algorithm:

Based on Disaster

if there is disaster applied on attrition rate

new attrition rate = previous attrition rate + attrition rate change

else

new attrition rate = previous attrition rate

Based on Education Days Granted

if number of education days is altered

 deviation = ((new education days – previous education days) / previous education days) *

 100 %

 new attrition rate = new attrition rate – (deviation / 10 %)

Based on Retention Cost Spent

if retention cost is altered

 if new retention cost > previous retention cost

 new attrition rate = new attrition rate – 1 %

 else

 new attrition rate = new attrition rate + 2 %

D.4 Other Leavers

This step is not applied to profession of type 1.

The steps:

1. Calculate the number of leavers by applying the attrition rate (obtained form the attrition

rate calculation in section 2)

2. If the player decided to fire FTR equal to or more than 50% of the total FTR, other FTR

that are 25 % of the initial number of FTR (before firing) will also leave.

3. Reduce the number of productive FTR by the number of other leavers.

IBM Restricted 112

The algorithm:

other leavers = new attrition rate * (new productive FTR + new obsolete FTR)

if player fired FTR more than 50 %

other leavers = other leavers + 25 % * (new productive FTR + new obsolete FTR)

new productive FTR = new productive FTR – other leavers

D.5 Illness Rate Based on Disaster Scenario

This step is not applied to profession of type 1.

The steps:

1. If there is disaster scenario set to change the illness rate, then the number of current illness

rate is increased or decreased by the illness rate change.

The algorithm:

if there is disaster applied on illness rate

new illness rate = previous illness rate + illness rate change

else

new illness rate = previous illness rate

D.6 Productivity

This step is not applied to profession of type 1.

The steps:

1. Calculate the current number of productive FTR by reducing it with the other leavers.

2. Calculate the productivity of FTR with three different formulas: for the newly hired FTR,

for the re-educated obsolete and for the remaining FTR:

3. Calculate the total FTR productivity

4. If the profession is of type 3, then calculate the productivity for FTS and FTO with three

different formulas: for new FTS, foe the remaining FTS, and for FTO

5. Calculate the total FTS productivity

6. Calculate the total productivity of the profession

The algorithm:

new productive FTR = new productive FTR – other leavers

hired FTR productivity = hired FTR * ((260.0 – new education days – vacation days –

 learning curve FTR - (2.6 * new illness rate))/260.0)

re-educated FTR productivity = re-educated obsolete * ((260.0 – new education days – vacation

 days – learning curve obsolete - (2.6 * new illness rate))/260.0)

IBM Restricted 113

remaining FTR productivity = (new productive FTR – hired FTR – re-educated obsolete) *

 ((260.0 – new education days – vacation days –

 (2.6 * new illness rate))/260.0)

total FTR productivity = hired FTR productivity+ re-educated obsolete productivity +

 remaining FTR productivity

total productivity = total FTR productivity

if profession type is 3

new FTS productivity = new FTS contract * ((260.0 – vacation days –

 learning curve FTS)/260.0)

remaining FTS productivity = (new FTS – new FTS contract) * ((260.0 –

 vacation days)/260.0

total FTS productivity = new FTS productivity + remaining FTS productivity

total FTO productivity = new FTO

total productivity = total productivity + total FTS productivity +

 total FTO productivity

D.7 New Obsolete

This step is not applied to profession of type 1.

The steps:

1. If the accomplished productivity is more than the needed productivity, it will result in new

obsolete FTR which is the difference between those productivities

2. If the difference is less than or equal to the number of current productive FTR, then the

number of obsolete is increased by that difference and the number of productive FTR is

decreased also by that difference. If the difference is more than the number of current

productive FTR, then the number of obsolete FTR is increased by the number of

productive FTR and the number of productive FTR is set to zero.

The algorithm:

if the accomplished productivity is more than the needed productivity

new obsolete = accomplished productivity – needed productivity

 if new obsolete <= new productive FTR

 new productive FTR = new productive FTR – new obsolete

 else

 new obsolete = new productive FTR;

 new productive FTR = 0

IBM Restricted 114

D.8 Illness Rate Based on Productivity

This step is not applied to profession of type 1.

The steps:

1. Calculate the deviation of the accomplished productivity from the needed productivity.

2. If the deviation is more than 10%, then first check the current game period:

- If the current period is 1, then the illness rate is increased by 3 %

- If the current period is 2 or larger, then check if the illness rate has never been

increased before or if it has but then decreased again. If so, then the illness rate is

increased by 3 %

3. If the deviation is less than or equal to 10%, then first check the current game period:

- If the current period is less than 3, then do nothing (because illness rate is only

decreased after it has been increased before and should be at least 2 periods apart)

- If the current period is 3 or larger, then check if the illness rate has already been

increased before at least two periods before and not decreased again afterwards. If

it has then the illness rate is not changed, but if it has not then the illness rate is

decreased by 3 %

The algorithm:

deviation = (accomplished productivity – needed productivity) / needed productivity

if the deviation > 10 %

if the current period is 1

new illness rate = new illness rate + 3 %

 else

 if the illness rate is not increased in previous periods or it was but then decreased

new illness rate = new illness rate + 3 %

else

if the current period is 3 or larger

if the illness rate is increased at least two periods before and not decreased then

new illness rate = new illness rate - 3 %

IBM Restricted 115

REFERENCES

[Aks02] Akşit, Mehmet and Bedir Tekinerdoğan. Ontwerpen van Software Architecturen, Universiteit
Twente, July 2002.

[Bei90] Beizer, B., Software Testing Techniques (second edition), Thomson Computer, Press, Boston,
ISBN 1850328803, 1990

[Bei95] Beizer, B., Black box testing: Techniques for Functional Testing of Software and Systems, John Wiley
& Sons inc., New York, ISBN 1-872582-17-6, 1995

[Ber00] Bergmans, L., A. van Halteren, L. Ferreira Pires, M. van Sinderen, and M.Aksit, A QoS-
Control Architecture for Object Middleware, CTIT, University of Twente, The Netherlands,
2000.

[Boo99] Booch, Grady, James Rumbaugh and Ivar Jacobson. The Unified Modeling Language User
Guide, Addison-Wesley, 1999.

[Dei99] Deitel, H.M. and P.J. Deitel. Java: How to Program, Prentice Hall, 3rd Edition, 1999.

[Dus03] Dustin, E (2003) Effective Software Testing, 50 specific ways to improve your testing,
Addison-Wesley, Pearson Education, Inc, ISBN 0-201-79429-2

[Gam95] Gamma, Erich, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Hut03] Hutcheson, M, L (2003) Software Testing Fundamentals, Wiley Publishing Inc, Canada,
ISBN 0-471-43020-X

[Jac99] Jacobson, Ivar, Grady Booch, and James Rumbaugh. The Unified Software Development
Process, Addison-Wesley, 1999.

[Jol02] Joling, H.M. SHAPE Workforce Management Game, Technische Informatica, Hogeschool
Drenthe, 2003.

[Kru01] Kruchten, Philippe. What is the Rational Unified Process?, The Rational Edge, 2001.
 http://www.therationaledge.com/content/jan_01/f_rup_pk.html

[Lev02] Levitt, Karl. Introduction to Software Engineering: class notes from Tuesday 5/14/02, 2002.
http://wwwcsif.cs.ucdavis.edu/~cs160/ECS160A-notes-10%20copy.pdf.

[Nin02] Niño, Jaime and Frederick A. Hosch. An Introduction to Programming and Object-Oriented
Design Using Java, John Wiley & Sons, Inc. , 2002.

[Rop94] Roper, M. (1994), Software Testing, McGraw-Hill, England, ISBN 0-07-707466-1Simmons,
T. (2000), A bug’s life, in: Professional Tester, Volume 1, and Issue No.4

[Sie96] Siegel, S (1996), Object Oriented Software Testing, A Hierarchical Approach, John Wiley & Sons,
Inc, Canada, ISBN 0-471-13749-9

IBM Restricted 116

http://www.therationaledge.com/content/jan_01/f_rup_pk.html
http://wwwcsif.cs.ucdavis.edu/%7Ecs160/ECS160A-notes-10 copy.pdf

[Ste02] Stelting, Stephen A. and Olav Maassen. Applied Java Patterns, Pearson Higher Education,
2002.

[Tek00] Tekinerdoğan, Bedir and Mehmet Akşit. Synthesis-Based Software Architecture Design, Ph.D.
Thesis, Department of Computer Science, University of Twente, 2000.

[V2M2] Verification and Validation Maturity Model, Test Techniques and Methods, Faculteit
Technologie Management, Technische Universiteit Eindhoven.

 http://tmitwww.tm.tue.nl/research/v2m2/workarea/wp2/Test%20Techniques%20and
%20Methods.pdf.

[Wah01] Wahli, Ueli, Alex Matthews, Paula Coll Lapido, and Jean-Pierre Norguet. WebSpehere
Version 4 Application Development Handbook, IBM, 1st Edition, September 2001.

[Zan02] Zandvliet, Keimpe. IBM Shape Workforce Management Game External Design, IBM, 2002.

IBM Restricted 117

http://tmitwww.tm.tue.nl/research/v2m2/workarea/wp2/Test Techniques and Methods.pdf
http://tmitwww.tm.tue.nl/research/v2m2/workarea/wp2/Test Techniques and Methods.pdf

	Background
	Problem Statement
	The Assignment
	The Development Approach
	Outline of the Thesis
	Introduction
	Decision Support Systems
	Group Decision Support Systems
	Executive Information Systems or Executive Support Systems
	Intelligent Support Systems

	Software Development Methods
	Artifact-driven Architecture Design
	Use-Case driven Architecture Design
	Domain- driven Architecture Design
	Pattern- driven Architecture Design

	Synthesis-Based Software Architecture Design
	The Process
	Requirements Analysis
	Technical Problem Analysis
	Solution Domain Analysis
	Alternative Design Space Analysis
	Architecture Specification

	Introduction
	Informal Requirements Specification
	Objective of the Game
	Game Set-Up Phase
	Game Playing Phase

	Use-Case and Scenario Analysis
	Use Case Model and Scenario for Game Set-Up Phase
	Use Case Model and Scenario for Game Playing Phase

	State Transition Diagram
	Introduction
	Technical Problem Analysis
	Requirements Generalization
	Guideline to Identify the Sub-Problems
	Sub-Problems Identification and Specification
	Sub-Problems Prioritization

	Solution Domain Analysis
	Solution Domains Identification and Prioritization
	Knowledge Sources Identification and Prioritization

	Introduction
	Control System
	Application of Control System to SHAPE WMG
	Controller
	Controlled System
	Environment
	High Level Controller

	SHAPE WMG Architecture
	Internal Structure of Business Modeling Component
	Internal Structure of Business Reference Model Component
	Internal Structure of Correction Component
	SHAPE WMG Architecture as Decision Support System

	Semantics Extraction of the Architecture
	Game Setup Phase
	Game Playing Phase

	Dynamic Behavior of the Architecture
	Game Setup Phase
	Game Playing Phase

	Introduction
	Software Architecture Evaluation Method
	Evaluation on SHAPE WMG Architecture
	Scenarios Development
	Evaluation on Evolution Scenarios
	Evaluation on Changes Required
	Overall Evaluation

	Introduction
	Game Setup Implementation
	Class Diagram
	Coding of the Game Setup

	Game Play Implementation
	Class Diagram
	Coding of the Game Playing

	Testing
	Game Setup Test Cases
	Game Play Test Cases

	Introduction
	Conclusions
	Conclusions on Architecture Design
	Conclusions on Design Methodology

	Recommendations for Future Works
	Future Works on Architecture Design
	Recommendations for Synbad

	D.1 Number of Employees Based on Player’s Decisions
	Full Time Regular
	Full Time Subcontractor
	Full Time Outsourcer

	D.2 Cost
	D.3 Attrition Rate
	Based on Disaster
	Based on Education Days Granted
	Based on Retention Cost Spent

	D.4 Other Leavers
	D.5 Illness Rate Based on Disaster Scenario
	D.6 Productivity
	D.7 New Obsolete
	D.8 Illness Rate Based on Productivity

