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Abstract 
Context-awareness is a computing paradigm in which applications can sense 
and explore users’ context in order to provide them with proper and useful 
services. These services are dynamic and able to satisfy the users’ current 
needs based on context changes. Context-awareness implies intelligence that 
enables an application to discover, reason, and predict a situation, and adapt 
to it in a dynamically changing environment.  

Context-aware applications can determine their behavior by sensing and 
exploring the user’s content without explicit user intervention. They can 
intelligently react upon changes in the user’s context performing actions 
relevant to the user, the application itself, and the interaction between user 
and application.  

The Event-Control-Action (ECA) pattern is an architectural pattern that can 
be applied beneficially in the development of context-aware applications, 
since it presents solutions for recurring problems associated with managing 
context information and proactively reacting upon context changes.  

The ECA pattern divides the tasks of gathering and processing context 
information (Event module), from tasks of triggering actions in response to 
context changes (Action module). These separate tasks are realized under 
the control of an application behavior description (Control module), in 
which reactive context-aware application behaviors are described in terms 
of ECA rules, which have the form if<condition> then <action>. The 
condition part of an ECA rule specifies the situation under which the actions 
are enabled, and it is composed by logical combinations of events. Events 
model some happening of interest in our application or its environment. The 
action part of the rule is composed by one or more actions that are triggered 
whenever the condition part is satisfied. 

This thesis proposes support for the design and implementation of a 
controlling service for context-aware applications (the controlling service is 
offered by the Control module of the ECA pattern) by using Jess, a tool for 
developing rule-based systems. Rule-based systems emulate human 
expertise in well-defined problem domains by using a knowledge base 
expressed in terms of rules. Jess provides the controlling service with a rule 
engine component, which executes ECA rules and allows context-aware 
applications to react when something of interest occurs in the context. 

A distinctive characteristic of our rule engine component is that it can 
process ECA rules expressed in a Domain-specific Language, coined ECA-
DL, specially developed for context-aware applications. In this way we 
allow ECA rules written in ECA-DL to be executed in the robust and 
powerful environment of Jess. 
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1 Introduction 

This chapter presents the motivation, the objectives, and the structure of this 
thesis. It identifies the relevance of context-aware applications and draws special 
attention to an architectural pattern, the Event-Control-Action (ECA) pattern. This 
pattern provides a high level structure for context-aware applications that 
proactively react upon context changes. 

This chapter is further structured as follows: Section 1.1 briefly presents the 
motivation of this work, Section 1.2 states the objectives of this thesis, Section 1.3 
presents the approach adopted in the development of this thesis and Section 1.4 
outlines the structure of this thesis by presenting an overview of the chapters. 

1.1 Motivation 

We are witnessing nowadays an unprecedented use of Internet, communication 
and computing technologies everywhere: in commerce, business, government, 
health, defense and educational applications. Advances in software technology, 
ubiquitous devices and the increasing volume of digital knowledge, offer the 
opportunity for more sophisticated and user-friendly digital services [7]. 

Computation is now packaged in a variety of devices. Smaller and lighter laptops, 
as powerful as conventional personal computers, free us from the confines of the 
single desk. Specialized devices such as handheld personal organizers are portable 
enough to be with us all the time. Wireless technology allows devices to be fully 
interconnected with the electronic world. Cameras and VCRs are being 
supplanted by digital equivalents. Mobile phones are really networked computers. 

On a different scale, computation is also moving beyond personal devices. 
Interconnected computing devices, large and small, along with various sensing 
technologies, from simple motion sensor to electronic tags or to video cameras, 
are being used to make physical rooms and buildings “intelligent”. Interaction 
with computation can soon be an “environmental” and communal experience 
rather than just a virtual and private one. Through these developments, 
computation is invading the fabric of our personal and social activities and 
environments [8]. 
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We are being carried in this direction by several related strands of research, 
beginning from ubiquitous computing (now often called pervasive computing), in 
combination with mobile and distributed computing, augmented reality, wearable 
computers and human-computer interaction. For better understanding, we briefly 
characterize these fields of research [2]:  

 Ubiquitous computing integrates computation into the environment, rather 
than having computers as distinct objects. Another term for ubiquitous computing 
is pervasive computing. One of the goals of ubiquitous computing is to enable 
devices to sense changes in their environment and to automatically adapt and act 
based on these changes, also considering user needs and preferences.  

 Distributed computing studies the coordinated use of physically distributed 
computers. The main goal of a distributed computing system is to connect users 
and resources in a transparent, open, and scalable way. 

 Mobile Computing is a generic term to denote the application of small, 
portable, and wireless computing and communication devices. 

 Augmented reality (AR) is a field of computer research which deals with 
the combination of real world and computer generated data. 

 Wearable computing is an active topic of research, with areas of study 
including user interface design, augmented reality, pattern recognition, use of 
wearables for specific applications or disabilities, electronic textiles and fashion 
design. Wearable computers are small portable computers designed to be worn on 
the body during use. 

 Human-computer interaction (HCI) is the study of interaction between 
people (users) and computers. 

These technologies have in common that they move the site and style of 
interaction beyond the desktop (in both senses: virtual desktop, i.e., the graphical 
user interface with its desktop metaphor, and physical desktop where computing 
devices have been confined) and into the larger real world where we live and act. 
This presents many challenges since the desktop is a well-understood, well-
controlled environment, and the real world, instead, is complex and dynamic. The 
main challenge is to make computation useful in the myriad of situations that can 
be encountered in the real world, the ever-changing context of use.  

1.1.1 Context-aware applications 

In this thesis we are particularly interested to context-aware applications, which is 
a term commonly understood by those working in ubiquitous/pervasive 
computing. In this area of research, context is felt as key in the efforts to disperse 
and enmesh computation into our lives. One goal of context-aware applications is 
to acquire and utilize information about the context of a device to provide services 
that are appropriate to the particular people, place, time and events [8].  

Context refers to the physical and social situation in which computational devices 
are embedded. In another way, context can be defined as:  

“ The interrelated circumstances in which something exist or occurs.” 
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Therefore, context always holds a subject, or entity, which can be a user, a group 
of users, an object, or a service. In this thesis, we have embraced the following 
informal definition of context, which has been used as a reference in the literature 
of context-aware computing domain [9]: 

“Context is any information that can be used to characterize the 
situation of an entity. An entity is a person, place, or object that 
is considered relevant to the interaction between a user and an 
application, including the user and applications themselves.” 

Context-awareness is a computing paradigm in which applications can sense and 
explore users’ context in order to provide them with proper and useful services. 
These services are dynamic and able to satisfy the users’ current needs based on 
context changes. 

Context-awareness implies intelligence that enables an application to discover, 
reason, and predict a situation, and adapt to it in a dynamically changing 
environment. Applications operating in distributed environments would also need 
to become mobile, in particular when servicing people on the move. In order to 
produces real awareness in ubiquitous/pervasive computing, programs with 
embedded intelligent must become mobile and retrieve context-related 
information in different locations. Thus, mobility aids in the intelligent acquisition 
of context [7].  

Context-aware applications are applications that can autonomously determine 
their behavior by exploiting the user’s context, i.e., these applications do not 
require explicit user intervention. 

1.1.2 Context-aware services  

Services offered by context-aware applications are context-aware services. 

In systems which are highly distributed and may have huge amount of users, it is 
advisable to use a shared infrastructure to support context-aware applications. 
Actually, it is not feasible for each individual application to capture and process 
context information just for its own use (it increases costs and complexity of the 
system) [10]. Therefore, to support context-aware mobile applications we can use 
a context-aware infrastructure based on Service-Oriented Architecture (SOA), 
which is an architectural style that can be applied in the design of distributed 
applications.  

Service-oriented architecture is characterized by the concepts of service user and 
service provider. The service concept concentrates on the behavior that can be 
experienced by the environment (users) of a system. A service specification 
consists of the interactions between the system providing the service and the users 
of this service, and the relationships between these interactions. This separates the 
service (the supported behavior) from the entity providing the service (the system) 
[11].   

A context-aware infrastructure can be structured in a services layer and a 
networking layer, allowing networking issues to be shielded from service 
provisioning, and facilitating the usage of services by applications. In this way, 
specific applications of a particular domain, for example, in the health domain, 
may not need to interact directly with the networking layer but only with the 
components of the services layer. Each of these components offers its capabilities 
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as a service to other components, and a component can make use of the 
capabilities of other components by invoking their services. 

In the development of context-aware applications we have to face some 
challenges such as context discovery, sensing, extraction, manipulation and 
interpretation. Actually, we need to create a correspondence between objects in 
the real world and objects in the applications, but circumstances sensed by the 
environment in real world can not be directly used by the applications. Therefore, 
it is necessary to model these circumstances, which form the context, in context 
information, characterized by well-specific values, which we call conditions.  

Figure 1 shows the context of a person (application user) in real world and 
context-aware applications that can only refer to this context through context 
information [10]. 

 

Context information 
  Condition1Value=… 
  Condition2Value=… 
  Condition3Value=… 

Context-aware application 

Context 
modeling 

Context 

Real world 

Circumstance 2 

Circumstance 1 

Circumstance 3 

… 

 
Figure 1 - Context in real world versus context information in context-aware 

applications 

We can define many different kinds of context circumstances. For example, the 
geographical location in which the user can be found; or environmental 
circumstances of the physical environment of the user, such as temperature, 
humidity, light, etc.; or user’s vital signs like the heart beat or the blood pressure.  

1.1.3 ECA pattern 

If some specific circumstances change in the user’s context, the applications 
should be able to consequently adjust their behavior. For this purpose we can use 
the Event-Control-Action (ECA) architectural pattern.  

The ECA pattern is based on condition rules, which we call ECA rules. These 
rules have the form if <condition> then <action>. The condition part is 
represented by logical combinations of events, and it specifies the situation under 
which the application has to perform proper actions, which can be a web service 
call, an SMS message delivery, or a complex composition of service invocations. 

The ECA pattern consists of three components: the Context Processor, the 
Controller, and the Action Performer. 

 The Context Processor observes and notifies events that occur in the 
context; 

 The Controller component is provided with applications behavior 
descriptions (condition rules), and it observes events, monitors conditions rules 
and triggers actions when a condition is satisfied; and 
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 The Action Performer implements the actions and customizes services 
delivery as needed by the user and his context. 

1.2 Objectives 

The main goal of this thesis is to provide support for the design and 
implementation of a controlling service in the scope of the Freeband 
AWARENESS project [12]. The controlling service is offered by the ECA 
Controller component. 

The Freeband AWARENESS project is concerned with the research and the 
design of a service and network infrastructure for context-aware mobile 
applications. The services and network infrastructures are validated through 
prototyping with ambient intelligent medical applications [11]. 

Figure 2 depicts a layered view on the AWARENESS architecture. The 
AWARENESS infrastructure consists of Generic context-aware services and 
Context-aware session & mobility support services. These context-aware services 
are built on top of the Core middleware and rely on Network system resources. 
The AWARENESS infrastructure supports M-health services, which form the 
basis for Context-aware m-health applications, such as, e.g., epilepsy detection. 
M-health applications are specific for a particular domain (the health domain), 
but, in a similar way, applications in other domains such as office and 
entertainment could be supported by the AWARENESS infrastructure.  

Network and system resources

Core middleware (SOAP, JINI, SIP, XML RPC, etc.)

Context-aware 
m-health 

applications

Context-aware 
office 

applications

Context-aware 
entertainment 
applications

Other

Context-aware session & mobility support services

m-health 
services

Generic context-aware 
services

AWARENESS 
infrastructure

 

Figure 2 - Layered view on the AWARENESS architecture 

In the scope of the AWARENESS project, our work aims at supporting the design 
of a controlling service that allows clients of this service to activate Event-
Control-Action (ECA) rules and query for specific instances of context 
information. ECA rules define the situations under which actions should be 
triggered. Events define some happening of interest, conditions describe a 
combination of events, and actions specify the responses required when the 
conditions are met. Potential clients of the controlling service are applications that 
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would like to activate ECA rules within the AWARENESS infrastructure. 
Applications use this service to get event notifications back from the 
infrastructure.  

1.3 Approach 

Our efforts towards the design and the implementation of the AWARENESS 
controlling service include: 

 The analysis of the Event-Control-Action (ECA) pattern, which can be 
applied beneficially in the development of context-aware services platforms; 

 The study and presentation of the specification language (ECA-DL 
language), which is used to define ECA rules. These rules are used as input by 
the Controller component to configure the AWARENESS infrastructure 
accordingly. ECA rules allow the specification of context information events and 
respective actions that should be triggered in response to these events; 

 The extensive study of rule-based systems and the definition of criteria in 
order to choose an available tool for developing rule-based systems. This tool 
should provide the controlling service with a rule engine component, which 
executes ECA rules and allows the AWARENESS infrastructure to react when 
something of interest occurs in the context; 

 The extensive study of the chosen tool; 

 The mapping of the ECA-DL language to the specific language adopted by 
the chosen rule engine in order to allow the engine to execute ECA rules 
expressed in the ECA-DL language.    

1.4 Structure 

The structure of this thesis reflects the issues that have been dealt with throughout 
the research process. This thesis is further structured as follows: 

 Chapter 2 reports on the Event-Control-Action (ECA) pattern and its 
importance for context-aware applications. This chapter identifies the essential 
requirements to be satisfied by the ECA pattern;  

 Chapter 3 presents the ECA-DL language, which is detailed in terms of its 
clauses, syntax and semantics; 

 Chapter 4 presents an overview of expert systems based on rule engines, 
and selects some criteria for comparing different existing tools for developing 
rule-based systems;  

 Chapter 5 presents some well-known rule engines, discusses them on the 
light of the criteria previously defined, and justifies the choice of one of these rule 
engines, namely Jess, for our work; 

 Chapter 6 places special attention to Jess, the chosen rule engine. The 
chapter describes how Jess works for ECA rules and presents some usage  
examples; 
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  Chapter 7 deals with the mapping of the ECA-DL language, considered in 
Chapter 3, onto Jess. Particularly, this chapter presents examples of how ECA-DL 
rules can be mapped onto Jess rules, and proposes guidelines for the design of a 
generic mapping from ECA-DL onto the Jess language; 

 Finally, Chapter 8 presents our conclusions and final remarks and identifies 
topics for future work. 
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2 Event-Control-Action (ECA) Pattern 

This chapter presents the Event-Control-Action (ECA) architectural pattern. This 
pattern provides a high level structure that helps in the design of context-aware 
applications. The ECA pattern reflects the reactive nature of context-aware 
applications, whose behaviors can be expressed as ECA rules. 

The chapter is structured as follows: section 2.1 discusses the relevance of 
architectural patterns and, particularly, of software architectural patterns. Section 
2.2 presents the Event-Control-Action architectural pattern, by discussing its 
structure and dynamics. Sections 2.3 to 2.5 analyze each module of the ECA 
pattern. Particularly, section 2.3 analyzes the Event module, section 2.4 the 
Control module, and section 2.5 the Action module. Finally, section 2.6 presents 
conclusions about the benefits of using the ECA pattern. 

2.1 Architectural Patterns 

Architectural patterns have been proposed in many domains in order to capture 
recurring design problems that arise in specific design situations. These patterns 
document existing, well-proven design experience, allowing reuse of knowledge 
gained by experienced practitioners [24]. 

A software architectural pattern describes a particular recurring design problem 
and presents a generic scheme for its solutions. The solution scheme contains 
components, their responsibilities and their relationship. Patterns for software 
architecture also exhibit other desirable properties [24]: 

 They provide a common vocabulary and understanding for design 
principles; 

 They are a means for documenting software architectures; 

 They support the construction of software with defined properties; 

 They support building complex and heterogeneous software architectures; 

 They help managing software complexity. 
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The Event-Control-Action (ECA) pattern is an architectural pattern that can be 
applied beneficially in the development of context-aware applications, since it 
presents solutions for recurring problems associated with managing context 
information and proactively reacting upon context changes [25].  

2.2 The ECA  Architectural Pattern 

Context-aware applications can determine their behavior by sensing and exploring 
the user’s content without explicit user intervention. They can intelligently react 
upon changes in the user’s context performing actions relevant to the user, the 
application itself, and the interaction between user and application. These reactive 
behaviors of context-aware applications can be represented by using ECA rules 
that follow the Event-Control-Action (ECA) architectural pattern. 

The ECA pattern divides the tasks of gathering and processing context 
information (Event module), from tasks of triggering actions in response to 
context changes (Action module). These separate tasks are realized under the 
control of an application behavior description (Control module), in which reactive 
context-aware application behaviors are described in terms of ECA rules, also 
called condition rules, which have the form if<condition> then <action>. The 
condition part of an ECA rule specifies the situation under which the actions are 
enabled, and it is composed by logical combinations of events. Events model 
some happening of interest in our application or its environment. The action part 
of the rule is composed by one or more actions that are triggered whenever the 
condition part is satisfied [25].    

2.2.1 Structure 

The ECA architectural pattern has been devised in order to decouple context 
management issues, such as sensing and processing context, from reaction 
concerns regarding reacting upon context changes, under the control of an 
application model. An application model defines the behavior of the application, 
which is described, in our case, by ECA rules (condition rules). Figure 3 shows 
the structure of the ECA pattern, its components and the relationships between 
them.   

 

 

 

 

 

 

 

 

 

Figure 3 – Event-Control-Action pattern in context-aware applications   

 
 
 
 
 
 
 
 
 
 
 
 
 

Action 

 
 
 
 
 
 
 
 
 
 
 
 
 

Event 

 
 
 
 
 
 
 
 
 
 
 
 
 

Control 

Context 
Processor Controller 

Action 
Performer 

observe trigger 

Behavior 
Description 

Condition 
Rule 



 

10 

Context concerns are placed on the left side of Figure 3, which depicts the Context 
Processor component. This component depends on the definition and modeling of 
context information. The Controller component, positioned in the central part of 
the figure, is provided with application behavior descriptions, represented by the 
Behavior Description component. On the right side of the figure, the action 
concerns are addressed. The Action Performer component triggers actions, which 
can be a service invocation on (external or internal) service providers or a network 
[25]. Particularly: 

 Events are modeled and observed by one or more Context Processor 
components; 

 The Controller component, empowered with condition (ECA) rules 
describing application behaviors, observes the events;  

 In case the condition of the ECA rule turns true, the Action Performer 
component triggers the actions specified in the rule. 

2.2.2 Dynamics 

We consider here a context-aware scenario in order to analyze the dynamic 
(behavioral) aspects of the ECA pattern. 

Suppose that Patricia (supervisor) would like to be notified when Laura (student) 
is working. Since we cannot directly sense that Laura is working, we assume that 
she is working when she is in the laboratory without friends and her computer is 
on. According to the division in Event-Control-Action of the ECA pattern, we can 
consider the situation “Laura enters in the laboratory” as the event that triggers the 
evaluation of the following ECA rule: 

If <Laura enters in Lab AND Laura is not with friends AND Laura’s computer is 
on> then <Send notification (Patricia), “Laura is working”> 

The additional conditions “Laura is not with friends” and “Laura’s computer is 
on” are needed to be sure that Laura is working and not, for example, speaking 
with friends. These conditions represent the situation under which the action of 
the rule is enabled in occurrence of the specified event “Laura enters in Lab”. In 
case both the conditions returns true, the action “Send notification (Patricia)” 
specified in the then part of the rule is executed. Figure 4 depicts the flow of 
information between components in the ECA pattern for the scenario considered 
here. 
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Figure 4 - Dynamics of the ECA pattern 

The Controller observes the occurrence of event LauraEntersInLab. This event is 
captured by the component Location Controller, which is an instance of Context 
Processor. By exploiting sensors in the Lab, the Location Controller is able to 
sense when Laura enters in the lab. When this occurs, event LauraEntersInLab is 
generated.   

Upon the occurrence of event LauraEntersInLab, the Controller evaluates the 
conditions LauraNotWithFriends and ComputerOn. This evaluation requires 
another cycle of context information gathering from other dedicated instances of 
Context Processor. 

Finally, if both the conditions LauraNotWithFriends and ComputerOn return true, 
the Controller triggers the action SendNotification specified in the then part of the 
ECA rule and this action is executed by the Action Performer.    

2.3 Event Module 

The Event module of the ECA pattern is responsible for processing context 
information. Processing context information is challenging. Deducing rich 
information (e.g., Laura enters in lab) from basic sensor samples (e.g., a sensor 
that detects whether a person enters in the laboratory, and a recognition card 
provided with a microchip that Laura carries with her) may require complex 
computation. There may be several information processing phases needed before 
yielding meaningful context information [25]. Context information processing 
activities include [27]: 

 Sensing: gathering context information from sensor devices. For example, 
gathering location information (latitude and longitude) from a GPS device; 

 Aggregating (or fusion): observing, collecting and composing context 
information from various context information processing units. For example, 
collecting location information from various GPS devices; 
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 Inferring: interpretation of context information in order to derive another 
type of context information. Inference may be performed based on, for example, 
logic rules, knowledge bases, and model-based techniques. Inference occurs, for 
instance, when deriving proximity information from information on multiple 
locations; 

 Predicting: the projection of probable context information of given 
situations, therefore yielding contextual information with a certain degree of 
uncertainty. We may be able to predict in time the user’s location by observing 
previous movements, trajectory, current location, speed and direction of next 
movements.  

Consider the Context Processor component of the Event module depicted on the 
left side of Figure 3. We can recursively apply context information processing 
operations in a hierarchy of Context Processors. In this chain of context 
information processing, the outcome of a context processing unit becomes input 
for a higher level unit in the hierarchy until a top-level unit is reached. For this 
aim, we define two types of Context Processor components, namely Context 
Sources and Context Managers.  

Context Source components encapsulate single domain sensors, such as a sensor 
that detects when a person enters in a room. Context manager components cover 
multiple domain context sources, such as the integration of the detection that a 
person enters in a room and the recognition of this person. As shown in Figure 5, 
we can represent hierarchical chains of Context Sources and Managers as a 
directed acyclic graph, in which the initial vertexes (nodes) of the graph are 
always Context Source components and end vertexes may be either Context 
Sources or Context Managers. The directed edges of the graph represent the 
context information flow between these components [25].  

   
Figure 5 – Context Sources and Managers hierarchy in the Event module of the 

ECA pattern  

Within a single context information processing unit (Context Source or Manager), 
we can verify recursive applications of the ECA pattern. Consider the same ECA 
rule of section 2.2.2 which is manipulated in Figure 6 by Controller C: 

If <Laura enters in Lab AND Laura is not with friends AND Laura’s computer is 
on> then <Send notification (Patricia), “Laura is working”> 

In this scenario, we assume that the laboratory is provided with a sensor for 
detecting when a person enters the laboratory, and that each person employed in 
the building (e.g., professors, PhD students, MSc students, etc.) is equipped with a 
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recognition card provided with a microchip that contains personal information. 
Moreover, we assume that there is a sensor in each computer able to detect 
whether the computer is running.  

 
Figure 6 – Example of recursive application of the ECA pattern  

The combination of events (Laura enters in Lab AND Laura is not with friends 
AND Laura’s computer is on) is a compound event observed on the following 
components: 

 A Context Manager component that detects whether Laura enters in Lab 
(E1 in Figure 6); 

 A Context Manager component that detects whether Laura is not with 
friends (E2 in Figure 6); 

 A Context Source component that detects whether Laura’s computer is on 
(E3 in Figure 6); 

Particularly, Context Manager E1 integrates the context information coming from 
two different Context Sources (e.g., a sensor for detecting that a person entered in 
the lab and Laura’s recognition card for inferring that this person is Laura). The 
following ECA rule is described in Controller C1, characterizing the recursive 
nature of the ECA pattern: 

If <Person enters in Lab AND this person is Laura> then <generate (Laura enters 
in Lab)> 

Context Manager E2 integrates the context information that a person entered in 
the lab, coming from a Context Source, and the information that this person holds 
a recognition card. This means that this person is not a friend, since we are 
assuming, to simplify the reasoning, that each person who does not have a 
recognition card can be considered as a friend, namely as someone that is not in 
the lab for working. The following ECA rule can be described in Controller C2: 

If <Person enters in Lab AND this person has a recognition card> then <generate 
(A person that is not a friend enters in the Lab)> 
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Finally, within Context Source E3, the following ECA rule is described in 
Controller C3: 

 If <Laura’s computer is running> then <generate (Laura’s computer is on)> 

The hierarchy of Context Sources and Managers mentioned above is depicted in 
Figure 7. 

 
Figure 7 - Example of Context Sources and Managers hierarchy 

2.4 Control Module 

The Control module is responsible for observing context changes sensed by 
Context Source and Manager components (Event module), and, as consequence of 
these changes, to trigger actions that should be performed by the Action 
Performer component (Action module). This is possible by providing the 
Controller component that observes events and triggers actions with an 
application behavior description in which the reactive behaviors of context-aware 
applications are described in terms of condition (ECA) rules. 

How to support the realization of the Control module for context-aware 
applications is the topic of this thesis. Figure 8 shows a possible architecture of 
the Control module, which consists of: 

 A knowledge base (the application behavior description depicted in Figure 
3) that describes what the context-aware application to be developed should do in 
terms of ECA rules, with the form if <condition> then <action>. 

 A rule engine (the Controller component depicted in Figure 3) that should 
be able to process the knowledge base and execute the ECA rules. Particularly 
upon the occurrence of context changes sensed by an event source, the rule engine 
should have the capability to check the knowledge base for rules with an if portion 
that became valid due to these changes. For these rules, the rule engine should be 
able to execute the then portion with the help of an action performer.  
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Figure 8 - Architecture of the Control module of the ECA pattern 

The following chapters of this thesis discuss how a rule engine works, how it can 
process and execute ECA rules, and which specific rule engine to use for realizing 
the Control module.  

2.5 Action Module 

The Action module is responsible for performing the actions triggered by the 
Controller component. Actions represent an application reaction to context 
information changes, and these reactions may be the invocation of any internal or 
external service, such as the generation of a signal, the delivery of a notification or 
a web services request. 

The Action module should enable coordination of actions and decoupling of 
action implementations from action purposes. An action purpose define an 
abstract action intention, while its implementation represents the realization of 
this intention using specific implementation technologies [25]. For this aim, we 
can divide the Action Performer, depicted in the right side of Figure 3, in three 
components, each of them with a specific task: 

 An Action Resolver component that performs coordination of dependent 
actions. This component applies techniques to resolve compound actions, which 
are decomposed into indivisible units of action purposes (indivisible from the 
application point of view); 

 An Action Provider component that defines action purposes, which describe 
an intention to perform an action with no indication on how and by whom these 
computations are implemented; 

 An Action Implementor component that defines action implementations. 
This component defines various way of implementing a given action purpose. For 
example, the action “send notification” may have various implementations, each 
of them supported by a different service provider. 

Figure 9 shows a class diagram of the Action module of the ECA pattern [25]. 
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Figure 9 –Structure of the Action module of the ECA pattern   

Both the Action Resolver and Action Provider components inherit the 
characteristics of the Action Performer component, and therefore they are both 
capable of performing actions.  

The Action Resolver component performs compound actions, decomposing them 
into indivisible action purposes, which are further performed separately by the 
Action Provider component.  

Action Providers may be communication service providers or (application) 
service providers. Communication service providers perform communication 
services, such as a network request, while service providers perform general 
application-oriented services, implemented either internally or externally to the 
application, such as a signal generation or a notification delivery, respectively.  

An Action Provider may aggregate various Action Implementor components, 
which provide concrete implementations for a given action purpose. In Figure 9, 
two different concrete implementations are represented (Implementor A and 
Implementor B) [25]. 

2.6 Concluding Remarks 

By applying the classic design principle of separation of concerns, the ECA 
architectural pattern effectively enables the distribution of responsibilities in 
context-aware applications. Context processor components encapsulate context 
related concerns, and actions are decoupled from control and context concerns, 
permitting them to be developed and operated either within or outside the 
application.  

Applying such design principles greatly improves the extensibility and flexibility 
of a context-aware application, since context processors and action components 
can be developed and deployed on demand. Moreover, the definition of 
application behavior by means of ECA rules allows the dynamic deployment of 
context-aware applications.  
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The decomposition of Context Processor in a hierarchical structure of Context 
Source and Manager components enables a more effective, flexible and decoupled 
distribution of context processing activities (sensing, aggregating, inferring and 
predicting). This structure improves collaboration among context information 
owners and it is an appealing invitation for new parties to join this collaborative 
network, since collaboration among more partners enables availability of 
potentially richer context information.  

Moreover, this decomposition enables filtering of unnecessary information across 
the hierarchy of context information processing units. At the lowest level of 
context information gathering, a great overhead of information flow can be 
detected but only the relevant information is kept and forward to the next level of 
the hierarchy. 

The definition of a structure of Action Resolvers, Providers and Implementors 
enables the coordination of compound actions and the separation of abstract action 
purpose from its implementations. This structure avoids permanent binding 
between an action purpose and its implementations, allowing the selection of 
different implementations at runtime. In addition, abstract action purposes and 
concrete action implementations may be changed and extended independently, 
improving dynamic configuration and extensibility of the application [25]. 
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3 ECA-DL  

In Chapter 2 we have shown that reactive behaviors of context-aware applications 
can be expressed by using ECA rules. In this chapter we present a language that 
can be used to write ECA rules, coined ECA-DL. This language has been 
developed in the scope of the AWARENESS project.   

The chapter is structured as follows: section 3.1 describes the basic concepts of 
ECA-DL; section 3.2 deals with the semantics and the syntax of the language, 
and, finally, section 3.3 presents examples of ECA-DL rules. 

3.1 ECA-DL: a Rule Specification Language 

ECA-DL is a Domain-specific Language specially developed for context-aware 
applications. For this reason, it is easier to use by context-aware application 
developers than general purpose languages.  

Rules in ECA-DL are composed by an Event part that models an occurrence of 
interest in the context, a Condition part that specifies a condition that must hold 
prior to the execution of the action, and an Action part to be executed when 
conditions are fulfilled. Often the Action part of a rule consists of the invocation 
of a notification service, but it could also be any operation needed by the 
application. Observing this structure, we conclude that ECA-DL rules follow the 
ECA pattern, and can be used as means for writing ECA rules.   

3.1.1 Basics concepts 

ECA-DL has been developed with the following requirements in mind: 

 Expressive power in order to permit the specification of complex event 
relations. Actually, ECA-DL allows the use of relational operator predicates (e.g., 
<, >, =), and the use of logical connectives (e.g., AND, OR, NOT) on events to 
build compound conditions; 
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 Convenient use in order to facilitate its utilization by context-aware 
application developers. Actually, ECA-DL provides high-level constructs that 
facilitate event compositions; 

 Extensibility in order to allow extension of predicates to accommodate 
events being defined on demand, as well as event properties. 

In the development of ECA-DL, a variant of the Situation-based triggering 
approach presented in [35] [36] has been adopted. In this approach, context 
changes are described as changes in situation states. Situations represent specific 
instances of context information, typically high level context information. 
Examples of possible situations of a person are isWorking, isOccupied or 
isReachable. 

Situations may be defined upon other situations or facts. Facts define current 
“state of affairs” in the user’s environment. Examples of facts are: 

 Patricia is the supervisor of Laura; 

 Laura is in the lab; 

 Laura is with friends; 

 Laura has computer on. 

The concept of fact is too fine-grained to define context information at the level 
required by users and applications. There is a need for context abstractions 
capable of modeling context information that is closer to the matters perceived by 
users and their applications. To address this issue, situation context abstraction is 
used. The situation context abstraction allows application developers and users to 
leverage on the fact abstraction in order to derive high-level context information. 
For example, considering a context-aware scenario in which we want to monitor 
the working activities in a building of the University of Twente, a situation may 
be derived from facts as follows: 

 the situation isWorking may be derived from the facts “a person is in the 
lab”,  NOT “this person is with friends”, and “this person has computer on”; 

 the situations isOccupied and isReachable may be derived from the fact 
“there are available means of communication in the building”. 

Moreover, situations may be built upon other situations. For example: 

 the situation isAvailable may be defined as not isOccupied and 
isReachable. 

Facts and situations are defined as part of information models, which we have 
defined using UML as modeling language. Our models contain the definition of 
entities, context, and mutual relationships between each entity and its context. As 
is shown in Figure 10, any entity may be related to several different context types, 
as well as a specific context type may be referred to one or more entities. 
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Figure 10 – General structure of an information model  

3.1.2 ECA rules and ECA-DL rules 

The structure of an ECA rule is depicted in Figure 11. 

1.
.*

 
Figure 11 – Structure of ECA rules 

An ECA rule consists of [26]:  

 One or more events, which model the occurrence of relevant changes in our 
application or its environment (user’s context). The occurrence of these events 
triggers the evaluation of the ECA rule. 

 One or more conditions, which represent the situation under which the 
actions of the rule are enabled, in case the specified events occur. A condition is 
typically expressed as a (simple or complex) Boolean expression. 

 One or more actions, which represent the operations of the rule that 
determine the reactive behavior of the application.  

Events, conditions and actions may also have internal structure. For example, a 
condition may consist of multiple sub-clauses, or an action may be implemented 
as a procedure call that invokes several sub-procedures. 

Based on the issues just discussed, we have identified the basic requirements for 
ECA-DL with respect to elements in the language. ECA-DL should offer the 
following: 

 An Event part, which defines a relevant situation change in the context. 
Particularly, an event defines a basic change in the context for which the rule 
should be executed.  
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 A Condition part, which defines a logical expression that must hold 
following the event and prior to the execution of the action.  

 An Action part, which represents the operation to be performed by the 
application as a consequence of the occurrence of a certain event and the 
fulfillment of the condition(s) associated with this event. An action often consists 
of the invocation of a notification service. 

In ECA-DL rules, both events and conditions are defined in terms of situations 
and facts. Particularly, events in ECA-DL may have three possible states: true, 
false and unknown, and six state transitions between these states. The unknown 
state accommodates uncertainty of context information (when the value of 
context information is unknown). Figure 12 presents the state transitions possible 
for events given a certain situation. 

True 

Unknown

1

False 

2
3

4

5

6

 
Figure 12 - State transitions for a situation 

Events can be any of the following transitions, for a given situation S: 

EnterTrue(S) – transition 2 or 3 
EnterFalse(S) – transition 4 or 6 
EnterUnknown(S) – transition 1 or 5 
ExitTrue(S) – transition 1 or 4 
ExitFalse(S) – transition 3 or 5 
ExitUnknown(S) – transition 2 or 6 
TrueToFalse(S) – transition 4 
TrueToUnknown(S) - transition 1 
FalseToTrue(S) – transition 3 
FalseToUnknown(S) – transition 5 
UnknownToTrue(S) – transition 2 
UnknownToFalse(S) – transition 6 
Changed (S) – any transition 

We consider only the true and false states and the possible transitions between 
these two states in this thesis. Since the development of ECA-DL is an ongoing 
work in the AWARENESS project, the unknown state is expected to be supported 
in the future. 

3.2 ECA-DL: Semantics and Syntax 

As depicted in the UML class diagram of Figure 13, a rule in ECA-DL consists of 
an Event part, a Condition part and Action part.  
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Figure 13 – ECA-DL language metamodel 

The requirements presented in the previous section resulted in the clauses Upon, 
When and Do, respectively. Events are defined in the Upon clause, while 
conditions are specified in the When clause and, finally, actions are specified in 
the Do clause. In case there are no conditions to be specified, the When clause 
may be omitted.  

ECA rules can be either parameterized or not. Parameterization is necessary when 
the rule should be applied to a collection of entities. It would be cumbersome to 
write a rule for each target entity. For example, a medical clinic would like to 
apply a general rule (e.g., notify when sugar levels go above 110) to all patients 
suffering from diabetes. Parameterization allows the specification of a single rule 
to be executed for all the diabetic patients. We have introduced the Scope clause 
to define rule parameterization.  

In order to be able to filter collections for entities that fulfill a certain condition, 
we have defined the Select clause. It allows the selection of a subset of a 
collection respecting context and/or attributes constraints. For example, it may be 
necessary to select all users that are in the house and taking a shower, or we 
would like to select all devices that are currently being used, or even all the 
patients of the clinic that have diabetes. 

Each rule is associated with a lifetime, which can be always, once, from <start> 
to <end>, to <end>, <n> times, frequency <n> times per <period>. Always 
defines that a rule should be triggered whenever events and conditions turn true; 
once defines that a rule should be triggered one time, and then should be 
deactivated; from <start> to <end> defines a period for the rule to be active for 
being triggered; to <end> defines when a rule should be deactivated; <n> times 
says the number of times a rule should be triggered; frequency <n> times per 
<period> defines the number of times a rule should be triggered in a certain period 
of time, for example, once a day or twice a week. 

Non-parameterized rules have the following basic structure: 
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Upon <event-expression> 
When <condition-expression> 
Do <notifications> 
<lifetime>  

Table 1 presents the semantics of the ECA-DL main clauses. 

Table 1 - Semantics of the ECA-DL clauses 

 

Clause Semantics 

Select Select (<collection-of-entities>, <var>, 
<filtering-expressions>) 

Upon-When-
Do 

Upon <correlation-of-events> 
When <correlation-of-conditions> 
Do <notification> 

Scope Scope (<collection-of-entities>; var) 
{ 
   Upon <correlation-of-events-using-var> 
   When <correlation-of-conditions-using-
var> 
   Do <notification> 
} 

3.3 ECA-DL Rules: Examples 

This section presents some examples in order to better understand how to define 
ECA rules in ECA-DL. For each example we propose: 

 A context-aware scenario in natural language and the corresponding ECA 
rule;  

 The corresponding information model used as basis for writing the rule; 

 The ECA-DL version of the given rule. 

3.3.1 Example 1     

“Patricia would like to be notified when Laura enters the laboratory, without 
friends, and Laura’s computer is on”. 

We can express this scenario by using the following ECA rule: 

If <Laura is in the lab AND (NOT Laura is with friends) AND Laura’s computer 
is on> then <Notify (Patricia), “Laura is working.”> 

The if part of the ECA rule consists of three situations and the then part consists of 
one action. The situation “Laura is in the lab” represents the event (the basic 
change in the context) for which the rule should be executed. Situations “NOT 
Laura is with friends” and “Laura’s computer is on” represent additional 
conditions to be satisfied to enable the execution of the action.  
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The event “Laura is in the lab” is necessary to execute the then part, but by itself it 
is not enough. For example, Laura could be in the lab speaking with friends, in 
which case, she is not working. On the contrary, the aim of the rule is to notify 
Patricia that Laura is working, which is expressed by the additional conditions 
that Laura is not with friends and her computer is on. 

Figure 14 depicts the information model used as basis to write the ECA rule of 
this scenario.    

Error! Objects cannot be created from editing field codes. 

Figure 14 – Information model of Example 1 

As is shown in Figure 14, the entity Person is characterized by a name, and is 
associated through the relation hasLocation to the context Location, which can be 
decomposed in GeneralLocation (i.e., the building where the person is located), 
and SpecificLocation (i.e., the specific room of the building). In this example, the 
name of the person is Laura and she has specific location in Lab. A Friend is a 
person, and a person may be with one or more friends. Finally, a person may have 
one or more Computer, which may be running or not. 

We can define the following ECA-DL rule for this example, which is consistent 
with the model in Figure 14: 

Upon EnterTrue (Laura.inLab)          
When (NOT (Laura.isWithFriends)) AND (Laura.hasComputerOn) 
Do Notify (Patricia, “Laura is working.”)     
Always 

This ECA-DL rule is executed upon the event EnterTrue (Laura.inLab)and 
when both the additional conditions NOT(Laura.isWithFriends) and 
Laura.hasComputerOn are fulfilled. Lifetime Always is associated to this rule, 
and, therefore, this rule has no temporal constraints and should be always 
executed when both events and conditions are satisfied.  

3.3.2 Example 2 

“When Laura and Patricia start a meeting together, the meeting time should be 
counted”. 

We can express this scenario by using the following ECA rule: 

If  <Laura is in meeting AND Patricia is in meeting AND Laura and Patricia share 
the meeting> then <Count meeting time> 

The if part of the ECA rule consists of three situations and the then part consists of 
one action. Situations “Laura is in meeting” and “Patricia is in meeting” represent 
the event (the basic change in the context) for which the rule should be executed. 
The situation “Laura and Patricia share the meeting” represents the additional 
condition to be satisfied for executing the action. 

The event “Laura is in meeting AND Patricia is in meeting” is necessary to 
execute the then part, but without the additional condition “Laura and Patricia 
share the meeting”, this event is not enough, since Laura and Patricia could be in 
different meetings.  
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Figure 15 depicts the information model that applies to this ECA rule. 

Entity ContextisContextOf

*

hasContext

*

-name
Person Activity

{Incomplete, disjoint}

Meeting

* -isEngagedIn {subset of hasContext} 0..*

InMeeting

*

-sharesMeeting *
-meeting1

*  
Figure 15 – Information model of Example 2 

As is shown in Figure 15, the entity Person is characterized by a name, and is 
associated to the context Activity through the relation isEngagedIn. A person may 
be engaged in the activity inMeeting, which is associated to the entity Meeting. In 
this example, Laura is in meeting and Patricia is in meeting.  

Moreover, a person may share a meeting with one or more persons. This explains 
why Meeting is defined as an association class relating two persons. In this 
example, Laura shares a meeting with Patricia. 

Before writing the ECA-DL version of the rule, we decomposed the then part 
“Count meeting time” in two actions. For counting the meeting time, it is 
necessary to start counting the time when the meeting starts, and to stop counting 
the time when the meeting finishes. This means that in this scenario we need to 
write two ECA-DL rules: one for starting to count the meeting time when the 
meeting starts, and another one for stopping to count the meeting time when the 
meeting finishes.  

Therefore, we obtained the following ECA-DL rules, which are consistent with 
the information model shown in Figure 15: 

Upon EnterTrue (Laura.inMeeting)     
 AND EnterTrue (Patricia.inMeeting)         
When Laura.sharesMeeting (Patricia)     
Do StartCountMeetingHours         
Always 

Upon TrueToFalse (Laura.inMeeting)     
 OR TrueToFalse (Patricia.inMeeting)         
When Laura.sharesMeeting (Patricia)     
Do StopCountMeetingHours         
Always 

The first ECA-DL rule is executed upon events EnterTrue 
(Laura.inMeeting) and EnterTrue(Patricia.inMeeting), and when the 
additional condition Laura.sharesMeeting(Patricia) is fulfilled.  

The second ECA-DL rule is executed upon at least one of the events 
TrueToFalse (Laura.inMeeting)or 
TrueToFalse(Patricia.inMeeting), and when the additional condition 
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Laura.sharesMeeting(Patricia) is fulfilled. Actually, the event that 
triggers the action StopCountMeetingHours is that Laura or Patricia are not in 
the meeting anymore (which means that the meeting has finished), but not in any 
meeting, since we refer to the meeting that Laura and Patricia share. 

Both rules have lifetime Always and, therefore, they have no temporal constraints 
and should always be executed when both events and conditions are satisfied. 

3.3.3 Example 3 

“During the hot season, when the temperature in a building of the University of 
Twente is more than 30 degrees and it is later than 14:00 hours and earlier than 
17:00 hours, all the persons in the building should be notified to go home”. 

We can express this scenario by using the following ECA rule: 

If <During the hot season the temperature in a building of the University of 
Twente is more than 30 degrees AND it is later than 14:00 hours AND it is earlier 
than 17:00 hours > then <Notify (all the persons in the building), “You can go 
home.”> 

The if part of the ECA rule consists of four situations and the then part consists of 
one action. The situation “during the hot season” represents the lifetime associated 
with the rule. The situation “when the temperature in a building of the University 
of Twente is more than 30 degrees” represents the event (the basic change in the 
context) for which the rule should be executed. Situations “it is later than 14:00 
hours” and “it is earlier than 17:00 hours” represent additional conditions to be 
satisfied to enable the execution of the action. 

The event “the temperature in a building of the University of Twente is more than 
30 degrees” is necessary to execute the then part, but by itself it is not enough. 
Actually, the aim of the rule is to notify all persons in the building to go home 
when the temperature inside the building is more than 30 degrees not in any time 
during the day, but just between 14:00 and 17:00 hours. Therefore, the rule needs 
the additional conditions “it is later than 14:00 hours” and “it is earlier than 17:00 
hours” in order to be executed.  

Figure 16 depicts the information model referenced by the ECA rule.   
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Figure 16 – Information model of Example 3 

Similarly to the first example (see section 3.3.1), the entity Person is characterized 
by a name, and is associated through the relation hasLocation to the context 
Location, which can be decomposed in GeneralLocation (i.e., the building where 
the person is located), and SpecificLocation (i.e., the specific room of the 
building).  

The entity Building is an aggregation of many rooms, for example, an office or a 
lab, and a building has a name and a location, which in our example is the 
University of Twente. Building is associated through the relation hasTemperature 
to the context Temperature in order to express the temperature in a building. 

Finally, Figure 16 shows the context Time, which is necessary in order to know 
the current time, and the context Date, which has attributes day, month, year, and 
is necessary in order to express the lifetime associated with the rule.  

We can define the following ECA-DL for this example, which is consistent with 
the model in Figure 16: 

Scope (Select (building.*, build, build.inUT); b))         
{               
Upon EnterTrue (b.temperature > 30)        
When (currentTime > 14) AND (currentTime < 17)     
Do Notify (Select (person.*, p, p.InBuilding(b)),“You can go 
home.”)          
from <May> to <September>        
} 

The Select(building.*, build, build.inUT) clause defines all building 
located in the University of Twente and the Scope clause stores this set of 
buildings in a variable b.  

The rule is executed upon the event EnterTrue (b.temperature>30), i.e., 
when the temperature in a building of the University of Twente is more than 30 
degrees, and when the additional conditions currentTime > 14 and 
currentTime < 17 are fulfilled.  
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The Do clause selects all the persons in a building b, i.e., in the building of the 
University of Twente where the temperature is more than 30 degrees, in order to 
notify them to go home. 

Finally, since the rule should be executed during the hot season, the lifetime 
associated with the rule is from <May> to <September>, which are the hottest 
months of the year. 

3.3.4 Example 4 

“All persons in the Zilverling building should be notified when there is a 
presentation in the building that is interesting for them”. 

We can express this scenario by using the following ECA rule: 

If <There is a presentation in the Zilverling building AND there are persons in the 
building interested in this presentation> then <Notify (these persons), “This 
presentation may be interesting for you.”> 

The if part of the ECA rule consists of two situations and the then part consists of 
one action. The situation “there is a presentation in the Zilverling building” 
represents the event (the basic change in the context) for which the rule should be 
executed. The situation “there are persons in the building interested in this 
presentation” represents the additional condition to be satisfied for executing the 
action.  

The event “there is a presentation in the Zilverling building” is necessary to 
execute the then part, but by itself it is not enough. Actually, when there is a 
presentation, the rule requires to notify persons in the building only if they are 
interested. Therefore, there is a need of the additional condition “there are persons 
in the building interested in this presentation” in order to execute the rule. 

Figure 17 depicts the information model corresponding to the ECA rule.  

 
Figure 17 - Information model of Example 4 
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Similarly to the previous examples, the entity Person is characterized by a name, 
and is associated through the relation hasLocation to the context Location, which 
can be decomposed in GeneralLocation (i.e., the building where the person is 
located), and SpecificLocation (i.e., the specific room of the building). Moreover, 
in this example the entity Person may be interested in one or more subjects that 
are topics of one or more presentations.  

The entity Presentation is characterized by a title, and is associated to the context 
Location, which can be decomposed in GeneralLocation (i.e., the building where 
the presentation is located), and SpecificLocation (i.e., the specific room of the 
building). 

We can write the following ECA-DL version of the rule, which is consistent with 
the information model shown in Figure 17: 

Scope (Select (persons.*, pers, pers.inBuilding.Zilverling);    
p)              
{              
Upon EnterTrue (presentation.inBuilding.Zilverling)      
When p.isInterestedIn(presentation.subject.*)    
Do Notify(p),“This presentation may be interesting for you.”   
Always            
} 

The Select clause defines all persons that have general location inBuilding, 
more precisely in the building with name Zilverling. The Scope clause stores 
this set of persons in a variable p.   

The rule is executed upon the event EnterTrue 
(presentation.inBuilding.Zilverling), i.e., when there is a presentation 
in the Zilverling building, and when the additional condition 
p.isInterestedIn(presentation.subject.*)is fulfilled, i.e., when a 
person in the Zilverling building is interested in subjects that are topic of a 
presentation.  

The Do clause notifies the set of persons p (defined in the Scope clause) that there 
is a presentation, which may interest them. 

Finally, lifetime Always is associated to this rule and, therefore, this rule has no 
temporal constraints and should always be executed when both events and 
conditions are satisfied.  

3.3.5 Example 5 

“When a student is in a meeting with his/her supervisor(s), the meeting time 
should be counted”. 

We can express this scenario by using the following ECA rule: 

If <Student is in meeting AND this student shares the meeting with his/her 
supervisor(s)> then <Count meeting time> 

This rule is a generalization of the rule of Example 2 (see section 3.3.2). The if 
part of the ECA rule consists of two situations and the then part consists of one 
action. The situation “student is in meeting” represents the event (the basic change 
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in the context) for which the rule should be executed, while situation “this student 
shares the meeting with his/her supervisor(s)” represents the additional condition 
to be satisfied for executing the action.  

The event “student is in meeting” is necessary to execute the then part, but by 
itself it is not enough. Actually, we are not interested in any meeting, but in the 
meeting shared between a student and his/her supervisor(s). Therefore, the rule 
needs the additional condition “this student shares the meeting with his/her 
supervisor(s)” in order to be executed. 

Figure 18 depicts the information model corresponding to the ECA rule.   

 
Figure 18 – Information model of Example 5 

Similarly to the previous examples, the entity Person is characterized by a name, 
and is associated to the context Activity through the relation isEngagedIn. A 
person may be engaged in the activity inMeeting, which is associated to the entity 
Meeting. A person may share a meeting with one or more persons. This explains 
why Meeting has been defined as an association class between two persons. 
Moreover, Person is associated through the relation hasLocation to the context 
Location. 

In addition to the other examples, a person may be Supervisor and/or Student. 
Actually, the same person may be a student but also a supervisor. A Supervisor 
supervises on or more students and a student may be supervised by one or more 
supervisors.   

Similarly to the example in section 3.3.2, we decomposed the then part “Count 
meeting time” in two actions, one that starts counting the meeting time when the 
meeting starts, and another one that stops counting the meeting time when the 
meeting finishes. Therefore, we have defined the two following ECA-DL rules: 

Scope (Select (student.*, st, st.inBuilding.Zilverling); 
stud)                 
{               
Upon EnterTrue (stud.inMeeting)      
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When stud.sharesMeeting (Select (supervisors.*, super, 
superv.stud))          
Do StartCountMeetingHours         
Always            
} 

Scope (Select (student.*, st, st.inBuilding.Zilverling); 
stud)                 
{               
Upon TrueToFalse (stud.inMeeting)      
When stud.sharesMeeting (Select (supervisors.*, super, 
superv.stud))          
Do StopCountMeetingHours         
Always            
} 

In both the rules, the Select(student.*, st, 
st.inBuilding.Zilverling) clause defines all the students in the Zilverling 
building, and the Scope clause stores this set of students in a variable stud.  

The first ECA-DL rule is executed upon the event EnterTrue 
(stud.inMeeting), i.e., when a student of the Ziverling is in a meeting, and 
when the additional condition stud.sharesMeeting(Select 
(supervisors.*, super, superv.stud)) is fulfilled, i.e., when a student 
of the Ziverling that is in meeting shares the meeting with his/her supervisor(s).  

The second ECA-DL is executed upon the event EnterTrue 
(stud.inMeeting), and when  the additional condition 
stud.sharesMeeting(Select (supervisors.*, super, 
superv.stud)) is fulfilled. Actually, the event that triggers the action 
StopCountMeetingHours is that the student is not in the meeting anymore 
(which means that the meeting has finished). This does not refer to any meeting, 
but specifically to the meeting that the student shares with his/her supervisor(s). 

Finally, both the rules are associated to lifetime Always and, therefore, they have 
no temporal constraints and should always be executed when both events and 
conditions are satisfied.  
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4 Rule-Based Systems  

This chapter presents an overview of expert systems based on rule engines and 
selects some criteria for comparing different existing tools for developing rule-
based expert systems.  

The chapter is structured as follows: section 4.1 deals with expert systems and 
their main features. Section 4.2 discusses rule-based systems. Particularly, it 
presents the basic model of rule-based languages, the general architecture of rule-
based systems, the different kinds of strategies that they can use for processing 
rules, and, finally, the possible types of reasoning on which they are based. 
Section 4.3 gives guidelines useful for deciding when to use a rule-based system 
for developing a specific application. Finally, section 4.4 discusses the criteria we 
have defined to evaluate rule-based systems.  

4.1 Expert Systems 

Traditional programming languages, such as C, Pascal, Fortran and Cobol, are 
designed and optimized for the procedural manipulation of data [1]. They are 
based on the procedural programming paradigm that is characterized by the 
concept of procedure call. Procedures, also known as routines, subroutines, 
methods or functions, simply contain a series of computational steps to be carried 
out. Any given procedure can be called at any point during a program’s execution. 

Often these traditional languages are not suitable to solve complex problems of 
the real world. Actually, humans usually use abstraction and symbolism in order 
to facilitate the description of these problems. Explicative but not particularly 
detailed concepts are defined, and symbols that are appealing for human beings 
are used to represent these concepts. In Wikipedia [2], we can find the following 
definitions: 

 Abstraction, in computer science, is a mechanism and practice to reduce 
and factor out details so that one can focus on few concepts at a time; 

 Symbolism is the systematic or creative use of symbols as abstracted 
representation of concepts. 
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Although the human abstract and symbolic representation of concepts can be 
modeled in traditional procedural languages, considerable programming effort is 
required for that. This happens because procedural languages are sequential and 
deterministic, namely the programmer instructs a machine to perform some tasks 
in a specific order. Therefore, it is difficult and not straightforward to transform 
the human knowledge expressed at a high level of abstraction to a format suitable 
for procedural programming paradigms. 

A branch of Artificial Intelligence tries to bridge the gap between human 
representation of knowledge and traditional programming languages. This branch 
concerns the development of techniques that allow the modeling of knowledge at 
a high level of abstraction. These techniques, which emulate human expertise in 
well defined problem domains, are characterized by the use of expert systems [1]. 

Expert systems are developed in languages and tools which are easier to use and 
maintain than traditional programming languages. These languages and tools 
allow building programs that closely resemble human logic in their 
implementation. Expert systems have been used to solve a wide range of problems 
in several domains, such as medicine, mathematics, engineering, geology, 
computer science, business, law, defense, and education.  

Expert systems can be used cross-domains, since they can provide solutions to 
fundamental problems, independent on the domain. For example, considering 
diagnostics as a problem, we could implement a solution by exploiting the same 
expert system for medical diagnosis of a disease or for the diagnosis of a fault in a 
computer system, namely for two different domains [3]. 

Building an expert system is not a trivial task, since it is difficult to extract 
relevant knowledge from the problem domain and to express it in a proper manner 
for implementing a solution based on an expert system. 

Generally, it is important to develop an initial prototype based on explanatory text 
and/or interviews with experts of the problem domain, in order to get more 
understanding of the domain. Further developments should refine this prototype, 
by testing and modifying it in collaboration with the experts and the potential 
users of the expert system. 

4.2 Rule-Based Systems 

Rule-based programming is one of the most commonly used techniques for 
developing expert systems. A rule-based expert system consists of a set of rules 
that can be repeatedly applied to a collection of facts. The following concepts are 
essential to rule-based systems: 

 Facts represent circumstances that describe a certain situation in the real 
world. 

 Rules represent heuristics that define a set of actions to be executed in a 
given situation.  

There is a basic distinction between derivation and production rules. Derivation 
rules have the form if <condition>  then <conclusion>, whereas  production rules 
have the form if <condition>  then <action>. The difference is subtle but flat. A 
conclusion, in derivation rules, is abstract: it consists of deriving logical 
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consequences from certain conditions. These logical consequences are simply 
asserted but not executed. An action, in production rules, is concrete: it consists of 
producing practical consequences from certain conditions. These practical 
consequences are concretely executed. 

In this thesis, we are basically interested in production rules, since our aim 
consists of finding a rule engine able to process ECA rules, namely rules like if 
<condition> then <action>, which are production rules. However, production 
rules can implement derivation rules by using a special action “assert”, which 
asserts knowledge. If the <action> part of a production rule is just a conclusion 
and not a function that performs actions, we can consider this production rule as a 
derivation rule. In both these cases, rules are composed of an if portion and a then 
portion.   

Although tools for developing expert systems adopt different terminologies, we 
have chosen a specific terminology that we use consistently throughout this thesis. 
We have also related the terminologies adopted by different tools to our 
terminology in order to improve understandability for readers used to these tools. 
Our terminology is introduced below. 

We call the if portion of a rule the left hand side (LHS), but sometimes it is called 
predicates or premises. The LHS consists of an expression, which can be a single 
expression (an individual fact that must be true for applying the rule) or a series of 
expressions (composite expression). In the literature of rule-based languages, a 
single expression is usually called pattern.  A composite expression consists of 
several single expressions connected together by using the conditional elements 
“and, or, not” in order to create complex rules . Usually, when several expressions 
are connected by the “and” conditional element, this element is omitted. In rule-
based languages we have also the logical connectives  “ &, |, ~”, which are used to 
manipulate values inside a single fact . However, in this chapter we are interested 
in conditional elements “and, or, not”, which are used to connect together several 
expressions, i.e., single expressions (facts) or composite expressions.  

There is an essential difference between the concept of pattern introduced above, 
and the pattern concept discussed in Chapter 2 (ECA pattern). The ECA pattern 
refers to a software architectural pattern, which is used to describe a particular 
recurring design problem and present a generic scheme for its solutions. The term 
“pattern” in the sense of rules refers to the single expressions that compose the 
LHS of a rule.  

We call the then portion of a rule the right hand side (RHS), but sometimes it is 
called conclusions or actions according to the type of rule (respectively, 
derivation or production rule). The RHS consists of a set of actions, represented 
by functions, to be executed when the rule is applicable [1]. The applicability of 
the rules depends on the method of reasoning (forward chaining or backward 
chaining, see section 4.2.4). 

The general structure of a rule is the following: 

If <(pattern1)…(patternN)> then <(action1)…(actionM)> 

4.2.1 Basic model of rule-based languages 

Figure 19 depicts the UML diagram representing the concepts of rule-based 
languages [28]. It consists of eleven classes: Rule, LHS, Expression, Fact, Slot, 
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CompositeExpression, UnaryExpression, BinaryExpression, RHS, Action, and 
Function. 

 
Figure 19 - Basic model of rule-based languages 

Class Rule models rules. The ruleName attribute represents the name of the rule, 
and the description attribute specifies the purpose of the rule. Since a rule consists 
of a LHS (left hand side) and a RHS (right hand side), the class Rule has two 
references: hasLHS and hasRHS.  

The LHS of a rule is an expression, which can be a Fact  or a 
CompositeExpression. 

A Fact is a single expression that must be true for applying the rule. A fact is 
characterized by a name and a collection of slots. Therefore, class Fact has a 
factName attribute and a containment reference to Slot. Class Slot has two 
attributes, slotName and slotValue, which respectively represents the name of the 
slot and its value. 

A CompositeExpression consists of several expressions connected together by 
using the conditional elements “and, or, not”. Particularly, a CompositeExpression 
can be a BinaryExpression by using “and, or” conditional elements, or a 
UnaryExpression by using “not”. A BinaryExpression consists of two operands, A 
and B, while an UnaryExpression consists of only one operand. These operands 
are expressions, which can be a fact (the final element) or a composite expression 
again. For example, consider the following rule: 

If <AND((fact1) (fact2))> then <(action1)>  

<AND((fact1) (fact2))> represents the LHS, which is an expression. This 
expression is a CompositeExpression, more specifically a BinaryExpression, 
whose operands are fact1 (operand-A) and fact2 (operand-B). Each of these 
operands are again expressions. In this case, they are facts, which are the final 
elements in the “recursion chain”. However, these operands could be expressions 
again. For example, consider this rule: 

If <AND( (OR(fact1)(fact2)) (fact3) )> then <(action1)>   
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<AND( (OR(fact1)(fact2)) (fact3) )> represents the LHS, which is an expression. 
This expression is a BinaryExpression with an operand-A, which is 
OR(fact1)(fact2), and an operand-B, which is fact3. Each of these operands are 
again expressions, however, in this case, operand-A is again a BinaryExpression 
composed by two operands (fact1, fact2) connected by using the “or” conditional 
element. 

Class RHS has a containment reference Action. The RHS of a rule consists of 
zero or more actions. An action is a function characterized by a name and 
parameters, which represent the arguments that we can pass to the function. 
Therefore, class Function has two attribute, functionName and parameter. 

4.2.2 Rule-based systems architecture  

The general architecture for rule-based systems is depicted in Figure 20. 

 

 
 
 
 
 

 
USER 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Expert System Shell 

 
WORKING 
MEMORY 
(Fact Base) 

 
RULE BASE 
(Knowledge Base) 

 
INFERENCE 

ENGINE 
(Rule Engine) 

EXPLANATION 
SYSTEM

 
U 
S 
E 
R 
 
I 
N 
T 
E 
R 
F 
A 
C 
E 

KNOWLEDGE 
BASE EDITOR

 
Figure 20 - General rule-based systems architecture 

The main elements of a rule-based system are facts, rules, and the engine that acts 
on them. The core of the architecture shown in Figure 20 consists of the working 
memory (fact base), the rule base (knowledge base) and the inference engine (rule 
engine). 

 The working memory contains facts that are the smallest piece of 
information supported by the rule engine.  

 The rule base contains rules in the form of if-then statements, which 
represent the knowledge provided by the user and/or an expert of the problem 
domain;  

 The inference engine matches facts in the working memory against rules in 
the rule base, and it determines which rules are applicable according to the 
reasoning method adopted by the engine. The list of applicable rules in the 
inference engine is usually called conflict set. When instructed to begin execution, 
the inference engine selects a rule from the conflict set and fires this rule by 
executing the associated actions. The rule to be selected depends on the specific 
conflict strategy used by the system. After that, the inference engine selects 
another rule and repeats the process until no applicable rules remain in the 
knowledge base. 
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The other components shown in Figure 20 are the user, the user interface, the 
explanation system and the knowledge base editor.  

The user interacts with the system through a user interface that may use menus, 
natural language or any other style of interaction. Almost all expert systems have 
an explanation system that allows the system to explain its reasoning to the user. 
Some systems have a knowledge base editor, which helps updating and checking 
the knowledge base. 

The inference engine, the user interface, the explanation system and the 
knowledge base editor constitute the expert system shell. In contrast, the user, the 
fact base and the knowledge base, which are domain-specific knowledge, are not 
considered as part of this shell. Given a specific problem domain, we can usually 
find an expert system shell that provides support for it, since there are numerous 
commercial expert system shells suitable for a different range of problems. In this 
case, all we need to do is to provide the system with a fact base and a knowledge 
base encoded in the form of rules. The usage of expert system shells generally 
reduces the cost and time of development (compared with writing the expert 
system from scratch) [4]. Most modern rule engines can be seen as more or less 
specialized expert system shells, with features to support operation in specific 
environments or programming in specific domains.   

4.2.3 Conflict resolution strategies 

When the inference engine matches facts in the working memory against rules in 
the rule base, there is a need to choose which of the applicable rules is fired first. 
This is a task of the conflict resolution strategy adopted by the specific system. 
This strategy depends on the kind of problem to solve and/or on the importance 
that the user gives to each rule. There are several conflict resolution strategies, but 
the most common are the following [23]: 

 First-applicable. If the applicable rules contained in the conflict set are in a 
specific order, the simplest strategy consists of firing the first rule in the list. The 
drawback of this strategy is that we could have an infinite loop on the same rule. 
Actually, if the working memory does not change over time, facts matching the 
first rule are always the same, and this rule is fired again and again. For solving 
this problem, it is a common practice to suspend a fired rule until working 
memory changes occur on the facts that mach this rule. 

 Random. A random strategy simply chooses a single random rule to fire 
from the conflict set. The drawback is that this strategy does not provide the 
predictability or control of the first-applicable strategy, but it is suitable for 
systems that require unpredictability, such as games.  

 Most-specific. This strategy is based on the number of patterns in the if part 
of the rules. The approach consists of firing the rule with the highest number of 
patterns matched. The strategy is based on the assumption that the rule with the 
highest number of patterns is the most relevant to the contents of the working 
memory.  

 Least-recently-used. In this strategy each rule is accompanied by a time or 
step stamp, which marks the last time that the rule has been used. In this strategy, 
the rule to be fired first is the least recently used one, i.e., the one with the oldest 
time or step stamp. This strategy maximizes the number of individual rules that 
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are fired at least once, improving the fairness of the rules firing. This strategy is 
suitable when all rules are needed for solving a given problem.  

 Salience. This strategy gives a weight, called salience, to each rule. The 
salience is a number that specifies the priority of a rule. The rule with the highest 
salience is fired first.   

4.2.4 Forward chaining and backward chaining 

Rule-based systems may support two different types of reasoning: forward 
chaining and backward chaining. They may use either or both methods, but 
forward chaining is the most common one.  

Forward chaining is often called data-driven, in contrast to backward chaining, 
which is referred to as goal-driven. For understanding the difference, we can think 
about the ways in which a detective might solve a mystery. Suppose he has a 
collection of evidences, like a fingerprint, a dead body, etc. The first possibility 
consists of drawing conclusions from the available evidence, adding them to the 
available information, and continuing until a link between evidence and crime is 
found [17]. This is the forward chaining method and it is shown in Figure 21 [23]. 

 
Figure 21 - Forward chaining reasoning 

The forward chaining strategy starts with the available data, represented by facts 
in the working memory, and uses the rules to extract more data until a desired 
goal is reached. This goal could be, for example, the firing of a certain rule. As 
depicted in Figure 21, a rule-based system using forward chaining matches facts 
in the working memory against rules in the rule base until it finds rules where the 
if portion is known to be true. After deciding which rule to fire (according to the 
conflict strategy), the system can conclude the then portion, which may result in 
the addition of new facts to its datasets. The rule-based system often cycles 
through this process until a desired goal is reached.  

For example, suppose we have the following available data [29]:  
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I have a pet named Fritz and he hops. This knowledge is represented by the facts 
“Fritz is a pet” and “Fritz hops” in the working memory. Suppose also we have 
defined the following rules in the rule base: 

1. If Fritz hops → then Fritz is green 

2. If Fritz is green → then Fritz is a frog 

The if portion of rule 1 is known to be true (given the knowledge in the working 
memory), therefore the system can conclude the then portion, and the new fact 
“Frits is green” is added to the working memory. As consequence, the if portion of 
rule 2 is known to be true (given the actual knowledge in the working memory) 
and the new fact “Fritz is a frog” can be added to the expert system datasets. 

Consider again the example of the mystery to solve. Instead of using a forward 
chaining reasoning, the detective can proceed in an alternative way. He can start 
from the circumstances of the crime, form a hypothesis about what happened, and 
then search for clues that support this hypothesis [17]. This technique is an 
example of backward chaining reasoning and it is shown in Figure 22 [23].  

 
Figure 22 - Backward chaining reasoning 

The backward chaining strategy starts with a list of goals and determines the 
conflict set by searching for rules with a then portion that matches the goals. 
According to the conflict resolution strategy, the first of these rules is fired and 
the if portion of this rule becomes a new goal for the system. This backward chain 
continues recursively until either every available data satisfies the goal (goal 
concluded), or there are no more rules that match the goal (goal failed).  

For example, consider these rules [30]: 

1. If Fritz hops → then Fritz is green 

2. If Fritz is green → then Fritz is a frog 
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The final goal is to conclude that Fritz is a frog given he hops. When using 
backward chaining, rule 2 is selected to be executed since its then portion matches 
the goal (Fritz is a frog). It is not yet known whether Fritz is green, and this way, 
the if portion of rule 2 becomes a new goal (Fritz is green). Rule 1 is now selected 
to be executed, since its then portion matches the new goal (Fritz is green). The if 
portion of rule 1 (Fritz hops) is known to be true as part of the first goal. This 
way, the initial goal can be concluded, i.e., that Fritz is a frog.  

We can use forward chaining with both derivation and production rules, while 
backward chaining can only be used for derivation rules. Actually, in order to 
apply backward chaining in production rules, the rule engine should execute the 
then portion that matches a desired goal and reason backwards. This is not 
realistic and efficient, since the then portion of a production rule is an action to be 
concretely executed and not a conclusion that needs only to be asserted in the 
working memory, like in derivation rules. 

4.3 When to Use a Rule-Based System  

Rule-based systems are suitable for some kinds of problems, and less suitable for 
others. Therefore, it is important to propose guidelines for deciding whether to use 
rule-based solutions in a project. The following aspects should be considered 
when choosing a rule-based system [5]: 

 Type of algorithm. When the algorithm that implements the solution of the 
problem is computing-intensive or a table-lookup and does not involve much 
conditional branching or decision-making, is not advisable to use a rule engine. In 
this case the problem might be easily solved using traditional computing methods.    

 Rules complexity. In a rule-based expert system it is necessary to describe 
the problem through rules, by specifying the decisions that need to be made. In 
case it is possible to describe the problem in terms of a collection of complex 
rules, the usage of a rule engine is justified. This means that we should have rules 
composed of many conditions, such as, for instance, a block with three or more 
nested if-statements in pseudo-code, in order to consider the use of a rule-based 
solution.   

 Changes over time. Another decisive requirement for choosing rule-based 
systems is the problem structure. If the problem is well-structured and basically 
static, it probably does not need the flexibility of a rule engine. However, if it has 
dynamic features and needs changes over time, we can be sure that a rule engine 
is suitable for tackling this problem. 

 Code maintenance. The effort required for developing a solution and the 
aim of the project are also important aspects to consider. Thus, if the code 
developed during the project and the final product are going to be maintained over 
time, the effort involved in using a rule engine is justified. This effort concerns all 
the resources used in the project, such as time (training developers and possibly 
end-users) and money (licensing fees for using a commercially available engine, 
or investments for developing and deploying a new engine). 

 Performance optimization. In case it is necessary to hard-wire the algorithm 
for absolute high-end performance, such as to optimize for speed and for memory, 
it is better to choose another alternative than rule engines. Actually, rule-based 
solutions are normally slower than their hard-wired counterparts. 
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4.4 Evaluation Criteria for Rule-Based Systems 

The aim of this work is to develop an expert system able to notice changes 
occurring in a specific user’s context, and to perform proper actions as 
consequences to these changes. Particularly, the aim is to develop a rule-based 
system able to understand and process context-information expressed in terms of 
ECA rules. Therefore, we need to search for a rule-based tool that is suitable for 
our needs. 

There are many existing tools with similar features, but also some differences. 
These differences allow us to prefer a rule engine above another. In fact, the 
arduous task is not to choose between the rule engines that we have selected, since 
each of them is a powerful development tool, which offers a wide range of 
functionality. The problem is how to be sure that we are making the best choice 
for our needs. Therefore, our approach has been to collect at first meaningful and 
relevant criteria for selecting a rule engine that is suitable for our purpose.  

This section describes these criteria. For each criterion we introduce both a 
general definition [2] and an explanation of the reason why this criterion is 
important in the selection process. In Chapter 5 we analyze several rule-based 
systems based on these criteria in order to choose the best option among the 
available ones. 

4.4.1 Knowledge representation  

Knowledge representation is needed for processing concepts in an information 
system. Concepts are abstract and universal notions that serve to designate a 
category of entities, events or relations between them. An information system is a 
technologically implemented medium for recording, storing and disseminating 
linguistic expressions, as well as for drawing conclusions from such expressions. 
In the field of Artificial Intelligence, for example, problem solving can be 
facilitated by an appropriate choice of knowledge representation.  

Several programming languages have been developed that are oriented to 
knowledge representation. The most important in the scope of this thesis are rule-
based and declarative languages. Rule-based languages allow us to write programs 
consisting of a collection of rules. We discuss the basic model of rule-based 
languages in section 4.2.1. Analogously, declarative languages allow us to write 
programs consisting of a list of rules describing data properties and feasible 
transformations of these data. 

The development tool to be chosen should be capable of reasoning using rule-
based languages or declarative languages, which are both suitable for knowledge 
representation based on rules. 

4.4.2 Portability 

Software portability consists of the capability of some software to be adapted or 
modified in order to be used in a different computing environment than the one 
for which this software was originally written. Porting is usually required because 
of differences in the CPU, operating system interfaces (APIs), hardware, or 
because of subtle incompatibilities in the programming language used in the target 
environment. 
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Portability is important since the code implementing our system could function 
also in another platform (CPU + architecture + operating system), if necessary, 
without any modifications. Portability allows the re-use of implementations and 
this implies the reduction of the software development costs.  

4.4.3 Integration/Extensibility 

The software development process often implies collaboration between members 
of a team, and each of these members may have his own preference in the 
language to use for working on his task. Moreover, sometimes a specific language 
may be more suitable than others for implementing certain functionality of the 
system. Therefore, integration may be needed in case of large systems, since 
modules developed using different programming languages may have to be 
integrated. Integration may also be necessary in case existing modules have to be 
re-used in a system.  

Extensibility measures how difficult it is to extend a system and the effort 
required for implementing this extension. Extension means addition of new 
functionality or modification of already existing functionality. 

The rule engine to be chosen should support a high level of integration and 
extensibility, since we may need to integrate the specific rule-based language of 
the engine with code written in another programming language. Furthermore, we 
may need to extend the functionality of the engine with newly defined 
requirements, which have not been foreseen at system design time.                                           

4.4.4 Tools support 

A programming tool is a program or an application used by software developers 
for creating, debugging, or maintaining other programs or applications. Some 
tools have been integrated in more powerful development environments 
(Integrated Development Environments, IDEs), which usually consist of a source 
code editor, a compiler and/or interpreter, build automation (for automatic 
recompilation), and a debugger. 

The tools and IDEs supported by the rule engine to be chosen are certainly an 
important criterion in order to increase the productivity in software development. 
Actually, they provide additional help to the developers, above all in object-
oriented programming, like: 

 code completion verification; 

 suggestion of the parameters to be passed to methods; 

 direct access to a Concurrent Version System (CVS), which keeps track of 
all versions and all changes in the implementation of a software project, and 
allows several, potentially widely separated, developers to collaborate; 

 refactoring functionality, which consists of automatic code re-writing, e.g.,  
in case classes are changed. 
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4.4.5 Expressiveness 

Language expressiveness represents the easiness with which the solution of a 
certain problem can be expressed using a language. The speed of problem solving 
with a specific language, the amount of code needed and even the quality of the 
final result are factors that depend on expressiveness. In general terms, when a 
language allows writing algorithms with few instructions and in a clear and 
readable way, it holds good expressiveness.  

Expressiveness is difficult to evaluate since it is an intrinsic characteristic of the 
language, and it is also relative (it depends on who evaluates the language) . A 
way to evaluate the expressiveness of the several languages associated with the 
engines is to consider the logic on which they are based. Rule-based languages 
usually use first-order logic, which is a symbolized theory in which each sentence, 
or statement, is broken down into a subject and a predicate. The predicate 
modifies or defines the properties of the subject, and can only refer to a single 
subject. We expect for our engine a level of expressiveness at least comparable to 
the level held by the first-order logic. 

4.4.6 Alignment with ECA rules 

The Controller component we have designed senses events (changes occurrence) 
in a specific context. When an event is notified, the component checks the rules 
for true conditions and, for these rules, performs proper actions. This process is 
based on ECA rules with a general form: if <condition> then <action>. Our 
purpose has been to develop the Controller component using an existing rule-
based system that holds its own language to express rules. Therefore, a decisive 
criterion for choosing an engine in our work has been whether the engine can give 
support to ECA rules. 

4.4.7 Commercial aspects 

Whether the software to be chosen is of public domain or available at no costs for 
academic use has certainly played a fundamental role in our choice. Moreover, 
there should be a community of users for discussing research, development and 
implementation of the software considered. Actually, such a community provides 
a basic contribution to the improvement and the evolution of these tools, and 
allows their users to find answers to any questions in addition to useful 
applications examples.   
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5 Rule Engines 

This chapter presents some available rule-based engines and discusses them on 
the light of the criteria defined in the previous chapter.  

Sections 5.1 to 5.4 present the rule engines CLIPS [14], Jess [15], jDREW [16], 
and Mandarax [17] respectively, focusing on their main features and feasible 
applications, and giving examples of the supported languages. Finally, section 5.5 
compares these engines in order to justify our final choice. 

5.1 CLIPS 

CLIPS (C Language Integrated Production System) is a production development 
and delivery expert system tool written in C, which provides a complete 
environment for the construction of rule and/or object based expert systems [13]. 

5.1.1 Main features 

CLIPS provides a cohesive tool for handling a wide variety of knowledge with 
support for three different programming paradigms: rule-based, object-oriented 
and procedural. 

CLIPS is written in C for portability and speed, and runs on many different 
operating systems. Operating systems on which CLIPS has been tested include 
Windows 2000/XP, MacOS X, and Unix. It can be ported to any system which 
has an ANSI compliant C or C++ compiler, and comes with all source code, 
which can be modified or tailored to meet a user's specific needs. 

5.1.2 Application environment 

CLIPS code can be used in different ways: 

 it can be embedded within procedural code and called as a subroutine. This 
allows the easy integration of CLIPS with existing systems and is useful in case 
the expert system is a small part of a larger task or needs to share data with other 
functions. 
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 it can be integrated with languages such as C, Java, FORTRAN and ADA. 
This addition of external functions allows CLIPS to be extended or customized in 
many different ways.  

A CLIPS expert system may be executed in three ways: interactively using a 
simple, text-oriented, command prompt interface; interactively using a 
window/menu/mouse interface on certain machines; or as an embedded expert 
system in which the user provides a main program and controls the execution of 
the expert system [15]. 

The standard version of CLIPS provides an interactive, text-oriented development 
environment, including debugging aids, on-line help, and an integrated editor. 
Interfaces providing features such as pull-down menus, integrated editors, and 
multiple windows have been developed for the MacOS, Windows 95/98/NT, and 
X-Window environments. 

5.1.3 CLIPS language 

Fact is one of the basic high-level concepts for representing information in a 
CLIPS system. Each fact represents a piece of information that has been placed in 
the current list of facts, called the fact-list. A fact may be added to the fact-list 
(using the assert command), removed from the fact-list (using the retract 
command), and modified (using the modify command) [15]. In the following 
example we add the fact “stoplights”, which holds the value “red”, to the fact-list 
using the command assert. 

(assert (stoplights red))    

A fact is the fundamental unit of data used by rules. A rule is one of the primary 
methods for representing knowledge in CLIPS and it defines a set of actions to be 
performed in a given situation. CLIPS supports the forward chaining strategy, 
which means that the left-hand-side (LHS) of the rule is a set of conditions that 
must be satisfied for the rule to be applicable. The conditions of a rule are 
satisfied based on the existence or non-existence of specified facts in the fact-list. 
The right-hand-side (RHS) of the rule is the set of actions to be executed when the 
rule is applicable, namely when the LHS of the rule is satisfied. An example of a 
rule in CLIPS is: 

(defrule RULE "example of rule’s syntax"            
(stoplights red) => (assert (action StopTheCar)) 

CLIPS uses the defrule command for defining a rule. The name of the rule and 
a comment between quotes follow the defrule command. When the LHS part 
(stoplights red) is satisfied, the action StopTheCar is executed. 

As we can see, CLIPS can be used to support ECA rules. Actually, the LHS part 
of a CLIPS rule can be thought as the if <condition> part of an ECA rule, and the 
RHS part as the then <action> part. In the example above the corresponding ECA 
rule could be: 

If <Stoplights is red>  then <Stop the car> 
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5.1.4 Applicability 

CLIPS expressiveness permits the specification of very complex relations within 
the rules. Nevertheless, the overuse of parenthesis in the CLIPS language, and the 
need to use inverse polish notation for building arithmetic and conditional 
expressions, make it an inconvenient language for the programmer.   

The CLIPS inference engine implements the RETE algorithm [1], which is a very 
efficient algorithm to solve the difficult many-to-many matching problem. CLIPS 
has attempted to implement this algorithm in a manner that combines efficient 
performance with powerful features.  

CLIPS is maintained as public domain software.           

5.2 Jess 

Jess (Java Expert System Shell) is a fast and powerful rule engine for the Java 
platform, which supports the development of rule-based systems that can be 
tightly coupled to code written entirely in Java. Jess is also a powerful Java 
scripting environment, from which it is possible to create Java objects, call Java 
methods, and implement Java interfaces without compiling any Java code. Jess 
was originally conceived as a Java clone of CLIPS, but nowadays it has many 
features that differentiate it from CLIPS [16]. 

5.2.1 Main features 

As well as in CLIPS, there are three ways to represent knowledge in Jess: rule-
based, object-oriented and procedural programming paradigms. We can develop 
software using only rules, only objects, or a mixture of rules and objects. 
Furthermore, Java software built using Jess has the capability of reasoning using 
knowledge supplied in the form of declarative rules.  

Jess is probably the most flexible rule engine on the market, since it has been used 
in different environment ranging from Windows CE handhelds to full-blown J2EE 
enterprise applications. Licensed users get the source code, so users may modify 
the engine if they find it necessary. 

5.2.2 Application environment 

Jess has been integrated with agent frameworks and other tools. It is also been 
integrated with the popular ontology editor Protégé 2000 [31]. This is a powerful 
combination that many people use to develop knowledge structures as well as 
code that acts on them. Moreover, Jess supports a whole range of different rule 
languages. For example, in the latest version of Jess there is a native XML rule 
language support.  

Jess provides an editor with code completion and syntax checking as you type, a 
debugger, an explorer that lets you probe the relationship between templates and 
rules, and a rule database.  

A fundamental feature for our project is that the latest release of Jess includes an 
Eclipse-based development environment (the JessDE). Eclipse [32] is an emergent 
and popular Open Source Integrated Development Environment (IDE), which 
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combines the open source philosophy with an open, extensible framework, and 
encourages the creation of a community of people to extend the capabilities of the 
IDE, allowing various different languages and applications to be supported by the 
environment.  

An important requirement for us is to be able to extend the standard functionality 
of our rule engine (by using Java), in order to allow it to process ECA rules 
expressed in the ECA-DL language. This task can be facilitated using the JessDE, 
since it is a suitable and well supported environment for developing Jess code and 
integrate it with some other Java code.   

5.2.3 Jess language 

A program written in Jess may consist of facts, rules and objects. Facts represent 
all the pieces of information the rules work with. As in CLIPS, rules have two 
parts: a left hand side (LHS) and right hand side (RHS). The LHS is strictly 
defined for matching fact patterns. The RHS defines a list of actions to be 
performed if the pattern(s) of the LHS is (are) satisfied. Actions are typically 
method calls. Two additional capabilities of Jess are that the LHS can contain 
patterns that match external Java objects, and the RHS can call not only native 
Jess methods, but instance methods of externally referenced Java objects and 
static class methods. Via Java JNI, we could even call functions in other 
languages like C. 

The Jess syntax is similar to the CLIPS syntax. However, there are some features 
that make the Jess language easier and more flexible. The general form of a Jess 
rule is: 

(defrule RuleName “comment” 
(fact_1). . . (fact_N) =>(action_1) . . . (action_M) ) 

This rule can be easily mapped on a corresponding ECA rule. The LHS portion of 
the Jess rule can be seen as the if<condition> part of an ECA rule, and the RHS as 
the then <action> part. 

5.2.4 Applicability 

Jess supports both forward and backward chaining, but Jess’s backward chaining 
version is not transparent to the programmer. Actually, it is necessary to declare 
the specific kinds of facts that can serve as backward chaining triggers, and only 
specific rules have to be defined to be used in backward chaining. In fact, Jess’s 
reasoning engine is strictly a forward chaining engine, and, therefore, backward 
chaining is effectively simulated in terms of forward chaining rules. However, the 
simulation is quite effective, and Jess’s backward chaining mechanism has many 
useful applications [17]. 

As CLIPS, Jess uses the RETE algorithm [33] to process rules. However, Jess has 
enhanced and refined the algorithm to improve the performance and flexibility of 
the system. 

Jess can be licensed for commercial use, and is available at no cost for academic 
use. 
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5.3 jDREW 

jDREW (Java Deductive Reasoning Engine for the Web) is a configurable and 
powerful deductive reasoning engine written in Java and well integrated with the 
Web. 

5.3.1 Main features 

Knowledge-based systems to process the declarative information and rules can 
use jDREW as an embedded reasoning engine through its various application 
programmer's interfaces (APIs). jDREW can be easily deployed as part of a larger 
Java system, on a server or, with its small memory footprint, on a client [18]. 

jDREW was designed to be flexible also in its capabilities and it provides 
modules to process rules in Prolog and Rule Markup language (RuleML) format. 
jDREW is part of the Rule Markup Initiative [34] that has defined a shared Rule 
Markup Language (RuleML), permitting to use both forward and backward 
reasoning on rules written in XML for deduction, rewriting, and further 
inferential-transformational tasks. 

The goal of the Rule Markup Initiative is to develop RuleML as the canonical 
Web language for rules using XML markup, having formal semantics, and 
allowing efficient implementations. RuleML covers the entire rule spectrum, from 
derivation rules to transformation rules and to reaction (production) rules. 
RuleML allows one to specify queries and inferences in Web ontologies, 
mappings between Web ontologies, and dynamic Web behaviors of workflows, 
services, and agents. 

5.3.2 The RuleML Initiative: general architecture of rules 

The RuleML Initiative has developed a modular RuleML specification and 
transformations from and to other rule standards/systems. Moreover, it 
coordinates the development of tools to elicit, maintain, and execute RuleML 
rules. Figure 23 shows the hierarchy of rules adopted by the RuleML Initiative. 

Figure 23 - The RuleML hierarchy of rules 

The RuleML hierarchy of rules is a reduction tree rooted in general rules. Its main 
branches distinguish reaction rules and transformation rules. Directly below 
transformation rules are derivation rules. Derivation rules specialize to facts and 
queries, which themselves can become integrity constraints.  

  
    rules 

   / \   
   / \ 
        reaction rules  transformation rules  

                                        |  
     | 

      derivation rules  
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             /   \ 
  facts queries 

    | 
          | 

  integrity constraints   
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These different types of rules and how jDREW executes them can be explained in 
the following ways [19]:  

 General rules are captured at high level in the form of natural language 
statements. In certain cases, these statements may be transformed into executable 
rule expressions by using formal notations, preferably declarative rule languages. 
In other cases, these statements cannot or do not need to be transformed. General 
rules may be also stated in a combination of both natural language and declarative 
executable languages [36].   

 Reaction rules are production rules (see section 4.2), which are concerned 
with the invocation of actions in response to events and state the conditions under 
which actions must be taken. Reaction rules have an operational semantics with 
no clear logical semantics. Therefore, they can be processed just using the 
forward reasoning in a natural fashion, like in deductive databases, 
observing/checking events/conditions and performing an action if and when all 
events/conditions have been recognized/fulfilled. In our project, we are interested 
in this kind of rules, since they have a direct correspondence with ECA rules.   

 Transformation rules are general rules whose event trigger is always 
activated. For transformation rules the backward reasoning is normally preferred.  

 Derivation rules (see section 4.2) consist of knowledge statements that are 
derived from other knowledge by an inference calculation. Derivation rules have 
a logical semantics that allow them to be processed using both a forward 
reasoning and a backward reasoning. Since in different situations different kinds 
of reasoning for derivation rules may be optimal (forward, backward, or mixed), 
RuleML does not prescribe any one of these.  

 Facts are derivation rules that have a positive (true) conjunction of premises 
in the LHS. For facts or unit clauses there is no notion of reasoning strategy.  

 Queries are derivation rules that have a negative (false) disjunction of 
conclusions in the RHS. Queries may be proved by using both forward and 
backward reasoning.  

 Integrity constraints are usually processed by using the forward reasoning, 
i.e., triggered by update events, mainly for efficiency reasons. However, they can 
be processed instead by using the backward reasoning, trying to show 
(in)consistency by fulfilling certain conditions (without need for recognizing any 
event). 

5.3.3 Applicability 

jDREW is an engine for clausal first-order logic. The jDREW APIs makes use of 
powerful deduction techniques like, for example, discrimination trees that identify 
the choices of what clauses can extend a given goal. jDREW does this efficiently 
in that it executes independently of the number of non-matching clauses [18]. 

In its current state, jDREW forms a component suite that consists of various 
software modules (components). Each component carries out an individual 
function of the inference procedure and can be easily assembled into a reasoning 
system.   

jDREW is an open source project under the GNU General Public License (GPL). 
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5.4 Mandarax 

Mandarax is an open source Java class library for deduction rules. It provides 
representation, persistence, exchange, management and processing (querying) of 
rule bases. The main objective of Mandarax is to provide a pure object-oriented 
platform for rule-based systems [21].  

5.4.1 Application environment 

The main application of Mandarax is the query-driven model based on derivation 
rules. Therefore Mandarax has been designed to process data held in external 
information sources that are usually huge relational databases. This is an 
important distinction between Mandarax and rule engines as CLIPS and Jess. 
CLIPS and Jess (and the rule-based systems in general) load facts from the 
knowledge base into their working memory in order to process the rules. In 
contrast, Mandarax allows the easy integration of all kinds of external data 
sources with no need to load this information into the working memory. For 
instance, database records can be easily integrated as sets of facts, and reflection is 
used in order to integrate functionality available in the object model. Other data 
sources (EJB beans, Web services, etc.) can be integrated as well. 

Rule bases can be made persistent using the XKB module [20]. This module 
stores rules and other knowledge in a format similar to RuleML. The Mandarax 
team itself is part of the RuleML initiative working on a XML standard for rules 
[34]. Export and import of RuleML rule bases is supported by Mandarax. The 
RuleML editor is a Mandarax-based application to edit and query knowledge 
bases stored as RuleML XML files. 

Extensions to Mandarax are available, including graphical user interface 
components (Swing and servlet/JSP tag based) and other add-ons [20]. 

5.4.2 General architecture 

We illustrate the Mandarax mechanisms in Figure 24 with a rule-based query in a 
Client/Server architecture, which is a typical application of Mandarax [22]. In 
Figure 24 we show the interactions between client and server. The client 
communicates with the server using HTTP requests. The server processes them 
and sends method calls held in the requests to the logic layer, where the Mandarax 
service is situated. This service does not have a working memory to load the 
knowledge base, but it is a service able to directly interact via SQL queries with a 
persistency layer consisting of a server database. The results of these queries are 
processed by the Mandarax service and then delivered to the client via HTTP 
responses. 
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Presentation layer (client) 

Logic layer (application server) 

Presentation layer (web server) 

Persistency layer (db server) 

 

Mandarax service 

 
Figure 24 - Rule-based query answering in Client/Server architecture 

5.4.3 Mandarax language 

In Mandarax, Java interfaces and classes represent the various elements in logical 
expressions. Consider the following example: 

If the turnover of a customer is higher than 500$ then the customer qualifies for a 
discount of 5%. 

This derivation rule shows that one (or many) conditions can be associated with 
one conclusion. Sometimes the conditions are also called prerequisites or body of 
the rule, while the conclusion is called its head. The meaning of a rule is simple: 
whenever all conditions are true, the conclusion is true as well. Usually the 
conditions of a rule are connected using “and”, meaning that all conditions must 
be satisfied. Conditions can also be connected by “or”, meaning that the 
conclusion is true if at least one of the conditions is true.  

The conditions and the conclusion are facts, which can also occur in isolation. The 
facts themselves consist of terms and predicates associating these terms. 
According to object-oriented terminology, terms represent objects, and predicates 
represent relationships between terms. In the example above, “higher than” and 
“qualifies for” are both predicates, while “500 $”, “ 5%”, “ customer” and “the 
turnover of a customer” are terms. There are three different kinds of terms: 
constant terms, variable terms and complex terms. Constant terms are more or less 
concrete objects like “500$” or “5 %”. In contrast, “customer” is a variable, which 
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is a kind of placeholder that can be replaced by concrete terms if needed. This 
makes sense in particular for rules, since otherwise we would need to define a 
separate rule for each customer. Finally, complex terms can be computed from 
other terms. In the example, “the turnover of a customer” is a complex term. The 
function “turnover of a customer” is an instruction on how to build a new term 
from two other terms. The terms inside a complex term can again be constant, 
variable or complex. Figure 25 shows the detailed relation between logic concepts 
in Mandarax and object oriented concepts in Java [22]. 

Logic Concepts (Mandarax) 

 

 

 

 

 

 

 

        

 
 

 

 

 

OO Concepts (Java) 
Figure 25 – Mandarax concepts and their corresponding Java programming 

concepts 

5.4.4 Mandarax in a context-aware scenario 

Considering the alignment with ECA rules, the Mandarax website [20] states that 
it provides a Mandarax ECA, which is an extension that can be used to program 
reactive agents. The system is event-driven: after events have registered event 
listeners (handlers), these listeners query the knowledge base for the next action 
that must be performed. Both the event and the action mechanism are designed for 
distributed systems. Although Mandarax ECA could be useful for our project due 
to the support it offers to ECA rules, documentation on Mandarax ECA is hard to 
find and for this reason we could not understand how this mechanism works. 
Therefore, we could not use Mandarax ECA and we can conclude that, at the 
moment, Mandarax does not directly support knowledge originated from event 
generators (event-based systems). 

We discuss the support that Mandarax provides to ECA rules with an example 
depicted in Figure 26. Since Mandarax is based on querying model as opposed to 
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an events model, context-aware scenarios characterized by events-based models 
are not directly supported by Mandarax. 

 

          
          (3) updating            NOT SUPPORTED 
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Figure 26 - Mandarax application in context-aware scenario 

We consider the following context-aware scenario:  

 In an external database there are two facts: 

1. The location of Laura’s laboratory (LabLocation), which is static 
information that does not change over time. 

2. Laura’s location (LauraLocation), which is dynamic information that 
changes over time. 

 In the Mandarax engine we may have two simple rules associated with 
these facts:  

1. If (Laura is in the Lab) then (Send to her supervisor the notification 
“Laura is working”); 

2. If (Laura is not in the Lab) then (Send to her supervisor the notification 
“Laura is not working”). 

The Mandarax engine continuously queries the database for checking if Laura is 
in the laboratory (message 1 in the picture). We suppose that initially Laura is in 
the laboratory. Therefore the initial response to the Mandarax engine is “Laura is 
in the Lab” (message 2 in the picture). Mandarax executes the RHS of rule1 and 
sends to the supervisor the “Laura is working” notification. 

If at a certain moment Laura leaves the laboratory, the events source senses this 
change and automatically updates the database. Therefore, the response to the 
query (1) becomes “Laura is not in the Lab” (message 4 in the picture). Mandarax 
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executes the RHS of rule 2 and sends to the supervisor the notification “Laura is 
not working”. 

As we can see in Figure 26, Mandarax does not support the direct updating of the 
rule engine, which would be desirable in a context-aware scenario. 

5.4.5 Applicability 

The Mandarax inference engine uses (query-driven) backward reasoning, and the 
reference implementation uses an object-oriented version of backward reasoning 
similar to the algorithm used in Prolog. Prolog is a logic programming language 
with simple and clear syntax and semantics, which is used in many artificial 
intelligence programs.  

The Mandarax inference engine is very flexible: unification algorithm, loop 
checking algorithm and selection policy can be configured. In contrast, most 
commercial rule systems such as popular open source solutions, like CLIPS and 
Jess, use forward reasoning, in particular the RETE algorithm. The Mandarax 
approach is more appropriate in a query-driven (HTTP requests, SQL queries) 
system environment, where facts can stay in the database and are integrated on the 
fly. However, if the rule base (not the underlying database) is large, forward 
reasoning systems provide much better performance. Users reported that the 
Mandarax API is much simpler to use than Jess. This topic has been discussed in 
various discussion groups and opinions are controversial [20].  

Mandarax is free and open source. The software license used is the GNU lesser 
general public license, making the software suitable for both open-source and 
commercial projects. 

5.5 Rule engines’ comparison 

In Table 2, we compare CLIPS, Jess, jDREW and Mandarax, in order to decide 
which tool is the most suitable for our purposes. 

Each engine has benefits and drawbacks, and choosing the best one depends on 
the application being developed. Most engines we have studied seem to give 
support to several aspects we presented in section 4.4. Considering we are 
interested in developing context-aware applications, some engines perform better 
than others. The following paragraphs analyze these engines on the light of the 
criteria we have defined. 

We assign the marks “+” or “++” to the rule engines when the result of the current 
evaluation is good or excellent, respectively. For some feature, the symbol “•” 
means that the engine supports this feature. For example, in the case of the 
portability, it means that the tool can be re-used in several operating systems, and, 
in the case of the commercial aspects, that the tool is free, open source and has a 
users’ community. 
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Table 2 - Comparison between rule engines 

 

 CLIPS JESS JDREW MANDARAX

Knowledge 
representation 

++ ++ + + 

Portability • • • • 

Integration/Extensibility + ++ + + 

Tools support + ++ + + 

Expressiveness ++ ++ ++ ++ 

Alignment with ECA 
rules 

++ ++ + + 

Commercial aspects • • • • 

CLIPS and Jess can handle a wide variety of knowledge with support for rule-
based, object-oriented and procedural programming paradigms, while jDREW and 
Mandarax can just process knowledge in the form of deduction/declarative rules. 
For this reason the evaluation of the knowledge representation supported by 
CLIPS and Jess is excellent (++), whereas for jDREW and Mandarax it is just 
good (+). This criterion is important for our choice, since we are interested in 
developing our rule-based system using an engine that gives support to the object-
oriented programming paradigm. 

All the rule engines support integration and hold a sufficient level of extensibility, 
but we evaluate Jess as being better than the others because of the wide 
capabilities to extend its functionality and its flexibility to be integrated with 
many other languages and systems. 

Tools support is the decisive criterion for choosing Jess. Each engine provides 
interactive development environments, but Jess comes with JessDE, an Eclipse-
based development environment.  

Expressiveness is also an important criterion, since it denotes the concepts we can 
express using the basic constructs of each specific language. All the engines hold 
an excellent level of expressiveness, which permits the specification of very 
complex rules. 

Concerning language and its ease of use, CLIPS language is considered as 
inconvenient for the programmer because of the overuse of parenthesis and the 
need to use inverse polish notation for building arithmetic and conditional 
expressions. Moreover, concerning the logic and the reasoning support, Jess and 
jDREW provide both forward chaining and backward chaining strategies to 
process the rules, while CLIPS rules can be used only for forward reasoning and 
Mandarax rules only for backward reasoning.     

Concerning the alignment with ECA rules, Mandarax scores low since it is 
suitable for working with derivation rules and remote information sources, like 
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huge databases of bank systems, but it is not the best option for dealing with 
production/ECA rules and event-based systems.  

jDREW scores very low if we consider the availability of documentation. It has 
been difficult for us to understand how this rule engine works. On the contrary, 
CLIPS, Jess and Mandarax have full and exhaustive documentation available on 
the Web. We think this difference has become evident by considering the 
presentations of the rule engines (see sections 5.1 to 5.4). In section 5.3, we have 
reported about the hierarchy of rules that the jDREW engine can process, but we 
could not find any explanation for its internal mechanisms nor application 
examples. 

We conclude that Jess is the most suitable rule engine for our work, since it 
supports all the features we need for designing and implementing our Controller 
component in the scope of the AWARENESS project. 
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6 Jess 

The goal of this chapter is to introduce Jess and its basic functions, and to discuss 
how to write simple applications in Jess. 

The chapter is structured as follows: section 6.1 discusses the Jess architecture 
and section 6.2 describes examples of Jess applications. Section 6.3 consists of an 
introduction to the Jess language. Section 6.4 describes how to represent the 
different kinds of facts supported by Jess, while section 6.5 details how to write 
rules. Section 6.6 discusses the most powerful features of Jess, namely those that 
facilitate its integration with Java. This section explains how to embed Jess in 
Java applications. Finally, section 6.7 discusses the use of Jess in context-aware 
applications.  

6.1 The Jess Architecture 

Since we have decided to use Jess in order to design our context-aware Controller 
component, the first step towards this goal is to present the Jess architecture. 

We have already introduced the basic components of a rule engine (see section 
4.2.2 ), which are the working memory, the rule base, and the inference engine. 
Figure 27 shows these components in the Jess architecture, underlining their inner 
structure and their mutual connections.  
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Figure 27 - The Jess architecture 

The Jess rule engine does not contain any facts or rules until they are loaded, 
respectively, into the working memory and rule base.  

The working memory contains facts and for this reason it is also called a fact base. 
Facts are all pieces of information the Jess rule engine works with, and they can 
be used as both LHS and RHS of the rules. The Jess working memory is similar to 
a relational database, where facts are like rows of the database maintained with 
indexes to speed up searching in the working memory. 

The rule base contains all the rules that the engine knows. In rule-based systems, 
rules are sometimes stored as strings of text, but Jess holds a rule compiler for 
processing them into some format that the inference engine can manage more 
efficiently. Particularly, the Jess’s rule compiler builds a Rete Network, which is a 
complex and indexed data structure for speeding up rule processing. 

The inference engine decides what rules to fire and when. It consists of the 
pattern matcher and the agenda. 

The pattern matcher decides which rules to activate based on the current contents 
of the working memory. A rule is activated when the pattern matcher finds facts 
that can satisfy the RHS of this rule. This is not a trivial task if we take into 
account that the working memory may contain thousand of facts and the rule base 
contains complicated rules with several premises and conclusions. In these cases, 
the pattern matcher might need to search through millions of combination of facts 
to find those combinations that satisfy rules. Fortunately, efficient ways exist to 
solve the problem, since a lot of research has focused on this area. 

The agenda stores the list of rules that could be potentially fired. The agenda 
consists of an ordered list of rules, whose RHS can be executed. The agenda has 
to decide which rules have the highest priority and should be fired first. This 
process is called conflict resolution strategy and usually it takes into account: 

 the specificity or complexity of each rule; 

 the relative age of the LHS of each rule in the working memory. 
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We discuss conflict resolution strategies adopted by rule-based systems in section 
4.2.3. Jess allows its users to set the conflict resolution strategy, particularly, the 
least-recently-used (default strategy) and the first-applicable. Moreover, Jess 
allows the programmer to set a specific priority for the rules (salience strategy), so 
that certain more important rules are always fired first. 

Finally, the execution engine fires the rules. It is the component that executes the 
RHS of the rule once the inference engine decided what rule to fire. Jess offers a 
complete programming language to define what happens when a given rule fires, 
whereas other rule-based systems just offer the possibility of adding, removing, 
and modifying facts in the working memory. 

The Jess rule engine works in discrete cycles consisting of three steps, as we can 
see in Figure 27: 

1. All the rules contained into the rule base are compared to the working 
memory in order to decide which ones should be activated during this 
cycle. The list of these activated rules, together with any other rules 
activated in previous cycles, is called the conflict set. 

2. The conflict set is ordered to form the agenda. This process is called 
conflict resolution. The used strategy depends on many factors, some of 
them under the programmer’s control.  

3. To complete the cycle, the first rule on the agenda is fired and the entire 
process is repeated again.  

6.2 Jess Applications 

We present below an overview of the Jess application areas and we discuss the 
possible ways to use Jess in combination with Java. This analysis is useful for 
understanding how we are going to exploit the functionality of the Jess engine and 
its flexibility. 

Jess has been used to develop a broad range of commercial software, including: 

 expert systems that evaluate insurance claims and mortgage applications; 

 agents that predict stock prices and buy and sell securities; 

 network intrusion detectors and security auditors; 

 design assistants that help mechanical engineers;  

 smart network switches for telecommunications; 

 servers to execute business rules; 

 intelligent e-commerce sites; 

 games. 
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When the aim is to develop large applications, Jess can be used in two different 
but overlapping ways: as a tool for developing rule-based systems and as a 
general-purpose programming language. 

So far, we have talked about Jess as a rule engine that can continually apply 
hundreds, or even thousand, of rules to a set of data. In this case, Jess is suitable to 
develop rule-based systems where rules represent the heuristic knowledge of 
human experience in specific domains, and the knowledge base represents the 
state of an evolving situation. 

However, Jess is general-purpose programming language exploitable even in case 
no rules have to be written. Particularly, Jess can directly access all Java classes 
and libraries, and is frequently used as a dynamic scripting or rapid application 
development environment. Whereas Java code generally must be compiled before 
it can be run, Jess interprets code and executes it immediately upon being typed. 
This allows us to experiment with Java APIs interactively and build up large 
programs incrementally. It is also relatively easy to extend the Jess language with 
new commands written in Java or in Jess itself, so the Jess language can be 
customized for specific applications. 

Jess can be used in command-line applications, GUI applications, servlets, and 
applets. It is possible to develop Jess applications, with or without GUIs, without 
compiling a single line of Java code, but it is also possible to write Jess 
applications controlled entirely by Java code, with a minimum of Jess language 
code.  

We observed that the most important step in developing a Jess application is to 
choose the proper architecture between the almost unlimited set of possibilities. 
One way to organize the possibilities is to list them in increasing order of the 
amount of Java programming involved: 

1. Pure Jess language, with no Java code. 

2. Pure Jess language, but the program accesses Java APIs. 

3. Mostly Jess language code, but with some custom Java code in the form 
of new Jess commands written in Java. 

4. Half Jess language code, with a substantial amount of Java code providing 
customs commands and APIs. Jess provides the main() function. 

5. Half Jess language code, with a substantial amount of Java code providing 
customs commands and APIs. The programmer writes the main() 
function. 

6. Mostly Java code, which loads Jess language code at runtime. 

7. All Java code, which manipulates Jess entirely through its Java API.  

In this thesis we concentrate on possibilities 5 and 6, since we should manipulate 
both Java and Jess commands. This is because context-aware applications consist 
not only of rules, but they also involve parts that should be implemented in Java.  

Java is sometimes considered slow. This is not always true, since modern Java 
virtual machines are extremely powerful and fast. Being written in Java is not a 
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liability for Jess. The algorithm used for pattern matching is fairly efficient, since 
it allows Jess to search through large amounts of rules and facts in little time. 
Independent benchmarks have shown that Jess is significantly faster than many 
rule engines written in the C language, which is normally considered as faster than 
Java. For example, on many applications, Jess outperforms CLIPS by a factor of 
20 or more on the same hardware. 

Jess’s rule engine uses an improved form of the Rete algorithm to match rules 
against the working memory. This algorithm explicitly trades space for speed. 
Jess does not contain commands that let us sacrifice some performance to 
decrease memory usage. Nevertheless, Jess’s memory usage is reasonable.  

Since Jess is a memory-intensive application, its performance is sensitive to the 
behavior of the Java garbage collector, which is the part of the Java Virtual 
Machine responsible for finding and deleting unused objects.    

6.3 The Jess Language 

The aim of this work is to use the functionality of the Jess rule engine in order to 
build a rule-based system suitable for context-aware applications.  

We do not discuss the Jess language extensively in this section, but we rather 
provide the basic knowledge necessary to understand the case studies that we 
present in section 6.7. For the complete documentation we refer to [17] [18].  

6.3.1 Basics 

Symbols, numbers, strings, comments, lists, variables, and functions are the basic 
elements of the Jess language. Symbols are like identifiers in other languages, and 
in Jess they are case sensitive. The recommended symbols consist of letters, 
numbers, underscores, and hyphens; hyphens are traditional word separators. Jess 
gives special meaning to a few symbols that are like Java keywords. The symbol 
nil is like null in Java, and TRUE and FALSE are Jess’s Boolean values. Other 
symbols have special meanings only in certain context, like the symbol crlf that 
is translated into a newline when printed. 

The Jess language has three numeric types: RU.INTEGER corresponding to Java 
int, RU.FLOAT corresponding to Java double, and RU.LONG corresponding to 
Java long. 

Character strings in Jess are delimited using double quotes ("). Strings are 
represented as jess.Value objects of type RU.STRING. All Jess values are 
represented internally by instances of the jess.Value Java class. This is the 
class used to interface Jess and Java code. 

Comments add descriptive explanations to the Jess code that can appear anywhere 
in a program, since they are simply ignored for execution. Jess supports two kinds 
of programmer's comments: line comments and block comments. Line comments 
begin with a semicolon (;) and extend to the end of the line of text. Block 
comments work as in Java: they are delimited by the strings "/*" and "*/", at the 
beginning and the end, respectively. 
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Lists are the basic unit of structure in the Jess code. A list always consists of an 
enclosing set of parentheses and zero or more symbols, numbers, strings, or other 
lists. Lists are like arrays in Java and other languages. The first element of a list in 
Jess is called the list's head. 

Variables are named containers that can hold a single value. They are like 
variables in Java. The main difference is that the Jess variables are untyped. This 
means that a Jess variable can hold a single value at a time (it can be of any type, 
like, for example, symbol, number, string or list), but this value and its type, can 
be changed during the lifetime of the variable. The variables in Jess are written as 
symbols beginning with a question mark (?) that is part of the variable’s name. 
We do not need to declare variables in the Jess language, since they come into 
being when we first give them a value. To assign a value to a variable, the Jess 
language provides the bind function:  

(bind ?x “The value”) 

For defining functions, Jess provides the deffunction construct, which has the 
form: 

(deffunction <name> (<parameter>*)[<comment>] <expression>*) 

The name of the deffunction must be a symbol. A function can have several 
parameters, where each of them must be a variable name complete with the 
question mark. The comment is optional and is a double quote string describing 
the purpose of the function. Finally, the body of the function can be composed of 
any number of expressions. Once a function is defined, it can be used like any 
other Jess function. 

6.3.2 Scripting Java with Jess 

We can create and manipulate Java objects directly from Jess. In this way, we can 
do virtually anything we can do from the Java code, except for defining new 
classes. 

With the Jess new function is possible to create instances of Java classes. For 
example, consider we have a class named Notification. Suppose we want to 
call a method of this class within a rule written in Jess. For that, we need to create 
a Java object Notification and then store it in a variable with the following 
function call: 

(bind ?class (new Notification)) 

In this way we obtain a reference to a Java object instance of the Notification 
class in the Jess variable ?class, and we can invoke any of this object’s methods 
using the call function. For example, we can invoke the method: 

Public void SendNotification(String supervisor) 

of the class Notification, using the following construct: 

(call ?class SendNotification ?name) 

where the variable ?name is the argument of the method SendNotification, 
and it can be defined with the bind function as in: 
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(bind ?name “Patricia”) 

Like any Java code, Jess can only invoke the public constructors of public classes 
in other packages. Therefore, if we want Jess to be able to construct instances of 
the classes that we define, we must make sure that both the class and its 
constructors are defined as public. 

When we call a Java method, Jess converts the arguments from Jess data types to 
Java types according to Table 3. 

Table 3 - Standard conversion from Jess types to Java types 

 

 

 

 

 

 

 

 

 

 

 

       

 

Likewise, Jess converts the return values of Java methods to Jess types according 
to Table 4. These conversions are generally the reverse of those in Table 3. 

 

 

 

 

 

 

 

 

 

Jess type Possible Java type 

RU.JAVA_OBJECT The wrapped object  

The symbol nil A null reference 

The symbols TRUE and FALSE String, boolean or 
java.lang.Boolean 

RU.SYMBOL, RU.STRING String, char or 
java.lang.Character 

RU.FLOAT Float, double or their wrappers 

RU.INTEGER Long, short, int, byte, char, 
and their wrappers 

RU.LONG Long, short, int, byte, char, 
and their wrappers 

RU.LIST A Java array 
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Table 4 - Standard conversion from Java types to Jess  types 

 

 

   

 

 

 

 

 

 

6.4 Representing Facts in Jess 

In this section we discuss how to deal with facts in Jess. 

6.4.1 Basic commands by Jess prompt 

This section presents some commands for creating and managing facts within the 
Jess working memory that we have used quite often in our work.  

The reset command initializes the working memory and creates the fact 
(MAIN::initial-fact). This fact has a special meaning for the Jess inner 
mechanism. Actually, many rules expect this initial fact to be in the working 
memory, since they cannot work correctly without it. 

The reset command must be used at least once before using the working 
memory. For example, it is a good practice to use it when a program starts up, or 
at the beginning of an interactive session. Afterwards, we can issue reset again, 
whenever it is necessary to reinitialize the working memory. 

The watch command prints messages whenever interesting changes occur in the 
working memory. We can pass different arguments to the watch function in order 
to allow Jess to report on several kinds of events. For example, the expression 
watch facts displays messages whenever any fact is added or removed 
into/from the working memory. The following code illustrates the use of the 
reset and watch facts commands:  

Java type Jess type 

A null reference The symbol nil 

A void return value The symbol nil 

String RU.STRING 

An array A Jess list 

boolean or java.lang.Boolean The symbols TRUE and FALSE 

byte, short, int or their wrappers RU.INTEGER 

long or java.lang.Long RU.LONG 

double, float or their wrappers RU.FLOAT 

char or java.lang.Character RU.SYMBOL 

anything else RU.JAVA_OBJECT 
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Jess>(watch facts)                
TRUE                   
Jess>(reset)                     
==> f-0 (MAIN:: initial-fact)          
TRUE 

In the responses Jess gives to the commands on the Jess prompt the ==> symbol 
means that a fact has been added to the working memory, while the <== symbol 
means that a fact has been removed from the working memory. 

While the watch facts construct shows when new facts appear and old ones are 
removed, the facts command allow us to see the list of all the facts contained in 
the working memory. Continuing the previous example by typing facts, we can 
see the initial fact, which is the only one currently presents in the working 
memory: 

Jess>(facts)                    
f-0 (MAIN:: initial-fact)            
For a total of 1 facts in module MAIN 

Jess is a rule engine for processing rules, and rules can only act on information 
represented by facts in the working memory. Therefore, it is necessary to know 
how to act on facts.  

For adding a new fact in the working memory, Jess uses the assert function. 
The syntax of this function depends on the type of fact that we want to assert. We 
present these different types in section 6.4.2. 

Each fact asserted in the working memory holds an index, called fact-id, which 
serves as a convenient way to refer to a fact when it is necessary to modify or 
retract it from the working memory, and when Jess decides the order in which 
rules have to be fired. 

A fact represents a true statement about the world. Therefore, if changes occur in 
the world, it may be necessary to remove a fact from the working memory. For 
doing this, Jess offers the retract function. There are two ways to retract a fact: 
(i) by using the fact-id, as below: 

Jess>(facts)                    
f-0 (MAIN:: initial-fact)            
For a total of 1 facts in module MAIN        
Jess>(retract 0)            
TRUE            
Jess>(facts)                  
For a total of 0 facts in module MAIN 

(ii) by retracting the same fact using a reference to a Fact object, as in: 

Jess>(facts)                    
f-0 (MAIN:: initial-fact)            
For a total of 1 facts in module MAIN         
Jess>(bind ?f (fact-id 0))        
<Fact-0>          
Jess>(retract ?f)            
TRUE            
Jess>(facts)                  
For a total of 0 facts in module MAIN 
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The latter way is faster, but it may be more convenient to use fact-ids if we are 
working interactively at the Jess> prompt. 

6.4.2 Types of facts 

This section presents the different types of facts supported by Jess. They are 
called unordered, ordered and shadow facts.  

 An unordered fact is like a row in a relational database. For example: 

(person (name “John Brown”) (age 20) (gender Male)) 

This fact holds a head (person), and three properties, called slots, which are 
(name, age, gender). The head is like the table name in a database, and the slot 
names are like the column names. Slots may have single or multiple values. In the 
example above we have slots with single values, but we can create slots with 
multiple values by using the multislot keyword.   

Before asserting an unordered fact with a given head, we have to specify its 
structure using the deftemplate construct. In section 6.6 we show how to use 
this command to define fact structures using the Java language.  

 Ordered facts are Jess lists, where the head of the list defines a category for 
the fact. For example: 

(shopping-list eggs milk bread) 

Ordered facts are similar to unordered facts, the difference is that we can assert 
ordered facts without explicitly defining a deftemplate. In this case, Jess 
automatically generates an implied deftemplate for them that contains a single 
slot named __data: 

(shopping-list (__data eggs milk bread)) 

Jess treats ordered facts in a special way, since it normally hides the name of the 
slot when the fact is displayed. This is just a syntactic shorthand, since sometimes 
slot names are redundant and force us to do more typing than we would like. 
Actually, ordered facts are unordered facts with a single multislot named __data.  

 Shadow facts are the third category of facts supported by Jess. They are 
interesting since they connect the rule engine to the changes occurring in the real 
world outside the engine. Jess uses JavaBeans to implement shadow facts. A 
JavaBean consists of a self-contained, reusable software component that can be 
easily developed and assembled to create sophisticated applications. JavaBeans 
are special Java objects that contain values, called properties, which can change 
over time. 

A shadow fact is an unordered fact whose slots correspond to the properties of a 
JavaBean. The name shadow fact derives from the remark that they are like 
images, or shadows, of JavaBeans outside Jess. Actually, shadow facts serve as 
the connection between the Jess working memory and the Java application inside 
which Jess is running. 

In order to generate a template that represents a specific JavaBean for a shadow 
fact, we have to use the defclass function, instead of the deftemplate. 
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Moreover, we use the definstance construct, instead of the assert function, 
to add to the working memory an individual fact that is connected to one 
particular JavaBean instance. 

6.5 Writing Rules in Jess 

In this section, we discuss how to develop a knowledge base consisting of a 
collection of rules, which can take actions based on the current contents of the fact 
base.  

6.5.1 Defining rules 

The Jess pattern matcher compares the rules in the rule base to the facts in the 
working memory in order to decide which rule(s) to activate (see section 6.1). The 
list of the activated rules is contained in the agenda. If we wish to see if a rule is 
placed on (or removed from) this list, we can pass the argument activations to 
the watch function discussed in section 6.4.1. Actually, the command watch 
activations tells Jess to print a message whenever a rule is activated. 

According to the conflict strategy adopted by Jess for ordering the activated rules, 
the first rule in the agenda is executed when we issue the run command. No rule 
is fired except during a call to run. Using the run command, the first rule 
activated in the agenda is executed. The rules may not only react to the contents of 
the working memory, but they may also change it. Therefore, one rule can add 
information into the working memory, which in turn can cause another rule to 
fire. The run function returns when there are no more rules to fire. Once a rule 
has fired, it does not fire again for the same list of facts. This means that the RHS 
of a certain rule already fired, cannot be executed twice if the facts contained in its 
LHS are not asserted again. 

If we pass the argument rules to the watch function, Jess prints a message 
whenever a rule is fired. Finally, the watch all command tells Jess to print 
diagnostics for any important event that happens while the program is running. 
For example, we can see a message whenever a rule is activated and fired.  

For defining a rule, Jess offers the defrule construct. Its general syntax is the 
following: 

(defrule Name-of-the-rule “Comment” 
(condition1)...(conditionN)=> (action1)...(actionM)) 

The name of the rule is a symbol where a hyphen (-) is often used to separate the 
words (this is a common practice, but it is not mandatory). The name is followed 
by an optional documentation string that describes the purpose of the rule. The 
symbol => separates the rule’s LHS (“if” part) from its RHS (“then” part), so the 
symbol => can be read as then.  

We illustrate the Jess construct defrule for defining rules, and the inner 
mechanism of the Jess rule engine with an example of a simple rule.  

6.5.2 Example of ECA rule in Jess 

Consider the following ECA rule: 
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If ((John is the father of Bob) and (Bob is the father of Tom))                
then (FindAndPrint the grandfather and the granchild) 

We can express the LHS of the rule using two ordered facts for which we do not 
need to define a deftemplate, since Jess generates an implied one:  

(Father John Bob)                    
(Father Bob Tom) 

If John is the father of Bob and Bob is the father of Tom, this means that John is 
the grandfather of Tom. Therefore, we can define the rule: 

(defrule FindAndPrintGrandfather       
(Father ?x ?y) (Father ?y ?z) =>        
(assert (Grandfather ?x ?z))           
(printout t ?x “ is the grandfather of ” ?z crlf)      

This rule assigns ?x = John, ?y = Bob, ?z = Tom and, as soon we enter the run 
command, the RHS of the rule is executed. As a consequence, we could see that 
that the fact (Grandfather John Tom) is asserted in the working memory, and 
the message “John is the grandfather of Tom” is printed as output in the 
console. On the Jess console this example looks like: 

Jess>(assert (Father John Bob))(assert (Father Bob Tom))  
==> f-1 (MAIN:: Father John Bob)       
<Fact-1>                
Jess> ==> f-2 (MAIN:: Father Bob Tom)       
<Fact-2>            
Jess> (facts)         
f-0 (MAIN:: initial-fact)             
f-1 (MAIN:: Father John Bob)            
f-2 (MAIN:: Father Bob Tom)       
For a total of 3 facts in module MAIN 

The assert function is used to add the two ordered facts(Father John Bob) 
and (Father Bob Tom). The facts command shows all the facts currently 
contained in the working memory. 

When we insert the FindAndPrintGrandfather rule previously defined, Jess 
prints the following text: 

==> Activation: MAIN: FindAndPrintGrandfather: f-1, f-2   
MAIN :: FindAndPrintGrandfather: +1+1+1+2+t  

This text indicates that the rule matches the facts f-1 and f-2 and is activated in 
the agenda. The line MAIN :: FindAndPrintGrandfather: +1+1+1+2+t is 
a message printed by the watch all command, which shows how Jess interprets 
the rules internally.  

Finally, when we enter the run command, the activated rule is fired: 

Jess> (run)            
FIRE 1 MAIN :: FindAndPrintGrandfather f-1, f-2        
==> f-3 (MAIN :: Grandfather John Tom)         
John is the grandfather of Tom           
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The RHS of the rule is executed, so that the new fact (Grandfather John 
Tom) is added to the working memory, and the output John is the 
grandfather of Tom is displayed. 

6.5.3 Qualifying patterns with conditional elements 

For writing rules with more complex relationships between facts, we need to 
know how to qualify patterns with conditional elements. Patterns are individual 
facts that must be true for executing the rule. The LHS of a rule can consist of a 
list of zero or more patterns. With the conditional elements (CE), we can group 
patterns into logical structures. 

 The “and” conditional element. Any number of patterns can be enclosed in 
a list with and as the head. The resulting pattern is matched if and only if all of 
the enclosed patterns are matched. An example of and conditional element in the 
LHS of a rule is: 

(and (> ?x 30) (< ?x 50) (> ?y 20) (< ?y 60)) 

The RHS of this rule is executed if and only if all the patterns match, namely if 30 
< ?x < 50 and, at the same time, 20 < ?y < 60. The same result would be 
obtained if the and conditional element was omitted. The and conditional element 
is interesting when combined with or and not conditional elements, since it can 
be used for constructing more complex and interesting logical conditions. 

 The “or” conditional element. Any number of patterns can be enclosed in a 
list with or as the head. The resulting pattern is matched if at least one of the 
enclosed patterns matches. An example is: 

 (or (> ?x 30) (< ?x 50) (> ?y 20) (< ?y 60)) 

This expression means that the RHS of this rule is executed if one or more of the 
patterns match. 

The or conditional element can be used inside an and group and vice versa. An 
example of or inside an and conditional element is: 

(and (or (> ?x 30) (< ?x 50) (> ?y 20) (< ?y 60))  
 (neq ?x 0)        
 (neq ?y 0)) 

The RHS of this rule is executed if at least one of the patterns inside the or match 
and, at the same time, ?x and ?y are not equal to zero. Jess automatically 
rearranges the patterns inside the or CE as follows: 

(or (and (> ?x 30)(neq ?x 0) (neq ?y 0)   
 (and (< ?x 50)(neq ?x 0) (neq ?y 0)   
 (and (> ?y 20)(neq ?x 0) (neq ?y 0)   
 (and (< ?y 60)(neq ?x 0) (neq ?y 0)) 

Consequently, a rule containing an or conditional element with n branches (in our 
case n = 4) is equivalent to n rules, each of which has one of the branches on its 
LHS. Each of these generated rules is called a subrule. Jess knows that the 
subrules created from a given rule are related. Therefore, if the original rule is 
removed, every subrule associated with that rule is also removed. 
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 The “not” conditional element. Most patterns can be enclosed in a list with 
not as the head. The resulting pattern is matched if a fact (or a set of facts) that 
matches the pattern inside the not is not found. For example: 

(not (> ?x 30)) 

The RHS of this rule is executed for any value of ?x that is not bigger than 30, 
namely for every value of ?x that is lower or equal to 30. 

The not CE is different from the other conditional elements, since a not pattern 
matches the absence of a fact. Actually, if we want to define that the value of ?x 
is not contained between 30 and 50, we cannot state:  

(and (not (> ?x 30) (< ?x 50)) 

This line of code generates the following Jess exception: 

Jess reported an error in routine Group.add    
Message: CE is a unary modifier not. 

The correct syntax is therefore: 

(and (not(> ?x 30)) (not(< ?x 50))) 

The not CE can be used in arbitrary combinations with the and and or 
conditional elements. For example, consider the LHS defined before: 

(and (or (> ?x 30) (< ?x 50) (> ?y 20) (< ?y 60)) 
 (neq ?x 0)       
 (neq ?y 0)) 

This LHS can be written using the not conditional element as: 

(and (or (not(< ?x 30))      
  (not(> ?x 50))      
  (not(< ?y 20))      
  (not(> ?y 60)))      
 (neq ?x 0)        
 (neq ?y 0)) 

 The “test” conditional element. We can have a pattern enclosed in a list 
with test as the head. This case is special, since the body does not consist of a 
pattern to match against the working memory, but of a Boolean function. A test 
pattern fails if and only if the function evaluates to the symbol FALSE. If it 
evaluates to TRUE, the pattern succeeds. For example, if we want to evaluate if the 
value of ?x is contained between 30 and 50 and the value of ?y between 20 and 
60, we can use the following LHS: 

(test (and (> ?x 30) (< ?x 50) (> ?y 20) (< ?y 60))) 

This expression means that if all the patterns with and as the head match, then the 
RHS of the rule is executed, since the body of the test CE is evaluated TRUE. 

Finally, the test and not conditional elements can be combined. For example, 
(not (test (eq ?x 0))) is equivalent to (test (neq ?x 0)). 
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6.6 Embedding Jess in Java Applications 

In this chapter we have dealt so far with small example applications that use the 
command-line interface tool jess.Main. However, in order to deploy larger 
applications, like, e.g., a web server, an application server or a browser, we have 
to use the Jess library. In fact, jess.Main is just a command-line wrapper built 
around the Jess library. 

With the Jess library, we can create any number of individual Jess inference 
engines, define rules for them, add data to their working memories, run them in 
different threads and collect the generated results. All these objectives can be 
reached from Java code, without using jess.Main. Below we explain how this is 
possible. 

6.6.1 The jess.Rete class 

The core of the Jess library is the jess.Rete class. We can think of an instance 
of this class as a sort of instance of Jess. Different Rete objects are engines 
completely independent of each other, since each jess.Rete object has its own 
independent working memory, list of rules and set of functions to manipulate. The 
Rete class exports methods for adding, finding and removing facts, rules, 
functions and other constructs. The Rete class constitutes a convenient central 
access point for embedding Jess in Java applications.  

To create a jess.Rete object, we can use the default constructor without 
arguments: 

import jess.*;       
 ...        
 Rete engine = new Rete(); 

6.6.2 The executeCommand method 

Once we have created a Rete object, the simplest and most powerful way to 
manipulate Jess from Java consists of using the executeCommand method. This 
method accepts a String argument and returns a jess.Value. The String is 
interpreted as an expression in the Jess language, and the return value is the result 
of evaluating the expression. For example, if we want to assert the fact (Father 
John Bob), we can do the following: 

import jess.*;       
 ...        
 Rete engine = new Rete(); 
 engine.executeCommand(“(assert(Father John Bob))”); 

If we want to run the engine, we can use the command: 

engine.executeCommand(“(run)”); 

The executeCommand is convenient, but it has some important drawbacks. It is 
verbose, since besides typing the whole Jess command, we have also to type the 
executeCommand. Moreover it is potentially inefficient, since Jess has to parse 
the arguments before executing the command. If the Jess code passed as argument 
is long enough to justify the use of the executeCommand (for instance, a Jess 
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rule), the problem does not exist. However, a single short Jess command as 
argument, like reset or run, could cause a big overhead. Finally, it is error-
prone, since the Java compiler cannot detect syntax errors in the Jess script so that 
errors cannot be found until the program is executed.  

For all these reasons, whenever possible we should consider using Jess’s direct 
Java APIs. Some Rete methods that correspond to simple Jess functions are 
shown in Table 5. 

Table 5 - Examples of  simple methods in the jess.Rete class 

 

Rete method  Jess equivalent 

reset() (reset) 

run() (run) 

clear() (clear) 

Therefore, if we want to initialize the engine and run it, we just need to write the 
code: 

engine.reset();       
 ...       
 engine.run(); 

6.6.3 Working with Fact objects in Java 

When we are working with facts in Java, it is better to directly construct 
jess.Fact objects rather than use the executeCommand. The jess.Fact class 
is a subclass of ValueVector. The jess.ValueVector class is the Jess’s 
internal representation of a list, therefore it has a central role in the Jess 
programming in Java. All the entries in the ValueVector correspond to slots of 
the Fact. Table 6 lists some of the Java methods helpful for working with Fact 
objects. 

Table 6 -  Examples of jess.Rete methods for working with facts 

  

 

 

 

 

 

 

Every jess.Fact has an associated jess.Deftemplate object for describing 
the slots that the fact can have. The Deftemplate definition includes a list of 

Rete method Jess equivalent 

addDeftemplate(Deftemplate) (deftemplate) 

assertFact(Fact) (assert fact) 

findfactByFact(Fact) None 

findfactById(int) (fact-id number) 

retract(Fact)  (retract fact-id) 
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slots, each of which can have a default value and a type. The 
addDeftemplate(Deftemplate)construct in Java serves to add 
Deftemplate objects to the Rete class, and it is equivalent to the Jess 
deftemplate command. 

To build a useful Deftemplate, we need to specify the name to the constructor, 
and then add the named slots one by one. If we have defined a Deftemplate 
with a given head for a fact, we do not need to define it again, since all Facts 
with the same head can share this Deftemplate. We show how to create 
jess.Deftemplate objects in section 6.7. 

The Rete method assertFact(Fact) can be used to assert a Fact object. This 
method is more convenient than using the executeCommand(“(assert 
fact)”). Once we assert a Fact object, it becomes part of the Rete object’s 
internal data structures and we cannot change the values of any of its slots. In 
contrast, the Jess prompt allows slot values to be changed using the modify 
function, but from Java we have to retract the fact with the retract method in 
order to release the Fact object and alter it as we wish. The retract method 
accepts a Fact object as argument. If we asserted a fact from Java, we have a 
reference to the corresponding Fact object. When we want to retract this fact, we 
just need to pass the object as argument to retract. For example: 

Fact f = ...       
engine.retract(f); 

If we asserted a fact from Jess, we do not have a reference to a corresponding 
Fact object. In order to retract the fact we have two options: 

 We can construct a Fact object in Java just like the one we want to retract. 
Then, we can pass this Fact object as argument to retract. This approach is 
convenient, since the working memory is stored as a hash table with the Fact 
objects as the key. Therefore, a Fact object can be quickly found in the working 
memory.  

 If we do not want to construct the duplicate of the Jess fact to retract from 
Java, we can use the Java findfactById(int) method that finds a fact given its 
numeric identifier. This implies that we should know the numeric identifier of the 
Jess fact. Then, we can pass the found Fact object to retract. This approach is 
slow, since to find out the fact using a particular numeric identifier requires 
processing time. Actually, Jess has to examine each Fact in the working memory 
until it finds the intended one. 

Finally, the jess.Rete class holds a method that does not have a correspondence 
in the Jess prompt: the findfactByFact(Fact)method. It is useful when we 
have already defined a Fact object in Java and we want to get a reference to it. 

6.6.4 Working with rules in Java 

Defining rules from Java is a complex and badly documented process. Therefore, 
as it is shown in the following sections, our approach has been to create rules 
exploiting the expressiveness of the Jess language.   
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6.6.5 ECA rule’s example 

Consider the same ECA rule presented as example in section 6.5.2: 

If ((John is the father of Bob) and (Bob is the father of Tom))                
then (FindAndPrint the grandfather and the granchild) 

We want to express the LHS of the rule using the two ordered facts (Father 
John Bob) and (Father Bob Tom). We do not need to define a 
Deftemplate for them, since Jess automatically generates an implied template 
for ordered facts. We just need to create a jess.Rete class and to construct two 
Fact objects as follow: 

import jess.*;             
...              
Rete engine = new Rete();          
engine.reset(); 

Fact f1 = new Fact("Father",engine); 
f1.setSlotValue("__data", new Value(new ValueVector(). 
  add(new Value ("John", RU.SYMBOL)).   
  add(new Value ("Bob", RU.SYMBOL)), RU.LIST)); 
engine.assertFact(f1);   

Fact f2 = new Fact("Father", engine); 
f2.setSlotValue("__data", new Value(new ValueVector(). 
  add(new Value ("Bob", RU.SYMBOL)).   
  add(new Value ("Tom", RU.SYMBOL)), RU.LIST)); 
engine.assertFact(f2); 

In the listing above we specified a value for each slot in each Fact. This is 
necessary, otherwise Jess would use default values when the fact is asserted.  

The aim of the rule is to find from the facts (Father John Bob) and 
(Father Bob Tom) who is the grandfather, and to print a message that 
indicates that. If John is the father of Bob and Bob is the father of Tom, this 
means that John is the grandfather of Tom. Therefore, we can define the rule: 

engine.executeCommand("(bind ?class (new RightPortion))" +
  "(defrule FindAndPrintGrandfather" +   
     "(Father ?x ?y)(Father ?y ?z)=>" +   
  "(assert (Grandfather ?x ?z))" +    
  "(call ?class PrintGrandfather ?x ?z))"); 
engine.run();       

In the LHS of the rule, the command (bind ?class (new RightPortion)) 
creates an object instance of the RightPortion class and stores this object in 
variable ?class. The RightPortion class contains a PrintGrandfather 
method for printing a message as output. Moreover, the LHS of the rule assigns 
?x = John, ?y = Bob, ?z = Tom. With the command run() the engine executes 
the RHS. Therefore, the fact (Grandfather John Tom) is asserted and the 
command (call ?class PrintGrandfather ?x ?z) calls the public 
void PrintGrandfather(String x, String z) method defined in the 
RightPortion class. 
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If we also want to turn on all the watch diagnostic from Java code (the equivalent 
of watch all in Jess), we can do the following: 

Context context = engine.getGlobalContext();     
Funcall fc = new Funcall("watch",engine);  
fc.arg("all");       
fc.execute(context);   

The result of this program is exactly the same as the one that we have obtained in 
section 6.5.2 by using the Jess> prompt. The only difference is that, in this case, 
the application is controlled by Java code.  

 ==> Focus MAIN 
 ==> f-0 (MAIN::initial-fact) 

     ==> f-1 (MAIN::Father John Bob)     
    ==> f-2 (MAIN::Father Bob Tom) 
    ==> Activation: MAIN::FindAndPrintGrandfather :  f-1, f-2 
    MAIN::FindAndPrintGrandfather: +1+1+1+2+t 
    FIRE 1 MAIN::FindAndPrintGrandfather f-1, f-2 
     ==> f-3 (MAIN::Grandfather John Tom) 

 John is the grandfather of Tom 
     <== Focus MAIN 

6.7 Jess Case Studies 

For concluding this chapter, we present some Jess case studies, which are the 
result of the implementation work of this thesis. They are simple applications that 
show how to use the Jess rule engine in a context-aware scenario. Although they 
are simple, these examples are a good starting point for implementing large and 
complex rule-based systems, since they show the usage of most of the basic 
concepts we have presented in this chapter. Particularly, they illustrate how to use 
the Jess’s Java APIs, by exploiting the expressiveness of the Jess language to 
write ECA rules.  

Consider the context-aware scenario where the supervisor of Laura wants to 
receive a notification message if Laura is working. We can represent this 
circumstance in the real world with the following ECA rule in our application: 

If (Laura is working) then (Send notification to her supervisor). 

The first step consists of defining the LHS of the rule using the ordered fact 
State with the value (Laura-is-working): 

Fact f = new Fact("State", engine);  
f.setSlotValue("__data", new Value(new ValueVector().     
add(new Value("Laura-is-working",RU.SYMBOL)), RU.LIST)); 

We define a public void SendNotification(String 
supervisor)method in the class Notification, which accepts a String as 
argument (the name of the Laura’s supervisor) and displays a message to notify 
that Laura is working. For calling this method within the executeCommand, we 
need  to create a Notification object in Jess, and then to store it in a variable 
(?class). In this way, we have a reference to the Java object Notification in 
the Jess variable ?class, and we can invoke its SendNotification method 
using the call function:  
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engine.executeCommand("(defrule LauraRule (State ?x) => " +
   "(bind ?class (new Notification))" +   
   "(bind ?name \"Patricia\")" +     
   "(call ?class SendNotification ?name))"); 

The variable Patricia is the argument that we pass to the method 
SendNotification and it is defined using the bind function. 

Once the fact and the rule are defined, the user may choose different options that 
allow him: (i) to add the fact to the working memory and see the rule being fired; 
(ii) to retract the fact if it is already in the working memory; and (iii) to exit from 
the application. Particularly: 

1. The first option asserts the fact (State Laura-is-working), and add 
it in the working memory. Then it runs the engine and fires the rule as 
follows: 

engine.assertFact(f);                  
...           
engine.run(); 

The output printed in this case is like: 

==> f-1 (MAIN::State Laura-is-working)              
==> Activation: MAIN::LauraRule :  f-1            
FIRE 1 MAIN::LauraRule f-1 

Patricia, Laura is working 

2. The second option initially checks if the fact (Laura-is-working) is 
in the working memory. If it is, the fact is retracted from the working 
memory and the message “Patricia, Laura is not working” is 
sent to the Laura’s supervisor. If the fact is not in the working memory an 
error message is displayed. 

3. Finally, the third option allow the user to exit from the application and the 
engine is reinitialized with the command engine.reset(). 

Consider a variation of the scenario just described. This time we want that the 
application notifies Patricia whenever Laura is in the laboratory. If Laura’s 
location changes, particularly when Laura leaves the laboratory, her supervisor is 
interested to know it. 

We represent the location of Laura as a point in the space identified by two 
Cartesian coordinates (x, y). We represent the location of the laboratory as a 
rectangle identified by four Cartesian coordinates (x1, x2; y1, y2). While Laura’s 
location changes over time, the laboratory’s location is static, therefore we can use 
fixed values for representing this location. 

We have described these circumstances with the following ECA rules: 

1. If (Laura is in the Lab) then (Send to her supervisor the notification 
“Laura is working”); 

2. If (Laura is not in the Lab) then (Send to her supervisor the notification 
“Laura is not working”). 
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We have defined the unordered facts:  

1. (Laura-location (slot coordx (type INTEGER))(slot 
coordy (type INTEGER))). Before asserting this fact we need to 
define a Deftemplate: 

Deftemplate d1 = new Deftemplate("Laura-location", 
"It shows in a static way the location of Laura ", 
engine);         
d1.addSlot("coordx", Funcall.NIL, "INTEGER"); 
d1.addSlot("coordy", Funcall.NIL, "INTEGER"); 
engine.addDeftemplate(d1); 

2. (Lab-location (multislot LabCoordinates)). The 
Deftemplate for it is: 

Deftemplate d2 = new Deftemplate("Lab-location", "It 
defines the location of the lab using 4 points", 
engine);         
d2.addMultiSlot("LabCoordinates", Funcall.NILLIST); 
engine.addDeftemplate(d2); 

While the fact Laura-location is dynamic and needs to be asserted or retracted 
according to the changes in Laura’s coordinates, the fact Lab-location is static. 
Therefore we can directly add it to the working memory as shown: 

Fact f2 = new Fact("Lab-location", engine);   
   ValueVector LabLoc = new ValueVector();    
   LabLoc.add(new Value(coordx1, RU.INTEGER));   
   LabLoc.add(new Value(coordx2, RU.INTEGER));   
   LabLoc.add(new Value(coordy1, RU.INTEGER));   
   LabLoc.add(new Value(coordy2,RU.INTEGER));   
   f2.setSlotValue("LabCoordinates",new Value(LabLoc,RU.LIST));
   engine.assertFact(f2); 

The fact  Laura-location is asserted if Laura’s coordinates are contained 
between the values (x1, x2) and (y1, y2), i.e., whenever Laura is in the laboratory. 
For this purpose, we have created a simulation that generates fictitious locations 
for Laura. These values are assigned to the slots coordx and coordy of the 
Fact f1 = new Fact("Laura-location", engine). The loop asserts this 
fact and runs the engine, therefore one of the following two rules is fired 
according to the values issued: 

engine.executeCommand("(defrule rule1 " +       
"?temp1 <- (Laura-location (coordx ?x)(coordy ?y))" +   
"(Lab-location (LabCoordinates ?x1 ?x2 ?y1 ?y2))" +    
"(test (and (> ?x ?x1)(< ?x ?x2)(> ?y ?y1)(< ?y ?y2)))" +       
" => (bind ?class (new Notification))" +      
"(bind ?name \"Patricia\")" +             
"(call ?class SendNotification1 ?name)" +        
"(retract ?temp1))");  

engine.executeCommand("(defrule rule2 " +       
"?temp2 <- (Laura-location (coordx ?x)(coordy?y))" +    
"(Lab-location (LabCoordinates ?x1 ?x2 ?y1 ?y2))" +    
"(test (and (or (< ?x ?x1)(> ?x ?x2)(< ?y ?y1)(> ?y ?y2)) 
   (neq ?x 0)(neq ?y 0)))" +              
" => (bind ?class (new Notification))" +      
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"(bind ?name \"Patricia\")" +             
"(call ?class SendNotification2 ?name)" +        
"(retract ?temp2))");  

Rule1 assigns the issued values to Laura-location and stores this fact in 
variable ?temp1. If all patterns inside the and conditional elements match, the 
expression with test as head evaluates as TRUE and the RHS of the rule 
invokes the method SendNotification1 of the class Notification . This 
method prints the message “Patricia, Laura is in the lab”. Finally, the 
fact Laura-location stored in the variable ?temp1 is retracted from the 
working memory to release the values of the Laura’s coordinates for a new cycle.  

Likewise, rule2 assigns the issued values to Laura-location and stores this 
fact in variable?temp2. If at least one of the patterns inside the or conditional 
elements matches and, at the same time, both the variables ?x and ?y are not 
equal to zero, then the expression with test as head evaluates as TRUE and the 
RHS of the rule invokes the method SendNotification2 of the class 
Notification . This method prints the message “Patricia, Laura is not 
in the lab”. Finally, the fact Laura-location stored in the variable 
?temp2 is retracted from the working memory to release the values of the Laura’s 
coordinates for a new cycle.  
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7 Mapping ECA-DL  to Jess 

This chapter discusses the mapping of ECA-DL rules onto Jess rules, and 
provides guidelines for realizing and generalizing this mapping. 

This chapter is structured as follows: section 7.1 states the goal of the chapter and 
the approach that has been used to reach this goal. Section 7.2 presents examples 
of mapping from ECA-DL to Jess. Section 7.3 proposes guidelines for mapping 
from ECA-DL rules constructs to Jess counterparts. Finally, Section 7.4 presents 
some concluding remarks.          

7.1 Goal and General Approach 

The ultimate goal of our work has been to define a mapping from ECA-DL to a 
well-known rule-based engine, particularly to Jess. This is an important part of the 
design and the implementation of the Controller component (see Figure 3), since 
it allows ECA rules written in ECA-DL to be executed in a robust and powerful 
environment. 

The aim of this chapter is to define how to use Jess for executing ECA-DL rules. 
Particularly, we have tried to answer the following specific questions: 

 How to provide a general mapping from ECA-DL to the Jess engine? 

 How to write ECA-DL rules in the specific Jess language? 

 How to map constructs of the ECA-DL to constructs of  Jess? 

The order of these questions reflects the approach that we have used for designing 
the mapping. Our approach towards this mapping is depicted in Figure 28.  
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Figure 28 – Design of the mapping from ECA-DL onto Jess: general approach 

An information model in ECA-DL consists of a static UML model that depicts 
entities and contexts, which reflect the knowledge that the target context-aware 
application manipulates. Entities and context are represented as classes, and the 
relationships between them are defined as associations between these classes. A 
deftemplate in Jess is the static structure to define the structure of facts. We 
need to define deftemplates before asserting any facts in the working memory 
of the rule engine. The first step in our approach has been to provide a mapping 
from the ECA-DL information models proposed in Chapter 3 (i.e., the UML 
models), to deftemplates in Jess. 

We can create instances of the classes represented in an ECA-DL information 
model. These instances are the objects contained in the object base shown in 
Figure 28. Analogously to defining objects in ECA-DL, we can also assert facts 
with specific values in Jess. These facts reflect the structure of the 
deftemplates and they are contained in the working memory of the Jess engine. 
Therefore, the operation to create objects in ECA-DL corresponds to the operation 
to assert facts in Jess. The second step in our approach has been to provide a 
mapping from one or more ECA-DL objects in the object base to facts in the 
working memory of Jess.  

Figure 28 shows that ECA-DL rules are based on information models. 
Analogously, Jess rules, defined with the defrule command, are based on 
deftemplates. Actually, ECA-DL rules use objects that are instances of entity 
and context classes of the corresponding information model. Likewise, defrule 
constructs in Jess uses facts asserted on previously defined deftemplates. The 
third and last step in our approach has been to provide a mapping from ECA-DL 
rules to defrules by investigating the correspondences between ECA-DL 
specific constructs to Jess constructs. In summary, our approach towards the 
mapping includes: 

 Mapping of information models in ECA-DL to Jess deftemplates; 

 Mapping of objects in the object base to facts in the Jess engine; and 

 Mapping of ECA-DL rules to Jess rules. 
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7.2 Examples 

We present here five examples of mapping from ECA-DL rules (see section 3.3) 
to Jess rules by using the approach mentioned above. By studying these examples, 
we have been able to identify patterns of mapping that can be generalized. In the 
following sections we discuss this generalization and we provide guidelines on 
how the mapping should proceed.  

For each example we propose: 

 The corresponding scenario in natural language and the corresponding ECA 
rule; 

 The mapping of the ECA-DL information model to Jess deftemplates; 

 The mapping of the ECA-DL rule on a Jess rule. 

7.2.1 Example 1 

“Patricia would like to be notified when Laura enters the laboratory, without 
friends, and Laura’s computer is on”. 

We have expressed this scenario by using the following ECA rule (see section 
3.3.1): 

If <Laura is in the lab AND (NOT Laura is with friends) AND Laura’s computer 
is on> then <Notify (Patricia), “Laura is working.”> 

Figure 29 shows the general mapping from the ECA-DL information model to 
Jess deftemplates. 

 
Figure 29 – General mapping of Example 1 

Figure 29 depicts the association hasLocation between the entity Person and the 
context Location. This association has been mapped on a deftemplate called 
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PersonLocation. A Person has a name (slot personName in the template), and may 
have a GeneralLocation (slot generalLocation). This GeneraLocation may be 
InBuilding, in which case the entity Building has a name (slot buildingName). A 
person may also have a SpecificLocation (slot specificLocation in the template), 
which may be inLab or inOffice. 

Figure 29 depicts the associations Person isWith Friend and Person has Computer. 
The association Person isWith Friend has been mapped on a deftemplate called 
PersonState. A Person (slot personName in the template) may be with Friend (slot 
state). The association Person has Computer has been mapped on a deftemplate 
called Computer. A Person (slot owner in the template) may have a Computer, 
and Computer has a state (slot computerState), which may be On or Off.  

We have used the following ECA-DL rule in order to express the considered ECA 
rule (see section 3.3.1): 

Upon EnterTrue (Laura.inLab)          
When (NOT (Laura.isWithFriends)) AND (Laura.hasComputerOn) 
Do Notify (Patricia, “Laura is working.”)     
Always 

This ECA-DL rule has been mapped on the following Jess rule:  

(defrule example1           
(PersonLocation (personName Laura)(specificLocation inLab)) 
(PersonState (personName Laura)(state ~isWithFriends)) 
(Computer (owner Laura)(computerState on))    
=>             
(bind ?class (New Notification))        
(bind ?name “Patricia”)          
(call ?class SendNotification ?name)) 

The defrule checks whether the Jess working memory has been asserted a fact 
PersonLocation that has a slot personName with value Laura and a slot 
specificLocation with value inLab. Moreover, it checks for a fact 
PersonState that has a slot personName with value Laura and a slot state 
that does not have value isWithFriends. Finally, it checks for a fact Computer 
that has a slot owner with value Laura and a slot computerState with value 
On.  

If the engine finds all these facts, it executes the RHS of the rule, which creates an 
object named ?class by instantiating the Notification class, assigns the 
string “Patricia” to a variable ?name, and, finally, calls method 
SendNotification on the ?class object. The parameter ?name defines the 
name of the person to whom this notification should be send, in this case to 
Patricia. 

The Upon and When clauses of the ECA-DL rule have been mapped onto the LHS 
of the defrule, while the Do clause has been mapped onto the RHS.  

7.2.2 Example 2 

“When Laura and Patricia start a meeting together, the meeting time should be 
counted”. 
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We have expressed this scenario by using the following ECA rule (see section 
3.3.2): 

If  <Laura is in meeting AND Patricia is in meeting AND Laura and Patricia share 
the meeting> then <Count meeting time> 

Figure 30 shows the general mapping from the ECA-DL information model to 
Jess deftemplates. 

 
Figure 30 – General mapping of Example 2 

Figure 30 depicts the association isEngagedIn between the entity Person and the 
context Activity. This association has been mapped on a deftemplate called 
PersonActivity. A Person has a name (slot personName in the template), and may 
be engaged in one or more Activitities (multislot activities). In case one of these 
activities is InMeeting, the person who is in the meeting may share this meeting 
with another person (or more persons). This explains why Meeting is defined in 
the information model as an association class relating two persons.We have 
mapped this association by adding to the same deftemplate PersonActivity 
with the multislot meetingParticipants.   

We have used the two following ECA-DL rules in order to express the considered 
ECA rule (see section 3.3.2): 

Upon EnterTrue (Laura.inMeeting)     
 AND EnterTrue (Patricia.inMeeting)         
When Laura.sharesMeeting (Patricia)     
Do StartCountMeetingHours         
Always 

Upon TrueToFalse (Laura.inMeeting)     
 OR TrueToFalse (Patricia.inMeeting)         
When Laura.sharesMeeting (Patricia)     
Do StopCountMeetingHours         
Always 

These ECA-DL rules have been mapped on the following Jess rules: 

(defrule firstRuleExample2          
(PersonActivity (personName Laura)(activities inMeeting) 
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(meetingParticipants Patricia))         
(PersonActivity (personName Patricia)(activities inMeeting)) 
=>(call MeetingHours StartCountMeetingHours))   
       

(defrule secondRuleExample2                 
(or (PersonActivity (personName Laura)(activities ~inMeeting)            
 (meetingParticipants Patricia)) 
 (PersonActivity (personName Patricia) 
 (activities ~inMeeting))        
)             
=>(call MeetingHours StopCountMeetingHours)) 

The first defrule checks whether the Jess working memory has been asserted a 
fact PersonActivity that has a slot personName with value Laura, a slot 
activities with value inMeeting, and a slot meetingParticipants with 
value Patricia. Moreover, it checks for another fact PersonActivity that 
has a slot personName with value Patricia and a slot activities with value 
inMeeting.  

If the engine finds both facts, it executes the RHS of the rule that calls the method 
StartCountMeetingHours on the MeetingHours class. 
StartCountMeetingHours is a static method for which we do not need to 
initialize the MeetingHours class. Since static methods do not support multiple 
instances, we can have only one instance of the StartCountMeetingHours 
method. Therefore, only one application at a time can use the MeetingHours 
class, i.e., if we have a rule that starts counting the time of the meeting between 
Laura and Patricia, it has to be followed by another rule that stops counting this 
time before another meeting time starts to be counted .      

The second defrule checks whether the Jess working memory has been asserted 
at least one of the facts PersonActivity of the previous rule, with the only 
difference that in this case the value of slots activities must be ~inMeeting, 
since when Laura or Patricia leave the meeting we execute the RHS of the rule by 
calling the method StopCountMeetingHours on the MeetingHours class 
previously instantiated. 

The Upon and When clauses of the ECA-DL rules have been mapped onto the 
LHS of the defrules, while the Do clauses have been mapped onto the RHS.  

7.2.3 Example 3 

“During the hot season, when the temperature in a building of the University of 
Twente is more than 30 degrees and it is later than 14:00 hours and earlier than 
17:00 hours, all the persons in the building should be notified to go home”. 

We have expressed this scenario by using the following ECA rule (see section 
3.3.3): 

If <During the hot season the temperature in a building of the University of 
Twente is more than 30 degrees AND it is later than 14:00 hours AND it is earlier 
than 17:00 hours > then <Notify (all the persons in the building), “You can go 
home.”> 
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Figure 31 shows the general mapping from the ECA-DL information model to 
Jess deftemplates. 

 
Figure 31 – General mapping of Example 3 

Figure 31 depicts the association hasLocation between the entity Person and the 
context Location. This association has been mapped onto the PersonLocation 
deftemplate defined in Example 1.  

Figure 31 also depicts the association hasTemperature between the entity Building 
and the context Temperature, and the context Date and Time. The association 
Building hasTemperature has been mapped onto a deftemplate called Building. 
A Building has a name (slot name in the template), a location (slot location), 
which in our case is the University of Twente, and a temperature (slot 
temperature). The context Date and Time have been mapped onto a 
deftemplate called TemporalInfo. Date has attributes day, month, year that are 
mapped, respectively, onto the slots day, month, year of the deftemplate, while 
Time has been mapped onto the slot currentTime.   

We have used the following ECA-DL rule in order to express the ECA rule of this 
example: 

Scope (Select (building.*, build, build.inUT); b))         
{               
Upon EnterTrue (b.temperature > 30)        
When (currentTime > 14) AND (currentTime < 17)     
Do Notify (Select (person.*, p, p.InBuilding(b)),“You can go 
home.”)          
from <May> to <September>        
} 

This ECA-DL rule has been mapped on the following Jess rule: 

(defrule example3          
(PersonLocation (personName ?p)(generalLocation inBuilding) 
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(buildingName ?b1))           
(Building (name ?b2&:(eq ?b2 ?b1))         
(location inUT)(temperature ?temp&:(> ?temp 30))) 
(TemporalInfo (month May|June|July|August|September) 
(currentTime ?time&:(> ?time 14))       
(currentTime ?time&:(< ?time 17)))      
=>              
(bind ?class (New Notification))        
(call ?class SendNotification ?p)) 

The defrule checks in the Jess working memory for facts PersonLocation 
with slot generalLocation with value inBuilding, and stores the values of 
the slots personName and buildingName, in variables ?p and ?b, respectively. 
Then, it checks for facts Building with a slot name with the same value of the 
slot buildingName, a slot location with value inUT, and a slot temperature 
with a value higher than 30 degrees. Finally, it checks for a fact TemporalInfo 
with a slot months with value May or June or July or August or September, 
and a slot currentTime with a value between 14 and 17.  

If the engine finds all these facts, it executes the RHS of the rule that creates an 
object named ?class by instantiating the Notification class and calls a 
method SendNotification on this object in order to notify ?p (i.e., all the 
persons that have location in a building of the UT with a temperature higher than 
30 degrees). 

The clauses Scope (Select (building.*, build, build.inUT); b)) 
and Upon EnterTrue (b.temperature > 30) have been mapped onto the 
slots (location inUT) and (temperature ?temp&:(> ?temp 30)) of the 
fact Building in the LHS of the defrule. 

The When clause has been mapped onto the slots (currentTime ?time&:(> 
?time 14)) and (currentTime ?time&:(< ?time 17)) of the fact  
TemporalInfo in the LHS. 

The Do clause has been mapped onto the RHS of the defrule, but the clause 
Select (person.*, p, p.InBuilding(b)) corresponds to the following 
code in the LHS:  

(PersonLocation (personName ?p)(generalLocation inBuilding) 
(buildingName ?b1))            
(Building (name ?b2&:(eq ?b2 ?b1))         
(location inUT)(temperature ?temp&:(> ?temp 30))) 

Finally, the lifetime from <May> to <September> has been mapped onto the 
slot (month May|June|July|August|September) of the fact 
TemporalInfo in the LHS. 

7.2.4 Example 4 

“All persons in the Zilverling building should be notified when there is a 
presentation in the building that is interesting for them”. 

We have expressed this scenario by using the following ECA rule (see section 
3.3.4): 
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If <There is a presentation in the Zilverling building AND there are persons in the 
building interested in this presentation> then <Notify (these persons), “This 
presentation may be interesting for you.”> 

Figure 32 shows the general mapping from the ECA-DL information model onto 
Jess deftemplates. 

 
Figure 32 – General mapping of Example 4 

Figure 32 depicts the association hasLocation between the entity Person and the 
context Location. This association has been mapped onto the PersonLocation 
deftemplate used in Examples 1 and 3.  

Figure 32 also depicts the associations Presentation has Location and Presentation 
isAbout Subject, which are both mapped on a deftemplate called Presentation. 
A Presentation has a title (slot title of the deftemplate) and a generalLocation 
(slot generalLocation), which is inBuilding in this example. In this case, Building 
has a name (slot buildingName). Presentation has also a SpecificLocation (slot 
specificLocation in the template) and is about one or more subjects (multislot 
subjects). 

The last association depicted in Figure 32 is Person isInterestedIn Subject, which 
has been mapped onto a deftemplate called PersonInfo with a slot name and a 
multislot subjects. 

We have used the following ECA-DL rule in order to express the considered ECA 
rule: 

Scope (Select (persons.*, pers, pers.inBuilding.Zilverling);    
p)              
{              
Upon EnterTrue (presentation.inBuilding.Zilverling)      
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When p.isInterestedIn(presentation.subject.*)    
Do Notify(p), “This presentation maybe is interesting for 
you.”            
Always            
} 

This ECA-DL rule has been mapped onto the following Jess rule: 

(defrule example4         
(Presentation (title ?t)(generalLocation 
inBuilding)(buildingName Zilverling)(subjects ?s1))    
(PersonLocation (personName ?p1)       
(generalLocation inBuilding)(buildingName Zilverling))   
(PersonInfo (name ?p2&:(eq ?p2 ?p1)))         
(subjects $?s2&:(member$ ?s1 $?s2)))     
=>             
(bind ?class (New Notification))        
(call ?class SendNotification ?p2 ?t)) 

The defrule checks in the Jess working memory for facts Presentation with 
a slot generalLocation with value inBuilding, a slot buildingName with 
value Zilverling, and stores the values of the slots title and subjects in 
variables ?t and ?s1, respectively. This corresponds to the Upon clause of the 
ECA-DL rule. Then, the defrule checks for facts PersonLocation with a slot 
generalLocation with value inBuilding, a slot buildingName with value 
Zilverling, and stores the value of the slot personName in variable ?p1. This 
is meant to select all persons in the Zilverling building and store their names in 
variable ?p1. In this way we have implemented the clauses Scope (Select 
(persons.*, pers, pers.inBuilding.Zilverling); p) of the ECA-
DL rule. Finally, the Jess rule checks for facts PersonInfo with a slot name 
with the same value stored in ?p1, and a slot subjects with a value that is 
contained in ?s1. This is meant to select all the persons in the Zilverling building 
that are interested in the same subjects of the presentation. In this way we have 
implemented the When clause of the ECA-DL rule. 

If the engine finds all these facts, it executes the RHS of the rule that creates an 
object named ?class by instantiating the Notification class and calls the 
method SendNotification on this object in order to notify ?p2 (i.e., all 
persons located in the Zilverling building with interest in the subjects of the 
presentation) that the presentation with title ?t may be interesting for them. 

7.2.5 Example 5 

“When a student is in a meeting with his/her supervisor(s), the meeting time 
should be counted”. 

We have expressed this scenario by using the following ECA rule (see section 
3.3.5): 

If <Student is in meeting AND this student shares the meeting with his/her 
supervisor(s)> then <Count meeting time> 

Figure 33 shows the general mapping from the ECA-DL information model onto 
Jess deftemplates. 
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Figure 33 – General mapping of Example 5 

Figure 33 depicts again the association hasLocation between the entity Person and 
the context Location, which has been mapped on the PersonLocation 
deftemplate of Examples 1, 3 and 5. The associations Person isEngagedIn 
Activity and Person sharesMeeting with another Person have been mapped onto 
the PersonActivity deftemplate of Example 2. 

In this example, a Person may be a Supervisor or/and a Student (a supervisor can 
be a student). We have mapped this information onto the PersonInfo 
deftemplate of Example 4 modified with the addition of new slots. Since a 
person may be a supervisor or/and a student, we have defined a multislot role, 
which may have one or both the values student and supervisor. If a Person is 
Supervisor, we need to know the students supervised (multislot 
studentsSupervised) and if person is a Student we need to know the supervisors 
(multislot supervisors).   

We have used the two following ECA-DL rules in order to express the considered 
ECA rule: 

Scope (Select (student.*, st, st.inBuilding.Zilverling); 
stud)                 
{               
Upon EnterTrue (stud.inMeeting)      
When stud.sharesMeeting (Select (supervisors.*, super, 
superv.stud))          
Do StartCountMeetingHours         
Always            
} 
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Scope (Select (student.*, st, st.inBuilding.Zilverling); 
stud)                 
{               
Upon TrueToFalse (stud.inMeeting)      
When stud.sharesMeeting (Select (supervisors.*, super, 
superv.stud))          
Do StopCountMeetingHours         
Always            
} 

These ECA-DL rules have been mapped on the following Jess rules, where we 
assume unique identification of persons by their names (no homonymous) in order 
to improve readability: 

(defrule firstRuleExample5          
(PersonInfo (name ?st1)(role student)(supervisors $?super1)) 
(PersonLocation (personName ?st2&:(eq ?st2 ?st1)) 
(generalLocation inBuilding)(buildingName Zilverling))  
(PersonInfo (name ?super2&:(member$ ?super2 $?super1))     
(role supervisor))           
(PersonActivity (personName ?st3&:(eq ?st3 ?st2))  
(activities inMeeting)     
(meetingParticipants $?part&:(member$ ?super2 $?part)))        
=>            
(call MeetingHours StartCountMeetingHours ?st3 $?part))  

(defrule secondRuleExample5          
(PersonInfo (name ?st1)(role student)(supervisors $?super1)) 
(PersonLocation (personName ?st2&:(eq ?st2 ?st1)) 
(generalLocation inBuilding)(buildingName Zilverling))  
(PersonInfo (name ?super2&:(member$ ?super2 $?super1))     
(role supervisor))           
(PersonActivity (personName ?st3&:(eq ?st3 ?st2))  
(activities ~inMeeting)     
(meetingParticipants $?part&:(member$ ?super2 $?part)))        
=>            
(call MeetingHours StopCountMeetingHours ?st3 $?part)) 

The first defrule checks in the Jess working memory for facts PersonInfo 
with a slot role with value student, and stores the values of the slot name and 
the multislot supervisors, respectively, in the ?st1 variable and in the 
$?super1 list. Then, it checks for facts PersonLocation with a slot 
personName with the same value of the slot name of PersonInfo, a slot 
generalLocation with value inBuilding, and a slot buildingName with 
value Zilverling. This is meant to select all the students in the Zilverling 
building and to store the name of each of these students in a ?st1 variable, and 
the names of their supervisors in a $?super1 list. In this way we have mapped 
the clauses Scope (Select (student.*, st, 
st.inBuilding.Zilverling); stud) to Jess. 

The first defrule also checks for facts PersonInfo with a slot name that is in 
the list $?super1, and a slot role with value supervisor. In this way, we are 
selecting the supervisors of each student in the Zilverling building. This 
corresponds to the Select (supervisors.*, super, superv.stud) 
clause inside the When clause of the ECA-DL rule. Moreover, it checks for facts 
PersonActivity that have a slot personName with the same value stored in 
?st2, a multislot activities with value inMeeting, and a multislot 



 

91 

meetingParticipants that contains the value stored in ?super2. This is 
meant to select all the students in the Zilverling building that are in meeting with 
their supervisors and to store the name of each of these students in a ?st3 
variable, and the names of their supervisors in a $?part list. In this way we have 
mapped the When clause.  

Finally, if the engine finds all these facts, it executes the RHS of the rule that calls 
the method StartCountMeetingHours on the MeetingHours class.  
StartCountMeetingHours is a static method that accepts two arguments: a 
String student and a String...supervisors, which is a string with a 
variable number of elements. The rule calls the StartCountMeetingHours 
method on the parameters ?st3 and $?part in order to start counting the 
meeting hours between the student ?st3 and his/her supervisor(s) $?part. Since 
static methods do not support multiple instances, we can have only one instance of 
the StartCountMeetingHours method. This means that only one application at 
a time can use the MeetingHours class, i.e., if we have a rule that starts counting 
the time of the meeting between a student and his/her supervisor(s), it has to be 
followed by another rule that stops counting this time before another meeting time 
starts to be counted. For this reason, we assume that all meetings between a 
student and his/her supervisor(s) take place in a dedicated room, therefore we can 
have only one meeting at a time. In this way we have implemented the Do clause. 

The second defrule proceeds in the same way as the first one with the only 
difference that it checks for facts PersonActivity with slot activities with 
value ~inMeeting to execute the method StopCountMeetingHours.      

7.3 Mapping Guidelines  

From the previous examples shown above, we can see that similar approach has 
been taken in all examples to map information models and ECA-DL rules onto 
Jess. In the following sections, we generalize this approach in order to define 
guidelines for the design of these mappings. These guidelines should be used as 
input for the automated translation of ECA-DL rules to Jess rules that can be 
executed by a Controller component built based on Jess. 

7.3.1 General guidelines 

In the process of developing a context-aware application with the support of a 
Controller component, we should specify the application’s reactive behaviors as 
ECA rules. These rules refer to an information model composed by entities, 
context, and relationships between each entity and its context. A context-aware 
application should consistently define the information models in order to represent 
the reactive behaviors of applications in a unique and consistent way. 

In our examples we have mapped information models onto Jess deftemplates. 
We consider this as the static part of the mapping, where we map entities, context, 
and relationships onto static structures (deftemplates). These structures need to 
be defined before asserting any facts in the working memory of the Jess rule 
engine. 

Objects in ECA-DL (instances of the classes represented in the information 
models) are mapped on facts in Jess, which are assertions based on the 
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deftemplates . One or more objects may be mapped onto a single fact. 
Analogously to instantiating a class in object orientation, we can assert facts based 
on a deftemplate in the working memory. The operation to instantiate objects 
in ECA-DL corresponds to the operation to assert facts in Jess. ECA-DL objects 
are created in an object base, while facts are asserted in the Jess working memory.  

ECA-DL rules can be mapped onto Jess rules. ECA-DL rules are based on 
information models. Analogously, Jess rules refer to deftemplates. ECA-DL 
rules use objects that are instances of entity and context classes of the 
corresponding information model. Likewise, defrule constructs in Jess use facts 
asserted on previously defined deftemplates. 

The mapping between information models and deftemplates is characterized 
by a strong similarity to mappings object models onto relational models, like in 
relational databases. Information models can be thought as Entity-Relationship 
(ER) diagrams of a relational database, as well as deftemplates can be thought 
as tables of this database. Particularly, deftemplate names are like table names 
of the database, slots names are like columns names, and slots values are like 
records.              

7.3.2 Guidelines for mapping information models  

This section provides specific guidelines on how to map classes and relationships 
of information models to Jess deftemplates. From the discussed examples we 
have identified the following guidelines: 

 Each of the main associations between classes, especially associations that 
are subset of hasContext, can be mapped onto a deftemplate with a name that 
properly expresses the purpose of the association. For example, the association 
Person hasLocation has been mapped on a deftemplate named PersonLocation. 

 Sometimes, multiple related associations can be mapped onto a single 
deftemplate. For example, the association Person isEngagedIn Activity, which 
is subset of hasContext, and the association Person sharesMeeting(Person) have 
been mapped onto the PersonActivity deftemplate with slots personName, 
activities and meetingParticipants. Actually, a possible value of the slot activities 
is InMeeting, in which case the Meeting can be shared between two or more 
participants.  

 Once we have mapped an association onto a suitable deftemplate, we 
need to create slots and multislots of this deftemplate. Particularly: 

 If a class holds attributes, each attribute is mapped onto one slot (or 
multislot) of the deftemplate. For example, class Person has attribute 
name and we have mapped it onto a slot personName. 

 If a class does not hold attributes, it is directly mapped onto a slot (or 
multislot). For example, class Temperature has no attributes and we have 
mapped it onto a slot temperature. 

 Disjoint children classes can be mapped onto a different slot for each 
of them, or onto alternative values of a single slot. For example, class 
Location has two disjoint children classes SpecificLocation and 
GeneralLocation that we have mapped onto two different slots. Class 
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SpecificLocation has two disjoint children classes InOffice and InLab that 
we have mapped onto alternative values of the specificLocation slot. 

 Overlapping children classes can be mapped onto a single multislot. 
For example, a person can be Student and/or Supervisor, therefore we have 
mapped this information onto a multislot role, which can have values 
supervisor and/or student.  

 Associations between children classes can be mapped onto a different 
slot (or multislot) for each one of them. For example, the associations 
Supervisor supervises Student and Student isSupervisedBy Supervisor, 
have been mapped, respectively, onto multislots studentsSupervised and 
supervisors. 

 The cardinality of associations considerably influences the mapping. 
Particularly: 

 Cardinality 1..1 is mapped onto one slot that must hold a value 
different from the null value; 

 Cardinality 0..1 is mapped onto one slot that holds a value that could 
be the null value; 

 Cardinality 1..* is mapped onto one multislot that must hold at least 
one value, i.e., the multislot cannot be empty (hold the null value); 

 Cardinality 0..* is mapped onto one multislot that may hold multiple 
values or be empty (it may hold the null value); 

 Cardinality *..* is mapped onto a multislot that may hold multiple 
values, or onto a slot that may hold a range of values defined using some 
logical predicate, such as “<” or “>”.  

7.3.3 Guidelines for mapping rules 

This section provides guidelines on how to map ECA-DL rules onto Jess 
defrules. From the discussed examples we have deduced the following 
guidelines: 

 One ECA-DL rule is usually mapped onto one Jess defrule. 

 Upon and When clauses of an ECA-DL rule (respectively, events and 
conditions that trigger the rule), are mapped onto the LHS of the corresponding 
defrule. 

  The Do clause of an ECA-DL rule (the action to be executed) is mapped 
onto the RHS of the corresponding defrule. If there is a Select clause inside 
this Do clause, the Select clause has to be mapped onto the LHS of the 
defrule.   

 Scope and Select clauses are always mapped onto the LHS of the 
defrule by using variables assignments and function like eq, neq, member$, 
for checking for correspondences between these variables.  
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 The lifetime of an ECA-DL rule can be mapped onto the LHS of the 
defrule by using a suitable deftemplate. When the lifetime is Always we do 
not need a corresponding construct in Jess, since without a specific instruction 
the engine always fires the applicable rules.  

 The logical connectives AND, OR of an ECA-DL rule are mapped onto the 
conditional elements and, or of the Jess language.  

 The logical connective NOT of an ECA-DL rule is mapped onto the logic 
operator ~ of the Jess language. We cannot use the conditional element not to 
define this, since not matches the absence of a fact, not the absence of a single 
value. For example, the fact (PersonState (personName Laura)(state 
isWithFriends)) has been mapped onto Laura.isWithFriends. If we want 
to define the condition that Laura is not with friends, in ECA-DL we use NOT 
Laura.isWithFriends, while in Jess we use (PersonState (personName 
Laura)(state ~isWithFriends)), which is different from 
(not(PersonState (personName Laura)(state isWithFriends))). 

7.4 Concluding Remarks 

We have produced guidelines for identifying patterns of mappings from ECA-DL 
onto Jess in examples that are relevant to context-aware applications. For 
developing large applications there is the need to extend and improve the 
information models that we have proposed with new types of context information 
and entities. 

In the guidelines that we have proposed we have not yet looked at how to express 
the unknown state (see section 3.1.2) in Jess. Actually, the development of the 
ECA-DL language is still ongoing work and the unknown state has not been 
completely specified yet. Therefore, we did not consider this state in our 
approach. 

Moreover, we have not investigated the details on how to map the lifetime 
construct of ECA-DL rules to Jess. We have presented an example of mapping of 
the lifetime by using deftemplates in Jess, which is an indication of how this 
specific mapping can be defined.  

Finally, concerning the maintenance of our mapping model, changes in the 
information models should be reflected in the deftemplates structures in Jess. 
Therefore, in case of changes, there is the need to update deftemplates and 
slots in the working memory of the Jess rule engine. Ideally, the maintenance of 
the working memory should be automated. The automatic translation of the 
information models to Jess deftemplates (especially at runtime) is a topic for 
further investigation.           
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8 Conclusions 

This chapter presents the main contributions of this thesis, draws some relevant 
conclusions and identifies points where further investigation is necessary. 

This chapter is further structured as follows: Section 8.1 presents our general 
conclusions and summarizes the main contributions of this thesis, and section 8.2 
identifies points for future work. 

8.1 General Conclusions 

We have investigated the mapping of ECA-DL rules onto a well-known tool for 
developing rule-based system, namely Jess, and we have defined guidelines for 
performing these mappings. This work is an important part of the design and 
implementation of a controlling service in the scope of the AWARENESS project. 
Our efforts included: (i) the study of the AWARENESS project goals, (ii) a 
literature survey in context-awareness, (iii) an extensive study of rule-based 
systems, (iv) the definition of criteria in order to choose a tool for developing 
rule-based systems, (v) the extensive study of the chosen tool (Jess) and (vi) the 
definition of guidelines to allow ECA-DL rules to be mapped to Jess. 

We have explored the benefits of using Event-Control-Action (ECA) pattern, 
since it provides a high level structure that helps in the design of context-aware 
applications. This pattern divides the tasks of gathering and processing context 
information (Event module), from tasks of triggering actions in response to 
context changes (Action module) under the control of an application behavior 
description (Control module), in which reactive context-aware application 
behaviors are described in terms of ECA rules. This separation of concerns 
effectively enables the distribution of responsibilities in context-aware 
applications.  

The ECA pattern reflects the reactive nature of context-aware applications, whose 
behaviors can be expressed in ECA rules. In order to facilitate the execution of 
ECA rules by available technologies, we have made use of a specific language to 
define ECA rules. This language has been developed in the scope of the 
AWARENESS project and is coined ECA Domain-specific Language (ECA-DL). 
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In order to find a suitable technology to execute ECA-DL rules, we have 
extensively studied rule-based systems. Rule-based systems emulate human 
expertise in well-defined problem domains by using a knowledge base expressed 
in terms of rules. We have also analyzed some well-known tools for developing 
expert systems: CLIPS, Jess, jDREW, and Mandarax, focusing on their main 
features and application environments, and giving examples of the supported 
languages. This analysis has been concluded by comparing the mentioned tools on 
the light of relevant criteria in order to choose the best alternative for our 
purposes. The most important criteria in the selection process have been the 
capability to provide support to ECA rules, and the support of tools and IDEs. 

We have applied our criteria on the available tools and we have chosen Jess. After 
studying Jess’s architecture and language, we have exploited its most powerful 
feature, namely that it can be relatively easily integrated with Java. Although we 
have discussed simple example applications, these applications are a good starting 
point for implementing large and complex rule-based systems, since they illustrate 
the basic capabilities of the Jess language. Furthermore, these example 
applications illustrate how Jess’s Java APIs can be used to support context-aware 
applications and they demonstrate the suitability and expressiveness of the Jess 
language to write ECA rules. 

The ultimate goal of our work has been to define a mapping from ECA-DL onto 
Jess, since it allows ECA rules written in ECA-DL to be executed in a robust and 
powerful environment. Particularly, we have studied some examples of ECA-DL 
rules in order to identify patterns of mappings to be generalized. An important 
result of this work has been a set of guidelines for the general mapping of ECA-
DL rules and information models to Jess rules and deftemplates. These 
guidelines should be used as input for the implementation of the Controller 
component. 

Although the design of the mapping from ECA-DL to Jess that we have proposed 
does not consider all the aspects of the ECA-DL language, it is a significant 
contribution that should be used as a starting point for future extensions. 

8.2 Future Work 

We have identified the following topics for further investigation: 

 Design and implementation of the complete mapping in order to integrate 
the Jess rule engine, able to execute ECA rules expressed in ECA-DL, within the 
AWARENESS infrastructure. The integration should be followed by the 
development of a prototype for the purpose of demonstrating and validating the 
controlling service. 

 Generalization and automation of the mapping in order to enhance 
productivity and provide an automatic translation of the information models to 
Jess deftemplates. Changes in information models should automatically reflect 
to the deftemplates structures in Jess, at system runtime.  

 Improvement of some aspects of the mapping that we have not discussed in 
this thesis. For example, we have not investigated how to express the unknown 
state in Jess, and we have not investigated the details on how to support the 
lifetime construct. 
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 In order to develop large context-aware applications, it is necessary to 
extend and improve the context information models in order to incorporate 
context types that are inline with applications’ requirements. Some of the 
extensions may consider the use of Quality of Context (QoC) [35], which 
provides metadata to quantify the quality of context information in terms of, e.g., 
accuracy, probability of correctness, and freshness. 

 It would be interesting to provide a mapping from ECA-DL to a generic 
rule engine model, which is not specific to any particular technology. This generic 
model could be mapped onto different engines, such as the ones that we have 
studied in this work, with little effort. In this way the mapping effort concentrates 
on creating a generic model of an application that can be mapped 
straightforwardly to specific technologies.   
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