
Multi-Source Entity Resolution

Christiaan Michiel Punter
MSc. Thesis

January 18, 2010

University of Twente
Department of Computer Science

Graduation committee:
Dr. Ir. Maurice van Keulen
Dr. Ir. Ander de Keijzer
Riham Abdel Kader, MSc.

Abstract

Background The focus of this research was on multi-source entity resolu-
tion in the setting of pair-wise data integration. In contrast to most existing
approaches to entity resolution this research does not consider matching to
be transitive. A consequence of this is that entity resolution on multiple
sources is not guaranteed to be associative. The goal of this research was to
construct a generic model for multi-source entity resolution in the setting of
pair-wise data integration that is associative.
Results The main contributions of this research are: (1) a formal model for
multi-source entity resolution and (2) strategies that can be used to resolve
matching conflicts in a way that renders multi-source entity resolution to
be associative. The possible worlds semantics is used to handle uncertainty
originating from possible matches. The presented model is generic enough
to allow different match and merge function as well as allowing different
strategies to resolve matching conflicts.
Conclusions A formalization of an example of multi-source entity resolu-
tion is presented to show the utility of the proposed model. By using small
examples in which three sources are integrated it is shown that the strategies
resulted in associative behavior of the integrate function.

i

Acknowledgments

I would like to thank my supervisors for their guidance during this research.
Also, I would like to thank my family and close friends for their support.
Thanks.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 4

1.2 Research Question . 6

1.3 Approach . 6

1.4 Overview . 7

2 Related Research 9

3 Informal problem definition 11

3.1 Integrating 2 sources . 12

3.1.1 Matching items . 13

3.1.2 Matching conflicts . 15

3.1.3 Possible worlds semantics 15

3.1.4 Merging items . 16

3.2 Integrating multiple sources 18

3.2.1 Matching merged items 18

4 Formalization 21

4.1 Matching two items . 21

4.2 Merging two items . 22

4.3 Matching merged items . 22

4.4 Matching two sets of items 24

4.5 Annotating edges . 25

4.6 Repairing conflicts . 27

4.7 Enumerate possibilities . 29

4.8 Merge items in a matching graph 31

4.9 Integrate two sets of items . 31

5 Strategies 33
5.1 Problematic matching cases 33
5.2 Approach . 36

5.2.1 Cluster items . 37
5.2.2 Dependencies between edges 38

5.3 All distinct strategy . 39
5.4 All the same strategy . 42
5.5 All possible strategy . 42
5.6 Reconsider strategy . 44
5.7 Comparison between strategies 46

6 Conclusions and future work 49
6.1 Future work . 50

A Formalization of an example 51

Chapter 1

Introduction

With the growing volume of information on the Internet it can be expected
that we will see increasingly more applications integrating information from
multiple sources.

Consider an on-line TV guide that annotates movies with information
from The Internet Movie Database (IMDB). In order to accomplish this
there should exist a mapping between movie items from the TV guide and
movie items from IMDB. When there is no unique identifier to link an item
from the TV guide with an item from IMDB, mapping needs to be done on
other available information such as title, year and actors. Since such meta
information is not always complete or accurate it is likely that some movie
items from the TV guide are mapped to the wrong movie items from IMDB.

Entity resolution, which is also known as record linkage or record dedu-
plication, handles the problem of relating information items to entities in
the real world. In the afore mentioned example the information items con-
sist of features such as title, year and actors and refer to a movie in the real
world. A movie is a real world entity where an information item refers to.
The goal of entity resolution is to find the set of items that best represent
the real world entities.

Besides textual features such as title and year in previous example we
can also consider entity resolution on biometric features. Consider the in-
tegration of information from surveillance camera’s on airports and train
stations. When a camera on an airport detects a person with certain bio-
metric features, e.g. size or skin color, we can compare the features with
biometric features registered by a camera on the nearby train station. With
entity resolution we are able to determine if the person seen on the airport
is the same person seen on the train station.

Information items originate from a data source. We assume that a data
source does not contain duplicates. With duplicates we mean items that
refer to the same entity. As an example think of two movie items from
IMDB that refer to the same movie. Figure 1.1 depicts the afore mentioned

1

data Source

data Source

item

item

item

item

contains

contains

contains

contains

duplicates

refers to

refers to

refers to

entity resolution

real world entities

Figure 1.1: Entity Resolution Concepts

concepts.

In order to get meaningful results when we integrate data sources we do
not want the integrated result to contain duplicates. In order to prevent
duplicates we have to match items from different data sources and see if
both items refer to the same real world entity. Two items are considered to
match if they are so much alike that they probably refer to the same entity.
When we encounter items that match we have to merge these items in order
to get one representation for the entity to which they refer.

Matching items is done by comparing features of items. The examples
used in this research consider features consisting of textual information.
Comparing these features can be done by a character based similarity met-
ric such as the edit distance. Consider the case in which two names are
compared for equality. When we encounter the names John and Mike we
can be sure that both names are referring to two distinct persons. However
if we encounter the names John and Jon we can argue that someone made
a typing error in one of the two names because both names differ by only
one character. Using a character based similarity metric such as the edit
distance would render both names as very similar. In the case of a typing
error both names could actually refer to one person named either John or
Jon.

In this research we abstract away from the details of matching items.
We assume there exists a match function which relates pairs of items to
matching scores. These matching scores indicate the degree of similarity
and therefore the likelihood that items refer to the same real world entity.

In order to make a distinction between a match and a non-match we need
a threshold value. When the matching score between two items is equal or
greater than the threshold value we consider both items as being the same.
When the matching score is below the threshold value we consider both
items as being distinct.

When two items are considered to refer to the same entity we cannot

2

add both items to the integrated result since this would lead to duplicates.
Either one of the items needs to be used as a representation of the real
world entity or we have to combine the information contained by each item.
In this research we abstract away from the details of combining items and
assume there exists a merge function which relates pairs of items to items
that are merged. A merged item is assumed to contain all the information
of the items from which it is derived. There is no information loss when we
merge two items. When we merge John and Jon the merged item will still
represent both names but refers to only one real world entity, e.g. a person
called either John or Jon.

Most approaches to entity resolution regard two items to be either the
same or distinct. There are cases however in which the matching score
between two items is very near the threshold value. Making an incorrect
decision, such as a match between two items that actually refer to distinct
entities, leads to erroneous items in the integrated result.

In “A Theory For Record Linkage” [7] Fellegi and Sunter formalized the
concept of entity resolution. Instead of making only a distinction between
items that match and items that are distinct they also consider the case
in which there is a possible match between two items. Items that possibly
match need manual assessment to see if they actually refer to the same entity
in the real world.

In order to prevent wrong decisions we use two threshold values: a
threshold value to determine if items are distinct from each other and a
threshold value to determine if two items are the same. When the match-
ing score is lower or equal to the first threshold value we regard both items
as being distinct. When the matching score is greater or equal to the sec-
ond threshold value we regard both items as being the same. Two items
with a matching score that is between both threshold values are regarded
as possibly the same.

For two items that are possibly the same we have to consider the case
in which both items are distinct and the case in which both items are the
same. In order to deal with multiple alternatives we use the possible worlds
semantics. With the possible worlds semantics we consider multiple alterna-
tive representations of the real world in which at most one of the alternatives
correctly represents the real world situation.

When we perform entity resolution on multiple sources and consider
possible matches between items, the integrated result will contain items for
which we have multiple alternatives. Making a choice for each of the possible
matches results in a possible world. At most one possible world represents
the real world situation. In this research we only focus on the possible results
without considering confidence scores.

The focus of this research will be on the entity resolution process in the
setting of pair-wise integration. We do not consider schema alignment or
similarity metrics. We assume that data sources have the same schema and

3

Jan

John

Jon

0.75

0.67
S1 S2

Figure 1.2: Matching conflict example

that matching scores between items are available.

1.1 Motivation

We investigate entity resolution in the setting of pair-wise data integration.
When we integrate the two data sources depicted in figure 1.2 and we regard
two items with a matching score above 0.6 as being the same we derive at a
situation in which we have a matching conflict.

Because both matching scores are greater than 0.6 we have to consider
the case in which John and Jon are the same and the case in which Jan and
Jon are the same. Since we assume that items originating from the same
source are distinct from each other there cannot be a match between John
and Jan. The situation in which all three names refer to the same person
is therefore impossible. Since a match between John and Jon and a match
between Jan and Jon is mutual exclusive we have to think of strategies to
deal with these situations.

When integrating multiple sources it is possible that more than two items
all refer to the same real world entity. Since we integrate data sources in a
pair-wise fashion we can consider the data sources in different orders.

Consider the integration of the three sources depicted in figure 1.3a.
Using a threshold value of 0.6 and not considering any strategy to resolve
matching conflict we get different results depending on the order in which
the sources are integrated. All possible results are depicted in figure 1.3b.

When we first see John and Jon we conclude that both items refer to the
same person and merge both items. When we later see Jan it is unclear if
Jan matches with our merged item since Jan matches with Jon but does not
match with John. If we first see John and Jan we conclude that both items
refer to distinct persons. When we later see Jan we derive at a matching
conflict. If we first see Jan and Jon we conclude that both items refer to
the same person. When we later see John we also derive at a matching con-
flict. This example shows that multi-source entity resolution is not always
associative.

4

Jan

John

Jon

S1

S2

S3

0.67

0.5

0.75

(a) Data sources S1, S2 and S3

Integration order Result after step 1 Result after step 2

S12 = integrate(S1, S2)
S123 = integrate(S12, S3)

Jan

John

Jan

John

Jon

Jan

John

Jon

Jan

{John, Jon}
?

Jan

Jon
{Jan, Jon}

John
?

(b) Integration orders

Figure 1.3: Integrating three data sources

5

1.2 Research Question

The main question which we will try to answer with this research is:

How to perform multi-source entity resolution using the possible worlds se-
mantics in the setting of pair-wise data integration that is associative?

As we have seen in the motivation we can encounter matchings involving
matching conflicts. We need to think of strategies to resolve these conflicts
and guarantee associativity of the integration process.

How to deal with matching conflicts?

As we have seen in the example there are also situations in which entity
resolution for three or more sources is not associative. This problem occurs
when we have a matching conflict involving a merged item.

How to deal with cases where multi-source entity resolution is not associa-
tive?

1.3 Approach

Before we look into the problems that occur during multi-source entity res-
olution we discuss related research. Most approaches to entity resolution
focus on either data quality, i.e. minimize errors made by the entity reso-
lution process, or performance, i.e. minimizing the number of matches and
merges to make. We found out that there is not much known about how to
perform pair-wise entity resolution on multiple, i.e. more than two, sources.
Because we perform entity resolution pair-wise we can integrate multiple
source in different orders. In order to get meaningful results the order in
which entity resolution is performed on the sources should not have an im-
pact the final outcome, i.e. pair-wise entity resolution should be associative.

One of the assumptions we make in our research is that items originating
from the same source can never refer to the same entity in the real world.
Because of this assumption we cannot assume that matching is transitive.
This differs from approaches found in literature such as [2].

To minimize the number of false positives, i.e. items that are considered
to be the same but actually refer to distinct entities, and false negatives, i.e.
items that are considered to be distinct but actually refer to the same entity,
we also consider some items as being possibly the same. For items that are
possibly the same the entity resolution process could not make a decision
whether or not the items refer to the same entity. Because it is uncertain if

6

both items refer to the same entity we consider the case in which both items
do refer to the same entity and the case in which both items refer to distinct
entities. We will use the possible worlds semantics to describe the outcome
of the entity resolution process. The same approach has been taken in [5]
but they do not consider integration of three or more sources.

To get more insight into the problem domain we will first investigate the
problems that might occur when performing entity resolution on multiple
sources in the setting of pair-wise data integration. We start by describing
the integration of two sources. Then we describe the integration of three
sources and investigate the problems that might occur regarding associativ-
ity.

For each step we will describe what we expect as input and what we
expect to get as output. When we encounter a problematic case with respect
to matching conflicts and/or associativity we will first investigate what the
desired outcome should be before discussing ways of how to handle these
problems.

After investigating the problem domain we will define a formal model
for multi-source entity resolution in the setting of pair-wise data integration.
This model abstracts away from the match and merge functions as well as
from how to handle matching conflicts. We will investigate the problematic
cases and will discuss ways to handle these problems that fits the proposed
model. We can then describe strategies to handle matching conflicts.

1.4 Overview

The next chapter gives a short overview of the related research. We will
then informally introduce the problem domain by discussing an example.
From the insights gained in the informal discussion of the problem we will
define a generic model for multi-source entity resolution. In appendix we
included a formalization of the example using the model.

The formal model describing multi-source entity resolution partly an-
swers our research question with the exception that we abstracted away from
the strategies necessary to resolve matching conflicts. Our sub-questions are
answered in the strategies chapter in which we describe how to resolve the
problematic cases. Figure 1.4 gives an overview of all the chapters.

7

Introduction

Informal prob-
lem definition

Formalization

Strategies

Conclusion

• Introduction

• Motivation

• Approach

• Research questions

• Overview of report

Partly answers re-
search question

Answers re-
search questions

Generic model

Strategies

Figure 1.4: Overview of the report

8

Chapter 2

Related Research

Entity resolution, which is also known as deduplication [13, 6], merge-purge
[8], citation matching [9] and record linkage [12] [7], handles the problem of
relating information items to real world entities. An information item can
be a database record but can also be, in the case of citation matching, a
group of records.

Newcombe [12] laid the probabilistic foundation for entity resolution
which was formalized by Fellegi and Sunter in “A Theory For Record Link-
age” [7]. Fellegi and Sunter consider all pairs of items from two sets A×B
and devide them into three sets: positive link, positive non-link and possible
link. Since an item consists of a number of attributes, each attribute of two
items has to be compared to each other. This results in a comparison vector.
A linkage rule is a set of random decision functions that determine if two
items, given their comparison vector, belong to either the set of matches,
the set of non-matches or need clerical review, i.e. the items possibly match.
Fellegi and Sunter describe a linkage rule that is optimal provided that the
comparison attributes are conditionally independent. Many entity resolu-
tion applications today are still based on the work of Fellegi and Sunter.

We can divide approaches to entity resolution into two groups: (1) pair-
wise approaches [2, 11] and (2) global clustering approaches [1]. In the pair-
wise approach we compare items from one source with items from another
source by using a match function and combine items that are considered
to be the same by using a merge function. Performing entity resolution on
multiple sources requires multiple entity resolution steps in which the result
of a previous step is matched and merged with a new source.

Global clustering approaches consider multiple sources during an entity
resolution step and group items that are deemed to be the same. Since
items from multiple source are considered it is possible to make more accu-
rate decisions compared to the pair-wise approach since more information
is available. When we merge two items in the pair-wise approach and later
discover an item from another source which matches with one of the items

9

involved in the merged item we have to (1) consider all items as being the
same or (2) reconsider the merged item in order to guarantee associative be-
haviors of the overall ER-process. Global clustering approach do not suffer
from this problem.

Our approach can be seen as a combination of pair-wise and global clus-
tering approaches. We consider pair-wise entity resolution in the sense that
we perform entity resolution on two sources. Performing entity resolution
on multiple sources thus takes multiple entity resolution steps. When we en-
counter a match involving a merged item we consider the all the base items
of the merged item and the item with which the merged item matches. In
this case we consider items origination from possibly many sources which is
comparable to global clustering approaches.

Some approaches associate confidence scores to items [11]. Confidence
scores can either be associated with items coming from an unreliable source
or can be the result from a comparison between items. This second kind of
confidence scores represent how likely it is that the items refer to the same
real world entity. Pair-wise entity resolution which incorporates confidence
scores may be order critical. With the pair-wise approach all potential
derivations of merged items must therefor be considered. In our research
we do not associate confidence scores to items, but we will keep track of
matching scores between items. These matching scores can be interpreted
as confidence scores that represent how likely it is that two items represent
the same entity.

An approach to data integration that uses the possible worlds semantics
is described in [15, 5]. With this approach data integration can result in
multiple alternative integration results which are associated with a confi-
dence score. The benefit of this approach is that it is sufficient to use only
a few knowledge rules and to set rough safe threshold values in order to
get integration results that can be meaningfully used [14]. Knowledge rules
prescribe when two items match. An example of such a rule is “two items
refer to the same person if the name and address fields are equal”.

10

Chapter 3

Informal problem definition

Entity resolution deals with the problem of linking items from a data source
to entities in the real world. Think of a database containing contact infor-
mation. It is well possible that two or more items in this database refer
to the same person. In most applications it is undesirable to have multiple
items referring to the same entity. Entity resolution can be used to find these
duplicates. Once found these duplicates can be merged. Finding items that
refer to the same entity is also known as duplicate record detection [6].

The setting in which we will use entity resolution is data integration.
Data integration handles the problem of combining information from two or
more data sources and providing the user with a uniform view of these data
[10]. Instead of having a homogeneous logical view of data that is stored
at distributed heterogeneous data sources we assume that all data is first
collected and integrated before it is stored in a new single data source.

Consider that we have two databases, instead of one, containing contact
information that we want to integrate. Now there can be an overlap between
the persons to which the items from both databases refer. After integrating
both databases it is undesirable to have duplicates in the integrated result.
It is therefor necessary to use entity resolution during the integration process
in order to find those items that refer to the same person.

We do not perform entity resolution after the integration process in the
sense that we first accumulate all data and then perform duplicate record
detection. We make the assumption that data sources do not contain du-
plicate items. This means that two items from the same source can never
refer to the same entity. Only items from different sources can potentially
refer to the same entity. This differs from duplicate record detection after
data integration because we already know which items can never refer to
the same entity. This information would be lost if we first accumulated all
data and did not track from which source each item originated. Tracking
the source from which items originated is also known as the lineage of items.

Many existing data integration approaches first collect all items from the

11

Jan

John

Hans

Jon
0.75

0

0.67

0.5

Source 1 Source 2

Figure 3.1: Two datasources

different data sources and then merge all duplicates. The problem with this
approach is that the lineage of the items is lost. We no longer know if two
items came from the same source and may therefor never refer to the same
entity.

In this research we perform entity resolution on items originating from
different sources. This way we only match items that potentially refer to
the same entity. Items that originate from the same source are not matched
with each other.

In this chapter we will integrate data sources and see what difficulties
regarding entity resolution arise. In the introduction we already discussed
a small example in which we encountered a matching conflict. Here we
will further discuss this example and think of ways to deal with matching
conflicts. Also the problem of associativity will be discussed as we integrate
more than 2 data sources.

3.1 Integrating 2 sources

Consider the two data sources, containing names, depicted in figure 3.1.
Each data source consists of two items. To simplify our example we con-
sider only one feature, namely the name-feature, for each item. In the next
subsection we will elaborate on matching items containing multiple features.
The lines between items represent matchings. Each line is associated with
a matching score which signifies the likelihood that both items refer to the
same entity.

Since we made the assumption that items originating from the same
data source can never refer to the same real world entity we already know
that John and Jan are two distinct persons and that Jon and Hans are two
distinct persons as well. There is however the possibility that a name from
source 1 refers to the same person as a name from source 2. In our example
we can imagine that John and Jon refer to the same person due to a typing
error in one of the names.

12

3.1.1 Matching items

The matching score between items in our example is based on the edit
distance between the names. We use the Levenshtein distance to determine
the edit distance between two names. The Levenshtein distance considers
the number of deletions, insertions and substitutions that are necessary to
transform one character string into the other. Take for example John and
Jon. The edit distance (Levenshtein distance) between both names is 1 since
we can derive at Jon from John by deleting one character. The same is true
if we measure the edit distance the other way around. We can derive at
John from Jon by inserting one character.

In a more realistic scenario we would have items consisting of multiple
features. In our example we could have items containing features such as ad-
dress, telephone number and email address. When we have multiple features
we need to perform matching on each feature. Matching items consisting of
multiple features thus results in multiple matching scores.

Some of the features that we want to compare can be more important
than other features. Consider two items that both contain a name and
address feature. If only the address feature differs we could reason that
both items refer to the same person since there is the possibility that this
person moved to a new address. If, however, the name features differ it is
more likely that the items refer to distinct persons that live or have lived at
the same address. As can be seen in this example the name feature is more
important than the address feature. Each feature can be associated with a
weight which indicates how discriminative this feature is when we perform a
match between two items. Matching items constituting of multiple features
results in a comparison vector [7] consisting of a matching score for each
feature.

Comparing features is usually done by using a character based similarity
metric such as the Levenshtein distance we used in our example. In some
cases we can benefit from domain knowledge when we compare two features.
An example of this would be the name feature in which the format can vary
from source to source or even from item to item. Consider for example “J.
Doe”, “John Doe”, “John D.”, “Doe, J.”, “Doe, John”. All these names
probably all refer to a person called John Doe but the format in which the
names are expressed differ.

Since we focus on the entity resolution process we abstract away from
similarity metrics and assume that all features have the same format. Fur-
thermore we only have one feature and therefor do not consider weights for
multiple features.

In our example we calculate the matching score between items by de-
termining the edit distance and calculate the percentage of characters that
are the same. The percentage that is different is calculated by dividing the
edit distance d by the length l of the longest name. Since we want to know

13

Item 1 Item 2 Edit Distance Length Matching Score

John Jon 1 4 0.75
John Hans 4 4 0
Jan Jon 1 3 0.67
Jan Hans 2 4 0.5

Table 3.1: Matching scores

Jan

John

Hans

Jon
0.75

0.67

0.5

Source 1 Source 2

Figure 3.2: Annotated edges

the percentage of characters that is the same, instead of the percentage that
is different, we subtract 1.0 by the calculated difference. We calculate the
matching score by 1.0 − (d/l). All pairs of items with their edit distance,
length of the longest name and matching score is shown in table 3.1.

From the matching scores we can determine if two items refer to the same
entity or if they refer to distinct entities. To make this distinction we use
two threshold values, δm and δd to classify each match between two items as
either distinct, same or possibly the same. When the matching score is lower
or equal than δd we regard both items as being distinct. When the matching
score is greater or equal than δm we regard both items as referring to the
same entity. When the matching score is between both threshold values
we consider both items as possibly the same. When two items are possibly
the same we consider the possibility in which both items refer to the same
entity and the possibility in which both items are distinct. Since we use
the possible worlds approach each possible match potentially constitutes to
twice as many possible worlds since all already known possible worlds now
have two new possibilities.

When we set threshold value δm to 0.65 and threshold value δd to 0.45
we derive at the situation in figure 3.2. When there is no edge between two
items we regard both items as being distinct. A dashed edge depicts the
situation in which both items are possibly the same. A solid edge depicts
the situation in which both items are the same.

14

John Jon Jan

0.5

0.25 0.33

Figure 3.3: Matching distance

3.1.2 Matching conflicts

After matching all items we sometimes derive at situations which are not
possible in the real world. Consider the matching between items John, Jon
and Jan as shown in figure 3.2. We know that the names John and Jan refer
to two distinct persons and yet both names refer to the same person as the
name Jon. This situation contradicts with our assumption that names John
and Jan refer to two distinct persons since they originate from the same
data source.

When an item is considered to be the same as two or more items from
the same source we derive at a matching conflict.

So what should be the integrated result of items that are involved in a
matching conflict? Consider figure 3.3 which shows the distances between
each items. We see that John and Jan match because Jon is within matching
distance from both John and Jan. With matching distance we mean the
amount of characters that differ between two items. The distance between
John and Jon is 0.25 since 25% of the characters differ. Since we use a
threshold value δm of 0.65 the maximum distance between two items in
order to match is 0.35. The distance between John and Jan is far greater
than 0.35. We argue that an item can only match another item if the total
distance between both items is within the matching distance.

In the John, Jon, Jan case we have only two alternatives: either John
and Jon refer to the same person or Jon and Jan refer to the same person.
Other combinations are not possible.

Another question is what should happen with the possible match between
Jan and Hans. In the possible world where John and Jon are the same there
is the possibility in which Jan and Hans are the same. In the possible world
where Jan and Jon are the same this is not possible since this would lead to
a matching conflict between Jan, Jon and Hans.

3.1.3 Possible worlds semantics

In the previous section we discussed how we match 2 items. For items that
are possibly the same, e.g. refer to the same entity, we have to consider the
case in which both items refer to the same entity and the case in which both
items refer to distinct entities. Only one of these propositions can reflect
the real world situation.

15

Hank Henk

John Jon

(a) Matching

Hank Henk

John Jon

(b) Possible world 1

Hank Henk

John Jon

(c) Possible world 2

Hank Henk

John Jon

(d) Possible world 3

Hank Henk

John Jon

(e) Possible world 4

Figure 3.4: Possible worlds

Consider the matching between 4 items as depicted in figure 3.4a. In
this case we have two pairs of items that are possibly the same. Figure 3.4b
depicts the possible world in which all four items refer to distinct persons.
Figures 3.4c and 3.4d depict the possible worlds in which one pair of items
are considered to be the same. Figure 3.4e depicts the possible world in
which all pairs of items are considered to be the same.

When we first encounter John and Jon, which are possibly the same, we
derive at two possible worlds. When we later see Hank and Henk, which are
also possibly the same, for each of our possible worlds we have again two
possibilities. This indicates that when we encounter a possible match this
potentially leads to twice as many possible worlds.

In some situation we derive at possible worlds which are not possible in
the real world. An example of this is a potential matching conflict as shown
in figure 3.5a. The possible world shown in figure 3.5e is not possible since
it contains a matching conflict. In this case we have only 3 possible worlds.

3.1.4 Merging items

When we merge items we need to think of a representation that best reflects
the entity to which both items refer. In the case of a merge between items
John and Jon we know that the person to which both items refer is either
called John or Jon. There is no way of knowing which name actually reflects
the name of the person in the real world.

We assume a union class merge function [2] in which each feature of an
item maintains all the values seen in its base items. Because of this we need
to keep track of the items from which a merged item is derived. The base
items from which a merged item is derived is also known as the lineage of

16

Jan

John

Jon

(a) Matching

Jan

John

Jon

(b) Possible world 1

Jan

John

Jon

(c) Possible world 2

Jan

John

Jon

(d) Possible world 3

Jan

John

Jon

Impossible

(e) Impossible world 4

Figure 3.5: Impossible worlds

name: John name: Jon

name: {John, Jon}

Figure 3.6: Merged item

the merged item. Keeping track of the lineage of items will also be necessary
when we merge multiple items which will be discussed later.

Consider the case in which items John and Jon are considered to be the
same. When we merge both items we construct a new item which refers to
both base items John and Jon. Since the merged item contains all values
of its base items the name feature consists of the set {John, Jon}. This
situation is depicted in figure 3.6.

In the case of multiple features we can use the same approach. The
value of a feature consists of the union of all values of that feature in its
base items. These values are not actually stored in the merged item but are
derived from its base items.

Note that a merged item can be matched and merged with other items
as well. Because of this we can have merged items consisting of a multiple
base items.

17

S1 S2

Integrate

S12 S3

Integrate

S123 S4

Integrate

S1234

(a)

S1 S2 S3 S4

Integrate

S12

Integrate

S34

Integrate

S1234

(b)

Figure 3.7: Integration process

3.2 Integrating multiple sources

Instead of considering only two sources we now discuss the case in which
we integrate three or more sources. We assume that the integration pro-
cess operates pair-wise. Consider that we want to integrate four sources,
S1, S2, S3 and S4. This means that we first integrate two of the four sources
and then continuously add a new sources to the integrated result. Pair-wise
integration of four sources is depicted in figure 3.7a.

We do not consider the case in which two previously integrated sources
are integrated as depicted in figure 3.7b. At most one of the sources comes
from a previous integration steps. A consequence of this is that a merged
item can never consist of two previously merged items.

3.2.1 Matching merged items

Consider again the items John, Jon and Jan but now residing on three
different sources as depicted in figure 3.8a. When we first integrate the
sources 1 and 2, containing items John and Jon, and then integrate the
result with the source 3, containing item Jan, we see that Jon is considered
to be the same as Jan but that John is considered to be distinct from Jan.
Since items John and Jon are one merged item we cannot say how Jan
matches with this merged item.

We can take the minimum matching score of all matching scores between
item Jan and items Jon and John and then take this score to be the matching
score between Jan and the merged item. In this case we see that Jan is
considered to be distinct from the merged item consisting of John and Jon.

18

source 1

source 2

source 3

John

Jon

Jan

(a) Matching between items

source 3

John

Jon

Jan

(b) Matching after integrating source 1
and 2

Figure 3.8: Matching a merged item

If we take the maximum matching score then both items are considered to
be the same.

19

20

Chapter 4

Formalization

This chapter formalizes each step of the integration process which was infor-
mally described in the previous chapter. After constructing a generic model
for multi-source entity resolution in the setting of pair-wise data integration
we revisit the example of the previous chapter and will use the generic model
to formally describe each step of the integration process.

The model that we present in this chapter abstracts away from handling
problematic cases such as matching conflicts. In the next chapter we will
discuss strategies to resolve the problematic cases.

4.1 Matching two items

When we integrate two data sources we do not want to have duplicates in
the integrated result. Because of this we need to perform entity resolution
on the items from both sources. As we have seen in the previous chapter we
need to compare items from one source with all items from the other source.
Items that originate from the same source are assumed to refer to distinct
entities.

There is a difference between sources where items originate from and
sources that are the result from an integration step. Two items from a
source that is the result from integrating two sources can still be considered
to be the same in a later integration step, as we will see in the chapter about
strategies to resolve conflicts, if the sources where the items originally come
from are not the same.

Assumption 1 We assume there exists a match function which returns the
matching score for each pair of items. The matching score represents the
likelihood that two items are equal. A high matching score indicates that both
items are very similar and therefor probably refer to the same entity. A low
matching score indicates that both items differ significantly and are therefor
probably distinct.

21

match : I × I → [0, 1]

The match function is expected to be idempotent and commutative. With
idempotent we mean that an item always matches itself such that match(i, i) =
1.0. With commutative we mean that the order in which two items are
matched does not affect the matching score such that match(i1, i2) = match(i2, i1).

Note that we assume that items that originate from the same source S
are all distinct from each other such that ∀i1, i2 ∈ S,match(i1, i2) = 0 where
i1 6= i2. A source that is the result from an integration step can contain
items, i1, i2 for which match(i1, i2) > 0 holds. In this case the items i1 and
i2 originally come from different sources but were considered to be distinct
in a previous integration step.

4.2 Merging two items

Where the matching score of two items is above threshold value δm we need a
merge function that combines these items in order to have one representation
for the real world entity to which both items refer. When we merge two items
we still want to know how this merged item came into existence i.e. from
which items it was derived. This is also known as the lineage of the merged
item. The lineage of a merged item is necessary, as we will later see, when
we want to resolve conflicts associated with associativity. We will call the
items from which a merged item is derived base items.

Assumption 2 We assume there is a merge function which merges two
matching items from the set of all possible items I such that

merge : I × I → I. (4.1)

It needs to be possible to determine the lineage of a merged item i.e. to
know from which base items the merged item is derived. The merge function
is expected to be commutative and associative.

The merge function is expected to be commutative and associative. With
commutative we mean that the order in which two items are merged does not
matter such that merge(i1, i2) = merge(i2, i1). With associative we mean
that the order in which we merge multiple items does not matter such that
merge(i1,merge(i2, i3)) = merge(merge(i1, i2), i3).

4.3 Matching merged items

As can be seen in the signatures of our match and merge function a merged
item can be matched with other items. Before we can say something about

22

matching merged items we need to consider the way in which we integrate
data sources. We integrate sources pair-wise and additionally assume that
at most one source originates from a previous integration step. This means
that at most one of the items that are being matched is a merged item.

The question that then arises is how we should match an item with a
merged item which consists of two or more base items. We state that the
matching score between an item and a merged item can never be lower than
the lowest matching score of the matchings between the item and the base
items of the merged item. Likewise the matching score can never be greater
than the maximum matching score between the item and the base items of
the merged item such that

i4 = merge(i1,merge(i2, i3))

match(i5, i4) ≥ min({match(i5, i1),match(i5, i2),match(i5, i3)})
match(i5, i4) ≤ max({match(i5, i1),match(i5, i2),match(i5, i3)})

Given the two threshold values δm and δd we can have the situation in
which some base items are considered to be the same as the item with which
we match while other base items are considered to be distinct from the item
with which we match. If we consider the minimum matching score between
the base items and the item with which we match to be the overall matching
score we can have the situation in which both items are considered to be
distinct even though some base items are considered to be the same as the
item to which we match. If, on the other hand, we consider the maximum
matching score to be the overall matching score we can have the situation in
which both items are regarded to be the same even though some base items
are considered to be distinct from the item to which we match.

Figure 4.1a depicts the matching between a merged item, consisting of
base items a and b, and item c. Base item a is considered to be the same as
item c. Base item b is considered to be distinct from item c. The minimum
matching score is the matching score between base item b and item c. The
maximum matching score is the matching score between base item a and
item c.

If we take the minimum matching score to be the overall matching score
between the merged item and item c then we regard both items as being
distinct from each other which is depicted in figure 4.1b. If we take the
maximum matching score to be the overall matching score then we regard
both items as being the same which is depicted in figure 4.1c. Both situations
are undesirable since we either dismiss the fact that some items are the same
or the fact that some items are distinct.

Since we cannot give one overall matching score when we match a merged
item with an ordinary item we have to redefine the match function. Instead
of returning one matching score the match function has to return a pair of

23

a

b

c

(a) Matching

a

b

c

(b) Min

a

b

c

(c) Max

Figure 4.1: Minimum and maximum matching score

matching scores consisting of the minimum matching score and the maxi-
mum matching score.

Definition 1 The match function compares two items from the set of all
possible items I such that

match : I × I → [0, 1]× [0, 1]. (4.2)

The match function relates a pair of items to a pair of matching scores
such that (min,max) = match(i1, i2) for any i1, i2 ∈ I where min ≤ max.
When i1 is a merged item then all base items of i1 are compared to item i2
which results in a set of matching scores. The match function results in the
minimum and maximum matching score of this set. When no merged item
is involved the minimum and maximum matching score are the same.

When the minimum and maximum matching score are the same, such
as when we match two ordinary items, we will just give one matching score.

4.4 Matching two sets of items

A data source consists of a set of items. When we perform entity resolution
on two such sets we need to match sets of items. We do not match items
from the same sources with each other. The reason for this is that items
from a source not originating from a previous integration step are assumed
to be distinct from each other and items from a source that does originate
from a previous integration step have already been compared to each other.

The matching scores between items from different sources can be repre-
sented as a graph which we will call a matching graph. The vertices in such
a graph represent the items. The edges represent matchings between the
items. Since we only have edges between items from two different sources
this graph is a bipartite graph.

24

John/Jon

Hank

Jan

Hans

(0.5, 0.67)
(0, 0.25)

0.5

0.75

Figure 4.2: Matching graph

Definition 2 We define a match function which takes two sets of items and
results in a matching graph.

Match : PI × PI → G. (4.3)

A matching graph g is a tuple (V,E, `m) consisting of a set of vertices V
representing all items, a set of edges E between items and match function `m
which relates edges to pairs of matching scores consisting of the minimum
and maximum matching score.

The match function for sets of items is defined as

Match(I1, I2) = (I1 ∪ I2, I1 × I2, `m). (4.4)

The function `m is defined for all edges connecting two items from dif-
ferent sources such that ∀i1 ∈ I1∀i2 ∈ I2[`m(i1, i2) = match(i1, i2)]. Remind
that function match is a relation from pairs of items to pairs of matching
scores consisting of the minimum and maximum matching score.

Figure 4.2 depicts the resulting matching graph after matching two
sources S1 = {John/Jon,Hank} and S2 = {Jan,Hans}. Item John/Jon is a
merged item. The matching scores between this merged item and the items
of the other sources consists of a minimum and maximum matching score.
The minimum matching score between John/Jon and Jan is the matching
score between base item John and item Jan which is 0.5. The maximum
matching score between John/Jon and Jan is the matching score between
base item Jon and item Jan which is 0.67. When there are no merged items
involved the minimum and maximum matching scores are the same.

4.5 Annotating edges

Given our threshold values δm and δd we can make a decision for each edge
in our matching graph whether or not two items are the same, distinct or
possibly the same. An edge can be annotated as distinct, same, possibly the
same or reconsider depending on the matching score between both connected
items.

25

An edge annotated as distinct connects two items which are considered
to refer to distinct entities. An edge annotated as same connects two items
which are considered to refer to the same entity. An edge annotated as
possible connects two items which possibly refer to the same entity but can
also refer to distinct entities. When a merged item is matched with an item
it is possible that some, but not all, base items are considered to be the
same as the item to which we match. In this case we have to reconsider the
matching between the base items of the merged item. In the next chapter
we will discuss strategies that handle these cases.

Edges are annotated by a function decisionδm,δd : G → G̃ which relates
a matching graph from the set of all possible matching graphs G to an
annotated matching graph from the set of all possible annotated matching
graphs G̃.

Definition 3 We define a function decisionδm,δd : G → G̃ which is a re-
lation from matching graphs to annotated matching graphs. This function
annotates each edge of a matching graph as either distinct d, same s, pos-
sibly the same p or reconsider r given two threshold values δm and δd such
that

decisionδm,δd(g) = (V,E, `m, `d). (4.5)

The matching graph g is defined as (V,E, `m). The function `d : E →
{d, s, p, r}, which is a relation from edges to the set {d, s, p, r}, is defined for
all edges E of graph g such that

`d(e) =

d if max ≤ δd
s if min ≥ δm
p if max = min∧δd < max < δm

r if max 6= min∧min < δm ∧max > δd

(4.6)

where (min,max) = `m(e).

Furthermore it is convenient to have separate sets for each kind of edge.
For this we define sets Es, Ed, Ep and Er which contain all edges annotated
as same, distinct, possible or reconsider respectively.

Definition 4 We define sets Es, Ed, Ep and Er which contain all edges an-
notated as same, distinct, possible or reconsider respectively given an anno-
tated matching graph (V,E, `m, `d) such that

Es = {e|e ∈ E ∧ `d(e) = s} (4.7)

Ed = {e|e ∈ E ∧ `d(e) = d} (4.8)

Ep = {e|e ∈ E ∧ `d(e) = p} (4.9)

Er = {e|e ∈ E ∧ `d(e) = r} (4.10)

26

John/Jon

Hank

Jan

Hans

reconsider

possib
le

same

Figure 4.3: Annotated matching graph

John

Jan

Jon

Figure 4.4: Matching conflict

Given our decision function and threshold values δd = 0.6 and δm = 0.7
we can annotate the matching graph depicted in figure 4.2. The annotated
matching graph is depicted in figure 4.3. Edges annotated as distinct are not
shown in the graphical representation of the matching graph. A solid line
between two items represents an edge annotated as same. A twisting line
between two items represents an edge annotated as reconsider. A dashed
line between two items represents an edge annotated as possible. Note that
an edge annotated as reconsider has to be connected to a merged item.

4.6 Repairing conflicts

There are situations in which we derive at a matching graph that contains
matching conflicts. Matching conflicts occur when multiple edges are anno-
tated in such a way that there is a contradiction in the matching graph.

Consider the annotated matching graph depicted in figure 4.4 which
is the result of matching items from two sources S1 = {John, Jan} and
S2 = {Jon}. Assume that item John and item Jan originate from the same
source and can therefor never refer to the same entity. Because John is
considered to be the same as Jon and Jan is considered to be the same as Jon
we derive at a contradiction (John = Jon and Jon = Jan but John 6= Jan.)

Besides matching conflicts between ordinary items we also have to deal
with reconsider edges. If we consider the base items of a merged item and
the ordinary item connected to an edge annotated as reconsider we also have
matching conflicts. Consider figure 4.5 which depicts the matching between
the base items of a merged item and an ordinary item. There are matching
conflicts between items a, c and d and items b, c and d.

27

a/b/c d

(a) Matching graph

a

b

c d

(b) Matching between base items
and ordinary item

Figure 4.5: Matching conflicts originating from reconsider edge

a

b

c

(a) Matching conflict

a

b

c

(b) Dependency between
edges

Figure 4.6: Repaired matching graph

We assume there is a function repairs : G̃ → Ĝ which is a relation
from annotated matching graphs to repaired matching graphs. A repaired
matching graph does not contain matching conflicts. An edge annotated as
reconsider is also considered to be a matching conflict. In the next chapter
we define matching conflicts and discuss strategies that can be used to resolve
these conflicts.

The repair function can also add dependencies between edges in a re-
paired matching graph. A dependency between some edges means that at
least one edge has to be annotated as true in any given possible world. Edges
that are involved in a dependency cannot all be distinct. Consider the sit-
uation depicted in figure 4.6a. If we state that either items a and b are the
same or items a and c are the same we cannot have the situation in which
all items are considered to be distinct. A dependency between both edges,
which is depicted in figure 4.6b, prevents the situation in which all items are
considered to be distinct. The possibility in which both edges are annotated
as same is a matching conflict and will not result in a valid possible world.

Assumption 3 We assume there is a repairs function which repairs, given
a repair strategy s, matching conflicts in a matching graph. The function
repairs : G̃ → Ĝ is a relation from annotated matching graphs to repaired
matching graphs. A repaired matching graph is defined as (V,E, `d, D) in
which D ∈ PPE represents dependencies between edges. A dependency be-
tween edges means that at least one edge should be annotated as same in any
given possible world.

28

4.7 Enumerate possibilities

When an edge is annotated as possible we have to consider the possibility
in which the edge would have been annotated as same and the possibility
in which the edge would have been annotated as distinct. For each of these
possibilities we will get a new matching graph. A matching graph that con-
tains edges annotated as possible is considered to be an uncertain matching
graph. A matching graph that does not contain edges annotated as possible
is considered to be a certain matching graph

Consider the repaired matching graph depicted in figure 4.7a. When
we consider all possibilities resulting from considering each edge annotated
as possible as either being the same or as being distinct we derive at the
eight possibilities depicted in figure 4.7b. Not all possibilities are valid.
Some contain matching conflicts whilst others do not satisfy dependencies
between edges.

A possibility is valid when is does not contain matching conflicts and
satisfies all dependencies between edges. With matching conflicts we mean
items that are considered to be the same as two or more other items that are
distinct from each other. A certain matching graph satisfies all dependencies
when at least one edge, of the edges which are dependent on each other, is
annotated as same.

Definition 5 We define a function conflicting : Ḡ → {⊥,>} which is a
relation from certain matching graphs to the boolean domain. A certain
matching graph is conflicting if it contains three items i1, i2 and i3 such that
i1 is considered to be the same as i2 and i3 but in which i2 is considered to
be distinct from i3 i.e. i2 = i1 and i1 = i3 but i2 6= i3.

conflicting(ḡ) = ∀i1, i2, i3 ∈ V [`d(i1, i2) = s, `d(i1, i3) = s, `d(i2, i3) = d]
(4.11)

where ḡ is defined as (V,E, `d, D).

Definition 6 We define a function validdeps : Ḡ → {⊥,>} which is a
relation from certain matching graphs to the boolean domain. A certain
matching graph is valid with respect to dependencies when at least one edge,
involved in a group of edges which are dependent on each other, is annotated
as same such that

validdeps(ḡ) = ∀E′ ∈ D∃e ∈ E′[e ∈ Es] (4.12)

where ḡ is defined as (V,E, `d, D).

Now we have defined which certain matching graphs are valid we can de-
fine the enumerate function. The enumerate function enumerate : Ĝ→ PḠ
is a relation from repaired matching graphs to certain matching graphs and

29

a

b

c

d

e

f

g

(a) Repaired
matching graph

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

(b) Enumerated possibilities

Figure 4.7: Enumerating possibilities

30

enumerates all possible matching graphs by considering each edge annotated
as possible as either same or distinct. A certain matching graph is defined as
(V,E, `d, D) and does not contain edges annotated as possible or reconsider.

Definition 7 We define a function enumerate : Ĝ→ PḠ which is a relation
from repaired matching graphs to certain matching graphs. This function
enumerates all certain matching graphs by considering each edge annotated
as possible as either same or distinct, while filtering out graphs that are
conflicting or not satisfying edge dependencies, such that

enumerate(ĝ) = {g′|C ∈ Ep → {d, s}
∧g′ = (V,E, `deC,D)
∧¬conflicting(g′)
∧validdeps(g′)

(4.13)

where ĝ = (V,E, `d, D). All edges which are annotated as possible are con-
sidered to be either same or distinct. This is done by `deC which overwrites
the function `d for all edges annotated as possible such that it relates to the
set {d, s}.

4.8 Merge items in a matching graph

After all certain matching graphs have been enumerated we can merge items
deemed to represent the same entity i.e. are connected by edges annotated
as same. We define a function Merge : Ḡ → PI which is a relation from
certain matching graphs to the power set of items.

Definition 8 We define a function Merge : Ḡ → PI which is a relation
from certain matching graphs to the power set of items such that

Em = {(i1, i2) ∈ domain(`d)|`d(i1, i2) = s}

Vm =
⋃

(i1,i2)∈Em

{i1, i2}

Vd = V \ Vm
Merge(ḡ) = {merge(i1, i2)|(i1, i2) ∈ Em} ∪ Vd (4.14)

where ḡ is defined as (V,E, `d, D).

4.9 Integrate two sets of items

We can now define the integrate function which integrates two sources. Since
it is possible that a source originated from a previous integration step it can
consist of many possible worlds. Each of these possible worlds has to be
integrated with the items of the other source. At most one of the sources
may originate from a previous integration step.

31

Definition 9 We define a function integrate : S×S → S which is a relation
from pairs of sources to sources. A source is from the set PPI. Two sources
are integrated by considering the items from a possible world from one source
and all items from the other source and perform entity resolution on these
items such that:

integrate(S1, S2) = {Merge(ḡ)|

ḡ ∈
⋃

I1∈S1 I2∈S2

enumerate ◦ repairs ◦ decisionδm,δd ◦Match(I1, I2)}. (4.15)

32

Chapter 5

Strategies

As we have seen in the previous chapters there are cases in which entity res-
olution is problematic due to matching conflicts. This chapter defines which
cases are problematic, why they are problematic and discusses strategies to
resolve them.

In the formalization of the entity resolution problem we abstracted away
from handling problematic situations by defining a repair function. The
repair function has to resolve matching conflicts and has to guarantee asso-
ciative behavior of the overall integration function.

Consider sources S1, S2 and S3 that we want to integrate. Since we inte-
grate pair-wise we start by integrating S1 and S2. The result of integrating
S1 and S2 is a source S12 consisting of one or more possible worlds. We
then integrate sources S12 and S3. Matching S12 and S3 results in a match-
ing graph g123 which is then annotated by the decision function resulting
in annotated matching graph g̃123. In order for the integrate function to be
associative repairs(g̃123) = repairs(g̃132) = repairs(g̃231) has to hold. Two
repaired matching graphs ĝ1, ĝ2 are considered to be the same if the possible
worlds that result after enumerating ĝ1, ĝ2 are the same.

This chapter describes four strategies that can be used to resolve match-
ing conflicts and guarantee associative behavior of the integrate function.
Before discussing the strategies we first define what the problematic cases
are.

5.1 Problematic matching cases

As we have seen in the previous chapter we sometimes derive at situations
in which an item is considered to be the same as two or more other items
which are themselves distinct.

Definition 10 A matching conflict is a sub-graph in which one item is con-
nected by edges annotated as same to two or more items which are distinct

33

from each other, i.e. are not connected to each other by edges annotated as
same.

A matching conflict consists of at least three items. It is possible that
some items originate from the same source. Note that these items can never
participate in the same merged item.

Items connected by a reconsider edge can also contain matching conflicts.
When an item is considered to be the same as some, but not all, base items of
a merged item then both items are connected by a reconsider edge. Consider
the matching between an item and the base items of a merged item. Since
not all items are considered to be the same it is possible that some of these
items are involved in a matching conflict.

The afore mentioned situation can lead to non-associative integration.
Consider the three items depicted in figure 5.1a which originate from three
different sources. If we first integrate the sources containing items a and b
we get a possible worlds in which items a and b are merged. When we then
see the source containing items c we derive at the possible world depicted in
figure 5.1b in which item c is connected by a reconsider edge to the merged
item consisting of items a and b. This possible world differs from the possible
world that results if we first integrate the sources containing items b and
c, as depicted in figure 5.1c. If we simply change the edge annotated as
reconsider to an edge annotated as distinct, i.e. we do not consider a repair
strategy for items connected to a reconsider edge, we see that the order in
which we integrate sources influences the integrated result i.e. integration is
not associative.

For items connected by a reconsider edge we therefore have to consider
all base items. We then have to match all items and annotate the edges
connecting these items accordingly. We also have to match the item that
was connected to the merged item by a reconsider edge with all base items.

Note that base items can be connected by edges annotated as either
same, possible or even distinct. To see why base items can be connected by
an edge annotated as distinct consider the matching shown in figure 5.1a.
Depending on the strategy to resolve the matching conflict we can regard the
edge between items a and c, which is annotated as distinct, as incorrect. If
we annotate this edge as same the matching conflict is resolved and all items
can be merged into one item even though base items a and c are considered
to be distinct by the decision function.

When we consider three items origination from three different sources we
have ten possible ways in which the items can match with each other. All ten
matching cases are depicted in table 5.1. Matching cases 0, 1, 2, 4, 5 and 7
are also possible when items b and c originate from the same source whereas
cases 3, 6, 8 and 9 are only possible when all three items originate from
different sources. Note that matching case 2 contains a matching conflict.

34

0

a

b

c

1

a

b

c
2

a

b

c
3

a

b

c

4

a

b

c
5

a

b

c
6

a

b

c

7

a

b

c
8

a

b

c
9

a

b

c

Table 5.1: Matching cases

35

a

b

c

(a) Three items

a

b

c

(b) Result after seeing a, b
and then c

a

b

c

(c) Result after seeing b,
c and then a

Figure 5.1: Potential non-associative integration

An annotated matching graph can only contain matching cases 0, 1, 2,
4, 5 and 7 since there will always be two items residing in the same source
which are therefor considered to be distinct from each other. All matching
cases can be found when we consider the matching between base items and
the item with which some of the base items match.

To show that a strategy resolves matching conflicts and that they lead to
associative behavior of the integrate function we integrate cases 2, 5, 6, 7, 8
and 9 in all possible orders. We can integrate three sources S1 = {a}, S2 =
{b} and S3 = {c} in three possible orders

integrate(integrate(S1, S2), S3)

integrate(integrate(S1, S3), S2)

integrate(integrate(S2, S3), S1).

5.2 Approach

When only a small amount of items are involved in a matching conflict or
are connected by a reconsider edge it is inefficient to use a repair strategy on
all items. We only have to apply the repair strategy on clusters of items that
are involved in a matching conflict or in which some items are connected by
a reconsider edge.

36

5.2.1 Cluster items

The first step in resolving all matching conflicts is to find all clusters of
items that are involved in a matching conflict or contain edges annotated
as reconsider. Algorithm 1 shows how clusters of items can be found. The
algorithm addresses each edge contained in a decided matching graph. When
an edge, connected to items i1 and i2, is annotated as either same, possible or
reconsider the algorithm searches for clusters containing i1 or i2. If it finds
two such clusters then these clusters are unioned otherwise a new cluster
consisting of items i1 and i2 is constructed.

S ← ∅ {S is a set of clusters, S : PPI}
for (i1, i2) ∈ E do {E is the set of edges from graph g : (V,E, `m, `d)}

if `d(i1, i2) ∈ {s, p, r} then
Ci1 ← {i1}
Ci2 ← {i2}
for C ∈ S do

if C ∩ Ci1 6= ∅ then
Ci1 ← C

end if
if C ∩ Ci2 6= ∅ then
Ci2 ← C

end if
end for
if Ci1 ∈ S then

remove Ci1 from S
end if
if Ci2 ∈ S then

remove Ci2 from S
end if
add Ci1 ∪ Ci2 to S

end if
end for

Algorithm 1: Clustering algorithm

To see how the algorithm works consider the matching graph shown in
figure 5.2a. The order in which the algorithm encounters the edges is also
shown in this figure. Figure 5.2b shows which clusters have been found after
each encountered edge.

Some of the clusters contain items connected by a reconsider edge. In
these clusters the merged items need to be expanded into their base items in
order to resolve matching conflicts between the base items and the item to
which the merged item is connected by a reconsider edge. Figure 5.3 depicts
how a merged item, which is connected to another item by a reconsider edge,

37

a

b

c

d

1

2
3

(a) Matching graph

encountered edge clusters

(a, c) {{a, c}}
(b, d) {{a, c} {b, d}}
(a, d) {{a, c, b, d}}

(b) Clusters at each step of the algorithm

Figure 5.2: Construction of clusters

a/b/c d
expand

c

b

a d

Figure 5.3: Expanding a merged item

is expanded into its base items. The edges between the items are annotated
by the decision function `d.

Clusters containing only two items, which are not connected by a re-
consider edge, can be disregarded since they can never contain a matching
conflict.

After all clusters have been found a repair strategy can be used to trans-
form each cluster into clusters that do not contain matching conflicts.

5.2.2 Dependencies between edges

A repair strategy can add dependencies between edges. Consider the match-
ing shown in figure 5.4a. A repair strategy considers all combinations of three
items. When a dependency is added between two edges it is possible that
one or both edges are already involved in other dependencies. We group de-
pendencies around the item which is connected to both edges. Figure 5.4b
shows all dependencies between edges that are connected to item a.

In some cases multiple dependencies prevent a repaired matching graph

38

source 1 source 2

a

b

c

d

e

(a) Matching

a

d

c

a

c

b

a

d

b

a : {ab, ac, ad}

(b) Dependencies from item a

Figure 5.4: Adding dependencies

to result in any possible world. Consider the matching in figure 5.5a which
contains the dependencies depicted in figure 5.5b. Remember that at least
one of the edges involved in a dependency has to be annotated as same in
any given possible world.

When we try to annotate at least one edge of all dependencies as same we
see that this will always lead to a matching conflict in the certain matching
graph. The reason for this is that source 2 contains more items than source
1. There will always be one item of source 2 that is not connected to an
item of source 1.

Note that some of the dependencies contain edges already contained
in other dependencies. If the edges involved in a dependency are already
contained in other dependencies we can discard this dependency. For the
dependencies shown in figure 5.5b we can discard the dependencies grouped
around item c, d and e, i.e. the dependencies involving two edges. When we
only consider the dependencies grouped around items a and b we see that
we there are six possible worlds that do consistent with the dependencies
and are not conflicting.

5.3 All distinct strategy

The all distinct strategy annotates all edges involved in a matching con-
flict as distinct. Consider the matching case depicted in figure 5.1a con-
taining three items originating from different sources. After integrating
the two sources containing items a and b we derive at a possible world
containing a merged item consisting of base items a and b. When we
then see the third source, containing item c, we derive at the matching
graph depicted in figure 5.1b in which item c is connected to the merged

39

a

b

c

d

e

(a) Repaired matching graph

a

c

d

e

b

c

d

e

c

a

b

d

a

b

e

a

b

(b) All dependencies between edges

Figure 5.5: Dependencies between edges

item by a reconsider edge. Note that the reconsider edge resulted because
`m(merge(a, b), c) = (min,max) in which min ≤ δd and max ≥ δm resulting
in `d(merge(a, b), c) = r.

After expanding the merged item into base items a and b we consider
the matching graph between all items. This corresponds to the matching
depicted in figure 5.1a. Since the matching graph contains a matching con-
flict we have to change one or more edges to resolve the conflict. The all
distinct strategy changes all edges involved in matching conflicts to edges
annotated as distinct. Effectively this means that all items involved in a
matching conflicts are considered to refer to distinct entities.

Graph transformations made by the all the distinct strategy are shown
in table 5.2.

Figure 5.6 shows an example in which the three sources are integrated.
The matching between all items is shown in figure 5.6a. When we first see
the sources containing items a and b we get the situation depicted in figure
5.6b. If the sources containing items b and c are seen first we derive at the
situation depicted in figure 5.6c. The order in which the sources containing
items a and c are seen first is the same as the situation in which the sources
containing items a and b are seen first. The order in which the sources are
integrated has no influence on the resulting possible worlds, i.e. the used
strategy is associative.

40

Matching Transformation

a

b

c

a

b

c

a

b

c

a

b

c

Table 5.2: Graph transformations for the all distinct strategy

a

b

c

(a) matching

a

b

c

expand
a

b

c

transform

a

b

c

enumerate
a

b

c
,

a

b

c

(b) items a and b seen first

a

b

c
,

a

b

c

transform
a

b

c
,

a

b

c

(c) items b and c seen first

Figure 5.6: Example of the all distinct strategy

41

Matching Transformation

a

b

c

a

b

c
or

a

b

c

Table 5.3: Graph transformations for the all the same strategy

5.4 All the same strategy

Another approach to resolve matching conflicts is to consider all edges in-
volved in a matching conflict as edges annotated as same. This can lead to
situations in which two items originating from the same source are involved
in a merged item. This conflicts with the assumption that items from the
same source are always referring to distinct entities.

When we only look at items that are considered to be the same then this
strategy is transitive in the sense that when item a is considered to be the
same as item b and item b is considered to be the same as item c then items
a and c have to be the same too.

Graph transformation made by the all the same strategy are shown in
table 5.3. Note that, based on the assumption that two items originating
from the same source can never refer to the same entity, there is the possi-
bility in which items b and c can never be connected by an edge annotated
as same. This possibility occurs when both items originate from the same
source. When two of the three items originate from the same source all
items are considered to be distinct from each other.

The example shown in figure 5.7 shows that the order in which the
sources are integrated has no influence on the resulting possible worlds, i.e.
the used strategy is associative.

5.5 All possible strategy

If we assume that our assumption always holds, we can never have the
situation in which two items originating from the same source are considered
to be the same. It is also unlikely that all edges previously annotated as
possible or same are all incorrect. Because of these two observations we
reject the all distinct and all the same strategies. A better approach is
to doubt all edges annotated by the decision function. We do not doubt
distinct-edges between items that originate from the same source.

The all possible strategy changes all edges, involved in a conflicting sit-
uation, between items originating from different sources to edges annotated

42

a

b

c

(a) matching

a

b

c

expand
a

b

c

enumerate

a

b

c

(b) items a and b seen first

a

b

c
,

a

b

c

transform
a

b

c

(c) items b and c seen first

Figure 5.7: Example of the all the same strategy

43

Matching Transformation

a

b

c

a

b

c
or

a

b

c

a

b

c

a

b

c

Table 5.4: Graph transformation for the all possible strategy

as possible.

Graph transformation made by the all possible strategy are shown in
table 5.4. Note that when items b and c originate from different sources
there can never be an edge annotated as possible between both items.

The example shown in figure 5.8 shows that the order in which the
sources are integrated has no influence on the resulting possible worlds, i.e.
the used strategy is associative.

5.6 Reconsider strategy

The problem with the all possible strategy is that edges annotated as same
can all become distinct when they are involved in a matching conflict even
though it is more likely that at least one edge annotated as same is correct.
Consider two source S1 = {John, Jan} and S2 = {Jon} where John and
Jon are considered to be the same and Jan and Jon are also considered to
be the same. In this case we have a matching conflict since only one of
the edges annotated as same can reflect the real world situation. Either
John and Jon are the same person or Jan and Jon are the same person.
The all possible strategy considers the possibility in which John, Jan and
Jon are three distinct persons which is unlikely since this would mean that
both edges annotated as same are incorrect. The reconsider strategy adds
dependencies between edges so that the case in which all items are considered
to be distinct is not possible.

Graph transformation made by the reconsider strategy are shown in table
5.5. Note that when items b and c originate from different sources there can
never be an edge annotated as possible between both items.

44

a

b

c

(a) matching

a

b

c

expand
a

b

c

transform

a

b

c

enumerate
a

b

c
,

a

b

c
,

a

b

c
,

a

b

c

(b) items a and b seen first

a

b

c
,

a

b

c

transform

a

b

c
,

a

b

c

enumerate

a

b

c
,

a

b

c
,

a

b

c
,

a

b

c

(c) items b and c seen first

Figure 5.8: Example of the all possible strategy

45

Matching Transformation

a

b

c

a

b

c
or

a

b

c

a

b

c

a

b

c

Table 5.5: Graph transformation reconsider strategy

The example shown in figure 5.9 shows that the order in which the
sources are integrated has no influence on the resulting possible worlds, i.e.
the used strategy is associative.

5.7 Comparison between strategies

The all distinct, and the all the same strategy are expected to result in
the least number of possible worlds. No uncertainty is introduced when
matching conflicts are resolved, i.e. no edges annotated as possible are added
to the matching graph.

The all possible strategy is expected to result in the most possible worlds
since it considers all possible matchings in case of a matching conflict. The
reconsider strategy is expected to result in fewer possible worlds compared
to the all possible strategy but more than the all distinct strategy and the
all the same strategy.

46

a

b

c

(a) matching

a

b

c

expand
a

b

c

transform

a

b

c

enumerate
a

b

c
,

a

b

c
,

a

b

c
,

a

b

c

(b) items a and b seen first

a

b

c
,

a

b

c

transform

a

b

c
,

a

b

c

enumerate

a

b

c
,

a

b

c
,

a

b

c
,

a

b

c

(c) items b and c seen first

Figure 5.9: Example of the reconsider strategy

47

48

Chapter 6

Conclusions and future work

This research dealt with the problem of multi-source entity resolution in
the setting of pair-wise data integration. Since we do not assume matching
to be transitive we found that the main problem was to make multi-source
entity resolution associative. The main contributions of this research are:
(1) a formal model for multi-source entity resolution and (2) strategies that
can be used to resolve matching conflicts in a way that renders multi-source
entity resolution to be associative.

The main research question that was addressed was

How to perform multi-source entity resolution using the possible worlds se-
mantics in the setting of pair-wise data integration that is associative?

We answered this question by defining a formal model which describes
how multi-source entity resolution in the setting of pair-wise data integra-
tion works. We used the possible worlds semantics to handle uncertainty
originating from possible matches which is based on the approach discussed
in [5]. In our model we abstracted away from the details of handling match-
ing conflicts to allow different strategies to resolve matching conflicts. We
considered the match and merge functions to be black boxes, which is sim-
ilar to the approach discussed in [2]. We do, however, expect the match
function to be idempotent and commutative and the merge function to be
commutative and associative. Our model is generic enough to allow different
match and merge function as well as allowing different strategies to resolve
matching conflicts.

In our model matches between items are represented in a matching graph.
We described four strategies that can be used to resolve matching conflicts
in such a graph: (1) all distinct strategy, (2) all the same strategy, (3) all
possible strategy and the (4) reconsider strategy. Each strategy resolves
matching conflicts by performing simple graph transformations. We used
small examples in which we integrated three sources in different orders to

49

show that the strategies resulted in associative behavior of the integrate
function.

Existing approaches to entity resolution often consider matching to be
transitive. Because of the transitivity property matching conflicts do not
occur. This research does not expect the match function to be transitive.
Furthermore we also assume items originating from different sources to be
distinct from each other, i.e. two items originating from the same source can
never refer to the same real world entity.

6.1 Future work

There are still some things left that can be considered to be future work.
This research did not formally proof that the integrate function is associative
given a strategy to resolve matching conflicts. A formal proof is necessary
to guarantee associativity of the integrate function under all circumstances.

Another thing that can be considered to be future work is confidence
score calculation. Given that each item is associated with a confidence score
and since we assume that information about the lineage of each item is
available it should be possible to calculate a confidence score for each item
in any given possible world. These confidence scores can be used to calculate
an overall confidence score for each possible world which would enable us
to rank all possible worlds according to these scores. How to incorporate
matching scores into the model that we presented in this research is still
an open question. The approach discussed in [5] incorporates confidence
scores but does not consider multiple sources. The approach discussed in
[11] also incorporates confidence scores but does not use the possible worlds
semantics.

It is also interesting to look at the storage of the integrated result. Since
we abstracted away from implementation details we did not discuss how
items should be merged. Uncertain lineage databases [3] are capable of
handling both lineage and confidence score computation. How to use such
a database system to store an uncertain integrated result and how it can be
used to compute a confidence score for each item is also an open question.

Once there is a prototype system that uses our approach to multi-source
entity resolution it is interesting to see how the proposed strategies perform,
with respect to precision and recall, compared to existing approaches to en-
tity resolution. An obstacle here is that we use the possible worlds semantics
which means that we potentially have more than one integrated result. By
using metrics discussed in [4] we might be able to compare our approach to
already existing approaches.

50

Appendix A

Formalization of an example

This appendix contains a formalization of the example discussed in the in-
formal problem definition.

In this example we integrate three sources S1, S2 and S3 each containing
one item. The sources, threshold values and matching scores are shown
below:

S1 = {John}, S2 = {Jon}, S3 = {Jan}
δd = 0.60, δm = 0.70

match(John, Jon) = (0.75, 0.75)
match(John, Jan) = (0.5, 0.5)
match(Jon, Jan) = (0.67, 0.67)

51

g = Match({John}, {Jon}) = ({John, Jon},
{(John, Jon)},
{((John, Jon), (0.75, 0.75))})

g̃ = decisionδm,δd(g) = ({John, Jon},
{(John, Jon)},
{((John, Jon), (0.75, 0.75))},
{((John, Jon), s)})

ĝ = repairs(g̃) = g̃
ḡ = enumerate(ĝ) = {ĝ}

integrate({{John}}, {{Jon}}) = {Merge(ḡ)|ḡ ∈ ḡ} = {{merge(John, Jon)}}
g = Match({merge(John, Jon)}, {Jan}) =

({merge(John, Jon), Jan},
{(merge(John, Jon), Jan)},
{((merge(John, Jon), Jan), (0.5, 0.5))})

g̃ = decisionδm,δd(g) = ({merge(John, Jon), Jan},
{(merge(John, Jon), Jan)},
{((merge(John, Jon), Jan), (0.5, 0.5)},
{((merge(John, Jon), Jan), d)})

ĝ = repairs(g̃) = g̃
ḡ = enumerate(ĝ) = {ĝ}

integrate({{merge(John, Jon)}}, {{Jan}}) = {Merge(ḡ)|ḡ ∈ ḡ} =
{{merge(John, Jon), Jan}}

52

g = Match({John}, {Jan}) = ({John, Jan},
{(John, Jan)},
{((John, Jan), (0.5, 0.5))})

g̃ = decisionδm,δd(g) = ({John, Jan},
{(John, Jan)},
{((John, Jan), (0.5, 0.5))},
{((John, Jan), d)})

ĝ = repairs(g̃) = g̃
ḡ = enumerate(ĝ) = {ĝ}

integrate({{John}}, {{Jan}}) = {Merge(ḡ)|ḡ ∈ ḡ} = {{John, Jan}}
g = Match({John, Jan}, {Jon}) = ({John, Jan, Jon},

{(John, Jon), (Jan, Jon)},
{((John, Jon), (0.75, 0.75)), ((Jan, Jon), (0.67, 0.67))})

g̃ = decisionδm,δd(g) = ({John, Jan, Jon},
{(John, Jon), (Jan, Jon)},
{((John, Jon), (0.75, 0.75)), ((Jan, Jon), (0.67, 0.67))},
{((John, Jon), s), ((Jan, Jon), p)})

ĝ = repairs(g̃) = g̃
ḡ = enumerate(ĝ) = ({John, Jan, Jon},

{(John, Jon), (Jan, Jon)},
{((John, Jon), (0.75, 0.75)), ((Jan, Jon), (0.67, 0.67))},
{((John, Jon), s), ((Jan, Jon), d)})

integrate({{John, Jan}}, {{Jon}}) = {Merge(ḡ)|ḡ ∈ ḡ} =
{{merge(John, Jon), Jan}}

53

g = Match({Jon}, {Jan}) = ({Jon, Jan},
{(Jon, Jan)},
{((Jon, Jan), (0.67, 0.67))})

g̃ = decisionδm,δd(g) = ({Jon, Jan},
{(Jon, Jan)},
{((Jon, Jan), (0.67, 0.67))},
{((Jon, Jan), p)})

ĝ = repairs(g̃) = g̃
ḡ = enumerate(ĝ) =

{({Jon, Jan}, {(Jon, Jan)}, {((Jon, Jan), (0.67, 0.67))}, {((Jon, Jan), d)}),
({Jon, Jan}, {(Jon, Jan)}, {((Jon, Jan), (0.67, 0.67))}, {((Jon, Jan), s)})}

integrate({{Jon}}, {{Jan}}) = {Merge(ḡ)|ḡ ∈ ḡ} =
{{Jon, Jan}, {merge(Jon, Jan)}}

g1 = Match({Jon, Jan}, {John}) = ({Jon, Jan, John},
{(Jon, John), (Jan, John)},
{((Jon, John), (0.75, 0.75)), ((Jan, John), (0.5, 0.5))})

g̃1 = decisionδm,δd(g1) = ({Jon, Jan, John},
{(Jon, John), (Jan, John)},
{((Jon, John), (0.75, 0.75)), ((Jan, John), (0.5, 0.5))},
{((Jon, John), s), ((Jan, John), d)})

ĝ1 = repairs(g̃1) = g̃1
enumerate(ĝ1) = {ĝ1}

g2 = Match({merge(Jon, Jan)}, {John}) =
({merge(Jon, Jan), John},
{(merge(Jon, Jan), John)},
{((merge(Jon, Jan), John), (0.5, 0.5))})

g̃2 = decisionδm,δd(g2) = ({merge(Jon, Jan), John},
{(merge(Jon, Jan), John)},
{((merge(Jon, Jan), John), (0.5, 0.5))},
{((merge(Jon, Jan), John), d)})

ĝ2 = repairs(g̃2) = g̃2
enumerate(ĝ2) = {ĝ2}

ḡ = enumerate(ĝ1) ∪ enumerate(ĝ2) =
{({Jon, Jan, John},
{(Jon, John), (Jan, John)},
{((Jon, John), (0.75, 0.75)), ((Jan, John), (0.5, 0.5))},
{((Jon, John), s), ((Jan, John), d)}),
({merge(Jon, Jan), John},
{(merge(Jon, Jan), John)},
{((merge(Jon, Jan), John), (0.5, 0.5))},
{((merge(Jon, Jan), John), d)})}

integrate({{Jon, Jan}, {merge(Jon, Jan)}}, {{John}}) = {Merge(ḡ)|ḡ ∈ ḡ} =
{{merge(Jon, John), Jan}, {merge(Jon, Jan), John}}

54

Bibliography

[1] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering.
Machine Learning, 56:89–113, July 2004.

[2] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su,
Steven Euijong Whang, and Jennifer Widom. Swoosh: a generic ap-
proach to entity resolution. The VLDB Journal, 18(1):255–276, 2009.

[3] Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer Widom.
Uldbs: Databases with uncertainty and lineage. Technical Report 2005-
39, Stanford InfoLab, 2005. A previous version of the paper was titled:
”The Symbiosis of Lineage and Uncertainty”.

[4] A. de Keijzer and M. van Keulen. Quality measures in uncertain data
management. In H. Prade and V. S. Subrahmanian, editors, Pro-
ceedings of the First International Conference on Scalable Uncertainty
Management (SUM2007), Washington, DC, USA, volume 4772 of Lec-
ture Notes in Computer Science, pages 104–115, Berlin, October 2007.
Springer Verlag.

[5] A. de Keijzer and M. van Keulen. Imprecise: Good-is-good-enough
data integration. In Proceedings of the 24th International Conference
on Data Engineering (ICDE2008), Cancun, Mexico, pages 1548–1551,
Los Alamitos, April 2008. IEEE Computer Society Press.

[6] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S.
Verykios. Duplicate record detection: A survey. IEEE Transactions
on Knowledge and Data Engineering, 19(1):1–16, 2007.

[7] Ivan P. Fellegi and Alan B. Sunter. A theory for record linkage. Journal
of the American Statistical Association, 64(328):1183–1210, 1969.

[8] Mauricio A. Hernández and Salvatore J. Stolfo. The merge/purge prob-
lem for large databases. In SIGMOD ’95: Proceedings of the 1995 ACM
SIGMOD international conference on Management of data, pages 127–
138, New York, NY, USA, 1995. ACM.

55

[9] Steve Lawrence, C. Lee Giles, and Kurt D. Bollacker. Autonomous ci-
tation matching. In AGENTS ’99: Proceedings of the third annual con-
ference on Autonomous Agents, pages 392–393, New York, NY, USA,
1999. ACM.

[10] Maurizio Lenzerini. Data integration: a theoretical perspective. In
PODS ’02: Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 233–246,
New York, NY, USA, 2002. ACM.

[11] David Menestrina, Omar Benjelloun, and Hector Garcia-Molina.
Generic entity resolution with data confidences. Technical Report 2005-
35, Stanford InfoLab, 2005.

[12] H.B. Newcombe, J.M. Kennedy, S.J. Axford, and A.P. James. Auto-
matic linkage of vital records. Science, 130:954–959, October 1959.

[13] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication
using active learning. In KDD ’02: Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 269–278, New York, NY, USA, 2002. ACM.

[14] M. van Keulen and A. de Keijzer. Qualitative effects of knowledge
rules in probabilistic data integration. Technical Report TR-CTIT-08-
42, Enschede, June 2008.

[15] M. van Keulen, A. de Keijzer, and W. Alink. A probabilistic xml
approach to data integration. In Proceedings of the 21st International
Conference on Data Engineering (ICDE’05), Tokyo, Japan, IEEE Con-
ference Proceedings, pages 459–470, Washington, DC, USA, April 2005.
IEEE Computer Society.

56

