UNIVERSITY OF TWENTE.

Domain Specific Embedded Languages and Model
Driven Engineering

MSc CS SE

Stefan Kroes
SE Group

Graduation Committee:
Dr. Ivan Kurtev

Dr. ir. Klaas van den Berg
A. Goknil, MSc

February 14, 2010

Contents

1 Introduction 1
1.1 Problem Statement 1
1.2 Approach e 2
1.3 Related Work e 2
1.4 Contributions e e e e e e e 3
1.5 Outline e e e e 3

2 Problem Analysis 4
2.1 Host Language Choice and Features (Ql and Q2) 5
2.2 MTL Features (Q3) o o o e 5
2.3 Evaluating the degree of reuse (Q4) L 5
2.4 Advantages and Disadvantages (Q5) 6
2.5 Comparison to other implementations (Q6) 6
2.6 Conclusions e e e 6

3 Model Driven Engineering 8
3.1 Conceptual Overview e e e e e e 8
3.2 Definition of Model 9
3.3 MDE or MDA? e 10
3.4 Promisesof MDE e 10

3.4.1 Separation of Concerns 10
3.4.2 Better communication Lo L 10
3.4.3 DMaintainabilityo 11
3.5 Problems of MDE 11
3.5.1 Behavioural Modelling 11
3.5.2 Modelling of Dynamic Languages 11
3.6 Tool Support e e 11
3.6.1 Query/View/Transformation (QVT) 12
3.6.2 ATLAS Transformation Language (ATL) 12
3.6.3 RubyTL 12
3.6.4 RGen e 12
3.7 Features of MTL’s e 12
3.7.1 Specification Mechanism L 12
3.7.2 Rule, Source and Target Multiplicity 12
3.7.3 Source, Target or Hybrid Models 13
3.7.4 Tracing Facilities 13
3.7.5 Transformation Ordering 13
3.7.6 Source and Target Model Multiplicity 14
3.7.7 Source Expression Language oo 14
3.7.8 Helpers Functions 15
3.8 Conclusions e 15

4 Ruby and Domain Specific Embedded Languages

4.1 Historical Context

4.2 Domain Specific Languages

4.3 The Ruby Syntax

4.4 Object Oriented Programming Features
4.4.1 Open Imperative Class Definitions
4.4.2 Method Chaining
443 Duck Typing
4.4.4 Operator Overloading

4.5 Prototype Oriented Programming Features

4.6 Functional Programming Features
4.6.1 Ruby Blocks and Domain Specific Embedded Language (DSEL)’s

4.7 Aspect Oriented Programming Features
4.7.1 Catching missing constants to clean up a DSEL

4.8 Conclusions oo

TRans: A MTEL prototype

5.1 A Basic Modelling Language
5.1.1 Simple Model Definition DSEL
5.1.2 Loading and Saving Models
5.1.3 Querying Models using OCL

5.2 TRans Introduction
5.2.1 A Complete Transformation
5.2.2 Transformation Loading and Execution . .
5.2.3 Model Declarations
5.2.4 Requiring Libraries
5.2.5 Transformation Rules
52.6 Helpers

5.3 TRans AOP Features

5.4 Tracingin TRans
5.4.1 Tracing Constraints
5.4.2 Return Types
5.4.3 Result Count Conditions.

5.5 Code Generation

5.6 Conclusions

TRans: Architecture, Design and Implementation
6.1 Architecture

6.2 Design
6.2.1 DSEL Tools Component
6.2.2 AOP Tools Component
6.2.3 Transformation Representation Component
6.2.4 Transformation Execution Component . .
6.2.5 Model Component

6.3 Implementation

6.4 Conclusions

Evaluation

7.1 Comparison to Classic Language Design Approach
7.1.1 Achieved Reuse
7.1.2 Advantages
7.1.3 Disadvantages,
7.1.4 Comparison Table

7.2 Comparison to RubyTL
7.2.1 Advantages
7.2.2 Disadvantages.

ii

16
16
17
17
18
18
20
21
21
22
22
23
23
24
24

25
25
27
27
27
29
29
29
30
31
31
32
32
34
34
35
35
35
36

38
38
39
39
41
42
43
44
45
46

7.2.3 Comparison Table e 51

7.3 Conclusions e e e e 51
Conclusions 52
8.1 Summary of Concepts 52
8.2 Research Questions e 53
8.2.1 Research Question 1 53
8.2.2 Research Question 2 L Lo 53
8.2.3 Research Question 3 L 53
8.2.4 Research Question 4 54
8.2.5 Research Question 5 e 54
8.2.6 Research Question 6 54
8.3 Contributions e 55
8.3.1 Architectural Improvements 55
8.3.2 Comprehensive Approach L o 55
8.3.3 AOP Functionality for Model Transformation 55
8.3.4 Complete Survey of DSEL Techniques 55
8.4 Future Work e 55
8.4.1 Disadvantages.o 55

iii

List of Figures

1.1

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

Reading guide for this report 3
How we expect different characteristics of our implementation to be affected by increased

TEUSE .« v v v v e 7
The relation between a model and its subject oL 8
Models and their meta-models Lo 9
An overview of the process of model transformation and its terminology 9
Example of keeping a trace information 13
Example of Ruby syntax 17
Example of using named arguments 18
Examples of calling methods on literals 18
Meta-objects, regular objects and the relations between them 19
Examples of imperative class definition 0oL 19
Opening the string class L 20
A simple recipes DSEL 20
A simple DSEL for performing set mathematics 21
Singleton method definition example L oL oo 22
Example of using procs 22
Using blocks to create a DSEL with implicit context 23
Demonstration of the XMLBuilder gem L 23
Using the const_missing method to clean up the recipe DSEL 24
Meaning of and relations between different concepts used in this report 26
Sample code for dealing with models 0oL 26
DSEL for defining models in code Lo 27
Sample code for loading and saving models L oL oL 27
Sample YAML model file with two elements, 28
Sample of our OCL variant, implemented as a DSEL 28
A complex transformation L 29
Code sample of loading and executing a TRans transformation 30
Diagram showing the model transformation pattern of TRans 30
Code sample declaring a source and a target model 31
Code sample of requiring a Ruby Gem from a TRans transformation 31
Code sample of a simple rule in TRans 32
Code sample of a TRans helper 32
Code sample of a TRans join point logger 33
Sample output for the code sample in figure 5.14 33
Changing the join point logger to use ’_before’ and ’_after’ methods 33
Sample code for defining a concern from the transformation 34
An example of a simple trace in TRans L oL 34
An example of element constraints for our basic modelling language 35
A code generation sample 36
A code generation sampleo 36

iv

6.1 Architectural logical overview diagram 39
6.2 Class diagram of the DSEL Tools component 40
6.3 DSEL definition code taken from 'TransformationElement’ class 41
6.4 Sample DSEL code for DSEL definition in figure 6.3 41
6.5 Sequence diagram of handling DSEL keywords 42
6.6 Class diagram of the AOP Tools component 42
6.7 Sequence diagram showing the weaving of concerns for a join point 43
6.8 Class diagram of the Transformation Representation component 43
6.9 Class diagram of the Transformation Execution component 44
6.10 Squence diagram of the Transformation Execution algorithm 45

List of Tables

5.1 Functional equivalents to OCL in our ruby implementation 28
5.2 Possible values for the 'returns’ option for the trace method 35

7.1 Comparison table for the classic approach to language design versus the DSEL approach 49
7.2 Comparison table for RubyTL versus TRans 51

vi

Abbreviations

AOP Aspect Oriented Programming

API Application Programmer Interface
ATL ATLAS Transformation Language
DSEL Domain Specific Embedded Language
DSL Domain Specific Language

EMF Eclipse Modelling Framework

MDA Model Driven Architecture

MDE Model Driven Engineering

MTEL Model Transformation Embedded Language
MTL Model Transformation Language
OCL Object Constraint Language

OMG Object Management Group

QVT Query/View/Transformation

UML Unified Modelling Language

vii

Abstract

Model Driven Engineering (MDE) [20] is an emerging approach to software engineering. The main
concepts in MDE are models, meta-models and transformations. Models are the first class entities of any
MDE environment. A model is a representation of its subject, describing only the relevant aspects of
it and omitting everything else. While a model’s subject is represented by the model, the model can be
interpreted to obtain information about its subject. The subjects of these models are parts of aspects of
the software system under development. Models can be refined and (de)composed using transformations,
defined in a Model Transformation Language (MTL).

MTL’s are often implemented using a traditional approach to language design, using a dedicated
compiler and/or interpreter. We will explore an alternative but equally valid method of developing a
MTL, namely developing it as an Domain Specific Language (DSL) within the context of an existing
general purpose programming language (host language). This kind of DSL is often referred to as an
DSEL [18] and it’s essentially an advanced form of the Application Programmer Interface (API).

We chose Ruby as our host language because of its concise and flexible syntax, extensive features
for the creation of DSEL’s, support for declarative and functional programming, reflective features and
mature standard library. For our goal, the most important of these are code blocks that can be evaluated
in any context and operator overloading.

This report introduces and explains our Model Transformation Embedded Language (MTEL) called
TRans. The defining characteristics of TRans, apart from it being a MTEL, are support multiple source
and target models, automatic execution ordering using a topological sort algorithm, advanced tracing
functionality and Aspect Oriented Programming (AOP) features. By implementing TRans as a MTEL
we where able to reduce implementation effort significantly. We deem that this reduction far outweighs
the disadvantages of this approach, especially for research purposes.

The research that is most obviously related to our research is the RubyTL language for model trans-
formation. It too is a MTEL based on Ruby. When compared to RubyTL, TRans has the following
advantages: some AOP support, decoupling from modelling language, a more advanced DSEL and a
cleaner implementation. We where able to achieve these advantages because Ruby DSEL creation tech-
niques, as well as the MDE domain, have evolved and TRans is a more recent effort.

Chapter 1

Introduction

Most innovative efforts in the field of software engineering attempt to abstract away from the specifics
of the actual machine. We strive to create environments in which software engineers can consider
functionality as much as possible rather than having to worry about the specifics of their implementation
platform. The main consideration for these abstractions is the need to hide as much complexity as possible
while limiting possibilities as little as possible. We started off in this direction quite nicely by building
two layers of abstraction of top of the actual machine code; assemblers and programming languages.
Programming languages where in turn used develop interpreters and virtual machines, paving the way
for multi-platform and dynamic programming languages. While many efforts are being made to improve
programming languages themselves, a new layer of abstraction that builds on them has not emerged
for a long time. Model Driven Engineering (MDE) [20] is believed by many to be this next layer of
abstraction.

MDE is concerned with models and transformations between these models. From a practical point
of view models are essentially simple data structures that can be used to express anything. From a
theoretical point of view however, the concept of a model is much broader. A model is an abstraction of
its subject, describing only the relevant aspects of it and omitting everything else. This means multiple
models can be abstractions of the same subject, for example a software system, each model describing
different aspects of it. In the ideal model driven software project, models expressing individual concerns
are mapped (optionally through intermediate models) to models expressing an executable system, often in
the form of programming code. This is an exciting new idea, promising true separation of concerns, better
maintainability and more effective communication through different and often graphical representations
of models.

Transformations and mappings between models are two terms describing the same thing, chosen from
an imperative and declarative point of view respectively. In the rest of this report we will refer to this ac-
tivity as model transformation, as it’s so much more common. The process of model transformation takes
one or more models as input and produces one or more output models from them. These output models
can either be an updated version of an input model or a newly generated model. Model transformations
are expressed in a model transformation language and are essential to model driven engineering.

This chapter discusses the current and desired situations in the field of model transformation lan-
guages, our approach to solving some of these problems and finally the outline of this thesis.

1.1 Problem Statement

MDE is currently not the prevalent method of implementing software systems, even though the first
examples of MDE can be traced back to the 1980’s. MDE has some serious problems that need to be
solved before it can assume a more significant role in software development. From a theoretical point of
view, a major problem with MDE is the inability to unambiguously and completely describe a system
using only conceptual models. This applies particularly to the modelling of the behavioural aspects of
the system. Additionally, there are practical problems with adoption and tool support. The theoretical
and practical problems enforce each other in a vicious cycle. A lack of adoption causes MDE to evolve
at a very slow pace while at the same time the immaturity of MDE is preventing it from being adopted

on a large scale.

This study is concerned with the more practical problems of MDE, and model transformations in
particular. A language that is designed specifically for this purpose is called a Model Transformation
Language (MTL). A handful of relatively mature languages exist in this area, the most notable of which
are QVT [27], ATLAS Transformation Language (ATL) [5] [16] and Tefkat [23]. These languages were
developed using a classic approach which means defining a grammar and developing a dedicated parser
and interpreter or compiler for them. While this is a valid approach that provides maximum flexibility,
history has shown that these kinds of languages take a long time to mature. Some major languages from
different areas of computer programming that where developed in this fashion are C, Java and Ruby,
which all took the better part of a decade to become mature, standardised and generally accepted.

We also observe an overlap in desirable language features between modern programming languages
and MTL’s. Aspects like parsing and interpretation, expressions, data structures, garbage collection,
I/O and other libraries, method dispatching, control structures and exception handling are all desirable
in a MTL and have already been implemented in most major programming languages. Ideally we
could borrow these language features from a mature programming language and focus solely on model
transformation specific problems when developing a MTL. Borrowing all these facilities from another
language wouldn’t only save us the burden of implementing them ourselves but would also result in a
better product. Large parts of the MTL would have matured much longer than the lifespan of the MTL
itself and would already be familiar to programmers who are familiar with the chosen programming
language.

Our problem statement is in a single sentence:

Designing a MTL from scratch is a time consuming endeavour that requires re-implementation of many
language features that already exist (mature and thoroughly tested) in other programming languages.

1.2 Approach

We will explore an alternative but equally valid method of developing a MTL, namely developing it as
an Domain Specific Language (DSL) within the context of an existing general purpose programming
language. This kind of DSL is often referred to as an Domain Specific Embedded Language (DSEL) [18]
and it’s essentially an advanced form of the Application Programmer Interface (API).

In our opinion, the most appropriate way to explore this approach is to perform a case study, which
in this case means the implementation of a MTL using this approach. In order to do this we’ll need
to pick a general purpose programming language to base our MTL on, which we will call the host
language. We will need to establish some criteria for picking our host language and examine its facilities
for DSEL creation. Additionally we need to perform a survey of MTL characteristics and decide upon
some requirements for our MTL.

The main advantage and in fact the goal of this approach is that it allows us to focus on the model
transformation specific aspects of the language as described in Chapter 3 rather than on aspects that
are commonplace in other computer languages. Performing the case study will allow us to determine to
what extend this goal can be reached and what other (unforeseen) advantages our method yields. The
obvious disadvantage of this method is decreased flexibility in defining our language. The case study will
allow us to determine to what extend this actually is a problem and what can be done to counter it.

1.3 Related Work

The language we will be developing is based on the declarative Mistral [21] language for Model trans-
formations to a large extend. The topological sort algorithm used to determine trace dependencies
introduced by Mistral will be at the heart of our language as well. Other important influences are
RubyTL [19] and RGen [29]. RubyTL was the first MTL that we know of that is defined as an DSEL
and RGen is a more recent project that does the same thing but also broadens the scope to a more
complete MDE environment. Incidentally, both of these projects use the Ruby programming language
as their host language.

1.4 Contributions

This section summarises the contributions made by this research. They are described in more details in
Chapter 8.

e Architectural Improvements TRans’s architecture offers a very clean and extensible approach
to model transformation. It allows the model querying and instantiation mechanisms to be a
separate DSEL that is all but completely decoupled from the actual model transformation DSEL.

e Comprehensive Approach Because TRans is so indifferent to the interpretation of the model
concept everything can be a model whit its own mechanisms for instantiation and querying. This
means that any type of computer data, like for instance a code repository can be wrapped and
used as a source or target model.

e AOP Functionality for Model Transformation TRans features the ability to apply Aspect
Oriented Programming in its model transformations. This ability is especially powerful since the
full featured Ruby language can be used to write advice.

e Complete Survey of DSEL Techniques This report presents a very complete survey of DSEL
creation techniques in the context of the Ruby language. Many of these techniques have been
applied for the creation of the TRans language which leads to it being a more concise DSEL for
model transformations than RubyTL.

1.5 Outline

We start by provide a more complete analysis and decomposition of the problem and the approach
we just introduced in Chapter 2. To provide context, we will describe different aspects of MDE and
directional declarative MTL’s in particular in Chapter 3. Chapter 4 will give more context on the
Ruby programming language and its facilities for creating DSEL’s in particular. If the reader is already
familiar with MDE and DSEL creation in Ruby, these chapters can be skipped. Chapter 5 introduces
our case study of developing of a MTL as a DSEL, which we will call a Model Transformation Embedded
Language (MTEL). The architecture and design of the language is detailed in Chapter 6 in the form
of development guidelines, dependencies, a logical overview, class diagrams and sequence diagrams. We
evaluate the usability, flexibility and performance of our language in Chapter 7. Finally, we present our
conclusions in Chapter 8. Possible paths for reading through these chapters are depicted in figure 1.1.

Chapter 1 _ Chapter 5
Introduction " | TRans: AMTEL prototype
Chapter 2 Chapter 6
Problem Analysis TRans: Architecture and Design
Chapter 3 Chapter 8 -
Model Driven Engineering Evaluation
Chapter 4 Chapter 9
Ruby and DSEL's Conclusions

Figure 1.1: Reading guide for this report

Chapter 2

Problem Analysis

In this chapter we decompose the problem stated in our introduction into subproblems and describe our
approach to solving to those problems on a high level of abstraction. First, lets reconsider our problem
statement:

Designing a MTL from scratch is a time consuming endeavor that requires re-implementation of many
language features that already exist (mature and thoroughly tested) in other programming languages.

The obvious solution to this problem is the reuse of language features from an existing programming
language for the development of a MTL. This approach provides the MTL with mature and tested
implementations of those language features which improves its quality and allows more focus on the
development of model transformation specific language features. We refer to the programming language
that is reused for implementation of the MTL as the host language. We have identified five ways in
which a programming language can be reused to create a MTL:

e Design the MTL from scratch, reusing source code from the host language implementation for the
common features.

e Refine the host language implementation to be model transformation specific.
e Design the MTL as an extension to an existing programming language that allows this.

e Design the MTL from scratch and compile it to the host language, leaving common language
constructs intact, essentially forwarding them to the host language.

e Design the MTL in the host language as an Domain Specific Embedded Language (DSEL).

The possibilities are ordered from maximum flexibility and minimum reuse to minimum flexibility
and maximum reuse, meaning that they require a descending amount of effort for the development of
the MTL. This inverse correlation between reuse and flexibility might seem counter intuitive. However,
by reuse we mean reusing parts of a single host language. In this case there is only a single alterna-
tive for every component you decide to reuse and these components contain certain decisions in their
implementation that you won’t be able to make yourself.

We decided to implement our MTL as a DSEL in the our host language because this approach allows
maximum reuse and requires the least amount of effort. This means that if this is a viable solution, it is
the most desirable one. After making this choice, our new problem is how to develop a MTL as a DSEL
in a host language, enabling maximum reuse of the host language features, and requiring a minimum
amount of compromise in our MTL because of the lack of flexibility. This problem raises the follow
questions:

Q1 What host language should we use and because of which requirements?
Q2 Which facilities in the host language can be used to create a DSEL?

Q3 What features do we want our MTL to support in order to make it a valid proof of concept?

Q4 To what degree where we able to achieve the reuse we where aiming for?
Q5 What advantages and disadvantages did the achieved reuse yield?

Q6 How does our implementation compare practically to implementations using the same ap-
proach?

The next sections present high level descriptions of our solutions to each of these research questions.

2.1 Host Language Choice and Features (Q1 and Q2)

In order to be able to develop a viable MTL as a DSEL, we chose the following requirements for our
host language:

e It should have a flexible syntax that isn’t exotic in the context of model transformation.

e It should provide extensive features for the creation of DSEL’s. In particular closures and operator
overloading in order to implement OCL.

e It should provide syntax for declarative and functional programming as these paradigms are com-
mon in model transformation languages.

e It should have a mature standard library in order to deal with data structures, strings and file
formats.

It turns out that even for these straightforward requirements, there is only a single language that’s
the obvious choice. We chose Ruby as our host language because it is, to the best of our knowledge, the
only mature language that meets all these needs and because it has proven itself repeatedly in the area
of DSEL creation. Examples of this in the field of MDE are RubyTL [19] and RGen [29]. We provide
an extensive investigation into Ruby DSEL creation in Chapter 4, in order to determine exactly which
facilities it offers for this purpose.

2.2 MTL Features (Q3)

In order to establish a feature set for our language that makes it valid proof of concept we performed a
literature study on MDE and more specifically an analysis of commonalities and variability’s in model
transformation specific language features. This analysis is presented in Chapter 3 and a selection of
these features is presented in Chapter 5. Aside from model transformation specific language features,
the MTL will also incorporate many common features that it borrows from the host language such as
control structures, expressions, a type system, arithmetics, modularisation and the standard library. We
spend less time on these because they basically come for free when choosing this approach.

2.3 Evaluating the degree of reuse (Q4)

Reuse is a simple concept; develop (sub)systems and use them across multiple, larger (sub)systems [2] [11].
In the case of DSEL creation, the (sub)systems we plan to reuse are classified as language features, in
a very broad sense. A language feature can be a specific language construct like exception handling but
also something with a broader scope like a parsing or a method dispatch mechanism. What we’re really
doing when developing a DSEL is reusing an entire existing language and building a new language (the
DSEL) on top of it. In this sense, the DSEL is an extension of the host language, reusing every aspect of
it. Even while every aspect of the host language is going to be present in the DSEL, it is possible to hide
some aspects or discourage users from accessing them. In our opinion, the best way to assert the degree
of reuse that can be achieved is to develop a prototype. Chapters 5 and 6 describe the development of
this prototype and Chapter 7 evaluates the degree of reuse that was achieved that needed to be made.
It is hard to state exactly the decrease in complexity and effort by reusing an existing language because
there are so many variables involved. For a proper comparison you need two functionally equivalent
MTL’s, one developed as an DSEL, and one developed in the traditional way. Since we don’t have these
two languages, the motivation of the statements in our evaluation can only be a logical one.

2.4 Advantages and Disadvantages (Q5)

If we establish that a certain degree of reuse can be achieved, this will directly or indirectly impact
a lot of characteristics of our language implementation in comparison to a language developed in the
traditional way. We expect that the characteristics that will be impacted are the following:

e Implementation effort The effort required for the implementation of our MTL is expected to
decrease with an increased degree of reuse. This statement only assumes that reusing something
requires less effort than recreating it, something we feel is safe to say. This decrease in effort is
considered desirable.

e Flexibility We define flexibility as the degree of freedom in implementing the MTL that the lan-
guage designer has. When language features are reused from the host language, flexibility is
expected to decrease. This assumption is based on the notion that reused language features in-
evitably contain design decisions. When unable to make all design decisions that go into a language
yourself, your degree of freedom in creating that language is decreased. This decrease in flexibility
is considered undesirable.

e Familiarity Familiarity is considered as the amount of knowledge available about the MTL amongst
new users. We expect familiarity to increases with increased reuse, given that features are reused
from a well established language such as Ruby. Familiarity is considered desirable.

e Maturity and Reliability Maturity and reliability are defined as the density of defects in the
MTL. We expect it to increases where reuse is increased as well, given that features are reused
from a mature reliable language such as Ruby. Maturity and reliability are considered desirable.

e Library Availability When a language is developed as a MTEL, host language libraries become
available to that language as well. We consider the ability to use libraries when writing model
transformations desirable.

e Maintainability and adaptability Maintainability and adaptability the effort required for re-
spectively repairing defects and making changes to a system. We can assume that a small code
base of a certain quality is more maintainable and adaptable than a much larger codebase of equal
quality because changes in large codebase potentially have more impact. We therefore assume that
these characteristics are increased for the language implementation where implementation effort is
decreased. Obviously, maintainability and adaptability are desirable qualities of a system.

e Superfluous functionality When a language is developed as a MTEL, you inevitably reuse
language features you don’t actually want to reuse. Some of those features can be useless or even
harmful in a model transformation domain. The existence of useless or harmful features in a system
is considered undesirable.

Chapter 7 evaluates whether or not these characteristics where actually affected in the ways we
expected. If so, this defines in which situations the DSEL approach is preferable based on which char-
acteristics are important. Figure 2.1 shows a diagram of the different characteristics we defined, how
we expect them to be affected by reuse or one another and whether we consider it desirable for them to
increase.

2.5 Comparison to other implementations (Q6)

This research is not the first effort to develop a MTL as DSEL. RubyTL [19] is another one. It is
important do evaluate the differences between our implementation and theirs. We will do so in Chapter
7.

2.6 Conclusions

In this chapter we analysed our problem and defined our research questions. We also immediately
answered one of the research questions because there really is only one obvious answer. For the other
research questions we formulated our strategy towards answering them throughout the rest of this report.

Familiarity (good)

Library Availability Maturity and
(good) increases Reliability (good)
= 7
increases increases
Reuse
increases decreases
= N
Superfluous decreases Implementation
Functionality (bad) Effort (bad)
Flexibility (good) decreases

Maintainability and
Adaptability (good)

Figure 2.1: How we expect different characteristics of our implementation to be affected by increased
reuse

Chapter 3

Model Driven Engineering

This chapter is an introduction intro the domain of MDE. Section 3.1 introduces the central concepts in
MDE in order to provide context. Section 3.2 provides a formal definition of the most important concept
of model. Sections 3.4 and 3.5 respectively describe the advantages that MDE promises to provide and
the problems that are associated with it. Section 3.6 describes current tools and languages. Section
3.7 describes the features of these languages with special emphasis on commonalities and variabilities in
order to identify important features for our own Model Transformation Language (MTL).

3.1 Conceptual Overview

The main concepts in MDE are models, meta-models and transformations. Models are the first class
entities of any MDE environment.

A model is a representation of its subject, describing only the relevant aspects of it and omitting
everything else. While a model’s subject is represented by the model, the model can be interpreted to
obtain information about its subject. While we prefer this terminology, the relation between a model and
its subject is also often described as the model modelling its subject and the model being an abstraction of
its subject. It’s possible to have multiple models of the same subject, each describing different, possibly
overlapping aspects. Additionally, it is possible for a model to be the subject of another model itself.
The relation between a model and its subject is shown in figure 3.1.

representation

\ 4

model * 1 subject

J

interpretation

Figure 3.1: The relation between a model and its subject

Meta-models essentially define a subset of all possible models by specifying constraints on the them.
In MDE, meta-models are often models themselves, and that way a meta-model for meta-models can be
defined, which is called the meta-meta-model. A MDE environment has just one of these meta-meta-
models, defining the subset of all models that classify as meta-models. A way to look at this is that the
meta-meta-model is the type or class of meta-models, which in turn are the type or class of individual
models. Another common terminology is that each model is an instance of its meta-model and that
every meta-model is an instance of the meta-meta-model. Figure 3.2 shows these relations.

As mentioned earlier MDE is also concerned with transformations between models. These transfor-
mations are expressed in a Model Transformation Language (MTL). Section 3.7 describes many aspects
of these MTL’s. In most MDE toolsets, models are used to represent these model transformations, this
is a clean approach that allows transformation of transformation definitions. In this case the syntactic
part of the MTL is a meta-model. Figure 3.3 provides an overview of this process and its terminology.

instance of instance of

» »
L L

model * 1 meta-model * 1 meta-meta-model

< <
<% <%

type/class of type/class of

Figure 3.2: Models and their meta-models

| models

g)

meta-models

meta-meta-model

e

\

I
]
I
I
]
I
I
]
I
|
I
! meta-model meta-model meta-model
| A for MTL B
I
! A8 4
! A S A Lo A
| TTTTT AT T T T T T ~% ‘::""“' __'__':7“ _____________ -=
I
I
]
AtoB
I
' model 1 (transformation definition) model 2
I
I
I

f instance of
source —>| (transformation execution) [target l? source/target

1‘ dependency

Figure 3.3: An overview of the process of model transformation and its terminology

While theoretical understanding about modelling and transformations is vital for the development
of a MDE environment, models are a very simple concept from a pragmatic or implementation point
of view. In this context a model can simply be viewed a simple data structure, traditionally often a
graph with a map of key/value pairs associated with each node. These kinds of models are especially
well suited to describe structural aspects of software. UML [17] is a good example of this.

Apart from model to model transformation, it’s also important to perform transformation between
models and other artefacts. These other artefacts will often include graphical representations and textual
representation such as code. We call creation of models from other artefacts reading, the most common
applications of which are loading a model from an editable graphical representation or other serialised
form. We call creation of other artefacts from models writing, the most common applications of which
are saving a model to an editable graphical representation or other serialised form and code generation.

3.2 Definition of Model

The first defining characteristic of a model is that it is a relative concept [21]; every model exists in
relation to its subject. The model represents its subject and can be interpreted to obtain information
about it. The model is therefore an abstraction of its subject, describing relevant aspects of it and
omitting everything else.

Model interpretation can be described by the mapping of a model to the set of all possible subjects
it could represent. This set of subjects is the subset of all possible subjects that have the characteristics
that the model describes in common. When you look at the floor plans of a house for example you
can derive certain aspects of it (room configuration, sizes, etc.) but others are still variable (location,

materials, etc.). In this example the floor plans are a model, and all possible houses they could result
in are the set of subjects the model could represent. From the resulting set of subjects, a single subject
can be chosen based on its non-common (variable) characteristics.

Model interpretation is reversible which means a model can be derived from any of its possible
subjects, we call this process subject representation. The other way around however, a single definitive
subject can not be derived from a model without extra input. An exception to this rule only arrises if
a model describes every single aspect of its subject. We argue however that such a model isn’t a model
at all because it isn’t an abstraction of its subject. This point of view is reflected in our final definition
of model. Furthermore we can classify model interpretation as an non-destructive process and subject
interpretation as a destructive process.

Another import aspect of a model is that it’s expressed in a modelling language. The modelling
language often consists of formal syntactics in the form of a meta-model and informal semantics. Most
of the rest of this report is devoted to the semantics of model transformations, which are a specific class
of models.

Based on the literature [21] and these observations, we chose the following definition of model:

A model is a representation of its subject expressed in a modelling language. It can be inter-
preted to derive a proper subset of its subject’s characteristics.

3.3 MDE or MDA?

MDE was proposed as a generalisation of MDA, the original standard from the OMG [26]. The main
difference is that MDA focusses on Platform Independent Models (PIM) and Platform Specific Models
(PSM) and also on the set of OMG standards, among which is UML. Also, MDE focusses on the
development process much more than MDA does. Since MDE is broader in scope it relates more closely
to a general purpose MTL than MDA.

3.4 Promises of MDE

The original research on what was then called MDA focussed on a specific case of separation of concerns
(PIM/PSM). They where aiming to separate the concerns of functionality and implementation platform.
MDE is an effort to tackle the problem of separation of concerns in a more general sense. Promises of
increased maintainability and better communication are closely related to proper separation of concerns.
If MDE will ever achieve true separation of concerns in complex software systems it will deliver on these
other promises as well.

3.4.1 Separation of Concerns

The obvious way MDE tries to achieve separation of concerns is by delegating each concern to a separate
model. The challenges arise when attempting to assemble models into intermediate artefacts and ulti-
mately into working software (transformation). A balance has to be found between describing system
knowledge with models and embedding it in the transformations themselves. To have a separate model
for every bit of system knowledge would achieve full separation of concerns but would result in a very
complex system of models and transformations which would be hard to standardise. Embedding too
much system knowledge in the transformations leads to concern tangling and decreases reusability of
transformations. The current approach to this dilemma is having a different model driven approach for
each system, further decreasing reusability of models and especially transformations.

3.4.2 Better communication

Separation of concerns leads to better and clearer code and models that in turn leads to more effective
communication through code and models. Apart from that, there is also the separate notion of models
being more easily readable by nature than code and thus being more adequate tools of communication.
However, it might very well be that this notion has risen from the fact that models generally contain a lot
less knowledge and complexity than code does. Models are inherently decoupled from their representation

10

though, which opens up interesting prospects of communication through possibly different representations
of models.

3.4.3 Maintainability

Separation of concerns is the most important aspect that makes a system maintainable. Change decisions
target functionality rather than code and by localising that functionality to a specific part of the system
change impact can be limited, thus achieving increased maintainability. The rest of this claim is based on
improved communication through models, which a questionable claim by itself. Easily readable artefacts
would however facilitate the efficiency of developers who are inexperienced with those artefacts. When
it’s easy to go back to a system after an extended period of time and make changes or bring in new
people to do it, that system is more maintainable.

3.5 Problems of MDE

The main problems of MDE are those of the models themselves. A unified set of modelling languages that
can completely and precisely describe any software system simply isn’t available, the most significant
attempt is UML. Another problem of MDE is the poor and often clunky tool support that is solely due
to lack of adoption.

3.5.1 Behavioural Modelling

Current software modelling practices, namely the use of UML, are fairly adequate at modelling the
structural aspects of a software system. However, there is a big gap as far behavioural modelling is
concerned. An important reason for this is the lack of formal semantics for modelling languages. While
over half of the UML model types aspire to some kind of behavioural modelling, interpretation and
interaction of these types of models is often not an exact science. Especially the diagram types that
specify by example like the sequence diagram are completely unusable in a MDE environment because
they don’t provide a full specification that includes all corner cases. MDE approaches are currently
focussed on the structure of software systems, in which the behaviour is often defined manually using
programming code. Behavioural models with strictly defined semantics will have to be developed in
order to overcome this problem.

3.5.2 Modelling of Dynamic Languages

Another shortcoming of the dominant modelling language UML is that there are absolutely no facilities
for modelling systems that make use of dynamic languages. This deficiency is related to the behavioural
modelling gap because part of the behaviour of a dynamic program can be to change or extend its own
structure. Runtime specialisation and creation of classes and runtime (re)definition of methods are just
some of the things UML can’t model at all. UML is not very unified in the sense that its main focus
on effectively modelling Java systems and after noticing the package diagram one might even argue that
Java Modelling Language would be a more appropriate name for UML.

3.6 Tool Support

Most MDE tools are build on the Eclipse Modelling Framework (EMF), examples of this are ATL
and Borland Together. The EMF platform is a modelling framework and code generation facility for
building MDE tools. EMF uses XMI to represent models and provides a basic graphical XMI editor
along with tools for loading the models into a Java runtime environment where they can be traversed
and updated. The meta-modelling architecture of EMF is called ECore. In this section we provide
background information on some of the model transformation languages already in existence that are
relevant to our research.

11

3.6.1 Query/View/Transformation (QVT)

QVT [27] is a standard created by the Object Management Group (OMG) of which several partial
implementations exist, the most notable of which are SmartQVT and the implementation in Borland
Together. The QVT standard actually consists of three DSL’s named QVT Relations, QVT Core and
QVT Operational Mappings. Relations and Core are declarative languages which both are extended by
the Operational Mappings language which also includes some imperative features.

3.6.2 ATLAS Transformation Language (ATL)

ATL [5] is a slightly more pragmatic approach to model transformation because it originated as an
implementation instead of as a standard. It originated later than QVT and has always supported many-
to-many transformations. Like QVT it operates on models that comply to the MOF meta-meta-model.

3.6.3 RubyTL

RubyTL [19] is a MDE approach which uses Ruby DSL’s for model transformation and code generation.
It is distributed as part of the Agile Generative Environment (AGE) which is an Eclipse environment
for MDE. It supports ECore and EMOF which makes it compatible with other MDE solutions based on
Eclipse.

3.6.4 RGen

RGen [29] is a much more recent solutions to MDE using Ruby tooling. It was developed for commercial
use and also integrates with ECore and provides code generation. It was developed in isolation from
RubyTL and has focusses more on meta-modelling rather than transformations.

3.7 Features of MTL’s

This section describes the commonalities and variability’s of MTL’s. These are things every MTL
designer must think about in order to specify a new MTL. Many parts of this section where taken from
literature [9] but some where stumbled upon during development for this thesis. This section is focussed
on declarative directional rule-based MTL’s because they are the most common and are the focus of this
research.

3.7.1 Specification Mechanism

The specification mechanism refers to the language used to specify the actual model transformations.
While transformations in most MTL’s are specified using a custom syntax, it is also possible to build on
a existing language that has a flexible syntax. An example of this is RubyTL [19], which builds on the
general purpose programming language Ruby. Also, it’s easy to imagine specifying a MTL in a general
purpose data definition language like XML as another alternative in this area.

3.7.2 Rule, Source and Target Multiplicity

The basic building block of a declarative MTL is the rule. It specifies a mapping between source model
elements and target model elements. Each rule has zero or more source expressions. Source expressions
are evaluated to produce a result that functions as input for the rule. While this result is often a bunch
of model elements it can also be something simple like a string or a number. It is possible to have
multiple source expressions and combine their results somehow. The most common combination method
is a cartesian product, but other possibilities are a set union, a set intersection or having a configurable
combination method for each rule. The more elegant and powerful solution however, is to have a single
source expression for a single rule and allow these set operations and the querying of multiple models
in that single expression. Another valid but uncommon possibility is to allow rules without a source
expression at all, in which case the rule would have no input. The single rule, single source alternative

12

can however easily mimic this behaviour by having the single source return a void object (nil or null in
most common languages).

While the source expression of a rules functions as its input, the target of a rule functions as its
output or result. It creates, changes or deletes an element. Usually, target(s) are evaluated once for
each item in the input. While a rule without any targets would make no sense, both allowing just a
single one and allowing multiple are valid approaches. Allowing only a single one does not result in
decreased functionality compared to the alternative and is thus the cleaner approach. Experience has
thought us however that allowing multiple targets for a single rule is often convenient, because it can
reduce redundancy in source expressions without the use of helper rules.

3.7.3 Source, Target or Hybrid Models

The models a transformation is concerned with often have specific roles. Some models can serve strictly
as input, which means they can be queried(read) but can not be changed(written). Other models might
serve strictly as output models, which means they can are generated(written) during transformation but
may never be queried as the source of a rule. A MTL can also allow a hybrid form, which is model that
can be both queried and changed. However, this is a controversial feature because it inevitably leads
to non-determinism in declarative transformations. Hybrid models are desirable though because they
facilitate in-place transformation, which allows for much simpler transformations for model refinement.
An alternative way to achieve more simple model refinement transformations is to include powerful model
element copying features in the MTL.

3.7.4 Tracing Facilities

The advantage MTL’s have over the more common tree-based transformation languages like XSLT [6]
is the ability to transform graphs that have cycles. MTL’s accomplish this by offering tracing facilities.
The basic idea is to keep a record of all the elements that where created and what source data was used
to create them. This information can then be queried in order to create the target element.

A classic example is the transformation of 'properties’ that have a ’class’ as owner to 'columns’ that
have a ’table’ as owner. When transforming 'columns’ to ’properties’ in this case, the transformation can
use trace data to find the 'table’ that was generated from the ’class’ that owns the 'property’ to serve as
the owner of the ’column’. Figure 3.4 shows that the columns could have never found its owner without
the trace information.

source model : target model
Class L= - trace - - > Table
owner : : owner
Property [--trace --i> Column

Figure 3.4: Example of keeping a trace information

3.7.5 Transformation Ordering

Even though declarative transformation don’t have explicit rule ordering, rules do sometimes need to
be evaluated in a specific order to complete a transformation. The case presented in Section 3.7.4 is an
example of this. The rule that transforms ’classes’ to ’tables’ needs to be evaluated first in order for the
rule that defines the 'columns’ to find those 'tables’ using trace information and set them as the 'column’
owner. In a purely declarative transformation language, the transformation engine is responsible for

13

determining this ordering. This ordering can be determined in an extra pass that is done before the
actual transformation pass, but can also be done on the fly. In the second case the transformation can
just start with the evaluation of any rule and evaluate other rules as they are needed.

While it is common to evaluate rules atomically (entirely or not at all), a more powerful approach
is to do the same for rule targets or even target elements. These approaches allow tracing dependencies
between targets of the same rule or between target elements of the same target respectively. An example
case in favor of the approach that allows dependencies between target elements of the same rule target
is the transformation of an inheritance hierarchy using a single rule.

Though we can transform entire tree structures in a single rule with this last approach, we can’t
do the same for graphs that contain cycles. This can however be done by forgetting about ordering
altogether and propagating all the trace information queries to an extra pass that is executed after the
main transformation pass. However, this approach poses a problem when the transformation wants to
traverse the result of a trace query.

Transformation Order Control

When non-determinism is introduced into a model transformation because it manipulates a hybrid model,
the need for rule order control arises. Several mechanisms have been invented to allow this. The first
and simplest is to just specify the order in which rules have to be evaluated. This is very much at odds
with the declarative nature of these transformations and it is not very well maintainable. A slightly more
desirable approach is to group rules and specify the execution order of those groups, a mechanism often
referred to as transformation steps. However, this approach suffers from exactly the same deficiencies
as the first one. A less flimsy and more maintainable solution is to allow rule dependencies to specify
ordering only where necessary. Nonetheless, all these alternatives are considered harmful because they
severely interfere with the declarative nature of transformations.

3.7.6 Source and Target Model Multiplicity

All MTL’s need to decide how many input and output models to accept and generate. The possibilities
are to support one-to-one, many-to-one or many-to-many transformations. The one-to-one alternative
is very constricting and so not very common, it means the MTL would never be able to combine mul-
tiple models into one. Supporting many-to-one transformation is the cleanest way of opening up all
possible transformation scenarios because it can achieve many-to-many transformation by having a sep-
arate transformation for each of the output models. Many-to-many transformations open up possibilities
for tangling within transformations because multiple unrelated models could be generated by a single
transformation. However, this is the preferred alternative for most MTL’s because it allows genera-
tion of side-products for a transformation like log and trace data. Especially trace data is crucial for
implementing incremental or partial transformations.

3.7.7 Source Expression Language

This part of the MTL is subject to reuse and standardisation because it is far more tightly coupled with
the modelling standard used than with the MTL itself. A mature MTL should make it easy to swap out
one expression language for the other and could even allow multiple languages to be used in parallel.
The most common standard in this area is OCL, which is a standard from the OMG [4].

Object Constraint Language (OCL)

OCL is a standard that was developed by the OMG to query UML models. Apart from some basic
types and operation, its distinguishing features are the support for multiple types of collections and
set operations on them. Included in these set operations are existential and universal quantifiers with
closure support, a very useful feature in this domain better known from SQL and dynamic programming
languages.

14

XQuery

XQuery [3] is not commonly applied in the area of model transformations. It does however deserve
a mention as the dominant standard in the area of document querying. While XQuery is a standard
for querying XML documents that are essentially trees, it contains several features that could drive
innovation in the area of model querying, the most notable of which being XPath.

3.7.8 Helpers Functions

Most MTL’s have support for helper functions, often referred to as helper rules. These are totally
different from the rules discussed earlier and hence the term function is preferred. While rules are always
evaluated once and just once, helper functions can be invoked at will from these rules. Like any function
they serve to contain functionality that is used in multiple places and that would otherwise have to be
duplicated. The other important reason to have helper functions is to make a MTL Turing complete by
allowing recursion.

3.8 Conclusions

While the research area of MDE is quite extensive, only several concepts are really well established. The
well established commonalities in the area of model transformation are the concepts of source and target
models, transformation and helper rules, rule ordering mechanisms, tracing mechanisms and declarative
definition of transformations. Apart from the existence of these concepts in almost every MDE approach,
there is a lot of variability in the interpretation of these concepts among different MDE approaches.

15

Chapter 4

Ruby and Domain Specific
Embedded Languages

In this chapter we discuss the aspects of Ruby that make it great for the development of Domain Specific
Embedded Languages (DSEL). We start by providing introductions into DSEL’s and some of Ruby’s
structural and syntactical features. Since the most defining characteristic of Ruby is its marriage of
different programming paradigms, most of the rest of this chapter is structured into the programming
paradigms that Ruby borrows its language features from. These chapters focus specifically on how these
language features can be applied to develop DSEL’s.

Section 4.3 provides some introduction into the Ruby syntax. It focusses on syntactic aspects that
make it great for DSEL development. For a broader and more thorough introduction we refer to the
online documentation [25]. Sections 4.4, 4.5, 4.6 and 4.7 respectively describe object oriented, prototype
oriented, functional and aspect oriented features of the Ruby language that can be used for DSEL
creation.

4.1 Historical Context

Ruby [25] is a dynamic, reflective, general purpose, object oriented programming language. Ruby origi-
nated in Japan where it was developed by its creator Yukihiro 'Matz’ Matsumoto during the mid 1990’s.
While Ruby’s internals bear the most resemblance to Smalltalk [1], the Perl [14] programming language
has served as a strong inspiration for the exterior features of Ruby. Matz had already picked the name
Ruby over Coral before any code for the language was written. It was realized later that the Ayurvedic
birthstone system designates the pearl as the birthstone for the month June and the ruby as the birth-
stone for the month July, implying Ruby as the successor of Perl. Ruby received a lot of attention in
recent years because it is the foundation of the web development framework Ruby on Rails [10].

Ruby has never had an official specification. The original C implementation created by Matz is
regarded as the authoritative specification for the language. Recently, third parties have started creating
their own implementations of Ruby. Rubinius [28] was the first alternative implementation. It uses a
custom virtual machine and is supposed to be faster and more reliable than the original implementation.
However, it has yet to gain popularity. The RubySpec [22] project originated from the Rubinius project
and is an executable specification of the Ruby language that was written in Ruby itself. RubySpec is
now the standard for checking compatibility between different implementations. Sun is supporting the
development of JRuby [13], which runs on the Java Virtual Machine (JVM) [24]. The main advantages
of JRuby are its speed, its ability to integrate with Java libraries and its ability to deploy Ruby on Rails
web applications to Java application servers. Microsoft also announced its own Ruby version for the
NET framework [8] called IronRuby [7], which is currently in alpha.

16

4.2 Domain Specific Languages

A Domain Specific Language is a computer language that is tailored to a specific application domain.
It allows programs written in it to be more effective and concise within this application domain. This
is accomplished by providing these programs with an implicit context that would have to be provided
explicitly if the program was written in a general purpose computer language. While a DSL can be
a language in the traditional sense with its own parser and compiler or interpreter, we are focussing
on Domain Specific Embedded Languages (DSEL). A DSEL is a DSL that is embedded in a suitable
general purpose computer language, borrowing common language features from it and adding language
features that are lacking. A DSEL can be embedded in its host language at compile time [18] or at
runtime [12]. We are focussing on the variant that is embedded at runtime, which is essentially an
advanced form of the Application Programmer Interface (API). The distinction between API’s that can
be called DSEL’s and API’s that can’t is very vague. We use the term DSEL very broadly to describe
any API that has DSL-like properties. Embedding at runtime means that the DSEL has no control over
its own compilation and thus that only language constructs of the host language can be used to express
programs in the DSEL. Even though this approach seems constricting at first, this chapter will show
that a well designed host language can require conformance from a DSEL while still being very flexible.

4.3 The Ruby Syntax

The Ruby syntax focusses on flexibility and conciseness. Many of the core constructs in Ruby can be
expressed in several different ways, allowing it to mimic other computer languages. The code sample in
figure 4.1 shows two pieces of code that do exactly the same thing using different programming styles,
both are valid Ruby code but the first shows syntactical similarities to functional programming and linux
shell scripting while the second one is similar to C and Java. This example shows two different syntaxes
for both code blocks and string literals and also shows the optionality of both parenthesis for method
invocation and the semicolon for statement termination. While these are only minor exterior provisions
in the Ruby parser, it shows a design philosophy that prefers to allow rather than to require.

Print 'Hello World' three times
3.times do

p 'Hello World'
end

Exactly the same, but different
3.times {

p("Hello World");
}

OoONOUIARWNE

Figure 4.1: Example of Ruby syntax

Another example of this is illustrated by the code sample in figure 4.2. The first few lines define a
method that takes one required argument and one optional argument that defaults to an empty hash.
The last few lines show different ways in which this method can now be invoked. The important thing
to note here is that wherever the hash literal character ’=>’ is used in a method invocation, Ruby will
attempt to parse the rest of the argument list as a hash and pass it as a single argument, even though they
are not grouped explicitly. While allowing to omit these hash grouping characters is again only a minor
and rather quaint bit of syntactic sugar it allows concise syntax and flexibility in method definitions.
The colon characters in this example are simply the literal syntax for creating a symbol. Symbols are
similar to strings and are often used as the keys in a hash. Symbols don’t contain whitespace and are
more lightweight than real strings because they are represented internally by an integer. The last line
shows an alternative syntax for hash literals introduced by Ruby 1.9.

The ability to express language constructs in different ways is especially useful for the creation of
DSEL’s using Ruby. It allows the user (programmer) of the DSEL to pick an alternative that is suitable
in the context that the DSEL provides to improve readability. Please note how closely the last line of the
code sample in figure 4.2 mimics SQL, a DSL for querying relational databases, while still being Ruby.

17

Define the find method

def select from, options = {}
Perform sql query

end

Invoke method with different arguments

select 'products'

select 'products', :where => 'price > 100'

select 'products', :where => 'price > 100', :order_by => 'name'

Using alternative syntax for hash literal (since Ruby 1.9)
select 'products', where: 'price > 100', order_by: 'name'

Rl
NRPOOONOUIAWN -

Figure 4.2: Example of using named arguments

4.4 Object Oriented Programming Features

Ruby is a purely object oriented language. Without exception, everything in Ruby is an object and
there are no primitive types. This choice provides a lot of simplicity and consistency throughout the
language and eliminates the need for hacks such as Java’s auto-boxing. It means that all literals are
objects as well and methods can be invoked on them. Some code examples of this that are commonly
used to advocate the Ruby language can be found in figure 4.3. The ability to invoke methods on literals
is directly derived from the ability to instantiate certain types of objects using a literal syntax. Besides
the strings and integers, the Ruby language provides literal syntaxes for instantiation of floats, character
codes, symbols, ranges, arrays, hashes, regular expressions and even shell commands.

1 5.times do
2 p "World! Hello".split.reverse.join(' ')
3 end

Figure 4.3: Examples of calling methods on literals

Another important thing to realize about Ruby is that every object has a class and these classes
themselves are also objects. Classes are instances of the class called Class which in turn is an instance of
itself, terminating the instantiation hierarchy. Ruby also has the concept of modules, which are basically
classes that cannot be instantiated. Modules are often referred to as abstract classes in other languages.
While Ruby does not support multiple inheritance and so every class has a single superclass, multiple
modules can be included into the definition of a class. This behavior mimics multiple inheritance while
eliminating some of the inconsistencies it causes. From here on we will refer to the class called Object, the
class called Module and the class called Class as the meta-object, the meta-class and the meta-module
respectively. We refer to the set of all three as the plural meta-objects because they all inherit from
the meta-object and to avoid the overloaded term meta-classes. We will define meta-programming as
programming using these meta-objects. The meta-module is located in the inheritance hierarchy between
the meta-class and the meta-object, which signifies the root of inheritance hierarchy. All these relations
are shown in figure 4.4 as the results of calls to the methods class and superclass, respectively defined
by the meta-object and the meta-class.

Figure is 4.4 particularly useful for understanding the instantiation and inheritance hierarchies that
where mentioned in the previous paragraph. The instantiation hierarchy is signified by the ’class’ re-
lations in this figure, while the inheritance is shown by the ’superclass’ relations. Please note that the
instantiation hierarchy exists throughout all Ruby objects while the inheritance hierarchy only applies
to classes. This model allows Ruby to use a very simple mechanism for method dispatching: go one step
up the instantiation hierarchy and then start looking for the method up the inheritance hierarchy. If the
original method isn’t found the same mechanism is used to look for a method named 'method_missing’
which is implemented in the meta-object (the root of the inheritance hierarchy) to throw a runtime
'MethodNotFound’ exception.

4.4.1 Open Imperative Class Definitions

Even though simple Ruby class definitions look a lot like declarative class definitions in for example Java,
class definition in Ruby is actually an imperative process. This makes it possible to use control structures

18

Q
Qo
(2]
d
>
5
)
=
2
—
o
Q
[5)
>
a

\1, superclass - ___ 1
Classa | superclass —> Object o Class
(meta-object) :

7 T

superclass superclass
class |

class
Module

ClassB —‘ (meta-module)
'T‘ class ﬁ& class

C'j‘ss superclass
=== ———- " l
! Class

(meta-class)

T
class

Figure 4.4: Meta-objects, regular objects and the relations between them

like loops and conditionals in class definitions and even call methods that define other methods for you.
Figure 4.5 shows some sample code using ’ActiveRecord’; a popular Object Relational Mapper (ORM)
written in Ruby. Inheriting from the ’ActiveRecord::Base’ class alone adds many methods to the "Person’
class and objects of that class by use of the ’Class.inherited’ hook. Because the body of the method
definition is just imperative Ruby code in the scope of the Person class, class methods for describing
associations and validations added by ’ActiveRecord’ can be called from it, this is done in the three lines
after the first one. These class methods can in turn add new methods to both the 'Person’ class and
objects instantiated from it. This way, the definition of the 'Person’ class becomes a program written in
the ’ActiveRecord’ DSEL for object relational mapping. The second part of the class definition shows
an example of using control structures within a class definition, in this case defining a debug method if
the code is run in development mode.

1 class Person < ActiveRecord::Base

2 # Describing associations and validations using the ActiveRecord DSEL

3 has_many :addresses # => Assumes addresses.person_id column
4 belongs_to :group # => Assumes people.group_id column

5 validates_presence_of :name, :email # => Assumes people.name and people.email
6

7 # Using a conditional to optionally define a method

8 if ENV['RAILS_ENV'] == 'development’

9 def debug
10 # TODO: Ouput debug information about this Person
11 end
12 end
13 end

15 Person.all :order => 'name' # => Return an array of all persons
16 Person.find_by_email 'example@cs.utwente.nl' # => Finds a person by e-mail address
17 Person.first.addresses # => Returns first person's addresses

Figure 4.5: Examples of imperative class definition

The imperative nature of class definitions means the ordering of definition code matters. Defining a
method twice for example would result in an error in any language with declarative class definitions like
Java (Polymorphism set aside) while in Ruby the second method definition can just replace the first one
without breaking with the paradigm. These semantics allow for partial class definitions; defining some
attributes of a class in one place and defining others in another, possibly at a later time, with the class
being fully functional (although partially defined) in between. This behavior is augmented by Ruby’s

19

dynamic method dispatch semantics; a call to a non-existent method is allowed at definition time and
only throws an exception at method invocation time.

The imperative class definition semantics also enable Ruby to have open classes as seen in Smalltalk
[1]. All classes in Ruby, including the core Ruby classes, can be subject to additional definition, including
redefinition and removal of previously defined methods, from within anywhere in the Ruby program. This
concept is often alarming to first time Ruby users and Object Oriented Programming (OOP) evangelists.
They argue that Ruby programmers can never be entirely sure of the behavior of even the most basic
Ruby objects. However, a good craftsman doesn’t use blunt tools in order not to cut himself. Any
programming language feature can lead to bad software if used improperly, and the proper use of open
classes has many benefits, especially in the area of DSEL’s. The code sample in figure 4.6 shows an
example of reopening the Ruby ’String’ class to add a method called ’titlecase’.

1 class String

2 def titlecase

3 # Split on whitespace, collect capitalized words, join with a space
4 self.split(/\s/).map(&:capitalize).join("' ")

5 end

6 end

7

8

"hello world!".titlecase # => "Hello World!"

Figure 4.6: Opening the string class

Building on the principle shown in figure 4.6, we can easily build a DSEL for dealing with numeric
values and different units of measurement. The code sample in figure 4.7 shows a simple DSEL for listing
recipe ingredients that was developed by opening the 'Numeric’ class. In this example, both the basic
unit of measurement 'grams’ and the additional unit of measurement ’cups’ where defined directly on
the 'Numeric’ class. Also, we defined the method ’of’ to return an array of both an ingredient name that
was passed into it and the quantity of that ingredient. The last line shows an ingredient listing written
in our DSEL.

class Numeric
def grams
self
end

def cups
self x 13@.grams
end

def of ingredient
[ingredient, self]
end
end

P i el
URWNROOONOUIDWN L

[3.cups.of(:flour), 100.grams.of(:sugar)] # => [[:flour, 390], [:sugar, 100]]

Figure 4.7: A simple recipes DSEL

4.4.2 Method Chaining

Figure 4.7 is also an example of another common method for the creation of DSEL’s: method chaining.
This method is especially common in languages that lack the more sophisticated methods we describe
in this chapter. Method chaining is an easy way of creating DSEL’s wherein implicit context is provided
and changed by chained method calls (the target (context) of each method is the result of the previous
method). The resulting code can look a lot like natural language with dots instead of spaces. A common
problem with method chaining DSEL’s is the finishing problem. It arrises when there is no specific order
to the methods that are chained together and a final operation or check needs to be applied to the result
of the method chain. It can be solved by requiring a specific order in which the methods are chained
(figure 4.7) or by requiring a terminating method to be added to the end of the chain.

20

4.4.3 Duck Typing

As can be seen in previous code samples, Ruby is not explicitly typed like Java or C. Ruby is dynamically
and strongly typed, respectively meaning that type checking is done at runtime and that any type errors
are regarded as defined and expected behavior. More specifically, it employs a type system called duck
typing. In Ruby, every object has a specific type (class) and objects of any type can be assigned to all
variables and passed to all methods. Type checking comes down to whether the object can or cannot
accept certain messages (method calls), hence the quote from which the term duck typing was born: ’If
it walks like a duck and quacks like a duck, I would call it a duck.’. Additionally, a program can check
at runtime whether an object is an instance of a certain type (class) using the ’class’ method on any
object. This functionality is called introspection. However, because of open classes and to not violate the
principle of duck typing, it’s usually better to use the 'respond_to?” method instead to check if an object
can respond to a certain message. The following methods are also available for further introspection:
’Object.methods’, ’Object.method’, ’Method.arity’ and 'Method.parameters’.

Thanks to duck typing, Ruby does not need automatic type casting at language level to be flexible
and concise. Code can just accept any object that responds to a certain method. Methods like "to_i’
(integer), 'to_s’ (string), 'to_a’ (array), 'to_f’ (float) and ’inspect’ (pretty print) are implemented by most
ruby classes and are called automatically by many standard methods. This way Ruby implements the
expected (programmer /user oriented) behavior when for example passing any object directly into string
concatenation without having any extra provisions for it at the language level. This is important for
DSEL design because it eliminates boiler plate code that has no relation to the problem domain.

4.4.4 Operator Overloading

Like C++, Ruby supports operator overloading. This allows the programmer to define the behavior
of operators applied to objects of a certain class the same way methods are defined. In fact, the way
Ruby supports operator overloading is by allowing valid method names to consist of characters that are
usually reserved by the compiler like =" and '+’. Additionally Ruby allows the method invocation dot
to be omitted for these kinds of methods, and allows the first argument to be passed between brackets

for methods like ’[]” and ’[|=". An example of this in the context of a DSEL for set mathematics is given
in figure 4.8.

1 def set xelements; Set.new elements; end

2

3 class Set

4 attr_reader :elements

5

6 def initialize elements; @elements = elements.unig.sort; end

7

8 def + other; Set.new self.elements + other.elements; end

9

10 def * other; Set.new(self.elements.map do |el]|

11 other.elements.map do |e2| Set.new [el, e2] end

12 end.flatten); end

13

14 def [] element; elements.include? element; end

15

16 # Implementing the spaceship operator enables sorting

17 def <=> other; self.elements <=> other.elements; end

18

19 # Implementing inspect enables pretty printing

20 def inspect; "set(#{elements.map{|e| e.inspect}.join(', ')})"; end

21 end

22

23 # DSEL for set union, cartesian product and element inclusion checking:

24 set(1, 1, 4) + set(4, 5, 6) # => set(1, 4, 5, 6)

25 set(1, 2) * set(3, 4) # => set(set(1, 3), set(1, 4), set(2, 3), set(2, 4))
26 set(1, 2)[3] # => false

27 set(1, 2)I[2] # => true

Figure 4.8: A simple DSEL for performing set mathematics

21

4.5 Prototype Oriented Programming Features

Ruby is not a prototype oriented programming language like Javascript because it knows the concept
of classes. In a true prototype oriented programming language the concepts of class instantiation and
specialization are unified into the single concept called prototyping, wherein one object functions as
the prototype for the instantiation of a new object with the same methods and data. However, like
prototype oriented languages, Ruby allows the definition of a method on a single object instead of a
class. This functionality is implemented by inserting an invisible singleton class into the inheritance
hierarchy between the object and its original class whenever such a method is defined. This way the
simple method dispatch mechanism that was explained in Section 4.4 still applies. That’s why we call
methods that are defined on a single object singleton methods in Ruby. The code sample in figure 4.9
shows an example.

1 class Car; def method_missing name; "Unknown method: #{name}"; end; end
2

3 a = Car.new; b = Car.new

4

5 class << a; def honk; "Honk! Honk!"; end; end

6

7 a.class == b.class # => true

8 a.honk # => "Honk! Honk!"

9 b.honk # => "Unknown method: honk"

Figure 4.9: Singleton method definition example

4.6 Functional Programming Features

In Ruby, methods and pieced of code can be first class entities. The "Proc’ class is used to hold a piece
of code that can be passed around and be dynamically evaluated in the context of any object or any
location in the programming code. Additionally, the 'Binding’ class can be instantiated anywhere in the
code using the 'binding’ method to be passed around and used for evaluation of a "Proc’ object or inline
code. Also, an object of the ’Method’ class can be acquired from any object using the 'method’ method
and is essentially a 'Proc’ that is bound to that specific object. A 'Method’ object can dynamically be
invoked on its object or rebound to another object. When a "Proc’ object is invoked without an explicit
binding it is evaluated in its original context and is often referred to as a closure. Ruby also provides
some syntactic sugar for passing a "Proc’ object to a method without explicitly instantiating it, in which
case it is often referred to as block. Both the keywords 'do’ and ’end’ and accolades can be used to pass
a block to a method. The block can then be invoked from the method it was passed to by using the
'yield’ keyword. It can also be captured as an argument of the 'Proc’ class by prefixing that argument
with an ampersand, this 'Proc’ object can than be introspected, evaluated in different contexts, saved in
the object and passed to other methods further down the method invocation stack. Some example code
samples of all this are shown in figure 4.10.

Pass a block to the array map method using do .. end syntax
[1, 2, 3].map do |number|; number * 3; end # => [3, 6, 9]

Define a method that applies its block n times to subject
def apply subject, n; n.times{subject = yield subject}; subject; end

Calculate 3 * 2 x 2 x 2, passing the block using accolade syntax
apply(3, 3){]|s| s * 2} # => 24

LoNOOUAWNE

10 # Assign a new Proc that multiplies by 2 to variable p
11 p = Proc.new {|s| s *x 2}

12

13 # Calculate p(p(p(3))), passing in Proc p as the block
14 apply 3, 3, &p # => 24

15

16 # Calculate the same, calling p directly

17 p.call(p.call(p.call(3))) # => 24

Figure 4.10: Example of using procs

22

4.6.1 Ruby Blocks and DSEL’s

The concept of blocks in Ruby opens up interesting possibilities in the area of DSEL’s. In Section 4.2
we established that DSL’s are more effective for writing programs in the application domain of the DSL
because they provide implicit context to that program. Ruby’s ability to pass around blocks of code as
first class entities and evaluate them in the context of some object allows us to do exactly this. The
object that is used for evaluation of the block can provide context to that block in the form of methods
and instance data. Figure 4.11 shows a code sample that uses Ruby to define a DSEL with implicit
context using blocks.

1 # Create base class that allows initialization with block

2 class DSELElement; def initialize block; instance_eval(&block); end; end
3

4 # Create transformation that defines rule

5 class Transformation < DSELElement

6 def rule █ @rules ||= []; @rules << Rule.new(block); end

7 def inspect; "transformation(#{@rules.map{|r| r.inspect}.join(', ')})"; end
8 end

9

10 # Create rule that defines source and target

11 class Rule < DSELElement

12 def source; @source = yield; end

13 def target; @target = yield; end

14 def inspect; "rule(source=#{@source}, target=#{@target})"; end

15 end

16

17 # Define method on main object to instantiate transformation
18 def transformation █ Transformation.new block; end

19

20 transformation{

21 rule{ source{ 'a' }; target{ 'b' } }
22 rule{ source{ 'c' }; target{ 'd' } }

23 } # => transformation(rule(source=a, target=b), rule(source=c, target=d))

Figure 4.11: Using blocks to create a DSEL with implicit context

4.7 Aspect Oriented Programming Features

Ruby is not a true aspect oriented programming language but it defines hooks for many system events
that can be used to simulate aspect oriented behavior. The 'method_missing” hook was already men-
tioned several times in this chapter. It can be used to intercept calls to non-existent methods. The
‘const_missing’ method is called whenever a constant like a class name wasn’t found, this hook can for
example be used for autoloading of classes. When a class is defined that inherits properties from another
class, the ’inherited’ hook is called on the superclass. When modules are added to a class the ’included’
or ’extended’ hook is called on the module, depending on whether to module was added at class or at
instance scope. Finally, 'method_removed’ and 'method_added’ are called on a class when methods are
removed from it or added to it. The 'method_added’ hook can for example be used to wrap the added
method with additional behavior, effectively making Ruby an aspect oriented programming language.
In addition to 'method_added’ and 'method_removed’, Ruby also provides ’singleton_method_added’ and
‘singleton_method_removed’ that are called whenever singleton methods are added or removed.

Many of these hooks have application in MDEL design. The ’const_missing’ hook can for example
be used to catch keywords in the DSEL, removing the need for boiler plate characters like the colon
for symbols and quotes for strings. The 'method_missing’ hook can be used to create a DSEL like the
one shown in figure 4.11 wherein the block names are not predefined. A good example of this is the
XMLBuilder library for generating XML shown in figure 4.12.
require 'rubygems’
require 'builder'

Builder::XmWMarkup.new(:indent => @).date { x.year 1984; x.month 2; x.day 20 }
=> "<date><year>1984</year><month>2</month><day>20</day></date>"

U WNE

Figure 4.12: Demonstration of the XMLBuilder gem

23

4.7.1 Catching missing constants to clean up a DSEL

Identifiers that start with a capital letter are considered constants by the Ruby language. Where regular
missing identifiers can be caught by implementing the 'method_missing’ hook, missing constants can
be caught by implementing the ’'const_missing’ hook. This mechanism can be used to further clean
up a DSEL that uses strings or symbols. Figure 4.13 shows how this principle can be applied to our
recipe DSEL that was presented in figure 4.7. For simplicity’s sake, the 'const_missing’ hook is defined on
’Object’ here, which means it will turn any missing constant anywhere in the program into an ingredient.
In a real application the hook should be defined in a more specific context to avoid confusing errors.

class Ingredient
def initialize name; @name = name; end
def to_s; name end

end

def Object.const_missing name; Ingredient.new(name); end

oONOUBRWNE

2.cups.of Flour # => [#<Ingredient:0x21d89c @name=:Flour>, 260]

Figure 4.13: Using the const_missing method to clean up the recipe DSEL

4.8 Conclusions

DSEL’s are API’s in an existing programming language, the use of which resembles the use of a DSL. A
DSL is a language that was specifically designed for writing programs in a particular application domain.
A DSL is more effective for expressing problems in its domain because it provides implicit context to
those programs. Ruby is a flexible general purpose programming language that integrates concepts from
many different programming paradigms. These paradigms are object oriented, functional, prototype
oriented and aspect oriented. This means the language supports many different ways of creating DSEL’s
which makes it, to the best of our knowledge, the most suitable language for this purpose. We identified
and described the following facilities in the Ruby language that are useful for the creation of DSEL’s.

e Flexible syntax that allows different notations for the same construct
e Meta-programming API for introspection and reflection

e Open imperative class definitions

Method chaining

Operator overloading

Code blocks and the ability to evaluate them in a particular context

24

Chapter 5

TRans: A MTEL prototype

As we mentioned, the host language was already decided upon in Chapter 2, answering research question
1. We chose Ruby as our host language because of its concise and flexible syntax, extensive features
for the creation of DSEL’s, support for declarative and functional programming, reflective features and
mature standard library. Its facilities for the creation of DSEL’s are described in detail in Chapter 4,
effectively answering research question 2. For our goal, the most important of these are blocks and
operator overloading.

In this chapter we introduce and explain our MTEL (Model Transformation Embedded Language)
called TRans. The name TRans was chosen first and foremost because it starts with the letters T’ and
'R’, respectively signifying transformations and Ruby. Additionally, the Latin prefix ’trans’, meaning
across or beyond, conveys the sense of opposite sides of the transformation process (source and target)
and the abstracting or transcending nature of meta-modelling and code generation.

Because there can be no model transformation without models, we start of with introducing our basic
modelling language in Section 5.1. This modelling language is not part of the TRans transformation
language and can easily be replaced with another implementation. We will then introduce the basic
features of the TRans language in Section 5.2. Section 5.3 shows how concerns can be added to transfor-
mations to augment or alter transformation behaviour. Section 5.4 goes deeper into the tracing features
TRans provides. Section 5.2.1 shows a complete more complex transformation to provide context to the
concepts that are introduced in this chapter. Lastly, Section 5.5 describes features for code generation.

The abbreviations MDE, MTL, DSL, DSEL, MTEL that are routinely used in chapters 5, 6 and 7
respectively stand for '"Model Driven Engineering’, 'Model Transformation Language’, 'Domain Specific
Language’, 'Domain Specific Embedded Language’ and 'Model Transformation Embedded Language’.
Figure 5.1 shows what the relations are between these concepts (in bold case) and how different model
transformation languages (in regular case) fit into this picture.

5.1 A Basic Modelling Language

We decided to implement a basic modelling language to use with the TRans MTEL. We chose this
approach because implementing a basic modelling solution actually doesn’t require that much effort and
the focus of this research is on model transformation and not on modelling itself. The use of an existing
modelling infrastructure would have required a lot more effort because implementations of these existing
infrastructures in Ruby are very immature.

The modelling language and TRans are very loosely coupled, the only coupling is a very minimal and
very generic interface the modelling language needs to implement. The model transformations themselves
can however be strongly coupled to both a specific modelling language implementation and the TRans
MTEL. This makes it possible to wrap models from any existing modelling infrastructure in a Ruby
object en perform transformations on them using TRans.

In our basic modelling language every model consists of a collection of elements, each consisting of a
dictionary (a set of key/value pairs, also called a hash). Relations between model elements are established
by allowing the values in the dictionary to reference other model elements. This way the modelling lan-
guage only supports one-to-many relationships, many-to-many relationships can be modelled by having

25

Model Driven Engineering (MDE) domain

ATLAS Transformation
Language (ATL)

Query/View/

Transformation (QVT) TRans (this research)

Model Transformation Model Transformation
Language (MTL) d Embedded Language (MTEL)
| I RS i _______________
47 specialisation Domain Specific Embedded
Language (DSEL)

\l, instantiation J7

> Domain Specific Language
(DSL)

Figure 5.1: Meaning of and relations between different concepts used in this report

explicit joining elements that refer to both ends of the relationship.

Our basic modelling language implementation supports a DSEL for model definition described in
Section 5.1.1 and functionality for loading models from and saving models to the filesystem described in
Section 5.1.2. Tt also implements a DSEL variant of OCL (OCEL if you will) in order to query models
from within a transformation which is described in Section 5.1.3. Please note that this basic modelling
language implementation does not contain any meta-modelling facilities.

The code sample in figure 5.2 shows some sample code for working with models. The first line
shows that models can be instantiated just like any other Ruby class using the 'new’ method. This
produces a model without any elements. In the second line an element is added to this empty model
using the ’element’ method. While the availability of the methods 'new’ and ’element’ is required by the
TRans MTEL, the arguments that are passed into the ’element’ method can vary per modelling language
implementation. In our basic implementation all arguments are stored in the element dictionary where
the first (unnamed) argument is stored under the name 'meta’ for meta-model type or meta-model class.
The third line shows our implementation of the ’inspect’ method for models that allows Ruby to pretty
print models for inspection. The last line shows a list of all instance methods that are available on model
objects.

1 require '../../../../final/trans/models/element.rb"’

2 require '../../../../final/trans/models/model.rb"'

3

4 model = Model.new

5 model.element 'Class', :name => 'Person'

6 model # => A Name: "Person", Meta: "Class"

7

8 Model.instance_methods false

9 # => ["element_class", "identifier", "any?", "supports_interface?",

10 # "first", "all?", "select", "element", "elements", "save", "inspect"]

Figure 5.2: Sample code for dealing with models

26

5.1.1 Simple Model Definition DSEL

While models can be defined from code using the syntax that was presented in figure 5.2, we also provide
a DSEL for this task that is a bit more concise. The code sample in figure 5.3 uses this DSEL to define
a simple class model. It allows the receiver for the element method to be omitted and translates the use
of constants (identifiers that start with a capital letters) to strings so all the quotes can be omitted as
well. This techniques for creating DSEL’s in Ruby are described thoroughly in Chapter 4.

1 Model.new {

2 person = element Class, name: Person

3 element Attribute, name: Age, type: Number, owner: person

4 element Attribute, name: Name, type: String, owner: person

5 teacher = element Class, name: Teacher

6 element Attribute, name: Faculty, type: String, owner: teacher
7 element Specialization, source: teacher, target: person

8 professor = element Class, name: Professor

9 element Attribute, name: Hobbies, type: String, owner: professor
10 element Specialization, source: professor, target: teacher
11 course = element Class, name: Course
12 element Attribute, name: Name, type: String, owner: course
13 } element Association, source: course, target: teacher
14

Figure 5.3: DSEL for defining models in code

5.1.2 Loading and Saving Models

The code sample in figure 5.4 shows how models can be saved and loaded. The first line shows how a
model object can be saved to a file by calling the ’save’ method on it, passing in the file name. The
second line shows how the model class can be used to instantiate a model object and load it from a file
using the ’load’” method and passing in the file name.

1 model.save "model.yml"
2 loaded_model = Model. load "model.yml"

Figure 5.4: Sample code for loading and saving models

Notice that the file names end in ’.yml’ which stands for YAML. YAML (YAML Ain’t Markup
Language) is a human friendly data serialization standard for all programming languages. We use Ruby’s
standard ability to (de)serialize any object to/from YAML without writing any serialization code. A
sample model file with two elements can be seen in code sample 5.5. Like Ruby, YAML supports
dictionaries and collections and references. This means the translation from a Ruby memory structure
to a YAML serialization is very straight forward. The model has an attribute called elements which is
a collection, as signified by the -’ (dash) symbols. Furthermore, the first model element is assigned an
identifier using the '&’ (ampersand) and the second model element references this identifier, using the
*7 (asterisk) symbol.

5.1.3 Querying Models using OCL

While we have no desire to implement the actual OCL language, we implemented most of its querying
functionality as a Ruby API. This includes collections, arithmetic, quantifiers and iterators. The main
difference is that our implementation does not support the four different collection types that OCL does.
Instead only the sequence is supported by use of the standard Ruby array. Duplicates and ordering can
respectively be ignored by use of the 'unique’ and ’order’ methods, mimicking similar behaviour. All
of these features if already in the Ruby language and just needs a thin wrapper to make it look more
compatible with OCL. Not having to implement OCL while getting the functional equivalent practically
for free is one of the big advantages of our approach.

The code sample in figure 5.6 shows an example OCL query using the Ruby syntax. It shows use
of the ’select’ iterator and the existential quantifier, in our implementation called ’any?’. Ruby closures
make it easy to to implement the OCL iterators and quantifiers, most of them can just be forwarded to

27

--- lruby/object:Model

elements:
- &1d0@1 !ruby/object:Element
attributes:

:meta: Class
:hame: Person
- !ruby/object:Element

attributes:
:meta: Attribute
‘name: Age

:type: Number
zowner: *1dool

Figure 5.5: Sample YAML model file with two elements

the model’s internal array of elements that also supports these iterators and quantifiers. The only thing
the model class adds to this behaviour is the ability to filter equivalence of the 'meta’ attribute and also
other attributes by passing in some regular arguments. In case of the universal quantifier, the semantics
are that it returns true if all elements that correspond to the attribute equivalence arguments respond
true to the block.

1 class_model.select(Class) { |c]|
2 Iclass_model.any?(Specialization) { |s| s.source == c }
3

Figure 5.6: Sample of our OCL variant, implemented as a DSEL

Table 5.1 shows OCL samples and their functional equivalent in our Ruby implementation. Please
note that apart from several subtle differences, Ruby and OCL have mostly similar syntax. We could
have opened up standard classes and created proxies to make our implementation a whole lot more
similar to OCL still. We decided not to do this however because the purpose of a DSEL isn’t to mimic
the syntax of another language. Functionally the main difference between OCL and Ruby is that Ruby
is a lot richer and supports a lot of functionality that isn’t in the OCL specification.

OCL Sample Functional Equivalent
true, false true, false

1,2,1,12 1,2,-1,12

’string’ ’string’

=, <>, not,and, or ===,V and,or

> >=, <, <= > >=, <, <=

+, -, *, /, mod() +, 5%/, %

concat(), size(), substring(), tolnteger() || +, size, slice, to_i
Sequence{1,2} [1,2]

Bag{1,2} [1,2].sort
OrderedSet{1,2} [1,2].unique

Set{1,2} [1,2].unique.sort

if 3 > 2 then ’yes!’ else 'what?’ endif if 3 > 2 then ’yes!” else 'what?’ end
select(), collect(), forAll(), exists() select, map, all?, any?

Table 5.1: Functional equivalents to OCL in our ruby implementation

28

5.2 TRans Introduction

We tried to make TRans as complete a language as possible, within limited time constraints, tackling
the most essential problems first. We decided in advance that any viable MTL at least needs a querying
language which functionally equivalent to OCL, tracing facilities and recursive helpers. We decided the
querying language is the responsibility of the modelling language and implemented it there, as described
in Section 5.1.3. Tracing facilities, (recursive) helpers, model declarations and rules, as well as many
other features, are implemented by the TRans language itself and are described throughout the rest of
this chapter.

5.2.1 A Complete Transformation

To provide some context to all the topics we are about to discuss, figure 5.7 shows a complete and realistic
transformation. All aspects of this transformation are discussed throughout the rest of this chapter.

This particular transformation in our implementation of a standard case study in model transforma-
tion. The purpose of the transformation is to create a database model from a class model. Since most
relational database don’t support inheritance, the inheritance hierarchy needs to be flattened using a
pattern using single table inheritance [15]. Basically, a table is created for each inheritance root, with all
the attributes of all the classes in that inheritance hierarchy. The table also gets additional attributes
'Id” and "Type’ in respectively in order to be referred to by other tables and to store the type of the
subclass that is actually being stored in each table row.

1 source :class_model, Base
2 target :database_model, Base
3
4 rule {
5 from { class_model.select(Class) { |c]|
6 Iclass_model.any?(Specialization) { |s| s.source ==c } } }
7 build(:database_model, Table) { |c| name c.name }
8 build(:database_model, Column) { |c|
9 name Id
10 owner trace(target: Table, source: c)
11 type Integer }
12 build(:database_model, Column) { |c|
13 name Type
14 owner trace(target: Table, source: c)
15 type String } }
16
17 rule {
18 from { class_model.select Attribute }
19 build(:database_model, Column) { |a|
20 name a.name
21 owner trace(target: Table, source: root(a.owner))
22 type a.type } }
23
24 rule {
25 from { class_model.select Association }
26 build(:database_model, Column) { |a|
27 name a.target.name + Id
28 owner trace(source: root(a.source), target: Table)
29 type Integer }
30 build(:database_model, ForeignKey) { |a]|
31 source trace(source: a, target: Column)
32 target trace(source: root(a.target), target: [Column, name: Idl) } }
33
34 helper(:root) { |c]|
35 if c.nil? then nil else
36 root class_model.first(Class) { |p]|
37 class_model.any?(Specialization) { |s| s.has? source: c, target: p }
38 }orc
39 end }
40

Figure 5.7: A complex transformation

5.2.2 Transformation Loading and Execution

Transformations written in TRans are usually saved in a text file. A single transformation is stored in
a single text file. The code sample in figure 5.8 shows how to load a transformation from a Ruby file
and execute it. The transformation is loaded by calling the ’load’ method on the "Transformation’ class.

29

This is similar to the way models are loaded, which was shown in figure 5.4. The second line shows how
the loaded transformation can be used to transform a number of source models (first argument) to a
number of target models (second argument) using the 'transform’ method. The keys in the hash are the
names the models have in the transformation and the values are the actual models that are passed in.
Empty models should be passed into the target models argument, otherwise they are just augmented.
The transformation language cannot instantiate the target models itself because it is unaware of the
different implementations of the model concept.

1 transformation = Transformation.load('transformations/class2database.rb')
2 transformation.transform({class_model: source}, {database_model: target})

Figure 5.8: Code sample of loading and executing a TRans transformation

5.2.3 Model Declarations

The TRans MTEL allows multiple source and target models. This enables transformations to combine
multiple source models into a single target models and/or decompose a single source model into multiple
target models. Especially the combination of models into a single target model is essential for achieving
separation of concerns using model transformation because the concerns can be separated into those
different source models. Branching a single source model into multiple target models can also be achieved
by simply applying a different transformation for each desired target model, it is implemented mainly
for convenience. Figure 5.9 shows the TRans transformation pattern with the transformation definition
defining source and target modelling languages and the transformation execution taking instances of
these types as input and output.

| | transformation definition Y
source source A target target
model model ——[F |—|> model model
type 1 type x type 1 type x
source source target target

model 1 model x ™| model 1 model x

| | transformation execution

T instance of

[r sourcef/target

Figure 5.9: Diagram showing the model transformation pattern of TRans

All source and target models the transformation uses need to be declared within the transformation,
using the keywords ’source’ to declare a source model and using the keyword ’target’ to declare a target
model. The code sample in figure 5.10 shows the declaration of a single source model and a single
target model in TRans. The symbols 'class_model’ and ’database_model’ are the names that are used to
refer to the models from within the transformation rules. The 'Base’ constant after each declaration is
the modelling language interface the model should support. The string 'Base’ is passed to the models’
‘supports_interface?” method in order to make sure they they actually support the interface. When
transforming models in our basic modelling language this constant can always just be 'Base’. When
models that support a different interface such as querying using XPath or code generation are expected
or required by the transformation, it can be declared here.

30

1 source :class_model, Base
2 target :database_model, Base

Figure 5.10: Code sample declaring a source and a target model

5.2.4 Requiring Libraries

One of the great things about TRans being a Ruby DSEL is that any Ruby library can be used from
within transformations. The syntax for doing this is exactly the same as the Ruby syntax; by using the
keyword 'require’. This keyword is caught by the DSEL context and forwarded directly to the standard
implementation. A Ruby library that is especially useful in model transformations is ActiveSupport.
ActiveSupport is the support library for the Rails web application framework and includes a lot of useful
string inflections such as pluralization, singularization, camelcasing, etc. The code sample in figure 5.11
shows how to include ActiveSupport from a TRans transformation. Ruby Gems is a package distribution
and dependency management tool and needs to be required first because ActiveSupport is distributed
through this mechanism.

1 require 'rubygems'
2 require 'activesupport'

Figure 5.11: Code sample of requiring a Ruby Gem from a TRans transformation

5.2.5 Transformation Rules

The most important language construct in TRans is the (transformation) rule. A rule can have a source
clause, which is evaluated when the model transformation is executed. For more information on the
transformation execution algorithm, please consult Section 6.2.4. It can also have a name and has one
or more target clauses which are evaluated once for every element that results from evaluation of the
source clause. If no source clause is specified or if the result of its evaluated doesn’t respond to the map
iterator, each target clause is evaluated just once. When target clauses are evaluated, the corresponding
source element or value is passed into the block of each target clause as the argument, this way data
from source models can be processed and/or copied into the target models.

The code sample in figure 5.12 shows a very basic TRans transformation rule. The argument passed
to the ’rule’ keyword is its name. This name can be used for tracing purposes and may be omitted.
Within the rule code block the 'from’ keyword may be used once and the "build’ keyword should be used
once or more. The 'from’ keyword specifies the source of the transformation rule and only takes a block
which is evaluated in a context in which all source models are available. Any querying language the
source models support can be used here but in this example the OCL-like querying DSEL described in
Section 5.1.3 is used.

The target clause is specified by the ’build’ keyword and takes one argument into which the source
element or value is passed. In this case the argument is called ’c’ for class because the source clause results
in a collection of classes. The two arguments to the build are the target model to which the resulting
element should be added and optionally a bunch of arguments to ’element’ method of the model, in this
case only the value for the 'meta’ value of the element. Which arguments are allowed here and their
semantics is, like the code in the source clauses, entirely up to the modelling language. The same goes
for the code in the target clause code block; 'name’ is a method that is called on the element. In this
case it takes a single parameter and specifies the value for the 'name’ key in the element’s dictionary.

The keywords 'from’ and "build’ where chosen over ’source’ and 'target’ because the sentence ’from ...,
build ...” reads like natural language and the terms source and target a somewhat overloaded within the
model transformation domain. Like with the natural language sentence, the source and target clauses
can be switched around within the rule code block. Please also note that the code between the curly
braces after the 'from’ or ’build’ keywords is not evaluated until transformation execution time. The
sample code in figure 5.12 and accompanying description in this section show why there is hardly any
coupling between the modelling language and the transformation language but an actual transformation

31

is strongly coupled with both. Any coupling that does exist between the transformation language and
the modelling language is there to make transformation writing more convenient.

1 rule(Tables) {

2 from { class_model.select Class }
3 build(:database_model, Table) { |c|
4 name c.name

5

6

Figure 5.12: Code sample of a simple rule in TRans

5.2.6 Helpers

Helper rules are functions that are defined in the context of the transformation. Like regular functions,
they can take arguments and have the ability to recursively call themselves. They are used to prevent
duplication and encapsulate functionality. In many other transformation languages the recursiveness of
helpers are required to make the language Turing complete. Since TRans is not a purely declarative
language (all imperative control structures in Ruby are available) it doesn’t need recursion to be Turing
complete. Using recursion and declarative programming is however considered good practice.

The code sample in figure 5.13 shows a helper definition. The keyword "helper’ is used, passing the
name of the helper as the first parameter. The implementation of this particular helper is somewhat
complex but it is implemented recursively and declaratively (as a single expression). The goal of this
helper is to determine the root of the inheritance hierarchy of a class. The first line of the helper
implementation defines the base case; a call to the helper where the class is nil also returns nil. The
recursive case calls itself on the parent of the class, or on nil of none exists, resulting in nil like we
discussed. If this call to itself results in nil the class is itself the root of the hierarchy and is chosen
over nil by the or operator. Some more characteristics of our querying DSEL where inadvertently
demonstrated in this helper as well; the “first’ iterator is like the ’select’ iterator but only returns the
first element and the ’has?’ method on model elements can be used to concisely check equivalence of
multiple element attributes.

1 helper(:inheritance_root) { |c|

2 if c.nil? then nil else

3 inheritance_root class_model.first(Class) { |p|

4 class_model.any?(Specialization) { |s| s.has? source: c, target: p }
5 }orc

6 end

7

Figure 5.13: Code sample of a TRans helper

5.3 TRans AOP Features

AQP features are implemented using metaphors from the Aspect Oriented Programming (AOP) field.
A join point model is implemented for the transformation execution algorithm and concerns that can
include before, after and around advice for join points can be registered at transformation definition
and execution time. The join point model is implemented by wrapping certain parts of the execution
algorithm in the block of a Ruby method that evaluates it’s block along with any advice that needs to
be evaluated as well. Around filters have full control over the return value and any exception of the
wrapped part of the execution algorithm, this way its behaviour cannot only be augmented but also be
changed. Possible applications of this kind of AOP in TRans are saving trace data, logging, realtime
debugging, omnipresent debugging, modifying the executions algorithm and model element filtering.

To define a concern, the ’Concern’ class must be specialized to implemented methods with names
that start in either "before_’, 'after_’ or ’_around’ and end with the name of a join point. Alternatively,
instead of the name of a join point, ’all’ can be specified as a wild card. One or more concerns can be
passed to the call to the 'transform’ method of a loaded transformation as extra arguments. The code

32

sample in figure 5.14 shows how a simple join point logger can be defined by specializing ’Concern’ and
adding a ’around_all’ method. It also shows how this concern can then be passed along when performing
the transformation. The first line of the ’around_all’ method body is only a bit of Ruby magic to do
pretty printing while the second line shows how the ’yield’ keyword is used to invoke the original join
point code. The local variable result is used to save the result of the join point code and also return as
the result of the ’_around’ method in other not to influence any behaviour. Figure 5.15 shows sample
output generated by the concern for a small transformation.

1 class JoinPointLogger < Concern

2 def initialize; @indent = 0; end

3

4 def around_all name, *arguments

5 puts "#{'| ' x @indent}_ #{name.to_s.gsub(/_/, ' ').capitalize}"
6 @indent += 1; result = yield; @indent —= 1; return result
7 end

8 end

9

10 transformation.transform(source_models, target_models, JoinPointLogger.new)

Figure 5.14: Code sample of a TRans join point logger

Transformation
Source model check
Target model check
Transformation element generation
Attribute generation
Element attributes generation
Trace
Element attributes generation
Element attributes generation
Element attributes generation
Trace
Element attributes generation
Trace
Element attributes generation
Trace

Figure 5.15: Sample output for the code sample in figure 5.14

When implementing concerns that do not need to influence the behaviour of the component that
implements the join point model it is often a bad idea to use ’_around’ methods because it is to easy to
accidentally influence behaviour. Most of the applications of AOP in TRans in model transformations
we discussed earlier just extract information and don’t need to influence behaviour. Examples of this
are logging, simple realtime debugging and omnipresent debugging. In these cases it is better to use
"_before’ and ’_after’ methods instead and eliminate the need to call yield and return a value. The code
sample in figure 5.16 shows how we can rewrite the single ’_around’ method in figure 5.14 this way.

def before_all name, *arguments

1

2 puts "#{'| ' x @indent_ #{name.to_s.gsub(/_/, ' ').capitalize}"
3 @indent += 1

4 end

5

6 def after_all name, xarguments; @indent -= 1; end

Figure 5.16: Changing the join point logger to use ’_before’ and ’_after’ methods

Concerns can also be defined directly from within a TRans transformation specification using the
keyword ’concern’. The concern is then woven into all executions of the transformation, as well as
any concerns specified for the execution itself. The code sample in figure 5.17 shows how a concern
can be specified in a transformation definition that checks that all target models adhere to their meta-
model. Please note that our modelling language doesn’t actually support meta-modelling features and
consequently this is hypothetical example.

33

1 concern {

2 def after_transformation source_models, target_models
3 target_models.values.each do |target_model|

4 target_model.check_meta_model

5 end

6 end

7

Figure 5.17: Sample code for defining a concern from the transformation

5.4 Tracing in TRans

In Section 5.2 we saw how the language can be used to generate elements in a target model from
elements in a source model. This, however, is only the first step. A model transformation language
needs to establish links between generated elements in order to perform realistic transformations. This
ability is provided by tracing. When each element is being generated it may perform traces to establish
links to other elements that where already generated or possible need to be generated first. This way,
traces dictate the order in which target elements are generated while not shifting from the declarative
paradigm.

The most obvious way to implement automatic transformation ordering based on traces is by ordering
the rules of a transformation. The execution algorithm can start out by evaluating an arbitrary rule
and evaluate rules this initial rule is dependent on as traces are encountered. When a rule is directly or
indirectly dependent on itself being evaluated, a cycle is detected and the execution algorithm should
report an error. If the granularity of these dependencies is increased from rules to rule targets or even
individual target elements, more transformations execute without these cyclic dependency errors, which
is desirable behaviour. TRans manages these dependencies on a per-element basis which guarantees that
no unnecessary cyclic dependency errors occur.

The code sample in figure 5.18 shows a simple rule for generating target database columns from
source class attributes. A trace is executed to determine the owner of the newly created column element.
The trace method takes a hash of options specifying what target elements are required. The rest of this
section goes into what options are supported by TRans.

1 rule {

2 from { class_model.select Attribute }

3 build(:database_model, Column) { |a|

4 name a.name

5 owner trace(target: Table, source: a.owner)
6 type a.type

7 +

8

}

Figure 5.18: An example of a simple trace in TRans

5.4.1 Tracing Constraints

There are three ways of specifying which elements should be matched by the trace. Constraints can
be placed on the element itself, on the source element it is created from and what rule it is created
by, respectively specified with the options ’target’, ’source’ and ’rule’. Values for the options ’target’ or
‘source’ are passed directly to respectively the source element or target element. This means that their
interpretation is entirely up to the modelling language implementation.

Target and Source Element Constraints

For our basic modelling language that was discussed in Section 5.1, model elements support the passing
of arrays, strings, hashes and elements as constraints. When an array is passed all elements of the array
are interpreted as constraints recursively. When a string is passed, it must equal the 'meta’ value for
the element. When a hash is passed as a constrain all keys must be present as attributes of the element
and their values must equal the values in the hash. When another element is passed it must be the

34

same element in order for the constrain to accept the element, this is obviously only applicable to source
elements.

The code sample in figure 5.19 shows these element constraints in practice. It is the code for a rule
target that takes a foreign key constraint in a database model from a one to many association in a class
model. The elements 'source’ and ’target’ for the foreign key element are both determined by a trace.
The first trace matches an element that was also created from the association element but is of the meta
type ’Column’, it matches the referring column that was also created. The second trace matches an
element that was created from the target of the association, is of meta type ’Column’ and has the name
'Id’. This is the primary key of the column the referring column is referring to.

1 build(:database_model, ForeignKey) { |association]|

2 source trace(source: association, target: Column)

3 target trace(source: association.target, target: [Column, name: Id])
4 }

Figure 5.19: An example of element constraints for our basic modelling language

Rule Constraint

The ’rule’ constraint option can only accept a string that much match the name of the rule that created
the matching element. This option is especially useful for code generation which we will discuss in Section
5.5.

5.4.2 Return Types

The option 'returns’ can be used to specify how the trace method should deal with different numbers of
matching elements. The possible values for this option are shown in table 5.2, along with the result of
the trace function when respectively zero, one or multiple matches are found. No actual value is returned
from the trace wherever it says exception, instead an exception is thrown. When the 'returns’ option
isn’t specified, the trace method defaults to the behaviour specified for the ’Only’ value.

Value No match Single match || Multiple matches
Only (default) || exception only match exception

One exception only match first match

Any nil only match first match

All empty array || matches array || matches array
OneOrMore exception matches array || matches array
Count 0 1 number of matches

Table 5.2: Possible values for the 'returns’ option for the trace method

5.4.3 Result Count Conditions

When ’All’ or ’'OneOrMore’ is specified for the 'returns’ option, the options 'minimum’ and 'maximum’
can specified to impose additional constraints on the number of matches that must be found. When
specifying the 'minimum’ option with a number the trace function throws an exception when less matches
than that number are found. Analogously, the 'maximum’ option causes an exception to be raised when
more matches are found than the number specified for the option.

5.5 Code Generation

The code sample in figure 5.20 shows how TRans can be used with a different modelling language to
perform code generation. It is in many ways the same as our basic modelling language but its elements
support three special attributes that can be used to generate code. The ’text’ and ’nest’ attributes can

35

both be used multiple times to add to the code content for an element. Both strings and traces to other
elements can be used to add to the code content of the element. The difference is that the 'text’ attribute
keeps the same indentation and the 'nest’ attribute increases the indentation. After the transformation
is performed, all elements that include a attribute ’file’ are written to those files.

1 require 'rubygems'

2 require 'activesupport'

3

4 source :class_model, Base

5 target :rails_app, CodeGeneration

6

7 rule {

8 from { class_model.select Class }

9 build(:rails_app) { |c|

10 file "app/models/#{c.name.underscore}.rb"

11 text "class #{c.name} < #{model_parent(c)}"

12 nest trace(return: All, rule: Associations, target: {source_class: c})
13 text "end"

14 }

15}

16

17 helper :model_parent do |c]|

18 specialization = class_model.select(Specialization, source: c).first
19 if specialization.nil? then 'ActiveRecord::Base' else specialization.target.name end
20 end

21

22 rule(Associations) {

23 from { class_model.select Association }

24 build(:rails_app) { |a|

25 text "belongs_to :#{a.target.name.underscore}"

26 text '"validates_presence_of :#{a.target.name.underscore}_id"
27 source_class a.source

28

29 build(:rails_app) { |a|

30 text "has_many :#{a.source.name.pluralize.underscore}"

31 source_class a.target

32 H

3)

Figure 5.20: A code generation sample

Figure 5.21 shows a possible output model for the transformation in figure 5.20. Only the model
elements that have a ’file’ attribute are shown because only those elements will be written to output
files.

1 -- Models code model:

2 A File: "app/models/person.rb", Content:
3 class Person < ActiveRecord::Base

4 end

5 B File: "app/models/teacher.rb", Content:
6 class Teacher < Person

7 has_many :courses

8 end

9 C File: "app/models/professor.rb", Content:
10 class Professor < Teacher

11 end

12 D File: "app/models/course.rb", Content:
13 class Course < ActiveRecord::Base

14 belongs_to :teacher

15 validates_presence_of :teacher_id

16 end

Figure 5.21: A code generation sample

5.6 Conclusions

In this Chapter we discussed our MTEL called TRans and our implementation of a simple modelling
language to be used with it. Even though TRans is an academic prototype, it is a pretty usable MTL. It
is a very rich language because it is actually Ruby, made to look like a MTL, and all features and libraries
that are available in Ruby are available in TRans. It adds to Ruby the ability to write declarative model
transformation programs that consist of model declarations, rules and helpers. TRans provides features
for AOP, tracing and code generation to these programs, as well as many extension points where TRans

36

can be extended. We will use the TRans case study to answer the research questions that where raised
in Chapter 2.

37

Chapter 6

TRans: Architecture, Design and
Implementation

This chapter describes the architecture, design and implementation of our MDE environment. We start by
providing a logical overview of the components that make up our environment in Section 6.1. This section
also provides a short description of each component. Chapter 6.2 describes the design of the important
components more thoroughly using class diagrams. This section also explains the algorithms we use for
model transformation, DSEL evaluation and concern weaving using sequence diagrams. Finally, Section
6.3 contains some implementation guidelines.

Since we implemented our MDE environment in Ruby and Ruby is such a dynamic language it is hard
to describe every aspect of it using traditional UML diagrams. While this chapter uses UML diagrams
where possible, the dynamic aspects of our implementation are described using natural language.

6.1 Architecture

The overview in figure 6.1 shows the main components of the TRans language and how it is positioned
among other components, such as concerns and models. The boxes in the diagram represent imple-
mentations and components. Boxes with a dashed line are alternative implementations of the enclosing
component, which is an interface or abstract class. Components (with a solid line) are integral to the
enclosing component.

The relations between figures 3.3 (Model Transformation Architecture) and 6.1 (TRans Architecture)
can be a little bit hard to see since the first is a process oriented view and the latter is a purely logical view.
Additionally, TRans does not support any meta-modelling, whereas figure 3.3 describes mostly meta-
modelling architecture. However, the concepts of transformation definition, transformation execution
and model are shown in both figures.

The first important thing to note is that TRans is not directly coupled to a specific implementation of
the model concept, the coupling is achieved by the transformations themselves. Model transformations
can use specific API’s a model implementation provides like OCL, UML, XQuery or any other language.
Additionally whether or not to implement a meta-modeling architecture and/or whether or not to enforce
it during transformation is entirely up to the model implementation as well. All TRans does is provide
an inversion of control mechanism for working with these models that is driven by the topological sort
algorithm.

Two libraries (AOP Tools and DSEL Tools) where extracted from the TRans language because
they are excellent candidates for reuse. The DSEL Tools component provides the Ruby context for the
evaluation of an arbitrary DSEL by applying a chain of handlers to every encountered keyword, it is
described in detail in Section 6.2.1. The AOP Tools component provides join point model specification
for arbitrary pieces of Ruby code along with concern weaving and very crude point cut specification. It
can be used as a platform to implement reflective features in a Ruby system like TRans. It is described
in detail in Section 6.2.2.

The TRans language itself consists of two parts, the transformation representation and its execution.
The representation is responsible for loading the file en evaluating most of the DSEL. It stores the

38

! Dictionary || XMLFile '{ TextFile || Relational ' AST 1/ I
:\Collection | '\\input only 1 {\output only | {\Database | {\input only :\ |
7
Concern
Transformation e N T N TraceDatall N
 Logging ,: :Debuggmg/: ! Collection /: : /:
\
\ \\
\ \
\ \\
(N N \
TRans Transformation Language AOP Tools
Transformation Representation) o [‘Jol\i/'l"ozg:m] [\?V%r:\:/?rzg]
[Transformation DSL] -7
_ J
A
I
(Transform ti;n Execution N r--
@ © TTe-als DSL Tools
[TIaDrngt] [Tracing] Eloin Points] DSL Keyword
Context Handlers
\ J
J

Figure 6.1: Architectural logical overview diagram

sources, targets, helpers, rules and concerns that make up the transformation. The parts of the DSEL
that specify the target elements are not evaluated by the representation but stored for evaluation by the
transformation execution. The transformation execution also implements tracing (including topological
sort) and specifies join points.

6.2 Design

This section describes the design of the DSEL tools, the AOP tools, the transformation representation,
the transformation execution en the model components. Class diagrams are provided for each component
and a sequence diagram is provided for each algorithm.

6.2.1 DSEL Tools Component

The DSEL Tools component is responsible for providing a context in which a DSEL can be evaluated
and handling the use of methods that are defined in this context. Figure 6.2 shows a class diagram of
this component. The DSEL class is responsible for providing the context. It inherits from BasicObject in
order to have a very clean namespace. It is initialised with a collection of keyword handlers that support
the methods 'can_handle?’ and "handle’. Since the DSEL object has a clean namespace and doesn’t define
any methods, all methods invoked in its context are handled by its 'method_missing’ implementation.

39

The 'method_missing’ implementation invokes the ’handle’ method on the first keyword handler that
responds positively to a call to the ’can_handle?” method. The handler then, is responsible for checking
and parsing the arguments that where passed to the keyword and doing the actual work.

DSEL Basicobject
See Ruby 1.9+ standard

[: library documentation

initialize(*handlers)
method_missing(method_name, *arguments, &block)

self.handler(name, *argument_list, &block)
self.values(values) DSELHelperCollection
self.helpers(helpers)

self.catch_all(*argument_list, &block)

initialize(helpers)

1

DSELKeywordHandler
argument_list DSELValueCollection

process_arguments(method_name, arguments, block) <]—
can_handle?(method_name) initialize(values)
handle(dsl_context, method_name, arguments, block)

—

DSELSimpleHandler DSELCatchAll

initialize(method_name, argument_list, handler) initialize(argument_list, handler)

Figure 6.2: Class diagram of the DSEL Tools component

Specifying A DSEL

Currently, four types of keyword handlers are implemented. The simple handler calls a block of code
when its keyword is encountered. The block of code is executed in the context where the DSEL is defined
and can so be used to manipulate variables from that context and extract information from the DSEL
code that is being evaluated. The catch-all handler does very much the same thing but always responds
true to ’can_handle?’ and passes the keyword as an extra argument into its block of code. The catch-all
handler should always be inserted at the end of the handling chain because handlers after it will never
be invoked. The values handler simply returns a value to the DSEL for each keywords it supports and
can be used to pass a collection of values into the DSEL. The helpers handler is like the values handlers
but passes a collection of methods into the DSEL that are invoked in the context of DSEL itself.

The best way to understand the DSEL Tools component is to have a look at a DSEL definition. The
code in figure 6.3 was taken from the ’generate_target_element’ method in the "TransformationElement’
class and shows how the DSEL Tools component is applied to create part of the the TRans DSEL. The
context that is being defined here is for generating the attributes of the target elements and uses all
four types of handler. The simple handler is used to define the trace method, the values handler to
make source models available, the helpers handler to make transformation helper rules available and the
catch-all helper to catch all other keywords as defining attributes of the target element. Please note that
the simple handler and the catch-all handler support the passing of an argument list on creation that is
checked automatically when the keyword is used in the DSEL.

40

DSEL . new(
DSEL.handler(:trace, Hash) do loptions]|
execution.trace options
end,
DSEL .values(source_models),
DSEL .helpers(helpers),
DSEL.catch_all(:any) do Imethod_name, valuel
@target_element[method_name] = value
end
).instance_exec @source_element, &@target.generator

Figure 6.3: DSEL definition code taken from "TransformationElement’ class

build(:database_model, 'Column') { lol
name o.target.name + 'Id'
owner trace(source: inheritance_root(o.source), target: 'Table')
type 'Integer'

1

Figure 6.4: Sample DSEL code for DSEL definition in figure 6.3

Writing The DSEL

Figure 6.4 shows some code written in the DSEL defined by the DSEL definition code in figure 6.3.
The block of code passed to the build method is stored in the ’@target.generator’ and evaluated in the
context of the DSEL using the ’instance_exec’ method, passing in the source element as an argument to
the block. It shows the use of the trace method, into which a hash of options is passed, as declared by
the argument list in the DSEL definition. The 'name’, ’owner’ and ’type’ methods are caught by the
catch-all handler and respectively define the 'name’; ’owner’ and 'type’ attributes of the target element.
‘inheritance_root’ is a helper defined by the transformation and was made available using the helpers
handler. Since the helper is evaluated in the context of the DSEL, is has access to itself and to the source
models in order to recursively determine the inheritance root of the class that is passed into it.

DSEL Evaluation

Figure 6.5 shows a somewhat simplified sequence diagram of the evaluation of DSEL’s in our example case.
The ’generate_target_element’ method first uses the class (static) methods of the DSEL class to define
the transformation, this part is omitted in the diagram. After the DSEL is constructed, ’instance_exec’ is
called on it to evaluate the DSEL code in its context. This causes control flow to be passed to the DSEL
code in the transformation. Whenever a method is used in the DSEL, 'method_missing’ gets invoked
on the DSEL object, which in turn calls handle on its first handler that is able to handle the keyword.
This handler processes the arguments and optionally calls a block in the original DSEL definition in
"TransformationElement’ when it can manipulate local variables and instance variables.

6.2.2 AOP Tools Component

The AOP Tools component is responsible for weaving additional concerns into the transformation exe-
cution code. The "TransformationExecution’ class inherits from 'JoinPointModel’ and any concerns that
need to be weaved into the transformation execution have to inherit from 'Concern’. The enables the
transformation execution to internally define join points by calling the ’join_point’ method and enclosing
the code that constitutes the join point in the block passed to the method. All the concerns have to
do is define methods that start with either 'before_’, ’after_’ or ’around_’, following by the name of the
join point and these methods will be called automatically when the join point is passed. Additionally,
concerns can define "before_all’, "after_all’ and ’around_all’ to be invoked for every join point. Figure 6.6
shows a class diagram of the AOP Tools component.

41

Transformation DSELKeyword DSEL transformation
Element Handler I

I
generate_target_element !

é __________
target element T
I

> instahce_exec
1 yr >
I
! method_missing
process_ 1 handle N
arguments %
call
Vl ------------------------ |
block result , keywordresult | Lel----------
I keyword result
I
[B ettt L
! DSEL result v
e - — - ——— - i I
| |
I I
I I
]]
I I

Figure 6.5: Sequence diagram of handling DSEL keywords

JoinPointModel

initialize()
add_concern(concern)
join_point(name, *args, &join_point)

1

*

Concern

weave(join_point_name, args, join_point)
dispatch(handler, join_point_name, args, join_point = nil)

Figure 6.6: Class diagram of the AOP Tools component

Figure 6.7 shows the simplified sequence diagram of a join point called ’trace’ in a case where two
concerns where added to the join point model, one of which defined ’before_trace’ and the other of
which defines ’around_trace’. Firstly, the weave method is called on both concerns. The weave method
takes a block as its argument and returns a new block containing the extra functionality defined by the
concern and a call to the original block. The resulting block is then invoked in its original context by
the ’join_point’ method, resulting in calls to the relevant callback methods in the concerns.

6.2.3 Transformation Representation Component

The Transformation Representation component is responsible for evaluating all of the transformation
DSEL code, except for source expressions and target generators. It stores all source model declarations,
target model declarations, rules, helpers and concerns. The transformation representation and execution
are decoupled like this to enable consecutive transformations using a single representation. Also, in the-
ory, it allows another transformation execution algorithm be used to execute the same transformation.
The "Transformation’ class’ ’self.load” methods uses the DSEL Tools component to evaluate the trans-
formation code in a way similar to the code sample in figure 6.3. Figure 6.8 shows the class diagram for

42

Transformation

Execution Concern 1 Concern 2
i I 1
I I I
I I I
] I]
N join_point :trace ! !
weave(X) ' '
> |
e — oo |
y ! weave(y) !
: >
S S [J
z.call ! z
]
I
I

x original join point block
.y xwrapped in block by Concern 1
: z ywrapped in block by Concern 2

Figure 6.7: Sequence diagram showing the weaving of concerns for a join point

the Transformation Representation component.

Rule
source Transformation
sources
initialize targets
set_source(block) concerns
add_target(target) * helpers
transformation_elements(source_models) —_1
initialize()
1 add_source(name)
add_target(name)
* add_rule(rule)

Target add_helper(name, block)
target_model add_concern(name)
arguments self.load(filename)
generator self.line_number(exception)

transform(source_models = {})

Figure 6.8: Class diagram of the Transformation Representation component

6.2.4 Transformation Execution Component

The Transformation Execution component is responsible for implementing the model transformation
algorithm which includes the topological sort algorithm and tracing functionality. The class diagram
for the component is shown in figure 6.9. The "TransformationExecution’ class implements the general
transformation steps. The 'TransformationElement’ class represents the transformation from a single
source elements to a single target element. It implements the evaluation of the target element generator
DSEL that can be seen in figures 6.3 and 6.4.

43

TransformationExecution JoinPointModel
source_models see AOP Tools class
target_models diagram

initialize(transformation, source_models = {}) —,_[>
target_models()

trace(options)

- check_for_unknown_source_models()
- check_for_missing_source_models()

- generate_transformation_elements() > 1 Transformation

- generate_target_elements() see Transformation
- initialize_target_models() Representation class
- insert_target_elements() diagram

1

*

TransformationElement
source_element
target_element

target Target

* 1 see Transformation
initialize(source_element, target) Representation class
target_model() diagram
generate_target_element(execution,

source_models, helpers)
matches_trace?(conditions)

Figure 6.9: Class diagram of the Transformation Execution component

Figure 6.10 shows details about the transformation algorithm. Whenever ’transform’ is called on a
transformation, it creates an instance of 'TransformationExecution’. It then requests the target models
(result of the transformation) from the instance, setting in motion the transformation process. The
transformation process consists of six steps, as can be seen in the diagram from the six consecutive
methods the transformation execution calls on itself from within the ’target_models’ method. While
most of these steps are pretty self-explanatory, the creation of transformation elements and the creation
of target elements require some explanation. Each of transformation elements that is created signifies a
single target element in any of the target models. They are created by evaluating the source expression
for every rule and creating a transformation element for each of the resulting source elements, for each
of the rule’s targets.

The creation of target elements is done by the transformation elements, exactly one target element
per transformation element. The catch here is that the generation of one target element can lead to the
creation of an arbitrary number of other target elements by tracing. When a target element generator
executes a trace, this trace is passed on to the execution object en matched to each of transformation
elements. Each transformation element that actually matches the trace is then generated before the
original element is, possibly executing more traces and in turn possibly generating more target elements.
Automatically ordering the generation of target elements this way is called a topological sort algorithm
and it is why TRans can be used as an entirely declarative language.

6.2.5 Model Component

The model component is responsible for storing models. For a model to be transformed using TRans it
has to provide some kind of querying language to the transformation. The transformation can query any
source model from the source clauses of its rules using the querying language provided by that source
model. TRans automatically iterates over the result of such a query and hands control back to the
target clauses of the transformation rules where it uses the instantiation mechanism provided by the
model to generate target model elements. As was mentioned in the introduction of this chapter, TRans
is completely unconcerned with the querying and instantiation mechanisms of the model.

44

. Transformation Transformation
Transformation " ul
Execution Element

i

1 I
transform(source_models) ey (self, source_models)

instance

!
E

check_for_unknown_source_models
> |

\
check_for_missing_source_models

target_models

|

< % |
I_F.lf ___________ targets L
T - J".'J
source_elemenls !
PR ——. -
new |
S S
instance !
1
generate_target_elements i
_ helpers ! '
L]

S - generate_target_element

trace

generate_target_element

initialize_target_models

insert_target_eleménts

<
T target_models |

I I
| |

target_models

Figure 6.10: Squence diagram of the Transformation Execution algorithm

We implemented a model which is internally a collection of dictionaries (elements) and can be queried
using a subset of the OCL language, using Ruby syntax. Additionally we implemented a different kind
of model that supports an instantiation mechanism for code generation.

6.3 Implementation

This section describes some best practice that influenced the implementation of TRans. We provide
these because they are the motivation for many of the design decisions this chapter presents.

e Write sample transformation first

For every feature we add to the TRans transformation language, we write sample transformations
that utilise the feature before actually implementing the feature itself. The first advantage to this
method is that is constitutes a user-centric approach, minimising the negative effect implementation
as an DSEL has on the syntax of the language. Secondly, these transformations can act as test
cases to test the feature.

e Convention over configuration

Many arguments and options that are passed into methods should be optional, allowing for a lot
of flexibility where required while providing sensible defaults where this flexibility isn’t required.

45

This excellent principle is applied extensively throughout most Ruby code and TRans should be
no exception.

e Don’t repeat yourself (DRY)

Wherever duplication is encountered it should be removed, even when meta-programming is re-
quired to do so. This leads to a concise and adaptable implementation. This is another principle
that is followed by most Ruby programmers.

e Ruby 1.9 features

TRans can use features of the new Ruby 1.9 version where needed because it is a academic prototype
project and none of its code could go into production before 1.9 is the stable version of Ruby.

6.4 Conclusions

In this chapter we discussed the architecture and design of our MDE environment. It shows how the
TRans transformation language is positioned amongst the other components of the environment en how
each component works internally.

The two most important components of our implementation are the TRans transformation language
and the implementation of model. These two components are not directly coupled, except for the fact that
TRans makes a few minor assumptions about models that are all optional. Any particular transformation
is however strongly coupled with both its source and target model types and the TRans transformation
language. This makes it possible to transform any kind of model implementation using trans and also
to transform those model implementations using another transformation language. This loosely coupled
architecture is enabled by the dynamic nature of the Ruby language.

46

Chapter 7

Evaluation

In this chapter we will evaluate the TRans model transformation language and its development. We
observed a number of advantages and disadvantages to our approach during the development and testing
of TRans. The advantages and disadvantages are respectively enumerated and explained in sections
7.1.2 and 7.1.3. In 7.2 we compare TRans to RubyTL [19] since that is the MTL most similar to TRans.
RubyTL represents the current state of the art for doing model transformations using DSEL’s.

7.1 Comparison to Classic Language Design Approach

This section describes the advantages and disadvantages of implementing a MTL as a DSEL compared
by implementation using a classic language design approach. These advantages and disadvantages where
observed during the development and testing of the TRans MTEL.

7.1.1 Achieved Reuse

As stated in Chapter 2, the advantages and disadvantages of our approach are all related to the central
concept of reuse. Our goal of reusing existing language features in Ruby as part of the implementation of
TRans worked out really well. As can be seen in Chapter 5, TRans is a fully functional and feature rich
MTL, even though it was implemented in only about 600 lines of Ruby code. The Ruby language and
standard library provide TRans with a parser, interpreter, debugger, arithmetic, expressions, imperative
constructs, exception handling, recursive functions/methods and many other things. Implementing these
features for a traditional language implementation would have required many times the effort it took to
implement all of TRans. By developing TRans as a runtime DSEL we achieved maximum functionality
with a minimal amount of effort.

The rest of this section will explore whether the other characteristics changed the way we predicted
in Chapter 2. We also try to bring across the extent to which certain characteristics where impacted.
Unfortunately we where unable to formalise the extent of impact by proper measurement. Impacted
characteristics are grouped by wether they are an advantage or a disadvantage. An advantages can be
either a increased desirable characteristic or a decreased undesirable characteristic. Disadvantages are
regarded analogously.

7.1.2 Advantages

In Chapter 2 we predicted that predicted that the desirable characteristics of familiarity, maturity, relia-
bility, library availability, maintainability and adaptability would all increase. Additionally we predicted
that the undesirable characteristic of implementation effort would decrease. This section describes to
what extend they actually did.

Implementation Effort

TRans was developed over a period of about one accumulative month of programming by a single person.
The codebase if about 600 lines of code. According to our experience, creating a language from scratch,

47

including writing a parser, runtime, and all the other language features requires many times this effort.
Therefore implementation effort was significantly reduced.

Familiarity

Another big advantage of the approach is familiarity. Using a subset of the Ruby syntax provides TRans
with instant familiarity to thousands of programmers that are already familiar with Ruby. Since Ruby
mimics a lot of language features from C, PHP and Java, some familiarity is provided to users of these
languages as well. This same effect could be achieved by mimicking an existing language but that would
take extra effort, while for TRans it comes for free. Additionally, if Ruby changes, TRans changes with
it automatically if the user of TRans decides to use this new version of Ruby.

Maturity and Reliability

Since Ruby is a relatively mature programming language (it has been in development as long as Java),
all features that TRans borrows from it are tried and tested. Every major programming language in
history has taken the better part of a decade to mature and become adopted on a large scale. Most
features in TRans are mature and production ready right from the off, since they are simply features of
Ruby.

Library Availability

Apart from features that TRans borrows from the Ruby language and its standard library, any of the
libraries that where developed for the Ruby language are also available in TRans. Ruby is a relatively
mature language and libraries exist for pretty much any technology.

Maintainability and adaptability

The implementation of TRans is much smaller than an implementation of a similar language using the
traditional approach would be. This leads to increased maintainability and adaptability because a small
codebase has less regression problems and is easier to get familiar with. This makes it an ideal tool for
research on model transformation languages. It is relatively easy to add features and try out new things
because you don’t need to go through extra layers of implementation like parsing.

7.1.3 Disadvantages

In Chapter 2 we predicted that predicted that the desirable characteristic of flexibility would decrease.
Additionally we predicted that the undesirable characteristic of superfluous functionality would increase.
This section describes to what extend they actually did.

Flexibility

The usage of the Ruby syntax can be interpreted as an advantage because it provides familiarity. However,
it also places a lot of restrictions on what can be done with the language. It can be hard to come up
with syntactical constructs that work well with both Ruby and the model transformation domain. Even
within the syntactics Ruby allows, a balance must be found between what is desirable from a model
transformation perspective and the amount of effort it will take to implement in Ruby.

Superfluous Functionality

The reuse of language features that was mentioned as an advantage also has downside. You don’t get to
cherry-pick the language features that are desirable in a MTL, instead you just get everything. While
this adds to familiarity for Ruby users, it also means that at a higher level of abstraction there is no
telling what a TRans transformation does or doesn’t involve. It is very well possible to embed anything,
including malicious code in any TRans transformation. This makes TRans, like Ruby less preferable for
formal and process oriented software development.

48

Coupling to Host Language

A DSEL is strongly coupled to its host language because it relies so heavily on it, therefore the TRans
MTEL is strongly coupled to the Ruby language. In the traditional approach to language design a new
implementation of the language could be written in a different language. With the DSEL approach this
is only possible if most of the host language is re-implemented as well.

7.1.4 Comparison Table

Table 7.1 summarises this section by comparing the classic approach to the DSEL approach we followed
based on the criteria that where introduced in chapter 2. Wherever one approach has a definitive
advantage over the other, that approach’s characteristic is emphasised.

Criterium Classic Approach DSEL Approach

Implementation effort Large effort Much smaller effort

Flexibility Fully flexible Restricted flexibility

Familiarity By mimicking a language || Comes for free

Maturity None Reused language features are mature
Available Libraries None All host language libraries
Maintainability and adaptability || Lower Higher

Superfluous functionality None Unwanted host language functionality

Table 7.1: Comparison table for the classic approach to language design versus the DSEL approach

7.2 Comparison to RubyTL

The current state of the art in model transformation using a DSEL is RubyTL [19], another MTEL based
on the Ruby language. This section examines the differences between RubyTL and TRans by looking at
the advantages and disadvantages of TRans compared to Ruby TL.

7.2.1 Advantages

The main advantage of TRans is that conceptually it is cleaner than RubyTL because it implements only
a single model transformation paradigm and is decoupled from a specific notion of a modelling language.
Additionally, the practice of creating DSEL’s in Ruby has advanced since implementation started on
RubyTL which means TRans uses some more advanced methods that lead to a cleaner syntax.

AOP Support

TRans supports AOP features where RubyTL does not. AOP features allow the transformation execution
algorithm to be augmented or changed by applying advice. Advice can be supplied from within a
transformation definition, but can also be added at execution time. Because TRans is a DSEL that
uses Ruby, a general purpose programming language is available to write advice, which makes this
an especially powerful concept. Example applications are tracing, logging, debugging and execution
algorithm adjustment. Since concerns containing advice can be imposed at execution time, there is great
potential for reuse of these functionalities.

Independent of Modelling Language

The TRans language itself assumes almost nothing about a specific modelling language implementation.
This means it can be used with different standards, your own implementation or even with languages that
are not modelling languages in the traditional sense. This was done by moving the model querying and
model synthesis parts out of TRans and into the modelling languages themselves. TRans simply delegates
these parts of the model transformation to the modelling language for evaluation. The advantage of this
approach is that the TRans language is easily reusable for the transformation of models expressed in

49

different languages/standards. Additionally, it is possible to transform models expressed in one language
into models expressed in another.

Comprehensive Approach

TRans’s indifference to different modelling languages allows it to be a comprehensive approach to MDE.
Everything is a model transformation, including incorporating different kinds of data into the model
driven workflow and code generation. So, where RubyTL has an entirely different DSEL for code genera-
tion, TRans just uses a regular model transformation with a code generation specific modelling language
for the target model.

More Advanced DSEL

Since RubyTL has been around for a while, it doesn’t employ the techniques for DSEL creation that
have recently become popular in the Ruby community. This allows the TRans syntax to be a bit more
concise and suffer less from being a subset of Ruby.

Single Paradigm

Mainly due to time constraints, TRans has made some firm decisions about the model transformation
paradigms it supports. The two decisions that are most influential on the design of the language are the
clear separation of source and target models and transformation ordering based solely on the topological
sort algorithm. The separation of source and target models means that transformations cannot update
or refine models. The topological sort means that transformation don’t have to be divided into steps or
phases but trace statements often have to be written differently because selecting on target attributes
can more easily result in trace cycle errors. While these choices may be interpreted as restrictive they
also provide a very clear structure and concept to every model transformation.

Cleaner Implementation

As we mentioned, TRans implements a very specific subset of model transformation features and doesn’t
worry about things that (according to us) belong in a separate modelling language component. This
means that the implementation of the TRans language is very small and clean, making it much more
adaptable and maintainable than RubyTL. This adaptability makes it an ideal tool for research into
model transformation language features.

7.2.2 Disadvantages

This section describes the disadvantages of TRans when compared to RubyTL. The main disadvantage
of TRans is the lack of formal extension points.

No Formal Extension Points

One thing RubyTL does exceptionally well is the definition of extension points. New types of transfor-
mation rules and other language features can easily be implemented by inheriting from certain classes in
the implementation. While adding language features to TRans is also pretty trivial, it does not provide
formal documented extension points for doing is, which is a serious shortcoming.

Less Feature Rich

Whereas TRans chose to implement a very specific model transformation paradigm, RubyTL combines
features from different approaches. This makes RubyTL a more flexible language that probably appeals
to a wider audience.

50

7.2.3 Comparison Table

Table 7.2 summarises this section by comparing RubyTL to the TRans MTEL based on several cri-
teria. Wherever one implementation has a definitive advantage over the other, that implementation’s

characteristic is printed in italic text.

Criterium RubyTL TRans

Modelling language dependency || Dependent Independent

Code generation Different DSEL Integrated

DSEL creation techniques Simple More advanced
Transformation paradigm Mixed paradigm, Feature rich || Single paradigm, Opinionated
Implementation Large Smaller, Simpler

Formal extension points Available None

AOP support None Substantial

Table 7.2: Comparison table for RubyTL versus TRans

7.3 Conclusions

In this chapter we evaluated advantages and disadvantages of the MTEL approach in relation to the more
traditional way of language development. Additionally, we evaluated the TRans language in relation to
RubyTL, which is the current state of the art in the MTEL domain. We think that in both cases the
advantages to our approach outweigh the disadvantages, particularly in the DSEL versus traditional
language design debate in relation to MDE.

o1

Chapter 8

Conclusions

This chapter describes conclusions that can be drawn from our research. Section 8.1 provides a short
summary of our research. Section 8.2 provides the answers we have found to the research questions that
where presented in Chapter 2. Sections 8.3 and 8.4 respectively present the contributions of our research
and our recommendations for future work in this field of study.

8.1 Summary of Concepts

In this report we presented our research into MTEL’s. The term MTEL (Model Transformation Embed-
ded Language) was chosen by us to describe a MTL (Model Transformation Language) developed as a
DSEL (Domain Specific Embedded Language). This approach is just one of several possible approaches
that aim at the reuse of language features of a general purpose programming language for the develop-
ment of a MTL. The DSEL approach provides the most potential for reuse of language features with the
least amount of effort. This means that if this method is viable (any disadvantages can be accepted or
controlled), it is the most desirable alternative approach. We established this in Chapter 2 and scoped
our research accordingly. The main goal of this research became to develop a MTEL that constitutes a
valid prove of concept and to evaluate its architecture, advantages and disadvantages.

In order to establish what constitutes a valid prove of concept in the MTL domain, we had to perform
some literature research. The resulting survey of the MDE (Model Driven Engineering) and more specific
MTL domain was presented in Chapter 3. A subset of the observed features was chosen in such a way
as to minimise development effort but provide a valid prove of concept. The features that where chosen
are declarative transformation definition, multiple source and target models, recursive helper rules, a
subset of OCL semantics, some aspect oriented features, tracing functionality and automatic execution
ordering based on encountered traces.

As the host language for our DSEL we chose Ruby. It is to the best of our knowledge the only
language that offers extensive facilities for the creation of DSEL’s. In order to gain a full and thorough
understanding of these facilities we performed literature research on this subject as well. The resulting
survey of the Ruby programming language and in particular the aspects that can be used for the creation
of a DSEL where presented in Chapter 4. The features that proved most important for the creation of
our prototype are code blocks (closures) and the ability to evaluate them in a specific context, flexible
syntax, hash literals and undefined constant and method definition.

Based on the framework of concepts described in our literature research we designed and implemented
our MTEL, called TRans. Its features and usage where described in Chapter 5. TRans is a fully
functional MTEL that implements all the MTL features we chose as a Ruby DSEL. Chapter 6 describes
the architecture, design and implementation of the language. Since the TRans interpreter is a highly
dynamic Ruby program, it is not always possible to describe its workings using traditional methods
such as class and sequence diagrams. While we did or best to describe TRans’s internals using natural
language, we also encourage anyone interested to examine the source code.

Based on our experiences developing in and using TRans, we can conclude that implementing a
MTL as an DSEL is an approach that yields many advantages, the most notable of which are reuse of
mature host language features, familiarity to host language users, library availability, adaptability and

52

maintainability. Adaptability and maintainability are observed as the result of having a much smaller
codebase due to the large amount of reuse. These advantages make the approach especially well suited
for situations where resources are limited.

The main disadvantages that where observed are restrictions imposed by usage of the host language
syntax and the inability to hide unneeded functionality from transformation implementations. These
disadvantages make the approach less suited for a situation in which the MTL needs to have a specific
syntax or when restrictions need to be placed on what operations a transformation is allowed to perform.

8.2 Research Questions

This sections provides the answers the last three of our six research questions from Chapter 2, based on
the evaluative observations that where presented in this chapter.

Q1 What host language should we use and because of which requirements?

Q2 Which facilities in the host language can be used to create a DSEL?

Q3 What features do we want our MTL to support in order to make it a valid proof of concept?
Q4 To what degree where we able to achieve the reuse we where aiming for?

Q5 What advantages and disadvantages did the achieved reuse yield?

Q6 How does our implementation compare practically to implementations using the same ap-
proach?

8.2.1 Research Question 1

After deciding we wanted to develop our MTL as an DSEL, the most important criterium for choosing the
host language became it’s ability to support runtime DSEL creation. This made Ruby a fairly obvious
choice. To the best of our knowledge, no other language has such extensive facilities for the creation of
DSEL’s. Additionally, the host language should not have a syntax that would seem exotic and foreign
to the domain of model transformation. Since most work in the area has been done in Java, Ruby is a
perfect fit because it allows programs to be written in a way very similar to Java or C.

8.2.2 Research Question 2

In Chapter 4 we did an extensive study of the features that Ruby offers for the creation of DSEL’s.
Many of these features where used for the development of TRans, as can be seen in Chapter 5. The most
important feature for us was the ability to capture blocks of code in variables and evaluate them in a
specific context. Additionally, we used hooks to capture the use of undefined keywords and constants.
Some more common language features that also proved extremely useful where dynamic typing and easy
introspection, hash literals and operator overloading.

8.2.3 Research Question 3

We presented a survey of MTL features in Chapter 3. We decided to implement a MTL based around
the principle of tracing and the topological sort algorithm because this seems to be to most modern
and clean approach. Additionally we support modelling language agnosticism and AOP features for
model transformation, upon which reflective features could be implemented. Because TRans is a prove
of concept, we decided not to implement the somewhat more trivial features such as phasing, rule
inheritance, and different types of rules.

53

8.2.4 Research Question 4

We established that a very large degree of reuse is possible by building a prototype. Our prototype,
TRans, is a fully functional and feature rich MTL, even though it was implemented in only about 600
lines of Ruby code. The Ruby language and standard library provide TRans with a parser, interpreter, de-
bugger, arithmetic, expressions, imperative constructs, exception handling, recursive functions/methods
and many other things.

8.2.5 Research Question 5

This section describes what quality characteristics where changed in what ways by having this high
degree of reuse.

Disadvantages

As we mentioned in Section 7.1.3, the most notable disadvantages to the chosen approach are restrictions
in the host language syntax and superfluous host language functionality.

The biggest challenge in the development of TRans was choosing syntactical constructs that are
possible in Ruby that map well to the model transformation domain but also allow a clean implementation
of the DSEL. When implementing a MTL using the traditional approach to language development is
would not be an issue and as such me note it as a serious disadvantage to our approach.

Another disadvantage is our inability to limit of functionality that is exposed to the author of a
model transformation. While TRans does its best to keep the contexts in which the different parts of
a model transformation are evaluation as clean as possible, it is always possible to gain access to the
full spectrum of Ruby functionality. This includes the ability to create malware. This problem can be
partially overcome by running model transformation in a sandbox Ruby environment, which is relatively
easy to do.

Advantages

We managed to reuse Ruby language features for almost all parts of the TRans language. There are
no features that where already available in Ruby that we had to re-implement for TRans. This level of
reuse allowed us to really focus on the model transformation specific language features of TRans. For this
reason we believe that implementation as a DSEL is definitely the way forward for MTL’s, in particular
in an academic context. For a process oriented enterprise environment the approach may be less suitable
because of the lack of control that can be exercised on the functionality of model transformations written
in a MTEL.

As we mentioned in Section 7.1.2, apart from our goal of language feature reuse, several other ad-
vantages of the approach where observed. The most notable of which are familiarity, maturity, library
usage and maintainability.

Because so many of the features of TRans are borrowed from the Ruby language they are instantly
familiar to programmers that are familiar with Ruby. This softens the learning curve for TRans for
these programmers. Borrowing these features from the Ruby language also means they are more mature,
simple because they have been tried and tested for many years.

An unforeseen advantage of TRans is it’s ability to directly use Ruby libraries. Ruby provides
libraries for every notable technology out there and also for other things that are desirable in model
transformations like natural language inflections.

Lastly, the approach leads to a very clear separation of general purpose and model transformation
specific language features. TRans, containing the model transformation specific features, being depen-
dant on Ruby but not the other way around. This allows TRans to be a small and cleanly implemented
language that easy to adapt and maintain.

8.2.6 Research Question 6

We where able to introduce some significant advantages over RubyTL; AOP support, independence of
modelling language, a comprehensive approach, a more advanced DSEL, single paradigm and a cleaner
implementation. The most important of which are described in section 8.3.

54

8.3 Contributions

This section enumerates the parts of this research that are new in the field of DSEL’s for model trans-
formations.

8.3.1 Architectural Improvements

TRans’s architecture offers a very clean and extensible approach to model transformation. It allows the
model querying and instantiation mechanisms to be a separate DSEL that is all but completely decoupled
from the actual model transformation DSEL. This new architecture allows a comprehensive approach
to model transformation (mentioned separately) and allows research into new model transformation
techniques to be much more focussed on specific parts of the approach.

8.3.2 Comprehensive Approach

Because TRans is so indifferent to the interpretation of the model concept everything can be a model
whit its own mechanisms for instantiation and querying. This means that any type of computer data, like
for instance a code repository can be wrapped and used as a source or target model. TRans supplies the
model declaration, declarative transformation definition using rules, the automatic rule ordering using
the topological sort algorithm and tracing facilities to transformation of any type of model. This means
these facilities can be used for code generation and the incorporation of arbitrary data into de MDE
workflow as well as for model transformation in the classic sense.

8.3.3 AOP Functionality for Model Transformation

TRans features the ability to apply Aspect Oriented Programming in its model transformations. This
ability is especially powerful since the full featured Ruby language can be used to write advice. The
declarative model transformations written in the TRans MTL can be augmented with imperatively
written functionality in this way.

8.3.4 Complete Survey of DSEL Techniques

This report presents a very complete survey of DSEL creation techniques in the context of the Ruby
language. Many of these techniques have been applied for the creation of the TRans language which
leads to it being a more concise DSEL for model transformations than RubyTL.

8.4 Future Work

This section describes the future work we propose in continuation of research into this field. The possi-
bilities for future can be categorised in finding ways to overcome some of the disadvantages that where
observed and the development of additional functionality using the same approach.

8.4.1 Disadvantages

The section describes possible ways to overcome the disadvantages of developing a MTL as a DSEL that
where described in Chapter 7. The disadvantages are restrictive host language syntax and superfluous
host language functionality.

Host Language Syntax

By far the biggest disadvantage of the DSEL approach is restrictions on the MTL syntax imposed by
the syntax of the host language. One possible way to get around this is to use a different approach
that allows less intense reuse such as compiling to the host language. However, we think that it is
possible to design a general purpose programming language that supports the creation of DSEL’s even
better than Ruby. Ruby was not designed for the development of DSEL’s but rather it is a byproduct
of language features that where included for other reasons. A general purpose programming language

55

that is specifically designed for the purpose of supporting DSEL’s can potentially lift a lot of the syntax
restrictions Ruby imposes.

Superfluous Functionality

Another disadvantage is the availability of unwanted host language functionality to model transforma-
tions. This disadvantage could also be overcome by having a host language that is designed specifically
to support DSEL’s. Such a language could potentially provide far more restricted or sandboxed contexts
for he evaluation of model transformation code. Ruby does provide sandboxing, but only for an entire
virtual machine, not for the evaluation of certain code.

Additional Functionality

While TRans is a quite full featured MTL, model transformation is only one part of model driven
development. It would be a good idea to evaluate the viability of developing other MDE type languages
in the same fashion. Possible candidates are a meta-modelling language and a workflow/dependency
language in which the different artefacts in the MDE workflow can be described with their meta-models
and their interconnecting transformations.

56

Bibliography

[1]
2]

Smalltalk.org. Retrieved December 25, 2008, from http://www.smalltalk.org/.

Review of ”Software reuse: Architecture, process and organization for business success” by Ivar
Jacobson, Martin Griss, and Patrik Jonsson, Addison-Wesley publishing Co., Reading, MA, 1997,
volume 37. IBM Corp., Riverton, NJ, USA, 1998. Reviewer-Pfleeger, Shari Lawrence.

Scott Boag, Don Chamberlin, Mary Ferndndez, Daniela Florescu, Jonathan Robie, and Jérome
Siméon. XQuery 1.0: An XML query language. 2005.

Thouraya Bouabana-Tebibel and Mounira Belmesk. An object-oriented approach to formally analyze
the uml 2.0 activity partitions. Inf. Softw. Technol., 49(9-10):999-1016, 2007.

Jean-Michel Bruel, editor. Satellite Events at the MoDELS 2005 Conference, MoDELS 2005 Inter-
national Workshops, Doctoral Symposium, Educators Symposium, Montego Bay, Jamaica, October
2-7, 2005, Revised Selected Papers, volume 3844 of Lecture Notes in Computer Science. Springer,
2006.

J. Clark. XSL transformations (XSLT) version 1.0 W3C recommendation 16 november 1999. Tech-
nical report, W3C - World Wide Web Consortium, 1999.

Microsoft Corporation. Microsoft ironruby. Retrieved December 11, 2008, from
http://www.ironruby.net.

Microsoft Corporation. Microsoft .net. Retrieved December 15, 2008, from
http://www.microsoft.com/net/.

K. Czarnecki and S. Helsen. Feature-based survey of model transformation approaches. IBM Systems
Journal, 45:621-645, 2006.

et. al David Heinemeier Hansson. Ruby on rails, web development that doesn’t hurt. Retrieved
December 21, 2008, from http://www.rubyonrails.org/.

Michel Ezran, Maurizio Morisio, and Colin Tully. Practical software reuse. Springer-Verlag, London,
UK, 2002.

Neil Ford. Advanced dsls in ruby. Presentation at RubyConf, 2008.

Codehaus Foundation. Jruby, java powered ruby implementation. Retrieved December 25, 2008,
from http://jruby.codehaus.org/.

The Perl Foundation. The perl directory. Retrieved December 21, 2008, from http://www.perl.org/.

Martin Fowler. Single table inheritance. Retrieved February 20, 2010, from
http://martinfowler.com/eaaCatalog/singleTableInheritance. html.

Jean Bézivin Ivan Kurtev Patrick Valduriez Frédéric Jouault, Freddy Allilaire. Atl: a qvt-like
transformation language. Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications, pages 719-720, 2006.

Object Management Group. Unified modeling language specification. Retrieved February 14, 2010,
from http://www.omg.org/technology /documents/formal /uml.htm, September.

57

Paul Hudak. Modular domain specific languages and tools. In in Proceedings of Fifth International
Conference on Software Reuse, pages 134—142. IEEE Computer Society Press, 1998.

Jess Molina Jess Cuadrado and Marcos Tortosa. Rubytl: A practical, extensible transformation
language. FCMDA-FA, LNCS 4088:158-172, 2006.

S. Kent. Model driven engineering. Lecture Notes In Computer Science, 2335:286—-298, 2002.
Ivan Kurtev. Adaptability of model transformations. PhD thesis, Enschede, 2005.

Jean-Philippe Lang. Rubyspec - the standard you trust. Retrieved December 20, 2008, from
http://rubyspec.org/.

Michael Lawley and Jim Steel. Practical declarative model transformation with tefkat. Satellite
Events at the MoDELS 2005 Conference, pages 139-150, 2006.

Tim Lindholm and Frank Yellin. Java(TM) Virtual Machine Specification, The (2nd Edition).
Prentice Hall PTR, 2 edition, April 1999.

Y. Matsumoto. Ruby programming language. Retrieved November 20, 2008, from http://www.ruby-
lang.org/.

J. Miller and J. Mukerji. Mda guide version 1.0.1. Technical report, Object Management Group
(OMG), 2003.

OMG. Mof qvt final adopted specification. (OMG document formal/2005-11-01), June 2005.

Evan Phoenix. Rubinius. ruby, the way it was meant to be. Retrieved November 19, 2008, from
http://rubini.us/.

Martin Thiede. Rgen, ruby modeling and generator framework. Retrieved February 20, 2009, from
http://ruby-gen.org/.

58

