
Opdracht : Customer Profiling Using Hyves and LinkedIn

Auteur : Jasper Laagland

Datum : 29-10-2008

Topicus B.V. – Brinkpoortstraat 11, 7411 HR, Deventer – tel. 0570-662 662 – www.topicus.nl

Customer Profiling Using Hyves and LinkedIn

Over Topicus

Wij zijn een innovatief software architecten bureau dat hoogwaardige Software as a Service

(SaaS) applicaties ontwikkelt. Wij zijn onder andere, maar niet exclusief, werkzaam in de

onderwijssector, de financiële sector en de zorgsector. Binnen deze sectoren ontwikkelt Topicus

nieuwe dienstverleningsconcepten waarbij de mogelijkheden van moderne technologie optimaal benut

worden.

Topicus hecht veel belang aan innovatie, waarbij we zowel op technisch als op conceptueel vlak

voorop willen lopen in de markt. Door technische ontwikkelingen nauwlettend en kritisch te volgen

en door samenwerking met hogescholen en universiteiten heeft Topicus inmiddels veel kennis

opgebouwd op uiteenlopende gebieden.

Achtergrond

Eén van deze gebieden is het profileren van potentiële klanten bij het verstrekken van leningen. Door

gebruik te maken van meer dan alleen de gebruikelijke gegevens –zoals inkomen en postcode - wil

Topicus zich onderscheiden in de markt. Topicus wil onderzoeken wat de mogelijkheden zijn om

informatie te gebruiken van communities op internet, bijvoorbeeld Hyves en LinkedIn.

De opdracht

Topicus is op zoek naar één of twee enthousiaste (bij voorkeur WO) stagairs of afstudeerders

die in deze materie willen duiken. Het toepassen van deze technologie roept een aantal vragen

op. Uitgezocht moet worden welke informatie bruikbaar is bij het profileren van potentiële

klanten. Deze informatie zal vervolgens geconverteerd worden naar data die gebruikt kan worden in

een risico profiling applicatie.

En, is het mogelijk om een generieke methode te ontwikkelen die eenvoudig toepasbaar is op

verschillende communities?

Het ontwikkelen van een demo-applicatie behoort tot de mogelijkheden.

Uiteraard word je bij het uitvoeren van de opdracht uitstekend begeleid door de medewerkers

van Topicus, in aanvulling op de begeleiding vanuit je opleiding.

Voel(en) jij/jullie je aangetrokken tot dit onderwerp, of heb je goede ideeën over andere

(aanverwante) opdrachtinvullingen, kom dan vrijblijvend langs voor een oriënterend gesprek!

Aanvullende informatie

Startdatum In overleg

Projectduur 4/6 maanden

Vergoeding € 500,- bruto

Locatie Deventer (centrum, naast NS station)

Contactpersoon Liesbeth Platvoet

 liesbeth.platvoet@topicus.nl

 0570 - 662 662

Matching Profiles from Social
Network Sites

Similarity Calculations with Social Network Support

Master Thesis of Irma Veldman
Computer Science,

Track Information Systems Engineering
Enschede, October 23, 2009

Supervisors University of Twente
Ander de Keijzer

Maurice van Keulen

Supervisors Topicus FinCare
Jasper Laagland
Wouter de Jong

ii

Matching Profiles from Social Network Sites

Similarity Calculations with Social Network Support

Irma Veldman

October 23, 2009

iii

iv

Samenvatting

De laatste jaren zijn sociale netwerk sites enorm populair geworden. Veel mensen
zijn lid van één of meer van deze profielen sites en zetten veel persoonlijke
informatie online. Deze, vaak publiekelijk beschikbare, informatie kan nuttig
zijn voor veel verschillende doeleinden. Het bij elkaar voegen van alle informatie
van een persoon tot één profiel maakt dit nog waardevoller. Ontdekken welke
profielen bij dezelfde persoon horen is daarmee heel belangrijk geworden. Dit
probleem wordt Entity Resolution (ER) genoemd.

In dit onderzoek ontwikkelen we een model dat het ER-probleem in het geval
van profielen van sociale netwerk sites zal oplossen. Eerst presenteren we een
simpel model. Daarna proberen we dit model te verbeteren door gebruik te
maken van de sociale netwerken die een gebruiker kan hebben op deze sites.
Wij zijn van mening dat het model significant verbeterd kan worden door deze
netwerken in het model op te nemen.

Het algemene idee is als volgt: we hebben twee sites met profielen. Door
toepassing van het model proberen we uit te vinden welke profielen van de ene
site overeenkomen met welke profielen van de andere site. Aanname hierbij is
dat een persoon hoogstens één profiel per site heeft.

In het simpele model vergelijken we eerst alle profielen van de ene site met
alle profielen van de andere site. Voor ieder paar van profielen levert dit een
score op: de paarsgewijze gelijkheidsscore. Hoe hoger deze score, hoe groter
de kans dat deze profielen tot dezelfde persoon behoren. De paren die voldoen
aan de paarsgewijze drempel zijn kandidaat-match. Uit alle kandidaat-matches
worden uiteindelijk de matches gekozen.

Het netwerkmodel begint op dezelfde manier. Nadat de kandidaat-matches
zijn vastgesteld, begint de netwerkfase. Voor elke kandidaat-match wordt dan de
netwerkgelijkheidsscore bepaald. Deze score wordt berekend door het bepalen
van de overlap die er is tussen de netwerken van de beide profielen in de
kandidaat-match. Hoe groter de overlap, hoe hoger de netwerkgelijkheidsscore
en hoe groter de kans dat deze profielen tot dezelfde persoon behoren. Deze
keer moeten de kandidaat-matches ook nog voldoen aan de netwerkdrempel om
kandidaat-match te blijven. Uit alle overgebleven kandidaat-matches worden
dan de matches gekozen.

Om te testen of het netwerkmodel inderdaad betere resultaten oplevert dan
het simpele model, hebben we experimenten opgezet. Omdat er geen goede
datasets beschikbaar waren, hebben we zelf een dataset verzameld. Helaas had
deze dataset wel wat beperkingen. Daarnaast hebben we een prototype gebouwd
dat het model implementeert. Het prototype bevat verschillende parameters
waarvan de waarden tijdens de experimenten gevarieerd kunnen worden om een

v

goede configuratie te vinden.
Het netwerkmodel legt meer voorwaarden op voor een paar om als match

aangemerkt te kunnen worden. De experimentele resultaten bevestigen dit.
Dat betekent dat de precisie van de resultaten omhoog gaat. Aan de andere
kant worden er, door deze stricte voorwaarden, ook overeenkomende profielen
gemist wat zeer ongewenst is. Echter, in het geval dat er profielen in de dataset
zitten die ambigu zijn, kan het netwerkmodel onderscheiden welke profielen een
correcte match zijn en welke niet. Deze situatie zal vaak voorkomen in de echte
wereld en daarom denken wij dat het netwerkmodel een goede bijdrage kan
leveren aan het oplossen van het ER-probleem, in dit specifieke geval.

vi Matching Profiles from Social Network Sites

Summary

In recent years social networking sites have become very popular. Many people
are member of one or more of these profile sites and tend to put a lot of personal
information online. This often publicly available data can be useful for many
purposes. Retrieving all available data from one person and merging it into
one profile even more. Detection of which profiles belong to the same person
becomes very important. This task is called Entity Resolution (ER).

In this research we develop a model to solve the ER problem for profiles
from social networking sites. First, we present a simple model. Then, we try
to improve this model by making use of the social networks a member can have
on these sites. We believe that involving the networks can improve the results
significantly.

General idea is that we have two sites with profiles. With the model we try
to find out which profiles of the first profile site correspond to which profiles of
the second profile site, whereby we assume a person to have at most one profile
at each profile site.

In the simple model, we compare all profiles of the first profile site against all
profiles of the second site. This comparison will result in a score for each pair:
the pairwise similarity score. The higher this score, the higher the probability
that these profiles belong to the same person. The pairs that satisfy the so-called
pairwise threshold are the candidate matches. From these candidate matches,
the matches are chosen.

In the network model, we start the same way. When the list of candidate
matches is determined, the network phase is started. For each candidate match
the network similarity score is calculated. This is done by determining the
overlap in the networks of both profiles in the candidate match. The more
overlap between the networks, the higher the network similarity score, the higher
the probability that the profiles in the candidate match belong to the same
person. This time, the candidate matches should satisfy a network threshold in
order to stay a candidate match. Then, from the remaining candidate matches
the matches are chosen.

In order to test whether the network model would indeed improve the simple
model, we have set up experiments. Since no suitable data sets were available, we
retrieved our own data set. Unfortunately, it appeared to have some limitations.
Also, we have built a prototype that implemented the model. The prototype
has several parameters for which we could vary the values in the experiments
to find a good configuration.

The network model ensures that there are more conditions that need to be
met to be a match. The experimental results confirm this. That means that

vii

the precision of the results increases. On the other side, due to these strict
conditions, corresponding profiles are missed, which is undesired. However, in
case there are ambiguous profiles in the set, the network model can distinguish
the correct profile. This situation will occur frequently in real life, hence we
think the network model can really contribute to solving the ER problem.

viii Matching Profiles from Social Network Sites

Preface

This master thesis is the result of the graduation of the study Computer Science
at the University of Twente. The assignment was conducted at Topicus, a young
and innovative ICT company in Deventer.

I would like to thank everyone who has provided input and ideas. In par-
ticular, I would like to thank my supervisors at Topicus: Jasper for his daily
guidance and his progressive views on the topic, and Wouter for his guidance
on the direction and structure. I would like to thank Ander and Maurice, my
supervisors at the university, for their constructive criticism and input. Working
with all four was very enjoyable.

Besides my supervisors, I would like to thank my colleagues for the pleasant
working atmosphere.

Finally, I would like to thank my family, my parents and Elmer in particular,
for their support during the past half year and during my entire study.

Irma Veldman
Enschede, October 2009

ix

x

Contents

Samenvatting v

Summary vii

Preface ix

1 Introduction 1
1.1 Research . 2

1.1.1 Research Goal and Scope 2
1.1.2 Research Questions . 3
1.1.3 Research Approach . 3
1.1.4 Contributions . 4

1.2 Terminology . 4
1.3 Organization . 4

2 Data Sources 7
2.1 Profile Sites . 7
2.2 Issues with Generic Data Retrieval 11

2.2.1 Schema Mappings . 11
2.3 Retrieved Data Set . 13

2.3.1 Availability of Data . 13
2.3.2 Data Format . 14
2.3.3 Crawling the Internet . 16
2.3.4 Ground Truth . 17
2.3.5 Uncertainty of Data on Profile Pages 17

3 Simple Profile Matching 19
3.1 Syntactical Similarity . 20

3.1.1 Approximate String Matching 21
3.1.1.1 Character-based Methods 21
3.1.1.2 Token-based methods 21
3.1.1.3 Hybrid methods 22

3.1.2 Examples . 22
3.2 Semantical Similarity . 23

3.2.1 Ontologies . 23
3.3 Profile Matching Model . 24
3.4 Prototype . 29

3.4.1 Pairwise Comparison . 29

xi

Contents

3.4.2 Determining Matches . 30
3.5 Concluding Remarks . 30

3.5.1 Expectations . 31

4 Profile Matching with Social Network Support 33
4.1 Model . 34

4.1.1 Clustering . 35
4.1.2 Network Comparison . 36
4.1.3 Determining Matches . 38

4.2 Prototype . 39
4.2.1 Clustering . 39
4.2.2 Network Comparison . 42
4.2.3 Determining Matches . 42

4.3 Concluding Remarks . 43
4.3.1 Expectations . 43

5 Typed Networks Extension 45
5.1 Network Types . 45
5.2 Model . 46
5.3 Prototype . 49
5.4 Concluding Remarks . 50

5.4.1 Expectations . 50

6 Multiple Sources 53
6.1 Generic ER Solutions . 53
6.2 Model . 55

6.2.1 Merge Result . 55
6.2.2 Confidence Scores vs. Match or Non-Match 58
6.2.3 Redefined Match Function 59
6.2.4 Reuse of R-Swoosh . 59

6.3 Discussion . 62

7 Experiments 65
7.1 Parameters . 65

7.1.1 Natural vs. Normal . 66
7.2 Measurements . 67

7.2.1 Precision . 67
7.2.2 Recall . 68
7.2.3 F-Measure . 68

7.3 Results . 68
7.3.1 Pairwise Threshold and Network Threshold 68
7.3.2 Weights . 71
7.3.3 Attributes and String Matchers 72

7.3.3.1 Exclusion of String Matchers 77
7.3.3.2 Best Choices . 77

7.3.4 Compensation for Incomplete Networks 78
7.3.5 Network Types . 78
7.3.6 Method . 84
7.3.7 Beyond the Limitations of the Data Set 85

7.4 Concluding Remarks . 88

xii Matching Profiles from Social Network Sites

Contents

8 Related Work 91
8.1 Entity Resolution . 91

8.1.1 Supervised Approaches . 92
8.1.1.1 Collective Entity Resolution 92
8.1.1.2 Manual Postprocessing 93

8.1.2 Unsupervised Approaches 94
8.1.3 Distance Metrics . 96

8.2 Exploiting (Social) Network Relations 96
8.2.1 Aggregators . 97

8.3 Concluding Remarks . 98

9 Conclusions 99
9.1 Recommendations . 100
9.2 Future Work . 101

Bibliography 103

A Original Data Sources 107

B Database Schema 111

C Statistics on the Data Sets 113

D More Results from the Experiments 119
D.1 Distribution of Similarity Scores for True Matches 119
D.2 Precision and Recall for Different String Matchers 121

E Approximate String Matching Methods 125
E.1 Levenshtein Distance . 125
E.2 Jaro Distance . 126
E.3 Jaro-Winkler Distance . 126
E.4 Jaccard . 127
E.5 Cosine Similarity and TF/IDF . 127
E.6 Q-grams . 128

Irma Veldman xiii

xiv

Chapter 1

Introduction

In the last decade, the internet has become more important. It is as common as
water and electricity. Activities that used to take place manually or locally are
now being performed on the internet, like booking a trip for the holidays, buy
games or electronics, monitor your shares or taking your business to a global
level.

Because internet is becoming such an integral part of our lives even social
life is taking place on it. People connect to each other on the internet, chat with
family members who live far away, meet new people on community sites, discuss
and review the latest gadgets and even find the love of their live by surfing on
the digital highway.

By using computers and the internet for all these different activities, much
more measurable data becomes available. This works in two ways: 1) businesses
can better serve their customers, and 2) customers can choose among more
suppliers of products and services, due to market transparency. In the first
case for instance, web shops can use data mining tools to discover relations
between properties of customers and their purchasing behavior. By knowing the
preferences of its customers a business can better serve them. As an example
for the latter case, the market for tickets has become more transparent due to
the internet. This makes it possible for the customer to make a more informed
decision and find the cheapest tickets or the most reliable airline.

It has been known for years that many companies have your credentials,
even if you are unaware of this. Today, the internet is becoming an even bigger
resource of personal data. People mainly see the benefits and fun of using this
medium. For many web sites you need to complete your credentials to be able
to participate in fora, save high scores of games, win gadgets etc. However, by
using the internet you leave traces, whether you are aware of it or not.

Most personal data you provide on web sites are used to create a login and
will not be publicly available. However, since a few years has become popular
to ‘profile’ yourself on a web site, showing some personal information, having a
blog and sharing photos and videos. In the beginning, only a few people made
their own home page. Nowadays, sites have become available at which you can
generate your own page, making it easier for people with less technical skills to
join. Because the personal pages are organized centrally, it is possible to provide
extra features. On most of these sites it is possible to build a social network,

1

Chapter 1. Introduction

hence these sites are called Social Networking Sites (SNSs).
Already, people saw new opportunities of social networks online. Besides,

the fun it brings for people to leave short messages at each others profile sites
and to stay up to date about what your friends are doing, it can be very useful.
For instance, it can offer you business opportunities.

1.1 Research

This research is commissioned by Topicus FinCare B.V. The company is part of
the PBT Holding and is a young and fast growing company that is looking for
opportunities to conquer new markets. In cooperation with a large mail-order
company, Topicus is exploring the opportunities provided by the internet.

The trend that people tend to leave personal information publicly available
on the web and the social networks they build online might be a development
that could be very useful. As a company, you could enrich the data you already
have about your customers. This enrichment can be used for various purposes.
Improved marketing is one of these purposes, as well as risk management with
respect to credit granting. From this initial perspective we started this master
thesis.

1.1.1 Research Goal and Scope

It takes a couple of steps to enrich existing data with data from the internet. For
each customer one should search the internet for publicly available data. The
data you will find on the internet can be very diverse, unstructured and even
unsuitable. So this needs preprocessing. Then, you should think of a suitable
way to store the enriched data.

Apart from the steps mentioned above there are two other more important
aspects: 1) you must be sure that the information found on the internet does
indeed belong to the same person that is represented by the customer informa-
tion, and 2) privacy. Although people placed this personal information on the
internet themselves, they did not do this with the intention of providing data
for integration with other information. Hence, for privacy reasons, integration
of personal information is quite a sensitive topic.

Although the privacy aspect of this research is quite interesting, we only
address this topic from a technical perspective. We try to match profile in-
formation from one profile site with another, as shown in Figure 1.1. In the
literature, this problem is referred to as Entity Resolution (ER).

In order to match profiles from different sites, a large data set from the
internet is used. Suppose s1, s2 and s3 are profile sites at which people have
a profile page on which they share personal information. With a crawler the
data on these profile pages is retrieved. This raw data needs preprocessing.
For instance, based on knowledge of the structure of the profile site, content
can be extracted. Then, the irrelevant data can be filtered out. It depends on
the purpose what data is relevant and what data is not. After preprocessing
the data sets are ready for the matching process. This part is marked with
the darker rectangle in Figure 1.1. Our focus lies on determining if we may
integrate two profiles, based on the probability that these two profiles belong to
the same person. Calculating this probability is based on the equality of textual

2 Matching Profiles from Social Network Sites

1.1. Research

WWW

s1

s2

s3

Fo
cu

se
d

W
eb

 C
ra

w
le

r Profiles from s1

Profiles from s2

P3 ProfilesProfiles from s3

Pr
e

Pr
oc

es
si

ng

Preprocessed
Profiles from s1

Preprocessed
Profiles from s2

P3 ProfilesPreprocessed
Profiles from s3

M
at

ch
in

g
Pr

oc
es

s

P3 ProfilesIntegrated
Profiles Application

Knowledge
Rules

Knowledge
Rules

In
te

gr
at

io
n

Pr
oc

es
s

Figure 1.1: General global schema of the integration system

representations of a person. As we will see later on, this can be unreliable. We
believe we can improve the reliability of calculations by involving the social
networks of such profile pages.

After the matching process, the matches can be integrated and the merged
information can be used for a certain application.

1.1.2 Research Questions

The research can be expressed in several research questions. The main question
is:

Can we identify which profile pages belong to the same entity based on
the textual representation of a person (the profile) and the connected
profile pages (the network of a profile)?

We can divide this question into subquestions:

• What data is available on the different profile pages?

• How can you identify if two (or more) pages belong to the same entity?

• How can information about the network of a person on such profile sites
contribute to identify a match of two profiles?

• Can we improve the matching process by incorporating networks?

• Are the results of the matching process incorporating the networks suffi-
ciently reliable? And for what purposes?

1.1.3 Research Approach

First, we explore the literature for solutions already used for matching problems.
From the literature we extract what we think is useful.

Once we have an idea of how we can match the profile pages, we build a
prototype as proof of concept. With this prototype, we will perform experi-
ments on a data set. The results will then be analyzed, to see if our approach
does indeed improve the matching process with respect to a model in which no
networks are involved.

Finally, from the experimental results we will draw conclusions and give
recommendations for when to use this model.

Irma Veldman 3

Chapter 1. Introduction

1.1.4 Contributions

In this thesis we explore entity resolution for profile pages from social network
sites. Data completed at these profiles can be unreliable and hence more difficult
to match with other profiles. To overcome this problem we created a model that
involves social networks belonging to these profiles. By determining the amount
of overlap between networks of two profiles, we can make decisions with greater
certainty about the equality of these profiles.

In order to validate this statement, we built a prototype that implemented
our model and retrieved our own data set to do experiments. Unfortunately,
this data set has its limitations.

From the experiments it seems that the data is not so uncertain as expected.
That is why entity resolution without networks involved already perform very
well. Involving networks can increase Precision at cost of the Recall. Still, this
might be useful in application were a high precision is required. Other appli-
cations benefit from a higher Recall and will therefore prefer not use network
comparison.

1.2 Terminology

Before we start, let us discuss some terminology for clarity.
There are a lot of different Social Networking Sites (SNSs), to which we will

keep referring as profile sites. We will be using the term profile site throughout
this document. People can become a member of such a site and start making
their own profile. We will be referring to these profiles as profile pages. A
member is the representation of the entity to which this profile page belongs. A
person (entity) can become a member at multiple profile sites at the same time.
A visualization of these concepts and how they relate is depicted in Figure 1.2.

Profile Site

Profile PageMember

containshas

has

is connected to

11

*

1 1 *

*

*

Entity
is a

1 *

Figure 1.2: Visualization of the terms and their relationships that play an important
role in this research.

1.3 Organization

In the next chapter (Chapter 2) we address the data sources we deal with and
express some assumptions. In the chapters after that we will start creating a
model and incrementally extend it with new ideas. For each chapter, we start
with some theory, then present our model and notes on the implementation
of the model in the prototype and end with a short summary and some ex-
pectations. First, we will create a model that does not involve networks at

4 Matching Profiles from Social Network Sites

1.3. Organization

all (Chapter 3). Next, we introduce networks (Chapter 4), followed by typed
networks (Chapter 5) and finally we extend the model with multiple sources
(Chapter 6). Then, we put our ideas to the test with experiments (Chapter 7).
Before we present the conclusions we explore some related work to put our re-
search in perspective (Chapter 8). And finally, we will draw conclusions and
give recommendations and ideas for future research (Chapter 9).

Irma Veldman 5

6

Chapter 2

Data Sources

For the enrichment of personal information, we want to search for information
we can find about this person on the web. Before we can integrate this data, we
need to make sure that the information found belongs to the same entity. For
this matching process we like to involve information about a person’s network,
hence we restrict ourselves to profile sites, because the members of such sites
can build a network by connecting themselves to other members of that site.

As mentioned in the previous chapter, we do not have access to a customer
database, hence we simply start at a profile site and try to enrich the data found
about members of this site by information on other profile sites.

Although our focus lies on the matching process, we will briefly present
some issues that we would deal with when performing the steps in front of the
matching process.

In this chapter we will further examine profile sites and discuss their prop-
erties, followed by our approach to collect a data set and its properties.

2.1 Profile Sites

There exist many web sites where people can have their own profile. Each site
has its own focus and aims for a corresponding large target group. In Table 2.1
we list a few of these profile sites and discuss their background. Notice that
these sites have a huge number of members1.

Since the purpose of these different sites differs, it is likely that a person who
is active on the web, has a profile at more than one of these sites. Even for sites
that do not differ much, users tend to follow their friends. If you have some

1Only Facebook, Hyves, LinkedIn, Netlog and Schoolbank state on their websites
how many users they have. These are not all exact numbers, and can be out-
dated. For MySpace and Facebook we found numbers about their unique visitors
on http://www.techtree.com/India/News/Facebook_Largest_Fastest_Growing_Social_

Network/551-92134-643.html, for Facebook and Twitter on http://blog.compete.com/

2009/02/09/facebook-myspace-twitter-social-network/ and for Windows Live Spaces:
http://en.wikipedia.org/wiki/Windows_Live_Spaces. Pierre Sauvignon did a little research
himself in order to estimate the number of actual Flickr users: http://www.thejuicycow.com/
2007/08/29/everything-you-wanted-to-know-about-flickr-but-were-afraid-to-ask/.
For Twitter we found the number of unique visitors in 2008 on: http://mashable.com/2009/

01/09/twitter-growth-2008/. We present as an indication of how many people publish
information on the internet these days.

7

http://www.techtree.com/India/News/Facebook_Largest_Fastest_Growing_Social_Network/551-92134-643.html
http://www.techtree.com/India/News/Facebook_Largest_Fastest_Growing_Social_Network/551-92134-643.html
http://blog.compete.com/2009/02/09/facebook-myspace-twitter-social-network/
http://blog.compete.com/2009/02/09/facebook-myspace-twitter-social-network/
http://en.wikipedia.org/wiki/Windows_Live_Spaces
http://www.thejuicycow.com/2007/08/29/everything-you-wanted-to-know-about-flickr-but-were-afraid-to-ask/
http://www.thejuicycow.com/2007/08/29/everything-you-wanted-to-know-about-flickr-but-were-afraid-to-ask/
http://mashable.com/2009/01/09/twitter-growth-2008/
http://mashable.com/2009/01/09/twitter-growth-2008/

Chapter 2. Data Sources 8

 Unfiled Notes Page 1

(a) LinkedIn Profile

(b) Hyves Profile

Figure 2.1: Screenshots from two different profiles belonging to the same person

2.1. Profile Sites

Table 2.1: List of some profile sites and their background.

Name NrOfMembers Since Purpose
Facebook >200 million 2004 Connecting friends. Share stories,

photos, videos and links.
Flickr >30 million 2004 Focused on photo management

and sharing
Hyves >8 million 2004 Connect Dutch friends. Members

share photos and personal infor-
mation. Friends can leave notes
at each others profile.

LinkedIn >40 million 2003 Connect professionals worldwide.
Members can get back in touch
with classmates and colleagues
again. Due to the professional
character, the network is very suit-
able for business opportunities.

MySpace >200 million 2003 Connecting friends and family.
Share stories, photos and videos.
Provides even the possibility for
dating.

NetLog >45 million 2004 Connects friends in Europe.
Schoolbank >3 million 2000 Connect classmates from your

youth, add class photos and plan
reunions. Dutch site.

Twitter >4 million 2006 To keep friends informed about
what members are doing during
the day.

Windows
Live Spaces

>27 million 2004 Connects friends. Share stories,
photos and videos. Integrates
with MSN Messenger and Hot-
mail.

friends that are member of another site than other friends of yours, you might
become member of both. Figure 2.1 shows two profile pages both belonging to
the author of this report. This offers the opportunity to combine the data that
can be found about one person on the web.

The table in Figure 2.2 was found on the internet2 and shows the overlapping
members of any two social networks as a percentage of the members of the social
network in the blue row. For instance, 20% of MySpace members are Facebook
members as well. And 64% of the Facebook members is also a MySpace member.
The difference in percentages is caused by the difference in total number of users
at each site. Members are expressed as the number of unique visitors. The table
suggests that the period over which the unique visitors were measured is one
month (September 2007). Although it is outdated, this table supports our claim
that there is an overlap between the members of these profile sites and hence
we can use the concept of overlap in our matching strategy.

2http://blog.compete.com/2007/11/12/connecting-the-social-graph-member-overlap-at-
opensocial-and-facebook/, last visited 22 April 2009

Irma Veldman 9

http://blog.compete.com/2007/11/12/connecting-the-social-graph-member-overlap-at-opensocial-and-facebook/
http://blog.compete.com/2007/11/12/connecting-the-social-graph-member-overlap-at-opensocial-and-facebook/

Chapter 2. Data SourcesAP-OpenSocial1.1.gif (GIF-afbeelding, 605x314 pixels) http://home.compete.com.edgesuite.net/site_media/upl/img/AP-OpenSoc...

1 van 1 22-4-2009 13:41

Figure 2.2: Overlap of members from different profile sites. In each row the number of
overlapping members with respect to the site in the column is presented.

Figure 2.3 illustrates that in real life it is easy to find out what profile pages
belong to the same person, probably because you know this person. Unfor-
tunately, if you only have access to the profile pages without any real world
knowledge, it is hard to detect if two profile pages belong to the same entity.

A A

A

A

A B

A B

A

A

A

B

B

B
BB

B

B

(a) Some persons have profiles at more than
one profile site

A A

A

A

A B

A B

A

A

A

B

B

B
BB

B

B

(b) Having no real world knowledge makes
it hard to integrate

Figure 2.3: A snapshot of two social networks on the internet. One with knowledge
about the real world (a), in which it is easy to see which profiles belong
to the same person with respect to one without this knowledge (b).

Since the information on profile pages are valuable resources for marketing,
health, communication and other applications, social network analysis is gaining
a new boost [1]. Social Network Analysis (SNA) has multiple fields of interests.
One of them is entity resolution. We discuss this related research in the Related
Work section (see Chapter 8).

To make the problem at least a little less complex we assume that a person
only has one profile page per site, as already depicted in Figure 1.2 about the
terminology.

Assumption 2.1 A person (entity) becomes a member at a profile site at most
once. Hence, a person has only one profile page per profile site.

10 Matching Profiles from Social Network Sites

2.2. Issues with Generic Data Retrieval

2.2 Issues with Generic Data Retrieval

In an ideal situation, one could easily access the profile pages from all members
at a central place, all uniformly structured and formatted. However, this is not
the case, otherwise we would not do this research.

The data sources are heterogeneous, meaning that they are not structured
and labeled in the same way. See the example in Figure 2.4. The example shows
the contact record of a person named John Smith in two different address books.
Notice that in Figure 2.4(a) more pieces of data are grouped (address), whereas
in Figure 2.4(b) this data is split. To overcome the problem of heterogeneity
we need a mapping for the different schema’s in order to end up with uniformly
structured records, which are desired for further processing.

Full Name John Smith
Address Main Street 16,

ZY1234,
Big City

Phone 1111

(a)

First Name John
Last Name Smith
Street Main Street 16
ZIP ZY 1234
City Big City
Phone 1111

(b)

Figure 2.4: Contact information of John Smith in two address books with different
structures

In this section we spend some words on the issues you would encounter if
you want to collect data in a generic way.

Since we focus mainly on the matching process, we retrieved our data sets
not in this manner. In the next section we discuss our retrieved data set and
its properties.

2.2.1 Schema Mappings

Researchers have put a lot of effort in the field of schema mappings to auto-
mate the process of mapping structures from different sources automatically.
A classical example is when a company wants to centralize its data storage.
Data residing at different departments needs to be merged. But because these
databases were developed and maintained by the different departments them-
selves, they cannot be merged seamlessly, due to all kind of problems, involving
different schemes. Merging these storages by hand takes a lot of time and effort,
hence lots of ways to automate have been thought of.

When there is a need to come with a centralized data storage, the concept
of schema mappings provides the user with a unified view over all data sources.
Note that it is not necessary perse to physically merge all data.

In order to provide the unified view mentioned above, there is a need for
a global or mediated schema. In [23] a general definition of a data integration
system is given. An integration system I consists of a global schema G, the set
of data sources S and the mapping M : I = 〈G,S,M〉.

Irma Veldman 11

Chapter 2. Data Sources

The mapping M is sound if all information in S is accessible from G, M is
complete if all information in G is accessible from S and M is exact if it is both
sound and complete.

This definition is kept general to apply to different kind of approaches. The
approaches mostly mentioned in the literature are Global-As-View (GAV) and
Local-As-View (LAV). With GAV, a global schema is created as view over all
sources. This makes querying easy, since the global schema is known locally.
However, it is hard to add a new source, since the global schema needs to be
adapted. The opposite is LAV. There the local sources are modeled as views
over a global schema. Adding a new source is easy, because it is just another
view over the global schema. No adjustments to the global schema are needed.
Querying however, becomes quite complex, since the only schemas known are
the local views [23, 13]. GLAV (Generalized-Local-as-View) is an approach that
takes features from both GAV and LAV [22].

But how can you detect automatically what the global schema should be?
Several approaches are at hand and they have been classified many times as
well. Leida [22] presented a short list that summarizes the approaches. We
think the approaches can be presented nicely based on levels. This is shown in
Figure 2.5. Per level we present an example.

• String-based. This approach measures the similarity of the string labels of
an element. Measuring the similarity of strings is discussed in more detail
in Section 3.1.1

Example: Consider a source with an element Phone Number and a source
with an element Phone Nr. Based on their string similarity, we might
conclude these elements refer to the same attribute.

• Thesauri and Language-based. This approach is based on word represen-
tation. For instance, there can be many synonyms for one word. Moreover,
in different languages, there are different words for the same things.

Example: Consider a source having an element called Phone and another
source with an element called Telefoonnummer (Dutch for telephone num-
ber). If we know that the translation of the second element is a synonym
for phone, we might conclude that these elements refer to the same at-
tribute.

• Constraint and Graph-based. This approach involves the internal repre-
sentation, like the data-type in which it is presented, or the constraints
defined on it. Relations with other elements are also covered in this ap-
proach.

Example: Consider one source having an element Phone as an element
of the relation Person and another source with an element Phone that is
part of the relation Business. Based on this relation, we might conclude
that these two elements do not refer to the same entity.

• Instance-based. This approach involves the data itself. For instance, it
determines statistics about the data, or determines regular expressions.

Example: Consider a data source for which all phone numbers of element
Phone start with their region number followed by their subscribers’ number
and another source for which all phone numbers of element Phone start

12 Matching Profiles from Social Network Sites

2.3. Retrieved Data Set

with a prefix number indicating that these numbers belong to cell phones.
Based on this data, we might decide that a resulting schema should contain
both phone elements for each entity.

Characters

Tokens

Relations & Constraints

Data

Syntax

Semantics

Figure 2.5: The different levels at which schema mapping approaches are performed.
At each level, more and complex information is needed.

Notice that we marked the lowest level with ‘syntax’ and the other three
levels with ‘semantics’.

As mentioned in Chapter 1 we will focus on the matching of the profiles.
Preprocessing the data (schema matching) is not within this scope. However,
the levels mentioned above are interesting, because they also apply to the entity
resolution phase, discussed in Chapter 3.

2.3 Retrieved Data Set

In order to put our matching process to the test we need a suitable data set.
However, it is not possible to generate one. For generating uncertainties in the
data, you need to know which uncertainties you should mimic. But the problem
with uncertainties is that you’ll never know exactly what you can expect. Hence,
the only way to get a realistic data set is to use real data.

First, we searched for a benchmark for these kinds of researches but unfor-
tunately they do not exist, due to privacy reasons. Thus, we had to retrieve our
own data set.

2.3.1 Availability of Data

Although we have emphasized that personal data on these profile sites is freely
available, retrieving it is not as straightforward as it would. For instance, for
some profile pages you have to be a member yourself to be able to get access
to other people’s profiles. Some sites provide the members with a mechanism
to protect their profile by only allowing connected people to see their profile.
Hence, it is not possible to extract all member information from the internet.

A difference between traditional home pages and these profile pages is that
the frequency at which they are updated is much higher [7]. Let’s take Twitter:
some active users post an amount of 15 messages per day. This new information
could provide evidence that a decision made earlier was unjustified. However,
updating the system at that rate is not an option, since it is quite costly.

Assumption 2.2 We only take a snapshot of the information available at a cer-
tain point in time and act as if the data sources are static. We do not take
updates of the data sources into account.

Irma Veldman 13

Chapter 2. Data Sources

In Appendix A there is an overview of which data users can share on the
different data sources. A selection of interesting data is shown in Figure 2.6.
We left out the most personal fields, such as ‘favorite music’, ‘gadgets’, etc. as
well as fields that are unique for one profile site. We tried to keep the names of
the fields as similar as possible to the original sources, hence some field names
are in Dutch. The italic fields have subfields. These fields can occur more than
once.

2.3.2 Data Format

The data is gathered from web pages and hence is formatted in HTML. After
the retrieval step we need to store the profile data in a format that is suitable
for the next steps in the process. Roughly speaking there are two candidate
formats: 1) the popular data exchange format XML, or 2) the more traditional
relational format. We assume that readers have some basic knowledge of XML
and relational data. At [32] they have some guidelines of when to choose between
a relational model and XML. We briefly describe the main differences between
them and discuss the advantages and disadvantages of the use of both data
formats.

Relational Model Relational data and Relational DataBase Management Sys-
tems (RDBMSs) have been extensively used over the past decades. RDBMSs
today, support many features and have been optimized a lot. Many applications
are built on top of an RDBMS and a lot of tooling is available.

Relational databases are very suitable to store data about related items, as
the name already indicates. Normalization processes use of these relations to
reduce the amount of redundant data in the database, by placing repeated data
in related tables.

Relational databases are set-oriented, the data records are not stored in a
certain sequence, which is also valid for the columns (or attributes).

An RDBMS can be queried by the Structured Query Language (SQL). It is
a descriptive query language. SQL can be extended with stored procedures to
provide extra functionality. Moreover, many RDBMSs provide support for data
mining.

XML XML is a much younger technique. However, lots of efforts have been
put in to improve, since it has been addressed by many people as the data
exchanging format of the future. For instance, native XML databases have
been developed, which have been improved by extending the functionality and
optimize the performance. Unfortunately, XML databases are not as fast as
RDBMSs, when it comes to highly structured data.

With XML you can also describe relations, but the power of XML is that it
can present hierarchies. Another advantage of XML is its flexibility, since the
schemes are not that rigid.

In contrast with relational data, XML is sequence-oriented so order matters.

We decided to work with the relational data model, since it allows us to
use tools that already have functionality that comes at hand for this system.
We expect that further processing will probably need OLAP (OnLine Analytic

14 Matching Profiles from Social Network Sites

15 2.3. Retrieved Data Set

Data Consists of Data Consists of

given‐name weergegeven naam
familiy‐name voornaam
location achternaam
e‐mail e‐mail
phone woonplaats
phone‐type adres
address huisnummer
bd‐day postcode
bd‐month mobiele telefoonnummer
bd‐year geslacht
marital status geboorte‐dag
experience job geboorte‐maand

company geboortje‐jaar
current relatie

education school‐name school school‐naam
degree MBO/HBO/WO instellings‐naam
activities‐and‐societies bedrijven bedrijfsnaam
finished website

websites website‐name vrienden vriend‐naam

website‐url
connections connection‐name
group group‐name

LinkedIn Hyves

Data Consists of Data

voornaam voornaam
achternaam achternaam
geslacht geslacht
geboortedag beroep
geboortemaand locatie
geboortejaar geboorte‐dag
geboorteplaats geboorte‐maand
burgelijke‐staat geboorte‐jaar
e‐mail mail‐adres partner
mobiele‐telefoon telefoonnummer
vaste‐telefoon mobiele‐nummer
adres e‐mailadres
woonplaats relatie
postcode geboorteplaats
website woonplaatsen
hogeronderwijs instellingsnaam opleiding‐instelling

afstudeerjaar opleiding‐examenjaar
HBO/WO diploma
specialisatie functie

middelbare school schoolnaam beroep
afstudeerjaar bedrijf

baan werkgever mailadres‐werk

functie contacten contact‐naam
huidig netwerk‐naam

vrienden vriend‐naam netwerk netwerk‐naam contact‐naam

Facebook Live Spaces
Consists of

Figure 2.6: A selection of the data that a member can share on his profile page.

Chapter 2. Data Sources

Processing), hence the data already being in relational format is desired. Also,
we are not interested in sequence of data records, since profile sites themselves
do not have a specific order for their members. Besides, we believe that the
concepts of relations in the communities can be expressed easier in a relational
data model.

2.3.3 Crawling the Internet

To retrieve real data we chose two profile sites to crawl. As mentioned before,
we did not generate a data set, but retrieved real data from the internet. Un-
fortunately, to get access to enough data, we had to use a real account to view
data that would be inaccessible otherwise. To be able to retrieve data from con-
nected profiles it was necessary for the profile belonging to this account to be
connected to other people’s profiles. This condition (using an account belonging
to a profile that has a network) restricted us to two profile sites. To enlarge
the choice, we could have created a fake account on another profile site, but the
chance of creating a suitably large network was minimal. Hence, we choose for
LinkedIn and Hyves.

Unfortunately, the default configuration of LinkedIn is that only friends can
access your list of connected profiles, which restricted us to only crawl profiles
directly connected to the central profile and the profiles connected to those.
We will refer to the first category as level-1 profiles and to the latter as level-2
profiles. The profile we used as a starting point will be referred to as the level-0
profile.

Level 2

Level 1

Figure 2.7: Graphical presentation of the levels. All profiles that are connected to the
level-0 profile are level-1 profiles. All connections of level-1 profiles that
are not level-1 profiles themselves are level-2 profiles.

This situation is depicted in Figure 2.7. The center dot is representing the
level-0 profile. All profiles connected to this profile are level-1 profiles. The
connections of the level-1 profiles are either level-1 profiles or level-2 profiles.

16 Matching Profiles from Social Network Sites

2.3. Retrieved Data Set

The connections of all level-2 profiles are invisible, except for those with level-1
profiles.

Hyves does not have such a default configuration, but we decided to retrieve
only level-1 and level-2 profiles here as well in order to be able to manually
determine the ground truth. Moreover, our data set would grow exponentially
with every level, since it is said that every person is connected with every other
person in the world within seven steps [2].

In Table 2.2 we show some numbers on the retrieved data sets.

Table 2.2: Some numbers on the data set. Numbers are split over level-1 profiles (L1)
and level-2 profiles (L2). Level-1 matches do not include matches between
a level-1 and a level-2 profile.

#Hyves P. #LinkedIn P. #Matches
L1 L2 L1 L2 L1 L2
47 2133 91 2067 17 94

2.3.4 Ground Truth

Because we are handling real data from people we know, we were able to mark
which profiles from these two sources belong to the same person. This is im-
portant because we can compare the outcome of the matching process with this
ground truth.

The number of matches in the data set is also included in Table 2.2. A match
is a level-1 match if both profiles involved in this match are level-1 profiles or a
level-2 match otherwise.

2.3.5 Uncertainty of Data on Profile Pages

LinkedIn is a place where the data provided by the user is assumed mostly true,
due to its formal character. However, the amount of available profile data is
not very large. Almost nobody publishes their phone number. Moreover, mail
addresses are only visible to connected profiles. Also, cities are presented as
a region. This leaves almost only the name of a person as a good matching
attribute.

For a Hyves member it is not so important to complete all data fields very re-
liably, due to the very informal character of Hyves. There is more data available
per member, but most of that is not corresponding with data from LinkedIn,
such as personal interests, favorite brands, favorite hot spots, etc. Formal infor-
mation like address is seldom available. However, we were surprised to find out
that names (which are probably the easiest to match) are completed properly
most of the times, which makes Hyves more reliable than we thought.

The choice for LinkedIn and Hyves was made, based on the availability of
both networks and the possibility to retrieve a good data set with overlapping
profiles.

The final schema of the database can be found in Appendix B. Also, we
performed some statistical analysis on the data set. The results can be found
in the different tables in Appendix C.

Irma Veldman 17

18

Chapter 3

Simple Profile Matching

It often happens that multiple data sources need to be integrated. Schema
mappings (discussed in Section 2.2.1) already handled this on schema level.
Integration at instance level is called Entity Resolution (ER). It is necessary in
case data sources contain data from the same domain, such as customer relation
data and an overlap exists, meaning that data about one real life entity is in
more than one data source. Merging these sources could lead to a duplicate
data record for one entity, which violates the assumption that the data source
is a representation of the real world. ER deals with the detection of duplicates
in the data and processes them correctly.

A lot of research has been done on ER. It is addressed from many perspec-
tives (e.g. databases, artificial intelligence, information retrieval) and hence
there are many other names for ER (such as object identification, data cleaning,
deduplicating, approximate matching, approximate joins and fuzzy matching)
[35].

ER can be explained best with an example: we have two companies, company
A that is a bookseller and company B, which is an electronics store. Both
companies are mail order companies. They want to integrate their databases,
because it could offer marketing opportunities. Of course, it is possible that a
customer of company A is a customer of company B, too. It is smart to merge
the information about this customer, because then you can better predict which
products he or she is interested in. For instance, if a customer bought books
about office tools on the computer, he might also be interested in a printer or
cartridges.

In Figure 3.1 some information from the database of company A and B is
shown. Let’s assume that customer with ID=‘3846’ of company A and customer
with ID=‘2006041202’ of company B are in fact the same person. Then, we
encounter the following problems [16]:

• There is no universal key. Both companies create an ID for new customers
to serve as a primary key. But because these numbers have been chosen
independently, these attributes do not match. In case they do match it is
not certain that they refer to the same entity.

• The way data is represented is not standardized. In this case the Name is
a good example: ‘J. Smith’ versus ‘Smith, J’.

19

Chapter 3. Simple Profile Matching

ID Name Address ZIP City Phone

1 3845 C.Johnson Boulevard 75 SE5468 BigCity

2 3846 J.Smith Mainstreet 16 ZY1234 BigCity 1111

3 3847 A. Peterson South Avenue 1324b AB1573 Highland 489321

4 3848 S.B.Jackson Marshall street 17 LK5858 Millerton 6548638

5 3859 C. Johnson Boulevard 75 SE5468 BigCity

6 3860 someone somewhere AA1234 somecity 101010
(a) Some customer records from company A

ID Name Address ZIP City Phone

1 2006041202 Smith, J Manstreet 16 ZY1234 BigCity 2222

2 2005031401 Ray, S.T. Merwin Road 11 PK1645 Merwin 87953

3 2006041201 Brown, G.… Beaver Dam Road 1 PL7897 Hammerto… 87953

4 2006041301 Allen, S. Canaan Road CV8552 Canaan

5 3860 someone somewhere AA1234 somecity 101010
(b) Some customer records from company B

Figure 3.1: Contact information of J. Smith in two address books with different struc-
tures

• There could be misspellings in the data. For instance, ‘Manstreet’ should
probably be ‘Mainstreet’.

• Data is not up-to-date. In the example the Phone numbers do not match.
It could be the case that one of the phone numbers is a previous phone
number.

The first problem is almost always the case when integrating heterogeneous
data sources. But if we cannot use keys, we have to base our decision about two
items being a match on other properties. For instance, if all attribute values are
equal for both records there is a high chance that they refer to the same entity.
In Section 3.1 we discuss the solutions that can check for syntactical similarity.

Unfortunately, for records to be syntactically equal is not the solution to the
problem yet. For instance, assume that in the example above, the records for
‘J. Smith’ are exactly the same, except for their IDs. Based on syntax we could
decide that they refer to the same entity. However, imagine a father John and
his daughter Jane Smith, one being a customer at company A and the other at
company B. Integrating these records is then incorrect, because the meaning
of the records is different. This is a problem of semantics. In Section 3.2 we
address semantic integration.

Notice that the levels that are involved in schema matching, presented in
Figure 2.5, also apply in the case of ER.

3.1 Syntactical Similarity

Syntactical problems are problems that deal with language description and the
representation of information at character (or substring) level. Misspellings,
different word order and abbreviations belong to this category.

20 Matching Profiles from Social Network Sites

3.1. Syntactical Similarity

3.1.1 Approximate String Matching

The similarity of two strings can be measured by approximate string matching
algorithms. These algorithms assign values to pairs of strings, expressing the
amount of similarity. For instance, the words ‘similarity’ and ‘dissimilarity’ are
likely to get a score indicating that they are very similar since they differ just
three characters. The following pair of words ‘similarity’ and ‘distance’ will
probably get a bad score. This score depends on the algorithm that is applied.

There are some basic concepts in string matching. Each concept has its own
variations. We will briefly discuss the basic concepts and some variations below.
A more detailed description of some approximate string matching methods is
given in Appendix E.

We mentioned that syntactical similarity belongs to the lowest level of the
diagram in Figure 2.5, i.e. the character-based level. Some of the approximate
string matching methods discussed below are actually token-based, but on a
syntactical level.

3.1.1.1 Character-based Methods

One of the character based methods is the Levenshtein distance (or edit-distance)
[24]. This method measures the minimal number of insertions, deletions or sub-
stitutions that are needed to transform a string σ1 into a string σ2.

The Jaro distance [21] is expressed in the number of matching characters
and the number of swapped letters. The JaroWinkler distance [35] is a variant
and has a higher weighing factor for prefixes.

There are many more variants possible. Take, for instance, matchers that as-
sign penalties to mismatched characters or bonus points to matched characters.
Each variant favors some kind of type errors or performs best on a particular
range of length. One variant gives less penalty for type errors that occur often
(like typing an ‘m’ instead of an ‘n’ and vice versa) and less penalty for the lack
or presence of accents on letters (as for ‘ç’ and ‘c’) [27].

Character-based methods can be applied also to strings that consist of more
than one token. This string will be treated as if it is one token, i.e. a space-
character is just seen as a normal character. This comes with some problems
that token-based methods can solve (e.g. word order).

3.1.1.2 Token-based methods

Token-based methods measure the number of matching tokens between two sets
of tokens. The Jaccard measure [20] is the simplest example. It measures the
ratio of equal tokens in the union of tokens of both strings. Disadvantage of
this method is that every word has equal weight.

TFIDF (Term Frequency / Inverted Document Frequency) [11] is a method
that comes from the field of information retrieval. This method measures the
frequency of a term but also corrects this with the importance of the token. This
means that common tokens like ‘a’, ‘the’ and ‘but’ get a lower score because
they are not discriminative enough.

The cosine similarity [11] expresses the different strings as term vectors, with
each word being a dimension in the vector, counting the frequency of this word.
The cosine similarity then measures the angle between the vectors, which is a
measure for the similarity between the strings.

Irma Veldman 21

Chapter 3. Simple Profile Matching

Unfortunately, these methods do not take misspellings into account, which
means that misspellings can wrongly decrease the similarity score. Hybrid meth-
ods are able to benefit from the both the token-based methods as well as the
character-based methods.

3.1.1.3 Hybrid methods

Bigrams, or, more general, Q-grams [18] can overcome the problem of ignored
misspellings by dividing each token in every possible sequence of characters of
length q. Now, only the tokens containing the misspellings are being rejected as
match. On this new set of tokens, other token-based methods can be applied.

There is another hybrid method. The authors of [12] found out that Soft-
TFIDF (hybrid TFIDF) with JaroWinkler performed best on their data sets.
The token-based method will calculate a score based on the number of simi-
lar tokens and the character-based method determines if two tokens are similar
(enough).

3.1.2 Examples

To see how these algorithms perform, we have tested them on several strings.
For the comparison of these strings σ1 and σ2, we used the open-source pack-
age ‘SimMetrics’1 available at SourcForge2, in which most of the best known
approximate string matching algorithms are implemented in .NET [12].

We used the normalized scores, which means that every method
asm(σ1, σ2) ∈ [0, 1], where asm(σ1, σ2) = 1 means a complete match and the
lower the value, the less similar the two strings are. We compared a number of
strings with a character-based, token-based and hybrid string matcher (Leven-
shtein, CosineSimilarity and Q-Grams Distance respectively). The results are
shown in Table 3.1.

Table 3.1: Comparison of several strings with a character-based string matcher (Lev-
enshtein), token-based string matcher (Cosine Similarity) and a hybrid
string matcher (Q-Grams Distance).

σ1 σ2 Lev. Cos. Q-Gram
John Smith J. Smith 0.700 0.500 0.636
John Smith Smith, John 0.090 0.500 0.400
John Smith Mr. J. Smith 0.500 0.408 0.462
John Smith Jhon Simth 0.600 0.000 0.333
CompName Inc. Comp Name Inc. 0.929 0.408 0.839
CompName Inc. CompName Incorporated 0.517 0.500 0.632

As we can see, the character-based string matcher yields to higher scores if
only a minor number of characters are wrong, whereas with a token-based string
matcher the complete word is seen as wrong, hence the lower score. Differences
in word order are better served with a token-based handler. Hybrid string
matchers return scores somewhere in between. But as we can see in the last
but one row in the table, Q-Grams distance can handle concatenations/splits of
words better.

1SimMetrics: http://www.dcs.shef.ac.uk/~sam/simmetrics.html
2http://sourceforge.net/projects/simmetrics/

22 Matching Profiles from Social Network Sites

http://www.dcs.shef.ac.uk/~sam/simmetrics.html
http://sourceforge.net/projects/simmetrics/

3.2. Semantical Similarity

3.2 Semantical Similarity

As already pointed out, it is not sufficient to check for syntactical similarity
alone. Some instances that are syntactically equal could still belong to different
real life entities. The other way around is also possible: two instances can have
very low scores on syntactical similarity, but still belong to the same real life
entity.

We have seen with schema mappings in Section 2.2.1 that semantical sim-
ilarity can be divided in three layers. The first layer deals with synonyms for
words or translations of that word to another language. The second layer deals
with relationships and constraints and the last one deals with meta-data. How-
ever, ER differs from schema mappings in that we are already at instance-level,
hence the third level does not apply here. We will give some examples.

Consider a person who a Dutch profile page on which he states that he likes
‘voetbal’ and an English page that states that he likes ‘soccer’. Although the
words are different, they mean the same. This example belongs to the token-
level. To detect these kinds of similarity, thesauri or dictionaries can be used to
look up synonyms.

For an example on the relational level, consider a person who says he likes
‘soccer’ on one page and ‘sports’ on the other. Although the words do not mean
the same, they are related.

3.2.1 Ontologies

Lately, ontologies are proposed to provide a solution for semantical issues. Many
definitions for ontologies are available online, but within the context of this
research the definition on Wikipedia3 is the clearest: “An ontology [. . .] is a
formal representation of a set of concepts within a domain and the relationships
between those concepts. It is used to reason about the properties of that domain,
and may be used to define the domain.” E.g. ontologies facilitate a shared
understanding of concepts.

The definition does not say anything about the level at which the ontology
is modeled. Ontologies can simply be a glossary or thesaurus, or First Order
Logic (FOL) in a more complex variant.

In [26] the author shows a picture4 that illustrates the increasing complexity
for the different levels of ontologies. We show this picture in Figure 3.2 because
it is interesting to see that this picture is quite similar to Figure 2.5.

Figure 3.3 illustrates a visualization of a simple ontology. It shows some
concepts (classes and instances) and relations.

Ontologies are very helpful for schema mappings. In cases where the data
sources are all within a different domain, local ontologies can be defined and
mapped to each other (LAV) or to a global ontology (GAV). This is a multi-
ontology, respectively a hybrid ontology approach [13, 37]. Besides, there is the
single ontology approach, which is more suitable in this case. In this approach
an ontology is only defined for the global schema. This is no problem since the
sources have the same domain, which is about personal information.

3http://en.wikipedia.org/wiki/Ontologies_(computer_science), last time visited: 15
April 2009

4The picture in the work of Mika originates actually from the work of Smith and Walty
(2001), but it is adjusted to fit the current state of the art.

Irma Veldman 23

http://en.wikipedia.org/wiki/Ontologies_(computer_science)

Chapter 3. Simple Profile Matching

Complexity

set of terms

glossary

semantic network

thesaurus

folksonomy

lightweight ontology
(RDF(S), OWL Lite)

heavyweight ontology
(OWL DL, Full, rules)

FOL and beyond

with automated reasoning

Figure 3.2: The different ontologies and their increasing complexity.

John Smith Carol Smith

Person

Company

instance of instance of

husband of

wife of

SomeCompany
Inc.

AnotherCompany
Inc.

works at works at

instance of instance of

competitor

Figure 3.3: A visualization of some classes {Person, Company}, their instances {John
Smith, Carol Smith, SomeCompany Inc., AnotherCompany Inc.} and re-
lations between them (arrows).

3.3 Profile Matching Model

Since we like to know if the matching process can benefit from the concept of
overlapping networks, we like to keep the model, of which the networking model
will be an extension, as simple as possible. In this section we will present the
simple profile matching model. In the next section we briefly discuss how this
is implemented.

There are several ways to find the first indication that two profiles might
match. In [34] they listed the following options: 1) pairwise vs. clustered, 2)
batch vs. search and 3) effective vs. efficient.

Pairwise vs. Clustered Both pairwise and clustered duplicate detection per-
form on a single source that contains duplicates. Multiple representations of the
same entity can occur.

With pairwise duplicate detection, all records are compared pairwise first.
The pairs that are matches will then be clustered, to group all representations
of one entity into one cluster. With clustered duplicate detection however all
duplicate records are grouped into a cluster directly, without the pairwise com-

24 Matching Profiles from Social Network Sites

3.3. Profile Matching Model

parison first.
In our case, the profiles should reside in their original tables before we start

to match records. We do this because we assume that an entity can only have
one profile per profile site (see Assumption 2.1). Therefore, we cannot directly
apply the pairwise or clustered duplicate detection mentioned above. Between
two sources we perform the pairwise variant. However, we do not make the
decision yet based on each pair in isolation. We base our decision on other pairs
as well. We will explain this later.

Batch vs. Search The second option is about the amount of entities that
are involved in the process. If the ER needs to be performed for all profiles, it
can be seen as a batch process, whereas a search process could perform the ER
online, e.g. at query time.

Apart from the fact that we do not have access to the database with the
customer information which we would like to enrich, the following considerations
were made. First, with a search approach, we could discard all but a few
candidate profiles. This would make the task of the ER less complex. However,
to be able to determine how well our approach of ER works, we need all profiles
to be involved in the process; hence a batch approach is a better choice.

Efficient vs. Effective Efficient methods aim at reducing the number of com-
parisons, since comparisons are very costly. Effective methods aim at a better
accuracy of the matching process.

Despite the fact that efficiency is also very important, we first aim at effec-
tiveness. We would like to find out first if incorporating the networks of profiles
is helpful before focusing on efficiency.

We start our elaboration on the model with some basic definitions on profiles
sites, profile pages and entities.

Definition 3.1 S is the set of all profile sites: S = {s1, s2, . . . , sn}, P is the
set of all profiles P = {p1, p2, . . . , pn} and E is the set of real life entities E =
{e1, e2, . . . , em}.

A profile belongs to exactly one site, denoted as S(pi), with S(pi) ∈ S.
The set of all profiles belonging to a profile site si is denoted as P si = {pj ∈
P | S(pj) = si}.

In Section 2.1 we already assumed that each entity has at most one profile
page per site (Assumption 2.1). We will define this more formally.

Definition 3.2 A profile belongs to exactly one entity: E(pi), with E(pi) ∈ E.
The set of profiles owned by ek is denoted as P (ek) with P (ek) ⊆ P . However,
each entity can have at most one profile at a certain profile site sl, i.e. ∀pi, pj ∈
P (ek) : S(pi) 6= S(pj).

With the relations between profiles pages, sites and entities defined, we can
formally define what a pair is.

Definition 3.3 D is de set of pairs of profiles, D ⊆ P×P and D = {(pi, pj) | S(pi) 6=
S(pj)}.

Irma Veldman 25

Chapter 3. Simple Profile Matching

To make things clear, let’s take a look at an example. We start with two
sets of all profiles of profile sites X and Y : PX and PY , depicted in Figure 3.4.

A
B
C
D
E
F
G
H

I
J
K
L
M
N
O
P
Q
R
S

PX PY

Figure 3.4: Examples of two sets of profiles.

We create the set D (PX × PY) by taking the Cartesian product of these
sets. The first part of this set is shown in Figure 3.5. Each pair consists of
references to both profiles, a field to store the pairwise similarity score for this
pair (denoted as dpw(pi, pj)) and a field to mark whether this pair is a match
or not. Note that the value for dpw initially is zero for every pair.

I
J
K
L
M
N
O
P
Q
R
S

A
A
A
A
A
A
A
A
A
A
A

I
J

B
B

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-
-
-
-
-
-
-
-
-
-
-
-
-

D pi pj Matchdpw(pi,pj)

Figure 3.5: The Cartesian product of the sets PX and PY from Figure 3.4

Definition 3.4 The pairwise similarity score dpw(pi, pj) is a number in the range
[0, 1] that reflects to which extent the profiles pi and pj are alike, whereby 1
denotes complete similarity and 0 complete dissimilarity.

How this pairwise similarity score will be calculated exactly is not specified
in the definition. We did this on purpose, to keep possibilities open. The most
likely option is:

dpw(pi, pj) = asm(pi.attr, pj .attr). (3.1)

In this case asm(pi.attr, pj .attr) is a comparison function of an approximate
string matcher. This function will compare the profiles pi and pj based on the
specified attr, denoted as pi.attr and pj .attr.

Now for every pair in D, the pairwise similarity score will be calculated. Not
every pair will score very high. Pairs with a very low pairwise similarity score

26 Matching Profiles from Social Network Sites

3.3. Profile Matching Model

are likely to be a non-match and can be discarded. For this, we introduce a
threshold.

Definition 3.5 τpw ∈ [0, 1] is a threshold for the pairwise similarity score dpw.
Each pair in D with dpw < τpw is considered a non-match.

In case of our example, τpw is set to 0.70. In Figure 3.6 we see that the
pairwise similarity scores are filled in the set D. Some values do not satisfy
τpw and their pairs are eliminated. The result of this elimination is a set of
candidate matches, depicted on the righthand side.

I
J
K
L
M
N
O
P
Q
R
S

A
A
A
A
A
A
A
A
A
A
A

I
J

B
B

0.80
0.91
0.65
0.75
0.53
0.55
0.40
0.29
0.62
0.16
0.34
0.83
0.41

-
-
-
-
-
-
-
-
-
-
-
-
-

D pi pj Matchdpw(pi,pj)

A
B

C
D
E

F
G

H

I

J

K

L

M
N

O
P
Q
R
S

A
A

B

E

G
G

I

M

P

0.80
0.91
0.75
0.83
0.71
0.95
0.87
0.73
0.73
0.82
0.77
0.86
0.90
0.70

-
-
-
-
-
-
-
-
-
-
-
-
-
-

Dcm pi pj Matchdpw(pi,pj)

Figure 3.6: For each pair, the pairwise similarity score is determined. Scores that do
not satisfy threshold τpw will be eliminated. This turns the set D into
Dcm.

Definition 3.6 Dcm is the set of candidate matches: Dcm ⊆ D and Dcm =
{(pi, pj) ∈ D | dpw(pi, pj) ≥ τpw}

From this list of candidate matches Dcm we need to decide which pairs are
a match. We will base our matches on the highest pairwise similarity scores.
Therefore, we sort the list on this score, as can be seen in Figure 3.7. The pair
with the highest score is then automatically picked as being a match. In case
of the example, this is the pair (C,M). As a consequence of this decision, all
pairs in Dcm that include either profile C or M, should be eliminated, due to
Assumption 2.1, in this case pair (E,M).

Finally, the list of resulting matches is depicted in Figure 3.8.

Definition 3.7 From a list of candidate matches Dcm we can determine the
matches as follows: first we sort the list on the highest score. Then, until the list
is empty, we pick the candidate match with the highest score, let’s say (pi, pj),
mark it as a match and remove this pair and all candidate matches (pk, pl) from
the list for which pk = pi ∨ pl = pj is true.

Definition 3.8 Each pair (pi, pj) upon which is decided that it is a match, is
notated as pi ≈ pj.

Dmatch is the set of matches: Dmatch = {(pi, pj) ∈ Dcm | pi ≈ pj}.

Irma Veldman 27

Chapter 3. Simple Profile Matching 28

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S
A

A

B
E

G

G

I

M

P

0.80

0.91

0.75

0.83

0.71

0.95

0.87

0.73
0.73

0.82

0.77

0.86

0.90

0.70

-

-

-

-

-

-

-

-

-

-

-

-

Dcm pi pj Matchdpw(pi,pj)

Figure 3.7: The candidate matches Dcm are sorted on their pairwise similarity score
dpw. The first match is marked and as the consequence, another pair is
eliminated.

B

C

D

F
I

J
M

N

O
P

S
A

E

G
0.91

0.83

0.95

0.87

0.73
0.82

0.90

Dmatch pi pj Matchdpw(pi,pj)

Figure 3.8: The resulting set of matches Dmatch.

3.4. Prototype

3.4 Prototype

In this section we briefly describe the implementation of the model in the proto-
type and elaborate on the most interesting parts. In Section 7.1 we show which
parameters are configurable and show what influence each of them has on the
results.

We start with describing the prototype. In Listing 3.1 the simple matching
process is presented in pseudo code.

Listing 3.1: The simple matching process in pseudo code.

Input: a set HP of Hyves profiles,
a set LP of LinkedIn profiles

Output: a set M of matches

CM ← pairwiseCompare(HP,LP) /∗ set of candidate matches ∗/
M ← determineMatches(CM)
return M

3.4.1 Pairwise Comparison

The matching process starts with importing the profiles from the database.
Then, the first phase of matching consists of a pairwise comparison of each two
profiles. Comparing two profiles will result in a similarity score dpw. If this
score satisfies the predefined pairwise threshold τpw this pair will end up in the
list of candidate matches that is returned.

In Listing 3.2 the pairwise comparison is presented in pseudo code.

Listing 3.2: Pairwise Comparison in pseudo code.

Input: a set HP of Hyves profiles,
a set LP of LinkedIn profiles,
a stringMatcher stringMatcher,
a set attributesToCompare of attributes,
a double τpw

Output: a set CM of pairs /∗ candidate matches ∗/
Require: 0 ≤ τpw ≤ 1

for each hp ∈ HP
for each lp ∈ LP

pair ← Compare(hp, lp, stringMatcher, attributesToCompare)
if dpw(pair) ≥ τpw

add pair to CM
endif

endfor
endfor
return CM

Besides the list of profiles, this algorithm requires another two things: a
stringMatcher to perform the actual comparison and a set attributesToCompare.

Irma Veldman 29

Chapter 3. Simple Profile Matching

Which stringMatcher and which attributesToCompare will be used are defined on
beforehand.

We use the stringMatchers available in a package called SimMetrics5, an open
source library for string metrics. It provides a variety of comparison methods
and scores resulting from the different methods are normalized, which makes it
easy to compare the scores.

The attributesToCompare contains the configurations on what attributes from
which profile the comparison should be applied.

3.4.2 Determining Matches

Finally, if we have the set of candidate matches, we need to determine which of
them are matches. In Listing 3.3 we present how this is done in pseudo code.

Listing 3.3: Determining matches from all candidate matches in pseudo code.

Input: a set CM of pairs /∗ set of candidate matches ∗/
Output: a set M of matches
Require: CM 6= ∅

OCM ← sortOnPairwiseScore(CM) /∗ ordered set of candidate matches ∗/
while OCM 6= ∅

pair ← removeFirst(OCM)
add pair to M
remove all pairs from OCM that contain profiles included in pair

endwhile
return M

3.5 Concluding Remarks

In this chapter we presented our simple profile matching model. First, we ex-
plored the issues concerning Entity Resolution (ER) in current research. Match-
ing records is more than comparing strings, but involves knowledge about the
domain and semantics of the data. This makes it difficult to perform ER com-
pletely without human intervention.

For our model, since we will extend it with networks in the following chapters,
we keep the pairwise comparison of records quite simple, i.e. we do not involve
ontologies or other advanced technologies in the process.

For two sources of profiles, we will compare all profiles from one source
against all profiles from the other source. This comparison returns a certain
score for each pair of profiles. Pairs with a lower score than a certain threshold
are excluded from further processing. For the other pairs, the so-called candidate
matches, we determine the matches based on this score and the choices for other
pairs.

5http://www.dcs.shef.ac.uk/~sam/stringmetrics.html, last visited June 17, 2009

30 Matching Profiles from Social Network Sites

http://www.dcs.shef.ac.uk/~sam/stringmetrics.html

3.5. Concluding Remarks

3.5.1 Expectations

We believe that there are quite some discrepancies between the shared by users
at different profiles. Therefore, we expect that the pairwise threshold τpw should
not be very close to the value 1, since we would miss too many matches. But
lowering the value for the threshold means that the list of candidate matches
grows, which has a bad effect on the Precision of the matching process.

With respect to the attributes and string matchers, we expect that attributes
such as Name and Email give good results with character-based string matchers.
Attributes such as Schools and Companies are more sensitive for different textual
representations (with abbreviations, including the city, etc.). Hence, we think
these perform better with token-based string matchers.

In Chapter 7 we test these expectations in the experiments.

Irma Veldman 31

32

Chapter 4

Profile Matching with Social Net-
work Support

We already discussed that a network is an important part of a profile page. You
can invite other members of the same profile site to be your friend or, more
generally, your connection. To which other members a person is connected
might give us useful information during the matching process. This is depicted
in Figure 4.1.

?
?

Network of pi on site A Network of pj on site B

ek

pi
pj

Figure 4.1: The networks belonging to the profiles of pi on site A and of pj on site B.
The question is whether pi and pj belong to the same real life entity ek.
The networks of pi and pj might provide useful information.

In this picture pi and pj present profiles at a different profile sites. The
question is whether both pi and pj belong to the same real life entity ek. Let’s
assume that the data on the profiles already indicate that this might be the

33

Chapter 4. Profile Matching with Social Network Support

case. The networks of pi and pj could give us the support for this decision.
In the picture this support is represented as the overlap of the two ellipses.
This overlap means that a person to whom pi is connected has also a profile
at the other page and is a connection of pj , too. Notice that deciding whether
a connection of pi is also a connection of pj is in itself the same problem as
deciding whether pi belongs to the same entity as pj .

The concept of multi-relational integration is not new. The often used case
in the literature is about integrating or de-duplicating reference systems. For
instance, checking if the references from two publicly available search engines
correspond to each other.

 Unfiled Notes Page 1

Figure 4.2: Screenshot of D-Dupe. The authors associated with the rectangles are the
matching candidates. The circles represent their co-authors. Circles in
between the candidates are the shared co-authors.

The authors of [6] used the reference systems case to see if they could take
the co-author relationship into account.In Figure 4.2 a screenshot of their tool
(D-Dupe) is shown. The source apparently contains two authors named ‘Staffan
Björk’, but with a different id. If we conclude that these names refer to the same
author, then this author has a list of co-authors that contains an author named
‘Johan Redström’ twice. The merging of the two ‘Staffan Björk’ author records
gives us a stronger indication that both ‘Johan Redström’ author records also
refer to the same entity.

Notice that in the work of [6] the merging of two records implies that there
is stronger evidence that two co-authors in fact belong to one entity. This is
different for our approach. We turn this reasoning around. If there is an indi-
cation that two profiles belong to the same entity, the overlap of their network
provides stronger evidence that the profiles do indeed belong to the same entity.
This will improve the results of the matching process.

Another reason to turn the reasoning around is because of the nature of the
case. Overlap in social networks happens all the time, also in real life. Two
persons with overlapping networks are not necessarily the same person. Hence,
we only take the networks into account, if we already have some indication that
the two profiles might belong to the same entity.

4.1 Model

In order to extent the simple model with the notion of social networks we will
first formally define connections and networks.

Definition 4.1 A profile can connect to other profiles. Let R be the set of all

34 Matching Profiles from Social Network Sites

4.1. Model

connections, then R ⊆ P × P and R = {(pi, pj)|i 6= j, S(pi) = S(pj)}. The set
of connections R is symmetric, i.e. if (pi, pj) ∈ R then also (pj , pi) ∈ R.

Definition 4.2 The collection of connected profiles of a certain profile pi is de-
fined as the network of pi, i.e. Npi

. Such a network is a subset of P , Npi
⊆ P

and is defined as Npi = {pj |(pi, pj) ∈ R}.

As mentioned in the previous section, before we start comparing the networks
of two profiles, we require an indication that these profiles refer to the same
person. Hence, the first step of the process, the pairwise comparison, will remain
the same. After this step we will include some extra steps to be able to base
the choice whether or not a pair is a match on both the pairwise score and the
overlap in networks.

We will continue with the example from the previous chapter. Suppose we
have finished the pairwise comparison, then the result is the list of candidate
matches shown on the righthand side of Figure 3.6. Only this time, a pair has
an extra field to store a network similarity score, see Figure 4.3 for an example.

A I 0.0 0.0
pi pj Matchdpw(pi,pj)

-
dnw(pi,pj)

Figure 4.3: A pair in the profile matching process with social network support contains
an extra field to store the network similarity score dnw.

Before we elaborate on determining the overlap between the networks of two
profiles, we will first explain clustering.

4.1.1 Clustering

With clustering we divide the list of candidate matches in clusters. The goal
of clustering is to divide the process into smaller independent pieces of work,
which will reduce the number of comparisons. On each cluster we can perform
the rest of the process without this having effect on any other cluster. We can
assure this independence of clusters by making sure that all pairs in which a
certain profile pi is involved will end up in one cluster.

Let’s resume our example from the previous chapter after the pairwise com-
parison. We ended up with the set Dcm shown in Figure 4.4.

Suppose each pair is represented by a node. For each two pairs (pi, pj) and
(p′i, p

′
j), if pi = p′i or pj = p′j , then we can draw an edge between these pairs.

This is depicted in Figure 4.5. Each strongly connected subgraph represents a
cluster.

Definition 4.3 From all candidate matching pairs (pi, pj) we can build a graph
G = (V,L). The set of vertices V is presented by the set of candidate matches
Dmatch and for each two pairs (pi, pj), (pk, pl) ∈ Dcm that share a profile, i.e.
i = k ∨ j = l, there is a link l ∈ L.

A cluster of candidate matching pairs consists of pairs of profile pages (pi, pj)
that form a strongly connected graph.

Irma Veldman 35

Chapter 4. Profile Matching with Social Network Support

A
B

C
D
E

F
G

H

I

J

K

L

M
N

O
P
Q
R
S

A
A

B

E

G
G

I

M

P

0.80
0.91
0.75
0.83
0.71
0.95
0.87
0.73
0.73
0.82
0.77
0.86
0.90
0.70

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Dcm pi pj dnw(pi,pj)dpw(pi,pj)

-
-
-
-
-
-
-
-
-
-
-
-
-
-

Match

Figure 4.4: Example of Dcm after the pairwise comparison.

(A,I)

(A,J)

(A,L)

(B,K)

(B,I)

(C,M)

(D,N)

(E,M)
(E,O)

(F,P)

(G,Q)

(G,R)

(G,S)

(H,P)

(a) Set of pairs Dcm, not yet clus-
tered.

(A,I)

(A,J)

(A,L)

(B,K)

(B,I)

(C,M)

(D,N)

(E,M)
(E,O)

(F,P)

(G,Q)

(G,R)

(G,S)

(H,P)

(b) Set of pairs Dcm divided over
five clusters.

Figure 4.5: Illustrated example of Definition 4.3. The set of pairs Dcm before (a) and
after (b) clustering.

4.1.2 Network Comparison

For each cluster we can now continue the process of network comparison and de-
termining the matches in isolation. Let’s take cluster {(C,M), (E,M), (E,O)}
for example. For each pair we want to determine the overlap between the net-
works.

Definition 4.4 The network similarity score dnw(pi, pj) is a number in the range
[0, 1] that reflects to which extent the networks of profiles pi and pj overlap,
whereby 1 denotes full overlap and 0 no overlap at all.

dnw(pi, pj) =
|shared(Npi

, Npj
)|

min(|Npi
|, |Npj

|) . (4.1)

36 Matching Profiles from Social Network Sites

4.1. Model

The function shared(Npi
, Npj

) is then defined as

shared(Npi
, Npj

) = {(pk, pl) | pk ≈ pl, pk ∈ Npi
, pl ∈ Npj

}. (4.2)

Question is whether pk ≈ pl holds. Notice that this could become a recursive
problem, since the determination of these matches is what we are looking for in
the first place. We decided to keep this decision as simple as possible. If neces-
sary, one can always replace this simple decision method for a more complex but
accurate one. We decide that the determination of matches in the networks of
two profiles will be the same as for determining matches in the simple pairwise
process. We will illustrate this with our example.

Let’s assume that C, E, M and O have the following networks:

NC = {A,B},
NE = {A,B, F},
NM = {I, L, S} and
NO = {P,Q,R}

For the connected profiles of the pair (C,M) we create a list of pairs (Carte-
sian product). Some pairs were not contained in the Dcm set, because they
did not satisfy τpw. We can eliminate these pairs in this list immediately, see
Figure 4.6.

A I
A L

B I
B L
B S

A S

0.80
0.75

0.83
-

-
-

-
-

-

pk pl dpw(pk,pl) Match

Figure 4.6: The list of pairs, created from the networks of profiles C and M . The gray
pairs do not satisfy τpw and hence are marked as non-matches.

This leaves us with three pairs: (A, I), (A,L) and (B, I). In line with the
determination of matches for the simple profile matching process, we sort the
pairs based on their pairwise similarity score. By marking the first pair as
a match, the second pair cannot be a match anymore and will be marked as
non-match. Finally, the last pair is marked as a match, see Figure 4.7.

A I
A L

B I
0.80
0.75

0.83

pk pl dpw(pk,pl) Match

Figure 4.7: Only two connected pairs are marked as a match in the networks of C and
M .

Since we know shared(NC , NM) = {(B, I), (A,L)}, we can calculate the net-
work similarity score dnw(C,M). By calculating this score we have two simple

Irma Veldman 37

Chapter 4. Profile Matching with Social Network Support

choices: we divide the overlapping network by 1) the size of the largest network
or 2) the size of the smallest network. In the first case, a score of 100% is not
possible if the networks have unequal sizes. This is strange, because it can occur
that all profiles contained in the smallest network are matched with profiles in
the largest network. Hence, we believe the latter case is more suitable.

dnw(C,M) =
|shared(NC , NM)|
min(|NC |, |NM |)

=
2
2

= 1 (4.3)

We can do the same for the other two pairs in the cluster:

dnw(E,M) =
|shared(NE , NM)|
min(|NE |, |NM |)

=
2
3
≈ 0.67 (4.4)

dnw(E,O) =
|shared(NE , NO)|
min(|NE |, |NO|)

=
1
3
≈ 0.33 (4.5)

Having these values, we can fill them in in the network similarity scores dnw field
for each pair in the cluster. In line with the pairwise threshold, we introduce a
threshold for the network similarity score as well.

Definition 4.5 τnw ∈ [0, 1] is a threshold for the network similarity score dnw.
Each pair in a cluster with dnw < τnw is considered a non-match.

Suppose we choose our threshold as follows: τnw = 0.40. The resulting cluster
looks like Figure 4.8.

C
E

M

OE
M

0.95
0.73
0.73

1.00
0.67
0.33

-
-

pi pj dnw(pi,pj)dpw(pi,pj) Match

Figure 4.8: The resulting cluster after the network comparison step. Pair (E,O) is
removed, because it does not satisfy τnw.

4.1.3 Determining Matches

In line with the last step in the simple profile matching process, we will finish
the process by determining the matches. Back then we based our decision for
a match on the pairwise similarity score, but now we will base our decision on
the weighted average of the pairwise and network similarity scores.

Definition 4.6 ωpw ∈ N+ and ωnw ∈ N+ are weights for dpw and dnw respec-
tively. The weighted average of the similarity scores for a pair (pi, pj) is simply
defined as:

d(pi, pj) =
ωpw · dpw(pi, pj) + ωnw · dnw(pi, pj)

ωpw + ωnw
(4.6)

.

In case of the example, it does not really matter how we distribute the weight
over the pairwise or network similarity scores, since pair (C,M) has a higher
score on both. Pair (C,M) will hence be marked as a match. As a consequence,
(E,O) is marked as a non-match, shown in Figure 4.9.

38 Matching Profiles from Social Network Sites

4.2. Prototype

C
E

M
M

0.95
0.73

1.00
0.67

pi pj dnw(pi,pj)dpw(pi,pj) Match

Figure 4.9: Pair (C,M) is marked as a match, because it has the highest similarity
score. Therefore, (E,O) must be marked as a non-match.

4.2 Prototype

For the matching process that involves social networks, some adjustments need
to be made to the initial prototype. The high-level process is shown in pseudo
code in Listing 4.1.

Listing 4.1: The matching process in pseudo code.

Input: a set HP of Hyves profiles,
a set LP of LinkedIn profiles

Output: a set M of matches

CM ← pairwiseCompare(HP,LP) /∗ set of candidate matches ∗/
CS ← cluster(CM) /∗ set of clusters ∗/
for each C ∈ CS

networkCompare(C)
SM ← determineMatches(C) /∗ (sub)set of matches ∗/
add SM to M

endfor
return M

The pairwise comparison is still the same, but the clustering and the network
comparison are new and determining matches is slightly changed. Therefore,
we will discuss them in the next sections.

4.2.1 Clustering

We will illustrate the concept of clustering with the approach we took to imple-
ment the clustering. First, we show some steps of the algorithm graphically in
Figure 4.10 and then we present the pseudo-algorithm, see Listing 4.2.

The general idea is to sort the pairs on the first profile (the profiles belonging
to site X). Pairs having the same profile from X are then assigned to a cluster.
This is depicted in Figure 4.10(a). Next, the pairs will be sorted on the second
profile (the profiles belonging to site Y), shown in Figure 4.10(b). This time also,
we need to get clusters with the same profile from Y into the same cluster. We
start with the first pair and temporarily store the cluster to which it is assigned.
In the example (Figure 4.10(c)), the first pair is (A, I) and it is assigned to
cluster 1. Then, we take a look at the next pair: (B, I). This pair should be
in the same cluster as (A, I), because they both have profile I in it. However,
it is assigned to cluster 2. We will make sure that (B, I) will be assigned to
cluster 2 by assigning all profiles referring to cluster 2 to cluster 1 now, see
Figure 4.10(d). This is important because we already clustered these profiles,

Irma Veldman 39

Chapter 4. Profile Matching with Social Network Support 40

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

A I
A J
A L
B K
B I
C M
D N

E O
E M

G Q
F P

G S
G R

H P

(a) The pairs are sorted on their first pro-
file. Pairs with equal first profiles are as-
signed to the same cluster.

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

A I
B I
A J
B K
A L
C M
E M

E O
D N

H P
F P

G R
G Q

G S

(b) During the second step of the clus-
tering, the pairs are sorted on the second
profile.

B I

Cluster 1

Cluster 2

Cluster 3

A I

A J
B K
A L
C M

(c) Cutout showing the first 5 pairs. Since
we want all occurrences of one profile in the
same cluster, we need to move the reference
of pair (B,I) to the same cluster that (A,I)
is referring to.

Cluster 1

Cluster 2

Cluster 3

A I
B I
A J
B K
A L
C M

(d) The pairs originally referring to cluster
2 are now referring to cluster 1, to keep sat-
isfying the property that a cluster contains
all pairs that are linked.

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

A I
B I
A J
B K
A L
C M
E M

E O
D N

H P
F P

G R
G Q

G S

(e) If we keep doing this for all pairs, this is
the result.

Figure 4.10: Graphical representation of the clustering algorithm.

41 4.2. Prototype

Listing 4.2: The clustering algorithm

Input: a set CM of pairs /∗ candidate matches ∗/
Output: a set CS of clusters

previousId ← −1;
currentId ← −1;
/∗ First Phase ∗/
OCM ← sortOnFirstProfile(CM) /∗ Ordered set of candidate matches ∗/
for each pair ∈ OCM

currentId ← firstProfileIdOf(pair)
if currentId 6= previousId

create newCluster
add newCluster to CS

endif
add pair to newCluster
previousId ← currentId

endfor
/∗ Second Phase ∗/
OCM ← sortOnSecondProfile(CM)
previousId ← −1
previousPair = null
for each pair ∈ OCM

currentId ← secondProfileIdOf(pair)
if currentId = previousId

if assignedCluster(previousPair) 6= assignedCluster(pair)
add all pairs of assignedCluster(pair) to assignedCluster(previousPair)
remove assignedCluster(pair) from CS

endif
previousId ← currentId
previousPair ← pair

endif
endfor
return CS

Chapter 4. Profile Matching with Social Network Support

because they share a profile from site s1 and hence should stay clustered. The
result of the clustering is shown in Figure 4.10(e).

4.2.2 Network Comparison

Now we have partitioned the list of candidate matches into smaller portions, we
can perform a network comparison on each portion and determine which of the
candidate matches should be marked as a match.

Listing 4.3: Network Comparison in pseudo code

Input: a set C of pairs /∗ a cluster ∗/
a double τnw

Require: 0 ≤ τnw ≤ 1
for each pair ∈ C

CHP ← getConnectedHyvesProfiles(pair)
CLP ← getConnectedLinkedInProfiles(pair)
create NP /∗ set of networkPairs ∗/
for each hp ∈ CHP

for each lp ∈ CLP
networkPair ← getPair(hp, lp)
if exists(networkPair) /∗ networkPair is already a candidate match ∗/

add networkPair to NP
endif

endfor
endfor
NM ← determineMatches(NP) /∗ set of matches in network ∗/
dnw(pair) ← |NM| / min(|CHP|, |CLP|)
if dnw(pair) ≥ τnw

remove pair from C
endif

endfor

From all pairs that can be made of the connected profiles of hyvesProfile
and linkedInProfile that were present in Dcm (and thus satisfy τpw) are candi-
date network matches. From these candidate network matches the matches are
found with the determineMatches method, presented in Listing 3.3. The network
matches are counted and then divided by the size of the smallest network. This
is the network score for the pair pair.

Now every pair in the cluster has a network similarity score. This network
similarity score is required for determining which pairs in the cluster are marked
as a match.

4.2.3 Determining Matches

Finally, if, for each cluster, it is known which pairs satisfy τpw and τnw, we can
start determining which ones should be marked as matches.

Notice that this method differs only slightly from the one presented in List-
ing 3.3. With this variant the pairs in the cluster are sorted based on their
weighted average similarity score, instead of their pairwise similarity score.

42 Matching Profiles from Social Network Sites

4.3. Concluding Remarks

Listing 4.4: Determining Matches in pseudo code

Input: a set C of pairs /∗ cluster ∗/
Output: a set M of matches

OC ← sortOnWeightedAverageScore(C) /∗ set of ordered pairs in cluster ∗/
while OC 6= ∅

pair ← removeFirst(OC)
add pair to M
remove pairs from OC that contain profiles included in pair

endwhile
return M

4.3 Concluding Remarks

In this chapter we extended our simple profile matching model with networks.
We saw in the literature that variants of networks involved in entity resolution
are receiving more attention recently. Since we apply the model to the matching
of profiles on social network sites, we can adjust the model to this specific case.

The extension of the simple model affects the determination of networks, by
deciding which candidate matches are matches based on not only the pairwise
similarity score, but also on the network similarity score. For a candidate match,
we compare the social networks they have and calculate the overlap. This
overlap is a measure for the network similarity. Again, we introduce a threshold
that needs to be satisfied.

Before we perform the step in which the network scores are determined, we
group the candidate matches in clusters. For each cluster the network matching
phase can be performed independently from the other clusters. Dividing the
work in the network matching phase into smaller portions will increase scalabil-
ity.

4.3.1 Expectations

We introduced this variant of the model because we believe involving the net-
works will improve the matching results. We believe that people having multiple
profile pages have a certain amount of overlap in their networks. These networks
provide extra support for a candidate match to be a correct match, indeed. Our
expectation is that this model gives better results than the model presented
in the previous chapter. It is hard to estimate what the optimal value for the
network threshold should be, but we do not expect an overlap of over 50% in
general. From the experiments it will appear what the optimal value for this
threshold should be.

In the next chapter we introduce a more specific variant of the model involv-
ing networks.

Irma Veldman 43

44

Chapter 5

Typed Networks Extension

Networks can be very complex structures. In [28] the authors unravel some of
the most interesting statistical features of these interconnected structures. As
one of the examples, human social networks are mentioned. They show how
the network of one person can contain several subnetworks that might overlap.
Someone can have friends, colleagues and family for instance. And some of your
colleagues may also be friends of yours.

When you have a profile at a profile site and start connecting with other
people having such a profile on the same profile site, it happens often that you
can label this connection with a type. For instance, you can say, “this person
is a friend” or “we attended the same school”. Labeling such a connection
could provide you with some extra information that might be useful during the
matching process.

Inspired by the work in [28] and the labels you can assign to your connections
on those profile pages we extend our model of profile matching even more by
taking into account these kinds of labels. We will elaborate on this in the next
section and will then extend the model and prototype accordingly.

5.1 Network Types

We can make a distinction on the type of networks a person has, since it can
give us more information about the likeliness of a match. Figure 5.1 illustrates
that a person can have connections in different networks. It is possible for a
connection to be in more than one network, which is depicted by the overlapping
networks.

It is useful to make this distinction, which we will explain with an example.
Consider two profiles for which we want to know whether they belong to the
same person. Profile pi in Figure 5.2(a) is only connected to 2 colleagues and 55
friends. Profile pj in this situation has only 3 connections to colleagues and 67
connections to friends. We may conclude that both profiles sites are basically
used for connecting friends. However, for the number of friends connected to
these profiles, only a small number of those friends is contained in the network
of both profiles.

In the situation of Figure 5.2(b) we can conclude that the profiles are used
for different purposes. Profile pi is used mainly for connecting with colleagues

45

Chapter 5. Typed Networks Extension

Friends

Colleagues

Family

Classmates

Figure 5.1: Illustration of the type of networks a person can have. A connection of
this person can be in more than one network, hence the overlaps.

and pj mainly for connecting with friends. Due to the difference in (derived)
purposes the small amount of overlap is more expected in this case.

Friends

Colleagues

Friends

Colleagues

?
2 3

50

62

5

pi pj

(a)

Friends

Colleagues

Friends

Colleagues
?

3

4

62

50

1

pi

pj

(b)

Figure 5.2: Illustration of the difference in impact of an overlap, depending on the
types and sizes of the networks.

If we would like to take the notion of different networks into account, we
need to define different types of connections.

5.2 Model

To extend our model with types, we need to introduce some new definitions.
We start with the set of types T .

Definition 5.1 If T is the set of types T = {t1, t2, . . . , tn}, then T (pi, pj) denotes
the set of types of a connection, in case this connection exists, i.e. T (pi, pj) ⊂ T .

From this definition follows that every connection has a type. It is not
always clear what the type of a connection should be, hence we introduce the
type unknown. A connection can never have both the type unknown and one or
more other types, hence the strict subset in Definition 5.1.

Remember the example from the previous chapter, where we introduced
networks. For the candidate match (C,M) we examined their networks. We
will do this again and now take the types of their networks into account. In this
example, T = {friends, colleagues}.

Definition 5.2 We define a typed network N
tj
pi as the set of profiles that are

connected to pi and have type tj. Thus, N tj
pi ⊆ Npi

and N
tj
pi = {pk | (pi, pk) ∈

R, T (pi, pk) 3 tj}.

46 Matching Profiles from Social Network Sites

5.2. Model

Recall that for the cluster with C, E, M and O we have

NC = {A,B},
NE = {A,B, F},
NM = {I, L, S} and
NO = {P,Q,R}

We will divide these sets over the different types:

N friends
C = {A},

N colleagues
C = {B},
N friends

E = {A,B},
N colleagues

E = {F},
N friends

M = {I, L},
N colleagues

M = {S},
N friends

O = {P,Q,R} and

N colleagues
O = ∅

If we want to incorporate the types of the network, we need some adjustments
to the model. We want the network similarity score dnw to be a measure of the
number of overlapping network profiles that belong to the same type. Below we
redefine dnw.

Definition 5.3 The network similarity score for the typed networks model is as
follows:

dnw(pi, pj) =
∑
t∈T

dt
nw(pi, pj)
|T | (5.1)

It means we will calculate the network similarity score by summing the separate
typed network similarity scores for all types t ∈ T , divided by the size of T .

Definition 5.4 The typed network similarity score dt
nw(pi, pj) is defined as

dt
nw(pi, pj) =

|shared(Ntm

pi
,Ntm

pj
)|

min(|Ntm
pi

|,|Ntm
pj

|) if |N tm
pi
| > 0 ∧ |N tm

pj
| > 0

0 if |N tm
pi
| = 0 ∨ |N tm

pj
| = 0

(5.2)

and finally, the typed equivalence of the function shared is

shared(N tm
pi
, N tm

pj
) = {(pk, pl) | pk ≈ pl ∧

pk ∈ Npi ∧
pl ∈ Npj ∧
tm ∈ T (pk, pi) ∩ T (pl, pj)} (5.3)

In Figure 5.3 we see the result of the network comparing phase for C and
M . Only three records are candidate network matches. For these candidate
matches we can now decide if they match, based on their pairwise score and
whether their connections with C and M have the same type.

Irma Veldman 47

Chapter 5. Typed Networks Extension

A I
A L

B I
B L
B S

A S

0.80
0.75

0.83
-

-
-

-
-

-

pk pl dpw(pk,pl) Match

Figure 5.3: The list of pairs, created from the networks of profiles C and M . The gray
pairs do not satisfy τpw and hence are marked as non-matches.

For the match (B, I) the types are not equal: T (C,B) = {colleagues} and
T (M, I) = {friends}, so T (C,B) ∩ T (M, I) = ∅. This match will not be
counted. However, T (C,A) ∩ T (M, I) = {friends}, hence this match is counted.
As a consequence the last candidate match is a non-match. This is shown in
Figure 5.4. Below, we calculate the typed network similarity scores.

A I
A L

B I
0.80
0.75

0.83

pk pl dpw(pk,pl) Match

Figure 5.4: The resulting cluster after the typed network comparison step. The pairs
are sorted on their total score.

dfriends
nw (C,M) =

|shared(N friends
C , N friends

M)|
min(|N friends

C |, |N friends
M | =

1
1

= 1,

dcolleagues
nw (C,M) =

|shared(N colleagues
C , N colleagues

M)|
min(|N colleagues

C |, |N colleagues
M |

=
0
1

= 0 and

dnw(C,M) =
∑
t∈T

dt
nw(C,M)
|T | =

1
2

+
0
2

= 0.5

We can do the same for E and M and for E and O:

48 Matching Profiles from Social Network Sites

5.3. Prototype

dfriends
nw (E,M) =

|shared(N friends
E , N friends

M)|
min(|N friends

E |, |N friends
M | =

1
2

= 0.5,

dcolleagues
nw (E,M) =

|shared(N colleagues
E , N colleagues

M)|
min(|N colleagues

E |, |N colleagues
M |

=
1
1

= 1,

dnw(E,M) =
∑
t∈T

dt
nw(E,M)
|T | =

0.5
2

+
1
2

= 0.75,

dfriends
nw (E,O) =

|shared(N friends
E , N friends

O)|
min(|N friends

E |, |N friends
O | =

1
1

= 1,

dcolleagues
nw (E,O) =

|shared(N colleagues
E , N colleagues

O)|
min(|N colleagues

E |, |N colleagues
O |

= 0 and

dnw(E,O) =
∑
t∈T

dt
nw(E,O)
|T | =

1
2

+
0
2

= 0.5

For the candidate matches in the cluster, we can now fill their network scores.
This is shown in Figure 5.5.

C
E

M
OE

M
0.95
0.73

0.73
0.50
0.75

0.50
-
-

-

pi pj dnw(pi,pj)dpw(pi,pj) Match

Figure 5.5: For this cluster, the network scores are filled.

When we will determine the matches, based on the total score with equal
weight for dpw and dnw, pair (E,M) will be marked as a match. As a conse-
quence, the other two pairs in this cluster cannot be chosen as a match anymore,
see Figure 5.6.

C
E

M
OE

M
0.95
0.73

0.73
0.50
0.75

0.50

pi pj dnw(pi,pj)dpw(pi,pj) Match

Figure 5.6: From this cluster, only the first candidate match is marked to be a match.
The other pairs are marked as a non-match, due to this choice.

5.3 Prototype

To implement the extension in the prototype, only minor changes are needed.
The step where the overlap for both networks is determined, which is in the
determineMatches() method (Listing 3.3), presented in Section 4.2.3 needs some
adjustments as well as the networks comparing step, presented in Section 4.2.2.

Main adjustment to determineMatches() in Listing 5.1 with respect to the
original is that there is an extra condition to meet before a pair can be marked

Irma Veldman 49

Chapter 5. Typed Networks Extension

Listing 5.1: Determining Typed Matches in pseudo code

Input: a set C of pairs /∗ cluster ∗/
Output: a set M of pairs /∗ matches ∗/

OC ← sortOnPairwiseScore(C) /∗ ordered set of candidate matches ∗/
while OC 6= ∅

pair ← removeFirst(OC)
if shareType(pair)

add pair to M
remove pairs from OC that contain profiles included in pair
for each type ∈ sharedTypes(pair)

increment nrOfNetworkPairsSharingType(type) by 1
endfor

endif
endwhile
return M

as a match. Both profiles in the pair have a type that captures the types of the
relation with the profile of which they are in the network. Then, if this pair is
marked as a match, the nrOfNetworkPairsSharingType(type) method registers the
number of times matching network profiles were of type type, which is necessary
to calculate the network similarity score. This is done in the adjusted version
of the networkComparison() method presented below (Listing 5.2).

After the call to determineMatches() the network score is calculated. A call to
ratioOfSharedTypedConnections() returns the number of shared connections that
have a specified type divided by the total (minimum) number of connections
with that type, i.e. dtype

nw .

5.4 Concluding Remarks

In this chapter we introduced a variant of the model using typed networks. We
were inspired by this idea because a member can (or has to) label connections
when he wants to connect to another member (such as: “Friend”, “Colleague”,
etc.).

This label (or type) provides us with some extra information about the
connection and has potential of supporting the decision for a match even better.
Overlap of networks does now not only depend on pairwise similarity of network
profiles, but on the type of the connections as well.

Unfortunately, this type information is not (yet) available on every site. For
this research, we determined the types of connections by hand. This is quite easy
to perform and although false assumptions can be made about a connection, we
believe this information is more complete than the information available at the
profiles sites.

5.4.1 Expectations

It is difficult to foresee what the results of this variant of the model will be.
The model is stricter on when to call something a network match, hence it may

50 Matching Profiles from Social Network Sites

51 5.4. Concluding Remarks

Listing 5.2: Network Comparison in pseudo code

Input: a set C of pairs /∗ cluster ∗/
a double τnw

Require: 0 ≤ τnw ≤ 1

for each pair ∈ C
CHP ← getConnectedHyvesProfiles(pair)
CLP ← getConnectedLinkedInProfiles(pair)
create NP /∗ set of network pairs ∗/
for each hp ∈ CHP

for each lp ∈ CLP
networkPair ← getPair(hp,lp)
if networkPair 6= null

add networkPair to NP
endif

endfor
endfor
NM ← determineMatches(NP) /∗ set of network matches ∗/
for each type in T

dnw(pair) += ratioOfSharedTypedConnections(type)
endfor
dnw(pair) /= |T|
if dnw(pair) < τnw

remove pair from C
endif

endfor

Chapter 5. Typed Networks Extension

turn out that the model performs worse than the variant with simple network
comparison.

In the next chapter we explore how we can extend our model with multiple
sources.

52 Matching Profiles from Social Network Sites

Chapter 6

Multiple Sources

Until now, we only dealt with the matching process for two sources. In practice,
you would like to combine all information you can find about a person to get a
highly enriched profile. Therefore, we will explore how we can handle multiple
sources and build a new layer on top of the existing model.

6.1 Generic ER Solutions

In research, solutions for generic ER are already present [25, 3]. These solutions
concentrate on comparing records from multiple sources in an efficient manner,
i.e. reduce the number of comparisons as much as possible.

We will briefly present the issues they encountered first and will reuse their
ideas in our model.

The models presented in the literature use a set that is the union of all source
records (called an instance I) and this set contains duplicates. They abstract
from match and merge functions. As soon as the match function determines
that two records are the same, the merge function will create a composed record.
This newly created record is then added to the set of all records and must be
compared against all other records already present in the set.

In [3] they also state that if the match function is reflexive and commutative,
and the match and merge function are in the Union Class, the ICAR properties
are satisfied. We will further explain this.

Reflexive A function is said to be reflexive if the input and output of the
function belong to the same set. Suppose we have a set of all possible
records R, then ∀r ∈ R, match(r, r) ∈ R.

Commutative A function is said to be commutative if the order of the operands
does not matter. Thus, ∀r, s ∈ R, match(r, s) = match(s, r).

Union Class The match and merge functions are said to be in the Union Class
if they are based on the union of values. If a record with name {John Doe}
and a record with {J. Doe} are merged, then the result will be {John Doe,
J. Doe}.

53

Chapter 6. Multiple Sources

If the conditions mentioned above are satisfied, then the ICAR properties
are satisfied also. We present them below, but will first define a notation for
merged records.

Definition 6.1 We denote the merged record of two records pi and pj with 〈pi, pj〉.

The ICAR properties are stated below.

1. Idempotence: ∀r, r ≈ r and 〈r, r〉 = r. A record always matches itself,
and merging it with itself still yields the same record.

2. Commutativity: ∀r1, r2, r1 ≈ r2 iff r2 ≈ r1, and if r1 ≈ r2, then 〈r1, r2〉 =
〈r2, r1〉.

3. Associativity: ∀r1, r2, r3 such that 〈r1, 〈r2, r3〉〉 and 〈〈r1, r2〉, r3〉 exist,
〈r1, 〈r2, r3〉〉 = 〈〈r1, r2〉, r3〉.

4. Representativity: If r3 = 〈r1, r2〉 then for any r4 such that r1 ≈ r4, we
also have r3 ≈ r4.

Based on these properties and conditions, the authors of [3] have come up
with the R-Swoosh algorithm that does ER in such a way that the number of
comparisons of records is minimized. For clarity, we will repeat this algorithm
in Listing 6.1. ER(I) denotes the set of records after the ER is applied.

Listing 6.1: The R-Swoosh algorithm from [3].

Input: a set I of records
Output: a set I’ of records, I’ = ER(I)
I’ ← ∅
while I 6= ∅

currentRecord ← a record from I
remove currentRecord from I
buddy ← null
for all records r’ ∈ I’

if match(currentRecord, r’)
buddy ← r’
break

endif
endfor
if buddy = null

add currentRecord to I’
else

r’’ ← 〈 currentRecord, buddy 〉
remove buddy from I’
add r’’ to I

endif
endwhile
return I’

This algorithm simply compares each record with every other record. Records
that were not compared to every other record yet, are in I. Whenever a record
r1 from I is compared to the records already in I ′, it moves from I to I ′, unless

54 Matching Profiles from Social Network Sites

6.2. Model

it is matched with a record r2 from I ′. Then, r1 and r2 are removed from I
and I ′ respectively and the merged record 〈r1, r2〉 is then added to I, since it
has not been compared to all records in I ′. The algorithm terminates when I
is empty.

We will illustrate this model with an example, shown in Figure 6.1. We begin
the ER process with I = {a1, a2, a3, a4, b1, b2, b3, b4, b5, c1, c2, c3} During the
first iterations of R-Swoosh, records a1, a2, a3 and a4 are compared against the
records in I ′ but are not matched, so they are moved from I to I ′ (Figure 6.1(a)).

Next, b1 and b2 are compared to all the records in I ′. Again, no matches
are found, hence they are also moved to I ′. Then, b3 is compared against the
records of I ′. With a1 it forms a match. Their records are merged and added
to I, since this new record needs to be compared against all other records also
(Figure 6.1(b) and Figure 6.1(c)).

In the next iteration, b4 is compared against a1 and a2 without result,
but against a4 it forms a match. The merged record is also added to I (Fig-
ure 6.1(c)).

After several iterations we have the situation as depicted in Figure 6.1(d).
The record 〈a1, b3〉 does not match with a record in I ′ and hence is moved, but
〈a4, b4〉 does match with c2. The records are merged and the newly created
〈〈a4, b4〉, c2〉 is added to I.

Then, after another few iterations the last two records in I are compared to
those in I ′. No match is found and hence they also move to I ′ (Figure 6.1(e)).
Then, I is empty and the algorithm terminates.

We like to reuse this algorithm. Hence, we will explore if we can satisfy the
conditions in the next section.

6.2 Model

To be able to handle multiple sources in our model according to the R-Swoosh
algorithm, we need to (re)consider some issues, followed by the adjustments we
have to make in order to map R-Swoosh to our model.

6.2.1 Merge Result

In our model so far, we only concentrated on the matching process. But by
introducing multiple sources, we need to integrate profiles, because we need to
compare merged records against other (merged) records. We can only make
sensible design decisions about this if we know how a merged profile looks like.

There are several options for merging the profiles. For each attribute you
can decide to take the union of the two source attributes, choose one of them
or perform a more complex merge. Figure 6.2 illustrates this for the case where
we merge a record with name {John Smith} and another with {Mr. J. Smith}.

In this case, choosing for one of the names means you would lose the com-
plete first name or an indication of the gender of this person. Performing a
more complex merge that combines the information from both names would
be ideal but not always as straightforward as in this example. It depends on
the semantics of a certain attribute and hence this function is different for each
attribute. To keep things as generic as possible we will use the union of the two
attributes. This approach is suitable for all kinds of attributes.

Irma Veldman 55

Chapter 6. Multiple Sources 56

a2

a1

a4

a3

b2

b1

b4

b3

b5

c2

c1

c3

a2

a1

a4

a3

I I’

(a) Records a1, a2, a3 and a4

are each compared against the
records in I′ (without result)
and then moved to I′.

b2

b1

b4

b3

b5

c2

c1

c3

a2

a1

a4

a3

I I’

b2

b1

(b) Records b1 and b2 are also
compared against the records
in I′ without result and are
hence moved. Record b3
matches with a1.

b4

b5

c2

c1

c3

a2

a4

a3

I I’

b2

b1

a1,b3

(c) 〈a1, b3〉 is added to I.
Record b4 is now compared
and matches with a4.

c2

a2

I I’

b2

b1

a1,b3

a4,b4

a3,c1

b5,c3

a1,b3

(d) After a few iterations
we start comparing merged
records against the records in
I′. 〈a1, b3〉 matches noth-
ing and is moved, but 〈a4, b4〉
matches c2.

a2

I I’

b2

b5,c3

a1,b3

a4,b4 c2

b1, a3,c1

a4,b4 c2

b1, a3,c1

(e) In the last two iterations,
the final records at I cannot
be matched to any record in
I′ anymore and are moved to
I′.

Figure 6.1: Some steps from the R-Swoosh algorithm.

6.2. Model

John Smith Mr. J. Smith

John. Smith

Mr. J. Smith

Mr. John Smith

{ John Smith | Mr. J. Smith }

X

Figure 6.2: Different possibilities to merge names.

Taking the union of both records is not only the most generic solution, but
also comes with other benefits. First of all and probably most important is that
we satisfy the condition that our merge function is in the Union Class. With
such a merge function we need to adapt our match function to be in the Union
Class as well. We will discuss this in Section 6.2.3.

Second, we are able to control the similarity scores better. We will ex-
plain this with an example. Suppose we have a record p1 with key value
pairs {Name={John Smith}, Education={University of Twente, Delft Univer-
sity}} and a record p2 with key value pairs {Name={Mr. J. Smith}, Educa-
tion={University of Twente, Highschool X}}. In Figure 6.3 we see two different
merge results. 〈p1, p2〉 is the variant with union of values and for 〈p1, p2〉′ a
more complex merge function is used.

Mr. John SmithName

Education University of Twente

Delft University

Johnny SmithName

Education

Highschool Y

University of Twente

Highschool X

p1,p2 p1,p2 ’

p3

John SmithName

Education University of Twente

Delft University

Mr. J. Smith

Highschool X

University of Twente

Highschool Z

Figure 6.3: Results of the matching function are dependent on the result of the merge
function.

We now would like to compare p3 against the merged record. Suppose the
pairwise similarity score for two records is defined as

Irma Veldman 57

Chapter 6. Multiple Sources

dpw(pi, pj) = 1
2 · (x+ |pi.Education ∩ pj .Education|

min(|pi.Education|, |pj .Education|)), where x is a score for sim-
ilarity in names. We will abstract from x in this example. For the ‘Education’
part of dpw of the similarity score results can be different for each variant of
the merged record. Let’s compare p3 against 〈p1, p2〉′. Both records share one
school and both have listed three schools, hence this gives 1

3 . If we would have
compared p3 to p1 or p2 alone, this would give 1

2 , which is a much higher score.
Combining records can thus decrease similarity scores. We think that an aver-
age of the scores of separate comparisons is a much better representation of the
similarity of the merged record. Comparing p3 against the 〈p1, p2〉 would then
result in 1

2 · (1
2 + 1

2) = 1
2 . This approach requires that values of the original

records stay grouped in a merged record.

Definition 6.2 A profile pi consists of only one profile: the base profile. We say
b(pi) = pi. A merged profile pk = 〈pi, pj〉 consists of more than one base profile:
b(pk) = {pi, pj}.

6.2.2 Confidence Scores vs. Match or Non-Match

A confidence score is attached to a record (or profile in our case) and can have
different semantics in different domains. It could express to which extent the
content can be trusted to be a representation of the real world, or it could
represent the probability that this possible world is true. In [25] the authors
took the notion of confidence scores into account. Although they abstracted
from a function that would assign confidence scores to records, these scores
influenced the ER process. We will give an example of this.

Suppose we have a record p1 with confidence 0.8 and a record p2 with con-
fidence 0.7 and p1 ≈ p2 is true. A merge function will merge these records into
p3 = 〈p1, p2〉 with confidence 0.6. Apparently the merged record has a lower
confidence score then the source records. This could be an indication of loss
of quality or loss of information. Therefore, it could be wise not to delete the
source records.

The similarity scores we used in our model are a form of confidence scores.
Suppose we have two profiles p1 and p2. Based on the string matcher
asm(pi.attr, p2.attr) = 0.88 we decide that p1 ≈ p2. Then, the similarity score
0.88 could be used as a confidence score for the merged record 〈p1, p2〉. However,
until now, this score was only necessary to decide if p1 ≈ p2 holds. Once this
decision is taken, the score is forgotten.

Using confidence scores in a multiple sources scenario, could lead to more
complex situations. We will illustrate this with another example. Suppose we
have three profile sites X = {A}, Y = {B} and Z = {C}. We start the
matching process for sites X and Y . asm(A.attr, B.attr) = 0.71 and we decide
A ≈ B. If we then compare 〈A,B〉 with C from site Z, the similarity score is
asm(〈A,B〉.attr, C.attr) = 0.3, which is not enough to be a match. However,
asm(A.attr, C.attr) = 0.8. It seems that A ≈ B and A ≈ C, but not 〈A,B〉 ≈ C,
from which you could conclude that either A ≈ B or A ≈ C is true, but not
both. In this case 〈A,C〉 has a higher confidence score than 〈A,B〉. Should you
then withdraw the previous decision?

To be able to choose the best match, you should delay the decision to the
end of the process, after having compared all profiles from all sites against each
other. In theory this would be the best option. However, this approach requires

58 Matching Profiles from Social Network Sites

6.2. Model

huge memory and takes a very long time. Hence, we decided that we will not
propagate confidence scores to a next step. Once a decision is made about a
match, we stick with this decision. The profiles will be merged and the source
profiles will be excluded from further comparisons.

6.2.3 Redefined Match Function

Our match function so far consists of determining the pairwise and network
similarity scores for two profiles. For two complete sources, depending on the
scores for the different candidate matches the matches were determined. This
will not change except that we need to determine the similarity scores based on
a merged profile. Below, we present the adapted similarity scores d′pw and d′nw.

Definition 6.3 The pairwise similarity score d′pw that can handle merged profiles
is defined as follows:

d′pw(pi, pj) =
1

|b(pi)|+ |b(pj)| ·
∑

bi∈b(pi)

∑
bj∈b(pj)

dpw(bi, bj) (6.1)

Definition 6.4 The network similarity score d′nw that can handle merged profiles
is similar to the pairwise similarity score d′pw and presented below:

d′nw(pi, pj) =
1

|b(pi)|+ |b(pj)| ·
∑

bi∈b(pi)

∑
bj∈b(pj)

dnw(bi, bj) (6.2)

6.2.4 Reuse of R-Swoosh

From the previous sections, we already know that we satisfy the conditions to use
the R-Swoosh algorithm. Unfortunately, we still have to do some adjustments.
The R-Swoosh algorithm bases its decisions about matches on records from all
sources, whereas we base ours on the records belonging to different sources. We
think this approach results in a better matching process and hence we would
like to adjust R-Swoosh to be compatible with this. The result in shown in
Listing 6.2 and Listing 6.3.

In this algorithm we do not compare all records from all sources with all
records from all other sources, but compare all records from one source with all
records from all other records. We benefit from the fact that there are no du-
plicates within one source, hence we can skip several unnecessary comparisons.

Roughly speaking, it comes down to this: we take a source from S. If no
sources are yet present in S′, we move the complete source to S′. Then, we
take the next source from S and for all sources in S′, we compare all profiles.
The comparison is listed in Listing 6.3. Only if we find a match, we remove the
original (or base) profiles from the sources. For each combination of sources we
create a new source to which the matched and merged profiles of these sources
go. This source will be added to S when all profiles are compared. If we take
a source from S that is a created source with merged profiles, the unmatch-
ableSources() function will return all sources from which the merged profiles
originate. This prevents the algorithm from doing unnecessary comparisons.

In Figure 6.4 we see the equivalent of the example for R-Swoosh, this time
for the adapted R-Swoosh algorithm.

Irma Veldman 59

Chapter 6. Multiple Sources 60

Listing 6.2: The adjusted R-Swoosh algorithm.

Input: a set S of sources
Output: a set S’ of sources, S’ = ER(S)
S’ ← ∅
while S 6= ∅

currentSource ← a source from S
remove currentSource from S
while S’ 6= ∅

otherSource ← source from S’ − unmatchableSources(currentSource)
newSource ← compareSources(currentSource, otherSource)
if newSource 6= ∅

add newSource to S
endif

endwhile
add currentSource to S’

endwhile
return S’

Listing 6.3: Comparing sources.

Input: a set firstSource of profiles, a set secondSource of profiles
Output: a set mergedProfiles of profiles
matches ← doMatchingProcess(firstSource,secondSource)
mergedProfiles ← merge(matches)
remove base(mergedProfiles) from firstSource
remove base(mergedProfiles) from secondSource
return mergedProfiles

61 6.2. Model

a2

a1

a4

a3

S S’

A

a2

a1

a4

a3

A

b2

b1

b4

b3

B

b5

c2

c1

c3

C

(a) S′ was empty, hence site A was
moved to S′ immediately.

S S’

b2

b1

b4

b3

B

b5

c2

c1

c3

C

a2

a1

a4

a3

A

(b) Site B is compared against site A.
Two matches are found. These will
from a new source, which will be added
to S.

S S’

b2

b1B

b5

c2

c1

c3

C a2

a3

A

a1,b3

a4,b4

AB

(c) C is then compared against the sites
in S′. First A.

S S’

b2

b1B

b5

c2

c3

C a2A

a1,b3

a4,b4

AB

a3,c1AC

(d) Then, C is compared against B.

S S’

b2

b1B

c2C

a2Aa1,b3

a4,b4

AB

a3,c1AC

b5,c3BC

(e) The newly created source AB is also
compared against the sources in S′.

S’

b2B

a2A

a1,b3AB

a4,b4 ,c2ABC

b5,c3BC

a3,c1 ,b1ACB

(f) The resulting set
S′ after the algo-
rithm is terminated.

Figure 6.4: Some steps of the adapted R-Swoosh algorithm.

Chapter 6. Multiple Sources

6.3 Discussion

Since we succeeded in adjusting the R-Swoosh algorithm such that it can handle
complete sources, we are able to implement this extension of the model as a layer
on top of the model presented in the previous sections. We think this is a huge
benefit.

Due to this model, the order in which we compare the different sources has
become less important. Take a look at the example presented in Figure 6.5. The
three profiles all belong to the same person. If we start comparing profile site A
with profiles site C first, it is likely that (pi, pk) is not marked as a match. If we
than compare A with B, and pi ≈ pj is concluded, the merged profile 〈pi, pj〉
still needs to be compared against site C, which results in 〈pi, pj〉 ≈ pk. Since
new merged profiles need to be compared again against all other sources, we
found the desired result. Unfortunately, there are also cases in which the order
is important, as we saw in the example presented in Section 6.2.2. However,
although the impact of wrong decisions may be bigger than missed matches, we
believe that this situation will not occur very often when the thresholds are high
enough, since we expect that higher thresholds will filter out the most unlikely
candidate matches immediately.

Since the order in which the sources are compared is not so important, it is
quite easy to add a new source. This set of profiles can simply be added to the
set of sources that are not yet compared against all other sources. This property
of the multiple-source layer is a huge benefit. It makes the matching algorithm
very flexible.

Profile pi Professional

Name Mary Svenson
Birthday 12-12-1980
Company Business Solutions

Profile pj Getting Back in Touch

Name Mary Svenson-Wild
Email mary@business-solutions.com

Profile pk Friending

Name WildMary1980

Profile Site A Profile Site B

Profile Site C

Figure 6.5: Three different profiles belonging to the same person.

Very interesting question is what will happen in case of a wrong match.
What if two profiles pi and pj are no true match, but are marked to be a match
by the model. We expect that it depends on what profile matches next to the
merged profile. There are three possibilities: 1) pk ≈ 〈pi, pj〉, because pk ≈ pi

is in fact a true match, 2) pk ≈ 〈pi, pj〉, because pk ≈ pj is in fact a true match
or 3) pk ≈ 〈pi, pj〉 because of the combination of pi and pj , but neither (pk, pi)
nor (pk, pj) is a true match. In the first two cases we expect that more correct

62 Matching Profiles from Social Network Sites

6.3. Discussion

matches will match with the merged record, since this merged record contains
for 67% correct information. The other 33% does not belong to the same person,
but at least shows some similarities, otherwise it would not match in the first
place. The third case is the worst case. The merged record contains information
of three different persons and it is likely that if it matches another time with
some other profile, that this profile belongs to yet another person. At this point
we do not have any idea of how we can prevent these kinds of situations to
happen.

The issue discussed above brings us to the next issue: how can we measure
the correctness of our model? For just two sources this is easy. They either
match or do not match. But now, we can have occurrences where two of the
base profiles of merged profile are a true match, but the third is no true match
with any of the other profiles. Is this match for 67% correct or is it completely
incorrect? And what if we miss a match? For two sources, this is easy too. A
true match is either found or missed. But in case of multiple sources, part of
the total true match can be found or missed. How should this be expressed?
This issue still needs to be addressed, when this layer on top of the model is
implemented and tested. The measurements in case of two sources are presented
in Section 7.2 in more detail.

As we can see, this extension of the model comes with some very interesting
problems that need further investigation. Unfortunately, we were not able to
include this part of the model into the prototype, hence we cannot draw any
conclusions about the multiple source extension, with respect to the quality of
the results.

Irma Veldman 63

64

Chapter 7

Experiments

In this chapter, we perform experiments with the prototype to see how our
model performs. We vary the different parameters present in the model to come
up with the best configuration and to be able to determine in what situations
the model can be used.

Therefore, we elaborate on the parameters first. Then, we explain the mea-
surements we use to compare the quality of the model in Section 7.2. After
that, the results are presented in Section 7.3. We conclude with the best values
for the different parameters in Section 7.4.

7.1 Parameters

The model contains quite a few input parameters that can be varied.

Pairwise Threshold (τpw) This is the minimum the dpw score should be, to
become a candidate match. It should have a value in the range [0, 1].

Network Threshold (τnw) This is the minimum the dnw score should be, to
stay a candidate match. It should have a value in the range [0, 1].

Pairwise Weight (ωpw) The weight assigned to dpw in the total similarity
function d. The pairwise weight is a natural number > 0: ωpw ∈ N+.

Network Weight (ωnw) The weight assigned to dnw in the total similarity
function d. The network weight is a natural number > 0: ωnw ∈ N+.

Method There are two ways of specifying which attributes are used for the
matching process: natural or normal. These methods are explained in
Section 7.1.1.

String Comparer One can choose among various string comparers for the
comparison of attributes of profiles. The choices are:

• Block Distance (Token-based)

• Cosine Similarity (Token-based)

• Dice Similarity (Token-based)

65

Chapter 7. Experiments

• Euclidean Distance (Token-based)

• Jaccard (Token-based)

• Jaro (Character-based)

• JaroWinkler (Character-based)

• MongeElkan (Character-based)

• NeedlemanWunch (Character-based)

• Q-Grams Distance (Hybrid, Q = 3)

• SmithWaterman (Character-based)

Types (Optional) Specifies if the model should involve the network types.

Compensation (Optional) Specifies if the model should compensate for the
fact that the profiles that are level-2 have an incomplete network. With-
out compensation, comparison with networks may give unexpected results.
Therefore, you can run the experiments with compensation for these in-
complete networks. The model will, at the point where the Precision,
Recall and F-Measure are determined, take only the matches that are
level-1 into account.

7.1.1 Natural vs. Normal

With method Normal you can specify on what attribute the profiles should be
compared, and with which string matcher. Next to that, you can specify which
string matcher to use. We mentioned the different string matchers already
above. With respect to the attributes, the following choices are available:

• Name

• Email

• Birthday

• Address

• Schools

• Companies

On the other hand, there is the method Natural. This method mimics natural
human behavior, i.e. when a human is asked to decide whether two profiles are
similar, you can expect him or her to look at certain attributes, that uniquely
identify a person, such as Name. First, the attributes Name and Birthday provide
us with quite unique information about the owner of the profile (if provided).
The attribute Email is expected to be reliable whenever it is provided by the
user, but unfortunately this attribute is not unique per member. A person can
have several email addresses and provide different ones for each profile page
he or she owns. Finally, if both contain one or even more similar schools or
companies, this provides us with even more evidence that these profiles belong
to the same person.

In order to mimic this behavior, the method natural compares the names
first. This yields a similarity score. Then, for all the other attributes just

66 Matching Profiles from Social Network Sites

7.2. Measurements

mentioned, we also compare them. Eventually we do not take the weighted
average of these scores, since the attributes that are not always provided can
have a negative effect on the weighted average. Instead, we use the similarity
score for the names as a base and add bonus points for having at least a certain
similarity score for each other attribute. In this way, the other attributes only
provide extra support. We experimentally determine which attributes should
be bonus attributes.

7.2 Measurements

In order to quantify the results, we need proper measurements. We use mea-
surements from the information retrieval field: Precision, Recall and F-Measure
[34]. Figure 7.1 shows schematically what Precision and Recall represent. In this
figure, the bounding rectangle represents D, the set of all pairs of profiles. In it
there are two ellipses. The leftmost one represents all pairs that are marked as
a match by the matching algorithm: Dmatch. The rightmost ellipsis represents
the real world matches or true matches Dtrue.

Definition 7.1 All pairs that we know for sure are true matches are contained
in the set Dtrue, Dtrue ⊆ D.

The intersection Dmatch
⋂
Dtrue is the set of matches found by the matching

algorithm that are matches in the real world as well. The bigger this set, and
the smaller the sets Dmatch −Dtrue and Dtrue −Dmatch, the more accurately
the matching process performs.

D (set of all pairs of profiles)

Dmatch

Dtrue

Figure 7.1: Graphical presentation of the measurements.

7.2.1 Precision

Precision measures the ratio between the true matches found and all found
matches. In Figure 7.1 this is the green area, divided by the red and green area,
or:

Precision =
|Dmatch

⋂
Dtrue|

|Dmatch| (7.1)

The Precision gives an indication of the number of false matches.

Irma Veldman 67

Chapter 7. Experiments

7.2.2 Recall

Recall measures the ratio between all found true matches and all true matches.
In Figure 7.1 this is the green area, divided by the green and yellow area, or:

Recall =
|Dmatch

⋂
Dtrue|

|Dtrue| (7.2)

The Recall gives an indication of the number of missed matches.

7.2.3 F-Measure

The F-Measure is the weighted harmonic mean of the Precision and Recall.
The traditional F-Measure is balanced and will have an equal weight for both
Precision and Recall.

F =
2 · Precision ·Recall
(Precision+Recall)

(7.3)

There are variants that assign different weights to Precision and Recall.
Depending on the purpose of the matching process it may be more important
to have as few duplicates as possible in the integrated database (less missed
matches, thus higher Recall) or as few wrongly integrated profiles as possible
(less pairs marked as match wrongly, thus higher Precision).

7.3 Results

In Section 7.1 we presented the different parameters that can be varied in the
prototype. For each parameter, we investigate its influencers on matching qual-
ity.

7.3.1 Pairwise Threshold and Network Threshold

The pairwise threshold τpw specifies how similar two profiles at least should
be. The similarity is measured by a string matcher on certain attributes of
the profiles. The higher the threshold, the likelier the two attributes of the
profiles refer to the same entity. By increasing the threshold, the number of
candidate matches will decrease, since it is more restrictive on the similarity of
the attributes.

The network threshold τnw specifies how much overlap the networks of the
two compared profiles should have. The overlap is the ratio of shared network
profiles with respect to the smallest network of the two. By increasing the
network threshold, a bigger overlap is needed for two profiles to be marked as a
match.

For the experiments we varied the pairwise threshold from 0.50 to 1.00. We
believe that a lower value for the pairwise similarity score is not desired, since
the number of candidate matches increases enormously and hence the chance
for wrongly marked matches.

The network threshold is varied from 0.00 to 0.60. A network threshold of
0.00 means that we do not put any restrictions on the value of the network
similarity score, but we do perform the network comparison. In other words, we

68 Matching Profiles from Social Network Sites

7.3. Results

do not eliminate candidate matches based on their network score, but for every
candidate match, the network score is determined and added to the pairwise
similarity score. Instead of on the pairwise score only, the total score is used to
determine the matches, hence the results for τnw = 0.00 can slightly differ from
the variant in which we do pairwise comparison only.

For the experiments on the different thresholds, we choose the attribute
Name to compare and Levenshtein as string matcher. We have chosen for this
attribute, because it is a discriminative attribute, as we will see in Section 7.3.3
and Levenshtein also performs fine on all kind of attributes.

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

Pr
ec
is
io
n

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

Figure 7.2: Precision (Compared attribute: Name, String matcher: Levenshtein,
Method: Normal, ωpw = ωnw).

Figure 7.2 shows that with increasing pairwise threshold the Precision in-
creases, as expected. The values for pairwise comparison only (PW) and for
network comparison with tnw = 0.00 (NW tnw = 0.0) are significantly lower
than for those with a higher network threshold. This is probably caused by the
additional network score, which has a much more positive effect on the total
scores of candidate matches that are in fact true matches than other candi-
date matches. Remarkable though is that the value for the network threshold
does not really seem to matter, since the Precision is almost the same for ev-
ery τnw ≥ 0.05. But, with increasing network threshold, both the number of
matches and correct matches decrease, as shown in Figure 7.3.

As we can see, the number of matches found for relatively high network
thresholds is surprisingly high. It was expected that the number of matches
found would decrease enormously with an increasing threshold τnw. Unfortu-
nately, this is mainly caused by the high number of matches that involve level-2
profiles. We will elaborate on how these profiles negatively affect the results in
Section 7.3.4.

As we can see in Figure 7.3(b), the number of correct matches found for the
process with network comparison is much lower than for pairwise comparison
only. This is also shown in Figure 7.4.

The lower Recall values for the network comparison are due to the more
restrictive conditions that need to be satisfied in order to be marked as a match.

As expected, the matching process with networks but without restrictions
(τnw = 0.00), behaves almost like the matching process without networks at
all. Only we expected that it would perform slightly better. We believed that,

Irma Veldman 69

Chapter 7. Experiments

600

800

1000

1200

1400

1600

100

150

200

250

um
be

r o
f M

at
ch
es
 F
ou

nd

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

0

200

400

600

800

1000

1200

1400

1600

0

50

100

150

200

250

0,
5

0,
55 0,
6

0,
65 0,
7

0,
75 0,
8

0,
85 0,
9

0,
95 1

N
um

be
r o

f M
at
ch
es
 F
ou

nd

Pairwise Threshold

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

NW tnw=0.70

NW tnw=0.80

PW

NW tnw=0.00

(a) The number of matches found for the dif-
ferent thresholds. Pairwise only (PW) and
network comparison with τnw = 0.00 (NW
tnw=0.00) have a much larger number and are
shown against the right vertical axis.

40

60

80

100

120

be
r o

f C
or
re
ct
 M

at
ch
es
 F
ou

nd

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW t 0 35

0

20

40

60

80

100

120

0,
5

0,
55 0,
6

0,
65 0,
7

0,
75 0,
8

0,
85 0,
9

0,
95 1

N
um

be
r o

f C
or
re
ct
 M

at
ch
es
 F
ou

nd

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

NW tnw=0.70

(b) The number of correct matches found.
Note that the number of true matches is 111.

Figure 7.3: Number of (Correct) Matches Found (Compared attribute: Name, String
matcher: Levenshtein, Method: Normal, ωpw = ωnw).

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Re
ca
ll

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

Re
ca
ll

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

Figure 7.4: Recall (Compared attribute: Name, String matcher: Levenshtein, Method:
Normal, ωpw = ωnw).

since it adds scores to the total scores and does not remove any of the candidate
matches, it will have a positive effect on which matches are picked. Unfor-
tunately, from Figure 7.3(b) we must conclude that it is in fact the other way
around for lower values of the pairwise threshold. This can be explained though.
For these lower values namely, candidate matches that are not true matches will
also benefit from the network score. Sometimes this score will exceed the score
of a true match, which results in wrong choices.

From the graphs we can conclude that in this setting the following thresholds
are optimal: τpw = 0.90 and τnw = 0.00. But as we will see later on, we may
expect better scores for the network similarity of matches, hence we will use
τnw = 0.05 in other experiments.

70 Matching Profiles from Social Network Sites

7.3. Results

7.3.2 Weights

With ωpw and ωnw we can assign weights to the pairwise similarity score dpw

and the network similarity score dnw. Since network scores in general are quite
low, but tend to give better results on Precision, we expect that assigning a
higher weight to the network score can improve the results.

We ran experiments to see what the effect of the weight on the results would
be. In Figure 7.5 we can see that the effects are insignificant and even the other
way around from what we expected.

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

NW pww=1 nww=32

NW pww=1 nww=16

NW pww=1 nww=8

NW pww=1 nww=4

NW pww=1 nww=2

NW pww=1 nww=1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

Pr
ec
is
io
n

Pairwise Threshold

NW pww=1 nww=32

NW pww=1 nww=16

NW pww=1 nww=8

NW pww=1 nww=4

NW pww=1 nww=2

NW pww=1 nww=1

NW pww=2 nww=1

NW pww=4 nww=1

NW pww=8 nww=1

NW pww=16 nww=1

NW pww=32 nww=1

(a) Precision with varying weights.

0,15

0,2

0,25

0,3

0,35

0,4

0,45

Re
ca
ll

NW pww=1 nww=32

NW pww=1 nww=16

NW pww=1 nww=8

NW pww=1 nww=4

NW pww=1 nww=2

NW pww=1 nww=1

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

Re
ca
ll

Pairwise Threshold

NW pww=1 nww=32

NW pww=1 nww=16

NW pww=1 nww=8

NW pww=1 nww=4

NW pww=1 nww=2

NW pww=1 nww=1

NW pww=2 nww=1

NW pww=4 nww=1

NW pww=8 nww=1

NW pww=16 nww=1

NW pww=32 nww=1

(b) Recall with varying weights.

Figure 7.5: Precision and Recall (Compared attribute: Name, String matcher: Leven-
shtein, Method: Normal, dnw = 0.05).

Only for pairwise thresholds τpw ≤ 0.70 an increasing weight for the pairwise
similarity score yields to a higher Precision and Recall. We ran the experiments
again with τnw = 0.30 and these results show the same pattern.

There is an explanation for this. Without the weight for the pairwise sim-
ilarity score it could happen that a pair with not so high pairwise score, but
very high network score was chosen above a pair with higher pairwise score and
lower network score, while the latter is the actual true match. Let us illus-
trate this with an example. Suppose we have a candidate match (p1, p2) with

Irma Veldman 71

Chapter 7. Experiments

dpw(p1, p2) = 0.60 and dnw(p1, p2) = 1.00 and a candidate match (p3, p4) with
dpw(p3, p4) = 1.00 and dnw(p3, p4) = 0.40. In the situation where ωpw = ωnw is
valid, pair (p1, p2) would be marked as a match, mainly due to the high network
similarity score. But this high network score is in this case caused by p1 having
a network size of only one and this connected profile is similar to one of the con-
nected profiles of p2. The other pair that is in fact more similar (which follows
from dpw), has a much lower network similarity score, although dnw = 0.40 is
still a very high score for network similarity. By assigning more weight to the
pairwise similarity, the “false” effect of the highest network score is made less
important and now the correct candidate match is marked as a match.

The same phenomenon also appears when we perform the experiments with
the option in which we compensate for incomplete networks. Although the
weights do not behave as expected, this phenomenon confirms the assumption
that pairwise similarity is more important than network similarity.

The higher pairwise weight is only helpful at lower values for the pairwise
threshold, though. With lower pairwise thresholds, the set of candidate matches
is much higher, which will slow down the algorithm. Moreover, we already
decided that the optimal pairwise threshold is above dpw = 0.70, for which a
higher pairwise weight does not help. Hence, for the rest of the experiments we
will keep using the configuration in which ωpw = ωnw.

7.3.3 Attributes and String Matchers

We can base the similarity scores of two profiles on the comparison of different
attributes. We can choose among Name, Email, Birthday, Address, Schools and
Companies.

To see how these attributes score on the true matches, we compared every
attribute with every string matcher for each pair. In Table 7.1 we present
the minimal and maximal value for the pairwise similarity score dpw (and the
distribution of the values are shown in Appendix D). A high minimal score
means that for the comparison of this attribute the threshold can be at most as
high as this score to include this true match in the list of candidate matches.
Hence, we expect string matchers that yield to a higher minimal score for this
attribute to perform better than other string matchers. Matches for which one
of the attributes was not completed, where not included in these results.

Unfortunately, we cannot conclude which string matcher is most suitable for
which attribute from this table only. If a string matcher assigns high scores to
matches, there is a chance that true non-matches will be assigned a high score
as well. Therefore, we need to take a look at how these strings perform on the
complete data set.

We ran the experiments for all combinations of string matchers and at-
tributes separately with dpw = 0.90 and dnw = 0.05. The results expressed in
Precision and Recall are shown in Figure 7.6 for pairwise comparison only and
in Figure 7.7 for the matching process with network comparison.

Name From Table 7.1 we may conclude that Jaro and JaroWinkler are the
best choices, but Figure 7.6(a) shows that the Precision is much lower for these
string matchers than for NeedlemanWunch and Levenshtein. This means that
these string matchers assign high scores to true non-matches as well. Hence,
Levenshtein and NeedlemanWunch seem to be the best choices for Name.

72 Matching Profiles from Social Network Sites

73 7.3. Results

T
a

b
le

7
.1

:
T

h
e

m
in

im
a
l

a
n
d

m
a
x
im

a
l

p
a
ir

w
is

e
si

m
il
a
ri

ty
sc

o
re

p
er

st
ri

n
g

m
a
tc

h
er

,
p

er
a
tt

ri
b
u
te

fo
r

ea
ch

tr
u
e

m
a
tc

h
.

N
a

m
e

E
m

a
il

B
ir

th
d

ay
A

d
d

re
ss

S
ch

o
o

ls
C

o
m

p
a

n
ie

s
S

tr
in

g
M

a
tc

h
er

m
in

m
ax

m
in

m
ax

m
in

m
ax

m
in

m
ax

m
in

m
ax

m
in

m
ax

B
lo

ck
D

is
ta

n
ce

0,
33

0,
89

0
1

0
1

0
0,

5
0,

08
1

0
0,

8
C

os
in

eS
im

ila
ri

ty
0,

35
0,

89
0

1
0

1
0

0,
58

0,
09

1
0

0,
82

D
ic

eS
im

ila
ri

ty
0,

33
0,

89
0

1
0

1
0

0,
5

0,
09

1
0

0,
8

E
u

cl
id

ea
n

D
is

ta
n

ce
0,

18
0,

67
0

1
0

1
0

0,
29

0,
04

1
0

0,
55

Ja
cc

ar
d

0,
2

0,
8

0
1

0
1

0
0,

33
0,

05
1

0
0,

67
Ja

ro
0,

86
0,

99
0

1
0,

62
1

0,
28

0,
79

0
0,

35
0,

3
0,

76
Ja

ro
W

in
kl

er
0,

92
0,

99
0

1
0,

62
1

0
0,

87
0,

1
1

0,
1

0,
86

L
ev

en
sh

te
in

0,
8

0,
96

0,
1

1
0,

38
1

0,
04

0,
38

0,
09

1
0,

03
0,

65
M

on
ge

E
lk

an
1

1
0,

11
1

0,
38

1
0,

15
1

1
1

1
1

N
ee

d
le

m
an

W
u

n
ch

0,
85

0,
96

0,
53

1
0,

67
1

0,
5

0,
63

0,
5

1
0,

5
0,

78
Q

G
ra

m
sD

is
ta

n
ce

0,
7

0,
94

0
1

0,
1

1
0

0,
47

0,
02

1
0,

02
0,

68
S

m
it

h
W

at
er

m
an

0,
72

0,
98

0,
06

1
0,

38
1

0,
12

1
0,

08
1

0,
12

1

Chapter 7. Experiments 74

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

PW Name

PW Email

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Pr
ec
is
io
n

String Matcher

PW Name

PW Email

(a)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Re
ca
ll

PW Name

PW Email

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Re
ca
ll

String Matcher

PW Name

PW Email

(b)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

PW Address

PW Birthday

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

D
at
eM

at
ch
er

Pr
ec
is
io
n

String Matcher

PW Address

PW Birthday

(c)

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

Re
ca
ll

PW Address

PW Birthday

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

D
at
eM

at
ch
er

Re
ca
ll

String Matcher

PW Address

PW Birthday

(d)

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

Pr
ec
is
io
n

PW Schools

PW Companies

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Pr
ec
is
io
n

String Matcher

PW Schools

PW Companies

(e)

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

Re
ca
ll

PW Schools

PW Companies

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Re
ca
ll

String Matcher

PW Schools

PW Companies

(f)

Figure 7.6: Precision and Recall for different attributes and for different string match-
ers, pairwise comparison only (Method: Normal, dpw = 0.90 and dnw =
0.05, ωpw = ωnw).

75 7.3. Results

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

NW Name

NW Email

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Pr
ec
is
io
n

String Matcher

NW Name

NW Email

(a)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Re
ca
ll

NW Name

NW Email

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
rit
y

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Re
ca
ll

String Matcher

NW Name

NW Email

(b)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

NW Address

NW Birthday

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
rit
y

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

D
at
eM

at
ch
er

Pr
ec
is
io
n

String Matcher

NW Address

NW Birthday

(c)

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

Re
ca
ll

NW Address

NW Birthday

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
rit
y

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

D
at
eM

at
ch
er

Re
ca
ll

String Matcher

NW Address

NW Birthday

(d)

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

Pr
ec
is
io
n

NW Schools

NW Companies

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Pr
ec
is
io
n

String Matcher

NW Schools

NW Companies

(e)

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

Re
ca
ll

NW Schools

NW Companies

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Re
ca
ll

String Matcher

NW Schools

NW Companies

(f)

Figure 7.7: Precision and Recall for different attributes and for different string match-
ers, with network comparison (Method: Normal, dpw = 0.90 and dnw =
0.05, ωpw = ωnw).

Chapter 7. Experiments

We can also see that the Precision for the attribute Name is very good with
and without network comparison. Unfortunately, the Recall decreases for this
attribute with network comparison.

Email The experiments on the complete data set show that almost every string
matcher results in similar results. From Table 7.1 we can see that for Needleman-
Wunch every true match has a score of at least 0.53, hence this string matcher
is very suitable for this attribute.

The Precision for the attribute Email is high with and without network
comparison. The Recall decreases enormously for this attribute with network
comparison. Many matches are missed because the email addresses are not so
often visible for everybody, especially in case of Hyves profiles.

Address We performed the same experiments for Address, but in the experi-
ments on the complete data set this attribute seems useless. This can be ex-
plained. In Hyves the field Address is your complete address or just the city
you live in. A member is free to provide whatever he likes. At LinkedIn, you
provide your zip code and LinkedIn shows the region to which it belongs on your
profile. This is quite different from the address data at Hyves and the results
confirm this. For a much lower value of the pairwise threshold, there are some
candidate matches, but the pairwise similarity scores of these matches are the
same for almost every candidate matching pair. With equal scores, sorting is
useless and the matching process cannot pick the right matches.

From the tests on the true matches only it is confirmed that comparing the
addresses will only result in a few distinct values, upon which our algorithm
cannot base a good decision.

Birthday In Table 7.1 we see the highest minimal scores for Birthday with the
string matchers Jaro, JaroWinkler and NeedlemanWunch. From the experiments
on the complete set, it shows that the latter scores worse on the Recall. Hence,
it seems that Jaro and JaroWinkler are the best suitable string matchers for this
attribute.

Encouraged by the good results on the attribute Birthday already, we wanted
to improve the results by handling a birthday not as a string, but as a date.
Until now, a date like “1948-06-02” was very similar to “1998-06-03”: only two
characters are wrong. But the difference in semantics is very high, though. To
avoid this situation, we introduced our own string matcher for dates, which
will assign scores to similar days, months and years in a date. The results
for this date matcher are shown in Figure 7.6(c), Figure 7.6(d), Figure 7.7(c)
and Figure 7.7(d). For pairwise comparison only and the matching process
with networks involved, the results are much better, mainly for the Precision.
Unfortunately, the Recall stays very low. But if we look at the statistics for this
data set, we see that for only 9% of the matches both profiles have a birthday
completed. Thus, the maximum for Recall in these experiments for Birthday is
only 0.09.

Schools and Companies Schools and Companies are attributes that certainly
do not uniquely identify a profile, hence we expected to see fragmented results

76 Matching Profiles from Social Network Sites

7.3. Results

for the true matches and low scores on the experiments with the whole data set.
The results confirm these expectations.

Schools and Companies only show some results for certain string matchers,
although the results are very low. Remarkably, they perform best with the
SmithWaterman string matcher, which is a character-based string matcher.

If we perform the same experiments for the whole data set with lower pair-
wise thresholds, i.e. dpw = 0.70, dpw = 0.50 (see Appendix D) we see a shift
towards the token-based string matchers with respect to the favorable string
matchers. From Table 7.1 we expected to see some good results on the experi-
ments with the NeedlemanWunch string matcher, but the experiments took far
too much time to complete in a reasonable time.

7.3.3.1 Exclusion of String Matchers

MongeElkan is the string matcher that seemed very promising at first, looking at
Table 7.1. However, it is suspicious that the scores for this matcher on attributes
like Schools and Companies are perfect even if the attributes themselves do not
match. Besides, MongeElkan performed very slowly, most of the times. Although
we do not focus on performance of the algorithm, at the end it matters and hence
we decided to brake off the experiments with MongeElkan when they lasted over
an hour (some experiments with this string matcher lasted over 12 hours, while
most experiments take less than 5 minutes).

Next to this string matcher, there were others that performed very slowly
on experiments with low pairwise thresholds. These include NeedlemanWunch,
Jaro and JaroWinkler.

7.3.3.2 Best Choices

From the results of the different attributes we can conclude that Name is the
most discriminative attribute. Email and Birthday come next, but are not com-
pleted very often, especially birthdays at LinkedIn are completed rarely. Schools
and Companies are not suitable as a primary attribute to match upon, but might
increase Precision when used in combination with another more discriminative
attribute. We applied this idea in the method Natural, explained next.

We performed these experiments again with dpw = 0.70 and dpw = 0.50.
These results support our conclusion above. For the curious reader, we refer to
Figure D.7 till Figure D.10 in Appendix D.

From these results is seems that for lower values of the pairwise threshold
the Precision decreases whereas the Recall stays the same. Exceptions are the
attributes Email and Birthday. For Email the Precision stays optimal for the
token-based string matchers. For Birthday the Precision and Recall even increase
for τpw = 0.50 with the token-based string matchers. Also, our own specialized
date matcher does not outperform the other string matcher any more.

The attributes School and Company show no real pattern and seem a bit un-
predictable. However, both seem to benefit from the token-based string match-
ers with a lower pairwise threshold.

Irma Veldman 77

Chapter 7. Experiments

7.3.4 Compensation for Incomplete Networks

In Section 7.3.1 we encountered a strange problem. While we expected the
number of matches found to decrease enormously when increasing the network
threshold τnw, it did not. This effect is caused by the high number of matches
that involve level-2 profiles. We must involve these profiles in our search for
matches, since they form the network of the level-1 profiles. However, a candi-
date match containing two level-2 profiles, both having only one connection that
happens to be a match as well, will yield a network score dnw of 1. Of course, it
is true that the complete networks of these profiles overlap in this case, but they
influence the results in an undesired way. The network scores for the pairs of
these profiles do not represent the situation as it would be with a complete data
set. Hence, we have an option that can compensate for this. It will perform the
matching process as it would do normally, but removes all matches that were
marked by the process that do not consist of two level-1 profiles.

What you expect with this option is that the results are better and more
accurate. Side effect of this option, however, is that the set of true matches is
quite small, which makes it harder to conclude from the results.

In Figure 7.8 we see the results with the same configuration as for the ex-
perimental results in Figure 7.2 and Figure 7.4.

As we can see, both Precision and Recall have improved. For τpw ≥ 0.70 the
Precision is maximal for pairwise comparison as well as for network comparison,
independent of the network threshold. However, if we take a look at the Recall
we see that for τnw ≥ 0.25 the number of missed matches increases. For values
τnw < 0.25 and 0.70 ≥ τpw ≥ 0.90 the Recall is 1, which is good.

If we compare the F-Measure for both configurations, see Figure 7.9, we see
that the range for which the F-Measure is 1 is much bigger with compensation
then without compensation. Without compensation it is τnw = 0.00 and 0.85 ≥
τpw ≥ 0.90 and with compensation τnw ≤ 0.20 and 0.70 ≥ τpw ≥ 0.90. It was
to be expected for executing the matching process with this option that we can
be more restrictive on the network similarity score without deterioration of the
Recall.

7.3.5 Network Types

To see if we could extract even more evidence for a match from the network
someone has, we introduced network types in Chapter 5. For each connection,
we determined what the type of the connection is and we adjusted the matching
process to handle these types.

In Figure 7.10 we show the results for the experiments. Again, we used the
same configuration as we did for the experiments, for which the results were
shown in Figure 7.2 and Figure 7.4.

We can see from the diagram that the Precision for the matching process
with network types comparison gives better results than for pairwise comparison
only. This is true for τnw ≤ 0.40. For τnw > 0.45 Precision is 0. The Precision
for the model with the network types extension is also better than the Precision
for the model without this extension. Remarkable is that the Precision drops
quite suddenly to zero and at such a high value for the network threshold. This
is caused by the number of matches found. For each higher value for the network
threshold, this number decreases enormously, but the ones found stay correct.

78 Matching Profiles from Social Network Sites

79 7.3. Results

0,4

0,6

0,8

1

1,2

Pr
ec
is
io
n

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,2

0,4

0,6

0,8

1

1,2

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

Pr
ec
is
io
n

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

(a) Precision with compensation for incomplete networks.

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Re
ca
ll

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

Re
ca
ll

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

(b) Recall with compensation for incomplete networks.

Figure 7.8: Precision and Recall (Compared attribute: Name, String matcher: Leven-
shtein, Method: Normal, ωpw = ωnw).

Chapter 7. Experiments 80

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

F‐
M
ea
su
re

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

F‐
M
ea
su
re

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

(a) F-Measure without compensation for incomplete net-
works.

0 3

0,4

0,5

0,6

0,7

0,8

0,9

1

F‐
M
ea
su
re

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

F‐
M
ea
su
re

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

(b) F-Measure with compensation for incomplete net-
works.

Figure 7.9: F-Measure (Compared attribute: Name, String matcher: Levenshtein,
Method: Normal, ωpw = ωnw).

81 7.3. Results

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

Pr
ec
is
io
n

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

(a) Precision for experiments with network types.

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Re
ca
ll

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

Re
ca
ll

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

(b) Recall for experiments with network types.

Figure 7.10: Precision and Recall (Compared attribute: Name, String matcher: Lev-
enshtein, Method: Normal, ωpw = ωnw).

Chapter 7. Experiments

Recall shows us that with each higher value for the network threshold we miss
more matches, indeed.

The Recall does not give those promising results for this model, unfortu-
nately. The values for the Recall are at best (with τnw = 0.05) almost similar to
the normal model. For higher values of the network threshold, the Recall drops
faster than for the normal model. This is caused by the even more restrictive
conditions that have to be fulfilled before a candidate match will be marked as
a match.

We can also perform this variant of the model with compensation for in-
complete networks (with the same configuration). The results are are shown in
Figure 7.11.

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

Pr
ec
is
io
n

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

(a) Precision for experiments with network types.

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Re
ca
ll

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

Re
ca
ll

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

(b) Recall for experiments with network types.

Figure 7.11: Precision and Recall (Compared attribute: Name, String matcher: Lev-
enshtein, Method: Normal, ωpw = ωnw), Compensation.

Notice that this time the values for the Recall have increased enormously in
comparison with the network types variant without the compensation. This is
no surprise.

For ease of comparing in Figure 7.12 we show the F-Measure values for
the normal model (Figure 7.12(a)), with compensation (Figure 7.12(b)), with
network types (Figure 7.12(c)) and with network types and compensation (Fig-

82 Matching Profiles from Social Network Sites

7.3. Results

ure 7.12(d)).

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

F‐
M
ea
su
re

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

F‐
M
ea
su
re

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

(a) Original variant of the model.

0 3

0,4

0,5

0,6

0,7

0,8

0,9

1

F‐
M
ea
su
re

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

F‐
M
ea
su
re

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

(b) Variant of the model with compensation
for incomplete networks.

0 3

0,4

0,5

0,6

0,7

0,8

0,9

1

F‐
M
ea
su
re

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

F‐
M
ea
su
re

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

(c) Variant of the model with network types.

0 3

0,4

0,5

0,6

0,7

0,8

0,9

1

F‐
M
ea
su
re

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
50

0,
55

0,
60

0,
65

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

F‐
M
ea
su
re

Pairwise Threshold

PW

NW tnw=0.00

NW tnw=0.05

NW tnw=0.10

NW tnw=0.15

NW tnw=0.20

NW tnw=0.25

NW tnw=0.30

NW tnw=0.35

NW tnw=0.40

NW tnw=0.45

NW tnw=0.50

NW tnw=0.60

(d) Variant of the model with both network
types and compensation for incomplete net-
works.

Figure 7.12: F-Measures for different variants of the model (Method: Normal, At-
tribute: Name, String Matcher: Levenshtein, ωpw = ωnw).

Notice that the models with compensation perform better than the variants
without compensation. The variants with network types perform only slightly
worse than the variants without network types.

Finally, we should place a remark with these results. The matching process
with network types is based on the types we have assigned to connections our-
selves. We already pointed out that these types might not be accurate, which
could have a negative effect on the results.

On the other hand, when you decide to connect to another person on a
profile site, you do not want to be bothered with questions about the type of
connection you are about to create. If a network type is required during the
creation of such a connection, we believe that this answer will not always be
so accurate either, or contain multiple types. Hence, we think that it could
be worth it to always perform the task of assigning a type to each connection
ourselves, not only in cases where no types are assigned by the user. That is, in
case it will be helpful at all.

Irma Veldman 83

Chapter 7. Experiments

7.3.6 Method

So far, we performed all experiments with method Normal. In Section 7.1.1 we
explained the differences between the methods Normal and Natural. In short,
Normal compares a specified attribute with a specified string matcher for each
pair of profiles. The method Natural compares for each two profiles the Name
and adds a bonus to the similarity score for each time a comparison of the
attributes Email, Birthday, School or Company yields to a good similarity score.

From the experiments in Section 7.3.3 and the distributions of the similarity
scores in Appendix D we get a good hint of which string matchers to choose and
which similarity scores will add a bonus to the score returned by the comparison
of the names. Then, we need to find out how high a bonus should be to get
optimal results. For the Name attribute the best string matchers are Needle-
manWunch and Levenshtein. The first is quite slow and will not always yield to
results in a reasonable time. Email can be best matched with NeedlemanWunch
or SmithWaterman or Levenshtein as alternatives. Birthday can be matched best
with our DateMatcher or a token-based string matcher, such as BlockDistance.
Schools and Companies can be matched best with NeedlemanWunch or Smith-
Waterman or CosineSimilarity as alternatives.

Matching Email and Birthday provides us with a very strong hint that profiles
are matching. Because of this property, in contrast with Schools and Companies,
the threshold in order to get a bonus for these attributes may be higher and the
bonus as well.

Since this method introduces a lot of new parameters, we cannot test all
values. However, we believe that, based on other experiments, we can estimate
the attributes, string matchers and their thresholds quite accurate. For the
attribute Name we chose NeedlemanWunch. From the experiments we know that
if we compare more than one attribute with this string matcher, the experiments
take too much time. Hence, we chose an alternative for all other attributes. For
Email we chose QGramsDistance with the threshold for the bonus at 0.9, for
Birthday the DateMatcher string matcher with the threshold at 0.9. For Schools
and Companies we chose CosineSimilarity, both with the threshold at 0.4.

For the bonuses we did some experiments and the following configuration
gives us the optimal results: compare Name with NeedlemanWunch, Email with
QGramsDistance (threshold for bonus: 0.9, bonus: 0.25), Birthday with DateM-
atcher (threshold for bonus: 0.9, bonus: 0.25), Schools and Companies with
CosineSimilarity (threshold for bonus: 0.4, bonus: 0.1).

The results of the experiments with this configuration are shown in Fig-
ure 7.13. We expanded the range of the pairwise threshold, since the pairwise
similarity score dpw can exceed 1.

As we can see, the graphs show almost the same patterns for the Precision
and Recall for the experiments with method Normal, presented in Section 7.3.1.
Only a small shift towards a higher pairwise threshold can be detected. This is
logical, since we add bonus scores to the similarity scores, thus same candidate
matches are gained for higher pairwise thresholds.

For the experiments without the compensation, there are no major differ-
ences in results. Again, pairwise comparison only and network comparison with
τnw = 0.00 yields to better results than network comparison with τnw > 0.00.
For the experiments with compensation for incomplete networks, small changes
are detected. The Recall never reaches the value 1 anymore, but the experiments

84 Matching Profiles from Social Network Sites

7.3. Results

with network comparison score better on Recall than pairwise comparison only.
This configuration scores slightly worse than the method Normal. But in

cases where the people do not complete their names so properly, this configura-
tion could become more valuable, since it involves other attributes as well. The
best values for the pairwise and network thresholds are: 0.90 ≥ τpw ≥ 1.00 and
τnw = 0.00.

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n PW

NW tnw=0,0

NW tnw=0,05

NW tnw=0,1

NW 0 15

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

1,
05

1,
10

1,
15

1,
20

1,
25

1,
30

1,
35

Pr
ec
is
io
n

Pairwise Threshold

PW

NW tnw=0,0

NW tnw=0,05

NW tnw=0,1

NW tnw=0,15

(a) Precision

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Re
ca
ll PW

NW tnw=0,0

NW tnw=0,05

NW tnw=0,1

NW 0 15

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

1,
05

1,
10

1,
15

1,
20

1,
25

1,
30

1,
35

Re
ca
ll

Pairwise Threshold

PW

NW tnw=0,0

NW tnw=0,05

NW tnw=0,1

NW tnw=0,15

(b) Recall

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n PW

NW tnw=0,0

NW tnw=0,05

NW tnw=0,1

NW 0 15

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

1,
05

1,
10

1,
15

1,
20

1,
25

1,
30

1,
35

Pr
ec
is
io
n

Pairwise Threshold

PW

NW tnw=0,0

NW tnw=0,05

NW tnw=0,1

NW tnw=0,15

(c) Precision with compensation for incom-
plete networks.

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Re
ca
ll PW

NW tnw=0,0

NW tnw=0,05

NW tnw=0,1

NW 0 15

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
70

0,
75

0,
80

0,
85

0,
90

0,
95

1,
00

1,
05

1,
10

1,
15

1,
20

1,
25

1,
30

1,
35

Re
ca
ll

Pairwise Threshold

PW

NW tnw=0,0

NW tnw=0,05

NW tnw=0,1

NW tnw=0,15

(d) Recall with compensation for incomplete
networks.

Figure 7.13: Natural Names with NeedlemanWunch, Email with QGramsDistance
(threshold 0.9, bonus 0.25), Birthdays with DateMatcher (threshold 0.9,
bonus 0.25), Schools and Companies with CosineSimilarity (threshold
0.4, bonus 0.1).

7.3.7 Beyond the Limitations of the Data Set

As we may conclude from the previous section, even in a very much tuned
configuration our network model does not improve the simple pairwise model
significantly. This is quite disappointing, as it seems intuitively that this net-
work extension of the model can contribute to better results. We believe that
this is caused by the limited data set.

One limitation of our data set is that it does not contains ambiguous profiles.
In the real world it will happen very often that people will have the exact same
full name. However, with retrieving data just two levels deep, this chance was
very small. But this situation is an example case in which the social networks
will distinguish the different entities.

Irma Veldman 85

Chapter 7. Experiments

A

B

ID: 1

Credentials:

Connections:

Description

Of A

Connections

Of A

ID: 2

Credentials:

Connections:

Description

Of B

Connections

Of B

ID: 3

Credentials:

Connections:

Description

Of A

Connections

Of B

Figure 7.14: We created fake, ambiguous profiles containing a copy of the credentials
of one profile and the connections of another profile.

We were unable to retrieve a data set that could prove this, hence we modified
the first data set slightly. We created some new, ambiguous profiles by copying
the credentials of one already existing level-1 profile and connecting it with all
connections of another level-1 profile, illustrated in Figure 7.14. The profiles
from which we used the credentials and the connections were chosen such that
they did not belong to the same social network of the central profile, e.g. the
level-0 profile. Each time we created a fake profile, one of these used profiles
was in the network of colleagues and the other in the network of classmates.
This avoids that the network of the fake profile shows quite some overlap with
the original profile. We did this with 7 Hyves profiles and 6 LinkedIn profiles.

Now, with this new data set, we performed the experiments with the op-
timal configuration presented in Section 7.3.6 again. The results are shown in
Figure 7.15.

For the experiments that were executed without compensation for incom-
plete networks, there is no significant change. However, the experiments with
compensation show huge improvements, as expected. We see that for the pair-
wise threshold with values 0.85 ≥ τpw ≥ 1.00 our network model performs more
than 20% better than the simple model.

The strange flaw in the graph of the simple model can be declared. Since
the fake profiles share the exact same credentials as the original profiles, the
fake and original profiles have the same similarity score dpw. Since the decision
for being a match is based on only the pairwise similarity score in the simple
model, one of the two profiles will be chosen without any favor. Sometimes, this
decision is correct and sometimes it is not. It is unpredictable which one will
be chosen. This instability shows in the graph, both at Precision and Recall.
The graphs of the network model are pretty stable and hence we can say that
the network model is in this case significantly better.

86 Matching Profiles from Social Network Sites

87 7.3. Results

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

Precision
P

W

N
W

 t
n

w
=

0
,0

N
W

 t
n

w
=

0
,0

5

N
W

 t
n

w
=

0
,1

N
W

 t
n

w
=

0
,1

5

0

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

0,70

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1,10

1,15

1,20

1,25

1,30

1,35

Precision

P
a

ir
w

is
e

 T
h

r
e

s
h

o
ld

P
W

N
W

 t
n

w
=

0
,0

N
W

 t
n

w
=

0
,0

5

N
W

 t
n

w
=

0
,1

N
W

 t
n

w
=

0
,1

5

(a
)

P
re

ci
si

o
n

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

Recall

P
W

N
W

 t
n

w
=

0
,0

N
W

 t
n

w
=

0
,0

5

N
W

 t
n

w
=

0
,1

N
W

 t
n

w
=

0
,1

5

0

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

0,70

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1,10

1,15

1,20

1,25

1,30

1,35

Recall

P
a

ir
w

is
e

 T
h

r
e

s
h

o
ld

P
W

N
W

 t
n

w
=

0
,0

N
W

 t
n

w
=

0
,0

5

N
W

 t
n

w
=

0
,1

N
W

 t
n

w
=

0
,1

5

(b
)

R
ec

a
ll

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

F-Measure

P
W

N
W

 t
n

w
=

0
,0

N
W

 t
n

w
=

0
,0

5

N
W

 t
n

w
=

0
,1

N
W

 t
n

w
=

0
,1

5

0

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

0,70

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1,10

1,15

1,20

1,25

1,30

1,35

F-Measure

P
a

ir
w

is
e

 T
h

r
e

s
h

o
ld

P
W

N
W

 t
n

w
=

0
,0

N
W

 t
n

w
=

0
,0

5

N
W

 t
n

w
=

0
,1

N
W

 t
n

w
=

0
,1

5

(c
)

F
-M

ea
su

re

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

Precision

P
W

N
W

 t
n

w
=

0
,0

N
W

 t
n

w
=

0
,0

5

N
W

 t
n

w
=

0
,1

N
W

 t
n

w
=

0
,1

5

0

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

0,70

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1,10

1,15

1,20

1,25

1,30

1,35

Precision

P
a

ir
w

is
e

 T
h

r
e

s
h

o
ld

P
W

N
W

 t
n

w
=

0
,0

N
W

 t
n

w
=

0
,0

5

N
W

 t
n

w
=

0
,1

N
W

 t
n

w
=

0
,1

5

(d
)

P
re

ci
si

o
n

w
it

h
co

m
p

en
sa

ti
o
n

fo
r

in
co

m
p

le
te

n
et

w
o
rk

s.

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

Recall

P
W

N
W

 t
n

w
=

0
,0

N
W

 t
n

w
=

0
,0

5

N
W

 t
n

w
=

0
,1

N
W

 t
n

w
=

0
,1

5

0

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

0,70

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1,10

1,15

1,20

1,25

1,30

1,35

Recall

P
a

ir
w

is
e

 T
h

r
e

s
h

o
ld

P
W

N
W

 t
n

w
=

0
,0

N
W

 t
n

w
=

0
,0

5

N
W

 t
n

w
=

0
,1

N
W

 t
n

w
=

0
,1

5

(e
)

R
ec

a
ll

w
it

h
co

m
p

en
sa

ti
o
n

fo
r

in
co

m
p

le
te

n
et

-
w

o
rk

s.

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

F-Measure

P
W

N
W

 t
n

w
=

0
,0

N
W

 t
n

w
=

0
,0

5

N
W

 t
n

w
=

0
,1

N
W

 t
n

w
=

0
,1

5

0

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,91

0,70

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1,10

1,15

1,20

1,25

1,30

1,35

F-Measure

P
a

ir
w

is
e

 T
h

r
e

s
h

o
ld

P
W

N
W

 t
n

w
=

0
,0

N
W

 t
n

w
=

0
,0

5

N
W

 t
n

w
=

0
,1

N
W

 t
n

w
=

0
,1

5

(f
)

F
-M

ea
su

re
w

it
h

co
m

p
en

sa
ti

o
n

fo
r

in
co

m
p

le
te

n
et

w
o
rk

s.

F
ig

u
re

7
.1

5
:

E
x
p

er
im

en
ts

p
er

fo
rm

ed
w

it
h

m
o
d
ifi

ed
d
a
ta

se
t.

T
h
is

d
a
ta

se
t

co
n
ta

in
s

a
m

b
ig

u
o
u
s

p
ro

fi
le

s
w

it
h

n
o
n
-s

im
il
a
r

n
et

w
o
rk

s
to

m
im

ic
a

m
o
re

n
a
tu

ra
l

si
tu

a
ti

o
n
.
M

et
h
od

:
N

a
tu

ra
l;

N
a
m

es
w
it
h

N
ee

d
le

m
a
n
W

u
n
ch

,
E
m

a
il

w
it
h

Q
G

ra
m

sD
is

ta
n
ce

(t
h
re

sh
o
ld

0
.9

,
bo

n
u
s

0
.2

5
),

B
ir

th
d
a
ys

w
it
h

D
a
te

M
a
tc

h
er

(t
h
re

sh
o
ld

0
.9

,
bo

n
u
s

0
.2

5
),

S
ch

oo
ls

a
n
d

C
o
m

pa
n
ie

s
w
it
h

C
o
si

n
eS

im
il
a
ri

ty
(t

h
re

sh
o
ld

0
.4

,
bo

n
u
s

0
.1

).

Chapter 7. Experiments

7.4 Concluding Remarks

We performed experiments on the prototype in order to see how our model with
networking comparison performs with respect to the simple model. The values
for the different parameters were varied to detect a good configuration.

First, we explored the effects on the results with varying pairwise and net-
work similarity thresholds. With increasing pairwise similarity threshold, the
value for the Precision also increases. The Recall is quite stable, but drops down
with values for τpw > 0.9. This is valid for both the simple model as for the
network model, but the network model scores better on the Precision and the
simple model on the Recall. This is because the network model is stricter on
when a candidate match can be marked as a match.

In the network model it was also possible to assign weights to the pairwise
and network similarity score. However, no significant improvements could be
measured. Hence, we used equal weights in all other experiments.

Next to weights, we tested which string matcher we could use best and
for what attribute. The attributes Name, Email and Birthday are the most
discriminative, but only the first attribute is completed always. The best string
matcher to use for Name and Email is NeedlemanWunch. Levenshtein is a good
alternative. For Schools and Companies perform best with a token-based string
matcher.

To overcome one of the limitations of the data set, we introduced the op-
tion to compensate for incomplete networks. Since the level-2 profiles only
have a network of size 1, this return affect the results strangely. By excluding
the matches that involve level-2 profiles, we get a more realistic picture of the
matches found. The experimental results support this. Results for both Preci-
sion and Recall improved enormously for the network model. Still, they do not
exceed the results for the simple model.

Another option we introduced was network types. We wondered if this could
be of any help. Our expectations were not really high, but it seems that this
option was not so bad at all, however it did not exceed the results of the network
model without types.

All experiments mentioned above were performed with the method Normal.
With this method, you can specify the values for each parameter. Next to this
method, there is the method Natural. This is a more advanced configuration
at which you can specify with which string matcher you want to compare the
Names. But next to this attribute, Email, Birthday, Schools and Companies are
compared as well, each with a fixed string matcher. For each extra attribute
that returns a high score, a bonus is added to the pairwise similarity score. The
best configuration for this method found is: Names with NeedlemanWunch, Email
with QGramsDistance (with a bonus of 0.25 for scores over 0.9), Birthdays with
DateMatcher (with a bonus of 0.25 for scores over 0.9) and Schools and Companies
with CosineSimilarity (with bonus of 0.1 for scores over 0.4). The differences
with respect to Normal are not significant, hence it might be a better to choose
for Normal with comparison on the attribute Name since it only performs one
attribute comparison per pair of profiles. In case the attribute Name is not
completed as reliable as in this data set, the method Natural is expected to
outperform Normal, since it relies on more than one attribute.

Unfortunately, the results so far were disappointing. We believed this was

88 Matching Profiles from Social Network Sites

7.4. Concluding Remarks

caused by another limitation of the data set, the lack of ambiguous profiles.
After we modified the data set to contain some of these ambiguous profiles, we
performed the experiments again and the results show significant improvements
on the results, indeed.

In general we can conclude that network comparison can improve the results
for the matching process. However, in some cases, the simple matching model
works fine already. The network model defines more conditions that need to
be met in order to be a match, hence network comparison is more precise.
With respect to the Recall, network comparison almost always scores worse
on this than pairwise comparison only. This is because the addition of the
network comparison eliminates candidate matches. This step can result in the
elimination of correct matches. The network model can only perform better
than the simple model on Recall if it eliminates no correct matches and yields
to higher network similarity scores for correct matches, such that more correct
matches are marked as match by the process, which was the case in the modified
data set.

Irma Veldman 89

90

Chapter 8

Related Work

Entity Resolution (ER) is a popular issue and many researches address it. In our
research we addressed a very specific case of ER, namely the matching of profiles
with network support. In this section we will describe the related research and
discuss how it relates to ours. We start with the theoretical research concerning
ER and end with topics more related to this particular case. This chapter is not
exhaustive, since there is just too much literature on ER, thus we only describe
the approaches most similar to ours, and the ones which could help us improve
our work further. The focus thereby lies on the effectiveness instead of efficiency
of approaches, as in our own approach.

8.1 Entity Resolution

ER addresses the issue of deduplication. It uses smart ways to detect duplicates
in data and to resolve them. In Chapter 3 we briefly discussed what causes
duplicates to exist in data and what issues come with ER.

In [8], the authors divide different ER solutions into two different groups: 1)
supervised and 2) unsupervised solutions. Supervised approaches need labeled
training sets or predefined thresholds to base their decisions on. Unfortunately,
the variety of patterns that can be observed from the real world can hardly be
captured in a training set and therefore these solutions are quite limited. Un-
supervised approaches avoid human intervention by using clustering algorithms
that group together items with high similarity.

Actually, there is a third group of ER solutions, namely semi-supervised. A
semi-supervised approach uses a small set of labeled data and a set of unlabeled
data. The training phase is then skipped and together with the labeled data,
the unlabeled data is resolved. We will not discuss this group of ER solutions
in detail.

Our approach belongs to the group of supervised approaches, since we man-
ually tuned the different parameters.

In Section 8.1.1 and Section 8.1.2 we will discuss supervised respectively un-
supervised approaches. In Section 8.1.3 we will briefly describe different distance
metrics.

91

Chapter 8. Related Work

8.1.1 Supervised Approaches

In this category of approaches the learning-based, distance-based and rule-based
solutions belong. Felligi and Sunter [15] have laid important foundations in the
field, by reducing the ER problem to the following simple problem: there are
two classes: a class M with matches and a class U with non-matches. Each pair
needs to be assigned to one of these classes.

The learning-based solutions use large training sets in which all pairs are
labeled with “match” or “non-match”. Each pair has a comparison vector that
represents the comparable attributes of the two items in the pair. For the classes
M and U , the assumption is that the density functions are different. Now, the
problem of ER can be treated as a Bayesian inference problem. We will not
discuss these solutions in detail.

The distance-based solutions do not need training data. In these approaches
a distance metric is defined between data items. Based on the distance between
two items, a decision is made about whether or not this pair is a match. For
this decision, a threshold is needed. This threshold can be set by making a good
estimation, but fine tuning this threshold can improve the results. Therefore,
using some kind of training set might be desired.

Rule-based solutions use rules from domain knowledge to base decisions on.
With respect to personal data, if two items contain the same Social Security
Number (SSN) and birthday, you can conclude that the items refer to the same
person.

Our approach is mainly distance-based, but uses rules as well. For instance,
we have more confidence in corresponding names and emails than in correspond-
ing schools and companies as an indication that two profiles refer to the same
person.

In all approaches mentioned above, decisions are made for each pair in iso-
lation, which is a more classical approach. In recent research the trend is to
eliminate the naive assumption that these decisions are independent. We will
discuss this next.

8.1.1.1 Collective Entity Resolution

In [31] the authors use a collective model for ER. Their idea is to propagate
evidence. We will illustrate this with an example from their article, which
is shown in Table 8.1. Let’s take record 1 and 2. It is decided that these
records are duplicates. Due to this decision we know that “KDD-2003” and
“9th SIGKDD” refer to the same venue. As we propagate this knowledge we
can decide that records 3 and 4 are duplicates as well, whereas this would not be
clear without this knowledge. While the process is progressing, the knowledge
grows. Information that was not available for the first records will be available
at the end of the process. Hence, it is important that this process is performed
iteratively.

The results with this form of ER are much more accurate, compared with
the classical approaches. In our case, this approach could be helpful for the at-
tributes Schools and Companies, since names of schools and companies often ap-
pear in many string representations (with abbreviations or additional suffixes).
Unfortunately, it is not necessarily true that the value for these attributes are
referring to the exactly same schools or companies for a true match, as opposed

92 Matching Profiles from Social Network Sites

8.1. Entity Resolution

to the example. Therefore, this approach could lead to incorrect knowledge,
hence it is not suitable in our particular case.

Table 8.1: Records 1 and 2 are duplicates. These duplicates provide evidence for
records 3 and 4 to be duplicates as well.

Record Title Author Venue
1 Record Linkage using CRFs Linda Stewart KDD-2003
2 Record Linkage using CRFs Linda Stewart 9th SIGKDD
3 Learning Boolean Formulas Bill Johnson KDD-2003
4 Learning of Boolean Expressions William Johnson 9th SIGKDD

The authors of [4] perform collective ER, too. They present an approach
whereby the database remains unresolved, but relevant records are resolved at
query-time. In previous work they showed that collective ER improves accuracy,
but mapping this approach to perform online is not straight-forward. Moreover,
collective ER comes with quite some additional computational costs, which is
not desired at query-time.

During query execution they use attribute expansion and hyper-edge expan-
sion to extract the relevant records. The query returns some records and based
on a certain attribute, other records containing the same value for this attribute
are extracted as well. Hyper-edge expansion will extract all records that refer to
the same data items the records refer to that are already extracted. This can be
done iteratively. The set of extracted records will grow very fast, even at a small
depth. They show experimentally that their approach improves the F-Measures
significantly. Query-time consumption of the algorithm is the biggest issue that
needs to be tackled. Their approach of performing ER at query time is very
interesting however.

In our approach, we determine all scores independently from all other scores,
or decisions already made. However, in the network model we base similarity
on the overlap of the networks of two profiles. Moreover, in the phase where we
determine which candidate matches are marked as a match, we remove candidate
matches that are impossible due to decisions already made. Hence, our approach
is a form of collective ER.

8.1.1.2 Manual Postprocessing

Another direction within supervised ER is one that requires manual postpro-
cessing. Felligi and Sunter themselves [15] introduced a reject region, which is
a class of pairs for which the decision cannot be made automatically. Human
intervention is needed to resolve these hard cases.

In Figure 8.1 the idea of manual postprocessing is illustrated schematically.
The picture comes from [9]. At the start, with a blocking or indexing technique,
the pairs that are definitely not a match are filtered. The rest is compared
against each other and assigned to one of the three classes. The possible matches
need manual postprocessing and will then be assigned to either the class with
the matches or the non-matches [10], [19].

The authors of [33] base their work on the same principle: they built their
data integration on the rule of thumb that it takes about 90% of the time to
solve the remaining 10% hard cases. They perform the integration but leave

Irma Veldman 93

Chapter 8. Related Work

Cleaning and
standardisation

Cleaning and
standardisation

Database A

Database B

Non−
matches matchesMatches

Evaluation

ClericalPossible

Indexing

Weight vector Field

review

comparisonclassification

Blocking /

Figure 1: General record linkage process. The output
of the blocking step are candidate record pairs, while
the comparison step produces weight vectors with nu-
merical similarity weights.

If two databases, A and B, are to be linked, poten-
tially each record from A has to be compared with all
records from B. The total number of potential record
pair comparisons thus equals the product of the size
of the two databases, |A| × |B|, with | · | denoting
the number of records in a database. Similarly, when
deduplicating a database, A, the total number of po-
tential record pair comparisons is |A|×(|A|−1)/2, as
each record potentially has to be compared to all oth-
ers. The performance bottleneck in a record linkage or
deduplication system is usually the expensive detailed
comparison of fields (or attributes) between pairs
of records (Baxter et al. 2003, Christen and Goiser
2007), making it unfeasible to compare all pairs when
the databases are large. Assuming there are no du-
plicate records in the databases (i.e. one record in
database A can only match to one record in database
B, and vice versa), then the maximum number of true
matches corresponds to the number of records in the
smaller database. Therefore, while the computational
efforts increase quadratically, the number of poten-
tial true matches only increases linearly when linking
larger databases. This also holds for deduplication,
where the number of duplicate records is always less
than the number of records in a database.

To reduce the large amount of potential record pair
comparisons, record linkage methods employ some
form of indexing or filtering techniques, collectively
known as blocking (Baxter et al. 2003): a single record
attribute or a combination of attributes, often called
the blocking key, is used to split the databases into
blocks. All records that have the same value in the
blocking key will be inserted into one block, and
candidate record pairs are then generated only from
records within the same block. These candidate pairs
are compared using a variety of comparison functions
applied to one or more (or a combination of) record
attributes. These functions can be as simple as an
exact string or a numerical comparison, can take vari-
ations and typographical errors into account (Cohen
et al. 2003, Christen 2006), or can be as complex as
a distance comparison based on look-up tables of ge-
ographic locations (longitudes and latitudes).

Each comparison returns a numerical similarity
value (called matching weight), often in normalised
form. Two attribute values that are equal, therefore,
would have a similarity of 1, while the similarity of
two completely different values would be 0. Attribute
values that are somewhat similar would have a sim-
ilarity value somewhere between 0 and 1. As illus-

R1 : Christine Smith 42 Main Street
R2 : Christina Smith 42 Main St
R3 : Bob O’Brian 11 Smith Rd
R4 : Robert Bryce 12 Smythe Road

WV(R1,R2): 0.9 1.0 1.0 1.0 0.9
WV(R1,R3): 0.0 0.0 0.0 0.0 0.0
WV(R1,R4): 0.0 0.0 0.5 0.0 0.0
WV(R2,R3): 0.0 0.0 0.0 0.0 0.0
WV(R2,R4): 0.0 0.0 0.5 0.0 0.0
WV(R3,R4): 0.7 0.4 0.5 0.7 0.9

Figure 2: Four example records (made of given name
and surname; and street number, name and type at-
tributes) and the corresponding weight vectors result-
ing from the comparisons of these records.

trated in Figure 2, a vector (called weight vector) is
formed for each compared record pair containing all
the matching weights calculated by the different com-
parison functions. These weight vectors are then used
to classify record pairs into matches, non-matches,
and possible matches, depending upon the decision
model used (Christen and Goiser 2007, Fellegi and
Sunter 1969, Gu and Baxter 2006). Record pairs that
were removed by the blocking process are classified as
non-matches without being compared explicitly.

Two records that have the same values in all their
attributes will with high likelihood refer to the same
entity, as it is very unlikely that two entities have the
same values in all their attributes. The weight vector
calculated when comparing such a pair of records will
have matching weights of 1 in all vector elements. On
the other hand, weight vectors that have 0 or very low
similarity values in all their elements are with high
likelihood the result of a comparison of two records
that refer to different entities, as it is highly unlikely
that two records that refer to the same entity have
different values in all their record attributes. For ex-
ample, even if a woman changes her surname and her
address when she gets married, her date of birth and
her maiden name will stay the same.

From this follows that it is often easy to classify
with high accuracy record pairs that are very similar
as matches, and pairs that are very dissimilar as non-
matches. On the other hand, it is much more diffi-
cult to classify pairs that have some similar and some
dissimilar attribute values. This is illustrated in Fig-
ure 2, where records R1 and R2 are very similar, with
only two minor difference in the given name and street
type attributes (which usually are taken care of in
the data cleaning and standardisation step (Churches
et al. 2002)), and thus very likely refer to the same
person. On the other hand, records R3 and R4 are
more different to each other, and it is not obvious if
they refer to the same person.

Based on the above observations, it is possible to
automatically extract training examples (weight vec-
tors) from the set of all weight vectors that with
high likelihood correspond to true matches or true
non-matches, and to then use these weight vectors
to train a supervised classifier. From the six weight
vectors shown in Figure 2, WV(R1,R2) can be used
as a training example for matches, while WV(R1,R3)
and WV(R2,R3), and possibly even WV(R1,R4) and
WV(R2,R4), can be used for non-matches.

This two-step approach to automated record pair
classification, which has been inspired by similar
approaches that were developed for text classifica-
tion (Basu et al. 2002, Liu et al. 2003, Nigam et al.
2000, Yu et al. 2002), is presented in more detail in
Section 3, and evaluated experimentally in Section 4.
First, in the following section, an overview of related
research is presented. Conclusions and an outlook to
future work is then given in Section 5.

108

Figure 8.1: General schema of ER with clerical review (manual postprocessing) [9].

in the uncertainties they encounter during the integration. These uncertainties
can be resolved by user-feedback at query time.

They perform so-called probabilistic data integration. When doubt arises
about the integration of some data items, the different possibilities, each with
a corresponding probability attached, will be stored as part of the integration
process (hence the name). Whenever a user queries this uncertain data, multiple
possibilities will be returned. If the user is sure that he or she knows the correct
answer, he or she can give feedback. This user-feedback will then be used as
evidence to resolve these items.

A remarkable difference between this matching process and ours it that un-
certainty can appear at different levels of granularity. We take a look at items
as a whole and decide if two items are the same, based on the similarity scores
of one or more attributes. In the approach described in [33] they compare whole
items against each other. If two items are probably the same, but doubt arises
at a certain attribute then it is possible to capture only this uncertainty as dif-
ferent possible values for this attribute, instead of saving two possible values for
the complete merged data item.

Important question is whether an approach with manual postprocessing
could be helpful in our case. This depends on the purpose of the resulting
integrated data. Minimal prerequisite for such a system is that there is at least
a user. In cases where the resulting data will be further processed without
human intervention, this method is not suitable. Moreover, for each user that
processes or queries the data who is requested to give feedback on these data,
the user should be capable of providing correct feedback, i.e. in our case, this
person should know the entities in real life. This indicates that the data set
should be small, or there should be many users (usually the latter).

8.1.2 Unsupervised Approaches

The idea behind unsupervised approaches is that similar comparison vectors
correspond to the same class [14]. Clustering techniques use these vectors to
group very similar data items together. In some approaches the formed clusters
represent the entities while in other approaches the clusters only contain very
similar items that still need processing.

94 Matching Profiles from Social Network Sites

8.1. Entity Resolution

Our model also uses clustering. We only use the clustering phase to divide
the work to be done in smaller parts, i.e. if we would perform the determination
of the matches on the complete set of candidate matches, the same matches
would be returned. However, the resulting clusters do contain profiles that are
very similar.

The authors of [8] tackle the problem of single link clustering approaches
with global distance thresholds. In this approach, duplicates in a set are de-
tected by clustering. Each record from this set is initially a cluster. For each
two clusters, the distances are measured. Distances between clusters can be an
aggregate function of the similarity scores in the cluster, e.g. average, minimum,
maximum etc. The two clusters with the smallest distances are then grouped
into one cluster. The distances need to be updated and then the two clusters
with the next best (smallest) distance are grouped. The clustering terminates
when no distance between two clusters satisfies a global defined threshold any-
more. Ideally, when this threshold is chosen well, each cluster represents one
entity. The problem with this approach is that it is hard to globally specify
this threshold. They illustrate this with the example shown in Table 8.2. The
first two records are duplicates and their distance will not be very high. The
last two records will not score high on distance either, but these records are no
duplicates. What a good threshold is depends on the duplicates and the other
records that are very nearby but in fact no duplicates.

Table 8.2: Records in a data set. 1 and 2 are duplicates, 3 and 4 not.

ID Artist Title
1 The Beatles A Little Help From My Friends
2 Beatles, The With a little help from my friend
3 4th Elemynt Ears/Eyes
4 4th Elemynt Ears/Eyes - Part II

In their research the authors try to make the decision of what the value of
this threshold should be more flexible. They build their ideas on the following
two observations: 1) duplicated records are “closer” to each other than to others
and 2) the local neighborhood of duplicate records is sparse. They developed
an approach that can detect this variable threshold and did experiments with
it. It shows that the accuracy improved enormously.

In [16] they use two variants of clustering that both lead to sets of clusters
that need further processing. With the “by diameter” variant, the clusters are
not disjoint and hence automatic processing is very complex and not advisable.
With the “by transitive closure” variant, the clusters are disjoint. Here a cluster
contains the transitive closure of the symmetric relationship that two data items
have a similarity score that satisfies a certain threshold. This variant is very
similar to our clustering approach, except that our clustering method contains
the transitive closure of the symmetric relationship that two candidate pairs
contain one equal profile.

In [33] they perform clustering in order to enhance scalability. Their clus-
tering algorithm is similar to ours, except that they can handle clustering at
different levels of granularity whereas we only perform clustering on profile-
level. This is possible since they allow uncertainty at attribute-level, as already
mentioned in Section 8.1.1.2. From their experimental results it seems that

Irma Veldman 95

Chapter 8. Related Work

clustering does indeed contribute to the scalability of the integration.

8.1.3 Distance Metrics

With the distance-based approaches, mentioned in Section 8.1.1, a distance
metric determines how “close” two items are. The technique most often used
is comparing corresponding attributes of the items based on their string repre-
sentation. As mentioned in Section 3.1.1, there are several categories of these
distance metrics: 1) character-based, 2) token-based and 3) hybrid. In fact
there are more categories, including phonetic approaches. Soundex [29], [30] is
the most well-known variant in this category. This method is based on equality
of the sound of spoken words.

We will not discuss each distance metric in detail, as we already discussed
the string matchers in Section 3.1.1. In this section we will describe some
comparison studies performed on the string matchers. Unfortunately, these
studies are quite rare.

In [12] the authors compared several string matchers with the help of their
own implemented toolkit. Results showed that MongeElkan performed well
among the character-based approaches. Jaro and JaroWinkler also perform well,
but are faster than MongeElkan. TFIDF performed very well among the token-
based approaches. They tested some hybrid approaches as well and the combi-
nation of TFIDF with JaroWinkler performed the best on average.

In [36] the author tested which string matcher would work best for a name
matching task on the US census data. Here again, the JaroWinkler performs
well. It should be noted that there is no general rule for the application of
string matchers. This highly depends on the kind of data [5]. Our own research
supports this. We’ve seen in the experiments that it depends on the attribute
which string matcher you can use best.

8.2 Exploiting (Social) Network Relations

Apart from social networks, networks in general have been researched a lot. And
since social networks are gaining so much popularity and even attention from the
research field, the results from this effort are applied to social networks. In [17]
a survey is presented of recent link mining research and future directions. They
acknowledge that it is important to combine the work from different fields and
present work that already follow this approach. They defined different categories
in order to discuss the different link mining tasks. These tasks include “object
ranking”, “object classification” and also “object identification” or ER.

The tool D-Dupe, presented in [6], uses networks to perform ER. In the
domain of scientific publications they used the co-authorship relation to detect
duplicates. For each author in their data set they determine the network of
co-authors with whom this author has written an article. In this network of
co-authors, if two authors in the network have very similar names and the titles
of the articles they wrote are very similar too, then these authors are probably
the same person. Their information will then be merged. The network will be
updated and can raise new possible matches. This approach differs in that they
use one source in which duplicates are present. This means that you can check
the network of one author for duplicates. Since the duplicates appear within one

96 Matching Profiles from Social Network Sites

8.2. Exploiting (Social) Network Relations

network, similarities between co-authors (or their associated information, such
as article title, journal etc.) provide a very certain hint that these co-authors
are in fact the same person. Nonetheless, this tool leaves the user to decide
whether or not two authors match, it only provides hints. For small sets this is
feasible.

8.2.1 Aggregators

From the perspective of the profiles sites themselves, there are other initiatives
to exploit the social network relations. Since there are many people that have
profiles at multiple profile sites, there was a need for linking techniques. From
the user perspective there was a need for so-called “social network aggregation”,
which provides a mechanism for maintaining multiple profiles from one interface.
These aggregators are not concerned with the ER problem themselves, since the
requests for integration of the profiles comes from the user. Examples of these
aggregators are SocialThing!1, FriendFeed2, Strands3 and SecondBrain4.

If a user thinks it is useful to let other people know who he relates to and
which other profiles he might have, the FoaF 5 specification will be helpful. With
FoaF (Friend-of-a-Friend) you can easily achieve this, by adding some meta-data
to your home page for instance. This is best illustrated with an example from the
site of Social Graph API6. In Figure 8.2 is a schematic version of the example.find-a-friend.png (PNG-afbeelding, 442x398 pixels) http://code.google.com/intl/nl/apis/socialgraph/images/find-a-friend.png

1 van 1 22-4-2009 16:36

Figure 8.2: Illustrating example of FoaF

This example starts with Brad, on the right. He wants to know if there
are people on Twitter he might know. Brad has a home page linking to his
Twitter profile, but also to his LiveJournal profile, were he is called ‘Bradfitz’.
On LiveJournal he has a ‘friend’ link to ‘Jane274’. This friend ‘Jane274’ has a
link on LiveJournal pointing to her Twitter profile. So, clicking the ‘find friends’
button will result in ‘Jane’ as a candidate friend.

1http://socialthing.com, last visited 25 August 2009
2http://friendfeed.com, last visited 25 August 2009
3http://www.strands.com, last visited 25 August 2009
4http://secondbrain.com, last visited 25 August 2009
5http://www.foaf-project.org/, last visited 23 April 2009
6http://code.google.com/intl/nl/apis/socialgraph/docs/, last visited 22 april 2009

Irma Veldman 97

http://socialthing.com
http://friendfeed.com
http://www.strands.com
http://secondbrain.com
http://www.foaf-project.org/
http://code.google.com/intl/nl/apis/socialgraph/docs/

Chapter 8. Related Work

Although it seems to solve the ER problem in the case of profile pages, we
do not expect it to be used very much, since it exists for several years, but not
many large profile sites are supporting this. Besides, these links only work if
someone is willing to cooperate. We do not expect that every member will do
that.

Next to these initiatives, there are search engines that try to collect as much
personal information as possible from these profile pages about a person. One of
these sites is the Dutch “wie-o-wie”. Unfortunately, they only match on names,
which is very restrictive.

8.3 Concluding Remarks

ER is a much discussed and researched topic. There are many variants of
approaches possible, but there are only a few basic ideas. These ideas include
similarity measures and thresholds, clustering and knowledge rules. Our variant
is a combination of several of these ideas, combined with some specific domain
knowledge. Most important difference is that deduplication is not necessary
within one source, but only among different sources. This means that you do
not have to compare all profiles with all profiles which is a huge benefit.

The notion of clustering can differ from one research to another. In many
researches a cluster is a set of items referring to one entity, i.e. clustering is
the end of the matching process. In our case, clustering is an intermediate step
to divide the following work in smaller pieces, for scalability reasons. From
one cluster more than one match can be returned, which is different from the
aforementioned approach. The idea of a variable threshold might be interesting
in the future, especially since the variety in this “human data” is not predictable.
Hence, choosing a good threshold is difficult.

If aggregators gain popularity, then it will be easier for people search engines
to perform the matching. Then, there might still be a need for such matching
techniques to integrate the results from a people search engine with customer
data storage.

98 Matching Profiles from Social Network Sites

Chapter 9

Conclusions

There are many people who have a profile at more than one profile site. On
these sites you can build a social network by connecting to other members of the
site. If a person has multiple profiles, the social networks of these profiles are
likely to show some overlap, i.e. there are profiles from both social networks that
refer to the same person in real life. Based on this observation, we developed
a model that uses this network overlap to determine if two profiles belong to
the same person. Our motivation for this is that we thought that a model with
social network support would improve the results of a model without network
support. In order to test this we 1) retrieved a data set with real world data
from the internet, 2) built both a simple model and a network model and 3)
built a prototype to experiment with.

First, we needed a suitable data set. The data set was supposed to contain
realistic personal data, including the usual data flaws that arise when people
are anxious to complete all data, forget to complete some fields or when data is
getting outdated. Unfortunately, there is no benchmark available that contains
such data. Generating our own data set was not a good option since we believe
it is not possible to generate realistic data flaws. Hence, we decided to crawl
our own data set from two profile sites on the internet. Unfortunately, due to
practical reasons it was not possible to crawl more than two levels deep from
the starting profile. Moreover, due to this restriction on the crawling, there are
not so many ambiguous profiles in the data set.

The base for the model is the comparison of one or several attributes of the
profiles. Each profile from one source site was compared against each profile from
the other source. This comparison results in a pairwise similarity score for each
possible pair. Pairs with a score lower than a certain threshold are eliminated.
The simple model will then determine which of these remaining (candidate)
matches are matches, based on the similarity scores. The network model will
compare the networks of candidate matches first, in order to determine which
of them are matches. Comparing the social networks of the two profiles in a
candidate match will yield a network similarity score. Based on both similarity
scores the network model will decide which of them are matches. For scalability
reasons we also added a clustering step.

The model was then tested with the prototype we built. By varying the
different parameters we have gained a better understanding of the effect of the

99

Chapter 9. Conclusions

network model on our data set. Mainly the network model is more restrictive
on when to call a pair a match. Precision will in most cases benefit and Recall
not at all, which is not really a surprise. In general, the simple model seemed
to work quite well already and the question is whether it is worth the extra
steps of the network model to get a higher Precision. The good news is that the
amount of uncertainty was not as high as we expected, which is good for both
models.

On the other hand, the data set has some limitations that negatively in-
fluence the results. By adding an option that compensates for the incomplete
networks of the collected level-2 profiles in the data set, we retrieve more re-
alistic results. With this option turned on, the results for the network model
improved as expected. Besides, as already mentioned, the data set only contains
no ambiguous profiles. We added some fake ambiguous profiles to mimic this
situation in the data set. By performing the experiments on this modified data
set, the results for the network model improved enormously. Moreover, and
more important, the network model outperformed the simple model, because
with this modified data set, the networks make the difference between a match
and a non-match.

Although we had some problems with finding a realistic data set, we still
have a very good idea of when to use the network model. We will elaborate on
this in the next subsection.

9.1 Recommendations

Now we know how the network model behaves (with respect to the simple
model) we will present below in which situation the network model can be
suitable/preferable or not. The network model is:

• suitable in cases where high precision is required. In cases were decisions
are made based on the integrated items, the number of mistakes should
be kept as minimal as possible. We already mentioned the credit granting
example. In this case, mistakes should not be made.

• suitable if the simple model results in many high scores. Network com-
parison could help reduce this number. Suppose we search for all people
with a certain first name on several profile sites. If we want to perform
the matching process on these sets of profiles, many ambiguous profiles
will exist and the network model can make the difference.

• suitable in cases where networks serve another purpose, for instance social
studies, marketing based on the (purchasing) behavior of a group. Some
adjustments to the model might be necessary, depending on the exact
purpose.

• not suitable in cases where high Recall is required. Take a police investiga-
tion for example. Suppose they want to list suspects (with alias detection),
you do not want to discard options too fast. In this case, a large number
of candidate matches is desired. Human intervention is required to make
the final decisions.

100 Matching Profiles from Social Network Sites

9.2. Future Work

Still, work is needed to be able to use the model in practice. In the next
section we present some issues that need, or are interesting, for further explo-
ration.

We did not pay attention to the performance in terms of speed. The al-
gorithms need optimization, because the network comparison phase consumes
much time. Pruning of cases in which (complete) network comparison is not
necessary could be an option. Note that the use of the pairwise threshold is
already an example of pruning, since it discards those pairs that are likely not
to match.

9.2 Future Work

The network model already showed some promising results. However, there exist
several interesting issues that still need exploration in the future to improve the
network model or to integrate it in a more practical environment.

Improving the Network Model During the experiments, we discovered some
strange effects that some deviant values can have on the outcome of an exper-
iment. For instance, if we compare the networks of two profiles: one having
a large network and the other having only one or a few connections. In Sec-
tion 4.1.2 we reasoned that we could better divide the number of overlapping
profiles by the size of the minimal network. However, strange situations still
occur, see Section 7.3.1. Similar to the situation mentioned above are the effects
that total scores have. Sometimes total scores are very high, due to a high pair-
wise or network similarity score, but not both. Sometimes, this leads to strange
effects. We think that taking the mean of both similarity scores could correct
this.

Optimization Next to the minor changes proposed above that could improve
the accuracy of the results, the network model needs improvements that will
improve the time-complexity and scalability. Performing network comparison
is a very costly operation. Therefore, it would be very useful to think of a
more efficient implementation. Moreover, pruning cases in which no (complete)
network comparison need to be performed is an option. For instance, if there is
a cluster for which the variation of the pairwise similarity scores is high, there
is a great chance that picking the pairs with the highest scores are the correct
matches.

Practical Setting In this research we were not able to test the network model
in a more practical setting. In order to do so, adjustments need to be made to
the model. First of all, before the network model can be used for an application
the multi-source integration needs to be tested. Moreover, the model now works
on batches of profiles, i.e. we have a large data set, without any filtering. In
practice, such a data set is too large to operate on. Therefore, some filtering
must take place on beforehand.

If you are interested in a target group, you want to retrieve a large data
set that satisfies certain conditions. During the retrieval part, you can filter on
these conditions in order to keep your data set ”clean”. Interesting question

Irma Veldman 101

Chapter 9. Conclusions

is whether you retrieve the complete network of a person that satisfies this
condition or only the connected profiles that satisfy these conditions as well.

If you are interested in only a small number of people, you would like to
search for profiles that are likely to belong to them, without searching the com-
plete internet. This requires some search function on the different profile sites
so that you can search not only on name, but on other attributes as well. You
want this search function to come up with more than one result, so you can com-
pare the results with results from other sites as well and find your own result
based on the comparison of these profiles (and their networks). The expansion
methods proposed in [4] would be useful here. Unfortunately, only a few profile
sites provide a suitable search function.

Collecting More Evidence Another issue that could be investigated is the
collection of more evidence with more unconventional methods. You could think
of tracing the surfing behavior of members. Someone who logs in at a certain
profile site and next to another profile site is likely to have a profile at both
sites. Of course, privacy concerns play an important role here.

Benchmark Independent from our own research, for future research in this
direction the existence of a publicly available benchmark would be very useful.
Unfortunately, due to privacy concerns they do not exist. However, we think
that it is possible to create a data set with generated personal data. Maybe, this
data set will not be useful for all purposes, but it will at least be very helpful in
the start of a research. Moreover, people can expand this benchmark to serve
their own purpose.

102 Matching Profiles from Social Network Sites

Bibliography

[1] E. Adar and C. Ré. Managing Uncertainty in Social Networks. IEEE Data
Engineering Bulletin, 30, 2007.

[2] A. Barabasi. Linked: the New Science of Networks. Perseus Publishing,
2002.

[3] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. Whang, and
J. Widom. Swoosh: a Generic Approach to Entity Resolution. The VLDB
Journal, March 2008.

[4] I. Bhattacharya and L. Getoor. Online Collective Entity Resolution. In
The 22nd National Conference on Artificial Intelligence (NECTAR Track),
volume 2, pages 1606–1609, 2007.

[5] M. Bilenko, R.J. Mooney, W.W. Cohen, P. Ravikumar, and S.E. Fienberg.
Adaptive Name Matching in Information Integration. IEEE Intelligent
Systems, 18(5):16–23, 2003.

[6] M. Bilgic, L. Licamele, L. Getoor, and B. Shneiderman. D-dupe: an Inter-
active Tool for Entity Resolution in Social Networks. In IEEE Symposium
on Visual Analytics Science and Technology, pages 43–50, 2006.

[7] M. Chau, P. Lam, B. Shiu, J. Xu, and J. Cao. A Blog Mining Framework.
IT Professional, 2009.

[8] S. Chaudhuri, V. Ganti, and R. Motwani. Robust Identification of Fuzzy
Duplicates. In Proceedings of the 21st International Conference on Data
Engineering (ICDE 2005), 2005.

[9] P. Christen. A Two-step Classification Approach to Unsupervised Record
Linkage. In Proceedings of the sixth Australasian conference on Data mining
and analytics, pages 111–119, 2007.

[10] P. Christen and K. Goiser. Quality and Complexity Measures for Data
Linkage and Deduplication. Quality Measures in Data Mining, 43:127–151,
2007.

[11] W.W. Cohen. Integration of Heterogeneous Databases without Common
Domains Using Queries Based on Textual Similarity. SIGMOD Record,
27(2):201–212, 1998.

103

Bibliography

[12] W.W. Cohen, P. Ravikumar, and S.E. Fienberg. A Comparison of String
Distance Metrics for Name-matching Tasks. In Proceedings of the IJCAI-
2003 Workshop on Information Integration on the Web (IIWEB-03), pages
73–78, 2003.

[13] I.F. Cruz and H. Xiao. Complex Systems in Knowledge-based Environ-
ments: Theory, Models and Applications, volume 168, chapter 4: Ontology
Driven Data Integration in Heterogeneous Networks, pages 75–98. Springer
Berlin / Heidelberg, 2009.

[14] A.K. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios. Duplicate Record De-
tection: a Survey. IEEE Transactions on Knowledge and Data Engineering,
19(1):1–16, 2007.

[15] I.P. Felligi and A.B. Sunter. A Theory for Record Linkage. J. Am. Statis-
tical Assoc., 64(328):1183–1210, 1969.

[16] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. An Extensible Frame-
work for Data Cleaning. Technical Report RR-3742, INRIA, 1999.

[17] L. Getoor and D.P. Diehl. Link Mining: a survey. SIGKDD Explorations,
7(2):3–12, 2005.

[18] L. Gravano, P.G. Ipeirotis, H. Jagadish, N. Koudas, L. Muthukrishnan,
S. Pietarinen, and D. Srivastava. Using Q-grams in a DBMS for Approx-
imate String Processing. IEEE Data Engineering Bulletin, 24(4):28–34,
2001.

[19] L. Gu and R. Baxter. Selected Papers from AusDM, chapter Decision Mod-
els for Record Linkage, pages 146–160. Springer LNCS 3755, 2006.

[20] P. Jaccard. Distribution de la Flore Alpine dans le Bassin des Dranses et
dans Quelques Régions Voisines. Bulletin del la Socit Vaudoise des Sciences
Naturelles, 37:241–272, 1901.

[21] M.A. Jaro. Probabilistic Linkage of Large Public Health Data Files. Statis-
tics in Medecine, 14:491–498, 1995.

[22] M. Leida. Toward Semantics-aware Ontology Mediated. PhD thesis, Uni-
versità Degli Studi di Milano, 2008.

[23] M. Lenzerini. Data Integration: a Theoretical Perspective. In PODS ’02:
Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of Database Systems, pages 233–246, New York, NY,
USA, 2002. ACM.

[24] V.I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[25] D. Menestrina, O. Benjelloun, and H. Garcia-Molina. Generic Entity Reso-
lution with Data Confidences. Technical Report 2005-35, Stanford InfoLab,
2005.

[26] P. Mika. Social Networks and the Semantic Web, Computing for Human
Experience. Springer Science+Business Media, LLC, 2007.

104 Matching Profiles from Social Network Sites

Bibliography

[27] S.B. Needleman and C.D. Wunsch. A General Method Applicable to the
Search for Similarities in the Amino Acid Sequence of Two Proteins. J.
Molecular Biology, 48(3):443–453, 1970.

[28] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the Overlapping
Community Structure of Complex Networks in Nature and Society. Nature,
435:814–818, June 2005.

[29] R.C. Russell. R.C. Russell Index, US patent 1,261,167, 1918.

[30] R.C. Russell. R.C. Russell Index, US patent 1,435,663, 1922.

[31] P. Singla and P. Domingos. Multi-relational Record Linkage. In ACM
SIGKDD Workshop on Multi-Relational Data Mining, 2004.

[32] Author Unknown. Comparison of the XML model and the
Relational Model. From the DB2 Documentation of IBM,
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.
jsp?topic=/com.ibm.db2.luw.xml.doc/doc/c0023811.html, last vis-
ited: 14 September 2009.

[33] M. van Keulen and A. de Keijzer. Qualitative effects of knowledge rules
and user feedback in probabilistic data integration. The VLDB Journal,
Special Issue Paper:1–27, 2009.

[34] M. Weis, F. Naumann, and F. Brosy. A Duplicate Detection Benchmark
for XML (and Relational) Data. In SIGMOD Workshop on Information
Quality for Information Systems (IQIS), 2006.

[35] W.E. Winkler. Overview of Record Linkage and Current Research Direc-
tions. Technical report, US Bureau of the Census Research, 2006.

[36] W.E. Yancey. Evaluating String Comparator Performance for Record Link-
age. Technical report, Statistical Research Report Series RRS2005/05, US
Bureau of the Census, 2005.

[37] Z. Ziegler and K.R. Dittrich. Three Decades of Data Integration - All
Problems Solved? In 18th IFIP World Computer Congress (WCC 2004):
Building the Information Society, volume 12, pages 3–12, 2004.

Irma Veldman 105

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.xml.doc/doc/c0023811.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.xml.doc/doc/c0023811.html

106

Appendix A

Original Data Sources

On the next pages we present the labels of the data fields as you can find them
when you complete a profile at the profile sites LinkedIn, Hyves, Facebook and
Live Spaces.

We kept the names of the labels as close as possible to the original names.
Some information can be completed with more than one data item (such as
schools), which is presented by the extra columns. For instance, with LinkedIn,
Hyves and Facebook you can enter on which schools and/or universities you
followed a study, i.e. more than one if necessary. At the Live Space profile, you
can only enter for one study what you did.

107

Appendix A. Original Data Sources 108

Data Consists of Data Consists of

given‐name voornaam
familiy‐name achternaam
location e‐mail
e‐mail woonplaats
phone adres
phone‐type huisnummer
address postcode
bd‐day mobiele telefoonnummer
bd‐month geslacht
bd‐year geboorte‐dag
marital status geboorte‐maand
experience job geboortje‐jaar

company relatie
current school school‐naam

education school‐name MBO/HBO/WO instellings‐naam
finished bedrijven bedrijfsnaam

websites website‐name website
website‐url vrienden vriend‐naam

connections connection‐name

group group‐name

LinkedIn Hyves

Figure A.1: Labels of the data fields that belong to LinkedIn and Hyves profiles.

109

Data Consists of Data Consists of

voornaam voornaam
achternaam achternaam
geslacht geslacht
geboortedag locatie
geboortemaand geboorte‐dag
geboortejaar geboorte‐maand
geboorteplaats geboorte‐jaar
burgelijke‐staat telefoonnummer
e‐mail mail‐adres mobiele‐nummer
mobiele‐telefoon e‐mailadres
vaste‐telefoon relatie
adres geboorteplaats
woonplaats opleiding‐instelling
postcode opleiding‐examenjaar
website functie
hogeronderwijs instellingsnaam beroep

afstudeerjaar bedrijf
middelbare school schoolnaam mailadres‐werk

afstudeerjaar contacten contact‐naam

baan werkgever

functie
huidig

vrienden vriend‐naam

Live SpacesFacebook

Figure A.2: Labels of the data fields that belong to Facebook and Live Space profiles.

110

Appendix B

Database Schema

LinkedIn_Companies
Comp_ID

Name

LinkedIn_Connections
M_ID

C_ID

Relation

LinkedIn_Education
S_ID

M_ID

E_ID

LinkedIn_EducationName
S_ID

Name

LinkedIn_Experience
Comp_ID

M_ID

Job

LinkedIn_Member
ID

Firstname

Lastname

Email

PhoneNumber

Address

BdDay

BdMonth

BdYear

[Level]

Matches
LinkedIn_ID

Hyves_ID

LevelOK

Hyves_Companies
Comp_ID

Name

Hyves_Education
M_ID

S_ID

Hyves_Experience
M_ID

Comp_ID

Hyves_Friends
M_ID

F_ID

Relation

Hyves_HigherEducation
M_ID

S_ID

Hyves_Member
ID

Name

Email

Address

PhoneNumber

BdDay

BdMonth

BdYear

[Level]

Hyves_School
S_ID

SchoolName

1-1

Figure B.1: Database schema after manual schema mapping. This database schema
is used by the prototype during the matching process.

111

112

Appendix C

Statistics on the Data Sets

In the following tables some numbers on the different attributes of the profiles.
We divided the attribute Name into the categories “First name only”, “Different
name” and “Full name”. The category “Different name” includes the cases in
which a nickname, an abbreviation, initials or emoticons are used, or in case
the name represents more than one person, company, band or email address.

In Table C.1 we listed the statistics for all profiles in the data set. In Ta-
ble C.2 we listed these numbers for profiles that are part of a match. And in
Table C.3 we enlisted the number of attributes completed by both profiles in a
true match.

For all tables, total numbers (T) are split over level-1 profiles (L1) and level-2
profiles (L2).

113

Appendix C. Statistics on the Data Sets 114

T
a

b
le

C
.1

:
S
o
m

e
n
u
m

b
ers

o
n

th
e

fi
rst

d
a
ta

set.
T

o
ta

l
n
u
m

b
ers

(T
)

a
re

sp
lit

ov
er

lev
el-1

p
ro

fi
les

(L
1
)

a
n
d

lev
el-2

p
ro

fi
les

(L
2
).

A
ttrib

u
te

H
yves

P
ro

fi
les

L
in

ked
In

P
ro

fi
les

L
1

L
2

T
L

1
L

2
T

F
irstn

am
e

on
ly

1
(2,1%

)
354

(16,9%
)

355
(16,3%

)
0

(0%
)

0
(0%

)
0

(0%
)

D
iff

eren
t

n
am

e
1

(2,1%
)

76
(3,6%

)
77

(3,5%
)

0
(0%

)
17

(0,8%
)

17
(0,8%

)
F

u
ll

n
am

e
45

(95,7%
)

1703
(79,8%

)
1748

(80,2%
)

91
(100%

)
2050

(99,2%
)

2141
(99,2%

)
B

irth
d

ay
(d

-m
)

42
(89,4%

)
1571

(73,7%
)

1613
(74,0%

)
11

(12,1%
)

100
(4,8%

)
111

(5,1%
)

B
irth

d
ay

(y)
42

(89,4%
)

1571
(73,7%

)
1613

(74,0%
)

11
(12,1%

)
0

(0%
)

11
(0,5%

)
E

m
ail

45
(95,7%

)
0

(0%
)

45
(2,1%

)
87

(95,6%
)

233
(11,3%

)
320

(14,9%
)

P
h

on
e

10
(21,3%

)
26

(1,2%
)

36
(1,7%

)
0

(0%
)

0
(0%

)
0

(0%
)

A
d

d
ress

40
(85,1%

)
1588

(74,4%
)

1628
(74,7%

)
91

(100%
)

2067
(100%

)
2158

(100%
)

115

T
a

b
le

C
.2

:
S
o
m

e
n
u
m

b
er

s
o
n

th
e

m
a
tc

h
es

o
f

th
e

fi
rs

t
d
a
ta

se
t.

T
o
ta

l
n
u
m

b
er

s
(T

)
a
re

sp
li
t

ov
er

le
v
el

-1
p
ro

fi
le

s
(L

1
)

a
n
d

le
v
el

-2
p
ro

fi
le

s
(L

2
).

A
tt

ri
b

u
te

H
yv

es
P

ro
fi

le
s

L
in

ke
d

In
P

ro
fi

le
s

L
1

L
2

T
L

1
L

2
T

F
ir

st
n

am
e

on
ly

0
(0

%
)

0
(0

%
)

0
(0

%
)

0
(0

%
)

0
(0

%
)

0
(0

%
)

D
iff

er
en

t
n

am
e

0
(0

%
)

0
(0

%
)

0
(0

%
)

0
(0

%
)

0
(0

%
)

0
(0

%
)

F
u

ll
n

am
e

17
(1

00
%

)
94

(1
00

%
)

11
1

(1
00

%
)

17
(1

00
%

)
94

(1
00

%
)

11
1

(1
00

%
)

B
ir

th
d

ay
(d

-m
)

16
(9

4,
1%

)
77

(8
1,

9%
)

93
(2

3,
8%

)
4

(2
3,

5%
)

8
(8

,5
%

)
12

(1
0,

8%
)

B
ir

th
d

ay
(y

)
16

(9
4,

1%
)

77
(8

1,
9%

)
93

(2
3,

8%
)

4
(2

3,
5%

)
8

(8
,5

%
)

12
(1

0,
8%

)
E

m
ai

l
16

(9
4,

1%
)

12
(1

2,
8%

)
28

(2
5,

2%
)

16
(9

4,
1%

)
13

(1
3,

8%
)

29
(2

6,
1%

)
P

h
on

e
5

(2
9,

4%
)

2
(2

,1
%

)
7

(6
,3

%
)

0
(0

%
)

0
(0

%
)

0
(0

%
)

A
d

d
re

ss
15

(8
8,

2%
)

80
(8

5,
1%

)
95

(8
5,

6%
)

17
(1

00
%

)
94

(1
00

%
)

11
1

(1
00

%
)

Appendix C. Statistics on the Data Sets 116

Table C.3: Some numbers on the matches of the first data set. Total numbers (T) are
split over level-1 profiles (L1) and level-2 profiles (L2).

Attribute Matches
L1 L2 T

Firstname only 0 (0%) 0 (0%) 0 (0%)
Different name 0 (0%) 0 (0%) 0 (0%)
Full name 17 (100%) 94 (100%) 111 (100%)
Birthday (d-m) 4 (23,5%) 6 (6,4%) 10 (9,0%)
Birthday (y) 4 (23,5%) 6 (6,4%) 10 (9,0%)
Email 15 (88,2%) 4 (4,3%) 29 (26,1%)
Phone 0 (0%) 0 (0%) 0 (0%)
Address 15 (88,2%) 80 (85,1%) 95 (85,6%)

Table C.4: The number of schools is completed at Hyves profiles.

Nr of Schools Hyves
L1 L2 T

0 14 668 682
1 11 576 587
2 12 563 575
3 9 220 229
4 1 58 59
5-6 0 30 30
7+ 0 18 18

Table C.5: The number of schools is completed at LinkedIn profiles.

Nr of Schools LinkedIn
L1 L2 T

0 1 122 123
1 37 950 987
2 45 664 709
3 6 222 228
4 1 77 78
5 0 16 16
6 1 9 10
7+ 0 7 7

Table C.6: The number of Companies is completed at Hyves profiles.

Nr of Companies Hyves
L1 L2 T

0 29 1296 1325
1 12 603 615
2 5 136 141
3 0 55 55
4 0 22 22
5-6 1 11 12
7+ 0 10 10

117

Table C.7: The number of Companies is filled in at LinkedIn profiles.

Nr of Companies LinkedIn
L1 L2 T

0 3 64 67
1 14 306 320
2 18 359 377
3 18 432 450
4 20 317 337
5 10 233 243
6-7 6 373 388
8-9 1 84 85
10+ 1 54 55

Table C.8: The number of connections Hyves profiles have.

Nr of Connections Hyves
L1 L2 T

1 10 1983 1993
2 7 105 112
3-6 9 32 41
7+ 21 0 21

Table C.9: The number of connections LinkedIn profiles have.

Nr of Connections LinkedIn
L1 L2 T

1 5 1758 1763
2 3 196 199
3-6 12 111 123
7+ 71 2 73

118

Appendix D

More Results from the Experi-
ments

D.1 Distribution of Similarity Scores for True Matches

The graphs below show the distribution of the similarity scores of the true
matches, when compared with different string matchers. Only the most inter-
esting string matchers are shown in the graphs.

80,00

100,00

ir
w
is
e

ch
es
)

Name Jaro

JaroWinkler

20,00

40,00

60,00

80,00

100,00

ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

d
(%

 o
f #

Tr
ue

 m
at
ch
es
)

Name Jaro

JaroWinkler

Levenshtein

NeedlemanWunch

‐

20,00

40,00

60,00

80,00

100,00

1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00

Tr
ue

 m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

th
re
sh
ol
d
(%

 o
f #

Tr
ue

 m
at
ch
es
)

Pairwise Threshold

Name Jaro

JaroWinkler

Levenshtein

NeedlemanWunch

QGramsDistance

SmithWaterman

‐

20,00

40,00

60,00

80,00

100,00

1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00

Tr
ue

 m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

th
re
sh
ol
d
(%

 o
f #

Tr
ue

 m
at
ch
es
)

Pairwise Threshold

Name Jaro

JaroWinkler

Levenshtein

NeedlemanWunch

QGramsDistance

SmithWaterman

‐

20,00

40,00

60,00

80,00

100,00

1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00

Tr
ue

 m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

th
re
sh
ol
d
(%

 o
f #

Tr
ue

 m
at
ch
es
)

Pairwise Threshold

Name Jaro

JaroWinkler

Levenshtein

NeedlemanWunch

QGramsDistance

SmithWaterman

‐

20,00

40,00

60,00

80,00

100,00

1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00

Tr
ue

 m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

th
re
sh
ol
d
(%

 o
f #

Tr
ue

 m
at
ch
es
)

Pairwise Threshold

Name Jaro

JaroWinkler

Levenshtein

NeedlemanWunch

QGramsDistance

SmithWaterman

Figure D.1

‐

20,00

40,00

60,00

80,00

100,00

e
m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

es
ho

ld
 (%

 o
f #

Tr
ue

 m
at
ch
es
)

Email Jaro

JaroWinkler

Levenshtein

NeedlemanWunch

QGramsDistance‐

20,00

40,00

60,00

80,00

100,00

1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00

Tr
ue

 m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

th
re
sh
ol
d
(%

 o
f #

Tr
ue

 m
at
ch
es
)

Pairwise Threshold

Email Jaro

JaroWinkler

Levenshtein

NeedlemanWunch

QGramsDistance

SmithWaterman

Figure D.2

119

Appendix D. More Results from the Experiments 120

‐

20,00

40,00

60,00

80,00

100,00

e
m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

es
ho

ld
 (%

 o
f #

Tr
ue

 m
at
ch
es
)

Address Jaro

JaroWinkler

NeedlemanWunch

QGramsDistance

‐

20,00

40,00

60,00

80,00

100,00

1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00

Tr
ue

 m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

th
re
sh
ol
d
(%

 o
f #

Tr
ue

 m
at
ch
es
)

Pairwise Threshold

Address Jaro

JaroWinkler

NeedlemanWunch

QGramsDistance

SmithWaterman

Figure D.3

‐

20,00

40,00

60,00

80,00

100,00

e
m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

es
ho

ld
 (%

 o
f #

Tr
ue

 m
at
ch
es
)

Birthday Jaro

JaroWinkler

NeedlemanWunch

SmithWaterman

‐

20,00

40,00

60,00

80,00

100,00

1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00

Tr
ue

 m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

th
re
sh
ol
d
(%

 o
f #

Tr
ue

 m
at
ch
es
)

Pairwise Threshold

Birthday Jaro

JaroWinkler

NeedlemanWunch

SmithWaterman

DateMatcher

Figure D.4

‐

20,00

40,00

60,00

80,00

100,00

e
m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

es
ho

ld
 (%

 o
f #

Tr
ue

 m
at
ch
es
)

Schools
CosineSimilarity

NeedlemanWunch

QGramsDistance

‐

20,00

40,00

60,00

80,00

100,00

1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00

Tr
ue

 m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

th
re
sh
ol
d
(%

 o
f #

Tr
ue

 m
at
ch
es
)

Pairwise Threshold

Schools
CosineSimilarity

NeedlemanWunch

QGramsDistance

SmithWaterman

Figure D.5

‐

20,00

40,00

60,00

80,00

100,00

e
m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

es
ho

ld
 (%

 o
f #

Tr
ue

 m
at
ch
es
)

Companies BlockDistance

CosineSimilarity

DiceSimilarity

NeedlemanWunch

‐

20,00

40,00

60,00

80,00

100,00

1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00

Tr
ue

 m
at
ch
es
 s
at
is
fy
in
g
pa

ir
w
is
e

th
re
sh
ol
d
(%

 o
f #

Tr
ue

 m
at
ch
es
)

Pairwise Threshold

Companies BlockDistance

CosineSimilarity

DiceSimilarity

NeedlemanWunch

SmithWaterman

Figure D.6

D.2. Precision and Recall for Different String Matchers

D.2 Precision and Recall for Different String Match-
ers

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

PW Name

PW Email

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Pr
ec
is
io
n

String Matcher

PW Name

PW Email

(a)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Re
ca
ll

PW Name

PW Email

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Re
ca
ll

String Matcher

PW Name

PW Email

(b)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Pr
ec
is
io
n

PW Address

PW Birthday

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

D
at
eM

at
ch
er

Pr
ec
is
io
n

String Matcher

PW Address

PW Birthday

(c)

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

Re
ca
ll

PW Address

PW Birthday

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

D
at
eM

at
ch
er

Re
ca
ll

String Matcher

PW Address

PW Birthday

(d)

0

0,02

0,04

0,06

0,08

0,1

Pr
ec
is
io
n

PW Schools

PW Companies

0

0,02

0,04

0,06

0,08

0,1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Pr
ec
is
io
n

String Matcher

PW Schools

PW Companies

(e)

0

0,02

0,04

0,06

0,08

0,1

Re
ca
ll

PW Schools

PW Companies

0

0,02

0,04

0,06

0,08

0,1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Re
ca
ll

String Matcher

PW Schools

PW Companies

(f)

Figure D.7: Precision and Recall for different attributes and for different string
matchers, pairwise comparison only (Method: Normal, dpw = 0.70 and
dnw = 0.05, ωpw = ωnw).

Irma Veldman 121

Appendix D. More Results from the Experiments 122

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

NW Name

NW Email

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Pr
ec
is
io
n

String Matcher

NW Name

NW Email

(a)

0

0,1

0,2

0,3

0,4

0,5

Re
ca
ll

NW Name

NW Email

0

0,1

0,2

0,3

0,4

0,5

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Re
ca
ll

String Matcher

NW Name

NW Email

(b)

0

0,1

0,2

0,3

0,4

0,5

Pr
ec
is
io
n

NW Address

NW Birthday

0

0,1

0,2

0,3

0,4

0,5

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

D
at
eM

at
ch
er

Pr
ec
is
io
n

String Matcher

NW Address

NW Birthday

(c)

0

0,02

0,04

0,06

0,08

0,1

Re
ca
ll

NW Address

NW Birthday

0

0,02

0,04

0,06

0,08

0,1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

D
at
eM

at
ch
er

Re
ca
ll

String Matcher

NW Address

NW Birthday

(d)

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

Pr
ec
is
io
n

NW Schools

NW Companies

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Pr
ec
is
io
n

String Matcher

NW Schools

NW Companies

(e)

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

Re
ca
ll

NW Schools

NW Companies

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Re
ca
ll

String Matcher

NW Schools

NW Companies

(f)

Figure D.8: Precision and Recall for different attributes and for different string
matchers, with network comparison (Method: Normal, dpw = 0.70 and
dnw = 0.05, ωpw = ωnw).

123 D.2. Precision and Recall for Different String Matchers

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

PW Name

PW Email

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
rit
y

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Pr
ec
is
io
n

String Matcher

PW Name

PW Email

(a)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Re
ca
ll

PW Name

PW Email

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
rit
y

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Re
ca
ll

String Matcher

PW Name

PW Email

(b)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

PW Address

PW Birthday

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

D
at
eM

at
ch
er

Pr
ec
is
io
n

String Matcher

PW Address

PW Birthday

(c)

0

0,02

0,04

0,06

0,08

0,1

Re
ca
ll

PW Address

PW Birthday

0

0,02

0,04

0,06

0,08

0,1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

D
at
eM

at
ch
er

Re
ca
ll

String Matcher

PW Address

PW Birthday

(d)

0

0,02

0,04

0,06

0,08

0,1

Pr
ec
is
io
n

PW Schools

PW Companies

0

0,02

0,04

0,06

0,08

0,1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Pr
ec
is
io
n

String Matcher

PW Schools

PW Companies

(e)

0

0,02

0,04

0,06

0,08

0,1

0,12

Re
ca
ll

PW Schools

PW Companies

0

0,02

0,04

0,06

0,08

0,1

0,12

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Re
ca
ll

String Matcher

PW Schools

PW Companies

(f)

Figure D.9: Precision and Recall for different attributes and for different string
matchers, pairwise comparison only (Method: Normal, dpw = 0.50 and
dnw = 0.05, ωpw = ωnw).

Appendix D. More Results from the Experiments 124

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

NW Name

NW Email

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Pr
ec
is
io
n

String Matcher

NW Name

NW Email

(a)

0

0,1

0,2

0,3

0,4

0,5

Re
ca
ll

NW Name

NW Email

0

0,1

0,2

0,3

0,4

0,5

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Re
ca
ll

String Matcher

NW Name

NW Email

(b)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Pr
ec
is
io
n

NW Address

NW Birthday

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
rit
y

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

D
at
eM

at
ch
er

Pr
ec
is
io
n

String Matcher

NW Address

NW Birthday

(c)

0

0,02

0,04

0,06

0,08

0,1

Re
ca
ll

NW Address

NW Birthday

0

0,02

0,04

0,06

0,08

0,1

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
rit
y

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

D
at
eM

at
ch
er

Re
ca
ll

String Matcher

NW Address

NW Birthday

(d)

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

Pr
ec
is
io
n

NW Schools

NW Companies

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Pr
ec
is
io
n

String Matcher

NW Schools

NW Companies

(e)

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

Re
ca
ll

NW Schools

NW Companies

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

Bl
oc
k
D
is
ta
nc
e

Co
si
ne

 S
im

ila
ri
ty

D
ic
e
Si
m
ila
ri
ty

Eu
cl
id
ea
n
D
is
ta
nc
e

Ja
cc
ar
d

Ja
ro

Ja
ro
W
in
kl
er

Le
ve
ns
ht
ei
n

M
on

ge
El
ka
n

N
ee
dl
em

an
W
un

sc
h

Q
‐G
ra
m
s
D
is
ta
nc
e

Sm
ith

W
at
er
m
an

Re
ca
ll

String Matcher

NW Schools

NW Companies

(f)

Figure D.10: Precision and Recall for different attributes and for different string
matchers, with network comparison (Method: Normal, dpw = 0.50 and
dnw = 0.05, ωpw = ωnw).

Appendix E

Approximate String Matching
Methods

We briefly discussed some approximate string matching methods in Section 3.1.1.
In this section we will discuss these methods in more detail.

E.1 Levenshtein Distance

The Levenshtein distance, or edit-distance, measures the minimal number of
transpositions, inserts and deletions of characters are needed to transform one
string in the other.

As an example we present the way the edit-distance is calculated for the
strings s1 ‘entity’ of length n = |s1| = 6 and string s2 ‘identity’ of length
m = |s2| = 7. We create a matrix d of dimension (n + 1) × (m + 1). The first
row and column are filled with the numbers [0..6] respectively [0..7], in general:

d[0][i] = i, 0 < i ≤ m
d[j][0] = j, 0 < j ≤ m. (E.1)

Now every other entry d[i][j] can be filled with respect to the previous row and
column.

cost = 0, d[i][0] = d[0][j]
cost = 1, otherwise.

(E.2)

Each entry d[i][j] is then

d[i][j] = min(d[i− 1][j] +1,
d[i][j − 1] +1,
d[i− 1][j − 1] +cost).

(E.3)

The result of the method is the value of d[n][m]. In case of the example, this is
2.

An edit-distance of 0 means that no insertions, deletions or substitutions
are needed, hence the words are equal. Every number higher means one more
action is needed to transform one word in the other. The maximal distance is
the max(n,m).

125

Appendix E. Approximate String Matching Methods

Table E.1: distance matrix

e n t i t y
0 1 2 3 4 5 6

i 1 1 2 3 3 4 5
d 2 2 2 3 4 4 5
e 3 2 3 3 4 4 5
n 4 3 2 3 4 5 6
t 5 4 3 2 3 4 5
i 6 5 4 3 2 3 4
t 7 6 5 4 3 2 3
y 8 7 6 5 4 3 2

The Levenshtein distance is suitable for the detection of misspellings, but
when it is applied on a complete sentence instead of the tokens separately, it
will perform very badly in case of different word order and abbreviations.

E.2 Jaro Distance

The Jaro distance dj is expressed in the number of matching characters m and
the number of transpositions t. A transposition is the swapping of two letters.
Two matching characters are considered matching only if they are no farther
than ⌊

max(|s1|, |s2|)
2

⌋
− 1, (E.4)

e.g. they must be within a half word distance of each other. If we know the
number of matches and the number of transpositions, we can calculated the
Jaro distance dj

dj =
1
3

(
m

|s1|
+

m

|s2|
+
m− t
m

)
. (E.5)

For the example words s1 ‘entity’ and s2 ‘identity’ with m = 6, |s1| = 6, |s2| = 8
and t = 0 the Jaro distance would be

dj =
1
3

(
6
6

+
6
8

+
6− 0

6

)
≈ 0.917. (E.6)

The range of the Jaro distance is dj ∈ 〈0, 1]. If it evaluates to 1, it is a
complete match, and the lower the value, the less similarity between the words.

Jaro is suitable for words in which misspellings consist of swapping of char-
acters. Where a word with swapped characters would need two substitutions in
the Levenshtein distance, here it would count as one transposition (if they are
within half the length of the longest word).

E.3 Jaro-Winkler Distance

The Jaro-Winkler distance is a variant of the Jaro distance which assigns better
ratings to two words s1 and s2 if they have a shared prefix of length l. The
length l is maybe maximal 4 characters. p is a scaling factor that assigns a

126 Matching Profiles from Social Network Sites

E.4. Jaccard

weight for accounting the prefix in the metric. The standard value is p = 0.1.
The Jaro-Winkler distance dw is calculated as follows:

dw = dj + lp(1− dj). (E.7)

The example words s1 and s2 do not share a prefix, so in this case dw = dj . But
if we take the words s1 ‘Johnson’ and s2 ‘Jonhsons’ the Jaro distance would be

dj =
1
3

(
6
6

+
6
8

+
6− 1

6

)
≈ 0.861 (E.8)

and the Jaro-Winkler distance

dw ≈ 0.861 + 2× 0.1(1− 0.861) ≈ 0.888. (E.9)

Notice that the value of dw is slightly higher then dj , because the first two
characters match.

The Jaro-Winkler distance has the same range of values as the Jaro-distance.
However, it is better suited for words that share a prefix. With only minor
changes to the algorithm, this could also work for suffixes. Giving higher scores
to prefixes could help match abbreviations, such as ‘Inc.’ and ‘Incorporated’.

E.4 Jaccard

The Jaccard measure simply measures the ratio of equal tokens in the union
of tokens of both strings. Thus, we have a set of tokens for string s1, S1 =
Tokenize(s1) and the same for s2, S2 = Tokenize(s2), then

Jaccard(s1, s2) =
|S1

⋂
S2|

|S1

⋃
S2|

. (E.10)

The range of Jaccard is Jaccard(s1, s2) ∈ 〈0, 1] as well. With 1 being an
exact match. Unfortunately, misspellings are counted as different words and
hence can decrease the score enormously. Moreover, it matches all kinds of
words, even words that occur often, such as ‘the’ and ‘a’. The following method
compensates for this.

E.5 Cosine Similarity and TF/IDF

Cosine similarity comes from the information retrieval field and is used for de-
termining to which extent two documents A and B are similar, based on a
set of distinct terms T . A document in this case could be a sentence contain-
ing several words. Terms do not exactly mean words, better would be tokens,
since they split words on each character that is not alpha-numeric. For instance,
‘j.h.smith@provider.com’ would result in the set of tokens j, h, smith, provider, com.
If we have k = |T | terms, then the space we are talking about is k-dimensional.
Each document is a vector in this space expressing for each term how many
times the document consists this term. Then, the cosine similarity is

Sim(A,B) = cosineθ =
A •B
|A||B| . (E.11)

Irma Veldman 127

Appendix E. Approximate String Matching Methods

Johnson

Johnsons

Joh

Joh

ohn

ohn

hns

hns

nso

nso

son

son ons

Figure E.1: Example of Q-Grams

A problem with this is that some terms are not that discriminative for a certain
document and hence disturb the measure. A solution is provided with TF/IDF.

TF/IDF stands for Term Frequency/Inverse Document Frequency. It com-
pensates for words like ‘a’, ‘have’ and ‘is’, or in the case of mail addresses ‘com’,
that are very common in each document.

The term frequency tfi,j for a term i in a document dj is

tfi,j =
ni,j∑
k nk,j

, (E.12)

with ni,j being the number of times that term i occurs in document di,j .
The inverse document frequency idfi measures how important a term i is for

the set of documents D:

idfi = log
|D|

|{d : ti ∈ d}|
, (E.13)

with d ∈ D.
The TF/IDF value is then

tfidfi,j = tfi,j × idfi. (E.14)

This method is very suitable for detecting differences in word order. For
instance, in data fields containing the full name of a person. Consider a field
‘John Smith’ in one source and ‘Smith, John’ in another. This method would
conclude they are the same. Unfortunately, this method cannot detect mis-
spellings. ‘John’ and ‘Jonn’ would be seen as two complete different words.
This is undesired.

E.6 Q-grams

An approach that can deal with the problem mentioned above is Q-Grams.
Q-Grams divide each word in every possible sequence of a small number of
subsequent characters. See the example in Figure E.1. On these substrings
the cosine similarity algorithm can be applied. Here the words ‘Johnson’ and
‘Johnsons’ are split in Q-Grams of length q = 3. Because ‘Johnsons’ consists of
one character extra, it also will end up with one Q-Gram more. This Q-Gram
cannot be matched with another one. [11]

Words that are very similar share many infrequent Q-Grams.

128 Matching Profiles from Social Network Sites

	Samenvatting
	Summary
	Preface
	Introduction
	Research
	Research Goal and Scope
	Research Questions
	Research Approach
	Contributions

	Terminology
	Organization

	Data Sources
	Profile Sites
	Issues with Generic Data Retrieval
	Schema Mappings

	Retrieved Data Set
	Availability of Data
	Data Format
	Crawling the Internet
	Ground Truth
	Uncertainty of Data on Profile Pages

	Simple Profile Matching
	Syntactical Similarity
	Approximate String Matching
	Character-based Methods
	Token-based methods
	Hybrid methods

	Examples

	Semantical Similarity
	Ontologies

	Profile Matching Model
	Prototype
	Pairwise Comparison
	Determining Matches

	Concluding Remarks
	Expectations

	Profile Matching with Social Network Support
	Model
	Clustering
	Network Comparison
	Determining Matches

	Prototype
	Clustering
	Network Comparison
	Determining Matches

	Concluding Remarks
	Expectations

	Typed Networks Extension
	Network Types
	Model
	Prototype
	Concluding Remarks
	Expectations

	Multiple Sources
	Generic ER Solutions
	Model
	Merge Result
	Confidence Scores vs. Match or Non-Match
	Redefined Match Function
	Reuse of R-Swoosh

	Discussion

	Experiments
	Parameters
	Natural vs. Normal

	Measurements
	Precision
	Recall
	F-Measure

	Results
	Pairwise Threshold and Network Threshold
	Weights
	Attributes and String Matchers
	Exclusion of String Matchers
	Best Choices

	Compensation for Incomplete Networks
	Network Types
	Method
	Beyond the Limitations of the Data Set

	Concluding Remarks

	Related Work
	Entity Resolution
	Supervised Approaches
	Collective Entity Resolution
	Manual Postprocessing

	Unsupervised Approaches
	Distance Metrics

	Exploiting (Social) Network Relations
	Aggregators

	Concluding Remarks

	Conclusions
	Recommendations
	Future Work

	Bibliography
	Original Data Sources
	Database Schema
	Statistics on the Data Sets
	More Results from the Experiments
	Distribution of Similarity Scores for True Matches
	Precision and Recall for Different String Matchers

	Approximate String Matching Methods
	Levenshtein Distance
	Jaro Distance
	Jaro-Winkler Distance
	Jaccard
	Cosine Similarity and TF/IDF
	Q-grams

