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Abstract 

 
After the introduction of Black’s formula in 1973 numerous attempts have been made to price 

options more realistically, efficiently and consistently with market observations. Although 

smile effects can be incorporated into pricing European style bivariate options by following 

well-known methodologies, tail dependence is often neglected. This could be due to little 

need or interest to introduce tail dependence in pricing models and the great complexity 

introduced by adding this extra feature. But after the recent Credit Crisis, which started in 

2007, various researchers and institutions are turning back-to-basics by understanding and 

revising the assumptions made within a model and trying to develop alternative ways to price 

more realistically the products which are more sensitive to joint behavior of underlying assets. 

The integration of new features into the existing models is also very demanding as it 

challenges the current market practices. 

This thesis seeks to develop a better understanding of tail dependence and also volatility smile 

by studying its impact on the prices of some selected Equity and Interest rate derivates, and 

comparing the results with the existing models. It also explores the ways to successfully 

integrate these features into the existing models and practices. 

The basic building block used in this thesis is the Black Scholes model (no smile and zero tail 

dependence) which will be extended to add smile by assuming Uncertain Volatility and 

Displaced Diffusion (UVDD) model for each underlying and assuming various Copula 

functions to add the different types of tail dependence among them. With the use of copula 

functions we will replace the Gaussian copula while leaving the marginal distributions intact. 

The options analysed in this thesis are – Spread options, Spread Digital options, Double-

Digital options, Worst-of and Best-of options.  

The results show that the tail dependence cannot be neglected in many cases and the impact 

on option price can be higher than the due to addition of smile. The impact of tail dependence 

is comparably more on short maturity options and the impact of smile if comparably more on 

long maturity options. Another result shows that the impact of tail dependence decreases with 

increase in option maturity. This result is quite general since it applied to both Equity and 

Interest rate derivates. 
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Chapter 1 

Introduction and Overview 

 

1.1  Introduction 

Pricing of bivariate products to account for both smile and tail dependence has always been an 

area of research in financial industry. Neglecting any of the two can result in imperfect hedges 

and hence leading to significant losses.  

Suppose we want to price a bi-digital call option which gives a unit payoff only if both 

underlyings are above certain individual strikes. In this case the value of the option will 

increase if the probability of underlyings to move up together increases. This clearly shows 

that the probability of simultaneous extreme movements – better known as “tail dependence”- 

is of great importance.  In this thesis we will try to solve the question: how smile and tail 

dependence can affect pricing of some common bivariate products?  

We will analyse various scenarios and use different dependent structures to see the impact of 

some important variables on option pricing. The thesis is restricted to European style options 

on equities and interest rates. 

Instead of deriving joint distribution functions analytically we will replace them by using 

copula functions which will enable us to isolate the dependence between the random variables 

(equity prices or interest rates) from their marginal distributions. The most common is the 

Gaussian copula but the use of this copula does not solve the problem of tail dependence, as 

in this case tail dependence is observed as “increasing correlation” as the underlying 

quantities simultaneously move towards extreme, and we will show later that Gaussian copula 

has zero tail dependence. Hence a change of copula is required to price efficiently and 

consistently. 

For the univariate case similar problems have been dealt with earlier: the classic Black-

Scholes model assumed a normal distribution for daily increments of underlyings 

underestimating the probability of extreme (univariate) price changes. This is usually solved 

by using a parameterization of equivalent normal volatilities, i.e. the volatilities that lead to 

the correct market prices when used in the Black-Scholes model instead of one constant 

number. Due to the typical shape of such parameterisations the problem of underestimation of 

univariate tails is usually referred to as ‘volatility smile’. Tail dependence similarly leads to a 

‘correlation skew’ in the implied correlation surface. 
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We divide the thesis in eight chapters: in Chapter 2 and 3 we talk about copula theory and 

dependence. Chapter 4 will deal with some important copula families together with copula 

parameter estimation and simulation of random samples from such families. 

In Chapter 5 we introduce the UVDD model which will be used to incorporate the effect of 

volatility smile into the marginal distributions. We will also calibrate the UVDD model 

parameters for both equity and interest rate cases. 

Chapter 6 will involve the estimation of the copula shape parameters using likelihood 

methods for both equity and interest rates. After deriving all the parameters we will use it to 

price some common bivariate options in Chapter 7 - equity case and Chapter 8 - interest rate 

case. The pricing is done using Monte-Carlo simulations. We will analyse the results for 

various parameters of the pricing model and study of effect of change of copula functions. 

 

1.2  Evidence of Smile 

Using the Black Scholes option pricing model [1], we can compute the volatility of the 

underlying by plugging in the market prices for the options. Under Black Scholes framework 

options with the same expiration date will have same implied volatility regardless of which 

strike price we use. However, in reality, the IV we get is different across the various strikes. 

This disparity is known as the volatility skew.  

Figures 1.1-1.4 plots the volatility smiles obtained from the market for the swaps and equities. 

Here AY-BY swap refers to swap rate with maturity of A years and tenor of B years, later in 

the thesis we will represent this swap as SAB. In equity case Bank of America Corp (BAC) and 

Wells Fargo & Company (WFC) are used between the period 11-Sep’00 and 04-Sept’09. We 

will later judge our choice for the underlying. The base currency is US Dollars in Equity case 

and Euro in interest rate case. 
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  Figure 1.1 Volatility smile for 1Y-2Y Swap                            Figure 1.2 Volatility smile for 1Y-10Y Swap  
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       Figure 1.3 Volatility smile for BAC Equity                               Figure 1.4 Volatility smile for WFC Equity  

 

1.3  Evidence of tail dependence 

Tail dependence expresses the probability of a random variable taking extreme values 

conditional on another random variable taking extremes. For two random variables X, Y with 

respective distribution F, G the coefficient of tail dependence is given by: 

 

Lower tail dependence coefficient = 
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Given a set of historical observations from (X, Y) consisting of the pairs (xi, yi), 1 ≤ i ≤ n, how 
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We can approximate equation (1.2) by applying a similar approach. 

In Table 1.1 we present some pairs of equity and swap rates which we considered for our 

analysis. In the table we present intuitively what type of tail dependence is present among 

these selected pairs and if it is profound or very weak? The tail dependence coefficient 
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between them is calculated using the empirical formula presented above over their historical 

log returns. 

Asset Pair 

Linear 

Correlation Tail Dependence 

    Lower Upper 

JPMorgan-BAC 0.75 + + + + 

JPMorgan-WFC 0.76 + +  + +  

BAC-WFC 0.82 + +  + + 

JPMorgan-Toyota 0.36 + – 

Microsfot-Apple 0.40 – – + + 

Toyota-Honda 0.73 + + + + 

Toyota-Daimler 0.55 + +  + 

Toyota-Ford 0.37 + +  + 

Toyota-Microsoft 0.34 – – – 

Ford-Daimler 0.48 + – 

Ford-Honda 0.34 + – 

1Y-2Y & 1Y-10Y    0.86 + +  ++ 

1Y-2Y & 1Y-30Y 0.76 – ++ 

5Y-2Y & 5Y-10Y 0.73 – + 

5Y-2Y & 5Y-30Y 0.61 – – – – 

Table 1.1 Evidence of tail dependence in pairs of financial assets (++ = clear evidence of empirical tail 

dependence, + = possible tail dependent, – = unclear, – – = no tail dependence) 
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        Figure 1.5 Scatter plot for 1Y-2Y and 1Y-10Y Swap                 Figure 1.6 Scatter plot for BAC and WFC equity 

   daily log returns(3-Jan’05 till 31-Dec’07)                               daily log returns (07-Sept’09 till 11-Sept’00)   
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Figure 1.7 Scatter plot for 5Y-2Y and 5Y-10Y Swap          Figure 1.8 Scatter plot for 1Y-10Y and 1Y-30Y Swap 
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Figure 1.9 Estimated lower (left) and upper (right) tail dependence 

coefficient for BAC and WFC equity pair 
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Figure 1.10 Estimated lower (left) and upper (right) tail dependence 

coefficient for 1Y-2Y and 1Y-10Y swap pair 
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Figure 1.11 Estimated lower (left) and upper (right) tail dependence 

coefficient for 1Y-2Y and 1Y-30Y swap pair 
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Figure 1.12 Estimated lower (left) and upper (right) tail dependence 

coefficient for 5Y-2Y and 5Y-10Y swap pair 
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                                            Figure 1.13 Estimated lower (left) and upper (right) tail dependence 

coefficient for 5Y-2Y and 5Y-30Y swap pair 
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1.4  Scope of the project 

In this thesis we will study and analyse the impact of smile coming from section 1.1 and tail 

dependence coming from section 1.2 on prices of some common bivariate contracts, especially 

spread options.  

The choice of underlyings is inspired by our observation in Section 1.3: 

1) Equity case:  

• BAC and WFC pair 

We notice from Table 1.1 that within the selected equity pairs the pair BAC (Bank of America) 

and WFC (Wells Fargo Corp) gives the maximum value of linear correlation, and also from 

Figure 1.9 we observe that the empirical tail dependence between them is quite high, the 

period used in calculation is between 07-Sept’09 and 11-Sept’00 from the yahoo-finance 

website, this is approximately equal to 2260 trading days. 

Since equity case are almost similar with different underlyings we restrict ourselves to a single 

pair. 

Whereas for the interest rate case maturity of the swap can play a crucial part in the price of the 

options hence we considered four pairs.  

2) Interest Rate case: 

In the interest rate case we considered four pairs: 

• Swap Rate 1Y-2Y and 1Y-10Y pair 

• Swap Rate 1Y-2Y and 1Y-30Y pair 

• Swap Rate 5Y-2Y and 1Y-10Y pair 

• Swap Rate 5Y-2Y and 1Y-30Y pair 

Figure 1.10 suggests that there is a clear presence of both upper and lower tail dependence 

between the swap rates 1Y-2Y and 1Y-10Y. This pair also shows the highest correlation 

between all the other swap pairs considered in my thesis. 

Figure 1.11 suggests that upper tail dependence is present between the swap rates 1Y-2Y and 

1Y-30Y but the lower tail dependence is still unclear. This pair has a correlation less than the 

first pair but is higher for swap pairs with higher maturity. 

Figure 1.12 suggests presence of upper tail dependence between the swap rates 5Y-2Y and 5Y-

10Y but the lower tail dependence is unclear.  

From Figure 1.13 we can interpret that both upper and lower tail dependence are missing for 

the swap pair 5Y-2Y and 5Y-30Y. 

The products considered are European style with a single maturity, that is contracts whose 

payoff depends on two simultaneous observations (one from each underlyings) and the 

payment is made without delay in case of Equity, for the interest rate products there is a delay 
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between the observation and payment time. The choice of contracts is based on concerns in 

industry about possible sensitivity to tail dependence: 

                        Spread Call option = max (S1(T) – S2(T) – K , 0),                                         (1.3) 

                        Spread Put option = max {K – (S1(T) – S2(T)) , 0.0}                                   (1.4) 

            Spread Digital Call option = 


 ≥−

.0.0

,)()( 2,1,

Otherwise

KTSTSifc baba αα                                (1.5)         

               Digital Call options = 


 ≥≥

.0.0

,)(&)(0.1 2211

Otherwise

KTSKTSif
                                 (1.6) 

        Worst-of Call option = max (min (S1(T)/S1(0), S2(T)/S2(0)) – K, 0.0)              (1.7) 

             Best-of Call option = max (max (S1(T)/S1(0), S2(T)/S2(0)) – K, 0.0)             (1.8) 
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Chapter 2  

Introduction and properties of Copulas 

 

2.1 Copulas – Intuitive Approach 

During the last decades, capital markets have transformed rapidly. Derivative securities - or 

more simply derivatives - like swaps, futures, and options supplemented the trading of stocks 

and bonds. Theory and practice of option valuation were revolutionized in 1973, when Fischer 

Black and Myron Scholes published their celebrated Black Scholes formula in the landmark 

paper "The pricing of options and corporate liabilities" [1]. Advancing option valuation 

theory to options with multiple underlyings [2], which is the claims written on “baskets” of 

several underlying assets, lead to the problem that the dependence structure of the underlying 

securities needs to be considered together with the right distributional assumptions of the asset 

returns. Though linear correlation is a widely used dependence measure, it may be 

inappropriate for multivariate return data. 

For example, in risk-neutral valuation, we price European style financial assets by calculating 

expected value, under the risk-neutral probability measure, of the future payoff of the asset 

discounted at the risk-free rate. To apply this technique we need the joint terminal distribution 

function to calculate the expected value. But due to complex dependent structure between the 

multiple underlyings it becomes extremely difficult to couple their margins. Furthermore it is 

sometimes difficult to add variables having different marginal distributions and hence adding 

more complexity to the models. 

Consider a call option written on the minimum or maximum among some market indices. In 

these cases, assuming perfect dependence (correlation) among the markets may lead to 

substantial mispricing of the products, as well as to inaccurate hedging policies, and hence, 

unreliable risk evaluations.  

While the multi-asset pricing problem may be already complex in a standard Gaussian world, 

the evaluation task is compounded by the well known evidence of departures from normality 

[3]. Following the stock market crash in October 1987, departures from normality [4] have 

shown up in the well known effects of smile [5]-[6] and term structure of volatility [7]. A 

possible strategy to address the problem of dependency under non-normality is to separate the 

two issues, i.e. working with non-Gaussian marginal probability distributions and using some 

technique to combine these distributions in a multivariate setting. This can be achieved by the 

use of copula functions. The main advantage of the copula approach to pricing is to write the 
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multivariate pricing kernel as a function of univariate pricing functions. This enables us to 

carry out sensitivity analysis with respect to the dependence structure of the underlying assets, 

separately from that on univariate prices. Also calibration of the model can be done in two 

ways, treating the marginal univariate distribution and the copula parameter separately: more 

details on calibration in chapter 5. 

An important field where copulas have been applied is to price credit derivatives. The famous 

paper by David X. Li, “On Default Correlation: A Copula Function Approach”, 2000, 

proposes Gaussian copulas to be used to valuate CDS and first-to-default contracts [8]. In 

particular, the copula approach is used to derive the joint distribution function of survival 

times after deriving marginal distributions from the market information. 

Hence copula functions proved to be of great help in addressing to the following two major 

problems encountered in the derivatives pricing: 

• To Model departure from normality for multivariate joint distributions, 

• And pricing credit derivatives. 

Let us consider a very simple example to get an intuitive understanding of the copula concept 

in regard to finance. 

Take a bivariate European digital put option which pays one unit of related currency if the 

two stocks S1 and S2 are below the strike price levels of K1 and K2 respectively, at the 

maturity. According to risk-neutral pricing principles, the price of the digital put option at 

time t in a complete market setting is  

DP(t) = exp [– r (T – t)] Q (K1, K2) 

where Q(K1, K2) is the joint risk-neutral probability that both stocks are below the 

corresponding strike prices at maturity T. We assumed the risk free rate r to be constant 

during the life of the option. 

To recover a price consistent to market quotes we do the following: 

We recover Q1 and Q2, the risk-neutral probability density for the individual stock, for e.g. 

from the market price of the plain vanilla put options on S1 and S2 respectively. In financial 

terms, we are asking the forward prices of univariate digital options with strikes K1 and K2 

respectively; in statistical terms, we are indirectly estimating the implied marginal risk-neutral 

distributions for the stocks S1 and S2 from their vanilla put options. 

In order to compare the price of our bivariate product with that of the univariate ones, it 

would be great if we could write the prices as a function of the univariate option prices 

DP(t) = exp [– r (T – t)] Q (K1, K2) = exp [– r (T – t)] C (Q1, Q2) 

where C (x, y) is some bivariate function. 
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We can discover, from the above expression, the general requirements the bivariate function 

C must satisfy in order to be able to represent a joint probability distribution, 

• The range of the function C must be a subset of the unit interval, including 0 and 1, as 

it must represent a probability. 

• If any one of the two events (S1 < K1 and S2 < K2) has probability zero, then the joint 

probability that both the events occur must also be zero, hence C (x, 0) = C (0, y) = 0. 

• If any one event will occur for sure, the joint probability that both the events will take 

place is equal to the probability that the second event will be observed, hence C (x, 1) 

=  x and C (1, y) = y. 

• We also notice, intuitively, that if the probabilities of both events increase, the joint 

probability should also increase, and for sure it cannot be expected to decrease, hence 

C(x, y) is increasing in two arguments (2-increasing in mathematical framework). 

We will show in section 2.2 that such a bivariate function C is called a copula, and are 

extensively used to price a large variety of payoffs. These functions will enable us to express 

a joint probability distribution as a function of the marginal ones. So that we can price 

consistently the bivariate product as a function of the univariate options prices. 

 

In regard to our previous discussion we give an abstract definition for a function satisfying the 

above properties but in a more mathematical setting. We will also provide some of its basic 

and important properties. We will also present Sklar’s Theorem which will help us in 

understanding the above example in a greater depth. Here we stick to the bivariate case: 

nonetheless, all the results carry over to the general multivariate setting [9]. 

 

2.2 Definition of a Copula 

We first start with a more abstract definition of copulas and then switch to a more 

“operational” one. 

 

Definition 2.1   A two-dimensional copula is a function C: [0, 1] × [0, 1] => [0, 1] with the 

following properties: 

For every u, v ∈ [0, 1]: 

1. C (u, 0) = C (0, v) = 0. 

2. C (u, 1) = u, and C (1, v) = v. 

For every u1, u2, v1, v2 ∈ [0, 1] with u1 ≤ u2, v1 ≤ v2: 
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3. C (u2, v2) – C (u2, v1) – C (u1, v2) + C (u1, v1) ≥ 0. 

The property 1 is called the groundedness property of a function. The property 3 is the two-

dimensional analogue of a nondecreasing one-dimensional function and a bivariate function 

satisfying this property is called a 2-increasing function. 

As a consequence of the 2-increasing and groundedness properties in copulas, we also have 

the following properties for a copula function C [10, pp. 10-14]:  

1. C is nondecreasing in each variable. 

2. C satisfies the following Lipschitz condition for every u1, u2, v1, v2 in [0, 1], 

|C (u2, v2) – C (u1, v1)|  ≤ |u2 – u1| +|v2 – v1|                             (2.1) 

thus, every copula C is uniformly continuous on its domain. 

3. For every u ∈ [0, 1], the partial derivate 
v

vuC

∂

∂ ),(
 exists for almost every

1
 v in [0, 1].  

For such u and v one has  

0 ≤ 
v

vuC

∂

∂ ),(
 ≤ 1 

the analogous statement is true for the partial derivative 
u

vuC

∂

∂ ),(
. 

4. The functions u → 
v

vuC

∂

∂ ),(
 and v → 

u

vuC

∂

∂ ),(
 are defined and nondecreasing almost 

everywhere on [0, 1]. 

 

Alternatively we present an “operational” definition of a copula [11, pp. 52], which describes 

it as a multivariate distribution functions whose one-dimensional margins are uniform on the 

interval [0, 1]. 

C (u, v) = Π (U1 ≤  u, U2 ≤  v)                                             (2.2)  

 

The extended real line R U{-∞, +∞} is denoted by R*. 

A univariate distribution function of a random variable X is a function F which assigns to all x 

in R* a probability u = F (x) = P[ X ≤ x ]. 

The joint distribution function of two random variables X and Y is given by  

 

S (x, y) = P(X ≤ x, Y ≤ y). 

 
1
The expression “almost every” is used in the sense of the Lebesgue measure. 
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We know from elementary probability theory that the probability-integral transforms of the 

r.v.s (random variables) X and Y, if X ~ F(x)  and Y ~ G(y) then F(X)  and G(Y), are distributed 

as standard uniform Ui, i = 1, 2: 

P(F(X) ≤ c) = P(X ≤ F
 -1 

(c)) = F (F 
-1 

(c)) = c , 

Analogously, the transforms according to F 
– 1 

of standard uniforms are distributed according 

to F: 

F 
– 1 

(Ui) ~ F 

Since copulas are joint distribution functions of standard uniforms, a copula computed at F(x), 

G (y ) gives a joint distribution function at (x, y): 

C (F (x ), G (y )) = P(U1 ≤ F (x ), U2 ≤ G (y )) 

                                                                  = P(F 
– 1 

(U1) ≤ x, G 
– 1 

(U2) ≤ y) 

                                                                  = P(X ≤ x, Y ≤ y) 

                                                                  = S(x, y). 

The above relation between the copulas and the distribution functions will be the content for 

the next theorem. Sklar used the word copula to describe “a function that links a 

multidimensional distribution to its one-dimensional margins” [12]. 

 

2.3 Sklar’s Theorem 

Theorem 2.2 (Sklar’s (1959):   Let S be a joint distribution function with given marginal 

distribution functions F (x) and G (y). Then there exists a copula C such that for all (x, y) ∈ 

R*
2 

           S (x, y) = C (F (x), G (y)).                                                   (2.3) 

If F and G are continuous (hence Range F = Range G = [0, 1]) then C is unique. 

Conversely, if F and G are continuous univariate distribution functions and C is a copula, then 

S defined by (2.3) is a joint distribution function with marginals F and G. [12] 

While writing equation 2.3 we split the joint probability into the marginals and a copula, so 

that the latter only represent the “association” between random variables X and Y. For this 

reason copulas are also called dependence functions. We will touch upon this part in more 

details in the later sections. 

 

2.4 Fréchet-Hoeffding bounds 

In this section we will present bounds for the copulas, which show that the every copula is 

bounded by a maximal and minimal copula. These bounds are called Fréchet-Hoeffding 
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bounds; also the upper bound corresponds to perfect positive dependence and the lower bound 

to perfect negative dependence. [11, pp. 70-72] 

 

Theorem 2.3   Let C be a copula. Then for every (u, v) in [0, 1], 

     W (u, v): = max (u + v – 1, 0) ≤ C (u, v) ≤ min (u, v): = M (u, v).                      (2.4) 

The functions W and M are called the Fréchet-Hoeffding lower and upper bounds 

respectively. In the next section we present the relationship between the bounds and the 

random variables in a bivariate setting. 

 

        

Figure 2.1 Fréchet-Hoeffding lower bound          Figure 2.2 Fréchet-Hoeffding upper bound 

 

2.5 Copulas as Dependence functions 

The property of the copulas to be described as dependence functions will permit us to 

characterize independence and in the similar way characterize perfect dependence in a 

straightforward way. We will also present a very useful property of copulas called the 

invariant property with the help of a theorem. We will try to establish a relationship between 

the sections 2.2 and 2.3 by using copula as dependence functions. 

 

2.5.1 Independence 

We know that if X and Y are two independent random variables, with their individual 

univariate distribution functions given by F (x) and G (y) respectively, then their joint 

distribution function S is given by  

S(x, y) = F (x) G (y) 

for all x, y in Ρ*. 
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From Sklar’s Theorem we can write a copula function to describe this independence property 

between the two random variables as: 

C (F (x), G (y)) =  S(x, y) =  F (x) × G (y)                                  (2.5) 

We write this new copula as ⊥C , given by  

⊥C (u, v) = uv 

 if the two random variables are independent. 

The converse also holds and the proof can be found in [10, pp. 25]. 

 

2.5.2 Upper bound and perfectly positively dependence 

Throughout this section we assume that X and Y are continuous random variables. 

 

Definition 2.4 (Comonotone)   A set A ⊂ R*
2
 is said to be comonotonic if and only if, for 

every (x1, y1), (x2, y2) in A it holds that either, 

     x1 ≥ x2 and   y1  ≥  y2,  or, 

x2 ≥ x1 and   y2  ≥  y1. 

 

Definition 2.5 (Perfectly positively dependent)   A random vector (X, Y) is comonotonic or 

perfectly positively dependent if and only if there exits a comonotonic set A ⊂ R*
2 

such that  

 P((X, Y) ∈ A) = 1. 

 

Theorem 2.6   Let X and Y have a joint distribution function S. Then S is identically equal to 

its Fréchet-Hoeffding upper bound M if and only if the random vector (X, Y) are comonotonic.  

[11, pp. 70] 

 

A symmetric definition for countermonotonic (opposite to comonotonic) or perfectly 

negatively dependent random variates can be given. 

 

2.5.3 Lower bound and perfectly negative dependence 

Theorem 2.7   Let X and Y have a joint distribution function S. Then S is identically equal to 

its Fréchet-Hoeffding lower bound W if and only if the random vector (X, Y) are 

countermonotonic. [11, pp. 71] 
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2.5.4 Monotone transforms and copula invariance 

Copula C is invariant under increasing transformations of X and Y. It means that the copula of 

increasing or decreasing transforms of X and Y can easily be written in terms of the copula 

before the transformation. 

 

Theorem 2.8   Let X ~ F and Y ~ G  be random variables with copula C. If α, β are increasing 

functions on Range X and Range Y , then α ο X ~ F ο α–1 
 := Fα and β ο Y ~ G ο β–1 

 := Gβ have 

copula Cαβ = C. 

Proof: 

      Cαβ (Fα(x), Gβ(y)) = P[α ο X ≤ x, β ο Y ≤ y] = P[ X < α-1
(x), Y < β-1

(y)] 

                                  = C (F ο α-1
(x), G ο β-1

(y)) = C (P[ X < α-1
(x)],P[Y < β-1

(y)]) 

                                              = C (P[α ο X < x], P[[β ο Y ≤ y]) = C (Fα(x), Gβ(y)) 

The properties mentioned above are of immense importance and are widely exploited in 

financial modelling. It is due to these properties that copulas are superior to linear correlation. 

We will touch upon this part in more details in the next chapter. 

 

2.6 Survival Copula 

For a pair (X, Y) of random variables with joint distribution function S, the joint survival 

function is given by  

S (x, y) = P[X > x, Y > y]. 

The margins of the function S  are the functions S (x, -∞) and S (-∞, y), which are the 

univariate survival functions F (x) =P[X > x] = 1 – F (x) and G (y) = P[Y > y] = 1 – G (y), 

respectively. The relationship between the univariate and joint survival functions is given by: 

 S (x, y)  = 1 – F (x) – G (y) + S (x, y), 

                                                            = F (x) + G (y) – 1 + C (F (x), G (y)), 

                                                            = F (x) + G (y) – 1 + C (1 – F (x), 1 – G (y)). 

so that we define a survival copula 
∧

C  from [0, 1]
2
 to [0, 1] by using Sklar’s theorem, 

∧

C (u, v) = u + v – 1 + C (1 – u, 1 – v),                                      (2.6) 

We write the relation between the joint survival distribution function and survival copula from 

the above definitions to be: 



 22

S (x, y) = 
∧

C( F (x), G (y)). 

Note that the joint survival function 
∧

C  for two uniform (0, 1) random variables whose joint 

distribution copula is C is given by  

C (u, v) = 1 – u – v + C (u, v) =  
∧

C (1 – u, 1 – v). 
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Chapter 3  

Comovement  

 

Our concern of this chapter is to study how random variables relate to each other. We study 

this relation with the help of the concept “measure of association” which briefly describes 

how two random variables are associated when they are not independent.  

Scarsini [14] describes measures of association as follows: 

“Dependence is a matter of association between X and Y along any measurable function, i.e. 

the more X and Y tend to cluster around the graph of a function, either y = f(x) or x = g(y), 

the more they are dependent.” 

The choice of such functions is exactly the point where the most important measures of 

association will differ. 

Linear correlation is most frequently used in practice as a measure of association. Though the 

terms association and correlation are used interchangeably, we will show that correlation is an 

imperfect measure of association. We will show that linear correlation is not a copula-based 

measure of association; hence it can often be quite misleading and should not be taken as the 

canonical dependence measure [15]. Below we recall the basic properties of linear correlation 

and its shortcomings, and then continue with copula based measures of dependence. 

 

3.1 Correlation  

Linear correlation measures how well two random variables cluster around a linear function.  

 

Definition 3.1   If X and Y are two random variables, then the linear correlation coefficient 

between them is given by  

                                    
)()(

),(
),(

YVarXVar

YXCov
YX =ρ ,  -1 ≤ ),( YXρ ≤ 1.                   (3.1) 

Where Var(X) and Var(Y) are the variances of X and Y respectively and Cov(X, Y) is their 

covariance. If X and Y are perfectly linearly dependent, i.e., Y = aX + b for a∈ R \ {0}, b ∈ R, 

then ρ = ± 1. If X and Y are independent then ρ = 0. 

Correlation concept is suitable mostly for elliptical distributions such as normal and student-t 

distributions. These distributions are attractive and easy to use because their multivariate 

distributions can be determined from their variances and correlations alone. But one drawback 
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of using correlation is that a correlation coefficient of zero implies independence only if they 

are normally distributed but not when they have student-t distribution.  

We list some of the major shortcomings of linear correlation coefficient [16]: 

1. Correlation is defined only when the variances are finite. It fails when applied to 

heavy-tail distribution where variances appear infinite, e.g. student-t distributions 

variance is given by ν/ν-2 hence we get infinite variance when degree of freedom ν =2. 

2. Correlation is not invariant under (non-linear) increasing transformations of the 

variables. For example, log(X) and log(Y) generally do not have the same correlation 

as X and Y. It is invariant only under increasing linear transformations. [11, pp.104] 

3. A correlation of zero does not always imply independence of variables, e.g. student-t 

distribution.  [11, pp.107] 

4. It cannot model asymmetries which are very common in finance: there is evidence of 

stronger dependence between big losses than between big gains. 

5. Perfectly positively dependent (Comonotone) variables can have correlation less than 

1; similarly negatively dependent (Countermonotone) variables do not have 

necessarily a correlation of -1. [11, pp.105] 

As a consequence of the shortcomings faced while using linear correlation, copulas as 

dependence functions are becoming more popular and are more accurate in the financial 

settings.  

The major advantage of using copula based measures over correlation is as follows: 

1. Unlike correlation, copulas are invariant under strictly increasing transformations of 

random variables. For example the change of units of measurements from X to 

exponential(X) does not affect our copula; a direct consequence of Theorem 2.8 from 

Chapter 2. 

2. Copula based measures allows for parameterization of dependence structure, e.g. 

Archimedean copulas: measure of association tau (= τ) is related to Clayton family 

shape parameter α by α/(α + 2). 

3. We have a wide range of copula families from which we can always construct a 

suitable measure, depending on the random variables of the multivariate data we are 

trying to model. 

Apart from the above applications, Copula functions can be used for: 

4. If the marginal distributions are known, a copula can be used to suggest a suitable 

form for the joint distribution. We can create multivariate distribution functions by 
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joining the marginal distributions and can extract copulas from well-known 

multivariate distribution functions. 

5. Finally, Copula represents a way of trying to extract the dependence structure from the 

joint distribution function and to separate dependence and the marginal behaviour. 

We now put the above properties in the form of formal definitions. The most common 

measures of association are the measure of concordance and the measure of dependence. First 

we study measure of concordance and later we compare it to measure of dependence in 

section 3.3. We will also give two important measures associated with concordance namely 

Kendall’s tau and Spearman’s rho.  

 

3.2 Measure of Concordance 

Let X and Y be two random variables, then they are said to be concordant if large(small) 

values of X tend to be associated with large (small) values of Y. 

Definition 3.2   Let (x1, y1) and (x2, y2) be two observations from a vector (X, Y) of continuous 

random variables. We say they are concordant if x1 < x2 and y1 < y2 or x1 > x2 and y1 > y2 that is 

(x1 – x2)( y1 – y2) > 0. Similarly, they are discordant if x1 < x2 and y1 > y2 or x1 > x2 and y1 < y2 

that is (x1 – x2)( y1 – y2) < 0. 

Definition 3.3   A measure of association κX,Y  = κC is called measure of concordance if it 

satisfies the following properties [14]: 

1. κ is defined for every pair X, Y of continuous random variables. 

2. −1 ≤ κX,Y ≤ 1, κX,X = 1 and κX,−X = −1. 

3. κX,Y = κY,X. 

4. If X and Y are independent, then κX,Y = κC┴ = 0. 

5. κ−X,Y = κX,−Y = −κX,Y . 

6. If C1 and C2 are copulas such that C1 << C2, then κC1 ≤ κ C2.(concordance order is 

preserved) 

7. If {(Xn, Yn)} is a sequence of continuous random variables with copulas Cn, and if 

{Cn} converges pointwise to C, then limn→∞ κCn = κC.             

The direct connection between the measure of concordance and copula can be studied by 

noticing the following points [11, pp. 96]: 

1. They both are invariant under strictly monotone transformations of random variables, 

which follow from property 6 and theorem 2.8.  
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2. A measure of concordance assumes its maximal (minimal) value if the random 

variables are comonotonic (countermonotonic) that is they have only concordant 

(discordant) pairs. 

 Linear correlation coefficient satisfies only axioms 1 to 6 of the concordance measure 

definition 3.3, therefore is not a true measure of concordance. [11, pp. 103] 

 

3.2.1 Kendall’s tau 

We define Kendall’s coefficient first introduced by Fechner around 1900 and rediscovered by 

Kendall (1938). [10, pp. 158-164] 

 

Theorem 3.4  Let (X1, Y1) and (X2, Y2) be independent vectors of continuous random variables 

with joint distribution functions S1 and S2, respectively, with common margins F (of X1 and X2 

) and G (of Y1 and Y2 ). Let C1 and C2 denote the copulas of (X1, Y1) and (X2, Y2), respectively, 

so that S1(x, y) = C1 (F(x), G(y)) and S2(x, y) = C2 (F(x), G(y)). Let Pc denote the difference 

between the probability of concordance and discordance of ((X1, Y1) and (X2, Y2), i.e. let  

Pc = P{(X1 − X2)(Y1 − Y2 ) > 0} − P{(X1 − X2)(Y1 − Y2 ) < 0}. 

Then  

Pc ≡ Pc (C1, C2) = 1),(),(4 212 −∫∫ zvCdzvC
I

.                                (3.2) 

Add proof in appendix. 
 

Definitions 3.5   In case (X1, Y1) and (X2, Y2) are independent and identically distributed 

random vectors, with the identical copula C, that is S1(x, y) = S2(x, y) =C, then the quantity Pc 

is called Kendall’s tau Cτ . 

Kendall’s tau satisfies axioms 1 to 7 of definition 3.3 for a concordance measure [14].We can 

also interpret 
Cτ  as a normalized expected value since the double integral in the theorem 3.4 

calculates the expected value of the function C (U1, U2), where both U1 and U2 are standard 

uniform and have joint distribution C: 

 Cτ  = 4 Ε [C (U1, U2)] – 1. 

 

Theorem 3.6   Kendall’s τC can also be computed as: 

vu
v

vuC

u

vuC
C dd

∂

∂

∂

∂
= ∫∫

),(),(
 4 - 1  2I

τ ,                                (3.3) 

Since, for continuous X and Y we have  
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vu
vu

vuC
C ddd

∂∂

∂
=

),(
2

. 

 

Theorem 3.7   The Kendall’s taus of a copula and of its associated survival copula coincide 

[11, pp.99]: 

Cτ = 
C

τ  

 

3.2.1.1 Estimating τ from random sample 

Given a sample of n observation pairs (xi, yi), i = 1, 2, …, n ,from a random vector (X, Y), an 

unbiased estimator of Kendall’s coefficient [11, pp. 99] can be estimated to be sτ , given by: 

∑∑
= >−

=
n

i ij

ijs A
nn 1)1(

2
τ , 

where Aij is given by, 

Aij ≡ sgn (Xi − Xj)(Yi − Yj ), 

Where the signum function sgn for a real number x is defined as follows: 









<

<

<−

=

,01

,00

,01

xif

xif

xif

xsign  

3.2.2 Spearman’s rho 

As the case for Kendall’s tau, the population version of the measure of association known as 

Spearman’s rho is also based on discordance and concordance. [10, pp.167] 

 

Theorem 3.8   Given (X1, Y1), (X2, Y2) and (X3, Y3) be i.i.d random vectors with identical 

copula C and margins F an G, then  

ρC(X, Y ) = 3(P{(X1 − X2 )(Y1 − Y3) > 0} − P{(X1 − X2 )(Y1 − Y3) < 0}). 

The random variables X2 and Y3 are independent and thus the copula of (X2, Y3) is a product 

copula C
┴ 

that is, joint distribution function of (X2, Y3) is F(x)G(y). 

By using theorem 3.4 together with the theorem 3.8 we can similarly get an integral 

representation for Spearman’s rho. 

 

Theorem 3.9   Let (X, Y) be a vector of continuous random variables with copula C. Then 

Spearman’s rho for (X, Y) is given by 
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3),(123),(12),( 22 −=−= ∫∫∫∫ zvdCvzvdzzvCYX
IIC dρ                       (3.4) 

Hence, if X ∼ F and Y ∼ G, then the integral transforms U1 = F(X) and U2 = G(Y) are standard 

uniform with the joint distribution function C, then we have, 

3),(12),( 2 −= ∫∫ zvCvYX
IC zdρ  = 12 Ε(U1U2) – 3 

                = 
)()(

),(

12/1

4/1E

21

2121 =
− )(

UVarUVar

UUCovUU
 

                                                   = )).(),(( YGXFρ  

which shows that Spearman’s rho is equivalent to the linear correlation between F(X) and 

G(Y).  

Spearman’s rho also satisfies the properties in Definition 3.3 for a measure of concordance. 

[14] 

From the above theorem we see that Spearman’s rho is the rank correlation, in the sense of 

correlation of the integral transforms, of X and Y. We can exploit this relation in the 

estimation of ρC. 

 

3.2.1.1 Estimating ρC from random sample 

Given a sample of n observation pairs (xi, yi), i = 1, 2,…, n ,from a random vector (X, Y), an 

unbiased estimator of Spearman’s rho [11, pp.101-102] is given by : 
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where Ri ≡ rank(Xi) and Si ≡ rank(Yi),with the ranking done in ascending order. Taking into 

consideration the fact that the ranks of n data are the first n integer numbers, the above 

expression simplifies into  

)1(

)(
61

2

2

1

−

−
−
∑ =

nn

SR
n

i ii
. 

If tied ranks exist the coefficient between ranks has to be used instead of this formula: 
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iiii

yynxxn

yxyxn
ρ  

One has to assign the same rank to each of the equal values. It is an average of their positions 

in the ascending order of the values: 
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Although the properties listed under Definition 3.3 are useful, there are some additional 

properties that would make a measure of concordance even more useful. Recall that for a 

random vector (X, Y) with copula C, 

C = M ⇒  τC = ρS = 1, 

C = W ⇒  τC = ρS = −1. 

Where M and W refers to Fréchet-Hoeffding upper and lower bound respectively. 

The next theorem states that the converse is also true [17]. 

 

Theorem 3.10   Let X and Y be continuous random variables with copula C, and let κ denote 

Kendall’s tau or Spearman’s rho. Then the following are true and the copula C is said to be 

Comprehensive: 

1. κ(X, Y ) =  1 ⇒ C = M. 

2. κ(X, Y ) = −1 ⇒  C = W. 

 

3.3 Measure of Dependence 

Definition 3.11   A measure of association δC = δX,Y is called measure of dependence if it 

satisfies the following properties, 

1. δX,Y  is defined for every pair X, Y of continuous random variables. 

2. 0 ≤ δX,Y ≤ 1,  

3. δX,Y = δY,X, 

4. δX,Y = 0 iff X and Y are independent, 

5. δX,Y = 1 iff Y = f(X) is a monotone function of X, 

6. If α and β are strictly monotone functions on Range of  X and Range of  Y respectively, 

then δX,Y = δα(X),β(Y), 

7. If {(Xn, Yn)} is a sequence of continuous random variables with copulas Cn, and if 

{Cn} converges pointwise to C, then limn→∞ δ Xn,Yn = δC. 

The points where concordance and dependence measures differ are as follows: 

(i). Dependence measure takes its maximum value when X and Y are perfectly dependent 

(comonotonic/countermonotonic), whereas concordance measure takes it’s maximum 

only when X and Y are perfectly positively dependent (comonotonic). 

(ii). Dependence measure takes its minimum when X and Y are independent, whereas 

concordance measure takes its minimum only when X and Y are perfectly negatively 

dependent (countermonotonic). 
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(iii). Concordant measure being zero doesn’t not always imply X and Y to be independent 

whereas dependent measure equal to zero imply independence. 

 

3.4 Tail Dependence 

The concept of tail dependence relates to the amount of dependence in the upper-right 

quadrant tail or lower-left-quadrant tail of a bivariate distribution. It is a concept that is 

relevant for the study of dependence between extreme values. We can say that it is the 

probability of having a high (low) extreme value of Y given that a high (low) extreme value of 

X has occurred. It turns out that tail dependence between two continuous random variables X 

and Y is a copula property and hence the amount of tail dependence is invariant under strictly 

increasing transformations of X and Y . 

 

Definition 3.12 Let (X, Y) be a vector of continuous random variables with marginal 

distribution functions F and G. The coefficient of upper tail dependence λU of (X, Y ) is given 

by: 

λU = limu→1- P{G(Y) > u | F(X) > u}, 

        = limu→1-
 
P{Y >G

−1
(u) | X >F

−1
(u)}, 

                                                  = limu→1- 
u

uuCu

−

+−

1

),(21
. 

And the lower tail dependence is given by  

λL = limu→0+  P{G(Y) < u | F(X) < u}, 

         = limu→0
+ 

P{Y < G
−1

(u) | X < F
−1

(u)}, 

                                                  = limu→0
+

u

uuC ),(
, 

provided the limits λU , λL ∈ [0, 1] exists. 

The variables X and Y are said to exhibit upper (lower) dependence if λU ≠ 0 (λL ≠ 0), it means 

that their copula C also has upper (lower) tail dependence. 

Lemma 3.13   Denote the lower (upper) coefficient of tail dependence of the survival copula 

C  by Lλ , Uλ , then 

UL λλ = , 

LU λλ = . 
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Example 3.14: Consider the bivariate Clayton copula given by 

Cα (u, v) = max[(u
-α 

+ v
-α

 – 1)
-1/α

, 0], for α ∈ [-1, 0) U ( 0, +∞). 

Then, for α >0, 

λU  = [ ] 0)1,1(12 =−−+− uuuCu
du

d
 = 
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Now,  

λL =  limu→0
+
 

u

uuC ),(
 = limu→0

+
 

u

u
αα /1)12( −−−

 = limu→0
+
 αα /1)2(

1

u−
 

                    = 2
 – 1/α

. 

 

This implies that for α > 0, Clayton copula Cα has lower tail dependence only. 
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Chapter 4 

Bivariate Copula Families 

 

This chapter is divided in three sections: Definition and important properties of some widely 

used copulas, Copula shape parameter estimation and Simulation from desired copulas.  

We start with an overview of two classes of copulas, namely Elliptical and Archimedean 

copulas. Since most of our work will be related to only bivariate family we will exclude the 

multivariate from our discussion. These bivariate one-parameter families of copulas are 

absolutely continuous and have domain of [0, 1]
2
.  

For each family, we give the copula definition and write down the respective densities. We 

will also discuss the concordance order and comprehensiveness properties of the family. And 

whenever possible the relationship between the copula parameter and the measure of 

association or tail dependence will be presented. 

 

4.1 Elliptical Copulas 

Elliptical copulas are the copulas of elliptical distributions; examples are Student-t and 

Gaussian (normal) distribution.  They are the widely used copula family in empirical finance. 

But the drawback of using Elliptical copulas is that they do not have closed form expressions 

and are restricted to have radial asymmetry, hence they have equal lower and upper tail 

dependence. As in many insurance and financial applications, there is evidence that there is a 

stronger dependence between big losses than between big gains. Such asymmetries cannot be 

modeled with elliptical copulas.  

 

4.1.1 Gaussian Copula 

The copula family most commonly used for modeling in finance is the Gaussian copula, 

which is constructed from the bivariate normal distribution via Sklar's theorem.  

Definition 4.1   With Φρ being the standard bivariate normal cumulative distribution function 

with correlation ρ, the Gaussian copula function is 
GaCρ (u,v) = Φρ(Φ

-1
(u), Φ-1

(v)).                                                (4.1) 

where u and v ∈  [0,1] and Φρ given by 

Φρ(x,y) = dsdtstts
yx














−+

−
−

−
∫∫ ∞−∞−

]2[
)1(2

1
exp

12

1 22

22
ρ

ρρπ
                  (4.2) 

and Φ denotes the standard normal univariate cumulative distribution function.  

Differentiating GaCρ  yields the copula probability density function (pdf), (Figure 4.1): 
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φφ

φ ρ
ρ ,                                            (4.3) 

where ρφ ,,YX  is the density function for the standard bivariate Gaussian with linear 

correlation coefficient ρ andφ is the standard normal density.  

Proposition 4.2   The Gaussian copula generates the joint standard normal distribution iff. u = 

Φ(x) and v = Φ(y), that is iff. – via Sklar’s Theorem- the margins are standard normal. 

As a consequence of the fact that it is parameterized by the linear correlation coefficient, 

which respects concordance order (Definition 3.3: axiom 6, Chapter 3), the Gaussian copula is 

positively ordered with respect to its parameter: 
GaC 1−=ρ << 

Ga
C 0<ρ << 

Ga
C 0=ρ  << 

Ga
C 0>ρ  << 

Ga
C 1=ρ  

 Also, it is comprehensive (Theorem 3.10, Chapter 3):  
GaC 1−=ρ = W and 

GaC 1=ρ  = M.
 

and in addition . 
Ga

C 0=ρ = C
┴
. 

The measure of association and correlation coefficient for Gaussian copula are related by: 

ρ
π

τ arcsin
2

=   and  
2

arcsin
6 ρ
π

ρ =s . 

It is also shown that Gaussian copulas have neither upper nor lower tail dependence [19], 

unless ρ = 1: 

λU  = λL  = 




=

<

11

10

ρ
ρ

iff

iff
 

4.1.2 Student-t Copula 

Definition 4.3   The bivariate Student-t copula Tρ,ν(u, v) with ν degrees of freedom is defined 

as: 

))(),((),( 11

,, vtuttvuC
s −−= νννρνρ                                             (4.4) 

where the univariate (central) Student-t distribution function tν is given by: 
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                                     (4.5) 

and the corresponding bivariate function tρ,ν(x,y) is given by: 

dsdt
stts

yxt
x y 2

2
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22

2
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ρ
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,                    (4.6) 

and Г is the Euler function [18]. 
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          Fig 4.1.Gaussian Copula pdf ρ = 0.5.                            Fig 4.2.Student-t Copula pdf ρ = 0.5. 

When the number of degrees of freedom diverges, the copula converges to the Gaussian one. 

The copula sC νρ , is also positively ordered with respect to ρ, for given degrees of freedom. It 

also reaches the upper (lower) bound for ρ = +1 (-1) respectively.  

But 
sC ν,0 ≠ C┴ as the variances become infinite for ν = 2 for Student-t distributions. 

As for the tail dependency, for finite ν > 2 

λU  = λL  = 




=

−>>

10

10

ρ
ρ

iff

iff
 

4.2 Archimedean Copulas 

Archimedean copulas are an important family of copulas, which have a simple form with 

properties such as associativity and have a variety of dependence structures. Unlike Elliptical 

copulas most of the Archimedean copulas have closed-form expressions and are not derived 

from the multivariate distribution functions using Sklar’s Theorem. 

These copulas can take a great variety of forms. Furthermore, they can have distinct upper and 

lower tail dependence coefficients. This makes them suitable candidates for modelling asset 

prices, due to profound upper or lower tail dependence in their market data. 

Instead they are constructed by using a function φ: [0, 1] → R*
+
, which is continuous, 

decreasing, convex and such that φ(1) = 0. Such a function φ is called generator. It is called a 

strict generator whenever φ(0) = +∞ also holds. 

We will need the inverse of this generator function in the construction of Archimedean 

copulas. The pseudo-inverse of φ is defined as follows: 







+∞≤≤

≤≤
=

−

v

vv
v

)0(0

)0(0)(
)(

1
[-1]

ϕ
ϕϕ

ϕ  

Definition 4.4   Given a generator and its pseudo-inverse, an Archimedean copula C
A
 is 

generated as follows: 

C
A
(u, v) = φ[-1] 

(φ(u) + φ(v)).                                                (4.7) 
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Theorem 4.5   Let C
A
 be an Archimedean copula with generator φ .Then 

1. C
A
 is symmetric; C

A 
(u, v) = C

A 
(v, u) for all u, v in [0, 1]. 

2. C
A
 is associative; C

A 
(C

A 
(u, v), z) = C

A 
(u, C

A 
(v, z)) for u, v, z in [0, 1]. 

The density of an Archimedean copula, provided 'ϕ ≠ 0 and is finite, is given by [11, pp. 122] 

3))),(('(

)(')('),((''
),(

vuC

vuvuC
vuc

A

ϕ

ϕϕϕ
−=                                        (4.8) 

 

4.2.1 One-parameter Archimedean copulas 

We will consider in particular the one-parameter copulas, which are constructed using a 

generator φα(t), where parameter α is any real number. Table 4.1 describes some well-known 

families and their generators. 

 

Name Cα(u, v) φα(t) α Range τ λL λU 

Clayton 

 

Frank 

 

Gumbel- 

Hougaard 
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Table 4.1 One-parameter Archimedean copulas 

As seen in Table 4.1 the computation of the copula parameter from the association one, for 

most of the families, is elementary and the relationship between the two is one-to-one. The 

following figures present the probability density function for Clayton and Frank copula for 

parameter value 5. 
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                Fig 4.3.Clayton Copula pdf α = 5                                      Fig 4.4.Frank Copula pdf α = 5 
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Figure 4.5 Gumbel Copula pdf α = 5 

 

4.2.2 Archimedean copula and dependency 

Kendall’s τ can also be written as [20] 

∫ +=
I

dv
v

v
1

)('

)(
4

ϕ
ϕ

τ                                                        (4.9) 

Where φ’ exists almost everywhere since the generator is convex. 

This makes Archimedean copulas easily amenable for estimation, as we will see in next 

chapter. 

 

4.3 Copula Parameter Estimation 

There are several ways to estimate parameter of a copula-function. Most popular methods 

deal with maximization of log-likelihood function of the copula density with respect to the 

parameters. Joe [21], Durrleman [22] suggest three different ways: the full maximum 

likelihood (FML) method, the inference for margins (IFM) method and the canonical 

maximum likelihood (CML) method. All three methods are briefly introduced further. 

For a random vector X = (x1t, . . . ,xdt)
T
t 1=  with parametric univariate marginal distributions Fj 

= (xj, δj) , j = 1, . . . , d the conditional distribution of Xt can be written as: 

 

                    F (α; x1,. . . , xT ) = C (F1 (x1, δ1), . . . , Fd (xd, δd);θ) ,                             (4.10) 

where C is from parametric copula family with dependence parameter θ. 

Assuming that c is density of C we get the conditional density of Xt 

 

                     f (α; x1,. . . , xT ) = c{F1 (x1, δ1), . . . , Fd (xd, δd);θt}∏
=

d

i 1

 fi (xi ; δi).                (4.12) 
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Then the log-likelihood function is given by 

 

ℓ (α; x1,. . . , xT ) = ∑
=

T

t

c

1

log {F1 (x1,t, δ1), . . . , Fd (xd,t, δd);θt} + ∑∑
= =

T

t

d

j1 1

log  fj (xj,t ; δj).    (4.13) 

where c{u1, . . . , ud} = 
d

d
d

uu

uuC

∂∂

∂

...

)....,(

1

,1
is a copula density, and α = (θ, δ1, . . . , δd)

’
 are the 

parameters to be estimated. 

 

4.3.1 Fully parametric standard maximum-likelihood 

This method requires distributional assumptions for the margins. If the margins are specified 

correctly, this estimator possesses the usual optimality properties of the ML-estimator. 

The maximum likelihood method implies choosing C and F1,……Fn such that the probability of 

observing the data set is maximal. The data set is assumed to consist of independent 

observations. 

The possible choices for the copula and the margins are unlimited; therefore we usually 

restrict ourselves to certain classes of functions, parameterized by some vector nR⊂Θ∈α . 

It estimates the parameters exactly from equation 4.13, by maximizing the likelihood function 

with respect to the unknown parameter α Θ∈  which is called the maximum likelihood 

estimator (MLE): 

αMLE := )(maxarg α
α

l

Θ∈
              

But the maximization of such log-likelihood function is complicated as it involves estimation 

of all the parameters simultaneously, and the increase of scale problem makes the algorithm 

too cumbersome. Also these solutions can also be local maxima, minima or infection points. 

On the other hand, maxima can occur at the boundary of Θ  (or if ||α|| → ∞), in discontinuity 

points and in points where the likelihood is not differentiable. 

For joint distributions satisfying some regularity conditions, it can be shown Shao [23] that if 

the sample size increases, the subsequent MLEs converges to a limit. This property is called 

consistency. 

 

4.3.2 Inference for Margins (IFM) Method  

The above estimation problem can also be approached in a different and relatively easy way 

as proposed by Joe and Xu [24]. They propose to estimate the parameter α in two steps: 

1. Estimate the margins’ parameters δ by performing the estimation of the univariate marginal 

distributions: 
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2. Estimate the copula parameter θ given the margins’ parameter δ̂ : 
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The IFM estimator is defined as the vector 

)'ˆ,ˆ(ˆ θδα =IFM  

Let ℓ be the entire log-likelihood function, ℓj the log-likelihood of the jth marginal, and ℓc the 

log-likelihood for the copula itself. Then the IFM estimator is the solution of: 
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While the MLE comes from solving  
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The equivalence of the two estimators does not hold but it is simple to see that the IFM 

estimator provides a good starting point for obtaining an exact MLE.  By doing so, the 

computational cost of finding the optimal set of parameters reduces significantly. 

 

4.3.3 Canonical Maximum Likelihood (CML) Method 

In the canonical maximum likelihood (CML) method proposed by Mashal and Zeevi [25] no 

assumptions on the distributions of the marginals are needed. Instead, empirical marginal 

distributions are estimated and the approximation of the unknown marginal distribution Fj(·) 

is given by 

{ },
1

1
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,∑
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=
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t

tjj xX
T

xF  

where { }xX tj ≤Ι ,  is an indicator function. Thus, pseudo-samples of uniform variates are 

obtained. Then we can maximize the pseudo log-likelihood function given by 

{ }αα );(ˆ),.......,(ˆlog)( 11

1

ntnt

T

t

XFXFc∑
=

=l  

and obtain the desired estimate 

)(maxargˆ αα
α

l=CML  

This method is computationally more advantageous than the two other described above as it is 

numerically more stable. 
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4.4 Simulation  

In the following sections some useful techniques to draw random samples from the Gaussian 

and one-parameter Archimedean copulas are presented. These random samples are the key 

ingredients for the Monte Carlo simulations. 

The simulations for Gaussian copula are obtained easily, but for Archimedean copulas we will 

discuss conditional sampling method and much simpler Marshall and Olkin’s method. And 

once a copula has been decided bivariate/multivariate random samples can be drawn easily. 

 

4.4.1 Simulation Method for Gaussian Copula 

As we already stated that Gaussian Copula is one of the most widely known and applied 

copula to Empirical finance. Since this copula has no closed form and hence not very easy to 

write, but the random draws from n-copula CR, where R is the correlation matrix, follow very 

simple algorithm given by [11, pp. 181]: 

• Find the Cholesky decomposition A of R. 

• Simulate n independent (n=2 for bi-variate copulas) random samples z = 

(z1,z2,…....,zn)’ from Φ(0, 1) (Standard Normal Distribution) 

• Set x = Az; 

• Set ui = Φ(xi) , i=1,2,….,n. 

• (u1,u2,…....,un)’ = (F1(t1),F2(t2),….Fn(tn))’ where Fi denotes the i
th

 margin. 

 

4.5 Conditional Sampling 

This is a very handy technique in the case of Archimedean copulas [11, pp. 182-188] but is 

not applicable for few families like the Gumbel Copula, and also sometimes it involves 

solving quite a number of equations numerically (like for n-Frank copula one needs to solve n 

– 1 dimensional polynomial equation). 

The components of the realization of the copula are generated one by one. The first 

component is drawn from a uniform distribution, the second in based on the copula 

conditional on the first draw and so on. 

• Define Ck(u1,u2,…....,uk) = C(u1,u2,…....,uk,1,1,….,1), 1≤ k ≤ n, 

• Simulate a vector (v1,v2,…....,vn) of standard uniform random variates, 

• Put 
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• The solution (u1,u2,…....,un)  of this system is a realization of the copula. 
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Where the conditional distribution of the k-th component given the preceding ones is  
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            (4.14) 

Cherubini et al [11] show that for Archimedean copulas  
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We demonstrate below how to use conditional sampling to draw random samples from 

bivariate Clayton and Frank copulas. 
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        Figure. 4.5 Gaussian random sample ρ = 0.5.                       Figure 4.6 Clayton random sample, α = 5 

 

4.5.1 Clayton bivariate simulation 

The generator of the Clayton Copula is φ(u) = u
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 – 1 with pseudo inverse given by φ-1
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using the algorithm from section 4.5. 

Solving for u2 gives  
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α
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Figure 4.6 shows 1500 random samples from a Clayton Copula with parameter alpha = 5 

using above algorithm. 
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4.5.2 Frank bivariate simulation 

The generator of the Frank Copula is 
1
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Figure 4.7 shows 1500 random samples from a Frank Copula with parameter 5 using above 

algorithm. 
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Figure 4.7 Frank Random numbers, α = 10                       

 

4.6 Marshall and Olkin’s Method 

This method involves the Laplace transform and its inverse function [26].  

The Laplace transform of a positive random variable γ is defined by: 

)()()(
0

tdFeeEs
tss

γ
γ

γτ ∫
∞

−− ==                                        (4.15) 

where Fγ is the distribution function of γ. As we know Laplace transforms have well defined 

inverse. The inverse τ-1 serves as the generator for an Archimedean copula. 

Let F, G be two univariate distributions, then  

H(x): = )()( γγ
dFxG∫                                                  (4.16) 

is also a distribution- it is the mixture of distributions Gγ with weights determined by F. 
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We can also write using the Laplace transform as  

H(x) = τ(-log G(x))     

i.e, given H and F, there always exist a distribution function G such that equation (4.16) 

holds. 

 

4.6.1 Gumbel bivariate simulation 

We will apply Marshal and Olkin’s method to generate random sample from Gumbel copula 

with parameter α [11]. 

• Generate a r.v. γ Stable(1, 0, 0) with parameter 1/α (hence, γ has Laplace transform 

τ(s) = exp{ α
1

s− }); 

• Independently of the previous step, generate U1, U2,……, Un independent Uniform (0, 

1) r.v.s 

• For k = 1, 2, …., n calculate )(
*1
kkK UFX

−=  where  









−= kk UU ln

1*

γ
τ  

Figure 4.8 shows 1500 random samples from a Gumbel Copula with shape parameter 2 using 

above algorithm. 

 

Figure 4.8 Gumbel random sample, α = 2 
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Chapter 5 

UVDD Model and Calibration 

 

In this chapter we will briefly discuss the theory and application of Uncertain Volatility model 

with Displaced Diffusion (UVDD) and later apply it to fit to the market smile of swaps and 

equities. Calibration of the model parameters will be done using swaption prices in case of 

swaps and vanilla call options prices in case of equities. These calibrated models will be used 

later in the pricing of various bivariate products. 

 

5.1 Uncertain Volatility model with Displaced Diffusion 

These models are proposed as an easy-to-implement alternatives to stochastic volatility 

models (SVMs), based on the assumption that the asset’s volatility is stochastic in the 

simplest possible way, that is modeled by a random variable rather than a diffusion process.  

The risk-neutral dynamics of an underlying asset S(t) under the UVDD assumption is given 

by 

( ) ( )[ ] ( )[ ] ( )tdZtSdttSrtdS III ασα +++=                                (5.1) 

where, 

- I is a discrete random variable, independent of the Brownian motion Z, and taking 

values in the set {1,2,…..,m} with probabilities λi
 
:= Q(I=i)>0 with 1

1

=∑
=

m

i

iλ ; 

- σi (volatility) and αi(displacement) are positive constants for all i’
s
;, which occur as a 

random vector pair with probability λi, the random value (σi, αi) is drawn immediately 

after time zero.  

- And r is the interest rate which is assumed to be constant. 

The intuition behind the model is as follows. The underlying asset S(t) dynamics are given by 

displaced geometric Brownian motion where the model parameters are not known at the 

initial time, and one assumes different scenarios for them. The volatilities and displacements 

are random variables whose values will be known immediately after time zero. 

The volatility of such a swap process, therefore, is not constant and one assumes several 

possible scenarios {1, 2,…, m)
 
for its value. The implied volatilities are smile shaped with a 

minimum at the at-the-money level. And to account for skews in implied volatilities, UVDD 

models are usually extended by introducing (uncertain) shift parameters αi.  

UVDD model have a number of advantages that strongly support their use in practice. They 

preserve analytical tractability, are relatively easy to implement and are flexible enough to 

accommodate general implied volatility surfaces in the markets. 
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A drawback of the UVDD model is that future implied volatilities lose the initial smile shape 

almost immediately, i.e. as soon as the random value of the model parameters is drawn, since 

from that moment on the underlying asset dynamics evolves according to displaced geometric 

Brownian motions under their respective measure (when the shift parameters are zero the 

implied volatilities become flat in the future).  

 

5.1.1 Probability distribution of S 

Using (eq. 5.2) and the independence of the scenarios (I and Z), the probability distribution p 

of Sa,b can be easily derived as the mixture of lognormal distributions given by: 

        ( ) ( )∑
=

+=
m

i

iiii vmSLNSp
1

,;αλ                                                     (5.2) 

where LN(x; mi, vi) is the probability density for the i
th

 lognormal distribution with mean mi 

given by  

( )( ) TrSm iii )2/(0ln
2

σα −++=  

and standard deviation vi given by 

Tv ii σ= . 

5.2 UVDD Model - Swap Rates 

The dynamics of a swap rate Sa,b(t) (Appendix A – Section A.1) under the UVDD assumption 

is given by: 

( ) ( )[ ] ( )tdZtStdS
baI

baba
I

baba
,

,,,, ασ +=                                           (5.3)                                              

where the variables have their usual meaning. Here the displacement term is absent, hence r = 

0. The UVDD model can accommodate a smile consistent with the market data (section 5.3) 

allowing at the same time for a simple extension of the Black-like formulas. Another 

drawback of the model is that the swap rate Sa,b is not guaranteed to be positive, as we are 

assuming log-normality only for (Sa,b+αa,b). More precisely, with displaced diffusion the 

swap rate Sa,b can take values in [-αa,b,∞) and consequently, there is some probability mass 

associated with negative values. 

 

5.3 Fitting the UVDD parameters – Swap rates 

The swap rate dynamics (Equation 5.3) depends on the volatility and displacement 

parameters (σi
a,b

 and αi
a,b

), as well as on the number of scenarios m and the probability λi
a,b

 

assigned to each scenario. Our approach consisted in assuming 2 scenarios (i.e. m=2) and 

then fitting the free parameters to market data. Namely, 
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1. For each point of the swaption volatility cube, the BS swaption price was calculated 

using (eq. 7.7) (with m=1, λ1
a,b

=1 and α1
a,b

=0); 

2. σi
a,b

, αi
a,b 

and λi
a,b

 were then determined by minimizing the differences between the 

prices calculated in 1 and the prices given by (eq. 5.4); 

3. To analyze the results, we calculated the implied volatility corresponding to each 

fitted price calculated in 2. 

We remark that: 

• The swaption volatility cube has the volatilities for different pairs (swaption expiry, 

maturity of the underlying swap) for strikes ranging from -200bp to 300bp in most of 

the cases. As these strikes refer to the ATM level, we had to exclude from the fit all 

the strike levels for which the strike = (ATM  swap rate + strike level) < 0 for at least 

one swap rate (e.g., for a pair of 1Y-2Y swap the ATM swap rate is 2.65%, the -300bp 

strike was replaced with -200bp in almost all of the cases for the fit for all points of 

the surface); 

• The minimization is done across all selected strikes for a given pair, i.e., 

( ) ( )[ ]
2

1

;,;0;,;0∑
=

−
strikesn

k

k

UVDD

k

BS KbaSwaptionKbaSwaption                         (5.4) 

 

• We imposed the following constraints on the parameters:  

a) 0.01≤ σi
a,b≤ 0.7,  to ensure non-negative and not very high volatilities. 

b) 0.001≤ αi
a,b≤0.1, to get left skew in swap rates we want positive displacements 

and an upper bound of 0.1 to reduce frequency of negative rates during Monte 

Carlo  Simulations. 

c) 0.2≤ λ1
a,b≤ 0.8, to ensure that each scenario has significant positive weights.  

We started by choosing a calibration method which can estimate the parameters in their 

respective bounds and minimize our objective function given by Equation (5.4). The valuation 

date used for swaption prices in all the calibration is 16-Mar-09.  

 

5.3.1 UVDD Model for 1Y-2Y Swap Rate 

Table 5.1 shows the market and model prices with implied volatilities obtained after 

calibration of 2-scenario UVDD model for 1Y-2Y swap rate with ATM swap rate of 2.6575% 

and strikes between -200bp and +300bp.  
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Strike 

Level Strike 

Market 

Price 

Model 

Price 

Market 

Implied Vol 

Model 

Implied Vol 

% diff 

in Vol 

-0.02 0.006575 380.0540 380.1720 0.6040 0.6206 2.75% 

-0.015 0.011575 287.5370 287.3120 0.4880 0.4804 -1.56% 

-0.01 0.016575 200.0650 199.1730 0.4140 0.4028 -2.70% 

-0.005 0.021575 123.3380 122.4380 0.3610 0.3550 -1.65% 

-0.0025 0.024075 91.7394 90.9408 0.3425 0.3381 -1.29% 

0 0.026575 64.9019 64.9977 0.3240 0.3245 0.15% 

0.0025 0.029075 44.3128 44.7271 0.3115 0.3136 0.67% 

0.005 0.031575 28.6243 29.7111 0.2990 0.3049 1.97% 

0.01 0.036575 11.1559 12.0281 0.2860 0.2929 2.40% 

0.02 0.046575 1.4717 1.6407 0.2775 0.2823 1.72% 

0.03 0.056575 0.2332 0.1941 0.2820 0.2768 -1.85% 

Table 5.1 Market and UVDD Model Price/Volatilities with strikes for 1Y-2Y swap rate 

The estimated parameters for the UVDD model for 1Y-2Y swap is given by table 5.2 

σ1
a,b   = 0.0578141 

σ2
a,b

   = 0.0871436 

α1
a,b

   = 0.1 

α2
a,b 

  = 0.1 

λ1
a,b   = 0.658039 

λ2
a,b

   = (1-λ1
a,b

) 0.341961 

Table 5.2 Estimated UVDD parameters for 1Y-2Y swap rate 
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Figure 5.1 Market and UVDD Model implied Volatilities vs Strikes plot for 1Y-2Y swap rate 
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Figure 5.2 Implied Distributions for individual scenarios (Red, Blue) and combined (Green) 

 for 1Y-2Y Swap rate under UVDD framework 

From Figure 5.2 we notice that the distribution for the 1Y-2Y swap rate (top most line) has a 

small probability mass attached to negative rates (left most part), because the estimated 

displacement parameters are greater than ATM swap rate (see Table 5.1 and 5.2). 

 

5.3.2 UVDD Model for 1Y-10Y Swap Rate 

Table 5.3 shows the market and model implied volatilities obtained after calibration of 2-

scenario UVDD model for 1Y-10Y swap rate with ATM swap rate of 3.79411% and Strike 

level between -200bp and +300bp. 

Strike 

Level Strike 

Market 

Price 

Model 

Price 

Market 

Implied Vol 

Model 

Implied Vol 

% diff in 

Vol 

-0.02 0.0179411 1651.670 1649.910 0.4200 0.4092 -2.576% 

-0.015 0.0229411 1268.530 1261.210 0.3810 0.3617 -5.071% 

-0.01 0.0279411 912.176 901.675 0.3437 0.3286 -4.407% 

-0.005 0.0329411 602.241 593.698 0.3135 0.3052 -2.649% 

-0.0025 0.0354411 471.985 465.569 0.3017 0.2962 -1.841% 

0 0.0379411 358.362 356.661 0.2900 0.2886 -0.478% 

0.0025 0.0404411 263.024 267.044 0.2790 0.2823 1.166% 

0.005 0.0429411 185.105 195.670 0.2680 0.2770 3.344% 

0.01 0.0479411 85.868 99.338 0.2546 0.2691 5.707% 

0.02 0.0579411 17.019 22.374 0.2480 0.2620 5.639% 

0.03 0.0679411 3.914 4.826 0.2540 0.2611 2.814% 

Table 5.3 Market and UVDD Model Price/Volatilities with strikes for 1Y-10Y swap rate 
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The estimated parameters for the UVDD model for 1Y-10Y swap is given by Table 5.4 

σ1
a,b

   = 0.0689751 

σ2
a,b

   = 0.1055930 

α1
a,b

   = 0.1 

α2
a,b 

  = 0.1 

λ1
a,b

   = 0.722606 

λ2
a,b

   = (1-λ1
a,b

) 0.277394 

Table 5.4 Estimated UVDD parameters for 1Y-10Y swap rate 

Figure 5.3 plots the implied volatilities from Table 5.3 for qualitative analysis. 
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Figure 5.3 Market and UVDD Model implied Volatilities vs Strikes plot for 1Y-10Y swap rate 

Figure 5.4 in next page also suggest that the distribution for the 1Y-10Y swap rate (top most 

line) has a small probability mass attached to negative rates (left most part), because the 

estimated displacement parameters are greater than ATM swap rate (see Table 5.3 and 5.4). 

 

Figure 5.4 Implied Distributions for individual scenarios (Red, Blue) and combined (Green) 

 for 1Y-10Y Swap rate under UVDD framework 
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5.3.3 UVDD Model for some selected swap rates  

The two swap rates discussed in previous sections are of most importance and hence we 

presented the complete results with data to get a deeper understanding of the model. In this 

section we will select few more swap rates which we will use in the pricing chapter. But we 

restrict ourselves by providing only the estimated UVDD model (2-scenario) parameters for 

each rate and skipping the plots and data tables.  We will provide the plots of the market and 

model implied volatilities and also plot the relative percentage difference (Rel %Diff) 

between them to get an idea of error in our fits. The strike level used for all the rates is 

between -200bp and +300bp. 

We start with 1Y-30Y swap rate and give the estimated UVDD model parameters in Table 

5.5 and the respective implied volatility plot in Figure 5.5. The ATM swap rate is equal to 

3.7812% and ATM volatility is equal to 35.6%.   

 

σ1
a,b

   = 0.051901 

σ2
a,b

   = 0.107019 

α1
a,b

   = 0.1 

α2
a,b 

  = 0.1 

λ1
a,b

   = 0.183141 

λ2
a,b

   = (1-λ1
a,b

) 0.816859 

Table 5.5 Estimated UVDD parameters for 1Y-30Y swap rate 

 

-10%

-5%

0%

5%

10%

15%

20%

-2 -1.5 -1 -0.5 -0.25 0 0.25 0.5 1 2 3

Strike Level

R
e

la
ti

v
e

 %
 d

if
fe

re
n

c
e

 i
n

 V
o

l

0

0.1

0.2

0.3

0.4

0.5

0.6

Im
p

li
e

d
 V

o
la

ti
li

ty

Rel %Diff

MarketVol

ModelVol

 

Figure 5.5 Implied Volatility and Relative % Difference for 1Y-30Y swap rate 
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The next rate in consideration is the 5Y-2Y swap rate. The estimated UVDD model 

parameters are given in Table 5.6 and the respective implied volatility plot in Figure 5.6. The 

ATM swap rate is equal to 4.12% and ATM volatility is equal to 16.7%. 

 

σ1
a,b

   = 0.024279 

σ2
a,b

   = 0.080325 

α1
a,b

   = 0.1 

α2
a,b 

  = 0.1 

λ1
a,b

   = 0.568418 

λ2
a,b

   = (1-λ1
a,b

) 0.431582 

Table 5.6 Estimated UVDD parameters for 5Y-2Y swap rate 
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Figure 5.6 Implied Volatility and Relative % Difference for 5Y-2Y swap rate 

Table 5.7 gives the estimated UVDD model parameters for the 5Y-10Y swap rate, the ATM 

swap rate is equal to 4.4683% and ATM volatility is given by 18.4%. The implied volatility 

plot is given in Figure 5.7. 

σ1
a,b

   = 0.022448 

σ2
a,b

   = 0.088631 

α1
a,b

   = 0.1 

α2
a,b 

  = 0.1 

λ1
a,b

   = 0.486882 

λ2
a,b

   = (1-λ1
a,b

) 0.513118 

Table 5.7 Estimated UVDD parameters for 5Y-10Y swap rate 
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Figure 5.6 Implied Volatility and Relative % Difference for 5Y-10Y swap rate 

The last rate in consideration is the 5Y-30Y swap rate whose ATM swap rate is equal to 

3.8229% and ATM volatility is equal to 24.6%. The estimated parameters for the UVDD 

model is given in Table 5.8 and the implied volatility plot in Figure 5.8. 

σ1
a,b

   = 0.024817 

σ2
a,b

   = 0.092298 

α1
a,b

   = 0.1 

α2
a,b 

  = 0.1 

λ1
a,b

   = 0.372596 

λ2
a,b

   = (1-λ1
a,b

) 0.627404 

Table 5.8 Estimated UVDD parameters for 5Y-30Y swap rate 
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Figure 5.8 Figure 5.6 Implied Volatility and Relative % Difference for 5Y-30Y swap rate 
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5.4 UVDD Model Calibration – Equity 

This section will deal with the calibration of the UVDD model for the equity case. As shown 

in chapter one the presence of lower and upper tail dependence in these financial stocks make 

it very important for the pricing models to incorporate such dependence. 

We will represent the marginal dynamics under the UVDD assumption and estimate the 

model parameters from the historical log returns. The data used in the calibration are the call 

prices on different strikes on the respected stocks. The expiry for the call option used in 

calibration is 16-Jan-10 and the strikes vary accordingly to the data available. The interest rate 

used for discounting between the period 07-Sept-09 and 16-Jan-10 is equal to 0. 3346%. 

 

5.4.1 Bank of America Corp Equity 

The UVDD Model for the Bank of America Corp (BAC- NYSE) is given in Table 5.9. The 

option maturity used is 16-Jan-10 and the spot at 07-Sept-09 is 17.09 USD.  

 

Strike Market Price 

Model 

Price 

Market 

Implied Vol 

Model 

Implied Vol % Diff Vol 

8.54 8.71765 8.71903 0.7696 0.771123 0.20% 

10.25 7.15661 7.13508 0.7076 0.692918 -2.07% 

11.96 5.6878 5.65411 0.6549 0.639499 -2.35% 

13.67 4.34949 4.31929 0.6105 0.600315 -1.67% 

15.38 3.1841 3.16862 0.5741 0.569842 -0.74% 

17.09 2.22354 2.22568 0.5446 0.545130 0.10% 

18.80 1.47908 1.49396 0.5208 0.524480 0.71% 

20.51 0.936121 0.95737 0.5011 0.506855 1.15% 

22.22 0.563826 0.585623 0.4845 0.491557 1.46% 

23.93 0.322836 0.342119 0.4700 0.478100 1.72% 

25.63 0.17575 0.191741 0.4568 0.466197 2.06% 

Table 5.9 Market and UVDD Model Price/Volatilities with strikes for BAC equity 

The estimated parameters for the UVDD model for BAC stock are given by table 5.10. The fit 

was done by using new bounds:  

• 0.01≤ σi
a,b≤ 0.7,  

• 0.001≤ αi
a,b≤ 50 and  

• 0.05≤ λ1
a,b≤ 0.8. 
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σ1
a,b

   = 0.110728 

σ2
a,b

   = 0.137750 

α1
a,b

   = 50 

α2
a,b 

  = 50 

λ1
a,b

   = 0.05 

λ2
a,b

   = (1-λ1
a,b

) 0.95 

Table 5.10 Estimated UVDD parameters for BAC equity 
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Figure 5.9 Market and UVDD Model implied Volatilities vs Strikes plot for BAC equity 

Figure 5.10 plots the implied probability distribution for the BAC equity and as we can notice 

that there is a very small probability mass attached to negative stock prices. This is one 

drawback of the UVDD model as already discussed in the interest rate framework. 
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Figure 5.10 Implied Distributions for individual scenarios (Red, Blue) and  

combined (Green)  for BAC under UVDD framework 
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5.4.2 Wells Fargo & Company Equity 

The UVDD Model for the Wells Fargo & Company (WFC- NYSE) is given in Table 5.11. The  

Maturity used is 16-Jan-10 and the spot at 07-Sept-09 is 26.91 USD.  

 

Strike Market Price Model Price 

Market 

Implied Vol 

Model 

Implied Vol % Diff Vol 

13.46 13.6394 13.6391 0.7114 0.711126 -0.04% 

16.15 11.166 11.13 0.6657 0.648552 -2.58% 

18.84 8.85471 8.78773 0.627 0.60676 -3.23% 

21.53 6.76605 6.68588 0.5935 0.576122 -2.93% 

24.22 4.9539 4.88653 0.5639 0.552113 -2.09% 

26.91 3.45553 3.42417 0.5374 0.532458 -0.92% 

29.6 2.28336 2.29853 0.5135 0.515885 0.46% 

32.29 1.4208 1.47822 0.4917 0.501623 2.02% 

34.98 0.827191 0.911577 0.4716 0.48916 3.72% 

37.67 0.447874 0.539811 0.453 0.478137 5.55% 

40.37 0.223617 0.306854 0.4357 0.468259 7.47% 

Table 5.11 Market and UVDD Model Price/Volatilities with strikes for WFC equity 

The estimated parameters for the UVDD model for WFC stock is given by Table 5.12. Figure 

5.11 plots the implied volatilities from Table 5.11 for qualitative analysis. The fit was done 

by using the bounds:  

• 0.01≤ σi
a,b≤ 0.7, 

• 0.001≤ αi
a,b≤ 45 and  

• 0.05≤ λ1
a,b≤ 0.8. 

 

σ1
a,b

   = 0.196945 

σ2
a,b

   = 0.196947 

α1
a,b

   = 45 

α2
a,b 

  = 45 

λ1
a,b

   = 0.317478 

λ2
a,b

   = (1-λ1
a,b

) 0.682522 

Table 5.12 Estimated UVDD parameters for WFC equity 

From Table 5.12 we notice that the UVDD Model for the WFC equity is equivalent to a single 

displaced lognormal distribution. 
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Figure 5.11 Market and UVDD Model implied Volatilities vs Strikes plot for WFC equity 
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Figure 5.12 Implied Distributions for individual scenarios (Red, Blue) and  

combined (Green)  for WFC under UVDD framework 
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Chapter 6 

Calibration - Copula 

 

In this chapter we will derive the copula parameters for the equity and interest rates (IR) 

framework. We have used two methods for calibration: Measure of Concordance Method and 

CML Method. We will stick to the latter method for calibrating our models for reasons 

discussed later in this chapter.  

 

6.1 Calibration using Measure of Concordance 

The calibration of the copula parameter will require historical time-series, where the daily log 

returns on the equity and interest rates will be used. The reason for using daily log returns for 

calibrating the copula parameters will be explained in details in Chapter 7 – section 7.1. 

The calibration under this method is done in the following steps: 

• Calculate Kendall’s tau or Spearman’s rho from the historical log returns time-series 

by using empirical methods given in section 3.2.1 and 3.2.2. 

• Calculate linear correlation coefficient from the calculated Kendall’s tau/Spearman’s 

rho using the formulas given in Table 4.1, which ever is easy to invert analytically as 

for some copulas a closed solution for these measures does not exist. Kendall’s tau τ 

for the Gaussian copula with shape parameter ρ is given by: 

ρ
π

τ arcsin
2

= , 

      and Kendall’s tau τ for the Clayton copula with shape parameter α is given by: 

τ =
2+α

α
. 

• We assume that the Kendall’s tau (or Spearman’s rho) are invariant while shifting 

between copulas, hence we can equate the above relationships and get 

ρ
π

τ arcsin
2

=  = 
2+α

α
 

    and get a one to one relation between the linear correlation coefficient ρ of the 

Gaussian copula and the shape parameter α of the Clayton copula. Similarly we can 

derive relationships between shape parameters of different copulas. 

 

6.2 Calibration using CML Method  

The theory behind this method has been discussed in details in section 4.3.3. We will first 

apply this method to a test case to study the convergence of the CML method and then move 
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to the equity case to calibrate the copula parameter and at last the Interest Rate case with 

swaps.  

Figure 6.1 demonstrates the copula parameter for Clayton copula with respect to shape 

parameter rho for Gaussian copula.  

 

 

   Figure 6.1: Clayton Copula parameter α vs. linear correlation coefficient ρ 

 

This method is chosen over the method described in section section 6.1 because in the first 

method all information on the returns of the underlying is summed up into a single number 

(measure of concordance). Instead running the calibration each time over the historical log 

returns for each copula separately and then comparing the outcome of the likelihood function 

used makes sure that each copula uses the complete available information.  

 

6.2.1 CML convergence 

We started by carrying out a test to see how many number of data points are needed 

approximately to calibrate back the copula parameters within acceptable limits. This 

information is useful when we apply calibration to real life problems. Figure 6.2 shows the 

calibrated parameter for Clayton and Gumbel copulas versus number of observations. We 

started by first choosing the Kendall’s tau equal to 0.5 and this choice gives us the true 

parameter value of 2.0 for both the copulas. Then we simulated some fixed number of random 

samples from each copula and used CML method on the simulated samples to calibrate back 

the true parameter.  

We observed that the calibration parameter approaches the true parameter with the increase in 

the observation points. Though, we observed that we get acceptable result after roughly 2400 

observations. Also the Gumbel parameter converges much faster then the Clayton parameter 

to the true value. We ran the same test for higher values of Kendall’s tau and observed same 
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pattern in the convergence of Gumbel and Clayton parameters hence we excluded it from the 

report and concentrated on one result. 
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Figure 6.2 CML method convergence for different copulas 

6.3 Copula Calibration - Equity Case 

The equity pair BAC-WFC has been chosen due to presence of high empirical lower and 

upper dependence in their data sets. The data used is the historical daily log returns on each 

stock.   

Table 6.1 shows the calibration results for the BAC-WFC pair using the CML method. The 

data used is from date 07-Sept’09 till 11-Sept’00 from the yahoo-finance website, this is 

approximately equal to 2260 trading days. Using the results from section 6.2.1 we conclude 

that we have enough data points to carry out the calibration. 

 

Copula 

Estimated 

Parameter 

Theoretical 

Lower Tail (λL)     

Theoretical 

Upper Tail (λU) 

Normal 0.74685 0.000 0.000 

Clayton 1.88459 0.692 0.000 

Gumbel 2.26684 0.000 0.642 

Table 6.1 Estimated parameters for various copulas for BAC and WFC equity pair 

Figure 6.3 plots the historical stock price levels for BAC and WFC equities. 
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Figure 6 Historical stock price for BAC and WFC equities. 

We carried the calibration of the copula parameters for different window days and noticed a 

significant difference in the estimated parameters. 

Table 6.2 presents the relation between the estimated parameters with increasing day’s history 

for each of the three copulas. 

Days history Gaussian Clayton Gumbel 

300 0.850130 2.42844 2.81950 

600 0.827381 2.38284 2.78176 

900 0.799282 2.31442 2.62138 

1200 0.782976 2.23496 2.52921 

1500 0.765178 2.09087 2.38932 

1800 0.776166 2.13293 2.45214 

2100 0.760398 1.98788 2.32476 

2260 0.746846 1.88459 2.26684 

Table 6.2 Estimated parameters for various copulas using different days 

 for BAC and WFC equity pair 

We see that the dependence between the two stocks is a decreasing function of the number of 

trading days used in calibration.  

The difference between the estimated parameters for different days will be useful to do 

analysis between the prices obtained for various products using different copulas in the next 

chapters. 
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6.4 Copula Calibration – Interest Rate Case 

In this section we will calibrate the copula parameters using same maturity different tenor 

swap rates as the underlying. The data used are the daily log returns on each swap rate for a 

period between 03-Jan-05 and 31-Dec-07. 

Table 6.3 shows the calibration results for the 1Y-2Y and 1Y-10Y swap pair using the CML 

method for 400 and 780 trading days. The shape parameters for Gaussian copula suggest that 

the two rates have a highly correlated. 

 

Days history Gaussian Clayton Gumbel 

400 0.88625 2.99344 2.95116 

780 0.86527 2.64661 2.78210 

Table 6.3 Estimated parameters for various copulas using different days 

 for 1Y-2Y and 1Y-10Y swap pair 
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Figure 6.4 Different swap rates between 03-Jan-05 and 31-Dec-07 

Table 6.5 shows the calibration results for the 1Y-2Y and 1Y-30Y swap pair using the CML 

method for the complete period i.e., 780 trading days. 

Days history Gaussian Clayton Gumbel 

400 0.80462 2.03595 2.34602 

780 0.76848 1.74320 2.15545 

Table 6.4 Estimated parameters for various copulas for 1Y-2Y and 1Y-30Y swap pair 

Table 6.3 shows the calibration results for the 1Y-2Y and 1Y-10Y swap pair using the CML 

method for the complete period i.e., 780 trading days, from 03-Jan-05 till 31-Dec-07. 
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Days history Gaussian Clayton Gumbel 

400 0.781013 1.89201 2.53623 

780 0.782090 1.94852 2.57149 

Table 6.5 Estimated parameters for various copulas using different days 

 for 5Y-2Y and 5Y-10Y swap pair 
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Figure 6.4 Different swap rates time series from 03-Jan-05 till 31-Dec-07 

Table 6.5 shows the calibration results for the 5Y-2Y and 5Y-30Y swap pair using the CML 

method for the complete period i.e., 780 trading days. 

Days history Gaussian Clayton Gumbel 

400 0.751766 1.82847 2.40185 

780 0.694575 1.64086 2.28943 

Table 6.6 Estimated parameters for various copulas for 5Y-2Y and 5Y-30Y swap pair 

We notice from Table (6.4) and Table (6.5) that the 5Y-2Y and 5Y-10Y swap pair have more 

correlation than the 5Y-2Y and 5Y-30Y pair.  

Also the correlation between short maturity swaps is much higher than the longer maturity 

swap with the same tenors. 
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Chapter 7 

Pricing – Equity 

 

In this chapter we will assess the implications of changing copulas on equity derivatives 

prices. We address this main question: how does changing from the Normal copula to one that 

accounts for tail dependence affect the prices of derivatives. The parameters estimated in the 

previous chapters for the equity case will be used to price some of the most commonly traded 

European style bivariate options. 

In this report we start by broadly dividing the pricing process into four cases, presented in 

Figure 7.1. The various cases broadly differ on inclusion of two properties: smile of the 

underlying and tail dependence between them. Case A - “GBM + Gaussian” is the simplest 

way of pricing where Geometric Brownian Motion (GBM) is assumed for the marginals (no 

smile) and the joint distribution is assumed to be “Gaussian”, which has zero tail dependence. 

In Case B - “UVDD + Gaussian” smiles are included by using the UVDD model but still no 

tail dependence [36]. Case C - “GBM + non-Gaussian” includes the tail dependence 

between the underlying, but skips the smile in their marginal distributions [35]. Case D - 

“UVDD + non-Gaussian” incorporates both smile through UVDD model and tail 

dependence by use of non-Gaussian copula, in our case Clayton and Gumbel. We will price 

mostly under the last case settings and wherever necessary will compare them with other 

cases.  

 

 

 

                         Step 1                                                      Step 2 

 

 

 

 

 

                        Step 3                                                            Step 4 

 

 

 

                                             Figure 7.1 Four major cases in option pricing 

Case A 

(GBM + Gaussian) 

“Black-Scholes” 
No Smile 

No Tail Dependence 

Case B 

(UVDD + Gaussian) 
Smile (UVDD) 

No Tail Dependence 

Case D 

(UVDD + non-Gaussian) 
Smile (UVDD) 

Tail Dependence (Copulas) 

Case C 

(GBM + non-Gaussian) 
No Smile 

Tail Dependence (Copulas) 
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7.1 Building a pricing model using Copulas  

We start by first introducing the Black Scholes model which is the starting point of almost 

every pricing model and then move on to discuss our pricing methods and the calibration of 

our models together with the problems faced while calibrating the copula parameters for 

respective pricing methods. 

The objective of this section is to develop a relationship between the Black Scholes model and 

Gaussian copula and later replace the Gaussian copula with a non-Gaussian copula while 

keeping the marginal distribution fixed. 

 

7.1.1 Black Scholes model and Gaussian Copula 

The famous Black Scholes model describing the process of two underlyings, S1 and S2, under 

the risk-neutral measure Q is given by [13]: 

dS1 = rS1dt + σ1S1dW1
Θ
                                              (7.1a) 

  dS2 = rS2dt + σ2S2dW2
Θ
                                              (7.1b) 

                                                           dW1
Θ
dW2

Θ
 = ρdt                                                     (7.1c)                          

dB = rBdt                         

where, 

- r is the risk-free constant interest rate,  

- ρ is the linear correlation coefficient between the two assets, 

- σ1 and σ2 are the volatility of the S1 and S2 respectively, 

- W1
 
and W2 are two correlated Wiener processes. 

- B is a deterministic process (bank account) with starting value B(0) = 1. 

Under the Black-Scholes (BS) Model the marginal distribution of the assets has a lognormal 

distribution and the joint terminals as well as the joint transition distribution functions follow 

a bivariate normal distribution.  

For the BS model we know that the marginal transition density function for )(ln)(ln 111 jj tStS −+  

between time step j to j+1, j = 0,1,2,.....,n-1 , where tn= T and ∆t =tj+1-tj, is normally 

distributed, with mean (r – σ2
/2)∆t and variance σ2∆t and written as [34]: 

)(ln)(ln 111 jj tStS −+  ~ 











∆∆













−Φ ttr σ

σ
,

2

2

                              (7.2) 

where, )( 11 +jtS is the stock price for asset 1 at a future time tj+1, )(1 jtS is the stock price at time 

tj, and Φ(m, s) denotes a normal distribution with mean m and standard deviation s. Similarly 

the joint transition density of ln S1 and ln S2 follows a bivariate normal distribution. 
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7.1.2 Pricing methods 

The following two pricing methods are widely used to price European style bivariate products 

under the BS model framework: 

1. Using the Joint terminal density function: 

The joint terminal density approach described in this section is taken from Cherubini, 

Luciano, Vecchiato [11, pp 232].  

We obtain the option price by double integrating the product of the payoff and 

corresponding terminal joint density function (copula function) over the whole range 

of asset values (zero to infinite). The price of the European style bivariate contingent 

claim using the above method is given by the following integral: 

g(S1(t), S2(t),t) = ∫ ∫
∞ ∞

0 0

111111 )()())(),(()),(),((),( TdSTdSTSTSqTTSTSGTtP  

where, 

• g(S1(t), S2(t),t) is the price at time t of the option,  

• ),( TtP  is the price of zero coupon bond at time t expiring in time T-t with unit 

payoff,  

• )),(),(( 11 TTSTSG is the pay off function, 

• ))(),(( 11 TSTSq is the copula density function[11, pp-81]. 

The lognormal marginal dynamics used in the above integral can be derived using 

Equation (7.2) by putting tj+1 = T and tj = 0, i.e., 

ln S1(T) – ln S1(0) ~ 

























−Φ TTr σ

σ
,

2

2

                                (7.3) 

The terminal joint density q is given by: 

),(
),(

21

21

21
2

SSq
dSdS

SSQd
=  

where 

))(),((),( 2121 SGSFCSSQ =  

and C is any copula function and F and G are the univariate marginal distributions of   

the terminal sport prices S1(T) and S2(T). 

For our purpose we cannot use this method as for longer maturity options the 

calibration of the parameters using the available historical data set becomes difficult. 

The reason is explained in detail in Section 7.1.3.  

2. Using the Joint transition density function: 

We can also use the joint transition densities and apply Euler’s scheme for 

discretization of the asset equations and then using Monte Carlo Simulation over a 
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number of time steps and number of simulation to calculate the price. This method is 

used to price a wide range of complex and exotic options which are hard to price 

analytically using joint Terminal density function.  

The discretized asset dynamics using Equation (7.2) between any time step j to j+1 are 

given by: 

))()((
2

)(ln)(ln 1111

2

1
111 j

Q

j

Q

jj tWtWtrtStS −+∆







−=− ++ σ

σ
           (7.4) 

Furthermore we can generate the terminal density from Equation (7.4) by summing up 

the asset values )(ln)(ln 111 jj tStS −+ over the complete set of time steps. 

                            ∑
−

=
+ −=−
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A drawback of this discretized pricing method is that the computational time increases 

with increasing number of time step n and with the number of simulations. 

In Section 7.1.4 we will discuss how to switch between different copulas.  

 

7.1.3 Calibration of Joint Density functions 

Both the pricing methods discussed above can be used efficiently to price the common 

bivariate options but a problem arises when calibration of the copula parameter is done using 

historical returns. In our case calibration of the copula function parameter is a problem if the 

maturity of the option increases. This is due to the following two reasons: 

1. To apply Monte Carlo methods we need sufficiently large number of i.i.d. data points. 

For a given data set the availability of data points decreases with increase in option 

maturity which affects the accuracy of the calibration methods.  

2. When overlapping periods are considered, to increase the data points, there is problem 

of high autocorrelation between them, this is not acceptable since Maximum 

Likelihood methods assume i.i.d of the data used.   

Hence we cannot efficiently calibrate terminal distribution functions and thus switch to the 

second pricing method and calibrate the copula parameters using historical daily log returns, 

which are shown to have low autocorrelation [35, pp-36], and in this way we obtain the daily 

transition densities which can be used in the Monte Carlo simulation of the prices. 
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7.1.4 Changing the Copula 

In this section we start by showing that the bivariate normal distribution generated from the 

BS model can equivalently be expressed in terms of a Gaussian copula and show how it can 

be used in Monte Carlo simulation. Later we replace the Gaussian copula with non-Gaussian 

copulas to add the desired dependence structure. We will show how various copula functions 

can be used to add dependence between the discretized asset equation (7.2) for i = 1, 2. 

To use equation (7.2) to perform the Monte Carlo simulation using bivariate normal 

distribution under the BS framework (with lognormal marginal) we perform the following 

steps: 

1. Simulate independent uniform random variables, i
ju , i = 1, 2 and j = 1,..,n (time steps). 

2. Transform the uniforms into standard normal random variables, i
jx  = Φ-1

( i
ju ), where 

Φ(•) is the standard normal distribution function. 

3. Obtain correlate normal random variables, 1
jy = 1

jx  and 2
jy  = ρ 1

jx  + 21 ρ− 2
jx . 

4. Transform the standard normal random variables into uniform, i
jv  = Φ( i

jy ), i = 1, 2. 

5. Transform the uniform r.v.s into standard normal random variables, i
jz = Φ-1

( i
jv ). 

6. Put Wi, j = i
jz t∆ , for i = 1, 2 in equation (7.4) for all j. 

7. Calculate the payoff at expiry, 

8. Repeat steps 1-7, average payoffs and discount to price the option. 

First observe that steps 4 and 5 are superfluous though they are included to illustrate how the 

Gaussian copula enters the simulation algorithm. The relationship between the Gaussian 

copula and BS Model can be recognized by observing steps 2, 3 and 4 and comparing them 

with the algorithm in section 4.5. The construction of i
jv  is equivalent to simulating a random 

pair from a Gaussian copula with shape parameter ρ.  

To switch from Gaussian to non-Gaussian copula we replace steps 2, 3 and 4 by a single step: 

2" Construct dependent uniforms, i
jv  = F

i
( 1

ju , 2
ju ) as a function of the two relevant 

independent uniform r.v.s (from step 1),  

This new step is equivalent to simulating a random pair from a given copula function, be it 

Gaussian or non-Gaussian. 

After changing the Gaussian copula with non-Gaussian copulas to incorporate the desired tail 

dependence we will replace the lognormal asset dynamics from the BS model with the UVDD 

model discussed in Chapter 5 to include smile also.  

We will also study the effect of change of number of time-steps (maturity) and the number of 

paths used in Monte Carlo simulation on pricing some bivariate options. 
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7.2 Accuracy of the Monte-Carlo Simulation  

We will apply the model from section 7.1 to hypothetical market data to check for the 

accuracy of the Monte Carlo simulation method in the pricing of ATM Spread options, i.e., 

the payoff ([S1(T) – S2(T) – K]
+
) at option maturity T.  The analytic price of a spread option 

under the BS framework is the (discounted) double integral of the option payoffs over the 

risk-neutral joint distribution of the terminal prices of the two underlying assets. But analytic 

expressions for the values of spread puts and calls in a Black-Scholes framework are not 

known, and hence various numerical algorithms are used to price such products [32]. The 

most commonly cited approximated closed form formula is the Kirk’s formula [33]. 

The hypothetical equity data used is: S1(0) = 90; S2(0) = 80; K = 10; r = 10%; σ1 = 30%; σ2 = 

20%; T = 1yr; NumOfSim = 2097150.  The univariate marginals are assumed to be lognormal 

with constant volatility. 

We will first compare the difference in prices observed due to change in copula functions with 

the error coming from the simulation method used. Later we will price ATM Spread option 

using Kirk method and Monte Carlo simulation method under Gaussian copula to check the 

implementation of our simulation method. 

ρ Clayton Gaussian Rel %Difference 

0.1 12.3366 12.3498 -0.1069% 

0.2 11.7354 11.7677 -0.2745% 

0.3 11.1166 11.1525 -0.3219% 

0.4 10.4814 10.4981 -0.1591% 

0.5 9.82623 9.79626 0.3059% 

0.6 9.14212 9.03539 1.1812% 

0.7 8.41223 8.19804 2.6127% 

0.8 7.60232 7.25587 4.7748% 

0.9 6.62567 6.15690 7.6137% 

Table 7.1 ATM Spread Call option price and relative %Diff using various copulas 

We start by calculating at time t = 0 price of the spread option using the Gaussian and Clayton 

Copula separately for different values of correlation coefficient, presented in Table 7.1. The 

value of the Clayton shape parameter is derived by keeping the Kendall’s tau constant across 

copulas.  

We notice from Table 7.1 that the price of the spread option decreases and the relative 

percentage difference in prices between Clayton and Gaussian increases with increase in 
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value of correlation coefficient. For low correlation values the difference is very small and 

hence it is hard to say if this difference is due to change in copula or error in the Monte Carlo 

simulation of prices. Figure 7.2 plots the results from table 7.1 for qualitative analysis. 
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Figure 7.2 Spread Call option prices vs correlation coefficient for ATM strike 

To study the effect of error due to Monte Carlo simulation we used a confidence interval of 

95% for the prices and checked if the interval overlaps for the two copula functions. If they 

overlap (hence low percentage difference between prices) then we are not sure about the 

prices differences obtained in Table 7.1 and if it does not than we can say that the price 

difference is mainly due to change in copula functions and can be used for analysis. To carry 

out this test we plotted the Monte Carlo prices using Clayton and Gaussian copula for ATM 

spread call option with their respective bounds for correlation value of 0.5 and 0.8. 

Figure 7.2 suggest that higher value of correlation coefficient rho ρ gives a clear difference in 

prices for a spread option whereas for lower values the confidence interval for both copulas 

are overlapping making it hard to compare the prices from different copulas as they could be 

the result of error from Monte Carlo simulation method used in pricing and not actually from 

the change in copula functions. Therefore for our analysis we plan to choose underlyings with 

a high correlation value (>0.7) between them and then studying the impact of different types 

of tail dependence on the pricing of some bivariate products which are sensitive to 

dependence structures between underlyings. 

For correlation of 0.5 we notice from Figure 7.3 that the upper bound of Gaussian copula 

overlaps with the lower bound of the Clayton copula, whereas from Figure 7.4 we notice that 

the bounds are non-overlapping. 
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Figure 7.3 Spread option price for Gaussian and Clayton with 95% CI, rho = 0.5 
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Figure 7.4 Spread option price for Gaussian and Clayton with 95% CI, rho = 0.8 

The above analysis will be useful when comparing the prices from different copulas primarily 

for the spread option case. For other type of options we assume that if the price differences 

are very low then it could be due to error from pricing method and not from the copulas and 

hence will not be included into the analysis, as the main objective of this project is to study 

the effect in prices due to change in copula functions and not the error coming from the Monte 

Carlo pricing methods. 

We now compare the prices coming from closed form analytic Kirk formula and Monte Carlo 

simulation using Gaussian copula with lognormal marginals. Figure 7.5 suggest that these two 

prices are almost equal (with an error or 0.1%) and hence we are convinced about our 

implementation of pricing method (algorithm) in C++ language. 
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Figure 7.5 Spread option prices and Relative % Difference 

KATM = 10, T = 1year, NumOfSim = 500,000 

7.3 Test Strategy  

We now provide the notation used throughout this chapter: S1(T) and S2(T) are the values of 

the WFC and BAC equities respectively at maturity time T, K1 and K2 are the respective 

strikes. The maturity used is 0.3589years, unless stated otherwise, and constant interest rate is 

given by 0.3346%. All the results are derived assuming the 2-Scenario UVDD model 

developed in Chapter 5 for the equities, and the copula parameters is calibrated by using 2260 

trading days, unless stated otherwise. Wherever log-normal marginals are assumed to provide 

no smile to the model it will be written explicitly and the constant volatility used in this case 

(Case A - Figure 7.1) is ATM volatility from the respective smiles. The number of Monte-

Carlo simulations used for pricing is equal to 524,286. 

We start by bivariate digital call options and price them under all the four cases and then 

compare the observed prices to study the effect of including smile and dependence 

individually and together.  

 

7.4 Bivariate Digital Options 

A very interesting product used in the market is the bivariate digital options. The payoff of 

such option at maturity T is given by: 



 ≥≥

=
.0.0

,)(&)(0.1 2211

Otherwise

KTSKTSif
DC  

We start our discussion by observing the percentage change in the prices of the options under 

the transitions “Case A to Case B” and “Case A to Case C” from Figure 7.1, for a range of 
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strikes.  The ATM volatilities are 53.74% for WFC and 54.46% for BAC and ATM strike are 

given by ( ATMK1 , ATMK2 ) = (S1(0), S2(0)) where S1(0) = 26.91 and S2(0) = 17.09. 
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     Figure 7.6 Relative % Difference in Prices for “Step 1” and “Step 2” 

    K1 = S1(0) (0.5 + 0.1* i) ,K2 = S1(0)(0.5 + 0.1* i) ; ATM at i = 5. 

Figure 7.6 suggest that for digital-call options the effect in prices due to inclusion of smile is 

more than due to inclusion of tail dependence. And the Clayton copula changes the prices 

more than the Gumbel copula. Figure 7.7 plots the digital call prices for different copulas. We 

observe that Clayton copula under-prices the option whereas Gumbel copula overprices it.  
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Figure 7.7 Digital Call prices and Relative % Difference between different Copulas 

K1 = S1(0) (0.5 + 0.1* i) , K2 = S2(0)(0.5 + 0.1* i) ; ATM for i = 5. 

The results from Figure 7.7 can be explained by comparing the pdfs of each copula given in 

Chapter 4, section 4.2.1. Since Clayton copula has lower tail dependence, Figure 4.3, it will 
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price a bivariate digital call option less than the Gaussian copula, Figure 4.1, which has zero 

lower and upper tail dependence (symmetrical distribution), whereas Gumbel copula, Figure 

4.5, with upper tail dependence will give higher payoff for such an option. The joint 

distribution in this option can also be interpreted as a survival copula (section 2.6). 

For zero strike we notice that this price difference is very small, this is because the whole 

distribution is used while integrating the payoff function along all strikes above zero and this 

will generate same payoff for all the three copula functions. We also notice that this 

percentage difference in prices increases with increase in strike. As the strike is increased we 

notice from Figure 4.3 that the probability mass in the area of the payoff for Clayton copula 

decreases rapidly when compared to the Gaussian copula in Figure 4.1, more mass 

concentrated in the lower strike region for Clayton copula, hence the percentage difference 

between the two copulas increases with strike. In the Gumbel case it is opposite of the 

Clayton copula and more probability mass is concentrated in the region of higher strikes, 

Figure 4.4, and when compared with Gaussian copula we see an increase in percentage 

difference in prices with increase in strike. 
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Figure 7.8 Absolute differences between different Copulas for digital call option 

 K1 = S1(0) (0.5 + 0.1* i) and K2 = S2(0)(0.5 + 0.1* i); ATM at i = 5.  

Figure 7.8 plots the absolute differences in the prices for the digital call option for different 

values of strike K1 and K1 which are parameterized in terms of variable i. We extended our 

analysis by keeping K2 fixed at 34.0 (OTM = Out of the Money), 17.09 (ATM = At the 

Money) and 10.0 (ITM = In the Money), and changing K1 between 1 till 50.   

The following three figures plot the prices for each of these three scenarios along with the 

relative percentage difference (Rel %Diff) of Clayton and Gumbel with respect to Gaussian 

Copula. 
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Figure 7.9 Prices and Relative % Difference for fixed K2 = 34(OTM) and changing K1 
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Figure 7.10 Prices and Relative % Difference for fixed K2 = 17.09(ATM) and changing K1 
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Figure 7.11 Prices and Relative % Difference for fixed K2 = 10(ITM) and changing K1 
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From Figures 7.9-7.11 we observe that the relative percentage difference in the prices 

between various copulas decreases as we shift from OTM to ITM (respect to strike K2) 

options. For OTM case we notice that although K2 is very high the price difference is 

relatively less for K1 varying from zero to ATMK1 (=26.91). This shows that as long as one of 

the strikes is ITM we can expect same prices under different dependence structures. A similar 

effect can also be noticed by comparing Figure 7.9 with Figure 7.11, as expected since K2 is 

already ITM we notice very less difference in prices even for K1 much higher than ATMK1 .  

One more thing to notice in Figure 7.9 is that for OTM K2 and K1 higher than ATMK1 , the price 

differences are extremely high and increases with strike K1. This suggests that the effect of 

tail dependence on pricing can become crucial when both strikes are OTM. As the value of K2 

is decreased to 17.09 in Figure 7.10 we notice that the magnitude of the relative price 

differences has decreased dramatically when compared to Figure 7.9 for strikes K1 higher 

than ATM
K1 , with the maximum occurring around ATM

K1 .  

Now as the value of K2 is decreased to 10 in Figure 7.11, all the three copulas offer roughly 

the same payoff. Since K2 is deep ITM we expect same payoff from each copula, as suggested 

by Figure 7.9 that if either of the strikes is ITM the prices differences are minimum. 

The above analysis can help one to make decision over questions like: under what values of 

the strikes it is wise to add smile and tail dependence into the pricing model and when is it 

safe to exclude it to make the model simple. 

 

7.5 Spread Options 

In this section we will analyse spread call options whose payoff SC at maturity T (=0.3years) 

is given by: 

SC = max {S1(T) – S2(T) – K , 0.0} 

Again we will study the change in the prices for “Step 1 (Add Smile only)” and “Step 2 (Add 

Tail dependence only)”, from Figure 7.1, and also the effect of change of copulas on pricing 

these products for various levels of strikes. The ATM is given by ATMK which is equal to S1(0) 

– S2(0) , where S1(0) = 26.91 and S2(0) = 17.09 . 

From Figure 7.12 we notice that the percentage difference in prices due to shift to smile and 

tail dependence increases with increase in strikes, with smile showing relatively more 

differences for higher strikes, whereas for lower strikes the effect due to Clayton copula is 

much higher. 
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Figure 7.12 Relative % Difference in Spread option Prices from inclusion of smile and tail dependence;  

ATM Strike KATM
 = 9.82, T = 0.3 years 
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Figure 7.13 Spread Call price and Relative % Difference for different copulas,  

ATM Strike KATM
 = 9.82, T = 0.3 years 

Figure 7.13 plots the price for spread call options for different copulas and also the relative 

percentage difference between Clayton-Gaussian and Gumbel-Gaussian. We notice that the 

difference due to the Clayton is much higher than due to the Gumbel copula. 

To explain the above results we simulated values of S1(T) and S2(T) during the Monte Carlo 

pricing of this product for maturity of 7/365years, 0.3 years 3.3 years and 5.3 years. We then 

plotted the empirical pdf of the difference S1(T) – S2(T) derived from the simulated data in 

Figure 7.14 – Figure 7.17. 
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                Figure 7.14 Empirical PDF plot for the variable S1(T) – S2(T)  with maturity 7/365years (7 days) 
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Figure 7.15 Empirical PDF plot for the variable S1(T) – S2(T) with maturity 0.3years  
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Figure 7.16 Empirical PDF plot for the variable S1(T) – S2(T) with maturity 3.3years 
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Figure 7.17 Empirical PDF plot for the spread S1(T) – S2(T) with maturity of 5.3years 

It is suggested by the Figure 7.15 that the empirical pdf for the Clayton copula has more 

probability mass than the Gaussian one for the strikes roughly higher than 12 and lower than 

9, and it is vice-versa for pdf of Gumbel copula, which is just below the Gaussian pdf for the 

mentioned strikes. We also note that this difference is higher for Clayton-Gaussian case than 

the Gaussian-Gumbel case, for the above mentioned region of strikes, hence the relative 

percentage difference in prices will be more in the former case as also observed in Figure 

7.13. From Figure 7.15 we also notice that the relative percentage difference in prices also 

increases with strike, the same trend observed in digital call option from Figure 7.7. 

We observed in Chapter 6 Table 6.2 that we get different copula parameters for different data 

sets used. We will now study the price differences due to change in estimated Gaussian 

copula parameter using 300 and 900 days and whether this difference is more or less than the 

difference obtained due to shift in copula functions, calibrated using 300 days. 
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Figure 7.18 Absolute Change in prices due to difference in calibrated parameters and copulas 

Figure 7.18 shows the absolute difference in the prices due to change in calibrated parameters 

for Gaussian copula and change in copula functions, all calibrated using 300 days.  
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In this case we observed that difference due to change of estimated parameters is higher than 

the difference due to change of copula functions from Gaussian. But the shift from Gaussian 

to Clayton is higher than the shift observed for the shift from Gaussian to Gumbel copula. The 

results are plotted in Figure 7.18.   

Figure 7.19 plots the absolute differences to compare the differences in the prices of a spread 

option due to a +1% shift in Gaussian copula shape parameter ρ with the differences due to 

change in dependence structure – different copulas. The parameters used in the copulas are 

calibrated using 2260 trading days and the maturity of the option is 0.3years. 
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Figure 7.19 Absolute differences in prices: To study the effect of change in SC price of Gaussian copula for 

1% increase in its parameter with change in prices due to change in copulas, KATM = 9.82, T=0.3years 

We notice from Figure 7.19 that the effect in prices due to change of copulas from Gaussian 

to Clayton is much more than the change due to increasing the Gaussian copula parameter by 

1%. This shows that the pricing model is very sensitive to change in dependence structure.  

Figure 7.20 plots the relative percentage difference in prices for Clayton-Gaussian case for 

different maturities. We notice that this relative percentage difference in prices decreases with 

maturity. This indicates that the distribution of the spread (S1(T) – S2(T)) for every copulas 

becomes identical as the maturity of the options is increased. This can be explained by 

comparing Figure 7.15 and Figure 7.17, where in the latter plot the differences between the 

three distributions are much less profound than the differences in the short maturity spread. 

Mathematically, the smaller differences in prices for larger maturities are the result of 

application of Central Limit Theorem [37] because as the number of distributions/daily 

observations adding together is increased each distribution of spread coming from different 

copula assumptions converges to a standard normal distribution.  
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From Chapter 5 Section 5.1.1 we know that the the probability distribution p of Sa,b  under the 

2-scenario UVDD model assumption is given by: 

( ) ( )∑
=

+=
2

1

,;

i

ii
i

i vmSLNSp αλ  

Where mi and vi are the mean and standard deviation of each of lognormal distributions. We 

start any simulation we picking, after time ε>0, scenario i with probability λi. After we have 

selected the scenario i we get a single lognormal distribution which will be discretized and 

used through all time steps until the end of the simulation. We now know from the BS model 

that this transition density function for )(ln)(ln 111 ijij tStS αα +−++  between time step j to j+1, j = 
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Suppose for simulation number k, k = 1,2,....,N, the scenario chosen is i then under the above 

mentioned transition density approach we obtain the terminal distribution for asset ln S1 by 

adding all the transition densities over n number of time steps given by: 
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or equivalently we have, 
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Simultaneously we can calculate the distribution for the asset S2 for simulation number k with 

scenario h is given by: 




























−+∆









−+=+ ∑

−

=
+

1

0

3132

2

2

2222 ))()((
2

))0(()(
n

j

j

Q

j

Q

h

h

h

k

h

k
tWtWtrExpSTS σ

σ
αα  

where, 2
2

13 1 WWW ρρ −+= . 

The distribution for the spread S1-S2 for the simulation number k and scenario i for asset S1 

and scenario h for asset S2 can be written as following: 
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Now if we add the distribution for each simulation k we get: 
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And using Central Limit Theorem we conclude that this sum of distributions will converge to 

standard normal distribution for both N and n going to infinity (long maturity options). 
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Figure 7.20 Relative % Difference between Clayton-Gaussian    Figure 7.21 Absolute Change in prices between Clayton- 

           for different maturities T, KATM = 9.82                      Gaussian for different maturities T, KATM = 9.82 

Figure 7.21 plots the absolute difference in the prices for Clayton-Gaussian case for different 

maturities T. We observe from Figure 7.21 that the absolute difference in prices increases 

with increase in maturity T.  We also observe the maximum absolute difference close to ATM 

strike of 9.82 for every maturity. 
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Figure 7.22 Relative % Difference in prices between Gumbel-       Figure 7.23 Absolute Change in prices between Gumbel- 

              Gaussian for different maturities T, K
ATM

 = 9.82                      Gaussian for different maturities T, K
ATM

 = 9.82 
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Figure 7.22 plots the relative percentage difference in prices for Gumbel-Gaussian pair for 

different maturities. We observe that the relative percentage difference decreases with 

increase in maturity T, a similar trend observed in Clayton case. This supports our hypothesis 

that the two distributions become identical as the maturity of the options is increased.  

Hence we can apply similar arguments used in the case of Clayton copula for decreasing price 

difference in options with increasing maturities to explain the results from Figure 7.22. 

Figure 7.23 plots the absolute difference in the prices for Clayton-Gaussian case for different 

maturities T. The absolute differences increase with increase in maturity of the option. We 

can say that the maximum absolute difference happens approximately near the ATM strike of 

9.82. 

Figure 7.24 plots the prices for different copulas for Spread Put options whose payoff SP at 

maturity T is give by: 

SP = max {K – (S1(T) – S2(T)) , 0.0} 
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Figure 7.24 Spread Put options prices for different copulas, KATM = 9.82, T=0.3year 
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Figure 7.25 Relative % Difference in prices between different copulas, KATM = 9.82, T=0.3year 

In Figure 7.25 we see that the relative percentage difference for Clayton-Gaussian case is 

much higher than due to the Gumbel-Gaussian case. This can be explained by looking at the 

empirical distributions of spread (S1(T) – S2(T)) in Figure 7.15 which shows a clear lower fat 

tail for the empirical Clayton case when compared to the Gaussian case, whereas empirical 
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distribution using Gumbel copula has tails thinner than the Gaussian case, hence it 

underprices the option. The results in Figure 7.25 are hence consistent with the distribution 

obtained in Figure 7.15. 

7.6 Worst of Call Option 

In this section we will price the worst of call option whose payoff WC at maturity T is given 

by: 

WC = max (min (S1(T)/S1(0), S2(T)/S2(0)) – K, 0.0) 

-70%

-50%

-30%

-10%

10%

30%

50%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

strike K

R
e

la
ti

v
e

 %
 d

if
fe

re
n

c
e

s
 i
n

 p
ri

c
e

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ri

c
e

Rel %Diff Clayton-Gaussian

Rel %Diff Gumbel-Gaussian

Gaussian Price

Clayton Price

Gumbel Price

 

Figure 7.26 Price and Relative % Difference for worst of call option for different copulas,  

KATM = 1, T=0.3year 

Figure 7.26 plots the prices for the three copulas and the relative percentage difference 

between Clayton-Gaussian and Gumbel-Gaussian. In this case Clayton under-prices the 

option whereas Gumbel over-prices it. The effect of different types of tail dependence on 

worst of call prices can be understood by studying the payoff in Figure 7.27. 

In Figure 7.27 we plot the discrete payoff lines (dashed lines) for the worst of call option. 
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Figure 7.27 Discreet payoff lines (dash) for worst of call option for Clayton and Gumbel  
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As we already know that transition Gumbel copula distribution after end of each simulation 

gives more probability weight to the upper right corner of the plot in Figure 7.27 and this will 

lead to higher chances of getting a payoff from function max(min(S1(T)/S1(0), S2(T)/S2(0)) – K 

) when compared to Gaussian copula which has a symmetrical distribution. When looking at 

the bottom left corner of the Figure 7.27 we know that transition Clayton copula distribution 

gives more weight to this area and which means that we have lower chances of obtaining a 

payoff than the Gaussian copula.  

Figure 7.28 plots the relative percentage difference between different copulas for different 

estimated parameters to compare the effect of change in estimated parameters to change in 

copula functions. The days used in calibration of the copula parameter are 300 and 900. In the 

figure we represent the prices with the copula name as prefix and number of days used in 

calibration as suffix, for e.g., Gaussian300 means that the copula used for pricing is the 

Gaussian copula and 300 is equal to the number of  historical data points used for parameter 

estimation for Gaussian copula. 

We notice from Figure 7.28 that the relative percentage difference in prices for change in 

estimated parameters is lower than the difference due to change in copula functions for both 

Clayton and Gumbel. This means that change in price due to incorporation of tail dependence 

is significant when compared to the change in prices due to different shape parameters for 

Gaussian copula estimated using 300 and 900 days.  
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Figure 7.28 Absolute and Relative % Difference in prices to compare the effect of change  

in estimated parameters to change in copula functions, K
ATM

 = 1, T=0.3year 

Figure 7.29 plots the absolute differences to compare the differences in the prices of a spread 

option due to a +1% shift in Gaussian copula shape parameter ρ with the differences due to 
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change in dependence structure – different copulas. The parameters used in all the other 

copulas are calibrated using 2260 trading days and the maturity of the option is 0.3years. 
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Figure 7.29 Relative% differences in prices: To study the effect of change in WC price of Gaussian copula 

for 1% increase in its parameter with change in prices due to change in copulas, K
ATM

 = 1, T=0.3 year 

We notice from Figure 7.29 that the effect in prices due to change of copulas from Gaussian 

to Clayton is much more than the change due to increasing the Gaussian copula parameter by 

1%. This shows that the pricing model is very sensitive to change in dependence structure, the 

same trend was observed for spread call options.  

-60%

-50%

-40%

-30%

-20%

-10%

0%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Strike K

R
e

la
ti

v
e

 %
 d

if
fe

re
n

c
e

s
 i
n

 P
ri

c
e

T = 0.3

T = 1.3

T = 2.3

 

Figure 7.30 Relative % Difference for Clayton-Gaussian WC prices for different maturities 

Figure 7.30 plots the relative percentage change between the Clayton and Gaussian copulas 

for different maturities. We notice that this difference decreases with increase in maturity T, 

identical to the trend observed for spread options, Figure 7.20. We apply similar arguments to 

this case also that both these distributions - Clayton and Gaussian, converge individually to 

standard normal distribution under the Central Limit Theorem assumption as the maturity of 

the option is increased. 
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7.7 Best of Call Option 

In this section we will price the best of call option whose payoff BC at maturity T is given by: 

BC = max (max (S1(T)/S1(0), S2(T)/S2(0)) – K, 0.0) 

Figure 7.31 plots the prices for different copulas and also the relative price difference between 

them. The figure suggests that lower tail dependence assumption between the underlying can 

increase the price when compared to zero tail dependence between them. The price is also 

marginally decreased when upper tail dependence is assumed in pricing. This observation is 

opposite to the worst-of-call option covered in Section 7.6 where the Clayton copula 

assumption decreased the price whereas Gumbel copula assumption increased the price of the 

worst-of-call option. 

-3%

0%

3%

6%

9%

12%

15%

0
0.2 0.

4
0.

6
0.

8 1
1.

2
1.

4
1.

6
1.

8 2

Strike K

re
la

ti
v
e

 %
 c

h
a

n
g

e
 i
n

  

p
ri

c
e

s

0

0.2

0.4

0.6

0.8

1

1.2

P
ri

c
e

s

%Diff Gumbel-Gaussian

%Diff Clayton-Gaussian

Gaussian Price

Gumbel Price

Clayton Price

 

Figure 7.31 Best of Call price and Relative % Difference between different copulas, T = 0.3 year 
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Figure 7.32 Best of Call price and Relative % Difference between different copulas, T = 5.3 year 

We extended our analyses by increasing the maturity of the option and plotting the results in 

Figure 7.32. The figure suggests that the price difference between different copula functions 
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has decreased with increase of option maturity. This result is similar to the one obtained in 

previous sections where the price differences between different copula functions decreased 

with increase in option maturity. We will again apply Central Limit Theorem to explain this 

result on the basis that as the maturity is increased more number of observations/random 

variables are added into the model and as a result it converges to a standard normal 

distribution. 
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Chapter 8 

Pricing – CMS Spread products 

 

After pricing some interesting bivariate products in the equity framework we now switch to 

interest rate framework where we will price some selected bivariate options using different 

maturity-tenor swaps as the underlying. We will analyse the products under four broad 

“Cases” defined in Figure 7.1 and study the effect of inclusion of smile and tail dependence, 

individually and together.  

Here again the inclusion of smile is achieved by assuming a UVDD model for the underlying 

swap rate and the tail dependence is incorporated by using different copula functions. The 

parameters for these models have been derived in Chapter 5 and 6. 

 

8.1 Extension of the pricing algorithm under swaps 

The pricing method used in the equity case will also be applied in this chapter. The Monte 

Carlo simulation is done by using Equation (7.2) and keeping the drift term equal to zero.  

In most interest rate products the observation and payment time are mostly different. For such 

options with a difference in observation and payment times a small adjustment is needed 

knows as the convexity correction, discussed in detail in Appendix A, to price consistently 

under a unique measure. This new measure in our case has the zero coupon bond maturing at 

the payment date as the numeraire. 

The pricing algorithm used in section 7.1.4 can still be used but with an extra step between 

steps 6 and 7 to perform the simulation: 

• Add to each simulated swap rate (simulated under their respective annuity measure) 

their respective convexity correction (A.4) term at the end of each simulation and then 

calculate the payoff with these modified rates. 

• Discount the payoff using payment time and related interest rates. 

 

8.2 Test Strategy  

We now provide the notation used throughout this chapter: Sa,b(t) denoted the swap rate with 

maturity time Ta and tenor Tb. The rates are observed after 1 year and the payment is done 

after 3 months, unless stated otherwise. The valuation date for the option is 16-Mar-09. The 

interest rate from the valuation date for a period of 1year is given by 0.761434%, calculated 

from zero copoun bond price with maturity of 1 year using continous compounding.  We also 

assume that fixed leg in swap makes payment semiannually. 
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All the results are derived assuming the 2-Scenario UVDD model developed in Chapter 5 for 

the swaps, and the copula parameters are calibrated by using 2433 trading days (≈ 9 years), 

unless stated otherwise. Wherever log-normal marginals are assumed it will be written 

explicitly and the constant volatility used in this case (Case A - Figure 7.1) is ATM volatility. 

The number of Monte-Carlo simulations used for pricing is equal to 524,286.  

 

8.3 Spread options 

The product under study is a spread option whose payoff structure is given by: 

SC(Tα+k) = N hτ max {
1,baS (Tα) – 

2,baS (Tα) – K , 0.0}                    (8.1)          

where 
1,baS and 

2,baS are the two swap rates with same maturity Ta and tenors  Tb1 and Tb2, K 

is the strike, N is the notional, Tα is the observation time, Tα+k  is the payment time and hτ  is 

the year fraction for both swaps (assumed to be six months for each fixed leg of swap). The 

payment is done on a notional N which we keep equal to 10000 so that we can represent the 

prices in terms of bp (basis points). 

Since the payment is done at time Tα+k we have to incorporate the convexity correction to 

price consistently, we achieve this by taking the zero coupon bond with maturity Tα+k  as our 

new numeraire and calculate the convexity correction for each swap and use section (8.1) to 

perform the Monte Carlo simulation. As we already discussed, the current market standard for 

pricing such product is the Kirk formula which is exact for a zero strike under BS framework.  

 

8.3.1 Kirk with no smile 

The modified Kirk formula with the convexity adjustment without smile is given by [36]: 
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In equation 8.1, 

- the indices (a, b) associated to each swap rate were omitted for simplicity, 

- σ1 and σ2 are the ATM volatilities for S1 and S2 respectively, 

- ρ is the correlation coefficient between them. 

The limitation of this formula is that it does not take into account the smile and the correlation 

skew [36].  
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8.3.2 Kirk with Smile 

One way of adding the smile is to assume UVDD model for the underlying and use the Kirk 

formula to get a closed form solution for spread options given by [36]: 
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where ijρ  is the correlation between swap rate 1 in scenario i and the swap rate 2 in scenario j. 

In all tests performed we assumed the same correlation parameter for all scenarios. 

 

8.3.3 Spread call option with S1,2 and S1,10 pair 

We start our analysis by comparing the prices obtained from Kirk formula with smile 

(Equation 8.3) and the Monte Carlo simulation with Gaussian copula and UVDD model for 

the swap rates S1,2 and S1,10, the copula parameters are estimated by using 780 days (Chapter 

6, Table 6.3).  
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Figure 8.1 Spread option prices/ Relative % Difference for different strike level 

S1,2 and S1,10 pair, T = 1 year 

The spread option prices are plotted for varying strike levels (= K – KATM) between -100bp 

and +100bp, the zero value of the strike level means K = KATM, where KATM is equal to S1,10(0) 

- S1,2(0) (=1.0237%) and N is equal to 10000. (S1,10(0) = 3.79411% and S1,2(0) = 2.6575%) 
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Figure 8.1 suggest that the relative percentage difference between the two pricing methods 

increases with increase in strike level. We also note that the option is always over-priced by 

the Kirk formula for the given correlation coefficient for Gaussian copula. 

The effect of inclusion of tail dependence “Case B-Case D” from Figure 7.1 can be seen in 

Figure 8.2, the swap rates used in this case are again S1,2 and S1,10 with smile. 
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Figure 8.2 Spread option prices and Relative % Difference for different copulas, 

for S1,2 and S1,10 pair, T = 1 year 

Figure 8.2 suggest that the change in prices due to inclusion of lower tail dependence by 

Clayton copula is much higher than due to inclusion of upper tail dependence by Gumbel 

copula. Hence for these products the inclusion of correct tail dependence is very necessary, 

for rates showing lower tail dependence in their historical data series the option has higher 

price than for the rates showing upper or zero tail dependence. Also this difference in prices 

increases when we shift from ITM strikes to OTM strikes options, hence extra care is needed 

while pricing options with higher strikes. 

The difference in prices due to various copulas can be understood by looking at Figure 8.3 

which plots the empirical pdf for the spread S1,2(T) – S1,10(T)  under different copula functions.  

It is suggested by the Figure 8.3 that the empirical pdf for spread under the Clayton copula 

assumption has more probability mass than under the Gaussian copula assumption one for the 

strikes roughly higher than 0.02 and lower than 0.01, and this difference is consistent with the 

huge prices difference observed for the spread option in Figure 8.2. Under the Gumbel copula 

assumption the empirical pdf is just above the Gaussian pdf for the above mentioned strikes 

and this is consistent with the slight increase in prices due to Gumbel copula. We also note 

that the difference in the probability mass is higher for Clayton-Gaussian case than the 
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Gaussian-Gumbel case, for the above mentioned region of strikes, hence the relative 

percentage difference in prices will be more in the former case as also observed in Figure 8.2. 

From Figure 8.3 we also notice that the relative percentage difference in prices also increases 

with strike as also observed in the prices in Figure 8.2 
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            Figure 8.3 Empirical PDF plot for the variable S1,10(T) – S1,2(T)  with maturity 1 year 

We now look at “Case A-Case C” and “Case A-Case B” from Figure 7.1 to study the effect 

of inclusion of smile and tail dependence separately to see which one has a higher impact on 

the prices of the spread option.  

Figure 8.4 plots the price differences for Gaussian Copula with smile and no smile and 

difference for Clayton and Gumbel copula with Gaussian copula under lognormal marginals’ 

assumption (No smile), the swap rates used are S1,2 and S1,10. 
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        Figure 8.4 Relative % Difference in prices to study impact of smile and tail dependence, 

for S1,2 and S1,10 pair, T = 1 year 



 92

Figure 8.4 suggest that the effect of inclusion of tail dependence has a higher impact on the 

price of the option especially when the rates show lower tail dependence. For rates showing 

upper tail dependence the inclusion of smile is more important than the dependence itself. 

Figure 8.5 shows the relative percentage difference in the prices due to change in calibrated 

parameters for Gaussian copula using 400 and 780 days and change in copula functions 

calibrated to 400 days. This study is done to see how much the prices change due to error in 

estimated Gaussian copula parameter and is this difference more or less than the difference 

obtained due to shift in copula functions.  

The parameters used for the Gaussian copula is calibrated using 400 and 780 trading days, the 

estimated parameter values for these days is given in Chapter 6 Table 6.3. In this case we 

observed that price difference due to change in estimated parameters for Gaussian copula is 

higher than the difference due to change of copula functions from Gaussian to Gumbel.  
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Figure 8.5 Relative % Difference in prices due to change in calibrated parameters  

for Gaussian copula with change in copulas functions, for S1,2 and S1,10 pair, T = 1year 
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Figure 8.6 Absolute differences in prices due to change in calibrated parameters  

for Gaussian copula with change in copulas functions, for S1,2 and S1,10 pair, T = 1year 
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In Figure 8.6 we plotted the absolute differences in prices for the three cases obtained from 

the plots in Figure 8.5.  
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Figure 8.7 Relative % Difference in prices: To study the effect of change in price  

under shift of +1% in Gaussian parameter with change in copula functions 

Figure 8.7 plots the absolute differences to compare the differences in the prices of a spread 

option due to a +1% shift in Gaussian copula shape parameter ρ with the differences due to 

change in dependence structure – different copulas. The parameters used in the copulas are 

calibrated using 780 trading days and the maturity of the option is 1 year. 

We notice from Figure 8.7 that the effect in prices due to change of copulas from Gaussian to 

Clayton is much more than the change due to increasing the Gaussian copula parameter by 

1%. This shows that the pricing model is very sensitive to change in dependence structure.  

 

8.3.4 Spread call option with S5,2 and S5,10 pair 

In this section we will analyse the prices of the spread call option (Equation 8.1) with swap 

rates S5,2 and S5,10 as the new underlying, the estimated parameter values is given in Chapter 6 

Table 6.5. This pair is of interest mainly because we want to study the impact of tail 

dependence on prices of options with longer maturity. We did a similar study in the Equity 

case and observed that the difference in prices due to different copula functions decreases 

with increase in option maturity. Since the underlying in the section (8.3.3) and section (8.3.4) 

are different we will not compare the two cases together but will study them individually. 

We start our analysis by comparing the prices using Gaussian copula and Kirk with smile 

formula (Section 8.3.2) with marginals following the UVDD model with parameters given in 

Chapter 5 Table 5.6 and Table 5.7. Figure 8.8 suggest that the relative price difference for 
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longer maturity option is much lower than the differences observed for shorter maturity option 

(Figure 8.1). 
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Figure 8.8 Spread option prices using Gaussian and Kirk with smile 

From Figure 8.9 we notice that the option is overpriced by Clayton copula and under priced 

by Gumbel copula when compared to Gaussian copula. We observed similar impact on prices 

in the Equity case in Chapter 7.  
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Figure 8.9 Spread option prices and Relative % Difference for different copulas, 

for S5,2 and S5,10 pair, T = 1 year 

This difference in prices can be explained by looking at Figure 8.10 which plots the empirical 

probability distribution functions for the spread (S5,2 – S5,10) under each copula function. 

Figure 8.10 suggests that the empirical pdf for spread under the Clayton copula assumption 

has slightly more probability mass than the Gaussian one for the strikes roughly higher than 

0.025 and lower than -0.025, and it is vice-versa for pdf of Gumbel copula, which is just 

below the Gaussian pdf for the above mentioned strikes. We also note that this difference in 

probability mass is higher for Clayton-Gaussian case than the Gaussian-Gumbel case, for the 
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above mentioned region of strikes, hence the relative percentage difference in prices will be 

more in the former case as also observed in Figure 8.9. From Figure 8.10 we also notice that 

the relative percentage difference in prices also increases with strike. 
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              Figure 8.10 Empirical PDF plot for the variable S5,10(T) – S5,2(T) , T = 5 year 

We now look at “Case A-Case C” and “Case A-Case B” from Figure 7.1 to study the effect 

of inclusion of smile and tail dependence separately to see which one has a higher impact on 

the prices of the spread option.  

Figure 8.11 plots the price differences for Gaussian Copula with smile and no smile and 

difference for Clayton and Gumbel copula with Gaussian copula under lognormal marginals’ 

assumption (No smile), the swap rates used are S5,2 and S5,10. 
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Figure 8.11 Relative % Difference in prices to study impact of smile and tail dependence, 

for S5,2 and S5,10 pair, T = 5 year 
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Figure 8.11 suggest that the effect of inclusion of smile has a much higher impact on the 

prices than the tail dependence especially and increases with increase in strikes. This shows 

that the inclusion of the smile for each underlying is more important than the inclusion of the 

right tail dependence between the two. And among the two types of tail dependence lower tail 

dependence has a much higher impact on prices than upper tail dependence.  

We no study how much the prices change due to difference in estimated Gaussian copula 

parameters using different days for calibration and comparing it with the difference in prices 

obtained due to shift in copula functions. Figure 8.12 shows the relative percentage difference 

in the prices due to change in calibrated parameters for Gaussian copula using 400 and 780 

days and change in copula functions calibrated to 780 days.  

The parameters used for the Gaussian copula is calibrated using 400 and 780 trading days, the 

estimated parameter values for these days is given in Chapter 6 Table 6.5. In this case we 

observed that price difference due to change in estimated parameters for Gaussian copula is 

almost zero when compared to the difference due to change of copula functions from 

Gaussian to Gumbel or Gaussian to Clayton.  
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Figure 8.12 Relative % Difference in prices due to change in calibrated parameters  

for Gaussian copula with change in copulas functions, for S5,2 and S5,10 pair, T = 5 year 

 

8.4 Spread Digital options 

The option analyzed in this section is the spread digital call option whose payoff SD at 

maturity is given by: 
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where K is the strike with KATM = Sa,b1(0) – Sa,b2(0), the rates are observed at time Tα and paid 

at Tα+k, similar to spread call option from previous section, and the coupon of c on a notional 

of 100 is paid The valuation date for the option is 16-Mar-09. 

We will price this option using Monte Carlo simulation with the pricing algorithm discussed 

in section 8.1.  

Some practical applications of using univariate digital options are –  

• A speculator betting on rising and falling prices can use digital options as cheaper 

alternatives to regular vanilla options, 

• A hedger uses this cost-effective instrument to effectively draw upon a rebate 

arrangement that will offer a fixed compensation (that is, payout) if the market turned 

the other direction. 

 

8.4.1 Spread digital option with S1,2 and S1,10 pair 

In Figure 8.13 we study “Case B – Case D” from Figure 7.1 to understand the impact of tail 

dependence on the pricing of these digital spread options, the swap rates used are S1,2 and 

S1,10. The model parameters for UVDD model and copula function are calibrated using 780 

days. The figure plots the prices and the relative percentage difference for the Clayton-

Gaussian and Gumbel-Gaussian. S1,2(0) = 2.6575%, S1,10(0) = 3.79411%, K
ATM

 (%) = 

1.1366% 
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Figure 8.13 Spread digital price and Relative % Difference between various copulas 

for S1,2 and S1,10 pair, T = 1year, c = 4%, KATM = 0.011366 

We notice from Figure 8.13 that the Clayton copula prices the option significantly higher 

whereas the Gumbel overprices it only slightly for strikes higher than 0.014 when compared 
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to prices using Gaussian copula. For lower strike values the product is slightly under priced 

by both Clayton and Gumbel with Clayton under pricing the option relatively more than the 

Gumbel copula. 

We now look at “Case A-Case C” and “Case A-Case B” from Figure 7.1 to study the effect 

of inclusion of smile and tail dependence separately and see which one has a higher impact on 

the prices of the spread option.  
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Figure 8.14 Relative % Difference in spread digital prices due to smile 

and tail dependence, for S1,2 and S1,10 pair, T = 1year, c = 4%, K
ATM

 = 0.011366 

Figure 8.14 plots the price differences for Gaussian Copula with smile and no smile and 

difference for Clayton and Gumbel copula relative to Gaussian copula under lognormal 

marginal assumption (i.e., No smile), the swap rates used are S1,2 and S1,10. We conclude from 

the plot that neglecting tail dependence can result in huge errors in pricing especially for 

higher strikes and for underlyings showing high lower tail dependence values.   

Figure 8.14 also suggest that the impact on prices due to inclusion of tail dependence is 

significantly higher for higher strikes (>0), especially for Clayton copula. For lower strike 

values (<0) the differences are almost negligible than the differences for higher strikes. 

The next step is to study how much the price change due to error in estimated Gaussian 

copula parameter, coming from using different days in parameters calibration, and is this 

difference more or less than the difference obtained due to shift in copula functions. These 

parameters are given in details in Chapter 6 Table 6.3. 

Figure 8.15 shows the relative percentage difference in the prices due to difference in values 

of the calibrated parameters for Gaussian copula by using 400 and 780 days for calibration, 

and change in copula functions calibrated to 400 days.  



 99

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

-0.02 -0.016 -0.012 -0.008 -0.004 0 0.004 0.008 0.012 0.016 0.02

Strike

R
e
la

ti
v
e
 %

 d
if

fe
re

n
c
e

Rel %Diff Gaussian780-Gaussian400

Rel %Diff Clayton400-Gaussian400

Rel %Diff Gumbel400-Gaussian400

 

Figure 8.15 Relative % Difference in spread digital prices due to change in calibrated parameters  

for Gaussian copula and change in copulas functions, S1,2 and S1,10 pair, T = 1year, c = 4% 

Figure 8.15 suggest that difference in prices due to change in copula functions from Gaussian 

to Clayton is always more than the difference in prices due to change in parameter for the 

Gaussian copula using different days. For change from Gaussian to Gumbel copula this 

change in prices is lower than the difference due to change in parameter value used for 

Gaussian copula. This difference in prices increases with increase in strike. We conclude that 

the impact on prices due to change in copula functions is much higher than due to change in 

parameter values for Gaussian copula calibrated using 400 and 780 days respectively. 

 

8.4.2 Spread digital option with S5,2 and S5,10 pair 

We now study the impact of maturity on the pricing of the spread digital options by taking S5,2 

and S5,10 as the new underlyings. We noticed in previous products that the difference between 

various copulas decreases with increase in maturity of the option. S5,10(0) = 4.4683%, S5,2(0) = 

4.12%, K
ATM

 = 0.3483% 
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Figure 8.16 Spread Digital prices and Relative % difference between  

various copulas for 5Y-2Y and 5Y-10Y swap pair, c = 4%, K
ATM

 = 0.003483 
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The parameters for the UVDD model for the swap rates S5,2 and S5,10 is given in Chapter 5 

Table 5.7 and Table 5.7 respectively. The copula parameter is given in Chapter 6 Table 6.5. 

The maturity of the option is 5 years and the payment is done after 3 months of the 

observation time. 

Figure 8.16 suggest that the price difference due to various copula assumptions is relatively 

less than observed for the 1 year maturity option in section 8.4.1. 

In Figure 8.17 we compare the impact of smile and tail dependence, when added individually, 

on the prices of a spread digital option under various copulas. 
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Figure 8.17 Spread Digital prices and Relative % difference to compare effect 

of smile and tail dependence for 5Y-2Y and 5Y-10Y swap pair, c = 4%, K
ATM

 = 0.003483 

Figure 8.17 suggest that the inclusion of smile has a larger effect than the inclusion of right 

tail dependence. Hence for products with longer maturity smile plays an important role than 

the tail dependence. 
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Figure 8.18 Relative % Difference in prices: To study the effect of change in price  

for +1% in Gaussian parameter and change in copula functions, KATM = 0.003483 
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Chapter 9 

Conclusion 

 

This thesis is an attempt to understand the impact of tail dependence and volatility smile on 

the prices of interest rate and equity derivatives. This project finds its base on the evidence of 

smile and empirical tail dependence present in the daily returns of various financial 

assets/rates presented in Section 1.3.  

Since the Gaussian copula underestimates the probability of the extreme events there is a need 

to replace the Gaussian copula with a non-Gaussian copula to incorporate the right tail 

dependence to price options whose payoff depends largely on the tails of the terminal as well 

as transition distributions.  These include Spread options, Spread Digital, Double-Digital 

options, Worst-of and Best-of options. This way we can price the options more realistically, 

efficiently and consistently.  

The methodology used in my thesis can be broadly summarized as follows:  

• The asset pairs were selected based on how large empirical lower or upper tail 

dependence is present in their historical returns. It was observed that pairs with high 

correlation value have high probability of having at-least one type of tail dependence.  

• To incorporate volatility smile we used 2-scenario Uncertain Volatility with Displaced 

Diffusion (Chapter 5) model to model the dynamics of the underlying. The model 

parameters were calibrated using the historical log returns. 

• With the use of copula functions we added the desired tail dependence without 

changing the marginal distributions and therefore the model is still consistent for the 

single-asset derivatives. In the analysis we used the following copulas into the pricing 

model:  

1. Gaussian to add zero tail dependence,  

2. Clayton to add lower tail dependence, 

3. and Gumbel to add upper tail dependence. 

• The connection between the Gaussian copula and Black-Scholes model was explained 

and later this relationship was extended to replace the Gaussian copula with the non-

Gaussian copula, while keeping the marginals intact. The algorithm to price the 

options under any bivariate copula function assumption using Monte-Carlo Simulation 

method was also presented.  
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• The copula parameters were calibrated (Chapter 6) using the Canonical Maximum 

Likelihood method over the historical returns. The calibration was done on non-

overlapping daily returns to minimize autocorrelation.  

• A confidence interval of 95% was used for the prices obtained from Monte Carlo 

simulation to distinguish between the error in prices due to simulation method and the 

chosen copula function. 

As for the impact on pricing, we studied in detail the following three scenarios: the first is the 

change of copula functions, second is the change of the marginal distribution from lognormal 

(no smile) to UVDD model (smile consistent) and the third is change of option maturity.  

Apart from this we also studied the change in prices due to choosing a different window size 

to estimate the Gaussian copula parameter and choosing a non-Gaussian copula calibrated 

using a fixed window size.  

The main results can be summarized as below: 

Equity options: Study of equity digital options confirmed the implementation of our 

algorithms and pricing methods. ITM options had no/negligible impact of tail dependence 

whereas OTM options showed high relative differences in prices. 

For the spread options in the equity case we observed for hypothetical assets that price 

differences due to different copulas are only present for correlation higher than 0.7, below this 

value it was hard to say if the difference in prices is due to copula or error in the simulation 

method.  

The need to add both smile and tail dependence was outlined for spread options. The 

empirical plots of the spread S1(T) – S2(T) helped us to understand the price differences due 

change in copulas. It showed that payoff of a spread option increase with presence of lower 

tail dependence and decreases with presence of upper tail dependence. This relative 

difference in prices due to different copulas decreased with increase in option maturity due to 

application of Central Limit Theorem. This shows that longer maturity options are less 

sensitive to tail dependence than the shorter maturity ones.                          

Worst-of options showed that for higher strikes the relative difference in prices due to various 

copulas was an increasing function. This option also showed the decrease in relative price 

difference due to various copulas for long maturity. Results for Best-of option confirmed our 

implementation of pricing algorithm and methods. 

Interest Rate options: For pricing CMS spread products using Monte Carlo Simulation we 

added to the pricing algorithm (Section 8.1) an extra step to incorporate convexity correction 

due to difference in observation and payment time. The Gaussian copula prices were 

compared to the Kirk formula which is the market standard to price spread options. For our 
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chosen asset pairs and parameters we observed that Kirk formula over prices the options 

slightly for all strikes. For short maturity option the relative difference in spread option prices 

was relatively much higher than the difference for longer maturity. This result is supported by 

the empirical probability density plots of the spread S1(T) – S2(T) for maturity 1 year and 5 

year. In the equity case also we obtained the similar results.  

Spread Options with short maturity showed more sensitivity towards addition of tail 

dependence than to smile whereas for longer maturity options it was a reverse trend, and this 

sensitivity increases with increase in strikes. 

For spread digital options we again observed that shorter maturity options show higher 

differences in prices due to inclusion of tail dependence then for the longer maturity options. 

But for both short and long maturity options, ITM options have no or very little affect of tail 

dependence whereas OTM options showed relatively high difference in prices. We found 

similar trend in the equity case also. 

The effect of smile on spread digital options is more for longer maturity options than for short 

maturity. ITM options with short maturity shows negligible changes in prices due to addition 

of smile or tail dependence but suddenly become sensitive to these variables for OTM 

options. The same applied to longer maturity options which are less sensitive to smile and tail 

dependence for ITM options and very sensitive for OTM options. 

This research gives us full insight on the sensitive to smile and tail dependence for equity and 

interest rate options. 

Further research may be carried out to perform hedge test using these instruments. It will also 

be very interesting and challenging to study the impact of tail dependence on the prices of 

path dependent and/or American style options.  
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Appendix A 

 

A.1 Vanilla Swaps 

It is a contract in which two parties agree to exchange periodic interest payments. In the most 

common type of swap arrangement, one party agrees to pay fixed interest payments(payers 

swap) on designated dates to a counterparty who, in turn, agrees to make return interest 

payments that float with some reference rate such as the rate on Treasury bills or the prime 

rate. The forward swap rate Sa,b(t, Ta, Tb) at time t is defined as [27, pp. 92-93], 
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where P(t, T) is the discount factor at time t for maturity T, Τ={Ta+1,…..,Tb} are the payment 

times and τj the corresponding year fractions(Tj+1 – Tj), and Aa,b(t) is the annuity. The swap 

starts at time Ta and ends at time Tb, where Tb - Ta is called the swap tenor. 

 

A.2 Black's Formula for Swaptions 

The Black-76 formula for, a maturity Ta and tenor (Tb - Ta), payer swaption with strike K is 

defined as [27, pp. 93]: 
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The constant ba,σ  is known as the Black volatility. Given a market price for the swaption, the 

Black volatility implied by the Black formula is referred to as the implied Black volatility. The 

Black swaption formula has been used by the market for a long time, without any explicit 

coherent underlying model.  

 

A.3 CMS swaps 

Constant Maturity Swaps (CMS) can be regarded as generalizations of vanilla interest rate 

swaps [27, pp. 149]. In a CMS swaps one of the legs pays (respectively receives) a swap rate 

of a fixed maturity, while the other leg receives (respectively pays) fixed (most common) or 

floating.  

In our case each floating leg is a spot swap rate that will be determined in the future, like 

Sa,b(t, Ta, Tb) with different set date t for each floating leg and swap tenor of length Tb - Ta.  
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To price the CMS swap we need forward swap rates which are unbiased forecast of the 

corresponding (future) swap rate under the proper forward swap measure A (using the annuity  

Aa,b(t) as the numeraire): 

Sa,b(0, Ta, Tb) = AE0 [ Sa,b(Ta, Ta, Tb)]. 

However, the above statement does not apply to CMS swap where the fixed leg (CMS swap) 

is not a simple combination of the expectations of each floating leg (vanilla swaps), since 

these expectations are based on different measures (due to different/longer maturity of vanilla 

swaps used).  

With the use of convexity adjustment, described in next section, we can obtain expected 

“future” forward swap rates by applying change in numeraire. 

 

A.4 Convexity Adjustment 

The amount by which the expected interest rate exceeds the forward interest rate is known as 

a convexity adjustment, it is an adjustment necessary when a payment measure (or currency) 

is different from the martingale measure of the underlying rate (currency) as in the case of 

CMS swaps.  

The time Ta value of the CMS floating leg single payment contract would be given by: 

V
floatingleg

(Ta ) = ),(),,( 1, +aabaaba TTPTTTS  

Since payment is made at time Ta+1.  

Using bond ),0( 1+aTP as the numeraire we can express the value of the above contract at time 

0 as  

V
floatingleg

(0) = ),0( 1+aTP 1

0
+aT

E [Sa,b(Ta, Ta, Tb)] 

However, using ),0( 1+aTP bond as the measure the process Sa,b(Ta, Ta, Tb) is in general not a 

martingale. 

But we can apply the change in numeraire on the expectation on the LHS to calculate the 

expected values, since under annuity measure A we have: 
A

E0 [ Sa,b(Ta, Ta, Tb)] = Sa,b(0, Ta, Tb), 

And  
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Hence using Aa,b(0) as numeraire and applying change of numeraire theory [27, pp. 11], we 

rewrite 1

0
+aT

E [Sa,b(Ta, Ta, Tb)] as 
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We derive the convexity correction for single payment of the CMS swap. 
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The problem in first section is solved by first obtaining the corresponding forward swap rate 

Sa,b(Ta, Ta, Tb) to each floating CMS leg and then adjusting each forward swap rate using the 

proper convexity adjustment [27, Ch. 11].  

Expectation on RHS of (Equation A.3) can be expressed as: 

1

0
+aT

E [Sa,b(Ta, Ta, Tb)] = AE0 [ Sa,b(Ta, Ta, Tb)]+ ( )abaSCA δ;,                           (A.4) 

where the correction term ( )abaSCA δ;,  is the convexity correction which will depend on the 

corresponding volatility σTa of the forward swaps, time 0, and the set date Ta.   

After carrying out the calculations given in details in [29] we get the following result for CMS 

swap: 

   1

0
+aT

E [Sa,b(Ta, Ta, Tb)] = Sa,b(0, Ta, Tb) + ( )δθ )1exp( 2
, −aba Tσ ,                      (A.5) 

where, δ is the accrual period of the swap rate(i.e., we are assuming that in the CMS swap the 

swap rate is fixed at Ta and paid at Ta+δ ) and 2
,baσ  is the average variance of the forward swap 

rate and is given by: 
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And after comparing with (Equation A.5) we get the convexity adjustment ( )δ;,baSCA  given 

by: 

( )δ;,baSCA  = ( )δθ )1exp( 2
, −aba Tσ ,                                          (A.6)  

where after assuming jτ  = τ and writing  Sa,b(0, Ta, Tb)  = Sa,b(0) we have ( )δθ  given by  : 
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Extending the above results to a multi-payment CMS swap, a sequence of CMS rates Xa,b is 

paid against a sequence of Libor rate plus a spread. The receiving and paying legs have the 

same frequency. The market quotes the spread that makes the CMS swap a fair contract.  

For a CMS swap starting at '
0T =0 and paying at Ti the Tb-year swap rate Si-1,b set at T’i-1 

(=1,…n), the spread on top of the Libor rate that makes the swap a fair contract (i.e. the 

market quote) can be expressed in terms of the convexity adjustment (Equation A.6) and it 

value is given by: 
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where L(T’i-1, T’i) is the Libor rate set at T’i-1 and paid at T’i, δi is the corresponding accrual 

period. In (Equation A.5), the accrual periods are assumed to be the same for both paying and 

receiving legs.  
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For the contract to be fair we put ( )0swapCMSV  = 0 and obtain the CMS swap rate as: 
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The next section covers the introduction to the Black’s formula for swaption pricing. 

 

A.4 Swaption pricing with UVDD Model 

Swaption prices under the UVDD assumption for the swap rates are simply a mixture of 

adjusted Black’s swaption prices. More precisely, the price of a (European payer) swaption 

with unit notional, maturity Ta, swap payments on times Ta+1, Ta+2,….. Tb and strike K is 

given by [30, pp. 522-524]: 
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A.5 Convexity Correction with UVDD Model 

The extension of the convexity adjustment formula to the CMS swap UVDD model leads to 

the following correction term: 
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where δ and ( )δθ  has the usual meaning as given in section A.4. 
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