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1

Introduction

In the modern world both the mobility of people is increasing and their
demand for digital information. To concede to these demands an efficient
modulation scheme is needed which has high data rates and has a good per-
formance in urban environments. Such a modulation scheme is Orthogonal
Frequency Division Multiplexing (OFDM). The urban environment causes
a distorted transmission channel between receiver and transmitter, which
can be easily equalized when using the OFDM modulation scheme. OFDM
is already used for the well known Wireless Local Area Network (WLAN)
standard and the Digital Video Broadcasting standard. Besides channel
equalization another important aspect of the transmission is the synchro-
nization done by the receiver. It can even be stated that without synchro-
nization between transmitter and receiver there would be no communication
possible.

1.1 Aims of this research

This research will focus on how synchronization can be achieved and how the
implementation of it can be accomplished. Several real world interferences
which hamper the synchronization will be looked at and how these interfer-
ences can be dealt with. The final goal will be to make a software implemen-
tation which is able to demodulate the data received by the Multiple-Input
Multiple-Output (MIMO) testbed. The MIMO testbed has been developed
by the Signals and Systems group of the University of Twente to test various
algorithms in real world office situations.
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2 Introduction 1

1.2 Research method

In the first stage of the research the principals of OFDM are investigated
and simulated. The simulations will provide insight of the methods and will
determine the right parameters. Some of the components of OFDM which
are developed and tested are:

• Preamble generation

• Frame generation

• Carrier frequency offset

• Frame detection

• Coarse detection

• Fine detection

• Carrier frequency offset compensation

• Channel estimation and equalization

In the second stage of the research the data generated in the simulation
will be tested on the MIMO testbed and analysed.

1.3 Overview of the following chapters

The second chapter will give the reader some background information on
OFDM and the 802.11a standard, which is commonly used for wireless LAN.
Some principles of this standard are used in this research. The next chap-
ter will give an analysis of the methods used for synchronization, channel
equalization and dealing with other real world interferences, such as carrier
frequency offset. The fourth chapter will describe how the simulation of
several methods mentioned in the previous chapter can be performed. This
chapter will also present the results of the simulations carried out in this
research . The last chapter will describe the method used for the real world
tests and the results obtained will be presented.
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Background information

This chapter provides a short introduction to OFDM and the 802.11a stan-
dard. This standard is commonly known as WLAN and provides data speeds
up to 54 Mbps. The first section of this chapter gives a brief overview of
OFDM. This section is followed by some background information on the
802.11a standard. Some principles of this standard are used in the simula-
tions.

2.1 OFDM

OFDM is a modulation technique that uses multiple carriers which are or-
thogonal to each other. The number of carriers can be very large, for example
the Digital Video Broadcasting - Terrestrial (DVB-T) standard uses 6816
subcarriers (for the 8k mode) [5]. The data being transmitted consists of a
single stream of bits, called the bitstream. The bitstream being transmitted
is first modulated using a digital modulation scheme such as Binary Phase
Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK) or Quadra-
ture Amplitude Modulation (QAM). After modulation the data is divided
into N parallel streams, with N being the number of subcarriers. Each
parallel stream is modulated on a subcarrier. After this, all N subcarriers
are summed together and upconverted to the carrier frequency using a fre-
quency mixer. Note that in some real life systems not all carriers are used
to transmit data. Some subcarriers are used as pilots for channel estimation
and phase compensation.

3



4 Background information 2

Each baseband OFDM symbol can be described by the following relation:

s(t) =


N∑
k=1

die
j2πk∆f(t−ts) ts ≤ t ≤ ts + Ts

0 elsewhere

(2.1)

In this relation the following symbols are used:

N Number of subcarriers

ts Symbol start time

Ts Symbol duration

∆f Subcarrier spacing

di Complex data symbol

The process of generating N subcarriers and summing them all up is
not feasible in a practical system, especially when using a large number
of subcarriers. The solution is to use an Inverse Fast Fourier Transform
(IFFT). The IFFT maps the frequency domain onto the time domain. The
modulated N parallel streams can be seen as the frequency domain repre-
sentation. These are mapped to the time domain by an IFFT consisting of
N points. An IFFT can be implemented efficiently for powers of two. If N
is not a power of two it can be zero padded to make it a power of two. A
block scheme of an ideal OFDM transmitter can be seen in figure 2.1.

Figure 2.1: Ideal OFDM transmitter block diagram [6]

In this figure it can be seen that the bitstream is first converted to par-
allel and then modulated. The IFFT produces real and imaginary numbers.
These numbers are converted to the analog domain by the Digital to Analog
Converters (DAC). After this the signals are mixed with the carrier fre-
quency. Note that the lower path is mixed using a carrier frequency which
has a phase offset of 90 degrees. The upper path is called the in-phase
component and the lower path is called the quadrature path. Finally both
signals are added together and transmitted.
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2.2 802.11a standard

The digital system implementation and the simulations use some principles
of the IEEE 802.11a standard. The 802.11a standard uses 64 subcarriers
and has a bandwidth of 20 MHz. This bandwidth is divided amongst the
64 subcarriers resulting in a ∆f of 312.5 kHz. Each data OFDM symbol
has a symbol time of 1/∆f in the case of 802.11a this results into a symbol
time of 3.2 µs. Of these 64 carriers only 52 are used, 48 are used for data
and four are used as pilot carriers. Because an IFFT can be implemented
efficiently for powers of two the 64 (28) samples are used to do the IFFT.
The 52 samples are mapped to the IFFT input in a specific way. This is to
overcome DC offset in the time domain signal. The input mapping can be
seen in figure 2.2.
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Figure 2.2: IFFT input mapping [7]

2.2.1 Preamble

Each frame being send consists of a preamble and data. The preamble is used
for several things such as channel estimation, timing offset and frequency
offset estimation. A 802.11a frame can be seen in figure 2.3.

t1 t2 t3 t4 t5 t6 t7 t8 t9 GI2 GI GI GISIGNAL Data 1 Data 2T1 T2

8 + 8 = 16 µs

10 × 0.8 = 8 µs 2 × 0.8 + 2 × 3.2 = 8.0 µs 0.8 +3.2 = 4.0 µs 0.8 + 3.2 = 4.0 µs 0.8 + 3.2 = 4.0 µs

Signal Detect,

AGC, Diversity

 

Coarse Freq.

Offset Estimation

 

Channel and Fine Frequency RATE SERVICE + DATA DATA

t10

Selection Timing Synchronize
Offset Estimation LENGTH

Figure 2.3: OFDM frame structure [7]

The first 160 symbols are called the short preamble and consists of ten
identical blocks of sixteen symbols. Following the short preamble is the
long preamble, which also consists of 160 symbols in total. It contains two
identical blocks of 64 symbols each and a cyclic prefix of 32 symbols. The
signal field which can also be seen in the figure is not used in the digital
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system implementation. The data OFDM symbols consist of 80 symbols, of
which 64 symbols represent the time domain version of the OFDM symbol
and the remaining 16 symbols represent the cyclic prefix.

The preambles are constructed of symbol sequences which are 52 sym-
bols of length and are defined in the 802.11a standard. The time domain
representations of the preambles are given by there IFFT. The preamble is
first mapped to a sequence which has a length of 64. The position at zero is
set to zero and the values at the centre of the sequence are set to zero. This
is to avoid a DC offset in the resulting signal. The power of both sequences
have to be normalized. This is done by multiplying the short preamble with
64/sqrt(24) and the long preamble with 64/sqrt(52).
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Analysis of an OFDM system

This chapter will describe the parts in the OFDM system which will be
simulated. The OFDM system is divided into two parts, a transmitter part
and a receiver part. The transmitter part will focus on how the signals
which are transmitted are constructed. The receiver part will focus on how
the data can be recovered again. Later on in Chapter 4 a description is given
of a software implementation of an OFDM system. In this chapter the also
the results of the simulations will be presented and a few notes are made
about the implementation of the OFDM system.

3.1 Transmitter tasks

This section will describe the tasks which are done by the transmitter. The
first subsection describes how the data is created and modulated. This is
followed by a subsection describing how a frame is constructed and how the
generated signals are modified to resemble a real world signal.

3.1.1 Data generation & modulation

The transmitted data is randomly generated. The modulation technique
which will be used during most parts of the simulation is BPSK. This mod-
ulation technique is chosen because it is easy to implement. BPSK modu-
lation maps a binary one to plus one and maps a binary zero to minus one.
When simulating actual transmission and reception QPSK modulation will
be used. When doing tests on the testbed QPSK and QAM with sixteen
constellation points will be used. This will also be the modulation type
when tests are done on the testbed. QPSK and QAM are used because in
real world situations BPSK is not used often as it only sends one bit is mod-
ulated at a time. QPSK modulation maps a set of two bits to a single point
in the constellation. No error correction will be used during the simulations
as this is not part of the research question and is difficult to implement.

7



8 Analysis of an OFDM system 3

3.1.2 Frames

The frames used in the simulation start with a gap of 64 symbols. This
number was arbitrarily chosen. The gap is used to test the frame detection
and the symbol timing offset estimation. Following this gap is the preamble
which has a total length of 320 symbols. The exact details about the pream-
ble can be found in Section 2.2.1. Following this preamble are the OFDM
data symbols. Each data symbol will consist of 80 OFDM symbols. These
are 16 symbols for the guard interval and 64 symbols for the data. Of these
64 symbols only 52 actually contain data.

The simulation must also add noise to the frames and optionally apply
the channel model. The channel model used in the simulations is the ”Chan-
nel Model A” which was originally for the HIPERLAN/2 standard [8]. The
channel model randomly attenuates or amplifies the subcarriers.

3.1.3 Pilots

In each OFDM data symbol four pilots are added. These pilots are BPSK
modulated and are required to remove any residual carry frequency offset.
When considering an OFDM symbol with an index ranging from -26 to 26,
the pilots are inserted at positions -21, -7, 7 and 21 the values corresponding
to these indices are [1, 1, 1, -1]. The pilot and data positions can be seen in
Figure 3.1. Note that the spacing between pilots is fourteen samples. In the
802.11a standard the polarity of the pilot is cyclically changed to increase
the robustness of the system [7]. In the simulations the polarities will not
be cyclically changed to keep matters simple.

Subcarrier Numbers

0

d0 d4 d5P–21 d17 d18P–7 d23 d24DC d29 d30P7 d42 d43P21 d47

–26 –21 –7 7 21 26

Figure 3.1: Subcarrier frequency allocation [7]



3.2 Receiver tasks 9

3.2 Receiver tasks

This section will describe the tasks which are done by the receiver in order
to retrieve the original data. Some of these tasks are:

1. Frame detection

2. Synchronization

3. Carrier frequency offset compensation

4. Channel estimation & equalization

5. Residual carrier frequency offset compensation

6. Demodulate data

Each of these tasks will be looked at in the following subsections, except the
demodulation part. Demodulation will not be looked at because it is not
the main topic of the research.

3.2.1 Frame detection

The first thing the receiver has to do is check whether a frame is being
received or not. The most simple way of doing this is by power detection.
Power detection will look at the instantaneous power of the received signal
and compare it to a predefined threshold. If the power exceeds the threshold
a frame is detected. This method has some downsides, especially in noisy
environments where outliers can occur easily. The frame detection must
perform equally well in different signal-to-noise ratios. The above mentioned
frame detection method will not be part of the simulations.

Two better alternatives for frame detection are discussed in the following
two subsections. These are power detection using a window and correlation
detections. During simulations of the frame detection algorithms it was clear
the two mentioned algorithms did not work well enough so a third method
was introduced. This new method is described last.

For the coarse timing offset detection to be correctly determined at least
the last three symbols of the short preamble are needed. This is because the
coarse detection will make use of the autocorrelation of the short preamble.

Frame detection will fail if the detector starts detecting in the middle of
a frame. This error will be detected in the next phase of the demodulation,
the coarse estimation. After such an error has been detected a possibility
is to move ahead in time by a couple of samples and start with the frame
detection again.
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Power detection

Instead at looking at the power of the received signal at a single moment
in time and comparing this to a threshold one could also look at a moving
averaged power in time. By using an average outliers caused by noisy en-
vironments are cancelled out. The average power is calculated by using a
window which is moved along the received samples. The window will move
one sample at the time and calculates the average power inside the window.
A frame is detected if the power average exceeds a specified threshold.

An even better way of determining a frame is to check whether the
average power has increased over time. A very small chance exists that a
frame is falsely detected. This can occur when the noise power increases in
a successive manner. The chance that this will happen is so small that it
will be neglected.

Correlation detection

Due to the repetitive structure of the preamble, which is described in Sec-
tion 2.2, a frame can easily be detected by performing an autocorrelation.
Each frame starts with a preamble which starts with ten exactly the same
symbol sequences. A figure showing an autocorrelation of the short preamble
is shown in Figure 3.2. The detection of the frame can be done by comparing

−50 0 50 100 150 200
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Figure 3.2: Autocorrelation of a short preamble with 20dB of noise

the value of the autocorrelation to a threshold. If a frame is being received
the autocorrelation value will increase. In the same manner as the power
detection a moving average can be used. As can be seen in the figure the
autocorrelation increases over time. A threshold can be set to define the
minimum amount of successive increases before a signal is classified as a
frame.
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Noise power detection

This method first determines the average noise power of the signal using a
window. The noise power value is used later on as a threshold. A window
is moved over the signal and the average is calculated. The window does
not move at one sample a time, but moves a window length at a time. This
is because the position of the frame does not have to be very precise. The
average power is compared to the previously calculated threshold. If the
power is above the threshold the signal is classified as a frame.

3.2.2 Time synchronization

After a frame has been detected the exact start of the payload must be
determined. To determine this start different methods exist which are all
based on the principle of correlation. The synchronization is commonly split
up into two parts, the first part does a rough estimation of the symbol timing
and the second part does a precise estimation of the symbol timing.

Coarse estimation

The coarse estimate is usually done by an autocorrelation of the received
signal. The autocorrelation formula can be seen in Equation 3.1.

P (d) =
L−1∑
m=0

r∗d+mrd+m+L (3.1)

The sampled received signal is represented by r. Note that d is the time
index in a window of 2L samples. This autocorrelation can also be written
as an iterative formula [9]. This is convenient because less calculations have
to be done. The iterative formula can be seen in Equation 3.2.

P (d+ 1) = P (d) + (r∗d+Lrd+2L)− (r∗drd+L) (3.2)

In our case L will be sixteen as this is the symbol length of a symbol in the
short preamble. Two autocorrelation based methods for the rough estimate
will be discussed.

The first method determines the maximum of the autocorrelation func-
tion and determines at which sample index the autocorrelation has decreased
by an given percentage from the maximum. A typical autocorrelation out-
put can be seen in Figure 3.3. In this figure also the cross-correlation output
is shown. This will be used later on when determining the precise symbol
offset. The peaks of the cross-correlation correspond to the start of each
symbol in the short preamble. The rough estimate point should be some-
where between the last and second last peak of the cross-correlation. This is
because the fine symbol offset detection must determine the exact position
of the last peak. The problem of this method is that finding a corresponding
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Figure 3.3: Auto and cross correlation of a short preamble with 20dB of
noise

index for a arbitrary value in an array is difficult. A possible implementa-
tion would search the smallest difference of the absolute error. The absolute
error is calculated by subtracting the arbitrary value from each value in the
array and taking the absolute. The corresponding index can now be found
by searching the smallest value. The index which is found may not cor-
respond to the value which is wanted but to noise which lies closer to the
arbitrary value. When the frame is detected too early the index might also
correspond to a value which lies in the rising slope of the autocorrelation.
A possible solution for this particular problem is to only search for an index
value which lies past the index of the maximum value. This solution has
not been tested in the simulations.

Another way to estimate the rough symbol time is by using two auto-
correlations where one is delayed by 32 sampling instances. These two are
subtracted from each other creating a peak. This peak can easily be de-
tected using a max() function, the position of this peak is used as rough
estimation. This method is described by Wang [12] and the principle of this
method can be seen in Figure 3.4.

Fine estimation

After the rough estimation the cross-correlation is used to determine a more
precise point for the symbol timing. Cross-correlation makes use of the fact
that the receiver knows what the transmitter has transmitted. Each symbol
in the short preamble gives a distinct peak in the cross-correlation, this can
be seen in Figure 3.3.

The last peak in the cross-correlation figure corresponds to the start of
the last symbol in the short preamble. Knowing this and the position of
the coarse point, only a small part of the signal has to be cross-correlated
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Figure 3.4: Principle of Wang’s method, SNR=20dB

to find the last peak. In the resulting output the last peak can easily be
detected by using a max() function.

3.2.3 Carrier frequency offset

Carrier frequency offset (CFO) occurs when the local oscillators of transmit-
ter and receiver are not well synchronized to each other. Carrier frequency
offset can also occur due to the Doppler effect. A mismatch in carrier fre-
quencies causes inter-carrier interference (ICI). If this happens the orthog-
onality between subcarriers is lost. The effect of CFO can be simulated by
multiplying the time domain signal with a factor exp(j2π∆ft) this will add
a phase rotation [3].

This phase rotation is later estimated at the receiver and by using the
following relation:

φ = 2πT∆f (3.3)

The carrier frequency offset can be determined. The T mentioned in the
relation is the symbol time. The frequency offset can now be determined as
follows:

∆̂f =
φ̂

2πT
(3.4)

A phase can only be resolved if it lies in the range of [−π, π], this corresponds
to a frequency range of [−1/2T, 1/2T ]. For example in the case of the 802.11a
standard where the short preamble symbols have a symbol time of 0.8 µs
the maximum frequency offset is 625 kHz.

The determination of the carrier frequency offset is divided in two steps.
First the coarse estimation is done using the short preamble symbols. The
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signal is then corrected using the coarse frequency offset. After this a fine
estimation is made using the symbols of the long preamble and the signal
is corrected. The correction of the carrier frequency offset can be done by
multiplying the time domain signal starting from the long preamble onwards
with exp(−jφt). The time t mentioned in the relation starts at zero at
the long preamble start. Note that there will be a difference in t between
transmitter and receiver. This will cause a constant phase for each sample
in the time domain signal. This phase is compensated for when the channel
is equalized.

3.2.4 Channel estimation and equalization

After a frame has been detected, the symbol offset has been determined and
the carrier frequency offset is corrected the channel has to be estimated.
The channel estimation is done using the long preambles. Assuming the
time domain signal after Fast Fourier Transform (FFT) looks like:

Y (k) = C(k)X(k) + Z(k) (3.5)

Where C is the channel, X is the transmitted signal and Z is the noise, a
simple channel estimation can be done by dividing the received signal by
the known preamble [4]. The channel estimation Ĉ(k) will become:

Ĉ(k) =
Y (k)
X(k)

(3.6)

This channel estimation method is known as the zero forcing algorithm and
can be used to compensate the received signal by dividing the received signal
with the channel estimation.
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3.2.5 Residual carrier frequency offset

Even after the carrier frequency offset has been compensated for and after
the channel is equalized still some residual carrier frequency offset may exist.
The residual CFO contained in the received signal may very well be time-
varying and thus needs to be continuously tracked [3]. The residual CFO
causes phase distortions of the OFDM symbol in the frequency domain.
Assuming that the CFO is constant for the received signal the residual CFO
will increase proportional to the symbols, this can be seen in Figure 3.5
where θs is the initial phase and θd is the phase increase per symbol [2].
Note that the residual CFO can also decrease proportional to the symbols.
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Figure 3.5: Residual carrier frequency offset [2]

The total residual phase of symbol number t would be:

θ = θs + tθd (3.7)

To compensate for the residual CFO the frequency domain signal is multi-
plied with exp(−jθ).





4

Simulations

Before testing the digital system implementation on the MIMO testbed sim-
ulations are done first. These simulations are done in order to test the
principal of OFDM and to optimize parameters. This chapter gives a expla-
nation about how the simulations are done. The results of the simulations
will not be presented in a separate chapter but are presented and discussed
on the go. All simulations are done using the high-level technical computing
language Matlab.

The simulation of the OFDM system is divided into two parts, the re-
ceiver and the transmitter respectively. At first all blocks will be individually
tested, to avoid dependencies on other blocks. This is to ensure that if a
block is modified not all dependant blocks have to be tested again. If all
blocks work they will be tested as a whole. Also at first only noise is added
and later the channel model will be used in the simulations.

This chapter is divided into three sections, the first section will deal with
the transmitter simulations. This is followed by a section about the receiver
simulations. And finally the last section describes the chain of transmitter
and receiver combined.

4.1 Transmitter software blocks

This section will describe some tasks which are typically done by the trans-
mitter side. The tasks include the generation of preambles and the assem-
bling of frames. The tasks are described in the coming two subsections.

4.1.1 Preamble generation

Before the frames can be assembled the preamble has to be constructed.
This is done using the sequences mentioned in the 802.11a standard. Only
the creation of the short preamble will be described here, the long preamble
is done in exactly the same manner. A piece of code describing the genera-

17
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preamble = [ ] ;
symbol = ze ro s ( 1 , 6 4 ) ;
symbol ( 2 : 2 7 ) = Tshort ( 2 8 : 5 3 ) ;
symbol ( 3 9 : 6 4 ) = Tshort ( 1 : 2 6 ) ;
% Power norma l i s a t i on
symbol = (64/ sq r t (2∗12) )∗ symbol ;
symbol = i f f t ( symbol ) ;
% ten t imes 16 samples
preamble = [ symbol symbol symbol ( 1 : 3 2 ) ] ;

Listing 4.1: Short preamble generation

% Random b i t sequence
data = randint ( Nframes∗SymbolsPerFrame , 52 , 2 ) ;
% BPSK modulation
data = 2∗data −1;

Listing 4.2: BPSK modulation

tion of the short preamble can be seen in Listing 4.1. The variable Tshort
contains the symbols of the short preamble.

4.1.2 Frame generation

The preambles described in the previous section are appended to the frames.
Each frame will consist of a ’gap’, the preambles and the data symbols. The
data is BPSK modulated, which is very easy to implement in Matlab as
can be seen in Listing 4.2. Note that each row represents a data symbol
to be transmitted and has a length of 52 OFDM symbols. A single frame
can contain more then one data symbol, this is taken into account when
generating the frame. Later on QPSK will be used when actually transmit-
ting and demodulating data. The QPSK modulation is done by using the
Matlab Modem Object. This object can take care of the modulation and
demodulation of several types. A short snippet of code describing the QPSK
modulation can be seen in Listing 4.3. Note that there is an extra factor

% Random b i t sequence
data = randint ( Nframes∗SymbolsPerFrame ∗52∗2 , 1 , 2 ) ;
% QPSK modulation
h = modem.qammod( ’M’ , 4 , ’ InputType ’ , ’ Bit ’ ,

’ SymbolOrder ’ , ’Gray ’ ) ;
data = modulate (h , data ) ;
data = reshape ( data , 52 , Nframes∗SymbolsPerFrame ) ’ ;

Listing 4.3: QPSK modulation
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two in the random data generation, this is because the modulation works as
a kind of compression. After modulation there are 52 symbols left over. It
is needed to reshape the data because when modulating a multi-dimensional
array Matlab assumes the columns are individual channels and the rows are
timestamps.

During simulation average white Gaussian noise (AWGN) is added to
the frames. Optionally also a channel model is applied to the frames. This
is done by convolving the frame with a row from the ’Channel Model A’ data
set. During simulation no pilots are added to the signal, but when testing
on the testbed pilots are added to the signal. As a consequence of this the
simulations will use 52 data bits whilst the testbed measurements will use
48 data bits. This leaves four positions open which will be used as pilots.

4.1.3 Carrier frequency offset

After the addition of noise the last thing which is added to the signal is
frequency offset. This is done by multiplying the time domain signal with
exp(φt) as can be seen in Listing 4.4.

phase = 2∗( p i /180 ) ;
t = 0 : l ength ( frame )−1;
frame = frame .∗ exp ( i ∗phase .∗ t ) ;

Listing 4.4: Adding carrier frequency offset

In this listing a phase of two degrees is successively added to the signal, thus
the first sample does not have a phase offset, the second sample has a phase
offset of two degrees, the third sample has a phase offset of four degrees etc.
When assuming a symbol time of 3.2 µs this result into a ∆f of 1.7 kHz.

4.2 Receiver software blocks

This section will describe some tasks which are typically done by the receiver
side. These tasks include the timing offset detection, channel and frequency
correction and the demodulation.

4.2.1 Frame detection

To compare all three frame detection algorithms mentioned in Section 3.2.1 a
test was done using different signal-to-noise ratios. The signal-to-noise ratio
was varied between -20 and 20 dB. For each signal-to-noise ratio a thousand
frames were tested to obtain the percentage of correctly detected frames.
For each of the three frame detection methods a window size of sixteen was
used. A frame was considered correctly detected if it was detected before the
third last symbol of the short preamble and forty samples before the start of
the frame. The region previously described can be seen in Figure 4.1. Both
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Figure 4.1: Correct frame detection region

the power detection method and the autocorrelation detection method need
sixteen successive increases in their output before the signal is classified as
a frame. The results of all three methods when no channel model is used
can be seen in Figure 4.2. The frame detection ratio mentioned in the

Figure 4.2: Comparison of several frame detection methods with no channel
model applied

figure is the percentage of detected frames to the total amount of frames.
It can be seen from the figure that the noise power method has a far better
performance compared to the other two detection methods. In Figure 4.3
the results of all three frame detection methods are shown when using a
channel model. It can be seen that the performance slightly decreases. In
a real life situation it is not known whether the received signal consists of
frames, noise, or a combination of both. This may lead to situations were
a received signal is falsely classified as a frame. To test how many frames
are falsely detected a thousand frames consisting of only noise are tested
to see if they are detected as frame. The noise level was varied between
-20 dB and 20 dB and no channel model was used. The results showed
that the threshold detection method was the worst, on average roughly 92%
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Figure 4.3: Comparison of several frame detection methods with channel
model applied

P = abs (P) ;
po i = percentage ∗max(P) ; % Our po int o f i n t e r e s t
[ r te , pos ] = min ( abs (P − poi ) ) ;

Listing 4.5: Sample index determination

of noise frames were detected as an actual frame. The other two methods
performed much better. Using the correlation based detection only 0.31% of
the frames were falsely detected and the power detection method performed
a little better were only 0.17% of all frames were falsely detected.

The high number of falsely detected frames for the noise power threshold
method can be explained. When only comparing the averages of noise to
each other, the chance is very high that their is an average which is slightly
higher. This will result to a falsely detected frame. An improvement would
be not to compare the averages to each other but to move the threshold a
few standard deviations to the right.

4.2.2 Coarse detection

All three methods for coarse timing estimation, which are mentioned in
Section 3.2.2, are compared with each other for values of signal-to-noise
ratio between 0 dB and 10 dB. For each signal-to-noise ratio a thousand
frames are tested. After determining the value at which the autocorrelation
has decreased by the given percentage the corresponding sample index has
to be determined. This is done by subtracting the value from the rest of the
signal and looking where the difference is the smallest. To elaborate this the
corresponding code snippet is given in Listing 4.5. In this listing P represents
the autocorrelation of the signal. The poi is the percentage of the maximum
value. The corresponding sample index is now found by subtracting the
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P = abs (P) ;
% Our po int o f i n t e r e s t
po i = percentage ∗max(P) ;
r t e = abs (P − poi ) ;
tmp = r t e < 0 .5∗mean( r t e ) ;
tmp = f i nd (tmp ) ;
i f isempty (tmp)

[ rte , pos ] = min ( r t e ) ;
e l s e

pos = tmp ( 1 ) ;
end

Listing 4.6: New sample index determination

autocorrelation output and the poi and looking at the minimum value of
the result.

As can be seen the above mentioned method looks at the minimum
value after subtraction. There might be a possibility that the minimum
value does not correspond to the wanted value but to noise. The improved
method solves this issue by looking at the first occurrence where the error
value is smaller then half the average error. If this is not found it will
just use the old method to find the sample index. The principle can be
seen in Listing 4.6. The results can be seen in Figure 4.4. The figure
shows the percentage of frames were the coarse position has been correctly
detected. From the figure it can be seen that the improved max method

Figure 4.4: Comparison of the three different methods of coarse position
detection, no channel model applied

and the method by Wang almost perform equally well. For both methods
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based on the maximum principle a correct detection was registered if the
detected position lays in the second last symbol of the short preamble. For
the method of Wang a correct detection was registered if the symbol time
was off at maximum eight samples from the start of the second last symbol
of the short preamble.

The same test as above was repeated, but this time using a channel
model. The results using can be seen in Figure 4.5. It can be seen that

Figure 4.5: Comparison of the three different methods of coarse position
detection, with channel model applied

the Wang method performs significantly worse when compared to the other
methods. The method which will be used for the rest of the simulations will
be the improved max function.

To test whether false detections occur of the coarse positions frames
consisting of different values of noise are tested. For each value of noise
in the range of 0 dB to 10 dB ten thousand frames are tested without the
channel model. The improved max function does not falsely detect any
positions. The old max function falsely detects coarse positions in 9% of
the cases. The method of Wang falsely detects the positions in 11% of the
cases.

4.2.3 Fine detection

The fine detection is the last step and determines the symbol time offset.
The fine peak algorithm needs a coarse position so that it knows where to
look. For the coarse position in the simulation an arbitrary position of 137
was chosen. In the simulation ten thousand frames were used per different
value of signal-to-noise ratio. The signal-to-noise ratios were varied between
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% Coarse CFO determinat ion , us ing shor t preambles
P = sum( conj ( bu f f e r ( pos : pos +31)) .∗ bu f f e r ( pos+32: pos +63)) ;
phase = angle (P)/32 ;

% Compensate f o r coa r s e CFO
t = 0 : l ength ( bu f f e r )−1;
bu f f e r = bu f f e r .∗ exp(− i ∗phase .∗ t ) ;

Listing 4.7: Carrier frequency offset estimation using short preambles

-20 dB and 10 dB. Both a test with channel model and one without channel
model was conducted, the results can be seen in Figure 4.6. A correct
detection was only registered if the deviation was at maximum four samples
compared to the correct position. The correct position is the start of the
last symbol in the short preamble.
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Figure 4.6: Fine peak estimation with and without channel model

4.2.4 Carrier frequency offset compensation

Before the channel is estimated the received signal is corrected for the carrier
frequency offset. The compensation is done using the phase of the signal.
The phase is estimated using the autocorrelation of both short and long
preambles. The total phase correction is commonly done in two steps. The
first step determines a coarse phase offset using four symbols of the short
preamble. This process can be seen in Listing 4.7. Note that in the listing
the phase is divided by 32 because the average phase is calculated by the
autocorrelation. After the coarse phase has been determined the signal is
first corrected using this phase. This is done by multiplying the time domain
signal again with the inverse of the found phase as can be seen in Listing 4.4.
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LP t = bu f f e r ( LP start : LP start +63);
tmp = f f t ( LP t ) ;
LP f ( 1 : 2 6 ) = tmp ( 3 9 : 6 4 ) ;
LP f ( 27 : 5 2 ) = tmp ( 2 : 2 7 ) ;
H = LP f . / Tlong ;

Listing 4.8: Channel estimation

The fine phase estimation is done in the same manner as the coarse phase
estimation, but this time the two long preamble symbols are used.

4.2.5 Channel estimation and equalization

After the carrier frequency offset correction the channel estimation is done by
dividing the frequency domain representation of the received long preamble
with the actual frequency domain representation of the long preamble. The
code listing can be seen in Listing 4.8. In the code listing LP t represents the
time domain representation of the long preamble and LP f represents the
frequency domain representation. This is divided by the actual frequency
domain representation which is represented by T long in the code to obtain
the channel estimation. In Figure 4.7 a constellation diagram of a single
OFDM data symbol is plotted before and after channel equalization. QPSK
modulation was used here and the signal-to-noise ration was 20 dB. The
image on the left shows the constellation diagram of an uncompensated
OFDM symbol. The image on the right shows the constellation after channel
compensation and the four quadrants can clearly be seen.
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Figure 4.7: Constellation diagram of an OFDM symbol, before and after
channel equalization
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4.2.6 Demodulation

The demodulation of the signal is taken care of by the Matlab modem ob-
ject. The demodulation object must match the one which is used in the
modulation phase. To get a global idea about how the demodulation object
can be used Listing 4.9 is provided.

demodObject = modem. qamdemod( ’M’ , 4 , ’ SymbolOrder ’ , ’ gray ’ ,
’OutputType ’ , ’ b i t ’ ) ;

z = demodulate ( demodObject , symbol ’ ) ;

Listing 4.9: QPSK demodulation object

The symbol mentioned in the code is a singe OFDM symbol which has the
guard interval removed and has been channel corrected. Later on the carrier
frequency offset will be introduced to the signal and will also be compensated
for.

4.3 Integration

This chapter describes the integration of all above mentioned simulation
pieces. During testing it became clear that the frame detection was not
working properly. The frames were detected too early, resulting in a mal-
function of the coarse detection algorithm. This malfunction is caused by
the fact that the rising slope of the autocorrelation is present. When looking
at the percentage of the maximum value of the autocorrelation a value may
be detected which lies in the rising slope region of the autocorrelation. The
rising slope can clearly be seen in Figure 3.2. To avoid this problem the
frame position is manually set and everything works remarkably well as can
be seen in Figure 4.8. To generate this figure the signal-to-noise ratio was
varied between -5 dB and 15 dB, for each noise level a thousand frames were
tested. Note that the results used for this figure did not use the channel
model yet. The figure shows both the amount of coarse peak detections,
and the amount of fine peak detections. It can be seen that both lines are
nearly equal meaning that if the coarse peak detection fails also the fine
peak detection fails. When the channel model is enabled the results can be
seen in Figure 4.9. It is remarkable to see that there is a difference between
the two lines, meaning that if the coarse detection fails there is a possibility
that the fine detection does succeed.

4.3.1 Bit error rates

An interesting measurement in the communications world is the bit error
ratio (BER). The BER is the number of bit errors divided by the total
number of bits transmitted. This test was also done in the simulations, one
with no channel model and one with a channel model. To obtain the results
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Figure 4.8: Fine and coarse detections without channel model
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Figure 4.9: Fine and coarse detections with channel model

the signal-to-noise ratio was varied between -5 dB and 15 dB and for each
signal-to-noise level a thousand frames with ten symbols each were tested.
This time also QPSK modulation is used, and the frame start is manually
set, as the frame detection method does not work well. The results can be
seen in Figure 4.10.
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Figure 4.10: Bit error rates with and without the channel model applied
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Test setup

After the simulations the OFDM principal is tested in real life on the
Multiple-Input Multiple-Output (MIMO) testbed. The real-time MIMO
testbed enables researchers to test algorithms in a real-world office situa-
tion, to change environment conditions and add or remove processing power
in a flexible fashion [10].

5.1 Testbed description

The testbed is able to transmit and receive four channels simultaneously
and has a modularized setup. The setup consist of two trolleys which act
as the transmitter and receiver. The transmitting trolley contains a digital
to analog converter, a up-converter, a RF amplifier and an Uninterruptible
Power Supply (UPS) so that also over large distances can be transmitted.
The receiver trolley contains a down-converter and a analog to digital con-
verter. Both transmitter and receiver have a data buffer. The transmitter
will continuously transmit the contents of the buffer and at the receiver side
the data can be captured into the buffer and can be read into the computer
as a raw stream file.

In the following sections the blocks in the test setup images correspond to
the physical blocks present on the trolleys. This done to keep things simple,
but might also be somewhat misleading. For example, the down-converter
also contains a low pass filter.

5.2 Test method

The baseband signals are generated by the Matlab code and have to be first
converted to an IT++ file. This IT++ file is later converted to a raw stream
file by a custom piece of C++ software. The raw stream file is then loaded
into the data buffer of the transmitter. The received data is also in the raw
stream format and is first converted to the IT++ format which then can be

29
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converted back to a Matlab readable format. The data conversion between
the IT++ format and the Matlab variable format is done by two Matlab
scripts called itload.m and itsave.m respectively. These files are provided
by the IT++ project [1]. The experiments will be done in a progressive
manner. This means that first a signal is transmitted at baseband this is
followed by a signal which is up converted and then down converted again
and finally if everything works the signal is transmitted through the air.
Each of the tests will be done using three different modulation scheme which
have an increasing difficulty to detect. The three modulation schemes are,
in order of difficulty, BPSK, QPSK and Quadrature Amplitude Modulation
using sixteen symbols (QAM16). Each of the experiments will be described
briefly in the following subsection. The blocks which are depicted in the
figures correspond to the physical blocks which are present on the MIMO
testbed.

5.2.1 Baseband

First only the baseband transmission is done, this means the signal has not
been mixed up to the carrier frequency and transmitter and receiver are
sill connected by a wire. The system setup can be seen in Figure 5.1. The

Figure 5.1: Baseband setup

computer on the left will act as the transmitter and will place the data in the
transmission buffer. The buffer is read out by the digital-to-analog converter
(DAC) and produces an in-phase (I) and a quadrature (Q) baseband signal
per channel. The output of the DAC is attached to the I and Q inputs of
the analog-to-digital converter, which will write the received data to another
buffer. This buffer can be read out with the computer on the receiver side.
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5.2.2 Up and down

The next step is to up and down convert the signal in the transmission
path. The transmitter and receiver are still connected to each other using
a cable. The setup can be seen in Figure 5.2. The blocks with an arrow

Figure 5.2: Setup using mixers

symbol represent the mixers. These mix the baseband signal with the carrier
frequency.

5.2.3 Air

The last and final step will transmit the data through the air. The setup can
be seen in Figure 5.3. Note that there is a power amplifier (PA) attached to

Figure 5.3: Real world setup

the DAC, this is because the DAC can not produce enough power by itself
for transmission.

5.3 Test results

The test results which were obtained from the testbed were not as expected.
The problem might be the testbed or the baseband data which is generated
by the Matlab script. As time was a critical issue the testbed results of
Xiaoying Shao were used instead. These results only contained QPSK and
QAM16 modulated data.

Each measurement contained seven packets which consisted of 16 frames,
this means that for each measurement 112 frames are demodulated. The
number of OFDM symbols per frame for QPSK modulated data was 128
and for QAM16 modulated data was 64. This was to ensure that the same
amount of bits were transmitted for each modulation type. Each transmit-
ted packet contained the same data. The OFDM data symbols contained
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pilots, this was needed to compensate for the residual carrier frequency off-
set. Especially the QAM16 modulated signals were effected by this effect.
The tests which used a carrier frequency the frequency was set to 2.3 GHz.
This frequency was chosen to avoid any interferences with existing WLAN
transmitters which use a carrier frequency of 2.4 GHz. An external local
oscillator was used for both the ADC and the DAC as the internal oscillator
does not work well. The Automatic Gain Control (AGC) of the receiver was
also adjusted by hand as it did not function properly.

The initial idea was to transmit a single frame and do the frame detection
by hand as the frame detection algorithms which were tested did not work
properly. Because the data of Xiaoying contained seven packets with 16
frames it would be very laborious to do the frame detection by hand for
each frame. A very simple frame detection method was used which compared
the instantaneous power of the received signal to predefined threshold. This
method could be used because the signal-to-noise ratio (SNR) of the received
signals was very high. The magnitude of a received QPSK modulated signal
corresponding to the start of a frame can be seen in Figure 5.4. From the
figure it can clearly be seen that the SNR is high and that the received signal
shows some repetition.
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Figure 5.4: Magnitude of a received QPSK modulated signal

The measurement data consisted of seven sets. The most important
parameters of these sets are summarized in Table 5.1. This table shows
the type of modulation used, the estimated signal-to-noise ratio which is
calculated from the mean energy of the signal (Es) and the variation (σ2).
The dynamic range of the channel is also mentioned and is depicted by the
D symbol.

A constellation diagram of the first frame of a QPSK modulated signal
can be seen in Figure 5.5. The constellation points do not show any overlap
with other constellation points, this means the data can be recovered error
free.
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no. modulation SNR (dB) Es σ2 D (dB)
1 QPSK 22.5 1.63 0.0091 8
2 QPSK 20.5 1.56 0.0138 35
3 QPSK 21.0 1.04 0.0082 22
4 QPSK 19.9 1.33 0.0136 17
5 QAM 22.5 1.33 0.0075 30
6 QAM 23.4 1.63 0.0076 5
7 QAM 22.7 1.53 0.0081 14

Table 5.1: Information about measurement data
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Figure 5.5: Constellation diagram of a QPSK modulated signal
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A constellation diagram of the first frame of a QAM modulated signal
can be seen in Figure 5.6. It can be seen that the complete constellation
diagram is turned a bit to the left. This is caused by some constant carrier
frequency offset which has not been removed properly.
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Figure 5.6: Constellation diagram of a QAM modulated signal

A plot of the mean phase of the pilots of the first five frames of the
second measurement can be seen in Figure 5.7. The abrupt changes in
phase correspond to the different frames.
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Figure 5.7: Mean phase of the pilot signals

To test the robustness of the developed Matlab scripts some artificial
noise was added to the noise because the measurement data already has
high signal-to-noise ratios. Three different levels of noise were added, 15 dB,
10 dB and 5 dB. Only three values were chosen because the Matlab demodu-
lation script takes a long time to execute. For each of the measurements the
bit error rate as a percentage was determined. The final results can be seen
in Table 5.2. The first column in the table is the measurement, the number
is the same as the one used in Table 5.1. The second column are the bit
error rates expressed as a percentage for the measurements without artificial
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no. modulation no noise 15 dB 10 dB 5 dB
1 QPSK 0,00 0,00 0,01 0,13
2 QPSK 1,60 1,80 2,16 3,43
3 QPSK 0,18 0,47 1,30 10,31
4 QPSK 0,16 0,24 0,48 4,75
5 QAM 3,05 4,08 5,77 10,69
6 QAM 1,16 1,53 2,37 4,92
7 QAM 2,06 2,88 4,73 9,47

Table 5.2: Bit error rates for various levels of artificial noise.

noise added. The following columns are the bit error rates, once again ex-
pressed as a percentage, for measurements with artificial noise added. The
Matlab script which does the synchronization and demodulation takes about
six minutes to run on a 2.0 GHz Intel Core Duo.

An interesting fact to notice is that measurements were QAM modula-
tion was used the bit error rates are slightly higher when compared to the
measurements were QPSK modulation was used. This is possibly caused
by the fact that the signal-to-noise ratio of the QAM measurements are
higher 5.1.
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Conclusions and
recommendations

6.1 Conclusions

The results from the simulation show that algorithms developed to carry out
the different tasks in the OFDM system like the preamble and frame gener-
ation, frame detection and channel estimation and equalization are working.
Some of the modules like the frame detection need some adjustment to im-
prove the detection rate. The improved max detection method appears to
be the most efficient method for detecting the coarse position.

The developed Matlab software has a modular setup such that new parts
can easily be developed, tested and implemented. The software implemen-
tation which does the synchronization and demodulation of the received
signals is working in real life situations. The bit error rates which have been
achieved on the MIMO testbed are between 0 % and 3,05 % for signals with
a signal-to-noise ratio of roughly 20 dB. Now it is proven that the signal re-
ceived by the MIMO testbed can be synchronized and demodulated. Future
development of various algorithms can be carried out easily on the MIMO
testbed.

6.2 Recommendations

Some recommendations for future work are listed below.

• Eliminate the need to do file conversions manually, at the moment two
file conversions are done before the measurement data can be imported
into Matlab.

• Decrease the execution time of the Matlab script. The current Mat-
lab script takes six minutes to execute at the moment for a single
measurement.

37
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• A frame detection algorithm which performs well under low signal-to-
noise ratios and that is not dependant on a threshold.

• Extend the Matlab scripts such that they also work for the MIMO
case.
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