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Abstract 
 
The focus of this thesis is on the storage part of a sensor management system. Sensor data can 
already be enormous, but because every measurement stored can also contain multiple 
annotations the total size can really explode. Besides this, annotations are not necessarily 
bound to a single measurement, but can also be attached to multiple sensors and on time 
spans. This creates challenges in storing the data efficiently while also maintaining efficient 
retrieval. On the retrieval side there are all kinds of queries possible on the sensor data, 
annotations, time or combinations of those. To provide efficient storage for all these types of 
queries makes things even more challenging, because every storage method has its advantages 
and disadvantages. 
 
This thesis looked into a number of methods which try to solve these problems. Three of these 
methods were chosen and tested on scalability after which the most scalable was implemented 
into an open-source software package. This implementation was tested again on scalability. 
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1. Introduction 
 
The IJkdijk project [IJk09] is a cooperation of many companies and parties with as goals the 
improvement of dikes, real-time monitoring of their strength and conduct research to the use 
of sensor systems in early warning systems. These sensor systems consist of a multitude of 
sensors (video, audio, infrared, temperature, pressure etc.) which all produce sensor data at a 
certain frequency. Scientists involved in this project have the need to annotate this data using 
annotations, which say something about the measurements. While this might look like an 
easy task at first sight, there are complications making this a challenging task. We will start 
with taking a look at these complications. 
 
1.1. Problem description 
 
One of the complications mentioned earlier is how to store the huge amounts of sensor and 
annotation data in an efficient way. Sensor data can already be enormous, but because every 
measurement stored can also contain multiple annotations the total size can really explode. 
Besides this, annotations are not necessarily bound to a single measurement, but can also be 
attached to multiple sensors and on time spans. This creates challenges in storing the data 
efficiently while also maintaining efficient retrieval. On the retrieval side there are all kinds of 
queries possible on the sensor data, annotations, time or combinations of those. To provide 
efficient storage for all these types of queries makes things even more challenging. 
 
1.2. Research goal and contribution 
 
The goal of this master thesis is to take a look at the currently available methods for storing 
and retrieving sensor data and its annotations and test them on scalability. Due to time 
constraints we will have to make a selection from all available methods and we like to test at 
least 1 non-relational method. What we hope to contribute with this thesis is providing an 
overview of available methods and providing scalability numbers for a few of these methods. 
 
Besides that we aim to create a working implementation of one of these methods. This 
implementation should be able to retrieve data and their annotations as well as supporting 
annotations in queries. 
 
1.3. Research structure 
 
The following structure is used in this master thesis. First in chapter 2 the actual problem will 
be defined and in chapter 3 a literature study will be done. Next we will present a detailed 
approach in chapter 4. In chapter 5 a case will be described to provide material to base further 
examples on. After that, possible storage models for sensor data and annotations will be 
described in chapter 6 and we will take a look at how to retrieve sensor data and annotations 
again in chapter 7. Then in chapter 8 a number of solutions for the problem will be validated 
using experiments with as criteria scalability. The best solution from the experiments will be 
implemented (chapter 9) and tested in terms of scalability (chapter 10). Finally we will draw 
our conclusions and discuss future work in chapter 11. 
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1.4. Research questions 
 
The main research question and sub questions for this research are as following: 
 

• How can we efficiently store sensor data and its annotations in such a way that it can 
be queried efficiently again with different types of queries? 

o What kinds of storage and storage models for sensor data and its annotations 
are available? 

o How can we efficiently retrieve data and annotations? 
o Which solution has the best scalability? 

 
1.5. Research scope 
 
The main focus of this research will be on the storage and retrieval of the sensor data and its 
annotations. We are specifically interested in the annotations part. Interfaces and possible 
other software that is required will just be made or used to reach the main goals, but will not 
be main focus. Considering the comparison part, scalability will be the most important criteria 
to measure. The amount of data will be scaled and tested in terms of storage and retrieval. 
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2. Detailed problem description 
 
We will first take a look at what actually is the problem with storing sensor data and its 
annotations. The simplest approach would be to attach the annotations to the actual 
measurements. But measurements can have multiple annotations and a basic relational 
database does not support set-valued attributes. A solution is to use the first normal form 
(1NF) for databases, meaning we will give annotations a separate table and we create a table 
to connect measurements to annotations. This will result in a lot of joins when querying and 
redundant storage, which is inefficient. Another solution would be to use a database scheme 
in non-first normal form (N1NF) [JS82]. This form allows sets and therefore we can attach 
multiple annotations to one measurement. However relational databases do not support this 
form. 
 
Next we will distinguish a number of types of annotations and queries. These will later on be 
used to compare all found methods in the related work section. 
 
2.1. Annotation and query types 
 
We can think of different types of annotations and query types. At first we will take a look at 
the annotation types. We will start with annotations on different granularities of a database. 
Annotations can be on an entire table/relation, so every row and column in the table is 
annotated with a certain annotation. Whole rows/tuples and columns can be annotated, but 
also specific cells or a random set of cells. Annotations can be across tables, meaning that 
data that is split between tables is annotated using the same annotation without duplication. 
Annotations can also be within relations. All above mentioned types could be combined with 
a time element. All so far mentioned types are bound to certain sensor data. But we can also 
think of situations where it is hard to find to which data an annotation belongs. For example a 
power cut happened and all sensors went off. No data is available at that moment and 
someone wants to annotate why there is no data at that time span. Because no data was 
created, there is no data to attach the annotation to. In this case the annotation would have to 
be bound to time itself. 
 
Considering queries we can retrieve data, annotations or both. We can also add time 
constraints to our queries. Further we can think of annotation management like creating and 
deleting annotations or adding to and removing annotations from data. In the next chapter we 
will take a look at the related work. 
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3. Related work 
 
In this chapter we will discuss related work. We will start by taking a look at relational 
storage and end with column databases. After discussing all literature, the summary will 
contain 2 tables summing up what annotations types and query types (as discussed in the 
previous section) are supported by which system/method. 
 
3.1. Relational storage 
 
This section is divided into several categories of papers/systems. We will start looking at the 
similarities and differences between relational storage and XML. 
 
XML 
 
Where relational storage doesn’t allow the storage of a set of values in a single field, XML 
can store set-valued attributes. We will first have a look into literature that converts XML to a 
relational database. This process is called shredding. 
 
[STH99] defines three special types of shredding using Document Type Definitions (DTDs). 
Normal shredding directly maps elements to relations and this creates a lot of fragmentation. 
The proposed solution is to use inlining, which puts as many descendants of an element as 
possible into a single relation. Because the traditional relational model cannot handle set-
valued attributes, basic inlining uses the standard technique for storing sets in a relational 
database (1NF). The shared inlining method goes one step further and ensures that an element 
node is represented in exactly one relation. Finally the hybrid inlining method inlines even 
more elements. One of the conclusions this paper draws is that relational systems could more 
effectively handle XML query workloads with support for sets. It would reduce 
fragmentation, which is a big win because most of the fragmentation they observed in real 
DTDs was due to sets. 
 
The SQL/XML standard as proposed in [EM02] and [EM04] describes the mapping of SQL 
data to XML data. The standard has a function called XMLTable [EM04] which can 
transform XML data into relational data. This function uses a form of shredding, but doesn’t 
require a DTD. Instead it uses XQuery [W3C01], a query language for XML, and manually 
chosen column names. 
 
We can learn from this literature ([STH99] [EM02] [EM04]) that even though there are 
methods to convert set-valued attributes in XML to relational, the efficiency is limited by the 
absence of set support in the relational model. The conversion is also a lot more complicated 
without it. The conclusion is that the conversion of SQL to XML and vice versa has no 
special trick or method that could give us an advantage in storing annotations in a relational 
database. 
 
BDBMS 
 
[EOA07] proposes a database system for managing biological data. Part of this project is 
about annotation management. [EAE09] talks specifically about this part and proposes a 
relational storage model for annotations at various granularities (table, tuple, column, cell 
levels). They introduce three types of annotations, namely snapshot (normal annotations), 
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view (automatic annotation of newly inserted data if it satisfies certain conditions) and join 
(attached to data across relations). 
They also introduce the Mapped-Space storage scheme for efficient and compact 
representation of multi-granular annotations. This scheme numbers all rows and columns and 
therefore annotations can be represented by rectangles. To achieve the most efficient storage, 
the columns with the most annotations should be next to each other, creating fewer rectangles 
per annotation. For this reason they created an algorithm that, based on statistics, gives the 
ideal mapping of columns. This process does not influence the actual physical storage order 
of the columns, but only the numbering of columns. Using a columns mapping quality (CMQ) 
metric it is decided whether it is worth re-constructing all annotations according to the new 
mapping. This will depend on the gain of reducing the storage overhead and I/O cost of 
queries compared to the cost of re-constructing. 
To realise all of this, they extended PostgreSQL with new constructs and added declarative 
mechanisms to support adding, storing, archiving and querying snapshot, view and join 
annotations. The Mapped-Space schema achieves more than an order-of-magnitude reduction 
in storage and up to 70% reduction in the queries execution time. 
For BDBMS it is important to have as much information (data and time) as possible in 1 table 
to make sure the number of rectangles per annotation is as low as possible. Using ‘join 
annotations’ it is possible to annotate across relations and hence tables, but this is a more 
expensive operation. For each data table multiple annotation tables can be assigned, but not 
the other way around. It is always possible to annotate an entire table, whole rows, whole 
columns or a random set of cells. If information about time can be found inside the table, it 
should be possible to combine all options with time. It must be said that the authors didn’t 
look at the time aspect, but because they extended the SQL select statement it should be 
possible to add time constraints in the ‘where’ clause. It is not possible to annotate on time 
itself. All types of queries are possible, although the time component is not discussed in the 
paper. 
BDBMS is a very interesting and relevant system. It has the ability to store all kinds of 
annotations and the query language is also sufficient. The smart way of storing annotations 
reduces storage requirements. The only disadvantage is that the paper does not talk about 
support for time constraints. 
 
MAAS 
 
[KMP09] proposes a system for massive annotation and aggregation of sensor data. They 
developed a query language for efficient retrieval of data and its annotations, which can filter 
on both time and value ranges and supports Boolean logic operations. The language also 
supports adding, deleting and describing annotations. The storage is done using tables for 
sensor stations and tables for sensors which are linked to a station. Annotations are stored in a 
separate table and a relation between sensor data and an annotation is stored into another 
table. They use data aggregation on different levels on the time scale and annotation caching 
to achieve high efficiency. Their prototype features a web interface that is able to visualize 
data including its annotations. 
MAAS stores sensor stations and sensors in separate tables. An annotation is assigned to a 
specific sensor belonging to a station (which translates to a row/tuple in the sensor table). 
Because of this it is not possible to annotate a whole table without duplication. It is possible to 
assign time constraints to an annotation, but only on rows, because of the nature of the storage 
model and query language. All types of queries are possible, although getting both sensor data 
and annotations is a bit uncertain. The language suggests it, but it is not mentioned nor used in 
their examples. 
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In relation to our work, this system is quite relevant. It might not be able to support all types 
of annotations, but for sensor data it provides enough functionality. It can store multiple 
annotations on a measurement, but not one annotation over multiple measurements without 
duplication. The query language describes the functionality as we would expect from such a 
system. 
 
DBNotes 
 
[CCV05] proposes a ‘post-it note’ system for relational data. In this system it is possible to 
attach zero or more notes to every value in a relation. The propagation of the notes is based on 
provenance, which is not the focus of our research. They developed an extension to a 
fragment of SQL called pSQL, which can query both data and its annotations and propagate 
annotations. Although the query part is relevant, the rest of the paper focuses on provenance. 
The original paper doesn’t describe the actual storage methods used, but [Bog05] did and also 
developed an alternative storage scheme for DBNotes. The original storage model created an 
extra attribute for every attribute in a relation in order to store the annotations. In other words, 
for every column an annotation column was added. This leads to redundant storage and as a 
direct consequence increased response time. The proposed solution is a separate relation to 
define the annotations present. In other words, for every table an annotation table is created 
storing the annotations. Besides measuring absolute performance, 2 tests were run to compare 
pSQL to normal SQL. The observed results were that using the default propagation, pSQL 
was 1 to 2 times slower than normal SQL. 
[BCT04] describes work done before [CCV05] and is also about pSQL, propagation of 
annotations and data provenance. 
DBNotes supports annotations within relations/tables. It is possible to annotate a row/tuple 
within a relation or one or more attributes of it. Because it is relation-based, annotations 
cannot be across tables. Support for time is also not available. Considering querying, data, 
annotations and both can be retrieved. Time support and annotation management are not 
supported. DBNotes main focus is on providing data provenance, which is not our focus. 
 
Mondrian 
 
[GKM06] proposes the Mondrian system. It has an annotation mechanism to annotate both 
single value and the associations between multiple values. It is able to query not only for data 
but also for annotations. It annotates using blocks that are put on relations. Using Boolean 
values it is stored which parts of the relation are affected by the annotation. The actual 
annotation is called a colour. The relations and annotations are stored in a new table, hence 
not affecting the schema of the data. Experiments done show that each colour operator costs 
from three to five times as much as its relational counterpart. They call the overhead not 
prohibitive and say it is balanced by the added value of being able to represent and query 
complex annotations. Planned further optimizations will further reduce the cost. Provenance 
was one of the motivators to develop this system, along with integrating, annotating and 
cross-referencing scientific databases. 
Mondrian also annotates within relations/tables and supports the same types of annotations as 
DBNotes. But it adds to this the ability to annotate across tables because the annotation table 
can contain IDs of different tables. It can also query data, annotations and both. It is a bit 
vague what is actually possible considering annotation management, but adding colour blocks 
is mentioned. 
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DBNotes has the disadvantage of not supporting time constraints on annotations. Further it is 
not clear what annotation management is actually supported. It does not have the annotation 
flexibility of BDBMS, but it still supports some annotation types. 
 
Other work 
 
[WHB08] investigated ways to store both sensor and annotation data. They looked at the 
advantages and disadvantages. Validation was done by querying with a fixed set of queries. 
Their conclusion was that the sensor data storage model as later seen in Table 4, storage per 
sensor station, is the best solution under their assumptions (sensor are not synchronized on 
time, most queries contain a time constraint and more, see [WHB08]). Considering the 
annotation storage, they chose the storage model that will be described later in this document 
in the section ‘Annotation storage’ on page 19. 
This research gave a nice insight into the problems arising when storing sensor and annotation 
data. The annotation storage model chosen is an interesting one and we will elaborate on it 
later on. 
 
3.2. Column databases 
 
Besides XML and Relational database there is a third development in the area of storage 
called column databases. These databases store their data by column instead of row. This has 
advantages for computing aggregates and updating whole columns. We will start with taking 
a look at Google Bigtable, Google’s database which shares characteristics of both row-
oriented and column-oriented databases. 
 
Google Bigtable 
 
Literature study shows there is only a limited amount of papers available about Bigtable and 
its open-source alternatives. [Goo06] describes the basics of the Google Bigtable database. 
This database is the method of storage behind Google projects like Google Analytics, Google 
Earth and Google Personalized Search [Goo08]. It is built on top of Google File System 
(GFS) and some other Google programs like for example Chubby Lock Service. Each table in 
Bigtable is “a distributed multi-dimensional sorted sparse map”, sharing characteristics of 
both row-oriented and column-oriented databases. The table consists of rows and columns, 
and each cell has a time version. There can be multiple copies of each cell with different 
times, so it is possible to keep track of changes over time. Columns are grouped into sets 
called column families. These families need to be defined before storing data, but inside them 
can be an unbounded number of columns, created on the fly. 
Bigtable is designed to scale into the petabyte range across hundreds or thousands of 
machines. Also it is easy to add more machines to the system and automatically start taking 
advantage of those resources without any reconfiguration. One of the advantages is cheap 
storage of NULL values and only changes in time are stored, reducing storage overhead. 
[KG08] compares the performance of Hypertable and HBase, two open source alternatives for 
Google Bigtable. It is unknown whether the measurements done are still relevant. 
Unfortunately the development of the open-source alternatives is not very far and for example 
Hypertable lacks support for joins and can only store strings. 
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Cassandra 
 
[LM09] proposes the Cassandra system, which is the database behind the Facebook website. 
This system is built with continuous failure of components in mind. It does not support a full 
relational model, but supports dynamic control over data lay-out and form. It can handle high 
write throughput while not sacrificing read efficiency. 
A table (also called keyspace) in Cassandra is a distributed multi dimensional map indexed by 
a key. The row key in a table is a string with no size restrictions, although typically 16 to 36 
bytes long. Every operation under a single row key is atomic per replica no matter how many 
columns are being read or written into. Columns are grouped together into sets called column 
families, very much similar to what happens in the Bigtable [Goo06] system. Cassandra 
exposes two kinds of columns families, Simple and Super column families. Super column 
families can be visualized as a column family within a column family. Columns within a 
super column or simple column family can be sorted on time or name. Cassandra can store 
binary data and timestamps. 
Facebook currently stores 50+TB of data on a 150 node cluster. [LM09-2] shows a significant 
performance gain over a MySQL database. On 50 GB data it took MySQL ~300ms to write 
and ~350ms to read, while Cassandra did it in ~0.12ms and ~15ms. 
Cassandra is a robust and scalable system. It focuses on high write throughput while still 
reading efficiently. Sensor data on the other side is written once and never updated, but read a 
lot. In this sense the focus is different. The easy adding of columns makes it a very flexible 
system. The system is actively developed and is an interesting alternative for Bigtable. 
 
MonetDB 
 
MonetDB [Bon02] is a database system that is a crossover between row and column based. It 
shows high performance especially in data mining, OLAP and GIS applications. The 
MonetDB core is usable with SQL and XQuery. For SQL there are application bindings for 
many programming languages and it runs on nearly any platform. MonetDB achieves its goal 
by innovations at all layers of a DBMS, e.g. a storage model based on vertical fragmentation, 
a modern CPU-tuned query execution architecture, automatic and self-tuning indexes, run-
time query optimization, and a modular software architecture [CWI10]. 
 
3.3. Summary 
 
Table 1 shows the types of annotations and what relational systems/methods are able to 
handle which types. There are no systems able to handle annotations on time itself. BDBMS 
is a very flexible system regarding annotations. MAAS is limited in this by its storage model, 
which only allows elements of the sensor tables to be annotated. DBNotes annotates within 
relations/tables and therefore support per cell and row. Mondrian is a bit more flexible and 
can also annotate across tables, because it can create an annotation table using IDs from 
multiple tables. WHB08 can only annotate rows/tuples and therefore also whole tables and 
within a relation. Time is supported if it is stored for each row. Because there were no 
systems or methods found for column databases they are not mentioned in this and the 
following table. 
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Annotations BDBMS MAAS DBNotes Mondrian WHB08 
On a table √ - - - √ 
Per cell √ - √ √ - 
Per row/tuple √ Sensor only** √ √ √ 
Per column √ - - - - 
Per random set 
of cells √ - - - - 

Within a relation √ Sensor only** √ √ √ 
Across tables √ - - √ - 
Any above in 
combination with 
time 

√* Per row, 
sensor only** - - √*** 

On time itself - - - - - 
Table 1: Supported types of annotations on database level by proposed systems/methods in literature 
* = depending on storage model, not explicitly mentioned in paper 
** = only the tables storing sensor data 
*** = if time is stored for each row/tuple 
 
Table 2 shows for the proposed systems/methods in the literature what types of queries are 
supported. BDBMS can handle all types, but time constraints are not explicitly mentioned in 
the paper and neither are they tested on performance. MAAS can retrieve data and annotations, 
but it is not explicitly mentioned that the combination of those two is also possible. Both 
DBNotes and Mondrian support retrieving data, annotations and both. Mondrian also has 
some annotation management. Both cannot handle time constraints. WHB08 can retrieve data, 
annotations, both and use time constraints if the time is stored for each row. 
 
Type of query BDBMS MAAS DBNotes Mondrian WHB08 
Get data √ √ √ √ √ 
Get annotations √ √ √ √ √ 
Get both √ ?** √ √ √ 
Time constraints √* √ - - √**** 
Annotation 
management √ √ - ?*** - 
Table 2: Supported query types by proposed systems/methods in literature 
* = depending on storage model, not explicitly mentioned in paper 
** = the language suggests it is possible, but it is not explicitly mentioned nor used in an example 
*** = it is mentioned somewhere that colour blocks can be added, but not how and what else is possible 
**** = if time is stored for each row/tuple 
 
One of the goals of this research was to provide an overview of available systems and 
methods. This goal has been achieved and the goals remaining are providing scalability 
numbers for a few of the found systems/methods and creating an implementation with one of 
them. The next chapter will present a detailed approach for reaching these two goals. 
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4. Detailed approach 
 
This section will present the detailed approach for this research. Figure 1 shows an overview 
of the involved parts for this research. On the left side there are sensor stations (which contain 
sensors) or ‘simple’ sensors. The data will have to be collected, annotated and stored 
somehow. The main focus for this research will be on the storage and retrieval parts. We 
assume there is a data set available and therefore we don’t need to worry about data 
collection. Because our storage model will most likely be different from the original one, the 
data will have to be manipulated into the new format. The original data will not contain 
annotations and therefore they will have to be added. After the retrieval some form of display 
is necessary to show the results. 
 

 
Figure 1: Overview of involved parts 
 
For the storage part the plan is to use both a relational and a column database. For both 
database types a storage model will have to be developed for the storage of sensor data and 
annotations. They will also both need a retrieval component. This retrieval component should 
have support for querying on annotations, sensor data and both in combination with time 
constraints. 
 
The validation of the designed solutions will be done using experiments. The main criteria for 
these experiments will be scalability. A few methods for storing and retrieving sensor data 
and annotations will be chosen. For these methods 3 data sets will be created, each 10 times 
bigger than the previous one. An independent query set is required in order to perform the 
experiments and this query set should also be used for testing the final implementation. The 
results will consist of measurements for each query on each data set size. 
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Figure 2 shows the detailed action plan for this research. At first the storage models for both 
relational and column will have to be developed and also the query languages that will be 
used to retrieve data again. Besides that a subset of the available data will have to be chosen. 
Once these steps are done the chosen data can be manipulated to fit in both storage models. 
Because there are no annotations yet these will have to be added to the data. Also an 
experiment design will have to be made describing what will exactly be done during the 
experiments. This should give as a result a set of queries to use in the experiments. Once all 
these steps are done the actual experiments can be done. If the results are not as hoped, it is 
possible to develop another storage model and go through the procedure again if time allows. 
 
Finally the best solution found during the experiments will be implemented and tested again 
on scalability. The implementation should be usable by users and have some form of display. 
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Figure 2: Detailed action plan 
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5. Case 
 
This section will describe a case to show the complexity of sensor data and its annotations and 
to provide material to base further examples on. In the IJkdijk project [IJk09] one of the 
sensor stations used is a weather station which contains multiple sensors. In this case we will 
use this weather station as an example. 
 
Imagine we have 3 of these weather stations with each a number of sensors. We will assume 
all 3 stations have the same sensors, namely a temperature sensor, a rainfall sensor, a wind 
speed sensor and a video camera. As we have seen in the section ‘Annotation and query 
types’ on page 8, annotations can be a lot more than simply be attached to a single 
measurement. Figure 3 shows a time span of data measurements for 6 sensors from the 3 
weather stations and the following types of annotations (on sensor level) on this sensor data: 
 
- Annotations over multiple sensor types (e.g. Warm rain) 
- Annotations over multiple sensor stations (e.g. Hot) 
- Annotations over multiple sensor types and -stations (e.g. Storm, Nice weather, Warm rain) 
- Annotations over 1 sensor (e.g. Warm, Lightning) 
- Annotations overlapping in time (e.g. Warm, Storm and Lightning) 
- Annotations on time itself (e.g. Power failure) 
 

 
Figure 3: Examples of annotations over sensor data 
 
The difficulty that comes with all these types of annotation constructs is that they can all be 
stored efficiently in their own way and that some storage methods won’t be able to support 
them all. The challenge therefore is to be able to store all these types efficiently while 
maintaining efficient retrieval. Of course no storage method is perfect and there are always 
trade-offs to make. Next we will look into a number of ways to store sensor and annotation 
data and what their advantages and disadvantages are. 
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6. Storage of sensor data and annotations 
 
In related work (chapter 3) we have found a number of systems and methods to store sensor 
data and its annotations. In this section we will discuss these methods more in detail. We will 
start by taking a look at the relational part and then at the column database part. For relational 
we will first look at a number of methods for storing sensor data and annotations. After that 
we will take a look at the systems found and discuss their methods used. For all methods we 
will discuss their advantages and disadvantages. 
 
6.1. Relational storage 
 
In chapter 2 we already mentioned the simple approach of attaching annotations to 
measurements and the theoretic solution of using N1NF schemas. The first was inefficient due 
to duplication of data when multiple annotations are attached to a single measurement. The 
second option is an interesting theoretic solution, but there are no databases supporting this 
form. Using the 1NF, a lot of redundant data is created and when querying a lot of joins have 
to be done, making this solution both inefficient on storage and retrieval terms. 
Next we will take a closer look at the storage solutions in [WHB08]. In their opinion sensor 
data and annotation data are different and therefore require different storage models. Sensor 
data most likely consists of a timestamp, value and some sensorID. A sensor station can 
contain multiple sensors with different measurement types (e.g. wind speed, temperature, 
rainfall or video). Annotation data consists of an annotation and possibly a comment on it and 
it has to be related to a measurement or multiple measurements. We will first take a look at 
sensor data storage. 
 
6.1.1. Sensor data storage 
 
A few options [WHB08-2] mentioned are storing measurements per measurement type (see 
Table 3), per sensorID (see Table 4) or all data in one big table (see Table 5). All have their 
advantages and disadvantages which we will discuss next. 
 
Table 3 provides the advantage of efficient search for a specific measurement type like 
temperature. It also prevents empty cells coming from different measuring frequencies of 
different measurement types. Disadvantages are redundant storage of timestamps, inefficient 
retrieval of all measurement types or data at a certain timestamp or time space from 1 sensor 
and sensors must be synchronized. 
 

Temperature 
Time Temp1 Temp2 Temp3 
12:00:00 19.0 19.9 19.2 
12:20:00 20.5 21.2 20.3 
12:40:00 22.7 23.4 22.9 
Table 3: Example of sensor data storage per measurement type 
 
Table 4 provides efficient search for all data of 1 sensor or for a {time, sensor} tuple. 
Disadvantages are inefficient search for time intervals over multiple sensors and querying 
over a measurement type. Also timestamps are stored redundant and empty cells will exist in 
the table if different measurement types have different measuring frequencies. 
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Weatherstation1 
Time Wind speed Temperature Rainfall 
12:00:00 2.0 19.0 0.0 
12:20:00 8.0 20.5 0.4 
12:40:00 10.0 22.7 0.5 
Table 4: Example of sensor data storage per sensor 
 
Table 5 has the advantage of no redundant storage of timestamps and provides efficient search 
for all sensor data on a certain timestamp or time space. Disadvantages are that sensors must 
be synchronized and different frequencies create a lot of empty cells. Also scalability is low 
because new sensors will always introduce new columns. 
 

Data 
Time Wind1 Wind2 Wind3 Temp1 Temp2 Temp3 Rain1 Rain2 Rain3 
12:00:00 2.0 3.0 1.0 19.0 19.9 19.2 0.0 0.0 0.0 
12:20:00 8.0 9.0 7.0 20.5 21.2 20.3 0.4 0.5 0.4 
12:40:00 10.0 7.0 9.0 22.7 23.4 22.9 0.5 0.4 0.4 
Table 5: Example of sensor data storage with all data in 1 table 
 
6.1.2. Annotation storage 
 
There are many possible ways to store annotations. [WHB08] describes 3 types of storage that 
use the annotation name as table. The first uses a {time,sensor_id} tuple, the second a {time, 
sensor_1, sensor_2, sensor_3} tuple and the third a {start_time, end_time, sensor_id} tuple. 
All have their advantages and disadvantages in terms of space and search efficiency. 
 
A fourth option mentioned uses a table per sensor station and {query, sensor_id, 
annotation_id} tuples in it (see Table 6). Annotation_id refers to an ID in an Annotation table 
(Table 7) which contains all annotations for that ID and possibly a comment on it which is 
stored in the table Comments (see Table 8). The query returns all measurements to which the 
annotation applies. When searching for all measurements with a certain annotation set, the 
DBMS can union the queries found in that set. This type of storage also allows annotations to 
change name and the use of multiple annotations on a certain time interval on a sensor. If a 
specific time interval is requested, this can be appended to the queries as another constraint, 
removing the need for post-processing. Disadvantages are that storage requirements will be 
high if annotations are spread over small time intervals and overlapping annotations create a 
whole new problem for both storage and retrieval. 
 

Weatherstation 1 
Query Sensor_ID Annotation_ID
Temp > 20.0 Temp 1 
Temp > 25.0 Temp 2 
Temp > 20.0 and rain > 0.3 and wind > 6.0 and 
video.event = lightning 

Temp 3 

Temp > 20.0 and rain > 0.3 and wind > 6.0 and 
video.event = lightning 

Rain 3 

Temp > 15.0 and rain = 0.0 and wind < 4.0 Temp 4 
Temp > 15.0 and rain = 0.0 and wind < 4.0 Rain 4 
Temp > 20.0 and rain > 0.0 Rain 5 
Table 6: Table for weather station 1 containing annotations 
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Annotations 
Annotation_ID Value 
1 {warm} 
2 {hot) 
3 {storm, lightning, warm} 
4 {nice weather} 
5 {warm rain} 
Table 7: Table for storing annotation sets 
 

Comments 
Annotation_ID Comment 
1 Warm outside 
3 Lightning visible 
4 No clouds in the sky 
5 Warm rain manually 

confirmed 
Table 8: Table for storing additional information about annotations 
 
6.1.3. Storage systems 
 
The previous two sections showed ways of storing sensor and annotation data. This section 
will take a look at some complete systems which were also discussed in chapter 3.1. Here we 
will focus on how they actually store the sensor and annotation data. 
 
MAAS 
 
The MAAS [KMP09] system stores both sensor stations and sensors in their own table. The 
sensor table is linked to a station and will contain all data produced by that sensor. The 
‘SensorAnnotation’ table links sensor data to an annotation. Text can be added to describe a 
specific annotation instance. Time ranges are supported by using aggregation of data. This 
method of storage produces a lot of joins in the queries. Possible existing data will have to be 
converted into the used format in order to use this system. 
 
DBNotes 
 
DBnotes [CCV05] produces extra tables in order to store the annotations. Further it uses an 
extension of SQL called pSQL. It does not affect the original sensor data. Experiments 
showed that pSQL query execution time was a factor 1 to 2 slower than normal SQL query 
execution time. The gain is the ability to propagate annotations. 
 
Mondrian 
 
Mondrian [GMK06] also produces extra tables to store annotations. Using Booleans for each 
attribute in the new table, it can be decided which attributes are relevant to the annotation. 
This solution also doesn’t affect the original data. Experiments showed that their annotation 
query language was around 3 to 5 times slower than SQL. This loss of performance is 
compensated by the ability to represent and query complex annotations. 
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BDBMS 
 
BDBMS [EAE09] does not affect the original sensor data. Every data table can have multiple 
annotation tables. These tables store the annotated data using rectangles. The rectangles are 
built by numbering both rows and columns. In order to be truly effective, columns with a high 
correlation need to be next to each other. This is done using an algorithm based on statistics 
about the annotations present in a table. Their solution achieves more than an order-of-
magnitude reduction in storage and up to 70% reduction in the queries execution time. 
 
6.2. Column database storage 
 
There were no systems or methods found that are able to store and retrieve sensor data and its 
annotations using a column database. Therefore we will have to think of a storage method 
ourselves and we have chosen to do this using Google Bigtable because of its built-in time 
support. Since it will not be possible to use the actual Google Bigtable system, open-source 
alternatives will have to be used. Unfortunately these open-source alternatives are still young 
and have limited functionality. For example they only support the String type and do not 
support joins of tables. 
 
Next we will describe a solution using a ‘Bigtable’ system. Both the sensor data and the 
annotations will be stored in the same column family (called ‘data’) and ‘Bigtable’ provides 
the version management. The data will be stored under the column qualifier ‘sensor’ and the 
annotations under the column qualifier ‘annotation’. When multiple annotations have to be 
stored at a specific timestamp this works as long as they are not exactly the same. 

Measurements 
Row identifier Timestamp Data 
  Sensor Annotation 
Weatherstation1.temp 12:00:00 19.0 Nice weather  
Weatherstation1.temp 12:20:00 20.5 Warm  
Weatherstation1.temp 12:40:00 22.7 Warm  
Weatherstation1.temp 13:00:00 25.1 Warm Hot 
Weatherstation1.temp 13:20:00 23.6 Warm  
Weatherstation1.temp 13:40:00 NULL Power failure  
Weatherstation1.temp 14:00:00 21.9 NULL  
Weatherstation1.rain 12:00:00 0.0 Nice weather  
Weatherstation1.rain 12:20:00 0.4 Storm  
Weatherstation1.rain 12:40:00 0.5 Storm  
Weatherstation1.rain 13:00:00 0.2 NULL  
Weatherstation1.rain 13:20:00 0.1 Warm rain  
Weatherstation1.rain 13:40:00 NULL Power failure  
Weatherstation1.rain 14:00:00 0.1 NULL  
Weatherstation1.wind 12:00:00 2.0 NULL  
Weatherstation1.wind 12:20:00 8.0 NULL  
Weatherstation1.wind 12:40:00 10.0 NULL  
Weatherstation1.wind 13:00:00 6.0 NULL  
Weatherstation1.wind 13:20:00 5.0 NULL  
Weatherstation1.wind 13:40:00 NULL Power failure  
Weatherstation1.wind 14:00:00 4.0 NULL  
Table 9: Example of sensor data and annotation storage in a 'Bigtable' system over time 
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Table 9 shows an example of what this storage will look like. Multiple sensor stations should 
be put into the same table in order to overcome the lack of joins. Table 10 shows what the 
table will look like at a specific time with all 3 weather stations in it, in this case at 12:00:00. 
 

Measurements 
Row identifier Data 
 Sensor Annotation 
Weatherstation1.temp 19.0 Nice weather  
Weatherstation1.rain 0.0 Nice weather  
Weatherstation1.wind 2.0 NULL  
Weatherstation2.temp 19.9 Nice weather  
Weatherstation2.rain 0.0 NULL  
Weatherstation2.wind 3.0 NULL  
Weatherstation3.temp 19.2 Nice weather  
Weatherstation3.rain 0.0 NULL  
Weatherstation3.wind 1.0 Nice weather  
Table 10: Example of sensor data and annotations in a 'Bigtable' system at one specific time 
 
This storage model is able to store annotations on a row and supports time. Further it should 
be able to support all types of queries, although some extra logic will be necessary. 
 
6.3. Storage models to be used in scalability experiments 
 
Because time is limited, we will have to make a selection of storage models to be used in our 
experiments. One of our goals was to use at least 1 non-relational method. Further we will 
choose 2 relational methods from the found ones. These models will be tested using 
experiments which will be discussed later on. 
 
6.3.1. Relational storage 
 
Considering relational storage we have chosen for the WHB08 [WHB08] and the BDBMS 
[EAE09] storage models. Looking at Table 1 and Table 2 we can see BDBMS has the most 
support for storing and querying annotations. WHB08 uses a different approach to storing 
annotations and we are curious what its scalability is. With WHB08 we will store sensor data 
per sensor station and use their 4th annotation storage option as described in the section 
‘Annotation storage’ on page 19. For BDBMS extra logic will be needed to work with the 
annotation rectangles. We will leave out the algorithm to arrange the columns as efficient as 
possible and do this manually. 
 
6.3.2. Column database storage 
 
As mentioned earlier there were no methods available for column databases and that’s why 
we have developed our own storage method using Hypertable (an open-source alternative to 
Bigtable [Goo06]) and its built-in time support. Therefore we will use this method for the 
experiments. 
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7. Retrieval of sensor data and annotations 
 
This section will describe the retrieval part of the system. We will start with looking at what 
kinds of retrieval are desired. Next we will give a metasyntax description of our proposed 
query language and we will take a look at how to convert our language into SQL and HQL. 
 
7.1. Types of queries 
 
At first we will have to take a look at what types of queries should be supported in the 
retrieval. In chapter 2.1 we mentioned a few types. Of these types we like to have support for: 
 
- Querying for sensor data, annotations and time (in SELECT) 
- Creating constraints on sensor data, annotations and time (in WHERE) 
- Combinations of above mentioned types 
- Sensor data can be ‘simple’ (1 type, 1 station), multiple types, multiple stations and both 
- Annotation management, create, add, delete and remove annotations 
 
7.2. Proposed query language 
 
Next we will define the query language that will be used to retrieve the sensor data and 
annotations from the storage. It is inspired by chapter 4.1 from [KMP09]. The metasyntax 
description of the language is the following: 
 
query  = GET TIME? ANNOTATION? “<sensor_data>” FROM “<station>” 
   (, “<station>”)*  where 
   | ADD ANNOTATION “<annotation>” TO “<sensor_data>” AT “<station>” 
     where 
   | REMOVE ANNOTATION “<value>” FROM “<sensor_data>” AT  
     “<station>” 
   | CREATE ANNOTATION “<value>” 
   | DELETE ANNOTATION “<value>” ; 
 
where  = WHERE constraint ((AND | OR) constraint)* ; 
 
constraint = (“<sensor_data>” | ANNOTATION | TIME ) NOT? BETWEEN  “<value>” 
      AND “<value>” 
   | (“<sensor_data>” | ANNOTATION | TIME ) NOT? (> | < | >= | <= | =, <>) 
      “<value>” ; 
 
Which should support all types of queries as mentioned in the above section. Examples can be 
found in the section ‘Query set for validation’ on page 27. 
 
7.3. Translation rules 
 
This section will describe the translation rules to get from the proposed query language to 
both SQL and HQL. Table 11 shows how we can translate our language to SQL and Table 12 
does this for HQL. The left column shows our syntax and the middle column the syntax used 
by the respective languages. Where necessary comments are placed in the right column.
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Query language SQL Comments 
GET SELECT - 
TIME (get) Timestamp* * What the time field in the 

database is named like 
ANNOTATION (get) Depending on storage 

model* 
* Depending on how 
annotations are stored 

FROM FROM - 
WHERE WHERE - 
AND AND Logical AND 
OR OR Logical OR 
ANNOTATION (where) Depending on storage 

model* 
* Depending on how 
annotations are stored 

TIME (where) Timestamp* * What the time field in the 
database is named like 

NOT NOT - 
BETWEEN BETWEEN - 
> > Greater than 
< < Less than 
>= >= Greater than or equal to 
<= <= Less than or equal to 
= = Equal to 
<> <> Not equal to 
Table 11: Translation rules for SQL 
* See comment 
 
Query language HQL Comments 
GET SELECT - 
TIME (get) DISPLAY_TIMESTAMPS Returns timestamps 
ANNOTATION (get) Depending on storage 

model* 
* Depending on how 
annotations are stored 

FROM FROM - 
WHERE WHERE  
AND AND Logical AND  
OR OR Logical OR. Not available in 

time predicates? 
ANNOTATION (where) Depending on storage 

model* 
* Depending on how 
annotations are stored 

TIME (where) TIMESTAMP - 
NOT  Not available in HQL 
BETWEEN < operator < - 
> > Greater than 
< < Less than 
>= >= Greater than or equal to 
<= <= Less than or equal to 
= = Equal to 
<>  Not available in HQL 
Table 12: Translation rules for HQL 
* See comment 
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8. Scalability testing of storage models 
 
This section will describe the design of an experiment to validate possible storage methods for 
sensor data and its annotations. For this experiment we will use a subset of the data as 
produced in IJkdijk [IJk09] experiments and provided by TNO-ICT (part of ‘Stichting 
IJkdijk’) to be used in this research. We will start with discussing what parts of the dataset 
will be used and how we will convert this data into its new storage models. Next we will 
present a query set which will be used to validate and compare storage models. We will 
describe what exactly will be tested during the experiments and finally we will present and 
discuss the results. 
 
8.1. Data set for scalability testing of storage models 
 
TNO-ICT has provided a dataset to be used in this research. This relational dataset contains a 
part of the sensor measurements from the 2009 IJkdijk experiments. It has a total of 
48.524.227 rows. The schema of the table containing this data is as seen in Table 13. The 
timestamps are the number of milliseconds passed since January 1st 1970. 
 
Column Description 
PK Primary key 
timed Time added by the University of Twente 
ANYSENSETIMESTAMP Timestamp as given by the Anysense platform 
OWNERID Who owns the sensor producing this data 
OWNERTIMESTAMP Timestamp produced by the sensor 
SENSORID The sensor that produced this data 
PARTID Part of sensor that produced this data 
PARTDOUBLE Value as double 
PARTLONG Value as long 
PARTSTRING Value as string 
Table 13: Schema of table containing IJkdijk data 
 
We will select a part of this data to work with. We want to use different sensor stations with 
multiple sensors/parts. The weatherstation sensor contains 13 parts and a total of 81.046 rows. 
The luisterbuis sensor (an audio sensor that also measures pressure and temperature) has 4 
parts and 1.719.426 rows. We will use these 2 together as our dataset for the experiments. 
This makes a total of 1.800.472 rows. 
 
8.1.1. Data manipulation 
 
‘Appendix A: Data manipulation details’ will give more details about the manipulation 
process including the actual queries used. We will start storing our selected subset into a new 
table with the exact same schema. Next we create tables for the weather station and the 
luisterbuis sensor. 
 
After taking a look at the data it seems there is erroneous data. The weather station 
measurements normally consist of 13 different parts, but in a big amount of rows all these 13 
parts have partid 25 and the same value. We deleted these rows, a total of 31.863, leaving us 
with 49.183 rows. 19 measurements contained more than 13 parts and 115 less. We will leave 
these in, because data will never be perfect. 
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The luisterbuis data also contains some erroneous data. 168 measurements contain more than 
4 parts and once again this is duplicate data at the same timestamp. 529 measurements contain 
less than 4 parts. We will again leave this data in. This makes a total of 1.768.609 rows. 
 
The actual manipulation from the subset table to the sensor station specific tables will be done 
using PHP. A script will query all data for a sensor station and extract the values for all 
partid’s of a single measurement. This measurement will then be inserted again into the new 
table. Missing parts will be inserted as nulls. In the case of Hypertable the luisterbuis and 
weatherstation tables were used and each column was inserted as a row with the 
ownertimestamp as timestamp. 
 
For relational data the manipulation resulted in 3.831 rows in the weatherstation table and 
429.986 rows in the luisterbuis table. This makes a total of 433.817 rows. For Hypertable it 
was 49.803 rows for the weatherstation and 279.276 for the luisterbuis making a total of 
329.079 rows. 
 
8.1.2. Adding annotations 
 
Next we will have to add annotations to the data. We will start creating the tables necessary 
for storing them. ‘Appendix B: Annotation adding details’ describes the actual queries used. 
For the [WHB08] method, both the weather station and luisterbuis get a table for their 
annotations. Further we create the actually annotation table and a comments table. In the case 
of BDBMS each sensor station also gets an annotation table, but no additional tables are 
needed. 
 
We will add all annotations from the case, except for lightning and power failure, to both 
storage models. Further we added 3 annotations for the luisterbuis data. For [WHB08] this 
means adding the annotations and attaching them to data using a query. For BDBMS this 
means creating rectangles, which will be done automated. The manually chosen column 
mapping for weatherstation is as follows: PK=1, OWNERTIMESTAMP=2, 
WINDSPEEDAVG=3, TEMPAVG=4 and RAINFALLTOTAL=5. For luisterbuis this is: 
PRESSUREA=1, PRESSUREB=2, TEMPA=3, TEMPB=4. The other columns are not used 
in our annotations. 
 
The results were that WHB08 got 530, 15.825 and 158.385 annotated for respectively the 
weatherstation, luisterbuissubset and luisterbuis. For BDBMS the number were 125, 7.649 
and 76.356 rows containing rectangles. 
 
For Hypertable we can only attach annotations to a specific sensor. For the weatherstation we 
will add the annotations ‘hot’, ‘warm’ and ‘cold’ to the ‘tempavg’ sensor. Further we will add 
‘heavy rain’ (rain > 0.3) and ‘storm’ (wind > 6) to the ‘rainfalltotal’ and the ‘windspeedavg’ 
sensors. Together they form the original ‘storm’ annotation from our case. The luisterbuis will 
receive the same annotations as the relational luisterbuis data. 
 
The results were 931 rows of annotations for the weatherstation, 54.885 for the 
luisterbuissubset and 276.494 for the whole luisterbuis table. 
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8.2. Query set for validation 
 
In order to test and validate the storage model, we will need a query set. This set of queries 
should represent the majority of possible queries over our data. Section 7.1 presented an 
overview of what types of queries should be supported in the query language. That list is the 
basis of the query set. 
 
For our experiments we will manually translate the queries from our language to SQL for 
both WHB08 and BDBMS and to HQL for Hypertable. Some translations will need extra 
logic to produce the desired result. 
 
Query 1, create an annotation (annotation management): 
 
CREATE ANNOTATION 'cold'; 
 
WHB08: 
 
INSERT INTO annotations(TIME, VALUE) VALUES(unix_timestamp(now()), 'cold'); 
 
BDBMS and Hypertable: 
 
There are no separate tables for annotations in BDBMS and Hypertable. 
 
Query 2, delete an annotation (annotation management): 
 
DELETE ANNOTATION 'cold'; 
 
WHB08: 
 
DELETE FROM annotations WHERE STRCMP(VALUE, 'cold'); 
 
BDBMS and Hypertable: 
 
There are no separate tables for annotations in BDBMS and Hypertable. 
 
Query 3, add an annotation to data (annotation management): 
 
ADD ANNOTATION 'cold' TO 'weatherstation' AT 'tempavg' WHERE tempavg < 5; 
 
WHB08: 
 
SELECT * FROM annotations WHERE STRCMP(value, 'cold') = 0; 
 
If not existing yet: 
 
INSERT INTO annotations(TIME, VALUE) VALUES(unix_timestamp(now()), 'cold'); 
 
Always execute: 
 
INSERT INTO weatherstationannot(QUERY, TIME, SENSORID, ANNOTATIONID) 
values('tempavg < 5', unix_timestamp(now()), 'tempavg', '6'); 
 
Annotationid comes from either the select or the insert. 
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BDBMS: 
 
BDBMS will have to select all rows with tempavg < 5, create rectangles of them and then: 
 
INSERT INTO weatherstationannot2(annotationid, time, value, rectangle) 
values('6', unix_timestamp(now()), 'cold', ' ((4,3749),(4,3777))'); 
 
For each rectangle created. 
 
Hypertable: 
 
Select all data from the sensor we want to annotate: 
 
SELECT * FROM weatherstationd WHERE 
cell='weatherstation1.tempavg','timeline:base'; 
 
If it meets the annotation condition, insert the annotation into the column ‘timeline:annotation’ at the 
timestamp of the data. 
 
Query 4, remove annotation (annotation management): 
 
REMOVE ANNOTATION 'cold' FROM 'tempavg' AT 'weatherstation'; 
 
WHB08: 
 
DELETE FROM weatherstationannot WHERE STRCMP(SENSORID, 'tempavg') = 0 AND 
ANNOTATIONID IN (SELECT ANNOTATIONID FROM annotations WHERE STRCMP(VALUE, 
'cold') = 0); 
 
BDBMS: 
 
DELETE FROM weatherstationannot2 WHERE STRCMP(VALUE, 'cold') = 0; 
 
Advanced logic is necessary to delete the annotation only from the 'tempavg' column. 
 
Hypertable: 
 
Because in Hypertable a delete will not only delete the data at the given timestamp, but also all earlier 
timestamps of that cell, only 1 delete query will delete all annotations. This is already very 
impractical, but after a delete it is also not possible to immediately insert the same data again, making 
it even harder to test this aspect of Hypertable. Our solution is to add a unique annotation each time 
with query 3, then delete that one again with this query and start over with a new unique annotation. 
The delete will be done the following way: 
 
SELECT * FROM weatherstationd WHERE 
cell='weatherstation1.tempavg','timeline:annotation'; 
 
Then check if the value = ‘cold’ and using that timestamp execute: 
 
DELETE timeline:annotation FROM weatherstationd WHERE 
row='weatherstation1.tempavg' TIMESTAMP timestamp; 
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Query 5, get ‘simple’ data with sensor data constraint (select ‘simple’ + data constraint): 
 
GET tempavg FROM weatherstation WHERE tempavg > 10; 
 
WHB08 and BDBMS: 
 
SELECT tempavg FROM weatherstation WHERE tempavg > 10; 
 
Hypertable: 
 
SELECT * FROM weatherstationd WHERE cell='weatherstation1.tempavg', 
timeline.base'; 
 
Then filter all resulting cells with value > 10; 
 
Query 6, get sensor data with time and annotations with sensor data constraint (select 
‘simple’ and annotations + data constraint): 
 
GET TIME ANNOTATION tempavg FROM weatherstation WHERE tempavg > 25; 
 
WHB08: 
 
At first all queries attached to tempavg will be selected and looped through: 
 
SELECT query, annotationid FROM weatherstationannot WHERE STRCMP('tempavg', 
sensorid) = 0; 
 
Next we will execute the following query with the query column of the result of the first query 
attached:  
 
SELECT ownertimestamp, tempavg FROM weatherstation WHERE tempavg > 25 AND 
{query}; 
 
If this query produces at least 1 result, we will get the annotation using: 
 
SELECT value FROM annotations WHERE annotationid = {annotationid}; 
 
Where {annotationid} is the id of the annotation as returned by the first query. 
 
BDBMS: 
 
SELECT ownertimestamp, tempavg FROM weatherstation WHERE tempavg > 25; 
 
For these rows it must be checked whether they are inside a rectangle and attach the annotation(s) to 
the result. 
 
Hypertable: 
 
SELECT * FROM weatherstationd WHERE 
cell='weatherstation1.tempavg','timeline:base'; 
 
Then filter all resulting cells with value > 25 and also retrieve annotations belonging to those. 
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Query 7, get time and sensor data consisting of multiple parts with annotation constraint 
(select multiple sensors + annotation constraint): 
 
GET TIME tempavg, tempmax, tempmin FROM weatherstation WHERE ANNOTATION = 
'hot'; 
 
WHB08: 
 
SELECT a.value, wa.query FROM weatherstationannot as wa, annotations as a 
WHERE STRCMP(wa.query, 'tempavg > 25') = 0 AND wa.annotationid = 
a.annotationid; 
 
SELECT ownertimestamp, tempavg, tempmax, tempmin FROM weatherstation as w, 
weatherstationannot = wa WHERE w.{result->wa.query}; 
 
BDBMS: 
 
SELECT rectangle FROM weatherstationannot2 WHERE STRCMP(value, 'hot') = 0; 
 
The rectangle(s) have to be converted to rows and colums and then we query: 
 
SELECT ownertimestamp, tempavg, tempmax, tempmin FROM weatherstation WHERE 
pk = row(s); 
 
Hypertable: 
 
SELECT * FROM weatherstationd WHERE 
cell='weatherstation1.tempavg','timeline:annotation' and 
cell='weatherstation1.tempmax','timeline:annotation' and 
cell='weatherstation1.tempmin','timeline:annotation'; 
 
Compare with ‘hot’ and if it matches, get data at that timestamp. 
 
Query 8, get time and sensor data with time constraint (select ‘simple’ + time constraint): 
 
GET TIME tempavg FROM weatherstation WHERE TIME BETWEEN '1253358800000' AND 
'1253369970000'; 
 
WHB08 and BDBMS: 
 
SELECT ownertimestamp, tempavg FROM weatherstation WHERE ownertimestamp 
BETWEEN '1253358800000' AND '1253369970000'; 
 
Hypertable: 
 
SELECT * FROM weatherstationd WHERE 
cell='weatherstation1.tempavg','timeline:base' and '2009-09-19 13:13:20' < 
TIMESTAMP < '2009-09-19 16:19:30'; 
 



The Storage and Retrieval of Sensor Data and its Annotations 
 

 31

Query 9, get annotations, time and sensor data in a certain time range (select ‘simple’ and 
annotations + time constraint): 
 
GET TIME ANNOTATION tempavg FROM weatherstation WHERE TIME BETWEEN 
'1253358800000' AND '1253369970000'; 
 
WHB08: 
 
First we select the queries and values of all annotations and loop through them: 
 
SELECT wa.query as q, a.value as v FROM weatherstationannot as wa, 
annotations as a WHERE wa.annotationid = a.annotationid; 
 
Next we execute the following query where {query} comes from the result of the first query: 
 
SELECT pk, ownertimestamp FROM weatherstation WHERE {query} AND 
ownertimestamp BETWEEN '1253358800000' AND '1253369970000'; 
 
And then we can display all data with that annotation within the given time range. 
 
BDBMS: 
 
For BDBMS the rows from weatherstation will have to be selected and then check if the row numbers 
are inside a rectangle. 
 
Hypertable: 
 
SELECT * FROM weatherstationd WHERE 
cell='weatherstation1.tempavg','timeline:base' AND '2009-09-19 13:13:20' < 
TIMESTAMP < '2009-09-19 16:19:30'; 
 
Loop through data and query annotations at the same timestamp as the data. 
 
Query 10, get time and sensor data from multiple stations (select multiple stations): 
 
GET TIME tempavg, tempa FROM weatherstation, luisterbuis WHERE tempavg = 
tempa; 
 
WHB08 and BDBMS: 
SELECT w.ownertimestamp, tempavg, l.ownertimestamp, tempa FROM 
weatherstation as w, luisterbuis as l WHERE w.tempavg = l.tempa; 
 
Hypertable: 
 
SELECT * FROM luisterbuisd WHERE cell='luisterbuis.tempa','timeline:base'; 
SELECT * FROM weatherstationd WHERE 
cell='weatherstation1.tempavg','timeline:base'; 
 
Manually join the results and find timestamps where tempavg = tempa. 
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8.3. Experiment design 
 
We have selected a dataset and created a query set. Now we will define what exactly will be 
done. Our goal is to test the systems in terms of scalability to find out whether a data set that 
is 10 times larger produces query execution times that are 10 times bigger. 
 
Most queries of [WHB08] can directly be translated to SQL, but for BDBMS this is not 
always possible. We will have to create some extra logic to be able to translate these queries 
and this will be done using PHP. We will use MySQL for the relational data. Two files were 
created, one for each relational storage model. Each query is put into a function and using a 
while loop we can execute the queries we want as many times as we want. Where necessary 
the MySQL query cache was emptied. The resulting average execution time per query is then 
outputted to the screen. Time will be measured in ‘wall clock time’, which means the total 
time used by the CPU, I/O and communication channels (which is equivalent to the real time 
passed). Further we will calculate the standard deviation for the produced results. In the case 
of BDBMS extra functions were created to deal with the annotation rectangles.  In PHP time 
is measured using the ‘microtime’ function, which produces the time in microseconds. 
 
For Hypertable we will use C++ as a programming language to directly communicate with the 
database. Using a program called Thrift it is possible to use other languages like PHP and 
Java, but this will severely impact the performance and scalability. In C++ time is measured 
using the ‘gettimeofday’ function, which also produces the time in microseconds. 
 
For all systems we will try to run the 10 queries 1000 times on data set size 1, 100 times on 
data set size 2 and 10 times on data set size 3. This will be done because some queries will 
start taking a lot of time at larger data sets. More on these data set sizes can be found in the 
next section. 
 
8.3.1. Data set sizes 
 
In order to measure scalability we will have to run our tests on different scales. We can scale 
two things, data and annotations. In these experiments we will only scale the data, but as the 
data grows the annotations will grow along. The preferred data set sizes are 10.000, 100.000 
and 1.000.000, but currently our dataset only consists of 433.000 tuples. For now we will use 
this set, but for the real scalability tests we will either receive more data from TNO or expand 
the data ourselves to 1 million. The three data set sizes will all get their own table. The 
smallest data set size will be the weatherstation data, consisting of 3.831 rows. The middle 
data set size will consist of a subset of the luisterbuis data (42.999 rows) and the largest data 
set size will be the whole luisterbuis table containing 429.986 rows. This distribution of scales 
means we will have to use different queries for the largest 2 data sets compared to the 
smallest. These queries can be found in ‘Appendix C: Queries for larger data sets using 
luisterbuis’. Query 10 is only possible on the larger data sets since it involves both the 
weatherstation and luisterbuis data. 
 
For Hypertable the weatherstation has 49.803 cells, the luisterbuis subset 171.996 and the 
luisterbuis 776.871. The numbers are larger because each sensor is a row instead of a column. 
The largest data set is also larger because we duplicated data in order to get a better scale. 
 
Table 14 shows an overview of the 3 data set sizes for both relational models and Hypertable.
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 Data set size 1 Data set size 2 Data set size 3 
Rows of relational 
data 

3.831 42.999 429.986 

Rows of WHB08 
annotations 

530 15.825 158.385 

Rows of BDBMS 
annotations 

125 7.649 76.356 

Rows of Hypertable 
data 

49.803 171.996 776.871 

Rows of Hypertable 
annotations 

931 54.885 276.494 

Table 14: Overview of data set sizes 
 
8.4. Results 
 
This section will talk about the results of the experiments for all three storage models. At first 
we will give the 10 queries more meaningful names than just ‘Query x’. The annotation 
management queries get short versions of their full names. For the selection queries this will 
not work and therefore we created abbreviations with the following format: ‘Query number. 
Select(S): Data(D)/Annotation(A)/Time(T)/Constraint on(C): 
Data(D)/Annotation(A)/Time(T)’. These abbreviations show what a query selects and which 
constraints it has. Table 15 and Table 16 show the mapping of queries to these abbreviations. 
 
 Create_annot Delete_annot Add_annot Remove_annot 
Query number 1 2 3 4 
Table 15: Mapping of annotation management queries to abbreviations 
 
        CONSTRAINT 

ON
SELECT 

Data Annotations Time 

Data 5, 6, 10 7 8, 9 
Annotations 6 x 9 
Time 6, 10 7 8, 9 
Table 16: Mapping of selection queries to abbreviations 
 
Next we will take a look at what exactly each query does. Table 17 shows this for the 
relational data and for all 10 queries on the 3 scales. The standard deviations for all 
measurements of all models can be found in ‘Appendix E: Measured standard deviations for 
experiments’. We will start with the results by taking a look at the results of WHB08. 
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Query Data set size 1 Data set size 2 Data set size 3 
1. Create_annot Insert 1 row Insert 1 row Insert 1 row 
2. Delete_annot Delete 1 row Delete 1 row Delete 1 row 
3. Add_annot Insert 1 row Insert 1 row Insert 1 row 
4. Remove_annot Delete 1 row Delete 1 row Delete 1 row 
5. S: D/C: D Select 3076 rows Select 29.767 rows Select 298.116 rows 
6. S: DAT/C: D Select 588 rows, 3 

tables involved 
Select 5342 rows, 3 
tables involved 

Select 52.793 rows, 3 
table involved 

7. S: DT/C: A Select few annotation 
rows + 20 rows 

Select few annotation 
rows + 61 rows 

Select few annotation 
rows + 617 rows 

8. S: DT/C: T Select 304 rows Select 3169 rows Select 31687 rows 
9: S: DAT/C: T Select 174 rows Select 1269 rows Select 12690 rows 
10: S: DT/C: D * Select 588 rows, 2 

tables involved 
Select 5782 rows, 2 
tables involved 

Table 17: What each query does on every scale 
* Not applicable 
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8.4.1. WHB08 
 
Table 18 and Figure 4 show the results of the experiments with WHB08 data and annotations. 
Query 10 was not run on data set 1 because it involves both the weatherstation and luisterbuis 
data and therefore is at least data set 2. The column “1<>2” shows the difference between the 
execution times of data sets 1 and 2. The column “2<>3” does the same for data sets 2 and 3. 
 
Creating, inserting, deleting and removing are very scalable processes. Queries 6, 9 and 10 
have a good scalability and 5, 7 and 8 a poor scalability. In general the standard deviation was 
low, but on scale 1 it was high, making the “1<>2” column less trustworthy. Also some 
measurements have such low execution times that the standard deviation becomes less 
relevant due to the accuracy of the measurements. 
 
Query Data set 1 [s] 1<>2 Data set 2 [s] 2<>3 Data set 3 [s]
1. Create_annot 0.000075 1.25x 0.000094 1.21x 0.000114 
2. Delete_annot 0.000085 1.22x 0.000104 1.02x 0.000106 
3. Add_annot 0.000165 1.33x 0.000219 1.02x 0.000223 
4. Remove_annot 0.000160 1.11x 0.000178 1.03x 0.000183 
5. S: D/C: D 0.000348 14.39x 0.005006 172.20x 0.862047 
6. S: DAT/C: D 0.018436 2.78x 0.051219 9.78x 0.500611 
7. S: DT/C: A 0.000112 1.33x 0.000149 211.06x 0.031448 
8. S: DT/C: T 0.000072 10.49x 0.000755 274.90x 0.207547 
9: S: DAT/C: T 0.000479 4.31x 0.002064 15.82x 0.018178 
10: S: DT/C: D * * 20.335640 8.81x 191.751825 
PHP max memory 190.376 

bytes 
1.00x 190.376 bytes 1.00x 190.376 bytes

Table 18: Execution times and peak memory usage of queries on WHB08 in seconds and bytes 
* Not applicable 

Execution times of queries on WHB08 in seconds on a logaritmic scale 
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9: S: DAT/C: T

10: S: DT/C: D

Data set 1 0,0000750,0000850,0001650,0001600,0003480,0184360,0001120,0000720,0004790,000010

Data set 2 0,0000940,0001040,0002190,0001780,0050060,0512190,0001490,0007550,00206420,335640

Data set 3 0,0001140,0001060,0002230,0001830,8620470,5006110,0314480,2075470,018178191,751825
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Figure 4: Graphical view of WHB08 measurements 
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8.4.2. BDBMS 
 
Table 19 and Figure 5 show the results of the experiments with BDBMS data and annotations. 
Query 1 and 2 were not run because BDBMS does not have the annotations separately stored, 
the annotations are simply linked to the data directly. Query 10 was not run on data set 1 
because it involves both the weatherstation and luisterbuis data and therefore is at least data 
set 2. The column “1<>2” shows the difference between the execution times of data sets 1 and 
2. The column “2<>3” does the same for data sets 2 and 3. 
 
The insertion and removal of annotations for BDBMS is less scalable than WHB08, but it is 
still acceptable. Queries 7 and 10 are the only other queries with a good scalability. Queries 5 
and 8 have a reasonable scalability and 6 and 9 a bad scalability. The absolute numbers of 
query 6 and 9 get very high for data set 3. The standard deviation was overall low. 
 
Query Data set 1 [s] 1<>2 Data set 2 [s] 2<>3 Data set 3 [s]
1. Create_annot * * * * * 
2. Delete_annot * * * * * 
3. Add_annot 0.004724 38.85x 0.183509 11.66x 2.140202 
4. Remove_annot 0.000881 38.63x 0.034033 10.27x 0.349678 
5. S: D/C: D 0.000356 10.58x 0.003765 225.90x 0.850495 
6. S: DAT/C: D 0.056388 983.18x 55.439357 101.60x 5632.72 
7. S: DT/C: A 0.000242 315.45x 0.076339 26.22x 2.001602 
8. S: DT/C: T 0.000078 7.05x 0.000550 374.74x 0.206108 
9: S: DAT/C: T 0.015473 738.58x 11.428085 102.39x 1170.066720 
10: S: DT/C: D * * 20.504747 9.34x 191.569171 
PHP max memory 1.702.120 bytes 8.00x 13.617.968 

bytes 
9.67x 131.615.152 

bytes 
Table 19: Execution times and peak memory storage of queries on BDBMS in seconds and bytes 
* Not applicable 

Execution times of queries on BDBMS in seconds on a logaritmic scale

0,00001 0,0001 0,001 0,01 0,1 1 10 100 1000 10000
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8. S: DT/C: T

9: S: DAT/C: T

10: S: DT/C: D

Data set 1 0,0047240,0008810,0003560,0563880,0002420,0000780,0154730,000010

Data set 2 0,1835090,0340330,00376555,4393570,0763390,00055011,42808520,504747

Data set 3 2,1402020,3496780,8504955632,7200002,0016020,2061081170,066720191,569171
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Figure 5: Graphical view of BDBMS measurements 



The Storage and Retrieval of Sensor Data and its Annotations 
 

 37

8.4.3. Hypertable 
 
Table 20 and Figure 6 show the results of the experiments with Hypertable data and 
annotations. Query 1 and 2 were not run because Hypertable does not have the annotations 
separately stored, the annotations are simply linked to the data directly. Query 10 was not run 
on data set 1 because it involves both the weatherstation and luisterbuis data and therefore is 
at least data set 2. The column “1<>2” shows the difference between the execution times of 
data sets 1 and 2. The column “2<>3” does the same for data sets 2 and 3. 
 
Most queries have a good scalability. Query 6 is an exception because again on data set 3 the 
absolute numbers become huge. Query 10 has a good scalability, but the absolute numbers are 
also pretty high. All standard deviations were low. The insertion and removal of annotations 
is a less scalable process than it is for the relational systems. Especially inserting gives big 
absolute numbers. Deleting seems to be pretty scalable. 
 
Query Data set 1 [s] 1<>2 Data set 2 [s] 2<>3 Data set 3 [s] 
1. Create_annot * * * * * 
2. Delete_annot * * * * * 
3. Add_annot 0.982558 144.74x 142.219016 8.80x 1251.109109 
4. Remove_annot 0.003182 61.06x 0.194278 4.52x 0.878988 
5. S: D/C: D 0.017852 11.09x 0.197913 4.36x 0.862308 
6. S: DAT/C: D 0.618334 665.45x 411.467747 11.94x 4911.168060 
7. S: DT/C: A 0.148391 16.57x 2.458545 17.28x 42.474110 
8. S: DT/C: T 0.007483 14.51x 0.108575 4.82x 0.522888 
9: S: DAT/C: T 0.038526 310.02x 11.943820 6.86x 81.875499 
10: S: DT/C: D * * 128.427053 4.52x 580.456005 
Table 20: Execution times of queries on Hypertable in seconds 
* Not applicable 

Execution times of queries on Hypertable in seconds on a logaritmic scale 
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Figure 6: Graphical view of Hypertable measurements 
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8.5. Conclusions 
 
In general the annotation management for the relational systems is a scalable process, but for 
BDBMS the absolute numbers are a lot higher than for WHB08. For Hypertable deleting gave 
no problems, but inserting the annotations was very slow. Query 5 scales bad on WHB08 and 
BDBMS, but very well on Hypertable. Query 6 scales bad on BDBMS and performed bad on 
Hypertable because the absolute numbers become huge. Query 7 scaled bad on WHB08, but 
with low absolute numbers. It scored well on the other systems. Query 8 had a poor scalability 
on the relational systems, but no high absolute numbers yet on data set 3. Query 9 scaled well 
on WHB08 and Hypertable, but very bad for BDBMS. The absolute numbers became huge 
for BDBMS. Query 10 scaled reasonable, but the absolute numbers were high for all systems. 
For the relational systems it was clearly limited by the database itself. WHB08 barely uses 
any memory in PHP because not much extra logic is needed. BDBMS does, but the amount of 
memory needed scales well. Unfortunately we were unable to measure the memory usage for 
Hypertable, but because extra logic is needed here a well we expect a reasonable amount of 
memory was used. 
 
Figure 7 and Figure 8 show a direct comparison between both relational models. Both figures 
contain all queries for both systems on the vertical axis and the horizontal axis shows the time 
as a percentage of the total time (execution time of sets 1+2+3=100%). Figure 7 does this on a 
normal scale, Figure 8 on a logarithmic scale. The reference bar shows what the graph looks 
like for the execution times of a query where data set 2 takes 10 times the time of data set 1 
and data set 3 10 times the time of data set 2 (so a linear scalability). For Figure 7 goes, the 
more even the 3 coloured bars are distributed, the better the scalability is. In Figure 8 data set 
1 should be large and data set 3 small for maximal scalability. Next we will discuss our 
conclusions for each storage model and after that we draw our final conclusions. 
 
WHB08 scored very well overall. This can be explained by the minimum amount of extra 
logic needed to produce the results. Queries 5, 7 and 8 had a poor scalability on the large 
scales though, but the absolute numbers stayed low. 
 
BDBMS scored poorly overall. The reduction of storage requirements means the scalability 
becomes very bad for certain queries due to the extra logic needed for handling rectangles. It 
does have the most advanced annotation capabilities of all three systems though. 
 
Hypertable scored well in terms of scalability, but the absolute numbers became way too high 
for some queries. The gain of a faster database is diminished by the extra logic needed to 
produce the same results. This clearly became a bottleneck at the higher scales. 
A few other disadvantages of the current implementation of Hypertable were the lack of 
regular expressions and data types (only strings can be stored). Our storage model also cannot 
delete single annotations at a certain timestamp, because such a delete causes all other entries 
in the annotation column to be deleted together with all older ‘versions’ of that column. 
 
So while the database itself is very fast, the simplicity of it requires a lot of post-processing, 
making it only slower in the end. The expressiveness and flexibility of annotations is also a 
lot lower than in both relational systems making it an impractical solution in its current 
implementation. 
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Figure 7: Comparison between WHB08 and BDBMS on a normal scale 
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Figure 8: Comparison between WHB08 and BDBMS on a logaritmic scale 
 
8.5.1. Final conclusions of scalability testing 
 
Although BDBMS provides more flexibility regarding annotations, it is also less scalable and 
needs a lot of extra logic to work with the rectangles. Hypertable does not only miss this 
flexibility, but also produces high absolute numbers on the higher scales and needs a lot of 
extra logic. For these reasons we like to further investigate the WHB08 storage model, which 
scored very well overall, while still providing some interesting annotation capabilities. 
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9. Implementation 
 
The next step in our research is to create an implementation of WHB08 (which was chosen as 
the best candidate in the previous chapter) and run the scalability tests again. While during the 
scalability experiments only a fixed (static) set of queries could be executed, the 
implementation should be able to execute all possible queries (dynamic). It should also 
contain some form of display for interaction with the user. Because time is limited and 
implementing a whole system is time consuming, we will integrate the WHB08 annotation 
storage model into an existing system. 
 
This existing system will be the sensordataweb, as described in [Lan09], which is a 
distributed infrastructure to handle and process sensor data including their provenance data. It 
consists of a query manager, query language (PASN-QL) and a provenance server (Tupelo2). 
It is currently not possible to query on/with annotations and together with the fact that it is 
open-source this is an ideal candidate to integrate the WHB08 annotation storage into. 
 
Figure 9 [Lan09] gives an overview of the sensordataweb. The query manager consists of 
processing elements (PE) which produce output called views (V). Each processing element is 
a node in the network created by a command (data, project, select, union or join). A node can 
have a parent, which means it uses the data as produced by that node. This way it is possible 
to trace back the path data travelled (which is provenance information). The views of these 
nodes can be queried (using the show command) and handle the database management by 
calling methods of DBManager classes, which handle the actual communication with the 
database. This way the system is database-independent. Further there are data sinks for 
retrieval and formatting of requested data. Next we will take a look at the impact of 
annotation support on both the retrieval and storage side of the sensordataweb. 
 

 
Figure 9: Overview of elements within the sensordataweb [Lan09] 
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9.1. Implementation requirements 
 
This section will describe the requirements for the implementation of annotation support in 
the sensordataweb. We will start looking at the requirements for the query language. 
 
9.1.1. Retrieval requirements 
 
In order to reach annotation support using WHB08, the sensordataweb will have to support 
annotations in its query language (PASN-QL, as defined in [Lan09] on page 55/56). The 
following support is desired: 
 

• Adding of annotations to data using a query (and if necessary, creation of an 
annotation) 

• Removing data from annotations (removing the query) 
• Selecting not only the data but also the annotations belonging to it 
• Constraints on annotations in selection queries 

 
In order to show annotations our annotation enabled view will need to not only give data to 
the sinks but also the annotations belonging to it. For selecting on annotations we have to 
change the ‘IntervalSelector’ class to not only have alphanumeric support but also annotation 
support. We assume the actual annotations will never be deleted using the query language. 
The first 2 are completely new operations and therefore require their own assign-methods: 
 
add_annot ( String PE , String Annotation , String Query ) 
remove_annot ( String PE , String Annotation ) 
 
This functionality will have to be supported in the query language, parser and the actual 
commands will have to be implemented together with an annotation enabled view. 
 
9.1.2. Storage requirements 
 
In order to store the annotations the sensordataweb database will have to be altered. The 
[WHB08] annotation storage model assumes sensor data is stored per sensor station. For 
example all measurements coming from a weather station (temperature, rainfall, wind speed 
etc.) are stored in a table with the name of the sensor station and the sensors as columns. 
 
Therefore all these sensor station tables will need their own annotation table. For example the 
‘weatherstation’ table will need a ‘weatherstation_annot’ table. In the sensordataweb sources 
and PE’s (to be exactly their views) will need annotation tables. In order to store the actual 
annotations and comments on them the tables ‘annotations’ and ‘comments’ will have to be 
created. More details about all tables can be found in ‘Appendix A: Data manipulation 
details’ and ‘Appendix B: Annotation adding details’. 
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9.2. Implementation details 
 
As mentioned earlier on the query manager consists of processing elements and views. The 
first does something with the data and the second can be queried and manages the storage of 
the data. In order to support annotations these views will have to support them. This means 
we will have to create a special type of view which is used whenever it is specified by the 
user that annotations are involved. This will be the case when annotations are added by the 
user. Further we will need to create classes to validate and execute the ‘add annotation’ and 
‘remove annotation’ commands. Figure 10 gives an overview of the classes involved for 
annotation support in the sensordataweb. 
 

 
Figure 10: Overview of classes involved for annotation support 
 
When a user sends a ‘remove_annot’ or ‘add_annot command’ to the sensordataweb, the 
system parses this and calls the respective commands, first to validate the command and if 
this succeeds to execute it. The validation of ‘add_annot’ checks if there is already an 
annotation enabled view present and if not, creates it (SQLAnnotationView). For 
‘remove_annot’ it is checked whether the view of the PE is annotation enabled. If this is not 
the case annotations have not been added for sure and it is not possible to remove an 
annotation. On execution the ‘remove_annot’ or ‘add_annot’ method of the annotation 
enabled view is called. 
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In order to make the annotation support both database and sink independent, the decision was 
made to add all annotation support to the view and not to the DBManager classes. This way it 
doesn’t matter which database or sink is used. The annotation enabled view can add and 
remove annotations using the methods as provided by the DBManager classes. When a sink 
asks for its data the view will also return the annotations present. In order to reach sink-
independency it was necessary for the method ‘getSchema’ in the SQLAnnotationView class 
to behave differently when called by a sink class. This method returns the database schema 
used and when annotations are involved it is necessary to also return an annotation column in 
the schema so the sink knows it also has the show the annotations. 
 
In order to get a selection with an annotation constraint it was necessary to change the class 
which decides if a tuple is selected (IntervalSelector) and to allow annotation conditions in the 
SelectCommand class. The IntervalSelector class had to be able to recognize there was an 
annotation constraint and then check if the new tuple fulfilled the constraint. It supports 
multiple attachments of 1 annotation to the data (i.e. 2 definitions of 1 annotation or a split 
definition). For example an annotation on a certain node can be defined as ‘value > 0.0 and 
value < 0.2’ but also as ‘value > 0.8 and value < 1.0’. If this annotation is put as a selection 
constraint the IntervalSelector knows the value has to be in 1 of those 2 ranges. 
 
The required tables in the database are the global ‘annotation’ and ‘comments’ tables and the 
PE-specific tables. The first are created on creation of a new SQLAnnotationView and using a 
static variable it is assured this only happens once. When the tables already existed nothing 
happens. The latter are also created on startup of a new SQLAnnotationView, but will always 
be created whenever a PE creates an annotation enabled view. 
 
9.3. Implementation limitations 
 
Due to time constraints the implementation has a limitation: 
 

• Annotations on views of parent are only copied once to the selector PE (therefore new 
added annotations to the parent are not reflected in the selection process and display of 
the selector) 
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10. Scalability testing of implementation 
 
This section will describe the scalability test for the implementation. For consistency and 
comparability we will use the same query set as used for our experiments. Except for queries 
1 and 2 all queries can be executed on the sensordataweb. The creation of annotations (query 
1) is done when adding an annotation (query 3) that doesn’t exist yet. The deletion of 
annotations (query 2) is not supported in the system. Table 21 shows the execution plan for all 
queries that are possible. Next we will take a look at the data sets and the experiment design. 
 
Query Execution plan 
3. Add_annot Create annotation if not existing yet and then add to data 
4. Remove_annot Remove the annotation query from the PE-specific table 
5. S: D/C: D Make a selection node with value conditions and show its data 
6. S: DAT/C: D Make a selection node with value conditions, add annotations to it 

and show its data 
7. S: DT/C: A Make a selection node with annotation conditions and show its data 
8. S: DT/C: T Make a selection node with timed conditions and show its data 
9: S: DAT/C: T Make a selection node with timed conditions, add annotations to it 

and show its data 
10: S: DT/C: D Make a join node and show its data 
Table 21: Overview of queries and their execution plan for the sensordataweb 
 
10.1. Data set and scalability testing design 
 
We have chosen to use 3 data sets with the sizes of 10K, 100K and 1000K entries. The first 
and second data set were created by running the system with a source node that stopped 
producing data after 10K or 100K. When this source was set to generate data faster than 1 
second duplicates and other problems occurred. For these reasons it was not practically 
possible to generate the 1000K in the same way. Therefore this set was created manually by 
inserting data into the table of the source and then insert a selection of data from this table 
into the other nodes tables. The annotations ‘hot’, ‘hotter’ and ‘hottest’ were added to the 
source node and the other nodes requiring annotations. The ratios between the total data and 
resulting data of the queries were made the same as with the experiments. 
 
On startup of the system all required nodes for the queries are created and the nodes that 
require annotations get them added as well. The queries were run 30 times on each data set 
and the actual time passed was measured with a precision of milliseconds using Java’s 
System. currentTimeMillis() method. The standard deviations of the measurements were also 
calculated. The annotation management queries (3 and 4) were measured in microseconds 
using Java’s System.nanoTime()/1000 because of the low execution times of these queries. 
 
For more details and actual queries see ‘Appendix D: Implementation testing details’. 
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10.2. Results 
 
Table 22 and Figure 11 show the results of the experiments with our implementation. The 
standard deviations for the measurements can be found in ‘Appendix F: Measured standard 
deviations for implementation’. Query 1 and 2 were not run because our implementation 
doesn’t support deleting annotations and the creation of them is done while adding them to 
the data (query 3). The column “1<>2” shows the difference between the execution times of 
data sets 1 and 2. The column “2<>3” does the same for data sets 2 and 3. 
 
At first we must note that the data sets are bigger than the ones used in the WHB08 
experiments and therefore the absolute numbers cannot be compared. Also the data set used 
for query 10 on size 3 was smaller than intended due to a lack of memory. It turned out this 
query was quite memory intensive and the maximum achievable was 7 times larger than the 
previous set. Another thing to note is that the first query executed by the sensordataweb was 
in general relatively slow. If it turned out to be the only big outlier, we left it out of the 
average and standard deviation calculations. 
 
The annotation management queries are perfectly scalable just as it was during the 
experiments and so is query 10. Queries 5 and 8 scaled well, but this wasn’t the case in the 
experiments. Queries 6, 7 and 9 scaled very bad, while at the experiments 6 and 9 had a good 
scalability. In general we can conclude that everything involving annotations is scaling bad.  
 
Query Data set 1 [s] 1<>2 Data set 2 [s] 2<>3 Data set 3 [s] 
1. Create_annot * * * * * 
2. Delete_annot * * * * * 
3. Add_annot 0.001128 0.99x 0.001119 1.00x 0.001123 
4. Remove_annot 0.001506 0.97x 0.001461 1.00x 0.001461 
5. S: D/C: D 0.063933 16.51x 1.055633 12.87x 13.588267 
6. S: DAT/C: D 0.099367 176.21x 17.509400 295.88x 5180.64553 
7. S: DT/C: A 0.099100 138.34x 13.709333 179.66x 2462.99343 
8. S: DT/C: T 0.008000 9.53x 0.076267 12.57x 0.958533 
9: S: DAT/C: T 0.064233 155.24x 9.971467 222.44x 2218.05617 
10: S: DT/C: D 0.430067 16.27x 6.997467 7.63x ** 53.39975 ** 
Table 22: Execution times of queries on implementation in seconds 
* Not applicable 
** Data set was only 7 times bigger than previous 
 
The differences with the other experiments can be explained by the approach that the 
sensordataweb uses. On insertion of a new data tuple all nodes with as parent the inserting 
node check if the new data fulfils their constraints. When the user queries for the data the 
constraints are already applied and all data in the nodes table can simply be returned. 
Basically every query without annotations boils down to a simple select of all data of a node 
and for that reason queries without annotations have a good scalability. 
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Execution times of queries on implementation in seconds on a logaritmic scale

0,001 0,01 0,1 1 10 100 1000 10000

3. Add_annot
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5. S: D/C: D

6. S: DAT/C: D

7. S: DT/C: A

8. S: DT/C: T

9: S: DAT/C: T

10: S: DT/C: D

Data set 1 0,0011280,0015060,0639330,0993670,0991000,0080000,0642330,430067

Data set 2 0,0011190,0014611,05563317,50940013,7093330,0762679,9714676,997467

Data set 3 0,0011230,00146113,5882675180,6455302462,9934300,9585332218,05617053,399750

3. Add_annot4. 
Remove_annot5. S: D/C: D6. S: DAT/C: D7. S: DT/C: A8. S: DT/C: T9: S: DAT/C: T10: S: DT/C: D

 
Figure 11: Graphical view of implementation measurements 
 
But when annotations are involved, the system always has to find out which annotations apply 
to which measurement. Even when constraining on annotations (which is also done during 
insertion), the annotations that apply to the data need to be found for display. For that reason 
queries with constraints on annotations and queries selecting annotations are equal when we 
are not looking at the insertion part. In order to find out why queries with annotations 
involved score so bad we have to take a look into the code of the implementation and 
compare it to that of the earlier experiments. 
 
When we compare the code from the experiments to the implementation, we see 2 for/while 
loops extra in the code of the implementation. First we need to add an annotation column to 
all data to make sure all data is displayed on retrieval (and not only data that has an 
annotation) and we can actually display the annotations after retrieval. This is necessary due 
to the way the systems handles the display of retrieved data. Second for each element found 
we need to check if it is already in the final list (the list of elements returned and finally 
displayed). It is possible that an element has 2 annotations on it and when the second one is 
found we don’t want the element to be added a second time with that annotation, but we want 
to add the annotation to the existing element in our final list. These extra loops in the code 
could explain why the scalability of the implementation is lower than that of the experiments 
whenever annotations are involved. 
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11. Conclusions 
 
This chapter will show the conclusions drawn from this research and the answers to the 
research questions. It will also discuss future work. We’ll start by answering our research 
questions. Our main question was: 
 
How can we efficiently store sensor data and its annotations in such a way that it can be 
queried efficiently again with different types of queries? 
 
But in order to answer that we will first have to take a look at the answers to the subquestions. 
 
What kinds of storage and storage models for sensor data and its annotations are available? 
 
We have looked in the literature for systems and methods for storing sensor data and its 
annotations. This was done in the fields of XML, relational and column databases. Only for 
relational a number of systems and methods were found, but column had 3 interesting types of 
databases to consider as well. For 1 of those we developed our own storage model. 
 
One of the conclusions drawn here is that there were no systems or methods found that can 
annotate on time itself. Annotations were always bound to sensor data, both in storage and 
retrieval terms. 
 
How can we efficiently retrieve data and annotations? 
 
We did scalability experiments with 3 of the found methods (2 relational, 1 column). The 
Hypertable method showed promising scalability but also very high absolute numbers and 
lacked functionality. The BDBMS method didn’t scale well. Therefore the most scalable 
relational method (WHB08) was chosen to create an implementation with. 
 
Which solution has the best scalability? 
 
While the Hypertable solution showed the best scalability, it also had very high absolute 
numbers and lacked functionality like data types support and joins. Therefore the WHB08 
solution was chosen as the winner. After implementing this method into an existing open-
source system and testing it again it turned out that every query involving annotations had a 
bad scalability and that the implementation of WHB08 could not be considered a success. 
This could be explained by the way the existing system functioned. 
 
How can we efficiently store sensor data and its annotations in such a way that it can be 
queried efficiently again with different types of queries? 
 
There is not 1 system or method able to accomplish this. The main division between methods 
were the ones good at selecting annotations and the ones good at putting constraints on 
annotations. If it was good at the one, it was bad at the other. For this reason it is almost 
impossible to build a system capable of doing both scalable. A solution could be creating a 
hybrid storage system, but this creates a lot of storage overhead and other complications. 
 
Next we will take a look at what other conclusions were drawn during this research. 
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Other conclusions: 
  
As said earlier on, Bigtable (in practice: Hypertable) showed promising scalability, but lacked 
functionality and the absolute numbers were very high. One of the big limitations was the fact 
that Hypertable could only store strings and no other data types like integers. When searching 
for a temperature greater than 25, all rows had to be retrieved and the string with the 
temperature first had to be converted to an integer for each row before it could be compared. 
If a million rows are retrieved, this has to be checked for a million rows, slowing down the 
system significantly. Also the versioning turned out to be ineffective when retrieving both 
data and annotations and the ability to join tables was not present. 
 
We think Hypertable would be a better alternative to relational systems if it would support 
other data types. This functionality is planned for an unknown future release. Also a new 
version came out recently (after 6 months of silence) and it would be worth testing again with 
the newest version to see if any performance improvements were made. The Bigtable type 
database is a promising one, but the current open-source alternatives do not suffice yet to 
replace Google’s original. 
 
11.1. Future work 
 
There are a couple of interesting database technologies left out of this research due to time 
constraints. For example Cassandra [LM09], the database behind Facebook and Twitter, is a 
fast growing system that promises high read and write speeds compared to relational. It 
became open-source in 2008 and recently graduated to an Apache top level project. 
MonetDB [Bon02] [CWI10] is a relational system that is a crossover between row and 
column based. It shows high performance especially in data mining, OLAP and GIS 
applications. 
 
Both these systems look very promising and it would be good to run experiments with them. 
Also the newest version of Hypertable and the other alternative to Bigtable, HBase, could be 
tested for scalability. 
 
Other interesting future work is the creation of a ‘hybrid’ method using elements of methods 
good at selecting annotations and methods good at constraining annotations. It would be 
interesting to see how much storage overhead this creates, how difficult the complications that 
will occur can be solved and how such a hybrid method will scale and perform. 
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Appendix A: Data manipulation details 
 
This appendix will describe the details of the data manipulation, including the used queries. 
 
Create statement of subset table: 
 
CREATE TABLE `genericijkdijksubset` ( 
  `PK` bigint(20) NOT NULL AUTO_INCREMENT, 
  `timed` bigint(20) NOT NULL, 
  `ANYSENSETIMESTAMP` bigint(20) DEFAULT NULL, 
  `OWNERID` varchar(20) DEFAULT NULL, 
  `OWNERTIMESTAMP` bigint(20) DEFAULT NULL, 
  `SENSORID` varchar(20) DEFAULT NULL, 
  `PARTID` varchar(20) DEFAULT NULL, 
  `PARTDOUBLE` double DEFAULT NULL, 
  `PARTLONG` bigint(20) DEFAULT NULL, 
  `PARTSTRING` varchar(20) DEFAULT NULL, 
  PRIMARY KEY (`PK`), 
  UNIQUE KEY `genericijkdijk_INDEX` (`timed`), 
  KEY `ownertimestamp` (`OWNERTIMESTAMP`), 
  KEY `sensorid` (`SENSORID`), 
  KEY `partid` (`PARTID`), 
  KEY `PARTDOUBLE` (`PARTDOUBLE`) 
); 
 
Query to insert desired data into subset table: 
 
INSERT INTO genericijkdijksubset(pk, timed, anysensetimestamp, ownerid, ownertimestamp, 
sensorid, partid, partdouble, partlong, partstring) SELECT * FROM genericijkdijk WHERE sensorid = 
7 OR sensorid = 136; 
 
Query to find erroneous data of the weather station: 
 
SELECT * FROM genericijkdijksubset WHERE sensorid = 7 GROUP BY ownertimestamp HAVING 
count(pk) = 13; (or < or >) 
 
Query to delete erroneous data of the weather station: 
 
DELETE FROM genericijkdijksubset WHERE partdouble = 123 AND sensorid = 7 AND partid = 25; 
 
Query to detect erroneous data of the luisterbuis: 
 
SELECT * FROM genericijkdijksubset WHERE sensorid = 136 GROUP BY ownertimestamp 
HAVING count(pk) > 4; 
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Create statement of weather station table: 
 
CREATE TABLE `weatherstation` ( 
  `PK` bigint(20) NOT NULL AUTO_INCREMENT, 
  `timed` bigint(20) NOT NULL, 
  `ANYSENSETIMESTAMP` bigint(20) DEFAULT NULL, 
  `OWNERID` varchar(20) DEFAULT NULL, 
  `OWNERTIMESTAMP` bigint(20) DEFAULT NULL, 
  `SENSORID` varchar(20) DEFAULT NULL, 
  `RADAVG` double DEFAULT NULL, 
  `RADMAX` double DEFAULT NULL, 
  `RADMIN` double DEFAULT NULL, 
  `WINDSPEEDAVG` double DEFAULT NULL, 
  `WINDDIR` double DEFAULT NULL, 
  `WINDGUSTMAX` double DEFAULT NULL, 
  `TEMPAVG` double DEFAULT NULL, 
  `TEMPMAX` double DEFAULT NULL, 
  `TEMPMIN` double DEFAULT NULL, 
  `HUMAVG` double DEFAULT NULL, 
  `HUMMAX` double DEFAULT NULL, 
  `HUMMIN` double DEFAULT NULL, 
  `RAINFALLTOTAL` double DEFAULT NULL, 
  PRIMARY KEY (`PK`), 
  UNIQUE KEY `weatherstation_INDEX` (`timed`), 
  KEY `ownertimestamp` (`OWNERTIMESTAMP`), 
  KEY `sensorid` (`SENSORID`) 
); 
 
Create statement of luisterbuis table: 
 
CREATE TABLE `luisterbuis` ( 
  `PK` bigint(20) NOT NULL AUTO_INCREMENT, 
  `timed` bigint(20) NOT NULL, 
  `ANYSENSETIMESTAMP` bigint(20) DEFAULT NULL, 
  `OWNERID` varchar(20) DEFAULT NULL, 
  `OWNERTIMESTAMP` bigint(20) DEFAULT NULL, 
  `SENSORID` varchar(20) DEFAULT NULL, 
  `PRESSUREA` double DEFAULT NULL, 
  `PRESSUREB` double DEFAULT NULL, 
  `TEMPA` double DEFAULT NULL, 
  `TEMPB` double DEFAULT NULL, 
  PRIMARY KEY (`PK`), 
  UNIQUE KEY `luisterbuis_INDEX` (`timed`), 
  KEY `ownertimestamp` (`OWNERTIMESTAMP`), 
  KEY `sensorid` (`SENSORID`) 
); 
 
The ‘luisterbuissubset’ table uses the same schema as the ‘luisterbuis’ table. 
 
Insert data from luisterbuis table into luisterbuissubset table: 
 
INSERT INTO luisterbuissubset(timed, anysensetimestamp, ownerid, ownertimestamp, sensorid, 
pressurea, pressureb, tempa, tempb) SELECT timed, anysensetimestamp, ownerid, ownertimestamp, 
sensorid, pressurea, pressureb, tempa, tempb FROM luisterbuis WHERE MOD(pk,10)=1; 
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Appendix B: Annotation adding details 
 
This appendix describes queries used for adding the annotation tables and data. 
 
Create statement of weather station annotation table [WHB08]: 
 
CREATE TABLE `weatherstationannot` ( 
  `PK` bigint(20) NOT NULL AUTO_INCREMENT, 
  `QUERY` text NOT NULL, 
  `TIME` bigint(20) NOT NULL, 
  `SENSORID` tinytext NOT NULL, 
  `ANNOTATIONID` int NOT NULL, 
  PRIMARY KEY (`PK`) 
); 
 
Create statement of luisterbuis annotation table [WHB08]: 
 
CREATE TABLE `luisterbuisannot` ( 
  `PK` bigint(20) NOT NULL AUTO_INCREMENT, 
  `QUERY` text NOT NULL, 
  `TIME` bigint(20) NOT NULL, 
  `SENSORID` tinytext NOT NULL, 
  `ANNOTATIONID` int NOT NULL, 
  PRIMARY KEY (`PK`) 
); 
 
Create statement of annotation table: 
 
CREATE TABLE `annotations` ( 
  `ANNOTATIONID` bigint(20) NOT NULL AUTO_INCREMENT, 
  `TIME` bigint(20) NOT NULL, 
  `VALUE` text NOT NULL, 
  PRIMARY KEY (`ANNOTATIONID`) 
); 
 
Create statement of comments table: 
 
CREATE TABLE `comments` ( 
  `PK` bigint(20) NOT NULL AUTO_INCREMENT, 
  `TIME` bigint(20) NOT NULL, 
  `ANNOTATIONID` int NOT NULL, 
  `COMMENT` text NOT NULL, 
  PRIMARY KEY (`PK`) 
); 
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Create statement of weather station annotation table BDBMS: 
 
CREATE TABLE `weatherstationannot2` ( 
  `PK` bigint(20) NOT NULL AUTO_INCREMENT, 
  `ANNOTATIONID` int NOT NULL, 
  `TIME` bigint(20) NOT NULL, 
  `VALUE` text NOT NULL, 
  `RECTANGLE` tinytext NOT NULL, 
  PRIMARY KEY (`PK`), 
  KEY `annotationid` (`ANNOTATIONID`) 
); 
 
Create statement of luisterbuissubset annotation table BDBMS: 
 
CREATE TABLE `luisterbuissubsetannot2` ( 
  `PK` bigint(20) NOT NULL AUTO_INCREMENT, 
  `ANNOTATIONID` int NOT NULL, 
  `TIME` bigint(20) NOT NULL, 
  `VALUE` text NOT NULL, 
  `RECTANGLE` tinytext NOT NULL, 
  PRIMARY KEY (`PK`), 
  KEY `annotationid` (`ANNOTATIONID`) 
); 
 
Create statement of luisterbuis annotation table BDBMS: 
 
CREATE TABLE `luisterbuisannot2` ( 
  `PK` bigint(20) NOT NULL AUTO_INCREMENT, 
  `ANNOTATIONID` int NOT NULL, 
  `TIME` bigint(20) NOT NULL, 
  `VALUE` text NOT NULL, 
  `RECTANGLE` tinytext NOT NULL, 
  PRIMARY KEY (`PK`), 
  KEY `annotationid` (`ANNOTATIONID`) 
); 
 
Create statement of luisterbuis and weatherstation tables for Hypertable: 
 
CREATE TABLE weatherstationd ( 
  sensor, 
  timeline, 
  ACCESS GROUP default (sensor, timeline) 
); 
 
CREATE TABLE luisterbuissubsetd ( 
  sensor, 
  timeline, 
  ACCESS GROUP default (sensor, timeline) 
); 
 
CREATE TABLE luisterbuisd ( 
  sensor, 
  timeline, 
  ACCESS GROUP default (sensor, timeline) 
); 
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Inserting annotations and add them to data for [WHB08]: 
 
INSERT INTO annotations (time, value) values(unix_timestamp(now()), 'hot'); 
INSERT INTO annotations (time, value) values(unix_timestamp(now()), 'warm'); 
INSERT INTO annotations (time, value) values(unix_timestamp(now()), 'warm rain'); 
INSERT INTO annotations (time, value) values(unix_timestamp(now()), 'nice weather'); 
INSERT INTO annotations (time, value) values(unix_timestamp(now()), 'storm'); 
INSERT INTO annotations (time, value) values(unix_timestamp(now()), 'cold'); 
INSERT INTO annotations (time, value) values(unix_timestamp(now()), 'high pressure'); 
INSERT INTO annotations (time, value) values(unix_timestamp(now()), 'low pressure'); 
 
INSERT INTO weatherstationannot(query, time, sensorid, annotationid) values('tempavg > 25', 
unix_timestamp(now()), 'tempavg', '1'); 
INSERT INTO weatherstationannot(query, time, sensorid, annotationid) values('tempavg > 20', 
unix_timestamp(now()), 'tempavg', '2'); 
INSERT INTO weatherstationannot(query, time, sensorid, annotationid) values('tempavg > 15 and 
rainfalltotal > 0', unix_timestamp(now()), 'tempavg', '3'); 
INSERT INTO weatherstationannot(query, time, sensorid, annotationid) values('tempavg > 15 and 
rainfalltotal > 0', unix_timestamp(now()), 'rainfalltotal', '3'); 
INSERT INTO weatherstationannot(query, time, sensorid, annotationid) values('tempavg > 15 and 
rainfalltotal = 0 and windspeedavg < 4', unix_timestamp(now()), 'tempavg', '4'); 
INSERT INTO weatherstationannot(query, time, sensorid, annotationid) values('tempavg > 15 and 
rainfalltotal = 0 and windspeedavg < 4', unix_timestamp(now()), 'rainfalltotal', '4'); 
INSERT INTO weatherstationannot(query, time, sensorid, annotationid) values('tempavg > 15 and 
rainfalltotal = 0 and windspeedavg < 4', unix_timestamp(now()), 'windspeedavg', '4'); 
INSERT INTO weatherstationannot(query, time, sensorid, annotationid) values('rainfalltotal > 0.3 and 
windspeedavg > 6', unix_timestamp(now()), 'rainfalltotal', '5'); 
INSERT INTO weatherstationannot(query, time, sensorid, annotationid) values('rainfalltotal > 0.3 and 
windspeedavg > 6', unix_timestamp(now()), 'windspeedavg', '5'); 
INSERT INTO luisterbuisannot(query, time, sensorid, annotationid) values('tempa < 5 and tempb < 5', 
unix_timestamp(now()), 'tempa', '6'); 
INSERT INTO luisterbuisannot(query, time, sensorid, annotationid) values('tempa < 5 and tempb < 5', 
unix_timestamp(now()), 'tempb', '6'); 
INSERT INTO luisterbuisannot(query, time, sensorid, annotationid) values('pressurea > 238000 and 
pressureb > 149000', unix_timestamp(now()), 'pressurea', '7'); 
INSERT INTO luisterbuisannot(query, time, sensorid, annotationid) values('pressurea > 238000 and 
pressureb > 149000', unix_timestamp(now()), 'pressureb', '7'); 
INSERT INTO luisterbuisannot(query, time, sensorid, annotationid) values('pressurea < 237000 and 
pressureb < 148500', unix_timestamp(now()), 'pressurea', '8'); 
INSERT INTO luisterbuisannot(query, time, sensorid, annotationid) values('pressurea < 237000 and 
pressureb < 148500', unix_timestamp(now()), 'pressureb', '8'); 
 
Inserting annotations and add them to data for BDBMS: 
 
The annotations for BDBMS were added automatically using a function. This function has as input a 
query that selects data, an annotation value, an array of column names and the table to put the 
annotations on. The query is executed and the results plus the column names are transformed into 
rectangles. These are then inserted into the annotation table of the table given. This process is done for 
all annotations on the weatherstation and luisterbuis data. 
 
Inserting annotations and add them to data for Hypertable: 
 
First all rows belonging to the respective sensor are selected. Next we iterate over this data and if it 
meets the annotation condition the annotation name is inserted into the column ‘timeline:annotation’. 
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Appendix C: Queries for larger data sets using luisterbuis data 
 
The annotation management queries can stay the same since they don’t use the actual data but the 
annotation tables. The only exception on this is query 3 for BDBMS and Hypertable. For those and the 
other queries these are the queries for the larger data sets: 
 
3: 
 
BDBMS: 
 
SELECT pk FROM luisterbuissubset WHERE tempa < 15; 
 
SELECT pk FROM luisterbuis WHERE tempa < 15; 
 
Hypertable: 
 
SELECT * FROM luisterbuissubsetd WHERE cell='luisterbuis.tempa','timeline:base'; 
 
SELECT * FROM luisterbuisd WHERE cell='luisterbuis.tempa','timeline:base'; 
 
5: 
 
WHB08 and BDBMS: 
 
SELECT tempa FROM luisterbuissubset WHERE tempa > 15; 
 
SELECT tempa FROM luisterbuis WHERE tempa > 15; 
 
Hypertable: 
 
SELECT * FROM luisterbuissubsetd WHERE cell='luisterbuis.tempa','timeline:base'; 
 
SELECT * FROM luisterbuisd WHERE cell='luisterbuis.tempa','timeline:base'; 
 
6: 
 
WHB08: 
 
SELECT query, annotationid FROM luisterbuisannot WHERE STRCMP('tempa', sensorid) = 0; 
SELECT ownertimestamp, tempa FROM luisterbuissubset WHERE tempa > 15.3 AND tempb > 15.3; 
 
SELECT query, annotationid FROM luisterbuisannot WHERE STRCMP('tempa', sensorid) = 0; 
SELECT ownertimestamp, tempa FROM luisterbuis WHERE tempa > 15.3 AND tempb > 15.3; 
 
BDBMS: 
 
SELECT pk, ownertimestamp, tempa FROM luisterbuissubset WHERE tempa > 15; 
 
SELECT pk, ownertimestamp, tempa FROM luisterbuis WHERE tempa > 15; 
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Hypertable: 
 
SELECT * FROM luisterbuissubsetd WHERE cell='luisterbuis.tempa','timeline:base'; 
 
SELECT * FROM luisterbuisd WHERE cell='luisterbuis.tempa','timeline:base'; 
 
7: 
 
WHB08: 
 
SELECT a.value, la.query FROM luisterbuisannot as la, annotations as a WHERE STRCMP(la.query, 
'tempa < 5 and tempb < 5') = 0 AND la.annotationid = a.annotationid; 
SELECT ownertimestamp, tempa, tempb FROM luisterbuissubset as l, weatherstationannot as la 
WHERE l.{la.query}; 
 
First query is the same. 
SELECT ownertimestamp, tempa, tempb FROM luisterbuis as l, weatherstationannot as la WHERE 
l.{la.query}; 
 
BDBMS: 
 
SELECT * FROM luisterbuisannot2 WHERE STRCMP(value, 'cold') = 0; 
SELECT ownertimestamp, tempa, tempb FROM luisterbuissubset WHERE pk IN ({$list}); 
 
SELECT * FROM luisterbuisannot2 WHERE STRCMP(value, 'cold') = 0; 
SELECT ownertimestamp, tempa, tempb FROM luisterbuis WHERE pk IN ({$list}); 
 
Hypertable: 
 
SELECT * FROM luisterbuissubsetd WHERE cell='luisterbuis.tempa','timeline:annotation' and 
cell='luisterbuis.tempb','timeline:annotation'; 
 
SELECT * FROM luisterbuisd WHERE cell='luisterbuis.tempa','timeline:annotation' and 
cell='luisterbuis.tempb','timeline:annotation'; 
 
8: 
 
WHB08 and BDBMS: 
 
SELECT ownertimestamp, tempa FROM luisterbuissubset WHERE ownertimestamp BETWEEN 
'1253897800000' AND '1253900970000'; 
 
SELECT ownertimestamp, tempa FROM luisterbuis WHERE ownertimestamp BETWEEN 
'1253897800000' AND '1253900970000'; 
 
Hypertable: 
 
SELECT * FROM luisterbuissubsetd WHERE cell='luisterbuis.tempa','timeline:base' and '2009-09-25 
18:56:40' < TIMESTAMP < '2009-09-25 19:49:30'; 
 
SELECT * FROM luisterbuisd WHERE cell='luisterbuis.tempa','timeline:base' and '2009-09-25 
18:56:40' < TIMESTAMP < '2009-09-25 19:49:30'; 
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9: 
 
WHB08: 
 
For the first query ‘weatherstation’ is replaced by ‘luisterbuissubset’ and ‘luisterbuis’. The second 
query is as following: 
 
SELECT pk, ownertimestamp FROM luisterbuissubset WHERE {query} AND ownertimestamp 
BETWEEN '1253898800000' AND '1253900970000'; 
 
SELECT pk, ownertimestamp FROM luisterbuis WHERE {query} AND ownertimestamp 
BETWEEN '1253898800000' AND '1253900970000'; 
 
BDBMS: 
 
SELECT pk, ownertimestamp FROM luisterbuissubset WHERE ownertimestamp BETWEEN 
'1253898800000' AND '1253900970000'; 
 
SELECT pk, ownertimestamp FROM luisterbuis WHERE ownertimestamp BETWEEN 
'1253898800000' AND '1253900970000'; 
 
Hypertable: 
 
SELECT * FROM luisterbuissubsetd WHERE cell='luisterbuis.tempa','timeline:base' AND '2009-09-
26 00:00:00' < TIMESTAMP < '2009-09-26 10:00:00'; 
 
SELECT * FROM luisterbuisd WHERE cell='luisterbuis.tempa','timeline:base' AND '2009-09-26 
00:00:00' < TIMESTAMP < '2009-09-26 10:00:00'; 
 
10: 
 
WHB08 and BDBMS: 
 
SELECT w.ownertimestamp, tempavg, l.ownertimestamp, tempa FROM weatherstation as w, 
luisterbuissubset as l WHERE w.tempavg = l.tempa; 
 
SELECT w.ownertimestamp, tempavg, l.ownertimestamp, tempa FROM weatherstation as w, 
luisterbuis as l WHERE w.tempavg = l.tempa; 
 
Hypertable: 
 
SELECT * FROM luisterbuissubsetd WHERE cell='luisterbuis.tempa','timeline:base'; 
 
SELECT * FROM luisterbuisd WHERE cell='luisterbuis.tempa','timeline:base'; 
 



The Storage and Retrieval of Sensor Data and its Annotations 
 

 60

Appendix D: Implementation testing details 
 
Queries used to create the 1000K data set for implementation testing and adding the 
annotations to the data. 
 
Creation of the 1000K data set: 
 
First, using PHP, a million rows with random values are inserted to source1 and source2. Next 
the following queries copied the desired amount of rows to the queryx_view tables: 
 
INSERT INTO query5_view(channel, value, timed, timed2, fixed_int1, fixed_int2) SELECT channel, value, 
timed, timed2, fixed_int1, fixed_int2 FROM source1_view WHERE value >= 0.25 and value <= 1.0; 
INSERT INTO query6_view(channel, value, timed, timed2, fixed_int1, fixed_int2) SELECT channel, value, 
timed, timed2, fixed_int1, fixed_int2 FROM source1_view WHERE value >= 0.87 and value <= 1.0; 
INSERT INTO query7_view(channel, value, timed, timed2, fixed_int1, fixed_int2) SELECT channel, value, 
timed, timed2, fixed_int1, fixed_int2 FROM source1_view WHERE value >= 0.9 and value <= 0.99; 
INSERT INTO query8_view(channel, value, timed, timed2, fixed_int1, fixed_int2) SELECT channel, value, 
timed, timed2, fixed_int1, fixed_int2 FROM source1_view ORDER BY RAND() LIMIT 80000; 
INSERT INTO query9_view(channel, value, timed, timed2, fixed_int1, fixed_int2) SELECT channel, value, 
timed, timed2, fixed_int1, fixed_int2 FROM source1_view ORDER BY RAND() LIMIT 100000; 
INSERT INTO query10_view(channel, value, timed, timed2, fixed_int1, fixed_int2) SELECT s.channel, s.value, 
s.timed, s.timed2, s.fixed_int1, s.fixed_int2 FROM source1_view as s, source2_view as t WHERE s.value = 
t.value; 
 
Queries for inserting the annotations: 
 
INSERT INTO annotations(value) VALUES('hot'); 
INSERT INTO annotations(value) VALUES('hotter'); 
INSERT INTO annotations(value) VALUES('hottest'); 
 
INSERT INTO source1_view_annot(query, sensorid, annotationid) VALUES('value >= 0.55 and value <= 0.8', 
'value', '1'); 
INSERT INTO source1_view_annot(query, sensorid, annotationid) VALUES('value > 0.75 and value <= 0.9', 
'value', '2'); 
INSERT INTO source1_view_annot(query, sensorid, annotationid) VALUES('value >= 0.9 and value <= 0.99', 
'value', '3'); 
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Appendix E: Measured standard deviations for experiments 
 
The standard deviations (in seconds) as belonging to the measurements (in seconds) for all 
three systems. 
 
Query Data set 1 [s] Data set 2 [s] Data set 3 [s] 
 Measure. Std. dev. Measure. Std. dev. Measure. Std. dev. 
1. Create_annot 0.000075 0.000210 0.000094 0.000024 0.000114 0.000060 
2. Delete_annot 0.000085 0.000038 0.000104 0.000007 0.000106 0.000004 
3. Add_annot 0.000165 0.000357 0.000219 0.000053 0.000223 0.000035 
4. Remove_annot 0.000160 0.000633 0.000178 0.000009 0.000183 0.000014 
5. S: D/C: D 0.000348 0.000021 0.005006 0.000083 0.862047 0.001284 
6. S: DAT/C: D 0.018436 0.000064 0.051219 0.000217 0.500611 0.001768 
7. S: DT/C: A 0.000112 0.000156 0.000149 0.003270 0.031448 0.001935 
8. S: DT/C: T 0.000072 0.000058 0.000755 0.004288 0.207547 0.000667 
9: S: DAT/C: T 0.000479 0.000084 0.002064 0.000109 0.018178 0.000206 
10: S: DT/C: D * * 20.335640 0.001142 191.751825 0.225297 
Table 23: Standard deviations for WHB08 measurements 
* Not applicable 
 
Query Data set 1 [s] Data set 2 [s] Data set 3 [s] 
 Measure. Std. dev. Measure. Std. dev. Measure. Std. dev. 
1. Create_annot * * * * * * 
2. Delete_annot * * * * * * 
3. Add_annot 0.004724 0.000796 0.183509 0.021117 2.140202 0.209431 
4. Remove_annot 0.000881 0.000023 0.034033 0.000681 0.349678 0.060483 
5. S: D/C: D 0.000356 0.000334 0.003765 0.008087 0.850495 0.005030 
6. S: DAT/C: D 0.056388 0.000969 55.439357 0.251761 5632.72 63.229114
7. S: DT/C: A 0.000242 0.000022 0.076339 0.012888 2.001602 0.008585 
8. S: DT/C: T 0.000078 0.000069 0.000550 0.002088 0.206108 0.000500 
9: S: DAT/C: T 0.015473 0.000266 11.428085 0.087008 1170.066720 14.436027
10: S: DT/C: D * * 20.504747 0.004334 191.569171 0.027870 
Table 24: Standard deviations for BDBMS measurements 
* Not applicable 
 
Query Data set 1 [s] Data set 2 [s] Data set 3 [s] 
 Measure. Std. dev. Measure. Std. dev. Measure. Std. dev. 
1. Create_annot * * * * * * 
2. Delete_annot * * * * * * 
3. Add_annot 0.982558 0.216796 142.21902 2.067266 1251.10911 19.698642
4. Remove_annot 0.003182 0.000846 0.194278 0.105577 0.878988 0.441667 
5. S: D/C: D 0.017852 0.000241 0.197913 0.001684 0.862308 0.004269 
6. S: DAT/C: D 0.618334 0.003614 411.46775 0.430449 4911.16806 4.059857 
7. S: DT/C: A 0.148391 0.000385 2.458545 0.005623 42.474110 0.057565 
8. S: DT/C: T 0.007483 0.000064 0.108575 0.000520 0.522888 0.001457 
9: S: DAT/C: T 0.038526 0.000198 11.943820 0.041720 81.875499 0.113853 
10: S: DT/C: D * * 128.427053 0.650961 580.456005 3.023181 
Table 25: Standard deviations for Hypertable measurements 
* Not applicable 
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Appendix F: Measured standard deviations for implementation 
 
The standard deviations (in seconds) as belonging to the measurements (in seconds) for the 
implementation. 
 
Query Data set 1 [s] Data set 2 [s] Data set 3 [s] 
 Measure. Std. dev. Measure. Std. dev. Measure. Std. dev. 
1. Create_annot * * * * * * 
2. Delete_annot * * * * * * 
3. Add_annot 0.001128 0.000049 0.001119 0.000167 0.001123 0.000067 
4. Remove_annot 0.001506 0.000066 0.001461 0.000080 0.001461 0.000066 
5. S: D/C: D 0.063933 0.017414 1.055633 0.173428 13.588267 1.615791 
6. S: DAT/C: D 0.099367 0.012656 17.509400 0.706195 5180.64553 130.73351
7. S: DT/C: A 0.099100 0.009101 13.709333 0.492059 2462.99343 59.218374
8. S: DT/C: T 0.008000 0.000931 0.076267 0.011673 0.958533 0.128742 
9: S: DAT/C: T 0.064233 0.002109 9.971467 0.235054 2218.05617 51.187941
10: S: DT/C: D 0.430067 0.057902 6.997467 0.822043 53.39975** 0.452108 
Table 26: Standard deviations for implementation measurements 
* Not applicable 
** Data set was only 7 times bigger than previous 
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Appendix G: Software used 
 
This appendix will give an overview of the software used in this project. 
 
Silo1 server (relational experiments): 
 
openSUSE 10.3 (X86-64) 
PHP 5.2.4 
MySQL Community Edition 5.1.23 
 
Silo2 server (deployment implementation): 
 
openSUSE 10.3 (X86-64) 
Tomcat 5.5 
 
Patriot server (Hypertable experiments): 
 
Ubuntu 8.04.2 
C++ gcc 4.2.4 
Hypertable 0.9.2.4 
 
Sensorlab PC (data manipulation Hypertable + compilation & packaging implementation): 
 
Windows XP SP3 
Apache 2.2.11 
MySQL 5.1.33 (Community Server) 
PHP 5.2.9 
Java 6u18 
Apache Maven 2.2.1 


