

University of Twente
Computer Science

Train Composition

Using Motion as a Common Context

Master Thesis
June 18, 2010

Author

P.J. Bakker

Supervisors

Ir. J. Scholten

Ir. S. Bosch

Dr. Ir. N. Meratnia

Prof. dr. ing. P.J.M. Havinga

Abstract

The research we conducted and describe in this thesis involves the autonomous discovery of the

composition of a train. Using wireless sensor nodes equipped with 3D accelerometers, we aim

to use motion as the common context for the correlation of the wagons behind a train.

The draft of the European Rail Track Management System (ERTMS) level 3 specifies a train

should be able to be aware of the composition of the train. Since freight trains do not have any

form of electrical connection between the freight wagons, either electrical connections should

be made or a wireless solution should be developed to be able to detect the train composition.

The goal of our research is the development of a wireless system capable of sensing and

reporting the train composition.

The lack of electrical connections introduces one of our challenges: energy consumption. Since

freight trains are scheduled for maintenance every six to twelve months and there is a lack of a

continuous power supply, the train composition system should be energy efficient. An energy

efficient system implies using a minimal amount of computational power. Our research is based

on building a system using energy efficient wireless sensor nodes.

In the first part of our research, we establish the means we are able to use for identifying two

wagons behind the same train. Based on previous research, we use correlation of the filtered

data from an accelerometer. We show it is possible to use the Pearson product-moment

correlation coefficient, but besides that, we show the use of an optimized version of this

correlation coefficient.

For our algorithm, we implemented two methods. Our first solution uses the Pearson

correlation coefficient over a growing correlation window. This approach enables very fast

response times at the expense of computational power. Our second solution implements the

optimized version of the correlation coefficient. Using the optimized version, less computational

power is required per node, but the response time has a lower bound of 5 seconds.

Simulation results show that both approaches are applicable; the wireless sensor nodes are

able to perform the necessary calculations and determine the train composition within a given

time window of 15 seconds. Our fast approach is able to deliver the train composition after just

two seconds, given trains with not near identical acceleration characteristics.

Our simulation results also show that the bandwidth of the radio chip of the wireless sensor

nodes is capable of handling the necessary communication for our algorithm. The LogNormal

Shadowing model used in the network layer of our simulator shows that heavy shadowing does

not interfere with the correct operation of our algorithm.

4

Contents

1 INTRODUCTION ... 6

1.1 CONTEXT AWARE PERVASIVE SYSTEMS .. 6
1.2 TRAIN SAFETY SYSTEMS.. 6
1.3 RELATED WORK ... 7
1.4 PROBLEM STATEMENT ... 7
1.5 CHALLENGES ... 8

1.5.1 Correlation using accelerometers ... 8
1.5.2 Train composition discovery algorithm ... 9
1.5.3 Usability on wireless sensor nodes .. 9

1.6 APPROACH ... 10
1.7 OUTLINE .. 11

2 DATA COLLECTION ... 12

2.1 REQUIREMENTS DATASETS .. 12
2.2 TRAIN AND TRACK ... 12
2.3 HARDWARE... 13
2.4 SOFTWARE.. 14
2.5 MEASURING .. 15

2.5.1 Dataset 1 .. 15
2.5.2 Dataset 2 .. 16
2.5.3 Dataset 3 .. 16

2.6 VERIFICATION DATASETS ... 16

3 DATA ANALYSIS ... 18

3.1 RAW DATA .. 18

3.1.1 Output accelerometers ... 18
3.1.2 Frequency spectrum ... 20

3.2 CORRELATION FILTERED DATA .. 21
3.3 CONCLUSIONS ... 28

4 TRAIN COMPOSITION ALGORITHM .. 29

4.1 PAIRING ... 29

4.1.1 Wake-up .. 29
4.1.2 Master/slave .. 29

4.2 CORRELATION .. 30

4.2.1 Correlation algorithm ... 30
4.2.2 Window size ... 32

4.3 TRAIN COMPOSITION ... 32

5 SIMULATION .. 34

5.1 NETWORK .. 34

5.1.1 LogNormal Shadowing .. 34
5.1.2 Acknowledgment and retransmission ... 35
5.1.3 Packet size.. 35

5.2 TRAIN AND NODES .. 36

Introduction 5

5.2.1 Train and node layout... 36
5.2.2 Train movement ... 37
5.2.3 Shunting yard ... 37

5.3 RESULTS ... 38

5.3.1 Correlation ... 38
5.3.2 Master/slave roles .. 40
5.3.3 Network ... 42

6 REALISATION ... 44

6.1 FIXED-POINT CALCULATIONS .. 44

6.1.1 Correlation ... 44
6.1.2 Filter .. 45

6.2 RESOURCES ... 46

6.2.1 Clock-cycles .. 46
6.2.2 Memory ... 47
6.2.3 Network ... 48

7 CONCLUSIONS ... 49

7.1 HYPOTHESIS .. 49
7.2 ALGORITHM .. 50
7.3 USABILITY ... 50
7.4 OVERALL CONCLUSION ... 51
7.5 RECOMMENDATIONS AND FUTURE WORK ... 51

BIBLIOGRAPHY.. 52

6

Chapter One

Introduction

Relating two objects can be easy for an outsider who is able to observe these two objects and

identify a common feature between these two objects. On the other hand, when these two

objects need to relate autonomously this can be a challenge. In this chapter, we will show the

challenges that rise when two random train wagons need to decide whether they relate or not

and we will explain why two trains wagons want to relate in the first place.

1.1 Context Aware Pervasive Systems

Embedding small processing devices in objects and activities as means of improving the use or

quality of these objects and activities is a generally accepted way of improving everyday life. The

processing devices embed in objects and activities are referred to as pervasive systems [1] or

ubiquitous computing [2]. For these devices to be able to assist in everyday tasks one of the

challenges is finding out where a device is located. Besides that, the discovery of nearby devices

as well as nearby resources are also important aspects. The discovery of location, neighbors and

resources is also referred to as context awareness [3].

In this work we research the possibility of a context aware pervasive system as a means of

discovering whether two objects are moving together. The example used throughout this

research is the discovery of the composition of a train i.e. whether or not it is possible for

wagons behind a train to acknowledge they are behind the same train and distinguish them

from wagons behind other trains. In the following section, we explain why it is relevant a train is

able to autonomously detect the composition of the train.

1.2 Train Safety Systems

The rail system in Europe currently consists of multiple different safety systems: the countries

still rely mostly on a country-specific system. International European trains have multiple

systems onboard to be able to pass borders and enter another country and hence another

safety system. Currently, several running projects in different European countries are in place to

deploy a uniform system [4], European Rail Train Management System (ERTMS), under

supervision of the European Railway Agency [5]. The eventual goal is the adoption of the system

in all participating countries. The draft for the latest version of ERTMS is known as ERTMS level

3. ERTMS level 1 and level 2 still consider track sections instead of trains as sections, thus

implying that a small light train takes an even amount of space as a large and heavy train.

ERTMS level 3 introduces the possibility to consider a train as a moving block, keeping a certain

amount of space in front as well as the back of the train thus forming a safety zone around the

train.

By representing trains as moving blocks, short and light trains will form smaller blocks than

heavier trains, which have a much longer brake path. Thus, the introduction of the train as

moving block allows more trains to be run on the same track when compared to a system that

uses static safety zones. The level 1 and level 2 ERTMS systems use a straightforward approach

for determining if a train, consisting of a locomotive with zero or more wagons behind it, has left

a certain zone: each zone is able to count how many wagons enter the zone and how many

wagons eventually leave a zone. When the number of wagons that entered a zone equals the

number of wagons that left the zone, that zone is empty. ERTMS level 1 uses signals located at

Introduction 7

the side of track for the indication of the availability of the next zone, whereas ERTMS level 2

communicates this information by radio using GSM-Rail (GSM-R). Freight train wagons use a

simple steel hook to couple one wagon with another. Unfortunately, sometimes a wagon is lost

during transport, which ERTMS level 1 and level 2 will easily detect.

Since ERTMS level 3 treats a locomotive with wagons as one moving block, it is imperative that

a train can guarantee its integrity i.e. no wagons are lost. There is no backup system along the

tracks anymore, thus a dangerous situation occurs when a train loses a wagon and does not

report the loss of this wagon. The next train will not slow down and crashes into the lost wagon.

A system that accurately monitors the state of the train is therefore a crucial part of ERTMS level

3.

Another requirement is the limited amount of time a train has in which the train is able to

detect and report the composition of the train. For example, when a train enters a station with

four wagons, but leaves the station with three wagons, it is imperative the train is able to report

there are only three wagons in the new train composition. The system is then able to draw the

conclusion that one wagon is still at the station and that the moving block that the train

represents is smaller than before. Since there is one wagon blocking the track at the station, this

information should be available as soon as possible after the train signals it starts departing the

station.

Passenger trains are equipped with numerous wired links between wagons, which can be used

to monitor if all wagons of a certain train are still present. Freight trains on the other hand do

not have such luxury i.e. when a train rides at night in the Netherlands, the machinist manually

puts up a light at the last wagon since the wagons are not interconnected and do not have

electrical provisions. A system for guaranteeing train integrity should therefore preferably

operate wirelessly. Besides that, a train wagon is scheduled for maintenance every year, this

implies that the new system should be able to run for at least a year without any human

intervention. The system also needs to be able to operate in all kinds of weather and should be

able to withstand dust and water.

1.3 Related Work

Previous studies [6], [7] and [8] show it is possible to distinguish between two objects moving

together and two objects moving separately using small sensor nodes. Based on these studies

we chose an accelerometer as sensor for our research. In all three studies the accelerometer

proves to be able to provide data which allows the correlation of related moving objects.

Besides that, alternative sensors such as radar [9], [10], [11], ultra sone [12] or infrared [13] are

of limited use in the harsh environment the sensor nodes have to operate. Schoemaker [8] also

focuses on the automatic discovery of the train composition with the emphasis on the question

whether or not is possible to use wireless sensor nodes for the problem. His research shows it is

possible correlating train wagons using sensor nodes equipped with accelerometers, but does

not go into detail about a possible algorithm that is able to run on these sensor nodes.

1.4 Problem Statement

Based on the specifications of ERTMS level 3 and previous research, the research described in

this thesis focuses on three problems:

• Correlation of wagons using accelerometers

• Train composition discovery algorithm

• Feasibility of using the algorithm on wireless sensor nodes

8 Introduction

The specifications of the ERTMS level 3 and the environment in which this safety system is

deployed lead to the following requirements for possible solutions to the aforementioned

problems:

• Safety: a possible solution needs to be failsafe, since safety is the main purpose of the

system.

• Responsiveness: a train should be able to report the composition of the train within a

certain time window when the train starts accelerating from standstill e.g. when departing

a station.

• Maintenance period: the wagons of the train are scheduled for maintenance

approximately every year, thus a safety system should be able to operate autonomously

for at least a year.

1.5 Challenges

The research of the aforementioned three problems each faces different challenges. In this

section, we discuss the challenges we expect per problem.

1.5.1 Correlation using accelerometers

Before we can research the correlation based on the output of accelerometers we need to

gather a dataset. The recording of the datasets faces three challenges:

• Reliability: we will use the recorded datasets throughout each stage of the research we

conduct, therefore the datasets need to be recorded in a profound way and the datasets

need to be analyzed for any inconsistencies.

• Representativeness: the recorded datasets should be an accurate reflection of the

acceleration levels a wagon experiences during operation. Without cooperation of a

company with freight trains, we do not have direct access to trains and wagons.

• Sample rate: the rate at which the dataset is recorded should be at least two times the

frequencies, following the Shannon/Nyquist theorem, we expect in the accelerating levels

[14], [8]. The high frequency components in the recorded accelerations levels are a

possible means of correlation, therefore the recording of the expected highest frequency

components is a prerequisite for our datasets. Since the computational power of sensor

nodes is limited, we need to determine the highest possible sample rate on the sensor

nodes.

Introduction 9

1.5.2 Train composition discovery algorithm

The challenges present for the development of the train composition discovery algorithm are:

• Latency: the trains have to report within a certain time window what their composition is,

since ERTMS level 3 has no other means of knowing what part of the track is taken by the

train in question. Therefore, the train discovery algorithm has also a small time window in

which to decide which wagons belong to a train and which wagons do not.

• Context: two scenarios are identified during which a train has to discover the composition:

o The train is accelerating while another train is standing still nearby

o The train is accelerating while another train is also accelerating

The first scenario is relatively straight forward, since there are obvious differences in

acceleration levels between the two trains, but the second scenario includes our worst

case: two trains starting to gain speed, whilst driving in the same direction. Since the trains

are driving in the same direction, the nodes on the wagons of both trains will be within

radio range of each other for a longer period of time. Besides that, when the trains are

accelerating at roughly the same levels the distinction between both trains is much smaller

than in all other possible cases. When the trains are driving in different directions, either

the nodes are not within radio range shortly after the trains start accelerating or the

situation is comparable to the situation when two trains depart at the same time in the

same direction.

• Reliability: the security systems within the ERTMS level 3 system rely heavily on the

information a train reports, thus the information a train reports should be accurate. The

train composition discovery algorithm should therefore be able to report reliable

information with regard to the composition of the train. Our algorithm should be able to

eliminate false positives as well as false negatives with regard to wagons belonging to a

certain train, while still supplying the train composition information in a timely fashion.

• Efficiency: the algorithm is to be implemented on a wireless sensor node system, thus the

algorithm should be as efficient as possible with regard to the usage of resources e.g.

number of calculations and amount of communication between two nodes.

1.5.3 Usability on wireless sensor nodes

The last challenges involve the usability of the train composition discovery algorithm on wireless

sensor nodes. We define the following challenges:

• Feasibility: the train composition discovery algorithm should be able to run on wireless

sensor nodes in all possible circumstances. It is therefore necessary to determine the

required processing power as well as memory consumption on each wireless sensor node

participating in the train composition discovery algorithm. Besides that, the network

capabilities of the wireless sensor nodes should be able to handle the necessary

communication for the train composition discovery algorithm, thus we need to relate the

amount of data flowing through the network to the available network capacity.

• Energy-efficiency: since the train wagons are only scheduled for maintenance every year,

the wireless sensor nodes should be able to run on an energy source e.g. a battery, which

is replenished only once a year. The power consumption of the operation of train

composition discovery algorithm on the wireless sensor nodes should therefore be kept to

a minimum. Alternatives such as solar power and wind energy are difficult to implement

considering the harsh environment in which the wireless sensor nodes are operating.

10 Introduction

• Reliability: the train composition discovery algorithm is used in a system, which guarantees

railway safety, therefore the performance of the wireless sensor nodes should be flawless

or flaws should be detected and dealt with. For example, the vibrations absorbed by the

wagons and thus the sensor nodes can cause hardware failure e.g. communication

between the central processing unit and the accelerometer is lost.

1.6 Approach

We base our research on the assumption; it is possible to distinguish trains using motion as a

common context. Before we implement a system based on this hypothesis, we prove the validity

of our assumption. We divide the process of validating our hypothesis up to implementing a

train composition algorithm into several steps. In the following paragraphs, we outline each of

the steps taken. The steps taken in our approach are:

• Definition of our hypothesis

• Validation of the hypothesis

o Record representative datasets

o Analyze recorded datasets

• Construction of a distributed train composition algorithm

• Measure performance of the distributed train composition algorithm

• Optimize distributed train composition algorithm for wireless sensor nodes

• Validation of optimized train composition algorithm

• Proof of concept

Based on previous research, our research focuses on the hypothesis:

‘It is possible to use motion as a common context to distinguish trains’

After launching our hypothesis the next step, is the validation of this hypothesis. We divide the

validation of the hypothesis in two parts. First, to discover means of correlating two wagons

behind the same train using accelerometers, data is recorded on trains using wireless sensor

nodes equipped with an accelerometer. Our measurements show the maximum sample rate at

which the node is able to record data is 160Hz, which is more than sufficient for the frequency

components in the acceleration levels we expect to see.

After we verify that the recorded datasets are complete and show expected results, we

analyze the data to expose parts of the datasets that can be used to distinguish wagons behind

the same train from all other wagons. Our spectrum analysis shows the frequency spectrum that

is usable for our algorithm covers the lower frequencies, which is what we expected based on

related studies [8], [14]. In our data analysis we show how we are able to distinguish two

wagons moving together from all other wagons by applying low pass filters on the datasets and

correlating the low pass filtered data over a moving window.

The next step in our research is the composition of a distributed algorithm for the discovery of

the train composition. We use the results we obtained in the previous step, data acquiring and

analyzing, to construct the train composition algorithm. In this stage, we still use Matlab for the

implementation of our algorithm.

Introduction 11

After constructing the train composition algorithm, the following step is testing the

performance of the algorithm by simulating a shunting yard with multiple trains, using the data

we recorded in the first step of the research. The simulation also gives insight in the number of

calculations that each node performs and the amount of data that each node sends and receives

during the discovery of the train composition.

We continue our steps with the implementation of the train composition discovery algorithm

onto the sensor nodes as our proof of concept. By analyzing the data from the simulations, we

can abstract which functionality is required on the nodes and determine what the costs are for

this functionality in terms of processing power, energy consumption and network capabilities.

The implementation of the algorithm on the node will use fixed-point calculations, which we

optimize for maximum energy efficiency while maintaining a fast responsiveness of our train

composition algorithm. We compare the results of our optimized algorithm running on wireless

sensor nodes with our implementation in Matlab constructed for our feasibility analysis.

1.7 Outline

The first step of our research is to establish representative datasets, which we can use

throughout the rest of our research. The collection of the datasets is explained in the next

chapter. We will explain the hardware we used and explain the way we recorded the datasets.

The analysis of the datasets is shown in Chapter Three. First, we discuss the raw recorded

data. Using spectrum analysis, we show which parts of the datasets are of interest for the train

composition discovery algorithm. In the last part of Chapter Three, we examine the interesting

parts we defined during the spectrum analysis and show in what ways these parts can be used in

the train composition discovery algorithm.

Chapter Four explains the train composition discovery algorithm we developed.

The next chapter, Chapter Five, we discuss the simulation we implemented of the train

composition discovery algorithm. We start by explaining how the simulation is setup. In the

second part of this chapter, we show and discuss the results of the simulation.

The realization of the train composition discovery algorithm is discussed in Chapter Six. The

requirements in terms of processing power and memory consumption as well as network

capabilities and power consumption are discussed using the wireless sensor node we discussed

in Chapter Two as reference.

The conclusions and future recommendations conclude this thesis.

12

Chapter Two

Data Collection

The previous chapter discusses which scenarios a system should be able to cope with. Based on

these scenarios, datasets are recorded which allow analysis and simulation of a possible solution

for all these scenarios. This chapter explains what kind of datasets are required and how these

datasets were gathered and verified.

2.1 Requirements datasets

The discovery of the train composition can occur during the following scenarios:

• Train 1 standing still, while train 2 accelerates from standstill

• Train 1 and train 2 accelerating from standstill in same direction

For the verification of a system, reference datasets are also needed. These datasets should

contain:

• Measurements from two nodes on same wagon

• Measurements from different trains on same track

Since it is not yet known if it is possible or needed to correlate based on high frequency

components in the data measured, the datasets are sampled with the highest possible

frequency. A lower sample rate can be simulated by re-sampling the original datasets.

Besides that, the data of all three directions, corresponding to the three axis of our

accelerometer, should be recorded separately, which enables correlation on either one of the

axis or possibly a combination of these axis.

The last requirement is the ability to align the datasets when measured on two wagons behind

the same train.

2.2 Train and track

Taking measurements on a freight train has the disadvantage of low availability e.g. explicit

permission and cooperation of a company using freight trains is needed. Therefore the

measurements for this research are conducted on a regular passenger train the “Dieselmaterieel

`90 (DM`90)” a.k.a. “Buffel” (figure 2.1). The DM`90 is a diesel train consisting of two wagons.

Two or more trains can be coupled to compose a larger train. Additional advantages of a

passenger diesel train are the extra noise in the measured datasets introduced by the diesel

motor as well as passengers moving through and in and out of the train. Usually, this noise is

unwanted, but a reliable representative dataset is required since the system needs to be able to

cope with all circumstances for security’s sake. Since sensor nodes have to endure a harsh

operating environment, the accelerometers on a freight train wagon will produce noise in the

output signal as well.

Data Collection 13

Figure 2.1: Dieselmaterieel `90 (DM`90) Figure 2.2: Sensornode in train

The datasets are all recorded on a part of the track between Almelo station and Hengelo station

(figure 2.3). This track features a couple of start and stop moments as well as some track

changes and curved tracks at the passing stations, thus a wide variety of possible movement of

the train is covered. For each dataset, we collected data for at least 10 minutes.

Figure 2.3: Railway layout between Almelo station and Hengelo station [15]

2.3 Hardware

The hardware used for the data collection is the same hardware that should be able to run the

final developed system. By using the same hardware a realistic dataset is obtained. Any

imperfections this hardware has, will also affect the dataset.

The main component of the used data logging hardware is an Ambient µNode 2.0 [16]. The

µNode is equipped with a serial interface, which enables logging of the measured data to a PC.

The movement of the train is measured by the STMicroelectronics LIS3LV02DQ accelerometer.

The maximum sample rate of this sensor is 640Hz. By mounting the hardware in a hard plastic

case, the level of vibration of the hardware itself is reduced to a minimum. The plastic case is

mounted firmly onto a fixed part of the train wagon (figure 2.2).

14 Data Collection

2.4 Software

The Operating System used on the µNode is AmbientRT [17]. A driver for the accelerometer was

already available, but this driver used a poll mechanism on the accelerometer. Since the

accelerometer is also capable of triggering an interrupt when new data is available, the driver is

adjusted to enable an interrupt driven system.

In order to reach the highest possible sample rate, the maximum performance of the µNode is

determined. The maximum performance is determined by examining the tasks performed when

running the data logging software with regard to the maximum number of clock cycles used for

each task. AmbientRT offers a tool which allows a feasibility analysis of a program run on the

µNode when fed with the maximum number of clock cycles per task and the frequency at which

these tasks are executed. Any dependencies with regard to blocking of input/output or data

structures can also be taken into account.

One of the reasons the sample rate is limited to 160Hz, is the logging of the data via the serial

connection, set at 115.2 kbps. For example, a timer tick is equivalent to 1/32768
th

 second,

reading the registers from the accelerometer cost 45 timer ticks, whereas putting the readouts

on the serial interface cost 50 timer ticks, thus introducing a large overhead for each registration

of accelerometer data(table 2.1). At a sample rate of 160Hz there are 32768 / 160 ~ 204 timer

ticks between each sample moment. The analysis of the data logging software proved that the

maximum feasible sample rate is 160Hz, giving the minimum required occurrence of each task.

A small additional buffer is introduced to prevent blocking of tasks on shared resources. For

example, putting the data on the serial bus after reading out the accelerometer data, would

block a subsequent readout of the accelerometer data for a relative long period when both tasks

are using the same buffer.

Task Timer ticks

Read data accelerometer 45

Copy small buffer into large

buffer
3

Empty serial buffer 50

Handle sync event 10

Transmit radio packet 130

Receive radio packet 10

Table 2.1: Cost of tasks expressed in timer ticks

A node is able to either become a master or to become a slave. Via a button press, a node is

started, which then becomes a master. A master node broadcasts a sequential numbered stamp

to other nodes every two seconds. When a node is still neutral, meaning it is neither a master

nor a slave, it will become a slave when the node receives a broadcast from a master. The stamp

is recorded upon reception. Using this method it is possible to sync the logged data afterwards.

The only delay introduced is the transmission delay, which is relatively small compared to the

sample rate.

Data Collection 15

2.5 Measuring

During the first actual data measurement, some shortcomings of the data logger were

discovered. The datasets are therefore divided into three sets, each newer sets solves the

shortcomings of the previous set. Each dataset consists of the measurements of two nodes

(figure 2.4). These nodes are placed in two different wagons behind the same train. Besides the

described datasets the aforementioned reference set for verification with two nodes on the

same wagon is also recorded, but not further described. Each node is mounted in the same

direction where the x-axis represents the driving direction, the y-axis records the sideways

movement and the z-axis points downwards. The nodes are mounted by hand so the axes are

not aligned perfectly.

Figure 2.4: Test setup two nodes in a train

2.5.1 Dataset 1

The analysis of the first dataset showed a major problem: one of the sensor nodes suffered from

radio interference. The disturbance on the radio was not triggered in the faculty building,

despite the presence of multiple devices operating in various frequency bands i.e. mobile

phones, wireless lan, similar sensor nodes etc. Since the nodes were equipped with a copper

wire as antenna it is possible that variations in the wire length are responsible for higher

interference levels on one of the nodes. Besides that, it is also possible that the casing the nodes

are mounted in have influence on the radio interference levels, since different cases are used for

the nodes. The last possible explanation is the location in the train e.g. radio devices located

near the position of one of the nodes.

The interference on the radio stops the logging of the data from the accelerometer, thus the

recording of the dataset fails. The accelerometer triggers an interrupt when it has new data only

when the previous data has been read out successfully. The radio interference caused the

sensor node to miss this interrupt, creating a deadlock situation.

Z-
Axi

s

Y
-A

x
is

X-Axisradio
accelerometer

serial
interface

serial
interface

driving direction

Sensor nodes (top view)

16 Data Collection

2.5.2 Dataset 2

The software running on the sensor nodes received an update, which addressed the radio

interference as well as the deadlock situation, for the measurement of dataset 2. The software

part responsible for the radio communication is set to discriminate between radio packets of the

system and all other radio data and ignoring the latter completely. Besides that, after the

reception and handling of radio data, an additional check of new accelerometer data is

performed. The extra check of new accelerometer data ensures that new data is read out even

when the interrupt generated by the accelerometer is missed due to handling of radio data.

Although the results of the second measurement still showed radio interference on one of the

nodes, the node was now able to produce a useful dataset.

2.5.3 Dataset 3

The third dataset is recorded on the same track as dataset 2, giving the characteristics of two

trains operating on the same track. Analysis of the second dataset showed that the acceleration

levels of the wagons are never above 1g, for all axis. Before starting the third measurement, the

range of the minimum and maximum acceleration levels of the accelerometer has been lowered

from ±6g to ±2g. This increased the resolution of the measurements.

2.6 Verification datasets

The first software tool written for the analysis of the datasets a tool, checks the number of

measurement points between two timestamps. Since the sample rate is set at 160Hz, one would

expect 320 sample points between two timestamps, unfortunately one of the nodes showed a

lower number of 314 samples per two seconds. The accelerometers have been switched

between the µNodes to ensure this could be attributed to the internal clock of the

accelerometer, which proved to be a correct assumption.

Since one of the nodes from dataset 1 suffered from radio interference, which caused the

node to stop recording data, it is imperative to make sure the device did record enough data

samples between two timestamps. Dataset 2 as well as dataset 3 did show some missing

timestamps due to the radio interference, but when calculating the average number of samples

between the timestamps that did get recorded, it showed no loss of data samples. For example

when timestamp 3 is lost, if the average number of data samples between timestamp 2 and 4

still equals the average number of data samples between two sequential timestamps, the

recording of the dataset is still considered to be successful.

Figure 2.5: Re-sampling of the data sets

01:00 - 02:00 02:00-03:00 03:00-04:00 06:00-07:00 07:00-08:00 08:00 - 09:00 11:00-12:00 12:00 - 13:00 13:00-14:00

data samples

01:00 - 02:00

1/155 second

time steps

weighted average

Data Collection 17

A second tool extracts the data from the sets, according to the parameters supplied. The

parameters allow selection of axis and start and stop timestamp. Using the first tool, it is

possible to make sure the chosen start and stop timestamps were readily available. The second

tool compensates the aforementioned problem with the small difference in clock frequency of

the accelerometers as well. The recorded data is re-sampled to 155Hz. The time between to

sequential timestamps is divided in steps of 1/155
th

 second and the data is mapped onto these

steps. When a data sample coincides with a time step, this data sample is taken, otherwise the

two closest data samples are taken, of which the weighted average, i.e. the closest data sample

has most influence, determines the value for the corresponding time step (figure 2.5). Since the

accelerometers operate at a slightly higher frequency than 155Hz namely between 157 and

160Hz, a relative low amount of samples is lost this way.

18

Chapter Three

Data Analysis

After gathering and verifying the data sets that represent train and wagon movement

accurately, the data is analyzed in Matlab. The goal of the data analysis is the discovery of

means to discriminate between two wagons behind the same train and all other variations.

3.1 Raw data

Considering the almost unlimited ways of finding patterns in the raw data, the data is first

examined more closely. The first step is to look at the raw output of the accelerometers. When

combining the data with the known path the wagons have taken a preliminary outcome for the

possible ways of correlating the wagons is established. Further analysis by examining the

frequency spectrum of the measured signals gives insight in the interesting frequency bands in

the signal with regard to the correlation.

3.1.1 Output accelerometers

An impression of the measured data is displayed in figures 3.1, 3.2 and 3.3. The displayed data is

the raw data obtained for dataset 3 measured in the front wagon. The train has already gained

maximum acceleration at the time the measurement started. Approximately halfway, the train

arrives at Borne station, thus braking and eventually stopping. After a short stop, the train starts

moving towards Hengelo station. Whilst nearing Hengelo station, the train performs a couple of

track changes, during which the train starts braking as well. The measurement is stopped a few

seconds before the train actually stands still.

Figure 3.1: Raw data x and y axes dataset 3

The raw data of the x-axis in figure 3.1 clearly shows the train gaining speed, braking, pausing

and gaining speed again. The difference between the relative straight forward track between

Almelo de Riet and Borne and the track changes and curved tracks when nearing Hengelo is also

visible.

0 1 2 3 4 5 6 7 8 9 10 11

x 10
4

-80

-60

-40

-20

0

20

40

60

80
Dataset 3: X and Y axes. Samplerate 155Hz

Sample moment

A
c
c
e
le

ra
ti
o
n
(r

a
w

 d
a
ta

 +
-

2
0
4
7
 ~

 +
-

2
g
)

y-axis

x-axis

nearing Borne

standstill Borne

leaving Borne

nearing Hengelo

Data Analysis 19

The sideways movement of the moving train can be distinguished in the data of the y-axis.

When the train is standing still at Borne, the amplitude of the y-axis signal is smaller than when

the train is moving. When the train is making track changes at the end of the measurement

when nearing Hengelo station, the amplitude of the signal on the y-axis increases as well.

Figure 3.2: Raw data z-axis dataset 3

The raw data of the z-axis, figure 3.2, allows a visible discrimination between driving and

standing still. To compensate the lack of correct alignment of the three axes on the different

wagons, it is possible to use the magnitude of the three axes. Results in [18] show the possibility

of using the magnitude on µNodes as well. Figure 3.3 shows the magnitude of the raw data of

the three axes. Since the data of the z-axis contains the largest amplitudes and highest

acceleration levels, the magnitude of the three axis shows great similarities to the raw data of

the z-axis.

Figure 3.3: Magnitude of raw data three axes

0 1 2 3 4 5 6 7 8 9 10 11

x 10
4

310

320

330

340

350

360

370

380

390

400

410

Sample moment

A
cc

e
le

ra
ti
o
n
 (

ra
w

 o
u
tp

u
t

+
-2

0
4
7
 ~

 +
-

6
g
)

Dataset 3, wagon 1, z-axis. Samplerate 155Hz

0 1 2 3 4 5 6 7 8 9 10 11

x 10
4

300

320

340

360

380

400

420
Dataset 3, wagon 1. Magnitude XYZ-axes. Samplerate 155Hz

Sample moment

A
c
c
e
le

ra
ti
o
n
 (

ra
w

 o
u
tp

u
t
+

-2
0
4
7
 ~

 +
-

6
g
)

20 Data Analysis

3.1.2 Frequency spectrum

By analyzing and comparing the frequency spectrum of the measured signals, it is possible to

discover similarities between two wagons behind the same train. Figures 3.4-3.11 show the

result of frequency spectrum analysis of relative small subsets of the datasets. The chosen

subsets all start when a train starts leaving station Borne, taken from dataset 3. The subsets are

analyzed using a window size of 256 samples with an overlap of 250 samples and a 256 point

FFT. The Shannon/Nyquist rule states only frequencies up to half of the sampling rate can be

reconstructed, thus the resulting frequency spectrum ranges from 0 to ~ 77 Hz considering the

sampling rate of 155Hz of all the measurements.

Figure 3.4: Frequency spectrum analysis dataset 3

wagon 1, x-axis

Figure 3.5: Frequency spectrum analysis dataset 3

wagon 2, x-axis

The frequency spectrum analysis of the x-axis, figures 3.4 and 3.5, show very low frequency

components. Since the x-axis is not calibrated to output 0 when the train is in a steady state, the

offset it has results in the strong presence of the zero frequency when making a FFT analysis.

The measured low acceleration levels indicate that there are possibly other low frequency

components in the signal besides the zero element. The frequency spectrum analysis shows

activity in the 0 to approximately 2 Hz range, which follows the previous theory. Based on these

results correlating the signal after applying a low pass filter is a possible means of relating two

wagons.

The higher frequencies also show a pattern in the spectrum analysis, but the pattern is visible

in different frequency ranges for each of the wagons, thus correlating the wagons based on

other frequencies then the aforementioned low frequencies is highly unlikely.

Figure 3.6: Frequency spectrum analysis dataset 3

wagon 1, y-axis

Figure 3.7: Frequency spectrum analysis dataset 3

wagon 2, y-axis

Data Analysis 21

Figures 3.6 and 3.7 also display strong low frequency components in both the signals.The y-

axis is not calibrated to output 0 as well, thus the zero frequency is present due to the standard

offset. Besides that, high frequency components are also visible, especially in the frequency

spectrum analysis of wagon 2. The visible patterns in red for wagon 2 are present in yellow in

the spectrum analysis of wagon 1, but unfortunately these patterns are also shifted in

frequency range, as was seen on the analysis of the x-axis. Therefore, the focus for correlation

on the y-axis also lies on the lower frequency components.

Figure 3.8: Frequency spectrum analysis dataset 3

wagon 1, z-axis

Figure 3.9: Frequency spectrum analysis dataset 3

wagon 2, z-axis

The frequency spectrum analysis of the measurement data of the z-axes, show similar results

as seen on the analysis of the x- and y-axes. The lower frequencies are also of more interest for

the correlation of two wagons. The frequency spectrum analysis of the magnitude of the three

axis again displays the strong presence of low frequency components, whereas the presence of

the higher frequency components is shifted when comparing one wagon to another.

Figure 3.10: Frequency spectrum analysis dataset 3

wagon 1, magnitude xyz axes

Figure 3.11: Frequency spectrum analysis dataset 3

wagon 2, magnitude xyz axes

3.2 Correlation filtered data

The previous section showed the strong presence of low frequencies in the raw output of all the

axes including the magnitude of the axes, this section therefore focuses on the data when ran

through a low pass filter. The filter is implemented in Matlab using a 2
nd

 order Butterworth filter

(figure 3.12). The Butterworth filter is an Infinite Impulse Response filter of which we know from

previous experience to also run on a µNode. Although the 2nd order Butterworth filter does not

have a very steep roll off, i.e. the frequencies above the cut-off frequency are gradually filtered

out, there are no ripples in the filter meaning the filter only gains strength for each higher

frequency.

22 Data Analysis

Figure 3.12: Magnitude (dB) and phase response 2
nd

 order

lowpass Butterworth filter

Figure 3.13: Raw data x-axes accelerating wagons

Figure 3.14 shows the filtered data of the x-axes of three accelerating wagons. Two of these

wagons are behind the same train. The dataset of the other train is measured on the same part

of track. It is clear to see that the upper and lower graphs belong to the wagons behind the

same train. The data of the third wagon does show great similarities when compared to the

wagons behind the other train. The main difference between the two trains is the duration of

the maximum acceleration before the train has gained speed and gradually lowers the

acceleration levels and the roll-off between the moment of standstill and the point at which the

train start accelerating.

The datasets of the wagons behind the same train are identical with regard to duration of the

maximum acceleration levels and the roll-off between standstill and the start of the

acceleration. When the train has gained speed and the acceleration levels start dropping

gradually, the wagons still show an acceleration level which is on average the same, but both

wagons experience peak levels that are unique for each wagon.

Figure 3.14: Data x-axes accelerating wagons, lowpass filtered at 2Hz

The results of the correlation of the filtered datasets is shown in figures 3.15 and 3.16. The

data is filtered at 10, 5 and 2 Hz. For reference the original unfiltered data has also been

correlated. The chosen correlation window is 5 seconds, 755 samples. When choosing the

window size, we have to choose between having a fast response time (small window size) or a

more accurate correlation value (large window size). In the next sections, we will motivate our

choice of a correlation window of 5 seconds.

0 10 20 30 40 50 60 70

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

M
a
g
n
itu

d
e
 (

d
B

)

Magnitude (dB) and Phase Responses

-3.0534

-2.7509

-2.4484

-2.1459

-1.8434

-1.5409

-1.2384

-0.9359

-0.6334

-0.3309

-0.0284

P
h
a
se

 (
ra

d
ia

n
s)

Magnitude

Phase

0 1000 2000 3000 4000 5000 6000 7000
-20

-10

0

10

20

30

40

Sample moment

A
cc

e
le

ra
ti
o
n
 (

+
-

2
0
4
7
 ~

 +
-

6
g
)

Acceleration on x-axis. 2 Wagons behind 1 train, 1 wagon different train. Both trains same track. Raw data.

dataset 3: wagon 2

dataset 2: wagon 1

dataset 3: wagon 1

0 1000 2000 3000 4000 5000 6000 7000
-20

-10

0

10

20

30

40

Sample moment

A
c
c
e
le

ra
ti
o
n
 (

+
-

2
0
4
7
 ~

 +
-

6
g
)

Acceleration on x-axis. 2 Wagons behind 1 train, 1 wagon different train. Both trains same track.
Data low pass filtered at 2Hz.

dataset 3: wagon 2

dataset 2: wagon 1

dataset 3: wagon 1

Data Analysis 23

 Figure 3.15: Correlation lowpass filtered data x-axes two wagons behind same train

Figure 3.16: Correlation lowpass filtered data x-axes two wagons behind different trains

When comparing the different frequencies at which the low-pass filter is set, the lowest

setting, 2Hz, results in the best distinction between high correlation, value 1, and no correlation,

value 0. Unfortunately, the wagons behind two accelerating different trains display high

correlation during a large window. A possible explanation for this phenomenon is that the used

parts of the datasets involve the same part of the track and the same type of trains, which

follow the same train schedule, thus the trains show very similar behavior. On the other hand, at

the point where the trains perform the highest acceleration, which is the most crucial point of

the ride, since it is the starting point at the station, a clear distinction between the two trains is

observed.

0 1000 2000 3000 4000 5000 6000

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sample moment

C
o
rr

e
la

ti
o
n

Correlation on x-axis. Correlation window: 5s. Samplerate 155Hz
2 wagons behind accelerating train.

unfiltered

L10

L5

L2

0 1000 2000 3000 4000 5000 6000

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sample moment

C
o
rr

e
la

ti
o
n

Correlation on x-axis. Correlation window: 5s. Samplerate 155Hz
2 wagons behind accelerating different trains.

unfiltered

L10

L5

L2

24 Data Analysis

Figures 3.17, 3.18 and 3.19 show the correlation of the low-pass filtered data of two wagons in

three different situations with increasing correlating window sizes.

Figure 3.17: Correlation with varying window sizes. Two wagons behind same accelerating train

Figure 3.18: Correlation with varying window sizes. Two wagons behind accelerating different trains

The results in figures 3.17 and 3.18 suggest a correlation window of 455 samples, 3 seconds,

already provides a sufficient distinction between intended correlation and coinciding

correlation. When taking the varying correlation window sizes applied to two completely

different wagons, figure 3.19, into account it is clear that the correlation window size should be

at least 620 samples, 4 seconds, but preferably 775 samples, 5 seconds. With a window size of

775 samples, the correlation between an accelerating wagon and a stationary wagon is close to

zero thus giving a relatively large distinction between related wagons and non-related wagons.

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

Correlation using varying window sizes. Axis: x. Low-pass filtered at 2Hz
Wagons: 2 wagons behind accelerating train.

155

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

310

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

465

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

620

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

775

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

Correlation using varying window sizes. Axis: x. Low-pass filtered at 2Hz
Wagons: 2 wagons behind accelerating different trains.

155

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

310

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

465

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

620

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

775

Data Analysis 25

Figure 3.19: Correlation with varying window sizes. One accelerating wagon, one stationary wagon

Figure 3.20: Correlation two wagons behind accelerating train, y-, z- and xyz-axes

Figures 3.20, 3.21 and 3.22 display the correlation of the other axes, including the correlation

of the magnitude of three axes. The correlation of the z-axis and the magnitude of the axes are

too low in the case of the two wagons behind the same train, figure 3.20, to be the only factor

to rely on for the discovery of the train composition. When taking the correlation of two wagons

behind two accelerating different trains also into account, figure 3.21, during the department of

the station no reliable distinction between two trains can be established. The correlation of the

data of the y-axes shows a similar pattern as the correlation of the data of the x-axes when

comparing the results of two wagons behind the same train and the two wagons behind

accelerating different trains, but when the train starts accelerating the correlation level of the

two wagons behind the same train is lower for the data of the y-axes than for the data of the x-

axes. This renders the correlation based on the data of the y-axes less usable than correlation

based on the data of the x-axes.

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

Correlation using varying window sizes. Axis: x. Low-pass filtered at 2Hz
Wagons: 1 wagon behind accelerating train, 1 wagon behind stationary train .

155

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

310

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

465

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

620

0 1000 2000 3000 4000 5000 6000 7000
-1

0

1

775

0 1000 2000 3000 4000 5000 6000

-1

0

1

sample moment

y

Correlation on y-,z- and xyz-axes. Correlation window: 5s. Samplerate 155Hz
2 wagons behind accelerating train.

unfiltered

L10

L5

L2

0 1000 2000 3000 4000 5000 6000

-1

0

1

sample moment

z

0 1000 2000 3000 4000 5000 6000

-1

0

1

sample moment

xyz

26 Data Analysis

Besides that, when comparing the correlation around the 1000 sample point mark, the two

wagons behind the two accelerating different trains start correlating again in contrary to the

two wagons behind the same train, which indicates the y-axis is an unreliable source for

correlation.

Figure 3.21: Correlation two wagons behind accelerating different trains, y-, z- and xyz-axes

Figure 3.22: Correlation one accelerating wagon and one stationary wagon, y-, z- and xyz-axes

Since only the lower frequencies contain useful information, a lower sample rate should be

sufficient for the correlation analysis as well. Figures 3.23 and 3.24 show the correlation of the

datasets when re-sampled at 35Hz using the method described in section 2.6. When comparing

these figures with figures 3.15 and 3.16 it is clear that datasets recorded at a sample rate of

35Hz produce the same correlation result as datasets recorded at higher sample rates.

0 1000 2000 3000 4000 5000 6000

-1

0

1

sample moment

y

Correlation on y-,z- and xyz-axes. Correlation window: 5s. Samplerate 155Hz
2 wagons behind accelerating different trains.

unfiltered

L10

L5

L2

0 1000 2000 3000 4000 5000 6000

-1

0

1

sample moment

z

0 1000 2000 3000 4000 5000 6000

-1

0

1

sample moment

xyz

0 1000 2000 3000 4000 5000 6000

-1

0

1

sample moment

y

Correlation on y-,z- and xyz-axes. Correlation window: 5s. Samplerate 155Hz
1 wagon behind accelerating train, 1 wagon behind stationary train .

unfiltered

L10

L5

L2

0 1000 2000 3000 4000 5000 6000

-1

0

1

sample moment

z

0 1000 2000 3000 4000 5000 6000

-1

0

1

sample moment

xyz

Data Analysis 27

Figure 3.23: Correlation two wagons behind accelerating train, data resampled at 35Hz

Figure 3.24: Correlation two wagons behind accelerating different trains, data resampled at 35Hz

0 500 1000 1500

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sample moment

C
o

rr
e

la
ti
o

n

Correlation on x-axis. Correlation window: 5s. Samplerate 35Hz
2 wagons behind accelerating train.

unfiltered

L10
L5

L2

0 500 1000 1500

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sample moment

C
o
rr

e
la

ti
o
n

Correlation on x-axis. Correlation window: 5s. Samplerate 35Hz
2 wagons behind accelerating different trains.

unfiltered

L10

L5

L2

28 Data Analysis

3.3 Conclusions

The results of the data analysis show that a distinction between two wagons behind the same

train and two unrelated wagons can be made based on the correlation of the acceleration levels

of the wagons in the driving direction of the train. The high frequency components of the

acceleration data contain too much noise to be useful for correlation. A spectrum analysis does

show similar patterns between two related wagons in the higher frequencies, but unfortunately

these patterns occur in different frequency bands for each of the wagons, rendering a

correlation based on these patterns impractical. The low frequency spectrum proved useful for

the correlation. When low-pass filtering the acceleration data of the driving direction at 2Hz two

wagons behind the same train can be distinguished. The amount of time the distinction is

evident is relatively small when two wagons behind the same train are compared to a wagon

behind another train, which drives on the exact same location using approximately the same

amount of acceleration.

Although there exists a small window in which the distinction is made, it should be noted that

this window is very small under rare conditions. Using the acceleration data of the driving

direction of the wagons for simulations is considered the best option based upon two

observations. First of all it is highly unlikely that two trains depart at the exact same time with a

near identical amount of acceleration. The circumstances under which the acceleration data is

recorded for data analysis were artificial. The trains in which the data is recorded were all of the

same build sporting the same train composition. Besides that, the recorded data is synchronized

before performing a correlation analysis. Thus, having a synchronous departure combined with

different train characteristics and the amount of acceleration provided by the driver leading to

similar acceleration levels seems unlikely in practice.

Secondly, when using wireless sensor nodes, two trains will usually be out of radio range

within a short amount of time after departing a shunting yard or station, which renders the fact

that these two trains perform the same operation at the same time insignificant. Combining

these two facts results in a very low possibility only a small distinction window is available.

Simulations will prove if the small window is a problem to reckon with.

The correlation of the acceleration levels of the other axes also showed high levels of

correlation for two wagons behind the same train, but comparing these correlation results with

the results of non-related wagons revealed that there is no clear distinction between these sets.

Although the correlation of the y- and z-axes as well as the magnitude of the axes does not

provide a clear distinction, the outcome of a correlation analysis of these axes is still considered

to be a possible means of correlating two related wagons. For example by using fuzzy logic [19],

which weighs multiple inputs to generate a decision.

29

Chapter Four

Train Composition Algorithm

In the previous chapter, we prove our assumption, that we can distinguish trains from each

other using movement as common context, is valid. The next step in our research is constructing

a train composition algorithm based on our assumption and the results of our data analysis. The

discovery of the train composition is divided in three steps. In this chapter, we describe how we

implemented these steps in our algorithm. Our research lays the emphasis on the second step of

the process, the correlation. For the first and the last step, we provide possible

implementations.

4.1 Pairing

The train composition algorithm works in a distributed fashion. A pair of two sensor nodes

calculates their correlation on which the locomotive will eventually base the train composition.

In the following two sections, we describe the initialization and operational phases.

4.1.1 Wake-up

As soon as a node detects movement, the node wakes up. For this a ball-switch [8], [20] can be

used. We assume all nodes behind the same locomotive are able to detect initial movement of

the locomotive and are able to wake-up within a certain relatively small time window. When a

node has detected the movement and the node is in an active state, the node starts the network

interface and announces its presence to other nodes using a broadcast on the network. Nodes

that are also still in the first step of the process can respond to this broadcast message upon

reception. When two nodes have acknowledged their existence, these nodes form a pair.

Nodes that did not respond to the broadcast message are either not within radio range or on a

different train. Based on our assumption that nodes are able to wake-up within a certain time

window after the initial movement of the locomotive, the window for sending and

acknowledging a broadcast message can be set at a fraction larger than the maximum time a

node requires for waking up after the locomotive starts moving. The trains we used for the

recording of our datasets showed only very small, less than 5 ms, delay in the detection of train

movement, but depending on the type of connection between wagons this number may vary.

4.1.2 Master/slave

Nodes forming a pair exchange data from their accelerometers to be able to decide if these two

nodes are behind the same locomotive or not. Based on our conclusions from chapter three, the

data of the axes measuring the driving direction is used. The data is sampled at 35Hz and filtered

using a low-pass filter at 2Hz.

We propose using a master and slave setup for the calculation of the correlation of the two

nodes. This reduces the amount of calculations needed by performing the calculations on the

master only. The nodes agree upon the master and slave role after acknowledging they form a

pair. A slave sends his data to the master, which calculates the correlation. The master sends the

correlation results back to the slave. After the slave has acknowledged the reception of the

correlation results, the master and slave switch roles. The switching of roles balances the energy

consumption between the two nodes.

30 Train Composition Algorithm

For reduction of overhead each network packet instigates, we propose to send data from slave

to master in a bulk packet containing the last 35 samples. The downside of this approach is the

fact that the rate, at which we can draw conclusions based on the outcome of our correlation

calculations, is also limited to one per second. Simulation results will show this will not limit our

ability to detect the train composition in an early stage after the train starts accelerating.

4.2 Correlation

4.2.1 Correlation algorithm

We implement the correlation of two nodes using the Pearson product-moment correlation

coefficient ρX,Y , which can be found in equation (1). For the implementation of the calculation of

this correlation coefficient, let x and y be two sensors nodes on a train, that have established a

master/slave relation. Our window size is represented as n. The data send between each master

and slave, is represented by xj and yj with j=1 for the oldest data point recorded by both nodes.

 ��,� � ���	
, ��
�
� (1)

� � �1� �	�� � �����
��� (2)

 ���	
, �� � 1� �	�� � ���	�� � �����
��� (3)

As can be seen in equations (1), (2) and (3) a straightforward implementation requires a

relatively large amount of computations on each pair of nodes for computing the correlation

coefficient upon reception of the data from the slave.

Marin-Perianu et al. [7] propose an optimization to the correlation calculation algorithm. The

proposed algorithm stores intermediate values thus reducing the amount of calculations

necessary for the computation of each correlation coefficient. Equations (4)-(13) show which

steps are taken for the calculation of the correlation coefficient as well as the intermediate

values. In our algorithm, k is fixed at 35 and n=k*m thus m depends on window size n. When

the window size is n, the optimized algorithm requires the availability of the last m intermediate

values, thus the number of intermediate values stored by both the master and slave relates to

the largest window size used in our algorithm. Each calculation of the correlation coefficient is

referenced by i, which starts at 1. The intermediate values we calculate and use are calculated

using the following equations:

 ��� � � ��
��

��	� ���!� (4)

 ��" � � ��
��

��	� ���!� (5)

Train Composition Algorithm 31

� � � ���
��

��	� ���!� (6)

" � � ���
��

��	� ���!� (7)

 ���" � � ������
��	� ���!� (8)

#$ �
������� % ��� � �� &� � (9)

 �#$ � �# ������ % ��" � �� &"� (10)

The variance and covariance calculations using the intermediate values are performed as

follows:

 �()� 	
� � �()� �	
� %
�� �
� &�� � 	
#����� �
���������
(11)

 �()� 	�� �

�()� �	�� %
�" �
� &"� � 	�#����� � �# ��������
(12)

 ���� 	
, �� � ���� �	
, �� % *+,- *+./,-� � 	
#$ �#$ �
������� �# �������

(13)

Since the nodes in our algorithm take turns in calculating the correlation coefficient, each

master node will send the intermediate values as well as the correlation coefficient to the slave.

Unfortunately, the optimization does not work when using a growing window size, which we

implement in our algorithm as discussed in the next section. While the window is still growing,

we use the normal calculation of the correlation coefficient. For better-balanced resource

consumption, the slave node calculates the mean, sum, sum of squares and variance of each

dataset transmitted to a master. The outcome of these computations is send along with the

dataset.

32 Train Composition Algorithm

4.2.2 Window size

Based on our conclusions in chapter three, for determining if two nodes are behind the same

train, a correlation window of 3 seconds (105 samples) is sufficient for the detection of two

wagons behind the same train. On the other hand, a window smaller than 5 seconds (175

samples) leads to false positives, i.e. nodes behind different trains assume they are behind the

same train. The disadvantage of the correlation window is the delay with which the final train

composition is deduced, thus a smaller window size is preferred.

To facilitate a window of 3 seconds as well as a window of 5 seconds, our algorithm is able to

calculate the correlation of two nodes over a growing window. The disadvantage of this

approach is the inability to use the optimization as proposed by Marin-Perianu et al. [7] while

the correlation window is still growing. Our algorithm starts the decision process when the

window size has reached 3 seconds. Although this leads to false positives, our data analysis has

shown no false negatives, thus the algorithm is already able to eliminate nodes not behind the

same train. The elimination of non-correlating nodes in an early stage of the algorithm offers

improved energy efficiency. The fact that non-correlating nodes are eliminated in an early stage

and the fact that the number of computations needed for smaller windows is less, compensate

for the lack of optimization of the calculation of the correlation coefficient.

4.3 Train composition

Our algorithm is limited to the correlation of the node pairs. For the discovery of the train

composition we identify two scenarios. Results from our simulation will give a good estimation

for the point in time at which we are able to deduce the actual train composition i.e. when all

nodes behind the same train are correlating and there is no correlation between nodes from

different trains. After the train composition is determined, we propose to send a message to all

nodes, which the nodes should acknowledge to verify that they are still behind the locomotive

thus the train integrity is still guaranteed.

In scenario 1, we do not know which wagon is the last wagon, thus for determining the

composition of the train, the locomotive triggers a route discovery algorithm. The locomotive

sends a message to the nodes the locomotive has paired with, these nodes on their turn send a

message to the nodes they are paired with. Each sequential message contains the path already

travelled. As soon as a node is not able to transmit the message to a node not already in the

path recorded in the message, the node sends a reply to the message back to the locomotive

with a list of nodes the original message has passed. The locomotive is then able to construct a

tree of nodes using the replies received. Using this tree a list of nodes behind the locomotive is

deduced. Extending messages with a counter of the number of hops between nodes, the paths

between nodes can be optimized for a higher efficiency of the transmission of the train integrity

message.

Train Composition Algorithm 33

In the other scenario, we assume we are able to identify the last wagon of the train. For

example by implementing a RFID system on each node with which a person can generate an

interrupt signaling the node is on the last wagon. After the correlation phase has ended, the last

node sends a route discovery message towards the locomotive. Using this approach, the

locomotive is able to deduce a better estimate of the train composition i.e. instead of a tree

view of the wagons, the locomotive is able to view the wagons as a straight line. Besides that,

the communication necessary for the train integrity message involves fewer nodes, since the

start and end nodes of the train are known and the train integrity is still intact as long as the last

wagon can be reached. This leads to a reduction in network traffic and improves energy

efficiency. The discovery of the route to the locomotive can be implemented using existing

algorithms e.g. AODV [21] or ODMRP [22].

In addition to the aforementioned proposals for optimizing the view of the nodes by the

locomotive, we propose to use the received signal strength (RSSI) of the nodes. Using the RSSI

an even clearer position estimation of each wagon is possible, thus improving network efficiency

and saving energy.

34

Chapter Five

Simulation

5.1 Network

The following sections describe the link connectivity model we used and the assumptions we

made for the network communication in our simulation.

5.1.1 LogNormal Shadowing

Since the environment the wireless sensor nodes are operating in contains large objects, using a

circular radio model would give a distorted image of the actual network performance of the

sensor nodes. We therefore implement the LogNormal Shadowing (LNS) model [23] in our

simulation. The concept behind the model is that statistical variations of the radio signal power

around its mean value are taken into account when calculating the link probability. The LNS

model enables us to calculate the link probability between two nodes given the normalized

distance between two nodes and parameter ξ. The parameter ξ controls the influence of

variations in signal power on the link probability, thus enabling us to simulate for example a

shunting yard with a large amount of large objects. Figures 5.1 and 5.2 show the connectivity

and communication range of node A when using either a circular radio model or the LNS model.

Figure 5.1: Circular radio model Figure 5.2: LogNormal Shadowing model

The LogNormal Shadowing model calculates the link probability using equations (14) and (15).

Parameter ξ is defined as the ratio between the standard deviation of shadowing (σ) and the

pathloss exponent (n). The parameter ξ can vary between 0 and 6 where a value of 0 gives the

same link probability as a circular radio model and a value of 6 equals heavy shadowing. Variable)̂ represents the normalized distance between two nodes and α is a constant with value:

10/√2*log 10. In our simulations we are able to vary parameter ξ, thus enabling the

measurement of the performance of the algorithm under different network properties.

Simulation 35

 1)̂� � 12 31 � 4)5 67 8�9)̂�: ;< (14)

 : =
 �⁄ (15)

5.1.2 Acknowledgment and retransmission

Considering the safety requirements on the train composition algorithm we use a MAC layer

model that requires each message sent to be acknowledged. Each message that is sent between

nodes is tagged with a priority. The priority of a message is a number which resembles the

number of retries we perform at maximum when sending the message or the corresponding

acknowledgement before we consider the transmission of the message failed. Table 5.1 gives

an overview of the used priorities.

Priority Retries

PRIORITY_BROADCAST 1

PRIORITY_LOW 2

PRIORITY_MEDIUM 3

PRIORITY_HIGH 5

Table 5.1: Relation between priorities and number of retries

Using the link probability we have calculated between nodes using the LSN model, we decide

whether a packet has reached its destination or not. Besides point-to-point messages, we

assume nodes are also able to send a broadcast message. This broadcast message is for example

used to discover master/slave pairs. The broadcast message uses the same methods as the

point-to-point messages, but with a priority of 1, thus a broadcast message is either received

and acknowledged directly or not.

The exchange of the correlation data messages uses the low, medium and high priorities to

send the messages as follows: the correlation data is initially send with priority low, when the

data exchange fails, a higher priority is used. When a higher priority is selected, all further

correlation interaction will also use this higher priority. In case the data exchange fails at the

highest priority, the nodes stop interacting and lose their master/slave status. During one

correlation step, i.e. the exchange of data points and the calculation of the correlation, it is

possible that data exchange is retried at a higher priority.

5.1.3 Packet size

The total amount of bytes sent and received by a node depends on the type and amount of

packets sent and received by a node. When a node sends a packet, but the packet is not

correctly received, the size of the packet is still accumulated to the total number of bytes send

by the node. By broadcasting a packet, the size of the packet is only added once to the total

number of bytes sent.

36 Simulation

The size of a packet is expressed in bytes. In some cases, this will introduce a small overhead

for each packet, since not all bits of every byte might be needed. We choose this approach

because an implementation of the train composition algorithm on nodes using an existing

network layer forces the use of predefined packet formats, which usually do not allow packet

sizes to be trimmed to the exact amount of bits necessary. Table 5.2 gives an overview of the

packets and the corresponding sizes we use.

Packet type Packet size (bytes)

Broadcast 3

Acknowledgement 3

Data points 89

Correlation result 29

Table 5.2: packets and corresponding sizes

We assume each node requires two bytes for a unique ID, which functions as the destination

address. Besides that, each packet has one byte that we use for the definition of the type of

packet. The packet with data points includes the mean, sum, sum of squares and variance of the

set. The correlation result packet includes the mean, sum, sum of squares, variance of the

master node as well as the sum of products, covariance and correlation of both sets. The results

of the calculations are stored in 32 bits, 4 bytes, except for the correlation, which is stored in 16

bits, 2bytes.

As soon as the correlation window has reached the maximum size and the algorithm switches

to the optimized correlation algorithm, the slave no longer needs to calculate the variance of its

data points, thus the packet size of the data points reduces with 2 bytes.

Using the numbers from table 5.2 the total number of bytes required for a correlation cycle is

124 bytes, consisting of two acknowledgements, a set of data points and the correlation result.

5.2 Train and nodes

In the following sections, we explain how the nodes and trains are setup in our simulation.

5.2.1 Train and node layout

Our simulation is based on several locomotives with a number of freight wagons behind them.

For the measurements of the locomotives and freight wagons we used the average length and

width as seen on Dutch freight trains [24] i.e. a length of 20m and a width of 3m. On each side of

a train, we reserve 1m of clearance space. For an even distribution of nodes on the wagons and

train, we place two nodes on each wagon or train, which are located at the long-sides in the

middle as shown in figure 5.3. By placing the nodes on the long side of the wagons, nodes on

the same side are able to communicate in a less obstructed way. When placing nodes on the

short sides, nodes on two adjacent wagons are either within very short range or at least one of

the wagons is blocking a direct path between two nodes, both situations have a negative impact

on the radio communication.

Since the load of a wagon can differ, for example the wagon holds a sea container or a load of

rocks, we are not able to locate the sensor nodes on top of the wagons.

Simulation 37

Figure 5.3: Sensor node placement on freight train wagon

5.2.2 Train movement

The data we use for correlation is also used for determining the speed of a train by integrating

the acceleration. Besides the speed of the train, we can also adjust the direction in which the

train travels, which is either to the left of the shunting yard or to the right.

5.2.3 Shunting yard

As stated in our preliminary research, the worst-case scenario contains multiple trains departing

at the same time within radio range of each other. Our simulation is based on this worst-case

scenario. On our shunting yard, we position multiple trains. The wagons of a train are always

behind the locomotive, thus the driving direction of the train is determined before we place the

train. We either pick a random direction for each train or each train drives in the same direction.

The locomotives of the trains are positioned either on the left half of the yard or on the right

half of the yard. When a train drives to the left, we always place the locomotive of the train in

the right half of the shunting yard and vice versa, this ensures wagons of all trains are situated

within the center area of the shunting yard before all trains start accelerating. An example of the

positioning of the trains is given in figure 5.4.

Figure 5.4: Positions of trains on shunting yard

The exact position of a locomotive within a certain half of the shunting yard is either

determined randomly or fixed for all trains. On the left side as well as the right side of the

shunting yard, we reserve space where a train can drive but cannot be placed, which also

ensures that all wagons are situated within the center area of the shunting yard after we placed

all trains. In figure 5.4 we see the locomotives of the two trains driving to the right positioned to

the right of the center and vice versa for the other two trains.

38 Simulation

5.3 Results

In order to answer our research questions we recorded several statistics during each run of the

simulation. The statistics we recorded are:

• Time at which the composition of all trains can be correctly determined

• Number of master roles a node fulfills and the time at which this occurs

• Number of slave roles a node fulfills and the time at which this occurs

• Network statistics e.g. number of bytes sent and received, number of packets sent and

received

Each simulation run is configured using the possibilities described in the previous section. We

varied the following settings:

• Number of trains

• Positioning of trains

• Driving direction

• Delay between the departure of one train and the departure of the next train

We simulated each different setting 100 times.

5.3.1 Correlation

In table 5.3, we present a summary of the results on the accuracy of the train composition

determination. The first four columns show the settings for the simulation runs i.e. the number

of trains, the positioning of the trains, the driving directions and the delay between the

departures of the trains. The following column shows the failure rate. We identify two possible

ways the distributed algorithm has failed, when within 15 seconds:

• Wagons behind different trains are still correlating

• It is not possible to reach all wagons behind the same train using the tree formed by all

correlating pairs

The following three columns show the minimum, the maximum and the average amount of

samples needed before the discovery of the correct train composition. The last column shows

the standard deviation for all runs with the same settings.

Simulation 39

Trains Position Direction Delay

(samples)

Failure Min

(samples)

Max

(samples)

Avg

(samples)

Std

(samples)

2 - - - 0% 70 70 70 0

3 Fixed fixed 15 0% 280 280 280 0

3 Fixed fixed 20 0% 280 280 280 0

3 Fixed fixed 30 0% 245 245 245 0

3 Fixed random 15 0% 280 280 280 0

3 Fixed random 20 0% 280 280 280 0

3 Fixed random 30 0% 245 245 245 0

3 random fixed 15 0% 70 280 214,12 96,80

3 random fixed 20 0% 70 280 224,41 93,10

3 random fixed 30 0.98% 70 245 196,96 78,48

3 random random 15 0% 70 280 180,15 104,87

3 random random 20 0% 70 280 171,23 86,84

3 random random 30 0% 70 245 151,15 97,92
Table 5.3: Results correlation calculations using different settings

For the simulation of the two trains we used two datasets with different characteristics. In

figures 5.5 and 5.6 we can clearly see one of the trains reducing its acceleration levels, the

distinction between these two trains using our correlation algorithm is therefore made in an

early stage of the simulation. For all different settings, the outcome for the situation with two

trains remained the same; therefore, only one entry is found in table 5.3 for this situation. The

results of the simulation with the two trains indicate it is possible to determine the train

compositions after 70 samples, 2 seconds.

Figure 5.5: Train accelerating fully after

departure

Figure 5.6: Train not accelerating fully after

departure

The datasets used in the situation with three trains, contain two sets with very similar

characteristics. Using the different settings, we measured different results in the situation with

three trains, therefore we include the summary of all different settings for this situation in table

5.3. We observe a low failure rate of 0.98% in one setting. Since we did not register any failures

in all other cases, we describe this particular failure to reoccurring packet loss.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Samples

A
c
c
e

le
ra

tio
n

 le
v
e

l

Acceleration levels of train. Dataset 2, second departure. Low-pass filtered at 2Hz

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25
Acceleration levels of train. Dataset 2, third departure. Low-pass filtered at 2Hz

Samples

A
c
c
e

le
ra

tio
n

 le
v
e

l

40 Simulation

The correlation for the two subsets with similar characteristics is more difficult and results in

more samples needed before the discovery of the correct train composition. The minimum and

maximum amount of samples needed for the correct discovery of the train compositions, show

a relatively large difference when compared to the situation with the two trains and looking at

the settings where at least one setting is set at random. As long as the trains are driving side by

side in the same direction, no difference between the minimum and maximum amount of

samples is visible.

We observe the maximum number of samples required is lower when the delay between the

departures of two consecutive trains is 30 samples. When the trains depart with a delay of 30

samples between each other, the characteristics of the acceleration levels within a certain

window differ more, thus the correlation is lower and the algorithm is able to detect the

different trains faster.

The lower number of samples required when the delay between trains is higher is also visible

when looking at the average number of samples required before the train compositions are

correctly determined. The difference between 15 and 20 samples delay shows a varying

difference, thus an extra 5 samples does enable a faster response of our distributed algorithm.

On the other hand, the 30 samples delay shows a lower average number of samples required for

the discovery of the correct train compositions.

The standard deviation shows that the number of samples the algorithm requires for every

run spreads in a relatively large range around the average number of required samples, when

the trains are positioned randomly. This can be explained by having either two trains on

opposite sides of the shunting yard, resulting in a fast discovery of the train composition, or

having two trains positioned on the same side of the shunting yard, resulting in a slow discovery

of the correct train composition. The differences between the slow and fast discoveries are

explained by the number of nodes that are within radio range of each other.

5.3.2 Master/slave roles

Based on our observations in the previous section, we examine two scenarios for the number of

master/slave roles the nodes fulfill. In the first scenario, we use the numbers recorded in the

situation with two trains for all different settings, this leads to the data as shown in figures 5.7

and 5.8. The second scenario shows the average and maximum number of master/slave roles

per node in the situation with two trains having a delay of 30 samples, ~ 0.85s, with varying

position and varying driving direction (figures 5.9 and 5.10).

Simulation 41

Figure 5.7: Correlation calculations as master on nodes of 2 trains, varying positions, driving directions

and delays

Figure 5.8: Correlation calculations as slave on nodes of 2 trains, varying positions, driving directions and

delays

Figure 5.9: Correlation calculations as master on nodes of 2 trains, random positions and driving

directions, and a fixed delay of 30 samples, ~0.85s

0

2

4

6

8

10

12

14

35 70 105 140 175 210 245

ca
lc

u
la

ti
o

n
s

samples

Corrrelation calculations as master on nodes of 2 trains

max

avg

0

2

4

6

8

10

12

14

35 70 105 140 175 210 245

ca
lc

u
la

ti
o

n
s

samples

Correlation calculations on slave-node, 2 trains

max

avg

0

2

4

6

8

10

12

14

35 70 105 140 175 210 245

ca
lc

u
la

ti
o

n
s

samples

Correlation calculations as master on nodes of 2 trains

~0.85s delay, random positions, random directions

max

avg

42 Simulation

Figure 5.10: Correlation calculations as slave on nodes of 2 trains, random positions and driving

directions, and a fixed delay of 30 samples, ~0.85s

5.3.3 Network

In section 5.1 we explained the inner workings of the network layer in our simulator. The setting

we used for the LogNormal Shadowing parameter ξ is 5. Based on a scale from 0 to 6 where 6 is

heavy shadowing, our simulation is thus set to a fair amount of shadowing. We chose this

setting based on our assumption that radio communication between wireless sensor nodes

deployed on trains in a shunting yard experiences heavy shadowing due to the large objects that

surround the nodes.

The results from our simulations for the given settings are presented in table 5.4.

0

2

4

6

8

10

12

14

35 70 105 140 175 210 245

ca
lc

u
la

ti
o

n
s

samples

Correlation calculations as slave on nodes of 2 trains

~0.85s delay, random positions, random directions

max

avg

Simulation 43

 Bytes received Bytes sent

Delay Min Max Avg Min Max Avg

Two trains fixed position

15 917 11.887 5.663,0 1.322 18.008 8.165,5

20 955 11.961 5.619,0 1.284 18.631 8.107,0

30 917 8.910 4.717,4 1.255 14.847 6.972,9

Two trains random position

15 914 12.703 5.621,5 1.135 20.151 8.371,1

20 757 12.324 5.741,8 1.233 19.140 8.540,2

30 792 9.872 4.767,0 1.226 15.172 7.167,4

Three trains fixed position

15 914 13.769 7.091,1 1.319 21.186 9.986,3

20 920 14.134 7.177,4 1.155 22.316 10.084,7

30 914 12.768 6.477,3 1.377 19.232 9.197,3

Three trains random position

15 946 15.430 7.443,6 1.348 22.744 10.962,2

20 952 16.662 7.446,0 1.243 23.104 10.980,1

30 856 14.513 6.688,5 1.170 21.343 9.902,0

Table 5.4: Number of bytes sent and received by nodes during simulation

From table 5.4 we learn that on average a node receives between 4,7 and 7,5 kB of data

before the train composition is determined. The numbers for the bytes send are higher due to

retransmits: between 6,9 and 10,9 kB of data is send. When looking at the maximum number of

bytes transmitted, for receiving the number is between 8,9 and 16,6 kB and for sending

between 15,1 and 23,1 kB.

44

Chapter Six

Realisation

6.1 Fixed-point calculations

For the implementation of our algorithm, we need to perform all our calculations using fixed-

point numbers, since the calculation of floating point numbers on our sensor nodes is less

feasible considering the required computational power. The research we conducted in chapter

three is based on the usage of floating point calculations. The disadvantage of fixed-point

numbers is the possible loss of precision in calculations. In the following sections, we show the

difference between our algorithms using fixed-point numbers and our algorithms using floating-

point numbers

6.1.1 Correlation

Running our correlation algorithm using fixed-point numbers introduces a loss of precision.

Besides the loss of precision due to the fixed-point numbers, our correlation algorithm also

suffers from rounding errors caused by our optimized correlation algorithm, which uses

intermediate values. Figure 6.1 shows the difference between our optimized correlation

algorithm, which uses a growing window and fixed point numbers and the built-in correlation

function of Matlab using a fixed window of 175 samples.

After roughly 15 calculations of the correlation between the two datasets, our correlation

algorithm starts drifting. Since the determination of the train composition should take place well

within 15 seconds, which equals the point at which our algorithm starts drifting, the drifting of

the correlation does not interfere with the train composition algorithm.

Figure 6.1: Comparison of Matlab built-in correlation algorithm and fixed point optimized correlation

algorithm

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

25

Samplepoints

Data 2 wagons behind the same train

0 5 10 15 20 25 30 35 40 45
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Correlation growing window optimized algorithm vs Matlab built-in correlation

Correlation each 35 samples

built-in correlation

optimized fixed point correlation

Realisation 45

6.1.2 Filter

Another element of our train composition algorithm, which has the potential of suffering from

rounding errors due to the usage of fixed-point numbers, is the low pass filter we use. Figure 6.2

displays the difference between our implementation of the low pass filter using fixed point and

the built-in low pass filter of Matlab using the double format for numbers. From the figure, we

observe two differences, the first difference being the startup delay of our implementation,

which we see in the two middle figures. The second difference is the absolute difference, which

we have plotted in the lowest figure. Since the trend of both filtered data sets is still the same,

our implementation is sufficient for the calculation of the correlation between two datasets.

The startup delay caused by our implementation can be compensated by starting the filter

immediately after a node wakes up. Since the train composition algorithm needs to establish

master/slave pairs before the actual correlation takes place, we are able to use this delay to run

in our low pass filter.

Figure 6.2: Comparison of built-in Matlab filter and fixed-point c-filter

In order to answer the question if the accumulation of the rounding and drifting errors we

have identified so far are still within limits our algorithm is able to handle, we have calculated

the correlation using our own functions as well as the built-in functions of Matlab. We present

the results of these calculations in figure 6.3. The lower right figure displays the correlation

when either using only fixed-point calculations or using floating point calculations. Although

sometimes rather large differences in correlation occur, these occurrences are always well

beyond the point in time at which we determine the train composition, thus the rounding and

drifting errors introduced by using fixed-point calculations pose not a problem for the

implementation of our train composition algorithm on sensor nodes.

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1
Unfiltered data

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1
Data after applying built-in Matlab filter

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1
Data after applying fixed-point c-filter

0 200 400 600 800 1000 1200 1400 1600
-0.05

0

0.05

0.1

0.15
Difference between Matlab built-in filter and fixed-point c-filter (shifted 15 samples)

46 Realisation

Figure 6.3: Correlation of datasets using built-in Matlab functions and custom functions

6.2 Resources

The biggest challenge of our train composition algorithm lies in the ability of the nodes to run

our algorithm, especially the correlation algorithm requires a relatively large amount of

computational power. In the following sections, we give an overview of the possibilities our

algorithm offers when run on a network of sensor nodes.

6.2.1 Clock-cycles

We use the internal timer of the µNodes on which we run our train composition algorithm to

measure the time used for calculation of certain parts of the algorithm. Each timer tick

corresponds to 1/32768
th

 of a second. We have measured the correlation of 2 datasets when

the correlation window is still growing as well as the correlation of 2 datasets when using the

optimized correlation algorithm as soon as our correlation window has reached its maximum

size. In table 6.1 we give an overview of the results of our measurements.

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samplepoints

Unfiltered data 2 wagons behind the same train

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samplepoints

Filtered data using built-in Matlab filter, 2 wagons behind the same train

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samplepoints

Filtered data using custom fixed-point filter, 2 wagons behind the same train

0 5 10 15 20 25 30 35 40

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Correlation growing window optimized algorithm vs Matlab built-in correlation

Correlation each 35 samples

built-in correlation

optimized fixed point correlation

Realisation 47

 Master Slave

Task Ticks Time (ms) Ticks Time (ms)

Filter 35 samples 748 22.8 748 22.8

Correlation 35 samples 1433 43.7 739 22.6

Correlation 70 samples 2507 76.5 1252 38.2

Correlation 105 samples 3548 108.3 1772 54.1

Correlation 140 samples 4586 140.0 2295 70.0

Correlation 175 samples 5632 171.9 2815 85.9

Optimized correlation 175

samples

676 20.630 - -

Table 6.1: Execution times on µNode 2.0 with MSP430 microcontroller

Based on our measurements we observe a significant improvement in the correlation

calculation when using the optimized correlation algorithm. Before we are able to use the

optimized algorithm, the standard correlation algorithm is used, this leads to the major

bottleneck of our algorithm: the calculation of the correlation of two datasets with a correlation

window of 175. A node is able to calculate at maximum five times each second this part of the

algorithm given the node only serves as master. In an even distributed master/slave role setting,

a node is able to perform three master roles and three slave roles.

For readability, we measured the execution time of the appliance of the low pass filter on a

dataset of size 35, however the actual implementation is able to filter one sample at a time, thus

the scheduling of this filtering task is more flexible. Each node is required to filter the measured

data only once, thus the number of master/slave pairs does not influence the execution time

needed for this task.

6.2.2 Memory

The memory consumption of our algorithm on each node, depends on the number of

master/slave pairs each node has formed with neighboring nodes. Besides that, the memory

consumption increases while the correlation window is still growing and decreases as soon as

the window has reached its maximum size. The minimum memory consumption for the

correlation calculation algorithm on a node is (175+35)*2=420 bytes. Each node stores its own

data samples for the given window as well as 35 extra samples, since the point at which

master/slave pairs are formed is not the same for each pair. Table 6.2 gives an overview of the

extra memory consumption on a node needed per master/slave pair.

48 Realisation

Data structure Size (bytes)

Dataset slave 175 samples 350

Timestamp start 2

Master mean data 4

Slave mean data 4

Master squares data 20

Slave squares data 20

Master sum data 20

Slave sum data 20

Sum products data 20

Total 460

Table 6.2: Memory consumption per master/slave pair

The total amount of bytes is 460 per master/slave pair. A standard µNode 2.0 has 10kB RAM

available. For the normal operation of the node, we reserve 2kB, which leaves 8kB for the

correlation algorithm. Given the minimum memory consumption of 420 bytes for a participating

node and the availability of 8192 bytes, we can store up to 16 master/slave pairs in memory.

As soon as we are able to use the optimized correlation algorithm, the memory consumption

drops radically. Per master/slave pair we do not need to store the data points over a complete

correlation window, instead, only the received data points send by the slave are of interest. This

reduces the memory footprint with (175-35)*2=280 bytes per master/slave node. In this case,

the total memory consumption per master/slave pair is 180 bytes. This would allow up to

(8192-420)/180≈43 pairs to be formed by a node.

6.2.3 Network

The µNode 2.0 has a NRF905 radio chip, which is able to send and receive at 100kbps. The

communication necessary between two nodes for our correlation algorithm requires 124 bytes

per execution of the algorithm between these nodes as we concluded in chapter 5. At 100kbps,

this results in a maximum of 100*128/124≈103 times communication of the executions of the

correlation algorithm per node.

49

Chapter Seven

Conclusions

The research conducted for this master thesis is built around the development of a system for

the automatic discovery of the composition of a train. Our hypothesis: it is possible to

distinguish trains using motion as a common context, forms the basis of our train composition

system. In the first three chapters, we prove our hypothesis to be correct. After the

development of the train composition algorithm in chapter four, we simulate a shunting yard

with multiple trains equipped with our train composition algorithm, in chapter five. Results of

the simulations show that our algorithm is able to distinguish the composition of multiple trains

within a relatively small time window of on average ~6 seconds and only a limited number of

errors, which is subscribed to packet loss during wireless communication. The last part of our

research focuses on the implementation of our algorithm on the wireless sensor nodes, in

chapter 6. We prove the feasibility of running our algorithm on the wireless sensor nodes.

Besides that, we also show the correctness of our algorithm on the sensor nodes by comparing

the results of our implementation in Matlab with the results of our implementation on the

sensor nodes.

7.1 Hypothesis

Distinguishing trains using motion as common context is the starting point of our research. The

first steps of our research focus on the validation of this hypothesis as well as identifying which

types of motion we are able to use for distinguishing trains.

Analysis of the data we recorded using a three-axis accelerometer on moving trains confirms

the validity of our hypothesis: it is possible to distinguish trains using motion as common

context. We recorded the acceleration levels in the driving direction as well as the sideways and

up- and downwards directions of the train.

Based on previous research [8] we expected it to be possible to distinguish trains by the

acceleration levels, especially in the sideways and up- and downwards directions caused by track

anomalies which are unique for each part of the track. Although frequency spectrum analysis of

the acceleration levels in these directions do show similarities between two wagons on the

same train, these similarities are within different frequency ranges, thus for an automated

algorithm we need Fast Fourier Transformations (FFT). Using FFT’s in an algorithm running on

wireless sensor nodes requires a relatively large amount of computational power thus lowers

the energy efficiency and feasibility of the algorithm. Therefore, we do not use the data in the

sideways as well as the up- and downward directions.

Our analysis of the recorded acceleration levels data in the driving direction proves it is

possible to use this data to distinguish trains, by correlation of the filtered acceleration data. A

low-pass filter of 2Hz extracts the acceleration level caused by the locomotive gaining speed

from the data recorded in the driving direction.

50 Conclusions

7.2 Algorithm

The calculation of the correlation using the Pearson product-moment correlation coefficient

requires a significant amount of computational power when run on wireless sensor nodes. In

this thesis, we show a distributed algorithm for the calculation of the correlation coefficient.

Using our algorithm, we reduce the amount of computational power that is needed for

calculating the correlation coefficient, which we use in our distributed train composition

algorithm. We enhanced our algorithm by offering the possibility to calculate the correlation

coefficient over a growing window. This enables distinguishing nodes in an early stage after

initial train movement. Nodes using our train composition algorithm are able to participate

simultaneously three times actively and three times passively (master/slave) in the calculation of

the correlation coefficient per second, given a window of five seconds over which we correlate.

Our window starts at one second while we start distinguishing trains after two seconds. When

the window is smaller, the number of active and passive roles a node fulfills is higher than at our

largest window of five seconds. In case of two trains, which show relatively large differences in

acceleration characteristics, we are able to distinguish each train after two seconds, which is

more than sufficient for the train safety requirements.

Simulation results indicate each node participates more than three times actively and three

times passively in the correlation calculations after our correlation window has reached 5

seconds, depending on the positioning of trains on a shunting yard and the characteristics of the

acceleration levels of each train. Therefore, using our train composition algorithm with our

distributed correlation algorithm is not always suitable. A solution to this problem is found in an

optimized version of the calculation of the correlation coefficient.

The optimized calculation of the correlation coefficient [7] stores intermediate values, which

reduces the computational power, required for the correlation over a window of 5 seconds to

less than 12% of the direct method. The optimized calculation lacks the ability of calculating the

correlation coefficient over a growing window, thus the standard delay of distinguishing trains is

five seconds, based on our measured optimal correlation window size of five seconds. Although

the optimized calculation has the tendency to drift due to the accumulation of rounding errors,

our train composition algorithm does not suffer from this drifting since the distinguishing of the

trains should occur within a small time window after initial train movement.

7.3 Usability

When looking at the usability of our train composition algorithm with regard to the time window

in which the algorithm is able to distinguish trains, we have shown that we are able to discover

the train compositions within ten seconds. Our algorithm is even able to distinguish trains after

two seconds when the trains have different acceleration characteristics, for example one light,

fast train and one heavy, slow train. When two trains have almost identical acceleration

characteristics, the time needed for distinguishing these trains increases, while remaining below

ten seconds.

The implementation of our algorithm that is able to distinguish trains fast is not able to

perform all necessary calculations at a certain point in the situation of two trains with near

identical acceleration characteristics. Our alternative implementation, with a standard delay of

five seconds before trains are distinguishable, consumes only 12% of computational power of

our fast implementation when the correlation window is five seconds.

Our fast implementation consumes a relatively low amount of computational power when the

correlation window is one or two seconds. The fast implementation of our algorithm is able to

detect nodes not on the same train in these first to seconds. By combining both algorithms in

the first two seconds of the train composition algorithm, we reduce the number of potential

nodes behind the same train during the third, fourth and fifth second after the start of our

Conclusions 51

algorithm. By reducing the number of potential nodes behind the same train, we improve

energy efficiency due to the lower amount of computations and the lower amount of network

traffic required.

Our implementations show it is possible to use wireless sensor nodes for a train composition

algorithm. Rounding errors due to optimized algorithms or the use of fixed-point calculations do

not hamper the functionality of our algorithm.

7.4 Overall conclusion

In this thesis, we have shown it is possible to detect the train composition by using wireless

sensor nodes equipped with accelerometers, thus using motion as the common context. Our

algorithm is based on two approaches. On the one hand, we correlate the wireless sensor nodes

using a growing correlation window. This approach enables a fast response time. The downside

of this approach is the number of computations required when the window gains size.

The other approach uses a fixed window size. This approach uses an optimized correlation

calculation algorithm, which results in a computational efficient solution. Having a fixed window

size introduces an initial delay equal to the size of the window.

We have shown that implementing our fastest approach is feasible with regard to the number

of computations required for a situation with two departing trains, but it is not suited for

situations with three or more trains departing at the same time. Our slower but computational

more efficient approach is able to support three departing trains.

7.5 Recommendations and future work

The Achilles’ heel of our implementation is formed by the computation of the correlation

coefficient. On the one hand, our fast implementation is able to give results after a relatively

small time window of two seconds, but in the case of two trains with near identical acceleration

characteristics, the fast implementation is not able to perform all necessary computations. On

the other hand, the optimized algorithm requires a low number of computations, but has a

standard delay of five seconds. Our research is based upon the acceleration data of one type of

train, recorded during rides between Almelo station and Hengelo station. Therefore, the

recorded acceleration data shows great similarities. The question is, whether trains with this

great similarity in acceleration data, depart within a small time window from the same shunting

yard in practice. We have shown that a delay of less than one second in the departures between

trains with near identical acceleration characteristics already lowers the time for correct

distinguishing these trains. More experiments are needed to show trains either do not depart

within a window of two seconds, or the acceleration levels show different characteristics, or our

worst case scenario does occur in practice.

Besides more acceleration data of the trains on a shunting yard, more information about

wireless communication between nodes on a shunting yard will aid in determining what the

actual maximum range is for wireless sensor nodes on a shunting yard. The maximum

communication range influences the number of calculations a node performs, since the greater

the range, the more nodes form pairs.

In summary, more information about the context is needed:

• Train departure statistics

• Radio communication between wireless sensor nodes on trains on a shunting yard

52

Bibliography

[1] U. Hansmann, L. Merk, M. S. Nicklous, and T. Stober, Pervasive Computing: The Mobile

World, 2nd ed. Springer, 2003.

[2] M. Weiser. (1991) The Computer for the 21st Century. [Online].

http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html

[3] B. N. Schilit, N. I. Adams, and R. Want, "Context-Aware Computing Applications," in

Proceedings of the Workshop on Mobile Computing Systems and Applications, Santa Cruz,

1994, pp. 85-90.

[4] European Rail Traffic Monitoring System. (2009, Feb.) [Online]. http://www.ertms.com

[5] European Railway Agency. (2009, Feb.) European Railway Agency. [Online].

http://www.era.europa.eu

[6] J. Lester, B. Hannaford, and G. Borriello, "“Are You with Me?” - Using Accelerometers to

Determine If Two Devices Are Carried by the Same Person," in Pervasive Computing.

Springer Berlin / Heidelberg, 2004, pp. 33-50.

[7] R. Marin-Perianu, M. Marin-Perianu, P. Havinga, and H. Scholten, "Movement-Based Group

Awareness with Wireless Sensor Networks," in Pervasive Computing. Springer Berlin /

Heidelberg, 2007, pp. 298-315.

[8] M. Schoemaker, "Development of a Wireless Train Integrity System," MSc Thesis, University

of Twente, Enschede, 2007.

[9] Advantaca. (2009, Mar.) TWR-ISM-002-I Datasheet. [Online]. http://www.cse.ohio-

state.edu/siefast/nest/nest_webpage/datasheet/TWR_ISM_002_I.pdf

[10] A. Arora, et al., "A line in the sand: A wireless sensor network for trage detection,

classification and tracking," Computer Networks, vol. 46, pp. 605-634, 2004.

[11] P. K. Dutta, A. K. Arora, and S. B. Bibyk, "Toward Radar-Enabled Sensor Networks," in

Proceedings of the 5th international conference on Information processing in sensor

networks, New York, 2006, pp. 467-474.

[12] Murata Manufacturing Company, Ltd. (2009, Mar.) Murata MA40E8-2 Datasheet. [Online].

http://www.murata.com/catalog/p19e.pdf

[13] Sharp. (2009, Mar.) Sharp GP2D12 Datasheet. [Online].

http://document.sharpsma.com/files/GP2D12J0000F_SS_20060207.pdf

[14] W. Dargie, "Analysis of Time and Frequency Domain Features of Accelerometer

Measurements," in Proceedings of 18th Internatonal Conference on Computer

Communications and Networks, San Francisco, 2009, pp. 1-6.

[15] S. Zeegers. (2009) SporenplanOnline. [Online]. http://www.sporenplan.nl

[16] Ambient Systems. (2009, Feb.) [Online]. www.ambient-systems.net

[17] T. Hofmeijer, S. Dulman, P. G. Jansen, and P. J. M. Havinga, "AmbientRT - real time system

Conclusions 53

software support for data centric sensor networks," in Intelligent Sensors, Sensor Networks

and Information Processing (ISSNIP), Melbourne, 2004, pp. 61-66.

[18] S. Bosch, "FollowMe! Distributed Movement Coordination in Wireless Sensor and Actuator

Networks," MSc Thesis, University of Twente, Enschede, 2008.

[19] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Application. Prentice Hall,

1995.

[20] ASSEMtech Europe. (2010, Mar.) Assemtech cm1800-1 ball switch. [Online].

http://www.assemtech.co.uk/assemvibration.asp

[21] C. E. Perkins and E. M. Royer, "Ad hoc On-Demand Distance Vector Routing," in Proceedings

of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, New Orleans,

1999, pp. 90-100.

[22] S. Lee, M. Gerla, and C. Chiang, "On-Demand Multicast Routing Protocol," in Proceedings of

the IEEE Wireless Communications and Networking Conference, WCNC ’99, New Orleans,

1999, pp. 1298-1304.

[23] R. Hekmat and P. v. Mieghem, "Study of connectivity in wireless ad-hoc networks with an

improved," in Proceedings of 2nd Workshop on Modeling and Optimization in MANETs,

Cambridge, 2004.

[24] P. v. Gemert. (2010, Mar.) RailCargo. [Online].

http://www.railcargo.nl/index.cfm?menuid=41&DocumentID=346&Product=926

	Introduction
	Data Collection
	Data Analysis
	Train Composition Algorithm
	Simulation
	Realisation
	Conclusions
	Bibliography

