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Abstract

Programming-language research has introduced a considerable number of advanced-

dispatching mechanisms in order to improve modularity. Advanced-dispatching mechanisms

allow changing the behavior of a function without modifying their call site and thus make

the local behavior of code less comprehensible. Debuggers are tools, thus needed, which

can help a developer to comprehend program behavior but current debuggers do not pro-

vide inspection of advanced-dispatching-related language constructs. This thesis presents

a debugger which extends a traditional Java debugger with the ability of debugging on an

extended debugger architecture that preserves advanced-dispatching language constructs

and a user interface for inspecting this.
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Chapter 1

Introduction

To improve the modularity of source code, a considerable number of new programming-

language mechanisms has been developed that are based on manipulating dispatch, e.g.,

of method calls. Examples are multiple [9] and predicate dispatching [14] or pointcut-

advice [18], a particular flavor of aspect-oriented programming (AOP). Because they are

beyond the traditional receiver-type polymorphism dispatch mechanism, these new mecha-

nisms are called advanced-dispatching (AD) [7].

The majority of newly developed languages adds advanced-dispatching concepts to an

already existing, mainstream language like Java or the .NET languages, which is generally

called the base language. The new mechanisms have the potential to increase the modularity

of program code, compared to code written in the base language. However, using the new

language mechanisms is not well-supported by tools. Thus their usage may hamper software

development even in spite of their potential of improving the code quality.

The term dispatching refers to binding functionality to the execution of certain instruc-

tions, so-called dispatch sites, at runtime, thereby choosing from different alternatives that

are applicable in different states of the program execution. An example of conventional

dispatch is the invocation of a virtual method in Object-Oriented (OO) languages: The

invocation is the dispatch site and the alternative functionalities are the different imple-

mentations of the method in the type hierarchy; the runtime state on which the dispatch

depends is the dynamic type of the receiver object. A detailed discussion of the approach

can be found in [7]1

1Some details presented in [7] are outdated, but it may nevertheless act as an introduction to the basic

concepts.
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Advanced-dispatching refers to language mechanisms that go beyond this traditional

receiver-type polymorphism. What makes the dispatching advanced in these cases is that a

dispatch can consider additional and more complex runtime states, and that functionality

can be composed in various ways.

Advanced-dispatching languages share concepts from several broad categories: selection

of call site based on syntactic properties, access to the runtime state in which they are

executed, evaluation of functions over the runtime state to select from alternative mean-

ings, declaration of meaning in terms of actions on the runtime state, and description

of relationships between applicable actions. In order to let advanced-dispatching languages

share their implementations, Bockisch et al. have provided Advanced-dispatching Language-

Implementation Architecture (ALIA). ALIA consists of a language-independent meta-model

of advanced-dispatching concepts and any number of execution environment that process

models conforming to this single meta-model. For those advanced-dispatching languages

whose base language is Java, ALIA is implemented as ALIA4J.

While high-quality tools, such as the AspectJ Development Tools (AJDT) [3], exist to

visualize the static structure of programs written in these languages, little to no support

is provided related to dynamic language features. As lack of supporting tools significantly

hampers the popularity of otherwise valuable new programming languages, this thesis aims

at providing a generic debugger for advanced-dispatching languages.

The term “bug” and “debug” was first used buy Admiral Grace Hopper in 1940 because

she found a moth stuck in a circuit. Now the “bug” is widely accepted as “an unexpected

behavior of a system”. The difficulty of software debugging varies greatly with the com-

plexity of the system, and also depends, to some extent, on the programming languages

used and the available tools, such as debuggers. Debuggers are software tools that help de-

termine why the program does not behave correctly. They assist developers to understand

the program and find the cause and location of the bug. They also enable programmers

to control the program execution flow, stop the program at any desired point and inspect

and analyse the runtime states. As the software architecture and programming languages

become more complex and implementation is inherently an error-prone process, debugging

has increasingly significant impact on the cost of software [20].

Eaddy et al. [13] proposed a debug model for Aspect-Oriented Programming (AOP).

As AO languages is one category of AD language, their debug model can be extended and

adapted to the domain of AD programming. The adapted debug model consist of three

components: a classification of AD-specific activities, faults introduced in these activities

and a set of ideal properties that an AD debugger should support. These properties are
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idempotence, debug obliviousness, debug intimacy, dynamism, dispatching-declaration in-

troduction, locating and affection exploration.

My development is carried out on the execution environment called NOIRIn. NOIRIn

provides all desired AD-related information during runtime. In order to present this in-

formation, an AD debugger architecture is designed based on the Java Platform Debug

Architecture (JPDA) [2]. The AD debugger architecture associates with two Java Virtual

Machine (JVM): the debuggee JVM and the debugger JVM. NOIRIn runs on the debuggee

JVM and provides required information in terms of Java constructs. This information is

read by the debugger side through a communication channel and then adapted to dedicated

AD constructs. AD constructs form an underlying model represented by the Advanced-

Dispatching Debug Interface (ADDI). Through ADDI, user interfaces for inspecting and

manipulating AD debug information are implemented.

For evaluating properties desired from AD debuggers, this thesis gives detailed discus-

sions like to what extent it is supported and how, where are the limitations and why, etc.

The result is that four properties are fully supported, two are partially supported and one

is not supported.

The remainder of this thesis is structured as follows.

� Chapter 2 presents the required technical background.

� Chapter 3 describes problems of debugging AD programs with conventional debuggers

and proposes a dedicated AD debug model.

� Chapter 4 gives a deeper analysis of problems when debugging AD programs as well

as properties required from a good debugger for such programs.

� Chapter 5 describes improvements to the NOIRIn and implementation details of the

AD debugger.

� Chapter 6 shows an example using the AD debugger to find a bug and discusses how

well each required property is met in the implementation.

� Chapter 7 designs a solution for supporting locating AD-specific constructs.

� Chapter 8 investigates some AD tools and systems which include Wicca [13], AspectJ

Development Tools (AJDT) [3], Aspect Oriented Debugging Architecture (AODA) [11],

TOD [22], CaesarJ Development Tools (CJDT) [4], JAsCo Development Tools (JAs-

CoDT) [1].
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� Chapter 9 summarizes this thesis and gives directions for future work.
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Chapter 2

Background

2.1 Characteristics of Advanced-dispatching Languages

Advanced-dispatching (AD) languages can be classified into two categories: predicate dis-

patching languages, like MultiJava [10], JPred [19], and pointcut-advice languages, like

AspectJ [17], Compose* [12]. In these languages, function calls are late-bound to meaning

and which meaning is ultimately executed upon a call is determined at runtime. AD mech-

anisms allow changing the behavior of a function without modifying the call site and thus

the code’s modularity increases.

The program in listing 2.1 is written in JPred. A method uses the keyword when with an

appended predicate specifying what conditions should be satisfied to execute that method.

Multiple methods may share the same signature and which method is eventually executed

depends on the boolean result of the predicate at runtime. At each call site, only one

method with the most specific predicate is selected. In this example, the method on line 2

is only applicable to an invocation of FileEditor.handle(Event) if the class of actual parameter

passed to the method is a subclass of Open. In any other circumstances, the method on

line 3 is executed.

1 class FileEditor {
2 void handle(Event e) when e@Open {... /* open a file */}
3 void handle(Event e) {... /* handle unexpected event */}
4 }

Listing 2.1: A code example in JPred syntax

The program in listing 2.2 is written in AspectJ which is the most popular AO language.

In AspectJ, a pointcut can specify source locations where crosscutting actions take place.
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These locations are called join point shadows. A pointcut may also specify a dynamic-

evaluated condition, called residue. An advice is executed when its pointcut is satisfied. In

this example, line 3 specifies a join point shadow void Point.set*(..) which matches all public

methods in the Point class with a name starting with set and taking any number and type

of arguments. Line 2 and 4 specify that the callee object should be an instance of Point.

This advice is invoked before the execution of method represented by void Point.set*(..).

1 public aspect PointMonitor {
2 before(Point e) :

3 call(public void Point.set*(..)) &&

4 target(p)

5 { ... /* notification */ }
6 }

Listing 2.2: A code example in AspectJ syntax

2.2 ALIA Overview

With the Advanced-dispatching Language-Implementation Architecture for Java (ALIA4J),

Bockisch et al. have provided an architecture for implementing programming languages

with advanced dispatching concepts in a way that they can share the implementation of

overlapping concepts [6]. They have found that advanced dispatching is the basis of many

different programming paradigms (like predicate dispatching, pointcut-advice, inter-type

member declarations, or security policies) which are supported by ALIA4J.

ALIA4J has two main components: The first is the Language-Independent Advanced-

dispatching Meta-model (LIAM) for expressing advanced-dispatching declarations, the sec-

ond one is the Framework for Implementing Advanced-dispatching Languages (FIAL), a

framework for execution environments that can process these dispatch declarations. A brief

overview, of the approach can be found in [7].

LIAM acts as the format of the intermediate representation for advanced dispatching in

programs. The meta-model itself defines categories of concepts and how these concepts can

interact, e.g., a dispatch may be ruled by atomic predicates which depends values in the

dynamic context of the dispatch. It has to be refined with the concrete advanced-dispatching

concepts of actual programming languages that are supposed to be mapped to LIAM. For

example consider the AspectJ pointcut designator target(T), which represents an atomic

predicate, namely that some context value must satisfy the expression instanceof T, and this
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value is the receiver object. Thus, amongst others, the LIAM concept atomic predicate

must be refined to an instance of predicate and the concept context must be refined to

callee object when realizing AspectJ with ALIA4J.

The actual intermediate representation of a concrete (e.g., AspectJ) program, in turn, is

a model conforming the meta-model refinement for that language—these models are called

LIAM models simply. Code of the program not using advanced dispatching mechanisms

is represented in its conventional Java bytecode form. This is also true for the body of

advice written in the base language as is the case in, e.g., AspectJ. In this case, the LIAM

model will contain a action entity that stores a symbolic reference to the method into which

the advice body is compiled; execution the functionality defined by this action means to

execute the referred method. The situation is different in languages with a domain-specific

“advice” model like Compose*. Advice, actually called “filter actions” in Compose*, can

be declarative like “raise an error”; such functionality can also be realized by refining the

LIAM meta-entity action.

FIAL implements common components and work flows required to implement execution

environments based on a JVM for executing LIAM models, most importantly it defines

how to derive an dispatch function per dispatch site that considers all dispatch declarations

present in the program.

Figure 2.1 shows an overview of the ALIA4J approach. Concretely, the flow of compiling

and executing applications in this approach is shown. The compiler 1 starts processing the

source code; a dedicated importer component 2 adapts the compiler’s output to a model

for the advanced dispatch declarations in the program 3 based on the refined subclasses 4

of the LIAM meta-entities 5 . Furthermore, the compiler produces an intermediate repre-

sentation of those parts of the program that are expressible in the base language 6 alone.

The eight meta-entities of LIAM capture the core concepts underlying the various dis-

patching mechanisms, but at a finer granularity than the concrete concepts found in high-

level languages; one concrete concept often maps to a combination of LIAM’s core concepts.

Figure 2.2 shows the meta-entities in LIAM, which are implemented as abstract classes. At-

tachment, specialization, and predicate are an exception to this rule, i.e., they are concrete

classes, as they provide logical groupings of entities of the meta-model and cannot be refined.

The meta-entities are discussed in detail in [6, Chapter 3.2]1.

In short, an attachment corresponds to a unit of dispatch description. In terms of aspect-

orientation (AO), this roughly corresponds to a pointcut-advice pair, in terms of predicate
1There, some meta-entities are named differently, but the structure of the meta-entities is the same.

Therefore, the interested reader will be able to map the discussion to the new names.
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Figure 2.1: Overview of the application life cycle in ALIA4J-based language implementa-

tions.

dispatching to a predicate method. It should be noted that in some advanced-dispatching

languages the dispatch declaration is not fully localized. For instance the pointcut-advice

definition in AspectJ only is complete together with the instantiation strategy declared for

the containing aspect: In the AspectJ language, aspects are types, similar to classes, and

instances of these types can exist; an advice is comparable to an instance method that

executes in the context of such an aspect instance. In the header of an aspect, a strategy

can be declared for retrieving the aspect instance necessary to execute an advice at a join

point, examples are issingleton() or pertarget. This strategy is defined once per aspect in

AspectJ. But in LIAM models, this definition is part of each attachment.

Action specifies an action to which the dispatch may lead (e.g., an advice or the

predicate-method body). Specialization defines static and dynamic properties of a dis-

patch result to which an action should be attached: patterns specify syntactic properties

of call sites which are affected by the declared dispatch; predicate and atomic predicate

entities model dynamic properties a dispatch depends on (dynamic pointcut designators in

AO terminology). Context entities model access to values in the context of a dispatch, like

the calling object or argument values. Finally, the schedule information models constraints

between multiple actions applicable at the same generic-function call. This includes the

order of their execution, as well as relations like mutual exclusion.

At runtime, FIAL derives a dispatch model for each dispatch site in the program from

all attachments that have been defined. Thereby, FIAL solves the constraints specified as
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Figure 2.3: A dispatch function’s evaluation strategy.

schedule information and derives a single dispatch function per call site from the predicates

of all specializations. This function is represented as a binary decision diagram (BDD) [8],

where the inner nodes are the atomic predicates used in the predicate definitions and the

leaf nodes are labeled with the actions to be executed. For each possible result of dispatch,

the BDD has one leaf node, representing an alternative result of the dispatch. Figure 2.3

shows an example of such a dispatch model with the atomic predicates x1 and x2 and the

actions y1 and y2. The reference [24] provides a detailed explanation of this model.

2.2.1 NOIRIn

FIAL, as the framework of execution environments, has multiple instantiations with different

code generation strategies. For example, the Envelope-based Reference Implementation

(ERIn) weaves code at the Java bytecode level, STEAMLOOMALIA manipulates machine

code and NOIRIn, which is used in the development of the AD debugger, does not perform

code weaving.

NOIRIn performs dispatching by collecting runtime values and invokes actions reflec-

tively according to information stored in LIAM models. Though NOIRIn is less complex

than the weaving execution environments, it can provide all desired information about
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dispatching. Figure 2.4 presents the workflow of deploying an advanced-dispatching dec-

laration and of executing advanced dispatch in NOIRIn. The following list describes each

step in detail.

Figure 2.4: The workflow of performing dispatching in NOIRIn

1. A dedicated importer component adapts the complied source code of an AD decla-

ration program, like an AspectJ program, to a set of attachment models conforming

LIAM and sends these attachments into NOIRIn.

2. An attachment does not take effect until it is deployed. During the process of de-

ployment, NOIRIn extracts the Pattern from the attachment in order to find out all

matched dispatch sites. Then the new attachment is combined with existing dispatch

function of each dispatch site.

3. After the preparation of the previous two steps, the actual application program starts.

When a dispatch site is encountered, e.g., a method is invoked in the scope of user

written code, NOIRIn intercepts this call and collects the call context, like the line

number in which this call happens, the declaring class of the callee, etc. According to

the call context, NOIRIn finds out the corresponding dispatch function.

4. As stated previously, the dispatch function is represented as a BDD. This dispatch

function is evaluated from the root to a leaf according to the call context. When the

evaluation reaches a leaf, it is determined which actions are actually to be performed.

5. For the applicable actions, an order is determined by resolving the constraints of the

associated Schedule Information. Finally, NOIRIn executes all applicable actions in
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the determined order. After all actions have been executed, NOIRIn reads the next

dispatch, starting over at step 3.

2.3 The Java Platform Debugger Architecture

The Java Platform Debugger Architecture (JPDA) [2] is presented in the figure 2.5. It de-

fines a system consisting of two relatively independent layers and a communication channel

between them. From the bottom up, the three components are the Java Virtual Machine

Tool Interface (JVMTI), the Java Debug Wire Protocol (JDWP) and the Java Debug Inter-

face (JDI). The JVMTI is a native interface of the JVM. It allows to check runtime states

of a program, set call-back functions and control some environment variables. The JDWP

is the protocol used for the communication between the debugger JVM and the debuggee

JVM.

Figure 2.5: The architecture of Java Platform Debugger Architecture

The JDI is the highest layer in JPDA and it defines debugging interfaces needed by the

debugger and converts requests to JDWP. Based on these interfaces, the debugger can know

runtime states of the debuggee JVM, e.g., which classes and objects exist in JVM. Besides,

the debugger can control the execution of the debuggee JVM, e.g., suspend and resume

threads, set breakpoints, etc. According to different responsibilities, the JDI can be further

divided into three modules: link module, event and handling module, data module. The

link module sets up the communication channel between the debugger side and debuggee

side. The event and handling module provides the interacting ways between the two sides.

The data module is responsible for modeling data on both sides. In this thesis, an extended
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debugging model is proposed based on the data module. The following paragraphs introduce

the data module in more detail.

The JDI is also called a mirror-base, reflective interface. Almost all other interfaces

inherit the interface Mirror. The mirror mechanism maps all entities including value, type,

field, method, event, state and resources on the debuggee JVM into mirror objects. For

instance, loaded classes are mapped to ReferenceType, objects are mapped to ObjectRe-

ference, primitive values are mapped to PrimitiveValue, all debugging related events are

mapped to Event, requests sent by the debugger are mapped to EventRequest, the debuggee

JVM is mapped to VirtualMachine, etc. Accessing fields or invoking methods of an object

existing in the debuggee JVM can be performed by the debugger in a reflective way, using

the mirrors. The following figure gives a simplified UML class diagram of the JDI model.

Figure 2.6: UML class diagram of a simplified Java Debug Interface model

Mirror reifies a proxy used by a debugger to examine or manipulate some entity in de-

buggee JVM. All most all resources on debuggee JVM can be mapped to mirrors.

Mirrors can access the virtual machine (virtualMachine()) where their counterpart is

defined.

StackFrame mirrors a frame from a debuggee JVM at some point in its thread’s exe-

cution. The lifetime of a StackFrame is very limited. It is available only for sus-

pended threads and becomes invalid once its thread is resumed. StackFrames pro-

vide access to a method’s local variables (visibleVariables()) and their current values

(getValue(LocalVariable)).
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Location reifies a point within the executing code of the debuggee JVM. Locations are

used to identify the current position of a suspended thread. They are also used to

identify the position at which to set a breakpoint. Locations have a declaring class

(declaringType()) and a line number (lineNumber()).

TypeComponent reifies an entity declared within a user defined type which can be a

class or an interface. TypeComponent is the super class of Field and Method. Each

TypeComponent has a declaring type (declaringType()) and a name (name()).

Field reifies a field declared in a type. Each Field has its own type.

Method reifies a static or instance method in the debuggee JVM. Each method has a return

type (returnType()), a list of argument types (argumentTypes()) and a location where it is

declared (location()).

Type reifies a type. A type can be primitive, void or a ReferenceType. Types have a name

(name()) and a signature (signature()).

ReferenceType can be ClassType, InterfaceType or ArrayType. ReferenceTypes can

be obtained by querying a particular ObjectReference for its type. ReferenceType

provides access to static type information such as methods (allMethods()) and fields

(allFields()).

ClassType reifies a class. ClassType extends Type. A ClassType has Fields, Methods,

Constructors, Interfaces, a superclass, subclasses, etc.

Value reifies a typed entity. A value can be primitive, void or an ObjectReference. Each

value has a type (type()).

ObjectReference reifies an object that currently exists in the debuggee JVM. An Objec-

tReference can invoke any method (invokeMethod()) declared in its type.

2.4 The Eclipse Debugger

Eclipse provides a language-independent debug model (called the platform debug model)

which defines generic debugging interfaces that are intended to be implemented and ex-

tended by language-specific implementations. The Eclipse debugger has a mirror of each

relevant runtime value in the execution of the debugged program. The hierarchy of debugged

artifacts is shown in figure 2.7.
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The DebugTarget is a debuggable execution context, in the case of Java a virtual ma-

chine, and it contains several Threads which again contain StackFrames. The StackFrame

is an execution context in a suspended thread and contains Variables. Variable has a Value;

values can be objects with fields, which are also modeled as Variable. The model also defines

interfaces for sending requests, like “Resume” to the debug model elements, and interfaces

for handling events, like reaching a breakpoint.

Figure 2.7: Eclipse Platform Debug Model

In a typical debugging workflow the developer first locates a line in the source code

where he/she assumes an error, e.g., because an exception is thrown at this line, and

sets a breakpoint on that source code line. When the program is started the next time,

the debugger connects to the DebugTarget representing its execution and sends a request

to activate the breakpoint. When the execution reaches the code corresponding to the

breakpoint’s line, the execution thread is suspended, and an event is sent to the debugger

virtual machine, notifying it that the Thread is intercepted at a certain StackFrame. The

debugger can now present this information to the developer, e.g., by highlighting the source

code line that corresponds to the StackFrame and by presenting which Variables are present

at the stack frame. The programmer can inspect the runtime values of these variables which

require some more interaction between the debugger and the debuggee. To control the

further execution of the suspended program, the developer also has different options which

usually include:

Step Into means execution proceeds into any function in the current source statement and

stops at the first executable source line in that function.

Step Over means execution proceeds past any function calls to the textually succeeding

source line in the source scope. “Step Into” and “Step Over” require internal break-

points which are auxiliary breakpoints set by debugger in order to mark some special

places, like method entrance and method exit.

Resume continues execution.

Terminate ceases execution.
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Chapter 3

Motivation

3.1 Problems of debugging Advanced-dispatching programs

From the two examples introduced in section 2.1, we observe that the actual behavior of

an AD program is determined at runtime. Especially in AO languages, the behavior of a

given piece of code can be altered to an arbitrary degree by an aspect in another source

code file. This feature makes AD programs notoriously complex and thus comprehensibility

is decreased.

A debugger is a tool helping a developer to understand program behavior. For those AD

languages whose base language is Java, their development tools use the conventional Java

debugger because programs written by them can be compiled to pure Java bytecode and

can run on a standard JVM. Take debugging an AspectJ program in Eclipse for example,

the inconsistence between language and debugger brings many problems which include the

following ones.

First, the Java debugger can show which action is executed, however, it is unable to

present the reasoning behind choosing this action. Besides, the debugger does not pro-

vide aspect-related information like runtime states accessed during dispatch, e.g., in terms

of dynamic pointcut designators, when the program is suspended at a certain join-point

shadow.

Second, the debugger uses code generated by an infrastructure so that developers may

easily get confused because what is shown is absent in user-written code. For example, a

stack frame corresponding to an advice uses the name generated by the compiler. Listing

3.1 gives an example of a base program and an aspect is presented in listing 3.2. When

p.move() on line 4 of listing 3.1 is called, the before advice in listing 3.2 will be executed.
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The stack frame corresponding to the advice shows logger.ajc$before$aspt logger$1$d9fa4f9c() but

this never appears in the source code.

1 public class Main {
2 public static void main(String[] args) {
3 Point p = new Point();

4 p.move();

5 }
6 }

Listing 3.1: An example of base program

1 import app.Point;

2 public aspect logger {
3 before() : call(* Point.*(..)) {
4 /* do something */

5 }
6 }

Listing 3.2: An example of aspect program

Third, problems like the inability of locating source code are easily encountered. Eaddy

et al. [13] classified this problem as code-location problem. One important purpose of

debugging is locating language constructs in the source code. The compiled code may

undergo a series of transformations during which the source location information is not

maintained. This causes the debugger to show no or the wrong source code, or to show

compiled and woven intermediate code instead of the original source code.

The following example shows how a base program is transformed after weaving. Listing

3.3 shows the bytecode of the line 4 in listing 3.1. After adding an aspect which is presented

in listing 3.2, the bytecode for the same line becomes listing 3.4. Compared with the listing

3.3, the bytecode in listing 3.4 inserts two instructions of method invocation. However,

these two invocations are not written in the source code.

1 aload 1: p

2 invokevirtual Point.move() : void

Listing 3.3: Bytecode of the line 4 in listing

3.1

1 aload 1: p

2 invokestatic logger.aspectOf() : logger

3 invokevirtual logger.ajc$before

4 $aspt logger$1$d9fa4f9c() : void

5 invokevirtual Point.move() : void

Listing 3.4: Bytecode of the line 4 in listing

3.1 after weaving with aspect in listing 3.2

3.2 A Debug Model for Advanced-dispatching Languages

As described in the previous subsection, the Java debugger does not increase program

comprehensibility and it causes many problems when it is used to debug AD programs.
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Therefore, it is necessary to design and implement a dedicated AD debugger that is what

this thesis aims for.

Eaddy et al. [13] proposed an AOP debug model that classifies AOP-specific program

composition techniques and activities, and relates them to the AOP-specific faults they

induce, and specifies criterions that all AOP debugging system should support. Their work

gives me a good guidance about developing an AO-enabled debugger. Besides, it fits well

to the context of my debugger because an AO program is one kind of AD program. In this

section, I adapt and extend this AOP debug model to the domain of advanced-dispatching

and propose a debug model for AD programming.

The AOP debug model has five components: weaving strategies, AOP activities, a

fault model, a definition for debug obliviousness, and debugging criterions. The weaving

strategies component classifies weaving into invasive weaving and non-invasive weaving.

Invasive weaving is further classified into source weaving and binary weaving. Because how

code is woven is not in the scope of this thesis, this component will not be discussed. Besides

the debugging criterions component uses the definition for debug obliviousness, these two

components are merged. The following subsections discuss activities, faults and criterions

respectively.

3.2.1 A Classification of Advanced-dispatching Activities

An AD activity is any program behavior supporting to perform on advanced-dispatching

mechanism. In [13], six AOP activities are classified. Some can be adapted to AD activities

and some are not applicable. To illustrate how concepts of AO activities are migrated to the

AD domain, the following table lists all AOP activities and their purposes. For each AOP

activity, a corresponding AD activity is given in the third column. Following paragraphs

introduce each AD activity in detail.

Dispatch function evaluation is an activity determining at runtime which actions

are going to be performed and in what order. The output of dispatch function evaluation is

a list of actions which are going to be performed. While the output of the dynamic aspect

selection is a list of aspects whose advices are going to be executed. Each action has only

one declaring class or aspect. Therefore, the program composition indicated by outputs

of two activities are the same. The fourth step “Evaluate dispatch function” in figure 2.4

shows when this activity is carried out.

Attachment deployment and undelpoyment is an activity enabling or disabling an

attachment in an execution environment at runtime. Actually, the purpose of the aspect
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AOP activity Purpose AD activity

Dynamic aspect se-

lection

Determines at runtime which as-

pects apply and when

Dispatch function

evaluation

Aspect instantiation Instantiates or selects aspect in-

stances

Attachment deploy-

ment and undeploy-

ment

Aspect activation Alters control flow to execute ad-

vice and provides access to join

point context

Call interception

Advice execution Execution of the advice body Action execution

Bookkeeping Maintains additional AOP dy-

namic state

Bookkeeping

Static scaffolding Static modifications to the pro-

gram’s code, type system, or

metadata

-

Table 3.1: AOP activities and corresponding AD activities

instantiation is deploying aspects and thus it is extended to this activity. This activity can

be mapped to the second step “Deploy attachments” in figure 2.4.

Call interception is an activity switching control flow from user written programs to

the execution environment in order to access call context, evaluate dispatch function and

eventually perform actions. This activity can be mapped to the third step “Intercept a

method call” in figure 2.4.

Action execution is an activity executing an action. The action has a broader scope

because it not only includes advice body but also other ordinary methods. This activity

can be mapped to the fifth step “Reflectively invoke actions” in figure 2.4.

Bookkeeping is an activity maintaining additional AD dynamic state. Similar to the

AO programs, additional states like call stack, calling depth, etc., are needed to be main-

tained. This activity can be scattered around the whole dispatching process and embedded

in other activities.

The activity static scaffolding is not applicable for predicate dispatching languages,

like JPred. Therefore, this activity is discarded in the AD domain. Figure 2.4 shows

a mainstream workflow performing dispatching. All steps except step one which is not

performed in execution environment are classified as activities introduced above.
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3.2.2 Fault model

Each activity introduced in the previous subsubsection may introduce new types of faults

which base programs do not have. This subsection does not aim at listing all possible faults.

Some typical fault examples are given below.

Incorrect dispatch site. An advanced-dispatching is performed/not performed at an

unexpected/expected function call site. This fault is caused by incorrect Patterns and it is

exhibited by activities dispatch function evaluation and call interception.

Incorrect program composition. The relationship between multiple applicable ac-

tions at one dispatch site is incorrect. For example, incorrect advice type (e.g., before,

around), incorrect sequence (e.g., declare precedence). This fault is caused by incorrect

ScheduleInfo and it is exhibited by the activity action execution.

Incorrect context exposure. A context is not exposed as intended to action. This

fault is caused by an incorrect type of the context, like callee, argument, or incorrect value

of the context and it is exhibited by activities dispatch function evaluation and action

execution.

Incorrect functional change. A performed dispatching alters the functionality of

the base program in such a way that it ceases to work properly. This fault is caused by

incorrect action selection or logic errors in actions and it is exhibited by the activity action

execution.

Incorrect attachment deployment and undeployment. An attachment is deployed

or undeployed at an unexpected time that causes incorrect program behavior. This fault is

exhibited by the activity attachment deployment and undelopoyment.

3.2.3 Properties of an Ideal Debugging Solution for Advanced-dispatching

Languages

Based on the properties proposed in [13], discussions about properties required from a

debugging solution for AD programs are given below.

Idempotence. Preservation of the base program’s debug information no matter whether

the advanced-dispatching programs are performed.

Debug obliviousness is defined as “the ability to hide AOP activities during debug-

ging” in [13]. The base program generally performs the most logic and it can be executed

without aspects. Therefore, it is necessary to inspect the execution flow of the base program

alone. However, predicate-dispatching programs uses the advanced declarations as part of

the main logic. Thus, the debug obliviousness in the AD domain requires to ignore all AD
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activities except the action execution. Whether to ignore the action execution should be

handled differently according to specific languages.

Debug intimacy. The ability to observer all activities in their full details. Full detail

means all related debugging information including runtime states, stack trace, breakpoints,

CPU utilization, especially the language-specific information. Considering existing AO

debuggers, some desired language-specific information are missing.

Dynamism. The ability to deploy or undeploy attachments in order to enable or disable

attachments at runtime.

Aspect introduction is defined as an ability introducing a new attachment without

restarting in [13]. In ALIA4J, there is no corresponding entity which can mapped properly

to the concept Aspect, the top element declaring advanced-dispatching is Attachment in

ALIA4J. Therefore, this property is called Attachment introduction in the AD domain.

Runtime modification is defined as an ability to modify code at runtime and execute

the modified part without restarting. This definition does not tell to what extent the

code can be modified. Adding a new aspect can be a modification and deleting all code

can also be a possible modification. From the evaluation of AOP systems in [13], none of

existing systems but their Wicca provides this ability. This property is not considered in

the development of this thesis.

Fault isolation is defined as an ability which automatically determines if a fault lies

within the base code, advice code, or some other AOP activity code in [13]. Actually,

locating a fault is a complicated task which needs strong artificial intelligence. Because,

there is no guarantee that any program is fault-free and the cause of a fault needs analysis

in specific contexts. However, providing all affected places of an entity to narrow down the

analysing scope is feasible. Affection exploration can be deemed as a compensation of

the fault isolation. Besides, it provides another way for developers to better understand

program structure and behavior.

Locating is the ability to locate AD-specific constructs in source code correctly. It

should be noted that locating for constructs present in base programs is classified to idem-

potence.

To summarize, an ideal debugging solution for AD languages should at least provide

the following properties: idempotence, debug obliviousness, debug intimacy, dynamism,

attachment introduction, affection exploration and locating.
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Chapter 4

Approach Supporting Seven

Properties

Based on the seven properties proposed in the previous section, this section discusses how

they will be met in the implementation.

4.1 Idempotence

In ALIA4J, all investigated languages use Java as their base language. So the idempotence

can be interpreted as the ability to debug Java programs. There are already some mature

debugging tools for Java programs, like jdb, or the Eclipse Java debugger. They have

provided many debugging functionalities and section 2.4 describes how to debug a Java

program in Eclipse. The development of AD debuggers emphasizes providing AD-related

debugging information. Therefore, the AD debugger can extend an existing Java debugger

which shares responsibility for debugging Java programs.

In my development, the Eclipse Java debugger is chosen to be the extending base. It

is built based on the Java Platform Debugger Architecture (JPDA) which has two layers,

the debugger side and the debuggee side. Thus, the AD debugger needs to adapt these two

layers into the domain of AD languages.

4.2 Debug obliviousness

In order to provide debug obliviousness, the debugger should be able to identify AD ac-

tivities. Code related to all AD activities except the action execution lies in the NOIRIn
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infrastructure. Therefore, those activities can be ignored by skipping NOIRIn infrastructure

code during debugging.

As discussed in section 3.2.3, action execution is only ignorable for advices in AO pro-

grams. In ALIA4J, every action including advice or methods is composed into an Attach-

ment which has ScheduleInfo. In order to distinguish the execution of advice and methods,

there is a dedicated subtype of ScheduleInfo for normal methods.

The current stepping strategies which include “Step Into”, “Step Over” and “Resume”

are not capable of ignoring execution of specified action. The debugger needs a new stepping

strategy and a possible algorithm is listed below.

1. The debugger obtains all performing actions from the evaluation result at this dispatch

site.

2. The debugger finds the entrance location for each action and adds internal breakpoints

there.

3. When the developer chooses an action to step to, the execution is resumed until it

reaches a desired internal breakpoint.

4. All internal breakpoints added in this process are deleted.

4.3 Debug intimacy

NOIRIn performs all dispatching processes so that it is omniscient to dispatching details,

such as call contexts, dispatch functions. In order to expose this information to the debug-

ger, NOIRIn, as a part of the debuggee program, should provide them at an appropriate

time and in an easy-to-access place. The time can be notified by a special event triggered

when all required information is just updated. The event representing accomplishment of

information updating at the debuggee side can be mapped to a creation of a specific frame

at the debugger side. Thus, the debugger knows that all needed AD-related information is

prepared when this frame is created. The place providing AD-related information should

be visible at this specific frame and data should be organized in a dispatch-site-centric way.

Because NOIRIn infrastructure is also written in Java, AD-related information are mir-

rors of Java constructs after being sent to the debugger side, like ObjectReference. In order

to let this information represent mirrors of AD constructs, a dedicated debug architecture

for AD programs needs to be built and obtained mirrors should be adapted into constructs

of the architecture. For example, an ObjectReference mirroring an Attachment is passed to
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the debugger side through JPDA. The conventional debugger only turns it into a mirror of

a normal object of a class called Attachment. To assign it with specific role of attachment

in the AD debugger, the mirror can be wrapped into a dedicated object representing the

mirror of an Attachment using object composition. Calls to dedicated functionalities of

Attachment can be forwarded to the wrapped ObjectReference. Then the ObjectRefence

uses interfaces defined in JDI to accomplish the required task.

The way presenting obtained information is important for developers because an in-

appropriate way may decreases efficiency significantly. As introduced in section 2.2, the

dispatch function is represented as a binary decision diagram (BDD). Besides, the structure

of LIAM models and relationship between LIAM entities are complicated. Textual descrip-

tion is limited to show this information but a graphical representation can provide more

intuition and comprehensibility.

4.4 Dynamism

NOIRIn provides functions for deploying and undeploying attachments at runtime. So the

debugger side should provide a user interface calling corresponding functions.

4.5 Attachment introduction

An attachment consists of many LIAM entities and each of them needs to be created before

introducing this attachment. Developers who are not familiar with LIAM need to spent

some time learning documentation before creating an entity correctly. To ease the burden of

learning documentation, an attachment creation guide should be provided, such as a panel

or a wizard.

4.6 Locating

The locating ability cannot be achieved by the debugger alone and it needs support from

compiler. Because all debugged entities are outputs of the compiler, such as bytecode, or

LIAM model actual. Some debuggers are able to map the compiled output to the source

code in order to perform symbolic debugging [23]. The mapping uses locations stored in

the compiled output to locate corresponding source code. However, the correspondence

between source code and compiled code is broken because of code transformation. This

problem is described in section 2.1.
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Therefore, LIAM constructs should store locations of the original code before transfor-

mation. Fortunately, NOIRIn does not perform code weaving and thus code locations are

not changed. When location of a certain construct is required, the debugger reads this

information through the underlying architecture introduced in Debug intimacy and then

highlights related source code.

4.7 Affection exploration

The developer should be able to specify which construct needs to be explored and view the

exploring result at the debugger side. The debuggee side should be enhanced with functions

finding out affected places according to a given construct. For example, if the developer

finds that an unexpected result occurs after calling a method, the bug could lie in places

affecting this method or affected by it. Table 4.1 lists some frequently used constructs with

their affected places.

Construct Affected places

Field access sites (read and write), matched attachments, etc.

Method accessed fields, called methods, overriding methods, call

sites, matched attachments, etc.

Class declared fields, declared methods, interfaces, super classes,

subclasses, matched attachments, etc.

Attachment schedule information, action, specializations, matched join

point shadows, attachments sharing the same join point

shadow, etc.

Table 4.1: Affected places for some frequently used constructs
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Chapter 5

Three-layer Debugger Architecture

5.1 Overview of Advanced-Dispatching language Debugger

Architecture

Section 2.2 has introduced the ALIA4J approach for implementing AD languages. ALIA4J

provides a uniform representation of programs written in different AD languages in order to

enable the reuse of implementations between these languages, and it embodies the execution

semantics for AD in a language-independent way. Furthermore, its representation of AD

stays first-class during the execution. Therefore, a debugger for AD languages is presented,

which is based on the ALIA4J approach, in order to improve the tooling landscape for

multiple existing and future AD languages at once. Basically, my work will allow the

developer to debug the ALIA4J representation of AD instead of woven bytecode as in

traditional approaches. The ALIA4J representation is much closer to the original source

code than the woven bytecode, and it can preserve more AD-related debug information.

The Advanced-Dispatching language Debugger Architecture (ADDA) is developed as an

extension to the Java Platform Debugger Architecture (JPDA) [2] based on ALIA4J’s rep-

resentation of advanced-dispatching. Figure 5.1 shows the overall structure of the ADDA.

The Execution Environment component is grey because it is extended with functionalities

supporting debugging. The AD Information Helpers (ADIH) extend an ALIA4J-based ex-

ecution environment with functionality that allows to inspect the AD-related context of the

running program and to interact with the execution of advanced dispatch. The communica-

tion is channeled through the standard Java Platform Debugger Architecture (JPDA) and

the AD-related data is represented by the Advanced-dispatching Debug Interface (ADDI)

25



Figure 5.1: Structure of the Advanced-Dispatching language Debugger Architecture

Model. A debugger front-end for AD can connect to the ADDI and the JDI in order to

debug the execution of AD and of standard Java in a program.

The front-end of the AD debugger is integrated into the Eclipse IDE, although any

IDE with a comparable infrastructure would also be applicable. The AD debugger extends

the Eclipse Java debugger, which is used for the program parts that do not use advanced-

dispatching, with additional user interfaces. These are Eclipse views specific to visualizing

and interacting with ALIA4J’s representation of advanced dispatch in order to satisfy the

properties motivated in section 3.2.3. In some cases, the behavior of existing debugger views

has been changed to adapt to AD features.

The following subsections will discuss each component in detail. Section 5.2 presents the

required extensions to an ALIA4J-based execution environment for communicating with the

debugger. The JPDA has been introduced in 2.3 and section 5.3 shows an extended debug

interface based on JDI that reflect the AD extensions to languages. The user interfaces are

described in section 5.4.
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5.2 Extensions to NOIRIn

5.2.1 Workflow Extension for Enabling Debugging

Section 2.2.1 describes the workflow of deploying an advanced-dispatching declaration and

of executing advanced dispatch in NOIRIn. However, information, like when NOIRIn should

be suspended and then communicate with debugger, what kind of data should be provided

to debugger, where are these data stored, etc. are currently not available in NOIRIn. Based

on the original workflow presented in figure 2.4, figure 5.2 adds some additional steps in the

workflow for supporting debugging in NOIRIn. Steps of the original workflow are put in a

grey box, while other steps are additional.

Figure 5.2: The work flow of intercepting a method call extended with ability supporting

debugging in NOIRIn

After actions to perform have been determined in the step 4, almost all needed infor-

mation including dispatch site, call context, etc., for invoking the next action are available.

This information is wrapped in a Frame object and this Frame is pushed into a Stack

which is stored in a singleton store. Thus, the store concentrates all required AD debug

information and provides the only accessing entrance to the debugger.

An If statement invoking breakpointShadow() is added right after the code where the store

is updated and it is presented on line 6-9 in listing 5.1. The breakpointShadow() is a method

with one statement body which provides an execution point where the program can be

suspended. The breakpoint point is set at the entrance of breakpointShadow() instead of line 8
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because JDI provides an interface returning the entrance location of a specified method.

Besides, the correctness of the returned location is not affected by modifications to the

source file as long as the signature of the method is not changed. Therefore, there is a

specific frame suspending at Interpreter.breakpointShadow() where the data in the store can be

inspected.

1 public class Interpreter extends org.alia4j.fial.System {
2 private String breakpointFileName = ‘‘’’;

3 private int breakpointLineNumber = −1;

4 private Object interpretCallSite(CallContext callContext) {
5 ... /* The store has been updated */

6 if(this.breakpointLineNumber == callContext.callLineNumber &&

7 this.breakpointFileName.equals(callContext.callerFileName)) {
8 breakpointShadow();

9 }
10 ...

11 }
12 //This function is only called by debugger

13 public void configureBreakpoint(String fileName, int lineNum) {
14 this.breakpointFileName = fileName;

15 this.breakpointLineNumber = lineNum;

16 }
17 }

Listing 5.1: Code about how a conditional breakpoint shadow is added and configured

The condition on line 6-7 specifies when the breakpointShadow() is executed and it consists

of a line number and a file name. We assume that the current condition is strong enough to

distinguish different execution points. The initialization shown on line 2-3 sets values that

no point would match. The method configureBreakpoint is only called at the debugger side.

When a call is intercepted at step 3, the debugger can require to suspend the program at

breakpointShadow() for this call. Thus, the debugger reads the call context and passes specific

values of the line number and file name to configureBreakpoint() (3.1). When the program

runs to the breakpointShadow(), a breakpoint event is sent to the debugger (4.2). Then, the

program is suspended and the debugger accesses the store until it asks the debuggee VM

to resume.
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5.2.2 Improvement to NORIn for simplifying debugger implementation

On the debugger side, the debugged entities are mirrors, code using mirrors needs to access

fields and invoke methods reflectively and handle exceptions that may occur during reflec-

tion. To implement some desired functionalities which are not currently provided in the

NOIRIn is troublesome. For instance, our debugger provides a functionality for undeloying

a single attachment at runtime. NOIRIn offers a method undeploy(Attachment...) which is used

for undeploying a list of attachments. To call this method at the debugger side, passing

one argument which is the mirror of the attachment to undeploy to this method causes a

type incompatible error. A correct argument should be the mirror of an array with one

element which is the mirror of the attachment. Besides the code for creating this argument

and invoking the method reflectively, some exceptions relating to Reflection need to be

handled. It is a tedious and error-prone process to write code like this. Therefore some

Advanced-Dispatching Information Helpers (ADIH) are implemented in NOIRIn such that

each task can be performed just by one reflective method invocation. In this example, a

method undeploySingle(Attachment) is implemented to accomplish this task in NOIRIn.

Atomic predicate are evaluated by passing context values to the method isSatisfied during

the evaluation of the dispatch function. There is no variable saving the evaluation result

because each atomic predicate is evaluated exactly once at a dispatch site. The next time

when an atomic predicate is evaluated, context values are updated. There is no guarantee

that the evaluation result would remains the same. When the evaluation result is required

by the debugger, isSatisfied needs to be invoked again in the reflective way and different atomic

predicates need different contexts. Therefore, a field evaluateResult is added to store the latest

evaluation result. The evaluateResult is updated as soon as the corresponding atomic predicate

is evaluated. The method isSatisfied returns a boolean value so that evaluateResult has three

values which represent a true result, a false result and a unevaluated state respectively. The

mirror of evaluateResult at the debugger side has one more value representing an unrequested

state.

Besides, NOIRIn does not always provide interfaces for accessing AD declaration entities

in a way suitable for debugging. Sometimes, further tasks need to be performed to adapt

provided data to a required form. For instance, the debugger needs to find all matched

methods in a specified class according to a Pattern of an Attachment. NOIRIn only provides

an interface for reading the Pattern, the function matchedClassMethods(MethodPattern, Class) is

added for this purpose. Another example is that the debuggee side puts AttachedAction

objects in the dispatch strategy. However, the dispatch strategy on the debugger side is
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designed to store Attachment. Therefore, a helper function attachedAction2Attachment() for

finding the related Attachment according to an AttachedAction has been implemented.

All other information helpers and their usages are introduced below. But it should be

noted that more ADIHs will be added with further development of the debugger.

getDeployedAttachments() returns an array of deployed attachments. The deployed attach-

ments are stored in a Set in NOIRIn, this function performs the task transforming a Set to

an Array.

getAttachmentsOnClassMembers(String) returns all attachments matching any member of a

specific class. The class is specified by the fully qualified class name.

getAttachmentsOnMethod(String) returns all attachments matching a specific method. The

method is specified by a string of the method signature.

attachedActionSet2Attachments(GenericFunction, Set) performs a task finding corresponding at-

tachment for each attached action in a given set and returns an array of the retrieved

attachments.

clazzForName(String clazzName) returns a loaded class in the debuggee JVM according to a

given class name.

deploySingle(Attachment) deploys a given attachment.

5.3 Advanced-Dispatching Debug Interface

The Advanced-dispatching Debug Interface (ADDI) extends the Java Debugging Interface

(JDI) by adding advanced-dispatching-related features to some existing entities and in-

troducing new advanced-dispatching related entities. The structure of ADDI is presented

in figure 2.6. Interfaces presented in dark grey diagrams are defined in JDI. Interfaces

presented in light grey diagrams are entities defined in JDI but extended with advanced-

dispatching related features. While the rest of interfaces presented in white diagrams are

new interfaces introduced in ADDI. Some JDI entities like interfaces plus its methods are

introduced in section 2.3, only extended parts are discussed in following paragraphs. In

order to distinguish classes from debuggee side and debugger side, class in type writer

style is from debuggee side and italic style is for debugger side.

A dispatch site, e.g. a field access, or a method invocation, may be matched by a pattern

of an attachment. So the TypeComponent is extended with a method matchedAttachments()

providing a list of matching attachments. A Field can be read or written so that it is

extended with methods (readMatchedAttachments() and writeMatchedAttachments()) providing a

list of attachments matching its reading and writing respectively. Similarly, ClassType is
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Figure 5.3: UML class diagram of Advanced-Dispatching Debug Interface (ADDI). Inter-

faces presented in dark grey diagrams are defined in JDI. Interfaces presented in light grey

diagrams are entities defined in JDI but extended with advanced-dispatching related fea-

tures. Interfaces presented in white diagrams are new interfaces introduced in ADDI.
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extended with a method matchedAttachments() providing a list of matching attachments of

its members. In order to leave JDI intact, these methods are introduced in an AspectJ

program.

BaseFrame and DispatchFrame reify different stack frames according to where it resides.

BaseFrame denotes a frame which is in the user-written code. DispatchFrame is a specific

frame which resides at the breakpointShadow() introduced in section 5.2.1 where the dispatch

strategy has been computed but not yet been performed. According to the execution flow

in NOIRIn, a BaseFrame is always accompanied with a DispatchFrame. BaseFrame can find

out the accompanying DispatchFrame by invoking method findDispatchFrame(). DispatchFrame

can provide dispatching information like dispatch site (genericFunction()) and call context

(callContext()).

ADMirror reifies an AD related entity and it is the root interface for all other inter-

faces in white diagrams. It wraps an ObjectReference which is the mirror of an ac-

tual object in the debuggee program. Mostly, the “mirror-wrapper” ADMirror provides

AD related information and functionalities by accessing fields or invoking methods of the

wrapped ObjectReference. If the required data cannot be provided by the wrapped

ObjectReference alone, then the request needs to use ADIH.

GenericFunction reifies a dispatch. The generic function is a unique identification, e.g.,

signature, which may be shared by multiple methods. A GenericFunction has a dispatch

strategy (dispatchStrategy()) and an array of Attachments (attachmentsToPerform()) whose actions

are going to be performed at the current call site. The dispatch strategy stores a dispatch

function represented as a binary decision diagram (BDD) which is introduced in section 2.2.

Nodes of the BDD are instances of Vertex which is either Split or Sink. Split represents

an inner node which has two children nodes (high() and low()) and an AtomicPredicate.

During the evaluation of the dispatch strategy, an evaluating Split chooses one of its child

node as the next evaluating node according to the value of atomicPredicate.evaluateResult(). The

evaluation ends when a Sink is reached. Sink represents a leaf node containing an array of

Attachments.

Attachment reifies an attachment. It provides interfaces for accessing components of

Attachment. If all Specializations are matched, the Action will be invoked at the time

that the ScheduleInfo specifies. Besides, it can provide a list of TypeComponents which

match a pattern of the attachment and a mirror of the actual method that its Action

implies. A Specialization has an Expression specifying a residue, a Pattern specifying

a joinpoint shadow and several Contexts which need to be exposed. An Expression is either

a PredicateExpression which has two sub-expressions or a AtomicExpression containing
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an AtomicPredicate. ScheduleInfo has a time (time()) describing the relationship between

its attachment’s action and the dispatch site, e.g., before, around and after. Currently, only

one type of Action is implemented — MethodCallAction. Other types of actions includes

FieldReadAction, FieldWriteAction, etc. MethodCallAction can find out the concrete

method in term of the mirror of an instance of class java.lang.reflect.Method.

Each interface introduced above has an implementation type which is named with the

interface name appended with “Impl”. For example, the implementation type of ADMirror

is ADMirrorImpl. Basically, ADMirrorImpl and its subtypes expose all declared fields

(getDebugFields()) to the debugger. However, some types have auxiliary fields which are not

necessary to be exposed. Therefore, ADMirrorImpl provides a function filteredDebugFields()

which can be called by its subtypes to choose exposed fields. As shown in figure 5.4, the

MethodCallActionImpl only exposes field method by using filteredDebugFields().

Figure 5.4: Implemtation details of ADMirror and its subtype MethodCallAction

To reduce the times sending requests to the debuggee JVM, almost all requested results

are stored in fields. Therefore, repeated requests on the same field can be returned from

local memory. Like in figure 5.4, field method stores the request result for the first time and

subsequent requests can be replied directly from this field. A method canRequest(Object) is

provided in ADMirrorImpl to check if a field has not been requested and it returns true

when both requester object and requestee object are not null.
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If one field of a class is requested for the first time, all fields of this class are requested.

Because probably the next request is on another field of this class. For example, the user

interface which will be introduced in the next subsection always shows all fields’ values of

an object at the same time.

There are much more classes defined in ALIA4J than those mirrored and wrapped to

ADDI. Theoretically, every ALIA4J class can be mapped a mirror in the ADDI model. But

it is tedious and unnecessary to mirror the whole structure. There are three ways used for

simplifying the ADDI model.

Reducing classes. In the implementation of LIAM model, Sink stores AttachedAction

which is derived from Attachment. AttachedAction is replaced with Attachment in

ADDI in order to decrease the number of classes.

Masking details. Pattern has six subclasses and one of them is MethodPattern. A

MethodPattern consists of seven sub-patterns including a ModifiersPattern, a

TypePattern, etc. Because the current implementation has not used these informa-

tion so that providing these details is redundant. In the implementation of ADDI,

Pattern temporarily uses a string field patternString to mask all underlying details. But

in the future work, further information are required and this field will be replaced

with a concrete ADMirror. Then, this approach is used to mask more specific details.

Reusing JDI. Every ADMirror instance wraps an ObjectReference, but not every Objec-

tReference instance has to be wrapped as an ADMirror. ADMirror can use ObjectRe-

ferences as its fields and further details can be handled by well-defined JDI. Compared

to the previous approach, this approach reveals all details.

5.4 User Interface

The application layer presented in figure 5.1 consists of several views, like the Variables and

Expressions views which are provided by the default Java debugger in Eclipse. The AD

debugger adds three views, namely the Advanced Dispatch view, the Advanced-Dispatching

Structure view and the Deployed Attachments view. Since the local behavior in AD pro-

grams can depend on complex dynamic context, the Advanced Dispatch view shows which

context is accessed during dispatch and in which way. This is necessary for the developer

to understand which actions are/are not executed at a dispatch and why this is the case.
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5.4.1 Advanced Dispatch view

The Advanced Dispatch view is the central view of the debugger showing runtime informa-

tion about the dispatch at with the debuggee is currently suspended. It lets the developer

inspect the runtime values of AD entities in the current frame, foresee the program com-

position flows of the next generic function invocation, directly step to any action which is

going to executed, etc. All values are presented textually in a tree viewer. The dispatch

function, which is represented as a BDD in ALIA4J, is additionally presented graphically.

ALIA4J’s dispatch strategy is a special form of a branching program, for which a graphical

representation should be intuitive to the developer.

Figure 5.5: A snapshot of the Advanced Dispatch view showing the graphical representation

for a dispatch strategy

A snapshot of the Advanced Dispatch view is given in the figure 5.5. The left window

frame gives a graphical representation of the dispatch function for the next dispatch. The

root node represents an AtomicPredicate and two leaf nodes show different program com-

position flows according to the evaluation result of the AtomicPredicate. The bold lines

indicate the actual evaluation result and actions which are going to be performed. From

this view, the developer can clearly see why and when the advice Aspt.before() is executed.

In order to show ADMirror instances on labels in the graphical representation, ADMirror

need a function returning a string describing its content in an intelligible way. As shown in

listing 5.2, a LabelTrait aspect adds a desired function toLabel() to ADMirror by using a state-

ment declare parents. ADMirror.toLabel() gives a default implementation and Split.toLabel() over-

rides it with a more specific behavior. Function toLabel() is not directly added to ADMirror

because it is totally application-specific. How an entity is presented has nothing to do with

what it is and different AD debugger implementations may use different representing ways.
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1 public aspect LableTrait {
2 public interface ILabelEntity {
3 public String toLabel();

4 }
5 declare parents : ADMirror extends ILabelEntity;

6 public String ADMirror.toLabel() {
7 return this.underlyingObjectRef().toString();

8 }
9 public String Split.toLabel() {

10 return this.atomicPredicate().toMirrorString();

11 }
12 //...

13 }

Listing 5.2: LabelTrait aspect is added in order to present ADMirror instances in graph

At the top right of the view, a “StepTo” button is provided for suspending the program at

any performing action. Section 4.2 has described how to realize this new stepping strategy. If

the execution steps to Aspt.before(), the dispatch function uses green color to indicate which

one is the current executing action. This is shown in figure 5.6. Besides, all elements in the

graph are appended with an arrow where related details can be expanded if developer clicks.

In this way, tree-like details are flattened in this graph and efficiency for detail inspection

is increased.

Figure 5.6: The dispatch function can show the current executing action and provide de-

tailed inspection for each element.

Considering the complexity and importance of Attachments, the Advanced Dispatch

view also provides a graphical representation for Attachments. As shown in figure 5.7, the

developer can right-click an Attachment in the views’s tree and select “Show graph”.
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Figure 5.7: A snapshot of the Advanced Dispatch view showing the graphical representation

for an attachment

5.4.2 Advanced-Dispatching Structure view

The Advanced-Dispatching Structure view assists the developer to explore static AD infor-

mation within the project scope, i.e., all dispatching declarations in the program as well as

all the generic functions in the program. This view also allows the developer to navigate

from a dispatching declaration to the affected generic functions and vice versa. In some

cases, a method may be matched by multiple Attachments. However, this information can

not be shown in the Advanced Dispatch view in an explicit way. Figure 5.8 shows how the

Advanced-Dispatching Structure view explores the affection of an AD entity. In this figure,

the Attachment matches the method Base.foo() which is matched by only one Attachment.

Figure 5.8: A snapshot of the Advanced-Dispatching Structure view

The UML diagram of the model underlying this view is shown in figure 5.9. CrossRef-

Target adapts the exploring target object into an instance of CrossRefSubject because the

view does not present CrossRefTarget. Instead, it starts at a CrossRefSubject. A CrossRef-
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Subject has a list of named Relations and each Relation has a list of CrossRefSubjects. In

this way, the exploration can be performed between these two types infinitely.

Figure 5.9: UML diagram of the model behind the Advanced-Dispatching Structure view

5.4.3 Deployed Attachments view

In order to dynamically deploy and undeploy attachments during runtime, the Deployed

Attachments view is provided. It shows a textual representation of all attachments that

are defined in the executing program together with a check box indicating whether the

attachment is currently deployed or not. Unchecking or checking one of the items manually

will lead to undeployment or deployment of the corresponding Attachment in the debugged

program. A snapshot of the Deployed Attachments view is given in figure 5.10

Figure 5.10: A snapshot of the Deployed Attachments view

For introducing new attachments at runtime, an attachment creation panel is provided

when pressing the button “Add attachment” on the top right of the view. As figure 5.11

illustrates, pattern, expression, context, action, schedule are required to create a new at-

tachment. Currently, simple panels for creating an attachment and its method pattern are

shown in figure 5.11 and figure 5.12 respectively.
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Figure 5.11: A snapshot of the attachment

creation panel
Figure 5.12: A snapshot of the method pat-

tern creation panel
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Chapter 6

Evaluation

To demonstrate the usefulness of the presented debugger, a walkthrough of one debugging

session is presented. And then how well each property is met in the implementation is

discussed.

6.1 An example

Supermarkets offer special prices for certain items and there are two types of promotion

prices in this example. One type is used when an item is on sale, its price is decreased ten

percents. Another type is used when a customer has enough credits obtained from previous

shoppings, he can get one euro bonus. If two types are applicable, the price of the item is

first deducted by the constant bonus and then cut down buy ten percents. Let us call it

double-cut price. For example, the double-cut price for a 10-euro item is (10−1)∗0.9 = 8.1

euro.

In a supermarket system, an aspect in listing 6.1 is used for handling special prices. The

first advice from line 4 - 6 sets price of item which is on sale. The second advice from line

7 - 9 is for the bonus price.

1 public aspect SpecialPrice {
2 pointcut itemGetPrice(Item i) :

3 call(* Item.getPrice()) && target(i) && !within(SpecialPrice);

4 before(Item i) : itemGetPrice(i) && if(i.isOnSale()) {
5 i.setPrice((float) (i.getPrice() * 0.9));

6 }
7 before(Item i) : itemGetPrice(i) && if(i.isBonus()) {
8 i.setPrice((float) (i.getPrice() − 1));

9 }
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10 }

Listing 6.1: A code example of an aspect

Running the program in listing 6.2, the printed price is 8.0 euro instead of the expected

8.1 euro.

1 public class Main {
2 public static void main(String[] args) {
3 Item item = new Item();

4 item.setPrice(10);

5 item.setBonus();

6 item.setOnSale();

7 System.out.println(item.getPrice()); // unexpected price

8 }
9 }

Listing 6.2: Main

Following list shows the process how to use the AD debugger finds out the bug.

1. Set a breakpoint at line 7 in listing 6.2 and launch the AD debugger.

2. The line contains multiple dispatch site. First the field System.out is read, next the

method Item.getPrice is called and finally PrintStream.println is called. Thus, when the

program is suspended at line 7, the developer must step over the first dispatch to

suspend the JVM at the dispatch of item.getPrice().

3. Open the Advance Dispatch view and press “Show dispatch” button.

4. The dispatch function is shown in the view and it is given in figure 6.1. The bold

lines tell the developer that three actions are going to be executed at this dispatch

site. However, the order of the two advices is wrong according to requirements. The

bug is found and developer can reverse their literal order to fix this bug.

This example introduces an incorrect program composition fault which occurs in the

activity dispatch function evaluation. Only two advices from the same aspect are involved,

the bug may be easily found by reading code. However, if more advices match the same

call site and they are from different aspects, the conventional debugger is unable to show

the program composition explicitly so that so that the faults become less obvious.
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Figure 6.1: The dispatch function when Item.getPrice() is called in listing 6.2

6.2 Capabilities and Limitations

6.2.1 Idempotence

Capabilities. The AD debugger extends a conventional Java debugger, all required de-

bugging information for Java programs can be provided by using the Java debugger.

Limitations. Because of a lack of documentation about the Java debugger plug-in

in Eclipse, unexpected behavior occurs in the implementation when using Eclipse platform

debug model. For example, variables in frames cannot be retrieved anymore after activating

the extended debugger. This problem decreases the ability of idempotence. One possible

reason of this bug is that Eclipse infrastructure has its own way handling stack frames.

When altering creation of a StackFrame to creation of a BaseFrame or a DispatchFrame

by using AspectJ, Eclipse loses the consistency between the platform debug model and the

underlying debug architecture.

Summary. This property is supported but hampered by unknown technical problems.

6.2.2 Debug obliviousness

Capabilities. As described in section 5.4, the AD debugger adds a new step strategy which

is stepping to the entrance of any performing action at a dispatch site. Which action to

step to is chosen by developer at runtime so that the developer can decide whether to apply

obliviousness at each dispatch site.
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Limitations. To apply the new step strategy, the debugger needs inspection of the

evaluation result at each dispatch site. Otherwise, there is no way foreseeing performing

actions at a certain dispatch site. That means the debugger is unable to ignore all AD

activities.

Currently the developer is required to add breakpoints manually and the debugger checks

whether there is a breakpoint at the required location before performing the new stepping

strategy.

Summary. This property is partially supported.

6.2.3 Debug intimacy

Capabilities. As introduced in section 5.2, AD-related debug information are provided at

a specific frame. The debugger presents all obtained information in a tree view and uses

a graph for some complicated constructs. At a certain dispatch site, provided information

includes:

1. The location and call context of the dispatch site.

2. The dispatch function with its all related constructs, such as predicates and actions.

3. The evaluation result indicating which actions are going to be performed, in what

order and why.

4. All currently deployed attachments in system.

Limitations. The debugger uses three ways simplifying the debug architecture and

masks currently unimportant details. This is just a temporary measure for fast development.

Summary. This property is fully supported.

6.2.4 Dynamism

Capabilities. As shown in section 5.4, the Deployed Attachment view is implemented for

this property. Attachments can be deployed and undeployed by checking or unchecking

items shown in this view.

Limitations. Currently, there is no place storing created and then undeployed attach-

ments in NOIRIn. However, the Deployed Attachment view only shows deployed attach-

ments. Unchecked items will be removed if the view is refreshed so that the attachment it

represents cannot be deployed again unless being recreated.

Summary. This property is supported but can be improved.
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6.2.5 Attachment introduction

Capabilities. Panels are provided for creating and introducing new attachment at runtime.

Limitations. These panels only create limited attachments and following paragraphs

discuss challenges specifying a complete attachment by using panel.

Patterns can be classified into method patterns, field patterns, etc. Each pattern can

be divided into more specific elements. Take the method pattern for example, it consists of

patterns of modifiers, return type, declaring class, method name, parameters and exceptions.

Besides, each pattern may have wildcards so that the difficulty of checking whether specified

patterns are valid or not is significant.

To specify a complicated expression with nested sub-expressions, a module creating a ba-

sic expression which contains an atomic predicate and a module constructing the expression

with created basic expressions are required. One of the challenges is that the constructing

module needs a flexible way adding, editing and deleting relationships between expressions,

such as and and or.

There are various kinds of context and each kind may requires different auxiliary vari-

ables, like the argument context needs the index of the argument. Besides, the context

should be compatible with the specified pattern, e.g. the dispatch matched by a field read

pattern does not have a argument context.

The challenge for specifying actions is checking whether the given action exists or not.

Using the content assistant may help to decrease the possibility specifying a wrong action.

Finally, scheduleInfo is relatively easier because it only requires schedule time and priority.

Summary. The current AD debugger does not fully support this property.

6.2.6 Locating

Limitations. The locating here only means the ability locating AD constructs. Current

development is carried out on intermediate model level instead of source code level. The

compiling is bypassed so that no location information is stored.

Summary. This property is not supported but one solution is given in chapter 7.

6.2.7 Affection exploration

Capabilities. An Advanced-Dispatching Structure view is provided for supporting this

property. Developer can use this view to find out attachments matching a type component,

attachments matching a class, action that an attachment performs, etc. Table 4.1 has listed

affected places for some frequently used constructs. Affected places of an entity is actually
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an open list and some of them can be explored by other tools, like the Hierarchy view in

Eclipse. Therefore, the Advanced-Dispatching Structure view only selects elements related

to advanced-dispatching as exploring target.

Limitations. Attachment is currently unable to find out matched type components

according to a pattern with wildcard names, such as *.set*(..).

Summary. This property is basically supported.

6.2.8 Summary

The following table summarizes the discussion above and shows how well each property is

supported in the AD debugger.

Property Fully sup-

ported

Partially

supported

Not sup-

ported

Idempotence
√

Debug obliviousness
√

Debug intimacy
√

Dynamism
√

Attachment introduction
√

Locating
√

Affection exploration
√

Table 6.1: How well each property is supported in the implementation
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Chapter 7

A Solution for Supporting Locating

As explained in section 3.1, code may be transformed after an advanced-dispatching pro-

gram is compiled. The location information stored in a class file is generated from the

transformed code. This leads the conventional debugger to show wrong source locations

during debugging. Section 3.2.3 has pointed out that the locating is one the most impor-

tant functionality for debuggers. Section 6.2.6 explains why locating in the AD debugger is

currently not implemented. In this section, a solution is designed for supporting locating.

NOIRIn performs weaving at the model level during runtime instead of at code level.

Therefore, all location information should be stored in LIAM entities instead of class files.

LIAM is built based on semantics which describes the behavior that a computer follows

when executing a program in the language [16]. Different AD languages perform same

dispatching behavior in different syntax. However, syntax constructs are not shared by all

AD languages. Take the listing 2.1 and listing 2.2 for example, they will be transformed

into LIAM models much the same in ALIA4J. In the AspectJ example, the time scheduling

the advice is explicitly specified as “around”. While the schedule time is implicit in the JPred

example.

Besides, a LIAM construct is likely involved with multiple locations. For instance, an

atomic predicate in the attachment corresponding to the AspectJ example requires that the

first argument is an instance of class Open. The argument and required type are specified

separately. Correspondingly, several location ranges should be given for describing the

location of one LIAM entity.

Figure 7.1 presents a structure using the Composite pattern [15] in order to provide

a feasible solution for storing location information. An interface Locatable is introduced

and it is a super interface of LIAMConstruct, LocationRange and ImplicitLocation. All
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classes of LIAM constructs, like Attachment, AtomicPredicate, etc., should inherit class

LIAMConstruct. LIAMConstruct has a field debugInfo containing a name of the file where

this construct lies and a list of Locatable entities. Besides, LIAMConstruct has a method

involvedLocations() returning all involved LocationRanges. A LocationRange has two Loca-

tionPoints representing a start position and an end position respectively. A LocationPoint

consists of a line number and an offset within that line. For a construct which does not have

an explicit source location, it is assigned with a ImplicitLocation as its symbolic location.

Figure 7.1: UML class diagram about adding debugInfo into LIAM constructs

Take the listing 7.1 for example, table 7 shows how debugInfo in each construct stores

location information. Some notations are used in the table for simplification. “FN” means

fileName, curly bracket “{}” represents a list, rectangular bracket “[]” represents a Loca-

tionRange and parenthesis means a LocationPoint. For example, “{[(1,2),(2,5)]}” describes

a list with one element which is a location range. This location range starts at the 2nd

character of line 1 and ends at the 5th character of line 2.

1 public aspect Aspt {
2 before(Square s) : call(* Shape.intersect(..)) && args(s) {
3 s.printNotification();

4 }
5 }

Listing 7.1: A code example of an aspect
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Construct DebugInfo Related Code

attachment

FN, {scheduleInfo,

specialisation[0],

methodCallAction}
scheduleInfo FN, {[(2,3),(2,8)]} before

specialisation[0] FN, {methodPattern,

basicExpression,

argumentContext}
methodPattern FN, {[(2,27),(2,47)]} * Shape.intersect(..)

basicExpression FN,

{instanceOfPredicate}
instanceOfPredicate FN, {argumentContext,

[(2,10),(2,17)]} Square s

argumentContext FN, {[(2,36),(2,41)]} args(s)

methodCallAction FN, {[(2,61),(4,3)]} { s.printNotification(); }

Table 7.1: Locations of each LIAM construct generated from code in listing 7.1

To obtain all related location ranges of a LIAM construct, this construct needs to ag-

gregate all location ranges of each Locatable entity stored in its debugInfo. The process

recursively aggregates location ranges until a LocationRange or an ImplicitLocation is met.

Take the instanceOfPredicate in table 7 for example, it relates two locatable entities, an

entity specifying argument context and a location range contains Square s in the source code.

The first entity argumentContext has only one involved locations which contains args(s).

Therefore, the instanceOfPredicate has locations {[(2,36),(2,41)], [(2,10),(2,17)]} and relates

to code Square s and args(s). An implementation of LIAMConstruct.involvedLocations() is given in

the following listing.

1 public class LIAMConstruct {
2 private DebugInfo debugInfo;

3 private List<LocationRange> locations = new ArrayList<LocationRange>();

4 public List<LocationRange> involvedLocations() {
5 List<Locatable> lctbs = this.debugInfo.getLocatables();

6 for(Locatable lctb : lctbs) {
7 if(lctb instanceof LIAMConstruct) {
8 LIAMConstruct cons = (LIAMConstruct)lctb

9 this.locations.addAll(cons.involvedLocations());
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10 } else if(lctb instanceof LocationRange) {
11 this.locations.add((LocationRange)lctb);

12 } else { // this locatable entity does not have location

13 // do nothing

14 }
15 }
16 return locations;

17 }
18 }
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Chapter 8

Related Work

The proposed AD debug model is inspired by the work of Eaddy et al. [13] They implemented

a tool called Wicca based on the AOP debug model. Wicca is a dynamic AOP system

for C# applications that performs source weaving at runtime. The source code used in

debugging is the woven source code and only contains Object-Oriented (OO) concepts. The

AD debugger is designed only for Java based languages. It uses source code written by

developer as the source view and defines debugging constructs in terms of AD abstractions,

such as attachment, action.

AspectJ Development Tools (AJDT) [3] enables Eclipse platform to build, edit, debug

AspectJ programs. It provides a lot of features decreasing the effort in understanding and

coding AspectJ programs and the Aspect Visualiser and Cross References view are most

representative ones. The Aspect Visualiser is used to visualize how aspects were affecting

classes in a project in a “bars and stripes” style representation. The Cross References

view is used in AJDT to show AspectJ crosscutting information, such as when a Java

method is affected by advice. However, the debugger in AJDT is problematic because

the conventional Java debugger is used and related problems are described in section 3.1.

Compared to the AJDT, the AD debugger provides AD-specific information for extended

programs and explores affection of an entity in a broader scope.

Borger et al. [11] found the pointcut-advice models of Java-based AO-technologies, such

as AspectJ, JBoss AOP, and Spring AOP are very similar and thus defined a common

debugging interface: Aspect-Java Debugging Interface (AJDI). The AJDI interface aggre-

gates JDI mirrors and the information about aspect related structure and behavior. It is

mentionable that they created events for dynamic AOP and events related to joinpoints

and advices by transforming AJDI breakpoints into JDI breakpoints. Based on the AJDI,
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they built up Aspect Oriented Debugging Architecture (AODA) which supports runtime

visibility and traceability of aspect-oriented software systems. Compared to their work, the

AD debugger is built for more general concepts which are also applicable for predicate-

dispatching languages. However, locating is relatively easier in AODA because constructs

defined in the architecture are language-specific.

AD-specific information provided by tools or systems for AD languages are not only

provided as online debuggers as the work presented in this thesis. These other approaches

can be used as auxiliary approaches to understand program behavior or structure during

debugging.

Pothier et al. [21] implemented an AO debugger based on an open source omniscient

Java debugger called TOD [22]. The TOD records all events that occur during the exe-

cution of that program and the complete history which is presented in terms of bytecode

can be inspected and queried offline after the execution. In order to support full debugging

intimacy, TOD registers the outcome of all the tests that occur during that activity. For

enabling debug obliviousness, they used a tagging scheme to identify different aspect activ-

ities, like advice execution. Based on characters of omniscient debugger, TOD is extended

to provide aspect murals that show the activity of an aspect during the execution of the

program. They also provide a view showing the execution history of the join point shadows

of a particular pointcut so that which occurrences of join points matched and which ones

did not can be viewed.

The JPred [19] Eclipse plug-in provides a view showing implication relationship between

predicates used for methods sharing the same signature. It indicates that a method with

a more specific predicate has a higher priority to be executed. Take the JPred program in

listing 8.1 for example, the implication relationship is shown in figure 8.1. Compared to

this view, the graphical representation of dispatch function decomposes each predicate into

a set of atomic predicates and then repeated ones are removed. As shown in figure 8.2,

it shows the evaluation order of predicates instead of the relationship between them. In

contrast to our online debugger, the JPred plug-in only statically shows the decision process

of dispatch.

1 class Test {
2 void m(i) {}
3 void m(i) when i==0 || i==1 {}
4 void m(i) when i==0 {}
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5 }

Listing 8.1: A JPred program example

Figure 8.1: JPred predicate implication for

method m() in listing 8.1
Figure 8.2: Graphical representation of the

dispatch function when m() in listing 8.1 is

called in the AD debugger

CaesarJ [4] is a Java based programming language, which facilitates better modularity

and development of reusable components. The components are collaborations of classes, but

they can modularize crosscutting features or non-functional concerns. CaesarJ Development

Tools (CJDT) extends the Eclipse’s JAVA Development Tool (JDT) plug-in with CaesarJ

specific features. CJDT combines the crosscutting relationship with class member structure

in the Outline view. Like the AJDT, the CJDT also uses the Java debugger because CaesarJ

programs can be compiled into Java bytecode. Therefore, language-specific features cannot

be shown and source locations are lost in some cases.

JAsCo [1] is an advanced AOP language tailored for the component-based field. It makes

aspects reusable and provides a strong aspectual composition mechanism for managing

combinations of aspects. Besides, it allows to add, change and remove aspects from the

system at runtime. JAsCo Development Tools (JAsCoDT) is a tool for editing, running and

debugging JAsCo-enabled applications. JAsCoDT provides an Introspector which displays

the connectors found within the system. It also has a Joinpoint Lookup view which is used

for statically exploring matched join point of a hook instantiation. In the AD debugger,

the Deployed Attachment view is similar to the Introspector view, attachments can be

activated or deactivated by checking or unchecking. Compared to the Joinpoint Lookup

view, the Advanced-Dispatching Structure view can find not only matched type components

for a given attachment but also the other way around.

The approaches presented above all target specific general-purpose programming lan-

guages of the aspect-oriented or predicate-dispatching paradigms. There is another field
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of related work, namely work that aims to provide language-specific debugging support for

domain-specific languages (DSLs). Since the ALIA4J approach also can be used to imple-

ment domain-specific language [6], I will consider this kind of related work in the future.

The TIDE [25] environment is a generic debugging framework that can be instantiated

for new DSLs. While it simplifies the development of a debugger for a new language,

it cannot take the complete effort from the language developer. In contrast, my work

provides a completely generic solution for any language that is implemented in terms of

ALIA4J. Furthermore, TIDE does not specifically support advanced-dispatching features.

Nevertheless, it enables a more language-specific user interface while the user interface in

my work only provides visualizations of ALIA4J’s abstractions.

The IDE Meta-tooling Platform (IMP) [5] is an Eclipse project aiming at providing meta-

implementations of typical IDE tools. Examples are a re-usable infrastructure for syntax

highlighting, refactoring support, semantic or static analyses, execution and debugging.

Their focus is on providing an infrastructure for the IDE integration and the graphical user

interface, but not on providing an infrastructure for the runtime part of actual debugger

implementations.
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Chapter 9

Conclusions & Future Work

The behavior of an advanced-dispatching (AD) program is determined at runtime and it

may be totally different with what is read from a source-code fragment. A debugger is

an important tool for developers to understand the program behavior. However, problems

occur when using conventional debuggers to debug AD programs, like loss of AD-related

information, showing transformed code instead of source code, locating source code wrongly.

In order to design and implement a debugger for AD programs, a dedicated debug model

has been proposed based on Eaddy’s work [13] and it consists of three components. In this

model, five AD activities have been classified and each of them introduces new types of

faults that are absent in the base program. Based on the activity classification and the new

fault types, seven properties that an ideal AD debugger should support are proposed. They

are idempotence, debug obliviousness, debug intimacy, dynamism, attachment introduction,

affection exploration and locating. This thesis has discussed how to meet these properties in

the developing AD debuger and come to a decision extending the Java Platform Debugger

Architecture (JPDA). Extensions to the JPDA concentrate on the debuggee side and the

debugger side. On the debuggee side, the original workflow of the execution environment

NOIRIn has been extended with step that provides support for the debugger side to inspect

desired information. Besides, many functions are added in order to help the debugger

accomplish its task easier, such as data adaptation. On the debugger side, a dedicated

Advanced-dispatch Debug Interface (ADDI) has been implemented. Each AD-specific entity

is a wrapper of an ObjectReference which stands for a mirror of an object in the debuggee

program. AD-specific functions are realised by forwarding calls to methods of wrapped

objects. Based on the ADDI, three views has been implemented for presenting obtained
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information, namely the Advanced Dispatch view, the Advanced-Dispatching Structure view

and the Deployed Attachments view.

Then this thesis showed an example using the AD debugger to debug a buggy AspectJ

program and we have witnessed that it explicitly gives some AD-specific information where

the bug lies. Discussions are given to evaluate how well each property has been met in the

implementation and it draws a conclusion that four are fully supported, two are partially

supported and one not supported. The locating is not supported because this development

lacks of output of compiler. Finally, the thesis designed a feasible solution for supporting

locating.

As mentioned in previous chapters, many desired functionalities are simplified and need

to be improved. Further work will focus on three key areas: Firstly, the AD debugger is

currently only suitable for debugging limited AD features, like only mirrors of instanceOf

and boolean atomic predicates are implemented. Corresponding ADMirrors should be reified

in order to fit all AD features. Secondly, add an event module to the Advanced-Dispatching

Debug Interface (ADDI) to handle AD-specific event, such as pointcut evaluation. Thirdly,

cooperate with compiler and apply the approach discussed in chapter 7 in the debugger.
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