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ABSTRACT 
Scientific discovery learning has proven to be a useful 
application of constructivist theory to science education, but 
students encounter many difficulties in the process and need 
support. This paper describes research concerning the problems 
learners experience during the data interpretation and model 
evaluation phases of scientific discovery learning. Students tried 
to solve a number of problems that required both data 
interpretation and model evaluation. Their reasoning steps were 
recorded using both verbal reports and written answers. The 
results of this experiment gave an indication of the sort of 
reasoning steps with which students had the most difficulties. 
These results were used to provide suggestions for cognitive 
tools that could support the learner during these tasks. 

Keywords 
Data Interpretation, Model Evaluation, Scientific Discovery 
Learning, Cognitive Tools. 

1. INTRODUCTION 
1.1 Constructivism 
Since the second half of the twentieth century the constructivist 
view of knowledge has become popular among cognitive 
scientists. The essence of the constructivist model is that 
knowledge is constructed in the mind of the learner (Bodner, 
1986). Knowledge, as the term is used by constructivists, does 
not refer to a representation of the real world. Instead it is seen 
as a “collection of conceptual structures that […] are viable 
within the knowing subject’s range of experience” (Von 
Glasersfeld, 1989, p.125). Knowledge in this sense does not 
have to match reality, but it has to fit it; in the way a key fits a 
lock (Bodner, 1986); it has to be compatible with it. 

An acceptance of the constructivist view of knowledge has 
important implications for education. Von Glasersfeld (1989) 
differentiates between training and teaching. Examples of the 
former are such activities as getting students to throw a ball in a 
specific way or to perform a multiplication algorithm, whereas 
the latter has to do with getting students to understand a certain 
concept. Von Glasersfeld argues that classical instruction 
methods such as rote learning and repeated practice are useful in 
training, but will not bring about the understanding in students 
that teaching aims to effect. While critics have much to say 
about the problems of constructivism as a theory, even they 
acknowledge the value of its applications in education. Staver 
(1998) presents a summary of the criticisms of constructivist 
theory and counters the critics’ arguments. 

The constructivist approach to education seems especially well 
suited to science education. Bodner (1986) shows how the 
misconceptions that students bring with them to new science 
classes can be explained by the constructivist model. This paper 
deals with a specific application of constructivist theory to 
science education: scientific discovery learning. 

1.2 Scientific discovery learning 
Scientific discovery learning, also known as inquiry learning, 
refers to a form of learning where students are “exposed to 

particular questions and experiences in such a way that they 
“discover” for themselves the intended concepts” (Hammer, 
1997, p.489). De Jong & Van Joolingen (1998) describe several 
problems students encounter when engaging in scientific 
discovery learning. They categorize these problems based on 
the stage of the discovery learning process in which they occur: 
hypothesis generation, design of experiments, interpretation of 
data or regulation of learning. De Jong & Van Joolingen 
subsequently discuss a number of methods of supporting the 
learners that have been researched. Possible support methods 
are discussed for all of the stages in the discovery learning 
process, except for the data interpretation stage. Learners have 
however been found to experience difficulty in this stage, e.g. 
while interpreting and comparing graphs (Linn, Layman, and 
Nachmias, 1987 cited in De Jong & Van Joolingen, 1998). This 
paper will describe research concerning the difficulties students 
have during the closely related tasks of data interpretation and 
model evaluation. 

1.3 Computer modeling and simulations 
Computers can be used by students during scientific discovery 
learning to enable them to create models of the situation or 
concept they are learning about. Students can then use these 
models to run simulations and compare the results with “real 
world” data either gathered from experiments or provided by 
teachers. Used in this way, computers enable students to create 
models and test their validity relatively easily. Van Joolingen, 
De Jong, and Dimitrakopoulout (2007) discuss several ways in 
which computers can be used to assist students during the 
process of discovery learning. One of these ways is to offer 
tools that help the learner analyze the data, specifically graphs, 
generated by running simulations. Based on the results of the 
research concerning students’ difficulties with data 
interpretation and model evaluation, suggestions for computer 
assistance during these tasks will be done. 

1.4 Data interpretation 
The data to be interpreted in scientific discovery learning tasks 
is usually available in tables and graphs, e.g. in the Co-Lab 
environment, Van Joolingen, De Jong, Lazonder, Savelsberg, 
and Manlove (2005). This article will focus on data that is 
displayed in the form of graphs. 

Quite a lot of research on graph interpretation has already been 
done. Friel, Curcio, and Bright (2001) describe the critical 
factors that influence graph comprehension: the purpose for 
using graphs, task characteristics, discipline characteristics, and 
reader characteristics. Shah, Mayer, and Hegarty (1999) and 
Shah & Hoeffner (2002) discuss problems students have with 
the interpretation of graphs in texts, particularly in social 
textbooks. The result of their research is a list of implications 
for the design of textbook graphs and data displays, such as 
whether to use line or bar graphs, which colors to use and what 
scales to use for the axes. These findings are useful for 
designing the layout and style of graphs generated by computer 
simulations during the scientific discovery learning process. 
However, students also face other problems when interpreting 



graphs, e.g. when contrasting the results of an experiment with 
predictions based on simulations of a model. 

Research by Leinhardt, Zalavsky, and Stein (1990) might be 
more relevant for the sorts of graph interpretations tasks 
students have to do during inquiry learning. They describe four 
typical tasks when working with graphs:  

- Prediction (e.g. where will other points, not explicitly 
plotted, be located?) 

- Classification (e.g. what sort of function does a graph 
describe?) 

- Translation (e.g. how would a time-distance graph of a 
function described by a time-speed graph look?) 

- Scaling (e.g. what does a unit on each axes represent?) 

These tasks are then classified based on four properties:  

- Action (interpretation or construction of the graph) 
- Situation (setting and context of the graph) 
- Variables used (categorical, ordinal or interval) 
- Focus (either on local or global features of the graph) 

Furthermore, they discuss the problems that students 
experience during graph interpretation and find that the most 
important problems fall into three categories: (1) a desire for 
regularity; (2) a point wise focus (as opposed to a more global 
focus); and (3) difficulty with abstractions of the graphical 
world. These are the sort of problems students are likely to run 
into during graph interpretation in the context of discovery 
learning. 

Beichner (1994) has developed a test that assesses students’ 
proficiency in working with kinematics graphs and has used it 
to find a list of common difficulties students experience when 
working with this sort of graphs. These difficulties were 
classified as follows: 

- Graph as picture errors (the graph is considered to be a 
photograph of the situation) 

- Variable confusion (no distinction is made between 
distance, velocity and acceleration) 

- Nonorigin slope errors (students have difficulty 
determining the slope of a line that does not pass through 
the origin) 

- Area ignorance (the meaning of areas under kinematic 
graph curves is not recognized) 

- Area/slope/height confusion (axis values are used or 
slopes are calculated when the area under the graph is 
relevant) 

It is worthy of note that all of the research done so far on graphs 
of functions has focused on interpreting a single graph at a time. 
No research seems to have been done yet on comparing two 
different graphs, an action that is integral in scientific discovery 
learning. This means that such a test will have to be developed 
specifically for this research. 

1.5 Model evaluation 
The value of dynamic modeling in education is widely 
recognized. Sins, Savelsbergh & Van Joolingen (2005) give an 
overview of the many different ways in which models are 
considered useful in an educational setting. 

In a scientific discovery learning setting, model evaluation is 
closely related to data interpretation. Sins et al. (2005) describe 
students as engaging in model evaluation when they “determine 
whether their model is consistent with their own beliefs, with 
data obtained from experiments and/or with descriptions of 
behavior about the phenomenon being modeled. The second 
part of this description, determining whether their model is 
consistent with data obtained from experiments, requires data 

interpretation. Hogan & Thomas (2001) describe this part of 
model evaluation as model interpretation. 

Although the value of dynamic models in education is 
recognized by many, until recently no research had been done 
which examines how students would systematically test their 
models (Doerr, 1996). Since then Löhner, Van Joolingen, 
Savelsbergh, and Van Hout-Wolters (2005) have analyzed 
students’ reasoning during inquiry modeling tasks. However, 
even in recent research the amount of attention the model 
evaluation part of a modeling task has received, has been rather 
low. 

1.6 Scaffolding or distributed intelligence 
Before design of a supporting tool can begin, an important 
question has to be answered: is this tool intended to be a 
scaffold or a part of a distributed intelligence network? Or as 
Salomon, Perkins & Globerson (1991) state this distinction: are 
the effects of the tool or with the tool most important? If the 
former is the case, the support the tool offers should fade as the 
learners become more skilled at interpreting and comparing 
graphs. The goal of this tool is primarily to help teach students 
the skill of interpreting graphs and evaluating models. If the tool 
is regarded as part of a distributed intelligence network, 
consisting of the student and a number of cognitive tools, its 
primary goal is different. In this situation the most important 
task of the tool is to help the learner with the task of data 
interpretation and model evaluation. This should result in the 
learner being more skilled at interpreting graphs and evaluating 
models with the tool’s assistance. The student does not 
necessarily become better at these tasks in the absence of the 
tool’s support. 

Because graph interpretation and model evaluation are useful 
skills in many different contexts, the primary goal of the tool 
should eventually be to teach these skills to the learner. 
Therefore the tool will be regarded a scaffold; its assistance 
fading as the learner becomes more proficient at the skills of 
interpreting graphs and evaluating models. However, before a 
lot of time is invested in the design of such a tool, an 
experiment should be done to find out what sort of difficulties 
are experienced by students during graph interpretation and 
model evaluation. This is the goal of the experiment described 
in this paper. 

1.7 Research questions 
The aim of the research described in this paper is to answer two 
questions: 

1. What sort of problems do students experience when 
interpreting graphs and evaluating models during an 
inquiry learning task? 

2. What sort of assistance can a cognitive tool offer 
students during the tasks of graph interpretation and 
model evaluation? 

2. METHOD 
2.1 Participants 
Eighteen students (average age 21.2 years; 11 men and 7 
women), following 15 different academic majors, participated 
in the experiment. All participants completed physics courses in 
high school, which was a requirement for participation in the 
experiment, because some of the tasks required a basic 
knowledge of physics. 

2.2 Materials 
The participants used a laptop to view web pages. The 
experiment was divided into two parts. The first part consisted 
of 21 multiple choice questions in the mechanics domain. The 



second part of the experiment introduced a simple modeling 
language that students used to solve a number of problems 
similar to those encountered during inquiry learning situations. 
This is the same modeling language that is used in the Co-Lab 
learning environment discussed in Van Joolingen et al. (2005). 
The materials used in both parts of the experiment are discussed 
below and can be found in the appendices. 

2.2.1 Multiple choice questions 
The multiple choice questions used in the experiment were 
those created by Beichner (1994) for the Test of Understanding 
Graphs in Kinematics (TUG-K). All questions were translated 
from English to Dutch and presented on a single webpage, this 
allowed participants to easily go back to previously answered 
questions and change their answers if they wished. When they 
were done, their answers were saved in a database. The web 
page with these translated questions can be found in appendix 
A. 

2.2.2 Models and simulations 
The second part of the experiment began with an introduction 
which makes clear to the participant what can be expected. Next 
the simple modeling language used during the second part was 
introduced and the different symbols were shown in the context 
of an example and their meanings were explained. After this 
explanation two example cases were shown, which were 
structured in the same way as the real cases. Finally the five real 
cases were shown to the participant. Participants were asked to 
think aloud during the cases and audio recording software was 
used to record their speech.  

All cases dealt with the data interpretation and model evaluation 
phase of the scientific discovery learning process and were 
structured in the same basic way: (1) a situation was described; 
(2) a (correct or incorrect) model of this situation was presented; 
(3) the results of a simulation with this model were shown in a 
graph; and (4) a specific task was given. In the two example 
cases this task was replaced with a conclusion. All of the web 
pages used in the second part of the experiment can be found in 
appendix B. Answer forms, used by participants for drawing 
model implementations and doing calculations, are included in 
appendix C. 

The following subsections discuss design considerations and 
goals of the model explanation and the different cases.  

2.2.2.1 Explanation 
The different symbols and arrows that make up the modeling 
language were introduced in a simple example. A legend 
provided the names and meanings of these symbols and shortly 
described their use in the example model.  

A second model, and the results of a simulation with this model, 
showed how a constant acceleration leads to linearly increasing 
speed and quadratically growing distance.  

2.2.2.2 First example case 
A simple situation and an extremely simple, but incorrect, 
model of this situation were described. The error in the model 
was obvious and the goal of this example was mainly to 
reiterate the meanings of all the different symbols and arrows in 
the modeling language. 

2.2.2.3 Second example case 
The main goal of the second example case was to show that 
‘invisible’ errors can exist in a model. This is possible when 
constants have wrong values (as is the case in the example) or 
when variables are incorrectly calculated from correct inputs. 

Both example cases also served to familiarize the participants 
with thinking aloud and the situation-model-simulation-task 
structure used in the ‘real’ cases. 

2.2.2.4 First case 
The model used in this first real case contains one fairly obvious 
error. This error could be discovered by comparing the model 
with the described situation or by comparing the results of a 
simulation with this model to data from the described situation. 

2.2.2.5 Second case 
Participants were asked to answer three questions about the 
results of a simulation, which required them to read and 
interpret a graph with two different plots. An important goal of 
this case was to familiarize participants with different properties 
of a rubber band (length, elasticity constant and length when in 
a relaxed position), because the same rubber bands were used in 
the third and fourth cases. 

2.2.2.6 Third case 
Although the model in this case was more complicated than 
those the participants had encountered thus far, it was expected 
the participants would be able to understand it, because they had 
already worked with parts of the model in previous cases. To 
successfully complete the task in this case, participants had to 
combine their knowledge of the situation, the model and the 
results of a simulation with the model. 

2.2.2.7 Fourth case 
The situation and model used were the same as those in the third 
case. The only difference was in the results of the simulation. 

2.2.2.8 Fifth case 
The last case was unique, because no situation was described. 
Therefore participants would have to reason about the model 
without being able to use specific domain knowledge about the 
situation being modeled. 

2.3 Procedure 
Participants sat down in front of a laptop and were given a short 
explanation of what they could expect during the experiment. 
Before the experiment started they answered questions about 
their age, their sex and their academic major. 

During the first part of the experiment, the multiple choice 
questions, there was no interaction between the participant and 
the experimenter. Participants were asked to notify the 
experimenter when they had answered all the questions and 
were ready to continue. 

The experimenter sat next to the participant during the second 
part of the experiment and monitored his/her progress. Before 
the participant began with the first example case, the audio 
recording software was turned on. To stimulate the participant 
to think out loud, the experimenter repeated the suggestion in 
the introduction to read the texts out loud and further suggested 
that participants described the things they noticed or looked for 
when studying models or graphs. When participants were silent 
for more than a minute, the experimenter reminded them to 
think out loud by asking what they were thinking. When 
participants indicated they did not know how to proceed with a 
task or were not making progress for more than a few minutes, 
the experimenter provided helpful hints to help them complete 
the task. A list of these hints was available for each case and can 
be found in appendix D. 

2.4 Analysis 
For each case, in the second part of the experiment, a list of 
observations and reasoning steps necessary to complete the task 
was created. The necessity of most of these steps followed from 
the available information and the nature of the task. For 
instance, to calculate the (constant) speed of an object based on 
its distance-time graph, it is necessary to find the slope of this 
graph. During the experiment some participants found 
unexpected ways to successfully complete certain tasks. In these 



cases their solutions were added to the lists as alternative steps. 
These lists can be found in appendix E.  

Each observation or reasoning step was also classified 
according to the scientific reasoning activities distinguished by 
Löhner et al. (2005). Because participants did not have to 
hypothesize or design their own experiments during this 
experiment, the only categories used were data interpretation, 
model evaluation and model implementation. To be able to 
classify steps more precisely, subcategories were created. For 
data interpretation these subcategories were observation, 
calculation and conclusion. For model evaluation, they were 
based on domain knowledge, based on modeling knowledge and 
based on mathematical knowledge. 

The audio recordings of the participants, in combination with 
the calculations and answers they wrote down on their answer 
sheets, were used to score each participant on each reasoning 
step. There were 4 possible scores:  

- 1 point, if they used a step correctly;  
- 0.5 points, if they used a step incorrectly (e.g. made a 

mistake in a calculation);  
- 0.25 points, if they used a step, but only after the 

experimenter gave a hint (e.g. ‘Which forces are in 
balance when the car has come to a halt?’ in case 3);  

- 0 points, if they completely failed to use a step or the 
experimenter had to explicitly inform them of a step 
(e.g. ‘When the car is no longer moving, the force 
exerted by its motor and by the rubber band are 
equal.’). 

It was hypothesized that participants’ score on the multiple 
choice questions (Test of Understanding Graphs in Kinematics) 
would be a better predictor of their score on the reasoning steps 
that were classified as ‘data interpretation’ than of their score on 
the other items. To test this hypothesis a ‘data interpretation 
score’ was calculated for each participant by summing the 
scores for all the data interpretation items and a ‘modeling 
score’ was calculated by summing the scores for the model 
evaluation and model implementation steps. The Pearson 
correlation of both of these scores and the score on the multiple 
choice test was then calculated. 

To get an indication of the type of steps participants had the 
most difficulty with, the score of each participant was summed 
per step to generate a ‘step score’. The ten steps with the lowest 
scores were then examined. 

3. RESULTS 
3.1 Predictive power of the TUG-K 
The mean score of the participants on the Test of Understanding 
Graphs in Kinematics was 17 out of a maximum of 21. The 
Pearson correlation between participants’ score on the TUG-K 
and their data interpretation score was ρ = 0.555 (p < 0.05). The 
Pearson correlation between their score on the TUG-K and their 
modeling score was ρ = 0.508 (p < 0.05). 

3.2 The most problematic steps 
Table 1 shows the ten steps with the lowest scores and their 
classification. The maximum step score is 18, which would 
mean every participant correctly used the step. A description of 
these steps can be found in appendix E. A closer look at these 
ten steps is taken in the following sections. 

 
 
 
 
 

Table 1. Scores and classifications of the most difficult steps. 

Step Score Classification 

3.3 4.0 Data interpretation (observation) 

3.4 7.75 Model evaluation (domain knowledge) 

3.6 5.5 Model evaluation (domain knowledge) 

4.5 2.0 Data interpretation (observation) 

4.6a 2.5 Model evaluation (domain knowledge) 

4.6b 3.25 Model evaluation (domain knowledge) 

5.1 2.25 Model evaluation (modeling knowledge) 

5.2 6.75 Model evaluation (modeling knowledge) 

5.3 8.5 Data interpretation (observation) 

5.5 6.5 Model evaluation (mathematical knowledge) 

 

3.2.1 Data interpretation steps 
All of the data interpretation steps that scored in the ‘bottom 10’ 
were sub classified as observation steps. Looking at these steps 
(see appendix E), it is clear that the steps are not difficult per se. 
Step 3.3 consists of noticing that two graphs have equal values 
for the first few seconds of a simulation, step 4.5 consists of 
noticing that one graph has an asymptote above another graph 
and step 5.3 consists of noticing that the decrease of a graph 
accelerates at the start of the simulation, then slows down and 
the graph eventually starts to increase. 

The problem with these steps seems to be that it was not 
apparent to most participants that these features of the graphs 
were important for the problem they were solving. This is in 
stark contrast with data interpretation steps with higher scores, 
such as those in the second case. It was clear to almost all 
participants what features of a graph were relevant when a slope 
had to be calculated or a value of a graph at a certain time had 
to be found. These findings indicate that knowing which 
features of a graph are important during a certain task is an 
important skill in scientific discovery learning. 

3.2.2 Model evaluation steps 
Most of the difficult model evaluation steps were sub classified 
as model evaluation based on domain knowledge. A closer look 
at these steps (appendix E) reveals that the domain knowledge 
required is quite modest for students that have completed 
physics courses in high school. During the experiment, when 
these steps were explained to participants that did not 
successfully use them on their own, almost all responded with 
phrases like ‘ah yes’ and ‘of course’. This indicates that most 
participants did in fact possess the necessary domain 
knowledge, but were not able to use it at the appropriate time 
during the task. 

Step 5.1 and 5.2 were classified as model evaluation using 
modeling knowledge. Very few participants successfully used 
these steps on their own. A likely explanation for the problems 
participants had with these steps is their inexperience with 
dynamic modeling in general and the specific modeling 
language used in particular. The majority of the participants 
reasoned at first that M (step 5.2, also see appendix B) remained 
either constant or increased linearly, because it was only 
dependent on a constant. This was somewhat surprising, 
because participants had no problem recognizing in earlier 
models that distance increased quadratically, even though it was 
only dependent on a constant acceleration. The lack of a domain 
in which to place the different parts of the model seems to be 
partially responsible for this mistake. After participants were 



asked to draw diagrams for a, K, L & M, all except one figured 
out the effects of the integration steps in the model. It seems 
likely that most participants would not have had as much 
difficulty with steps 5.1 and 5.2 if they had had more experience 
with this dynamic modeling language. 

The final step that many participants found difficult, step 5.5, is 
sub classified as model evaluation based on mathematical 
knowledge. This step is not straightforward and requires some 
mathematical intuition, so it is not surprising that many 
participants struggled with this step. 

4. CONCLUSION 
4.1 More than understanding graphs 
The average score of participants on the TUG-K, 17 out of 21, 
was very high. The most common difficulties Beichner (1994) 
describes (graphs as picture errors, variable confusion, 
nonorigin slope errors, area ignorance and area/slope/height 
confusion) seemed to cause few problems for most participants. 
These findings show that most participants were quite good at 
reading and understanding graphs in the kinematics domain. 
Despite these high scores on the TUG-K, many participants 
encountered problems during the data interpretation steps in the 
second part of the experiment. 

It was found that the correlation of participants’ TUG-K scores 
with their data interpretation scores was hardly stronger than the 
correlation between their TUG-K scores and their modeling 
scores. This rather surprising finding indicates that the data 
interpretation steps in the scientific discovery learning process 
are not particularly similar to the reasoning steps required 
during the more classical graph comprehension tasks in the 
TUG-K. 

These results suggest that more is required from students during 
the data interpretation stage of scientific discovery learning than 
‘just’ normal graph comprehension abilities. 

4.2 Difficulties during data interpretation 
The most difficult data interpretation steps were those sub 
classified as observation steps. These consisted of noticing and 
recognizing as important a certain feature of a graph or a certain 
difference between two graphs. The steps in the other two 
subclasses of data interpretation, calculation and conclusion, 
caused very few problems for the participants. It seems clear 
that for many students the most difficult aspect of data 
interpretation is knowing which features of a graph are relevant 
for the task at hand. 

4.3 Difficulties during model evaluation 
Model evaluation based on domain knowledge was the subclass 
that caused the most difficulties. A common theme in these 
difficulties was that participants did not lack the domain 
knowledge necessary to successfully complete the steps, but 
failed to use this knowledge. They did not recognize this 
knowledge as being relevant for the task they were performing. 
It is understandable that the ‘based on domain knowledge’ 
subclass caused the most problems, because it required 
participants to integrate knowledge about the model, knowledge 
about the results and knowledge about the domain during a 
reasoning step. 

Most of the problems participants experienced with the ‘based 
on modeling knowledge’ steps seem to be due to inexperience 
with the dynamic modeling language used. It is likely that these 
problems would occur less frequently as students become more 
familiar with the modeling language.  

4.4 Suggestions for cognitive tools 
The research described in this paper clearly shows two aspects 
of data interpretation and model evaluation that students find 
difficult: (1) recognizing which features of graphs are important 
during data interpretation; and (2) using domain knowledge at 
the right time during model evaluation. The following sections 
offer suggestions for support during these tasks that could help 
students with these two problems. 

4.4.1 Support for data interpretation 
One of the most common data interpretation tasks during 
scientific discovery learning is comparing results from a 
simulation with experimental results, usually both displayed in a 
graph. Tools could be developed that recognize differences 
between the two graphs and point these out to the student, but as 
models become more complicated it will be very hard for 
automated tools to give meaningful feedback about the 
differences between two graphs. Moreover, this would only help 
students interpret data with the tools support; there would be an 
effect with the cognitive tool’s support, but no effect of the tool 
as Salomon et al. (1991) describe it. 

Quintana et al. (2004) provide a number of scaffolding 
guidelines, of which the fourth, ‘provide structure for complex 
tasks and functionality’, is especially relevant for the task of 
data interpretation. A cognitive tool could structure the task of 
comparing two graphs, for example by asking the learner a set 
of questions about the differences between the graphs. This 
could teach learners to think of graph comparison as a 
structured process and help them find the relevant differences 
between two graphs. 

4.4.2 Support for model evaluation 
The biggest problem during model evaluation was that many 
participants did not use the domain knowledge they possessed at 
the appropriate times. This result is in line with the finding by 
Sins et al. (2005) that students constructed better models when 
they used their own knowledge and that scaffolds should 
encourage learners to activate their prior knowledge, both 
before and during the modeling task.  

Although it would be difficult to develop a cognitive tool that 
could assist learners in activating domain knowledge exactly 
when needed, it seems plausible that a tool could at least 
activate some prior knowledge. Such a tool would encourage 
the learner to think more deeply about the different components 
and relations in their model and the relation between their 
model and the real world. 

5. DISCUSSION 
5.1 Explorative nature of this research 
Because little prior research had been done regarding data 
interpretation and model evaluation in the context of scientific 
discovery learning, the nature of this research was very 
explorative. Therefore the results of the experiment, a number 
of difficulties students experience in a specific scientific 
discovery learning setting, should be regarded as pointers in the 
direction of possibly valuable further research rather than a 
definitive list of difficult aspects of data interpretation and 
model evaluation. 

5.2 Ceiling effect on TUG-K scores 
The average score of the participants on the TUG-K was so 
close to the maximum possible score, that the spread of scores 
was likely restricted by the ceiling effect. It is possible that this 
had consequences for the correlations between participants’ 
TUG-K score and data interpretation and modeling scores. In 



further research with equally skilled participants a more 
challenging test for the understanding of graphs should be used. 

5.3 Possible problems with verbal reports 
Although verbal reports were used as an indication of the 
reasoning steps participants used when trying to solve the cases 
in the second part of the experiment, strict guidelines were not 
used for participant-experimenter interaction. Ericsson & Simon 
(1980) caution that verbalizing can change the cognitive 
processes of participants, when verbalization of information that 
would not otherwise be attended to is required. During the 
experiment participants were specifically asked to mention the 
features of models or graphs they noticed and it is possible that 
this affected their reasoning. 

The other side of this problem is that some features of graphs or 
models were perhaps noticed by participants but not explicitly 
verbalized. This could cause the scores on the data 
interpretation (observation) steps to be lower than they should 
be. 

5.4 Suggestions for further research 
The research described in this paper gives an indication of some 
of the problems experienced by many learners during data 
interpretation and model evaluation. Further research could 
focus on characteristics of learners that successfully overcome 
these problems and the methods they use. This could give 
insight into new ways of supporting students during these tasks. 

The suggestions for cognitive tools in this paper are very 
general and abstract. It would be interesting to further specify 
the requirements and goals of these tools and develop 
prototypes. These could be used with the material created for 
this experiment and their effectiveness could be examined. 

Perhaps most important of all, more quantitative research 
should be done to study the cause of the difficulties the learners 
experience. This will hopefully confirm that the causes for the 
difficulties found in the explorative, qualitative research 
described here are in fact important and significant. 
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Appendix C 

Antwoordformulier onderzoek data-interpretatie 
Datum: 

Tijd: 

Casus 1 

Geef in het onderstaande model aan hoe het gewijzigd kan worden zodat het de werkelijkheid beter 

beschrijft. 

 

 

 

 

 

Casus 2 

Wat kun je naar aanleiding van de resultaten zeggen over: 

- De snelheid waarmee Ronald het elastiek uitrekt? 

 

 

 

- De hoeveelheid kracht die het kost om het elastiek 5 cm uit te rekken? 

 

 

- De betekenis van de Elasticiteitsconstante en Lengte_ontspannen_elastiek in het model? 



 

Casus 3 

Geef in het onderstaande model aan op welke manier het verkeerde model afwijkt van het correcte model. 

 



 

Casus 4 

Geef in het onderstaande model aan op welke manier het verkeerde model afwijkt van het correcte model. 

 

Casus 5 

Teken het ontbrekende deel in het onderstaande model. 

 



 
Appendix D 
Hints bij casussen 
 

--- Casus 1 --- 

1. Waarvan is het bedrag dat er jaarlijks bijkomt afhankelijk? 

 

--- Casus 2 --- 

1. (Bij de eerste vraag) Hoelang is het elastiek na 0 seconden? Hoe lang is het elastiek na 10 seconden? 

2. (Bij de tweede vraag) Als het elastiek in ontspannen toestand is kost het geen kracht om het uit te rekken.  

 Na hoeveel seconden is het elastiek 5 cm uitgerekt? 

3. (Bij de derde vraag) Stel je hebt een elastiek van 20 cm lengte. Waarvan is de kracht die dit elastiek 
uitoefent afhankelijk? 

 (de 'stugheid' van het elastiek en de lengte van het ontspannen elastiek) 

 

--- casus 3 --- 

1. Tijdens de eerste paar seconden liggen de rode en blauwe grafiek op elkaar. Wat betekent dit? 

2. Wat kun je zeggen over de frequenties van de beweging in het correcte en incorrecte model? 

 2a. Welke verschillen in het model kunnen hiervan de oorzaak zijn? 

 

--- casus 4 --- 

1. De rode grafiek ligt al vanaf het begin boven de blauwe grafiek. Wat betekent dit? 

 1a. Welke verschillen in het model kunnen hiervan de oorzaak zijn? 

2. Wanneer stopt het autootje met heen en weer bewegen?  

 2a. Welke krachten moeten in evenwicht zijn? 

2b. Als het autootje eenmaal stilstaat, welke onderdelen van het model hebben dan invloed op de 
voorwaartse kracht? 

  (die gelijk is aan 0) 

 

--- casus 5 --- 

1. Hoe zou de grafiek eruit zien als er niets in het gedeelte met het vraagteken stond? 

 1a. Schets voor jezelf de grafieken van a, K, L & M 

 1b. Kun je aangeven hoe de functies van a, K, L & M er ongeveer uit zien? Begin met a: y=6. 

  a: y = 6, K: y=6t, L: y=3 t^2, M: y = t^3 

2. De grafiek van M is gelijk aan de functie die je net hebt beschreven min de onbekende functie. 

 2a. Hoe ziet deze onbekende functie eruit? 

 2b. Hoe ziet deze functie eruit in het model? 



 

Appendix E 

Classificatie redeneerstappen 

Casus 1 
Stap Opmerking / redenering Classificatie 

1  ‘Model data’ neemt lineair toe, maar ‘bank data’ neemt steeds sneller 

toe. 

Data interpretation 

(observation) 

2 ‘Storting_en_rente’ wordt berekend aan de hand van twee constanten 

en zal dus zelf ook constant zijn. 

Model evaluation 

(based on modeling 

knowledge) 

3a Het bedrag dat er in een bepaald jaar bijkomt op de spaarrekening is 

ook afhankelijk van het huidige bedrag op de spaarrekening. Er moet 

dus een terugkoppeling in het model zitten. 

Model evaluation 

(based on domain 

knowledge) 

3b De bank data nemen steeds sneller toe, dit betekent het bedrag wat er 

jaarlijks bijkomt op de spaarrekening in de loop van de tijd groter moet 

worden. Dit kan gerealiseerd worden door een terugkoppeling aan het 

model toe te voegen. 

Data interpretation 

(conclusion) 

4 Deze terugkoppeling kan worden toegevoegd door een relatiepijl toe 

te voegen van ‘Spaarrekening’ naar ‘Storting_en _rente’. 

Model 

implementation 

 
Casus 2 
Stap Opmerking / redenering Classificatie 

1 De toename van ‘lengte elastiek’ is lineair, dus de snelheid waarmee 

Ronald het elastiek uitrekt is constant. 

Data interpretation 

(observation & 

conclusion) 

2 Deze snelheid is gelijk aan (0.15 – 0.05) / 10 = 0.01 m/s. Data interpretation 

(calculation) 

3 Het elastiek wordt met 0.01 m/s uitgerekt, dus na 5 seconden is het 5 

cm uitgerekt. 

Data interpretation 

(calculation) 

4 Na 5 seconden is ‘kracht elastiek’ gelijk aan 0.5 N. Data interpretation 

(observation & 

conclusion) 

5 De ‘Elasticiteitsconstante’ is de kracht die nodig is om het elastiek een 

bepaalde afstand verder uit te rekken, hier in Newton per meter. Het 

kan ook gezien worden als de kracht die het elastiek uitoefent wanneer 

het een bepaalde afstand is uitgerekt. 

Model evaluation 

(based on domain 

knowledge) 

6 ‘Lengte_ontspannen_elastiek’ is de lengte van het elastiek wanneer er 

geen kracht op wordt uitgeoefend. Deze waarde wordt gebruikt om te 

bepalen hoever het elastiek, als het een bepaalde lengte heeft, is 

uitgerekt.  

Model evaluation 

(based on domain 

knowledge) 

7 Bij 0 seconden is ‘kracht elastiek’ gelijk aan 0 N en lengte elastiek gelijk 

aan 0.05 m. Dus ‘Lengte_ontspannen_elastiek’ is gelijk aan 0.05 m. 

Data interpretation 

(observation & 

conclusion) 



Casus 3 
Stap Opmerking / redenering Classificatie 

1 De vorm van de rode grafiek lijkt op die van de blauwe grafiek.  Data interpretation 

(observation) 

2 Omdat de rode grafiek dezelfde vorm heeft als de blauwe grafiek, is er 

waarschijnlijk een fout gemaakt bij één van de constanten in het 

model. 

Data interpretation 

(conclusion) 

3 Tijdens de eerste paar seconden van de simulatie liggen de grafieken 

op elkaar. 

Data interpretation 

(observation) 

4 Omdat de grafieken tijdens de eerste paar seconden gelijk zijn, kan de 

fout niet bij ‘Kracht_motor’, ‘Massa_autootje’ of bij de wrijving 

(verborgen constante) liggen. Deze constanten hebben namelijk al 

vanaf het begin invloed op de snelheid (en dus afgelegde afstand) van 

het autootje. 

Model evaluation 

(based on domain 

knowledge) 

5 Het autootje beweegt in het correcte model en het verkeerde model 

met dezelfde frequentie voor- en achteruit. 

Data interpretation 

(observation) 

6 De ‘Elasticiteits_constante’ heeft invloed op de frequentie waarmee 

het autootje heen-en-weer beweegt, dus hierin kan de fout niet zitten. 

De fout zit dus in ‘Lengte_ontspannen_elastiek’, de enige constante die 

overblijft. 

Model evaluation 

(based on domain 

knowledge) 

 

Casus 4 

Stap Opmerking / redenering Classificatie 

1 De vorm van de rode grafiek lijkt op die van de blauwe grafiek.  Data interpretation 

(observation) 

2 Omdat de rode grafiek dezelfde vorm heeft als de blauwe grafiek, is er 

waarschijnlijk een fout gemaakt bij één van de constanten in het 

model. 

Data interpretation 

(conclusion) 

3 De grafieken zijn al vanaf de eerste seconde verschillend.  Data interpretation 

(observation) 

4 Omdat de grafieken al vanaf de eerste seconde verschillend zijn, zal de 

fout niet in de ‘Elasticiteits_constante’ of ‘Lengte_ontspannen_elastiek 

zitten’. (Als de rode grafiek onder de blauwe grafiek zou liggen, zou dit 

wel veroorzaakt kunnen worden doordat ‘Lengte_ontspannen_elastiek’ 

op 0 staat of vergeten is in het model). 

Model evaluation 

(based on domain 

knowledge) 

5 Het autootje in het verkeerde model komt op een andere afstand van 

het fort tot stilstand dan het autootje in het correcte model. 

Data interpretation 

(observation) 

6a Omdat het autootje in het verkeerde model op een andere afstand van 

het fort tot stilstand komt dan in het correcte model, kan de fout niet 

in de wrijving of de massa van het autootje zitten, want de waarden 

hiervan hebben daar geen invloed op. Het moet dus wel aan de kracht 

van de motor liggen.  

Model evaluation 

(based on domain 

knowledge) 

6b Een andere massa zou zorgen voor een andere periode van het voor- 

en achteruit bewegen van het autootje. Wanneer de 

wrijvingsconstante (die verborgen is in het model) niet als mogelijke 

oorzaak wordt meegenomen, kan hierdoor ook beredeneerd worden 

Model evaluation 

(based on domain 

knowledge) 



dat het probleem bij de kracht van de motor ligt. 

 

Casus 5 

Stap Opmerking / redenering Classificatie 

1 Aan de locatie van het vraagteken is te zien dat alles wat nog ontbreekt 

in het model van M wordt afgetrokken en niet op een andere manier 

invloed heeft op a, K, L of M. 

Model evaluation 

(based on modeling 

knowledge) 

2 Aan de linkerkant van het model is een constante te zien die drie keer 

geïntegreerd wordt. M is dus een derde graads functie waar nog iets 

van wordt afgetrokken. 

Model evaluation 

(based on modeling 

knowledge) 

3 Aan de resultaten is te zien dat M eerst steeds sneller afneemt en dan 

minder snel gaat afnemen en tenslotte steeds sneller gaat stijgen.  

Data interpretation 

(observation) 

4 Omdat de waarde van M aan het begin steeds sneller daalt, zal het 

ontbrekende deel van het model aan het begin steeds sneller 

toenemen. 

Data interpretation 

(conclusion) 

5 Omdat het ontbrekende deel (in ieder geval aan het begin) steeds 

sneller toeneemt, kan het geen constante of lineaire functie zijn. Het is 

dus een tweede graads functie of hoger. Omdat M uiteindelijk gaat 

stijgen, zal het ontbrekende deel van het model geen derde graads 

functie of hoger zijn. Dus is het een tweede graads functie. De daling 

aan het begin kan verklaard worden door een grotere constante (dan 

a) in het ontbrekende deel van het model. 

Model evaluation 

(based on 

mathematical 

knowledge) 

6 De tweede graads functie kan gemodelleerd worden door een 

constante bij een voorraadgrootheid op te tellen en deze 

voorraadgrootheid van M af te trekken. (Eén stap minder dan aan de 

linkerkant van het model.) 

Model 

implementation 

 

 


