
Distributed State Space Generation
for Graphs up to Isomorphism

Gijs Kant

24 August 2010

Master’s thesis

Department of Computer Science

Graduation committee:

Dr.ir. A. Rensink
E. Zambon, MSc.
Dr. S.C.C. Blom





Summary

In order to achieve reliability of systems, formal verification techniques are required. We model
systems as graph transition systems, where states are represented by graphs and transistions between
states are defined by graph transformation rules. For formal verication, often the state space of the
system has to be generated, i.e., the set of all reachable states. The main problem with generating the
state space is its size, which tends to grow exponentially with the size of the modelled system. This
results in enormous computation time and memory usage already for relatively small systems. Recent
developments in hardware design aim towards multi-core and multi-processor architectures. In order
to benefit from these we require distributed tools: the task of state space generation needs to be split
up into subtasks that can be distributed to multiple cores, called workers.

In this report we present a tool for distributed state space generation for graph-based systems. The
tool uses LTSMIN [23] for efficiently distributing the states over the workers and for storing the state
space, and instances of GROOVE [28] for computing successor states by applying graph transformation
rules. Because LTSMIN uses fixed sized state vectors to represent states, a serialisation from graphs
to state vectors and its reverse are required. We define two such serialisation functions: one that
partitions the graph by its nodes (node vector) and one that uses edge labels to partition the graph
(label vector).

In graph transformation systems a powerful symmetry reduction can be achieved by using
isomorphism checking [27]. Isomorphic states can be merged, resulting in a reduced transition system
that is bisimilar to the transition system without reduction, which implies that they satisfy the same
semantic properties [29]. In our distributed tool we compute a canonical form for each computed
successor graph, which enables us to also distribute the isomorphism reduction to the workers. For
computing canonical forms, BLISS (described in [16]) is used together with a conversion that is
needed because GROOVE uses a slightly different graph formalism (edge labelled graphs) than BLISS

(coloured graphs) does.
We have performed experiments to investigate the time and memory performance of the distribu-

ted tool, based on LTSMIN, with the two different serialisation functions, compared to the sequential
version of GROOVE for three different case studies. The experiments show that the node vector
encoding is better than the label vector encoding both in memory usage and execution time.

The distributed setup with the node vector serialisation results in orders of magnitude less memory
usage than sequential GROOVE for the very symmetric cases. This is suprising because the storage in
GROOVE is optimised for graphs, storing only the differences (deltas) between state graphs instead of
the complete graphs themselves.

The execution time for LTSMIN with one core is much worse than that of GROOVE, because GROOVE

uses a canonical hashcode, which often prevents that isomorphism checking has to be used, and some
kind of partial order reduction for graph transition systems that is not applicable in the distributed
setting. Also, the conversion to coloured graphs, needed for computing canonical forms using BLISS,
blows up the size of the graphs. However, for the larger models the distributed solution scales well.
For all reported case studies there are start graphs for which GROOVE runs out of memory or is not
capable of finishing within the time limit, while the distributed tool still can generate the state space.
In one of the cases a speedup of 16 is achieved with 64 workers in the largest case for which also
GROOVE could generate the state space within the time limit. For the very symmetric cases most of the
time is spent on isomorphism checking in GROOVE. In the distributed setting, the speedup is explained
by the time spent on canonical form computation that decreases linearly as the number of workers
increases. As the number of workers increases, however, the communication overhead also grows.
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1
Introduction

Computer systems and software are everywhere around us. Internet applications and databases are
widely used for communication and administrative tasks. We are more and more dependent on the
availability of such systems for economic transactions, communication, etc. Computer systems are
also used in safety-critical situations, for controlling power plants, airplanes, cars, etc. These systems
become more and more complex, especially with the ongoing trend towards distributed systems
and parellel software. Therefore we need reliable systems and for that we need techniques to verify
systems and to assist in building reliable, dependable systems.

In software engineering there are several ways to establish correctness and reliability of the
software product. We consider one of them, which is to formally specify the behaviour of the system
and verify that the system satisfies some set of formal properties, e.g., that it is free of deadlocks and
that no illegal state can be reached. The properties can be expressed as formulae in a temporal logic,
such as Computational Tree Logic (CTL) or Linear Temporal Logic (LTL). Verifying that a specification
satisfies such a formula is called model checking. This kind of verification is usually done by exploring
the state space of the specified system, i.e., the set of all reachable states (from some given initial
state). The state space is represented as a Labelled Transition System (LTS), where each transition
represents an action that is possible from a certain state and to which state the action leads. Checking
correctness properties can be done while generating the LTS (on-the-fly) or afterwards if the LTS is
stored somewhere.

We model systems as graph transformation systems, where states are represented by graphs and
transistions between states are defined by graph transformation rules. Modelling systems as graph
transformation systems has certain advantages. Modelling states as graphs provides an elegant way of
expressing entities and relations between entities. Graph transformation systems have a solid formal
basis, the semantics of graph transformation rules are well defined. Various tools exist that support
graph-based modelling of systems. For instance, the tool GROOVE [28] can be used for graph-based
model checking [27]. In GROOVE, directed edge labelled graphs are used to model states. See, e.g.,
[12] for examples of modelling and analysis using GROOVE. In Chapter 2 the basic concepts related to
graphs and graph transition systems are presented.

The main problem with model checking is the size of the transition system, which tends to grow
exponentially with the size of the specified system. This results in enormous computation time and
memory usage already for relatively small systems. Many kinds of techniques have been developed
and are still being developed to try to cope with this complexity of model checking. There are very
powerful reduction techniques that reduce the size of the transition system without changing its
semantic properties, such as Partial Order Reduction (see, e.g., [2]).

Recent developments in hardware design aim towards multi-core and multi-processor architec-
tures. In order to benefit from these we require distributed tools: the task of state space generation
for graph transformation systems needs to be split up into subtasks that can be distributed to multiple
cores or machines, called workers. The algorithms in GROOVE are written to run on one machine. As
far as we know, no other tools are currently available that provide distributed state space generation
for graph transformation systems. Tools already exist for distributed state space generation for states
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2 Introduction

modelled as vectors of data which, however, cannot be used directly for graphs. One of these is the
LTSMIN toolset [23].

In this report we present a tool for distributed state space generation for graph-based systems. The
tool uses LTSMIN for efficiently storing the state space and distributing the states over the workers,
and instances of GROOVE for computing successor states by applying graph transformation rules.
Because LTSMIN uses fixed sized state vectors to represent states, a serialisation from graphs to state
vectors and its reverse are needed for using LTSMIN to communicate graphs. We define two such
serialisation functions for graphs: one that partitions the graph by its nodes (node vector) and one
that uses edge labels to partition the graph (label vector).

In state space generation, there are also techniques for symmetry reduction, i.e., grouping of
‘symmetric’ states. Particularly for graph transformation systems a powerful symmetry reduction can
be achieved by using isomorphism checking [27]. Isomorphic states are structurally equivalent, but
the nodes of the graph can have different identities. Because application of transformation rules is
based on matching, i.e., finding a subgraph isomorphism, isomorphic states give rise to equivalent
transitions with equivalent target states. Therefore, if two states are isomorphic, they are considered
to represent the same state and only one of them has to be stored. The resulting reduced transition
system is bisimilar to the transition system without reduction, which implies that they satisfy the same
properties [29]. This reduction can be established in two ways: (a) when encountering a new state
we can search in the set of visited states for an isomorphic state; or (b) we can compute a canonical
form of the graph and store that canonical form. A canonical form of a graph G is a graph that is
isomorphic to G, such that for a graph H, the canonical forms of G and H are equal if and only if G
and H are isomorphic. By definition a set of isomorphic graphs has only one canonical form, which
serves as unique representative of that set.

In our distributed tool we compute a canonical form for each computed successor graph, which
enables us to also distribute the isomorphism reduction to the workers. Canonical forms for coloured
graphs, a slightly different graph formalism from the edge labelled graphs used in GROOVE, can be
computed by BLISS (described in [16]), which is an improved version of NAUTY (described in [19]).
In Chapter 4 the theory behind these tools is described and a conversion from edge labelled graphs
to coloured graphs is presented. An extensive survey of different methods for computing canonical
forms is given in [17].

We have performed experiments with several rule systems to compare the distributed setup, based
on LTSMIN, to the existing sequential version of GROOVE. The results show that a significant speedup
and much better memory usage are achieved by the distributed approach compared to GROOVE.

This report is organised as follows. In the next section we discuss related work. Chapter 2
introduces the concepts and definitions used in the report. The architecture of the distributed state
space generation tool and the relation between LTSMIN, GROOVE and BLISS are described in Chapter 3.
The algorithms behind graph canonizer BLISS and how BLISS can be applied to edge labelled graphs
are described in Chapter 4. We describe the graph serialisations and formally demonstrate their
correctness in Chapter 5. The experiments and results are presented in Chapter 6. Chapter 7 concludes
the report and contains suggestions for future work.

1.1 Related Work

(Distributed) Graph transformation. Some work has already been done on parallelisation of
graph transformation by parallelising graph matching, see [4]. Pattern matching and rule application
are parallelised by distributing the storage and updating of the rule match network, the so called
rete network. However, that work is aimed at performing linear graph transformation rather than
generating a complete state space. In that case isomorphism reduction is not an issue.

Distributed state space generation. Several tools exists for distributed model checking based,
such as distributed versions of the model checker SPIN [18, 3] and the tool LTSMIN [5, 23]. SPIN
uses a process modelling language (Promela) as input. In [30] a serialisation of graph grammars
to Promela models (used in SPIN) is reported, but the performance (with normal SPIN) is worse
than that of GROOVE. LTSMIN is very modular by design and supports multiple language modules (for
input) and multiple model checking tools (for verification). That is why we choose to use LTSMIN,
which is described in Section 3.1.



1.1 Related Work 3

Graph isomorphism. Subgraph matching is known to be a NP-complete problem (Problem GT48
in [11]). For isomorphism checking it is not known if the time complexity is in P or if the problem is
NP-complete. It is believed not to be in P [34].

Many algorithms exists that can check if two graphs are isomorphic. Ullmann [33] presented a
search tree based algorithm for finding graph or subgraph isomorphisms between two graphs. Messner
& Bunke [21, 22] made an optimised version for large graphs. The graph matching algorithms by
Cordella et al. [6, 7, 8] also aim at isomorphism checking for pairs of graphs. They use heuristics
and efficient data structures that are optimed for matching large graphs. Foggia, Sansone, and Vento
compare four one-to-one isomorphism checking algorithms to NAUTY, a tool that computes canonical
forms [10]. For many cases NAUTY performs comparable to these algorithms or better. For some cases
NAUTY performs worse or is unable to find an answer, whereas some other algorithms are able to find
an answer for all test cases.

Computing canonical forms. The NAUTY program by McKay [20] is able to produce a canonical
form for directed coloured graphs, which can be used to test for isomorphism between graphs. The
algorithm of McKay for computing the canonical form is described in [19] and will be explained in
Section 4.2.

The complexity of the algorithm of McKay has been analysed by Miyazaki [24]. Miyazaki shows
that NAUTY has an exponential worst case complexity. For some 3-regular graphs (for which canonical
labellings can be computed in polynomial time, see [1]) NAUTY has an exponential lower bound.
However, in practice the average computation time is much better.

Optimisations of McKay’s algorithm for large and sparse graphs have been done by Junttila &
Kaski [16] in the tool BLISS [15]. In experiments BLISS is shown to be faster than NAUTY for large and
sparse graphs. It uses datatypes that allow more efficient storage and searching than the adjacency
matrix that is used in NAUTY. Also other certificates for nodes in the search tree are used and the
heuristics for pruning certain subtrees of the search tree are further optimised.

Using canonical forms in model checking. The tool NAUTY has been used in model checking of
systems specified in B by the tool PROB [32, 31]. The states of the B model are translated to edge
labelled graph representations. These are again converted to a coloured graph representation and
compared using NAUTY. In [32] a version of the NAUTY algorithm is used that is adapted to work for
edge labelled graphs, but the search tree pruning optimisations of NAUTY are left out. In [31] on the
contrary a conversion from edge labelled graphs to vertex coloured graphs is used in combination
with the orignal NAUTY algorithm. In both approaches the states of the B model are converted to
a graph representation and a canonical form for the state graph is computed in order to be able
to store only the canonical forms. States in B models consist of sets containing abstract elements,
nested sets and relations between elements. Transitions between states are inferred by operations
on that data. Symmetries exist between the abstract elements of the sets. The elements do not have
a concrete value, so if their relations to other elements are symmetric, they are interchangeable.
Experimentation shows that the symmetry reduction results in faster model checking. However, this
has only been tested with small numbers of vertices (< 100).





2
Graph-Based Verification

In this chapter we define concepts that will be used troughout the report, such as graphs, isomorphism
of graphs, graph transformation, and graph transition systems.

2.1 Graphs

A graph is a structure that consists of a set of vertices (or nodes) and a set of edges (or arrows) between
vertices. There are many different kinds of graphs, with and without labels or colours, with directed
or undirected edges, and with only binary or n-ary edges. We use directed labelled graphs, to be
defined shortly hereafter. We assume a fixed ordered set of edge labels LE and a fixed ordered set of
vertex labels LV . Vertex labels are used for types and flags, which are unary edges, i.e., edges that are
connected to exactly one vertex. A vertex can have at most one type and arbitrary many flags. We also
use special nodes representing primitive values, elements of the set Val = Int∪Bool∪String∪Double.
We denote the set of types as T = {Int,Bool,String,Double}. We write the primitive values as tuples,
e.g., 〈Int, 1〉, 〈Bool, true〉 and use functions type: T ×Val→ T and val: T ×Val→ Val for the type
repectively value of the value nodes. E.g., type(〈Int, 1〉) = Int and val(〈Int, 1〉) = 1.

Let us define formally what we mean by directed labelled graphs.

Definition 2.1 (Directed labelled graph). A directed labelled graph G is a tuple 〈V, E, c〉 with a finite
nonempty ordered set of vertices V = (0, 1, . . . , n− 1) with vertices represented by natural numbers
in the range [0..n− 1], a set of ordered tuples E ⊆ V ×LE × V representing the binary edges, and
a colouring function c : V →P (LV )∪Val that associates a set of vertex labels or a primitive value
with each vertex. The edges have associated source and target functions src, tgt : E → V and label
function lab: E→LE . The class of directed labelled graphs is denoted GL .

Example 2.2. As an example throughout the report we use the dining philosophers problem, essentially
a problem of mutual exclusion. The problem can be briefly described as follows. A number of
philosophers (we use three for the example) is sitting around a table, where they are about to eat
spaghetti. To the left and to the right of each philosopher there is a fork, i.e., each fork is shared by
two philosophers. Each philosopher needs two forks to be able to eat spaghetti. Philosophers are
either thinking, trying to acquire forks (waiting), or eating. Figure 2.1 depicts the start state of the
problem. The square boxes denote nodes in the graph, with a bold face label for its type and italic
face labels for flags. In the figure the nodes are numbered 0..5. These so called node identities are
shown outside of the nodes or inside the box as n0, n1, etc, which is the notation that is being used in
GROOVE. Node identities are only needed to write down the graph on paper in a textual form and
for storing them in computer memory. The arrows denote the edges between nodes. The edges are
directed, which means that, e.g., the edge (5, right, 2) has node 5 as source and node 2 as target.
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Figure 2.1: Example graph representing a state in the dining philosophers problem.

2.2 Graph Transformation

Graphs can be transformed using graph transformation rules. Without going in to details, we will
explain here the basic concepts in graph transformation that are necessary in the context of this
report. Graph transformation is defined category theoretically in terms of morphisms and pushouts. A
graph morphism is a structure preserving mapping from elements in one graph to elements in another
graph. This mapping can be a partial mapping. If the mapping is a bijection it is an isomorphism. A
pushout is a formal definition of the result of combining morphisms. The rule is applied to a graph
that is called the host graph. A detailed description of graph transformation, morphisms, pushouts
and graph transition systems can be found in, e.g., [9].

A graph transformation rule consists of three parts:

Left Hand Side (LHS) The reader and eraser elements of the rule. These are the elements that are
used for finding a match, which is a morphism from the LHS of the rule to the host graph. The
eraser elements will be deleted from the host graph when the rule is applied.

Right Hand Side (RHS) The reader and creator elements of the rule. There is a morphism between
the reader elements of the LHS to the reader elements of the RHS. The creator elements are
added to the host graph when the rule is applied.

Negative Application Condition (NAC) The embargo elements and (some of the) reader elements
of the rule. There is a morphism between the reader elements of the NAC to (part of) the
reader elements of the NAC. If a match (extending the match between host graph and LHS)
can be found from the NAC to the host graph, then the rule is not applicable.

The transformation takes place in three steps: i) matching the reader and eraser elements (the
LHS) of the rule to (a subgraph of) the host graph, the graph on which the transformation takes
place (i.e., finding a morphism between the host graph and the LHS), ii) trying to extend the match
between host graph and LHS with a match between host graph and the NAC, and iii) applying the
change that is specified by the rule if a match is found for the reader elements, but not for the NAC.

Rule application in GROOVE is done in a Single Pushout (SPO) manner. The most important
consequence of that is that when a node is removed also attached edges are removed automatically.
We will not further explain pushouts here. See, e.g.,[9] for a more detailed account.

In GROOVE the three parts of rule are combined in a single graph representation. There the black
parts of the rule form the reader elements, the blue dashed parts form the eraser elements, the green
thick elements are the creator elements, and the red thick dotted elements are the embargo elements.

Example 2.3. Figure 2.2 shows a graph transformation rule in the two different representations. The
tranformation rule looks in the host graph for a philosopher node and the adjacent fork node to the
left of the philosopher (LHS) such that no philosopher already has taken the fork (NAC). The rule
adds a has label between the philosopher and the fork representing that the philosopher has taken
the fork (RHS). Between the LHS, RHS, and NAC there are implicit morphisms, i.e., nodes n0 and n1
in the LHS are mapped to nodes n0 and n1 in the RHS repectively and node n1 in the LHS is mapped
to n1 in the NAC.
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(a) The pickupLeft rule in the single graph represenation used
in GROOVE.
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(b) The pickupLeft rule as three graphs with implicit morphisms.

Figure 2.2: Example graph transformation rule: pickupLeft.
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Figure 2.3: Resulting graph from transformation of the graph in Figure 2.1 by the pickupLeft rule in
Figure 2.2.
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When applying the rule to the graph in Figure 2.1, there are three possible resulting states, because
the rule can be applied to three pairs of philosopher and fork nodes. The three resulting states are
isomorphic, i.e., only the node identities are different. Isomorphism will be defined in Section 2.4.
One of the resulting state graphs is in Figure 2.3.

2.3 Graph Transition Systems

Given a start graph and a set of graph transformation rules (also called a graph grammar), we
can compute all states reachable from the start state. This results in a graph transition system, as
described in [27]. We write G for a class of graphs, e.g. directed labelled graphs, R for the class
of graph transformation rules that can be applied to graphs in G , and LR for the class of transition
labels resulting from graph transformation rules.

Definition 2.4 (Graph transition system). A labelled transition system is a tuple K =



Q, T, q0
�

, with
a set of state graphs Q ⊆ G , a set of labelled transitions T ⊆Q×LR ×Q, and an initial state q0 ∈Q.

The states in the transition system are graphs and there is a transition labelled r, m from q to q′,
denoted q

r,m
−→ q′ if q′ has been generated from q by rule r with match m, where m is a morphism

from the left hand side of r to q.
In graph-based systems, usually the labels of self-edges in the transition system, i.e., the matching

rules that do not change the state graph, are used to represent atomic properties that hold in the state
to which the self-edge is connected. Using these atomic properties for states, from a graph transition
system a Kripke structure can be constructed, a state machine with an interpretation function that
associates each state with the set of atomic propositions that hold in that state. For this Kripke
structure, Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) formulae can be specified
expressing properties about the state space. Checking if such a formula holds for a system is called
model checking. See, e.g., [2] for more on model checking, Kripke structures, state space reduction
techniques and temporal logics.

In the following we assume the existence of a successor function that computes the set of successor
state graphs for a given state graph for some state, based on a set of graph transformation rules:

Definition 2.5 (Successor function). The successor function succ: G ×P (R)→ P (G ) computes
the set of successor state graphs succ(G, R) for a given state graph G ∈ G , based on a set of graph
transformation rules R⊆R .

2.4 Isomorphism and Isomorphism Reduction

Is two graphs have the same structure and only have different node identities they are called
isomorphic, which is formally defined as follows.

Definition 2.6 (Isomorphism of directed labelled graphs). Let G =



VG , EG , cG
�

and H =



VH , EH , cH
�

be two directed labelled graphs. A bijective function f : VG → VH is called an isomorphism if

1) for all v ∈ VG , cG(v) = cH( f (v)), and

2) for all v1, v2 ∈ VG and l ∈ Lab, (v1, l, v2) ∈ EG if and only if
�

f (v1), l, f (v2)
�

∈ EH .

If such a function exists, G and H are called isomorphic, denoted G ∼= H.

Isomorphism of two graphs implies that the same rules apply on the graphs, resulting in isomorphic
successor states: for graphs G, H ∈ G and a set of rules R⊆R ,

G ∼= H =⇒∀G′ ∈ succ(G, R) · ∃H ′ ∈ succ(H, R) such that G′ ∼= H ′.

Isomorphism of state graphs is an equivalence that can be used for reduction of the state space.
Instead of generating the full state space, we generate a graph transition system modulo isomorphism,
i.e., isomorphic graphs are considered to represent the same state. In such a reduced transition
system isomorphic states are represented by one representative state. The reduced transition system
is bisimilar to the transition without isomorphism reduction (see [26, 29]). Bisimulation equivalence
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Algorithm 2.1 Compute reduced graph-based transition system for q0 ∈ G and a set of rules R⊆R .

1: Q :=
�

q0
	

2: T := ;
3: S :=

�

q0
	

4: while S 6= ; do
5: Let q be some element of S
6: S := S \ q
7: for all s ∈ succ(q, R) do
8: if ∃p ∈Q such that s ∼= p then
9: T := T ∪

�

(q, p)
	

10: else
11: Q :=Q ∪ {s}
12: T := T ∪

�

(q, s)
	

13: S := S ∪ {s}
14: end if
15: end for
16: end while

17: return



Q, T, q0
�

;
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− Waiting
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right

(a) The pickupRight rule.

n0
Phil
− Eating
+ Done
+ Thinking

n3
Fork

n2
Fork left

has

right
has

(b) The dropForks rule.

Figure 2.4: Two graph transformation rules, used in Example 2.7.

implies that Linear Temporal Logic (LTL) or Computation Tree Logic (CTL) formulae that hold in one
transition system also hold in an equivalent system (see, e.g., [2] on bisimulation equivalence).

In Alg. 2.1 it is shown how a graph transition system modulo isomorphism can be derived from a
start state q0 and a set of rules R. This isomorphism reduction is achieved by checking for isomorphism
instead of checking for equality in line 8. For a set of state graphs S (initially containing only the
initial state q0) the successor states are computed. If a successor state has been visited before, only a
transition to that state is added (line 9), otherwise a new state is added to the set of states Q and to S
and a transition to the new state is added to the set of transitions (lines 10–13).

Example 2.7. In Figure 2.4 there are two other graph transformation rules: pickupRight and
dropForks. The pickupRight rule specifies that if a philosopher is in a waiting state, meaning that he
already has a left fork, he picks up the fork on his right if that fork is available. The philosopher
changes to eating state. The dropForks rule specifies that if a philosopher is in an eating state he
may stop eating and drop the forks on his left and right hand side. The philosopher then changes
to thinking state again and is marked done, meaning that he already has had a meal. The done flag
can be used to check if every philosopher gets a meal, i.e., that the rule system does not result in
starvation. Applying Algorithm 2.1 to the rules pickupLeft, pickupRight, and dropForks and the start
state in Figure 2.1 results in a labelled transition system consisting of 40 states and 110 transitions,
which is shown in Figure 2.5. Without isomorphism reduction the state space consists of 112 states
and 314 transitions. The green node represents the start state s0, which is the state in Figure 2.1, the
orange nodes represent final states, i.e., states from which no transition is possible. This means that
all philosophers are a waiting state and none can get his right fork. Such a state is called a deadlock
state. From the LTS it is clear that this rule system is not free of deadlocks. When one inspects the
final states (not displayed here), it appears that the rule system is also not free of starvation, i.e.,
there are final states where not all philosophers have had a meal. Sometimes there are multiple labels
on a single transitions, meaning that different transitions lead to an isomorphic state.

Instead of checking for isomorphism for each visited state separately, we can use canonical forms
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Figure 2.5: Labelled Transition System for the dining philosophers problem with three philosophers.
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Algorithm 2.2 Compute the reduced graph-based transition system for q0 ∈ G and a set of rules
R⊆R using a canonical representation function can.

1: r0 := can(q0)
2: Q :=

�

r0
	

3: T := ;
4: S :=

�

r0
	

5: while S 6= ; do
6: Let q be some element of S
7: S := S \ q
8: for all s ∈ succ(q, R) do
9: r := can(s)

10: if r /∈Q then
11: Q :=Q ∪ {r}
12: S := S ∪ {r}
13: end if
14: T := T ∪

�

(q, r)
	

15: end for
16: end while

17: return



Q, T, q0
�

;

of successor states and communicate and store those canonical forms. The advantage of that being
that isomorphism reduction is achieved independent of the way states are stored. For this we need a
canonical representation function that is defined as follows:

Definition 2.8 (Canonical representation and canonical form). A canonical representation func-
tion can: G → G computes an isomorphism invariant graph representative for each graph that is
isomorphic to that graph, i.e., can(G)∼= G for all G ∈ G , such that for every pair of graphs G, H ∈ G ,

can(G) = can(H) if and only if G ∼= H.

can(G) is called the canonical form of G.

In Alg. 2.2 it is shown how such a canonical representation function can be used in generating a
reduced transition system. In line 9 the canonical form is computed. In the next line an equal graph
is looked up, instead of an isomorphic graph as in Alg. 2.1. The use of canonical forms may result in a
system with different (but isomorphic) states than the system that is generated by Alg. 2.1. However,
the two transition systems themselves are isomorphic. Isomorphism of transition systems means that
there is a bijective stucture preserving mapping from states in one system to states in the other system.
In this case the states that are mapped to each other by the isomorphism of the transition systems are
also isomorphic states. Isomorphism of transitions systems is an even stronger equivalence relation
than bisimulation. Hence, the properties that hold for one system, also hold for an isomorphic one.





3
Architecture of Distributed Groove

In this chapter we describe the architecture that we use for distributed state space generation for
graph transition systems. The task is distributed among several workers. Each worker may be a
separate machine, but also multiple workers may run on the same machine. For the communication
between the workers message passing (MPI) is used. Within the architecture a single worker consists
roughly of four components.

GROOVE is used to compute successor states for state graphs, as described in Chapter 2.

LTSMIN is used for storing the state space and for facilitating the communication of states to and
from other workers.

BLISS is used for computing canonical forms for coloured graphs. Coloured graphs are slightly
different from the edge labelled graphs used in GROOVE and will be defined in Chapter 4. A
conversion between edge labelled graphs and coloured graphs is used to compute canonical
forms for edge labelled graphs (described in the same chapter).

Distributed GROOVE (DG) connects GROOVE, LTSMIN and BLISS as described below. DG runs within
the same Java Virtual Machine (JVM) as GROOVE and uses Java method calls to communicate
with GROOVE.

JVMJVM

Groove Groove Groove

DG

LTSminLTSmin

BlissDGBlissDGBliss

LTSmin

graphs

index vectors

index vectors

coloured

graphs

MPI

stdio

stdio

JVM

MPI

MPI

Figure 3.1: Schematic overview of the architecture.

How the tools relate to each other is depicted schematically in Figure 3.1. The workers are
indicated by the dashed boxes. Each solid box in the figure represents a separate process, dotted
boxes represent different tool instance within a JVM (for GROOVE and DG). The arrows represent
communication between the tool instances.

• DG communicates (synchronously) with BLISS using pipes (standard input/output). Because
of this, currently DG and BLISS need to run on the same machine. For each instance of DG a

13
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separate process of BLISS is run. DG sends a coloured graph to BLISS and receives its canonical
form back. Conversion of graphs is done on the side of DG.

• DG communicates (synchronously) with LTSMIN using either pipes (standard input/output)
or TCP/IP. For each instance of LTSMIN a separate process of DG is running. DG receives a
state from LTSMIN, computes successor states using GROOVE, and sends canonical forms of the
successor states back to LTSMIN. The state graphs are communicated between DG and LTSMIN

as state vectors. This means that on receiving a state, DG needs to decode the state vector to
a graph, and on sending successor states, the canonical forms have to be encoded as a state
vector. This serialisation of graphs is described in Chapter 5. The state vectors are compressed
into index vectors, i.e., both DG and LTSMIN keep a store of values used in the state vectors
and communicate a vector of indices of the values instead of a complete vector of values as
representation of states. Of course, each new value has to be communicated once between DG
and LTSMIN, so that they both know which index represents which value. This compression is
explained in Section 3.1.1.

• LTSMIN takes care of storing the labelled transition system, in which states are compressed even
further using tree compression, which is explained in Section 3.1.2. The different instances of
LTSMIN communicate with each other using MPI. LTSMIN keeps a global database of values used
and uses compressed index vectors for communication between workers. A hash function that
is applied to index vectors is used to determine which worker is responsible for which state.

In the following sections we describe the functionality of LTSMIN (Section 3.1) and the functionality
of DG and GROOVE in this distributed setting (Section 3.2).

3.1 LTSMIN

The LTSMIN toolkit [23] contains sequential, symbolic, and distributed tools to generate labelled
transition systems for various input languages, such as µCRL, mCRL2, Promela (used in SPIN) and
DVE (used in DiVinE). Bisimulation minimisation can be applied on the generated LTSs and several
tools can be used to verify properties of the LTSs, such as CADP. LTSMIN uses its own file format that
is optimised for efficient storage of LTSs and distributed writing to disc. States are represented as
state vectors with a fixed length and compression of the state vectors is used for efficient storage and
communication of states. The state vectors and index vector encoding are described in Section 3.1.1.
A recursive compression technique called tree compression that is used in LTSMIN is described in
Section 3.1.2.

3.1.1 State vectors and index vectors

Definition 3.1 (State vector). A state vector is a fixed-length vector of values ~p =



p0, p1, . . . , pm
�

,
i.e., a vector of which the length m is fixed. The values can be of arbitrary type and size.

The actual state vector is not communicated, but instead an index vector, i.e., a vector containing
the indexes of the values in a table.

LTSMIN uses a global store Pj for each of the parts of the vector.1 The complete so called
leaf database of values consists of the stores P0, P1, . . . , Pm. Now the index vector of a state vector



p0, p1, . . . , pm
�

is



i0, i1, . . . , im
�

, where i j is the index of the value p j in store Pj .
This technique is used in, e.g., the SPIN model checker [14] and in LTSMIN [23]. It is based on the

assumption that the number of different values of a certain part of the vector is relatively small with
respect to the total number of different state vectors. For example, if multiple processes are modelled
and local variables are stored in separate parts, then these parts are unchanged when an action of
another processes is executed. Most changes are then local to the process. If two parts are never
changed by the same action or transition, they are called independent. The total number of states is of
combinatorial nature, i.e., the total number of states that can be encoded is the product of the number
of values of the different parts: |P0| · |P1| · · · · · |Pm|. The more locality there is in the state vectors,
the more space can be saved by storing the values of the parts separately and using an index vector,

1Actually, LTSMIN uses a store for each type (not further defined here), but the description here is accurate for how LTSMIN

is used in this setting.
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containing the indexes of the values in the database as vector parts. The total number of values to be
stored is not the product, but the sum of the number of values of the parts: |P0|+ |P1|+ · · ·+ |Pm|.

Example 3.2. Let m= 4 and let the leaf database contain the following values:

i P0 P1 P2 P3

0 〈4,5〉 7 “a” 49
1 〈1,2〉 1337 “b” 50
2 〈4,2〉 0 “aa” 51
3 〈9,5〉 50 “ab” 52
4 〈1,1〉 2 “aba” 53

Now, value vector 〈〈1, 2〉 , 0, “aba”, 49〉 is encoded as index vector 〈1, 2,4, 0〉.

For the examples we used (tuples of) integers and string for the values in the leaf database, but in
LTSMIN any serializable type of values may be used in the leaf database. The indexes are in the range
of natural numbers that can be encoded in 32 bits.

3.1.2 Tree Compression

These index vectors can also be partitioned into parts, which are then values for a next level of
indexing. Parts of the index vector are stored again in a store, and the index of these parts in the
store are used in the compressed vector. This is called recursive indexing [13] or tree compression [5].

Example 3.3. We explain the tree compression in LTSMIN by an example. For the index vector
〈1,2, 4,0〉 from the previous example, tree compression is applied in the following way. First the
vector is split into two parts: 〈1,2〉 and 〈4,0〉. For the first part, the index is looked up in store I0, for
the second part in store I1:

i I0 I1

0 〈0, 0〉 〈0,0〉
1 〈1, 1〉 〈1,1〉
2 〈1,2〉 〈2,0〉
3 〈2, 0〉 〈3,1〉
4 〈0, 1〉 〈4,0〉

Tuple 〈1, 2〉 has index 2 in I0, 〈4,0〉 has index 4 in store I1, so the vector 〈〈1, 2〉 , 0, “aba”, 49〉 can
be encoded as 〈2,4〉.

For larger vectors multiple levels of tree compression can be used. The root table consists of pairs
of indexes representing states. Depending on the size of the state vectors, an index in a table of the
tree compression datastructure points to either a value in the leaf database or to a value in a separate
table one level lower. See [5] for an extensive description of tree compression in LTSMIN.

3.1.3 State compression and graphs

In the distributed setting we use canonical forms of state graphs to achieve isomorphism reduction.
Canonically numbering nodes such as is done in NAUTY and BLISS renumbers the vertices of the
graph in a way that is difficult to predict and for which local changes (adding or removing one edge,
renaming a label) may result in a completely different numbered graph. This means that when a
straightforward serialisation of graphs is used, already a small change in the state graph may result in
large changes in the state vector resulting from that state graph. Therefore it is not immediately clear
if there will be any benefit in using the state compression of LTSMIN for graphs. Althought there will
perhaps be little locality of transitions, because of the renumbering of nodes, nonetheless the number
of values per part may still be much less than the total number of states. It needs to be determined
empirically if the state compression of LTSMIN works well for serialised graphs. The experiments in
Chapter 6 will show that it depends on which serialisation is used whether the compression works
well.
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3.2 GROOVE, DG, and the interface to LTSMIN

The DG part of the distributed setup is responsible for computing successor states (using GROOVE),
computing canonical forms (using BLISS), serialising graphs and compressing the resulting state
vectors into index vectors. DG and GROOVE are started with a graph grammar, containing a set of
graph transformation rules, and a start graph, the graph representing the start state.

At initialisation, LTSMIN starts N LTSMIN workers and N instances of DG. Each instance of DG
uses GROOVE as a library and loads the grammar and the start state that are to be explored. DG
communicates to LTSMIN the size of the state vectors used, which is either based on the number of
nodes in the start graph or on the number of different edge labels used in the system (depending on
the particular serialisation used, see Chapter 5). DG computes a canonical form for the start graph
using BLISS and sends a serialised form of the canonical start graph to LTSMIN.

The functionality of DG in this distributed setting is described in Algorithm 3.1. The following
functions are used:

recvValues receives new values for the leaf database, i.e., values that have not been received before,
and keeps a mapping between the values and their indexes in the leaf database;

recvIndexVector reads an index vector representing an open state, to be explored by the current
worker;

decompressV decompresses the index vector to a state vector using the mapping between indexes
and values of the leaf database;

decode decodes state vectors to graphs (see Chapter 5);

succ computes successor state graphs for a given graph (see Chapter 2) and returns a list containing
for each successor state graph g a tuple




l, g
�

containing a transition label l(which is the name
of the transformation rule that resulted in the successor state) and the state graph g;

can computes a canonical form of a graph (see Chapter 4);

encode encodes a graph to a state vector (see Chapter 5);

compressV and compressL compress state vectors and transition labels to index vectors and transi-
tion label indexes respectively;

sendValues sends newly encountered part values and transition labels to LTSMIN;

sendTransition sends tuples containing a transition label index and the index vector of a successor
state to LTSMIN representing a transition.
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Algorithm 3.1 Functionality of DG in the distributed setting: receiving states from LTSMIN, computing
successor states and canonical forms, and communicating encoded successor states back to LTSMIN.

1: recvValues();
2: qI := recvIndexVector();
3: while (qI 6= null) do
4: qV := decompressV (qI);
5: gq := decode(qV );
6: t :=





l1, g1
�

,



l2, g2
�

. . . ,



lr , gr
��

:= succ(gq);
7: for 1≤ i ≤ r do
8: c := can(gi);
9: sV := encode(c);

10: sI := compressV (sV );
11: lI := compressL(l);
12: sendValues();
13: sendTransition(lI , sI);
14: end for
15: recvValues();
16: qI := recvIndexVector();
17: end while





4
Computing a Canonical Form

In the architecture of the distributed state space generation tool, described in the previous chapter,
isomorphism reduction of the generated state space is achieved by computing canonical forms of the
state graphs, as defined in Definition 2.8. This chapter describes how to compute canonical forms of
edge labelled graphs. 1

Various tools exists that compute canonical form for coloured graphs, which is a slightly different
graph formalism from the edge labelled graphs as defined in Chapter 2. Coloured graphs and other
concepts used in this chapter will be defined in Section 4.1. In [17] an overview is provided of the
tools that compute canonical forms of coloured graphs. In this report we use the tool BLISS by Junttila
& Kaski [15, 16], which is based on the tool NAUTY by McKay [20, 19]. In Section 4.2 we describe
the basic ideas and algorithms behind these tools. The reader that is not interested in the details of
computing canonical forms may safely skip that section.

In order to be able to use the existing tools that use coloured graphs, a conversion is required
from the edge-labelled graphs used in GROOVE to coloured graphs. The conversion that we use is
presented in Section 4.3. A consequence of the conversion used, is that the size of the resulting graph
is typically larger than the original graph. The size of the resulting graph is discussed in Section 4.3.2.

4.1 Definitions

We assume an ordered universe of vertex colours C. In BLISS natural numbers are used to represent
colours.

Definition 4.1 (Coloured graph). A directed graph G is a tuple 〈VG , EG〉 with a finite nonempty set of
nodes (or vertices) VG and a set of edges EG ⊆ VG × VG . The edges have associated source and target
functions src, tgt : EG → VG . A directed graph G is called coloured if it has an associated function
c : VG → C. The class of coloured graphs is denoted GC .

Definition 4.2 (Isomorphism of coloured graphs). Let G = 〈VG , EG , cG〉 and H = 〈VH , EH , cH〉 be
two coloured graphs. A bijective function f : VG → VH is called an isomorphism if for all v ∈ VG
cG(v) = cH( f (v)) and for all v1, v2 ∈ VG ,

(v1, v2) ∈ EG ⇐⇒ ( f (v1), f (v2)) ∈ EH .

If such a function exists, G and H are called isomorphic, denoted G ∼= H.

Definition 4.3 (Permutation). A permutation of a set A is a bijective function α: A→ A. The image of
a ∈ A under a permutation α is denoted α(a) or aα. The set of all permutations for a set {1, 2, . . . , n}
is denoted Sn.

1This chapter is a compressed version of an earlier published technical report [17]. The technical report is partly written in
the context of a research topics project and partly in the context of the final project, of which this report is the end product.

19



20 Computing a Canonical Form

A permutation can be represented as a matrix:

α=
�

1 2 · · · n
1α 2α · · · nα

�

∈ Sn.

Definition 4.4 (Graph permutation). A graph permutation is a vertex permutation γ: V → V that
associates with each directed coloured graph G = 〈V, E, c〉 a permuted graph Gγ = 〈V γ, Eγ, cγ〉, where

V γ = {vγ | v ∈ V}= V ,

Eγ = {(vγ1 , vγ2 ) | (v1, v2) ∈ E}, and

cγ = {(vγ, k) | (v, k) ∈ c}.

The set of all graph permutations for a set of vertices V is denoted SV .

For all permutations γ ∈ SV it holds that Gγ ∼= G. A special subset of SV is the set of automorphisms
of G, Aut(G) = {γ ∈ SV | Gγ = G}.

An important ingredient of the algorithm that will be described in the next section is partition
refinement. Vertices of the graph are partitioned in equivalence classes. The initial partition of the
vertices is based on the colours of the vertices. Then the partition is refined such that also the number
of incoming and outgoing edges from the vertices is taken into account.

Definition 4.5 (Partition). A partition π of a set of nodes V is a set {W1, W2, . . . , Wr} of nonempty
disjoint cells Wi ⊆ V whose union is V . A partition with only trivial cells, i.e., cells that contain only
one element, is called a discrete partition. The partition that contains only one cell, the set V , is called
the unit partition. The set of partitions of V is denoted Π(V ). An ordered partition of V is a sequence
(W1, W2, . . . , Wr) such that the set {W1, W2, . . . , Wr} is a partition of V . The set of ordered partitions
of V is denoted Π

e

(V ).

The set of automorphisms for a graph G with vertex partition π is defined as Aut(G,π) = {γ ∈
SV | Gγ = G ∧πγ = γ}.

In the following we denote the vertices as natural numbers, i.e., the set of vertices V is the set of
numbers {1,2, . . . , n} ⊆ N with n= |V |.

Definition 4.6 (Partition permutation). If π ∈ Π
e

(V ) is a discrete ordered partition, we define the
permuted graph G(π), isomorphic to G, by relabelling the vertices of G in the order that they appear
in π: given π= ({i1}, {i2}, . . . , {in}) with {i1, i2, . . . , in}= {1, 2, . . . , n}, the permuted graph, denoted
G(π), is defined as (G)δ, where the permutation δ is given by

δ =
�

i1 i2 · · · in
1 2 · · · n

�

∈ SV .

This permutation δ, associated with partition π, is also written as π. This partition permutation
provides a relabelling of vertices based on a generated partition of vertices.

Example 4.7. As an example, suppose an isomorphism γ = {1 7→ 2, 2 7→ 3, 3 7→ 1} that maps vertices
of graph G to vertices of H, with

VG = VH = {1, 2,3},
EG = {(1, a, 2), (2, b, 3), (3, c, 1)}, and

EH = {(2, a, 3), (3, b, 1), (1, c, 2)}.

If we use some ordered partition π= ({i1}, {i2}, {i3}) as a permutation of G, then

(G)π = (H)π
γ

.

For instance, let π= ({2}, {1}, {3}). Then

(EG)
π = {(2, a, 1), (1, b, 3), (3, c, 2)},
πγ = ({3}, {2}, {1}),

(EH)
πγ = {(2, a, 1), (1, b, 3), (3, c, 2)}= (EG)

π.
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Definition 4.8 (Partition refinement). Given partitions π1,π2 of some set, π1 is called a refinement
of π2 or finer than π2 (and π2 is called coarser than π1), denoted π1 v π2, if for all cells Vi ∈ π1
there exists a cell Wj ∈ π2 such that Vi ⊆Wj .

The partition refinement algorithm used in computing the canonical form, to be described in
Section 4.2 computes the coarsest stable refinement of a partition. Stability of a partition is based on
the numbers of adjacent elements of the members of the cells of the partition.

Definition 4.9 (Number of adjacent elements). Given a directed graph G = 〈V, E〉 and a partition
π ∈ Π(V ), for an element v ∈ V and a cell W ∈ π, the number of elements of W which are adjacent
in G to v is defined as:

d(v, W ) = |
�

w ∈W | (v, w) ∈ E ∨ (w, v) ∈ E
	

| (4.1)

This definition considers edges in both directions. This differs from [20] where only one direction
is used, which is related to the data structure used in NAUTY, which allows for easy comparison of
rows of the matrix, whereas comparing columns is more expensive. In the case of undirected graphs
this does not make a difference, but for directed graphs it does.

Definition 4.10 (Stable partition). A partition π is called stable for a directed graph G if for every
pair of cells Wi , Wj ∈ π the number of adjacent elements in Wj is the same for each element in Wi ,
i.e., for all vertices v1, v2 ∈Wi it holds that d(v1, Wj) = d(v2, Wj). The set of all stable partitions of a
set V is denoted ΠS(V ).

The stable partition resulting from the partition refinement algorithm is not necessarily a discrete
partition, so the result of partition refinement can not immediately be used as permutation of the
vertices. Each discrete partition is also stable, but for n vertices there are n! possible permutations
and we want to find a unique partition that gives us a canonical relabelling. Therefore we need a
search tree that we can search for candidate canonical permutations and we need a way to order
the candidate permutations so that we can choose one. The generation of this search tree and the
ordering of the permutations are discussed in Section 4.2.3 and 4.2.2.

The partition refinement algorithm consists of iteratively splitting cells of the partition based on
the number of adjacent elements of members of cells, until the partition is stable. The splitting of
the cells of a partition π is defined with respect to a set S (usually some cell of the partition) and
denoted spl i t(π, S).

Definition 4.11 (Split). For a partition π ∈ Π(V ) and a set S ⊆ V , a partition π′ = split(π, S) is a
refinement of π for which for all W ∈ π, for all Wi , Wj ⊆W with Wi , Wj ∈ π′, it holds that

∀v1 ∈Wi , v2 ∈Wj ·
�

d(v1, S) = d(v2, S) ⇐⇒ Wi =Wj
�

.

If split(π, S) 6= π, S is called a splitter of π.

4.2 Computing a canonical form of vertex coloured graphs

In this section it is explained how a canonical form of a directed coloured graph can be computed.
McKay published an algorithm for finding a unique vertex labelling for isomorphic graphs [19], which
is implemented in the tool NAUTY [20]. Improvements have been done by Junttila & Kaski in the tool
BLISS; the algorithm they describe is used in the remainder of this paper.

The idea is to generate for each graph a set of discrete partitions that can be used as permutation
of the vertices of the graph, which results in a relabelled graph. If we have an ordering of the graphs,
and if for isomorphic graphs the same set of relabelled graphs is generated, we can choose the
minimum or maximum of the set as canonical form.

An easy but inefficient way of generating this set of graphs is generating all possible permutations
of the vertices, which results in |V |! permutations of the set of vertices V . An ordering of the graphs
can be obtained by representing each graph by a string that is a concatenation of the vertex colours
and of the rows of the adjacency matrix (which represents the incident edges in the graph), and use
an ordering on the strings.

The tools NAUTY and BLISS use far more efficienct algorithms that do not generate all possible
vertex permutations, but still result in an equal set of permuted graphs for isomorphic graphs. The
algorithms mainly consist of the following two ingredients:
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1) A partition refinement algorithm that computes the unique coarsest stable partition for a given
graph and initial partition of vertices;

2) An algorithm that generates a search tree of stable partitions with discrete partitions as leaf
nodes, of which one is chosen as the relabelling partition permutation leading to the canonical
form.

The search tree is generated by first computing a stable partition (which is the root node of the
tree) and then splitting one of the cells. For each of the members of the cell a subtree is added, where
that member is put in a separate cell. Then each of the resulting partitions is stabilised again. This
continues until all branches end in discrete partitions (the leaf nodes).

Because every intermediate partition is stabilised before it is split again, the number of nodes
in the tree is reduced. The properties that are used in the partition refinement are isomorphism
invariant, so the resulting set of permuted graphs stays equal for isomorphic graphs. This is required
in order to be able to compute the canonical form.

In the next section the partition refinement algorithm is explained. In Sections 4.2.3 and 4.2.4
the generation and pruning of the search tree are described. An ordering of coloured graphs is given
in Section 4.2.2.

4.2.1 Partition refinement algorithm

The vertices of a graph are partitioned into cells of vertices that are similar. Initially this partition is
based on vertex colours, but this partition is refined based on the number of neighbours of vertices in
other cells. The partition refinement algorithm and the result it produces are described in this section.

The algorithm computes the unique coarsest stable refinement of a partition. The stability of
partitions is defined in terms of numbers of adjacent vertices in the cells of the partition. A partition is
stable if for each pair of elements of a cell the number of adjacent vertices is equal for both elements
in all of the cells of the partitions (see Definition 4.10).

Suppose we have two isomorphic graphs G ∼= H, with Gα = H. Then if π1 is a partition of vertices
in G and π2 = πα1 is a partition of vertices in H, equivalent to π1, in the sense that (G)π1 = (H)π2

(see Example 4.7). Then also the unique coarsest stable refinements of π1 and π2 are equivalent.
This is the case, because stability of partitions is defined such that it is isomorphism invariant, i.e.,
does not depend on the particular identities of vertices. It follows then from the uniqueness of the
coarsest stable partition refinement and the isomorphism between G and H that the resulting stable
partitions are equivalent (in the same sense of equivalence and by the same isomorphism α).

Unique coarsest stable refinement Here we prove that a unique coarsest stable refinement exists
for each partition π ∈ Π(V ) of vertices V for a graph G. We assume that the set V is finite and hence
also Π(V ), the set of all partitions of V , is finite. We start with proving that the set of all partitions
of a set forms a lattice (both a least upper bound and a greatest lower bound exists for each set of
partitions). Then we prove that the least upper bound preserves stability. From the fact that each
discrete partition is stable we can conlude that for each partition there exists a stable refinement (i.e.
the discrete partition). It then follows that for each partition there exists a unique coarsest stable
refinement.

Definition 4.12 (Least upper bound of partitions). For a set of partitions Π⊆ Π(V ) and an ordering
relation v, an upper bound is an element π ∈ Π(V ) such that for all elements ρ ∈ Π, ρ v π. The least
upper bound of Π, denoted lubΠ, is the upper bound π such that for all other upper bounds ρ, πv ρ.

The least upper bound of a pair of elements π1,π2 ∈ Π(V ) is also called join, denoted π1 tπ2.
For computing this least upper bound we need the following relation.

Every partition π ∈ Π(V ) can be considered as a binary equivalence relation where each pair
reflects that two elements are in the same cell:

R=
�

(s, t) ∈ V × V | ∃W ∈ π · s, t ∈W
	

(4.2)

An example of partitions represented by binary relations is shown in Figure 4.1. The other way
around, a partition can be derived from a binary relation R ⊆ V × V . The relation can be seen as
a graph (an edge between two elements representing that a relation between the elements exists).
By taking the maximal connected subgraphs (or components) and regarding the vertices in those
subgraphs as the elements of a cell (so, one cell per subgraph) we have a partition of the elements.
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(e) Relation R2, reflecting the par-
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(f) The transitive closure of
R1 ∪ R2, reflecting the partition
�

{0, 1}, {2,3, 4,5}
	

.

Figure 4.1: The partitions π1 and π2, which are stable, and their least upper bound π1 tπ2. The
partitions are shown by the colours of the vertices. The partitions can be seen as relations, where
elements in the same cell are related. Relation R1 reflects partitions π1, R2 reflects partition π2, and
the transitive closure of R1 and R2 reflects the least upper bound π1 tπ2.

Proposition 4.13. Given a set of partitions Π = {π1,π2, . . . ,πr} ⊆ Π(V ) and their associated binary
relations R1, R2, . . . , Rr , the partition π′ formed by the sets of vertices of maximal connected subgraphs of
the union R1 ∪ R2 ∪ · · · ∪ Rr is the least upper bound of Π.

Now we show that the least upper bound of two stable partitions is itself stable as well.

Theorem 4.14. Given two stable partitions π1,π2 ∈ ΠS(V ), the least upper bound lub{π1,π2} is also
stable.

Proof. To prove: for all π1,π2 ∈ ΠS , π1 tπ2 ∈ ΠS .

1) First we observe that because π1 and π2 are refinements of their least upper bound, the cells of
π1 tπ2 are unions of cells in π1 and unions of cells in π2.

2) Because the way the least upper bound is constructed there exists for each pair v, w ∈ W ,
W ∈ π1 tπ2 a path

v = v1, v2, . . . , vr = w

such that for all pairs vi , vi+1(1≤ i < r), ∃W ′ ∈ (π1 ∪π2) · vi , vi+1 ∈W ′.

3) Because π1 and π2 are stable, each pair vi , vi+1 has the same number of neighbouring elements
for all cells of either π1 or π2, so certainly for unions of cells in π1 or of cells in π2.

4) Hence, by induction on r, the same holds for the pair v, w. So, π1 tπ2 must also be stable.

Definition 4.15 (Greatest lower bound of partitions). Given a set of partitions Π ⊆ Π(V ) and an
ordering relation v, a lower bound is an element π ∈ Π(V ) such that for all elements ρ ∈ Π, πv ρ.
The greatest lower bound of Π, denoted glbΠ, is the upper bound π such that for all other lower
bounds ρ, ρ v π.

The greatest lower bound of a pair of elements π1,π2 ∈ Π(V ) is also called meet, denoted π1uπ2.

Proposition 4.16. Given a set of stable partitions Π= {π1,π2, . . . ,πr} ⊆ ΠS(V ), there exists a stable
greatest lower bound glbS{π1,π2, . . . ,πr} ∈ ΠS(V ).
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Proof. Let L be the set of stable lower bounds of Π:

L =
�

π ∈ ΠS(V ) | ∀π′ ∈ Π ·πv π′
	

.

The least upper bound of this set of lower bounds, lub L, is the stable greatest lower bound of Π,
because

1) the least upper bound of a set of stable partitions is itself stable (Theorem 4.14);

2) lub L is a lower bound of Π, i.e., lub L ∈ L;

3) lub L is an upper bound of the set L.

Hence, a stable greatest lower bound exists.

Proposition 4.17. Given a set of vertices V , the set of stable partitions ΠS(V ) forms a lattice under the
refinement relation v, 〈ΠS(V ),v〉.

Proof. Both least upper bounds and greatest lower bounds exist, see Prop. 4.13 and 4.16 repectively.

The existance of a greatest lower bound enables us to conclude the following.

Theorem 4.18. For a directed graph G and initial partition π ∈ Π(V ), there is a unique coarsest stable
refinement, i.e., a stable partition π′ v π, such that for all other stable partitions ρ v π it holds that
ρ v π′.

Proof. Two parts:

1) The discrete partition is stable, so there is always a stable partitions that is a refinement of π.

2) Of the refinements of π there is one which is the coarsest, this is the greatest lower bound of π
in ΠS(V ), given by Prop. 4.16.

McKay’s partition refinement algorithm This unique coarsest stable partition can be computed by
applying the partition refinement algorithm presented by McKay, which is shown in Algorithm 4.1. An
example of the partition refinement is given in Figure 4.2. The algorithm iterates over the sequence
of potential splitters W ∈ α. It searches for cells V for which W is a splitter, i.e., there exists v1, v2 ∈ V
for which the number of adjacent elements in W is not equal: d(v1, W ) 6= d(v2, W ). In line 12 the
cell V is split into cells X i , which are ordered by the number of adjacent elements in W . This can be
easily done by building an ordered map where each element v ∈ V is added to the entry with d(v, W )
as key. V is replaced by one of the largest cells, the others are added (with their ordering maintained)
to the sequence of potential splitters α. An example of this step is shown in Figure 4.3.

Paige & Tarjan [25] published a similar algorithm, with some small differences:

1) McKay uses ordered partitions, i.e., sequences of disjoint cells that form a partition, and Paige
& Tarjan use sets of cells for partitions;

2) After splitting a cell into subcells, the algorithm of Paige & Tarjan leafs out the largest subcell
when adding subcells to the sequence of splitters. The algorithm of McKay instead replaces the
original cell in the sequence of splitters by the largest subcell (if the original cell is still in the
queue of splitters, otherwise the largest subcell is left out).

In effect, both algorithms implement a variant of the “process the smaller half” strategy of Hopcroft.
Because of this the time complexity of the algorithms is O(|E| · log|V |) (see [25]);

Proposition 4.19. Given a graph G and a partition π of the vertices of G, refine(G,π,π) (Alg. 4.1)
yields the coarsest stable partition of π for G.

Proof. This has been proved in [19].
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Algorithm 4.1 Compute the refinement refine(G,π,α) of an ordered partition π ∈ Π
e

(V ) for a directed
graph G = 〈V, E〉, given α, a sequence of cells in π that are used as splitters. refine(G,π,π) computes
the coarsest stable partition of π for G.

1: π′ := π
2: Let α′ be a queue, initialised with the elements of α
3: while α′ is not empty do
4: {Suppose α′ = (W1, W2, . . . , Wq) at this point.}
5: if π′ is discrete then
6: return π′;
7: end if
8: W :=W1
9: Remove W1 from α′

10: {Suppose π′ = (V1, V2, . . . , Vr ) at this point.}
11: for k := 1; k ≤ r; k++ do
12: Define πk = (X1, X2, . . . , Xs) ∈ Π

e

(Vk) such that for all v1 ∈ X i , v2 ∈ X j , we have
d(v1, W )< d(v2, W ) ⇐⇒ i < j.

13: if s > 1 then
14: t :=min

�

i | 1≤ i ≤ s ∧ |X i |=max{|X j | | X j ∈ πk}
	

{the smallest integer t such that |X t | is maximum (with 1≤ t ≤ s)}
15: if ∃ j such that Wj = Vk (with 1≤ j ≤ q) then
16: Wj := X t {Replace Wj in α′ by X t , the largest subcell of Wj}
17: end if
18: for 1≤ i < t and t < i ≤ s do
19: Add X i to the end of α′

20: end for
21: Update π′ by replacing the cell Vk with the cells X1, X2, . . . , Xs in that order (in situ).
22: end if
23: end for
24: end while

25: return π′;
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π1

(a) The initial partitions with cells {0},
{1, 3,5}, and {2,4, 6}.

0
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3 4

5 6

π2

(b) First the first cell is used as a split-
ter (m= 1, W = {v0}). The second cell
(k = 2, Vk = {1,3,5}) is split into two
cells, {3, 5} and {1} (in that order), be-
cause v1 has one incoming edge from 0
and the vertices 3 and 5 have no edges
from or to 0.

0

1

3 4

5 6

2

π3

(c) The cell Vk = {2,4,6} (k = 4) is
also split into two cells, {4,6} and {2}
(in that order), because 2 has one in-
coming edge from 0 and the vertices 4
and 6 have no edges from or to 0. The
resulting partition is stable.

Figure 4.2: An example of partition refinement by Algorithm 4.1. Graph (a) shows the initial
partition of the vertices. In (b) and (c) the result of subsequent splitting of cells is shown. The split
steps are explained in Figure 4.3.
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α′ = (

W
︷︸︸︷

{0} , {1, 3,5}, {2,4, 6})
π′ = ({0}, {1, 3,5}

︸ ︷︷ ︸

Vk

, {2,4, 6})

↓
X1 = {3,5}, ∀v ∈ X1 · d(v, W ) = 0
X2 = {1}, ∀v ∈ X2 · d(v, W ) = 1

↓

α′ = (

W
︷︸︸︷

{0} ,

X1
︷ ︸︸ ︷

{3,5}, {2,4, 6},

X2
︷︸︸︷

{1} )
π′ = ({0}, {3,5}

︸ ︷︷ ︸

X1

, {1}
︸︷︷︸

X2

, {2, 4,6})

(a) First step.

α′ = (

W
︷︸︸︷

{0} , {3, 5}, {2, 4,6}, {1})
π′ = ({0}, {3,5}, {1}, {2,4, 6}

︸ ︷︷ ︸

Vk

)

↓
X1 = {4, 6}, ∀v ∈ X1 · d(v, W ) = 0
X2 = {2}, ∀v ∈ X2 · d(v, W ) = 1

↓

α′ = (

W
︷︸︸︷

{0} , {3,5},

X1
︷ ︸︸ ︷

{4,6}, {1},

X2
︷︸︸︷

{2} )
π′ = ({0}, {3,5}, {1}, {4, 6}

︸ ︷︷ ︸

X1

, {2}
︸︷︷︸

X2

)

(b) Second step.

Figure 4.3: The split steps done by Algorithm 4.1 for the coloured graph in Figure 4.2. The step with
Vk = {0} is not shown, because a singleton cell cannot be split (the resulting partition is πk = (X1),
with X1 = Vk = {0}). (a) shows the splitting that corresponds to the transition from π1 to π2. (b)
shows the splitting that corresponds to the transition from the π2 to π3, which is a stable partition.

4.2.2 A total ordering on coloured graphs

To determine the minimum of a set of coloured graphs we need a total ordering on GC . In this section
we define an ordering based on the number of vertices, number of edges, the colours of the vertices,
and the adjacency matrix, which represents the incident edges. We denote the vertices as natural
numbers, i.e., the set of vertices V is the set of numbers {1,2, . . . , n} ⊆ N with n= |V |, and use the
natural ordering of N as ordering of the vertices. Now we define the adjacency matrix for coloured
directed graphs.

Definition 4.20 (Adjacency matrix). For a coloured directed graph G = 〈V, E, c〉, the adjacency matrix
A(G) is a n× n matrix (n= |V |) with for all i, j ∈ [1..n],

A(G)i, j =

¨

1, if (i, j) ∈ E,

0, otherwise.

The ordering of adjacency matrices is based on concatenating the rows of the matrix (A(G)i), for
1≤ i ≤ n) which results in a binary number. As ordering of these number the usual natural ordering
of numbers is used.

The colours of the vertices are compared as follows. For coloured graphs with n vertices, the
colours can be represented as a sequence (c(1), c(2), . . . , c(n)). For comparing sequences of n colours
we use lexicographical ordering, i.e., first the first elements are compared, if these are equal the
second elements are compared, etc., until a difference in colour is found or all elements have been
compared. In this section cG,i denotes the i-th elements of this sequence for G: cG,i = cG(i) for i ∈ VG .
For two graphs G = 〈VG , EG , cG〉 and H = 〈VH , EH , cH〉 with VG = VH = {1, 2, . . . , n},

(cG,1, cG,2, . . . , cG,n)< (cH,1, cH,2, . . . , cH,n),
if cG,i < cH,i for the smallest i ∈ [1..n]
for which cG,i 6= cH,i .

For coloured directed graphs we define an order relation ≤ as follows.

Definition 4.21 (Order relation ≤ on coloured graphs). For all pairs of coloured graphs G, H ∈ GC
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with G = 〈VG , EG , cG〉, H = 〈VH , EH , cH〉, VG = {1, 2, . . . , n}, VH = {1, 2, . . . , m}

G ≤ H,

if n< m or
�

n= m and
�

|EG |< |EH |
or
�

|EG |= |EH | and
�

(cG,1, cG,2, . . . , cG,n)< (cH,1, cH,2, . . . , cH,n)
or
�

∀1≤i≤n(cG,i = cH,i) and A(G)≤ A(H)
�

��

��

.

Proposition 4.22. (GC ,≤) is totally ordered.

Proof. The number of vertices and number of edges of graphs are totally ordered. If the number
of vertices is equal for two graphs, then also the corresponding sequences of colours are totally
ordered (the cartesian product of a totally ordered set is itself also totally ordered). Because the
adjacency matrix can be expressed as a natural number the adjacency matrices are also totally ordered.
And because from this information (number of vertices, number of edges, sequence of colours, and
adjacency matrix) the graph can be reconstructed (in other words, the information captures all there
is to know about the graph), the combination of this information as defined in Def. 4.21 is a total
ordering, i.e., without further proof we can say that the relation ≤ is

1) reflexive: ∀G ∈ GC , G ≤ G;

2) antisymmetric: ∀G, H ∈ GC , G ≤ H ∧H ≤ G =⇒ G = H;

3) transitive: ∀G1, G2, G3 ∈ GC , G1 ≤ G2 ∧ G2 ≤ G3 =⇒ G1 ≤ G3 ; and

4) total: ∀G, H ∈ GC , either G ≤ H or H ≤ G.

4.2.3 Generating a search tree for a canonical relabelling partition

The partition refinement is used in the generation of a search tree that is used to find the discrete
partition that will be used for a canonical relabelling of the vertices. The search tree is generated in
the following way. Given an initial (refined) partition, a non-trivial (non-singleton) cell W is selected,
of which one vertex is chosen that is deleted from the cell and put in a separate (singleton) cell. This
is done for each of the vertices in the cell, resulting in |W | different partitions. The new partitions are
then refined, and then the same procedure is followed for the resulting partitions. This is repeated
until the partitions are discrete. The procedure is shown in Alg. 4.2.

The result of the algorithm is a search tree of which the root node is the refinement of the initial
partition, π1 = refine(G,π,π). The smallest non-trivial cell is selected and for each vertex v in that
cell a subtree is added of which the root node is the refinement of the partition in which v is put in a
separate singleton cell. An edge between the root node and the subtree is added, labelled v. The
subtrees have the same structure. The nodes in the search tree are the intermediate refined partitions,
resulting from individualising the non-trivial cells and refining the partitions. The edges of the search
tree are labelled with the vertex that is isolated from its cell. The discrete partitions form the leaf
nodes of the tree.

The search tree can be interpreted as sequences of traces from the root node to the discrete leaf
nodes, defined as follows.

Definition 4.23 (Search tree). A search tree T(G,π) is the set of all paths (π1,π2, . . . ,πm) that are
derived from the directed graph G, an ordered partition π, and a sequence v1, v2, . . . , vm−1 where, for
1≤ i ≤ m− 1, vi is an element of the first non-trivial cell Vk of πi which has the smallest size:

∀Vj ∈ πi · k 6= j =⇒ |Vk|< |Vj | ∨ (|Vk|= |Vj | ∧ k < j).

The derivation is established in the following way. π1 is the coarsest stable refinement of π, i.e.,
π1 = refine(G,π,π). The successors are defined in terms of their predecessors. πi+1 is derived from
πi and vi by partition refinement such that πi+1 = refine(G,πi ↓ vi , (vi)), where πi ↓ v is defined for
πi = (V1, V2, . . . , Vr) and v ∈ Vk ∈ πi as

πi ↓ v = (V1, . . . , Vk−1, {v}, Vk \ v, Vk+1, . . . , Vr).
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Algorithm 4.2 Generate the search tree T(G,π) for a directed graph G = 〈V, E〉 and partition
π ∈ Π

e

(V ), where the nodes are partitions of V . The root node of the tree is the coarsest stable
refinement of π and the leaf nodes are discrete partitions of V . The result is a list of paths in the tree,
which is an alternative representation of the tree itself.

1: k := 1
2: π1 := refine(G,π,π)
3: Let W1 be the first non-trivial cell of π1 of the smallest size.
4: Let τ be a list with only the singleton path π1 as an element.
5: while k ≥ 1 do
6: if πk is discrete then
7: k := k− 1
8: end if
9: if k ≥ 1 then

10: if Wk 6= ; then
11: {The vertex identies are used to order the vertices.}
12: v :=min Wk
13: Wk :=Wk \ v

{Suppose πk = (V1, V2, . . . , Vr ) and v ∈ Vi at this point.}
14: πk

′ := (V1, . . . , Vi−1, {v}, Vi \ v, Vi+1, . . . , Vr )
15: πk+1 := refine(G,πk

′, (v))
16: k := k+ 1
17: Add the path (π1,π2, . . .πk) to τ.
18: Let Wk be the first non-trivial cell of πk of the smallest size.
19: else
20: k := k− 1
21: end if
22: end if
23: end while

24: return τ;

The relation between the partitions πi and the vertices vi is represented by the following notation:

π1
v1−→ π2

v2−→ · · ·
vm−1−−→ πm.

Proposition 4.24. Given a graph G, a stable partition π ∈ Π(V ) and an element v ∈ V , refine(G,π ↓
v, (v)) yields a stable partition and refine(G,π ↓ v, (v))v π.

Proof. This has been proved in [19].

Because π1 is stable and because of Prop 4.24, all partitions πi in the search tree have to be stable.
Note that for all sequences (π1,π2, . . . ,πm) ∈ T (G,π) it holds that

πm v · · · v π2 v π1.

We write X (G,π) for the set of all leaf nodes of T (G,π), i.e., sequences of which the last element is a
discrete partition. These ordered discrete partitions can be used as permutation of the vertices of the
graph in the sense of Definition 4.6. We write πλ for the discrete partition of leaf node λ and λ for
the permutation associated with πλ. For the set of all graphs resulting from the permutations that are
generated by the search tree we write

P(G,π) =
�

Gλ | λ ∈ X (G,π)
	

.

In [19, Theorem 2.14] it is stated that T (Gγ,πγ) = T (G,π)γ , in other words, for every sequence
in T(G,π) there is an equivalent sequence in T(Gγ,πγ). We reformulate and prove this property in
the following lemma.

Lemma 4.25. For two isomorphic coloured graphs G and Gγ (γ ∈ SV ),

(π1,π2, . . . ,πm) ∈ T (G,π) ⇐⇒ (πγ1,πγ2, . . . ,πγm) ∈ T (Gγ,πγ).

Proof. First (π1,π2, . . . ,πm) ∈ T(G,π) =⇒ (πγ1,πγ2, . . . ,πγm) ∈ T(Gγ,πγ) (by induction). Consider
the sequence

π1
v1−→ π2

v2−→ · · ·
vm−1−−→ πm.
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1) Base step: π1 ∈ T(G,π) =⇒ π
γ
1 ∈ T(Gγ,πγ). For the initial partitions π and πγ it holds that

for all vertices v ∈ VG , if v is in the i-th cell of π then vγ is in the i-th cell of πγ.

2) Induction step: If there exist (π1, . . . ,πk, . . . ) ∈ T (G,π) and (π′1, . . . ,π′k, . . . ) ∈ T (Gγ,πγ) such
that π′i = π

γ
i for 1 ≤ i ≤ k, then πk is discrete or there exist (π1, . . . ,πk,πk+1, . . . ) ∈ T(G,π)

and (π′1, . . . ,π′k,π′k+1, . . . ) ∈ T (Gγ,πγ) such that for 1≤ i ≤ k+ 1, π′i = π
γ
i .

(a) Assume (π1, . . . ,πk, . . . ) ∈ T(G,π) and (π′1, . . . ,π′k, . . . ) ∈ T(Gγ,πγ) such that π′i = π
γ
i

for 1≤ i ≤ k;

(b) For the partitions πk and πγk it holds that for all vertices v ∈ VG , if v is in the i-th cell of
πk then vγ is in the i-th cell of πγk;

(c) This means that (if πk is not discrete) the cell of πk that is selected for the k-th iteration
of generating T (G,π) (the first smallest non-trivial cell), containing vk, has an equivalent
in πγk that will be selected first in generating T (Gγ,πγ), which contains vγk ;

(d) From this follows that T (Gγ,πγ) contains a branch starting with πγk
vγk−→;

(e) The position of the cells of the resulting partition πk ↓ vk will still be equivalent to πγk ↓ vγk ;

(f) If for the partitions πk ↓ vk and πγk ↓ vγk the partitions are equivalent, then also the stable
partitions πk+1 = refine(G,πk ↓ vk) and πγk+1 = refine(Gγ,πγk ↓ vγk ) are equivalent, i.e., it
holds that for all vertices v ∈ VG , if v is in the i-th cell of πk+1 then vγ is in the i-th cell of
π
γ

k+1, because partition refinement preserves isomorphism of isomorphic partitions;

(g) Hence, either πk and πγk are discrete or there exist (π1, . . . ,πk,πk+1, . . . ) ∈ T(G,π) and
(π′1, . . . ,π′k,π′k+1, . . . ) ∈ T (Gγ,πγ) such that for 1≤ i ≤ k+ 1, π′i = π

γ
i .

Similar for the symmetric case: (π1,π2, . . . ,πm) ∈ T (G,π)⇐= (πγ1,πγ2, . . . ,πγm) ∈ T (Gγ,πγ).

A consequence of the this lemma is that for isomorphic graphs with equivalent initial partitions
equivalent leaf nodes are generated.

Lemma 4.26. For two isomorphic coloured graphs G and Gγ (γ ∈ SV ),

πX ∈ X (G,π) ⇐⇒ π
γ
X ∈ X (Gγ,πγ).

Proof. T (Gγ,πγ) = T (G,π)γ (Lemma 4.25) implies X (Gγ,πγ) = X (G,π)γ.

The equivalence of the sets of leaf nodes means equivalence of the associated discrete partition,
which results in equal graphs when used as permutation of the vertices.

Proposition 4.27. If two graphs G = 〈V, EG , cG〉 and H = 〈V, EH , cH〉 are isomorphic, i.e., a function γ ∈
SV exists that maps vertices in G to vertices in H such that Gγ = H, then the sets of graphs resulting from
permutations generated by the search tree contain exactly the same graphs, i.e., P(G,π) = P(Gγ,πγ).

Proof. By Lemma 4.26.

So, given a total ordering of graphs (see Section 4.2.2), we can choose the minimum of the set
P(G,π) as the canonical form of G.

4.2.4 Pruning the search tree

The number of leaf nodes in the search tree grows very large if the graph has a large automorphism
group. The worst case complexity of the search tree generation is O(|V |!). Therefore several heuristics
need to be used to prune parts of the tree.

By choosing well the parts that we prune, we want to reduce the number of candidate graphs
without losing the property of Prop. 4.27, i.e. that two isomorphic graphs will result in the same
set of candidate graphs such that one graph is the minimum of both sets (which is the canonical
form). There exist several methods to prune (large) parts of the search tree without losing the
ability to compute a canonical form. The methods presented in [19] and [16] are based on finding
automorphisms and on using leaf certificates and node invariants for nodes of the search tree.
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Definition 4.28 (Leaf certificate). For a leaf node λ ∈ X (G,π), a leaf certificate C(G,π,λ) is a
certificate that maps leaf nodes to some value such that for all leaf nodes λ1,λ2 ∈ X (G,π), and their
associated partitions πλ1

and πλ2
,

C(G,π,λ1) = C(G,π,λ2) ⇐⇒ ∃γ ∈ Aut(G,π) such that πγ
λ1
= πλ2

.

A leaf certificate for which this holds is the combination of the permuted graph and the permuted
initial partition: C(G,π,λ) = 〈Gλ,πλ〉. The definition implies that if for two leaf nodes λ1 and λ2 the
leaf certificates are equal, also the associated graphs are equal because there exists an automorphism
γ ∈ Aut(G,π), such that

Gλ2 = Gλ
γ
1 = (Gλ1)γ = Gλ1 .

The automorphism implied by the equality of the certificates is determined by the leaf node
partitions. If two leaf nodes λ1,λ2 ∈ X (G,π) give rise to the same certificate, there exists an

automorphism γ= λ1λ
−1
2 ∈ Aut(G,π). This will be used for detecting automorphisms in the graph

during the generation of the search tree.

Definition 4.29 (Node invariant). Given a node ν ∈ T (G,π) and the associated stable partition πν ,
a node invariant I(G,π,πν) is an invariant such that for all graph permutations γ ∈ SV ,

I(G,π,πν) = I(Gγ,πγ,πγν).

An example of such an invariant is an integer value based on the number of vertices in the cells of
the partition πν , e.g.,

I(G,π,πν) =
∏

W∈πν

|W |.

Based on such a node invariant I also a new invariant can be defined that combines the invariant
values of the nodes in a path of the search tree ν = (π1,π2, . . . ,πl):

~I(G,π,ν) = (I1, I2, . . . , Il),

where Ii = I(G,π,πi). This invariant will be used to select which paths are taken in the traversal of
the search tree.

Pruning using automorphisms found

During the generation of the search tree, leaf nodes are encountered with associated discrete
partitions. If we store the leaf nodes and the leaf certificates for these nodes, we can compute
all automorphisms by comparing new certificates with the certificates stored. If for a graph
G = 〈V, E, c〉 and initial partition π ∈ Π(V ), we discover a leaf node λ1 with the same certi-
ficate as a stored leaf node λ2, i.e., C(G,π,λ1) = C(G,π,λ2), then there is an automorphism

γ = λ1λ
−1
2 ∈ Aut(G,π). This automorphism induces an orbit partition, i.e., a partition

�

{v} ∪
{vγ} | v ∈ V

	

, which can be computed as follows. Let the two associated discrete partitions be
πλ1
= ({v1,1}, {v1,2}, . . . , {v1,n}) and πλ2

= ({v2,1}, {v2,2}, . . . , {v2,n}). Then there is binary equivalence
relation

�

(v1,1, v2,1), (v1,2, v2,2), . . . , (v1,n, v2,n)
	

with vγ1,i = v2,i for all 1≤ i ≤ n. The transitive closure
of this relation can be represented as a partition, which we call the orbit partition Φ.

The orbit partition Φ is stored to be used in pruning parts of the search tree. The stored orbit
partition is updated with new orbit partitions by computing the least upper bound of both (see
Prop. 4.13 on how to determine the least upper bound of two partitions).

This orbit partition implies that in individualising a cell in the generation of the search tree
(line 12 in Alg. 4.2), only one of the members of a cell of the orbit partition has to be considered. If
we just have visited a branch in the search tree corresponding to vertex v, then we can skip branches
from the same node if they correspond to a vertex that is in the same cell as v in orbit partition Φ.

Moreover, we can prune the whole subtree in which we found λ1 up to its common ancestor with
λ2, the leaf node we stored earlier. This is visualised in Figure 4.4. There φ is the leaf node that is
discovered before and λ is the newly discoved leaf node with the same leaf certificate as φ. The two
leaf nodes having the same certificate implies that the two branches from their common ancestor in
the search tree, which is µ in the figure, result from two individualised vertices that are automorphic.
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π1 = refine(G,π,π)

µ

φ λ

branch to prune

common ancestor

C(φ) = C(λ)

implicit automorphism

Figure 4.4: Pruning the search tree. The certificate values of the leaf nodes φ and λ are equal, so
the branch of λ can be pruned from their common ancestor µ.

We can now prune the current subtree under the common ancestor, because the two branches result
in the same values. This means we can backtrack to µ.

Because there can be a lot of leaf nodes, we do not want to store all leaf nodes and all leaf
certificates. In BLISS two leaf nodes are stored [16]: the first leaf node we discovered, which is called
φ, and the leaf node that leads to the ‘best’ candidate sofar, which is called ψ. The orbit partition Φ
is stored for automorphisms with the first leaf node φ, and another one, Ψ for automorphisms with
ψ. In BLISS also the m most recently found automorphisms are stored, where m can be set to some
convenient value.

Pruning using leaf certificates and node invariants

Using the discrete partitions associated with the leaf nodes we can permute the vertices of the original
graph (as discussed in the previous section), i.e., the partition πλ associated with leaf node λ is used
to generate graph Gλ. Doing this for all leaf nodes results in the set of graphs P(G,π) of which the
minimum can be chosen as the canonical form of G.

However, the leaf certificates and node invariants defined earlier enable to consider a smaller set
in the following way. The set of graphs to consider can be limited to the graphs that result from leaf
nodes with a minimum leaf certificate:

PC(G,π) =
�

Gλ | λ ∈ X (G,π)
∧ C(G,π,λ) =min{C(G,π,ν) | ν ∈ X (G,π)}

	

This can be taken a step further by reducing the set to only include leaf nodes with a minimum
node invariant:

PI(G,π) =
�

Gλ | λ ∈ X (G,π)
∧ C(G,π,λ) =min{C(G,π,ν) | ν ∈ X (G,π)}

∧~I(G,π,λ) =min{~I(G,π,ν) | ν ∈ X (G,π)}
	

Because of the iterative nature of the vector ~I(G,π,λ), parts of the search tree that do not have a
minimum node invariant can be pruned early in the search tree. If ~I(λ1)< ~I(λ2) for some nodes λ1
and λ2, then also for every descendant λ′1 of λ1 and descendant λ′2 of λ2 it holds that ~I(λ′1)< ~I(λ

′
2).

So, if λ1 and λ2 are descendants of the same node ν , only child λ1 has to be considered, because the
subtree from λ2 will not lead to leaf nodes with a minimum node invariant. Note that the ordering of
nodes by the node invariant need not to be complete, so multiple children of a node in the search
tree can have the same node invariant.
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The better the node invariant function is in discriminating nodes, the larger the part of the search
tree that is pruned. Usually this results in a trade-off between time spent on calculating the invariant
and the reduction of the search tree that is achieved by using the invariant.

4.3 Conversion from edge-labelled graphs to coloured graphs

In the algorithm explained in the previous section coloured graphs are used, while GROOVE uses edge
labelled graphs (even node labels are labelled (self-)edges). In order to be able to use the existing
algorithms, the edge labelled graphs have to be converted to coloured graphs.

We want to have a conversion function that preserves isomorphism of graphs, because then
checking for isomorphism of the converted graphs yields the same result as checking for isomorphism
of the original graphs. This enables the use of existing isomorphism checking algorithms that are
built for coloured graphs also for edge labelled graphs.

First we formally define the properties of such functions. Then we present a conversion function τ
that converts each edge label into a distinct coloured vertex. For this conversion a mapping between
vertex colours and edge labels is maintained. An example is shown in Figure 4.5.

In Section 4.3.2 the difference in size of the resulting graphs from the conversion is discussed.

Definition 4.30 (Isomorphism preserving conversion function τL). A function τL : GL → GC is
called an isomorphism preserving conversion function from edge labelled graphs to coloured graphs if
for all G, H ∈ GL ,

G ∼= H ⇐⇒ τL(G)∼= τL(H).

If we have such an isomorphism preserving conversion function τL and we want to check if
two edge labelled graphs G and H are isomorphic, then it suffices to check if τL(G) and τL(H)
are isomorphic. Furthermore, if we want to store canonical forms to check if we have seen an
isomorphic graph before, we can store the canonical form of the converted graphs. If can is a
canonical representation function for coloured graphs, then

G ∼= H ⇐⇒ τL(G)∼= τL(H) ⇐⇒ can(τL(G)) = can(τL(H)).

From now on we assume there to be a fixed, ordered set of labels L = {l1, l2, . . . , lk} that is the
same for the different graphs that are compared.

4.3.1 Label to vertex conversion τ

The ‘label vertex’ conversion creates a label vertex for each edge in the original graph with the colour
corresponding to the label of the edge. Also for each vertex in the original graph a vertex is created
in the resulting graph and edges are added between these vertices and the label vertices to connect
the copies of the source and target vertices to the edges. For this conversion a mapping is maintained
from edge labels to vertex colours. One special class of colours is reserved to designate vertices that
represent the vertices in the original graph. These colours represent a set of vertex labels, i.e., the
labels of the self-edges of the vertex in the original graph. Here again we assume the set of vertex
labels and the set of edge labels to be disjoint. See Figure 4.5b for an example of the mapping and
Figure 4.5c for the resulting converted graph.

Definition 4.31 (‘Label vertex’ conversion function τ). τ: GL →GC is a conversion function that
maps each directed labelled graph G = 〈V, E〉 to a coloured graph τ(G) = G′ = 〈V ′, E′, c〉 with

V ′ = V ∪
�

(v1, l, v2) ∈ E | v1 6= v2
	

,

E′ =
��

v1, (v1, l, v2)
�

| (v1, l, v2) ∈ E
	

∪
��

(v1, l, v2), v2
�

| (v1, l, v2) ∈ E
	

,

c =
��

v, (v,λV (v))
�

| v ∈ V
	

∪
��

(v1, l, v2), (e, l)
�

| (v1, l, v2) ∈ E, v1 6= v2
	

,

where λV : V →P (L ) is the map from vertices to their associated set of vertex labels

λV =
�

(v, {l | (v, l, v) ∈ E}) | v ∈ V
	

.
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Buffer

Cell

CellCell

firstlast next

next

next

(a) An edge labelled graph G representing a bounded
buffer. In the center is a ‘Buffer’ vertex, which points
to the first and last cells that are occupied. The cells of
the buffer, the vertices labelled ‘Cell’, are connected by
‘next’ edges.

{Buffer} 7→ 0

{Cell} 7→ 1

first 7→ 2

last 7→ 3

next 7→ 4

(b) The mapping between labels in the edge labelled
graph and colours in the coloured graph, used by τ.
Each edge label and each set of vertex labels that is
used in the graph is mapped to a distinct colour.

v0
0

v1
1

v2
1

v3
1

v4
4

v5
4

v6
4

v7
2

v8
3

(c) τ(G). For each vertex in the original graph there is
a copy in this graph. The vertex colours (denoted by
the number in the lower part of a vertex) are according
to the mapping in (b). For each edge in G a label vertex
is created with the colour according to the mapping
from edge labels to colours. The copies of the source
and target vertices are connected to the label vertices
by unlabelled directed edges.

Figure 4.5: An edge labelled graph representing a bounded buffer, and its converted form.
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Here, v is used to mark a colour as belonging to a vertex in the original graph and e to mark
a colour as representing the label of an edge in the original graph. This is needed to be able to
distinguish ‘edge’ vertices from ‘vertex’ vertices in the resulting graph.

Proposition 4.32. For all G, H ∈ GL , G ∼= H ⇐⇒ τ(G) ∼= τ(H), i.e., the conversion function τ is
isomorphism preserving.

Proof. See [17].

4.3.2 Size of the converted graphs

For an edge labelled graph G = 〈V, E〉 ∈ GL , number of vertices n = |V |, number of non-self-edges
m = |E \ ES | (with ES being the set of self-edges of G), the label vertex conversion τ results in a
coloured graph with n+m vertices and 2 ·m edges. With this method the number of vertices and the
number of edges is usually increased by the conversion. When there are a lot of self-edges, however,
the number of edges may decrease.

The complexity of computing a canonical form is related to the size of the graph. Because typically
the resulting graphs are larger than the original graphs, the computation time required for computing
a canonical form may blow up as a result of the intermediate conversion steps. Therefore, an
algorithm that works directly on edge labelled graphs is expected to perform better that an algorithm
that first converts an edge labelled graphs to a coloured graph and than computes a canonical form
of the coloured graph.
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Serialisation of State Graphs

In this chapter we describe two methods for serialising graphs to state vectors that can be used in
LTSMIN. In Section 3.1.1 the state vectors as used in LTSMIN have been discussed. In LTSMIN state
vectors are compressed to index vectors (see Section 3.1.2), which only works well if the number
of different values for each part of the vector is much smaller than the total number of states. This
influences the choice for a serialisation of graphs, because we want to benefit from the efficient state
storage in LTSMIN.

For the serialisation of graphs to state vectors we formulate the following requirements:

1) We require a globally unique serialisation of state graphs. This is necessary for communicating
the states and to be able to decide which worker is responsible for computing successors for the
state. From the vector representation we should be able to reconstruct the state graph (or an
isomorphic graph).

2) The encoding and decoding should be fast, because otherwise the generated overhead could
cancel out the possible gain by distributing the state space generation.

3) The state vector should have a fixed length that is known beforehand. It would be nice if the
size of the vector is not too large, but there are no clear guidelines for what size is optimal.

4) The number of different values that each part can have should be small, i.e. they must be far
smaller than the total number of states. The idea is that the total number of states comes from
the number of combinations of values, not from the number of different values of the parts.

Because we need a globally unique representation of states and we do not want to introduce
isomorphism checking in the store in LTSMIN we choose to encode canonical forms of state graphs. In
this chapter we describe the serialisations and demonstrate their correctness, i.e., that the serialisation
is reversible (criterion 1). The speed of the serialisation (criterion 2) and the number of values per
part (criterion 4) caused by the serialisation are subject of the experiments in Chapter 6.

5.1 Definitions

We now formally define the serialisation of the state graphs. We use state vectors as defined in
Definition 3.1: a vector ~p =




p0, p1, . . . , pm
�

with a predefined vector length m.
The state vector encoding is then defined as follows:

Definition 5.1 (State vector encoding of a state graph). A state vector encoding function enc is a
function that maps a given graph G = 〈V, E, c〉 to a sequence enc(G) =




p0, p1, p2, . . . , pm
�

, for a
predefined vector length m.

Definition 5.2 (State graph decoding of a state vector). A state vector decoding function dec is a
function that maps a given state vector ~p =




p0, p1, p2, . . . , pm
�

to a graph G ∈ G .

35
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Definition 5.3 (Reversibility). A state vector encoding function enc is reversible if a state vector
decoding function dec exists such that for any graph G ∈ G ,

dec(enc(G))∼= G.

Reversibility is defined in terms of isomorphism and not of equality because isomorphic state
graphs give rise to equivalent behaviour (see Chapter 2). Actually, one of the deserialisation functions
defined in this chapter (decL) renumbers nodes such that not necessarily for all G, decL(encL(G)) = G.

Vertices are represented as natural numbers, we assume the universe of labels to be totally ordered,
and we use the natural ordering for the primitive values. For tuples of values, e.g., the edges, we use
a lexicographical ordering.

We use ord(S) for a set S with an implicit order to denote the ordered vector of elements of S, i.e.,
ord(S) =

�

e1, e2, . . . , er
�

with r = |S|, ei ∈ S for 1≤ i ≤ r and ei < e j ⇐⇒ i < j.
For ordering sets of labels we use a bitset encoding and use the natural ordering of numbers. E.g.,

if LV = {A,B,C}, ord(LV ) = (A,B,C), then a set L1 = {A,C} is represented as a sequence of bits
(1 0 1) and L2 = {B,C} is represented as (0 1 1). In this case L2 < L1.

We use ranα to denote the range or image of a function or mapping α.

5.2 Node vector serialisation

For defining a serialisation of graphs to vectors with a predefined fixed length, one needs to choose a
way to partition elements in the graph such that each part of the graph is encoded in a slot of the
vector encoding. One way of partitioning a graph is to assign a slot to each node of the graph. Here
we describe a serialisation that is based on such a partitioning. Extra care needs to be taken to encode
node labels, value nodes, and graphs with more nodes than there are slots available for encoding
nodes, because the size of graphs is not necessarily fixed.

The node vector serialisation, as we call it, encodes node labels and primitive values of nodes in
the first slot. Then four slots are used to encode the ordered sets of primitive values used in the graph.
The remaining slots are used to encode the edges. Specifically, slot i is used to encode the edges with
nodes numbered i − 5 mod (m− 5) as source. So, slot 5 will be used to encode edges from nodes
n0, n4, n8, etc., if m = 9. This way the nodes are “wrapped around”, so that is is possible to use
the encoding in a system where the size of graphs is not fixed. Formally the encoding is defined as
follows.

Definition 5.4 (Node vector serialisation encN ). Given a graph G =



VG , EG , cG
�

and VG = {0, . . . , n− 1},
the state vector encoding encN (G) is a sequence

�

p0, p1, p2, . . . , pm
�

with m the predefined vector length,
and

p0 =
�

colG(0), colG(1), · · · , colG(n− 1)
�

,

p1 = ord(ran cG ∩ Int),
p2 = ord(ran cG ∩Bool),
p3 = ord(ran cG ∩ String),
p4 = ord(ran cG ∩Double),
pi =

�

outG( j0), outG( j1), . . . , outG( jr)
�

for 5≤ i ≤ m with
�

j0, j1, . . . , jr
�

= ord(
�

v ∈ VG | i− 5= v mod (m− 5)
	

),
where

colG(v) =

¨



type(cG(v)), indG(cG(v))
�

if cG(v) ∈ Val,
cG(v) otherwise,

indG(c) = k such that valk = val(c) with c ∈ Val and
�

val0, . . . , valk, . . . , valq
�

= ord(ran cG ∩ type(c)),

outG(v) = ord({(l, w) | (v, l, w) ∈ EG}).

Example 5.5. We give an example of this encoding for the graph in Figure 5.1, which represents
a state for the dining philosophers problem. In this case the fixed vector length is chosen to be 10,



5.2 Node vector serialisation 37

n4
Phil
Thinking

n5
Phil
Waiting

n1
Fork

n2
Fork

n0
Fork

n3
Phil
Thinking

left

right left

left

has

right

right

Figure 5.1: An example graph representing a state in the dining philosophers problem.

so wrapping of nodes has to be used. The encoding of the graph is in the following table. For the
example we abbreviate Phil as P, Fork as F, Thinking as T, and Waiting as W.

node labels p0 {F} , {F} , {F} , {P,T} , {P,T} , {P,W}
Int p1 ∅

Bool p2 ∅
String p3 ∅
Double p4 ∅
n0, n5 p5 ∅ (〈has, 2〉 , 〈left, 2〉 , 〈right, 0〉)

n1 p6 ∅
n2 p7 ∅
n3 p8 (〈left, 0〉 , 〈right, 1〉)
n4 p9 (〈left, 1〉 , 〈right, 2〉)

The first slot (p0) contains a sequence with for each node its set of node labels. The four following
slots are empty, because this graph does not contain value nodes. Slot p5 contains outgoing edges for
both n0 and n5. Node n0 has no outgoing edges, which is encoded as ∅. Node n5 has three outgoing
edges: one labelled has with target node n2, one labelled left also to node n2, and one labelled right
to node n0.

n3
Person

n4
Room

n1
int/101

n2
int/1234

n0
string/"Zeno"

in
id

nr

name

Figure 5.2: An example graph representing a person and a room. Primitive values are represented
by attribute nodes.

Example 5.6. We give another example to demonstrate the encoding of attribute nodes. We use the
graph in Figure 5.2, which models a person with a name, which is a string, an id, which is an integer,
and a location that is modelled by a node labelled Room, which has a number (an integer). In this
case the fixed vector length is chosen to be 10. In this case all node slots are used for only one node.
The encoding of the graph is in the following table:
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node labels p0 〈String, 0〉 , 〈Int, 0〉 , 〈Int, 1〉 , {Person} , {Room}
Int p1 101, 1234

Bool p2 ∅
String p3 “Zeno”
Double p4 ∅

n0 p5 ∅
n1 p6 ∅
n2 p7 ∅
n3 p8 (〈id, 2〉 , 〈in, 4〉 , 〈name, 0〉)
n4 p9 (〈nr, 1〉)

In slot p0 the node types are encoded in the following way: Node n0 is a value node representing
the string “Zeno”, which is the first in the sequence of strings used in the graph. Therefore the node
is encoded as 〈String, 0〉, a tuple of the type of the node and the index of the value of the node within
the sequence of values of that type. The sequence of string values is in p3. Nodes n1 and n2 are
encoded as 〈Int, 0〉 and 〈Int, 1〉 respectively, representing the integer values 101 and 1234. Nodes
n3 and n4 are nodes with sets of node labels {Person} and {Room}. The slots p1, . . . , p4 list the
primitive values of types Int, Bool, String, and Double, used in the graph, ordered according to the
natural orders of these types. The slots p5, . . . , p9 list the edges from the nodes n0, . . . ,n4.

We now define a deserialisation function decN .

Definition 5.7 (Node vector deserialisation decN ). Given a state vector s =



p0, p1, p2, . . . , pm
�

, the
state vector decoding dec(s) is a graph H =




VH , EH , cH
�

with for n = |p0| and p0 =
�

col0, col1, . . . , coln−1
�

,

VH = {0, 1, . . . , n− 1} ,

cH(v) =










t, ai
�

if colv = 〈t, i〉
with

�

a0, a1, . . . , aq

�

= values(t),
colv otherwise,

EH =
�

(v, l, w) ∈ VH ×LE × VH | i ∈ {5, . . . , m} ∧ v = (i− 5) + (m− 5) · j
∧
�

e0, e1, . . . , er
�

= pi ∧ (l, w) ∈ e j
	

where

values(t) =















p1 if t = Int,
p2 if t = Bool,
p3 if t = String,

p4 if t = Double.

This deserialisation function decN is the inverse of encN , which means that for any graph G, the
deserialisation of its serialised form decN (encN (G)) is equal to G. This is stronger than the reversability
that is defined in Definition 5.3. Reversibility of encN follows from invertibility.

Proposition 5.8 (Invertibility of encN ). The encoding function encN is invertible: decN ◦ encN = id (for
any G ∈ G and H = decN (encN (G)), H = G).

Proof. For any G ∈ G and H = decN (encN (G)), assume encN =



p0, p1, p2, . . . , pm
�

with p0 =
�

col0, col1, · · · , coln−1
�

.

1) VG = VH = {0,1, . . . , n− 1}. The nodes in VG = {0,1, . . . , n− 1} are represented in encN (G) in
the first part p0 by n colours. In the decoded graph decN (encN (G)) ∼= G, n nodes are created,
based on the size of p0, resulting in the set of nodes VH = {0,1, . . . , n− 1}.

2) for any v ∈ VG , cG(v) = cH(v):

(a) either v is a value node (cG(v) ∈ Val):
This implies colv =




type(cG(v)), ind(cG(v))
�

such that ord(ran cG ∩ type(cG(v))) =
�

val0, val1, . . . , valq
�

and val(cG(v)) = vali ⇐⇒ ind(cG(v)) = i.
The sequence ord(ran cG ∩ type(cG(v))) is encoded in one of the slots p1, . . . , p4 such that
values(type(cG(v))) = ord(ran cG ∩ type(cG(v))) (as defined in decN ).
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By decN this results in cH(v) =



t, ai
�

such that t = type(cG(v)), i = ind(cG(v)), and
�

a0, a1, . . . , aq

�

= values(type(cG(v))) = ord(ran cG ∩ type(cG(v))). Hence cH(v) = cG(v).
(b) or v is a node with a set of node labels (cG(v) /∈ Val):

This implies colv = cG(v) (by encN ) and cH(v) = colv (by decN ).

3) for all v, w ∈ VG and l ∈ LE , (v, l, w) ∈ EG ⇐⇒ (v, l, w) ∈ EH :

(a) =⇒ : each (v, l, w) ∈ EG is encoded as (l, w) into pi in outG( j) such that v = (i − 5) +
(m− 5) · j, resulting in an edge (v′, l, w) ∈ EH with v′ = (i− 5)+ (m− 5) · j = v (by decN ).

(b) ⇐=: each (v′, l, w′) ∈ EH originates from e j in pi such that (l, w′) ∈ e j and v′ = (i − 5) +
(m−5) · j, originating from an edge (v, l, w) ∈ EG with v = (i−5)+(m−5) · j and w = w′

(by encN ), so (v′, l, w′) = (v, l, w).

Proposition 5.9 (Reversibility of encN ). The encoding function encN is reversible: for any G ∈ G and
H = decN (encN (G)), H ∼= G.

Proof. This follows directly from Proposition 5.8.

5.3 Label vector serialisation

Another way of partitioning a graph such that the graph can be encoded into a fixed length vector is
to assign a slot to each edge label of the predefined set LE . Here we describe a serialisation that is
based on such a partitioning. Also here care needs to be taken to encode node labels and value nodes.

The label vector serialisation, as we call it, encodes nodes as a tuple of type and index. The types
and numbers of nodes present in the graph are encoded in the first slot as tuples of the set of node
labels or value type and the number of nodes in the graph with that label set or value type. Four
slots are used to encode the ordered sets of primitive values used in the graph, as in the node vector
serialisation. The remaining slots are used to encode the edges. Specifically, for all edge labels
ord(LE ) =

�

l0, l1, . . . , ls
�

, slot i is used to encode the edges with label li−5. The source and target
vertices of the edges are encoded with their set of node labels or value type and the index of that
vertex in the ordered set of vertices with that set of node labels or value type. In this section we
denote the set of value types and sets of node labels, together the types, as T ∗:

T ∗ = {Int,Bool,String,Double} ∪P (LV ).

Formally the encoding is defined as follows.

Definition 5.10 (Label vector serialisation encL). Given a graph G =



VG , EG , cG
�

, VG = {0, . . . , n− 1}
and sequence of edge labels ord(LE ) =

�

l1, l2, . . . , lq
�

, the state vector encoding encL(G) is a sequence
�

p0, p1, p2, . . . , pm
�

, with m= q+ 5 the predefined vector length,

p0 =
�


c0, numG(c0)
�

,



c1, numG(c1)
�

, . . . ,



cr , numG(cr)
��

with
�

c0, c1, . . . , cr
�

= ord(
�

c | ∃v ∈ VG such that c = cG(v)
	

),
p1 = ord(ran cG ∩ Int),
p2 = ord(ran cG ∩Bool),
p3 = ord(ran cG ∩ String),
p4 = ord(ran cG ∩Double),
pi = outG(li−5) for 5≤ i ≤ m,

where

numG(c) = |{v ∈ VG | cG(v) = c}|,
outG(l) = ord(

�


colG(v), indG(v), colG(w), indG(w)
�

| (v, l, w) ∈ EG
	

),

colG(v) =

¨

type(cG(v)) if cG(v) ∈ Val,
cG(v) otherwise,

indG(v) = k such that v = wk with
�

w1, . . . , wk, . . . , wq

�

= ord(
�

w ∈ VG | cG(w) = cG(v)
	

).
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Example 5.11. We give an example of this encoding for the graph in Figure 5.1. We assume that
the predefined set of edge labels LE for the grammar consists of the labels has, left, and right. In
the encoding of the edges, the vertices are represented by the set of node labels or value type of the
vertex and the index of the vertex in the ordered set of vertices with that set of node labels or value
type. In the next table we see this mapping from vertices in the example graph to the tuple resulting
from the encoding:

v



colG(v), indG(v)
�

n0 〈{Fork} , 0〉
n1 〈{Fork} , 1〉
n2 〈{Fork} , 2〉
n3 〈{Phil,Thinking} , 0〉
n4 〈{Phil,Thinking} , 1〉
n5 〈{Phil,Waiting} , 0〉

There are three vertices with {Fork} as set of node labels. The node identity is used for the
ordering of the vertices in the ordered set of vertices with that set of node labels. The encoding of the
graph is in the following table:

node labels p0 〈{F} , 3〉 , 〈{P,T} , 2〉 , 〈{P,W} , 1〉
Int p1 ∅

Bool p2 ∅
String p3 ∅
Double p4 ∅

has p5 〈{P,W} , 0, {F} , 2〉
left p6 〈{P,T} , 0, {F} , 0〉 , 〈{P,T} , 1, {F} , 1〉 , 〈{P,W} , 0, {F} , 2〉

right p7 〈{P,T} , 0, {F} , 1〉 , 〈{P,T} , 1, {F} , 2〉 , 〈{P,W} , 0, {F} , 0〉

In slot p0 the node types are encoded in the following way: the tuple 〈{F} , 3〉 means that there
are three nodes in the graph with the set of node labels {F}; 〈{P,T} , 2〉 that there are two node
with the set of node labels {P,T}; etc. The slots p1, . . . , p4 list the primitive values of types Int, Bool,
String, and Double, used in the graph, ordered according to the natural orders of these types (in
this case there are none). The slots p5, . . . , p7 list the edges with labels l0, . . . , l2, where each edge
is represented as a tuple




c1, i1, c2, i2
�

, where c1 is the set of node labels of the source vertex and i1
the index of that vertex within the ordered set of vertices with that label and c2 and i2 similar for
the target vertex. The edge (5,has, 2), for instance, is represented in slot p5 as 〈{P,W} , 0, {F} , 2〉, in
accordance with the mapping from nodes to tuples of the set of node labels and index shown in the
table above.

Example 5.12. We use the graph in Figure 5.2 to demonstrate the encoding of attribute nodes in the
label vector serialisation. In the next table we show the mapping from vertices to the tuple of set of
node labels or value type and index resulting from the encoding:

v cG(v)



colG(v), indG(v)
�

n0 〈String, “Zeno”〉 〈String, 0〉
n1 〈Int, 101〉 〈Int, 0〉
n2 〈Int, 1234〉 〈Int, 1〉
n3 {Person} 〈{Person} , 0〉
n4 {Room} 〈{Room} , 0〉

The index for value nodes is based on the natural ordering of the value type. The index for the
other vertices is based on the vertex identity. The encoding of the graph is in the following table:
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node labels p0 〈Int, 2〉 , 〈String, 1〉 , 〈{Person} , 1〉 , 〈{Room} , 1〉
Int p1 101,1234

Bool p2 ∅
String p3 “Zeno”
Double p4 ∅

id p5 〈{Person} , 0, Int, 1〉
in p6 〈{Person} , 0, {Room} , 0〉

name p7 〈{Person} , 0,String, 0〉
nr p8 〈{Room} , 0, Int, 0〉

The encoding of numbers of vertices for each type in p0 is straightforward as in the previous
example. The encoding of primitive values in p1, . . . , p4 is the same as in the node vector serialisation.
The difference with the previous example is in the encoding of value nodes. In the encoding of the
edges, the index of vertices with node labels is based on the vertex identity and the index of value
nodes is based on the ordering of the values used in the graph. The edge 〈{Room} , 0, Int, 0〉 in p8, for
instance, represents the edge with label nr from the first vertex with the set of node labels {Room}
(of which there is only one in this case) to the first value node of type Int, the value 101 in this case.

In order to demonstrate the reversibility of encL we need to define a deserialisation function decL .

Definition 5.13 (Label vector deserialisation decL). Given a state vector s =



p0, p1, p2, . . . , pm
�

, the
state vector decoding decL(s) is a graph H =




VH , EH , cH
�

with for

p0 =
�


col0, num0
�

,



col1, num1
�

, . . . ,



colr , numr
��

,

VH = {0,1, . . . , n− 1}
with n= |~v(0)|+ |~v(1)|+ · · ·+ |~v(r)|,

cH(v) =










c, ai
�

if c ∈ {Int,Bool,String,Double}
with

�

a0, a1, . . . , aq

�

= values(c),
c otherwise,

with c ∈ T ∗ and i ∈ N such that map(c, i) = v,

EH =
¦�

map(c1, i1), l j−5, map(c2, i2)
�

∈ VH ×LE × VH | 5≤ j ≤ m,



c1, i1, c2, i2
�

∈ p j

©

with
�

l0, l1, . . . , ls
�

= ord(LE ),
where

~v(i) =
�

map(c, 0), map(c, 1), . . . , map(c, q)
�

with c = coli and q = numi ,

map(c, i) = i+
k−1
∑

j=0

(num j) with c = colk,

values(t) =















p1 if t = Int,
p2 if t = Bool,
p3 if t = String,

p4 if t = Double.

The interesting part of this conversion from state vector to graph is the node numbering, specified
by the function map: T ∗ × N → N. map assigns a unique number (a node identity) in the range
0, . . . , n− 1 to each combination of ‘colour’ c and index i with c = col j and 0≤ i ≤ num j for each j
with 0 ≤ j ≤ r (i.e., each combination that is used in the state vector encoding). ~v(i) specifies the
sequence of nodes with the type coli .

Proposition 5.14 (Reversability of encL). The encoding function encL is reversible: for any G ∈ G and
H = decL(encL(G)), H ∼= G.
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Proof. For any G ∈ G and H = decL(encL(G)), let there be two functions g : VG → T ∗ × N and
h: T ∗ ×N→ VH defined as

g =
�

v 7→ 〈c, i〉 | v ∈ VG , c = colG(v), i = indG(v)
	

with colG and indG as defined in encL;

h=
¦

〈c, i〉 7→ v′ | ∃i, j · 0≤ j ≤ r, 0≤ i ≤ num j , c = col j , v′ =map(c, i)
©

with



col0, num0
�

, . . . ,



colr , numr
�

and map as defined in decL .

Then f : VG → VH with f = h ◦ g is an isomorphism, because

1) for any v ∈ VG , cG(v) = cH( f (v)):

(a) either v is a value node (cG(v) ∈ Val):
This implies colv =




type(cG(v)), ind(cG(v))
�

such that ord(ran cG ∩ type(cG(v))) =
�

val0, val1, . . . , valq
�

and val(cG(v)) = vali ⇐⇒ ind(cG(v)) = i.
The sequence ord(ran cG ∩ type(cG(v))) is encoded in one of the slots p1, . . . , p4 such that
values(type(cG(v))) = ord(ran cG ∩ type(cG(v))) (as defined in decL).
By decL , g(v) = 〈c, i〉 such that c = type(cG(v)), i = ind(cG(v)). cH is defined such that
cH(h(〈c, i〉)) =




c, ai
�

with
�

a0, a1, . . . , aq

�

= values(c) = ord(ran cG ∩ c) = ord(ran cG ∩
type(cG(v))) if c ∈ {Int,Bool,String,Double}, which is the case if cG(v) ∈ Val. Hence
cH( f (v)) = cG(v) if cG(v) ∈ Val.

(b) or v is a node with a set of node labels (cG(v) /∈ Val):
By encL , g(v) = 〈c, i〉 with c = type(cG(v)). cH is defined such that cH(h(〈c, i〉)) = c if
c /∈ {Int,Bool,String,Double}, which is the case if cG(v) /∈ Val. Hence cH( f (v)) = cG(v) if
cG(v) /∈ Val.

2) for all v, w ∈ VG and l ∈ LE , (v, l, w) ∈ EG ⇐⇒
�

f (v), l, f (w)
�

∈ EH .

(a) =⇒ : each edge (v, l, w) ∈ EG is encoded into a tuple



c1, i1, c2, i2
�

in part p j such
that g(v) =




c1, i1
�

and g(w) =



c2, i2
�

and l = l j−5 (for ord(LE ) = l0, . . . , ls); each
tuple




c1, i1, c2, i2
�

in p j results in an edge
�

map(c1, i1), l j−5, map(c2, i2)
�

in EH , with
h(



c1, i1
�

) = map(c1, i1) and h(



c2, i2
�

) = map(c2, i2). So, for each (v, l, w) ∈ EG there is
an edge

�

h(g(v)), l, h(g(w))
�

=
�

f (v), l, f (w)
�

∈ EH .

(b) ⇐=: each edge (v′, l, w′) ∈ EH originates from a tuple



c1, i1, c2, i2
�

∈ p j with l = l j−5, v′ =
map(c1, i1) = h(




c1, i1
�

) and w′ =map(c2, i2) = h(



c2, i2
�

). Each tuple



c1, i1, c2, i2
�

∈ p j
originates from an edge (v, l j−5, w) ∈ EG with g(v) =




c1, i1
�

and g(w) =



c2, i2
�

. So, for
each (v′, l, w′) ∈ EH there is an edge

�

f −1(v′), l, f −1(w′)
�

∈ EG .



6
Experiments

We have carried out experiments to compare the performance of the distributed tool based on LTSMIN,
presented in this work, to the existing sequential version of the graph-based state space generation
tool GROOVE. In the distributed setup, GROOVE is used to compute successor states. There are, however,
some notable differences between sequential GROOVE and the way GROOVE is used in the distributed
setup. These differences are described in Section 6.1.

Two different serialisations are used and compared: the serialisation functions encN and encL that
are described in Chapter 5. Different series of input models have been used, which are described in
Section 6.2, together with other experiment parameters. In the experiments both execution time
and memory usage have been measured. The results are presented in Section 6.3. Their meaning is
interpreted in Section 6.4.

6.1 GROOVE

In this section we describe some features of GROOVE [28] that are not applicable in the distributed
setting. These features give the sequential version of GROOVE a head start in the comparison to the
distributed tool.

6.1.1 Isomorphism checking

Isomorphism reduction is established in GROOVE by an algorithm that directly checks isomorphism
between two graphs. The algorithm is based on iteratively computing so-called node certificates
and applying partition refinement (similar to the partition refinement algorithm by Paige & Tarjan
[25]). The isomorphism checking is done when a new state is encountered. It has to be checked if
the store of visited states contains a graph isomorphic to the newly encountered state. Instead of
comparing the new graph to all graphs in the store, the graph is only compared to graphs with the
same canonical hash code.

Definition 6.1 (Canonical hash function). For a graph G ∈ G , a canonical hash function or invariant
hash function is a function hash: G → N that associates an integer value, called hash code, with each
graph such that for every pair of graphs G, H ∈ G ,

hash(G) = hash(H) if G ∼= H.

The store of visited states is implemented as a hash set. Each visited state q is stored at position
hash(q). Because the hash function is canonical, a newly encountered state s only has to be compared
to the states at position hash(s). If the hash function is very good (i.e., gives rise to little hash
collisions for similar but not isomorphic graphs), this means that the new state has to be compared
to only a small number or even no states. Isomorphism checking and the use of a canonical hash
function in GROOVE are further described in[26].

43
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The canonical hash code in GROOVE is very cheap to compute compared to isomorphism checking
or computing a canonical form. In sequential GROOVE the use of a canonical hash code can often
prevent that the more expensive isomorphism checking has to be performed. In the distributed setting,
however, always a canonical form has to be computed before communicating a state.

6.1.2 Partial Order Reduction for Graphs

If two rule application on the same graph are independent of each other, i.e., the one rule does not
create or remove elements that are used by the other and vice versa, the order in which they are
executed does not matter. This is called local confluence or parallel independence and gives rise to a
reduction technique called partial order reduction, which is explained for graphs in [26].1 The idea

is as follows. If from state q0 the transitions q0
r1,m1−−→ q1 and q0

r2,m2−−→ q2 (derived from the rules r1
and r2 and matches m1 and m2) are independent of each other, then r2, m2 is also applicable to q1,

resulting in the transition q1
r2,m2−−→ q3. It then follows that there has to be a transition q2

r1,m1−−→ q3. This
last rule application does not have to be computed, but is available for free. The partial state space
consisting of states q0, q1, q2, and q3 and the described transitions form a confluent diamond, which is

depicted below. The inferred transition q2
r1,m1−−→ q3 is represented by a dotted line.

q0

q1 q2

q3

r1, m1 r2, m2

r2, m2 r1, m1

The same technique can be applied to more than one transition, resulting in larger confluent
diamonds.

In sequential GROOVE during state space generation, the complete transition system generated
sofar is available in memory. In the distributed setting, however, each worker only has fragments of
the transition system available: DG alternatingly receives a state from LTSMIN and sends its successor
states back to LTSMIN and the states it receives are not necessarily direct successors of states that
it has sent to LTSMIN before, they might as well originate from other workers. Because of this the
partial order reduction for graph transition systems is not directly applicable in the distributed setting.
Each worker should have efficient access to a larger part of the generated LTS for such a technique to
work efficiently.

When a transition is inferred by the partial order reduction in sequential GROOVE, the target state
graph does not have to be computed or to be looked up in the store of visited states.

6.2 Experiment setup

We have carried out experiments based on three rule systems with varying characteristics.

unflagged-platoon A protocol for forming car platoons. In this model there is always a fixed
number of nodes. The behaviour shows extensive symmetries; reduction modulo isomorphism
shrinks the state space by many orders of magnitude. This case study has been used for the
Transformation Tool Contest 2010 (see http://planet-research20.org/ttc2010).

le A leader election protocol. In this case there is a fixed number of nodes representing network
nodes and a varying number of nodes representing messages. The number of nodes is an upper
limit on the number of messages. This case study has been used for the GraBaTs 2009 tool
contest (see http://is.tm.tue.nl/staff/pvgorp/events/grabats2009).

1Actually, partial order reduction usually means that of the paths of independent actions resulting in the same state only
one is explored, thus reducing the size of the generated state space. In GROOVE all paths are explored, but they are available
more easily, thus reducing the required time. See, e.g., [2] for more on the usual partial order reduction for labelled transition
systems.

http://planet-research20.org/ttc2010
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009
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append A model of list appenders that concurrently add a value to the same list. In this case the
number of nodes grows in each step. The maximal number of nodes equals the number of
appenders plus 1 times the number of elements in the list. There is hardly any nontrivial
isomorphism in the transition system.

The experiments have been performed on a cluster consisting of 8 compute nodes with 4 dual
Intel E5520 CPUs each and 24GB RAM, for a total of 8 cores per compute node and 64 cores in total.
GROOVE 4.0.1 has been used with a Sun Java 1.6.0 64-bit VM with a maximum of 2GB of memory for
each core. For computing canonical forms we used BLISS 0.50. We used LTSMIN 1.5, with an added
dataflow module to facilitate the communication between LTSMIN and GROOVE. For all experiments,
the combined system was given a time limit of 4 hours. The state vector size for the first two cases
was chosen such that n≥ k+ 5, hence no slot needs to encode the edges of more than one node with
the node vector encoding; however, this is not the case for the third case.

We have compared the performance of the distributed setting with the default, sequential imple-
mentation of GROOVE, running on the same machine but with a memory upper bound of 20GB. For
the leader election with start state start-7p a different machine with 60GB of memory has been
used, because with 20GB of memory the result could not be calculated.

Where there are no values in the table or figures of this section, either the time limit of 4 hours
was exceeded or there was not enough memory.

6.3 Results

Table 6.1 shows some global results for the three cases, using the largest start graphs for which the
sequential setting could compute the entire state space. The distributed setup is referred to as LTSMIN.

Comparison of encodings. From the table it is clear that the size of the leaf database with the
label vector encoding (encL) is dramatically larger than with the node vector encoding (encN ) in the
car platooning and leader election cases. In the car platooning case the size of the leaf database is
even larger than the number of states with the label vector encoding, while it is orders of magnitude
smaller for the node vector encoding. Also in the append case the node vector encoding is the better
one.
However, the leaf databases of the append rule system grows much larger than for the other cases with
the node vector encoding, despite the fact that the state space is much smaller. This is a consequence
of the fact that the graph size outgrows the fixed vector size for this case. The difference between the
two encodings is much smaller for that case.

The difference in execution time for the different encodings is not very large, but the distributed
setup is always faster with the node vector encoding than with the label vector encoding. In the
leader election case, LTSMIN with 64 cores and label vector is not able to finish within the time limit,
while the same setup with node vector encoding results in a nice speedup. This is probably due to
communication overhead caused by the large number of leaf values that have to be communicated
between workers with the label vector encoding.

Memory usage. The size of the leaf database is reflected in the memory usage, which is much larger
for LTSMIN with the label vector encoding and the sequential version of GROOVE than for LTSMIN

with the node vector encoding. Note that although the memory usage in the table is the average per
worker, with 8 cores also the total memory usage of LTSMIN with node vector encoding is better than
that of GROOVE for the car platooning and leader election cases. In all reported cases the average
memory usage per worker is best for LTSMIN with node vector encoding: 23 times better than GROOVE

for the car platooning case and even 52 times better for the leader election case (both with 8 cores).
So, in the distributed setup, both memory usage and time performance are better with the node

vector encoding than with the label vector encoding. Compared to GROOVE, memory performance is
best for the distributed setup with node vector encoding.

Time performance. Time performance of LTSMIN with a single core is quite bad compared to
GROOVE, taking in the order of 6-10 times as much time. For the leader election case, the single core
LTSMIN even cannot compute the state space within the time limit of four hours, while sequential
GROOVE can.
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Table 6.1: Results for the largest start graphs where both GROOVE (sequential) and LTSMIN (1, 8 and
64 cores) were able to generate the state space. The memory usage shown is the average per core.
The last column shows the number of elements in the global leaf database for LTSMIN.

Grammar/ States/ Time Mem
Start State Transitions Tool Cores (s) Speedup (MB) Leaf db

unflagged-platoon 1.580.449 GROOVE 1 1.016 1.259

start-10 10.200.436 LTSMIN 1 6.621 0,2 120

node vector 8 889 1,1 54

64 156 6,5 54 8.451

LTSMIN 1 6.897 0,1 1.355

label vector 8 1.551 0,7 791

64 503 2,0 556 1.653.536

le 3.724.544 GROOVE 1 5.128 2.751

start-7p 16.956.727 LTSMIN 1 – – –

node vector 8 2.005 2,6 52

64 307 16,7 52 1.815

LTSMIN 1 – – –

label vector 8 2.820 1,8 888

64 – – – 1.584.584

append 261.460 GROOVE 1 202 372

append-4-list-8 969.977 LTSMIN 1 1.912 0,1 105

node vector 8 352 0,6 76

64 92 2,2 70 69.117

LTSMIN 1 2.071 0,1 252

label vector 8 402 0,5 169

64 105 1,9 141 148.977
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However, we can observe that with 8 cores, the distributed setting with node vector encoding starts
to outperform sequential GROOVE for the car platooning and leader election cases, and also that the
speedup increase from 1 to 8 cores and from 8 to 64 cores is sizeable, though below the optimal value
of 8. Only for the append case the 8 core distributed tool is slower than GROOVE. Even with 64 cores
we see only a speedup of 2,2 for the append case.

The table shows results for the largest cases where GROOVE finished within the time limit and had
enough memory. For the car platooning and leader election cases there are larger start graphs for
which the distributed setup could still generate the state space. In the next sections we look in more
detail to the various cases, where also the larger start graphs are considered.

6.3.1 Car platooning

Time and memory distributions. For the car platooning case, more detailed results are shown in
Figures 6.1 and 6.2. First of all, Figure 6.1a shows that even though the size of the problem grows
exponentially, the number of elements of the leaf value database of LTSMIN does not. This is also
reflected by the per-core memory usage of LTSMIN (Figure 6.1b), which seems hardly to grow, in
contrast to the more than exponentially growing memory usage of GROOVE. This is caused partly by
the initial database size of about 50MB used by LTSMIN, but also when this initial size is not sufficient
(e.g., from start-09 for 1 core and encN ), the growth is slower than that for GROOVE. Memory usage
grows much slower for LTSMIN with encN than with encL . With 64 workers, for start-12 the memory
usage with encN has hardly grown, while for start-10 memory usage with encL is already more than
ten times the memory usage with encN for the same system.

Figures 6.1c and 6.1d show the execution time respectively the speedup of LTSMIN with the node
vector encoding (encN ) and different numbers of cores compared to GROOVE. The execution time of
LTSMIN with one core is much worse than GROOVE, but the speedup is growing fast. For the start
states with 11 and 12 cars, GROOVE cannot generate the state-space within 4 hours, but LTSMIN with
8 respectively 16 or more cores can. Figure 6.1d also clearly shows that the larger the problem is, the
larger is also the speedup. Figures 6.1e and 6.1f show the execution times and speedup for the car
platooning case using the label vector encoding (encL). The performance with this serialisation is
worse and seems to scale less. For 64 cores, the node vector serialisation results in a speedup that is
three times as good as that of the label vector serialisation. With both cases there seems to be a limit
to the speedup, an optimal number of cores, from which the speedup does not increase anymore.
This optimum seems to be larger for larger models, so the larger the model the larger the number of
cores that is sensible to use. With node vector encoding the optimum number of cores seems to be 48
for start-09 and 56 for start-10.

Execution time decomposition. Figure 6.2 shows how the execution time is built up. For smaller
start states, the communication between cores (labelled “send/recv” in the figure) is a major factor in
the computation time for LTSMIN, but for larger start states most of the time is spent on computing
canonical forms (isomorphism reduction). As the number of cores grows, however, the communication
again starts to play a larger relative role — which is to be expected since this is the only task that is
not parallellised; indeed, the communication overhead grows more than linearly with the number
of cores. Comparing Figures 6.2e and 6.2f shows that the difference in performance between the
node vector encoding and the label vector encoding is mainly due to the difference in communication
overhead, caused by the leaf values that have to be communicated between the workers.

6.3.2 Leader election

The results for the leader election case are shown in Figures 6.3 and 6.4. The results are similar
to those of the car platooning case, which is expected because of the similarities between the two
systems: both have a lot of symmetry. Figures 6.3c and 6.3d show the execution time respectively the
speedup of LTSMIN with different numbers of cores compared to GROOVE for the leader election case.
The speedup seems to be very good for start-7p with encN , but this could be caused by the different
equipment that is used for running the start-7p model for GROOVE (see Section 6.2). However,
the speedup seems to grow almost linearly, which is promising. As in the car platooning case we
see clearly that the node vector encoding (Figures 6.3c and 6.3d) is better than the label vector
encoding (Figures 6.3e and 6.3f) in terms of speed. With 56 and 64 workers there are no results
for start-7p, which is probably due to the time that is spent on communication of values between
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Figure 6.1: Figures for the car platooning case for different start states.
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workers. For larger models the speedup is also larger. There seems to be an optimal number of
workers, above which the speedup does not increase anymore. With the node vector encoding this is
40 for start-6p; for start-7p it seems that the optimum has not been reached yet. The graphs in
Figure 6.4 clearly show that for smaller models more time is spent on sending and receiving, relatively
to the time spent on isomorphism checking. Also, the part of the time spent on communication is
larger with the label vector encoding than with the node vector encoding.

6.3.3 Append

The results for the append case are in Figures 6.5 and 6.6. Figure 6.5a shows that also in this case
the numbers of states and transitions grow exponentially and that the size of the leaf database with
the nodevector encoding grows slower (but still about exponentially). In Figure 6.5b we see that also
in this case memory usage with the node vector encoding is better than the sequential version of
GROOVE, despite the lack of symmetry in the append case and the decreased suitability for the node
vector encoding (wrapping around of nodes is required). Figures 6.5c and 6.5d show the execution
time respectively the speedup of LTSMIN with different numbers of cores compared to GROOVE for the
append case. Here there is hardly any gain in the distributed setting, as is expected because of the
lack of symmetry (less time is spent on isomorphism checking) and the need for wrapping around
nodes. Even in the best case (node vector encoding and 56 nodes) the speedup is only slightly more
than 2. The graphs in Figure 6.6 confirm this view. A relatively small part of the execution time is
spent on isomorphism checking. Most of the time is spent on sending and receiving states and values.

6.4 Analysis

Comparison of serialisation functions The experiments show clear differences between the node
vector serialisation (encN ) and the label vector serialisation (encL). In all reported cases the size of
the leaf database (the total number of distinct values per part of the state vector) is smaller for the
node vector encoding than for the label vector encoding.

The smaller leaf database results in lower memory usage for the node vector encoding and also
the time performance is (slightly) better. Additional execution time for the label vector encoding
is caused by the leaf values that have to be communicated between the nodes. Compared to the
memory usage of sequential GROOVE the serialisation results in a much smaller memory footprint per
worker, and for up to 8 cores also in smaller total memory usage for the car platooning and leader
election cases.

The label vector encoding is designed to work well when edges with a certain label are bound to
certain types of source and target nodes. Edges are grouped by their labels and are encoded using the
types of source and target. Nonetheless, the encoding appears to be inefficient for the reported cases.
Indeed, in the rule systems that we used, most of the edge labels can occur on edges between any
type of source and target nodes, which breaks the assumption.

That the node vector encoding works so well is suprising, because it seems very sensitive to the
node renumbering caused by the canonical form computation. Small changes in a graph may result
in a completely different node numbering, thus resulting in changes in all parts of the state vector.
Because of this, probably multiple values in the leaf database encode the same set of edges (but for a
different node numbering), leading to redundancy in the leaf database. However, each value can
be replicated at maximum m times, because there are m vector parts. This means that the effect
duplication on the size of the of the leaf database is at maximum a constant factor m. Its depends on
the distribution of values over the tables P0, . . . , Pm, how much values are needed to encode a set of
states. With |P0|+ · · ·+ |Pm| values, |P0| · · · · · |Pm| states can be encoded at maximum. If the values are
distributed evenly over the vector parts, logm s values can encode s states. In the car platooning and
leader election rule systems, the actions on different nodes are relatively independent of each other
and edges can occur between almost any combination of edges. Apparently, this causes the values to
be nicely distributed over the different parts of the vector, such that the total number of states really
is a combinatorial result of the different parts. Because of that the index vector compression has a
larger effect than the redundancy in the database.

Comparison of sequential and distributed setup Comparing sequential GROOVE to the distributed
tool with node vector serialisation, we come to the following observations:
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• The chosen node vector serialisation of graphs (encN ) works well in the reported cases. The
total number of values stored, the so called leaf nodes of the tree compression database, is
orders of magnitude smaller than the total number of states. Indeed, the number of states
grows exponentially with the problem size for all three modelled systems, but the number
of leaf nodes grows much slower and even less than exponentially for the car platooning
and leader election cases. Although the canonical form calculation can renumber nodes in
an unpredictable manner, which in the worst case could blow up the number of leaf values,
apparently the different states are really a combinatorial result of the different parts of the
vector. This is especially true for the leader election and car platooning cases, where the number
of nodes is a priori bounded and the vector size can be chosen to accomodate this; in the
append case, where the node vector encoding has to reuse slots for multiple nodes, the results
are less spectacular, though the serialisation still works quite good (the number of leaf values is
much smaller than the number of states).

• The memory performance of the distributed LTSMIN solution is better than that of the sequential
GROOVE system. This is a direct consequence of the success of the serialisation, but it deserves
a separate mention. GROOVE uses dedicated data structures, which store only the difference
(delta) between successive graphs; nevertheless, the very general tree compression algorithm
of LTSMIN turns out to beat this hands down. This came as a big surprise to us, and is reason to
reconsider the data structures of GROOVE.

• For the car platooning and leader election cases, the time performance of the distributed
LTSMIN solution scales well with the number of cores, especially for larger start graphs. The
performance of a single core is quite bad compared to GROOVE, taking in the order of 6-10 times
as much time, but the distributed system with 8 or more cores is faster. The bad performance of
the single core distributed tool compared to sequential GROOVE is mainly due to the canonical
hash code and the partial order reduction that is used in GROOVE, as described in Section 6.1.

For the largest cases that GROOVE still can compute, we get speedups up to 16 (for 64 cores);
moreover, the LTSMIN solution continues to scale well for larger start graphs, which GROOVE on
its own cannot cope with at all anymore. There seems to be, however, a limit to the speedup of
the distributed setup. From a certain number of cores the speedup does not increase anymore.
For the car platooning case this optimum is 48 for 9 cars and 56 for 10 cars; for the leader
election case it is 40 for 6 network nodes. The optimal number of cores is larger for larger
models.

• The canonical form computation in the LTSMIN-based system lasts as much as 5 times longer than
isomorphism checking in stand-alone GROOVE. As the certificate-based solution of GROOVE uses
the same underlying technique as BLISS’ canonical form computation (namely, repeated partition
refinement), there is no obvious reason for this performance penalty; we hypothesize that it
is a consequence of the required encoding of edge-labelled GROOVE graphs as node-labelled
BLISS graphs, which increases the graph size. It therefore seems interesting to reimplement the
BLISS algorithm for edge-labelled graphs. Given the fact that isomorphism checking is a major
fraction of the total time, we expect that this may further improve the distributed performance.
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Figure 6.3: Figures for the leader electon case for different start states.
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7
Conclusions and Future Work

We developed a tool for distributed state space generation for graph transformation systems. The tool
is based on the existing tools (a) GROOVE, used for computing successor states for graphs, (b) LTSMIN,
used for communicating states between different instances of the tool (workers) and storing the
generated state space, and (c) BLISS, a tool for computing canonical forms of graphs. GROOVE in itself
is already capable of generating a graph transition system for a given graph grammar and start graph.
However, GROOVE does this only in a sequential manner. LTSMIN uses state vectors as representation of
states, but uses compressed vectors for storage and communication between the workers. Specifically,
fixed size vectors are used and for the state vector compression in LTSMIN to work well, the different
number of values per part of the state vector needs to be orders of magnitude smaller than the total
number of states in the generated system. The values used in the state vectors together form the leaf
database. In the distributed setup, state graphs need to be serialised to vectors of data. We defined
two graph serialisation functions: one that occupies a slot per node in the graph (encN ) and one the
assigns slots to edge labels (encL). In GROOVE edge labelled graphs are used to represent states. BLISS

uses coloured graphs, which is a slightly different graph formalism. We describe a way to compute
canonical forms for edge labelled graphs using BLISS by means of a conversion from edge labelled
graphs to coloured graphs.

Experiments have been performed to investigate the time and memory performance of the
distributed tool with the two different serialisation functions compared to the sequential version of
GROOVE for three different case studies: two with a lot of symmetry in the state graphs (car platooning
and leader election) and one without so much symmetry (append).

The experiments show that the node vector encoding encN is better than the label vector encoding
encL in that it results in smaller leaf databases, less memory usage, and shorter execution times.

The distributed setup with node vector serialisation encN results in orders of magnitude less
memory usage than sequential GROOVE for the very symmetric cases. This is caused by the size of
the leaf database that is also orders of magnitude smaller than the total number of states with this
serialisation. Also for the case without symmetry, memory usage is better for the distributed setting
than for GROOVE. That the memory usage is better for LTSMIN than for GROOVE is suprising because
the storage in GROOVE is optimised for graphs, storing only the differences (deltas) between state
graphs instead of the complete graphs themselves. The memory usage is already better for LTSMIN

with one core, which means that using graph serialisation instead of deltas can be an improvement
for sequential GROOVE.

The execution time for the distributed setting with one core is much worse than that of sequential
GROOVE. There are three main reasons for this: (1) in GROOVE the expensive isomorphism checking
can often be avoided by use of an efficient canonical hashcode, while a canonical form has to be
computed for every state graph in the distributed setting; (2) the partial order reduction for graph
transition systems that is used in sequential GROOVE is not applicable in the distributed setting; and
(3) the conversion to coloured graphs needed for computing canonical forms using BLISS blows up
the size of the graphs, increasing the complexity of the task.

For the larger models the distributed solution scales well. For all reported case studies there is a
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start graph for which sequential GROOVE runs out of memory or is not capable of finishing within the
time limit, while the distributed tool still can generate the state space in time and without running
out of memory. For the cases with much symmetry, the speedup is particularly good. In the leader
election case a speedup of 16 is achieved with 64 workers in the largest case for which also sequential
GROOVE could generate the state space within the time limit. This means that the distributed setup
works well for solving larger cases and that for larger cases the architecture itself does not cause too
much overhead. For the very symmetric cases most of the time is spent on isomorphism checking
(computing canonical forms in the distributed tool), which is one of the tasks that is paralellised.
Although the method for computing canonical forms can still be improved, it is clear that isomorphism
checking for a large number of state graphs can effectively be distributed by using canonical forms.
For the append case, however, the speedup is disappointing: only a factor 2 with 64 cores. This is due
to the larger leaf database that is needed. The communication of these leaf values between workers
is a major factor in the execution time for this case.

There seems to be an optimal number of cores that can be efficiently used in the distributed setup.
For the car platooning case, for instance, this optimum is 56 cores for 10 cars. The optimum is higher
for larger start graphs.

7.1 Future work

There are several directions of research we would like to explore further.
The existing canonical form computating by BLISS is much slower the combination of the canonical

hashcode and the isomorphism checking algorithm in GROOVE. However, the algorithms in GROOVE

are based on the same principles as the canonical form algorithm in BLISS, which is iterative partition
refinement. Therefore we expect improvements to be possible from reimplementation of the algorithm
for edge labelled graphs.

Memory usage appears to be better using serialised graphs in LTSMIN than using deltas in GROOVE.
We are interested in applying the tree compression of LTSMIN together with graph serialisation in
the state storage of sequential GROOVE. In the distributed setup this serialised form is based on
the canonical form of state graphs; in the sequential setting that is not necessary, but an efficiently
computable canonical hashcode has to be available for the state vectors.

We have compared two serialisation functions of which the most straightforward one, the node
vector encoding, appeared to perform the best. We would like to try other encodings of graphs, such
as encodings that do not need the “wrapping around” of nodes as in the node vector encoding. Also a
better distribution of nodes over the vector parts might result in a better performance for systems
without fixed sized graphs or without much symmetry.

In the experiments we looked at two kinds of models: two very symmetric ones for which the
node vector encoding worked out particularly well and the append case. We would like to use a
broader set of graph transformation systems for the experiments to see if one encoding is the best
overall or if we can find heuristics for which encoding might work well for which kind of graphs.

There are a lot of factors influencing time performance in the distributed setting. Not all of
these have been investigated thoroughly. Especially the communication between the workers needs
further research. How do network bandwidth and latency affect the communication of states and
values? Also, some communication between components currently is synchronously, which may
introduce unnessecary waiting. This needs further research and perhaps changing to an asynchronous
implementation.

For partial order reduction in graph transition systems, a larger part of the transition system needs
to be accessible than is now the case in the distributed setting. It would be interesting to set up an
archictecture in which partial order reduction is possible. In such a setup, either each worker has
to be responsible for multiple succesive transitions (if they are independent), or there has to be a
central store containing the LTS that is efficiently readable for the workers.
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