
Quality Assessment of Medical
Health Records using

Information Extraction

Master Thesis of Guido van der Zanden
Computer Science,

Track Information System Engineering
Enschede, August 19, 2010

Supervisors University of Twente:
Dr.ir. M. van Keulen

Dr.ir. A. de Keijzer

Supervisors Topicus Zorg:
V. Ivens, Msc.

D. van Berkel, Msc.

Abstract

The most important information in Electronic Health Records is in free text
form. The result is that the quality of Electronic Health Records is hard to as-
sess. Since Electronic Health Records are exchanged more and more, badly writ-
ten or incomplete records can cause problems when other healthcare providers
do not completely understand them. In this thesis we try to automatically assess
the quality of Electronic Health Records using Information Extraction. Another
advantage of the automated analysis of Electronic Health Records is to extract
management information which can be used in order to increase efficiency and
decrease cost, another popular subject in healthcare nowadays.

Our solution for automated assessment of Electronic Health Records consists
out of two parts. In the first part we theoretically determine what the quality of
Electronic Health Records is, based upon Data and Information Quality theory.
Based upon this analysis we propose three quality metrics. The first two check
whether an Electronic Health Record is written as prescribed by guidelines of
the association of general practitioners. The first checks whether the SOEP
methodology is used correctly, the second whether a treatment is carried out
according to the guideline for that illness. The third metric is more general
applicable and measures conciseness.

In the second part we designed and implemented a prototype system to ex-
ecute the quality assessment. Due to time limitations we only implemented the
SOEP methodology metric. This metric tests whether a piece of text is placed
in the right place. The fields that can be used by a healthcare provider are
(S)ubjective, (O)bjective, (E)valuation and (P)lan. We implemented a proto-
type based upon the ‘General Architecture for Text Engineering’. Many generic
Information Extraction tasks were available already, we implemented two do-
main specific tasks ourselves. The first looks up words in a thesaurus (the
UMLS) in order to give meaning to the text, since to every word in the the-
saurus one or more semantic types are assigned. The semantic types found in a
sentence are then resolved to one of the four SOEP types. In a good Electronic
Health Record, sentences are resolved to the SOEP field they are actually in.

To validate our prototype we annotated text from real Electronic Health
Records with S,O,E and P and compared it to the output of our prototype. We
found a Precision of roughly 50% and a recall of 20-25%. Although not perfect,
because we had time nor resources to involve domain experts we think this
result is encouraging for further research. Furthermore we shown that our other
two metrics are sensible with use cases. Although no proof they are feasible in
practice, they show that a whole set of different metrics can be used to assess
the quality of Electronic Health Records.

i

Voorwoord

Voor u ligt de master thesis van Guido van der Zanden, ter afsluiting van mijn
master Computer Science, track Information System Engineering, aan de Uni-
versiteit Twente. Deze is tot stand gekomen na iets meer dan zes maanden
afstudeeronderzoek bij Topicus Zorg in Deventer. Het voorwoord is het eerste
en enige stukje Nederlands dat u te lezen zult krijgen. De aard van een voorwo-
ord staat mij toe iedereen aan te spreken in hun eigen taal, wel zo gemakkelijk.

Ten eerste wil ik Daan en Vincent, mijn begeleiders bij Topicus Zorg, be-
danken voor hun steun. Beiden hebben ze op hun eigen manier bijgedragen
aan het volbrengen van mijn afstudeeronderzoek. Vincent voornamelijk in de
beantwoording van theoretische vraagstukken, Daan vooral bij het oplossen van
technische problemen. Via hen wil ik ook heel Topicus Zorg bedanken voor
het feit dat mijn afstuderen een zeer leuke periode was, beter kan ik me niet
voorstellen.

Ten tweede wil ik ook Maurice en Ander bedanken voor de begeleiding va-
nuit Enschede. Alhoewel minder close betrokken bij mijn dagelijkse bezigheden
hebben zij door het reviewen en feedback geven mij geholpen stappen te maken
in mijn afstuderen.

Als laatste wil ik mijn ouders bedanken. Zij zijn degene die mij zowel de
vrijheid als de mogelijkheid en kans hebben gegeven te kunnen doen wat ik doe
en mij daar altijd en overal in te steunen.

Guido van der Zanden
Enschede, augustus 2010

iii

Contents

Abstract i

Voorwoord iii

1 Introduction 1
1.1 Motivation and goals . 2
1.2 Research questions . 3
1.3 Outline . 4

I Background 6

2 Electronic Health Records 7
2.1 Structure & Content . 8
2.2 EHR Architecture . 9
2.3 Guidelines . 9

3 Information Extraction 11
3.1 Process . 12
3.2 Typical IE tasks . 12
3.3 Heuristics and Learning . 13
3.4 General Architecture for Text Engineering 14

II Quality of Information 15

4 Information Quality Theory 16
4.1 Problems . 16
4.2 Dimensions . 18
4.3 Metrics . 19
4.4 Information Quality of Unstructured Data 19

4.4.1 Quality of web data . 19
4.4.2 Quality of requirement documents 21
4.4.3 Quality of Wikipedia pages 22

4.5 Summary . 22

v

CONTENTS G. van der Zanden

5 Quality of Electronic Health Records 24
5.1 EHR Problems . 24
5.2 EHR Dimensions . 26
5.3 EHR Metrics . 27

5.3.1 SOEP Test indicator . 27
5.3.2 Guideline compliance indicator 28
5.3.3 Conciseness indicator . 28

5.4 Summary . 29

III System Design 31

6 Information Extraction Pipeline 32
6.1 Preprocessing . 32
6.2 Specific Annotation . 35

7 Global Design 37
7.1 Extraction Executor . 37
7.2 Model . 38
7.3 GATE components . 39

7.3.1 UMLS MetaMap . 40
7.3.2 NounChunk Classifier . 41

IV Evaluation 42

8 Experimental Evaluation 43
8.1 Goal . 43

8.1.1 Example output . 44
8.2 Experimental Set-up . 45

8.2.1 Dataset . 46
8.2.2 Experiment . 47

8.3 Results . 48
8.3.1 Machine Learning . 48
8.3.2 Rule-based . 48

9 Use Cases 50
9.1 Guideline compliance . 50
9.2 Conciseness . 51

10 Evaluation conclusions 53

V Conclusions and Further Research 54

11 Conclusions 55

vi

CONTENTS G. van der Zanden

12 Further Research 57
12.1 Prototype improvement . 57
12.2 Metric improvement . 57
12.3 Metric implementation & Quality Scoring 58
12.4 Medical Support System . 58

vii

Nomenclature

CDM Conceptual Dependency Model

DQ Data Quality

EHR Electronic Health Record

EOR Episode-Oriented Registration

EPD Elektronisch Patient Dossier

FT Frame Theory

GATE General Architecture for Text Engineering

GBZ Goed Beheerd Zorgsysteem

GP General Practitioner

HIS Huisarts Information Systeem

ICPC International Classification of Primary Care

IE Information Extraction

IQ Information Quality

LSP Landelijk SchakelPunt

MMTx MetaMap Transfer

MSS Medical Support System

NHG Nederlands Huisartsen Genootschap

NLP Natural Language Processing

POR Problem-Oriented Registration

POS Part-Of-Speech

RFE Reason For Encounter

UMLS Unified Medical Language System

viii

Chapter 1

Introduction

Topicus Zorg (Topicus Healthcare in English) provides Software-as-a-Service
(SaaS) applications for various actors in the Dutch healthcare sector. In their
products the information regarding patients is often the central pivot around
which the applications are built, although other functionality such as planning
or invoicing is provided as well. In The Netherlands, the whole set of medical
data electronically available belonging to one patient is often referred to as the
Elektronisch Patient Dossier (EPD). However, since internationally it is called
the Electronic Health Record (EHR), we refer to it as EHR. In this research we
investigate if and how we can automatically assess the quality of EHRs.

There are numerous reasons to investigate the automated assessment of
EHRs. The two most important ones are the exchange of EHR information and
the quality of healthcare in general. For exchanging information, intuitively un-
derstandability and readability are of great importance. Unclear written reports
can be understood by the writer himself but not by other healthcare providers.
EHR information that is not well understood can lead to problems in crucial
situations, for example when conflicting medication or allergies are overlooked.
The quality of healthcare argument means that EHRs are filled with valuable
information which cannot be gathered at the current moment. The gathered
and aggregated information can give insight in the effectiveness and efficiency
of treatments.

The challenge in assessing EHRs is that much of the valuable information
is in free text form. The basis of every EHR, next to some structured and
predefined input, is a set of four free text fields in which the practitioner has to
fill in all information concerning one appointment (called a contact) with the
patient. Therefore traditional ways of analysing data such as Online Analytical
Processing (OLAP) do not suffice, since they are incapable of dealing with
unstructured data. In order to overcome these limitations, we apply information
extraction (IE), which aim is to “analyse unrestricted text” and “get facts out
of documents” [1]. The facts we extract from the EHRs form the basis for the
quality assessment. However, we are not searching for random facts, but only
the facts we can use in our quality assessment. The challenge is to create a IE
process that extracts exactly the facts we want to know. Therefore we must
investigate (a) what information we want to extract and (b) how we make the
IE process extract exactly that information. Since the information extraction
process is ‘dumb’ in the sense that it does not understand what we are looking

1

Introduction G. van der Zanden

for, we must train it to extract the facts we are looking for.

1.1 Motivation and goals

As stated above there are two main reasons for automatised assessment of EHRs,
which we will discuss here in more detail. First, in the near future all Dutch
healthcare providers must exchange patient information. Furthermore, on re-
gional level initiatives are carried out to exchange medical information, for ex-
ample to streamline the care for diabetes patient in one region. One can say
that the management of an EHR is becoming a collaborative undertaking by
different healthcare providers. This trend has the advantage that healthcare
providers can give care based on accurate information, which avoids the need
for the patient to tell his story twice or preventing prescribing conflicting med-
ication. However, this promise can only be made true when the information
in the records is understandable for all healthcare providers working with it.
Unclear abbreviations, ambiguous usage of terminology or other ambiguities
undermine the seamless exchange of information between healthcare providers.
Automated assessment of the quality of the records thus helps to achieve seam-
less exchange of information, since it can help healthcare providers to improve
the quality of Electronic Health Record keeping.

The second motivation for assessing healthcare records is to provide ‘man-
agement information’. Already initiatives are taken implementing Routine Out-
come Monitoring in healthcare, which is simply periodically measuring the out-
come of treatments. By gathering this information the effectiveness and ef-
ficiency of a treatments can be measured and benchmarked. An example of
the information gathered is filled in questionnaires regarding the seriousness
of psychological complaints [2]. When over time more questionnaires are filled
in we can see, both on high and low level, the course of complaints and thus
also the effectiveness of treatment. If we can extract information from patient
records automatically from patient records, we could continuously gather the
information needed to investigate effectiveness and efficiency of healthcare.

There are other motivations for assessing EHR. For example, patient records
are stored for at least 15 years. Guidelines for proper record keeping were not
implemented back than and thus do not comply to current standards. Auto-
mated assessment could help filter out the useful information and store them as
current guidelines prescribe. Concluding, there is a desire to extract the relevant
information from the unstructured parts of EHRs. Therefore, the first goal of
our research is thus formulated as follows:

Goal 1 describe the relevant facts that can be extracted from the unstructured
parts of Electronic Health Records.

As stated before, the facts form the basis of our assessment. When these
are formulated we must provide a manner to extract them from EHRs and use
these to measure the quality of the EHR. Thus, our second goal is simple:

Goal 2 design and implement a prototype system that can extract the rele-
vant facts from an Electronic Health Record and assess the quality of the
Electronic Health Record.

2

Introduction G. van der Zanden

1.2 Research questions

Our main research question follows logically out of the introduction and is stated
as follows:

Main research question How to automatically assess the quality of Elec-
tronic Health Records using Information Extraction?

IE provides us with the methods and algorithms, we have to ‘feed’ it with our
knowledge regarding what information we want to extract and how it should
do so. Furthermore, we must interpret the results of information extraction
ourselves in order to come to useful conclusions. Our first sub questions are
therefore related to the quality of EHRs to provide a context for the IE process:

I How to define the quality of Electronic Health Records?

a How can - in general - quality of data and information be defined and
measured?

b How can we define the quality of Electronic Health Records using the
general data and information theory?

First we investigate what exactly is meant by ‘the quality of Electronic
Health Records’. We generalise this question by conducting research into the
quality of data in general in order to provide theoretical background. This back-
ground is compared with expert opinions and guidelines regarding the quality
of EHRs. This is done in order to see whether we can map the expert opinions
and guidelines to the theoretical data quality background. This should simplify
the assessment of EHR quality, since we can use former experience of (general)
data quality. The second sub questions are formulated as follows:

II How to extract the facts from the Electronic Health Records using Infor-
mation Extraction?

a Which Information Extraction steps have to be undertaken?

b Which Information Extraction steps can be reused and which must be
newly implemented?

c How to design a reusable software architecture that can execute the In-
formation Extraction process?

d How to translate the extracted facts to a quality judgement?

The second step is to use IE to extract the facts that can answer the quality
measures defined earlier. In order to do so we must investigate which steps
are needed in the process. Since IE is applied many times before on different
types of texts, we must reuse the experience of these works. However, we need
to adapt the steps to fit our use and probably also implement new steps. As
last, to proof that our concept works we need to design and implement it in a
prototype. Since we will probably find multiple manners to assess the quality of
EHRs, it is convenient to have a prototype that can easily be adapted to serve
multiple tasks. As last we need to translate the extracted facts into a quality
judgement as we have defined previously.

3

Introduction G. van der Zanden

III How to validate our thesis?

a What is the performance of the prototype?

b How to validate our quality measurements?

The last question is a question present in every thesis, namely the validation
of the work. First of all, since we have a prototype we must validate it. In IE
validation is quantitative by three standard measurements described later in this
thesis. IE never gives a 100% good result due to the complexity of unstructured
data, thus we need to know how well it performs. The performance of our
prototype tells us whether our concept is feasible: can we assess the quality
of EHRs using IE. Secondly, we need to validate our quality measurements are
right. If we can perfectly measure something, it does not mean the measure
itself is proper. We can measure with a 100% accuracy the number of dots in a
text, but it will not tell us anything about the quality of that text. A qualitative
validation is needed here, for example by medical experts that can judge from
experience and knowledge what a good EHR looks like.

1.3 Outline

The research is divided into five parts. In the first part the EHR is introduced
in more detail, as well as the basics of IE. Part I thus introduces the building
blocks of our research. Part II discusses both the theory and practice of quality
of information, respectively based on a literature research and protocols and
guidelines. Part III discusses the system design: what IE steps needs to be
executed and how to fit it in a software architecture. Part IV then evaluates
our prototype and Part V discusses our conclusions and further research.

Part I: Background In the background part we simply explain the struc-
ture and content of the EHR in Chapter 2. The structure defines on which parts
we will perform IE, namely the SOEP entries which will be explained later, but
also which extra data we can use to assess the quality of the EHR, for example
unique treatment codes. Chapter 3 gives an overview of the general paradigm
and common tasks of IE. We will show how we can use IE in order to extract
the facts we want to find and finally an open-source IE initiative we will use in
our prototype.

Part II: Quality of Information In Chapter 4 an overview is given of
theory regarding quality of data and information. The theory is then combined
in Chapter 5 with the demands from the medical area regarding EHR quality.
In this chapter we try to relate the needs stated in protocols and guidelines
to the theory. As a result we can define the quality requirements of EHRs
from practice in theoretical terms which should make it easier to assess them as
quantitative metrics.

Part III: System Design This part will form the technical heart of the
research. In Chapter 6, based on the previous defined quality metric, we describe
the IE pipeline: what steps do we take in order to extract the information we
want. In Chapter 7, we describe the system in a broader sense. We discuss the
data models used to store the results and how to evaluate the results to give a
quality judgement about the EHR.

Part IV: Evaluation In Chapter 8 we both explain the methods of evalua-
tion as the results of the evaluation. The quantitative evaluation of the system

4

Introduction G. van der Zanden

will consists of the common IE evaluation measurements, namely precision and
recall. In Chapter 9 we present use cases to validate our quality measurements
qualitatively. In Chapter 10 the conclusions of the evaluation will be given.

Part IV: Conclusions and Further Research Chapter 11 will state our
final conclusions and Chapter 12 will give some suggestions on how to continue
the research on the quality of EHRs.

5

Part I

Background

6

Chapter 2

Electronic Health Records

Patient records are kept by every healthcare provider; general practitioners
(GP), surgeons, physiotherapists, nurses and so on. Although for example GPs
note different information than surgeons, the goal of keeping records is the same:
to memorise all important events in the medical history of a patient for future
use. In the case of GPs, on which this research is focused, the record will
consist of reports of all contacts with a patient, all his deceases, medication and
allergies. The information about former and present deceases is needed to make
new diagnoses, medication and allergy information is needed in order to prevent
conflicting prescriptions.

Historically, records were kept for internal use in the practice only. Thus, the
manner and system in which records were kept was dependant on the practice.
In 1990, the Nederlands Huisartsen Genootschap (NHG, Dutch GP Society)
published a standard for GPs on patient record keeping [3]. Among other aspects
readability, completeness, briefness and understandability were promoted. A
review study in 1994 showed that record keeping of GPs did not satisfy those
aspects. Most (hand-written) records were not readable and did not use the
prescribed Problem-Oriented Registration (POR) system.

Not adhering to prescribed standards is not an issue if the writer is the only
reader of a records: as long as he can understand it, everything is fine. However,
when medical records are shared with colleagues in the same practice or with
other institutions such as hospitals, problems can arise. This latter situation
where information between healthcare practitioners is exchanged, is rapidly be-
coming reality. The Dutch government already set-up the infrastructural needs
to facilitate exchange of patient records between different healthcare provider,
and legislation is expected to follow soon. In this environment standardised,
clear and understandable record keeping.

In the remainder of this Chapter we introduce the structure and content
of patient records. This is done by demonstrating Promedico-ASP, a ‘Huisarts
Informatie Systeem’ (HIS, GP Information System) which is sold by Promedico
and (partially) implemented by Topicus Zorg. The structure we discuss adheres
to the current standards of the NHG, namely the Episode-Oriented Registra-
tion (EOR) and the SOEP standard, which we will explain also. Furthermore,
we discuss the global architecture of the ‘Elektronisch Patient Dossier’ called
AORTA. Finally we discuss some guidelines and initiatives regarding the quality
of EHRs.

7

Electronic Health Records G. van der Zanden

Figure 2.1: An empty contact in Promedico-ASP

2.1 Structure & Content

The central pivot in Promedico-ASP, and many other HISs, are contacts with
patients. In real life situations a patient comes to a GP for a consult, without the
GP knowing exactly what the problem of the patient is. It is therefore sensible
to organise the EHR on contacts. The basis of every contact are one or more
sub contacts. The reason for sub contacts is to register different complaints
under one physical contact. For example a patient who visits the GP for his
regular diabetes check-up and simultaneously for pain in his wrist. This division
is needed in order to aggregate all contacts of the same kind in one episode (see
below). Furthermore, insurance regulation only permits to compensate one
contact per day.

The basis of every sub contact is a SOEP journal (see Figure 2.1). SOEP is a
method for registering contacts which is implemented in most Dutch HISs. The
goal of a SOEP-journal is to make sure GPs follow a logical line of reasoning
and do not forget steps in this process. A SOEP-journal consists out of four
fields:

Subjective Feelings, observations and perception of the patient and thus the
reason for the contact.

Objective Symptoms and signals the GP can observe and measure.

Evaluation Interpretation of complaints and symptoms resulting in one or
more diagnoses.

8

Electronic Health Records G. van der Zanden

Plan Activities to solve the problems, for example further examination or refer
to a specialist.

Every contact is described in a SOEP-journal, although it is not obliged
to fill in all journal lines (at least, it is not enforced by Promedico-ASP). In
the E-line of a SOEP-journal, an International Classification of Primary Care
(ICPC) code can be attached. The ICPC codes refer to standardised reasons
for encounter (RFE), problems or diagnoses and primary care interventions.
The attachment to the E-line is logical, since the E-line registers the diagnosis.
Additional, attached to the ICPC code one can add the label New, Again and
Continuation to indicate whether the diagnoses is occurred for the first time, it
occurred again or is a continuation of a previous occurrence.

In HISs it is common to apply EOR. Contacts are grouped into episodes
which means the contacts relate to the same medical affection, and is basically
done one ICPC code (see Figure 2.1). In this manner a GP has an list overview
of all current affections and can quickly access all information regarding that
affection in the follow-up contact for that affection. Additionally one can see
directly whether the episode has ended or whether is deserves extra attention
(for example diabetes or pregnancy). Episodes are another reason sub contacts
are necessary, otherwise one could not distinguishably assign a contact to one
episode.

2.2 EHR Architecture

The initiative to enable the exchange of patient records was taken in order
to reduce the number of medical errors, give healthcare practitioners insight
in all relevant information of a patient and thus reduce the need for patient
to redundantly tell their story [4]. Due to legislation, all healthcare providers
are obliged to open up their systems to others. Through the Landelijk Schakel
Punt (LSP, National Switch) healthcare providers can fetch patient records from
other healthcare providers. The LSP dictates the protocols over which the
records are communicated and providers of healthcare applications may only use
the LSP when they have the qualification ‘Goed Beheerd Zorgsystem’ (GBZ,
Properly Managed Care system). In short this means that a HIS must oblige
to connectivity standards, security, availability, response time and so on. This
implicates that all sorts of HISs can exist next to each other, which not by
definition have to enforce the same input. In other words, the introduction of the
EHR architecture does not enforce all HISs to use the same structure. Exchange
of information is enforced in this way, but not a completely unambiguous way
to structure, store and organise EHRs.

2.3 Guidelines

The NHG created a guideline for adequate patient record keeping called ADEPD
[3]. The guideline describes the choice for EGR in contrast to POR, the content
that should be in a HIS (personal, contact, medication and allergy informa-
tion) and some general guidelines regarding registering contacts. Roughly, the
guideline prescribes the use of the SOEP-system, but gives no further advise or
guidelines to fill the SOEP-journal lines. However, the ADEPD document does

9

Electronic Health Records G. van der Zanden

refer to the NHG-Standaard Medische verslaglegging (NHG-Standard Medical
Reporting), which cannot be found any more on the NHG-website. However,
another web source refers to the NHG-Standaard, stating it has six demands
for proper reporting: availability, readability, completeness, brevity, reliability
and understandability [5]. One must note that the standards was made in 1990
and refers to paper records. However, we think it still is applicable to digital
patient records.

Next to ADEPD, two other projects related to EHR quality. First of all, the
EHR-scan is a project to ‘benchmark’ ones HIS. Indicators that are tested are for
example the number of episodes per patient or the percentage of contacts that is
attached to an episode [6]. Two remarks must be made here, first that this scan
only evaluates structured data and second that the indicators are more useful for
comparison with national averages than direct quality measures. The last form
of guidelines are the NHG-Standaarden [7]. For about 50 deceases the NHG
created guidelines with the latest (scientific) insights. The guidelines contain
information regarding the symptoms and complaints, the physical examination
that the GP has to perform, information concerning the diagnoses (related to
the physical examination, e.g. glucose values related to diabetes) and guidelines
for a treatment plan (education, medication etc.). Although not directly related
to the quality of EHRs, the guidelines follow the same line of reasoning as the
SOEP-system. When investigating an episode for which a NHG-standard exists,
one will expect to find similarities in the line of reasoning in the EHR and the
NHG-standard.

10

Chapter 3

Information Extraction

As stated in the introduction, “information extraction gets facts out of docu-
ments” [1]. Turmo et al. [8] formulate a slightly more detailed definition, being
that “the objective of IE is to extract certain pieces of information from text
that are related to a prescribed set of related concepts, namely, an extraction
scenario”. The extraction scenario is a notion of context to an IE system which
without it cannot function. We first give the system a notion of what the facts
are we want to know, only then the system can perform. A classic example of
IE is the extraction of mergers between companies from newspaper articles. For
example, from the sentence “Yesterday, New-York based Foo inc. announced
their acquisition of Bar Corp.” the merger between Foo Inc. and Bar Corp.
would be extracted in such an extraction scenario.

IE, but actually Natural Language Processing (NLP), originates from the
Conceptual Dependency Model (CDM) introduced by Roger C. Schank [9]. The
basic assumption is that there is an interlingual conceptual model onto which
every language structure can be mapped. In other words, text can be analysed
and mapped onto a conceptual model consisting of conceptual syntax and se-
mantic rules, making text machine understandable. Although with a CDM a
text can, in theory, be completely understood, mostly partial CDMs were im-
plemented. Following Schank’s theory, Minsky introduced the Frame Theory
(FT). A frame is a “data structure for representing a stereotyped situation” [9],
for example the acquisition of Bar Corp. by Foo Inc. in the example above.
Frames, also called slots, are defined before text analyses can be executed, to-
gether making an extraction scenario. Frames are simple key value pairs, but
when frames have mutual relationships a semantic net is created. In the exam-
ple above both Foo Inc. and Bar Corp. fill a slot (company1 and company2
for example), but the link between the slots defines their relation: company1
acquires company2.

CDM initiated lots of follow-up research into NLP, FT shaped IE as it is
today: filling templates with values. Although sounding simple, a lot of steps
have to be undertaken before the templates are filled. In this Chapter we will
first introduce the basic IE process, and elaborate on some of the most common
tasks in the process. Furthermore, we shortly introduce the concept of machine
learning. Although text constructs can be described with rules, due to the
diversity in language it was found impracticable to do this manually. With
learning algorithms it was tried to relief the workload.

11

Information Extraction G. van der Zanden

3.1 Process

The IE process can best seen as an assembly line, called the pipeline, with text
as input where at every step some information is added. At the beginning of the
pipeline simple information is added such as word and sentence boundaries, but
as the text goes further through the line, more complex information is added
such as the annotation of persons, location or events. However, the assembly
line on which the text is processed is only one half of the total picture. The
different steps on the line need to know what to do, they must be trained.
Training roughly comes in two flavours: manually learned heuristics, rules and
patterns or by machine learning were rules are learned based on a number of
examples.

Figure 3.1 depicts the typical process of training and deployment of IE steps.
Next to the training phase, in which a step is learned how to annotate text, it
is important to note that each step depends on the previous one. For exam-
ple, a step that annotates noun groups (i.e. “the yellow bike”) needs a process
called a POS-tagger to annotate words with properties like noun, verb or deter-
miner. The philosophy behind the process is thus that richer information can
be extracted by gradually adding more information.

Figure 3.1: The typical IE process [9]

3.2 Typical IE tasks

In this Section we describe some typical (high-level) IE steps to illustrate the
capacities of IE. Many low-level steps proceed the example output we give,
but we will not elaborate on those. In Chapter 6, our system design, we will
elaborate on these low-level steps. All examples were taken from Moens [9].

12

Information Extraction G. van der Zanden

Named Entity recognition Named Entity recognition tries to extract enti-
ties such as persons or companies. Example:

Entity Relation recognition Relations can exist between named entities,
as is shown in the following example:

Timex and Time line recognition Next to just recognising times and dates,
both exact (Friday, July 1st) and relative (yesterday, next month) more complex
time constructions can be extracted:

3.3 Heuristics and Learning

Two types of training exist, based on heuristics or on learning. Heuristics are no
more than hand-made rules. It is evident that for simple tasks this is feasible,
but for more complex tasks it is a tedious task. Complex tasks require many
rules, and the rules itself can become very complex. Although heuristics can
be powerful in IE, constructing them is a tedious, time consuming and complex
task.

Machine learning is used in order to relief the burden of manually creating
rules for each IE step. Machine learning comes roughly in two flavours: super-
vised and unsupervised. Supervised learning means the system needs a fully
annotated text from which it can deduce rules. These rules can in the deploy-
ment phase be used to annotate new text. Unsupervised learning does not need
a annotated text but tries to divide the text into separate groups (called cluster-
ing). Again, the learned model can be used in deployment phase. In both cases
the machine learning algorithms need parameters to base there actions upon. A
parameter could the part-of-speech type of a word previously annotated. The
algorithm tries to map the parameters to what we want to annotate. For exam-
ple, part-of-speech types are used to extract the word’s semantic type (person,
location etc.). The annotation we want to map to are called the classes.

13

Information Extraction G. van der Zanden

3.4 General Architecture for Text Engineering

Since IE is a matured research topic, many problems have already been solved.
Named Entity recognition systems for English text have almost human perfor-
mance1. Therefore, we do not need to re-invent the wheel but can reuse many
work done before. Therefore we decided to build our prototype based on the
General Architecture for Text Engineering, or GATE [1]. In order to make it
easier to understand our prototype, we shortly introduce the working of GATE
by shortly explaining its most important concepts.

First of all, GATE is a software package implemented in Java consisting out
of a graphical user interface (GUI) that enables users to build an IE pipeline
in a ‘click and point’ style. Next to the GUI GATE offers an API that enables
programmers to embed GATE into there own software. In GATE, IE steps are
called processing resources which are dynamically loaded into GATE. In order to
use a processing resource we first need to specify where the processing resource
is located and with which parameters it needs to be loaded. Secondly, we need
to set the run-time parameters of the processing resource before we can run
it. A run-time parameter is for example the text it takes as input. The design
and process to use processing resources of GATE enables that new processing
resources can be created and used in GATE easily.

Next to processing resources, GATE has language resources. Language re-
sources are text combined with annotations. In GATE, annotations are divided
into annotation sets. In an annotation set, multiple annotations can exist. An
annotation contains a reference to a piece of text in the language resource. This
piece of text can be of any size: A letter, word, sentence or any other piece of
text. The annotation itself has a name to make it recognisable. For example
the typical tokeniser in GATE annotates words and punctuations as ‘Token’.
Annotations itself contain features, which are used to specify properties of an
annotation. In the ‘Token’ example a feature named ‘type’ is attached to the
annotation, specifying the type of token: word, number or punctuation.

1http://en.wikipedia.org/wiki/Named_entity_recognition

14

http://en.wikipedia.org/wiki/Named_entity_recognition

Part II

Quality of Information

15

Chapter 4

Information Quality Theory

The term information quality (IQ) is interchangeably used with data quality
(DQ) [10], and has been referred to as “data quality in context” by Strong et al.
[11]. Where traditionally Data Quality referred to intrinsic quality properties,
general quality literature showed that data quality cannot be assessed inde-
pendent of the people who use the data. Literature on data, information and
knowledge claim a more fundamental difference between data and information,
being that “data are pattern with no meaning” and “information is data with
meaning” [12]. Since EHRs should consist out of data with meaning, we use
the term information quality to emphasise this and to distinguish from early
literature focused on solely intrinsic data quality.

Information is available in structured, semi-structured and unstructured
form. However, because of the historical relation of Data Quality with database
design, most research in Data Quality is related to structured data [13]. Since
our focus is on SOEP journal lines, which is unstructured data, no or not much
research is available that provide ready to use measures and methods to assess
quality. However, in almost all Information Quality research, a distinction is
made between abstract dimensions and concrete metrics. A dimension defines in
general a quality aspect of information, whereas it can only be measured using
one or more concrete metrics. Therefore, we can reuse the abstract dimensions
to base our own EHR quality metrics upon.

In the remainder of this chapter we focus on the causes of Information Qual-
ity problems as well as Information Quality dimensions. Both investigations can
provide us with the information needed to define our own Information Quality
metrics. If we can link Information Quality problems to Information Quality
dimensions, the problems encountered in the usage of EHRs can lead us to the
dimensions we must assess. As last we review some existing metrics, which are
all related to structured data, and discuss former attempts to assess the quality
of unstructured data.

4.1 Problems

As stated above, an analysis of Information Quality problems can help in iden-
tifying the dimensions relevant to the quality of EHRs. We shortly discuss three
investigations which mention Information Quality problems, although only one

16

Information Quality Theory G. van der Zanden

explicitly links Information Quality problems to Information Quality dimen-
sions.

First, Gackowski [14] bases the possible Information Quality problems on a
schema of information. In this schema a distinction is made between informing
entities and informed entities, and both are subsequently divided into active and
passive entities. Entities can be robots, individuals, organisations or any other
entity capable of sending and receiving information. In short, the difference
between passive and active entities is that active entities can choose to inform
or be informed, for example a teacher and a student. In between informers and
informed entities direct or indirect informing takes place. Indirect informing is
routed via for example databases and data warehouses.

All problems identified by Gackowski [14] are based on the schema of in-
forming. To start, every informing entity has the problem of credibility and
believability. Active informing and informed entities are also affected by inten-
tionality: why do I inform/want to be informed? The communication channels
between entities are the source of transmission quality problems, where trans-
mission means psychical transmission through cables using network protocols.
At the ‘entry side’ of informed entities, information presentation quality prob-
lems may arise, while at the exit side information utilisation problems may
occur. As last, data delivery systems can be faced with information mapping
quality problems, database, transmission and network problems, as well as ac-
cessibility problems.

Ge and Helfert [15] surveyed current Information Quality research and came
with a categorisation of Information Quality problems. The categorisation
was made by two axis: data perspective vs. user perspective and context-
independent vs. context-dependent. All Information Quality problems found
were divided into the quadrants. The context-independent problems consisted
out of among others spelling errors, duplicate data, outdated data in the data
perspective, and for example of inaccessible and insecure information in the user
perspective. The context-dependent half has data problems such as domain
constraint and government regulation violations, whereas the user perspective
quadrant holds problems such as information that is hard to manipulate, aggre-
gate, incompleteness or impartiality.

Stvilia et al. [16] conducted the only investigation linking Information Qual-
ity problems to Information Quality dimensions. They describe four causes of
Information Quality problems which have affect on multiple dimensions. Also,
dimensions can be affected by multiple problems. The problem causes mentioned
are mapping, changes to the information entity, changes to the underlying en-
tity and context changes. Mapping problems occur when there is incomplete,
ambiguous, inaccurate, inconsistent or redundant mapping between the infor-
mation and some state or event. The changes in information entities or the
underlying entities speak for themselves, but can be caused in many ways. For
example, malicious changes are something completely different than changes
that are made to increase the Information Quality. This goes for changes in the
information entity itself as well as to changes in the underlying entity. Regard-
ing to a changing context, a context defines how information and Information
Quality is assessed, because of underlying cultural or socio-technical assump-
tions. Any change in spacial or temporal context can have influence on the
Information Quality.

17

Information Quality Theory G. van der Zanden

Intrinsic Contextual Representational Accessibility
Accuracy Relevancy Interpretability Accessibility
Objectivity Value-added Concise representation Access security
Believability Timeliness Consistent representation
Reputation Completeness Understandability
Consistency Amount of data Readable
Precision
Completeness
Reliability
Currency

Table 4.1: Information Quality Dimensions [11, 16, 17, 20]

4.2 Dimensions

Information Quality dimensions are intuitively described quality aspects of data,
which are not directly measurable. Instead of a single calculation or measure-
ment, one must calculate one or more indicators or metrics. As a result, many
dimensions have multiple metrics and due to overlapping dimension definitions,
some dimensions may have the same metrics.

Since dimensions are quite easy to ‘make up’, researchers tried to categorise
dimensions. One of the most adopted view is proposed by Strong et al. [11], who
divided Information Quality dimensions into intrinsic, contextual, representa-
tional and accessibility. This categorisation is used in many other investigations,
i.e. Lee et al. [17], Sonntag [18]. Intrinsic Information Quality dimensions fo-
cus on the quality of the information itself and to the ‘classical’ Data Quality
dimensions such as accuracy, objectivity and believability. Contextual Infor-
mation Quality dimensions take into account the circumstances in which the
information is used, for example relevancy, timeliness and completeness. Rep-
resentational Information Quality dimensions refer for example interpretability
and easy of understanding, accessibility to how easy it is to access the informa-
tion and how secure the access is.

Other views on Information Quality dimensions are available. For example,
Information Quality dimensions can be categorised according to the sequence
of usage. For information to be of good quality, it must be accessible, inter-
pretable, relevant and integer [19]. However, since the first categorisation is
widely accepted, we will use it to divide the dimensions. In Table 4.1 we en-
listed all dimensions found in literature. We filtered some dimensions out in
order to only keep the meaningful and proper documented dimensions. We fil-
tered a dimension out when (a) the dimensions was only referred to in literature
once (b) it was covered by another dimensions, for example reliability is covered
by reputation and believability (c) the source of the dimension was too specific,
for example only applicable in data warehousing.

As one can see, the meaning of the dimensions are intuitively quite clear.
However, how to measure it does not follow automatically out of them. There-
fore we have to look at the metrics in the following Section.

18

Information Quality Theory G. van der Zanden

4.3 Metrics

As stated above, concrete Information Quality metrics ‘define’ the dimensions.
In Table 4.2, 4.3, 4.4 and 4.5 a collection of possible metrics is summed up for
all four Information Quality dimension categories. All metrics are taken from
Batini et al. [13] unless otherwise cited. This overview gives some insight in how
dimensions are more formally defined and what (general) measures are known
now. If only a user survey, questionnaire or ‘-’ is filled in as metric, no direct
calculation is available. A questionnaire or survey is also not really a metric,
the questions in the survey/questionnaire are. However, no details were given
regarding the content of these questionnaires and surveys.

What we can see from the tables is that many dimensions are approaches
from a database perspective (as we have seen earlier). For example, a metric
for completeness (number of null values / total number of values) can only be
measured for structured data. Furthermore, some dimension metrics are defined
quite vaguely: number of consistent values / number of total values. Although
true, the most difficult problem remains how to define consistent. As last, many
dimensions do not have any metric or can only be assessed by means of a user
survey, which actually could be applied to every dimension.

Concluding, most of the metrics defined up until now are too vague, too
database oriented or simply not investigated enough to be applied widely. In
the following Section we discuss some research trying to assess the quality of
unstructured data. What is roughly the case is that the type of unstructured
data is narrowed down to specific data, resulting in metrics that can only be
applied to that specific type of document.

4.4 Information Quality of Unstructured Data

A couple of investigations have been conducted into the assessment of unstruc-
tured data quality. We shortly describe three of them, with special focus on
how the dimensions were measured and what metrics were used.

4.4.1 Quality of web data

As first example we present an investigation by Zhu and Gauch [21]. The
goal of their research was to improve the retrieval of web pages, which is the
technique making web search possible. This was done by adding data quality
characteristics of pages into the search ranking algorithm next to term frequency.
The expected result was that by adding quality characteristics in the ranking,
higher quality web pages would appear higher in the result list. Of course,
this expectation is only redeemed when the characteristics chosen are indeed
indicators of quality. In their research, the following dimensions and metrics
were used:

� Currency: the time stamp of the last modification of the document.

� Availability: number of broken links / total number of links.

� Information-to-Noise Ratio: total length of the tokens after preprocessing
/ size of the document.

19

Information Quality Theory G. van der Zanden

Dimension Metric

Accuracy
Number of correct values / number of total values
Number of delivered accurate tuples
User survey, questionnaire

Objectivity User survey, questionnaire
Believability -
Reputation User survey, questionnaire

Consistency

Number of consistent values / number of total values
Number of tuples violating constraints, number of cod-
ing differences
Number of pages with style guide deviation
User survey, questionnaire
Semantic: Count of instances of the same elements hav-
ing different values, structural: Count of instances of
the same elements using different formatting [16]

Precision -

Completeness

Number of not null values / number of total values
Number of tuples delivered / number of tuples expected
User survey, questionnaire
Count of empty tags; count of incomplete values (cir-
cas); number of distinct elements [16]
Missing elements from a recommended set of elements
[16]

Reliability -

Currency

Time in which data are stored in the system - time in
which data are updated in the real world
Time of last update
Request time - last update
Age + (Delivery time - Input time)
User survey, questionnaire

Table 4.2: Intrinsic Information Quality metrics

Dimension Metric
Relevancy User survey, questionnaire
Value-added -

Timeliness
max(0; 1 - Currency / Volatility)
Percentage of process executions able to be performed
within the required time frame
User survey, questionnaire

Amount of data
min((Number of data units provided / Number of data
units needed); (Number of data units needed / Number
of data units provided))
User survey, questionnaire

Table 4.3: Contextual Information Quality metrics

20

Information Quality Theory G. van der Zanden

Dimension Metric

Interpretability
Number of tuples with interpret data, documentation
for key values
User survey, questionnaire

Concise representation
Number of deep (highly hierarchical) pages
User survey, questionnaire

Consistent representa-
tion

-

Understandability -
Readability -

Table 4.4: Representational Information Quality metrics

Dimension Metric

Accessibility
max(0; 1 - (Delivery time - Request time) / (Deadline
time - Request time))
Number of broken links - Number of broken anchors
User survey, questionnaire

Access security
Number of weak log-ins
User survey, questionnaire

Table 4.5: Accessibility Information Quality metrics

� Authority: based on a score from 2 to 4 by Yahoo, 0 if not reviewed.

� Popularity: number of links pointing to the Web page.

� Cohesiveness: determined by how closely related the major topics in the
Web page are.

The set of quality dimensions and metrics was validated by letting people
review web pages whether they were appropriate for a certain search query.
Then, the search queries were executed with the ranking algorithm including
and excluding the extra properties. The conclusion was that the use of almost all
metrics, certainly in combination with each other, resulted in a higher precision
of the search algorithm.

4.4.2 Quality of requirement documents

Fabbrini et al. [22] have done multiple investigations into software requirements
written in natural language. Requirements are known for their rigid format, a
typical requirements could look like ‘The system must do action X with result
Y’. Furthermore, in requirements engineering some heuristics exist in order to
ensure the precision of the requirements. For example, the word ‘shall’ always is
contusing and the sentence ‘must perform good’ is ambiguous. When ambiguous
requirements are the basis for a software contract, it becomes impossible to check
whether the requirements are met. Requirements should be clear, unambiguous
and verifiable.

The rigid character of requirements was exploited by the authors. The re-
quirements heuristics were translated into a Natural Language Processing sys-
tem that tries to finds violations of the heuristics. Furthermore, the heuristics

21

Information Quality Theory G. van der Zanden

were coupled to four Information Quality dimensions, namely understandability,
consistency, completeness and correctness. Understandability was subsequently
defined by readability, uniguity and testability. Below we copied some examples
of rules with their related Information Quality dimension.

� Testability: Use of vague words, for example “The C code must be clearly
commented”. Clearly commented is not measurable. To detect this, a
lexicon of vague words was created.

� Unambiguous: Sentences including ‘and’ and an adjective, for example “a
young man and woman”. In this case it is not clear whether only the man
is young.

� Correctness: Use of universally quantified statements, for example “Every
person must have a social security number”, which in an immigration
software system clearly is not the case. This kind of generalisations are
very likely to be violated in the real world.

� Completeness: Use of underspecified words, such as “the system must
works also during an attack”. An attack in this case can be a physical
and digital attack, which are very different in nature. However, the clear
distinction is not made.

� Readability: A readability index: WS + 9 ∗SW , where WS is the average
number of words in a sentence and SW the average amount of tokens in a
word.

4.4.3 Quality of Wikipedia pages

The last example was taken from a case study by Stvilia et al. [16]. Their
subject in this case was Wikipedia. Since everyone can edit Wikipedia pages,
Information Quality is easily endangered. So, next to peer reviews in Wikipedia
itself, one may want to measure the quality of Wikipedia pages in another
manner. To do so, meta data was used as metrics, for example the number of
anonymous edits and the number of reverts. Also the data itself was used, for
example the number of internal links and the number of images.

As in the previous example, the metrics were linked to Information Quality
dimensions. To validate whether the Information Quality metrics were adequate,
the function featured article (FA) of Wikipedia was used. Wikipedia users can
vote that a page becomes a FA in order to make it appear on the frontpage
of Wikipedia. It is reasonable to believe that FA have a higher quality than
random articles (RA) since the system is ‘democratic’, whomever gets the most
votes wins. In the validation, it was shown that using their Information Quality
metrics they could classify Wikipedia pages into the category FA with a precision
and recall of respectively 90 and 92%, for RA the numbers were 98 and 97%. In
other words, just as in the first example, the indicators were usable to distinguish
high quality from lower quality.

4.5 Summary

In this chapter we investigated Information Quality problems, dimensions and
metrics, as well as some use cases regarding the quality of free text. The prob-

22

Information Quality Theory G. van der Zanden

lems we discussed vary from very specific to very general. Ge and Helfert [15]
mentions problems like spelling errors while Stvilia et al. [16] only names four
high level problems. It is questionable whether the problems are useful in our
research since many problems are very general (i.e. mapping problems) or relate
directly to Information Quality dimensions (hard to understand relates directly
to understandability). It may be in general the question whether we should com-
pose a set of Information Quality problems rather than just relate dimensions
directly to the problems we face in real applications.

From all the dimensions we have found, we selected all that were mentioned
in literature at least twice. In the rest of the research, if we talk about dimen-
sions, we only refer to the set of dimensions in Table 4.1. This selection was
made because many dimensions were ‘made up’, but not all of them seemed to
have proof from practice that validates their existence. Regarding metrics, we
have shown an overview of existing metrics. However, this was done solely to
show their existence. We do not think that they have any use for us, since most
are strongly related to relational databases, thus structured data.

The examples that covered free text showed that some creativity must be
used in order to assess it. Three categories of metrics can be distinguished:

1. Meta data metrics: using meta data, such as last update date or author,
as indicator for quality.

2. External metrics: indicators that reside outside the content, for example
the number of incoming links or appreciation rate of users captured using
questionnaires.

3. Internal metrics: indicators in the text itself, such as the number of images.

Furthermore, the validation of metrics was done simply using a classification
problem, and metrics were labelled useful whenever precision and recall of the
classification was improved by them. Although no generic rules were extracted
from the investigation, it gives some hints on how to solve our Information
Quality problems.

23

Chapter 5

Quality of Electronic
Health Records

In the previous chapter we have seen that measuring Information Quality is
not a clear case. Although quality dimensions exist, the only way of measuring
dimensions is by using indirect metrics. The quality of unstructured informa-
tion, thus free text, is even more difficult and less investigated. In this chapter
we analyse the Information Quality of EHRs by investigating the Information
Quality problems that occur, based on the goals and problems indicated in
literature regarding EHRs. Secondly we relate the Information Quality prob-
lems to Information Quality dimensions. Since few research initiatives relate
Information Quality problems with Information Quality dimensions, we build
our own reasoning regarding the relation between Information Quality problems
and Information Quality dimensions. Thirdly we introduce the metrics that we
will use to measure the Information Quality of EHRs. Of course, we base our
metrics on the dimensions we found relevant to EHRs.

5.1 EHR Problems

As stated in the previous chapter, it is not always possible to distinguish clearly
between Information Quality problems and Information Quality dimensions.
Therefore it is not possible to map the problems related to the Information
Quality of EHRs to Information Quality dimensions easily. Although we are
not sure how to make a distinction between Information Quality problems and
Information Quality dimensions, we still investigate the problems related to the
Information Quality of EHRs. We do this based on our analysis on the current
trends of the exchange of EHRs (see Chapter 2) and initiatives such as Routine
Outcome Monitoring and the EPD-scan (Chapter 1). If appropriate we relate
the EHR problems to the Information Quality problems identified before, but
for the research the investigation of real practical problems is more interesting
then relating them back to theory.

Although we do not reason with the Information Quality problems as basis,
we can start by identifying some Information Quality problems we exclude from
this research:

24

Quality of Electronic Health Records G. van der Zanden

� Transmission, network, databases and accessibility. We assume the phys-
ical EHR architecture provides a secure, reliable and properly accessible
manner for healthcare practitioners to interact with EHRs. Although all
these problems are realistic in the exchange of EHRs, measuring these
problems is not possible by investigating the EHRs itself. Rather, the
whole architecture should be the scope of investigation.

� Problems such as credibility, believability, intentionality [14] and the con-
tainment of an impartial view [15] are not considered. Again, in the
context of exchanging and measuring EHRs all those dimensions are im-
portant. However, we assume every healthcare practitioner to be upright
and we see no reason for any healthcare practitioner to be on purpose not
credible or believable. Furthermore, we think it is infeasible to determine
the intentions of the experts using IE.

We do include the problems identified from assessing the practical situations
of the EPD, based on the previous mentioned trends. To start with the exchange
of EHRs, the practical situation occurs that healthcare practitioner A has to
look into the EHR of a patient created by healthcare practitioner B, using the
infrastructure of the EHR. This situation occurs in a wide range of settings:
from sitting behind a desk when seeing the patient to an emergency situation.
In both cases the healthcare practitioners must be able to use the EHR: (s)he
must understand the content and must be able to understand it within a certain
time frame, which is especially tight in emergency situations. Furthermore, the
information presented to the healthcare provider in an EHR is used to base
decisions upon, which could be a treatment plan, emergency surgery or anything
in between. Problems can occur whenever the EPD is too long, written in
unclear language, does not contain all information and so on. If we refer back to
the identified Information Quality problems, the following problems can occur:

� Information that is hard to understand.

� Information that has a bad presentation.

� Information that contains irrelevant pieces.

� Information that contains inconsistent pieces.

� Incompleteness of information.

With regard to standardisation and analysis, in analysis of information the
saying is “garbage in, garbage out” 1. Thus, if we want to gain knowledge from
analysis of information, the ‘raw’ information should be of good quality. On the
one hand this means that the information must be complete and correct. False
or missing information pollutes the analysis result. On the other hand, it means
that the information must be gathered before it can be analysed. Since we are
talking about automated analysis, also the gathering of the input information
is ideally fully automated. Whenever the text is not well structured it becomes
harder to automatically analyse. Problems that can occur in the gathering and
analysis of information:

1http://en.wikipedia.org/wiki/Garbage_In,_Garbage_Out

25

http://en.wikipedia.org/wiki/Garbage_In,_Garbage_Out

Quality of Electronic Health Records G. van der Zanden

� Information that is hard to aggregate.

� Information that is hard to manipulate.

Last, we found the problem of information not being based on facts. In
this case we mean the absence of facts, since we assume that the healthcare
provider is believable. This problem can be seen as a subset of incomplete
information, but we mention it here explicitly since facts are most important in
analysis of information. Furthermore, this is also a problem in the context of
information exchange, since it becomes impossible to follow the line of reasoning
if information is missing.

In short, the main problems are summarised in the lists above. These prob-
lems relate to the exchange and analysis context we described earlier. It is
thus possible that not all problems are mentioned since they are not relevant to
these contexts. However, since exchanging and analysing EHRs are currently
important trends in the healthcare sector, we think these problems identified
are sufficient.

5.2 EHR Dimensions

The problems in the previous section were mostly defined by ourselves, rather
then extracted from theory. Furthermore, the theory does not seem to give us
much help linking Information Quality problems to Information Quality dimen-
sions, since problems were investigated separately from dimensions. Therefore,
for all problems we identified in the previous section, we discuss which Informa-
tion Quality dimensions are related to these problem.

Three problem areas were identified regarding the exchange of EHRs: un-
derstandable, timely understandable and completeness. The completeness re-
lates directly to the (contextual) completeness dimension. Completeness simply
implies that every (medical) fact that is known, or should be known by the
healthcare provider, is present in the EHR. Understandable and timely under-
standable are related, but not the same. We can define understandable in terms
of the following dimensions: consistent, interpretability, consistent representa-
tion and readability. Timely understandable can be defined by the amount of
data, concise representation, relevancy, redundancy and understandability itself.
The timely understandability is endangered when the content is hard to under-
stand, but also when the information is long texts, a not concise representation
and much irrelevant information is presented, independently of the information
it’s understandability. Based on the dimensions we have identified in theory, we
created a hierarchy of dimensions which jointly define the dimension ‘usability
in an exchange context’. This hierarchy will be shown at the end of this chapter.

If we look at the problems regarding to information analysis, the same di-
mensions that affect understandability are relevant: interpretability, consistent
representation and readability affect the way a human can read (and under-
stand) information, but also how well an automated process can do. Since in
IE we base our analysis on common constructs in the text (finding patterns),
consistency in representation will improve interpretability and readability. Fur-
thermore consistent, relevant, correct and on facts based information directly
relates to the dimensions consistency, relevancy and correctness. What we see

26

Quality of Electronic Health Records G. van der Zanden

is that for both exchanging EHRs and analysing EHRs, understandability and
its sub-dimensions are important.

5.3 EHR Metrics

We have seen that a direct mapping between Information Quality problems and
Information Quality dimension was not possible, or at least was not worked out
in literature. The same goes for the mapping of Information Quality dimensions
onto Information Quality metrics. Although for some Information Quality di-
mensions metrics have been proposed, most of them were related to traditional
databases. Thus, to create Information Quality metrics for EHRs we must also
use specific domain knowledge. In this section we propose three possible metrics.

The metrics defined are internal indicators. External indicators, such as
popularity or incoming links, are not available for EHRs currently. The meta
data in the EHRs are normal key value pairs, for example dates or ICPC codes.
Medical specific meta data, such as ICPC codes, are filled in by the healthcare
provider, while other information such as entering date, are generated by the
system automatically. We consider this information meta data since it is primar-
ily used to bring structure, for example ICPC codes are used to group contacts
under an episode. Since we assume that no one deliberately enters wrong val-
ues, and the underlying system guarantees the correct values are stored in the
database, we assume these values to be correct. Thus, we will not investigate
this information on their Information Quality. Furthermore, we do not see any
opportunity to use this information as indicator of quality.

5.3.1 SOEP Test indicator

As stated in Chapter 2, the NHG has stated in its guideline for adequate
record keeping that GPs should use the SOEP-methodology [3]. The SOEP-
methodology is meant for helping healthcare practitioners write down their
analysis in a orderly manner, and to streamline the line of reasoning. First
the patients complaints and symptoms (S or subjective), than physical exam-
inations and lab experiments (O or objective), the diagnose (E or evaluation)
and the treatment plan made and the information given (P or plan). If we want
to investigate the understandability of EHRs, and especially the ‘consistent rep-
resentation’ of an EHR, the first metric we can introduce is a SOEP-check: is
every journal-line in the EHR placed in the right journal-line type? To make
our metric more precise, we formulate this metric as follows:

What percentage of the stated facts are in the correct journal-line
type?

In this case, we define a ‘fact’ as a statement that can occur in a journal-
line. For example, a S-line can contain a symptom, complaint or question, an
O-line contains measurement values and other findings. In order to measure
the SOEP-test, we thus need a model of all possible statements coupled to their
respective journal-line type, and a method to match statements and determine
their type.

27

Quality of Electronic Health Records G. van der Zanden

5.3.2 Guideline compliance indicator

The second metric we propose also comes forth out of the NHG. The NHG
guidelines [7] are based upon most recent research and are created for around
75 illnesses. Each guidelines has the same basic outline, which corresponds to
the SOEP-methodology. This means every guideline contains rules on how to
recognise (S), how to investigate (O), how to diagnose (E) and what to do (P).
However, it is not necessary to strictly follow the the guidelines. For example,
sometimes multiple physical examinations are mentioned in the standard, but of
course only the one that is sufficient in a particular case needs to be conducted.
For GPs, the guidelines are a convenient reference in the diagnosis and treatment
of deceases.

With the information in the guidelines, we can create two metrics for com-
pleteness and relevancy:

1. What percentage of the stated facts are prescribed in the NHG guideline?

2. What percentage of the NHG guideline can be traced back in the EHR?

The first metric measures relevancy: from all statements a GP makes, how
much are (according to the NHG guideline) valuable? The NHG guideline we
compare the EHR to is coupled on the ICPC code (almost) each contact has.
The only problem that can occur when most of the text is not recognised as a
stated fact. For example, if we only recognise two medical statements in a 100
sentences long text, the relevancy is low even if both statements can be traced
to the corresponding guideline. However, the 98 lines were not recognised and
thus not included in the measurement.

The second metric measures completeness: from all the steps we should take,
how many have we actually conducted? Two side notes have to be made for
this metric. Firstly, not every recommendation is mandatory. We can have a
perfectly complete EHR, but still not include all information that is prescribed
(see multiple examinations example above). Secondly, not all information has to
be in one contact. For many diseases multiple contacts are needed. For example,
someone’s blood sugar is measured at a fixed time after a consult with a GP.
Afterwards, the results of the examination are discussed. The results are thus
spread over three contacts. Therefore, we should not evaluate single contacts,
but all information from a whole episode.

Thirdly, one must notice in this case that we are not judging the work done by
the healthcare professional. If the professional has done an excellent job treating
a patient, there is no guarantee the EHR is of proper quality also, and vice versa.
However, since we judge the content of an EHR based on a guideline, we must
take into account that professional decisions can be made that deviate from
the guidelines. Our relevancy and completeness metrics are therefore not by
definition correct, they only indicates the possibility of irrelevant and incomplete
information.

5.3.3 Conciseness indicator

The last metric we propose is one that measures the conciseness of a EHR. A
concise representation means that, among other aspects, we have text that is
relevant and without redundancy. For these dimensions, we want to measure two

28

Quality of Electronic Health Records G. van der Zanden

indices the same way the EPD-scan did [6]: Instead of measuring a percentage
or score, we produce an index that can be compared with results of other EHRs.
To do so, we propose the following to metrics:

1. The number of stated facts of type A appears in a contact with ICPC
number B.

2. The number of stated facts of type A with the same meaning in one journal
line.

Both metrics measure how many statements (symptoms, complaints, diagno-
sis etc.) are made in a contact. The outcome of the first metric can be compared
with outcomes from other EHRs. If for a simple disease a healthcare providers
needs many more statements than others, one can assume it is not written very
concisely. Since we compare by ICPC, one expects to see similar outcomes, just
as is the case in the EPD-scan. The second metric is more clear, whenever we
find the same type of statement with the same finding, we have redundancy.
With the same finding we don’t mean the exact same word, but a finding with
a similar meaning. In order to do so, we need a ontology of medical terms in
order to compare word and test them on similarity. The similar words must
appear in distinct statements, since one statement can contain an enumeration
of similar words. For example, the sentence ‘has pain in the back, neck’ would
not contain redundancy while the sentence ‘has pain in the back. Has pain in
the neck’ would.

5.4 Summary

In this chapter we have looked at the Information Quality problems, dimensions
and (possible) metrics of EHRs. In Figure 5.1, both the hierarchy of dimensions
as well as the link with their corresponding metrics is given. The problems were
left out the image since their is no direct link between problems and dimen-
sions. Instead, we formulated two main goals of the EHR on which the relevant
quality dimensions were selected. Furthermore, we introduced some hierarchy
into existing dimensions, something which barely has been done in literature.
As we were writing this chapter, we found that the link between Information
Quality and problem solving techniques was not explicitly mentioned anywhere.
In problem solving techniques, problems are identified after which the aspects
which influence the problem are identified (the dimensions). Dimensions are
then related to metrics, which in their turn can exist out of multiple indicators.
For Information Quality issues we think the same method should be followed,
especially in order to find metrics. A predefined set of dimensions is convenient,
but probably can always be extended with more domain, situation or context
specific dimensions if needed, thus an attempt to enumerate all dimensions we
think is possible nor useful.

29

Quality of Electronic Health Records G. van der Zanden

Figure 5.1: Graphical representation of link between dimensions and metrics

30

Part III

System Design

31

Chapter 6

Information Extraction
Pipeline

In this chapter we elaborate on how we will apply the findings in previous parts.
Since we implement an IE pipeline, a series of IE tasks, we first elaborate on
the steps which we will implement. This is done in two sections. In the first, we
elaborate on generic IE tasks which must be done in almost every IE application.
Secondly, we elaborate on the domain specific IE task we implement. These
tasks build upon the preprocessing steps and apply domain specific knowledge.
Both these parts together form the pipeline, but we discuss them separately to
emphasize the difference between general and domain specific steps. Since we
use the GATE API some of the steps work ‘out of the box’. When this is the
case, we will mention so. In Figure 6.1 the compete pipeline is presented in a
diagram, and in the sections below each step is discussed.

6.1 Preprocessing

In this section the common process elements are explained. We say why we
apply them, how we apply them and if necessary how we train them. In our
preprocessing the following steps are carried out:

1. Tokeniser & Sentence Splitter

2. Dutch Gazetteer

3. Dutch Stemmer

4. Dutch POS-tagger

5. SVM trained POS-tagger

6. Noun Chunk Classifier

Tokeniser & Sentence Splitter The tokeniser and sentence splitter are two
distinct processes, but because of their basic functionality discussed at once.
The tokeniser simply annotates distinct tokens, which can be words, spaces,

32

Information Extraction Pipeline G. van der Zanden

Figure 6.1: Pipeline diagram

numbers or punctuations. The sentence splitter simply annotates whole sen-
tences. Although this task seems simple, some difficulties can be encountered.
For example, a distinction has to be made between abbreviation with points
and the end of sentences, indicated by a points. The tokenising and sentence
splitting functionality is standard available in GATE. As a result of this process,
sentences are annotated with ‘Sentence’, and all separate tokens with the an-
notation ‘Token’. Tokens have additional properties such as type, which holds
information regarding whether a token is word, number of punctuation.

Gazetteer A gazetteer in GATE is simply a lookup of words. Using word lists,
words are matched in the text and get annotated with the ‘Lookup’ annotation.
Since we can match several word lists at once, we can assign a major- and minor
type to them. For example, we added a gazetteer list that matches measurement
units such as mg, kg, cm and so on. Each of these matched words get the major
type unit, but with different minor types such as weight or length. Next to units,
we created small lists in order to match months, days and several grammatical
part-of-speech types such as conjunctions and determiners.

Stemmer A stemmer is an algorithm that, based on a set of rules, determines
the base of words. For example, nouns can be in different plural forms or verbs
in different conjugations. Since the stemmer brings all these differentiations in
their basic form, two words in different forms can be recognised to have the
same meaning. For example, the verb ‘to have’ can occur in I have or he has.
Due to the stemmer we can more easily extract the fact that both I and he have

33

Information Extraction Pipeline G. van der Zanden

something. A Dutch stemmer was included in Gate, but one must keep in mind
that it is far from being perfect. In our prototype, the stemmer adds an extra
property to the token annotation, namely base.

POS-tagger A POS-tagger is a piece of software to annotate the part-of-
speech (POS) of words; noun, verbs, adverbs and so on. In GATE an imple-
mentation of the Brill algorithm of Eric Brill is available. This algorithm uses
a list of types (the lexicon) and a list of words plus their type in different situa-
tions (the context rules) to determine the POS of words in a text. Every word
that is not in the context rule set is annotated with a special ‘not know’-tag.
Since there is no Dutch lexicon and context rule set available in GATE, we
used the lexicon and rules created by Geertzen [23], who based its set on the
Eindhoven Corpus. As a result of this process, tokens in the text are expanded
with a property that indicates their POS-type.

SVM POS-tagger The POS-tagger described above assumes well-written
input. However, our data set contains spelling errors, unknown abbreviations
and other impurities. Due to this, many words are not matched in the context
rules. For this reason, we created a training set in order to create a State Vector
Model (SVM), which is a method for (supervised) machine learning. Based on
variables, namely the outcome of the previous steps (including the ‘normal’
POS-tagger), the SVM algorithm determines the POS-type of all words in the
text. The most important variables were the Gazetteer results, stemmer results,
POS-types and the word itself. The previous POS-tagger is thus used in this
step to create even better POS annotations. This is reasonable: the normal
POS-tagger captures all correctly spelled words, while our SVM POS-tagger
relies more one surrounding words and annotations to find the POS-type of
wrongly typed words.

Noun Chunker A noun chunker is a process that groups sentences called
noun phrases. For example, the sentence “My eight year old neighbour has a
yellow bike” would have two groups, namely “My eight year old neighbour” and
“a yellow bike”. We do this since we expect that medical terms occur primarily
in nouns, not in for example verbs. Many illnesses, medicine and treatments
are nouns, thus filtering out the NounChunks should improve efficiency of the
lookup of medical terms. NounChunks are recognised based on a rule set that
takes the result of the POS-Tagger as its input. An simple example rule would
be a determiner followed by a noun.

Our Noun Chunker is based on the GATE implementation. However, we
did not adjust the rule set for Dutch grammar but simply used the English
version. In practice this means that very large noun phrases are recognised.
We did not found a Dutch grammar and we do not see the task of creating one
ours. The consequence of not adjusting the Noun Chunker is that the lookup of
domain specific terms (see Paragraph 6.2) will perform less efficient. The goal
of chunking text is to limit the number of words that need to be looked up, thus
efficiency is compromised. Since not efficiency but the concept of assessing the
quality of EHRs is our goal, we do not see this as a problem. Furthermore it
is possible that important domain specific words are not within a NounChunk,
thus not looked up. However, we have seen that almost every sentence was

34

Information Extraction Pipeline G. van der Zanden

covered by one or more NounChunks, thus we do not think big problems arise
from key words not captured within NounChunks.

6.2 Specific Annotation

This section elaborates on the specific additional annotations we add to the
extraction process. Those additions have to do with medical terminology, in
other words the extraction scenario. The following three steps will be carried
out:

1. Regular Expression Matcher

2. UMLS Lookup

3. Noun Chunk Classifier

Regular Expression Matcher In GATE, JAPE is a ‘sort of’ regular expres-
sion language that can be used to match pieces of text. However, the difference
is that we do not match words, but annotations and their properties in the text.
For example, the sentence “10 mg” is annotated by a Token annotation that
has the property Type with value ‘Number’ and is followed by the Lookup an-
notation (from the Gazetteer) with the majorType ‘unit’ and minorType value
‘weight’. The whole phrase is now annotated with the annotation Measurement,
with the property Type is ‘weight’.

The benefit of JAPE is that we fairly easy can create a set of rules that
groups together separate words. This results in higher level information on a
domain level (opposed to i.e. the POS-tagger, which is domain-independent),
and thus helps us understand the meaning of the sentence. We create rules to
match the following ‘patterns’ in the text:

1. Addresses: postal codes, streets with house numbers, cities.

2. Dates: time and dates.

3. Numbers: simple numbers and numbers with units (measurements).

UMLS Lookup The Unified Medical Language System (UMLS [24]) is a
metathesaurus that encapsulates many other medical thesauri, for example
SNOMED [25]. In short, all terms in all the encapsulated thesauri are in the
UMLS database. Each term is than related to a concept, which are unique. In
this manner, different words in different thesauri can point to one and the same
concept, making it possible to relate different terms which each other. Further-
more, each concept is categorised into a semantic type. The semantic network
contains 133 semantic types and 54 relationships. The relationships are used to
relate different concepts with each other.

The UMLS seems very adequate to use as lookup for medical terms due to
its wide range of encapsulated thesauri (including Dutch translations of some
thesauri), its unambiguous mapping to concepts and its free license (although
for the included thesauri licenses are needed also).

35

Information Extraction Pipeline G. van der Zanden

To effectively use the UMLS we need to somehow connect GATE with the
UMLS. To do so, we make use of Hitex [26] (downloaded from Openhealth-
tools.org [27]) and MetaMap Transfer (MMTx) [28]. The details of these soft-
ware projects will be discussed in more detail in the following Chapter, but im-
portant is that Hitex provides a manner to connect a GATE step with MetaMap.
MetaMap basically is an efficient tool to search the UMLS data. We supply the
NounChunks and we get all in the UMLS known words and their semantic types
returned. We than save the concept and semantic type into a new annotation .

Noun Chunk Classifier The last step is the Noun Chunk classifier. For
every NounChunk the semantic types of the found concepts is taken and for
every NounChunk it is determined whether the combination of semantic types
relate to a S, O, E or P journal line. Each journal line type is called a class in
this context, hence the name classification. Thus, our Noun Chunk classifier is
our SOEP-test (see Chapter 5), and therefore our EHR quality assessor. The
other two indicators we defined were not implemented since implementing one
indicator successfully would verify the concept of assessing the quality of EHRs
using IE, and the SOEP indicator was the easiest to implement. By simply
comparing the NounChunk classified journal line type with the journal line it is
actually in, we can determine whether it is placed in the right place.

The problem we face is that we have to map every combination of semantic
types to a journal line type. A NounChunk can hold any number of UMLS
concepts, so basically we are mapping a list of semantic types to one journal
line type. To do so, we first need to determine which semantic types point to
which journal line type. Secondly, we need to know how to solve situations were
a combination of semantic types points to multiple journal line types.

For every semantic type we determined ourselves to which journal line type
it points. Not every semantic type refers to a journal line type, and sometimes
semantic types refer to more then one journal line type. The consequence of
this must be solved in the second step. Alternatively to our solution, a team of
domain experts should map semantic types to journal line types, or a mapping
could be determined based on data research. This would probably increase the
accuracy of our classification. Furthermore, it is well possible that a semantic
type maps to different journal line types, depending on the context in which
it is used. To achieve this level of intelligence, a much more sophisticated IE
process must be used and therefore we will not provide.

The second step, determining the final journal line type, is done in our
prototype in the simplest way possible: to which journal line type is pointed
by the UMLS concepts most is determines the final classification. However in
further development, rules could be made to determine which combination of
semantic types produces which journal line type. Furthermore, as stated above,
one could include the context. Context means in this case other annotations in
the surroundings of the NounChunk.

36

Chapter 7

Global Design

In this section we discuss the technical details of our prototype. As a basis we
used HITEx [26], a Java based medical language NLP program. However, we
stripped it down since the HITEx application was focussed on English texts
and is too extensive. Thus, by keeping the architecture but loosing the details
we managed to keep our prototype simple but still usable in a more complex
environment if wanted.

A diagram of the architecture can be found in Figure 7.1. The architecture
consists out of three components: In the main package the ‘ExtractionExecu-
tor’ and ‘GatePipeline’ classes control the whole IE process, from data retrieval
to data processing to data storage. The ‘extractionobject’ and ‘model’ pack-
ages are responsible for the actual retrieval and storage of data. As last, the
‘gate’ package holds our custom IE steps classes, which extend from GATE API
classes. Furthermore, we make use of the MetaMap Transfer API [28] in order
to lookup UMLS concepts.

We shall discuss the three components in the following sections in more
detail. We will mention which parts were used from HITEx and which were
implemented by ourselves.

7.1 Extraction Executor

The ExtractionExecutor is the ‘entry point’ of the system and has two
stages: initialisation and execution. In the initialisation phase the Extrac-
tionExecutor parses a XML-document into a Configuration object, instanti-
ates a GatePipeline object with the Configuration object and initialises the
GatePipeline object. The parsing of the XML configuration is done by the class
XMLConfigurationParser. In the execution of the process, the ExtractionExecu-
tor uses an object from the ‘extractionobject’ package to acquire the input data,
feeds it into the GatePipeline and stores the result using the same object from
the ‘extractionobject’ package. The classes from the ‘extractionobject’ must all
implement standard functions for retrieving and storing data. The whole Con-
figuration package is reused from HITEx, as well as the GatePipeline class. The
ExtractionExecutor is instantiated with a URL to to the XML-configuration file
and an object from the ‘extractionobject’ package.

37

Global Design G. van der Zanden

Figure 7.1: Global architecture

The GatePipeline is not an actual pipeline, but a wrapper for the Pipeline
class in the GATE library. The responsibilities of the GatePipeline are to ini-
tialise the GATE API, convert input data into GATE readable format and
execute the pipeline. In initialisation of GATE, all resources directories are set.
Resource directories contain a XML-file that specifies where to find the IE steps
we want to use, thus we need to set them in order for GATE to find them.
Secondly in initialisation, we initialize the IE steps themselves. In the XML
configuration the resource directories are specified, as well as the IE steps to
execute along with their initialisation and run-time parameters. The parame-
ters specify for example the name of the output annotation, i.e. that we want
to annotate a NounChunk with the annotation name ‘NounChunk’.

7.2 Model

The model of our prototype consists out of two packages: the ‘model’ and
‘extractionobject’ (EO) package. The two packages together are responsible for
the retrieval and storage of data. As stated above the classes in the EO package
are used by the ExtractionExecutor to retrieve and store data. The classes in
the ‘model’ package are used by the EO and form an Object-Relational mapping
with the database (using Hibernate). We first discuss what the EO classes do,
after which we explain the data model and their mapping to the model classes.

In the EO package two types of classes exist (see Figure 7.2): The ones that
implement ExtractionObject and the ones that extend SelectieCriteria (Selec-
tionCriteria in English). Classes implementing ExtractionObject need to specify
the input, selection criteria and output class in order to be able to process any
type of input and output data (resolving of generic types). Furthermore, the
functions to retrieve the input data, store the processed data and retrieve the

38

Global Design G. van der Zanden

processed data again must be implemented. The classes that extend SelectieCri-
teria are used by ExtractionObject to filter the input data. For example, we
could specify to only retrieve the last 50 journal lines.

Figure 7.2: Model class diagram

The model package consist out of objects that directly relate to database
tables, and the mapping between the database and objects is done using Hi-
bernate. In our case, five classes are implemented to map with their respective
database tables. The Contact, Deelcontact, Episode and Journaalregel rep-
resent the normal HIS structure in which every contact has one or more sub
contacts and every sub contact has one episode and one or more journal lines.
The Journaalregel Analysed class is added to store the result of the IE process.
This table holds an ID referring to the original journal line, thus we can always
reconstruct to which sub contact, contact or episode the analysed journal line
belongs.

Every class that wants to be the input class of ExtractionObject needs to
implement ExtractableObject. ExtractableObject only enforces that a function
getInputString is implemented. This function returns the string that must be
processed, which can be another variable in every model class.

The result of the IE pipeline is not stored in a database. The result of the
process is a Document object, which next to the text holds all annotations.
GATE implemented a SerialDataStore, a manner to simply store Document
objects in a serialised form on disk. Such a SerialDataStore is simply created
by specifying a directory, after which Document objects can be synchronised
with the data store. In the Journaalregel Analysed table we thus do not store
the actual result, but an identifier to retrieve a Document object from the data
store.

As last, the Journaalregel Analysed also calculates a (simple) score: number
of correct classified NounChunks / total number of NounChunks. Although
simple, if more metrics were implemented (for example those in Chapter 5.3),
a much more complicated score could be calculated, or maybe multiple scores.
The score of an EHR should be the final step in assessing EHRs, therefore we
implemented this mechanism in a simple but illustrative way.

7.3 GATE components

The Gate package holds all classes that extend from AbstractLanguageAnal-
yser, a class in the GATE library. Every class that extends from Abstract-

39

Global Design G. van der Zanden

LanguageAnalyser can be included in a GATE pipeline, thus be part of the IE
process. In our prototype, we created two custom AbstractLanguageAnalysers:
MetaMapUMLSConceptMapper and NounChunkClassifier, respectively respon-
sible for matching NounChunks with the UMLS metathesaurus and classifying
NounChunks to SOEP-lines. All the other IE steps (see previous chapter) we
could directly use, since they are already available in the GATE library. There-
fore, we here focus on our two custom gate classes.

7.3.1 UMLS MetaMap

As stated, the MetaMapUMLSConceptMapper is responsible for looking up
UMLS concepts in NounChunks. However, it does so using the MetaMap li-
brary. As stated on their website, “MetaMap is a highly configurable program
developed by Dr. Alan (Lan) Aronson at the National Library of Medicine
(NLM) to map biomedical text to the UMLS Metathesaurus or, equivalently, to
discover Metathesaurus concepts referred to in text” [29]. A perfect fit for our
needs, and the HITEx package already had a class capable of communicating
with MetaMap. However, we chose to use the Java equivalent of MetaMap,
MetaMap Transfer (MMTx) [28], due to system requirements of MetaMap.
However, in any other version we suggest to use the original MetaMap, since
MMTx is not developed any more. For our needs, MMTx is still usable, but
since the data files of the UMLS metathesaurus evolve, problems are to be
expected with future use of MMTx.

In short, MMTx creates his own data and index files to quickly and effi-
ciently search trough all UMLS concepts. When MMTx gets input, it does
some Natural Language Processing (NLP) of its own, of which the most impor-
tant is variant generation. Of each word in the text among others synonyms,
spelling variants and derivations are looked up, which are used to match UMLS
concepts. All candidates are evaluated and assigned a score to, which indicates
how well the term matches. As a result, MMTx return a list of possible map-
ping, each with a suitability score. The data and index files used by MMTx can
be customised in order to improve performance, leave out unnecessary parts or
apply to licences. For our prototype, we create a small subset containing only
Dutch words.

For every SOEP-journalline we process, all NounChunks are passed to the
MMTx API individually. This is done to lower the burden of finding UMLS
matches. The HITEx package as well as MMTx itself limit their UMLS lookup
to NounChunks, since most concepts in UMLS are nouns, rather then verbs
or other POS-types (especially stop words). The result of MMTx is processed
and the best mapping is annotated with an UMLSConcept annotation. The
following properties are saved along with the annotation:

1. CUI: The unique concept ID

2. Concept: The concept string

3. Semantic type: A list of semantic types the concept refers to

40

Global Design G. van der Zanden

7.3.2 NounChunk Classifier

The NounChunk classifiers takes NounChunks and based on their UMLSCon-
cept annotations classifies the chunk as a S,O,E or P-journal line, or as unknown
if no UMLS concepts were found. This is done using the semantic types of the
annotation. We determined for all semantic types to what journal line they
refer. This can be any number of journal line, thus it is possible that a seman-
tic type has no mapping, one mapping or multiple mappings. The mapping
from semantic types to journal lines is done by our own reasoning. As stated
in the previous chapter, a more thorough research should be done to create a
well-established mapping.

In our prototype, for each NounChunk we enlist the semantic types of the
concepts found in that NounChunk. Then, we retrieve for each semantic type to
which journal line type is refers. For each semantic type referring to a journal
line type, we give that journal line type one point divided by the total number
of pointers the semantic type has. For example, if a semantic type refers to S,
than S gets one point. If another semantic type refers to O and E, than both
O and E get half a point. Finally, the NounChunk is classified the journal line
type which has gathered the most points.

In one cases the prototype that it cannot classify the NounChunk and an-
notates it with U for ‘Unknown’. If when no semantic types with a relation to
a journal line type are found. The second case is whenever there is a draw.

41

Part IV

Evaluation

42

Chapter 8

Experimental Evaluation

In this Chapter, we describe the process of evaluating our prototype. In this
evaluation we want to discover how well our prototype performs, although we
do not aim at a 100% accurate system. Firstly because this would be practically
infeasible and secondly it goes beyond our main goal, which is to show we can
assess the quality of EHRs using IE. Thus we must show that our prototype
performs well enough to show automated quality control of EHRs, improved by
more research, is feasible.

In Section 8.1 we present the goals of our evaluation, Section 8.2 we present
the set-up of our experiments and in Section 8.3 we present the results.

8.1 Goal

Our main goal is to show that automated quality assessment of EHRs is feasible.
However, for this evaluation the goal is more limited. Of the three proposed
EHR quality indicators we selected the SOEP-test indicator to implement. In
order for the SOEP test to work properly, we need the NounChunk Classi-
fier to perform well. Since a journal line is graded based upon the classified
NounChunks it contains, we need to determine the performance of the classifi-
cation of NounChunks.

To evaluate the performance of our classification we must calculate three
measures: Precision, recall and F-Measure. Precision is a measure that expresses
the correctness of the classification, whereas recall expresses the completeness
of the classification. Figure 8.1 depicts this difference. The oval represents the
result of the classification and the dots in the left area of the oval represent
the correctly classified elements, whereas those in the right area represent the
incorrectly classified elements. The amount of correctly classified elements (left
area in the oval) divided by the total amount of classified elements (all dots
in the oval) is the measurement of precision. Recall is the amount of correctly
classified elements divided by all elements that should be classified (left area in
the oval and left area in the rectangle without the oval). The F-measure com-
bines recall and precision into one measurement, using the formula F-measure

=
(1 + b) · Precision ·Recall

b · (Precision + Recall)
, where 0 < b ≤ 1 [8] (we show the calculation for

precision and recall shortly). In all our evaluations, b = 1, which means that

43

Experimental Evaluation G. van der Zanden

Figure 8.1: Recall and precision

whenever Precision and Recall are equal, the F-measure is equal to Precision
and Recall.

In a classification context the terms true positive (tp), true negative (tn),
false positive (fp) and false negative (fn) are used to name the outcome of the
evaluation. If we refer back to Figure 8.1, the elements in the left oval area
are true positives, the elements in the right oval area are false positives. In the
areas outside the oval, the elements in the left area are false negatives (should
have been classified), the elements in the right area area are true negatives (are
justly not classified). However, we must note that in our evaluation no true
negatives will occur. Every NounChunk we cannot classify, we classify as ‘U’
for Unknown. With these terms defined, the formula to calculate the precision

of a classification is as follows: Precision =
tp

tp + fp
. The recall is calculated as

Recall =
tp

tp + fn
. The following subsection will clarify this theory with some

examples taken from our evaluation.

8.1.1 Example output

Figure 8.2 shows some example output of annotated documents. In the figure,
the left text shows the reference set, the right set shows the text annotated by
our prototype. The text between curly brackets (“soeptype=s” for example)
is the property of the NounChunk annotation we compare. In the comparison
between the reference and prototype set five cases can occur:

1. True positive: the five white lines are annotated correctly, thus a true
positive.

2. False positive: the top three comparisons are false positives. We annotated
a NounChunk falsely, it should not be annotated.

3. False positive & false negative: in a binary classification (classification
with only two classes) we do or do not annotate a piece of text. How-
ever, since we annotate into more than two classes (S,O,E,P and U) more
combinations are possible. In the second three lines we falsely annotated

44

Experimental Evaluation G. van der Zanden

Figure 8.2: Annotation example

the NounChunk in a class, thus making it a false positive. Secondly, we
also did not classify it the right class, making it a false negative. These
mistakes are thus counted in two categories of errors. As we will show
later, this plays a great deal in our evaluation.

4. False negative: the last four lines are falsely not annotated, thus making
it a false negative. Please note that it is not a false positive since we not
classified the NounChunk into any class.

5. True negative: we did not encounter any true negatives in our evaluation,
which is a pure coincidence. A false positive simply means that we did not
annotate a NounChunk and that doing so was correct. Please note again
that this can only occur when we remove all ‘U’ NounChunks, because
else every NounChunk is classified and we cannot have a true negative.

Now we labelled all comparisons as true and false positive and true and
false negative we can calculate the precision, recall and F-measure, shown in
the Equations 8.1 8.2 and 8.3.

Precision =
tp

tp + fp
=

5

5 + 6
= 0.45 (8.1)

Recall =
tp

tp + fn
=

5

5 + 4
= 0.56 (8.2)

F =
(1 + b) ∗ Precision ∗Recall

b ∗ (Precision + Recall)
=

(1 + 1) ∗ 0.45 ∗ 0.56

1 ∗ (0.45 + 0.56)
= 0.50 (8.3)

8.2 Experimental Set-up

In this section we discuss the set-up of our evaluation. We describe what data
we use and how the experiment is carried out.

45

Experimental Evaluation G. van der Zanden

8.2.1 Dataset

Our dataset was extracted from an anonymous production database of Promedico
HIS. The database was made anonymous by mixing patient, addresses and other
personal information. In this manner there is no possibility that any (med-
ical) information is traced back to the real person. From this database, we
took 500 journal lines from one GP. Although we measure the performance of
our NounChunk classifier, journal lines are the normal input of our prototype.
Therefore we took for the evaluation whole journal lines. We took the lines from
one GP since we did not wanted that our results were influenced by different
writing styles of different GPs, because this would negatively influence the re-
sults of our prototype. Although important in a possible production version,
this is beyond the scope of our research.

The dataset is used for two purposes. First of all, it is used to create a
reference set. The reference set is a fully annotated set which is used to compare
with the results of the system that is being evaluated. Secondly the dataset is
used as input for the prototype. In this manner we can evaluate as many systems
as we want since we can always compare it with the reference set.

The reference set was created as follows. Since we want to evaluate our
NounChunk classifier we let our system annotate the text up until the UMLS
lookup (see Section 6.2). The NounChunk classification was done manually
by ourselves. Based on the text of the NounChunk we decided whether the
NounChunk fitted best in a S,O,E or P journal line. If we could not decide
what type of journal line the NounChunk should be in, we classified it as ‘U’
for Unknown. We want to emphasize that we did not classify the NounChunks
based on the UMLS lookup data, but only upon our own intuition of in what
journal line type the NounChunk should be in (see Chapter 2). We want to
emphasise this because we also wrote the NounChunk classifier ourselves. If we
did classify the NounChunks based upon the semantic types in the NounChunks,
we could invalidate the results because of bias.

The statistics of the reference set can be found in Table 8.1. In the following
subsection we discuss in more detail how we processed the dataset.

Type Amount

journal lines 500
NounChunks 593

S NounChunks 165
O NounChunks 61
E NounChunks 81
P NounChunks 73
U NounChunks 213
Concepts found 333

NounChunks without concepts 385

Table 8.1: Reference set statistics

46

Experimental Evaluation G. van der Zanden

8.2.2 Experiment

In this subsection we describe how we executed our experiment. We did two
types of experiments, one using machine learning and one using our own rule-
based classifier.

Machine Learning We applied Machine Learning to our reference set in
order to find patterns using a SVM trainer (similar as our POS-tagger). In
GATE a SVM learning set-up was created that takes the semantic types of
found UMLS concepts and tries to map it to journal line types. The evaluation
is done by the k-fold evaluation method. This evaluation simply means the
machine learning processor takes a portion of the whole set (in our case 75%)
and trains a model based on that set. The remaining part of the set is than
annotated using the learned set just created, after which the annotated set is
compared with the reference set. This comparison than delivers the precision,
recall and F-measure for each class apart, as well as for the whole set. This
process is repeated k times, in our case 5. The repetition is done in order to
make sure every peace of data is at least one time in the training part of the
set.

Rule-based Our own prototype was evaluated by giving the plain text of our
dataset to our prototype, resulting in an evaluation set which is fully annotated
up until the Noun Chunk classifier. The evaluation set was then compared to
the reference set using GATE. Since the reference set was annotated by our
prototype up until the UMLS Lookup, the reference set and evaluation set are
equal except for the NounChunk classification.

We compared the reference and evaluation set twice. First we simply com-
pared the whole set including ‘U’ classification. Secondly, we removed all
NounChunks in both the reference and evaluation set which were classified as
‘U’. We did this in order to remove rustle: A NounChunk classified a ‘U’ is
a decision based on no knowledge, whereas a classification into a real journal
line type is a decision based on knowledge. We are interested most in decisions
based upon knowledge. For this reason we also did a ‘null test’. Because the
high number of ‘U’ NounChunks, we asked the question what the result would
be if our prototype classified every NounChunk as ‘U’.

Finally, we used three variants of our prototype. What was adjusted in
the different tests was tie resolution, cases in which two or more journal line
types had the same number of points. In our initial prototype simply the first
in the list of ties was taken, secondly every tie resulted in a ‘U’ and thirdly
the classification was random. We think tie resolution is useful since we found
there were 14 ties, where ties with a maximal score of 0 (NounChunks having
no mapping to any journal line type at all) were not included. Although this
seems like a small number, we only found 593 − 385 = 208 NounChunks that

contain one or more concepts (see Table 8.1). Therefore
14

208
∗ 100 = 6.7% of all

NounChunks containing a concept has a tie, thus leaving room for improvement.
If we count the NounChunks that have no mapping (whether or not they contain
concepts), we find that 439 of all NounChunks have no mapping to a journal
line type. In other words, there are NounChunks that contained concepts, but
from which no semantic type does map to any journal line type. In this case,

47

Experimental Evaluation G. van der Zanden

TP FP TN FN Precision Recall F-Measure

S 14 6 0 53 0.70 0.21 0.32
O 1 0 0 21 1.00 0.05 0.10
E 5 4 0 28 0.55 0.15 0.24
P 1 1 0 25 0.50 0.04 0.07
U 0 1 0 77 0.00 0.00 0.00

Total 20 12 0 204 0.63 0.09 0.16

Table 8.2: Evaluation results SVM Machine learning

14

593 − 439
∗ 100 = 9.1% of all NounChunks with a mapping is a tie.

8.3 Results

In this Section we discuss the results of both our Machine Learning and rule-
based evaluation.

8.3.1 Machine Learning

The results of this evaluation are shown in in Table 8.2. What we see in the
results are the averages of five runs. What one must notice immediately is the
very small number of true positives. This causes both the recall to be very
low (we did not find many results) and the precision to be high (when we find
a result, it is likely to be a correct result). Furthermore, there are no true
negatives. This is because we ask the SVM to classify every NounChunk, there
are no NounChunks that are not classified. Therefore it is impossible to justly
not classify a NounChunk.

8.3.2 Rule-based

The results of the three tests are in Table 8.3, 8.4 and 8.5. All three ta-
bles include the evaluation results for the test including and excluding ‘U’
NounChunks. Table 8.3 also includes the results for the null test.

In all results ‘Including U’, no true negatives can be found since it is not
the task of the classifier to decide which pieces of text need to be classified.
Furthermore, the number of false positives and false negatives is equal. To
illustrate this the following example: If in the reference set a NounChunk is
classified as ’S’, and the classifier classifies it as ’O’, than it is both a false
negative (we say it is not a ’S’) and a false positive (we say it is an ’O’). If the
’S’ part was missing, we would have a false positive only. If the ’O’ part was not
classified, we would have a false negative only. Since we by definition retrieve
all NounChunks, recall is no adequate measure.

In the evaluation without ‘U’, recall is of importance. What one can see is
that the number of false positives drops enormously (290 to 85 in the first test),
which indicates that the prototype classified many journal lines as ‘U’ which
are now removed. The same goes for the number of true positives. Apparently
most of the correct classification by the prototype were ‘U’ journal lines. A
correct classification as ‘U’ one must regard as a classified based upon having

48

Experimental Evaluation G. van der Zanden

no knowledge, whereas classifications into any other journal line type must be
regarded as a choice based upon knowledge. Of course we want our prototype
to base its decisions upon knowledge.

The null test results show that 39% of the NounChunks are classified cor-
rectly. Thus, only a precision greater than 39% would be a good result, otherwise
we could better guess that all NounChunks are ‘U’. Remark that the results of
the null test cannot be compared with the results of the evaluations without
‘U’. For these evaluations it is harder to decide when a result is good. Since the
journal line types are not divided equally (see Table 8.1), we cannot say that it
should perform better than a random classifier (which should guess about 20%
right).

Including U Excluding U Null test

TP 303 95 231
FP 290 85 362
TN 0 0 0
FN 290 306 362

Pr 0.51 0.53 0.39
Re 0.51 0.24 0.39

F 0.51 0.33 0.39

Table 8.3: Rule-based first run results

Including U Excluding U

TP 298 80
FP 295 61
TN 0 0
FN 295 300

Pr 0.50 0.57
Re 0.50 0.21

F 0.50 0.39

Table 8.4: Rule-based second run results

Including U Excluding U

TP 289 86
FP 304 122
TN 0 0
FN 304 294

Pr 0.49 0.41
Re 0.49 0.23

F 0.49 0.32

Table 8.5: Rule-based third run results

49

Chapter 9

Use Cases

In this Chapter we evaluate our other EHR IQ metrics. However, since we did
not implement the other two metrics due to time restrictions, we will proof
these concepts with use cases. The use cases describe a scenario how the system
would behave. With some example data input we show our concepts.

9.1 Guideline compliance

Our Guideline compliance indicator compares a guideline from the NHG with
an episode in the EHR. As stated in Chapter 5 each guideline has the outline
corresponding to the SOEP-methodology, meaning it states how to recognise
(S), how to investigate (O), how to diagnose (E) and what to do (P). However,
many illnesses are treated over multiple contacts, therefore we cannot match one
contact with a guideline, but need to match a whole episode with the guideline.
This use case thus does exist out of a (simplified) guideline and a whole episode.
With this (fictive) data we show how our metric works.

The guideline we choose was diabetes. Table 9.1 a simplified version of
the guideline is presented. It describes a GP must suspect diabetes whenever
someone has lost weight and is (abnormally) thirsty. To determine diabetes the
GP must measure the glucose level and to determine extra risks measure the
patients cholesterol. The patient has diabetes whenever the glucose levels are
(sober and not sober respectively) above 6.0 or 11.0 mmol per liter. As last,
diabetes should be treated using Metformine and if not proofing effective, with
insulin shots.

Line Guidelines

S Symptoms are abnormal thirst and weight loss
O Measure glucose level (HbA1c). Measure BMI and cholesterol for risk

analyses.
E Diabetes when glucose sober >6.0, glucose not sober >11.0 mmol/liter.
P Start with Metformine (500mg, 1 tablet per day), if not effective use

insulin shots. Advice to loose weight if BMI greater then >27.

Table 9.1: Diabetes guideline

In the EHR of a patient we come across the following three contacts (see

50

Use Cases G. van der Zanden

Table 9.2), all part of the same diabetes episode. As with our experimental
evaluation we can define result categories.

1. Facts both in the NHG guideline and EHR (true positive)

2. Facts only in NHG guideline (false negative)

3. Facts only in EHR (false positive)

We can thus calculate the precision and recall. Please note these correspond
to the metrics we defined in Chapter 5, but are formulated differently. The
precision and recall values resulting out of this comparison evaluate the EHR
quality, not the system performance as in our experimental evaluation. If we
compare the guideline with the episode data we can simply count the occurrences
of TP, FN and FP:

1. S: Both symptoms (thirst, weight loss) are mentioned (2 TP).

2. O: BMI and HbA1c sober measured (2 TP), cholesterol and HbA1C not
sober not (2 FN), weight (1 FP).

3. E: Diabetes diagnosed (1 TP).

4. P: Insulin mentioned (1 TP), metformine not (1 FN).

We immediately see a flaw in our metric, namely that two exchangeable
measurements are seen as two distinct measurements (glucose sober and not
sober). Furthermore, weight (which is a measurement used for BMI calculation)
is not recognised as ‘valid’ measurement. Nevertheless we can calculate the
resulting precision and recall (see Equation 9.1 and 9.2).

Precision =
tp

tp + fp
=

6

6 + 1
= 0.86 (9.1)

Recall =
tp

tp + fn
=

6

6 + 3
= 0.67 (9.2)

9.2 Conciseness

Our conciseness indicator consists out of two indices, namely one that counts
occurrences of one type of facts and one that counts redundant statements.
We will show the working of this metric using three fictive S-lines from three
different EHRs. This is done since the goal of this metric is to compare the
results among different EHRs. Table 9.3 shows the content of the three lines.
Again, the subject of the contacts is diabetes.

The first S-line clearly shows redundancy (thirsty and drinks a lot), while
the others have no redundancy. The score on redundancy of the first line is thus
lower than the other two lines. S-line two, in contrast to one and three, needs a
lot of statements (4) to express the symptoms of the patient. This would result
eventually in a lower conciseness score. Although both tests do not immediately
give a final judgement regarding the quality of the EHR, in comparison to other
they can. If the conciseness score of a GP is consistently higher than the average
score of other GPs, the GP probably has a narrative writing style.

51

Use Cases G. van der Zanden

SOEP code Content

1

S Sudden weight loss, patient did not noticed thirstiness,
drinks a lot anyway.

O Weight: 75KG,BMI: 24
E
P Take a glucose test, made appointment

2

S
O HbA1c sober: 6.1
E Diabetes
P

3

S Persisting complaints related to diabetes condition
O
E
P Start using insulin shots

Table 9.2: Example contacts

Content

1 Patient is thirsty all the time, drinks a lot and goes to the bathroom
numerously.

2 Thirsty, high blood pressure, mononeuropathie and polyurie
3 Goes to the bathroom a lot, weight loss

Table 9.3: Three example S-lines

52

Chapter 10

Evaluation conclusions

In the last chapter of Part IV we review the results of our benchmarking and
case study evaluation. What can we draw up from our quantitative evaluation
and how well do our case studies validate our EHR quality metrics?

What we can deduce from our machine learning evaluation is that there
seems to be a quite accurate mapping from semantic types to journal line types,
because of the relative high precision. However, due to the low number of
positive examples we must not draw too strong conclusions: of all NounChunks
it finds about 9% and accurately classifies 5%. The machine learning algorithm
only found a few relations. In short these results prove nothing.

Our main evaluation has more promising results. We consider the results
without ‘U’ our most important score since it leafs out the rustle of the ‘U’
classification and evaluates the classification based on knowledge, namely the
mapping between semantic types and journal line types. The differences between
different tie resolutions are almost equal, therefore we will not discuss these.

We can simply observe that the roughly 20-25% of all NounChunks are
recognised (recall) with a precision of around 50%. These results are a strong
indication that a more reliable SOEP-classifier is feasible because (a) the seman-
tic type - journal line type mapping was created by a non-expert and (b) the
whole IE process was not optimised.

We want to state the results of our prototype are not a proof that the SOEP-
test is a sensible EHR quality metric. We have shown in Chapter 5 that the
division of a contact using the SOEP-methodology is prescribed by the NHG,
thus checking whether a healthcare provider does so is sensible by authority of
the NHG.

The use cases we described do not proof anything. The only goal of the
use cases was to point out that (a) more indicators are possible, probably much
more than the three we presented and (b) the metrics we have presented do make
sense. We see the results of our use case evaluation thus as an encouragement
to investigate further into our metrics, as well as into new metrics.

53

Part V

Conclusions and Further
Research

54

Chapter 11

Conclusions

In this chapter we answer our research question and discuss to what extent our
goals were met. The main question of our research was “How to automatically
assess the quality of Electronic Health Records?”. We will answer the three sub
questions first in order to answer our main research question.

Firstly, we needed to define the quality of Electronic Health Records. We
can conclude that not one answer can be given since quality is defined by the
context in which the information is used. In the context of exchanging Electronic
Health Records, a concise formulated record that can be read quickly means
high quality. In the context of extracting management information from text,
conciseness can conflict with completeness; due to conciseness concerns not all
details are included. However, what is common is that all dimensions we defined
relevant were deduced from the usability dimension (see Figure 5.1), whether
being usable in a exchange or analysis context. The context of use is defined by
the healthcare professionals themselves, they define how the Electronic Health
Record is used. Since this context of use can change, the relevant dimensions
and metrics can also.

The metrics we defined follow logically from NHG guidelines and standards.
However, in the development of other metrics it must be made sure the metrics
relate back to the dimensions defined for the context of use. A proper defined
relation between metrics and dimensions validates the use of a metric.

Secondly, we investigated how to extract the relevant facts from Electronic
Health Records. The answer is threefold. First of all, a proper preprocessing
must take place in which word and sentence boundaries, tokens (words, punctua-
tions, numbers etc.) and part-of-speech types are annotated. The preprocessing
part is significant for almost every Information Extraction task. Secondly, the
text needs to be mapped to a thesaurus, preferably one in which the thesaurus
entries are related to semantic types. A mapping to a thesaurus gives meaning
to the words and due to the semantic net we can find relations between the
words. We used the UMLS, but also SNOMED could have been used and for
other domains, other thesauri can be used. Thirdly, the annotated text must
be used in one way or another to assess the quality, in our case a SOEP-test.
The general pattern that can be extracted is that we need a generic preprocess-
ing step, a domain specific thesaurus lookup step and a metric specific quality
assessment step.

Thirdly, we needed to validate our prototype, which we have discussed in

55

Conclusions G. van der Zanden

the previous Chapter. In short we found that our Noun Chunk classifier, the
Information Extraction step that classifies NounChunks into a journal line type
S,O,E or P, performed reasonably well. Although the mapping between UMLS
semantic types and journal line types was made by a non-expert and the whole
Information Extraction process was far from optimised, we managed to achieve
a precision of roughly 50% and a recall of 20-25%. Furthermore we showed in
our use cases that (a) more indicators are possible, probably much more than
the three we presented and (b) the metrics we have presented do make sense,
and we see these results as an encouragement to investigate further into our
metrics, as well as into new metrics.

In our Introduction we set two goals, namely to describe the relevant facts
to extract from Electronic Health Records and to design and implement a pro-
totype that can extract these facts and use them to measure the quality of
Electronic Health Records. Although we did not precisely describe what facts
to extract, we showed the most important to extract is the mapping to a the-
saurus. The thesaurus mapping gives us a base to extract the knowledge in
Electronic Health Records. Our second we achieved more literally, we designed
and implemented a working prototype. Although not performing at its best, we
proofed the concept of assessing the quality of Electronic Health Records works.

56

Chapter 12

Further Research

We have touched upon several subjects in this thesis and because of its ex-
plorative nature could not go into depth into every subject. Because of its
explorative nature, we think this thesis can guide further research. We will
discuss four further research proposals.

12.1 Prototype improvement

Our prototype can both be improved in the preprocessing and metric step.
Since the preprocessing only consists out of generic steps, we only describe how
to improve the Noun Chunk classifier. The biggest improvement can be made in
the semantic type to journal line type mapping. Two options are possible. The
first is to create a mapping by experts in the medical field. A expert mapping
should be an improvement over a non-expert mapping.

Secondly, a mapping could be based upon empirical data. If we have a large
enough set of annotated data, we can extract the mapping from this data. This
brings other advantages as well. Currently, semantic types can map to any
number of journal line types. If we have enough data we can also calculate
probabilities between them. For example, if a semantic type in our prototypes
now maps to two journal line types, both journal line types have a probability
of 50%. However, it may wel be possible that a semantic type maps in 70% of
all cases to an E line, and 30% to a S line. With an extensive dataset we can
calculate these probabilities.

12.2 Metric improvement

We deduced the IQ dimensions and IQ metrics from theoretical knowledge about
IQ and knowledge from guidelines and protocols. However, we think there are
three groups of people who could contribute better to the process of metric
development:

1. End-users of EHRs.

2. Medical organisations such as the NHG.

3. Linguistic and communication experts or researchers.

57

Further Research G. van der Zanden

The first two groups are from the medical field, but not by definition the
same. It is well possible that end-users of EHRs such as nurses are not present
in the NHG or alike, while people in medical organisation do not by definition
still work ‘in the field’. It seems reasonable that medical organisation will or-
ganise the research needed to develop EHR quality metric, whereas end-users
are involved in research, for example to find the biggest obstacles to understand
EHR content in practice. The last group, linguistic and communication experts
and research, we think are useful since Electronic Health Records are used to
communicate information. Linguistics and communication studies both inves-
tigate how information is communicated best, thus they can help to develop
metrics.

12.3 Metric implementation & Quality Scoring

We suggest the implementation of new metrics, preferably developed by the
experts mentioned above. However, multiple metrics brings along the problem
of giving a grade to an Electronic Health Record.

We suggest a few possibilities to expand the scoring mechanism in the case
multiple metrics are implemented. First of all, we can simply combine all metrics
into one score. We could average the scores of the different metrics and possibly
assign weights to them. For example a final could consist out of 0.3 times the
SOEP-test score and 0.7 times the NHG guidelines compliance score. However,
in this manner overview is lost. We cannot see why an EHR gets a low or high
score.

Better would be to average the scores into categories in order to preserve
the origin of the grade. For example all metrics related to the exchange context
can be aggregated into one score. In this manner a set of ‘key performance
indicators’ is created, based upon the originally developed dimensions.

12.4 Medical Support System

As last suggestion we relate to more existing research into medical support sys-
tems (MSS). MSSs are meant to support healthcare providers in the healthcare
process by for example giving suggestions for medication or diagnoses. Prefer-
ably it does so based upon the (unstructured) input of the healthcare provider
and real-time.

For our system to be supportive it is necessary it is able to perform three
tasks. First of all, it needs to point out that a quality error has been made.
Secondly it needs to point where the error has been made and, most important,
it must be able to tell the user what mistake has been made. In contrast to
only judging about the Electronic Health Records by giving them a grade, the
system helps to improve records.

One step further would be continuous quality control. In this scenario the
system would continuously scan the input of the healthcare provider and alert
him whenever a quality error is made. This is already possible in the form of
spelling control, but goes further in this scenario. A simple example would be
that the systems points out that a diagnose is made while some lab results are
not written down in the EHR.

58

Bibliography

[1] The University of Sheffield. Gate information extraction, Februari 2010.
URL http://gate.ac.uk/ie/.

[2] M. den Hollander-Gijsman and I. van Vliet. Routine outcome monitoring,
2008. URL http://www.nedkad.nl/docs/invitational_conference/v_

Vliet_den_Hollander_ROM.ppt.

[3] Nederlands Huisartsen Genootschap. Richtlijn adequate dossiervorming
met het electronisch patintdossier, 2010. URL http://nhg.artsennet.

nl/web/file?uuid=b9e61fa2-555d-44a7-9064-2687aa8ed900&owner=

5a73f5c4-7ec8-4c34-8c93-851837e4b783.

[4] Informatiepunt BSN in de zorg en landelijk EPD. Informatiepunt
bsn in de zorg en landelijk epd - wat het epd doet, 2010.
URL http://www.infobsnzorg.nl/informatiepunt_com/patient_wat_

het_epd_doet.php.

[5] Enne Bouma. Categoraal spreekuur, 2010. URL http://www.

dokterbouma.nl/Praktijkondersteuning/COPDprotocolframes/

Categoraalspreekuur.htm.

[6] L. Jabaaij, K. Njoo, S. Visscher, H. van den Hoog, W. Tiersma, H. Levelink,
and R. Verheij. Verbeter uw verslaglegging, gebruik de epd-scan-h. Huisarts
& Wetenschap, 52(5):240–246, 2009.

[7] Nederlands Huisartsen Genootschap. Nhg-standaarden, 2010. URL
http://nhg.artsennet.nl/kenniscentrum/k_richtlijnen/k_

nhgstandaarden.htm.

[8] J. Turmo, A. Ageno, and N. Català. Adaptive information extraction. ACM
Computing Survey, 38(2):4, 2006. ISSN 0360-0300. doi: http://doi.acm.
org/10.1145/1132956.1132957.

[9] M-F. Moens. Information Extraction: Algorithms and Prospects in a Re-
trieval Context, volume 21 of The Information Retrieval Series. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN 978-1-4020-4987-3.

[10] M.B. Parker, V. Moleshe, R. De la Harpe, and G.B. Wills. An evaluation of
information quality frameworks for the world wide web. In 8th Annual Con-
ference on WWW Applications, 2006. URL http://eprints.ecs.soton.

ac.uk/12908/.

59

http://gate.ac.uk/ie/
http://www.nedkad.nl/docs/invitational_conference/v_Vliet_den_Hollander_ROM.ppt
http://www.nedkad.nl/docs/invitational_conference/v_Vliet_den_Hollander_ROM.ppt
http://nhg.artsennet.nl/web/file?uuid=b9e61fa2-555d-44a7-9064-2687aa8ed900&owner=5a73f5c4-7ec8-4c34-8c93-851837e4b783
http://nhg.artsennet.nl/web/file?uuid=b9e61fa2-555d-44a7-9064-2687aa8ed900&owner=5a73f5c4-7ec8-4c34-8c93-851837e4b783
http://nhg.artsennet.nl/web/file?uuid=b9e61fa2-555d-44a7-9064-2687aa8ed900&owner=5a73f5c4-7ec8-4c34-8c93-851837e4b783
http://www.infobsnzorg.nl/informatiepunt_com/patient_wat_het_epd_doet.php
http://www.infobsnzorg.nl/informatiepunt_com/patient_wat_het_epd_doet.php
http://www.dokterbouma.nl/Praktijkondersteuning/COPD protocol frames/Categoraal spreekuur.htm
http://www.dokterbouma.nl/Praktijkondersteuning/COPD protocol frames/Categoraal spreekuur.htm
http://www.dokterbouma.nl/Praktijkondersteuning/COPD protocol frames/Categoraal spreekuur.htm
http://nhg.artsennet.nl/kenniscentrum/k_richtlijnen/k_nhgstandaarden.htm
http://nhg.artsennet.nl/kenniscentrum/k_richtlijnen/k_nhgstandaarden.htm
http://eprints.ecs.soton.ac.uk/12908/
http://eprints.ecs.soton.ac.uk/12908/

BIBLIOGRAPHY G. van der Zanden

[11] D.M. Strong, Y.W. Lee, and R.Y. Wang. Data quality in context. Com-
munications of the ACM, 40(5):103–110, 1997. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/253769.253804.

[12] A. Aamodt and M. Nygrd. Different roles and mutual dependencies
of data, information, and knowledge – an ai perspective on their inte-
gration. Data & Knowledge Engineering, 16(3):191–222, 1995. ISSN
0169-023X. URL http://www.sciencedirect.com/science/article/

B6TYX-3Y5FPYP-1/2/20809c87dec08b33d661b97a8f420f24.

[13] C. Batini, C. Cappiello, C. Francalanci, and A. Maurino. Methodologies for
data quality assessment and improvement. ACM Computing Surveys, 41
(3):1–52, 2009. ISSN 0360-0300. doi: http://doi.acm.org/10.1145/1541880.
1541883.

[14] Z.J. Gackowski. Redefining information quality and its measuring: The
operations management approach. In Proceedings of the 2006 International
Conference on Information Quality, 2006.

[15] M. Ge and M. Helfert. A review of information quality research - develop
a research agenda. In Proceedings of the 2007 International Conference on
Information Quality, 2007.

[16] B. Stvilia, L. Gasser, M.B. Twidale, and L.C. Smith. A framework for
information quality assessment. J. Am. Soc. Inf. Sci. Technol., 58(12):
1720–1733, 2007. ISSN 1532-2882. doi: http://dx.doi.org/10.1002/asi.v58:
12.

[17] Y.W. Lee, D.M. Strong, B.K. Kahn, and R.Y. Wang. Aimq: a methodology
for information quality assessment. Information& Management, 40(2):133–
146, 2002.

[18] Daniel Sonntag. Assessing the quality of natural language text data. In In:
Proceedings of GI Jahrestagung, 2004.

[19] M. Bovee, R.P. Srivastava, and B. Mak. A conceptual framework and belief-
function approach to assessing overall information quality. International
Journal of Intelligent Systems, 18(1):51–74, 2003.

[20] L.L. Pipino, Y.W. Lee, and R.Y. Wang. Data quality assessment. Com-
munications of the ACM, 45(4):211–218, 2002. doi: http://doi.acm.org/10.
1145/505248.506010.

[21] X. Zhu and S. Gauch. Incorporating quality metrics in central-
ized/distributed information retrieval on the world wide web. In SIGIR
’00: Proceedings of the 23rd annual international ACM SIGIR confer-
ence on Research and development in information retrieval, pages 288–
295, New York, NY, USA, 2000. ACM. ISBN 1-58113-226-3. doi: http:
//doi.acm.org/10.1145/345508.345602.

[22] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. An automatic qual-
ity evaluation for natural language requirements. 2001. URL http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.7525.

60

http://www.sciencedirect.com/science/article/B6TYX-3Y5FPYP-1/2/20809c87dec08b33d661b97a8f420f24
http://www.sciencedirect.com/science/article/B6TYX-3Y5FPYP-1/2/20809c87dec08b33d661b97a8f420f24
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.7525
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.7525

BIBLIOGRAPHY G. van der Zanden

[23] J. Geertzen. Jeroen geertzen :: software & demos : Brill-nl, June 2010.
URL http://cosmion.net/jeroen/software/brill_pos/index.php.

[24] U.S. National Library of Medicine. Unified medical language system (umls)
- home, June 2010. URL http://www.nlm.nih.gov/research/umls/.

[25] IHTSDO. Ihtsdo: International health terminology standards development
organisation, June 2010. URL http://www.ihtsdo.org/.

[26] S. Goryachev. Hitex manual, June 2010. URL https://www.i2b2.org/

software/projects/hitex/hitex_manual.html.

[27] (Open Health Tools). hitex: Home, June 2010. URL https://hitex.

projects.openhealthtools.org/.

[28] U.S. National Library of Medicine. Metamap transfer (mmtx), June 2010.
URL http://ii-public.nlm.nih.gov/MMTx/.

[29] U.S. National Library of Medicine. Metamap, July 2010. URL http:

//mmtx.nlm.nih.gov/.

61

http://cosmion.net/jeroen/software/brill_pos/index.php
http://www.nlm.nih.gov/research/umls/
http://www.ihtsdo.org/
https://www.i2b2.org/software/projects/hitex/hitex_manual.html
https://www.i2b2.org/software/projects/hitex/hitex_manual.html
https://hitex.projects.openhealthtools.org/
https://hitex.projects.openhealthtools.org/
http://ii-public.nlm.nih.gov/MMTx/
http://mmtx.nlm.nih.gov/
http://mmtx.nlm.nih.gov/

	Abstract
	Voorwoord
	Introduction
	Motivation and goals
	Research questions
	Outline

	I Background
	Electronic Health Records
	Structure & Content
	EHR Architecture
	Guidelines

	Information Extraction
	Process
	Typical IE tasks
	Heuristics and Learning
	General Architecture for Text Engineering

	II Quality of Information
	Information Quality Theory
	Problems
	Dimensions
	Metrics
	Information Quality of Unstructured Data
	Quality of web data
	Quality of requirement documents
	Quality of Wikipedia pages

	Summary

	Quality of Electronic Health Records
	EHR Problems
	EHR Dimensions
	EHR Metrics
	SOEP Test indicator
	Guideline compliance indicator
	Conciseness indicator

	Summary

	III System Design
	Information Extraction Pipeline
	Preprocessing
	Specific Annotation

	Global Design
	Extraction Executor
	Model
	GATE components
	UMLS MetaMap
	NounChunk Classifier

	IV Evaluation
	Experimental Evaluation
	Goal
	Example output

	Experimental Set-up
	Dataset
	Experiment

	Results
	Machine Learning
	Rule-based

	Use Cases
	Guideline compliance
	Conciseness

	Evaluation conclusions

	V Conclusions and Further Research
	Conclusions
	Further Research
	Prototype improvement
	Metric improvement
	Metric implementation & Quality Scoring
	Medical Support System

