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Samenvatting

De laatste jaren wordt er vanuit de informatica veel onderzoek gedaan naar het
analyseren van affect in videobeelden. Modellen die affect van kijkers kunnen
voorspellen zijn namelijk bruikbaar in een groot aantal gebieden. Denk hierbij
aan bijvoorbeeld frustratie detectie, stress detectie, hoogtepunten extractie,
automatisch genre classificatie en gebruikersinterfaces die gebruik maken van
emoties om video’s te tonen.

In dit verslag doen we onderzoek naar het automatisch detecteren van pieken in
emotionele intensiteit. In dit onderzoek kijken we naar video content waarbij
een deelnemer (de evoker) de affectieve toestand van een andere deelnemer (de
experiencer) beinvloedt. Hierbij concentreren we ons op twee gebieden, namelijk
verhalen en conversaties.

Om deze pieken in emotionele intensiteit te detecteren wordt er eerst een
literatuuronderzoek uitgevoerd waarbij wordt gekeken hoe andere studies
affectieve patronen herkennen en hoe deze patronen zich voordoen. In dit
literatuuronderzoek ligt de focus vooral op sport video's en films. Aan de hand
van dit literatuuronderzoek worden de features, denk hierbij aan spraak
snelheid, toonhoogte enz., bepaald die gebruikt worden om pieken in emotionele
intensiteit te herkennen.

Nadat de feature set is bepaald gaan we evalueren hoe goed onze modellen
presteren in het herkennen van deze pieken. Voor deze evaluatie gebruiken we
twee datasets. Voor de verhalende setting gebruiken we VideoCLEF 2009. In de
verhalende setting probeert de evoker de experiencer geinteresseerd te houden
door deze een gevoel van betrokkenheid te geven. Voor de conversationele
setting gebruiken we de SEMAINE dataset. In deze dataset probeert de evoker de
affectieve toestand van de experiencer richting een bepaalde emotie
(bijvoorbeeld blij of angstig) te sturen. Uit de resultaten van deze evaluaties
blijkt dat het automatisch detecteren van emotionele intensiteit daadwerkelijk
mogelijk is.

Tot slot doen we een aantal voorstellen tot mogelijke implementaties voor een
emotionele intensiteit browser. Deze browser moet mensen helpen met het
vinden van emotionele momenten in video content. Met behulp van zo’n browser
zouden mensen in staat moeten zijn om sneller door de content heen te kunnen
navigeren, doordat mogelijk interessante stukken direct aan de gebruiker
worden voorgelegd.






Abstract

Over the past couple of years a lot of studies have analyzed the affective level in
video content. Models of affective states are useful in a number of areas,
including frustration detection, stress detection, highlight extraction, multimedia
genre classification, and emotionally- enabled conversational interfaces.

In this thesis we carry out a study on the automatic detection of peaks in
emotional intensity in a conversation and a narrative setting. Both settings
involve unilateral intent on the part of one participant (the evoker) to shift the
affective state of another participant (the experiencer).

To detect peaks in emotional intensity a literature study is carried out how
affective patterns emerge in video content and how these patterns can be
detected. This study focuses on sport videos and movies. Based on this,
assessment features (e.g. speech rate, pitch, etc.) are identified that can be used
to detect peaks in emotional intensity.

After the feature set is defined we evaluate our models based on their peak
detection performance. For this evaluation we used two publicly available
datasets with affective annotations that encode information about change in
affective state. For the narrative setting we use VideoCLEF 2009. Here, the
evoker’s intent is to maintain the interest in the video by providing moments
where viewers feel an intensified sense of involvement. For the conversational
setting we use the SEMAINE corpus of emotionally colored character
interactions. Here, the evoker has a particular emotional agenda and a
conversational goal of shifting the experiencer toward that state. Results of our
evaluation of the classification experiments confirm the viability of the models
and provide insight into useful features.

Finally, we prototype a number of user interfaces, which utilize the emotional
intensity information detected by our models. A peak browser can help users
navigate through the emotional moments in video content. Assisted by this
browser, users should be able to navigate faster through the content, because
possibly interesting parts of the video can be shown directly to the user.
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1 Introduction

“What if you could remember everything? Soon, if you choose, you will be able to
conveniently and affordably record your whole life in minute detail. You would
have Total Recall.”

In September 2009, the book “Total Recall” was published which was written by
two Microsoft researchers, who described an exciting future where people could
record and play back every moment of their lives. Today, this future is quickly
becoming more reality than fiction.

Now imagine if this was truly possible today, and you are looking for a particular
memory captured on video 10 years ago during your university graduation
ceremony. Perhaps the date is memorable and if not it can be easily looked up
but what if it were also possible to search through almost a lifetime of recordings
using emotional states such as joy, relief, excitement as intangible reference
points. In fact, what if all the recorded video was annotated with emotional
experiences? One thing is for sure: multimedia retrieval would not also be easier
but would also incorporate new nuances beyond those existing today.

In this thesis we set the first step towards this long-term goal by developing
algorithms to automatically detect emotional intensity peaks in video content.

1.1 Peak Detection

With peak detection we refer the automatic identification of heightened
emotional intensity, specifically what Banse and Scherer [1] define as the
magnitude of the overall emotional reaction. We carry out two studies on peak
detection in communication settings that involve unilateral intent. In such
settings, one participant, the evoker, strives to change the affective state of
another participant, the experiencer. The goal of these studies is to determine the
extent to which “one-sided” models can capture peaks patterns in these settings.
We use the designation “one-sided” models to refer to models that use the
speech signal from either only the evoker or only the experiencer. In each
setting, we investigate the ability of a one sided model to capture peaks in
emotional intensity, either with the evoker or the experiencer.

A key contribution of our work is that it identifies a novel domain in affective
state modeling, namely, communication settings with unilateral intent. This
domain is interesting because it involves natural communication, yet the
motivations of the speakers are simple and stable, facilitating both the creation
and interpretation of models. In this respect, it contrasts with communication
settings such as meetings, where a speaker may jump between evoker and
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CHAPTER 1. INTRODUCTION

experiencer roles and where affective intent changes over time. In the unilateral
intent setting, we know which participant is the evoker and the nature of the
evoker’s goal. This knowledge allows us to assume that the evoker is following a
set of strategies designed to attain that goal and the experiencer is reacting to
these strategies. A one-sided model will thus capture a stimulus with a well-
understood affective purpose or an affective reaction to that stimulus. If models
are able to capture the essence of basic affective triggers and responses, they
stand to achieve sufficient generality to be easily transferable to new domains.

1.2 Narrative and Conversational Settings

In the literature on affective analysis of video, two types of content have received
particular attention: sports games and movies [2]. These two cases differ with
respect to the source of the emotional intensity. In the case of sports, emotional
intensity peaks arise as a result of the unpredictable interactions of the players
within the rules and physical constraints of the game. In the case of movies,
emotional intensity is carefully controlled by a team including scriptwriters,
performers, special effect experts, directors and producers. The difference
between the two cases is the amount and nature of human intention - i.e.,
premeditation, planning, intervention - involved in the creation of the sequence
of events that plays out over time (and space). We are interested in investigating
a two other settings of video content, namely a narrative and a conversational
setting, in which both evokers intent to influence the interlocutor’s affective
state.

Our work differs in an important respect from previous work in the domains of
sports and movies. In the both the narrative and conversational setting the
emotional intensity is never completely spontaneous; the evoker has a goal he
must comply. However, the emotional moments are characteristically less tightly
controlled than it would be in a movie. In a movie, the entire content is
subordinated to the plot, whereas in the narrative and conversational setting, the
evoker has some freedom and therefore may follow one or more story lines as
long as it simultaneously pursues the goal of shifting the interlocutor’s affective
state. Because of these differences, we chose to dedicate separate and specific
attention to the affective analysis in narrative and conversational settings; and in
particular to the automatic detection of emotional intensity peaks.

For each of these settings we choose a publicly available corpus with affective
annotations that encode information about change in emotional intensity. For
the narrative setting we use the VideoCLEF 2009 Beeldenstorm dataset
consisting of short-forum documentaries annotated with viewer-reported
narrative peaks. A narrative peak is a point at which a viewer feels a rise of
dramatic tension or a heightened sense of involvement. For the conversational
setting, we use the SEMAINE corpus of emotionally colored character
interactions consisting of recorded conversations between a human interacting
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CHAPTER 1. INTRODUCTION

fully naturally and a human playing an agent with a particular emotional style.
The corpus is annotated with continuous valence and arousal levels. Table 1
illustrates how the participants in the corpus scenarios map onto the roles of
evoker and experiencer, i.e., the participant roles in a communication setting
involving unilateral intent.

Table 1: Participant roles in communication settings
(Participants modeled in our studies are shown in bold)

Narrative setting Conversational setting
Evoker Narrator Agent
Experiencer Viewer Interlocutor

In the narrative setting, the narrator’s intent is to maintain interest in the
content of the documentary by providing moments where viewers feel an
intensified sense of involvement. Here, our study involves building an evoker
model of the narrator that allows us to predict moments at which viewers report
experiencing a peak in affective state corresponding to a perceived rise in
dramatic tension. In the conversational setting, the agent’s intent is to influence
the interlocutor’s affective state towards a particular emotion (e.g., happy,
angry). Here, our study involves building an experiencer model of the
interlocutor that allows us to detect peaks in the interlocutor’s emotional
intensity. As shown by the boldface in Table 1, we focus on two “one-sided”
models. We must necessarily leave a narrative-setting experiencer model and a
conversational-setting evoker model to future work, since our corpora lack
either data or annotations to build these models.

1.3 Research Questions

As stated, this research concerns automatic peak detection in narrative and
conversational settings, with one-sided models. The following questions are to
be answered:

1. Isit possible with a one-sided model to capture peaks in emotional intensity
in -
a. a conversational setting
b. a narrative setting
2. How do lexical and acoustic features contribute to peak detection in these
settings?
3. Is there a correlation between the emotion the evoker tries to shift the
experiencer to and the peak detection performance?
4. How can we present these peaks in a useful manner to the end user?
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2 State of Art Peak Detection

Peak detection approaches aim to detect emotional intensity in video content.
Peaks generally stand for the most interesting parts of a video, although the
definition of what is interesting may vary widely across video genres and for
different applications. For example, in sport-videos the peaks usually show
specific patterns related to ball or player movement while in movies the peaks
are carefully crafted into the content by a team including scriptwriters,
performers, special effects experts, directors and producers. What peaks have in
common in these different domains is that the viewer perceives an increase of
the level of emotional intensity within the narrative flow of a video.

Once these peaks are detected they can be used in several applications.
Summaries can be automatically generated from these highlights, allowing for
faster browsing through relevant sections. This will save valuable time for any
viewer who merely wants to see an overview of the clip. Highlights can also help
with the retrieval of video clips. Peak detection approaches make it possible to
generate an index describing the video content, which can be used for browsing,
searching and manipulating video documents. It forms the basis for multimedia
retrieval in digital libraries storing multimedia data.

Video content is a very broad domain, containing all available video content. It
ranges from surveillance cams and home videos to movies and television
programs. Because peaks are different in each content type, we focus on
television programs and sport videos. In both the sports and movies domain,
affect modeling takes the form of highlight detection, the identification of points
at which string excitement is evoked in the viewer [2, 3]. Highlight models
resemble our models in that they aim to predict the intensity of the experiencer.

This chapter provides an overview of highlight detection in video content. The
chapter starts with a deeper look at the affective level of video content. Then we
define the two domains, television programs and sports video. In paragraph 2.2
the different modalities within video content are explained. Paragraph 2.3
presents an overview of previous work, categorized by modality. Finally this
chapter concludes with an overview of all cited highlight detection approaches
listed in a table.

2.1 Affective Level of Video Content

In video content there are two basic levels of perception: the cognitive level and
the affective level. The cognitive level describes the facts, like the structure of the
story, the composition of a scene, and the object and people captured by the
camera [2]. The affective content of a video is defined as the amount and type of
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CHAPTER 2. STATE OF ART PEAK DETECTION

affect (feeling or emotion) that are contained in video and expected to arise in
users while watching that video. Recall from the introduction that peak detection
involves identifying sections that evoke increased levels of emotional intensity in
viewers’ perception of video clips [4]. Because the affective content of a video
contains information what emotions we study this level into more detail.

The affective level has three basic underlying dimensions [5]

e Valence
e Arousal
* Control (Dominance)

Valence is typically characterized as a continuous range of affective responses or
states extending from pleasant or “positive” to unpleasant or “negative” [6].
Arousal is characterized on a continuous scale from excited to calm. In other
words, valence is the type of emotion while arousal stands for the intensity of the
emotion. Note that this is not the same as emotional intensity, which is the
magnitude of the overall emotional reaction. Finally, control ranges from “no
control” to “full control” and is useful for distinguishing emotional states having
similar arousal and valence, for example fear and anger. These three dimensions
are the basis for the entire scope of human emotions. However, valence and
arousal also account for most of the indecent variance unemotional response [7].
For this reason, the control dimension will be ignored and only the arousal and
valence dimensions are considered. These two scales can be transformed to a
two-dimensional emotion space depicted in Figure 1 [8].

ArO\lised

Unplgasant
weses|d

qum

Figure 1: [llustration of the 2-D Emotion Space [8]

Figure 1 also visualizes the emotional intensity peaks, which are located at the
upper left, in the aroused and unpleasant area, and in the upper right, in the
aroused and pleasant area. Emotional intensity peaks are identified with a high
arousal emotion combined with either a very pleasant or unpleasant emotion.
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2.1.1 Expression of Affect

Affect manifests itself both in the way people speak and the words they use.
Emotion impacts physiology, which in turn affects speech production [9]. The
body’s reaction to emotional arousal results in loud, fast, high-energy speech
[10]. Language style reflects social and psychological aspect of the world of the
speaker [11]. The use of different word types, in particular, function words,
emotion words and content words, has been identified as important for
revealing psychological effects [11]. Pronouns are function words and one
psychological aspect they reflect is speaker social engagement [11, 12].

Caffi and Janney [13] pointed out that in the Western intellectual tradition,
emotive uses of languages were originally studied as rhetorical techniques.
Speakers make use of rhetorical devices to enhance their impact on their
listeners, and emotional speech, the pathos of Aristotle, is a key strategy. We
assume a broad base of similarity between emotional communication, involving
spontaneous outbursts of emotion, and emotive communication, involving the
signaling of affect to communication partners as part of a consciously applied
strategy, cf. e.g., [1].

2.2 Domains

Within the television domain most research has focused on movies and sports. In
these domains, affect modeling takes the form of highlight detection, the
identification of points at which strong excitement is evoked in the viewer.
Although, in sports, we cannot speak of unilateral intent on part of the evoker to
shift the affective state of the experiencer, viewers show strong excitement when
watching sport videos.

Most highlight detection approaches only focus on one of these sub domains.
Each sub domain has it own triggers - or cues - and therefore it is hard to build a
highlight detection system that works in all sub domains. In the following
paragraphs an overview is given of the sub domains along with the main triggers
used for highlight detection.

2.2.1 Sports

In the past few years the sports domain has gained the most attention. One of the
reasons is the clear conventional triggers present in this domain - a broad
spectrum of viewers will agree about the highlights in the sport domain. Think of
goals scored in soccer games or crash incidents in a motor race. In sport events,
the experiencer is often present in the video in the form of the audience. Most
research in the sports domain focus only on one particular sport (basketball,
baseball, etc.), since triggers are different for each kind of sport. Examples of
more generic approaches for highlight detection [14] and [3] aim to detect
highlights in sports that share common rules and/or characterizations.
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Highlight detection approaches in the sports domain often isolate triggers such
as applause, cheering, commentary speech, camera motion, colors and the
scoreboard.

2.2.2 Movies

Highlight detection approaches in the movies domain can be broadly split into
scene-based summaries and event-based summaries [15]. Scene-based
summaries focus on obtaining an index of a movie by splitting it into key scenes.
Examples of scene-based approaches are [16] and [17]. Event-based approaches
aim to detect shots in the movie that belong to a certain event type. For example,
[18] detects violent events in a movie by searching for visual cues such as flames
or blood pixels, or audio cues such as explosions or screaming.

Another research focus is on automatic generation of movie trailers, or previews,
which are film advertisements for feature films that will be exhibited in the
future at a cinema, on whose screen they are shown. Trailers tend to feature the
high points of the movie, which are edited together in such a way that they do
not give away the storyline or conclusion, and yet act as a teaser to their
audience. Trailers themselves can be quite cinematic with their own background
music, sophisticated shot transition, and post-produced features such as overlaid
text. Therefore, movie trailers have a very creative and artistic aspect and the
highlight detection is more guidance for the director of the trailer then a real
automatic trailer generator [15].

Just like the sports domain, movies contain conventional triggers such as a
romantic kiss or a gunfight. To detect highlights in movies highlight detection
approach looks for the following cues: boundary shots, camera movement,
loudness and affect.

2.3 Modalities

The following three information channels or modalities are considered within a
video document:

* Auditory modality; contains speech, music and environmental sounds that
can be heard in a video document

* Textual modality; contains textual resources that describe the content of
the video document (i.e., speech transcripts).

* Visual modality; contains everything, either naturally or artificially
created, that can be seen in the video document.

Each modality has its own features for selecting highlights. Typical features for
the auditory modality are: pitch, volume and intonation. For the textual modality
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the lexical items and meta-data are typical features. Finally, typical features for
the visual modality include, shot boundaries, color and camera movement.

2.3.1 Modality Fusion

Highlight detection approaches are not bound to one modality. Approaches that
extract peaks using only one of the auditory, textual or visual modalities are
called unimodal highlight detectors while approaches that combine two or more
modalities are called multimodal peak detectors.

Combining two or more modalities is challenging since it has to deal with
indications obtained from different modalities, which might contradict each
other. At present, there is enough experimental evidence to state that video
content analysis yields the most effective index when a multimodal approach is
adhered [19-21]. Additional modalities may serve as a verification method, a
method compensating for inaccuracies, or as an additional information source
[22]. As Cheng and Hsu [23] state: low-level visual features have their limitations
to express high-level semantic meanings of scenes while audio signals can
generally provide more semantic information, such as cheering of audience. On
the other hand, the noise prevailing in audio signals is comparably high whereas
motion information is more feasible against environmental noises. Thus, the
combination of both features complements each other and improves the
reliability of the highlight extraction.

In the literature two general strategies for the fusion of modalities in video
content analysis have been identified, namely early fusion [24] and late fusion or
decision-level fusion [20, 25]. These differ in the way results are integrated from
feature extraction on the various modalities.

Early Fusion

Early fusion approaches first extract the features from the modalities, which are
then combined into a single representation. Based on this representation
highlight detection algorithms can assign scores to segments. Early fusion yields
a truly multimedia feature representation, since the features are integrated from
the start [26]. A schematic overview of the early fusion strategy is shown in
Figure 2.
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Auditory
Features

Features
Combination

Textual
Features

Final Segment
Score

Visual
Features

Figure 2: Early fusion, adapted from [26]

Late Fusion

Highlight detection approaches that rely on late fusion also start with extraction
of features. In contrast to early fusion, where features are then combined into a
multimodal representation, approaches for late fusion are first combined in a
unimodal representation. After analyzing these unimodal representations the
scores of this analysis are combined into a final segment score. A schematic
overview of the early fusion strategy is shown in Figure 3.

Auditory . Unimodal
Features "| Representation
Textual Unimodal . Features Final Segment
Features Representation ~| Combination Score
S —— - e ——
Visual Unimodal
Features Representation
S — S ——

Figure 3: Late fusion, adapted from [26]

Usually, performing late fusion is chosen over performing early fusion for two
primary reasons [27]. First, it is difficult to combine features into a common
representation. The second reason is that late integration provides greater
flexibility in modeling.
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2.4 Previous Studies

In the following section an overview of previous studies is given. The studies are
ordered by their modality and if they are using more than one modality they are
listed in section 2.4.3, multimodal detectors.

2.4.1 Auditory Information

Sports

Rui et al. [28] use only announcers' speech and game specific sounds from the
audio track to detect highlights in baseball programs. To detect these sounds in
the audio track, the following audio features are used: short-time energy,
phoneme-level analysis and prosodic features.

Xiong et al. [29] detect highlights in soccer, golf and baseball by using the MPEG-
7 audio features and entropic prior hidden Markov Models to detect common
audio events that are directly indicative of highlights. The audio features include
frequency and intensity. The audio signal is divided into overlapping frames of
30 ms duration with 10ms overlapping for a pair of consecutive frames.

Movies

In the movie domain affect is often used as a feature, where events are detected
by looking at the data from an affective point of view [30]. Arousal and valence
are measured and these are combined in the affect curve. The arousal is modeled
based on the energy of the audio signal, while the valence is modeled based on
the pitch. Variations in pitch based on gender or audio source type are ignored.
Users are presented with an affect-based retrieval system, showing graphs of the
affective curve for the video content.

Cai et al. [31] locate highlights by considering the following audio cues: laughter,
applause and cheer. These cues are detected by using short-time energy
(amplitude variation), average zero-crossing rate (frequency) and sub-band
energies (frequency spectrum). They propose a framework that can also be used
in videos dealing with scenarios taken from sports, meetings and home settings.
Hidden Markov models are chosen to model the sound effects.

2.4.2 Visual Information

Sports

In the sports domain there are not many approaches that use only information
from the visual modality. Most research includes audio features because
cheering and applause cues are a good indication for highlights. However,
Assfalg et al. [32] have detected penalties, free kicks and corner kicks in soccer
matches using only visual features by formulating a strong correlation between
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ball movement and camera action and therefore using camera movement as a
main feature. A second feature is the position of the players in the field. To detect
these positions three zones are defined for each of the sides of the field. Hidden
Markov models are used for the detection and classification of the penalties, free
kicks and corner Kkicks.

Lazarescu et al. [33] extract highlights from cricket matches using camera
parameters (pan, tilt, zoom and roll). These parameters are converted from
numeric to symbolic form and extract four main features for each cricket shot:
the dominant motion in the shot, the average camera motion, the length of the
shot and the angle of main camera movement in the play. To detect events an
incremental learning algorithm is applied.

2.4.3 Multimodal Information

Most research combine features from two or more modalities in order to realize
a better highlight detection performance. Approaches that combine two or more
modalities are called multimodal detectors.

Sports

Nepal et al. [34] detect goals and other highlights from basketball games by
relying on three features: crowd cheer, scoreboard display and change in
direction. They use temporal models to classify the event. For example, after
scoring the crowd cheers, the scoreboard display changes and the players move
in the opposite direction.

There are also approaches that follow a more generic method for detecting
highlights [14]. For example, looking for visual and audio features to detect
highlights in all field sports, such as soccer, rugby, American football and hockey.
Features included increased audio activity, cheering/applause detection, close-
up detection and scoreboard activity. A support vector machine was used to
combine these features.

Lui et al. [3] build a framework for detecting highlights in racquet sports, (e.g.
tennis, table tennis etc), which again utilizes features from both the auditory and
visual modality to detect events such as rallies, cheering, applauding and serving.
A temporal voting strategy and highlight ranking was used to work properly on
different racquet sports.

There have been similar approaches in other sports such as American football
[35], Formula 1 car racing [36], tennis [37], baseball [38] and soccer [39].

Movies

Chen et al. [40] propose an action movie segmentation and summarization
framework based on movie tempo, representing the delivery speed of important
segments of a movie. In the tempo-based system, features from the auditory and
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visual modality are combined. Features include: shot change detection, motion
activity analysis, and semantic context detection based on audio features to
grasp the concept of tempo for story unit extraction.

Finally, Smeaton et al. [15] present an approach which automatically selects
shots from action movies in order to assist in the creation of trailers. A set of
audio and visual features are extracted that aim to model the characteristics of
shots typically present in trailers, and a support vector machine is utilized in
order to select the relevant shots.

An overview of the mentioned approaches is shown in Table 2.
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Table 2: Overview of highlight detection approaches

Modality
Domain
Auditory Textual Visual
Hanjalic and v Video content in general
Xu [2]
Lui, et al. [3] v v Sports; Racquet
Sadlier and v v Sports; field sports
O’Conner [14]
Smeaton, et al. 4 v Movies
[15]
Rui, et al. [28] v Sports; Baseball
Xiong et al. 4 Sports; Baseball, Gold, Soccer
[29]
Chan and v Movies
Jones [30]
Cai etal. [31] v TV Shows
Assfalg et al. v Sports; Soccer
[32]
Lazarescu et v Sports; Cricket
al. [33]
Nepal et al. 4 v Sports; Basketball
[34]
Li and Sezan 4 v Sports; American Football
[35]
Petkovic et al. v v v Sports; formula 1
[36]
Kijak et al. 4 v Sports; Tennis
[37]
Gong et al. 4 v Sports; Baseball
[38]
Cabasson and v v Sports; Soccer
Divakaran
[39]
Chen et al. [40] v v Movies (sports)
Hsu [41] v Sports: baseball, golf and soccer
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3 Datasets Description

In this chapter both the VideoCLEF and SEMAINE dataset are described. For each
dataset we give a short introduction, on why it was developed. We then describe
the dataset and the ground truth. We conclude this chapter by listing the main
differences between the two sets.

3.1 VideoCLEF

VideoCLEF is a track of the CLEF benchmark campaign dedicated to developing
and evaluating tasks involving access to video content in a multilingual
environment. In 2009, there were three tasks. The first task, called “Subject
Classification”, involved automatic tagging of videos with subject theme labels
(e.g., ‘Music’, ‘History’). The second task, called “Affect”, involved detecting
narrative peaks in short-form documentaries. A narrative peak is a point in the
narrative flow of a video in which viewers perceive an increase in dramatic
tension or a heightened sense of involvement. The affect task is what we focus on
in this research. The final task, called “Finding Related Resources Across
Languages”, involved linking video to material on the same subject in a different
language.

3.1.1 VideoCLEF Dataset

The VideoCLEF dataset consists of 45 episodes of the Dutch TV series
Beeldenstorm (in English, ‘Iconoclasm’). The series features topics in the visual
arts, and integrates elements from history, culture and current events.
Beeldenstorm is hosted by Prof. van Os, who is not only known for his art
expertise, but also for his narrative ability. Prof. van Os is highly acclaimed and
appreciated in the Netherlands, where he has established a reputation of
appealing to a broad audience. All the Beeldenstorm episodes are in Dutch, and
consist of video and audio. The length of the episodes varies between seven and
nine minutes. Speech transcripts are available and are generated by SHoUT?
(Spraak Herkennings onderzoek Universiteit Twente). The transcripts are
aligned on word level and are not manually corrected.

Constraining the corpus to contain episodes from Beeldenstorm limits the spoken
content to a single speaker speaking within the style of a single documentary
series. This limitation is imposed in order to help control effects that could be
introduced by variability in style or skill. Experimentation of the ability of
algorithms to transfer performance to other domains is planned for future years.

L http://wwwhome.cs.utwente.nl/~huijbreg/shout/index.html
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An additional advantage of using the Beeldenstorm series is that the episodes are
relatively short, approximately eight minutes in length. Because they are short,
the assessors who create the ground truth for the test collection are able to
watch each video in its entirety. In short, the Beeldenstorm program provides a
highly suitable corpus for developing and evaluating algorithms for narrative
peak detection.

The dataset is divided into a training set and a test set. The training set contains
five Beeldenstorm episodes in which a human assessor had identified example
peaks. The test set contained 45 videos and was mutually exclusive with the
training set. In the test set three human assessors had identified the top three
peaks in each episode.

3.1.2 VideoCLEF Ground Truth

For the purposes of evaluation three Dutch speakers annotated the Beeldenstorm
collection by identifying each of the three top peaks in each episode. Annotators
were asked to mark the peaks where they felt the dramatic tension reached its
highest level. They were not supplied with an explicit definition of a peak.
Instead, all annotators needed to form independent opinions of where they
perceived peaks. In order to make the task less abstract, they were supplied with
the information that the Beeldenstorm series is associated with humorous and
moving moments. They were told that they could use that information to
formulate their notion of what constitutes a peak. Peaks were required to be a
maximum of ten seconds.

In total the assessors identified 293 distinct narrative peaks in the 45 episodes.
Peaks identified by different assessors were considered to be the same peak if
they overlapped by at least two seconds. This value was set on the basis of
observations by the assessor on characteristic distances between peaks.
Overlapping peaks were merged by fitting the overlapped region with a ten
second window. This process was applied so that merged peaks would never
exceed the specified peak length of ten seconds. The start time of the merged
peak is based upon the average start time of the overlapping peaks.

The average peak length is 9.4 seconds, based on the 405 peaks the assessors
identified. Of all peaks, 316 peaks have a length longer than nine seconds. The
length of only three is shorter than four seconds.

3.1.3 Remarks on the Ground Truth

General Narrative Peaks

It is difficult to define a truly narrative peak by all viewers since the dramatic
tension of viewers is based on 1) personal experience, 2) cultural and
background differences and 3) context and memory. As [42] state about affect:
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people show their emotion according to a specific pattern defined by both their
own experiences and their social environment. In addition, the evaluator, as a
receiver of the emotion message, also perceives the expressed emotion
according to his or her own background. Furthermore, people might be
emotionally affected during an evolution. Therefore it is difficult to distinguish
personal narrative peaks from general narrative peaks; peaks on which a large
group of people agree on. In order to annotate the general dramatic tension, a
large number of participants should annotate the Beeldenstorm episodes.
Considering that the ground truth was created based on the annotations of only
three assessors it is clear that it does not hold the general dramatic tension.

Inter-rater Agreement & Evaluation

The inter-rater agreement cannot be calculated due the ground way was created.
Assessors were free to mark three peaks within an episode. Because peaks
identified by different assessors are considered to be the same if they overlapped
by at least two seconds, this can lead to the situation were A, B and B, C are the
same peak but A and C are not the same peak. To illustrate this problem consider
the following example: assessor A annotates a peak at 0:34 till 0:44 seconds, B
annotates a peak at 0:40 till 0:50 and C annotates a peak at 0:48 till 0:58, which
is shown in Figure 4. Since the peak of annotator A overlaps four seconds with
the peak of annotator B this peak is considered to the same peak. Also, the peaks
of annotator B and C overlap by at least two seconds, so this is too the same peak.
However, the peak of annotator A and C are not the same since they do not
overlap at all. This makes it impossible to calculate the inter-rater agreement
and the kappa coefficient for participants of the VideoCLEF affect task.

00:48 - 00:58
Peak C

00:40 - 00:50
Peak B

00:34 - 00:44 ] |
Peak A | |

00:30 01:00

Figure 4: Illustration to the problem why inter-rate agreement cannot be calculated on the ground
truth. Peak A overlaps with Peak B, Peak B overlaps with Peak C but Peak A does not overlap with
Peak C.

In total, the assessors identified 293 different narrative peaks, of which 205
peaks are identified by only one assessor, 67 peaks that are identified by two
assessors and 22 peaks that are identified by all three assessors.

Three Peaks in each Episode

Another issue is that annotators had to set three peaks per episode. For
evaluation purposes annotators were asked to set three peaks per episode, no
matter how they felt the dramatic tension was distributed in an episode. In
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episodes the annotators observed more than three peaks they were asked to
annotate only the top three moments where dramatic tension reached its highest
level. However, if there were only one or two or maybe even zero of these
moments they still had to return three peaks. This of course introduces noise to
the ground truth.

3.1.4 Peaks in VideoCLEF

While viewing the Beeldenstorm episodes, we identified three different types of
behavior that increase the likelihood of a peak. First, we noticed that Prof. van Os
makes a certain gesture with his hands when he is excited over what he is
showing to the audience. Although we do not have the resources to build a
detector for theses gestures it is still interesting to see how he tries to pull the
audience into the show using these gestures. Other features we found to be good
indicators of peaks are: distribution of peaks and pronoun usage, which is
explained in the following subsections.

Distribution of Peaks

If we take a closer look at the distribution of peaks we see that most peaks are
either set in the first or last minute of each episode. An overview of the peak
distribution can be seen in Figure 5. This indicates that the TV program
Beeldenstorm tries to grasp the attention of the viewer at the beginning and at
the end of the episode. Peaks at the end of an episode are most times “summary
peaks”. Within one or two sentences Prof. van Os tries to summarize the episode,
which most times the assessors annotate as a peak. A good example of such a
peak is ...zonder al die andere engelen zou deze engel minder betekenis hebben
gehad, en dat voel je, zo'n tocht op zoek naar engelen in musea is werkelijk
lonend... (“...without all the other angels this angel would be less significant, and
you feel it, such a trip in search of angels in museums is truly worthwhile...").1

1 From Beeldenstorm episode Engelen op doek, ‘Angels on canvas’
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Figure 5: Distribution of peaks in VideoCLEF, although must episodes play for eight minutes the last
minute consists of the credits and a commercial message. In this figure we therefore ignore the last
minute, since it does not contain narrative peaks.

Peaks at the beginning of an episode mainly fall in two categories: “statement
peaks” in which Prof. van Os explicitly states his view on a certain topic or
painting or “humorous peaks” which contain humorous statements like: ...ik vind
het zo erg dames en heren en dan zit er ook nog iets religieus bij, dat maakt het nog
veel erger... (‘...I'm so sorry ladies and gentlemen, and then there is something
religious in that makes it even worse...")1.

» «

This means we have “summary peaks”, “statement peaks” and “humorous
peaks”. Of course, not all peaks can be categorized using these categories. For
example, sometimes the dramatic tension of the viewer is increased by dramatic
music to enforce the emotional intensity. However, after viewing the episodes
with the peak annotations it becomes obvious that most peaks do fall in either of
these categories.

First and Second Person Pronouns

Our second observation is that Prof. van Os sometimes addresses the audience
directly. Although these events are not always annotated as a peak it might still
prove a good indicator for a peak. We conjecture that dramatic tension rises
along with the level to which the viewers feel that they are directly involved in
the video content they are watching. From the observation we identified two
possible conditions of heightened viewer involvement: when viewers feel that
the speaker in the videos is addressing them directly or as individuals, or, second
when viewers feel that the speaker is sharing something personal. Although we
do not examine this aspect more closely here, it is possible that the importance
of personal connection or personal revelation in documentary video is related to
the fact that viewers perceive it to be a relatively rare event, which triggers them
to sit up and take notice.

1 From Beeldenstorm episode Antioni Mancini
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Cases of peaks that support the viability of this approach occur in the example
set, e.g., ...ziet u hoe diep de tulp in ons nationale volksziel is ingedrongen... (‘...you
see how deeply the tulip has penetrated our national consciousness...”).1 In the
case of Beeldenstorm, second person informal pronominal forms (e.g., je, ‘you,
your’) should also be attributed this general role as well since they are used as
impersonal pronouns to describe the thoughts and actions of a hypothetical
person, rather than the viewer directly. This point is illustrated by the following
peak from the example set ...en als je nou naar Amsterdam gaat, naar het Museum
Willet-Holthuysen, kijk, daar heb je wat ik ‘total design’ zou willen noemen...
(“...and if you (informal) go to Amsterdam to the Willet-Holtuysen Museam, that’s
where you'll (informal) find what I call total design...”).2 Dutch usage conventions
prevent Prof. van Os from addressing his audience using the informal, although it
must also be kept in mind that his ability to stretch conventions is part of his
narrative talent.

3.2 SEMAINE

The SEMAINE project is a European Commission Seventh Framework Program
(EU-FP7)3. To this day conversations between humans and machines are
substantially different from conversations between humans [43]. While humans
can talk to one another for sustained periods, possibly hours, and may give
limited importance to the actual content of the interaction, human-machine
dialogue is often task oriented and finishes as soon as the task if fulfilled. The
aim of the SEMAINE project is to build a Sensitive Artificial Listener (SAL), a
multimodal dialogue system with the social interaction skills needed for
sustained conversation with a human user. A very well-known SAL-like system is
the Eliza chat bot [44], which was build to emulate a psychotherapist, using a
text-interface. In SEMAINE the system will emphasize “soft” communication
skills, like non-verbal, social and emotional perception, interaction and behavior
capabilities. Therefore the systems contains only very limited verbal capabilities.

In the SEMAINE system users can interact with one of the four characters
(known as SAL agents). Each agent has a particular emotional agenda and a
conversational goal of shifting the user towards that state. They are Prudence,
who is even-tempered and sensible; Poppy, who is happy and outgoing; Spike,
who is angry and confrontational; and Obadiah, who is depressive. Users are free
to choose which agent they will talk to at any given time.

1 From Beeldenstorm episode Tulpomanie, ‘Tulip mania’
2 From Beeldenstorm episode Leven met kunst, ‘Living with art’
3 http://cordis.europa.eu/fp7 /home_en.html
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3.2.1 SEMAINE Dataset

The SEMAINE dataset [45] contains 13 recordings with each recording
consisting of four sessions. In each recording a user has a conversation with each
of the SAL agents (Poppy, Obadiah, Spike and Prudence), hence the four sessions.
The user can switch to the next agent whenever they want and can also choose in
which order to talk to them. Most conversations between the user and the agent
last between two and ten minutes.

The conversations are annotated using the Feeltrace annotation toolkit.
Feeltrace is an instrument developed to let observers track the emotional
content of a stimulus, as they perceive it over time, which allows the capturing of
valence and arousal levels of the sessions. More information about Feeltrace can
be found in paragraph 3.2.2. Four annotators annotated the SEMAINE dataset.
Each session is annotated by at least one annotator to the maximum of four
annotators. Besides these Feeltrace annotations the following basic emotions are
also annotated: happiness, surprise and anger. Other emotions were not
annotated because they are likely to be either rare or absent. Finally, two of the
‘epistemic / affective’ states are annotated, namely agreement and interest [46].

The dataset also contains the audio recording of the sessions. Both user and
operator (SAL agent) speech are available. Speech transcripts also exist, although
unlike VideoCLEF, they are aligned on sentence level and not on word level. The
transcripts also hold vocalizations such as laughing, yawning, audible breathing
and coughing.

Finally, video is recorded at 49.979 frames per second and at a spatial resolution
of 780 x 580 pixels. Both the user and the operator are recorded from the front
by both a grayscale camera and a color camera. In addition, the user is recorded
by a grayscale camera positioned on one side of the user to capture a profile view
of their face.

Although in theory there should be 52 sessions that could be used for our peak
detection approach we noticed when inspecting the data that only 23 sessions
contain both the Feeltrace annotations and the sentence level aligned speech
transcripts.

It should also be noted that due to the different research goal of SEMAINE that
there is no ground truth about viewers’ emotional intensity, as there was no
need to. We discuss this in more dept in paragraph 3.2.3.

3.2.2 Feel Trace Annotations

The SEMAINE dataset is annotated using Feeltrace. Feeltrace is an instrument
developed to let observers track the emotional content of a stimulus, as they
perceive it over time, allowing the emotional dynamics of speech episodes to be
examined [47]. Underlying Feeltrace is a representation called activation-
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evaluation spaces, which has a long history in psychology [48, 49]. The scales are
alternately called arousal and valence, which are discussed in more depth in
paragraph 2.1.

The essential idea behind Feeltrace is to present activation-evaluation space as a
circle on a computer screen, and to have observers record their impressions of
emotional state by moving a cursor to the appropriate position in the space using
a mouse. Users have to move the mouse cursor to the state they feel. While they
move the cursor it changes color to reflect the appropriate emotional state. To
supplement the color-coding, verbal landmarks are added to the circle. An
example Feeltrace display is shown in Figure 6.

VERY ACTIVE

furious

exhilarated

excited

terrified

imerasted

delighted

ary

. afraid PPy
pleased

disgusted

blissful

VERY NEGATIVE VERY POSITIVE

|
relaxed

bored content
serene

despairing

VERY PASSIVE

Figure 6: Example of a FEELTRACE display during a tracking session. Cursor color changes from
red/orange at the left hand end of the arc, to yellow beside the active/passive axis, to bright green
on the negative/positive axis, to blue-green at the right hand end of the arc. Image taken from [47].

It should be stressed that Feeltrace is not a perfect system. There are distinctions
that failed to be captured, notably the distinction between fear and anger. This
happens because the emotional space consists of the three dimensions (arousal,
valence and dominance) and Feeltrace only has two (arousal and valence).
Because the dominance dimension is left out is impossible to distinct fear and
anger. For our research this is not a real issue, since we use the Feeltrace
annotations to create a ground truth, which is based on valence and arousal
(3.2.3).

Another issue with the Feeltrace annotation tool is that the annotations always
have a delay. This is because users react to what they are seeing. This delay
varies between user since some users realize quicker how they feel and
experienced computer users are also able to operate the mouse cursor more
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proficiently. How we deal with this variation in reaction time is explained in
3.2.3. An example of these annotations is shown in Figure 7. The yellow line
represents arousal and the blue line valence, both ranging from -1.00 to 1.00.

Show:

@Arousal User R1
@Valence User R1
(] Arousal User R2
() valence User R2
(7] Arousal User R3
() valence User R3

O Sound ™ sound

Arousal User R1

Valence User R1
0.75

0.50

0.25

0.00

-0.50

00:00 01:00 02:00 03:00 04:00

Figure 7: Example of the Feeltrace annotations, over time (x axis; minutes:seconds). The yellow line
represents the arousal values and the blue line valence, both ranging from -1.00 to 1.00.

3.2.3 SEMAINE Ground Truth

Unlike VideoCLEF, the SEMAINE dataset has no annotated emotional intensity
peaks. However, the dataset is annotated with continuous valence and arousal
levels by up to four raters using Feeltrace. From these annotations a ground
truth is extracted containing the emotional intensity peaks of the experiencer
using the following steps.

First, we average the continuous annotations of all annotators on segments of
experiencer speech. Averaging the traces eliminates potential individual biases
and achieves a more general view [50]. Besides the potential risk of sacrificing
important individual information there is a second risk when averaging the
traces; traces can flatten each other out, resulting in a flat trace. However,
averaged annotations can also outperform models trained on solely on
individual-specific annotations as [51] have shown.

Then the changes in valence and arousal are calculated for every 0.5 seconds. An
increase in valence or arousal is assigned with a positive change in arousal, a
decrease negative. The reason we choose to use the changes in valence and
arousal and not the valence and arousal values itself is because we want to
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detect spikes and not a heightening in emotional intensity. By calculating the
changes in valence and arousal only the spikes in emotional intensity are
detected. Unlike VideoCLEF annotators were asked to annotate valence and
arousal and not peaks. From our observations using the feature browser we
noticed that most spikes in valence and arousal happen within five seconds of
the video content, while in VideoCLEF peaks would last for 9.4 seconds on
average. As we already noted earlier, one of the issues with Feeltrace is the
reaction time of the users. Some users annotated slower than others. Therefore,
we extend the windows of five seconds to seven seconds.

In order to reflect intensity, we take changes in arousal only in account when
those cases are active, i.e., positive. A negative arousal corresponds to passive
affect — a lack of involvement or engagement and should not contribute to
intensity. We calculated the intensity using Equation 1 for every 0.5 seconds
using the average arousal and valence values of the continuous annotation.
Equation 1 is based on Figure 1 and returns the distance between from the origin
to a point in the 2D arousal-valence space. In order to reflect intensity, we take
arousal into account only in those cases that it is active, i.e., positive. Parallel to
the ground truth for the VideoCLEF narrative peak corpus, the three highest
maxima within the video are used as the ground truth intensity peaks. This
ground truth is created in order to compare the results directly with the
VideoCLEF results. The resulting total is 69 ground truth intensity peaks in the
23 interaction sessions.

Equation 1

2
. . arousal + | arousal | )
intensity = + valence

2

A Second Ground Truth

In paragraph 3.1.3 we had some remarks on the VideoCLEF ground truth,
especially because the task stated that in each episodes three peaks must be
identified. Therefore we created a second ground truth (@ALL), containing all of
the peaks that are spikes in the emotional intensity. To create a ground truth
based on those peaks we used the Java application Peak Pick!. With Peak Pick it
is possible to select peaks from a data collection. It works by calculating a
baseline for the intensity scores, and then selecting peaks based on their height
compared to the baseline. Peak Pick determines the optimal value for the
height/baseline ratio automatically. Based on this data it turned out that peaks
are considered to be a valid peak of the height of a peak is 3 times greater than
the baseline.

Lhttp://redpoll.pharmacy.ualberta.ca/lab_talks/PeakPick.pdf
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An example of the difference between the @3 (ground truth containing the top 3
peaks) and @ALL ground truth is shown in Figure 8 below:

04

3 27 51 75 98 123147171195219243267291

— intensity score

Figure 8: Example of the two ground truths. The @3 ground truth contains peak 1, 3 and 4 while
the @ALL contains all peaks 1-5

In total Peak Pick identified 51 peaks in the 23 sessions. The number of peaks
per episode ranges from zero to five.

3.3 Main Differences between the Datasets

Both settings involve unilateral intent on the evokers’ part to shift the affective
state of the experiencer. In this section the three main differences between the
VideoCLEF and SEMAINE dataset are presented.

SEMAINE sessions are interactive

In VideoCLEF the episodes are not interactive, while the SEMAINE sessions are.
Prof. van Os presents the series but the experiencer cannot react on his
statements. In SEMAINE the experiencer can react to the evoker at any given
time.

Communication

The conversations in SEMAINE are one-on-one, while in VideoCLEF there is one-
to-many. In SEMAINE the evoker can use a more personal approach to influence
the experiencers’ state towards a particular emotion. Prof. van Os talks to a
larger audience and therefore has to utilize a more general approach.
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Dimensions of annotations

Finally, as we already mentioned earlier in this chapter the dimensions of
annotations are different. Annotations of VideoCLEF consist of viewer-reported
narrative peaks, while SEMAINE is annotated with continuous affective ratings.
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4 Experimental Framework

Chapter two described the state of art peak detection approaches and the
features they used. In this chapter we formulate which features were selected for
the automatic intensity peak detection. We build and test two models: the evoker
model in a narrative setting, predicting peaks of viewer response and the
experiencer model in a conversational setting, which detects peaks in
interlocutor’s speech. Recall that our models are one-sided (i.e., trained on a
single participant role). One-sided models are useful in domains such as
telephony, where privacy reasons might restrict full recordings. They are also
well suited for entertainment settings where the reaction of the listener/viewer
is minimal or difficult to record.

4.1 Domain-specific Features

The following features are selected based on the viewing of the video clips in
each dataset. However, since the SEMAINE dataset was not available in time we
could only select features that indicate a peak from VideoCLEF. Although the
selected features are domain-specific features we still use the same features in
both models, so the results of the models can be compared.

4.1.1 Features Related to Dramatic Pauses

In paragraph 3.1.4 we observed that in the Beeldenstorm episodes peaks could be
categorized in “summary peaks”, “statement peaks” and “humorous peaks”. The
problem with these peaks is that high-level features determine these peaks; it is
the meaning that increases the dramatic tension of the viewer and not some low-
level features. Luckily, the producer of Beeldenstorm helps us here a little. To
increase the dramatic effect, often these peaks are followed by a pause in speech
to increase the dramatic tension even more. Pause is a low-level audio feature,
but because most of the times music begins to play in a pause, we use the speech
transcript to detect these pauses. Features related to these pauses are shown in

Table 3.

4.1.2 Features Related to Pronoun Usage

From our observations in paragraph 3.1.4 we found that first and second
pronoun usage are good indicators for a peak and also in our literature study we
found this (cf. paragraph 2.1.1). To detect social engagement we used second
personal pronominal forms (e.g., u, ‘you’; uw, ‘your’) to identify audience directed
speech and first person pronominal forms (e.g., ik, ‘1) to identify personal
revelation of the speaker. Notice that first person plural forms (e.g., wij, ‘we’)
might actually be correlated with either case, serving generally to draw the
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audience into the story. Table 3 summarizes the domain-specific features we
selected for VideoCLEF.

Table 3: Domain-specific features in VideoCLEF

Feature Description

next-pause Number of seconds to the next pause
previous-pause  Number of seconds to the previous pause

pronouns Number of pronouns in a give segment

4.2 Acoustic Features

To choose our acoustic feature set we look at indicators from the literature and
select a set that have been shown to perform well and also can be
straightforwardly extracted from the speech. We use acoustic features
corresponding to speech characteristics triggered by the physiology of emotion
(cf. paragraph 2.1.1). In particular, popular features related to pitch, energy and
speech rate [52] are chosen. In the following the word segment is used to which
we refer as a subpart of a video clip. In order for our peak detection approach to
detect peaks we extract features from these segments to determine if that
segment is a peak or not. In section 4.4 we describe this peak detection approach
in more detail.

Intensity

The intensity is based on the energy of the audio signal. To calculate the intensity
for each segment, the sampled audio is first divided into non-overlapping frames
of 0.5 seconds. Then the energy for each frame is calculated program Praat,
which is developed by [53]. The Praat script used to extract the intensity can be
seen in Appendix A. A segment consists of several frames, depending on the
segment length. From each segment the features of Table 4 are extracted. In
previous studies [2, 30] the acoustic intensity is used to model arousal, where an
increased intensity is associated with an increased arousal.

Table 4: Intensity (acoustic) features based on the audio signal

Feature Description

intensity The average intensity of all frames within a given
segment

min-intensity The minimum level of intensity

max-intensity The maximum level of intensity
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range-intensity The range of the intensity, calculated by max-intensity -
min-intensity

d-intensity Standard deviation of the intensity, (square root of the
variance)

d-next-intensity Absolute difference between the average intensity of the
current frame and the average intensity of the next
frame

d-previous-intensity ~ Absolute difference between the average intensity of the
current frame and the average intensity of the previous
frame

Pitch

The second acoustic feature used to detect peaks is pitch. Pitch represents the
perceived fundamental frequency of a sound. Pitch is used by [2, 30] for affective
modeling in video content, where they use the pitch to measure valence levels.
Valence is much more complex to model than arousal [54], and the exact relation
between pitch and valence is still unknown. However, since both [2, 30]
successfully apply pitch features in their affective models, we also choose to use
these features. Again we use Praat to extract the pitch from the audio signal, see
Appendix A for the Praat script. The pitch values are calculated for the same 0.5-
second non-overlapping frames we used to calculate the intensity. Table 5 shows
the features based on the pitch.

Table 5: Pitch features based on the audio signal

Feature Description

pitch The average pitch of all frames within a given segment

min-pitch Minimum value of the pitch

max-pitch Maximum value of the pitch

range-pitch The range of the pitch, calculated by max-pitch - min-
pitch

d-pitch Standard deviation of the pitch, (square root of the
variance)

d-next-pitch Absolute difference between the average pitch of the

current frame and the average pitch of the next frame

d-previous-pitch Absolute difference between the average pitch of the
current frame and the pitch of the previous frame
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Speech Rate

We conjecture that emotional intensity rises along with the speech rate. As
recent studies have shown, increased speech rate is associated with high arousal
ratings [55] and indicates emotional intensity [56]. A slower speech rate is
generally associated with passive emotions [57]. Therefore we believe that an
increased speech rate as a feature contributes to the identification of a peak. The
speech rate is calculated from the speech transcripts.

Speech rate can be defined in many different ways [58], depending on whether
the focus is on information transfer (normally expressed in terms of the number
of words per second) or on the number of events per unit (typically expressed in
terms of the number of syllables or phonemes per second. Other variables
determining the definition of speech rate are the inclusion or exclusion of silent
pauses and the representation (orthographic or phonetic transcriptions) of the
event under investigation. Because the segments have a relatively short length
(between three and ten seconds see section 4.4), we choose to define the speech
rate as phonemes per second, as the information transfer in such a short time is
limited.

Table 6: Features based on speech rate

Feature Description

speech-rate Speech rate within a given segment (phonemes/second),
excluding pauses

speech-rate-pause Speech rate within a given segment (phonemes/second),
including pauses

4.3 Lexical Features

Finally, the last features that are selected for peak detection are features based
on the speech transcripts. We choose to focus on functional words, in particular
on pronouns (cf. paragraph 2.1.1). We leave content words out of consideration
due to issues related to their topic dependence, mentioned in [11]. The following
features are extracted from the speech transcripts: affective word rating, parts of
speech and stop words. In the following subsection these features are described
in more detail.

Affective Word Scores

Our final feature based on the affective level of video content is based on the
hypothesis that dramatic tension rises when the speaker in the video uses
speech made vivid by the use of certain emotional words. Although emotion can
be conveyed by prosodic variation, including changes in loudness, pitch and
speed, emotion is also conveyed by the choice of lexical items. People tend to use
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specific words to express their emotions because there is a conventionalized
relationship between certain word forms and certain emotions. In the field of
psychology, one way of establishing the connection between word forms and
emotions is to ask subjects to list the English words that describe specific
emotions [48].

Each segment is assigned an affective rating score that is calculated in a
straightforward manner using these basic affective levels in order to identify
emotional intensity. The approach makes use of Whissell’s Dictionary of Affect in
Language as deployed in the implementation of [59], which is available onlinel.
This dictionary of words and scores focuses on the scales of valence and arousal
levels. The scales are alternately called evaluation and activation and range from
-1.00 to 1.00.

Under our approach, emotional intensity peaks are identified with a high arousal
emotion combined with either a very pleasant or unpleasant emotion. In order to
score words, we combine the evaluation and the activation score into an overall
affective word score using Equation 1. From each segment the average affective
word score is extracted using Equation 2.

Equation 2

E . wordscore

affective-word-score = N

Here, N is the number of words within a segment that are included in Whissell’s
Dictionary. In order to apply the dictionary, we first translate the Dutch-language
speech recognition transcripts into English using the Google Language API?

Table 7: Features based on speech rate

Feature Description

affective-word-score  The affective score as calculated with Formula 1 and 2.

Part of Speech Information

We conjecture that the part-of-speech tags of words contain information that
helps identifying peaks. As we saw from the observations in paragraph 3.1.4 the
use of first and second person pronouns are a good indicators for a peak. One
good example is the use of adjectives: ...op een hele specifieke manier gaat
beleven, want dit is een hele mooie ruimte in een groot paveljoen... (‘...experience

Thttp://technology.calumet.purdue.edu/met/gneff/Publications/ica02 /affectdic
tionary.html
2 http://code.google.com/intl/nl/apis/ajaxlanguage/
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in a very specific way, because this is a beautiful space in a large pavilion...").1
Although we do not see any direct correlation between the number of adjectives
and the annotations we still believe this information might prove helpful in
combination with other features.

The part of speech information is extracted by using the speech transcripts. For
the Beeldenstorm episodes Tadpole is used. Tadpole, stands for Tagger,
Dependency Parser, and Other Linguistic Engines, is an integration of memory-
based language processing modules developed for Dutch [60]. The following
parts-of-speech are extracted from each segment: adjectives, nouns and verbs
(and of course pronouns, paragraph 3.1.4).

Table 8: Part of speech features

Feature Description

adjectives The total number of adjectives

nouns The total number of nouns

verbs The total number of verbs

pronouns The total number of pronouns
Stop Words

Our final hypothesis is that peaks contain an assortment of words that are not
used on a frequent basis (e.g. a richer vocabulary) than non-peak segments. In
order to measure the words in a segment we use a stop word list. Stop words are
words that are filtered out prior to, or after, processing of natural language data.
Words that are filtered out are words that would make poor index terms [61].
Stop lists contain the most frequently occurring words. We used a stop list that
was provided by TNO (Netherlands Organization for Applied Scientific
Research)?, which contains 1358 stop words. The majority of this list consists of
functional words. The features related to stop words are shown in Table 9.

Table 9: Stop word features

Feature Description
total-words The total number of words
stop-words The total number of stop words

1 Beeldenstorm episode Museum Insel Hombroich
2 http://www.tno.nl/
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non-stop-words  The total number of non stop words

4.4 Peak Detection Approach

Our initial thought was to make a rule based peak detection system. Based on a
list of rules the peaks would be detected for each episode. To develop a
successful rule-based peak detection system a set of rules must be defined. From
our observations in paragraph 3.1.4 we already mentioned that we failed to see
any clear indicators as to which specific audiovisual features could be used to
identify peaks, even when looking at the annotations that were provided. To get
a better insight in the features and what combination of features form a peak we
build a feature browser. The feature browser shows all the features from the
previous sections on a timeline, together with the annotations. The video is
shown above the browser. Features can be turned on and off to see which
combinations are useful for detecting peaks. The feature browser is shown in
Figure 9.
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Figure 9: Feature browser (showing only audio features)

However, even with the feature browser we were not able to find any obvious
combinations of features that indicate peaks. In total there are 27 different
features, which makes it hard to get a good understanding of the relations
between the different features. Another problem is that a combination of
features that lead to good peak detection results in one episode, do not
necessarily lead to good peak detection results in other episodes. Furthermore,
with 45 episodes it is almost impossible for humans to find a list of rules based
on this data.

Therefore, the idea of using a rule-based peak detection system was rejected.
Instead we apply learning algorithms to identify which combination of features
offers the best peak detection performance. Learning algorithms “learn” from
observations and have generally a good performance. This performance depends
on the quality and quantity of training data. If the quality of the training data is
high (less noise) and sufficient data is available performance will be good. On the
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other hand, if there is insufficient training data available performance of a
classifier will decrease. Both datasets do not have a training set available.
Therefore we use all data as training data and use a leave-one-out cross-
validation to evaluate the models.

In a leave-one-out cross-validation, the original dataset is randomly partitioned
into k sub sets, where k is equal to the number of video clips in the dataset. Of the
k sub sets, a single set is retained as the validation data for testing the model, and
the remaining k - 1 sub sets are used as training data. The cross-validation
process is then repeated k times, with each of the k sub sets used exactly once as
the validation data. The k results from the folds then can be average to produce a
single estimation.

4.4.1 Applying Learning Algorithms on the Dataset

To apply machine learning techniques on the peak detection task we first need to
convert the dataset. Each episode must be divided into segments of the same
length. From each segment, the features as described in the previous sections are
extracted, so that each segment contains 27 attributes (pitch, min-pitch, range-
pitch etc). An extra attribute called “peak” is also added. This peak attribute
indicates whether the segment is a peak or not and the values are yes or no. We
set this value to yes if more than 70% of the segment overlaps with a reference
peak from the ground truth.

Because the length for all segments must be the same we need to setitto a
certain value. From the VideoCLEF definition of peaks we know that ten seconds
is the maximum peak length, so using segments of ten seconds would make
sense. However, using a length of ten seconds could average the pitch and
intensity features as small increases or decreases are faded out. The shortest
peak in the ground truth is 3.1 seconds, indicating that a peak needs some time
to manifest. By using segments of three seconds, small increases/decreases in
pitch and/or intensity are not lost with feature extraction. It is impossible to
determine the optimal value for the segment length and thus we choose to vary
the length between three and ten seconds and obtain the optimal value from the
evaluation.

4.4.2 WEKA Toolkit

To apply learning algorithms on the dataset the Weka toolkit is used [62]. Weka
is a collection of machine learning algorithms for data mining tasks. Before we
can use our data in Weka we first need to convert it to the ARFF (Attribute-
Relation File Format) file format used in Weka. An ARFF file is an ASCII text file
that describes a list of segments sharing a set of attributes.
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@attribute id string

@attribute pitch numeric

@attribute intensity numeric
@attribute range-pitch numeric
@attribute range-intensity numeric
@attribute affect numeric

@attribute speech-rate numeric
@attribute speech-rate-pause numeric
@attribute peak yes or no

@data

'BG_36926 0.0 5.0',147.67783,70.415708,188.42131,59.30469,0,5.034325,4.4,n0

'BG_36926 5.0 10.0',120.848728,77.358411,43.13556,14.07578,0.076039,5.839416,3.2,n0
'BG_36926 10.0 15.0',122.178043,72.681101,58.28801,15.33588,0,11.409396,3.4,n0
'BG_36926 15.0 20.0',192.227918,78.056019,148.62988,20.67351,0.082297,11.201629,11,n0
'BG_36926 20.0 25.0',191.334702,73.52165,117.35513,23.56143,0.006992,8,8,yes

'BG_36926 25.0 30.0',179.467202,71.052695,75.83876,23.29088,0.057265,7.569721,7.6,yes
'BG_36926 30.0 35.0',165.265538,77.129202,80.99775,21.70483,0,10.973085,10.6,n0
'BG_36926 35.0 40.0',161.946066,77.224823,129.19201,22.81541,0.073195,8.130081,8,n0

Figure 10: Example ARFF file

As can be seen from Figure 10 the ARFF file contains all the segments and each
are assigned a set of features (attributes). The last attribute indicates whether
this segment is a peak or not. We added an extra attributed called ID. This
attribute is used to identify each segment so that it later can be used for the
VideoCLEF evaluation.

4.4.3 Classification Algorithms

What we are doing is a typical example of supervised learning, where the
training data is labeled. Supervised learning involves learning a function from
examples of its inputs and desired outputs [63]. Learning is done by so called
classifiers, which maps sets of input attributes to tagged classes (in this case yes
or no). In Weka a wide range of classifiers is available, each with its own
strengths and weaknesses. We choose the Naive Bayes and ]48 classifiers; first,
because they are relatively simple compared to other classifiers and therefore
generate a more generic model. A second reason for choosing these classifiers is
that they both are able to output the predictions per segment. Using these
predictions it is possible to select the top three peaks per episode needed for the
VideoCLEF evaluation. The final reason is that the Naive Bayes classifier is a
generative model while the J48 is a discriminative model. Generative models
contrast with discriminative models, in that a generative model is a full
probability model of all variables, whereas a discriminative model provides a
model only of the target variable(s) conditional on the observed variables. By
using two different models we can test whether the performance depends on the
model or on the features. The following subsections give a bit more detail about
the classifiers and why we choose them.
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Naive Bayes

A Naive Bayes classifier is a simple probabilistic classifier based on applying
Bayes' theorem with naive independence assumptions. A Naive Bayes classifier
assumes that the presence (or absence) of a particular feature of a class is
unrelated to the presence (or absence) of any other feature. Although, we expect
that features in our datasets are dependent of each other - a peak is not formed
by only one feature, but a combination — Naive Bayes classifiers have worked
quite well in situations with dependent features. The main reason for choosing
the Naive Bayes classifier is that it requires only a small amount of training data
to estimate the parameters (means and variances of the variables) necessary for
classification. Because independent variables are assumed, only the variances of
the variables for each class need to be determined and not the entire covariance
matrix.

J48

The J48 is a decision-tree classifier based on the C4.5 algorithm developed by
Ross Quinlan [64]. Although in general decision-tree classifiers cannot output
probability distributions, C4.5 has some built-in algorithms to calculate these
distributions. A decision tree takes as input an object described by a set of
attributes and returns a “decision”, the predicted output value for the input.
Decision trees reach their decision by performing a sequence of tests. Each
internal node in the tree corresponds to a test of the value of one of the
properties, and the branches from the node are labeled with the possible values
of the test. Each leaf node in the tree specifies the value to be returned if that leaf
is reached. The main reason for choosing the J48 classifier is that the decision
tree returned by WEKA can be visualized and expressed in a set of rules; hence a
rule based peak detection system. An example of such a decision tree is shown in
Appendix B. The J48 implementation provided by Weka automatically applies
pruning to the generated decision-trees, this avoids overfitting and over-complex
trees.

4.4.4 Non-overlapping and Overlapping Segments

When creating the segments we created both non-overlapping and overlapping
segments. The non-overlapping segments move along the timeline of the video
by increasing the start time of the segments by the window length. For example
if a window length of five seconds is used the start and end times of the first
three segments look like this: [0 - 5] [5 - 10] [10 - 15]. Overlapping segments
are created by moving an x-second sliding window over the videos, advancing
the window by one second at a step, where x is the window length. The first
three segments for the overlapping segments look like this: [0 - 5] [1 - 6] [2 - 7].

Between the overlapping and non-overlapping segments there are two major
differences. First, when using the overlapping segments the amount of data
increases by a factor 3 to 10 compared to the non-overlapping segments,
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depending on the window length. More data means in general better
classification performance. The second difference is that the times of peak
segments are more accurate when using the overlapping segments. For example,
if in the ground truth a peak is identified from 25 till 35 seconds, this peak is
ignored when using the non-overlapping segments, since it does not overlap by
70% with one of the segments ([20 - 30], [30 - 40]). When using the overlapping
segments this peak will not be ignored.

The reason to use both non-overlapping and overlapping segments is that the
overlapping segments in combination with a leave-one-out cross-validation is
very expensive from a computational point of view. Because there much less data
when using the non-overlapping segments, training does not take long compared
to training on overlapping segments. Also since the Naive Bayes classifiers does
not need a lot of training data compared to the ]J48 classifier it is interesting to
see how well this combination will perform. For the J48 classifier we expect the
best performance when using overlapping segments. Because there are more
segments in the training set this decision tree should have better thresholds for
the leafs when using these overlapping segments, which results in a better
classification.

As stated earlier we use a leave-one-out cross-validation to evaluate the models.
To make sure no properties of the data are shared between the training and test
set, the folds of leave-one-out cross-validation are across the episodes.

4.4.5 From Weka Results to VideoCLEF/SEMAINE Evaluation

The final step in our peak detection system is to select the peaks from the
probability distribution provided by the classifiers. Participants of the
VideoCLEF affect task were required to identify the three highest peaks in each
episode. Our approach detects narrative peaks using the following sequence of
steps. First, to convert the Weka results into the top three peaks for each episode
we used the “output predictions” option from Weka. When this option is selected
Weka outputs the probability distribution for each segment. The ID attributed
was used to select all peak candidates from one episode. Then, the peak
candidates are ranked with respect to their predictions for being a peak. If
predictions are the same across several candidates, we rank the candidates
according to how many surrounding neighbors candidates they have with the
same prediction. Candidates that have more neighbors are ranked higher.
Finally, peak candidates are chosen from this ranked list, starting at the top, until
a total of three peaks have been selected.

4.5 Peak Detection Approach SEMAINE

For SEMAINE the same peak detection approach is used as described in
paragraph 4.4. In short: the sessions are divided in small segments varying from
three to ten seconds. Next we extract features we selected in this chapter to each
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of the segments. After the features are extracted from all segments, machine-
learning algorithms are applied in order to predict peaks. Although our peak
detector should be as generic as possible we still had to makes some changes due
to differences between the VideoCLEF and SEMAINE dataset. In the following
subsections we describe these changes.

4.5.1 Sentence aligned transcripts

Speech transcripts from the datasets differ with respect to their alignment. In
VideoCLEF the speech transcripts are aligned on word level while in SEMAINE
the transcripts are aligned on sentence level. When the start and end time for
each word is known it was no problem calculating the pronouns for a certain
segment. With sentence level alignments only the start and end times of the
sentences are known. When counting for example the pronouns this becomes a
problem, as it is impossible to detect to which segment the word belongs to. In
our approach we worked around this problem by dividing the total words in a
sentence by the length of the sentence. This way we can estimate when a certain
word is being said. Of course this is not as accurate as the word level alignments
and therefore the textual features are not as precise as in VideoCLEF.

Because of these sentence-aligned transcripts we could not use the same
implementation for the next-pause and previous-pause features as we used for
VideoCLEF. The implementation relies on the exact time markers in the speech
transcripts. Although it would still be possible to build a pause detector based on
the audio signal, we decided not to implement these two features for SEMAINE,
since these features are domain specific features (paragraph 3.1.4). Based on our
observations we noticed that there are no dramatic pauses in SEMAINE - the
datasets consists of continuous dialogs — making the pause detector redundant.

4.5.2 Part of Speech Information

In SEMAINE the spoken language is English, while in VideoCLEF the spoken
language is Dutch. Tadpole, the part of speech tagger we used for the VideoCLEF
dataset only works for Dutch language. We decided to use the Stanford part of
speech taggerl, originally developed by [65]. The main advantage of this tagger is
that it is written in Java making it possible to implement it directly in the peak
detection workflow and therefore eliminating manual intervention that was
needed with Tadpole.

4.5.3 Speech Rate

As we already mentioned in paragraph 4.5.1 the speech transcripts are aligned
on sentence level. Because they are not aligned on word level it is impossible to

Lhttp://www-nlp.stanford.edu/software/tagger.shtml
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calculated an accurate speech rate from the speech transcripts. In order to still
calculate the speech rate we use a Praat script to detect the syllable based on
audio only. This script is developed by [66] and allows us to calculate the speech
rate from the syllable nuclei.

4.5.4 More Speakers

In SEMAINE there are nine users that have conversations with the agents, both
females and males, while in VideoCLEF there is only one narrator. Because
females have a higher average pitch than males, and the intensity between users
vary, the pitch and intensity features must first be normalized. We normalized
the features with a z-normalization based on each session.
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5 Evaluation VideoCLEF

This chapter describes how the evaluation on the VideoCLEF dataset was
performed. First, we explain the two different scoring methods that were used
for the evaluation. Then we present the results of our models for the narrative
peak detection task and do a failure analysis, to get a better understanding
where our models correctly predict peaks and where it fails. Finally, we conclude
this chapter with a discussion on the results. But before we explain the scoring
methods, we present a short summary of the VideoCLEF dataset and our peak
detection approach.

The VideoCLEF dataset consists of 45 episodes of the Dutch TV series
Beeldenstorm. Beeldenstorm limits the spoken content to a single speaker. Three
Dutch annotators created the ground truth by marking three points per episode,
where they felt the dramatic tension reached its highest level. We used a Naive
Bayes classifier and a decision tree for our experiments and trained models
based on the 45 episodes. Evaluation was done by leave-one-out cross-
validation. In each fold, one episode/session was left out. Peaks are selected
based on the probability distribution from the models. The three segments with
the highest probability are returned as a peak.

5.1 Scoring Methods

Evaluation is done with two scoring methods, a point-based scoring method and
a peak-based scoring method, both provided by VideoCLEF 2009. The point-
based scoring method gives a point for each overlapping peak with the ground
truth. Peaks are considered overlapping if that peak is within eight seconds of
the midpoint of a reference peak. The total number of points is the evaluation
score. A single episode can return a score between three points (assessors chose
completely different peaks) and nine points (assessors all chose the same peaks).
However, there are no episodes were all assessors picked the same peak, or
completely different peaks. A perfect run returns 246 points with the point-
based scoring method.

Under peak-based scoring, the total number of correct peaks is reported as the
run score. The peak-based scoring is subdivided into personal peaks (peaks
identified by only one assessor), pair peaks (peaks that are identified by at least
two assessors) and general peaks (peaks that all three assessors agreed on). In
total, there were 205 personal peaks, 89 pair peaks and 22 general peaks. The
scores for a perfect run under the peak-based scoring method are 203 for the
personal peaks, 89 for the pair peaks and 22 for the general peaks.
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Via simulation we calculated that an approach that randomly picks points at
which to hypothesize three peaks in a file will automatically score, on average,
approximately 40 points under the point-based scoring method. Under the peak-
based method it would score on average 28 correct “personal peaks”, nine
correct “pair peaks” and two correct “general peaks”. We use these scores as a
baseline.
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Figure 11: Peak-based scoring example, showing the probability for a peak over time. The top three
peaks are circled. The grey areas are the peaks identified by the annotators.

Figure 11 shows the output predications for the Beeldenstorm episode “Leven
met kunst” (Living with art). The peak detector selects the top three peaks with
the highest probability for a peak, in Figure 7 these probabilities are circled. The
grey areas are the peaks identified by the assessors. If we apply the peak-based
scoring method on this episode, we get a result of two, since the second and third
peaks are overlapping. The best possible score for this episode is four: two
points for detecting the fourth peak - because two assessors marked this peak -
and two points for detecting two other peaks.

5.2 Evaluation Results

The results are subdivided by classifier, Naive Bayes and J48. For each classifier
we ran six different configurations. These configurations are based upon the
non-overlapping and overlapping segments and the kind of features added to the
segments, audio features, text features or a combination of both features. The
following subsections outline our results. Note that the results are identified by
the run id, which is made of the classifier (nb for Naive Bayes), the window
length (range 3-10) and finally if the classifier was trained on the overlapping or
non-overlapping segments, for example the run id nb-7-n represents a run from
the Naive Bayes classifier trained on a window length of seven seconds with non-
overlapping segments.
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Table 10 shows the perfect and baseline score for the different scoring methods.

Table 10: Overview of the perfect and baseline scores

Run

perfect

random baseline

Point-based

246
40

Peak-based

“Personal Peaks”

135
28

Peak-based Peak-based
“Pair Peaks” “General Peaks”
89 22
9 2

5.2.1 Naive Bayes

Table 11 lists the top three results for the Naive Bayes classifier based on both
the non-overlapping and overlapping segments. The complete results are shown
in Appendix C, Table 25 and Table 26. The segments with a window length of
nine seconds shows the best performance followed by seven seconds.

Table 11: Naive Bayes results

Run Point-based Peak-based Peak-based Peak-based
“Personal Peaks” “Pair Peaks” “General Peaks”
nb-7-o 64 (26.0%) 42 (20.7%) 19 (21.3%) 4 (13.6%)
nb-7-n 63 (25.6%) 41 (20.2%) 17 (19.1%) 3 (22.7%)
nb-5-n 62 (25.2%) 47 (23.2%) 15 (16.9%) 3 (13.6%)
Audio

In this section the same evaluation is done except this time only audio features
are assigned to the segments. All textual features are ignored. As can be seen
from Table 12 the performance decreases using only audio features, indicating
that audio features are not a good indicator for a peak in this setting.

Table 12: Naive Bayes results using only audio features

Run

nb-10-n

nb-9-n
nb-9-o

Point-based

52 (21.1 %)
51 (20.7%)
46 (18.7%)

Peak-based

“Personal Peaks”

38 (18.7%)
38 (18.7%)
32 (15.8%)

Peak-based Peak-based
“Pair Peaks” “General Peaks”
12 (13.5%) 3(13.6%)
10 (11.2%) 2 (9.1%)
11 (12.4%) 2 (9.1%)

Text

Using only text features the performance is almost as good as using both audio
and text features, indicating that text features form the main contribution to the
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peak detection. Again we see almost the same performance when using
overlapping segments compared to the non-overlapping segments.

Table 13: Naive Bayes results using only text features

Run

nb-9-n
nb-10-n
nb-6-o0

Point-based

65 (26.4%)
62 (25.2%)
59 (24.0%)

Peak-based

“Personal Peaks”

47 (23.2%)
43 (21.2%)
38 (18.7%)

Peak-based

“Pair Peaks”

17 (19.1%)
13 (14.6%)
17 (19.1%)

Peak-based

“General Peaks”

3 (13.6%)
5 (22.7%)
4 (18.2%)

5.2.2 )48

Table 14 shows the top three results for the J48 classifier using both audio and
text features. Here, we see clearly that models trained on the overlapping
segments outperform models trained on the non-overlapping segments. Using
non-overlapping segments the performance drops to the level of the random
baseline detector. Again models trained on segments with a longer window
length perform better than segments with a shorter window length. Overall the
models trained with the J48 classifier perform better then models trained with
the Naive Bayes classifier.

When we take a deeper look at the results of the best scoring run, j48-10-o, we
see that the trees generated for this model are very complex; the total number of
leaves for this tree is 564 and the size of the tree is 1117. These numbers are
based upon the pruned tree, provided by Weka.

Table 14: J48 results

Window Length

j48-10-0

j48-8-0
j48-7-0

Point-based

75 (30.5%)
74 (30.1%)
74 (30.1%)

Peak-based

“Personal Peaks”

49 (24.1%)
48 (23.6%)
46 (22.7%)

Peak-based

“Pair Peaks”
22 (24.7%)

22 (24.7%)
21 (23.6%)

Peak-based

“General Peaks”

8 (36.4%)
7 (31.8%)
7 (31.8%)

Audio

Just like the models trained on both audio and text features, the models based on
the non-overlapping segments perform similar to the random baseline detector.
The top three results for the overlapping segments are shown in Table 15. Just
like the results of the Naive Bayes classifier the performance decreases when
using only audio features compared to models trained on both audio and text
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features, showing that audio features alone are not able to identify the narrative
peaks created by Prof. van Os with our approach.

Table 15: J48 results using only audio features

Window Length  Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
j48-9-0 50 (20.3%) 36 (17.7%) 11 (12.4%) 3 (13.6%)
j48-7-0 48 (19.5%)  35(17.2%) 10 (11.2%)  2(9.1%)
j48-10-0 47 (19.1%) 34 (16.7%) 11 (12.4%)  2(9.1%)

Text

Table 16 shows the results of models trained with only text features. Again, the
overlapping segments clearly outperform the models trained on the non-
overlapping segments. The performance using only text features is almost equal
to the performance of models trained on both audio and text features, indicating
that, text features from the main contribution to the peak detection performance,
similar to the results based on the Naive Bayes classifier.

Table 16: J48 results using only text features

Window Length  Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
j48-10-0 77 (31.3%)  51(25.1%) 21(23.6%) 9 (40.9%)
j48-9-0 73 (29.7%) 52 (25.6%) 18(20.0%) 5 (22.7%)
j48-8-0 73 (29.7%) 49 (24.1%) 19 (21.3%)  8(36.4%)

5.3 Failure Analysis

After the experiments we analyzed a selection of cases manually in order to
better understand the results. We focus on the 22 general peaks since all the
annotators agreed upon these peaks. We found the properties of narrative peaks
in the corpus to be highly variable, reflecting a broad palette of creative narrative
strategies. For example, peaks can be characterized by either fast speech or slow
speech. In our failure analysis we use the results based upon the overlapping
segments with a window length of ten seconds because in general this setting
showed the best performance.

First, we checked if the performance of the two classifiers, the Naive Bayes and
the J48 classifier, is related. For text, the Naive Bayes classifier finds two of the
same correct peaks that the J48 decision tree classifiers finds. For audio, there is
one. Then we looked at the three peaks that both the audio and the text classifier
correctly identified. These are dramatic pauses, he gives his opinion directly
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using “I”, he tells the audience what the show will be about and he discusses the
deep emotions of one of the painters. The features that we selected seem to be
straightforwardly picking up characteristic properties of points that annotators

agree are peaks.

For the analysis of where our algorithm fails, we looked at ten points in ten
different episodes at which both audio and text classifiers predicted to be peaks,
but which turned out to be false positives (i.e. annotators did not select this part
as their top three peaks). We used the better performing classifier, ]48, for this
test. All of these predicted peaks seem to be plausible as narrative peaks. In two
cases, the classifier picked up the final sentence of the episode, (which we
defined as “summary peaks” in 3.1.4). Since closing remarks were often agreed
upon as peaks by all three annotators, these seem to be indeed very plausible
peaks. Indeed, both of these points had been chosen by one of the three
annotators to be a peak.

In four of the cases, the peak did have characteristic properties, but within the
narrative it was functioning as a transition from one topic to the next.
Apparently, such transitions do not have a peak-like affective impact on viewers.
Another two peaks fell right after a reference peak, which still gave the
impression of being a heightening of narrative tension, but the real spike in
narrative tension were just before these peaks.

5.4 Conclusions

Before we draw any conclusions based upon the results, the best performing
runs are listed in the overview Table 17.

Table 17: Results overview

Run Point-based = Peak-based  Peak-based  Peak-based
“Personal Peaks” “Pair Peaks” “General Peaks”
perfect 246 135 89 22
random baseline 40 28 9 2
All Features
nb-7-n 63 (25.6%)  41(20.2%) 17 (19.1%) 3 (22.7%)
nb-7-o 64 (26.0%)  42(20.7%) 19 (21.3%) 4 (18.2%)
j48-8-n 51(20.7%) 35(17.2%) 14 (15.7%) 4 (18.2%)
j48-10-0 75(30.5%) 49 (24.1%) 22 (24.7%) 8 (36.4%)
Audio Features
nb-10-n 52 (21.1%)  38(18.7%) 12 (13.5%)  3(13.6%)
nb-9-o 46 (18.7%) 32 (15.8%) 11 (12.4%) 2 (9.1%)
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j48-8-n 38 (15.4%) 26 (12.8%) 8 (9.0%) 2(9.1%)

j48-9-0 50 (20.3%) 36 (17.7%) 11 (12.4%) 3 (13.6%)
Text Features

nb-9-n 65 (26.4%) 47 (23.2%) 17 (19.1%) 3 (13.6%)

nb-6-o0 59 (24.0%) 38 (18.7%) 17 (19.1%) 4 (18.2%)

j48-9-n 44 (17.9%) 26 (12.8%) 13 (14.6%) 5 (22.7%)

j48-10-0 77 (31.3%) 51(25.1%) 21 (23.6%) 9 (40.9%)

As can be seen from Table 17 the best performing runs are those that were
trained using the J48 classifier with overlapping segments. Under the point-
based evaluation a score of 75 was achieved using both audio and textual
features and a score of 77 using only textual features.

Our initial assumption that peaks could be detected by a set of (simple) set of
rules (paragraph 4.4) appears to be wrong. Although a decision tree algorithm
achieves the best performance, this tree is far from simple. The decision tree
contains 564 leaves and the total size of the tree is 1117, which suggests that this
model is very specific and it would probably also perform poorly in other
domains or even other short-form documentaries. The results of the Naive Bayes
classifier are also interesting. It outperforms the random peak detector easily. As
noted in the failure analysis we found the properties of narrative peaks in the
corpus to be highly variable, reflecting a broad palette of creative narrative
strategies. This sort of diversity offers a possible explanation for the strength of
the J48 decision tree classifier, which imposes no assumptions concerning the
existence of underlying distributions.

Both classifiers show, in general, an increase in performance when using
segments with a longer window length. The best results are achieved when a
window length between seven and ten seconds is used, indicating that a peak
needs at least seven seconds to manifest itself.

When we compare the two classifiers based on the non- and overlapping
segments we see that the Naive Bayes classifiers accomplishes the best results
based on the non-overlapping segments while with the J48 classifier the opposite
is shown; best results are achieved using overlapping segments. The fact that
Naive Bayes performs better on less training data with less accurate peak times
can be explained by the scoring methods used by VideoCLEF, which give a point
if a peak is within eight seconds of a reference peak. Because of this relatively
large overlap (peaks last ten seconds), models with less accurate peak times can
still achieve a high performance. Also, the Naive Bayes only needs a small
amount of data for a relatively good performance compared to other classifiers.
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A deeper look into the features shows that the best performing models trained
with the Naive Bayes classifier combine both the auditory and textual features.
The best performance of the J48 classifier is achieved when using only textual
features or a combination of auditory and textual features. When comparing the
auditory features against the textual features based on performance we see that
both classifiers achieve the best results when using the text features. However, if
we look at each of the features individually, we see that the range-intensity, d-
intensity and min-intensity are the top three features based on the information
gain algorithm. This algorithm measures how much information is gained by
doing a split on the dataset based on a particular feature. Other audio features
did not improve the performance, as their information gain is zero. The text-
based features that have the highest information gain are: speech-rate-pause,
total-word, stop-words, pronouns and verbs.

Finally, since VideoCLEF is a multimedia benchmark evaluation we compare the
results with the other participants of VideoCLEF 2009. In total three teams
participated and their results are shown in Table 18. It should be noted that they
did not train models based on the ground truth as we did, and therefore it is not
possible to compare them directly. However it still gives a good indication about
our performance.

Table 18: VideoCLEF 2009 results

Run Point-based = Peak-based  Peak-based  Peak-based

“Personal Peaks” ~ “Pair Peaks” “General Peaks”
duotu09fix [67] 47 (19.1%)  28(13.8%) 8 (8.9%) 4 (18.2%)
duotu09ind [67]  55(22.4%)  38(18.7%) 12 (13.3%) 2 (9.1%)
duotuO9rep [67] 30 (12.2%) 21 (10.3%) 7 (7.8%) 0 (0.0%)
duotuO9pro [67] 63 (25.6%) 44 (21.7%) 17 (18.9%) 4 (18.2%)
duotu09rat [67] 63 (25.6%) 37 (182%) 20 (22.2%) 5 (22.7%)
unige-cvml1 [68] 39 (15.9%) 32 (15.8%) 6 (6.7%) 0 (0.0%)
unige-cvml2 [68] 41 (16.7%) 30 (14.8%) 11 (12.2%) 2 (9.1%)
unige-cvml3 [68] 42 (17.1%) 31 (15.3%) 8 (8.9%) 0 (0.0%)
unige-cvml4 [68] 43 (17.5%) 31 (15.3%) 9 (10.0%) 0 (0.0%)
unige-cvml5 [68] 43 (17.5%) 32 (15.8%) 8 (8.9%) 3 (13.6%)
uaic-runl [69] 33 (13.4%) 26 (12.8%) 7 (7.8%) 2 (9.1%)
uaic-run2 [69] 41 (16.7%) 29 (14.3%) 10 (11.1%) 3 (13.6%)
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uaic-run3 [69] 33 (13.4%) 24 (11.8%) 7 (7.8%) 2 (9.1%)
nb-7-n 63 (25.6%)  41(202%) 17 (19.1%) 3 (22.7%)
nb-7-0 64 (26.0%) 42 (20.7%) 19 (21.3%) 4 (18.2%)
j48-8-n 51(20.7%)  35(17.2%) 14 (15.7%) 4 (18.2%)

j48-10-0 75(30.5%) 49 (24.1%) 22 (247%) 8 (36.4%)

Most runs failed to yield significantly better than the random peak detector. The
two best scoring approaches exploited the speech recognition transcripts, in
particular, the occurrence of pronouns reflecting user directed speech
(duotu09pro) and the use of words with high affective rating (duotu09rat). Both
of these features are included in our approach (total number of pronouns and
the affective score). Models trained with the J48 classifier clearly outperform
these approaches. However, it is quite surprising that models trained with the
Naive Bayes classifier fail to achieve a better performance considering all other
features we included. It is hard to say why the Naive Bayes classifier does not
perform better, since models based on this classifier are so called black boxes,
only the input and output can be viewed, not the internal workings. A possible
explanation is that the duotu09pro and duotuQ9rat are very basic
implementations; they both select the peaks based on the highest values of these
features. It could be the case that all these values are close to each other. An
algorithm that tries to learn from these features will not find any useful
information since they are all so close together, while a basic approach will
simply select the top three highest values.
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6 Evaluation SEMAINE

This chapter presents the results achieved on the SEMAINE dataset. Two
evaluations are performed, based on the two ground truths we created in
chapter 4. We also evaluated performance based on agent character. The chapter
concludes with a discussion. But before we start with the evaluation, a short
summary is presented of the SEMAINE dataset and our peak detection approach.

The SEMAINE dataset consists of 23 sessions of emotionally colored character
interactions between a human interacting fully naturally (the experiencer), and a
human playing an agent with a particular emotional style. In total there are six
different speakers in the 23 session, three males and three females. The corpus is
annotated with continuous affective ratings from which we extracted two
ground truths for emotional intensity peaks. We used a Naive Bayes classifier
and a decision tree for our experiments and trained models based on the 23
sessions. Evaluation was done by leave-one-out cross-validation. In each fold,
one episode/session was left out. Peaks are selected based on the probability
distribution from the models. The three segments with the highest probability
are returned as a peak.

6.1 Evaluation Ground Truth @3

The first evaluation is based on the @3 ground truth, which is similar to the
VideoCLEF ground truth. We apply the same point-based scoring method from
VideoCLEF (paragraph 5.1), which gives a point for each overlapping peak with
the ground truth. Since there are 69 peaks in the ground truth this is also the
perfect score. Again, the Naive Bayes and the J48 classifier are evaluated in the
same way as the previous chapter. For each run (based on window length) we
ran three different feature sets: one set with all features, one set with only audio
features and one set with only text features. Only the best scoring runs are
presented, the complete results are listed in Appendix D.

6.1.1 Naive Bayes

Table 19 shows the results of the Naive Bayes classifier with both the
overlapping and non-overlapping segments. Results suggest that audio features
are the more appropriate choice than text features, scoring the same as the
combination of text and audio features.
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Table 19: Results of the Naive Bayes classifier

Window Length All Features Audio Features Text Features
nb-7-o0 20 (28.9%) 19 (27.5%) 15 (21.7%)
nb-10-o0 19 (27.5%) 20 (28.9%) 14 (20.3%)
nb-9-o0 19 (27.5%) 19 (27.5%) 14 (20.3%)
nb-10-n 19 (27.5%) 16(23.2%) 14 (20.3%)

6.1.2 J48

In Table 20 the results of the J48 classifier are shown. Models trained on
overlapping segments outperform models trained on non-overlapping as we
expected. Here, also the audio features show a better performance over the text
features. In general, the combination of both text and audio features performs
best.

Table 20: Results of the J48 classifier

Window Length All Features Audio Features Text Features
j48-10-0 12 (17.4%) 12 (17.4%) 9 (13.0%)
j48-8-0 11 (15.9%) 10 (14.5%) 5(7.2%)
j48-9-0 10 (14.5%) 13 (18.8%) 9 (13.0%)
j48-6-n 8 (11.6%) 6 (8.7%) 5(7.2%)

6.2 Evaluation Ground Truth @ALL

The second evaluation is based on the ground truth @ALL, containing all peaks
as indicated by the Peak Pick tool. In this evaluation we only consider models
trained on the ten second overlapping segments. Based on this window length
the precision and recall are calculated, both based on the correctly identified
peaks. Table 21 shows the results. Recall in this context is also referred to as the
true positive rate. In total there are 353 peaks in the training data. A random
baseline is added to the table. This random baseline sets peaks based on a fixed
probability obtained from the training set.

Table 21: Precision and recall, based on 10 second overlapping segments
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Run

Random baseline
NB all features
NB audio features
NB text features
J48 all features
J48 audio features

J48 text features

Precision

0.05
0.18
0.20
0.09
0.13
0.11
0.09

Recall

0.05
0.21
0.19
0.01
0.12
0.08
0.07

# Predicted Peaks

355
339
348
11
311
314
90

The Naive Bayes classifier clearly outperforms the J48 classifier. Highest
precision and recall is achieved by using only audio features. However a
combination of both text and audio features also shows high precision and recall.

6.3 Evaluation SAL Agents

In our final evaluation we analyze how well the models perform based on the
different agents. To analyze the models the dataset is first divided into four
smaller sets, each containing only episodes from that agent. In total there are six
sessions of Obadiah, Prudence and Poppy and five of Spike. Again, the Naive
Bayes classifier is used with a window length of ten seconds. Table 22 lists the
results showing the correct peaks, precision and recall of each of the SAL agents.

Table 22: Results per character

Character Emotional Color
Obadiah Depressive
Prudence Sensible
Poppy Happy
Spike Angry

Precision

0.06
0.11
0.18
0.07

Recall

0.07
0.13
0.16
0.18

Correct Peaks

2 (11.0%)
4 (22.0%)
7 (39.3%)
3 (20.0%)
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Table 23: Precision and recall for text and audio features

Character Precision Recall

Audio Features

Obadiah 0.06 0.12

Prudence 0.14 0.15
Poppy 0.21 0.17
Spike 0.06 0.09

Text Features

Obadiah 0.06 0.01

Prudence 0.0 0.0
Poppy 0.11 0.07
Spike 0.05 0.07

Peak detection performance is highest in the Poppy-sessions. Precision and
recall on both features is also relatively high for the Poppy-sessions compared to
the others. Performance of the models based on the Spike and Obadiah sessions
is lowest. Noteworthy is the Prudence performance, which is in between Poppy
and Spike using all features but with only textual features not one peak is
identified correctly.

6.4 Failure Analysis

Just like we did in the VideoCLEF evaluation we analyzed a selection of cases
manually in order to better understand our results. The failure analysis is based
on models trained on the 10 second overlapping segments. First, we checked if
performance between the two classifiers is related. For audio, the Naive Bayes
classifier finds five of the same correct peaks as the J48 decision tree classifiers
finds. For text, there are two, which is inline with our results from the previous
sections where audio features showed better scores.

We then checked the first four sessions, twelve peaks in total. Of these twelve
peaks there is one peak that all of the classifiers identified correctly. This peak is
a moment where the user tries to cheer up Obadiah who is depressed. Both
audio and text features are picked up nicely as the pitch is higher and he says
works like “happy” and “pleasant”. Other peaks that are picked up correctly are
points where the agent makes an excessive statement (e.g. “you are a doormat”
or “only fools believe that”) and the user responds to this by laughing and telling
them why they are not. Two peaks are where the agents leave their role for a
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moment and have a laugh with the user. Both audio classifiers pick up these

peaks.

For the analysis of where our algorithm fails, we looked again at ten points that
both the Naive Bayes text and audio classifiers predicted peaks. Of these ten
peaks, seven of them seem to be plausible peaks. Four of these peaks are
moments the user reacts to excessive statements by Spike and Obadiah, by either
laughing or trying to convince the agent to see it otherwise. Two other plausible
peaks are when the user tells about how he renovated the house, which seem
like a good memory to him, however these peaks are not present in the ground
truth. The last peak is where the user concludes the session and thanks the agent
for a good talk and moves on to the next agent.

6.5 Conclusions

We conclude this chapter with an overview of the best performing runs, which
are presented in Table 24. A random peak detector is added for the @3
evaluation. This peak detector sets three peaks in each session randomly.

Table 24: SEMAINE results overview

Run ID

Random
nb-7-0
nb-10-o0
j48-10-0
j48-6-n

All Features

10 (14.5%)
20 (28.9%)
19 (27.5%)
12 (17.4%)
8 (11.6%)

Audio Features

10 (14.5%)
19 (27.5%)
16 (23.2%)
12 (17.4%)
6 (8.7%)

Text Features

10 (14.5%)
15 (21.7%)
14 (20.3%)
9 (13.0%)
5 (7.2%)

From Table 24 we can see that the highest performance is achieved using a
window length of ten seven with the Naive Bayes classifier. The performance is
equal to the performance of the Naive Bayes classifier in VideoCLEF; both
identify 28% correct peaks. In the previous chapter J48 had the best
performance. The better performance of the Naive Bayes on the SEMAINE
dataset is presumably due to the fact that there is less training data available
compared to the VideoCLEF dataset. In VideoCLEF there is about six hours of
training data available, while in SEMAINE there is only about two hours of data.
And as we already saw in the previous chapter, the Naive Bayes classifier
performs better on smaller datasets then ]48.

Another interesting difference with VideoCLEF is that here, acoustic features
outperform lexical features. However, again we see no clear benefit in the
combination of both features. We attribute the lower performance of the lexical
features to the conversational style of the sessions. If pronouns and emotion
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words are overall characteristics of conversational style, they are less suited to
discriminate individual peaks. Recall that the word-level time markers were
estimated and note that lexical features may prove (marginally) more useful if
exact markers codes are available.

Another possible explanation for the better performance of the lexical items, are
the different kind of models used. In VideoCLEF an evoker models was used to
detect peaks in emotional intensity, while in SEMAINE an experiencer model was
used. We formulate the hypothesis that evokers depend more on lexical features
to create peaks in emotional intensity, while reactions of experiencers are based
on acoustic features. We cannot test this hypothesis since VideoCLEF lacks
experiencer data and SEMAINE has no evoker annotations.

The better performance of the acoustic features can clearly be seen when using
the same information gain algorithm as used in the previous chapter. Here, max-
pitch, max-intensity and range-pitch are the top three features to split the
dataset on. Other features that are selected based on this algorithm are min-
pitch, min-intensity and range-intensity. Only one lexical feature is selected: the
number of nouns in a segment.

In an agent character breakdown of the performance of the Naive Bayes
classifier we see that models based on the Poppy-sessions perform best.
Strategies used by the agents to shift the user to an emotional state are
exaggerations and encourage the user to tell stories that induce a certain mood.
Reactions to exaggeration are difficult to detect on a lexical level because of
topical variation, which serves, in part, to account for low peak detection
performance in Obadiah and Spike-sessions, who use the exaggeration strategy
more than the other two agents. However, upbeat stories had characteristic
word usage (e.g., “pleasant”, “magical” and “wonderful”), reflected in the
relatively good performance achieved for the Poppy-sessions. Additional data is
required in order to draw conclusions with stronger validity since the results
above are based on a small amount of training data per character (approximately
30 minutes).

In our failure analysis we found peaks to be characterized by conflicting views
(e.g., agent says, “You are a doormat” and the interlocutor contracts) and by
laughter. Our models were able to find such peaks. Of the ten false alarms we
examined, seven gave the impression of plausible peaks, e.g., the interlocutor is
contradicting/correcting or telling a happy story.
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7 Prototype of a Peak Browser

In this chapter we prototype a user interface that utilizes peaks in emotional
intensity, detected by our approach. This interface should help users navigate
through a list of video clips. We call this user interface a peak browser, to browse
through all detected peaks. Characteristic for the browsing model is that there is
no explicit specification of information need [70].

Blanken et al. [70] state that because of the complexity of multimedia objects,
there are two levels of browsing multimedia databases:

1. Browsing within a multimedia object (e.g., when looking for a frame
within a movie);

2. Browsing through a collection of multimedia objects (e.g., when looking
for a movie).

We also treat these levels separately; in paragraph 7.2 we propose a number of
prototypes for browsing within episodes/session and in paragraph 7.3 a
prototype for browsing through a collection is also proposed. This chapter starts
by presenting a short overview of previous work.

7.1 Previous Studies

Foote et al. [71] have prototyped a browser that displays information extracted
from the multimedia stream, such as speaker identity and shot boundaries.
Because automatically derived information is not wholly reliable, they transfer
these features into a confidence score. This confidence score is visualized and
presented to the user in what they call and intelligent media browser. Figure 12
shows the user interface of their browser. To the top left are the usual playback
window and controls. On the middle right are menu controls that select which
confidence scores to display on the bottom time bar. Confidence scores are
displayed time-synchronously with the video slider bar.
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Figure 12: Intelligent browser prototype by [71]

Arman et al. [72] propose a content-based browser for video sequences based on
representative frames. These frames are detected using shot boundaries
detections, shape and color analyses and a very simple motion analysis. Their
browser has advantages over fast forward and rewind while remaining as
convenient to use. Using fast forward and rewind the user must view every
frame at rapid speeds, missing shots that last a short period, while being forced
to watch long lasting and irrelevant shots. With the representative frames they
overcome these problems. Figure 13 show the content-based browser, with the
row of representative frames on the bottom, the sequence at the point chosen by
the user is displayed on top.
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Figure 13: Content-based browsing based on representative frames by [72]

Haubold and Kender [73] prototype a much more complex user interface. They
apply visual segmentation techniques to determine likely changes of topics.
Speaker segmentation methods are employed to determine individual user
appearances, which are linked to extracted headshots to create a visual speaker
index. Videos are augmented with time-aligned filtered keywords and phrases
from speech transcripts. Their user interface combines streaming videos, visual,
and textual indices for browsing and searching. Figure 14 shows the user
interface, where the video summary is displayed as a collection of horizontal
tracks, each representing a different modality: thumbnail images, time line,
speaker segmentation, visual segmentation, search phases, topic phrases, and
content phrases. Based on an evaluation, users find the multimedia retrieval
using this user interface effective.
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Figure 14: User interface developed by [73]

Heasen et al. [74] developed a user interface based on a user-centered software
engineering approach, by involving end users from the beginning of the
development process. Their prototype combines an advanced time slider, with a
timeline video visualization, shown in Figure 15. A time slider is employed to
manipulate the current time of the played video fragment (Figure 15, part A) and
to specify an area of interest around this time (Figure 15, part B). The timeline
(Figure 15, part C) gives a detailed view on the content in this area of interest.

Their video browser contains several mechanisms to keep an overview on the
large amount of information that is visualized in the timeline. Each layer can be
maximized/minimized (Figure 15, part D). Content filters (Figure 15, part E) are
provided to filter content from the timeline.
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Figure 15: Video browser by [74]

Cheng et al. [75] propose a video interaction they call adaptive fast-forwarding.
This user interface helps people quickly browsing the videos with predefined
semantic rules. They designed the model around the metaphor of “scenic car
driving” in which the driver slows down near areas of interest and speech
through unexciting areas. Figure 16 shows the SmartPlayer user interface. In
addition to the basic control button, the playback speed is shown at the center of
the control panel. A seeker bar is shown near the bottom of the SmartPlayer. In
this bar they use scented widgets, which use embedded visualization to enhance
the graphical user interface controls. Their visual scent on the video seeker bar is
encoded by the amount of saturation on the red color. If a video segment has a
relatively high amount of motion, its red color saturation value on the seeker bar
will be higher than those of other segments. This information is used to inform
the user that the browser will likely slow down when playing this motion-rich
video segment.

71



CHAPTER 7. PROTOTYPE OF A PEAK BROWSER

SmanPlayer
i —

'_

] E L
L] L
S

e —

' -
= :
4 »
Lt Nkl
- .
o

lu?

gpt

€

@ 13 x 1562168315

Figure 16: User interface developed by [75]

7.2 Episode Browser

In this section a prototype for an episode browser is proposed. The episode
browser is built with HTML5, CSS and JavaScript and can be viewed in
supporting web browsers. In this prototype we only used clips from VideoCLEF,
as it contains more visual information than the clips of SEMAINE, which show
only the face of the experiencer. But the episode browser can be applied to both
datasets.

In Figure 17 the episode browser is shown. Traditional playback controls are
placed right under the episode. Controls that should help the user navigate the
emotional intensity peaks are shown below the traditional playback controls.
Users can play a summary based on the emotional intensity peaks. When users
play this summary each detected peak is played for 10 seconds until all peaks
have been played. Users can also manually navigate through the peaks by using
the controls at the bottom middle. Using these controls they can jump from one
peak to the next or the previous one. The last interface element we added is
shown at the bottom right (“Show Details”). When a user clicks this element
more advanced control elements are shown that are described in the next
sections.
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N1 0434 | — 08:21 ] unll||""

D Play Summary Jump to: Previous Peak / Next Peak Show Details

Figure 17: Episode browser, with controls on the bottom

7.2.1 Graph Element

The graph representation is inspired by the work of [72] and can be seen in
Figure 18. The probabilities (y axis) for each segment are plotted against the
time, (x axis). The graph is displayed time-synchronously with the time slider.
Peaks in the graph visualize peaks in emotional intensity. Users can click these
peaks to play such a peak.

1 00:11 mml 08:21 sl
[:,' Play Summary Jump to: Previous Peak / Next Peak Hide Details
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

Figure 18: Browsing by graph

7.2.2 Bullets Element

The bullets representation is based on the work of [75], where interesting events
are shown in red, while less interesting events have no color. This representation
can be seen in Figure 19. The colors and the size of the bullets are based on the
probability distribution of the classifier. Bigger bullets reflect higher
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probabilities, as does the color that changes to red. Segments with a low
probability of being a peak are colored green and are also smaller than segments
with high probabilities. Just like the graph representation, the bullets
representation is displayed time-synchronously with the time slider.

N 01:27 S—— 08:21  sf-ul

':,’ Play Summary Jump to: Previous Peak / Next Peak Hide Details

> B @ G —— G

Figure 19: Browsing by bullets

7.2.3 Representative Frames

Our final peak representation is shown in Figure 20, which is based on the work
of [73], where representative frames were used to indicate interesting parts of
the video. This representation can only be applied on the VideoCLEF dataset
since in SEMAINE they recorded only the faces of people, which in this case
would not give enough information to the user. Representative frames are based
on the peaks in emotional intensity where the first frame of a peak is selected.
When a user clicks on a representative frame the browser jumps to the selected
peak.

00:26 00:48 01:16 01:48 04:24 06:55

Figure 20: Browsing by key frame

7.3 Collection Browser

Besides the episode browser, a collection browser is also developed. For the
collection browser we focus again only on the VideoCLEF dataset. The collection
browser is inspired by the “movies rental store” metaphor. Users can look at the
front of a movie, reading the backs of movie boxes, going to the next box, etc.

Figure 21 shows the collection browser. On the left the user is provided with
some basic information about Beeldenstorm. On the right side the episodes of
Beeldenstorm are shown. Here, we use representative frames like [73] to give
users an impression of the episode. These frames are based on the first peak in
emotional intensity detected in that episode.
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Kamerschermen Avant-garde architectuur Haags Gemeentemuseum Kubisme

Figure 21: Collection browser for the Beeldenstorm series

In Figure 22 the metaphor of the “movies rental store” is comes more to life.
When users pick an episode this episode moves in front of other episodes and
users are presented with the “front-side of the movie box” containing again the
representative frame and the title of the episode. When users click the blue i the
“back-side of the movie box” is shown, containing a summary of the episode of
30 seconds and a short description of the episode, collected from the
Beeldenstorm websitel. The summary is based on the three emotional intensity
peaks detected by our peak detection approach.

p—

Schaapjes tellen
Henk van Os bespreekt schilderijen met schapen
in Museum Mesdag in Den Haag.

Bekijk aflevering

Schaapjes tellen

Figure 22: The user interface after a user selects an episode. Left: shows what happens when a user
selects and episode. Right: is shown to the user after he clicked the blue i on the left image, the user
is presented with a summary based on the emotional intensity peaks plus a little description.

Lhttp://www.avro.nl/tv/programmas_a-z/beeldenstorm/
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8 Conclusions and Future Work

First of all, the original research questions are stated once more, and the
conclusions are added per sub question. After that, some general conclusions
about this research are added. Finally some recommendations for future work
are presented.

8.1 Conclusions

1. Isit possible with a one-sided model to capture peaks in emotional intensity
in a narrative setting and a conversational setting?

Our experimental results confirm that models that use the speech signal
only can be trained that easily outperform the random baseline. In the
narrative setting, our models were able to capture a range of strategies
deployed with the intent to hold audience attention, including dramatic
pauses and rhetorical questions. In the conversational setting, our models
captured strategies intended to shift emotional state, including
exaggeration and humor. Although precision and recall values are low,
our failure analysis showed that in the narrative setting none of ten false
alarms we choose for further examination are implausible as emotional
peaks. In the conversational setting, seven out of ten false alarms were
also plausible as an emotional peak, showing the potential of the
automated emotional peak intensity detector in both settings.

2. How do lexical and acoustic features contribute to peak detection in these
settings?

In both settings our experimental results show that both lexical and
acoustic features make contributions. In the narrative setting, lexical
features outperform acoustic features. The combination of both acoustic
and lexical features does not, yield a clear advantage over lexical features
alone. In the conversational setting, acoustic features outperform lexical
features and also in this setting there is no clear benefit in the
combination. The lower performance of the lexical features can be
attributed to the conversational style of the sessions and that the word-
level time markers were estimated.

Based on our results we also formulated the hypothesis that evokers

depend more on lexical features to create peaks in emotional intensity,
while reactions of experiencers are based acoustic features. We were not
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able to test this hypothesis since our corpora lack either data or
annotations to build these models.

3. Isthere a correlation between the emotional state the evoker tries to shift
the experiencer to and the peak detection performance?

To test if there is a correlation between the emotional state and the peak
detection performance we build four models based on the four characters.
From our results we see that the highest performance is achieved when
users talk to Poppy, who is happy and outgoing. Word usage is
characteristic when experiencers talk to Poppy (e.g., “pleasant”, “magical”
and “wonderful”). The strategies used by the evoker are exaggeration and
encouraging the experiencer to tell stories that are reminiscent to certain
emotional experiences. Reactions to exaggeration are difficult to detect on
a lexical level because of topical variation, which serve, in part, to the
account for low peak detection performance in Spike, who is angry and
confrontational, and Obadiah, who is depressive. Models based on the
Prudence, who is even-tempered and sensible perform better than
models based on Spike or Obadiah but not as good as models based on
Poppy. However, additional data is required in order to draw conclusions
with stronger validity since these conclusions are based on a limited
amount of training data per character (approximately 30 minutes).

4. How can we present these peaks in a useful manner to the end user?

To present the peaks in emotional intensity, a number of user interfaces
have been developed, which utilize the emotional intensity information
detected by our models. These peaks can be helpful in two situations:
when browsing within a multimedia object and when browsing through a
collection of multimedia objects. For both situations a different user
interface was developed, that utilize the emotional information detected
by the models to help users find interesting moments in video clips, as
well interesting video clips in general. Because of the limited available
time we were not able to tests these interfaces with users. Therefore, the
answer to this last question remains open.

In this thesis we have presented two studies on emotional intensity peak
detection, one involving an evoker model in a narrative setting and the other an
experience model in a conversational setting. The models that we build are one-
sided, in the sense that they contain features extracted from the speech of only
one participant role. Our experimental results confirm that models can be
trained that outperform the random baseline and demonstrate that both acoustic
and lexical features make contributions. Emotional intensity peak detection is a
challenging task, but for a first attempt the results are encouraging.
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8.2 Future Work

Future work will involve expanding our understanding of unilateral intent
settings, especially with respect to the possibility, already mentioned above, of
training a model on one domain and shifting it for use in a different domain.

During this thesis there was not enough time left to add features from the visual
channel. Adding features from this channel could greatly improve peak detection
performance. Especially when facial expressions and gestures can be recognized.

In this thesis emotional intensity peaks are detected by using one-sided models.
We had to leave out two-sided models since our corpora lack either data or
annotations to build these models. It would be interesting to see how well two-
sided models perform since they contain knowledge of the “other” in one-sided
models.

Finally, since the current implementation of the peak browser has not been
tested with users, it should be evaluated with users to test its interface. At the
same time, it would also be interesting to evaluate how useful peaks are for users
when browsing through video collections.
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Appendix A — Praat Script

form Get arguments
sentence File

endform
Read from file... 'file$'
Rename... my wav

dur = Get total duration

print 'To Pitch...''newline$'

To Pitch... 0 75 500

select Sound my wav

print 'To Intensity...''newline$'
To Intensity... 100 0 yes

t=0
while t < dur
select Pitch my wav

p = Get value at time... 't' Hertz Linear
select Intensity my wav
i = Get value at time... 't' Cubic
print 't''tab$''p:5''tab$''i:5' 'newline$'’
t =t + 0.5

endwhile
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Appendix B - J48 Pruned Tree

speech-rate-pause <= 2
range-intensity <= 22.88489: no (521.0/4.0)
range-intensity > 22.88489
| “pitch <= 151.43756
| pitch <= 136.116453
| | speech-rate <= 13.240418
| | | range-intensity <= 23.42649: yes (2.0)
| | | range-intensity > 23.42649: no (33.0/3.0)
| | speech-rate > 13.240418: yes (2.0)
| pitch > 136.116453: yes (4.0)

| pitch > 151.43756: no (23.0)
peech-rate-pause > 2

pronouns <= 1

| next-pause <= 19.77
| next-pause <= 0.38: no (484.0/30.0)
next-pause > 0.38
| min-intensity <= 64.81239
| total-words <= 9
| pronouns <= 0: no (515.0/131.0
pronouns > 0
intensity <= 67.245117
| previous-pause <= -162.5
| stop-words <= 6
| d-next-pitch <= -32.440142
| | | nouns <= 0: yes (2.0)
| | | nouns > 0: no (3.0)
| | d-next-pitch > -32.440142: yes (8.0)
| stop-words > 6: no (3.0)
previous-pause > -162.5
|
|
|
|
|
|
|
|
|

total-words <= 7: no (27.0)
total-words > 7
| speech-rate-pause <= 10.666667
| next-pause <= 14.75
| | verbs <= 0: no (2.0)
| | verbs > 0
| | | speech-rate-pause <= 8.666667: no (2.0)
| | | speech-rate-pause > 8.666667: yes (9.0/1.0)
| next-pause > 14.75: no (6.0)
| speech-rate-pause > 10.666667: no (11.0)
ntensity > 67.245117
d-next-pitch <= 18.453969: yes (9.0)
d-next-pitch > 18.453969
| speech-rate <= 9.961686: yes (2.0)
| | | | speech-rate > 9.961686: no (4.0)
total-words > 9: no (60.0/6.0)
in-intensity > 64.81239
previous-pause <= -25.84
| d-intensity <= 4.795832
| | nouns <= 1
| | | total-words <= 4: no (2.0)
| | | total-words > 4: yes (5.0)
| | nouns > 1: no (7.0/1.0)
| d-intensity > 4.795832: no (7.0)
| | previous-pause > -25.84: no (85.0/1.0)
ext-pause > 19.77
adjectives <= 2: no (5207.0/557.0)
adjectives > 2
d-next-intensity <= 11.103635
| total-words <= 10
| non-stop-words <= 2
| d-pitch <= 12.845233
| | range-pitch <= 18.55075
| | | speech-rate-pause <= 11: no (13.0/1.0)
| | | speech-rate-pause > 11: yes (3.0)
| | range-pitch > 18.55075: yes (5.0/1.0)
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Appendix C — VideoCLEF Results

Naive Bayes

Table 25: Naive Bayes results (non-overlapping segments)

Window Length ~ Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
3 54 40 11 3
4 52 33 15 5
5 62 47 15 3
6 53 40 13 3
7 63 41 17 3
8 53 38 11 2
9 56 43 13 2
10 58 44 13 3

Table 26: Naive Bayes results (overlapping segments)

Window Length  Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
3 49 36 10 3
4 57 40 12 3
5 61 40 18 3
6 59 36 16 3
7 64 42 19 4
8 61 41 16 3
9 57 39 15 2
10 58 39 15 3
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Table 27: Naive Bayes results audio features (non overlapping segments)

Window Length  Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
3 46 31 12 3
4 45 35 13 1
5 48 36 10 4
6 38 34 5 0
7 50 35 13 3
8 49 37 10 2
9 51 38 10 2
10 52 38 12 3

Table 28: Naive Bayes results audio features (overlapping segments)

Window Length  Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
3 46 34 9 1
4 19 17 2 0
5 41 28 11 1
6 38 22 11 1
7 33 25 9 1
8 41 30 7 2
9 46 32 11 2
10 36 29 6 1
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Table 29: Naive Bayes results text features (non-overlapping segments)

Window Length  Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
3 46 34 11 3
4 48 37 11 2
5 59 44 13 3
6 48 37 11 2
7 61 41 15 4
8 57 38 14 3
9 65 47 17 3
10 62 43 13 5

Table 30: Naive Bayes results text features (overlapping segments)

Window Length  Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
3 57 41 13 3
4 53 38 13 3
5 50 34 13 2
6 59 38 17 4
7 55 39 14 2
8 54 38 12 2
9 54 39 14 4
10 51 34 12 5
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J48

Table 31: J48 results (non-overlapping segments)

Window Length  Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
3 35 26 7 3
4 34 24 5 1
5 45 35 13 1
6 38 34 5 0
7 48 36 10 4
8 51 35 14 4
9 49 37 10 2
10 50 35 13 3

Table 32: J48 results (overlapping segments)

Window Length  Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
3 69 39 16 5
4 63 44 15 4
5 69 45 20 6
6 71 42 19 6
7 74 46 21 7
8 74 48 22 7
9 73 44 20 7
10 75 49 22 8
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Table 33: J48 results audio features (non-overlapping segments)

Window Length  Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
3 25 16 6 2
4 26 16 6 2
5 36 23 9 2
6 36 25 9 2
7 37 22 9 2
8 38 26 8 2
9 36 25 7 1
10 36 25 7 1

Table 34: J48 results audio features (overlapping segments)

Window Length  Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
3 23 13 5 1
4 34 24 7 2
5 32 22 8 2
6 34 24 7 1
7 48 35 10 2
8 43 32 11 3
9 50 36 11 3
10 47 34 11 2
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Table 35: J48 results text features (non-overlapping segments)

Window Length  Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
3 23 15 5 2
4 36 23 10 2
5 34 24 8 2
6 32 21 7 1
7 35 26 7 3
8 37 24 8 2
9 44 26 13 5
10 38 26 8 2

Table 36: J48 results text features (overlapping segments)

Window Length  Point-based  Peak-based  Peak-based  Peak-based

“Personal Peaks” “Pair Peaks” “General Peaks”
3 62 40 16 6
4 58 37 13 6
5 71 45 18 7
6 71 50 18 5
7 69 45 19 6
8 73 49 19 8
9 73 52 18 5
10 77 52 21 9
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Appendix D — SEMAINE Results

Naive Bayes

Table 37: Results Naive Bayes non-overlapping

Window Length All Features Audio Features Text Features

3 14 13 9

4 16 16 11
5 16 14 15
6 17 14 14
7 18 17 13
8 16 17 11
9 17 18 12
10 19 16 14

Table 38: Results Naive Bayes classifier overlapping segments

Window Length All Features Audio Features Text Features
3 13 13 10
4 16 16 11
5 15 14 12
6 17 15 14
7 20 19 15
8 18 19 14
9 19 19 14
10 19 20 14
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J48

Table 39: Results J48 classifier non-overlapping segments

Window Length All Features Audio Features Text Features
3 5 5 4
4 3 3 3
5 4 6 4
6 8 6 5
7 5 5 3
8 3 5 7
9 3 6 7
10 7 4 3

Table 40: Results J48 classifier overlapping segments

Window Length All Features Audio Features Text Features
3 8 9 10
4 10 10 11
5 9 9 11
6 10 9 11
7 6 13 9
8 11 10 5
9 10 13 9
10 12 12 9
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