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Abstract

TCP/IP fingerprinting is the active or passive collection of information

usually extracted from a remote computer’s network stack. The combi-

nation of such information can be then used to infer the remote operating

system (OS fingerprinting). OS fingerprinting is traditionally based on a

database of “signatures”. A signature comprises several features (i.e., pairs

attribute/value) extracted from network packets generated by a known op-

erating system. Signatures are manually generated (and updated) by ob-

serving several operating systems. There are two types of fingerprinting:

active and passive. In this work, we focus on automating the generation

and updating of the signatures for passive fingerprinting. By using classi-

fication algorithms we deal with fingerprints which do not have an exact

match with an already known signature.
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Chapter 1

Introduction

The inference of a remote OS is an important step for several activities

related to computer security. Malicious users might fingerprint an OS to

select only the correct exploits that they will later use to break-in, in order

to lower the chances of being detected by an intrusion detection system

(IDS). On the other hand, the same IDS might infer the OS of hosts it

monitors in order to make its detection more precise, by discarding attack

signatures tailored for a different OS. Knowledge about the remote OS may

also be used to detect changes on remote systems: a remote system may

have been replaced; or to detect unallowed OSs: not all OSs may be allowed

by company policy. Active fingerprinting requires the parties to exchange

some packets, which is not always desirable. An attacker may want to be

as “hidden” as possible, an IDS may not be authorized to send out packets

on the monitored network. Thus, passive fingerprinting offers a choice to

meet such constraints. Several systems have been developed to perform

passive OS fingerprinting, which although accurate, fail when newer systems

or tweaked systems are introduced and databases are not maintained.

The following subsections describe the exact goal of this thesis. Then

Chapter 2 shows the current state of the art on both active and passive

operating system fingerprinting. All the existing methods and tools are

described in chronological order in this chapter. Chapter 3 describes the

improved architecture. Chapter 4 details the implementation and the test-

ing. The final chapter is the conclusion with some detailed information

about possible future work.
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1.1 Goal

1.1.1 Initial state

The state of the art gives a complete overview of all the existing fingerprint-

ing tools. The most noteworthy tool of these is p0f, because it is the most

mature passive tool available, also see Appendix E.4. To recognize a given

system, p0f needs to have a fingerprint for it in its fingerprint database.

When p0f fingerprints a system and its fingerprint does not match, p0f

will mark the system as “unknown”. As newer operating systems (TCP/IP

stacks) are released, p0f’s fingerprint database needs to be manually updated

to correctly match new systems.

1.1.2 Problem

Although passive fingerprinting tends to be accurate, keeping the finger-

print database up to date is essential to achieve high accuracy. Right now

the process of creating a new fingerprint and adding it to the database is

done manually. The current version of p0f and its fingerprint database are,

at the time of writing, almost 4 years old [Zal06c]. This shows that keeping

the database up to date is apparently too much effort. The result is that

p0f’s accuracy has dropped significantly, only because it is missing the fin-

gerprint information needed to recognize modern operating systems, such

as MS Windows Vista and MS Windows 7. According to the statistics on

W3Schools, a website about web development, these versions were used by

more than a quarter of all computer users in February 2010 [w3s10].

1.1.3 Research Question

The goal is to automate the fingerprinting process, so that new operating

systems can be recognized with as little human effort as possible. Right now

this is not possible because for every system a fingerprint needs to be cre-

ated manually. This means fingerprints should be generated automatically

with only the proper tagging of the fingerprinted operating system being

necessary.

Can machine learning techniques be used to recognize new operating sys-

tems which current fingerprinting systems cannot automatically recognize?
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Chapter 2

State of the art

2.1 Introduction

The ability to detect which operating system is running on a remote system

has several advantages. A common use is statistics gathering by companies

that are interested in market share. However, there are several other uses

which are even more significant.

When scanning a network for possible vulnerabilities, knowing which

operating systems (OSs) are running, may quickly indicate which systems

are outdated and need updating. This knowledge is controversial because

it is very useful for an attacker. System administrators can use the same

knowledge to protect their systems. Internet service providers could also

help their customers with protecting their systems by redirecting them to a

webpage which points them to updates. By using a packet filter which can

detect what system they are using, they can redirect all HTTP request to

the appropriate page.

In the contexts of network monitoring and intrusion detection the knowl-

edge about the network context plays a crucial role, as argued also by

Kruegel and Robertson [KR04] and by Pietraszek [Pie04]. Hence, the knowl-

edge about the operating systems gives additional insights about the attack.

If an attack is observed targeting a specific vulnerability on a GNU/Linux

system while the actual system turns out to be running MS Windows based

on the response traffic, it may indicate a Bot which is brute forcing a single

attack against any host it can come across or perhaps an unskilled attacker.

On the other hand, when the attack properly matches the OS, this could
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indicate that the attacker is skilled and not just a Bot. Enhancing an in-

trusion detection system (IDS) with OS detection capabilities would thus

enable it to make a much better estimate of the attack impact. Taleck

[Tal03] explicitly highlights the importance of OS fingerprinting for IDSs.

Despite the clear advantages of OS fingerprinting, there are few papers

in the literature which address this problem.

2.2 Active and passive

The most important distinction between different OS detection mechanisms

is whether the detection is done actively or passively. Active systems gen-

erate specifically crafted data to identify systems based on their response.

Passive systems on the other hand stay completely silent and will determine

the OS based on the traffic that happens to come by. This means that

passive systems can never be detected through the network, but they are

dependant on existing traffic. Another difference is that some systems are

never reached by active scanners, because they are behind a firewall or some

network address translation mechanisms are in place [EF94]. Passive scan-

ners would be able to scan the traffic coming from these systems. The active

and passive systems are described in the following sections. Some passive

systems also have the capability to actively trigger packets and could thus

be seen as a combination of an active and passive system. Since the finger-

printing logic is aimed at passive scanning in these cases, those systems are

also described in the section about passive fingerprinting.

2.3 Active

This section describes the most relevant existing active fingerprinting tools.

2.3.1 Before TCP/IP fingerprinting

Before TCP/IP fingerprinting became popular, software that had to perform

the same task of remote operating system detection used methods that were

often very simplistic. The original QueSO documentation lists the following:

• rpcinfo (RPC (Remote procedure call) [Whi75] is a framework for

network-based resource sharing and common on Unix systems to sup-

port services such as NFS and NIS)
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• snmp (the Simple Network Management Protocol [CFSD90] is used to

monitor networked systems)

• telnet banner (unencrypted remote terminals often display the running

system name before the log-in prompt)

• SendMail version

• analyse binaries available through ftp

• other slow and suspicious stuff (likely other application dependant

ways)

These methods are simplistic and system administrators can prevent

these types of identification, by not advertising the OS in a banner or by

just upgrading these services to their modern equivalents, which do not leak

this information anymore. Another problem these methods have is that they

are heavily dependant on specific services running on the remote host, which

are not always there. A better method should be used to properly detect a

remote operating system.

2.3.2 sirc, checkos and SS

According to an article written in 1998 by Gordon Lyon for Phrack Magazine

[Lyo98] sirc, checkos and SS were the first programs available which were

capable of recognising different OSs using TCP/IP fingerprinting. They

were limited in doing so and could only identify whether a system was one

from a handfull of OS classes. Commercially available software at that time

was only capable of checking banners however. These tools do not seem to

be referenced anymore and not much information can be found about them.

2.3.3 QueSO

The first wide-spread tool which could detect operating systems remotely

using TCP/IP fingerprinting was QueSO. It was originally developed by

Jordi Murg in 1998. It is the first tool which used fingerprints stored in

a separate file. This allowed new operating systems to be added without

modifying the software.

The method of detection uses what are called ambiguous packets. Those

are packets for which the RFCs do not specify a precise way to handle them.

6



Because of this ambiguity, this results in different behaviour from different

TCP/IP stacks. [Mur98] The specific packets QueSO sends out are described

in Appendix E.1.

QueSO is able to differentiate about 100 different operating systems.

[Mur99] The fingerprint database is not kept up to date anymore with new

OS releases however, so it is possible QueSO could detect more different

operating systems with an updated database.

2.3.4 Nmap

Shortly after QueSO was released, the popular network mapping tool Nmap,

written by Gordon Lyon, also gained support for OS detection based on

TCP/IP fingerprinting in October 1998. It continued on the idea that there

should be a separate fingerprint database. The biggest improvement over

QueSO was the number of tests it could do. Nmap added several extra

tests which significantly increased the number of different systems it could

recognise. [Lyo09a, Lyo98]

Since the original OS detection support was added to Nmap, it has seen

quite a lot of improvements including one complete revision. The current

version of Nmap sends out up to 16 TCP, UDP and ICMP probes. These

are analysed in Appendix E.2.

Having so many tests, Nmap is one of the most comprehensive scanners

available. With its tests it is able to differentiate an enormous amount of

systems. A disadvantage of using so many tests is that it allows for easy

detection. This is described by Greenwald and Thomas [GT07a]. Some of

the tools described in the next sections try to avoid this. Another recurring

problem with active tools is the fact they can often only scan a firewall and

not the systems behind it. Only passive systems will fully solve this.

2.3.5 Xprobe

After tools which could differentiate TCP stacks became common, Ofir Arkin

decided to look into the RFCs related to the ICMP and found that the ICMP

has quite some potential to be used in OS fingerprinting. [RK04]

Together with Fyodor Yarochkin he released the first version of a tool

called Xprobe in August 2001. It was based on an algorithm named X,

designed by Arkin, which was based on a combination of information ob-
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tained using ICMP with tree based decisions. Using ICMP instead of TCP

had several advantages, especially when very similar TCP stacks were used.

Examples are MS Windows NT4 and MS Windows 9x or MS Windows 2000

and MSWindows XP, where the different systems could not be distinguished

from each other before.

Another difference was the small amount of traffic it takes. With the

reply from a single datagram, Xprobe can already differentiate eight different

systems. A maximum four datagrams are sent in total, which also makes the

tool fast. The probes are unlikely to be picked up by IDSs because they are

not malformed and normal ICMP datagrams are already common among

networks. [Ark02]

Xprobe was also the first program that used “fuzzy logic”. A potential

OS is given a score based on how well it matches with certain tests. The

end result is a list of scores together with a probability. [Kol05]

Details on Xprobe’s mechanisms are described in Appendix E.3.

2.3.6 RING

In April 2002 Franck Veysset, Olivier Courtay, and Olivier Heen of the In-

tranode Research Team published a paper [VCH02] in which they described

a concept to distinguish between OSs on a network by measuring the be-

haviour of their TCP retransmission time-out lengths. While the TCP RFC

includes an algorithm for retransmissions, it is not imposed. It turns out

that although most systems implement a variation of the algorithm, there

are differences which can be exploited to reveal the OS.

As a proof of concept, the tool RING was developed. It tries to initiate

a connection with a server, but does not acknowledge the initial acknowl-

edgement. This causes the other host to retransmit its acknowledgement at

timed intervals. By measuring the time between the incoming packets, it is

possible to figure out the TCP implementation. The fingerprint in this case

consists of the retransmit times an OS uses to retransmit its acknowledge-

ments.

It turns out that this method gives quite accurate results, even though it

is dependant on only a single open port. A disadvantage however is that it

takes more time than the other techniques. It takes for example 12 seconds

before MS Windows 2000 and FreeBSD can be distinguished, because only

then, a difference in their retransmissions behaviour appears. This is shown
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Figure 2.1: Successful detection of the remote OS by measuring the retrans-
mission times

in Figure 2.1.

2.3.7 Neural networks

Carlos Sarraute and Javier Burroni from the company Core Security Tech-

nologies published a paper in 2008 in which they described their experiments

using neural networks to improve OS fingerprinting [SB08]. Their method

uses a neural network which, although mostly based on Nmap’s fingerprint

database, uses some application level tests which made use of the RPC ser-

vice to test for specific MS Windows versions.

One flaw they notice in the way Nmap treats its own fingerprints is that

Nmap gives a relatively high score very quickly to fingerprints which contain

only a small amount of information. This happens because Nmap uses the

Hamming distance between the received packets and the fingerprints in its

database to compute the result. In their tests, they leave out these finger-
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prints by using an initial neural network to determine which fingerprints

are relevant for the attacker. They reduce the testing space of possible re-

sponses by using two techniques called Correlation Matrix Reduction and

Principal Component Analysis. The Correlation Matrix Reduction notes

similar behaviour in similar systems and reduces the tests for this family of

systems to the most discriminative tests. Principal Component Analysis is a

technique where the factors with the most variance are given more emphasis

than factors with less variance when comparing results.

The system is trained using a initial dataset containing inputs and ex-

pected outputs. This is called supervised training. During their test they

used Monte Carlo simulation to generate inputs using Nmap’s signature

database. The paper does not go into Monte Carlo simulation. This book

[BH02] by Binder and Heermann describes Monte Carlo simulation in detail.

Using these techniques, their detection is slightly more accurate than

Nmap in their test environment. Especially specific versions of operating

systems could be detected more precisely. However being dependant on the

RPC service severely limits the useability of the system. Even within private

networks the RPC service is unlikely to be active and running it on a public

network is generally considered to be a bad security practise. The initial step

to test a given fingerprint for its relevance does not seem logical. According

to the text an irrelevant operating system is one for which an attacker has

no exploits. One of their examples is a system using Mandrake 7.2 which

is detected by Nmap as a broadband router made by ZyXel. Considering

Mandrake 7.2 was eight years old at the time the paper was published and

had also been succeeded by more than eight releases while on the other

hand broadband routers are increasingly common as the public host among

households, this idea of relevance is disputable. Limiting the fingerprinting

options in this way is a big drawback of the system.

The consessions done to obtain the desired results appear to be too big to

make neural networks suitable to be applied generally for OS fingerprinting.

2.4 Passive

This section describes the most relevant existing passive fingerprinting tools.
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2.4.1 p0f

The first version of p0f was written by Michal Zalewski in 2000. After it had

been maintained for a while by William Stearns, it was completely rewritten

again by its original author.

p0f has four different detection modes used in four different scenarios

respectively:

• Incoming connection fingerprinting (what system is connecting to yours)

• Outgoing connection fingerprinting (what system are you connecting

to)

• Outgoing connection refused (what system is refusing your connection)

• Established connection fingerprinting (what systems do you have a

connection with)

Of these four, only the first method is really well supported. It works by

analysing certain properties of SYN packets from incoming TCP/IP connec-

tions. With the other methods SYN+ACK, RST and stray ACK packets

are analysed. Appendix E.4 describes p0f’s fingerprinting. [Zal06b]

2.4.2 Packet Filtering in OpenBSD

The packet filter included with OpenBSD is also capable of doing passive

operating system fingerprinting. This support seems to be based on p0f,

using a similar fingerprint file. Only p0f’s SYN filtering is available. With

this support is it possible to write rules based on the detected OS. This could

mean connections from certain OSs are blocked for example or requests going

out on the HTTP port (port 80) for a known vulnerable system could point

to an upgrade.

2.4.3 OSF - passive OS fingerprinting for iptables

This is a module for Linux’ netfilter similar to the support available for

OpenBSD. netfilter is the infrastructure in modern Linux kernels used for

packet filtering. Typical use cases are firewalling, network address trans-

lation (NAT) and packet mangeling. This support is largely based on p0f,

using the same fingerprint file as the support in OpenBSD. The OSF website

credits Michal Zalewski (the author of p0f) for the original idea.
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2.4.4 Ettercap

Ettercap is a tool which can be used for many purposes. Some of its most

prominent features are its man-in-the-middle attack abilities. Ettercap also

includes plug-ins for specific features including a plug-in named “finger”

which describes itself as a passive fingerprinting plug-in. While it is using

the same techniques passive tools also use, it is not really passive as it sends

a SYN itself to the other host and uses the corresponding SYN+ACK reply

to fingerprint the other system.

Its fingerprinting mechanism is rather simple. The database contains a

list of fingerprints sorted on the properties. This means systems which have

a similar fingerprint are near each other. When a SYN+ACK packet has

arrived, Ettercap starts matching this fingerprint with a fingerprint from its

database. When a match cannot be found, it will give the nearest match

which it had reached in the database. Its database has not been updated

since 2004, so it is quite outdated.

2.4.5 SinFP

A very interesting tool written in Perl by Patrice Auffret is SinFP. Using one

set of signatures, it is capable of doing both active and passive OS finger-

printing. Its first release was in June 2005, which makes it one of the more

modern tools. In June 2006 a completely rewritten version was released.

One of the interesting points the changelog (the report of changes between

versions) makes, is that this version has more accurate passive OS finger-

printing. [Auf06] The program was originally written because it turned out

that Nmap’s OS detection capabilities were getting into trouble in a specific

situation which had become more and more common on the internet. Many

home users are connected using a router which performs IP masquerading

in combination with network address translation (NAT). Both controversial

technologies because they broke some of the original intentions of the IP,

they also bring issues for OS detection tools. In addition to those problems,

also packet normalisation is emerging which is making Nmap’s approach of

fingerprinting obsolete. To prevent getting into the same problems, SinFP

was written specifically to avoid using tests that could be influenced by the

problems described. [Auf08]

SinFP is also the first tool to use a real database for its fingerprints. The
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database is based on SQLite and new versions of the fingerprint database

can easily be downloaded and used with SinFP. The previously described

tools all used plain text files which contained the fingerprint information.

Although these are similarly easily updatable, it would be easier to integrate

SinFP into another system with which it could share fingerprinting infor-

mation. Another advantage of using a database oriented design to store the

fingerprints, is the capability to store certain recurring values into a separate

table. Next to the fingerprint table, there are tables used to store recurring

patterns in: TCP flags; TCP maximum segment size (MSS); TCP options,

TCP window size and certain binary properties.

Other interesting features include:

• IPv6 support (including matching against IPv4 signatures)

• Very small amount of packets (often just one) needed to get a match

• Both online and offline modes

• Heuristic matching algorithm to be able to deal with customised stacks

Auffret [Auf08] describes these features in detail.

2.4.6 Satori

Eric Kollmann created a closed source tool called Satori, which is also capa-

ble of doing passive OS fingerprinting. The documentation is rather sparse.

One interesting aspect is that it prints the results from multiple detection en-

gines, so one immediately sees the results of different detection mechanisms.

By default Satori uses its own TCP and DHCP fingerprinting together with

an engine which can work with Ettercap fingerprints and an engine with

p0f fingerprints. For this reason, in addition to its own fingerprint files, also

p0f’s and Ettercap’s fingerprint files are included with the Satori download.

When a TCP packet passes by, Satori will display the output of its own

TCP engine, Ettercap and p0f below each other. This quickly gives an

impression of the quality of the different fingerprintings, which normally

only differ because one lists a specific version number the other lacks.

A really interesting feature on local area networks (LANs) is Satori’s

DHCP fingerprinting engine. DHCP packets are always broadcasted over

the whole network. This means nothing like ARP poisoning is necessary to
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obtain such packets from other systems to get an impression of the operating

systems that are popular on a LAN. This feature does not work past your

own LAN, so its not useful for really distant remote OS detection over the

Internet.

There is very little documentation and it is also not possible to look at

Satori’s source code. The author has written a paper [Kol05] however which

mentions many OS fingerprinting techniques, most of which are employed

by Satori.

2.4.7 Bayesian classifier

A paper published in 2004 by Robert Beverly from MIT proposes using

a Bayesian classifier for passive fingerprinting [Bev04]. The author uses a

naive Bayesian classifier that considers the TTL, DF, window size and SYN

size field from initial SYN packets. Naive means all the different fields are

considered to be fully independent. While this is not completely true, this

assumption does not hinder performance.

In two separate testing rounds the classifier is once tested while it is

trained using p0f’s existing fingerprint database. The second round it was

trained using traffic from a public non-technical webserver and identifying

the operating system based on the operating system part from the user-

agent value in the HTTP header. Although this may introduce errors due

to proxies and useragent spoofing, these are considered to be statistically

insignificant. The results of both tests were roughly similar, so both training

methods would seem equally suitable with the last one having the advantage

new systems may be added automatically.

The classifier was tested against “approximately 38M packets from an

hour long mid-week trace collected at a US internet exchange at 16:00 PST

in 2003”. It turns out that the success rate of the system is quite comparable

to p0f. This method has two specific advantages over p0f. First, since every

value has its own probabilistic weight, it can handle TCP stacks that have

been tweaked by the user. Second, the classifier can produce a “maximum-

likelihood guess” when there is no accurate fingerprinting data available. A

disadvantage of this approach is that a large number of hosts is necessary

to verify whether the classifier is working correctly. With the traditional

approach, a rule is already valid when it corresponds to a single host.

The paper uses the results to identify hosts behind a NAT router. Al-
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though they are able to observe independent systems the results are still

very limited. Other methods to count such hosts currently give much better

results, which is why is it is only suggested that this method may be suitable

in combination with other methods. There are far more interesting use cases

for this type of passive fingerprinting however.

2.4.8 Answer Set Programming

Gagnon, Esfandiari and Bertossi published several papers [GEB07, GE09]

on using Answer Set Programming to perform OS fingerprinting. The main

idea of the paper is that while current passive systems often base their full

analysis on a single packet, most of the time there are many more packets

available and using those too will improve accuracy. This brings a new re-

quirement to the system, it will have to keep track of history. By building

a tool using Answer Set Programming it is possible to add more reason-

ing to the fingerprinting mechanism. Data from older packets can be used

and passive and active techniques may be unified. Vladimir Lifschitz [Lif02]

describes Answer Set Programming (ASP) as “representing a given com-

putational problem by a logic program whose answer sets correspond to

solutions, and then use an answer set solver to find an answer set for this

program”. An example scenario where this system would work optimal is

described in the paper. Initially each computer is considered to be capable

to run any OS. As traffic is seen for specific systems, the set of possible OSs

is updated eliminating systems that cannot generate the observed traffic

using the passive scanner. When a user then requests information about a

particular system, specific active tests may be executed to obtain the rest of

the information if necessary. The test results of the system are very promis-

ing. Their implementation was able to correctly recognise more than 80%

of the 95 OSs tested. Other tools, including Nmap, p0f and Xprobe, had at

most a score of 34%.

2.5 Future

2.5.1 IPv6

Although the migration to IPv6 [DH98] is taking longer than expected, more

and more internet service providers are upgrading their networks to IPv6
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and are handing out IPv6 subnets to their customers. In practise most hosts

still use two stacks so they are reachable using both IPv4 and IPv6. Active

tools will not have to necessarily use IPv6 yet to be able to scan them. For

passive detection IPv6 support will be necessary as many applications tend

to prefer the IPv6 route over the IPv4 one. This means that a dual stack

host will use IPv6 as much as possible and passive tools have to support

IPv6 to be able to fingerprint them. As IPv6 adoption is continuing also

hosts with IPv6 only addresses will start to appear, which will require full

IPv6 support from active tools.

It should not be very difficult to add IPv6 support to the current gener-

ation of tools. Even the fingerprints could stay the same, since most of them

are based on differences in the transport protocol implementations, which

should not be influenced by a change in the network protocol.

Currently the only OS detection program that appears to support IPv6

is SinFP. Although Nmap has some IPv6 support, e.g. for port scans, it

cannot do OS detection over IPv6 yet.

2.5.2 IPsec

IPsec, specified in RFC 2401 [KA98], is a system which allows full encryption

of any data carried inside the network layer. This means that transport

protocol data is not visible while flowing over the internet.

It appears that hosts which would only be capable of accepting secure

connections will not appear soon. IPsec can be optionally negotiated, but

is not mandatory for all connections that would be made to the host. This

means current active tools can still scan a system. When IPsec only hosts

will appear, it would still be possible for active tools to go over IPsec and

scan the hosts.

Passive tools on the other hand will not be able to do much anymore

when IPsec is used, as they cannot see anything of the transport data. A

noteable exception is the case where the passive scanner is running on one

of the end hosts itself. (This could be the case when someone wants to keep

track of the systems connecting to his server.) Then it could potentially ac-

cess the unencrypted transport protocol data and perform its fingerprinting.
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2.5.3 Masking and Scrubbing

Research has also been done in the area of preventing the above tools from

accurately fingerprinting the operating system. Watson, Smart, Malan and

Jahanian [SMJ00, WSMJ04] created a packet scrubber which they claim

normalises all the traffic and thus leaves no system specific details in the

outgoing traffic. Kalia and Singh [KS05] describe some tweaks that can be

done to MS Windows and Linux so that Nmap is not able to recognise them

anymore. Also Beck [Bec01] uses this as a basis by letting a system respond

differently when it detects an Nmap scan. As masking and scrubbing meth-

ods may evolve, it may be more difficult in the future to fingerprint OSs.

Currently most masking tools are heavily based on the fingerprinting tools

that are currently in wide use, so a new tool might just be able to work

when it uses newer fingerprinting methods.

2.6 Conclusion

There are a number of tools available to remotely identify an operating sys-

tem over the internet. Although operating systems implement a similar set

of protocols to communicate over a network, there are enough implementa-

tion details which reveal the origin of software running on the system.

Quite a few tools to perform OS detection have been developed. A clear

evolution is visible when looking at all the different tools that are available

now. Some of the prominent developments:

• The abandoning of the application layer, moving fully to the transport

and network layers.

• The use of external fingerprint information as opposed to hardcoding

test cases and results.

• Looking at different transport protocols, not just the TCP but also

the ICMP and the UDP.

• Limiting the possible detection, sending a few packets or doing com-

pletely passive detection.

• Trying different types of algorithms, for example making decisions

based on a tree instead of a direct comparison.
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• The use of multiple completely separate detection engines.

• Keeping track of past events for use in a comprehensive analysis

Also some experiments have been done using neural networks and Bayesian

classifiers which bring quite a different approach to operating system finger-

printing, but unfortunately did not give practical results.

There are still some problems to solve. The traditional problem which

active scanners face, a firewall (or a router with IP masquerading) in front

of the target, can only be worked around by using a passive scanner. Passive

scanners have limitations too. Notably signature databases tends to get out

of date and without continuous maintenance the tools will stop working, as

they will not be able to recognise newer systems on the internet anymore.

Proper building and maintenance of a good fingerprint database appears to

be a serious issue which still requires a lot of manual work. Some initiatives

such as SinFP’s support to use the same fingerprints for both active and

passive scanning are already a good step forward in this area.

An overview of the advantages and disadvantages of the different types

of scanners:
Active Passive

Range Can only fingerprint sys-

tems directly connected to

the network

May fingerprint systems

behind a firewall

Target Can fingerprint any

available system

Can only fingerprint sys-

tems of which traffic passes

by

Visibility Fingerprinting can be de-

tected by IDSs

Detection is impossible

Granularity Can send crafted pack-

ets to provoke special

and different behaviour

in otherwise similar sys-

tems

Can only use information

from passing traffic for fin-

gerprinting

More improvements in OS detection can still be achieved regarding fin-

gerprints. Research into the generation, comparison and verification of fin-

gerprints could bring even more possibilities. Which parts of active and

passive signatures are actually similar and how much assimilation of sig-
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natures can be provided? How do signatures compare between IPv4 and

IPv6? Are there similarities between different transport protocols in certain

stacks? Could p0f’s extensive database for its SYN probing somehow be

reused for its other probes? Could a program based on multiple engines

share its fingerprints between the engines? Would this make the quality of

the detection equal or does this still depend a lot on the detection mecha-

nism? New ideas and performance measurements for tests are also described

by Greenwald and Thomas [GT07b]. The finetuning how existing tests are

used and testing additional properties may still improve the fingerprinting.

Another good addition would be automated fingerprint generation. This

could be done in several ways. One idea would be to run a tool which

analyses the source code of unknown systems, maybe by compiling and

running parts of it, and see what kind of data the code would generate.

Another approach would be to run a tool against a host running a known

version of an operating system which is kept up to date. Since updates may

influence the behaviour of the network stack, fingerprints would also have a

date (or version) property which would indicate the date at which the system

was fully patched when it matched that fingerprint. One approach was

also shown in the paper about the Bayesian classifier, which suggests using

the traditional application layer based headers to collect a large amount of

fingerprinting information. This is very prone to errors however.
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Chapter 3

Architecture

3.1 Introduction

To achieve fully automatic operating system fingerprinting, several steps are

needed. In Figure 3.1 the basic components of the architecture are shown.

The first step consists of collecting the relevant data from the network

stream. This data is then handed over to a simple matching based fin-

gerprinting component which fingerprints the data and compares it to the

already known fingerprints. When an exact match is found, the process

ends and the classification information returns. When no exact match is

found, the data is processed by a trained classifier based on machine learn-

ing techniques. The classifier tries to find the closest match based on a

known training set.

Two full pictures which show in detail how the fingerprinter works are

shown in Figure 3.2 and Figure 3.3.

Figure 3.1: Overview of the architecture
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Figure 3.2: Detecting a known system which has an exact match in the
database

Figure 3.3: Detecting a newer system which requires classification
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Table 3.1: Example of a p0f fingerprint
OS genre OS descr WSS TTL D size options quirks

Linux 2.6 S4 64 1 60 M*,S,T,N,W7 -

3.2 Information extractor

The first step in the process is extracting relevant information from a packet

stream. This can either be captured live or a stored capture of IP traffic.

From the stream, the only information that is interesting are packet and

segment headers of IP packets which include TCP SYN or SYN+ACK seg-

ments, because fingerprinting is limited to them. Details on TCP SYN and

SYN+ACK headers are described in Appendix E.1. All the other data can

be discarded. Initially regular packets were also analyzed but in general they

produced fingerprints that could not be distinguished, because such packets

generally do not have any options or other specific details through which

they could be distinguished.

The collected header data is the information on which the classification

process will be based. It is fed in a sanitized way to the other components.

This is done in the same format as rules used by p0f. A representation of a

single p0f rule is shown in Table 3.1.(The next section explains all the fields

in detail.)

3.2.1 Normalizing fingerprint data

The initial problem is concerned with the automatic generation of finger-

prints. This means that the observed network headers are stored in such a

way that a comparison is possible between different runs against systems.

It is not possible to base fingerprinting directly on the raw headers, because

of addressing fields for example which contain information on which differ-

entiation should be avoided. Based on the full packet and segment headers,

the relevant fields which are important for accurate fingerprinting need to

be extracted. In the case of p0f this is done manually according to the spec-

ification that instructs users how they can generate a new fingerprint to add

to p0f’s database. This section details how this process works for p0f, the

tool automates this.

When building a simple fingerprint, based on one segment by just reading

the header data from a packet, discarding obvious addressing data, it will
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Table 3.2: Example of unprocessed fingerprint data, the OS genre & de-
scription are not known yet
OS genre OS descr WSS TTL D size options quirks

(Linux) (2.6) 5860 64 1 60 M1460,S,T,N,W7 -

Table 3.3: FreeBSD 5.1 fingerprint from p0f’s database
OS genre OS descr WSS TTL D size options quirks

FreeBSD 5.1 (1) 65535 64 1 60 M*,N,W0,N,N,T Z

be similar to what is represented in Table 3.2. This notation is based on

how entries in p0f’s database look. The first value of the fingerprint, WSS,

is the window size. The next value is the initial TTL. Then the do not

fragment flag is listed. Either 1 for true or 0 for false. The next value is the

overall packet size (IP header + TCP header). The final two columns are

special. The first one contains all the options that the TCP header specifies

in order. The second one indicates whether a system has special quirks or

other abnormalities. An example of this is usage of the IP options field

(which is almost never used) or a non-zero URG pointer. Table 3.3 shows a

Z quirk which indicates the ID field in the IP header was zero.

The new tool is capable of generating p0f compatible fingerprints from

raw packet data. The automated process has been based on the process p0f

users needed to follow manually. It builds a complete fingerprint using just a

single packet and segment header combination. See Appendix E.4 for more

information on the original p0f fingerprints. The main areas of attention

are the WSS and the MSS option. The WSS needs to be calculated based

on the MSS option (if it is available). In case the value is a multiple of the

MSS, the maximum segment size, it will be the multiplier prefixed with an

S. There are also cases where systems tend to use a multiple of the MTU, the

maximum transfer unit, then this multiplier will be prefixed with a T. The

MSS itself should normally be wildcarded as it is link dependant. The other

values can be copied over without any changes. Almost all fingerprints from

p0f’s database could have been generated automatically in this way. The

only fingerprints that could not have been automatically generated in this

way, are fingerprints which contain a modulo operator signifying the value

in place is always a divisor of the value behind it. The reason is that these

fingerprints would have to be based on multiple different segments from
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the same system with different values in place to find a common divisor.

An automatic system just adds separate fingerprints for each of the new

values that it comes across, so this may not be even necessary. A search

through p0f’s current fingerprinting database shows that only some AIX and

very few MS Windows versions have a fingerprint containing a modulo sign.

Apparently some AIX versions always uses a window scale which is divisible

by two and some Windows versions tend to have a window size which is

divisible by exactly 8192. All other fingerprints can be generated fully by

software, except for the OS genre and details, which of course have to be

verified by a human the first time.

Although p0f’s fingerprints are a good starting point, it is important to

have flexibility and be able to store more details than p0f originally does.

Being able to match p0f is significant however, because it allows comparison

of the accuracy with it.

3.3 Exact fingerprint based matching

Traditionally, when fingerprinting systems, the scanned fingerprint is com-

pared to all known fingerprints in its database. When the fingerprinted

system gives a fingerprint that matches exactly with an existing fingerprint

from the database, this system is considered to be the same as the one using

which the original fingerprint was made. P0f has become quite an advanced

tool for obtaining fingerprints and its selection of header information allows

for accurate differentiation.

When the operating system is newer or unknown or maybe slightly

tweaked, there will be no match and the system will be considered as un-

known. In this situation it is necessary to use the trained classifier described

in the next section, Section 3.4, to detect the operating system.

3.4 Advanced fingerprinting using machine learn-

ing

When no exact match for a fingerprint is available it is possible to use

heuristics to find a match among the dataset of already known operating

systems. Using the already existing extensive dataset, a trained classifier is

able to give an accurate match for fingerprints that do not have an exact
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match. A classification algorithm is used to determine the closest match

among the known classes.

There are many different types of classification algorithms. The classifi-

cation algorithm must meet several requirements, namely: support multiple

classes, as there are several operating systems, and support high-dimensional

data, with more than five analysis dimensions.

Three different algorithms of three different types were chosen: a func-

tional algorithm: SVM, a rule based algorithm: RIPPER and a tree based

algorithm: C4.5. The primary reason to choose these, is because they are

known to give high-quality classifications, while they also perform good. Es-

pecially RIPPER is known to do well in network traffic oriented contexts.

Also SVM outperforms competing algorithms in 50% of the tests and ranks

in the top 3 in 90% of them. [MLH03, Lee99, LFM+02, Qui93]. Using known

high performing algorithms of different classes is also a better idea than us-

ing several algorithms of the same type which do something very similar. In

this way they are meant to compensate for each others weaknesses making

it possible to determine which algorithm is more suitable for this context.

They also have a fast retrain phase, so they can be quickly retrained when

new OSs are added to the classification. They support multiple classes and

high-dimensional input data. This is necessary because there are multiple

OSs which are all modeled as different classes and the number of attributes

which are derived from the input data is large. Although the full dataset

needs to be kept to be able to retrain, the dataset can be stored in a very

compact way, so the storage requirements are not very high.

The algorithms implement supervised-learning techniques, which means

they use a specific machine learning technique to deduce a function to a

predefined specific classification rather than seeking how data is organized

by measuring inter-data similarity and let the algorithm form associations

itself. Supervised-learning algorithms generally achieve a better result than

unsupervised-learning algorithms. The learning process is non-incremental,

which means the algorithm goes over the samples of the initial training set

multiple times to build an optimal classification model. Because all the

known test data needs to be stored for the previous matching algorithm

anyhow, it is always possible to let the classifier retrain itself when adding

new samples. A full retraining is necessary every time new samples need

to be incorporated. The advantage over an incremental algorithm is that
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non-incremental algorithms have significantly higher classification precision.

More details on the different algorithms will now be described.

3.4.1 RIPPER

RIPPER stands for Repeated Incremental Pruning to Produce Error Re-

duction and is an optimized version of IREP. It was proposed by William

Cohen [Coh95]. In addition to the optimizations, another enhancement over

IREP is its support for targets with multiple values. The original IREP

could only work with boolean values. This is necessary in this case, because

there are several fields which can contain multiple values and some fields

even contain numerical values, such as when window scaling is used.

The algorithm has an initialization phase in which it creates its ruleset.

These rules can then be applied to classify data.

The initialization works as follows. RIPPER starts with an empty rule-

set. When creating a rule, the training data is divided into two sets. A

growing set, consisting of two thirds of the data and a pruning set consist-

ing of the final third. Using the growing set, rules are grown and added to

the ruleset when they significantly change the matching. A rule is grown

by adding one condition at a time until there are no errors on the growing

set. Then an optimization phase is done where two variants of each rule

are created from randomized data using a similar procedure as the original,

but one variant is generated from an empty rule and the other is generated

by adding antecedents to the original rule. From these the rule with the

smallest error rate is picked.

An example of a rule from a ruleset generated by RIPPER:

IF

(wss_divisible = mss) and (tcpopt_wscale <= 6) and (initial_ttl <= 64)

THEN

class = linux

All rules produced by RIPPER consist of a binary condition which con-

sists of one or more individual conditions each based on a single attribute.

Only when all the conditions hold, the rule applies, so the individual condi-

tions are ANDed together.

26



3.4.2 The C4.5 decision tree algorithm

The C4.5 algorithm was designed by Ross Quinlan [Qui93]. He based it on

his original ID3 algorithm, to which he added some extra features including

handling of both continuous and discrete attributes. Continuous attributes

are supported by using thresholds. It can handle training data with missing

attribute values. It can handle attributes with differing costs based on the

number of samples. It prunes trees after creation to get rid of branches that

will not help the classification process.

It generates a decision tree that can then be used to classify systems.

Such a tree is built in the following way. A recursive algorithm is used with

the following base cases: All samples belong to the same class; None of the

features provide any information gain. When the algorithm encounters an

instance of new class, it goes back up the tree. The algorithm then checks

which attribute will give the highest information gain and create a decision

node in the tree for that attribute. Then the algorithm will recurse down

this tree. When the algorithm is finished, it will prune the tree, trying to

remove branches that do not help by replacing them with leaves.

A part of a generated J48 tree:

packet size ≤ 60

| tcpopt wscale ≤ 1

| | packet size ≤ 44: linux

| | packet size > 44

| | | tcpopt wscale ≤ 0: windows xp

| | | tcpopt wscale > 0: bsd

Quinlan also created a successor to the C4.5 algorithm called C5.0. This

algorithm has not been made public however and is marketed commercially

[Qui09].

3.4.3 Support Vector Machines (SVM)

The original SVM by Vapnik and Lerner was a binary classifier [VL63]. It is

an algorithm which maps the training set into a higher dimension. Then the

most optimal linear separating hyperplane is sought, which separates each

class as accurately as possible. This process is also shown in Figure 3.4.

The dotted lines, the margins, are pushed against the data sets to obtain
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Figure 3.4: Finding the optimal linear separation

the largest separation. Using these, the plane with the maximum margin

is found. Once a model has been calculated, new instances are classified

by mapping them in the same grid and determining the class based on the

existing separators.

The version of SVM used in this case is based on a radial basis func-

tion which can also classify non-linear relations. This version was later

introduced by Vapnik together with Boser and Guyon and can make use

of several different non-linear functions [BGV92]. The support for multiple

classes was added by reducing them all to multiple binary sub-problems.

3.4.4 Performance Highlights

Table 3.4 gives some highlights from the results. It is possible to achieve

an accuracy of nearly 80% using the above described algorithms. The rule

based algorithm RIPPER performs especially well and is accurate. Tree

based algorithms like C4.5, appear to be most suitable for this job. The

performance of SVM was low and the classification was less accurate than

that of C4.5. It appears an algorithm like SVM is not very suitable for

this type of classification. During the tests both RIPPER and C4.5 were

able to create a model within a second and use it to classify almost 80%

correctly. SVM took more than 2 minutes to create a model with which it

also classified almost 80% correctly. The classification process with SVM

is significantly longer however as it takes hours to do a 10 fold check as

opposed to minutes for RIPPER and C4.5. The full performance results are

in Section 4.2.2.
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Table 3.4: Accuracy and execution time of the different algorithms
Algorithm Correct Incorrectly Execution time

RIPPER 79.56% 20.44% 18.64 seconds
C4.5 79.80% 20.20% 5.83 seconds
SVM 79.73% 20.27% 1798.02 seconds

3.4.5 Conclusion

The steps necessary to automate passive operating system fingerprinting

further are feasible and have the potential to result in a system which may

discover new OSs without the support from humans. Of course these systems

will still be labeled as tweaked or newer versions of current systems, however

they will not be treated as being completely unknown. In the end also the

database upkeep will be significantly simplified, because it will only consist

of tagging the new systems instead of generating a complete fingerprint

manually. This should encourage the maintenance of databases and prevent

them from becoming outdated. This should make passive OS fingerprinting

significantly more accurate in the long term.
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Chapter 4

Implementation & Tests

4.1 Implementation

4.1.1 Information extractor

To detect what operating system is running, information from the network

and the transport layer is used. This is the most suitable layer for OS

fingerprinting. Differences in the physical layer and data link layer are more

dependent on the used hardware and can only be measured in the local

area network. This makes these layers unsuitable for fingerprinting. The

layers above the application data tend to contain only application specific

information as was described in Section 2.3.1, and thus are also not suitable

for fingerprinting. The data from the network layer and transport layer is

the lowest layer that makes it across the network and the implementation

is very often OS dependant. Thus from the traffic data, the network and

transport layer information needs to be extracted.

Libpcap

To be able to determine which headers should be processed and to extract

the right information a custom-developed tool was created based on libpcap

[TCP10]. Libpcap is a library to easily read and select data from network

traffic. It has data structures for all kinds of traffic data, can read out the

packet and segment headers, and also read out their individual fields. Using

this library, the header data is read and fingerprint entries are generated in

the p0f format. This component automates the steps described in Section
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3.2. The tests were all based on SYN fingerprinting, so that the performance

could be easily compared to p0f. The details of this analysis will be described

in the following section.

Processing a packet

To process a packet, the tool goes through several steps in sequential order.

The input data will be a traffic stream of network data. This can either

be realtime data or data stored in pcap logs. The pcap format is a simple

format used by libpcap and many other programs in which network traffic

can be stored. From this data only the headers on the network and transport

level are interesting.

First it checks whether a packet starts with an IP header. This can

either be an IPv4 or an IPv6 header. If the header is not an IP header, the

packet is discarded. Then the tool checks whether the included segment is

a TCP segment and without a TCP segment the packet is also dropped.

When the tool has reached this point, it will start analyzing the headers,

both the IP and the TCP headers. The tool analyzes and fingerprints every

single TCP segment. In practice it can also discard any non-SYN segment

at this point, as only SYN segments are interesting. The original tool did

not do this, to allow easy observation of the details that could possibly

be obtained from different segment types. When observing the analyzed

general traffic (details in Section 4.2.1) by looking at the generated output,

almost no differences could be seen. Sometimes the TTL values would differ,

but options were never included and fingerprints are indistinguishable from

each other. This means that general traffic does not show any significant

differences between different stacks and only specific TCP segments, such

as SYN segments contain useful fingerprinting information.

The header analysis consists of several steps including:

• Rounding up the hop limit (TTL) to the first power of 2 (32, 64, 128,

255) to guess the original value, as explained in Appendix E.2

• Check the state of the DF flag

• Calculating the overall packet size

• Process all the TCP options to determine their type and parameters,

analyze the usage of NOP and EOL options
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Table 4.1: An automatically generated fingerprint
OS genre OS descr WSS TTL D size options quirks

@/172.16.246.128 Auto generated 65535 64 1 64 M*,N,W0,N,N,T,S. -

• Look for special quirks as described in Appendix E.4

After this analysis it will generate a p0f compatible fingerprint. The

final two fields are filled in differently however as these consist of the OS

family and version. Since these are still unknown at this time, they are filled

with information data such as the IP address of the origin and a note the

fingerprint was generated automatically. A typical result looks like Table

4.1.

4.1.2 Existing fingerprint matching

The data that was generated in the previous section is suitable to allow for

comparison. When comparing it with another instance generated by the

same software, it should result in an exact match. When the fingerprinting

results in an exact match with an existing fingerprint, the system details of

the existing fingerprint are returned, for example “Windows XP SP1+, 2000

SP3”. The database contains unique fingerprints, whenever two systems

would “share” one fingerprint, they are also likely used the same stack and

are listed as one entry. This works similarly to p0f as explained in Appendix

E.4.

4.1.3 Classifier

The classifier is triggered when no exact match can be made with an existing

fingerprint. The normalized data will now be fed into the classifier. The

classifier will return a closest result from its training set which should be

a close match to the fingerprinted system. An example is “Windows XP”

indicating it is likely a tweaked version or variant of this system. This section

will describe the details of the classifier.

Weka

Weka (Waikato Environment for Knowledge Analysis) is a tool which in-

cludes many different machine learning algorithms and allows a user to easily
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test a single dataset against any of the included machine learning algorithms

[HDW94]. This allows one to quickly determine which algorithm is the most

optimal for a specific task.

Preparing data for classification

To be able to use Weka, it is necessary to have a representative amount

of data in its format, called the Attribute-Relation File Format (ARFF).

A converter was written to convert p0f-type fingerprints to ARFF. This

converter accepts a file with one or more p0f fingerprints and outputs a

specific ARFF format.

ARFF files first start with a header which describes the format. Then

all occurrences are stored with comma separated values each on their own

line. To use a training set built from one source with another, both ARFF

files need to have the exact same header. The format used was heavily based

on the p0f rules. For all fields in a p0f fingerprint, separate attributes are

defined. The ARFF format has no notion of order. Because the order of

TCP options is an important characteristic to differentiate systems, it was

necessary to encode order in ARFF too. This was done by specifying ten

separate attributes for every option and allowing each of them to have any

of the options. Unfortunately this still does not represent the true order of

the options as it only shows the fixed positions and the algorithms likely

are unaware of any order. All the quirks are simply defined as separate

booleans.

The final attribute in an ARFF file is always the result. In this case, it

represents which type of system generated the packet. When fingerprinting

a new system, this is the attribute that will be determined by the system.

The full ARFF header used for all the data can be found in Appendix

C.

Determining relevant factors

The first part of the problem is determining which information of the seg-

ment and packet headers is actually needed to obtain information about the

OS.

The relevant factors for the classifier should be chosen dynamically as

new fingerprints may need to depend on properties of the header which may
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not have been considered before to be able to differ from existing finger-

prints. This dynamic determination should be done automatically. This

is possible by feeding the header or a sanitized version of the header plus

the classification to a machine learning algorithm. Once the algorithm has

been fed enough classification data, it should be able to classify unknown

segments as coming from a specific operating system.

Together with a suitable dataset it is easy to do different test runs with

different algorithms and discover the most optimal algorithm. To test the

different algorithms one needs to obtain a large dataset which is already

correctly classified. Using this data Weka will let the algorithm train itself

and check different parts of the data against the training and note the overall

accuracy.

As the attributes are refined and more details about the traffic are pro-

vided, it is possible to improve the accuracy. The attributes are now largely

based on p0f. Representing the full packet and segment headers in the at-

tributes would be the most ideal, although the effect on the performance of

RIPPER or other algorithms is unknown.

The most relevant factors in the test data were determined using Prin-

cipal Component Analysis. Removing specific attributes from the testing

data, each time the accuracy of RIPPER was checked. It turned out that

the main differences in the testing dataset came from the window scale and

packet size.

4.2 Tests

4.2.1 Collecting a dataset for testing

To test how the tool performs with a large sample size, a large amount of

test data was collected. To perform the research, 250 GB of traffic data

collected over 3 days from the university’s wireless network was provided.

To build up a large set of classified fingerprints, a tailored tool was created

which can correlate SYN segments with HTTP useragents. HTTP is an

application layer protocol that is generally used by web browsers and other

web based applications. When an HTTP client sends out a request, it starts

with a header which contains some information about the useragent itself

and the platform it is running on. The tool fingerprints all packets which

include a TCP segment with destination port 80 and keeps them in a hash
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map with the hash of the source IP address as the hash key. Then when the

fingerprinter comes across a segment which includes HTTP header data, it

analyzes the useragent header field, takes the OS information from it, and

correlates this with the existing fingerprint in the hash map. In this way

more than 100.000 fingerprints with classification data were obtained from

this 250 GB of traffic, containing 62 different system types. It was this

dataset that was used to test the different algorithms. Because this dataset

is based on a recent capture, it contains fingerprints for all the systems

that are popular at this time. This makes it very suitable for testing the

classification, because it covers the systems that are indeed generally used.

Because HTTP useragents are sent out by connecting clients, the resulting

dataset mainly consists of typical client operating systems.

4.2.2 Testing classification

With the obtained dataset, classification tests were performed using Weka.

Weka first lets the algorithm train itself using the data set and then uses

different subsets to measure the performance of the trained algorithm. This

is done using a process called cross-validation. The complete set of samples

is partitioned into subsets. A single subset is used to validate the model,

while the other subsets are used to train the model. In this case, a ten-fold

cross-validation is done, so ten subsets are created. The complete process is

repeated ten times, each time with a different subset used as the validation

subset and the rest as the training data for the model as visualized in Figure

4.1. The final conclusion is the combination of the separate results. The

results of these tests are in Appendix B.

It turns out that tree-based classifiers are both the fastest and the most

accurate when dealing with this type of data. Rule-based classifiers also work

well. Since the relevant attributes may change in the future, the optimal

algorithm may also change, but it is likely that tree based classifiers will stay

the most optimal for now. This also confirms Arkin’s research. He based his

active ICMP based fingerprinter on a hardcoded logic tree, because he found

it was the most optimal approach [Ark02]. Other algorithms give inferior

results with both performance and accuracy.
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Figure 4.1: 10-fold cross-validation

Diving into the generated classifiers

The details of two classifiers are compared to an existing p0f rule of a known

OS. This shows the effectiveness and correctness of the result of the classi-

fication algorithms.
This is an example of the ruleset generated by RIPPER:

IF

(wss_divisible = mss) && (initial_ttl <= 64)

||

(packet_size >= 76)

THEN

class=linux

IF

(packet_size <= 52) && (initial_ttl <= 64) && (tcpopt_wscale >= 2)

THEN

class=windows_7

IF

( (tcpopt_wscale <= 0) && (packet_size >= 64) && (wss_divisible = no) )

||

( (tcpopt_wscale <= 0) && (tcpopt_eol = FALSE) &&

(initial_ttl <= 64) && (packet_size >= 52) )
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Table 4.2: An example from p0f’s database
OS genre OS descr WSS TTL D size options quirks

Windows XP SP1+, 2000 SP3 S44 128 1 48 M*,N,N,S -

||

( (tcpopt_wscale <= 0) && (initial_ttl >= 128) &&

(packet_size <= 52) && (wss_divisible = mss) )

||

( (packet_size <= 48) && (initial_ttl >= 128) )

||

( (initial_ttl >= 128) && (packet_size >= 64) && (wss_divisible = no) )

||

( (packet_size <= 52) && (tcpopt_wscale >= 3) && (tcpopt_wscale <= 3) )

THEN

class=windows_xp

IF

( (tcpopt_eol = TRUE) )

||

( (tcpopt_wscale <= 1) && (tcpopt_wscale >= 0) )

THEN

class=bsd

ELSE

class=windows_vista

For each system it comes up with one or more rules which classify the
system. These roughly correspond to p0f’s database entries, except that now
for each system only the specific relevant attributes are noted. To compare,
one line from p0f’s database is shown in Table 4.2 and one of the rules
generated by RIPPER is shown below. Both are generated to recognize MS
Windows XP.

IF

( (tcpopt_wscale <= 0) && (initial_ttl >= 128) &&

(packet_size <= 52) && (wss_divisible = mss) )

THEN

class=windows_xp

As can be seen both rules are indeed likely to be from the same system.

There is no WS specified, so this value is 0 for RIPPER. The initial TTL

is equal, in both cases (at least) 128. The packet size is 48 in the p0f rule,

while RIPPER accepts anything smaller than 52. In both cases a packet

size of 48 will make the statement true. The final statement in the rule

specifies the WSS should be divisible by the MSS. This is also true for the

p0f rule, as it specifies an S. This shows that the generated rules by RIPPER

indeed match with the fingerprints as they are known by p0f. To observe
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Table 4.3: Accuracy and execution time of the different algorithms
Algorithm Correct Incorrectly Execution time

RIPPER 79.56% 20.44% 18.64 seconds
C4.5 79.80% 20.20% 5.83 seconds
SVM 79.73% 20.27% 1798.02 seconds

the accuracy, the summary of the report shows the exact results:

Correctly Classified Instances 83208 79.5594 %

Incorrectly Classified Instances 21378 20.4406 %

Which shows directly how well the classifier has performed. For comparison,

here is the summary when using the hand-crafted p0f rules as input for the

same dataset:

Correctly Classified Instances 32694 31.2604 %

Incorrectly Classified Instances 71892 68.7396 %

The same example also works for the tree based decision algorithm C4.5.
The corresponding part of the generated decision tree looks like this:

wss_divisible = mss

| tcpopt_5 = s: windows_xp

The full tree is shown in Appendix B.2. As can be seen, with a smart

tree, accurate classification can be performed very fast.

4.2.3 Test Analysis

The accuracy of the different algorithms is comparable. The execution time

of the algorithm differs significantly however both can be seen in Table 4.3.

This shows that SVM has a very significant performance disadvantage and

the tree based C4.5 is both the fastest and the most accurate algorithm.

Windows Vista and Windows 7 are basically behaving the same. Since

those two operating systems are basically the same, a higher score is obtained

when treating both as a single system. The scores are in Table 4.4.

Other mix-ups are likely to be caused by tweaked systems, while passive

OS fingerprinting is really focused on the default connection parameters.

Since with some tweaking almost everything can be changed on most oper-

ating systems, such mix-ups are unavoidable. Because of the large amount

of different possible configurations for a typical network stack, the detection

can only target the default settings of systems.
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Table 4.4: Accuracy of the different algorithms with MS Windows Vista and
7 merged
Algorithm Correct Incorrectly Execution time

RIPPER 86.42% 13.58% 43.61 seconds
C4.5 86.63% 13.37% 5.15 seconds
SVM 86.57% 13.43% 1245.2 seconds

Table 4.5: RIPPER’s performance
correct incorrect percentage name notes

21085 5455 79,4 % BSD & variants Most mistakes were tagged as Win-
dows XP and Windows Vista, which
are based on the same stack

7608 3 100 % Linux
0 16 0 % Solaris Were all detected as Windows Vista
0 14 0 % Windows 2000 Few occurrences, were all tagged as

Windows XP or Windows Vista
12115 1547 88,7 % Windows XP All mistakes were tagged as Windows

Vista or Windows 7 (maybe patchlevel
related?)

41573 4454 90,3 % Windows Vista All mistakes were tagged as Windows
XP or Windows 7

827 9730 7,8 % Windows 7 The majority of the mistakes was
tagged as Windows Vista, the rest as
Windows XP

0 127 0 % Windows CE Appears to use stacks based on either
BSD and the variant used by Windows
Vista

83208 21378 79.56 % total The majority of the systems is classi-
fied correctly

4.2.4 Test results

This section contains detailed reports about the performance of the different

algorithms. The operating systems shown are the ones that were used to

access the network.

RIPPER took 18.64 seconds to build the model. Table 4.5 shows the

accuracy per system and the performance summary fromWeka. Because the

algorithms always use the classification with the highest number of instances

as the result when no rule matches. In the used dataset, Windows Vista

had the highest presence. For this reason there are systems with very few

instances like Solaris, that are classified as Windows Vista.

C4.5 took 5.83 seconds to build the model. Table 4.6 shows the accuracy

per system and the performance summary from Weka.

SVM took 1798.02 seconds to build the model. Table 4.7 shows the

accuracy per system and the performance summary from Weka.
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Table 4.6: C4.5’s performance
correct incorrect percentage name notes

21336 5204 80,4 % BSD & variants Most mistakes were tagged as Win-
dows XP and Windows Vista, which
are based on the same stack

7607 4 99,9 % Linux
0 16 0 % Solaris Were all detected as Windows Vista
0 14 0 % Windows 2000 Few occurrence, were all tagged as

Windows XP or Windows Vista
12115 1550 88,7 % Windows XP Almost all mistakes were tagged as

Windows Vista or Windows 7 (maybe
patchlevel related?)

41574 4477 90,3 % Windows Vista Almost all mistakes were tagged as
Windows XP or Windows 7

827 9735 7,8 % Windows 7 The majority of the mistakes was
tagged as Windows Vista, the rest as
Windows XP

0 127 0 % Windows CE Appears to use stacks based on BSD

83459 21127 79.80 % total The majority of the systems is classi-
fied correctly

Table 4.7: SVM’s performance
correct incorrect percentage name notes

21336 5204 80,4 % BSD & variants Most mistakes were tagged as Win-
dows XP and Windows Vista, which
are based on the same stack

7608 3 100 % Linux
0 16 0 % Solaris Were all detected as Windows Vista
0 14 0 % Windows 2000 Few occurrences, were all tagged as

Windows XP or Windows Vista
12044 1621 88,1 % Windows XP Almost all mistakes were tagged as

Windows Vista or Windows 7 (maybe
patchlevel related?)

41574 4477 90,3 % Windows Vista All mistakes were tagged as Windows
XP or Windows 7

829 9733 7,8 % Windows 7 The majority of the mistakes was
tagged as Windows Vista, the rest as
Windows XP

0 127 0 % Windows CE Appears to use stacks based on either
BSD and the variant used by Windows
Vista

83391 21195 79.73 % total The majority of the systems is classi-
fied correctly
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Table 4.8: Three Linux 2.6 fingerprints from p0f’s database
OS genre OS descr WSS TTL D size options quirks

Linux 2.6 (newer, 1) S4 64 1 60 M*,S,T,N,W5 -
Linux 2.6 (newer, 2) S4 64 1 60 M*,S,T,N,W6 -
Linux 2.6 (newer, 3) S4 64 1 60 M*,S,T,N,W7 -

Table 4.9: Comparing fingerprints from MS Windows XP and Vista
OS genre OS descr WSS TTL D size options quirks

Windows XP SP1+, 2000 SP3 S44 128 1 48 M*,N,N,S -
(Windows) (Vista) 8192 128 1 52 M*,N W8,N,N,S -

4.3 Preliminary future work

4.3.1 Detecting progression in network stacks

An interesting feature is the detection of newer versions of known operating

systems. As operating systems evolve, their network stacks are also im-

proved and sometimes even replaced adding new features and options. The

effect this has on the resulting packet and segment headers, is exactly what

allows fingerprinting to differentiate operating systems.

Table 4.8 is an example of a part of p0f’s fingerprint database [Zal06a].

The trend in the table is obvious. The default value of the parameter of

the WS option is apparently increased over time. It turns out that there

are indeed explicit trends where new features or options are implemented

similarly throughout time for different operating systems. The most notable

is the TCPWindow Scale (WS) option [JBB92]. This option was introduced

to deal with “Long-Fat Networks” (LFN). As networks get faster, more and

more operating systems start to use the WS option to deal with LFNs.

And as links get even faster, newer systems keep increasing the value of the

window scale. The result of this is that systems which use the WS option or

use it with a higher value, but are otherwise comparable to older fingerprints

are likely to be newer versions of the systems these older fingerprints were

based on. A quick look through p0f’s fingerprint database already showed

this pattern to be true for Linux. Detailed testing confirmed the same

phenomenon on MS Windows as can be seen in Table 4.9. The table shows

the addition of the WS option. It should be noted that since the WS option

plus its parameter often consists of 24 bits and many systems align the

TCP options to 32 bits, the addition of the WS option may also bring an
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extra no-operation (NOP) option. This is also the case for Windows’ stack.

Other than that, the packet size is incremented by 4 to take the extra 32

bits (= 4 bytes) into account. Since the WSS value is related to the WS,

it obviously changes too. Basically this means that all the expected values

have changed in a way that is logical and thus likely also predictable. This

could be detected using heuristics. Details of this test are in Section 4.3.2.

With options like WS the evolution of OSs and the evolution of the net-

work stack is really visible in the fingerprinting and this information can be

used to predict the fingerprints enhanced systems will have. Because such

options are often already specified long before they appear in implemen-

tations (and before they are turned on by default), one can possibly even

predict the options that may appear in future versions of existing network

stacks by watching the RFCs from IETF or studying which options are ac-

tually implemented already, but which have not been enabled yet. As with

the case of the WS option, newer versions are likely to have higher values

for the WS, so also this is a good indicator of a new version of an already

known system.

Although the classification algorithms as described above cannot be

made explicitly aware of these progressions, this enables understanding how

progression can be detected by them.

4.3.2 Detecting clients versus detecting servers, SYN finger-

printing against SYN+ACK fingerprinting

Most of the work that has been gone into passive operating system finger-

printing was based on TCP SYN segments. Because a SYN segment is sent

out by a client when it wants to initiate a connection. This is useful when

someone offering online services wants to fingerprint the operating systems

her users are using. In other cases however, it may be more interesting to

fingerprint the server instead of the client. In this case, SYN+ACK finger-

printing is required. A SYN+ACK segment is a segment that is sent out by

a server in the three-way handshake (explained in Appendix E.1).

An example of a SYN+ACK fingerprint from p0f’s database is shown

in Table 4.10. As can be seen, these fingerprints are roughly equal to p0f’s

SYN fingerprints. One notable thing is the A quirk. It is always present for

SYN+ACK segments, because they should always have the ACK flag set.

As described also by p0f’s author, SYN+ACK segments are often based on
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Table 4.10: A SYN+ACK fingerprint from p0f’s database
OS genre OS descr WSS TTL D size options quirks

Windows XP SP1 S44 64 1 64 M*,N,W0,N,N,T0,N,N,S A

Table 4.11: A response to a SYN with the WS option
OS genre OS descr WSS TTL D size options quirks

(Linux) (2.6) 5792 64 1 60 M*,S,T,N,W6 ZAT

the SYN segment that initiated the connection [Zal06a]. This means that

differences in SYN+ACK segments may actually result from differences that

were in the SYN segment which the SYN+ACK segment is a reply to. If,

for instance, a SYN segment is sent without any WS option, the answer is

unlikely to contain a WS option, since it assumes the first system does not

have support for this option anyhow. This is shown in the following exam-

ple. First, a normal connection with default settings is established from one

Linux system to another and then the WS option is disabled on the client

side. Compare the responses. The response to a packet with the WS option

is shown in Table 4.11. The response to a packet without the WS option is

shown in Table 4.12. This shows the adaptive behavior of the stack on the

connection accepting side. The Z quirk in this case is triggered by the DF

flag which is consistently set in these cases, so IP identification is not needed.

The details on how this test was performed are described in the following

Subsection. Thus, when fingerprinting one should realize the SYN+ACK

segment may have been based on a SYN segment with a limited option set

specified and so it may not reveal many details. Other values that are likely

to depend on the initiating SYN segment are the WSS and the MSS. Taking

these into account however, there are still many things that can be used to

differentiate systems based on SYN+ACK segments, especially when mul-

tiple SYN+ACK segments are collected based on different initiating SYN

segments. With a feature rich SYN segment passing by, the correspond-

ing SYN+ACK will likely reveal a lot of information about the supported

Table 4.12: A response to a SYN without the WS option from the same
system as in Table 4.11
OS genre OS descr WSS TTL D size options quirks

(Linux) (2.6) 5792 64 1 56 M*,S,T ZAT
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Table 4.13: SYN packet with WS enabled
OS genre OS descr WSS TTL D size options quirks

(Linux) (2.6) S4 64 1 60 M*,S,T,N,W7

Table 4.14: SYN+ACK response to SYN with WS enabled
OS genre OS descr WSS TTL D size options quirks

(Linux) (2.6) 5792 64 1 60 M*,S,T,N,W6 ZAT

feature set. Together with some segments which advertise less features, pat-

terns such as NOP-aligning may be recognized. With other variants, other

behavior may be noted. P0f’s fingerprinting is completely based on dealing

with a single segment. No correlation between corresponding segments is

performed. In this situation it indeed appears as if SYN+ACK fingerprinting

is also partially fingerprinting the OS which initiated the connection. With

more knowledge of state and a proper database, SYN+ACK fingerprinting

may be potentially quite thorough and complicated, but still feasible with

a good design.

Showing the SYN+ACK TCP options can depend on initial SYN

segments

As stated in Section 4.3.1, the options a TCP stack will return in a SYN+ACK

segment often depend on which options were specified. This can be verified

using the following test, which consists of connecting to a single server using

a different option set specified in the initial segment.

It was earlier described that the window scaling feature is only advertised

by some servers when the initial connection also advertises this feature. To

test this, the following commands can be used to disable or enable the

window scaling feature on the fly.

echo 0 | tee /proc/sys/net/ipv4/tcp window scaling

echo 1 | tee /proc/sys/net/ipv4/tcp window scaling

When the window scaling setting is enabled, a SYN packet sent out by a

system running Linux kernel version 2.6.31, has the properties as shown in

Table 4.13. The response from a system using Linux kernel version 2.6.24 is

shown in Table 4.14. Then the WS option is disabled in the network stack,

the initial segment is now as shown in Table 4.15. The response from the

same system is now as shown in Table 4.16.
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Table 4.15: SYN packet with WS disabled
OS genre OS descr WSS TTL D size options quirks

(Linux) (2.6) S4 64 1 56 M*,S,T

Table 4.16: SYN+ACK response to SYN with WS disabled
OS genre OS descr WSS TTL D size options quirks

(Linux) (2.6) 5792 64 1 56 M*,S,T ZAT

More testing was done using varying window sizes. It is possible to de-

crease the WS to 6 (from 7) using these commands:

echo 4096 8192 2097152 | tee /proc/sys/net/ipv4/tcp rmem

echo 4096 8192 2097152 | tee /proc/sys/net/ipv4/tcp wmem

Using decreased numbers the WS can be lowered further. However this

does not have any effect on the WS of the replying system in our tests. This

was tested against Linux kernel version 2.4.27, version 2.6.26 and Windows

Server 2008. This shows that comprehensive SYN+ACK fingerprinting in-

deed gives results as described and could be used to fingerprint servers more

comprehensively.

4.3.3 RST+ACK fingerprinting

When fingerprinting the server-side of a connection, RST+ACK fingerprint-

ing may also be relevant. When a system does not accept a connection us-

ing a SYN+ACK segment, it will usually send back a RST+ACK segment.

This means that when aiming to detect the running system on a server,

RST+ACK fingerprinting may also be necessary.

In practice there is not much information that can be gained from

RST+ACK segments however and also p0f’s database for them is very lim-

ited. P0f has a single mode in which it fingerprints all types of RST seg-

ments, including RST+ACK segments. P0f’s RST database contains just

five RST+ACK fingerprints, which shows how limited the detecting possi-

bilities are. Two are shown in Table 4.17. As can be seen, the fingerprints

Table 4.17: Two RST+ACK fingerprints from p0f’s database
OS genre OS descr WSS TTL D size options quirks

Linux 2.0/2.2 0 255 0 40 - K0A
Windows XP/2000 0 128 0 40 - K0A
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are very similar, with the only differentiating factor being the initial TTL.

This is also the reason the different versions cannot be differentiated. It

is thus unlikely that RST+ACK fingerprinting can contribute significantly

compared to SYN+ACK fingerprinting.
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Chapter 5

Conclusion

The original research question of the work was formulated as:

“Can machine learning techniques be used to recognize new operating

systems which current fingerprinting systems cannot automatically

recognize?”

It is argued that current passive fingerprinting systems have problems

with recognizing modern systems and that this causes the accuracy of these

systems to be very limited. To improve the accuracy, it is necessary to either

update the fingerprint database manually or use machine learning techniques

to deal with newer systems. Because it was observed manual updating is

too complex, there is a necessity to use classification.

In the thesis, an architecture is described which extends the traditional

passive operating system fingerprinting with additional classification func-

tionality. First the process of information extraction and normalization is

discussed showing it is possible to fully automate this part either using an

automated implementation of the existing process or by using classification

to obtain an overview of the differentiation fields. Then the next step in the

architecture is described, using the traditional technique, already known

systems can be accurately classified. After that, when a system cannot be

recognized, classification is used to classify the operating system using ex-

isting systems as a training set. After describing the architecture for this

process, an implementation is described which was used to test the feasibil-

ity of the system. Both the information extraction and exact matching are

based on the already existing p0f fingerprinter. The classification process is
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defined after testing several types of algorithms and determining which ones

were suitable for the classification of operating systems based on passive

fingerprinting data. Two algorithms that are very suitable for automatic

classification turned out to be C4.5 and RIPPER. Both are accurate enough

and also perform fast. The testing section shows classification is indeed quite

accurate when using for fingerprinting and suitable to be used to recognize

previously unrecognized systems.

5.1 Future work

Several notable developments will have a notable impact on passive OS fin-

gerprinting in the future. Some of these were already mentioned in Chapter

2.

IPv6 The thesis was mainly focused on IP version 4 and did not detail

much about version 6. IPv6 adds several field however, such as the flow label,

which also have potential to be useful for fingerprinting. More information

can be found in Appendix A.

IPsec IPsec will provide full encryption for the transport layer, which

would have a significant impact on the described fingerprinting because of

its big dependence on TCP. It may become almost impossible to properly

fingerprint connection which are set up by two foreign entities, because in

that case the TCP header, which is the main differentiation source, is fully

encrypted. Maybe IPsec itself will allow for new methods of differentiation

however.

Correlation of packet series Right now the complete fingerprinting pro-

cess is based on just a single packet. Although much more complex, using

multiple packets for fingerprinting could make the fingerprinting significantly

more accurate. Some initial testing on specific correlation of SYN+ACK re-

sponses to SYN segments is already described in Section 4.3.2.
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Appendix A

The IP & the TCP

Addressing, routing on the internet are handled by the Internet Protocol

(IP) [Pos81b]. Several versions of the IP have been developed. At this

moment version 4 and version 6 [DH98, ASNN07] are in widespread use.

Both the older IPv4 and newer IPv6 header are shown:

The IPv4 header

Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

The IPv6 header
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Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

This header is used by routers to route a packet to the right destination.

Especially the destination address is relevant. Based on the routing tables

and the address from the header, packets are routed to their destination. A

short overview of all the fields in the IPv6 header is given here. They mostly

correspond to the most relevant fields in the IPv4 header.

Version This field is either 6 for IPv6 or 4 for IPv4.

Traffic Class This field specifies the type of traffic.

Flow Label This field is reserved for future use, so hosts can request

special handling of certain traffic flows. For example, realtime voice com-

munication.

Payload Length The full length of the packet, minus 40 octets (bytes)

(this header).

Next Header Identifies the type of the header that follows the IP header.

Hop Limit This value used to be called TTL, but because it was always

treated as a hop limit, it was renamed. This value is subtracted with one

by every router this packet passes through.

Source Address The address from which the packet originates.
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Destination Address The address of the intended recipient of the packet.

To ensure reliable communication the Transport Control Protocol [Pos81c,

Bra89, RFB01] was developed. It ensures data between two applications ar-

rives without errors and in the original order. The TCP header generally

follows the IP header in a packet and looks as shown.

The TCP header

Source Port Destination Port

Sequence Number

Acknowledgment Number

DataOffset Reserved

C
W

R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N Window

Checksum Urgent Pointer

Options Padding

Source Port The port number from which the segment originates.

Destination Port The port number to which the segment is destined.

Sequence Number The sequence number of the first data octet or the

initial sequence number.

Acknowledgment Number The sequence number of the next segment

the sender is expected to receive.

Data Offset The length of this header in 32 bit words.

Reserved These bits are unused for now and should be set to zero.

Control Bits Specific connection set-up and tear-down related flags and

urgency flags. The first two bits are related to congestion notification.

[RFB01]
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Window The number of data octets starting with the one in the acknowl-

edgment field the sender of the segment is willing to accept.

Checksum A checksum calculated over the TCP header and some field

from the IP header.

Urgent Pointer This field points to the sequence number of the octet

following the urgent data when the URG flag is set.

Options Advertisement of options supported by a TCP stack.

All systems participating in the internet send out packets containing the

above headers. Due to subtle difference in the way they fill these headers,

it is possible to distinguish systems and obtain more information about

the system from which a packet originates. Doing this technique based on

previously observed and correlated packets is called fingerprinting. This is

similar to observing and correlating human fingerprints for identification

purposes.
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Appendix B

Detailed test reports

B.1 RIPPER

=== Run information ===

Scheme: weka.classifiers.rules.JRip -F 3 -N 2.0 -O 2 -S 1

Relation: ip+tcp_fingerprinting-weka.filters.supervised.attribute.

AttributeSelection-Eweka.attributeSelection.CfsSubsetEval-Sweka.attributeSelection.BestFirst -D 1 -N 5

Instances: 104586

Attributes: 6

wss_divisible

initial_ttl

packet_size

tcpopt_wscale

tcpopt_eol

class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

JRIP rules:

===========

(wss_divisible = mss) and (tcpopt_wscale <= 6) and (initial_ttl <= 64) => class=linux (6591.0/21.0)

(wss_divisible = mss) and (initial_ttl <= 64) => class=linux (1164.0/137.0)

(packet_size >= 76) => class=linux (11.0/0.0)

(packet_size <= 52) and (initial_ttl <= 64) and (tcpopt_wscale >= 2) => class=windows_7 (910.0/83.0)

(tcpopt_wscale <= 0) and (packet_size >= 64) and (wss_divisible = no) => class=windows_xp (231.0/1.0)

(tcpopt_wscale <= 0) and (tcpopt_eol = FALSE) and (initial_ttl <= 64) and (packet_size >= 52)

=> class=windows_xp (232.0/93.0)

(tcpopt_wscale <= 0) and (initial_ttl >= 128) and (packet_size <= 52) and (wss_divisible = mss)

=> class=windows_xp (23.0/0.0)

(packet_size <= 48) and (initial_ttl >= 128) => class=windows_xp (19773.0/8766.0)

(initial_ttl >= 128) and (packet_size >= 64) and (wss_divisible = no) => class=windows_xp (665.0/4.0)

(packet_size <= 52) and (tcpopt_wscale >= 3) and (tcpopt_wscale <= 3) => class=windows_xp (55.0/0.0)
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(tcpopt_eol = TRUE) => class=bsd (21037.0/12.0)

(tcpopt_wscale <= 1) and (tcpopt_wscale >= 0) => class=bsd (448.0/138.0)

=> class=windows_vista (53446.0/11872.0)

Number of Rules : 13

Time taken to build model: 18.64 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 83208 79.5594 %

Incorrectly Classified Instances 21378 20.4406 %

Kappa statistic 0.7037

Mean absolute error 0.0579

Root mean squared error 0.1701

Relative absolute error 44.894 %

Root relative squared error 67.0061 %

Total Number of Instances 104586

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.794 0 0.998 0.794 0.885 0.916 bsd

1 0.002 0.98 1 0.99 1 linux

0 0 0 0 0 0.705 solaris

0 0 0 0 0 ? windows_9x

0 0 0 0 0 ? windows_nt

0 0 0 0 0 0.728 windows_2000

0.887 0.098 0.577 0.887 0.699 0.914 windows_xp

0 0 0 0 0 ? windows_2003

0.903 0.209 0.773 0.903 0.833 0.873 windows_vista

0.078 0.001 0.909 0.078 0.144 0.684 windows_7

0 0 0 0 0 0.832 windows_ce

Weighted Avg. 0.796 0.105 0.832 0.796 0.769 0.879

=== Confusion Matrix ===

a b c d e f g h i j k <-- classified as

21085 137 0 0 0 0 1835 0 3483 0 0 | a = bsd

2 7608 0 0 0 0 1 0 0 0 0 | b = linux

0 0 0 0 0 0 0 0 16 0 0 | c = solaris

0 0 0 0 0 0 0 0 0 0 0 | d = windows_9x

0 0 0 0 0 0 0 0 0 0 0 | e = windows_nt

0 0 0 0 0 0 10 0 4 0 0 | f = windows_2000

3 0 0 0 0 0 12115 0 1509 38 0 | g = windows_xp

0 0 0 0 0 0 0 0 0 0 0 | h = windows_2003

3 21 0 0 0 0 4409 0 41573 45 0 | i = windows_vista

5 0 0 0 0 0 2634 0 7096 827 0 | j = windows_7

26 0 0 0 0 0 0 0 101 0 0 | k = windows_ce
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B.2 C4.5

=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: ip+tcp_fingerprinting

Instances: 104586

Attributes: 31

wss_divisible

initial_ttl

df_flag

packet_size

tcpopt_individual_nop_align

tcpopt_nop_start

tcpopt_mss

tcpopt_sack

tcpopt_ts

tcpopt_wscale

tcpopt_eol

tcpopt_0

tcpopt_1

tcpopt_2

tcpopt_3

tcpopt_4

tcpopt_5

tcpopt_6

tcpopt_7

tcpopt_8

tcpopt_9

quirk_data

quirk_options_past_EOL

quirk_zero_ipid

quirk_ipoptions

quirk_nonzero_urg

quirk_nonzeo_unused

quirk_nonzeo_ack

quirk_nonzeo_2nd_t

quirk_weird_flags

class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

------------------

wss_divisible = no

| tcpopt_eol = TRUE: bsd (21038.0/12.0)

| tcpopt_eol = FALSE

| | tcpopt_wscale <= 1

| | | initial_ttl <= 64

55



| | | | tcpopt_2 = n

| | | | | df_flag = set: windows_7 (2.0)

| | | | | df_flag = unset: linux (11.0)

| | | | tcpopt_2 = m: windows_xp (0.0)

| | | | tcpopt_2 = s: windows_xp (0.0)

| | | | tcpopt_2 = t: windows_xp (0.0)

| | | | tcpopt_2 = w: windows_xp (232.0/93.0)

| | | | tcpopt_2 = e: windows_xp (0.0)

| | | | tcpopt_2 = null: windows_xp (0.0)

| | | initial_ttl > 64

| | | | tcpopt_5 = n: windows_xp (0.0)

| | | | tcpopt_5 = m: windows_xp (0.0)

| | | | tcpopt_5 = s: bsd (436.0/138.0)

| | | | tcpopt_5 = t: windows_xp (230.0)

| | | | tcpopt_5 = w: windows_xp (0.0)

| | | | tcpopt_5 = e: windows_xp (0.0)

| | | | tcpopt_5 = null

| | | | | tcpopt_ts = TRUE: windows_vista (7.0)

| | | | | tcpopt_ts = FALSE: windows_xp (19773.0/8766.0)

| | tcpopt_wscale > 1

| | | initial_ttl <= 64: windows_7 (910.0/83.0)

| | | initial_ttl > 64

| | | | tcpopt_wscale <= 2: windows_vista (46536.0/10363.0)

| | | | tcpopt_wscale > 2

| | | | | tcpopt_wscale <= 5: windows_xp (720.0/4.0)

| | | | | tcpopt_wscale > 5: windows_vista (6901.0/1507.0)

wss_divisible = mss

| tcpopt_5 = n: linux (0.0)

| tcpopt_5 = m: linux (0.0)

| tcpopt_5 = s: windows_xp (23.0)

| tcpopt_5 = t: linux (0.0)

| tcpopt_5 = w: bsd (12.0)

| tcpopt_5 = e: linux (0.0)

| tcpopt_5 = null: linux (7755.0/158.0)

wss_divisible = mtu: windows_vista (0.0)

Number of Leaves : 29

Size of the tree : 41

Time taken to build model: 5.83 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 83459 79.7994 %

Incorrectly Classified Instances 21127 20.2006 %

Kappa statistic 0.7074

Mean absolute error 0.0569

Root mean squared error 0.1687
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Relative absolute error 44.1343 %

Root relative squared error 66.4392 %

Total Number of Instances 104586

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.804 0.002 0.993 0.804 0.889 0.929 bsd

0.999 0.002 0.979 0.999 0.989 0.999 linux

0 0 0 0 0 0.756 solaris

0 0 0 0 0 ? windows_9x

0 0 0 0 0 ? windows_nt

0 0 0 0 0 0.786 windows_2000

0.887 0.097 0.577 0.887 0.699 0.919 windows_xp

0 0 0 0 0 ? windows_2003

0.903 0.203 0.778 0.903 0.836 0.875 windows_vista

0.078 0.001 0.909 0.078 0.144 0.722 windows_7

0 0 0 0 0 0.998 windows_ce

Weighted Avg. 0.798 0.103 0.833 0.798 0.771 0.888

=== Confusion Matrix ===

a b c d e f g h i j k <-- classified as

21336 137 0 0 0 0 1812 0 3255 0 0 | a = bsd

2 7607 0 0 0 0 2 0 0 0 0 | b = linux

0 0 0 0 0 0 0 0 16 0 0 | c = solaris

0 0 0 0 0 0 0 0 0 0 0 | d = windows_9x

0 0 0 0 0 0 0 0 0 0 0 | e = windows_nt

0 0 0 0 0 0 10 0 4 0 0 | f = windows_2000

12 0 0 0 0 0 12115 0 1500 38 0 | g = windows_xp

0 0 0 0 0 0 0 0 0 0 0 | h = windows_2003

3 21 0 0 0 0 4408 0 41574 45 0 | i = windows_vista

6 2 0 0 0 0 2632 0 7095 827 0 | j = windows_7

127 0 0 0 0 0 0 0 0 0 0 | k = windows_ce

B.3 SVM

=== Run information ===

Scheme: weka.classifiers.functions.LibSVM

-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1

Relation: ip+tcp_fingerprinting

Instances: 104586

Attributes: 31

wss_divisible

initial_ttl

df_flag

packet_size

tcpopt_individual_nop_align

tcpopt_nop_start
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tcpopt_mss

tcpopt_sack

tcpopt_ts

tcpopt_wscale

tcpopt_eol

tcpopt_0

tcpopt_1

tcpopt_2

tcpopt_3

tcpopt_4

tcpopt_5

tcpopt_6

tcpopt_7

tcpopt_8

tcpopt_9

quirk_data

quirk_options_past_EOL

quirk_zero_ipid

quirk_ipoptions

quirk_nonzero_urg

quirk_nonzeo_unused

quirk_nonzeo_ack

quirk_nonzeo_2nd_t

quirk_weird_flags

class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM)

Time taken to build model: 1697.7 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 83391 79.7344 %

Incorrectly Classified Instances 21195 20.2656 %

Kappa statistic 0.7064

Mean absolute error 0.0368

Root mean squared error 0.192

Relative absolute error 28.5761 %

Root relative squared error 75.6003 %

Total Number of Instances 104586

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.804 0.002 0.992 0.804 0.888 0.901 bsd

1 0.002 0.98 1 0.99 0.999 linux

0 0 0 0 0 0.5 solaris
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0 0 0 0 0 ? windows_9x

0 0 0 0 0 ? windows_nt

0 0 0 0 0 0.5 windows_2000

0.881 0.097 0.576 0.881 0.697 0.892 windows_xp

0 0 0 0 0 ? windows_2003

0.903 0.204 0.777 0.903 0.835 0.85 windows_vista

0.078 0.001 0.909 0.078 0.145 0.539 windows_7

0 0 0 0 0 0.5 windows_ce

Weighted Avg. 0.797 0.103 0.832 0.797 0.771 0.847

=== Confusion Matrix ===

a b c d e f g h i j k <-- classified as

21336 137 0 0 0 0 1812 0 3255 0 0 | a = bsd

2 7608 0 0 0 0 1 0 0 0 0 | b = linux

0 0 0 0 0 0 0 0 16 0 0 | c = solaris

0 0 0 0 0 0 0 0 0 0 0 | d = windows_9x

0 0 0 0 0 0 0 0 0 0 0 | e = windows_nt

0 0 0 0 0 0 10 0 4 0 0 | f = windows_2000

28 0 0 0 0 0 12044 0 1555 38 0 | g = windows_xp

0 0 0 0 0 0 0 0 0 0 0 | h = windows_2003

3 21 0 0 0 0 4408 0 41574 45 0 | i = windows_vista

6 0 0 0 0 0 2632 0 7095 829 0 | j = windows_7

127 0 0 0 0 0 0 0 0 0 0 | k = windows_ce
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Appendix C

The ARFF header

This is the exact ARFF header as it was used for the classification data.

% IP+TCP stack fingerprints for passive OS fingerprinting using SYN packets

% Largely based on p0f rules

@relation ip+tcp_fingerprinting

@attribute wss_divisible {no, mss, mtu}

@attribute initial_ttl integer

@attribute df_flag {set, unset}

@attribute packet_size integer

@attribute tcpopt_individual_nop_align {TRUE, FALSE}

@attribute tcpopt_nop_start {TRUE, FALSE}

@attribute tcpopt_mss {TRUE, FALSE}

@attribute tcpopt_sack {TRUE, FALSE}

@attribute tcpopt_ts {TRUE, FALSE}

@attribute tcpopt_wscale integer

@attribute tcpopt_eol {TRUE, FALSE}

@attribute tcpopt_0 {n,m,s,t,w,e,null}

@attribute tcpopt_1 {n,m,s,t,w,e,null}

@attribute tcpopt_2 {n,m,s,t,w,e,null}
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@attribute tcpopt_3 {n,m,s,t,w,e,null}

@attribute tcpopt_4 {n,m,s,t,w,e,null}

@attribute tcpopt_5 {n,m,s,t,w,e,null}

@attribute tcpopt_6 {n,m,s,t,w,e,null}

@attribute tcpopt_7 {n,m,s,t,w,e,null}

@attribute tcpopt_8 {n,m,s,t,w,e,null}

@attribute tcpopt_9 {n,m,s,t,w,e,null}

@attribute quirk_data {TRUE, FALSE}

@attribute quirk_options_past_EOL {TRUE, FALSE}

@attribute quirk_zero_ipid {TRUE, FALSE}

@attribute quirk_ipoptions {TRUE, FALSE}

@attribute quirk_nonzero_urg {TRUE, FALSE}

@attribute quirk_nonzeo_unused {TRUE, FALSE}

@attribute quirk_nonzeo_ack {TRUE, FALSE}

@attribute quirk_nonzeo_2nd_t {TRUE, FALSE}

@attribute quirk_weird_flags {TRUE, FALSE}

@attribute class {bsd, linux, solaris, windows_9x, windows_nt, windows_2000,

windows_xp, windows_2003, windows_vista, windows_7, windows_ce}

@data

61



Appendix D

Other notable results

D.1 Mobile phone operating systems

There has been a large trend recently which brought increased usage of

mobile devices to access the internet. Using passive SYN fingerprinting

these systems can be fingerprinted similarly to non-mobile operating sys-

tems. Most mobile operating systems are based on existing operating sys-

tem kernels. Platforms such as MeeGo and Android are based on the Linux

kernel, the iPhone is in turn running a Mac OS X (BSD) kernel. This means

that when fingerprinting such mobile systems, the fingerprints are likely to

be very similar or fully correspond to the tested desktop versions of these

kernels. Table D.1 shows the fingerprint from an Android system. The fin-

gerprint corresponds exactly to the fingerprint in p0f’s database for newer

Linux systems. Also a Nokia N900, which is based on the MeeGo platform

with a Linux kernel has the same fingerprint.

D.2 Strange window scale behavior on Windows

Vista

While testing, strange behavior was observed when using Windows Vista.

While numerous logged HTTP SYN segments had a WS of 2, during manual

Table D.1: The fingerprint of an Android system
OS genre OS descr WSS TTL D size options quirks

(Linux) (2.6) S4 64 1 60 M*,S.T,N,W7 -
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tests the WS was consistently 8. The initial suspection was that this had

been changed over time with updates, so 4 VMs were set up, each running a

different version, SP0, SP1, SP2 and Windows 7. All those systems showed

the exact same behavior however. After some more searching it turned out

this difference was related to the fact certain applications using HTTP, were

made to work with a WS of 2 on purpose while other applications would use

the WS of 8. The reason behind this separation is still unclear. It has been

suggested some routers could not handle the larger window scale, but this

would not explain the separation between HTTP and non-HTTP traffic.
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Appendix E

Pre-research

E.1 How does QueSO work?

Figure E.1 shows how a TCP connection is initiated. In case the server is not

able to accept the connection, for example because there is no application

that is listening on the specified port, it will send back an RST segment

instead of an SYN+ACK. [RK04]

From the initial SYN+ACK response, QueSO can already determine

some properties.

TCP Initial Windowsize The total number of bytes that are allowed to

be transmitted when they have not been acknowledged is called the window

size. This size is limited for the purpose of flow control. [RK04] The initial

Figure E.1: TCP’s three-way handshake
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value for this setting is highly dependent on the OS. Some systems just use a

fixed value for initial segments, where others use a multiple of the maximum

segment size (MSS) or the maximum transfer unit (MTU). The MSS is the

largest amount of data, which the system can handle in a single segment.

The MTU is the largest amount of data which fits in a single packet. Nor-

mally the MTU is equal to the MSS plus the IP header size. Sometimes

the value is arbitrary. Systems with limited memory and smaller buffers are

likely to work with smaller window sizes. [Zal06a]

All the above is all clearly defined in the TCP RFC [Pos81c]. A packet is

also sent by QueSO to verify whether there is indeed an application listening

on the specified address and port number. Once QueSO has verified that

the remote system is working, it starts sending its ambiguous packets.

E.1.1 SYN + ACK test

This is the second packet QueSO sends out. QueSO sends a SYN packet

which also has the ACK flag set. This looks like a reply to a connection

initiation request but is not covered by the TCP RFC when sent initially. A

logical response could be responding like shown in Figure E.2(a) or E.2(b).

It turns out the responses to this packet already show quite some differences

in TCP stacks. While many systems send a RST back, such as Linux (1.x,

2.0), with no other values set, others leave a window size in the reply or even

just accept the connection, completely ignoring the ACK flag. Some stacks

used in different printservers and Novell’s TCP/IP stack for DOS respond

like shown in Figure E.2(c). Another observed behaviour is shown in Figure

E.2(d).

E.1.2 FIN test

A technique also used by QueSO’s predecessors is the FIN probe. An initial

packet is sent with just the FIN flag set. Although the RFC defines the

correct response to this (the packet should be ignored), there happen to be

many broken implementations which do respond. These are mostly again

simple systems, but also MS Windows 9x and NT return a packet in this

case. In many cases this packet contains an ACK bit, which seems to suggest

that these stacks do not keep track of the connection states properly and
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(a) Linux sends a RST back (b) Many firewalls ignore
(drop) QueSO’s second packet.

(c) This stack does not check
the ACK flag, another ACK
would finish the three-way
handshake.

(d) Stacks sending a RST back
with an ACK likely reuse mem-
ory and forget to reset the
ACK flag

Figure E.2: QueSO’s second packet results in varying responses

66



Figure E.3: TCP connection tear-down

they do not check the ACK of the incoming packet. A FIN packet without

the ACK bit set is never a legal packet. [Tze08]

E.1.3 FIN+ACK test

Once a client and a server have established a connection like described ear-

lier, one of them may want to close the connection. This process is shown

in Figure E.3. In case either of the last packets is missing, the FIN segment

will be sent and be again acknowledged, with the hope neither will not get

lost again. To be able to resend this acknowledgement, the connection state

is generally kept for 30, 60 or 120 seconds by the final acknowledging party

after its acknowledgement was sent. [RK04]

Sending this as an initial packet, results in an RST reply from many

stacks which reply nothing for the previous packet. It is not illogical to reply

with an RST here, because otherwise the above described acknowledgement

timer on the other side may be unnecessarily waiting in case the other host

really believes some connection existed. Some systems however, mainly

firewalled ones, also do not respond to this packet.

E.1.4 SYN+FIN test

This is also a packet that is always illegal [Tze08]. Since SYN is the flag

for connection initialisation and FIN is the flag to close a connection, they

should never appear in the same packet. It appears that many stacks, in-

cluding MS Windows, some Linux versions and even Solaris, ignore the FIN
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Figure E.4: Many systems ignore the presence of the FIN flag

flag and continue with the normal connection initiation like shown in Figure

E.4. This likely has a similar cause the behaviour in Figure E.2(c) has, the

value of the bit is not checked. There are some systems which stay silent

when they receive a SYN+FIN packet.

E.1.5 PSH test

The PSH flag, used for the push function of the TCP, is normally set in

ongoing connections when data should immediately be passed on to the

receiving application once it arrives at the other side. A single PSH could

never initiate a connection and most systems ignore such packets. Most

others respond with a RST packet.

E.1.6 SYN+... test

In this test QueSO sends a SYN packet including some flags which are

currently unused. Most hosts seem to accept such packets as a normal

connection initiation packet. According to the RFC they should only echo

the capabilities they support. A few systems from HP seem to trip over

these extra bits, causing them to drop the packet.
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Figure E.5: TCP’s three-way handshake: noting the ISNs

E.2 How does Nmap work?

E.2.1 TCP test 1

The first TCP test done by Nmap sends out six different TCP SYN probe

packets. They differ based on the window size, window scale, timestamp

flag and value, the SACK permitted flag and the options field. The ac-

knowledgement and sequence numbers are random, but saved for use during

the analysis. The following tests are based on the responses to these six

packets.

TCP Initial Sequence Number (ISN) Sampling This sampling is

done based on the sequence numbers in the replies of several of the probe

packets. When setting up a TCP connection, an initial sequence number

needs to be chosen. TCP uses sequence numbers for duplicate detection.

The initial sequence number for a new connection needs to be determined

in such a way that no packet from previous connections can be mistaken

as a duplicate packet from a new connection. There are several ways to

determine an appropriate initial sequence number and it turns out that this

also allows for quite some differentiation. This is shown in Figure E.5. The

possibility of guessing an ISN has security implications, so modern systems

are expected to generate this truly randomly.

Nmap has several tests to find regularities in TCP ISNs. It checks for

the greatest common divisor of the increment of the received values. The

average increment of the ISN is checked against the time. The variability of

the increments is also noted as the “sequence predictability index”.
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IP ID sequence generation Other sequence related tests are based on

the IP identification (ID) field. “This field is used to distinguish fragments

of one datagram from those of another.” [Pos81b] It should thus be unique

for a certain destination and protocol at a time. Some systems always leave

this at zero or always use the same IP ID. Sometimes it is just incremented

for every new packet. In other cases there are different kinds of randomness,

such as smaller random increments versus larger random increments, which

reveals details about the host. One interesting case is MS Windows where

the byte order is based on the host architecture. Although this is not a

violation, it does reveal extra details about the system.

Options All the options in the returned packets are recorded. Since the

options a certain implementation does or does not support is one of the

biggest differentiations between systems, a lot of information can be gained

based on this. Another interesting thing is that the order in which the

options are specified can be completely arbitrary. This means that even two

systems which support similar options could still be differentiated because

they advertise support for them in a different order. [Zal06a]

Window sizes Similar to QueSO, Nmap also keeps track of the window

sizes. Since the sizes may be different for responses to packets which were

initiated with different sizes, Nmap keeps track of the window size specified

in all the six packets.

Based on just the first probe packet, also the following properties are used

for differentiation.

Do not fragment flag (DF) The standard IPv4 header enables packets

to be fragmented by routers in case a link has a smaller maximum transfer

unit (MTU) than the size of the packet. By setting the do not fragment

flag, an end-system can prevent a packet from being fragmented by a router.

When a link’s MTU is too small, an ICMP error will be returned instead.

Modern OSs use this to discover the path MTU (PMTU). [Zal06a]

IP initial time-to-live guess When Nmap does not receive a response to

the UDP probe it will need to guess the TTL. This is often possible because
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there are only a few common TTL values, which have a bigger difference

than the hop count will generally be between two hops.

Window scaling (WSCALE) RFC 1323 [JBB92] specifies several addi-

tions to TCP which allow TCP to work efficiently with high-speed networks.

It mainly allows the use of larger window sizes, which used to be limited by

the maximum value of the window field. This feature is used and advertised

by modern OSs, that have incorporated the features of this RFC. Examples

in this case are MS Windows which supports this feature since MS Windows

2000 and Linux where version 2.6.9 is the first release to have the feature

turned on by default.

TCP Sequence number The sequence number in the reply is sometimes

based on the acknowledgement number which was in the initial packet. This

test verifies this condition.

TCP Acknowledgement number This is similar to the previous test,

except that now the number is compared with the sequence number in the

initial packet.

TCP Flags Also the TCP flags in the response are noted for the reply to

the first probe packet.

TCP RST data checksum When the initial probe packet is replied to

with a packet that has the RST flag set, this test is triggered. Some OSs

do return data in such packets while others do not. This data often consists

of standard error messages in plain ASCII. Nmap records this by CRC32

checksumming the data and reporting this checksum. Noteable systems that

return such data are HP-UX and the original Mac OS.

Non zero field after the TCP header length This field is reserved and

should normally be zero within packets. The original TCP RFC specifically

states this. Only when explicit congestion notification (ECN) is done, this

value may be different, but this initial packet does not set that yet. [Pos81c,

RFB01]
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Non-zero URG pointer Normally the URG pointer can point to a spe-

cific section of the payload which contains urgent data. This is a 16 bit field

which points to the last byte of the “urgent” data. Since SYN packets do

not have any payload and the URG flag is not set in them, this pointer is

ignored. Normally it is set to zero, but some systems, notably MS Windows

2000/XP, do not properly do that and simply leave garbage. On newer

service pack versions this turned out to be a memory leak. [Zal06a]

ICMP test

Nmap also does some tests using ICMP to differentiate systems. It sends two

ICMP echo request packets with only some small distinctions and analyses

the replies with the following tests. OS detection using ICMP was pioneered

by Xprobe, which will be described in Section 2.3.5.

Do not fragment (DF) The DF feature in the ICMP is similar to the

one in the TCP. Nmap sets the DF flag in the first probe, while the second

probe does not have it set. This gives four possible combinations for the

flag in the reply: neither have it set, it is echoed, both have it set or it is

toggled. According to the Xprobe authors it should always be zero.

IP ID sequence generation with ICMP The final IP ID related tests

checks whether the IP IDs from ICMP and TCP are based on a single se-

quence generator or whether they are separate.

Based on the answer of just the first ICMP probe, the following tests are

also done.

IP initial TTL guess This test is the same as the one performed on the

first TCP probe when the TTL cannot be discovered with the UDP probe.

ICMP Response code Nmap sends the first packet with an echo request

code of nine (which should be zero) and the second with an echo request

code of zero. The code value of the ICMP echo reply should always be zero.

Some systems send other values however, especially when the echo request

of the initiating packet also has a non-zero value. This allows some more

differentiation.
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E.2.2 TCP Explicit Congestion Notification (ECN) probe

ECN is a mechanism to let routers signal congestion without dropping pack-

ets. It extends the IP, but also requires support from the transport protocol.

Basically this probe tests for ECN support and some of the earlier described

tests are also done on the response to this packet.

E.2.3 TCP test 2 to 7

Now Nmap sends out 6 different TCP probes. Each with different charac-

teristics. The details of these packets can be found in the official book about

Nmap [Lyo09b]. All of the above described TCP tests will be performed on

the responses.

E.2.4 UDP test

The final protocol used by Nmap for OS detection is UDP. Nmap sends a

single UDP probe to a closed port. The data consists of ’C’ repeated 300

times and the IP ID has a fixed value of 0x1042. The expected reply is an

ICMP port unreachable message, which is subjected to the following tests.

Do not fragment flag (DF) This test corresponds to the one for the

TCP probes.

IP initial time-to-live The TTL field is decreased by one each time a

packet passes through a router. This is to prevent packets to get routed

infinitely (e.g. in a routing loop). The initial value of this field is often left

at its default setting, which is different depending on the OS. When Nmap

sends the UDP probe, the response will include the (first part of) original

UDP probe packet with the decremented TTL field. Subtracting this from

the original TTL value that was sent out with the packet will give the hop

distance. The response to the probe also has its own TTL value which added

to the hop distance will result in the original TTL value used by the target

system.

IP total length When an ICMP destination port unreachable message

is returned, the amount of data included can be arbitrary (must be higher
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than 8 bytes). Since different systems include different amounts, this can be

used for differentiation. More details are in section E.3.1.

Unused port unreachable field nonzero An ICMP port unreachable

packet is eight bytes long. The last four bytes of an ICMP port unreachable

message are unused and should be set to zero according to the RFC [Pos81a].

Some systems do not correctly zero this however, this value is recorded.

Returned probe IP total length value Many systems corrupt this

value. Details are described in Section E.3.2.

Returned probe IP ID value Normally the exact value is returned here,

but some systems, notably some printers from HP and Xerox, somehow flip

the bytes.

Integrity of returned probe IP checksum value The checksum is not

always calculated properly in the returned header. More in Section E.3.2.

Integrity of returned probe UDP checksum and data The UDP

header checksum should not be changed in the response. Apparently some

systems corrupt this. The integrity of the returned data is also checked

against corruption.

E.3 How does Xprobe work?

The details which are used by Xprobe 2 to differentiate OSs will be described

in the following subsections.

E.3.1 ICMP Error Message Quoting Size

When an error occurs in the network, for example when establishing a TCP

connection with a missing host, at some point an ICMP message will return

indicating the destination is not reachable. This message was generated by

a router that was unable to find a path to the specified host.

An ICMP error message has to contain at least the first eight data bytes

of the datagram that caused the error. It is allowed however to send more
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than eight bytes. While most systems will return exactly eight bytes, several

will quote more including different versions of Linux, Solaris and the original

Mac OS.

E.3.2 ICMP Error Message Echo Integrity

When sending back the IP header of an offending packet, it should not be

changed from the one originally received. Compared to the header which

was originally sent, the only changes should thus be in the TTL field and

the header checksum. There are cases however, where more alterations are

made by the replying host, which enables differentiation.

• The IP Total Length Field is changed by some systems. Some add and

others subtract 20 bytes. Correct systems echo the original value.

• The IP ID field also tends to be incorrectly echoed. Arkin describes

bit order changes and a bug in early Linux 2.4 kernels where this field

was set to zero.

• Fragmentation flags and the fragmentation offset field are also suscep-

tible to bit order changes.

• The IP header checksum is sometimes calculated incorrectly or set to

zero.

• The Type of Service (TOS) [Alm92] byte affects several types of ICMP

error messages. In source quench messages it has to echo the prece-

dence field exactly. In all other ICMP error messages this value should

be 6 or 7. Some systems tend to threat this field differently however.

The TOS field specifies how packets should be routed, e.g. reliability

versus speed.

• The DF bit should always be set to 0, however sometimes it is quoted

from the offending packet.

• When sending an ICMP Echo request with strange value (it should be

eight), MS Windows will always send back an ICMP code field value

of zero. others will echo the original code field value back.
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In contrast to the earlier tools described, Xprobe does not do separate

tests separately, combining the information to form a single signature. In-

stead Xprobe contains a tree structure which it descents through, taking

decisions based on the results of its probing. In addition to this, it can com-

bine several probes in a single datagram, because they do not influence each

other’s result. The first datagram Xprobe sends out is an UDP datagram to

a (hopefully) closed UDP port in order to receive an ICMP Port Unreach-

able Error message. From this message, the many details are obtained by

checking the echo integrity as described.

E.4 How does p0f work?

E.4.1 Metrics used by Incoming connection fingerprinting

(SYN)

The fingerprint files that come with p0f describe all the metrics that are

used. This information comes mostly from there. [Zal06a]

Window size Similar to QueSO and Nmap, p0f tracks the window size

used in the packets.

Overall packet size This is influenced by all the IP and TCP options

used and also some buggy stacks can produce some strange sizes.

Initial time-to-live (TTL) Altough p0f will never see the original TTL,

from the TTL of the received packet, the initial TTL can often be deter-

mined, because the differences between common initial TTLs are much larger

than the number of hops between two hosts. This is similar to how Nmap

finds the TTL when it needs to guess it.

Do not fragment flag (DF) This can be observed by p0f in a similar

way Nmap does it.

Maximum segment size (MSS) This setting is usually dependant on

the links used for the connection, which specify a maximum packet size.
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Window scaling (WSCALE) This can be similarly observed like the

initial time-to-live value.

Timestamp To be able to calculate a correct round-trip-time (RTT) on

certain link types (often with long delays, but high data rates) it is necessary

to include a timestamp in the TCP header. This timestamp is sometimes

based on the system’s up-time, other systems set it to zero in the initial

SYN packet.

Selective ACK permitted Normally packets can only be acknowledged

cumulatively. This can lead to big inefficiencies when only a single packet

was lost and all the others cannot be acknowledged cumulatively. RFC 2018

specifies selective acknowledgement which allows the acknowledgement of

out-of-order segments selectively. [RK04] Some systems do and others do

not implement this functionality.

NOP (No-Operation) option This option code may be used between

options, for example, to align the beginning of a subsequent option on a

word boundary. [Pos81c] Its occurrence and number are thus arbitrary and

heavily dependant on the TCP implementation.

Other options Sometimes options pass by that are unrecognised. p0f

just looks whether those options occur or not for OS detection. The only

two systems that appear to use unknown options are RiscOS, Amiga and

a special firewall system built by Nokia. The fingerprint file suggest that

some of these are likely the result of a buggy TCP stack.

EOL (End of Option List) option This option code indicates the end of

the option list in case it does not coincide with the end of the TCP header.

[Pos81c] It is not used often, usually systems just pad with NOP option

codes instead.

The sequence of the TCP options As stated before, the options may

appear in a packet in arbitrary order according to the RFC. Because of this

the actual ordering in a packet is often heavily dependant on the implemen-

tation.
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Quirks There are buggy TCP/IP stacks which bring all kinds of strange

quirks in their packets. There was even a bug in some versions of MS

Windows which resulted in memory being leaked. p0f also treats other

irregularities as quirks. These are the quirks p0f is able to detect:

Data past the headers SYN and SYN+ACK packets should not have

any payload, but sometimes this does occur.

Options past EOL Sometimes systems have options after the end of

option list option. p0f only detects this fact, but does not do anything with

the data.

Zero IP ID This test is similar to Nmap’s IP ID test. p0f can only

check whether an IP ID is zero or not, since there is only a single packet

being checked.

IP options Usually IP options are not set, but modern systems are

starting to use them more and more. p0f does not examine any options, it

only detects their presence.

Non-zero URG pointer This is similarly observed by Nmap. Again

the URG flag should never be set and the data in this value will always

be ignored by an underlying system, because only SYN packets are being

observed. Data left behind there is useful for OS detection. p0f does not

examine the actual value only whether it is zero or non-zero.

Unused field value This field is not used (yet) and should always be

zero. Some systems however do not clear it. p0f checks for a non-zero value.

ACK number is not zero The ACK number in SYN packets with

the ACK flag unset is usually zero and disregarded. Some systems however

send junk like with the URG pointer value.

Non-zero second timestamp TCP timestamps are used to compute

the round-trip time. They are specified in RFC 1323 [JBB92]. The initial

SYN packet should have a zeroed second timestamp. p0f verifies this.
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Unusual flags Flags are settings that are specified in a single bit in a

segment header. Extra flags that are not really important but can be set in

a segment, such as URG and PUSH, are also noted by p0f. ECN flags are

currently ignored.

E.4.2 Metrics used by Outgoing connection fingerprinting

(SYN+ACK)

This mode is not well supported in p0f. It is largely based on the SYN

fingerprinting and also most of its metrics are used. The differences are

noted here

ACK number non-zero Since this packet is actually supposed to have

a proper ACK number set, having a zero ACK number is very uncommon.

In p0f’s signature file this is actually indicated by having this quirk set for

it.

Non-zero second timestamp Similar to the above quirk, this is sup-

posed to be set on SYN+ACK packets.

E.4.3 Metrics used by Connection refusing fingerprinting (RST+)

This fingerprinting method is also not well supported. There are many in-

teresting variations detectable though. According to p0f’s fingerprint file for

this type of fingerprinting, this has two reasons. One, because strange flags

do not have many consequences, the connection is not established anyhow.

Two, RFC 793 is difficult to comprehend regarding these types of responses.

The differences p0f uses will be presented here.

Connection refused packet A proper connection refused packet should

only be sent, when a connection is refused. There are rare cases however

where it is sent in response to an unexpected ACK packet. A normal con-

nection refused packet has the RST and ACK flags, its SEQ value should

be zero and its ACK number non-zero.

Error: ACK number is zero Sometimes connection refused packets are

sent out with an ACK number set to zero. This is an incorrect response.

p0f detects this.
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Error: non-zero SEQ value The ACK number is non-zero or zero. This

tends to be generated by Cisco routers that accidentally set an ACK flag.

Connection dropped The RST flag is set with a non-zero sequence num-

ber. The acknowledgement number should be zeroed, but it is not against

the RFC if it is not. Again MS Windows leaks memory there in some cases.

Error: the RST flag and SEQ value are zero The ACK number can

be zero or non-zero. This is an obvious error and will not result in the

desired effect, since the other host cannot correlate this packet to anything.

E.4.4 Metrics used by Ongoing connection fingerprinting (stray

ACK)

This mode in p0f is extremely limited. There are only six fingerprints in

p0f’s fingerprint file and the functionality has not been tested much yet.
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