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Summary  

 
A multiwavelength optical network is an attractive technology to realize the 

potential of the huge bandwidth and transmission capacity of optical fiber and to build a 

flexible optical network. Optical filters are needed for multiplexing, demultiplexing, and 

add/drop functions. The most obvious application of the bandpass filters is to demultiplex 

very closely spaced wavelength channels.  

In this thesis project, the dispersion of the used filters of the add-drop multiplexers 

(ADM) is the main problem to be overcome. Investigation of the solution for a zero 

dispersion of the complete ADM device is made. The approach for the analytical filter 

design synthesis is the digital signal processing technique. In this report, four kinds of 

filter are designed. Two types of them have linear phase response of the transfer function 

and hence zero dispersion. The other two filters have non-linear phase response of the 

transfer function and hence non-zero dispersion. All the filters are designed such as they 

have a passband flattened amplitude response.  

The performance of the proposed filters will be analysed also. Simulations are 

made for a binary data input to check whether distortion and intersymbol interference 

occur after filtering. 
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1 Introduction 

 
 In this chapter, the background that motivates the project of the Master’s thesis 

assignment is described. The organization of the thesis report is also explained 

afterwards. 

1.1 Project Background 

Optical communication has become a promising networking technology option to 

meet the increasing demand on bandwidth of emerging broadband computing and 

communication applications such as web browsing, e-commerce, video conference, 

video/audio on-demand processing, online database, etc. Advances in optical technology 

and the rapid demand of networking bandwidth have stimulated an increasing amount of 

research in the field of optical networks. 

A multiwavelength optical network is an attractive technology to realize the 

potential of the huge bandwidth and transmission capacity of optical fiber and to build a 

flexible optical network. Wavelength Division Multiplexing (WDM) is used to divide the 

band in multiple wavelength sub-bands. A multiplexer (mux) combines the various 

channels and transfers them simultaneously over a single fiber, while a demultiplexer 

(demux) does the opposite, splits the aggregate channel into different fibers. Commercial 

deployment of WDM optical communication systems has boosted the demand for optical 

filters.  

In WDM networks, optical cross-connects or optical add-drop multiplexers do the 

(de)multiplexing scheme for the individual wavelength channels. An optical cross connect 

is a device that switches the multiple high-speed optical signals. An optical signal in its 

path through the network traverses a cascade of WDM filters. Such network component
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may cause degradation of the optical signal. Degradation can be caused by the magnitude 

and phase (dispersion) characteristics of the (de)multiplexers. 

Recently, work has been performed in a Dutch Technology Foundation STW 

project called “Flexible Multiwavelength Optical Local Access Network Supporting 

Multimedia Broadband Services” or “FLAMINGO” [Roe02]. The project consisted of 

three major tasks: 

Task 1: Network issue protocol issues 

Task 2: Tunable add-drop wavelength multiplexer 

Task 3: Wavelength converter 

The add-drop wavelength multiplexers that have been realized have non-zero 

dispersion filters. The dispersive characteristic of the add-drop multiplexer (ADM) is the 

main issue in this Master’s project. 

1.2 The Network Architecture 

A typical network architecture for interconnected city rings is shown by Figure 

1.1. The design is based on a multiple slotted ring network.  The transmission scheme is 

multiwavelength (WDM). Access to each ring is via an Access Point (AP). Intelligent 

bridges connect each individual ring. The add-drop multiplexers are part of the AP and 

bridge. 

 

 
 

Figure 1.1. A typical network architecture 
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1.3 Bandpass Filters for Add/Drop Multiplexing 

Optical filters are needed for multiplexing, demultiplexing, and add/drop 

functions. The most obvious application of the bandpass filters is to demultiplex very 

closely spaced wavelength channels. A bandpass filter is characterized by its transfer 

function passband width, loss, flatness, dispersion, and stopband isolation. Closer channel 

spacing requires sharper filter responses to separate channels without introducing cross 

talk from other channels. The used grid was 200 GHz channel spacing with the center 

wavelength of 1550 nm. 

In multiple wavelength systems, the optically demultiplexed signals are detected 

and manipulated by an add-drop multiplexer or a switch in order to be routed to a 

different destination. In this way, each wavelength can be assigned individually and 

dynamically. This provides flexibility of the networks.  

The ADM component developed is based on building blocks as shown in Figure 

1.2 [1].  

 

 

Figure 1.2. Schematic drawing of a 1-from-8 add-drop multiplexer 

 

 

The 1-from-8 binary tree configuration has splitting and combining parts that 

comprises of several building blocks. Such blocks are called ‘slicers’ or ‘interleavers’ 

since the wavelengths will be split up in an alternating way. Referring to Figure 1.2 and 

1.3, the first block separates the eight wavelength channels in odd and even numbered 

wavelengths. The four odd-numbered channels are sent to the next block where the 

ensemble is split up again in two times two channels. The process continues until only 

one wavelength remains at the drop port. The remaining wavelengths are led to the 

combining blocks where the wavelengths are recombined in a reverse manner.  A new 
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signal at the same wavelength as the dropped wavelength can be injected at the add port. 

Each wavelength can be selected to be added/dropped individually. The channel numbers 

in Figure 1.2 are just examples. Each slicer can be tuned over its free spectral range 

(FSR). Hence the even and odd numbered channel groups can be interchanged, for 

example, at the first slicer.  

The first and last block of the ADM, indicated with nr. 1, have to split/combine 

the adjacent channels with wavelength spacing λ∆ . Thus they have an FSR or periodicity 

of twice the channel spacing. Blocks nr. 2 have to split only the odd wavelengths and 

have a double FSR compared to the first. The last blocks have an FSR that is four times 

larger than the first ones. This is indicated in Figure 1.3. 

The relation between the number of wavelength channels and the number of 

slicers is given by following equation:                                 

 
#slicers

2#channels 2
 
 
 =  (0.1) 

                    

  
Figure 1.3. Demultiplexer filters responses of 1-from-8 ADM as depicted by Figure 1.2 
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The used filters were Mach-Zehnder Interferometer (MZI) type. Improvements over 

a single stage MZI were made, where two and three stages filters that have passband 

flattening amplitude responses were built. The filters have non-linear phase responses. 

1.4 Project Objective 

In this thesis project, the dispersion of the used filters of the ADM is the main 

problem to be overcome. The transfer functions of the filters have a passband flattened 

amplitude response, but still have a non-linear phase response. Investigation of the 

solution for a zero dispersion of the complete ADM device shall be made. The approach 

for the analytical filter design synthesis is the digital signal processing technique. One 

thing should be emphasized, since the filter is used as an interleaver, it is important to 

design filters that have the passband width as same as the stopband width. 

The performance of the proposed filters will be analysed also. Simulations are 

made for a binary data input to check whether distortion and intersymbol interference 

occur.  

1.5 Structure of the Report 

As Chapter 1 gives introduction and summarizes the background of the thesis 

project, Chapter 2 gives the theoretical background of the operation principle of the ADM 

components, which have the Mach–Zender interferometer (MZI) as the fundamental 

building block. In Chapter 3, the mathematical design synthesis of the passband flattening 

filters is described along with the solution to have a zero dispersion filter. Chapter 4 

contains the simulation results of the eye diagrams of the received data after being 

filtered. The last chapter, Chapter 5, contains the conclusions and recommendations of the 

project. 
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2 Digital Filter Descriptions of Mach-

Zehnder Interferometers 

 
 In this project, digital signal processing approaches are applied to the design of the 

optical filters. The first section of this chapter explains the basic concepts of digital filters. 

Next, the theoretical background of the operation principle of a simple Mach-Zehnder 

interferometer as the fundamental building block of the ADM filters is described. 

2.1 Digital Filter Basic Concepts 

2.1.1 The Z-Transform 

In digital filter concepts, the z-transform technique is widely used as a 

mathematical tool. The z-transform is an analytic extension of the discrete-time Fourier 

transform (DTFT) for discrete signals [2]. For a given sequence h(n), its z-transform H(z) 

is defined as 

 { }( ) ( ) ( ) n

n
H z h n h n z

∞
−

=−∞

= = ∑Z  (2.1)  

where Re( ) Im( )z z j z= + is a complex variable that may have any magnitude and phase. 

For 1z = or jz e ω= , where ω here is the normalized angular frequency, the z-

transform of h(n) is reduced to its discrete-time Fourier transform, provided that the latter 

exists. A circle of unit radius, 1z = , in the z-plane is called the unit circle, where the 

filter’s frequency response is found by evaluating H(z) along jz e ω= . For the infinite 

series of Eq. (2.1) to be meaningful, a region of convergence must be specified. The set of 

values of z for which its z-transform attains a finite value is called the region of 

convergence, for example R z R− +≤ ≤ , where R− and R+ are radii. 
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2.1.2 Poles and Zeros 

Given the impulse response sequence h(n) of a filter, its z-transform H(z) is more 

commonly called the transfer function or the system function. Consider an input-output 

relation, where y(n) and x(n) are, respectively, the output and input sequences. If Y(z), 

X(z), and H(z) denote the z-transforms of  y(n), x(n), and h(n), respectively, then the 

convolution resulting in the time domain reduces to its multiplication in the z domain [3]. 

 ( ) ( ) ( )Y z H z X z=  (2.2) 

Thus, the transfer function H(z) is obtained by dividing the output by the input in the z-

domain.  

 ( )( )
( )

Y zH z
X z

=  (2.3) 

The filter input and output are related by weighted sums of inputs and, if existing, 

previous outputs. The relation is described by the following equation [4]: 

 
1 0

( ) ( ) ( )
N M

k k
k k

y n a y n k b x n k
= =

= − − + −∑ ∑  (2.4) 

The weights are given by the coefficients ka and kb . The z-transform results in a rational 

transfer function in 1z− , i.e., it is a ratio of two polynomials in 1z− . The transfer function 

can be written as follows: 

 0

1

( )( )
( )1

M
m

m
m

N
n

n
n

b z
B zH z
A za z

−

=

−

=

= =
+

∑

∑
 (2.5) 

A(z) and B(z) are Nth and Mth-order polynomials respectively. An alternative way to 

represent the transfer function in Eq. (2.5) is to factor out the numerator and denominator 

polynomials leading to [3]: 

 
1

1
1

1

(1 )( )
(1 )

M
m m
N
n n

z zH z
p z

−
=

−
=

∏ −
= Γ

∏ −
 (2.6) 
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or in terms of the roots of the polynomials as 

 1

1

( )( )
( )

M
N M m m

N
n n

z zH z z
z p

− =

=

∏ −
= Γ

∏ −
 (2.7) 

where Γ is the gain. A passive filter has a transfer function that can never be greater than 

1, so the maximum value of Γ is determined by max{ }( ) 1jwz e
H z

=
= . The roots of the 

numerator polynomials in Eq. (2.6) and (2.7), designated by zm, are called the zeros of  

H(z), while the roots of the denominator polynomial which are designated by pn are called 

the poles of H(z). Provided that jz e ω= , a zero that happens on the unit circle, 1mz = , 

results in zero transmission at that frequency. 

 A convenient graphical way to represent the transfer function is the pole-zero plot 

or pole-zero diagram. It shows the locations of each pole and zero in the complex plane. 

A zero is designated by o and a pole is designated by x. An example of a pole-zero 

diagram is depicted in Figure 2.1.  

 

 

Figure 2.1. A pole-zero diagram with unit circle, one pole, and one zero 

 

 A filter that has only zeros in its transfer function is classified as a Moving 

Average (MA) filter and can be referred to as a Finite Impulse Response (FIR) filter. It 

has only feed-forward paths. An all-pole filter contains one or more feedback paths and is 

classified as an Autoregressive (AR) filter. A filter with both poles and zeros is classified 

as an Autoregressive Moving Average (ARMA) filter. A filter designated as Infinite 
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Impulse Response (IIR) filter contains at least one pole. The IIR filters may be either AR 

or ARMA types. 

2.1.3 The Frequency Response 

The Fourier transform relationship between the impulse response h(n) and the 

frequency response function ( )H ω is given by [4]: 

 ( ) ( ) j n

n
H h n e ωω

∞
−

=−∞

= ∑  (2.8) 

The frequency response function ( )H ω  is a complex function of ω with a period of 2π. It 

is usually expressed in terms of its magnitude and phase. 

 ( )( ) ( ) jH H e ωω ω Θ=  (2.9) 

The quantity ( )H ω  is called the magnitude response and the quantity ( )ωΘ is called the 

phase response where 

 { }( ) arg ( )Hω ωΘ =  (2.10) 

The phase response can be extended for multiple zeros. The phase of the overall 

transfer function is the sum of the phases for each root, i.e. [2]:  

 1[ ( ) ... ( )]
1( ) ( ) ... ( ) z Mzj

z MzH H H e ω ωω ω ω Θ + +Θ=  (2.11)  

Sometimes, the magnitude is specified in decibels (dB) units as below: 

 2
10 10dB

( ) 20log ( ) 10log ( )= =H H Hω ω ω  (2.12) 

If the region of convergence of ( )H z includes the unit circle, the frequency 

response of the system may be obtained by evaluating ( )H z on the unit circle, i.e., 

 ( ) ( ) ( ) j
j

z e
H H e H z ω

ωω
=

= =  (2.13) 

If the magnitude squared will be expressed in terms of H(z), it is noted that [4] 

 2 *( ) ( ) ( )H H Hω ω ω=  (2.14) 

*( )H ω is obtained by evaluating * *(1/ )H z on the unit circle. When the coefficients of the 

transfer function are real, then in this case, * * 1(1/ ) ( )H z H z−=  [4] and Eq. (2.14) 
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becomes  

 2 * 1( ) ( ) ( ) ( ) ( ) ( ) ( ) jz e
H H H H H H z H z ωω ω ω ω ω −

=
= = − =  (2.15) 

In particular, reciprocal zeros, which are mirror images of each other about the 

unit circle, have identical magnitude characteristics. Based on the pole-zero 

representation in H(z), only the distance of each pole and zero from the unit circle, i.e. 
j

ne pω − or j
me zω − , affects the magnitude response. Hence the magnitude characteristic 

of a zero mz will be identical with the magnitude characteristic of its reciprocal *1 mz , but 

they have different phase characteristics. Naming convention is used to distinguish both 

zeros. The zero with magnitude smaller than one, 1mz < , is called minimum-phase, and 

the one with magnitude bigger than one, 1mz > , is called maximum-phase. They will be 

explained in more details in Section 2.1.5. 

2.1.4 Group Delay and Dispersion 

Group delay is a measure of linearity of the phase response with respect to the 

frequency. The group delay is the local slope of the phase response curve, i.e., the slope 

of the phase at the frequency being evaluated. A filter’s group delay or envelope delay is 

defined as the negative derivative of the phase response with respect to angular frequency 

as follows [4]: 

 d ( )( )
d
Θ

= −g
ωτ ω
ω

 (2.16) 

For a sequence of discrete signals, each stage has a delay that is an integer 

multiple of a unit delay. If the angular frequency is normalized to the unit delay T such 

that ' Tω ω=  then the normalized group delay, '
gτ , is                                                         

 '
' d d( ') ( ') arg( ( ))

d ' d ' =
= − Θ = − jg z e

H z ωτ ω ω
ω ω

 (2.17)                   

If the phase response is in radians and the angular frequency ω is in radians per second, 

then the absolute group delay is given in seconds. The normalized group delay is given in 

the number of the delay with respect to the unit delay T. The relation between the absolute 

group delay and the normalized group delay is given by [2] 

 '= ⋅g gTτ τ  (2.18) 
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It is important to notice the filter dispersion. Dispersion is the derivative of the 

group delay. For normalized frequency 'f fT= , the normalized dispersion is [2]  

 
' 'd d

' 2
d ' d '

≡ =g gD
f
τ τ

π
ω

 (2.19) 

and the filter dispersion D in absolute units is [1] 

    '
2

0 DTcD 





−=
λ

     [ps/nm]                                  (2.20) 

In comparison, for optical fibers, dispersion D is typically defined as the derivative of the 

group delay with respect to wavelength (λ) and normalized with respect to length (L) [2], 

             
d1
d

= gD
L

τ
λ

                  [ps/nm/km] (2.21) 

2.1.5 Linear Phase Filters 

Of particular interest are the linear phase filters. Those filters have constant group 

delays and thus they are dispersion-less. A distortion-less filter has a magnitude response 

that is flat across the frequency band of the input signal and the phase response in the 

passband region is a linear function of frequency. Linear phase filters are important in 

applications where no phase distortion is allowed. A moving average or a FIR filter can 

be designed to have linear phase. 

As mentioned in Section 2.1.3, two zeros that are reciprocally mirrored about the 

unit circle give identical magnitude characteristics. Consider two systems having transfer 

functions: 

 1
1

1( ) 1
5

H z z−= −  (2.22) 

 1
2

1( )
5

H z z−= −  (2.23) 

H1(z) has a zero at 1 5mz = , which is a minimum-phase, and H2(z) has a zero at 5mz = , 

which is a maximum-phase. They both have identical magnitude characteristics but 

different phase responses as depicted by Figure 2.2. Note that these functions are just as 

examples, in fact passive device cannot have a transfer function greater than one. It can be 

observed from the phase responses, the first system having minimum-phase zero has a net 
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phase change of zero at the frequency range of ' 0ω =  to 'ω π= . On the other hand, the 

system having maximum-phase zero has a net phase change of π− radians at the 

frequency range of ' 0ω =  to 'ω π= . Figure 2.3 shows the normalized group delays and 

the normalized dispersion of both systems. The minimum-phase system implies a 

minimum delay function, while the maximum-phase system implies a maximum delay 

function.  

 

 
Figure 2.2. Magnitude response and phase response of a minimum-phase system and a  

maximum-phase system 

 

Since the overall phase is additive for multiple zeros or a multistage filter, it is 

expected to have a linear phase response by placing a pair of zeros that is reciprocally 

mirrored about the unit circle. The group delay responses of two single-stage filters 

whose zeros are located at mirror image positions about the unit circle are related by [2] 

 1 1
1 , 1 ( , )z z r
r

τ ϕ τ ϕ  = − 
 

 (2.24) 

where 1zτ is the group delay of a single zero system, r is the magnitude of the zero, and ϕ 

is the phase of the zero. Eq. (2.24) shows that the two reciprocally mirrored zeros cancel 

each other’s frequency dependence phase response and leave a constant group delay. 
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Figure 2.3. Normalized group delay (a) and normalized dispersion (b) of a minimum phase and a 
maximum phase system 

 

The transfer function of a linear phase filter has a mirror–image polynomial form. 

This is due to the symmetry condition of the filter characteristic. The values of the unit 

sample response h(n) of the filter or the filter coefficients of a filter with length N (with 

filter order of  1N − ) satisfy symmetric or antisymmetric conditions as below [5]: 

 ( ) ( 1 )h n h N n= − −  (2.25) 

 ( ) ( 1 )h n h N n= − − −  (2.26) 

for 0 1n N< < − . Appendix A describes this symmetry property of linear phase filters. 

2.2 Single-Stage Mach-Zehnder Interferometer 

The fundamental building block for the ADM filters is the Asymmetric Mach-

Zehnder interferometer (MZI). In order to get an understanding of how the device works 

or possible advanced improvements for further filter design, the concepts of the transfer 

matrix method and the z-transform will be described. 

2.2.1 Transfer Matrix Method  

A single-stage MZI consists of two directional couplers with power coupling 

ratios 1κ  and 2κ , and one delay line as shown by Figure 2.4. The MZI is a 2×2 port 

device. It has two input ports and two output ports. 
in

E1  and 
in

E2  represent the coupler 

inputs complex field amplitudes, while 
out

E1  and 
out

E2  represent the coupler output 



Chapter 2. Digital Filter Descriptions of Mach-Zehnder Interferometer
 

 15

complex field amplitudes. The delay section is formed by two independent waveguides 

having different lengths L1 and L2. In this work, it is assumed 21 LL > . Due to this delay 

line, the output intensity of the MZI has discrete delays and is wavelength dependent.  

   

 

Figure 2.4. An asymmetric Mach-Zehnder Interferometer waveguide layout 

  

The transfer matrix relates field quantities in one plane to those in another one. In 

this case, the quantities in input ports to those in output ports. Consider a device such as 

the above MZI, having two input ports each carrying electric fields having complex 

amplitudes 
in

E1  and 
in

E2  respectively, and two output ports with fields 
out

E1  and 
out

E2 . 

The relation between the fields in input ports and output ports may be given by  

 1 1 111 12

21 222 2 2

out in in

out in in

E E EH H
H HE E E

      
= =                 

H  (2.27) 

where the complex matrix H is the transfer matrix consisting of two bar transfer functions 

(H11 and H22), or sometimes called the through transfer function, and two cross transfer 

functions (H12 and H21). 

 The transfer matrix of the directional coupler is given by [2] 

 dc

c js
js c

− 
=  − 

H  (2.28)                   

The through and cross-port transmission, c and –js, are defined as                                                          

 1c κ= −  (2.29) 

 js j κ− = −  (2.30) 

where κ is the power coupling ratio. The above transfer matrix assumes that no excess 

loss is introduced. Hence the sum of the output powers equals the sum of the input 
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powers.  

At the delay line, it is assumed almost identical branches, in particular having the 

same attenuation coefficient α  of the single guided mode, but if it is allowed for a small 

deviation from the average effective index Neff, then an additional phase delay φ in branch 

1 with respect to branch 2 is introduced. The transfer matrix of the delay lines is given by 

 
0 11

0 22

0

0

eff

eff

jk N LL j

delay jk N LL

e e e

e e

α ϕ

α

−− −

−−

 
=   
 

H  (2.31) 

where ck ω=0  is the vacuum wave number, ω is the angular frequency of the guided 

wave, and c is the vacuum speed of light. The term 101 LNjkL effee −−α  is the propagation factor 

of the first waveguide branch. If the differential delay is defined as: 

 1 2( ) .eff effL L N L N
T

c c
− ∆

= =  (2.32) 

then taking branch 2 as the reference, the delay transfer matrix can be written in terms of 

T as: 

 
0

0 1

j T j
L

delay
e eω ϕγ

γ
− −

∆ 
=  

 
H  (2.33)   

where propagation constant 22 LjL ee βαγ −−= , comprising attenuation 2|| Le αγ −= and an 

overall phase delay 202 LNjkLj effee −− =β , while L
L e αγ − ∆

∆ =  is the differential loss along the 

differential path length ∆L.  

The relation between the free spectral range (FSR) and the delay T can be 

expressed as [Mad99] 

 
1

g U

cFSR f
N L T

= ∆ = =  (2.34) 

where LU is the unit delay and Ng is the group index. The description above is slightly 

more in-depth then in Eq. (2.32) in the sense of the group index that can deviate 

considerably from the effective index Neff for the used waveguides. 

 
0 0

0 0 0 0( ) ( )eff eff
g eff eff

f

dN dN
N N f f N

df d λ

λ λ
λ

= + = −  (2.35) 

It is useful to introduce the normalized angular frequency with respect to the free 
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spectral range ( 1fFSR T= ).  The delay section has a periodic angular frequency 

response with period 2 Tω π∆ =  or 1f T∆ = . The transfer function in terms of the 

normalized angular frequency ' Tω ω=  or 'f fT=  will be periodic with period 

' 2ω π∆ =  or ' 1f∆ = . Hence by making a substitution in the z-transform 

 ' 1je zω− −=  (2.36) 

the transfer matrix in Eq. (2.33) becomes 

 
1 0

0 1

j
L

delay
z e ϕγ

γ
− −

∆ 
=  

 
H  (2.37) 

The total transfer matrix for a single stage MZI is then found by multiplication of 

each of the transfer matrix of the first directional coupler, delay section, and the second 

directional coupler.   

 
2 1dc delay dc=MZIH H H H  (2.38) 

Hence, the overall transfer matrix in z polynomials is  

1 1
11 12 1 2 1 2 1 2 1 2

1 1
21 22 1 2 1 2 1 2 1 2

( ) ( ) ( )
( ) ( ) ( )

j j
L L

j j
L L

H z H z s s c c z e j c s s c z e
H z H z j s c c s z e c c s s z e

ϕ ϕ

ϕ ϕ

γ γ
γ

γ γ

− − − −
∆ ∆

− − − −
∆ ∆

 − + − + 
= =    − + −   

MZIH  (2.39) 

If the common path length is neglected  (since it only adds constant loss and linear phase 

to the frequency response) and the loss along the differential path length, L∆γ , also 

neglected because typically 2LL <<∆ , then it comes to: 

1 1
1 2 1 2 1 2 1 2

1 1
1 2 1 2 1 2 1 2

( ) ( ) ( )
( )

( ) ( ) ( )

j j R

j j R

s s c c z e j c s s c z e A z B z
z

j s c c s z e c c s s z e B z A z

ϕ ϕ

ϕ ϕ

− − − −

− − − −

   − + − +
= =   

− + −   
MZIH  (2.40)   

Figure 2.5 shows the z-transform schematic of the MZI where the additional phase delay 

ϕ is neglected. In the transfer matrix, -1z  can be reintroduced later by 1− − jz e ϕ  if there is 

additional phase delay ϕ. 
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Figure 2.5. A single-stage Mach-Zehnder Interferometer z-transform schematic consisting of two 

directional couplers and one delay line 

 

The coefficients of the polynomial of 22 ( )H z  are in reverse order compared to 

11( )H z , and so thus for 12 ( )H z  and 21( )H z . ( )A z  and ( )B z  are the forward polynomials 

for the bar and cross transfer respectively, while ( )RA z  and ( )RB z  are the reverse 

polynomials. See Appendix B for the explanation of forward and reverse polynomials. 

The transfer matrix can also be written in terms of the roots of the polynomials as 

follows: 

 

1 11 2 1 2
1 2 1 2

1 2 1 2

1 11 2 1 2
1 2 1 2

1 2 1 2

( ) ( ( ))
( )

( ( )) ( )

j j

j j

c c s cs s z z e jc s z z e
s s c s

z
c s s sjs c z z e c c z z e
s c c c

ϕ ϕ

ϕ ϕ

− − − −

− − − −

 − − − − − 
 =
 
− − − − 
 

MZIH  (2.41) 

The zeros and poles position in the z-plane depends on the coupling ratios and the phase 

φ. The behavior of a filter over its free spectral range can be investigated by evaluating its 

transfer matrix. A zero that occurs on the unit circle, 1mz = , results in zero transmission 

at that frequency. Since passive devices never have an infinite transfer, possible poles will 

never occur on the unit circle.  

When the two couplers are identical ( 1 2κ κ κ= = ) and the additional phase delay 

is neglected for convenience, the transfer matrix becomes: 

 

2
2 1 1

2

2
1 2 1

2

( ) ( ( 1))
( )

( ( 1)) ( )

cs z z jscz z
sz

sjscz z c z z
c

− −

− −

 
− − − − − 

 =
 
− − − − 
 

MZIH  (2.42) 
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The cross transfers always have a zero on the unit circle. Bar transfers have a zero on the 

unit circle if 2 2c s= . Hence, if 5.021 === κκκ , both bar and cross transfers have a zero 

on the unit circle. So a 3 dB coupler has a zero transmission at the bar transfer at the 

normalized frequency of 0ω =  and 2ω π= , and at the cross transfer at the normalized 

frequency of ω π= . 

2.2.2 Frequency Responses of a Mach-Zehnder Interferometer 

Referring to Section 2.1.3 and the transfer matrix obtained in Section 2.2.1, the 

magnitude responses of the bar and cross transfers of a single-stage MZI are calculated. 

The magnitude response of the bar transmission of an MZI with differential loss Lγ ∆  in 

term of the normalized angular frequency is found as: 

 2 2 2
11 22 1 2 1 2 1 2 1 2( ') ( ') (1 )(1 ) 2 (1 )(1 ) cos 'L LH Hω ω κ κ κ κ γ κ κ κ κ γ ω∆ ∆= = + − − − − − (2.43) 

For identical couplers, it reduces to 

 2 2 2 2 2 2
11 22( ') ( ') (1 ) 2( ) cos 'L LH Hω ω κ κ γ κ κ γ ω∆ ∆= = + − + −  (2.44) 

For a 3 dB coupler, 0.5κ = , hence 

 ( )22 2 2
11 22

' 1( ') ( ') sin 1
2 4L LH H ωω ω γ γ∆ ∆

 = = + − 
 

 (2.45) 

If the differential loss is neglected, 0α =  hence 1Lγ ∆ = , then  

 2 2 2
11 22

'( ') ( ') sin ( )
2

H H ωω ω= =  (2.46) 

The magnitude response of the cross transmission of an MZI with differential loss Lγ ∆  is 

found as: 
2 2 2

12 21 2 1 2 1 1 2 2 1 1 2( ') ( ') ( ) 2 (1 ) (1 ) cos 'L LH Hω ω κ κ κ γ κ κ κ κ κ κ κ γ ω∆ ∆= = − + − + − − (2.47) 

For identical couplers, it reduces to 

 2 2 2 2 2 2
12 21

'( ') ( ') 4( ) cos ( )(1 )
2L LH H ωω ω γ κ κ κ κ γ∆ ∆

 = = − + − − 
 

 (2.48) 

For 3 dB coupler, 0.5κ = , hence 

 2 2 2 2
12 21

' 1( ') ( ') cos (1 )
2 4L LH H ωω ω γ γ∆ ∆

 = = + − 
 

 (2.49) 



Chapter 2. Digital Filter Descriptions of Mach-Zehnder Interferometer 
 

 20 

If the differential loss is neglected, 0α =  hence 1Lγ ∆ = , then  

 2 2 2
12 21

'( ') ( ') cos
2

H H ωω ω  = =  
 

 (2.50) 

The transfer matrix satisfies the power conservation (see Appendix C). The sum of 

the power of bar transfer and the power of the cross transfer is equal to one. For instance, 

a lossless 3 dB coupler, will satisfy the conditions: 

 2 2 2 2
11 12

' '( ') ( ') sin ( ) cos ( ) 1
2 2

H H ω ωω ω+ = + =  (2.51) 

 2 2 2 2
21 22

' '( ') ( ') cos ( ) sin ( ) 1
2 2

H H ω ωω ω+ = + =  (2.52) 

The phase response is found from the argument term of the transfer function as 

explained in Section 2.1.3. The phase response for bar transmission of a lossless MZI and 

identical power coupling ratio, 1 2 0.5κ κ κ= = = , is    

 1
11 22

sin '( ') ( ') tan
1 cos '

ωω ω
ω

−  Θ = Θ =  − 
 (2.53) 

and the phase response for the cross transfer is  

 1
12 21

1 cos '( ') ( ') tan
sin '

ωω ω
ω

− + Θ = Θ =   
 (2.54) 

Figure 2.6 shows the magnitude and phase responses of the MZI for various 

differential losses. Note that the magnitude curves are sine shaped and they have very 

narrow stopbands. The stopband width at the stopband rejection of –25 dB is only about 

4% of the FSR or 8% of the channel spacing. The phase response calculated starts from 

90− D  and continues linearly across the passband until reaches near 180− D . The phase 

response shows a discontinuity when the intensity is zero at the normalized angular 

frequency of ω π= . The phase value is calculated again slightly after ω π= . The 

intensity of the 1 dB loss curve is shallower at the transmission nulls and the phase 

response is not as steep as the zero loss curve at the stopband. 
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Figure 2.6. Magnitude and phase responses of a single-stage Mach-Zehnder Interferometer with 

differential loss of 0 and 1 dB 

2.2.3 Group Delay and Dispersion of the Mach-Zehnder Interferometer  

As has been explained in Section 2.1.4, the group delay is derived from the 

negative derivative of the phase response with respect to the angular frequency. Figure 

2.7 shows the normalized group delay of the bar transmission for various power coupling 

ratios. Each curve shows the values of the normalized group delay versus normalized 

angular frequency for different power coupling ratios.  

Figure 2.8 shows the normalized dispersion of the bar transmission of the MZI for 

various power coupling ratios. The dispersion sweeps from the stopband region to the 

passband region where in the passband the dispersion is lower. Note from the figures that 

the ideal MZI, 0.5κ =  and zero 1mz = , has a constant group delay and thus zero 

dispersion. The group delay and dispersion go to infinite when κ  goes to 0.5, but they go 

higher in the stopband region where the intensity transfer goes to zero. 
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Figure 2.7. Normalized group delay of the bar transmission of Mach-Zehnder Interferometer for 

various coupling ratios 

 

 

Figure 2.8. Normalized dispersion of the bar transmission of Mach-Zehnder Interferometer for 

various coupling ratios 

2.3 Lattice Filters of Mach-Zehnder Interferometer 

As noted from previous sections, the frequency response of the transfer function 

of a single-stage MZI filter has a very narrow stopband and a non-flattened passband. 

Sometimes some applications need a broader stopband or passband width. One way to 

improve the filter performance is to realize a multistage filter by concatenating the MZIs 

in a lattice structure. This is also called Multi-Stage Moving Average filter or resonant 
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coupler. Figure 2.9 shows an example of a two-stage lattice filter. It is a 2×2 port device 

with two input ports and two output ports. It consists of three directional couplers and two 

delay lines. 

In general, an N stage filter has N+1 directional couplers and N delay lines. An N-

th order filter can be made with this multistage configuration. Using the z-transformation, 

the filter response can be represented by the polynomial form in z. A synthesis algorithm 

that can calculate the optical filter parameters from a desired filter response has been 

presented successfully in literatures [6], [2]. This algorithm uses recursion equations to 

map the filter coefficients designed with digital filter tools to the power coupling ratios of 

each directional coupler and the phase of each delay line. Note that although a polynomial 

filter of a very high order, e.g. order of one hundred, can be realized in digital filters, it is 

still not possible to realize an optical filter device with a larger number of delay lines due 

to the chip space restriction and optical losses [1]. Moreover it adds complexity since 

every additional delay section needs an independent tuning element.  

 

 

Figure 2.9. A 2×2 port two-stage lattice filter  
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3 Passband Flattened Filters Design 

 This chapter describes the mathematical design of the passband flattened 

interleaver including linear phase filters using Mach-Zehnder interferometer based lattice 

filters.  

3.1 Filter Requirements 

Bandpass optical filters can be used in the binary tree add-drop multiplexer.  The 

filters have to fulfill some requirements. Since the filters are to be used as slicers or 

interleavers, some specific requirements need to be fulfilled. Below are the desired 

properties of the slicers: 

1. They must have broad passband and stopband so that the available bandwidth can be 

used as efficiently as possible 

2. The passband width must be equal to the stopband width since the wavelength 

channels are sent to the cross and bar port 

3. They must have linear phase response functions in the passband region and hence zero 

dispersion 

4. They have minimal loss at the passband  

5. The cross and bar ports fulfill the power conservation rule since the MZI is a passive 

device  

6. Good isolation or stopband rejection; to be noted, it is difficult to fabricate filters 

having better isolation than 25 dB [Roe02] 
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3.2 Filter Design Synthesis 

In this work, four types of filters are designed. First, a third order passband flattened 

filter with non-linear phase response is designed followed by a fourth order linear phase 

passband flattened filter. A fifth order filter with broader stopband width but still having 

non-linear phase response is built then followed by a seventh order passband flattened 

filter with linear phase response. 

Figure 3.1 summarizes the filters design synthesis process. There are four general 

steps in the process as described below. 

3.2.1 Definition of the Filter Order 

In this first step, Figure 3.1(a), the number of zeros, which is equal to the order of 

the filter, is defined. The number of zeros that can be chosen is three, four, five, or seven 

depending on the filter order. The number of zeros is related with the desired filter 

response. The desired filter response can be approximated by placing the zeros on the 

complex z-plane. 

3.2.2 Generation of the Cross Port Transfer Function 

This step is as depicted by Figure 3.1(b)-(e). To generate the cross transfer 

function, the positions of the zeros on the unit circle are described first. These zeros give 

zero intensity transfer at their normalized frequencies and thus define the stopband width. 

There are side-lobes in between each zero. Increasing the distance between each zero 

means that the stopband is broadened, but the side-lobe level also rises. Hence it gives 

limitation on the stopband width. The zeros are chosen such that the maximum side lobe 

level is -25 dB.  

The rest of the zeros for each filter are defined using the condition that the 

passband width is equal to the stopband width. Referring to Eq. (2.15), the magnitude 

squared of a cross transfer function, B(z),  with real coefficients is   

 '

2 1( ) ( ) ( )−

=
= jz e

B z B z B z ω  (2.55) 
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Figure 3.1. Passband flattened filters design synthesis flowchart 
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while the transfer function can be written in terms of its roots as 

  1
1( ) (1 )−
== Γ∏ −M

m mB z z z  (2.56) 

Substituting the unity zeros to Eq. (3.2) and applying Eq. (3.1), the magnitude squared 

function can be represented in terms of the unknown zeros and gain Г. Note that linear 

phase filters have at least a pair of zeros that is reciprocally mirrored about the unit circle. 

The maxima of the magnitude squared curve are at the passband edges. 

Taking the derivative of Eq. (3.1) with respect to the normalized angular 

frequency 'ω  as zero at the passband edge point, the constant Г could be eliminated and 

the unknown zeros can be determined. From Eq. (3.1) and (3.2),   

 

''

' '

'

'
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2 1
2

1

1
2

1

1

1
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z z z z

z z z z

ωω

ω ω

ω

ω

ω ω

ω

ω

 (2.57) 

The derivations of calculations in more details will be explained in next sections for each 

filter type. 

The third order filter has two zeros on the unit circle and one unknown zero. 

Meanwhile, the fourth order linear phase filter has two zeros on the unit circle and two 

unknown zeros, but still has one degree of freedom left since the two unknown zeros are 

the mirror of each other in order to have a linear phase response. The fifth order filter has 

three zeros on the unit circle and two unknown zeros, while the seventh order linear phase 

filter has three zeros on the unit circle and four unknown zeros but also still have two 

unknown variables since the four unknown zeros are two pairs of mirrored zeros. For the 

fifth and seventh order filters, the analysis of zero derivative of Eq. (3.1) with respect to 

the normalized angular frequency are taken at two points, one is at the passband edge 

point and the other is at half-width of the passband which is related with the side lobe 

position in the stopband.  

 Figure 3.2 shows the positions of zeros of each filter. For the third order filter, the 
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position of the third zero, 3z , can be replaced by its reciprocal mirror *
31/ z  since both 

zeros give same magnitude response. The same condition applies to the fifth order filter 

whose unknown fourth and fifth zeros inside the unit circle can be replaced by their 

mirrors outside the unit circle.  

After obtaining all the zeros, the cross transfer function B(z) is calculated using 

Eq. (3.2) with the gain Г is first considered as equal to one. Then the frequency response 

of the cross transfer function is calculated. Since the transmission of a passive device such 

as this Mach-Zehnder interferometer cannot exceed one, the transfer function should be 

normalized such that the maximum transmission cannot be greater than one. Below is the 

normalization process performed,  

 1 ( ) ( ) 1zmax B z max Bω ω= = ≤  (2.58)  

 
 

                              
  (a)                         (b) 

         
               (c)              (d) 

Figure 3.2. Zero diagram of the cross transfer function of the designed (a) third (b) fourth 

(c) fifth, and (d) seventh order filters 
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3.2.3 Calculation of the Bar Port Transfer Function 

Once the cross transfer function has been obtained, the bar transfer function can 

be calculated using the power complementary condition. In this step, Figure 3.1(f), the bar 

transfer function A(z) is calculated by substituting the normalized cross transfer function 

B(z) to the power conservation rule. Recall from Eq. (2.14), the squared magnitude of the 

bar transfer function can be expressed as 

 2 *( ) ( ) ( )A A Aω ω ω=  (2.59) 

 2 * *( ) ( ) (1 )A z A z A z=  (2.60) 

From the power conservation rule, the sum of the power of the bar transfer and the cross 

transfer should be equal to one. Eq. (3.6) can be written as                                

 
2 * * * *

0 0
1

* *

1( ) ( ) (1 ) ( )( )

1 ( ) (1 )

N

k k
k

A z A z A z a a z
z

B z B z

α α
=

= = − −

= −

∏  (2.61) 

where 0a  is the  0-th complex coefficient or the gain of A(z). If the transfer functions have 

real coefficients then Eq. (3.7) can be written as               

 
2 1 *

0 0
1

1

1( ) ( ) ( ) ( )( )

1 ( ) ( )

N

k k
k

A z A z A z a a z
z

B z B z

α α−

=

−

= = − −

= −

∏  (2.62)  

2N zeros of 11 ( ) ( )B z B z−−  appears as pairs of *( ,1 )k kα α for 1k N= ∼ . To obtain the bar 

transfer function A(z), the N zeros of A(z) must be calculated from (3.8). 

Using spectral factorization, each zero of )(zA  is defined by selecting one from 

each pair of zero of )(*)(1 1−− zBzB . There are 2N selections to obtain the zeroes of A(z). 

Thus, 2N different kinds of A(z) can be obtained from one known B(z). They have the 

same amplitude characteristics but different phase characteristics. 

3.2.4 Obtaining the Optical Parameters 

The last step is the generation of power coupling ratios and phases of each 

directional coupler and delay line of the filters from the bar and cross ports transfer 

functions. A simulation tool based on an algorithm derived by Jinguji [6] that can map the 
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coefficients of the filter transfer function in a z polynomial to the optical parameters is 

used. The algorithm uses recursion equations to calculate the power coupling ratios of 

each directional coupler and the phase of each delay line. 

3.3 Third Order Filter 

3.3.1 The Cross Transfer of the Third Order Filter 

In order to have a broader stopband width and hence also broader passband width, 

one zero on the unit circle is added to the single-stage MZI which has only one zero in its 

transfer function. Now the filter has two zeros, namely z1 and z2, that lie on the unit circle 

and hence the stopband is broadened. There is a side-lobe between the two zeros. But the 

passband is still not flat. The third zero z3 should be placed at a distance in between the 

first two zeros but at the other side of the origin of the complex z-plane and not on the 

unit circle to get a passband flattened. The zeros’ positions of the third order filter are as 

has been depicted by Figure 3.2(a).  

The positions of the two zeros on unit circle are chosen first such that the side-

lobe level is -30 dB. Suppose z1 and z2 are chosen as (the angles are given in radians) 

 1

2

0.9509 0.3094 1 2.827
0.9509 0.3094 1 2.827

z j
z j
= − + = ∠
= − − = ∠−

 (2.63) 

z3 is the unknown zero and since in this case is real, it can be represented as 

 3 0z x j= +  (2.64) 

The stopband determined by the two zeros on the unit circle lies from normalized angular 

frequency of 0.9π to 1.1π. Note that the angles are given in radians.  

From Eq. (3.2), the cross transfer function can be written as follows  

 1 1 1
1 2 3( ) (1 )(1 )(1 )B z z z z z z z− − −= Γ − − −  (2.65) 

or in expanded version: 

 1 2 3
1 2 3 3 1 2 1 2 1 2 3( ) ( ) ( ( ) ) ( )B z z z z z z z z z z z z z z z− − −= Γ −Γ + + +Γ + + −Γ  (2.66) 
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The transfer function can also be written in terms of its coefficients as 
 1 2 3

0 1 2 3( )B z c c z c z c z− − −= + + +  (2.67) 

Now definitions are made for the part of each coefficient as following 

 

0
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3 1 2 3
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= − + +
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= −
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c z z z
c z z z z z
c z z z

 (2.68) 

Note that = Γ ⋅ �n nc c  for 0= ∼n N . Since z1 and z2 are known and recalling Eq. (3.10), 

equations in (3.14) are represented in terms of x. Defining back Eq. (3.12) in terms of Eq. 

(3.14) and applying Eq. (3.1), the magnitude squared of the cross transfer function can be 

represented as following  
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3 3
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 (2.69)  

where kc�  and lc�  are coefficients components as defined by (3.14) of ( )B z  and 1( )B z−  

respectively. The derivative of Eq. (3.15) with respect to the normalized angular 

frequency is as follows  
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Since the stopband edges are at normalized angular frequencies of 0.9π and 1.1π, 

the passband edges are found at normalized angular frequencies of 0.1π and 1.9π. Taking 

Eq. (3.16) as zero at one of those points, x can be found and hence z3 can be determined.  

Table 3.1 shows the zeros of the cross transfer function of the third order filter. The third 

zero can be chosen either as z3 or its mirror *
31/ z since both of them give same magnitude 

response although they have different phase responses. Thus two cross transfer functions can be 

obtained. The possible solutions of the cross transfer function after being normalized is shown in 

Table 3.2.   
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z1 1 2.827∠  

z2 1 2.827∠−  

z3 0.2841 0∠  
*
31/ z  3.5200 0∠  

 

Table 3.1. Zeros of the cross transfer third order filter 

 

z1 1 2.827∠  z1 1 2.827∠  

z2 1 2.827∠−  z2 1 2.827∠−  

z3 0.2841 0∠  z3 3.5200 0∠  
1 2 3

1( ) 0.3577 0.5786 0.1644 0.1016B z z z z− − −= + + − 1 2 3

2 ( ) 0.1016 0.1644 0.5786 0.3577B z z z z− − −= − − −  

 

Table 3.2. Cross transfer functions of the third order filter 

 

 The magnitude squared response of the obtained cross transfer function for B1(z) 

is shown by Figure 3.3 and the phase response is shown by Figure 3.4.  The stopband 

width at –25 dB is 15.2% of the FSR or 30.4% of the channel spacing. The side-lobe level 

is –26.92 dB. The ripple level in the passband is very small, 38.69 10−− ⋅ dB, thus the 

passband can still be considered as flat. The phase response shows the non-linear phase 

function. Thus it has a non-constant group delay and hence a non-zero dispersion. The 

normalized group delay and dispersion of the designed filter are shown by Figure 3.5. 

Note the dispersion sweeps in the passband region. 
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(a) 

 
(b) 

Figure 3.3. Magnitude squared response of the cross port transfer function of the third order filter 
(a) in decibel scale and (b) in linear scale 

 

 
Figure 3.4. Phase response of the cross port transfer function of the third order filter 
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                                             (a)                                                                    (b) 

Figure 3.5. Normalized (a) group delay and (b) dispersion of the cross port transfer function of 
the third order filter  

 

3.3.2 The Bar Transfer of the Third Order Filter 

From Figure 3.3(b), the cross transfer function magnitude squared curve is 

symmetric within one period. The zeros of the bar transfer can be found referring to 

Section 3.2.3. using Eq. (3.8) which are actually can be found also by rotating the zero 

diagram of the cross transfer by π radians since the cross transfer is symmetric. The zero 

diagram of the bar transfer of the third order filter is depicted by Figure 3.6. Table 3.3 

gives the possible two bar transfer functions for two different zero configurations.  

 

 
 

Figure 3.6. Zero diagram of the bar transfer third order filter  
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z1 1 0.314∠  z1 1 0.314∠  

z2 1 0.314∠−  z2 1 0.314∠−  

z3 0.2841 π∠  z3 3.5200 π∠  

1 2 3

1( ) 0.3577 0.5786 0.1644 0.1016z z z zA − − −= − + + 1 2 3

2 ( ) 0.1016 0.1644 0.5786 0.3577z z z zA − − −= + − +

 
Table 3.3. Bar transfer functions and their zeros of the third order filter 

 

Figure 3.7(a) shows the magnitude response of the bar transfer in decibel scale 

and Figure 3.7(b) shows the magnitude squared response of both cross, B1(z),  and bar 

transfer A1(z) for comparison. Figure 3.8 shows the phase response of the bar transfer. 

The phase response also shows a non-linear function. The curves satisfy the power 

conservation. The normalized group delay and dispersion are shown by Figure 3.9. Note 

that the responses are the shifted version of those of the cross transfer.  

  

 
(a) 

 

 
(b) 

Figure 3.7. Magnitude response of the bar transfer function third order filter in decibel scale (a) 
and magnitude squared response of the bar and cross transfer of the third order filter (b) 
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Figure 3.8. Phase response of the bar port transfer function of the third order filter 

 

         

(a)               (b) 

Figure 3.9. Normalized (a) group delay and (b) dispersion of the bar port transfer function of the 
third order filter 

 

3.3.3 The Optical Parameters of the Third Order Filter 

From the cross and bar transfer obtained, a three-stage optical filter can represent 

the third order filter slicer. Appendix D gives the possible configurations of the power 

coupling constants of each directional coupler and the phases of each delay line calculated 

using the available simulation tools. For the third order filter, since there are two possible 

solutions for each bar and cross transfer, there are four possible configurations. 

For every configuration, it turns out that one coupler has a power coupling 

constant of zero. It means that the associated coupler can be removed and the 

neighbouring delay lines can be combined into one with doubled delay. The filter is 

reduced into a two-stage filter. The better configuration may be the one that consists of 

the coupler with 0.07κ =  since it is the shortest coupler. 
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3.4  Fourth Order Filter 

3.4.1 The Cross Transfer of the Fourth Order Filter 

As seen previously, the third order filter still has a non-linear phase response and 

non-zero dispersion in the passband. As explained in the previous chapter, a linear phase 

filter has at least a pair of zeros that are mirrored about the unit circle. The zeros positions 

of the fourth order filter are as has been depicted by Figure 3.2(b). The filter will be built 

with a similar algorithm as for the third order filter. 

Suppose now the zeros on the unit circle are still as same as the third order filter: 

 1

2

0.9509 0.3094 1 2.827
0.9509 0.3094 1 2.827

z j
z j
= − + = ∠
= − − = ∠−

 (2.71) 

Now the rest two unknown zeros are defined as 

 
3

4

0
1 0

z x j

z j
x

= +

= +
 (2.72) 

The stopband also lies from normalized angular frequency of 0.9π to 1.1π where the 

transfers are zero at both of those points. The fourth order cross transfer function can be 

written in terms of its roots as 
1 2

1 2 3 4 3 4 4 1 2 3 1 2 1 2
3 4

1 2 3 4 3 4 1 2 1 2 3 4

( ) ( ) [ ( ) ( ) ]

[( ) ( ) ] ( )

B z z z z z z z z z z z z z z z z z

z z z z z z z z z z z z z z

− −

− −

= Γ −Γ + + + +Γ + + + + +

−Γ + + + +Γ
 (2.73) 

or in terms of its coefficients as 
 1 2 3 4

0 1 2 3 4( )B z c c z c z c z c z− − − −= + + + +  (2.74) 

The following definitions are made: 

 

0

1 1 2 3 4

2 3 4 4 1 2 3 1 2 1 2

3 1 2 3 4 3 4 1 2

4 1 2 3 4

1
( )

( ) ( )
[( ) ( ) ]

c
c z z z z
c z z z z z z z z z z
c z z z z z z z z
c z z z z

=
= − + + +

= + + + + +
= − + + +
=

�
�
�
�
�

 (2.75) 

Substituting the zeros in (3.17) and (3.18) to Eq. (3.21) and defining Eq. (3.19) in terms 

of (3.21) then taking the squared magnitude of the function, the following equation 
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emerges  

 
'

4 4
2 2 ( )

0 0
4 4

2 ( ) '

0 0

( ) j
k l

k lz e
k l

k l j
k l

k l

B z c c z

c c e

ω

ω

− −
=

= =

− −

= =

= Γ

= Γ
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� �
 (2.76)  

The derivative of the magnitude squared with respect to the normalized angular frequency 
is as follows 

 

2' ( ) '4 4
2

0 0

4 4
2 ( ) '

0 0

d ( ) d( )
d( ') d( ')

( ( ))

− −

= =

− −

= =
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c c k l e

ω ω
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ω ω  (2.77) 

As done with the third order filter, z3 and z4 can be found by substituting the 

normalized angular frequency that defines the passband edge to Eq. (3.23) and taking the 

value of (3.23) as zero. The passband edges are found at normalized angular frequencies 

of 0.1π and 1.9π. Zeros found for the fourth order filter are: 

 

1

2

3

4

1 2.827
1 2.827
0.1810 0
5.5250 0

z
z
z
z

= ∠
= ∠−
= ∠

= ∠

 (2.78) 

The cross transfer function obtained with zeros in (3.24) is 

 1 2 3 4( ) 0.0691 0.2629 0.6118 0.2629 0.0691B z z z z z− − − −= − − − +  (2.79) 

Note that the transfer function is a mirror-image polynomial as referred to Chapter 2 or 

Appendix A. 

The magnitude squared response of the obtained cross transfer function B(z) is 

shown by Figure 3.10 and the phase response is shown by Figure 3.11.  The stopband 

width at –25 dB is 14.6% of the FSR or 29.2% of the channel spacing. The side-lobe level 

is –25.63 dB. Seems that addition of a zero at the passband increases the side-lobe level 

and hence decreases the –25 dB stopband width compared to the third order filter. The 

ripple level in the passband is 36.08 10−− ⋅ dB. The phase response is linear at the passband. 

Hence the normalized group delay of the fourth order filter is constant and the dispersion 

is zero.  
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                                   (a)                (b) 
Figure 3.10. Magnitude squared response of the cross port transfer function of the fourth 

order filter in (a) decibel scale and (b) linear scale 

 

 

Figure 3.11. Phase response of the cross port transfer function of the fourth order filter  
 

3.4.2 The Bar Transfer of the Fourth Order Filter 

The bar port transfer function can be calculated from the cross transfer function by 

applying the power conservation rule as explained previously in Section 3.2.3. By 

substituting the cross transfer B(z) to the Eq. (3.8), the four zeros of bar transfer A(z) can 

be obtained using spectral factorization. The zero diagram of the bar transfer of the fourth 

order filter is depicted by Figure 3.12. The third zero can be chosen from two different 

zeros that is a pair of zeros mirrored to each other about the unit circle. The same 

condition happens to the fourth zero.  
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Given zeros: 

 

1

2

3

4

1 3.14
1 0.314
3.1618
7.1500 0

z
z
z
z

π

= ∠
= ∠−
= ∠

= ∠

 (2.80) 

the bar transfer obtained is  

 1 2 3 4( ) 0.0145 0.0856 0.2037 0.5666 0.3284A z z z z z− − − −= − − + −  (2.81) 

 

 
Figure 3.12. Zero diagram of the bar transfer fourth order filter  

 

  Figure 3.13(a) shows the magnitude response of the bar transfer in decibel scale 

while Figure 3.13(b) shows the magnitude squared response of both cross transfer B(z) 

and bar transfer A(z) for comparison. Figure 3.14 shows the phase response of the bar 

transfer. Since the zeros do not comprise of zeros that are mirrored each other about the 

unit circle anymore, it has a non-linear phase response. Hence the group delay is not 

constant and the dispersion is not zero.  

Recalling the ADM building blocks as depicted by Figure 1.2, the dispersion of 

the bar transfer from the splitting part can be compensated at the combining part by the 

negative version of that dispersion. It can be realized by applying at the combining part 

the bar transfer function that is the reverse function of its associated bar transfer function 

at the splitting part. See Appendix B for the explanation of the reverse polynomial.  
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For the bar transfer function as defined by Eq. (3.27), the reverse 

polynomial is 

 1 2 3 4( ) 0.3284 0.5666 0.2037 0.0856 0.0145RA z z z z z− − − −= − + − − +  (2.82)  

 

 

(a) 

 

(b) 

Figure 3.13. Magnitude response of the bar transfer function fourth order filter in decibel scale 
(a) and magnitude squared response of the bar and cross transfer of the fourth order filter (b) 

 

 
Figure 3.14. Phase response of the bar port transfer function of the fourth order filter 

 

The normalized group delay and dispersion calculated for the obtained bar transfer 
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and its reverse function are shown by Figure 3.15. As can be seen from the graphs, 

although the dispersion of each function is not equal to zero, but they are compensates 

each other. Hence they may produce a zero dispersion at the bar output port. 

 

      
      (a)       (b) 

Figure 3.15. Normalized (a) group delay and (b) dispersion of the bar port transfer function of 
the fourth order filter and its reverse polynomial  

 

3.4.3 The Optical Parameters of the Fourth Order Filter 

The optical filter parameters are obtained from the generated bar transfer and 

cross transfer A(z) and B(z). Note that ( ) ( )RB z B z= . In Appendix D, Table D.2 gives the 

power coupling constant of each directional coupler and the phase of each delay line. It 

gives two configurations, one is for the splitting part and the other is for the combining 

part with the reverse bar transfer function. The filter coefficients can be mapped to a four-

stage optical filter with five couplers and four delay lines.  

3.5 Fifth Order Filter 

3.5.1 The Cross Transfer of the Fifth Order Filter 

The fifth order filter zero diagram is as has been shown by Figure 3.2(c). In order 

to have a broader stopband width compared to the third and fourth order filters, three 

zeros are put on the unit circle. They are, namely 1z , 2z , and 3z . The fourth and fifth 

zeroes, namely 4z  and 5z , are not on the unit circle and will be placed at the opposite side 

of the origin in the passband region to obtain passband flattening.  
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At first, the positions of the three zeroes on the unit circle are chosen, then the 

fourth and fifth zeroes will be found through calculation. The calculation algorithm is 

similar with the previous filter designs. If the three zeroes on the unit circle are chosen 

first such that the side lobe level in between is –30 dB, the result with the five zeroes is 

shown a rising of the side lobe level of 12 dB. Hence the positions of the three zeroes are 

chosen first such that the maximum side lobe level is –40 dB in order to anticipate the 

final response with five zeroes will have side lobe level not greater than –25 dB. 

Moreover the addition of two more zeroes to design the next seventh order filter should 

be anticipated to have a side lobe level also not greater than –25 dB.  

The zeros on unit circle are chosen as 

 
1

2

3

0.8265 0.5629 1 2.544
1 0 1
0.8265 0.5629 1 2.544

z j
z j
z j

π
= − + = ∠
= − + = ∠
= − − = ∠−

 (2.83) 

The remaining two unknown zeros are defined as  

 4

5

z x jy
z x jy
= +
= −

 (2.84) 

with x and y are the real and imaginary parts of z4 and z5. 

The stopband determined by the three zeros on the unit circle lies from the normalized 

angular frequency of 0.81π to 1.19π. The fifth order cross transfer function can be written 

in terms of its roots as 

 

1

-1
2 3 4 5 4 5 3 5 3 4 2 5 2 4 2 3 1 5 1 4

-2
1 3 1 2 3 4 5 2 4 5 2 3 5 2 3 4 1 4 5 1 3 5 1 3 4 1 2 5

-3
1 2 4 1 2 3 2 3 4 5 1 3 4 5 1 2 4 5 1 2 3 5 1

( ) ( ) (

) (

) (

B z z z z z z z z z z z z z z z z z z z z z z z

z z z z z z z z z z z z z z z z z z z z z z z z z z z z z

z z z z z z z z z z z z z z z z z z z z z z z z

= Γ −Γ + + + + +Γ + + + + + + +

+ + −Γ + + + + + + +

+ + +Γ + + + + -4
2 3 4

5
1 2 3 4 5

)

( )

z z z z

z z z z z z−

−

Γ

(2.85) 
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The following definitions are made, 

 

1

0

1 2 3 4 5

2 4 5 3 5 3 4 2 5 2 4 2 3 1 5 1 4 1 3 1 2

3 3 4 5 2 4 5 2 3 5 2 3 4 1 4 5 1 3 5 1 3 4 1 2 5 1 2 4 1 2 3

4 2 3 4 5 1 3 4 5 1 2 4 5 1 2 3 5 1

1
( )

( )
( )

(

c
c z z z z z

c z z z z z z z z z z z z z z z z z z z z
c z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z
c z z z z z z z z z z z z z z z z z
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= − + + + +

= + + + + + + + + +
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5 1 2 3 4 5

)z z z
c z z z z z=�

(2.86) 

Substituting (3.29) and (3.30) to Eq. (3.32) and defining Eq. (3.31) in terms of (3.32), 

then taking the magnitude squared of the cross transfer function, the following equation 

emerges  
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 (2.87)  

The derivative of the magnitude squared with respect to the normalized angular frequency 
is as follows 
  

 

2' ( ) '
2

0 0

5 5
2 ( ) '

0 0

d ( ) d( )
d( ') d( ')

( ( ))

− −

= =

− −

= =

= Γ

= Γ − −

∑∑

∑∑

� �

� �

j k l j

k l
k l

k l j
k l

k l

B e ec c

c c k l e

ω ω

ω

ω ω  (2.88) 

For the fifth order filter, z4 and z5 can be found by taking the value of (3.33) as 

zero at two points, one is at the passband edge point and the other is at half-width of the 

passband which is related with the side lobe position in the stopband. Table 3.4 shows the 

zeros of the cross transfer function of the fifth order filter. The fourth zero can be chosen 

between z4 and its mirror *
41 z  since both of them give identical magnitude response 

although they have different phase responses, and so can the fifth zero be chosen between 

z5 and its mirror *
51 z . It results into four possible cross transfer functions that can be 

chosen.  
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z1 1 2.544∠  

z2 1 π∠  

z3 1 2.544∠−  

z4 0.3724 0.511∠  
*
41 z  2.6859 0.511∠  

z5 0.3724 0.511∠−  
*
51 z  2.6859 0.511∠−  

 

Table 3.4. Zeros of the cross transfer fifth order filter 

 

Taking zeros of: 

 

1

2

3

4

5

1 2.544 
1
1 2.544
2.6859 0.511
2.6859 0.511

z
z
z
z
z

π
= ∠
= ∠
= ∠−

= ∠
= ∠−

 (2.89) 

the cross transfer calculated is: 

 1 2 3 4 5( ) 0.0388 0.0788 0.0994 0.2988 0.5604 0.2797B z z z z z z− − − − −= − − + + +  (2.90) 

The magnitude squared response of the obtained cross transfer function B(z) is 

shown by Figure 3.16 and the phase response is shown by Figure 3.17.  The stopband 

width at –25 dB is 23.5% of the FSR or 47% of the channel spacing. The side lobe level is 

–28.31 dB. The ripple level in the passband is 38.69 10−− ⋅ dB.  

The normalized group delay and the dispersion of the designed filter are shown by 

Figure 3.18. Since the phase response is a non-linear function, the filter has a non-

constant group delay and hence a non-zero dispersion. Note the dispersion sweeps in the 

passband region. 
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(a) 

 

(b) 

Figure 3.16. Magnitude squared response of the cross port transfer function of the fifth order 
filter in (a) decibel scale and (b) linear scale 

 

 

Figure 3.17. Phase response of the cross port transfer function of the fifth order filter 
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         (a)             (b) 
Figure 3.18. Normalized (a) group delay and (b) dispersion of the cross port transfer function of 

the fifth order filter  

 

3.5.2 The Bar Transfer of the Fifth Order Filter 

The zeros of the bar transfer can be found referring to Section 3.2.3 using Eq. 

(3.8). From Figure 3.16(b), the cross transfer function magnitude squared curve is 

symmetric within one period, thus the bar transfer function can be found also by rotating 

the zero diagram of the cross transfer by π radians. The zero diagram of the bar transfer of 

the fifth order filter is depicted by Figure 3.19. 

 

 

 

Figure 3.19. Zero diagram of the bar transfer fifth order filter 
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 Given the cross transfer function as in Eq. (3.36), the zeros found are 

 

1

2

3

4

5

1 0.598 
1 0
1 0.598
2.6859 2.631
2.6859 2.631

z
z
z
z
z

= ∠
= ∠
= ∠−

= ∠
= ∠−

 (2.91) 

and the bar transfer function calculated is 
 1 2 3 4 5( ) 0.0388 0.0788 0.0994 0.2988 0.5604 0.2797A z z z z z z− − − − −= + − − + −  (2.92) 

 

 

(a) 

 

(b) 

Figure 3.20. Magnitude response of the bar transfer function fifth order filter in decibel scale (a) 
and magnitude squared response of the bar and cross transfer of the fifth order filter (b) 

 

Figure 3.20(a) shows the magnitude response of the bar transfer in decibel scale 

while Figure 3.20(b) shows the magnitude squared response of both cross transfer B(z) 

and bar transfer A(z). Figure 3.21 shows the phase response of the bar transfer. The phase 

response also shows a non-linear function. As a consequence, the normalized group delay 
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is not a constant function and the normalized dispersion is not equal to zero as can be seen 

in Figure 3.22.  

 

 

 

   Figure 3.21. Phase response of the bar port transfer function of the fifth order 
filter 

 

 

   

           (a)              (b) 
Figure 3.22. Normalized (a) group delay and (b) dispersion of the bar port transfer function of 

the fifth order filter  
 

3.5.3 The Optical Parameters of the Fifth Order Filter 

From the cross and bar transfer obtained, a five-stage optical filter can represent 

the fifth order filter slicer. In Appendix D, Table D.3 gives the possible configurations of 

the power coupling constants of each directional coupler and the phases of each delay line 

calculated using the available simulation tools. Since there are four possible solutions for 
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each bar and cross transfer, there are sixteen possible configurations. 

The configurations of the two first rows, A1B1 and A1B2, give the shortest coupling 

and have one coupler with 0κ =  which means that one coupler can be removed and the 

associated neighbouring delay lines can be combined into one with doubled delay. 

3.6 Seventh Order Filter 

3.6.1 The Cross Transfer of the Seventh Order Filter 

Although the fifth order filter has a broader stopband compared to the third and 

fourth order filter, it still has a non-linear phase response and non-zero dispersion in the 

passband. Further improvement of the filter in the sense of the linear phase response can 

be made. The three zeroes on the unit circle are fixed as the fifth order filter. Figure 3.2(d) 

shows the zero diagram of the seventh order filter. The fourth and fifth zeros are located 

inside the unit circle and are related as a complex conjugate pair. The sixth and seventh 

zeros are actually the mirrors of their pair inside the unit circle.  

Given zeros on the unit circle as same as the ones for fifth order filter, see Eq. 

(3.28), the remaining four unknown zeros are defined as 

 

4

5

*
6 4 2 2

*
7 5 2 2

1

1

z x jy
z x jy

x jyz z
x y
x jyz z
x y

= +
= −

+
= =

+
−

= =
+

 (2.93) 

There are only two degrees of freedom since 6z  is equal to *
41 z and 7z  is equal to *

51 z . 

The stopband determined by the three zeros on the unit circle also lies from normalized 

angular frequency of 0.81π to 1.19π.  

Definitions are made for the part of each coefficient of the cross transfer function 

as given in Appendix E, Table E.1. Substituting all the zeros values including the 

unknown zeros in Eq. (3.39) to the equations in Table E.1, then defining Eq. (3.2) in 

terms of equations in Table E.1, the squared magnitude of the function is defined in terms 

of the gain Γ, x, and y variables.  
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The derivative of the magnitude squared with respect to the normalized angular frequency 

is as follows 
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The variables x and y can be found by taking the value of (3.41) as zero at two 

points. One is at the passband edge point and the other is at half-width of the passband 

which is related with the side lobe position in the stopband. Hence z4, z5, z6, and z7 are 

determined. Table 3.6 shows the zeros of the cross transfer function of the fifth order 

filter. The zeros found for the seventh order filter are: 

 

1

2

3

4

5

6

7

1 2.544 
1
1 2.544
0.2644 0.660
0.2644 0.660
3.7827 0.660
3.7827 0.660

z
z
z
z
z
z
z

π
= ∠
= ∠
= ∠−

= ∠
= ∠−

= ∠
= ∠−

 (2.96) 

The cross transfer function generated, after normalization, with zeros in (3.41) is  

 
1 2 3 4

5 6 7

( ) 0.0225 0.0842 0.0576 0.5040 0.5040
0.0576 0.0842 0.0225

B z z z z z
z z z

− − − −

− − −

= − + + +

+ − +
 (2.97)  

 

The magnitude squared response of the obtained cross transfer function B(z) is 

shown by Figure 3.23 and the phase response is shown by Figure 3.24.  The filter has a 

stopband width at –25 dB as 22.5% of the FSR or 45% of the channel spacing. The side 

lobe level is –25.35 dB. The ripple level in the passband is very small, it is only 
33.48 10−− ⋅ dB. The phase response is linear at the passband. Since the phase response is 



Chapter 3. Passband Flattened Filters Design 
 

 

 52 

linear, now the normalized group delay has a constant value. As the consequence, the 

filter has zero dispersion. 

 

 

  (a)      (b) 

Figure 3.23. Magnitude squared response of the cross port transfer function of the 
seventh order filter  (a) in decibel scale and (b) in linear scale 

 

 

Figure 3.24. Phase response of the cross port transfer function of the seventh order filter 

 

3.6.2 The Bar Transfer of the Seventh Order Filter 

Once the linear phase cross transfer function has been obtained, the bar transfer 

function is obtained using the power conservation rule. By substituting the cross transfer 

B(z) to the Eq. (3.8), the seven zeros of bar transfer A(z) can be obtained using spectral 

factorization. The zeros position of the bar transfer of the seventh order filter obtained are 

depicted by Figure 3.25.  
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Figure 3.25. Zero diagram of the bar transfer seventh order filter 

 There are seven pairs of zeros *( ,1 )k kα α that appear. Seven zeros of the bar 

transfer are chosen one from each pair. Note that three pairs of zeros are very near to the 

unit circle. They are actually the “rotated” version of their counterpart zeros at the other 

side of the origin, which are the zeros of the cross transfer.  

 Given zeros: 

 

1

1

3

4

5

6

7

0.9591 0.597
0.9591 0.597
0.8350 0
0.2270 0.693
0.2270 0.693
0.4252 2.686
0.4252 2.686

z
z
z
z
z
z
z

= ∠
= ∠−
= ∠

= ∠
= ∠−

= ∠

= ∠−

 (2.98) 

the bar transfer obtained is 

 
1 2 3 4

5 6 7

( ) 0.2660 0.5338 0.3210 0.0589 0.0874
0.0132 0.0104 0.0019

A z z z z z
z z z

− − − −

− − −

= − + + −

− + −
 (2.99) 

Figure 3.26 shows the magnitude response in decibel scale of the bar transfer and 

magnitude squared of both cross and bar transfer functions. Figure 3.27 shows the phase 

response of the bar transfer. Note that the intensity in the stopband does not go to zero 

anymore, but the side lobe level and the intensity are still low enough, they are below –30 

dB.  Since the zeros do not comprise of zeros that are mirrored to each other about the 
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unit circle anymore, it has a non-linear phase response. Hence the group delay expected is 

not constant and the dispersion is not zero.  

As done with the fourth order linear phase filter, the dispersion of the bar transfer 

from the splitting part of the ADM can be compensated at the combining part by the 

negative version of that dispersion. By applying at the combining part the bar transfer 

function that is the reverse function of its associated bar transfer function at the splitting 

part, the dispersion can be compensated. For the bar transfer function as defined by Eq. 

(3.45), the reverse polynomial is 

1 2 3 4 5

6 7

( ) 0.0019 0.0104 0.0132 0.0874 0.0589 0.3210
0.5338 0.2660

RA z z z z z z
z z

− − − − −

− −

= − + − − + +

− +
(2.100) 

The normalized group delay and dispersion calculated for the bar transfer obtained 

and its reverse function are shown by Figure 3.28. As can be seen from the graphs, 

although the dispersion of each function is not equal to zero, they compensate each other. 

Hence they will produce a zero dispersion at the bar output port. 
 

 
(a) 

 
(b) 

 
Figure 3.26. Magnitude response of the bar transfer function seventh order filter in decibel scale 
(a) and magnitude squared response of the bar and cross transfer of the seventh order filter (b) 
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Figure 3.27. Phase response of the bar port transfer function of the seventh order filter 
 

    

              (a)     (b) 
 

Figure 3.28. Normalized (a) group delay and (b) dispersion of the bar port transfer function of 
the seventh order filter and its reverse polynomial 

  

3.6.3 The Optical Parameters of the Seventh Order Filter 

From the generated bar transfer and cross transfer A(z) and B(z), the optical filter 

parameters are obtained. In Appendix D, Table D.4 gives the power coupling constant of 

each directional coupler and the phase of each delay line. It gives two configurations, one 

is for the splitting part and the other is for the combining part with the reverse bar transfer 

function. The filter coefficients are mapped to a seven-stage optical filter with eight 

couplers and seven delay lines.  
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3.7 Summary 

In this chapter, two kinds of lattice filter that have linear phase response of the 

transfer function and hence zero dispersion have been designed. They are made as an 

improvement to the non-linear phase filters. The non-linear phase filters are the third and 

fifth order filters, while the linear phase filters are the fourth and seventh order filters.  

The third order filter, which has three zeros in its polynomials, is improved by 

adding one zero in the passband region which results in a fourth order filter that has a 

linear phase response characteristic. To have a broader stopband width and hence broader 

passband width, two zeros are added to the third order filter resulting in a fifth order filter. 

It has three zeros on the unit circle. The fourth and fifth zeroes are not on the unit circle 

and are placed at the opposite side of the origin in the passband region to obtain passband 

flattening. The fifth order filter is improved by adding two more zeros which results in a 

seventh order filter that has a linear phase response characteristic. All the filters are 

designed such as they have a passband flattened amplitude response. 
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Chapter 4 

4 Eye Diagram Simulation 

 In a digital transmission system, one form of distortion of the received signal 
called intersymbol interference may rise. Dispersion in the channel may cause the 
interference. The interference caused by the time response of the channel has temporal 
spreading and consequent overlapping from one symbol into another. This has the effect 
of potentially introducing deviations between the data sequence reconstructed at the 
receiver and the original data sequence applied to the transmitter input since the receiver 
cannot reliably distinguish changes between states. The intersymbol interference may be 
studied using the eye diagram or eye pattern. The eye diagram is constructed by 
overlaying plots of the waveform from successive unit time intervals.  

4.1 Complex Low-Pass Representation of a Narrow-Band System 

Typically, the incoming signal and the system of interest are both narrow-band with 

a common midband frequency. In this system, the center wavelength used is 1550 nm and 

the midband frequency used is 193.548 THz. The band-pass transmission of a signal may 

be analysed using an equivalent low-pass transmission model.  

The frequency shifting property of the Fourier transform suggests that we may 

express the pre-envelope ( )x t+  in the form [7] 

 ( ) ( ) exp( 2 )cx t x t j f tπ+ = �  (4.1) 

where ( )x t�  is the complex envelope of ( )x t . Given the narrow-band signal ( )x t , the real 

part of the product of (4.1) is equal to ( )x t , as shown by 

 ( ) Re[ ( ) exp( 2 )]cx t x t j f tπ= �  (4.2) 

The narrow-band signal ( )x t  may be expressed as  

 I Q( ) ( ) cos(2 ) ( )sin(2 )c cx t x t f t x t f tπ π= −  (4.3) 
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The complex envelope ( )x t�  is defined in terms of the in-phase component ( )Ix t  and the 

quadrature component ( )Qx t  as follows: 

 I Q( ) ( ) ( )x t x t jx t= +�  (4.4) 

Suppose a narrow-band signal  

 ( ) ( ) cos(2 )cx t m t f tπ=  (4.5) 

where m(t) is an information-bearing signal. From Eq. (4.3) and (4.4), then the complex 
envelope is 

 ( ) ( )x t m t=�  (4.6) 

 Consider next a narrow-band system defined by the impulse response ( )h t  or 

equivalently, the transfer function ( )H f .  Accordingly, from analogy with the complex 

low-pass representation of a narrow-band signal, the desired complex low-pass 

representation of the narrow-band system may be developed by retaining the positive-

frequency half of the transfer function ( )H f  centered on fc and shifting it to the left by fc.  

 The Fourier transform of the output of the narrow-band system is given by 

 ( ) ( ) ( )Y f H f X f=  (4.7) 

Accordingly, the Fourier transform of the output of the complex low-pass system is given 

by [Hay89] 

 ( ) ( ) ( )Y f H f X f=� � �  (4.8) 

Suppose a transfer function: 

 ( 2 )

0 0

( ) e
N N

n j fT n
n n

n n

H f c z c π− −

= =

= =∑ ∑  (4.9) 

with its impulse response: 

 
0

( ) ( )
N

n
n

h t c t nT
=

= δ −∑  (4.10) 

If it is shifted to the left by the carrier frequency fc, then  
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 (4.11) 

with the term 2 cj f nT
nc e− π is now the new coefficient term, namely nc� . 

Figure 4.1 shows the schematic layout of the real system. nc  is the filter 

coefficient, while T is the unit delay of the filter. Figure 4.2, 4.3, 4.4, and 4.5 show the 

complex low-pass equivalent models used for the simulation for the cross transfer of the 

third, fourth, fifth, and seventh order filters respectively with a pseudonoise sequence 

generator. The center wavelength used is 1550 nm center wavelength, or 193.548 THz 

carrier frequency, and an FSR of 100 GHz (unit delay T=10 ps). Since in the cross 

transfer the carrier frequency is lying on the stopband, in order to check the transmission 

of the signal, the transfer function is shifted by half the FSR, i.e. shifting 50 GHz, to get 

the passband.  

 

 

Figure 4.1. Schematic layout of the system 

 

To understand the working principle of the model, take Figure 4.2 as an example. 

The PN Sequence generator block generates a sequence of random binary numbers. The 
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block actually produces a sequence of binary data in on-off signalling format. The Gain 

block is the filter coefficient. Each stage of the filter gives a delay equals to nT (see Eqs. 

4.9 to 4.11) where T is the filter unit delay. After being delayed and gained, the input is 

multiplied by an exponential constant (refer to Eq. 4.11). Each stage value is added 

together, and then the magnitude squared value is displayed by the scope and eye diagram 

blocks. The coefficients of the filters are taken from results in Chapter 3. The third order 

coefficients are taken from Table 3.2, the fourth order coefficients are taken from Eq. 

(3.25), the fifth order from Eq. (3.36), and the seventh order from Eq. (3.43). 

To get an impression of the responses of the filter models, a complex input 2j fte π  

is given first to the systems and the magnitude and phase responses are checked for each 

frequency. Examples of the responses are shown in Appendix F. The responses show the 

similarity with the ones previously obtained in Chapter 3, although there is some slight 

deviation. The deviation may come from the numerical error by the simulator.  

 

 

Figure 4.2. Low- pass equivalent model for the third order filter 
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Figure 4.3. Low- pass equivalent model for the fourth order filter 

 

 

Figure 4.4. Low-pass equivalent model for the fifth order filter 
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Figure 4.5. Low- pass equivalent model for the seventh order filter 

4.2 Simulation Results 

4.2.1 Third Order Filter 

Figure 4.6 describes the magnitude squared output for one bit pulse input with bit 

rate 5 Gbps or bit time bT  0.2 ns at the center of the passband for the third order filter. 

The output shows that the pulse is broadened compared to the original input bit time due 

to the delay lines of the filter. It has a “stairs-alike” shape with the stairs width equals to 

the filter unit delay T. In this case the unit delay is 10 ps. The relation between the 

number of stair levels and the filter stages is as follows 

 #stair-levels 2( 1)N= +  (4.12) 

with N is the number of filter stages or  filter order. For this third order filter, there are 

eight stair-levels where the last level has a value of zero magnitude. The stair-level or the 

transition value depends on the filter coefficients. The input is delayed as much as an 

integer multiple of the unit delay T and gained by the coefficients. There is a level that is 

higher than one. This is due to the discrete response of the system that is caused by the 

delay lines of the filter. As obtained in Chapter 3, the cross transfer function of the third 
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order filter is 

 1 2 3( ) 0.3577 0.5786 0.1644 0.1016B z z z z− − −= + + −  (4.13) 

For instance, the third stair-level has a value resulted from addition of the 0-th, 1st, and 2nd 
coefficients which is higher than one.    
 

 

 
Figure 4.6. Output of the third order filter for one bit pulse 5 Gbps  

 

Figure 4.7 describes the eye diagrams of an output sequence of the third order 

filter for bit rates of 5, 7.6, 25, 30, 40, and 50 Gbps for system working at the center of 

the passband. From the eye diagrams obtained, the pulse is broadened due to the delay 

line of the filter. If the input bit rate is smaller than or the same as the filter bandwidth, 

then the output will still have a good eye diagram. In this case, the third order filter with 

an FSR of 100 GHz has an equivalent low-pass bandwidth of 7.6 GHz (as confirmed from 

Chapter 3), consider it corresponds with –25 dB stop-band width.  

As can be seen from the eye openings of Figure 4.7 (c) and (d), for bit rate up to 

40 Gbps, there are still wide enough time intervals over which the pulse can be sampled 

without error from intersymbol interference. If the bit rate is increased then the pulse is 

broadened more, overlapping may occur, and the width of the eye opening is getting 

narrower. Figure 4.8 describes the system output for one bit pulse input with bit rate 50 
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Gbps or bit time 20 ps. It can be seen that besides the response is overlapping much into 

the next symbol time interval, the amplitude has decreased. The stair-level is not eight 

anymore since the delay is half of the bit time, thus previous delayed input terms may had 

finished before other terms come. 

Suppose that the center wavelength shifts, or example if there is drift of the laser, 

such that the system is not at the center of the passband anymore. The output of the filter 

for an 11 GHz frequency shift is shown by Figure 4.9. At that frequency, from previous 

results, the dispersion is the highest. Comparing Figure 4.9 to Figure 4.7(a) and (c) where 

the system is at the center of the passband, the pulse width remains the same, only the 

magnitude that differs slightly at the sides of the pulse. The same condition applies if the 

shift is increased, say as much as 25 GHz (Figure 4.10). If the system shifts such as it 

works in the stopband region (Figure 4.11), the amplitude goes to zero. Thus only 

amplitude decreases when the center wavelength or carrier frequency shifts. Although 

there is still some intensity, but it is very small. The isolation is –25 dB as obtained from 

Chapter 3. 
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   (a)      (b) 

 

(c) (d) 

 

(e)      (f) 

Figure 4.7. Output eye diagrams of (a) 5 Gbps, (b) 7.6 Gbps (c) 25 Gbps, (d) 30 Gbps, (e) 40 

Gbps, and (f) 50 Gbps input at the center of the passband of the third order filter 
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Figure 4.8. Output of the third order filter for one bit pulse 50 Gbps 

 

 
(a) 

 
      (b) 

Figure 4.9. Output eye diagrams of the third order filter for frequency shift of 11 GHz (a) 5 Gbps, 
(b) 25 Gbps 
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(a)      (b) 

Figure 4.10. Output eye diagrams for two bit times of the third order filter for frequency shift of 
25 GHz for 5 Gbps input (a) one bit input and (b) sequence input 

 

 
 

Figure 4.11. Output eye diagrams for two bit times of 5 Gbps input at the stopband region of the 
third order filter 

 

4.2.2 Fourth Order Filter 

Figure 4.12 describes the magnitude squared output for one bit pulse input with bit 

rate 5 Gbps or bit time 0.2bT = ns at the center of the passband for the fourth order filter. 

The unit delay is the same as the previous filter, T = 10 ps. For this fourth order filter 

there are ten stair-levels where the last level has a zero magnitude. Each stair width equals 

to the filter unit delay. As obtained in Chapter 3, the cross transfer function of the fourth  
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order filter is  

 1 2 3 4( ) 0.0691 0.2629 0.6118 0.2629 0.0691B z z z z z− − − −= − − − +  (4.14) 

As in the third order case, the pulse also broadens due to the delays it receives, but there 

is and extra delay compared to the third order filter since it has more delay lines. The 

value of each stair-level depends on the filter coefficients and the delays. For this fourth 

order filter, the output pulse shows symmetry. 

 

 
Figure 4.12. Output of the fourth order filter for one bit pulse 5 Gbps  

 

Figure 4.13 shows the eye diagrams obtained from an output sequence of the 

fourth order filter for bit rate of 5, 7.3, 25, 30, 40, and 50 Gbps for a system working at 

the center of the passband. If the input bit rate is smaller than or as the same as the filter 

bandwidth, then the output will still have a good eye diagram. As can be seen from Figure 

4.13, bit rates up to 7.3 Gbps, or at the filter bandwidth, still gives good eye diagram. In 

this case, the fourth order filter with FSR 100 GHz has an equivalent low-pass bandwidth 

of 7.3 GHz (as confirmed from Chapter 3 result), consider it corresponds with –25 dB 

stop-band width. As can be seen from the eye openings of Figure 4.13, bit rate up to 40 

Gbps still gives wide enough time intervals over which the pulse can be sampled. If the 

bit rate is increased then the pulse is spreading more, overlapping may occur, and the 

width of the eye opening is getting smaller. 
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             (a)      (b)  

 
              (c)      (d)  

  
           
            (e)      (f) 
 

Figure 4.13. Output eye diagrams of (a) 5 Gbps, (b) 7.3 Gbps (c) 25 Gbps, (d) 30 Gbps, (e) 40 
Gbps and (f) 50 Gbps input at the center of the passband of the fourth order filter 

 

Figure 4.14 describes the system output for one bit pulse input with bit rate 50 

Gbps or bit time 20 ps. It can be seen that the response is overlapping much into the next 

symbol time interval and the amplitude is less then one. A small dip can be observed, 
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which is actually an artefact resulting from the limited sampling time of the simulator. At 

simulation time 30 ps, two coefficient terms has finished. The simulator still holds the 

value. Slightly after the sampling time interval, when a new coefficient term has been 

added, the simulator software then displays the new value.  

 

 

Figure 4.14. Output of the fourth order filter for one bit pulse 50 Gbps 

 

Suppose the center wavelength shifts such that the system is not at the center of 

the passband anymore.  The output of the filter for a 7.3 GHz frequency shifts is shown 

by Figure 4.15. Comparing the results obtained with the ones previously obtained where 

the system is at the center of the passband, the output pulse width remains the same. The 

symmetry property also remains the same. Only the magnitude that differs, but in this 

case there is only a slight difference that happens at the sides of the pulse. The amplitude 

decreasing is worse if the shift is increasing as can be seen in Figure 4.16 where the 

frequency shift is 25 GHz and in Figure 4.17 where the system is at the stopband. 
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   (a)      (b) 
Figure 4.15. Output eye diagrams of the fourth order filter for frequency shift of 7.3 GHz (a) 5 

Gbps, (b) 25 Gbps 

 

 

   (a)      (b) 
Figure 4.16. Output eye diagrams of the fourth order filter for frequency shift of 25 GHz for 5 

Gbps input (a) one bit input and (b) sequence input 

 

Figure 4.17. Output eye diagrams for two bit times of 5 Gbps input at the stopband region of the 
fourth order filter 
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4.2.3 Fifth Order Filter 

Figure 4.18 describes the magnitude squared output for one bit pulse input with bit 

rate 5 Gbps or bit time 0.2bT = ns at the center of the passband for the fifth order filter. 

The unit delay is the same as the previous filter, T = 10 ps. For this fifth order filter there 

are twelve stair-levels where the last level has a zero magnitude. As obtained in Chapter 

3, the cross transfer function of the fifth order filter is   

 1 2 3 4 5( ) 0.0388 0.0788 0.0994 0.2988 0.5604 0.2797B z z z z z z− − − − −= − − + + +  (4.15) 

As in previous filters, the pulse also broadens due to the delays it receives and there are 

extra delays compared to the third and fourth order filters since it has more delay lines. It 

also has a “stairs-alike” shape. The value of each stair-level depends on the filter 

coefficients. The input is delayed as much as an integer multiple of the unit delay T and 

gained by the coefficients. 

 

 

Figure 4.18. Output of the fifth order filter for one bit pulse 5 Gbps 
 

Figure 4.19 describes the eye diagrams of an output sequence of the fifth order 

filter for bit rates of 5, 11.75, 25, 30, 40, and 50 Gbps for a system working at the center 

of the passband. From the eye diagrams obtained, the pulse is broadened due to the delay 

lines of the filter. If the input bit rate is smaller than the filter bandwidth, the output will 

still have a good eye diagram. The FSR of the fifth order filter remains 100 GHz  with  an 
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   (a)      (b) 

 

(c) (d) 

 

               (e)      (f) 

Figure 4.19. Output eye diagrams of (a) 5 Gbps, (b) 11.75 Gbps (c) 25 Gbps, (d) 30 Gbps, (e) 40 

Gbps, and (f) 50 Gbps input at the center of the passband of the fifth order filter 

 

equivalent low-pass bandwidth of 11.75 GHz (as confirmed from Chapter 3 result), 
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consider it corresponds with –25 dB stop-band width. As can be seen from Figure 4.19, at 

bit rates up to 30 Gbps still give wide enough time intervals over which the pulse can be 

sampled. Figure 4.20 describes the system output for one bit pulse input with bit rate 50 

Gbps or bit time 20 ps. It is seen that the output amplitude is not one anymore. 

The output of the filter for a 15.9 GHz frequency shifts is shown by Figure 4.21. 

At that frequency for an FSR of 100 GHZ, from previous results, the dispersion is the 

highest (refer to Figure 3.18(b)). Comparing Figure 4.21 to Figure 4.19(a) and (c) where 

the system is at the center of the passband, the pulse width remains the same, only the 

magnitude that differs slightly. The amplitude distortion is worse if the shift is increasing 

as can be seen in Figure 4.22 where the frequency shift is 25 GHz and in Figure 4.23 

where the system is at the stopband. 

 

 
 Figure 4.20. Output of the fifth order filter for one bit pulse 50 Gbps 
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(a)      (b) 

Figure 4.21. Output eye diagrams for two bit times of the fifth order filter for frequency shift of 
15.9 GHz (a) 5 Gbps, (b) 25 Gbps 

 

 

 

   (a)      (b) 
Figure 4.22. Output eye diagrams for two bit times of the fifth order filter for frequency shift of 25 

GHz for 5 Gbps input (a) one bit input and (b) sequence input 
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Figure 4.23. Output eye diagrams for two bit times of 5 Gbps input at the stopband region of the 
fifth order filter 

 

4.2.4 Seventh Order Filter 

Figure 4.24 describes the magnitude squared output for one bit pulse input with bit 

rate 5 Gbps or bit time bT = 0.2 ns at the center of the passband for the seventh order 

filter. The unit delay is the same as the previous filters, T = 10 ps. For this seventh order 

filter there are sixteen stair-levels where the last level has a zero magnitude. As obtained 

in Chapter 3, the cross transfer function of the seventh order filter is    

 
1 2 3 4

5 6 7

( ) 0.0225 0.0842 0.0576 0.5040 0.5040
0.0576 0.0842 0.0225

B z z z z z
z z z

− − − −

− − −

= − + + +

+ − +
 (4.16) 

As in previous filters, the pulse also broadens due to the delays it receives and there are 

extra delays compared to the previous filters since it has more delay lines. It also has a 

“stairs-alike” shape. The value of each stair-level depends on the filter coefficients. The 

input is delayed as much as an integer multiple of the unit delay T and gained by the 

coefficients. 

Figure 4.25 describes the eye diagrams of an output sequence of the seventh order 

filter for bit rates of 5, 25, 40, and 50 Gbps for a system working at the center of the 

passband. As with the previous filters, the output pulse of the seventh order filter also 

broadened due to the delays it receives. The delays are seven times the unit delay. If the 

input bit rate is smaller than the filter bandwidth, the output has a good eye diagram. The 

FSR of the seventh order filter remains 100 GHz with an equivalent low-pass bandwidth 
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of 11.25 GHz (as confirmed from Chapter 3 result), consider it corresponds with –25 dB 

stop-band width. As can be seen from Figure 4.25, bit rates up to 40 Gbps still gives wide 

enough time intervals over which the pulse can be sampled. Higher bit rate gives a 

narrower eye opening.  

 

 

Figure 4.24. Output of the seventh order filter for one bit pulse 5 Gbps  

 

Results after filtering for a shift in the center wavelength, i.e. the carrier 

frequency, are shown by figure 4.26. Suppose the shift is 11.25 GHz. Comparing the 

results obtained with the ones previously obtained where the system is at the center of the 

passband, as seen in Figure 4.25(a) and (c), the output pulse width remains the same, only 

the amplitude that differs slightly. The amplitude decreasing is worse if the shift is 

increasing as can be seen in Figure 4.27 where the frequency shift is 25 GHz. The 

amplitude is below one. The amplitude goes to zero in the stopband as can be seen in 

Figure 4.28. 
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          (a)      (b) 

 

 
   (e)      (f) 
Figure 4.25. Output eye diagrams of (a) 5 Gbps, (b) 25 Gbps, (c) 40 Gbps, and (d) 50 Gbps input 

at the center of the passband of the seventh order filter 

 

 

   (a)      (b) 

Figure 4.26. Output eye diagrams for two bit times of the seventh order filter for frequency shift of 
11.25 GHz (a) 5 Gbps, (b) 25 Gbps 
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   (a)      (b) 
Figure 4.27. Output eye diagrams for two bit times of the seventh order filter for frequency shift of 

25 GHz for 5 Gbps input (a) one bit input and (b) sequence input 

 

 
 

Figure 4.28. Output eye diagrams for two bit times of 5 Gbps input at the stopband region of the 
seventh order filter 

4.3 Summary 

In this chapter, eye diagram simulations are made to study intersymbol 

interference in binary data transmission using the proposed filters. From the results 

obtained, the time response depends on the delay stages. Both filters that have non-linear 

phase characteristic at the frequency response, i.e. the third and fifth order filters, and 

filters that have linear phase response, i.e. the fourth and seventh order filters, give output 

responses that are spreading out due to the delay lines.  

The output pulse spreading or broadening depends on the number of delay lines of 

the filters, i.e. the filter order. The higher is the filter order the wider is the spreading. The 
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maximum bit rate of third, fourth, fifth, and seventh order filters are 40 Gbps, 40 Gbps, 30 

Gbps, and 40 Gbps respectively. One typical characteristic of the linear phase filters is 

that the output pulse shape is symmetric, in contrary with the non-linear phase filters 

whose output pulse is asymmetric.  If there is a shift on the center wavelength or the 

midband frequency, the amplitude may decrease. Only the magnitude response influences 

the received pulse.  
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5 Conclusions and Recommendations 

5.1 Conclusions 

In this report, four kinds of filters are designed. Two types of them have a linear 

phase response and hence zero dispersion. They are made as an improvement to the non-

linear phase filters. The other two filters have a non-linear phase response  and hence 

non-zero dispersion. The non-linear phase filters are the third and fifth order FIR type 

filters, while the linear phase filters are the fourth and seventh order FIR filters. The 

linear-phase responses are for the cross transfer of the fourth and seventh order filters, not 

for the bar transfers. All the filters are designed such that they have a passband flattened 

amplitude response.  

The third order non-linear phase filter, which has three zeros in its polynomial, is 

added one zero which results in a fourth order filter that has a linear phase response 

characteristics. The third order filter has a -25 dB stopband width of 15.2% of the Free 

Spectral Range (FSR), while the fourth order filter has a -25 dB stopband width of 14.6% 

of the FSR. To have a broader stopband width and hence broader passband width, two 

zeros are added to the third order filter resulting in a fifth order filter. The fifth order filter 

has a -25 dB stopband width of 23.5% of the FSR. It is wider than the third and fourth 

order filters. The fifth order filter is added two more zeros resulting in a seventh order 

filter that has a linear phase response characteristics. The seventh order filter has -25 dB 

stopband width of 22.5% of the FSR.  

Dispersion of the third and fifth order filters is zero at the center of the passband. 

For the third order filter, the highest dispersion at the passband is at the frequency shifting 

from the center of the passband as much as 11% of the FSR, while for the fifth order filter 

it is as much as 15.9% of the FSR. 

The fundamental building block for the ADM filters used in multiwavelength 

communication systems is the Asymmetric Mach-Zehnder interferometer (MZI). Once a 
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filter has been designed, the coefficients of the filter can be mapped to the power coupling 

ratios of each directional coupler and the phase of each delay line of the MZI. The filter 

order corresponds with the number of the delays of the lattice filter of the cascaded MZI. 

If it turns out that one coupler has a power coupling constant of zero, then the associated 

coupler can be removed and the neighbouring delay lines can be combined into one with 

doubled delay. 

In order to study the performance of the designed filters in the time domain, pulse 

response eye diagram simulations are made to study the possible intersymbol interference 

in binary data transmission using the designed filters. Simulations are made for on-off 

keying. Simulations are made with the same FSR and hence equal unit delay for each 

filter.  

From the results obtained, it can be concluded that the time response depends on 

the delay stages. Both filters that have non-linear phase characteristic at the frequency 

response, i.e. the third and fifth order filters, and filters that have linear phase response, 

i.e. the fourth and seventh order filters, give output responses that spread out due to the 

delay lines. One typical characteristic of the linear phase filters is that the output pulse 

shape is symmetric, in contrary with the non-linear phase filters whose output pulse is 

asymmetric. 

The output pulse spreading or broadening depends on the number of delay lines of 

the filters, i.e. the filter order. The higher is the filter order the wider is the spreading. The 

broadening of the pulse for each type of filter is as much as each filter’s order times the 

unit delay. If the bit rate is small compared to the filter bandwidth, then the eye diagram 

shows a wide eye opening that the received pulse sequence can be sampled without error 

from intersymbol interference. The maximum bit rate of the third, fourth, fifth, and 

seventh order filters before intersymbol interference occurs are 40 Gbps, 40 Gbps, 30 

Gbps, and 40 Gbps respectively. If there is a shift on the center wavelength or the 

midband frequency, the amplitude may decrease, but the width of the output pulse 

remains the same with that of the input pulse. Only the magnitude response influences the 

received pulse.  
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5.2 Recommendations 

Firstly, since the time response of the filters results in broadening of the received 

bit pulse, further research may be made to get better results. Additional criteria may be 

needed such as how to have a smooth output bit while still having zero dispersion and 

passband flattened in magnitude response or how to compensate the pulse broadening. 

Secondly, as the designs are done with the FIR filter, in this case an MZI lattice 

filter, an alternative form of interleaver such as an MZI plus ring resonator could be 

investigated. 

Thirdly, the on-off keying modulation is considered in this report. Other 

modulation methods may be considered and are left for further research. 

Fourthly, the simulations are made based on rectangular input pulse with one 

frequency. Chirped pulses may arise due to the imperfection of the modulator resulting in 

different frequency components in one pulse. It may be worth to investigate the response 

of the filters to the chirped pulse. 

Fifthly, the eye diagram simulations are made directly after the filter. The use of 

the matched filter prior to the receiver, which involves a filter matched to the signal 

component of the received signal, may be worth to investigate. 

Finally, the eye diagram simulation is studied for one transfer function of one 

interleaver, so not for the complete ADM system yet. A more comprehensive impression 

of the ADM system performance may be made with a more detailed analysis on the 

interleaver at both the splitting part and the combining part. Also measurement of the 

intensity and phase transfers of the ADM may be worth to do. 
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Appendix A 

Symmetry Property of Linear Phase Filters 

The following explanations are as referred to DeFatta (1988). The transfer 

function of a FIR causal filter of length N is given by:  

 
1

0
( ) ( )

N
n

n
H z h n z

−
−

=

=∑  (A.1) 

The phase delay and group delay are defined as follows, 

 ( ) ( )   and   p g
d

d
θ ω θ ωτ τ
ω ω

= − = −  (A.2)  

For the phase response to be linear, it requires 

 ( )            θ ω τω= −  (A.3) 

where τ  is a constant phase delay in samples.  

The discrete-time Fourier transform of the finite sequence ( )h n  for a unit delay T is given 

by 
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where the phase response is defined as 
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From Eqs. (A.3), (A.4), and (A.5), the phase response can be expressed as 
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and the following equation is obtained, 

 
1

0

( )sin( ) 0
N

n

h n nTωτ ω
−
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− =∑  (A.8) 

The solution to Eq. (A.6) is given by  

 ( 1)
2

N Tτ −
=  (A.9) 

and  

 ( ) ( 1 )      for 0 1h n h N n n N= − − < < −  (A.10) 

FIR filters will have constant phase delay and group delay if the conditions of Eqs. (A.8) 

and (A.9) are satisfied. If only constant group delay is desired, then the impulse response 

is of the form 

 ( ) ( 1 )      for 0 1h n h N n n N= − − − < < −  (A.11) 
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Appendix B 

Reverse Polynomial 

This section is as referred to Madsen (1999). Consider a filter polynomial of N-

order: 

 1
0 1( ) ... N

N NH z h h z h z− −= + + +  (B.1) 

or in terms of its roots: 

 
1

( ) ( )
N

N
N n

n

H z z z z−

=

= Γ −∏  (B.2) 

where nz  are the zeros of the polynomial . The reverse polynomial ( )R
NH z is obtained 

when the zeros are reflected about the unit circle, *1n nz z→ . Hence the reverse 

polynomial transfer function can be expressed in terms of its roots as:  

 

 *

1

( ) ( 1 )
N

R N
N n

n

H z z z z−

=

= Γ −∏  (B.3) 

The relation of ( )R
NH z and ( )NH z is given by 

 * * 1( ) ( )R N
N NH z z H z− −=  (B.4) 

The product of ( )NH z and ( )R
NH z evaluated on the unit circle gives  

 
2*( ) ( ) ( ) ( ) ( )R j N j N

N N N N NH H H e H H eω ωω ω ω ω ω− −= =  (B.5) 

The product shows the magnitude squared response times a linear delay.  
 

 
 
 
 
 
 



Appendix C 
 

 88 

Appendix C 

Power Conservation 

Consider transfer matrices for lossless filter. Let S denotes scattering matrix that 

relates the inputs X to the outputs Y so that Y=SX. Using this definition, the transfer and 

scattering matrices of feed-forward structures such as the MZI are identical. A lossless 

passive MZI will have its power conserved. The sum of the input powers must equal the 

sum of the output powers. It is equivalent to requiring that the scattering matrix is unitary. 

A matrix is unitary if † =S S I  where I is the identity matrix and †S  is Hermitian 

transpose, (ST)*. The determinant of a unitary matrix has a magnitude of one, |det(S)|=1. 

Given the scattering matrix 

  11 12

21 22

s s
s s
 

=  
 

S          (C.1) 

Let the determinant be designated by det( ) dje θ=S . The unitary condition requires that 
1 †− =S S , or 

 
* *

22 12 11 21
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21 11 12 22

dj s s s s
e

s s s s
θ− −   

=   −   
                 (C.2)  

The following relations emerge: 

                 

11 22
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2 2
11 12
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11 12 21 22

1

1

0
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s s s s

=

=

+ =

+ =

+ =

                                               (C.3) 

For a unitary matrix, the sum of the square magnitudes of elements along any 

row is equal to one, which reflects the power conservation. In addition, the inner product 

of any column with the complex conjugate of any other column is zero.
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Appendix D 

Optical Filter Parameters 

 Power coupling constant Phase 

 
0κ  

1κ  2κ  3κ  1ϕ  2ϕ  3ϕ  

A1B1 0.93 0 0.72 0.5 0 0 π 

A1B2 0.5 0.72 0 0.93 π 0 0 

A2B1 0.5 0.73 0 0.07 0 π 0 

A2B2 0.07 0 0.73 0.5 0 π 0 

Table D.1 Optical parameters of the three-stage optical filter 

 

 Power coupling constant Phase 

 
0κ  

1κ  2κ  3κ  4κ  1ϕ  2ϕ  3ϕ  4ϕ  

( ) ( )A z B z  0.04 0.17 0.83 0.14 0.04 π 0 0 -π 

( ) ( )RA z B z  0.83 0.03 0.84 0.81 0.96 -π π 0 -π 

Table D.2 Optical parameters of the four-stage optical filter 
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 Power coupling constant Phase 

 
0κ  1κ  2κ  3κ  4κ  5κ  1ϕ  

 

2ϕ  

 

3ϕ  4ϕ  5ϕ  

A1B1 0.02 0 0.22 0.01 0.82 0.44 π 0 -π 0 0 

A1B2 0.56 0.78 0.01 0.18 0 0.01 0 π 0 -π 0 

A1B3 0.15 0.36 0.52 0.48 0.36 0.10 0.57 1.22 -0.12 -1.21 -0.47 

A1B4 0.15 0.36 0.52 0.48 0.36 0.10 -0.57 -1.22 0.12 1.21 0.47 

A2B1 0.56 0.82 0.01 0.22 0 0.98 π 0 -π 0 0 

A2B2 0.99 0 0.18 0.01 0.78 0.44 π -π 0 π -π 

A2B3 0.90 0.36 0.48 0.52 0.36 0.85 2.68 -1.21 -0.12 1.22 -2.57 

A2B4 0.90 0.36 0.48 0.52 0.36 0.85 -2.68 1.21 0.12 -1.22 2.57 

A3B1 0.14 0.38 0.54 0.46 0.35 0.87 2.61 -4.36 π -1.83 0.36 

A3B2 0.88 0.36 0.54 0.46 0.34 0.12 0.56 -1.94 π -4.43 2.79 

A3B3 0.55 0.56 0.01 0.89 0.01 0.49 1.56 -π π -0.01 -1.56 

A3B4 0.50 0.01 0.91 0.01 0.51 0.49 1.66 -3.25 -0.02 0.02 1.57 

A4B1 0.14 0.42 0.47 0.50 0.43 0.86 -2.69 4.32 -π 1.99 -0.50 

A4B2 0.90 0.29 0.50 0.53 0.30 0.10 -0.53 1.85 -π 4.39 -2.56 

A4B3 0.58 0.02 0.90 0.02 0.56 0.42 -π 4.63 1.43 -1.52 -1.44 

A4B4 0.58 0.56 0.02 0.89 0.02 0.42 -1.70 1.59 -1.50 1.56 0.05 
  

Table D.3 Optical parameters of the five-stage optical filter 

 

 Power coupling constant 

 
0κ  

1κ  
2κ  

3κ  
4κ  

5κ  
6κ  

7κ  

( ) ( )A z B z  0.99 0.02 0.02 0.74 0.68 0.04 0.02 0.99 

( ) ( )RA z B z  0.06 0.04 0.05 0.77 0.49 0.20 0.20 0.01 

Phase   

1ϕ  2ϕ  3ϕ  4ϕ  5ϕ  6ϕ  7ϕ  

( ) ( )A z B z  0 0 π 0 -π 0 0 

( ) ( )RA z B z  0 0 0 0 π 0 -2π 

 

Table D.4 Optical parameters of the seven-stage optical filter 
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Appendix E 

Coefficient Terms of the Seventh Order Filter 

0c�  1 

1c�  1 2 3 4 5 6 7( )z z z z z z z− + + + + + +  
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+ + + + + + + + +
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4c�  2 3 4 5 3 4 5 7 1 3 4 6 1 2 3 6 1 2 3 5 1 2 3 4 2 3 5 6 1 2 5 6
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5c�  1 2 4 6 7 1 2 3 6 7 2 3 4 5 6 1 2 3 4 5 1 2 3 4 6 1 3 4 5 6

1 2 4 5 6 1 2 3 5 6 2 3 4 6 7 2 3 4 5 7 1 2 3 4 7 1 3 4 5 7 1 2 4 5 7
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z z z z z z z z z z

z z z z z
+

+

6c�  1 2 3 4 5 6 1 2 3 4 6 7 1 3 4 5 6 7 2 3 4 5 6 7 1 2 3 4 5 7
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7c�  1 2 3 4 5 6 7z z z z z z z−  

 

Table E.1 Coefficient terms of the seventh order cross transfer function
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Appendix F 

Responses of the Simulated Filter Model  
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F-6 

 

 

 

 

 

 

 

 

 

 


