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Abstract

This thesis describes a method to analyze how hand positioning affects radio-
graph based joint space widih (JSW) measurements. These measurements
are used In scoring methods, to assess the progression of rheumatoid arthri-
tis. While these measurements are being used in practice, the accuracy of
these measurements I8 not known very well.

This thesis analyzes the effects of rotalion of the hand with respect
to the projection plane on the measurements. It also presents a method
which can be used to estimate this rotation using a two-dimensional ra-
diograph. Therefore, a statistical model of the radiograph is made. This
model is then fitted to radiographs using an optimization method. Next,
high-resolution 3D data is used to determine the effect of rotation on the
measured JSW. Projections of the 3D data are made under varying projec-
tion angles. The JSW for each of the projections is then measured using an
automated method. The results show that the projection angle has a large
ellect on the measured JSW.
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Nomenclature

» A pixel is an element describing the intensity of an image at a 2D
point.

e A voxel is an element describing the intensity of a volume at a 3D
point.

o A set of N 2D coordinates is represented by a vector of 2N clements,
containing the x and v coordinates.

C:[5'31;---;fIfN»Iil-.---wyN] (1)
¢ An image is considered to be a function, which outputs a vector of

pixel values z for a given set of coordinates ¢. For an image I with a
size of N pixels, this gives the following notations:

e
\

I{c)
Z = [z1,...,2N]

(2)

e The shape model determines a set of coordinates, using the shape
parameters pg. U is a set of eigenvectors, ¢g is the mean shape of the
model.

c=cg+ Up, (3)

o The texture model T consists of a mean texture Ty, the elgenvectors
T, and s texture modes. The modes are controlled by the texture
parameters A;. The texture model can be represented by:

I=To+ > Tidi=To+ TA (4)

=1



Nomenclature

e An image can be deformed by a warp function. The warp function
outputs a set of 2V coordinates, the z and y coordinates nsed for
the image function. The function generates these coordinates using K
shape parameters. The warped image [, is generated by evaluating
the image at the coordinates given by W{p).

P = [p1... ;]
c = Wip) t‘
Im = I(Wy(p))

ot

vi



Introduction

Much rescarch is done on medical image processing. One of the applications
is the automatic analysis of the images. This thesis describes a method to
analyze x-ray images of the hand. This is done to assess the progression of
rheumatoid arthritis (RA).

Rheumatoid arthritis is an antoimmune disease where the lmnune sys-
tem causes joint damages [17]. RA causes pain and stiffness which makes
comnon tasks as watking and writing difficult and painful. It can eventually
lead to permanent disability. There is no cure for RA, but there arc various
medicines that slow down the progression of the disease and relief the symp-
toms. For effective treatment, carly and accurate diagnosis is necessary.

Currently, diagnosis is done with the use of radiographs of the hands and
sometimes the feet. A physician diagnoses disease progression by giving a
score tor the progression of the disease. There are many different methods for
scoring radiographs [3]. Most methods work by combining grades for bone
erosion and joint space narrowing (JSN). A drawback of the analysis with
these methods is that the results are dependent on the subjective reader.
The results will vary in time and per physician, even the order in which
the radiographs are analyzed is important [19]. If the grading can be done
automatically, the results will be less observer dependent.

This thesis focusses on joint space width (JSW) measurements using
radiographs. By measuring the JSW over time, the progression of the dis-
ease can be determined. Since a radiograph is a two-dimensional image of
& three-dimensional object, direct measurement. of a distance between two
edges in the image could be affected by the projection angle of the radio-
graphs. For healthy patients, the hand can be fixed into a particular position
hefore taking the radiograph. For patients with RA this can be painful or
impossible. Therefore, the etfect of the projection angle on the joint space
width measurement has to be investigated.

The first two chapters of this thesis describe a method to approximate an
image using only a few parameters. With these parameters, different images
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can bhe compared without the need of designing special algorithms for cach
different feature that should be extracted from an image. Chapter 2 covers
the first part of this method. It describes a model that can approximate
images of a certain type. using only a few parameters. After defining the
ruodel, it is possible to derive a method to fit the model to an image. Since a
closed form solution does not exist, an iteraiive method is derived in chapter
3

Chapter 4 shows how a 2D image can be calculated from 3D volume
data. This is done by calculating projections of the 3D data. The chap-
ter first describes the projection method, and then uses projections of a
high-resolution data set to analyze the sensitivity of JSW measurements to
rotation of the hand.

Next, chapter 5 presents test results for various parts of the previous
chaplers. The tests are done in the same order as the order in which the
parts are covered in the previous chapters. First, the effect of the number
of model parameters is analyzed. After the model parameters have been
determined, the accuracy and sensitivity to initialization of the model is
assessed. By fitting the model to a set of test Images, the precision of
the model fitting method is investigated. The last test is a short test on
the accuracy of the projection algorithm. Finally, conclusions are drawn in
chapter 6.



The image model

The method presented in this report is based on a model of the x-ray image
of a bone. The purpose of the model is to characterize images of that bone
from different patients, using only a few parameters. By [itting the model
to an image, information can be extracted lrom these parameters.

In literature many different methods to generate a model are described,
an overview is given in [5]. The models can be either models of edges or
of models full images. Using a number of parameters, the models can he
deformed. Most methods constrain the deformations to smooth deforma-
tions. The constraints are often based on the restriction of deformation to
low order polynomials or physical models [20]. The model presented in this
ihesis has constraints based on a set of sarple data. This has 1he advantage
that deformations are restricted to deformations which are known to occur.
This allows for strict constraints, while still allowing a deformation close to
the opfimal one. The model in this thesis models the full image, instead of
scparate edges. This way all image data is used, which can result in a higher
precision than using only parts of the image to detect features.

The model in this thesis is an active appearance model (AAM) [6], with a
modified fitting method [13]. The model is generated by collecting statistics
from a set of training-images to determine common variations between the
images. The AAM consists of two parts. The first part is the shape model.
To generate this model, common points are marked in a sct of images. This
process is called annotation and is described in section 2.1. Using the an-
notations and the pixel data a model can be made. The model is penerated
using singular value decompositions (SVD), which will be explained in sec-
tion 2.2, Using the SVD, the shape model can be calculated, as is shown in
section 2.3. The second part of the AAM is the texture model. Section 2.4
presents a method to calculate the texture model using the anmotation and
the mean shape of the shape model.

When the model has been generated, it is possible to approximate an
image by adjusting the model parameters. First, the texture is adjusted and



4 The image model 2

then the shape is deformed to match the image. This deformation is done
with a piecewise affine warp, as shown in section 2.5.

2.1 Annotation

To generate a model, a number of sample shapes are required. These shapes
are generated manually. This section shows how to generate a set of example
shapes. The shapes are made by manually labelling features consistently
across a sot of images. The labelling process is called annotation. The
annotation is done in two steps. First the annotation points of the modcl
should be defined. Next, these points have to be marked in each image.
After the annotation has been done, all annotations consisting of lines and
points are converted into a set, of points.

2.1.1 Defining the model

A problem with the first step of the annotation is that the set of images
used in this thesis does not have many points that can be easily defined.
The edues bebween bone and tissue, however, are easily recognized.

Figure 2.1 shows an example of an annotation. Most points are con-
nected to form curves. One point, on the lower left on the image, is not
connected. This point is placed on a corner that is easily recognized on
most radiographs. The curves are made by performing a spline interpola-
tion between the points.

The edges of a bone can be determined very accurately in one direction,
but in the direction alongside the edge it is very hard to mark points con-
sistently. The lines are therefore converted into a set of equidistant points,
after they have been annotated. This set of points can be larger than the
number of points used to define the line. This makes it possible to annotate
smooth shapes using only a fow number of points.

2.1.2 Converting the annotation to a set of points

Figure 2.1 shows an annotated image. Curves are put on top of all edges
which are easily recognized in all images. A point on the lower lelt edge of
the bone is also marked. The shape model, presented later on, can only be
caleulated from a set of points. All curves are therefore converted to sets of
equidistant points.

The curves are made by calculating a cubic spline between the points.
The 2 and y-coordinates of the curve are parameterized as a function of 4, {
is an mtermediate variable ranging from 1 to the number of points defining
the curve. The length of a part of the curve cannot be directly estimated
from the values of . Since there is no closed form solution to calculate the
length of a spline [, a numerical approximation is made.
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Figure 2.1: Example of an annotated image

The approximation starts by calealating a large set of points from a
spline. These points are nsed to approximate the spline by a sct of linear
segments. By increasing the number of points, the approximation error can
be arbitrarily small. The length of the spline can be estimated by surming
the lengths of the line segments. For this thesis, 200 points are caleulated
on each spline,

Using the lengths of the line segments, a set of values for ¢ can be cal-
culated that gives a set of equidistant points. This is done to gencrate the
desired number points for a curve. For each curve such a set of points is
generated, these sets are combined and stored as the shape of the model for
a parbicular image.

2.2 Singular value decomposition

Using the shape and pixel data from the annotated images, a model of an
x-ray image cap be made. The model for both the shape and the texture
is generated using the singular value decomposition of the different shapes
and pixel values. Next a short description of the SVD and its properties is
given [21].

Figure 2.2 shows an example data set to illustrate the SVD. A two-
dimensional data set is plotted as a cloud of points. It can be scen that the
horizontal and vertical position of a point are not completely independent.
The SVI} can be used to determine this relation.

With an SVD a M x N matrix X can be written as a multiplication of
the watrices U, 8 and V| as shown in equation 2.1. These three matrices
have certain properties. U is an M x M matrix and V is of size N x N,
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= = first eigenvector
— sagond eigenvector

-1 0 1

Figure 2.2: Tllustration of the SVD propertics for 2D data

Both U and V have orthogonal columns. 8 is a M x N diagonal matrix
with the singular values on the diagonal. The singular values are sorted by
their size, so the first cigenvector always has the largest singular valuc.

X=UsVv? (21)

Tn figure 2.2, these properties are illustrated. A coordinate can be repre-
sented by scaling two vectors, one for the horizontal and one for the vertical
axis. The scaling factors arve collected in the matrix X. For this example,
an SVD is performed on this matrix. The columns of V arce plotted as the
first and second eigenvector, The first clgenvector is in the direction of the
largest, varjation. One data point is plotted as x, it’s projection onto the
first eigenvector is plotted as a +. The data point and the projection are
quite close to each other. All data points can be approximated by scaling the
fivst eigenvector, instead of scaling the two vectors parallel to the horizontal
and vertical axes. The higher the horizontal and vertical coordinates of the
points are correlated, the better this approximation is. This property is used
to generate the models in this thesis; a training-set is used to calculate all
the eigenvectors of the shape and the texture. By keeping only the largest
few eigenvectors, all the data in the training-set can be approximated using
only a few scaled eigcnvectors.

The SVD is calculated using MATLAB. This software can also caleulate
an ‘economy size’ SVD. If M > N, only the first N columns of U are
calculated. This is useful for high dimensional data, used in this thesis.
The texture model can have over 10.000 pixels, but is generated using only
tens of training images, giving only tens of non-zero eigenvalues. Performing
an SVD on this data would result in a very large matrix. The matrix U
resulting from the SVD on X7 is equal to 'V resulting from the SVD on
X (equation 2.2). By calculating the ‘cconomy size” SVD of X7, V can be
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calculated as a matrix of size M x N. If there arc only N training-shapes,
the last M — /N eigenvectors have an eigenvalue of zero, and are not used in
the model.

XT=wsvhT=vsu’ (2.2)

2.3 The shape model

Using the shapes of the annotated images, a shape model can be made.
The model is made using the SVD. The previous section showed an cxample
for two dimensional data, a shape with n points has 2n dimensions; two
coordinates for each point.

To calculate the shape model, each shape is represented by a vector c.
The vector consists of all = and y coordinates of the points in the shape.
The vectors of the shapes are then combined into a matrix X, as shown in
cquation 2.3,

)

_ TN T _
c= m | X =lep, ..., e (2.3)

YN

All shapes should have an equal influence on the model. A shape with
large coordinate values should not have a larger influence on the result of
the SVD than a small shape. To prevent this, all shapes should be scaled to
one another. To generate a texture model and to fit the model to an image,
the mean shape should be known. The mean is calculated and removed from
the data in X, so it is a separate model property. To properly calculate the
mean. all shapes are aligned to one another, which also removes rotation
and translation from the data in X.

Since the mean shape cannot be calculated without aligning the shapes,
the scaling and rotation are removed by aligning all shapes to an arbitrarily
chosen shape from the set. To simplify the notation of equation 2.4, a shape
is represented as a vector of complex numbers, where each complex number
represents the 2D coordinate of a point of that shape. Two shapes A and B
are aligned hy finding a transformation that minimizes the sum of squares
of the differences of the coordinates. To calculate the transformation, the
least-square solution z of equation 2.4 is calculated. The scale is given by
the absolute value of 71, the angle ¢ between the shapes is given by equation
2.5 and x» is the translation between the shapes.
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B={m mg]Hl a “H (2.4)
o= a;rctun(%) (2.5)

All the steps of generating the shape model have been described, the gener-
ation of the shape model can be summarized as follows:

1. Annotate a set of images (section 2.1)

2. Convert the annotations to sets of points
3. Caleulate the mean shape

4. Subtract the mean shape from all shapes
5. Caleulate the SVD of the resulting shapes

6. Kecp only the largest few eigenvectors and eigenvalues

2.4 The texture model

To make a model of a set of images, the SVD is used in a similar way ag for
the shape model. Instead of coordinates of a shape, the pixel-values of each
image are put into a vector.

Before the SVD is calculated, the images arc aligned using the anno-
tations. This is illustrated by figure 2.3. A pulsc yg is plotted, together
with g1 and g, which are horizontally shifted copies of yo. Figure 2.3(b)
shows the differences between the shifted signals and the originals. Although
the pulses all have the same shape and arc equal up to a linecar operation,
their differences cannot be described by a single linear aperation. This also
ocours when the difference of an jmage and a shifted copy is calculated.
A large set ol eigenvectors would be necessary to represent a set of slightly
shifted signals, whereas only one eigenvector would suffice if the signals were
horizontally aligned. The images can be aligned using the annotations, by
warping one image to match the other. This is further deseribed in section
2.5.

After the images are aligned, the pixel intensities should be scaled to
match each other. Without scaling, a brighter image, an image with greater
pixel intensities, will have a larger influence on the mean texture and the
model parameters than a less bright image. This can be seen from the
example 2D data, which was shown in figure 2.2. Scaling different points
with a different scaling factor will result in a different set of eigenvectors.

For the model fitting algorithm presented in the next chapter, the mean
of the texturc has to be known. It can be calculated right before the texture
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{(a) Three pulses (b) The diffezences between the pulses

Figure 2.3: Effect of horizontal shift on the difference of two signals

parameters are calculated. So, after aligning the images, the texture model
can be calculated in three steps. First, a mean image is calculated from the
original images. Secondly, all images are scaled in brightness and contrast
to fit the mean image as well as possible. The scaling parameters are deter-
mined by calculating the least square fit between the mean image and each
original image. Finally, the mean of all the scaled vectors is caleulated, and
subtracted from all vectors. These vectors are then combined into a matrix,
on which an SVD) is performed.
Using the eigenvectors from the SVD, an image I, aligned to the mean
texture, can be approximated using a linear combination of the mean texture
Tq and n eigenvectors T;... Ty, {equation 2.6). The values for A are the texture

parameters of the model. Figure 2.4(b) and 2.4{c) show how an image can
change by texture variation.

n
I=> AT (2.6)

1=l}
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2

(1) shape variation (b) template image (¢) texture variation

Figure 2.4: Shape and texture variation of the model
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2.5 Warping

One part of the model is based on pixel values, the other part is based on
shapes. The points from the shape are used to deform the texturc model to
match another image. This process of deforming an image is called warping.
This section describes one warping method, the affine warp [1]. This warp is
chosen because the partial derivative of the warp function is casily derived.
Other warp methods can also be used, as long as the warp is invertible and
the partial derivative can be computed. The warping method operates on
coordinates. To calculate pixel intensities from these coordnates, filtering
and interpolation are used.

2.5.1 Affine warping

The affine warp is applied to triangles. To divide an image into triangles.
the points of the shape model are triangulated with the Delaunay algorithm
[2]. The whole image is then warped triangle by triangle. The results can
be summed to generate the complete image. An example is shown in figure
2.4{a). it was warped from figure 2.4(b). Figure 2.6 shows how the image is
divided into triangles.

Figure 2.5: Affine warp from F to G

To warp a triangle, its coordinates must be known in the source image
F and the target image G. Let T be a triangle in image F, and Tq the
corresponding triangle in image G. Figure 2.5 shows the two triangles, and
the names of the points. Each triangle has 3 points, 4,7 and k. Each point
has an r and a i coordinate. So point i of triangle T is written as /. The
coordinates of this point are written as (J,f : y{ ). 2! is then the z coordinate
of point ¢ in image F. Using this notation, the triangles can be written as

matrices.
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wl oyl 2y

TF = .I?j 'yf 1 y TG = Ll‘f yj (27)
o f b .0
U 1 T, Y

The vector with ones is concatenated to the coordinates of Tg, this
intreduces a parameter for translation in the matrix A of the equation that
describes the warp:

Ta=Tr A (2.8)

A is a 3 x 2 matrix with the warp coefficients. After this equation is
uscd to determine the warp coefficients A, warping a single point m from F
to G can be done by multiplying the coordinates with the warp coefficients:

me=[ah vh 1]-A (2.9)

Again a constant should be included in the vector of coordinates to allow
for translation in the warp.

2.5.2 The affine warp derivative

For the registration algorithim, it is necessary to compute the derivative of
the warp function with respect to a single point. The input and output
of the warp function are coordinates. The partial derivative of the warp
function describes a change in coordinates for all pixels in the texture model
as a function of a change in the coordinates of the shape model.

The derivative can he calculated more easily if the previous equations
are rewritten. The point m can be expressed as a linear combination of the
points of the triangle, both in F' and in G.

em = @t ofy -t Blae — @)

9,10
Ym = Wit oly; —wi)t Bl — ) (2.10)

Since both the warp and equation 2.10 are linear, the order of operations
does not matter. The symbols used in this equation are illustrated in fig-
ure 2.5, since the equation is valid for both F and G, the superscripts are
dropped. To calculate the warp, the values for a and £ are caleulated in F.
Using these values, the warp function W for a point m can he written as a
linear combination of the elements of Te:

Wi{m) =i + a(j* — 1) + B(k" — i) (2.11)

This warp function is only for one triangle, the total warp is made by
smmiming the results of the warps for each triangle. The derivative of the
warp function W with respect to i/ is then the sum of the derivatives for
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Figurc 2.6: Derivatives of the warp function

cach triangle. Equation 2.11 can be used to calculate the derivative for one
triangle:

agj?) (e g.0) OW (m)

¢

2

= (0,1—a—§) (2.12)

Note that from equation 2.12 it follows that % = ‘l{‘%iﬂl and ﬂ% =
IW (1)

57— = U. The values for @ and 4 can be caleulated from Ty by solving
equation 2.10, as shown in equation 2.13,

&= —(—YZp A+ YiTm — bk + Tilk — LiYm + Ym2i)/denominator
3= (Yyr + Wikm — T30 — Y§Zm — Tilm + Z3Yp,) /denominator  (2.13)

depominator = (mjyk — Tl = TiYk — YT + YT+ Yidy)

Figure 2.6 shows the derivative of the warp function for two points.
The triangulation of the point set is plotted on top for clarity. The partial
derivative for point wy is shown on the lelt. Pixels near this point are colored
dark, the partial derivative is close to one. The partial derivative decreases
with the distance to z3. A point only affects coordinates in vertices to which
the point is conuected. A movement of point z9, for example, does not alter
the warp for the lower half of the image.
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2.5.3 Warping outside the shape

The points of the shape model used in this thesis are located at the edge of
the bone. By using the affine warping method, only points inside any of the
triangles of the triangulation of the shape model are warped; the area inside
the *shape hull” of figure 2.7(a). Warping images with this shape will give
results where the bone edge is barely visible. The bone edge is very useful
for aligning images and should be included in the warped image.

The outer edge of an image which is deformed using affine warping is
equal to the convex hull of the points of the shape model. To increase the
area of pixels that is warped, the set of points used by the affine warp arc
altered so that its convex hull is larger.

To increase the warp area, the convex hull of the shape is calculated. The
hull is then scaled, figure 2.7(a) gives an example. By adding the points of
the sealed hull to the shape, the warp area can be extended. Figure 2.7(h)
shows an example of the triangulation used for warping. The extra points
can either be added to the shape model, or added just belore warping.
Section 5.1 will show that even though the coordinates of the extra points
are based on the shape, adding these points to the shape model reduces
the model accuracy greatly. To add the extra points to a target shape. the
following algorithm is used:

1. Calculate the mean shape, without extra points

2. Calculate the indices K of the points part of the convex hull of the
mean shape

3. Select the points with indices K from the target shape

4. Scale these points and add them to the target shape

« shape

e, - shape hull
A « 3 = gcaled hulf

— ST{ébé' !riangles_ )
added triangtes

__/

(a) The convex hui {(b) The extended shape

Figure 2.7. Extending the warp area
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2.5.4 TImplementation

By warping the image, the size of the image will change. To prevent anti-
aliasing, the image should be low-pass filtered if the warp reduces the size
of the image. The scaling can be caleulated using the area of the convex
hull of both shapes. The square root of the ratio of both areas is the scaling
used for filtering,.

Since no exact criteria for the filter are known, a standard filter is chosen.
The filtering is done using the filter of MATLAR’s imresize function. This
function uses a Hanning filter with a cut-off frequency equal to the Nyquist
frequency of the scaled image.

A filter width of 15 samples is used. As will be shown in chapter 5,
a model with a texture resolution of 80 dpi can be used to fit the model
to a fest set which consist mainly of images with a resolution of 600 dpi,
so the images are scaled down by a factor 7.5, in which case the hanning
filter should be exactly of length 15. When the model is fitted, the image is
warped multiple times. To reduce the computation time the image is filtered
only once, using the initial scale estimate,

In the registration algorithm, an imuage is warped to match the template
for each iteration. Since the template imagc is constant, many computations
can be precomputed. For each pixel in the ternplate image, it is known to
which triangle it belongs. The triangle can be found by iterating over all
triangles (for each pixel). The values for @ and 3 can be calculated with
the pixel coordinates. The pixel is part of the triangle if o > 0, 3> 0 and
a+ 4 < 1. The triangle number for each pixel can be stored in memory. If
Fis the template image, and G the image to be warped, the warping consist
of the following steps:

1. Calculate the warp coefficients A for each triangle, using equation 2 &
2. Lookup the triangle number for each pixel in F
3. Calculate the coordinates in G for each pixel of F, using equation 2.9

4. Tnterpolate the pixels, using the coordinates from the previous step

If the number of pixels is much larger than the number of triangles, step
3 and 4 require the most calculations. These steps can be performed quite
fast on modern PC’s. On an AMD Sempron running at 1.8 GHz, an image
of 60.000 pixels can be warped 25 times per second. Optimizing the code
for step 1 can reduce the computation time. The implementation as done
for this thesis uses linear interpolation in step 4. Because the images are
low-pass {iltered before warping, more complex interpolation methods will
not give much better results.






3

Model fitting

The previous chapter describes the model. The chapter showed how a model
can be made using manual annotation. When the model is made, it should
be possible to approximate other images than the ones used to generate the
model. This chapter shows how the model parameters can be determined
to approximate an image.

Since there is no closed form solution to this problem, an optimization
algovithm is nsed. In the literature {5, a numerical approach is often used.
The method presented here uses a Taylor approximation to estimate the
gradient of an error function, similar to [13]. It is assumed that an initial
estimate for the parameters is avallable, section 3.1 shows how an estimate
can he given by the user.

Apart from the shape and texture parameters in sections 2.3 and 2.4,
there are other parameters that have to be known to match the model to
an image. In section 2.3 all shapes were aligned to one another using a
global transformation, consisting of a scaling, a rotation and two translation
parameters. In section 2.4 the brightness and contrast of the images was
adjusted. Scction 3.2 shows how these parameters can be included in the
shape and the texture model. The parameters for the global transformation
are modelled as shape parameters and the texture parameters arc altered to
include brightness and contrast.

Section 3.3 then shows how the shape and texture parameters can be
optimized using the results from the previous section. Chapter 5 will show
the results of a comparison of this method with the gradient method used
in this thesis.

3.1 Initial estimate
The algorithm presented below needs an mitial estimate of all the param-

eters. For the shape, the mean can be used as an estimate for the param-
eters. For the brightness, contrast and the global transformation, this will
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not work.

The mode] fitting algorithm presented in this chapter will not converge
when the initial estimate of the global transformation is not close to the
optimal transformation. Solving the problem of finding the global transfor-
mation is beyond the scope of this report. Therefore, an estimate of the
global transform is required from the user.

If the shape parameters are known, the texture parameters can be esti-
mated. The image should be warped using the shape parameters, equation
2.6 then describes the relation between the image and the texture param-
eters. Using the pseudo-inverse T, a least-square solution for the texture
parameters can be calculated [21], as shown in equation 3.1,

A=TT, (3.1)

The brightness and contrast can be estimated by adding two vectors to
the matrix T. For the contrast a vector with the mean texture should be
added. To estimate the brightness a vector with all elaments set to one
should be added. By using the pseudo-inverse in equation 3.1, the least
square solution tor the texture parameter A is [ound.

3.2 Combining parameters

When a new image is aligned, there will be a difference in transiation, ro-
tation and scaling. This section shows how a difference in these parameters
can be combined into the shape model. The group of translation, rotation
and scaling parameters will be referred to as pose. In Section 3.3 the model
is fitted to an image, using the partial derivatives of the model parameters.
Therefore, an cxpression of the shape as a function of the shape and pose pa-
rameters will be given. This expression is then used to calculate the partial
derivatives necessary for section 3.3.

The pose consists of four parameters; the angle ¢, the scale s and the
translations in both dimensions Ax and Azy. The coordinates (,’Ep‘;ljp) for
point (@, y) transformed with the pose parameters is given in equation 3.2.

Tp = wscos(9) — yssin(P) + Az

Yp — X8 sin(qﬁ) +ys cos(qb) + Ay (3.2)

The gradient descent algorithm assumes the updates are small, so x, =2 2.
Because the origin is the center of rotation, a small angle can lead to large
changes in coordinates if the shape is located far away from the origin. The
rotation is therefore performed around the mean (¢, ¢,) of the coordinares
of all pixcls of the mean texture. This can he done by using equation 3.3
instead of equation 3.2.
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rp = (£ — ez }scos(o) — (y — cy)ssin(d) + Az + ¢, (3.3

Yp = (2 — co)ssin(@) + (y — ¢y)scos(@) + Ay + ¢, o
Using ¢ = (x,y) and g = (¢, s, Az, Ay), the partial derivatives for equa-

tion 3.3 can be calculated. The partial derivative is dependent on ¢ and s.

This is solved by using x, /& z, which means that ¢ == 0 and s 2 1.

QC_? _ —(y —¢y) T~ Cp 1 0 (3.4)

dy Ty y—cy 0 1

This equation holds for all points ¢; in the shape ¢. Next, the partial deriva-
tives of the shape model are calculated. The shape is calculated by adding
the eigenvectors U{#) to the mean shape ¢g, using the shape paraimeters h.

k
c=co+Uh=cp+ > Uik (3.5)

i=1
The eigenvectors in U contain both the z and ¥ coordinates of a point. If
the eigenvector U(d) is split into parts for each axis, U(#) = [Ug{d), Uy(i)],
the partial derivatives are:

e T Ug(t) U2 ... Uglk)
oh { U, (1) U,(2) Uy(k) } (89

The pose and shape parameters are combined by concatenating the matrices:

de _ [80 8{:] (3.7)

op  9q " oh

The texture model can be altered to include contrast and brightness.
The texture model from section 2.4 does not describe these variations. The
contrast variation can be added by adding the mean image Ty as an eigen-
vector to the texture model. Brightness variation can he added by adding
an eigenvector with all elements set to one.

3.3 Simultaneous optimization

With the initial estimate from section 3.1 it is possible to optimize all model
parameters using an optimization algorithm. Since the model is a combina-
tion of various parts, a lot of symbols are used to describe various parame-
ters. Throughout this chapter, the variables will be named according to the
nomenclature.
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3.3.1 The criteron

The goal of the optimization algorithm is to minimize the quadratic error by
adapting the model parameters. Image 7 is the image to which the model is
matched. It is warped to the mean texture Tp. The first set of parameters
controls the shape variation, given by p. An image warped with parameters
s then written as:

Ly = H{W(p)) (3.8)

After the image is warped, the contrast and brightness of the image are
matched to the template:
Ie=ol,+ 3 (3.9)

Then, the texture variation is applied:
&
L=1+) AT (3.10)
i=1]

Combining these steps into one equation gives a function for the image I,
altered to match the template image.

L=ol(W(p)+ 6+ A (3.11)

i=1

The error function e in equation 3.12 gives the quadratic error between
the image and the template. It is the sum of the quadratic pixel error over
all coordinates ¢. The square in this equation is an element-wise operator.

N

=

r=1

i=1

3 2
To (aI(W(p)) +E+ Zm” (3.12)

3.3.2 Efficient implementation

‘The criterion in equation 3.12 can be solved by using a Taylor expansion.
This idea was first presented in [10] and applied to shape models in [13]. If
cquation 3.12 is used directly for Taylor expansion, the partial derivatives
in the solution will depend on the current estimates of the parameters. The
partial derivatives are then calculated using the pixel values from the image.
This section shows o variation on this method where the partial derivatives
are calculated using pixel values from the template image. This has two
advantages: The partial derivatives only have to be calculated once and they
are based on the template image. Since the template image is generated by
averaging many radiographs, the noise in the template image is much lower,
and the derivative of the pixel values is more accurate.

The parameter optimization is done in three steps. The first step is to
apply the current parameter estimates to the image [, so it can be warped
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to match the template 75. This is done in equation 3.11. The next step
is to caleulate the parameter update relative to Ty instead of the warped
mmage [;. Since Tj is constant, a number of intermediate results can he
pre-computed. The last step is to estimate how to update the parameters
for I, given the estimated parameter update for Tp.

To calculate the parameter updates, the updatc to Ty is calculated.
Equation 3.12 is rewritten and two parameters to describe the update are
added. These paramcters, AX and Ap, are the updates to the current pa-
rameter estimates. The summation is also dropped, so the error e is a vector.
By minimizing the error of the elements of e the total error 3 e is also min-
imized. To derive an update for the model parameters based on the error, it
is not possible to use the scalar > e divectly, the different model parameters
do have a different effect on the vector e, but not necessarily on the scalar
> e

s 2
L= Y0 + ANYL(W (po + Ap)) (3.13)
i=0

The vectors Ag and py are chosen such that the error e is zero when I, is
equal to the template image T5. All elements of these vectors arc equal to
zero, except for the first element of Mg and the second of py, which control
the contrast of the image and the scaling of the shape. These parameters
are equal to one.

By solving this equation for AX and Ap, a change in parameters can be
calculated which decreases the quadratic error. This is done in a few steps.
Iivst. a first order Taylor expansion of the warp function is performed.

2

] P

. aw
I - ZU(AGZ + AT (Wo + EAp) (3.14)
Next, a first order Taylor expansion to the template image is dane.
2
aT; oW
I Z(;(r\m +ar)(T+ =2 Ty ») (3.15)

The values for Ay are known, only the first elemens is non-zero. These values
L 2
can be substituted into the equation:

Itm(TU—F%A Zm( 0T, BWA)

T oW e (3.16)

¢ =

By expanding this equation, the texture model T can be separated from the
partial derivatives,

(3.17)

2
= {IE_ T, dT”A _TAX - Z (A,\ g%;%]ﬂ/wAp)

1=l
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This equation should eventually be solved for hoth Ap and AA. It is
therefore easier to rewrite the equation by grouping these two vectors.

_( A (o :
q—(m\). Tq—(d" T (3.18)

A dircct substitution results in a quadratic matrix cquation. To solve the
cquation analytically, this second order term is assumed to be zero. Section
5.3 will show that this is a valid approximation.

¢ = [It_TO_Tq q}2 (319)
This equation can be solved by setting the partial derivative to zero.

8& T
5g = 2Ll = To = Ty =0 (3.20)

TqTqu = qu.‘[TO — 1] (3.21)

Since T, is comstant, the equation can be simplified by introducing a ma-
trix R, using R = (T,7T,)7'T,7. Equation 3.22 shows how calculate the
update g to the model parameters, using R. Updating the paramecters us-
ing this equation is equal to the update of the Gauss-Newton optimization
method. Other research has shown that the Gauss-Newton method gives
hetter results than most other optimization methods [1].

Since the error function is non-linear and the update is calculated using a
linear approximation, the update will sometimes be too large, and sometimes
too small. When the update is too large, the algorithm can ‘hounce' around
the optimal solution, without ever reaching it. The update is therefore
multiplied by a step size. The step size ¢ is chosen as 0.5 for this thesis. this
is small enough to prevent the ‘*bouncing’ in nearly all occasions, while it is
still large encugh for the algorithm to converge quickly.

qg=pR-E, E=(Ty -1 (3.22)

The matrix R from this chapter is of size (k 4+ s} x N for a model of
k shape parameters and s texture model parameters. This matrix can he
calculated once per model, since it i only dependent on the model. not on
the image I. The partial derivative %’;“1 can be calculated in a few steps:

0Ty 91y OW dc
;—0 = —0——C (3.23)
dp  OW Oc dp

The partial derivative g% can be calculated with the gradient of the tem-

plate image Ty, Section 2.5.2 describes how to compute -(% The matrix
fe

T 18 covered in section 3.2.
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3.3.3 Updating parameters

The previous section showed how fo calculate a parameter update for the
template image. However, the template image is constant, so the paramcter
update should be applied to the image to which the model is ftted. This
should be done in reverse order. First the image is warped, aud then the
texture model is applied. This is similar to equation 3.12, only the o and
@ are part of the texturc model, as in equation 3.13. So, the update is
caleulated with respect to Ty

s 2
e= |:It =) O+ ANTHW (pg + Ap)) (3.24)

i=l}

It is rewritten to fit equation 3.12, the updates AX and Ap arc applied to A
and .

2

€ =

(3.25)

To - (GI(W(P)) +0+ i /\iTm)

‘The next section shows how the warp parameters can be rewritten. After
that, section 3.3.3 shows how the texture parameters can be rewritten.

Updating the shape parameters

An cxact solution to calculate the new shape parameters from the updates
calculated in section 3.3.2 does not exist. The parameter update for the
shape can be calculated using a linear approximation to the update, as showx
next. This linear approximation gives an error in the model parameters, The
sccond part of this section shows a method that minimizes this error.

The updates for the shape and pose parameters in section 3.3.2 are up-
dates to the shape of the template image, which should be rewritten as
updates to the shape of the image to which the model is fitted. A first step
is to calculate the updates to the shape of the warped image. This is done
by multiplying the updates by -1. Using the updates for the warped image,
the new parameters for the shape of the image can be calculated. The next
step is to rewrite the updates to the shape of the warped image as updates
to the shape of the image to which the model is fitted. The shape of an
imuge is given by equation 3.26, which is a combination of equations 3.2
and 3.5. The updates calculated by the model fitting algorithm are updates
to the mean shape c¢p and the shape parameters p,. For the next iteration
in the fitting algorithm, the updates have to he rewritten as updates to the
shape of the image to which the model ig fitted. So updates to ey and p,
should be rewritten as updates to ps and the posc parameters (s,¢ and Ac).
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sin(#)  cos(9) Ay

(3.26)
To simplify the following formulas, a rotation by g, is written as a matrix
multiplication by Rg, using ecquation 3.27. An update to the scale and
rotation of rp cannot be cxactly rewritten as an update to the shape and
pose pararncters. It is therefore necessary to make a few approximations.
Equation 3.28 shows how a change in scale (g5} of the mean shape ¢y can
be approximated by a change in one of the pose parameters (s). Equation
3.29 shows how a rotation of ¢y by ¢4 can be approximated by a change in
one of the pose parameters {¢). A translation of the mean shape ¢y can be
written as a change in Ac¢ without any approximations, as is shown in 3.30.

¢ = sR(cy+ Upy) + A, R—| %@ —sin(@) ] Acm [ Ar]

cos(gs) —sin(gy) N
sin{gg}  cos(gy) (3:27)

¢c=sR[(1+q)eo+ Upl + Acm (s(1 -+ go))Rleo + Up| + Ac (3.28)
c=sR[Reo+Up|l+ Ac~ s(RB,)ep + Up| + Ac (3.29)

q=

c=sRleo + Up+ qae] + A = sR[co + Up| + Ac+ 5 R gae {3.30)

The parameter update is caleulated by first multiplying the updates by -1,
to get the update to the warped image. Next, equations 3.28, 3.29 and 3.30
are applied. to get the update to the shape of the image. Equation 3.31
shows how these two steps are combined to calculate the new parameters
for the shape of the image (s*, ¢* and Ac*), based on the current parameters
and the nupdates to the mean shape,

88 = s(l—qe)=15-sqs

R* = RR, ¢*=¢—q (3.31]
Ac* = Ac—s R ga,

pr = p-A4p

In equations 3.28 and 3.29 approximations were made. Next, a method
is shown which minirnizes the error in thesc approximations. Using the
equations from the beginning of section 3.3.3, and ignoring texture variation.
the following warps match the two images:

I(W(p)) =~ To(W(Ap)) (3.32)

The image I is warped with the current parameter estimate. The template
is warped with Ap to compensate for the errors in the current parameter
estimate p.
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Throughout the rest of this section the set of coordinates ¢, as defined
in equation 5, will have the name of the corresponding warp parameters as
subscript. The mean shape of the model is denoted as ¢y, The warp function
is defined slightly different than in the rest of the report. In the rest of the
report the warp function is used to calculate the coordinates of pixcls from
the template Tp, here it is used to calculate coordinates of the shape model.

A warp ¢, = W{e,p} warps the coordinates of ¢ from the model coor-
dinates, shown in figure 3.1, to the image coordinates ¢, using the shape
parameters p. The point-set resulting from the current shape parameters
p is ¢p. The point-set resulting from the parameter update applied to the
mean shape is cap.

ep = Wico,p),  cap = Wi(eo, Ap) (3.33)

In one iteration of the fitting algorithm, an image I is warped with the
current parameters p. The update Ap is calculated which should be applied
to the femplate to align both images. The problem is then to find the shape
parameters py,, that match ca, to ¢,

ep =2 Wieap, pa) {3.34)

Figure 3.1 shows an examnple. For each warp, three points are shown. The
two point-sets on the left are based on the image, the two on the right are
based on the model. All point-sets except cp, are known.

Image coordinates | Model coordinates
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Iigure 3.1: Overview ot the different point-sets needed for updating the
parameters

As mentioned before, the order of rotating and scaling the mean shape
and adding the shape eigenvectors to this shape is reversed, so an exact
solution for p, does not always exist. Therefore the least square ervor of the
approximation to p, is minimized. The optimization starts with an initial
estimate of p,. The estimate is made using the linear approximation of
equation 3.31. This introduces a small error dp. Using p,, it is possible to
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calculate dp. Equation 3.35 shows the relation between these parameters,
(P + dp) is the set of parameters that matches ca, to ¢,.

Oy &= W("-“A;u)j["n + dp) (335)

dp is calculated by optimizing a square error e, based on the diffcrence
hetween the left and right hand side of eguation 3.35:

e = [W(cap, p +dp) — ) (3.36)

The square in this equation is an element-wise operator, just as the error
optimized in section 3.13. To solve equation 3.36 a linear approximation of
the warp function is made.

OW (cap, Pn) ? 2 97
a—;dp —¢p (3.37)

The derivative of the warp function is calculated just as for section 3.3.2,
%;— = %g—; % is calculated using %1;1 from section 2.5.2 and g—; from
section 3.2. In scction 3.3.2 the partial derivalive %—2 is evaluated for the
coordinates of a sct of pixcls. In this section, it should be evaluated for the
coordinates ¢ap. I'or some shapes, it can occur that coordinates of cap are
outside the convex hull of the mean shape ¢, which means that the warp
function and it’s derivative are not defined for that point. To calculate the
partial derivative for these points, the coordinates of the vertex closest to
this point is used to determine the partial derivative (using equation 2.12).
The minimal crror of equation 3.37 can be found by setting the derivative
to sero.

¢ = |Wicap,pn) +

De aw’ W
_ Wie n) + —dp—cp| =0 .38
5 2 (Cap, pn) + 0 dp — ¢y (3.38)

Using a few intermediate steps, the equation can bhe solved for dp:

ow T ow owT

—— ——dp=—F— |~ Wicapp 33
dop dp P p [CP (CApupn)] (3.39)

owTow] taw? .
dp = [*55" '8—p:| B_p [(’p - W ((Ap,pn)] (340)
ow L o
dp = Ty [ep = Wicap, pnl (3.41)

This gives the new estimate for p,; B, = pr + udp. Since a linear approxi-
mation was used for the calcudation of dp, this new result is not exact, just
as for the model] fitting algorithm, a step size u is introduced. u is sct to
0.5. pp, should be better than the previous estimate p,, so it can be used
again to estimate a new value for dp. In a few iterations of updating dp and
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. this should give a better approximation. The value of the error, >e,
can be checked to sec if this gives indeed an improvement.

The partial derivatives are calculated using equations 2.12 and 2.13,
which are only dependent on the values of CAp, NOL O Cpp. Thus, they
are constant throughout the iterations and have to be computed only once.
These derivatives were also used in section 3.3.2 and can be calenlated in
the same way.

The iterations will be very fast compared to most other steps in the
complete algorithm. The implementation for this thesis updates p,, 15 times
using equation 3.41. The result from the iteration with the lowest error is
used as the final result. When the algorithm does not converge, the initjal
cstimate will give the Jowest error, so the solution is always at least as good
as the nitial lincar approximation.

Updating the texture parameters

To calculate the update of the texture paramcters, the warp is removed from
the equation. By using A = A\g+ AA, the error function of equation 3.13 can
be written as:
2
¢= {1} =3 (3.42)

1=0

The square is an element-wise operator, just as in the previous section. Just
as for the shape parameter update, this function has to be rewritten to
equation 3.12. This is done in a few steps, the first is to expand a part of
the summation.

c =

s 2
L=XNTh—MT - Rn] (3.43)
=2

The eigenvectors Ty and Ty are the eigenvectors added in section 3.2 to add
coritrast and brightness variation to the image model. The nmage I is made
with the current best cstimate of the texture parameters:

L=al+8+Y NI, (3.44)
=2
Substituting this equation into equation 3.43 gives:
l 3 5 2
e=(=X)? 1Ty + ;—(a1+[3+2)\ﬂ} =M =Y AT (3.45)

0 i=2 i=2

By using the following substitutions, it is possible to rewrite this further.

a8 gofoAh s M A

: , N= (3.46)
Ag Ao )\O
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All elements of Ty have the same value, so 3 can be caleulated by re-
placing 71 with one of it's elements,

s 9
e = (Ao [To —al~f-% )\J}} (3.47)

This function is now very similar to the criterion used to fit the model.
The criterion is given in 3.12. Without the warp function, it simplifies to:

e = lTr}— (@I—FB‘FZ)_\?ZT?Z)

i=2

2
(3.48)

This only differs from the previous equation by a factor. This means
that both equations have their minimum at the same parameter values.

The warped image I, is updated by combining all the separate substi-
tutions. The update is given by ¢, in equation 3.22. Using the substitution
from equation 3.18, AX is determined. Finally, with A = Ag + AX and
equation 3.46 the new texture pavameters are given.

3.3.4 Summary of the parameter update

Since the parameter caleulation involves a lot of steps, a short overview of
all the steps is given in table 3.1, This table lists the steps of one iteration
of the model fitting. The model fitting is started as described in section
3.1. After each iteration the new model parameters are used as the model
paramneters for the next iteration.

Description Equation number
1. Apply the shape parameters to the shape model 3
2. Apply the pose parameters to this shape 3.3
3. Warp the image using this shape,
and apply the texture parameters in
4. Calculate the update ¢ to the template Tp 3.22
5. Split g into Ap and AX 3.18
6. Calculate the new shape parameters p 3.41
7. Calculate A = A+ AX
8. Calculate the new texture parameters 3.46

Table 3.1: summary of the model fitting algorithm

3.4 Active appearance models

In [5] another method for determining the update matrix R is described.
In the sections above, an approximation was made analytically. In [5] a
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numerical approximation is used. This section will give an overview of the
numerical method, section 5.6 will compare the performance of both update
methods.

Using the shape model, small variations to the mean texture are made.
The shape parameters and the global transformation are randomly varied in
a cerbain range, The resulting images are stored as vectors in a matrix V.
The variations applied to the shape model are stored as vectors in a matrix
C. To estimate parameters from an image, a matrix R is determined, such
that ¢' = RV. As shown in [4], this can be done in two steps:

dr " drt

=VCY, R=

o =0 (3.49)

A direct caleulation, R = C'V7, is also possible, but according to [4] it
does not give good results. The matrix R can be used exaclly the same as
R from equation 3.22.

The range over which the model is varied, is an important set of param-
eters is . With a large range, the algorithm should be less sensitive to the
initial estimate, hut the accuracy of the final solution could decrease. The
sensitivity to the initial model can also he decreased by a multi-resolution
apptoach, the chosen range of the paratneter variation used in this thesis is
therefore relatively small.
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3.5 Parameter estimation

Ag shown in the previous section, the model is fitted to an Image by adjusting
the model parameters. The method adjusts these paramcters based on the
pixel values of the image. The better the model matches the image, the
more accurate these adjustments are estimated. In cases where an image
does not match the model very well, parameters can keep increasing in the
model fitting algorithm, even though the error criterion does not improve.

This section presents a method to estimate the uncertainty of the model
parameters. In [23] this is done using only a few pixels per poiut in the
shape model. The method presented in this section uses all pixels of the
warped image.

When the model is generated, the mean values and the covariances for
the parameters can be calculated. By using this information in the model-
fitting algorithin, it should be possible to limit parameters values to realistic
values, while larger parameter values are still possible if this leads to a good
match of the model.

3.5.1 Estimating image noise

The model parameters are determined using an optimization algorithm. The
difference between a template image Tp and a warped image I; is used to
determine the npdate to the model parameters. These model parameters
can be estimated by using eguation 3.22 from section 3.3.2:

q=R-E. E={(Tv—-1L) (3.50)

The vector E is the difference between the template image Ty and the warped
image I;. It is assumed that this difference is only caused by noise and an
error in the model parameters. Since the template is generated using a large
number of images. it's noise is negligible compared to the noise in the warped
mmage. I can then be written as;

E = TO - (It + Ng) (351)

Where Ny is the noise of the warped image. The noise can be split up into
two parts, a part that has influence on the estimated model parameters. and
a part that has no influence.

If Rt has no influence on the estimated parameters, it is orthogonal to the
parameter update matrix R. Ry can thus be calculated using E and an
orthonormal base V of R. The unbiased estimate of the variance is then
given by equation 3.54.

Rq=VE., BR;=E-V'R, (3.53)
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RS- Ry
N-1

If the amount of noise varics spatially, the variance can be estimated in
small blocks of pixels. The block size should be small enough to accurately
capture the variation in noise. However, if the block size is chosen to small
the noise estimate will be inaccurate, since it is based on only a few samples.

To estimate the noise in the image, it is assumed that the noise is in-
dependent for all pixels. This assumption is necessary to estimate the pa-
raieter variance, the estimale is based on only one vector, so covariances
cannot be estimated. Within one block of pixels, the noise is assumed to
be equally large for all pixels. If these assumptions hold, the noise in N;
is equally distributed over both subspaces and it’s variance is equal to Cy
scaled by 'N% The variance of E is equal to the variance of Ny. If the
noise i considered independent for all pixels, the covariance matrix for E is
a diagonal matrix with the estimated variances on the diagonal., Using the
covariance matrix Cg of E and equation 3.50, the covariance matrix C; for
the paramefer update ¢ can be calculated.

Cy = (3.54)

Cq=R-Cg-RT (3.55)

3.5.2 Updating the model parameter covariance

The previous section showed how to estimate the uncertainty of the parame-
ter update. The parameter updates and the covariances are calculated in the
coordinate space of the template image. The model parameters, however,
arc estimated in the coordinate space of the image. The parameter updates
for the model were calculated in section 3.3.3. This section will show how
the variance of these model parameters can be cstimated.

Linear shape update

In section 3.3.3 a linear approximafion for the parameter update is given.
The parameter update was calculated using equation 3.31:

*

8 = S(l - q=;) =S5 — 8G;
R* = RR, ¢ =¢-q (3.56)
AV Ax qAI)
(Ay*) (Ay) ’ (QAy
pt = p-AQp

In order to write the parameter updates as a linear matrix equation, the
model parameters of this equation are combined mto a vector p. To update
the shape parameters, there are three vectors with shape parameters. the
current parameters are stored in p, the update to the template image in Ap
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and the new shape parameters are given hy p*. These are listed in equation
J.67.

£d

p = [Qﬁ*aS*vAx*:Ay*apS]*ﬂ""psk*]
r kbw 5, AxrAyapsla s prk} (357)
Ap = [96,9 9an: Ay, APsy, - - APy

To calculate the covariance of the parameter updates, these equations
should be linearized, to fit equation 3.58.

. op op*

P =P oap

Ap+ Py (3.58)

Using the equations 3.31 and 3.57, the solution to equation 3.58 is given by
equation 3.59.

1
o (1-gs)
FPo=10 sg 0 0], =—= 1
L0 sq I %
1
(3.59)
[ -1 0 0 ]
0 -—s
—scos(¢) -ssin{o}
o )

Dhp ssin(ep scos(g) Py

L O ﬁw]‘-

Linear texture update

To cstimate the uncertainty for the texture parameters, equation 3.46 is
linearized, ag shown in equation 3.60.

A= X . . .
A= ; 22 e A 4 o s Ag + s (3.60)
0

The constants eg...eca are equal to the partial derivatives, shown in
equation 3.61.
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ax 1
¢ = = =
! (9)\1 Ap
a1
(-’2 = _— = — =
ax; Ao
22N X — A
€3y = R 3.61
’ o 3 (361
A=A . N
Cp = = —C1A — A — ez Ao
Ao

The update equation for the contrast parameter « is different from the
others, the values for ¢ can be calculated by setting A; to zero.

a 0
0T 36N 3.62)
= a & o
30 ,’S\O 05\0 A%

The update for the texture parameters can be written as onc cquation,
by combining the results from equation 3.61 and 3.62 inte a matrix equation.

= Ko+ Kod+ Kod (3.63)
om Cy 0 Zz? e 0
K-U = , K= , K-Q = ’
€0k 0 “ Csk &)
(3.64)

With the linearized updates for the shape and texture parameters, the
updated parameters p* and A* can be written as:

*

p" Py 0 &0 [ p ] 20 | [ap |
- ’ > | (3.65
{,\* ] { 0 Ky ]+ 0 Ky || A 1 K, A (3.69)

Now the parameter update is written as a linear equation, the covari-
ance of the updated parameters can be calculated. Any error in the current
parameters should be compensated for by the parameter update. The co-
variance of the updated parameters is therefore only dependent on the co-
variance of the updates Ap and X. The covariance matrix C for the updated
parameters is then calculated with equation 3.66.

C= Gaap C Jap 3.66
KQ q 0 Kg ( )))
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3.5.3 Combining model and image parameters

When the model is generated, the mean and covariances of all model pa-
rameters can be calculated. This section will show how the covariances of
the model can be used while fitting the model to an image. By using the
covariances of the model, the model parameters can be restricted to realis-
tic values when the model docs not match the image very well, while still
allowing larger parameter values if the model does match well.

To combine the information from the model with the information of the
fitting algorithm, the Mahanalobis distance is used [23]. Both the model
and the fitiing algorithm provide an estimate of the parameters, and for
both a covariance matrix is determined. If the parameter estimates have
a gaussian distribution, the maximum-likelihood estirnate is equal fo the
solution which has the minimal sum of mahalanobis distances [23]. The
mahbalanobis distance for two measurements is given in equation 3.67.

d* = (z —2a)TCTHe — 2) + (2 — 22) O Mz — 2) (3.67)
This equation can be solved by setting the derivative to zero. The max-
imum likelihood cstimate @ is then given by equation 3.68.

x=C(Crte 1 CFtey), C=(crt+orh? (3.68)

3

In each itcration of the model fitting algorithm, this equation is used to
calculate the new model parameters.

3.5.4 Test Results

The covariance of the parameter update is calculated using a few approxima-
tions. To determire the validity of these approximations, a test is performed.
A model is {itted to an image, using it’s annotation for the initialization.
Figure 3.2 shows three intermediate results from the noise estimation. The
warped image is shown in figure 3.2(a). A small amount of gaussian noise
was added to the left of this image. The other two images represent R,
and varg. Ry is the estimate of the noise in the image, varg is the esti-
mated variance of the difference image E. Brighter colors indicate a higher
variance. The variance is estimated in blocks of 10 by 10 pixels. The noise
added to the image is clearly seen as a gray rectangle in the eft of figure
3.2(c).

The added noise has a variance of 5- 1075, The estimated variance for
the pixels to which the noise was added is 5.2 - 107% on average. When
comparing the variances for the image without and with the added noise,
the variance in g for the horizontal shift increased by 33%, while the variance
for the vertical shift increased by less than 6%. Since the noise is added to
a part of an image with mainly horizontal gradients, the estimate for the
horizonfal shift should indeed be less accurate when noise is added.
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(a) A warped image, (h) image used Lo esti- (c) Estimated vari-
with added noise (/;) mate variance (R;)  ance (vary)

Figure 3.2: Examples for the variance estimation

The method presented above is tested on a set of 5 images. For each
image, the model was fitted both with and without using equation 3.68.
For all images the estimated covariance for the parameter update is much
smaller than the covariance from the model. For most parameters, the
variances differed by a factor 100 or more. The model parameters are thus
hardly influenced by the model covariances.

The difference in shape between the results of both model fits was lower
than 0.1 pixel. It seems that noise in the image is not the largest cause
of errors in the parameter update, and the estimated covariances cannot
be used to estimate the error in the parameter update. By looking at the
difference image, shown in figure 3.2(b), it can be seen that near the edges
of the bone, there are edge-like features, so the difference between model
and warped image is not independent for all pixels. This assumption was
made to be able to determine the covariance of the estimated parameters,
hut it does not seem to hold very well,
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Projecting 3D data

One goal of this project is to find a relation between the shape and position
of hones, and the measured JSW. The bones are 3-dimensional ohjects,
while the JSW is measured from a 2-dimensional projection. This chapter
shows how a 2D projection can be calculated from a 3D data set. Using
this method, a series of projections is calculated and the JSW is determined
for each projection. The measured JSW's are then used to analyze the
sensitivity of the JSW measurement to rotation of the 3D data set.

In this chapter, the elements of a 2D image are called pixels. The 3D
data set is called a volume. The volume is a set of voxels, where each value
of a voxel represents the attenuation of the material per uuit length.

4.1 The volume rendering integral

To calculate a 2D projection from a 3D data set, the effects of all light sources
and all attenuations in the path from the light sources to the projection plane
should be caleulated. This can be done by caleulating the volume rendering
integral [15]:

L ,
HERY _—.L Cy(s)pls)e Jo HBddt g (4.1)

This integral only takes attenuation of the material into account, other ef-
fects, such as reflection, are ignored. [ is the amount of light coming from
ray direction » to location x at the image plane. 'y is the amount of light
emitted from location s in the direction r. p is the attenuation of the mate-
rial (or light extinction coefficient [14]), it has a unit of 1/length. L is the
length of ray +. The integral over t calculates the total attenuation from
position s to the image plane at position z.

If there is only one light source (at distauce L), the outer integral van-
ishes. If there is no attenuation at the location of the light source, (s} = 1,
the volume rendering integral reduces to equation 4.2, where I;) is the inten-
sitv of the light source. This equation calculates the integral of the atten-
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uation form the light source at position L, to the image plane at position
T,

Iz,r) = Toe™Jo et (4.2)

The rest of this chapter will only describe how to approximate the inte-
gral over t. After calculating this integral, equation 4.2 should be used to
calculate the final image I, In the next section, a short overview of projection
methods will be given. The integral from equation 4.2 can be approximated
with any of these methods. To compare the speed of the algorithms, the 3D
data is assumed to have a size of N x N x NV. The resulting 2D image is
assumed to have size M x M. After the overview, The projection method
used for this thesis is deseribed in more detail.

4.2 Projection methods

This section summarizes three common projecting methods. A method often
used for CT images, is the Fourier-slice projection [11]. This method is based
on the Fourier slice theorem. This theorem states that a projection of a 3D
volume can be calculated by taking the inverse Fourier transform of a 2D
plane perpendicular to the projection axis. The 2D planc is calculated by
interpolating the Fourier transform of the 3D volume.

The calculation time is hounded by the 2D inverse FFT. For a volume
of size N*, this is in the order of N?log(N) operations. A drawback of this
method is, that it cannot generate a perspective projection. A set of parallel-
ray projections can be used to generate a set of perspective projections
as a post-processing step, buf the algorithm itself cannot generate these
projections directly. When arbitrary projection angles are handled, the 2D
FT'T slice should be interpolated from a 3D FFT. This interpolation should
be done carefully to obtain good results [8].

Another method to generate projections is ray-casting. Ray-casting is
a technique that produces good results, but is very slow compared to the
previous method. Ray-casting works by casting a ray into the data volume
for each pixel. This ray is sampled along a number of steps. so a line integral
can be calculated. Since these samples need to be caleulated at non-integer
positions, interpolation of the volume data is required. For each pixel a ray
is cast, and each ray is evaluated at least IV times to sample all voxels. So
the number of operations for one projection is at least M2N.

The third method is called splatting [22]. This method is just the oppo-
site of ray-casting. It iterates over all voxels instead of over all pixels. For
each voxel the contribution of the voxel to the 2D image is determined. The
time complexity is determined by the number of voxels and the number of
pixels. If M is lower or equal to N, the time complexity is in the order of
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Method speed perspective projection
Fourier-Slice || N*log{N) -
ray-casting M:N +
splatting M2N -+

Table 4.1: comparison of three projection methods

N* else it is NM?. The latter follows from the extent of the footprint, as
is explained in the next section.

Although the Fourier-slice method is faster, it is not used in this report,
since if cannot generate a perspective projection. If the image and volume
size arc comparable, thus if M is close to NV, then splatting and ray-casting
have a similar performance. Table 4.1 summarizes the properties of the
projection methods.

4.3 Splatting

The projections used in this paper are generated with the splatting method
[16]. This method determines the effect of each voxel on the projected
image. The effect is calculated by ‘splatting’ onto the 2D image plane.
Figure 4.1 shows an example. The black voxel on the left is ‘splatted’ onto
the projection. This leaves a footprint on the projection; the bell shape on
the right. The size the ‘splatted’ voxel is dependent on the chosen footprint,
the volume and the image resolution [22].

Figure 4.1: Tustration of the splatting algorithm

For the algorithm it is necessary to determine the coordinates (m, n)
in the projection for each of the voxel’s coordinates (r, y, 2} in the 3D
volume. First, the data volume is shifted fo the origin, the mean value
of the coordinates is zero. Next, the voxel coordinates are rotated using
rotation matrices for all three axes:
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Figure 4.2: Geomelry used to generate perspective projections
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(4.3)

The results arc dependent on the order in which these rotations are

applied. For this thesis, the volume is first rotated around the z-axis, then
the y-axis, and finally the 2 axis.

Ty T
Yo | = MMM, | y (44)
Zp z

After rotation, the volume is shifted by %ﬁN m the z-direction, so all
voxels have a positive z-coordinate, independent of the rotation applied to
the volume.

When the volume is rotated, the 21 coordinates of each voxel are cal-
culated using perspective projection. Figure 4.2 gives an overview of the
relation hetween the lightsource, the volume data and the resulting projec-
tion. The lightsource is assumed to be a point source. The point v is a point
in 3D space, for which it’s coordinates in the projection plane, p, should be
calculated. From figure 4.2, an equation for the x and y coordinates in the
projection plan is derived:

d'+“vz d+vz
T U Py T oty

(45)

Py =
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These equations are equal to the parallel-ray projection when d equals in-
finity. The implementation used in this thesis determines the lightsource
distance d from the angle . The relation between these parameters is given

by equation 4.6.
1. /7
v 3N
tano = dzL (4.6)

_ %@ N
Using the distance d, the 2D coordinates p, and p, can be shifted and scaled,
allowing the projections to be larger or smaller than the 3D volume.

mo = py-zoom+ Ay

n = p, zoom-+ Az (1.7

With the calculated 2D coordinates, it is possible to add the footprint to
the 2D image at the correct location. As a footprint a separable cubic inter-
polation kernel is used, it is shown to give better results [12] than gaussian
tootprints used elsewhere [22]. The kernel is defined by equation 4.8. This
kernel is separable, so the kernel values for the @ and y-axis are IIlllltlth‘d to
get the 2D kernel value. Ganssian footprints are often calculated offline and
stored in a lookup-table for rendering. The cubic kernel is simple enough to
evaluate directly.

3/2* = 5720t + 1 it <1
h(t) =< =172t + 572062 —4ft| +2 1<t/ <2 (4.8)
0 otheruise

To prevent aliasing, the sampling rate should be at least as large as the
voxel and pixel sampling rate. If the size of a voxel is larger than the pixel
size, the footprint should increase in size. However, if the size of a voxel
is smaller than the pixel size, the footprint size should not be decreased,
but it’s intensity should be adjusted. Without sealing the intensity, simaller
voxels would appear to have a higher attenuation.

To determine the scaling of the interpolation kernel, the size of the kernel
in pixels has to be calculated. Multiplying equation 4.5 by equation 4.7 gives
the change in size by the transformations, which is 7 f zoomn. The footprint
should be scaled in both dimensions by this factor. If the voxel size is larger
than the image size, the intensity of the kernel should be scaled with the
square of this value, since the scaling is proportional to the area of the voxel
on the image plane.

In literature many extensions to the splatting method are described.
Most of these cxtensions are related to the speed of the algorithm. Since
projecting data is not the main part of this thesis, those extensions are not
researched. The guality of this projection method is tested in chapter 5.
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(a) Initialization (b) Detection

Figure 4.3: semi-automatic JSW detection

4.4 Analyzing 3D data

With the projection method from the previous section, it is possible to
analyze the influcnce of rotation on JSW-measurements. This is done using
a set of four 3D images of the MCP-joint. These images were acquired using
a tCT-scanner and have been provided by J. Duryea [7]. The datasets have
a resolution of 66 ym, which is similar to the resolution of a radiograph.

For rigid bodies, there are 6 degrees of freedom in 3D space, three ro-
tations and three translations. When projecting a 3D dataset. one of these
rotations and fwo of these translations are equal to the rotation and transla-
tions of the 2I) projection. The third translation, perpendicular to the image
plane, causes a change in scale for a perspective projection. This leaves only
two rotations which cannot be directly related to a rigid transformation of
the projection. For each of these two rotations, the splatting algorithm is
used to generate a set of 30 projections. This is done for all four datasets.
For each projection, the angle of rotation is slightly different. An example
of such a projection is shown in figure 4.3. By measuring the JSW for each
projection, the influence of rotation on the JSW measurements can be deter-
mined. Using the projections, the JSW is measured with a semi-automatic
method. The method is very similar to the method used in [18], which is
shown to give good results.

4.4.1 Measuring the JSW

The semi-automatic method needs initialization from the user. First the
horizontal center of the joint is indicated. Next three points on the lower
edge of the phalangeal bone are indicated. And finally one point on the
upper edge of the metacarpal bone has to supplied, Figure 4.3(a) shows
these points.
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Since only three points are given as initialization, a second order polyno-
mial function is fitted through the points on the phalangeal edge. Using the
point on the metacarpal edge, this function is copied and shifted vertically
to {it the metacarpal edge. This gives an initial estimate for the cdges. Next,
an optimization algorithin is used to improve the fit.

Just as in [18], the optimization algorithm matches a fourth order poly-
nomial curve to the bone edges. The criterion for the optimization is based
on pixel intensities. The pixel intensities under the polynomials are sam-
pled and summed. To fit the phalangeal edge, the sum of the inteusities is
maximized. To fit the metacarpal edge, the vertical gradient of the image
is calculated and the sum of this gradient, sampled along the polynomial,
is maximized. The polynomials are evaluated horizontally across 7 mm,
around the horizontal center of the joint, as shown in figure 4.3(b).

A direct search method is used for the optimization algorithm. Each
of the parameters is optimized separately. To make the oplimization more
robust, the image is low-pass filtered to 1/20th of the original sample rate.
The polynomial function is parameterized as a set of 13 points. For each
point the vertical position is varied and the polynomial is fitted to the 13
points. The vertical positions are varied over a range of .5 mrn. Although the
re-parametrization does add computational complexity, the search becomes
more robust and cannot produce results far from the initial values given by
the user.

After the optimization, the mean distance between the two polynomials
is caleulated. This value is used as the JSW. To start the optimization for
the next projection, the results from the current projection are used. Since
the projections only have small differences, this gives a good initialization.

4.4.2 Analyzing rotation

Figure 4.4 shows the results of the JSW measurements. For each projection,
the JSW is plotted against the rotation. The rotation around the X- and
Y-axis is varied slightly for each projection. The X-axis is iu the horizontal
direction of figure 4.3, the Y-axis is in the vertical direction.

As can be scen from the plots, the Y-angle of the projection has little
influence on the measured JSW. The X-angle, however, does have a large
influence. The difference in JSW between a rotation of -5 and +5 degrees
can be up to 0.5 mm, resulting in a difference of b0um per degree rotation.

Other research [18] shows that a precision higher than 0.1 mm can be
achiceved for JSW measurements. A study conducted for the ‘Nederlandse
Vereniging voor Reumatologie’ showed that the change in JSW can be as
low as 50 ym per year. The results from the measurements in this section
show that a difference in alignment of only a few degrees results in a much
larger error. It can he concluded that the positioning of the hand is very
important for reliable JSW measurements.
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Figure 4.4: JSW as function of rotation



Test results

This chapter will show results of tests of the various parts of this thesis.
First, the annotation and the number of model parameters are chosen. Next,
two methods for updating the model parameters in the gradient algorithm
are compared. For a chosen number of model parameters, it is shown how
sensitive the algorithm is to the initial shape estimate. This test is also done
for the active appearance update method from section 3.4. Next, if is tested
whether the Atting method is sensitive enough to detect small changes in
rotation. Finally, the quality of the projection method is tested.

5.1 Model accuracy

Before the fitting algorithm is tested, it is useful to know how well the
model can be fitted to another image. It is also important to know how
much training data is needed for an accurate model. A test is performed
using the annotations of a proximal phalanx of which an example is shown
in figure 5.2(a). A fest set is used to generate the shape model, the model
is then matched to a set of different annotations as close as possible. The
meanl absolute difference between all shape points and all annotated points is
calculated for all annotations in the test set, which contains 20 annotations.
For one model, the shape model is extended ag described in section 2.5.3.
Figure 5.1 shows that this model performs far worse than the others.

The difference between a model generated using 40 and 60 annotations is
very small, it seems that 40 annotations are enough to generate an adequate
shape model. The accuracy of the model is limited, however. Approximately
40 parameters are nccessary for an error lower than 50 pm. This 1s a large
number of parameters; the annotations consist of only 64 2D coordinates,
so there are only 128 possible shape parameters.
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Figure 5.1: Error between annotation and the model, for models generated
with a different number of annotations

5.2 Model parameters

The image model is gencrated using a set of annotations. For this thesis
two different sets of annotations were used, shown in figure 5.2. The figures
show the annotated points as dots on top of the mean texture.

The annotation in figure 5.2(a} has more points, especially near the
joint at the bottom. Since the variation is quite large between images at
this position, using the annotation labelled “T” should give a better model.
Figure 5.2(c) shows a close up of both annotations, “I" at the top and “)" at
the bottom. For the area inside the circle, the texture generated using the
annotation 1" is a bit sharper, but the difference is small.

Besides the annotation, the number of parameters should also be chosen
to generatc a model. The number of parameters can be chosen for both the
shape and the texture. The model is made to approximate an image using
only a few parameters. Therefore, the total number of model parameters is
used when comparing models to each other.

Figure 5.3 shows the error and convergence rate as functions of the to-
tal number of shape and texture parameters. The six parameters for posc.
brightness and contrast are excluded from this figure, since they are always
nceded. To fest the convergence rate, a set of 54 images was used. Each im-
age was annotated manually. If the mean difference between the annotated
points and the result from the model fit was more than 1.8 mm, the result
was considered divergent. The error in figure 5.3(b} is the mean quadratic
image error between the model and all images of the test sef. The test
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(a) annotation ‘T° (b) annotation *J’ (¢} close up view of both annotations

Figure 5.2: The annctations used for testing the model

is done for two different anmotations. For each annotation 27 images were
used to generate the model. The number of iterations for fitting the model
is limited to 150 and the number of pixels in the texture model was 20.000.
The shape of the last iteration was used as the result of the model fitting
algorithm.

The annotation labelled ‘J” gives better results. For a high accuracy
of the shape model, the number of model parameters should be as high as
possible. Figure 5.3(a) however, shows that fitting the model works better
for a low number of parameters. For the rest of the tests, 14 shape and 4
texture parameters will be used. Since annotation ‘J’ gives both a better
convergence rate and a pixel error, this annotation will be used for the rest
of the tests. There are 81 images and annotations available. 27 are used to
generate the models, the other 54 are used to test the model. Using more
images to generate the model would give better, but more unreliable results,
since there would be less images in the test set.

After the number of parameters is determined, a test is done to determine
the required resolution of the texture model. A set of texture models ig
generated with different resolutions. Each model is fitted to the test set
using the annotations as initial values. The model fitting algorithm is then
run for 80 iterations. Figure 5.3(c) shows the mean difference with the
annotation after fitting. When the texture resolution is too small, the edges
at the top and bottom of the bone are not sharp enough for the algorithm.
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Figure 5.3: Effects of the number of model parameters on the results of the
mode] fitting method

For the following tests a resolution of 80 dpi, which equals 20.000 pixels, is
used.

5.3 The approximated error criterion

In section 3.3.2 a quadratic term was assumed to be zero in equation 3.17.
This was done to derive an analytical expression for the parameter update.
While this term is not equal to zero, a test has been performed to deter-
mine the effect of this approximation. Using MATLAB's Isgnonlin optimizer,
equation 3.17 can be solved numerically. A test set of 15 images is used, for
which the model fitting is done once using the linear error function (equa-
tion 3.22), and once using the error function with the quadratic term. The
step size p was sct to 0.5 for both tests. For one image, the optimization
using the quadratic error function did not converge. For the other tests, the
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Figure 5.4: Comparison of the linear and gradient parameter update

resitlts were compared to each other. The shapes caleulated by both fitting
methods were compared to each other. The average difference between ihe
linear and square method for all points in the shape set was 1.27um, while
the pixels of the texture model have a size of approximately 300pm when
they are warped to the images. So, the linear error function can be used
without losing significant accuracy.

5.4 Updating the model parameters

In section 3.3.3 an optimization method for updating the warp parameters
is described. This section will show test results for the linear update and
this method.

Figure 5.4 shows the average result for a set of 5 images. The annotation
of these images is used as an initial estimate for the shape. The annotations
are rotated by 1 degree to show the difference between both methods. In
figure 5.4(a) the parameter update is done with the gradient descent method.
In every iteration the approximation error for both the linear update and
the gradient descent update is calculated.

The horizontal axis of figure 5.4(a) shows the warp iterations as described
in section 3.3. The vertical axis shows the error in the update of the model
points in the image frame. This error is the error that is minimized in section
3.3.3. For reference, the difference between the current and the new shape is
also plotted as ‘shape update’. The gradient update does give better results,
but the difference between both methods is very small.

Figure 5.4(b) shows the pixel error for every iteration of the model fit
algorithm. One line shows the image error using additive update, the other
shows the image error for the gradient update. The differences are barely
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visible, the gradient method does not give a sialler error for every lteration.
The differences are so small, that both methods give nearly identical results.
Since the linear update can be calculated faster, it should be preferred over
the gradient update.

5.5 Initialization

The model parameters can only be estimated when a fairly good initial es-
timate of the parameters ts known. The number of parameters is chosen
using the results from section 5.2. There are 14 shape and 4 texture param-
eters and the resolution of the texture model is 80 dpi. Figure 5.5 shows
the convergence rate of the algorithm as a function of an offset in the model
initialization. The annotation is changed with either a small rotation, a
scaling or a shift. Tfor each of these changes a test is done for 54 hmages.
The point set is used to determine if the algorithm is convergent. A point
set is compared with the original annotation, the mean change in position
is calculated over all points. If the mean change is less than 1.8 millimeters,
the algorithm is considercd convergent. The algorithm only converges if the
initialization of the horizontal position is very good. When the initialization
is off by more than a few millimeters, the contrast estimation described in
section 3.1 does not work any more. Since most bright pixels of the tem-
plate are compared with dark pixels of the warped image and vice versa, a
negative value for the contrast is estimated.

Figure 5.5(d) and 5.5(e) show the results for two different models. The
model of the proximal phalanx (PP) is the same as used in the previous
tests, the other model is shown in figure §.6. After fitting, all points which
are not part of the PP model are removed from the other model. The mean
differences in shape between both fitted models and the annotation are then
compared in figure 5.5(e). The model of the index finger is less accurate,
but is it also less sensitive fo initialization. This can be explained by the
fact that the position and shape of different bones is correlated. The shape
model uses this correlation to restrict variation to likely deformations. By
including more hones in the model, the shape of one hone can he estimated
from all bones, making the fitting more robust.

The results indicate that a fairly good initial estimmate is necessary. In
a typical image the proximal phalanx is roughly 40 by 11 millimeters. The
error in position can only be a few millimeters for reasonable convergence,
so the algorithm is quite sensitive to the initial estimate. By using a model
which covers multiple bones, these results can be improved.
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Figure 5.5: The effect of model initialization on the convergence rate and
the shape error. A fitting result is considered convergent if the difference
with the annotation is less than 1.8 mm on average. The shape error is the
mean difference hetween the fitting result and the annotation.
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Figure 5.6: Model of the index finger. The mean shape is plotted as white
dots on top of the mean texture

Parameter Range
Shift + 4 pixels
Rotation + .2 degrees
Scaling 0996 .. 1.004
Shape parameters =+ 0.4 standard deviations

Table 5.1: Ranges of parameter variation used for calculating the update
matrix R for Cootes’ numerical model fitting method.

5.6 Comparison with active appearance models

The model parameters are estimated from an image using an update matrix.
This matrix can be made using an analytical approximation, or using a
numerical method. The numerical method is part of the active appearance
models described in section 3.4.

To generate the update matrix, it is important to choose the range over
which the shape parameters are varied. The range is chosen by hand and
listed in table 5.1. The range of variations is chosen such that the resulting
update matrix B looks similar to matrix generated using the analvtical
method. The actual images are generated by applying a set of random
variations with a uniform distribution to the shape and texture model. The
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texture model has a size of 20.000 pixels, just as in the previous section.
This corresponds to a resolution of roughly 80 dpi, when the mean texture
is warped using the annotations,

A set of 300 images is generated to determine the update matrix. Figure
5.7 shows the results. The results of the gradient method are also plotted.
for comparison. The analytical method performs better than the numerical
method. The convergence rate of the analytical method is higher than the
numerical method for every scale factor.

The range of parameter variation, given in table 5.1, is specific for a
certain model and it’s texture resolution. So even though the results of
the numerical method might improve somewhat by adjusting the range of
variation that is used to gencrate the model, the analytical method gives
better results, without having to determine a set of parameters empirically.

5.7 Sensitivity of the fitting method

To determine whether the model and fitting method are sensitive enough
to detect small changes of rotation, a set of 6 x-ray images was taken of a
human hand skeleton. The x-ray source was rotated in steps of 1 degree.
For each rotation step, an image of the skeleton was taken.

The skeleton is held fogether by a set of metal wires. The wires are
visible as bright lines in the image. To make the model fitting possible, the
wires are removed from the image by using image processing. Pixels above
a certain intensity were marked as invalid. All invalid pixels were then
interpolated from neighboring pixels using MATLAB's griddata function. In
figure 5.8(c) the result of the processing can be seen. Near the horizontal
center of the bone, at the location of the metal wire, the 1mage is very vague,
but the wire itself is not visible.

After removing the wires, the model from section 5.5, shown in figure
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5.2{b), is fitted to each of the images. The initialization was done by man-
ually entering the pose parameters, as described in section 3.1. Using this
initialization, the model fitting is initialized using the mean shape. Any
change in shape parameters is the result of the fitting algorithm. Fitting
the model gives 6 sets of shape parameters, one set for each image. Using
the rotations and the model parameters, it ¢an be determined whether a
relation between the two exists. Since there are only six images, fitting a
high order polynomial through the data would always give a ‘perfect’ rela.
tion for the test set, but it would be nearly certain that this relation will
not hold for any other test set. Therefore a linear relation is assumed, and
correlation is used to determine the precision of the linear relation.

Four shape parameters have a correlation of which the absolute value is
higher than 0.95. This indicates that the model and the fitting algorithm
arc sensitive enough to detect small variations in the image caused by a
change of the projection angle. By calculating a linear regression between
the angle and each of the parameters, a shape can he estimated from the
angle. Figure 5.8(a) shows the estimated shapes for two different projection
angles. The shapes are calculated for very large changes of the projection
angles, for which the linear relation probably does not hold, but it does
give an impression on how the shape changes. While the width of the bone
hardly varies, the variation in height is clearly visible. This relation between
the height of a bonc and the projection angle may be general. Although the
height of a bone varies per patient, it remains nearly constant for one patient
over time. This measure may be used to determine whether two images of
one patient are taken under similar projection angles.

In section 5.5 the model of the single bone is shown to be very sensitive
to injtialization. The other model used in that section {(figure 5.6) was
less sensitive, but also less accurate. This model is also fitted to the 8
images, giving 10 shape parameters per image. The correlation between one
shape parameter and the rotation was -0.992, for four shape parameters the
absolute value of the correlation was higher than 0.9. This shows that this
model can also be fitted precisely enough to detect small changes in the
projection angle.

For each of the images, the JSW is measured. This is done using the
semi-automatic ethod of section 4.4.1. Figure 5.8(¢) shows the detected
edges for one of the images. Figure 5.8(d) shows the measured JSW as a
function of the projection angle. The correlation between the two variables
is 0.82. Because the JSW measurement is initialized manually for each of the
images, the results are less clear than those in section 4.4.2. However, there
is clearly a relation between the two. The relation is also large compared to
the variation in JSW over time, which can be as low as 50 pm per year.
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5.8 The projection algorithm

To test the quality of the projection method, it should be compared with
some ground truth data. A simple test is to sum the volume data in one
dimension and then compare it to an parallel (non-perspective} projection
with the same rotation parameters. For this special case the interpolation
kernel is only evaluated at infeger positions. Negative effects caused by
interpolation are then invisible in the output. The output of the splatting
algorithm is shown in figure 5.9. This result can be compared with the
summation of voxels in one dimension. The maximum relative error for
this example is less than 1071, This error can be explained by the limited
numerical precision of the calculations. Even though this test is not very
thorough. it shows that the calculation of coordinates in the 21D projection
plane is implemented correctly.

Another test can be done with a simple geometric shape, such as a cube.
It is fairly straightforward to calculate the line-integrals of a cube {or a non-
perspective projection. To test the interpolation of the projection method,
the cube is rotated slightly such that splats for non-integer voxel coordinates
are calculated.

Figure 5.10 shows the results of this test. A cube with a length of 55
is rotated by 15 degrees. In figure 5.10{(a} it’s projection is shown. The
horizontal line indicates the position of the slice shown in figure 5.10(h).
This figure shows the intersection for both the analytical and the projection
method. The difference between these two is shown as the error. The error
1s much larger than in the previous test. Even though the projection method
is not perfect, objects can be rendered with an error that is small compared
to the amplitude of the output.

Figure 5.9: Parallel (non-perspective) projection without rotation
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Conclusions and
recommendations

In this thesis volume data is used to analyze the sensitivity of JSW mea-
surements to rotation. A two-dimensional projection of the volume data
is made under varying angles of rotation. The JSW is then measured for
each projection, using an automatic method. By comparing the sensitivity
with the change in JSW caused by progression of rheumatoid arthritis, it
is shown that positioning of the hand is very important for reliable JSW
measurement. This result is confirmed by the JSW measuremcents done on
six 2D images of which the change in projection angle is known.

To estimate the positioning of the hand from a radiograph a model of
an X-ray image of a hand is made. Also a method is presented to fit the
model to an image. This methods works well for a simple shape model, but
it performs less for a more detailed model. It is also shown that the fitting
method is more reliable for models that cover a larger area of hand. The
analytical fitting method is compared to an often used numerical approach
and the analytical method is shown to have a higher convergence rate. Using
a set of 6 images with varying projection angles, it is shown that the model
and the fitting method can be used to detect small changes caused by a
varying projection angle.

While a complex shape model which includes multiple edges at the hot-
tom of the proximal phalanx cannot he fitted very well, a simpler shape
model can be fitted well, as long as the initialization is good. Since the
quantitative effect of rotation on the measured JSW differs per bone, it
18 unknown whether the model can be used to improve JSW-measurement
accuracy. More test data is needed to determine this.

There may be a general relation between a change in rotation and the ra-
tio between height and width of a bone. More testing is needed to determine
how general this relation is. If such a relation exists, the model parameters
can be used to determine if there is a change In rotation between two ra-
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diographs. This information could then be used to estimate the accuracy of
the JSW measurements.

To generate projections from 3D data, a splatting algorithm was used
in this thesis. When generating projections where each projected voxel is
at least as large a pixel, as is done in this thesis, the ray-casting method
is simpler to implement, since the interpolation kernel does not need to
be scaled. When a projection method has to be implemented again, it is
recommended to investigate the ray-casting method.

There are various extensions which could be made to the model and
the fitting method. The model presented in this paper does not handle
overlap of different objects, extending this model to handle overlap counld
very well improve the accuracy. In literature another warping method is
often used, the thin plate spline warp. Using this method might give better
results. Caleulating the partial derivative of this function, as is needed for
the model fitting method, however, might be difficult. The step size in
the model fitting method is constant. For non-linear optimization methods
many algorithms for adapting the step size are described in literature. A
good method could greatly reduce the number of iterations needed in the
fitting algorithm. Another useful addition would be automatic initialization
of the model. Currently, model initialization is done manually. By adding
automatic initialization, the results would be completely independent of the
user, which makes the results more consistent,

Finally. it is recommended to position the hand careful and consistent
hefore making a radiograph. Even though the method presented in this
thesis seems ugeful for analyzing radiographs, a lot of work has to be done
before JSW measurements can be corrected for a difference in rotation.
Consistent positioning of the hand would immediatcly give more precise
JSW measurements.
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