
Evaluating Recommender Systems
An evaluation framework to predict user satisfaction for recom-

mender systems in an electronic programme guide context

Joost de Wit B.Sc.

TNO Information and Communication Technology

Delft, May 16, 2008

Supervising committee:
Dr. Ir. Djoerd Hiemstra (University of Twente),
Ir. Dolf Trieschnigg (University of Twente),
Ir. Erik Boertjes (TNO),
Drs. Stephan Raaijmakers (TNO).

Preface

It was January 2007 when Dolf Trieschnigg, my supervisor for the course Information Re-
trieval, first told me about the availability of graduation projects at TNO Information and
Communication Technology. This was a bull’s eye since I just started to orientate myself on
a subject to investigate. I was also looking for a company where I could perform my research
since I wanted to get familiar with working in a professional environment. TNO Information
and Communication Technology was one of the companies that seemed interesting to me, so
I contacted Stephan Raaijmakers for more information. The subject of the proposed research
project, evaluating recommender systems, was completely new to me, but seemed fascinating.
And it is.

In September 2008 I started my research by crafting the goals and research questions for the
project. Now, almost nine months later, the research has resulted in the report that you just
started reading. It marks the end of my life as a student (at least for now) and the start
of my professional career at TNO. At TNO I can continue to work on personalisation and
recommender systems.

Although I wrote this thesis the research would never have been completed without the
support of other people. In the first place, I would like to thank my supervisors, Erik,
Djoerd, Stephan and Dolf for supervising me throughout the research project. They were
always there for me when I needed their help and/or expertise and provided loads of valuable
comments and suggestions. I also like to thank Jan Telman for his help and advice with
respect to statistics (and hiking through the Alps).

Furthermore I would like to thank all people that participated in the user study. Without
their devotion to the demanding study, the research would not have been completed.

I would also like to thank my lovely girlfriend Linda, my family and my colleagues at TNO
Information and Communication Technology for being all ears when I tried to explain my
approach and ideas to them. They helped me to abstract from all the details and forced me
to explain things clearly so I better understood it myself.

Finally, I owe special thanks to Mark Prins, who provided me with an inexhaustible source
of Tiësto’s Club Life, A State of Trance and other dance and trance music.

Joost de Wit,
May 16, 2008

Evaluating Recommender Systems 3

Contents

1. Introduction to the Research Project 9
1.1. Problem background . 10
1.2. Relevance of the problem . 11
1.3. Research question . 11
1.4. About TNO Information and Communication Technology 12
1.5. Research methods . 12

1.5.1. Engineering cycle . 12
1.5.2. Literature study . 13
1.5.3. User Study . 13
1.5.4. Software Development . 14
1.5.5. Validation of the model . 14
1.5.6. Questionnaire . 14

1.6. Reader’s guide . 15

2. State-of-the-Art in Recommender Systems 17
2.1. Recommendation approaches . 17
2.2. Collaborative filtering . 18

2.2.1. User-based collaborative filtering . 19
2.2.2. Item-based collaborative filtering . 21
2.2.3. Cold start problem . 21

2.3. Content-based filtering . 22
2.4. Hybrid forms . 22
2.5. Conclusion . 23

3. State-of-the-Art in Recommender System Evaluation 25
3.1. Evaluation approaches . 25

3.1.1. Off-line evaluation . 25
3.1.2. On-line evaluation . 26

3.2. Accuracy metrics . 26
3.2.1. Predictive Accuracy Metrics . 27
3.2.2. Classification Accuracy Metrics . 28
3.2.3. Rank Accuracy Metrics . 32

3.3. Coverage . 36
3.4. Confidence . 36
3.5. Diversity . 37
3.6. Learning rate . 37
3.7. Novelty and serendipity . 38
3.8. User satisfaction . 39

Evaluating Recommender Systems 5

Contents

3.9. Conclusion . 39

4. Conducting the User Experiment 41
4.1. Approach . 41
4.2. User Base . 42
4.3. Gathering the Content . 43
4.4. Training the Recommender . 43
4.5. Generating the recommendations . 43

4.5.1. Random recommendations . 44
4.5.2. Series level Collaborative Filtering . 45
4.5.3. Unique series level Collaborative Filtering 45
4.5.4. Demographics based Collaborative Filtering 45
4.5.5. User’s inverse rating . 46
4.5.6. Novel unique series level Collaborative Filtering 46
4.5.7. Unique known series level Collaborative Filtering 46

4.6. Rating the recommendations . 46
4.7. Dimensions and Metrics . 47

4.7.1. Accuracy . 48
4.7.2. Diversity . 51
4.7.3. Novelty . 52
4.7.4. Serendipity . 52
4.7.5. Programme overlap . 53

4.8. Evaluation setup . 53
4.8.1. Recommendation application . 54
4.8.2. Web application . 55

4.9. Conclusion . 55

5. Determination of Coherence 57
5.1. Processing the data . 57
5.2. User statistics . 58
5.3. Determine correlations . 59

5.3.1. Accuracy . 60
5.3.2. Diversity . 62
5.3.3. Novelty . 62
5.3.4. Serendipity . 63
5.3.5. Programme overlap . 64

5.4. Clusters / types of users . 64
5.4.1. User’s correlations . 65
5.4.2. Clustering the users . 65
5.4.3. Correlations per cluster . 67

5.5. Combinations of multiple variables . 68
5.6. Questionnaire . 69
5.7. Discussion . 69

6. Creating and Validating the Prediction Model 71
6.1. Creating the model . 71

6.1.1. Discriminant analysis . 72

6 Evaluating Recommender Systems

Contents

6.1.2. The prediction method . 73
6.2. Validating the model . 74

6.2.1. K-fold cross validation . 75
6.2.2. Evaluation results . 76

6.3. Discussion . 76

7. Conclusions and Future Work 79
7.1. Conclusions . 79
7.2. Future work . 81

A. Existing recommender systems 83
A.1. Amazon.com . 83
A.2. TiVo . 84
A.3. MeeVee . 86
A.4. Zie.nl . 86
A.5. Other recommender systems . 87
A.6. Open-source software libraries . 87

B. Recommender systems expertise 89
B.1. Telematica instituut . 89
B.2. Stoneroos . 89
B.3. Fraunhofer . 90
B.4. ChoiceStream . 91
B.5. Baynote . 91
B.6. Minekey . 91
B.7. Other commercial companies . 91
B.8. Universities . 92

C. Mathematical notations 93

D. Questionnaire Results 95

Summary 99

Bibliography 101

List of Figures 104

List of Tables 105

Evaluating Recommender Systems 7

1
Introduction to the Research Project

Nowadays the amount of content available to people is endless and it increases every minute.
It is impossible to go through all the items to decide whether they are useful or not, and
thus finding relevant items becomes more and more difficult. There are many situations in
which there are too many options to choose from. Suppose you want to buy a book from an
on-line bookstore selling millions of titles. Since most of the titles are unfamiliar to you, you
cannot decide whether you would like it or not, but among all these books there must be a
copy you will enjoy. Finding this item by browsing through the millions of titles offered by
the bookstore is impossible, the more since you probably cannot judge the item’s relevance
without reading it first. This problem is analogous to finding relevant CD’s, TV programmes,
mp3 files, movies, news articles, movie rentals, papers, results from search queries, (micro)
blog entries, and many many more. The growing popularity of user generated content like
movies on YouTube, photos on Flickr and blog entries on Blogger add to a further growth of
available content.

To overcome this so called ”information overload” problem, in the mid-1990s researchers
started to investigate recommender systems [AT05]. A recommender system (RS) uses knowl-
edge about your preferences (and those of others) to recommend items you are likely to enjoy.
Users can offer feedback on items they are familiar with for example, and the recommender
system uses the information to predict their preference for yet unseen items and subsequently
recommends items with the highest predicted relevance.

Many on-line shopping sites as well as other applications incorporate recommender systems in
order to offer personalised services and to boost their sales. Some popular examples include
Amazon.com, NetFlix, Last.fm, MyStrands and iTunes. Amazon.com recommends books,
music, video’s and many other products, while NetFlix recommends movies and Last.fm,
MyStrands and the iTunes store recommend music. Recommender systems also emerge in
Electronic Programme Guides (EPG), search engines and many other applications. TiVo is
a popular example of a television-viewing service that offers both an EPG and a recommen-

Evaluating Recommender Systems 9

Chapter 1. Introduction to the Research Project

dation system.

This research will primarily focus on recommender systems that recommend TV programmes
as part of an EPG, since the number of TV channels (and thus the number of TV shows) that
are available increased tremendously due to the introduction of digital television. Therefore
people watching television also suffer from information overloaded and recommender systems
start to emerge in this domain.

1.1. Problem background

Since recommender system research began in the mid-1990s many different algorithms for gen-
erating recommendations have been developed and nowadays a wide variety of recommender
systems exist. This fosters the need for means to evaluate and compare different systems.
Recommender system evaluation has proven to be challenging [HKTR04, AT05, HMAC02,
ZMKL05] however, since a recommender system’s performance depends on, and is influenced
by many factors. Moreover, there is no consensus among researchers on what attributes de-
termine the quality of a recommender system and how these attributes should be measured.
Some call a recommender system successful when it delivers accurate recommendations, while
others utilise user satisfaction as the main indicator of success. In fact over a dozen methods
to determine a recommender system’s quality can be identified in the literature [HKTR04].

Furthermore, the data set on which the recommender system operates greatly influences its
performance [HKTR04, SKKR01]. A recommender system that performs well on a data set
with many users and only a few items may perform worse on a set with a large number of items
and much less users. Other examples of data set characteristics that affect a recommender
system’s performance are the rating density (number of ratings per user) and the rating scale.

Closely related to the first issue is the fact that the goal for which the recommender system
is evaluated may differ. The evaluation objective can be to compare two recommendation
algorithms with respect to accuracy for example, but one might also be interested in a systems
potential to increase sales. Both goals require a completely different evaluation approach and
the measurement of different attributes.

Finally, the recorded quality of a recommender system is only a snapshot in time. Users, for
example, do not rate items consistently [CLA+], since their liking of a certain item can differ,
depending on mood, changing taste, and so on. On the other hand it is unlikely that users
will notice a difference of say 0.001 in measured accuracy.

Despite these challenges, accuracy, the recommender system’s ability to predict the user’s
rating for an item, is the evaluation attribute of choice for most researchers [HKTR04, AT05,
SPUP02, SPUP05, MH04, ZMKL05, CKP07, BHL07, ZK07, CdVP+07]. As a result they try
to optimise a recommender system’s performance with respect to accuracy. A recent example
of this is in Netflix Prize, an initiative of Netflix, which is an on-line movie rental company
that seeks to substantially improve the accuracy of their recommender system. The team
that improves the accuracy of their system by at least 10% wins $1,000,000.

In the context of this research it is assumed that the ultimate goal of a recommender system
is to satisfy its users and help them to cope with the information overload problem, since
user satisfaction is thought of as the driving force behind other goals such as the increase

10 Evaluating Recommender Systems

1.2. Relevance of the problem

of sales. Although it is likely that accurate recommendations are important it might not be
the only aspect that determines user satisfaction. To illustrates this consider a recommender
system that recommends TV programmes for example. When a user likes Friends most, the
system would be very accurate when it recommends 10 episodes of Friends. It is unlikely
however that the user will be pleased with this list. So, user satisfaction probably does not
always correlate with high recommender accuracy [ZMKL05, MAC+02, MRK06], therefore
one should not only focus on accuracy when evaluating a recommender system.

1.2. Relevance of the problem

The introduction of digital television made it possible to broadcast more TV channels using
the same amount of bandwidth as with traditional analogous television. Cable operators are
therefore able to broadcast more content to their customers. The number of channels that can
be broadcasted is still limited to the bandwidth of the cable however. When digital television
is offered over IP (IPTV) there is no need to stream channels simultaneously and therefore
the number of channels that can be offered is virtually endless. The amount of content that
becomes available through the television will increase even more with the introduction of
on-demand services such as video on demand. Recapitulating, people watching television are
likely to become overloaded with content and recommender systems can help them find TV
programmes that are relevant to them. Moreover, cable operators can offer a recommender
system through their set-top box and can thus distinguish themselves from other operators.

It is important that these recommender systems can be properly evaluated. An accurate
method for evaluation is mandatory to improve recommender systems help finding people
what they seek and to build systems that are valued by its users.

1.3. Research question

The ultimate goal of the research is to develop a method that is able to predict the user
satisfaction achieved by an EPG/RS system, based on various off-line metrics (i.e. metrics
that do not require user feedback). The research question that will be answered by the thesis
therefore reads:

How can the user satisfaction achieved by an EPG/RS system be predicted based on various
off-line metrics?

The overall research question is subdivided into multiple sub questions. These sub questions
are:

1. What recommendation techniques do exist, how do they work and what are their benefits
/ issues?

2. What is the state-of-the-art in recommender system evaluation? What aspects are
important to evaluate?

3. What is user satisfaction and how can it be measured?

4. How do the individual properties of a recommendation list and user satisfaction cohere?

Evaluating Recommender Systems 11

Chapter 1. Introduction to the Research Project

So, first detailed insight in the state-of-the-art in recommender systems and recommender
system evaluation will be gained. Furthermore methods for measuring user satisfaction will
be investigated. Then, after the user experiment has been completed, the coherence between
the observed user satisfaction and the off-line metrics will be scrutinised. Finally, based upon
the knowledge acquired by answering the sub research questions, the prediction method will
be developed. The methods that are used to answer the (sub) research questions will be
described in more detail in section 1.5.

1.4. About TNO Information and Communication Technology

The research will be performed at the Multimedia Technology division of TNO Information
and Communication Technology 1 in Delft, The Netherlands. TNO Information and Com-
munication Technology is a knowledge and innovation centre that brings together knowledge
on ICT and telecom. With this knowledge it helps companies, governmental organisations
and (semi) public organisations to innovate in ICT. TNO’s approach to innovation is not lim-
ited to technology only, it also focuses on business processes, user-friendliness and financial
aspects. The multimedia technology group’s expertise is primarily focused on media mining
and (digital) television.

1.5. Research methods

In order to perform a sound empirical research the use of proper and well-considered methods
is important. This section discusses the methodology used to answer the overall research
question as well as the sub research questions.

1.5.1. Engineering cycle

According to Wieringa the engineering cycle, the collection of tasks a rational problem solver
would follow to solve a world problem (i.e. the difference between the way the world is and
desired state of the world), has the following structure:

1. Problem investigation

2. Solution design

3. Design validation

4. Choose a solution

5. Implement the chosen solution

6. Implementation evaluation

So to solve a world problem the current situation must be investigated, possible actions must
be considered, these actions must be ranked according to their problem-solving effect, one
of these actions must be chosen and performed/implemented, and finally the result must be
evaluated to see whether it has the desired effect [WH06].

In concrete terms this results in the following steps to be taken:

1http://www.tno.nl/content.cfm?context=overtno&content=overtnosub&laag1=32&item id=63

12 Evaluating Recommender Systems

1.5. Research methods

1. Perform a literature study and an in-depth problem investigation.

2. Think of possible solutions that would solve the problem identified in 1. A possible
solution might be to use an existing data set to develop the prediction method using a
certain machine learning technique for example.

3. Verify the validity of each of the in step 2 proposed solutions (i.e. check to see whether
the solution indeed solves the problem).

4. Choose the solution that best solves the problem.

5. Then the solution chosen in step 4 needs to be implemented. This might entail the con-
struction of the evaluation application for example, or the development of the prediction
method using a certain technique.

6. The final step is to verify whether the problem is indeed solved and to what extent.
This means for example that the performance of the prediction method is evaluated.

Several of these steps are performed according to other research methods. These methods
will be described in the following subsections.

1.5.2. Literature study

The research starts with an in-depth literature study of about six weeks. First the context of
the problem (as described above) will be investigated and important aspects and issues with
respect to recommender systems and recommender system evaluation will be identified. Next
the aspects and issues identified will be investigated more thoroughly and detailed insight
in recommender systems (i.e. existing systems, techniques, etc.) and the state-of-the-art in
recommender system evaluation (i.e. methods, metrics, etc.) will be gained. The result of
this literature study is described in chapters 2 and 3 and appendices A and B.

1.5.3. User Study

For the user study the following steps are taken:

1. Determine goals

2. Analyse what data is necessary to achieve these goals

3. Design the application that will be used to gather the data

4. Validate the design

5. Implement and test the evaluation application

6. Deploy the application

First the goals of the user study are determined, after which an analysis will be made of the
data that should be gathered in order to be able to achieve these goals. Next the evaluation
application needed to gather the data must be designed and a static prototype will be build.
This prototype is then evaluated using a number of ”friendly users”, users that know the goals
of the user study and help to verify whether these goals would be achieved with the prototype.
Then the prototype is extended to the fully operational evaluation application. Again the
friendly users help to test and evaluate the system. After the evaluation period, which will

Evaluating Recommender Systems 13

Chapter 1. Introduction to the Research Project

last one week, the friendly users are interviewed and fill out a short questionnaire. After their
feedback is incorporated in the evaluation application it will go ”live” and everybody can
subscribe to the research.

The user study will be described in more detail in Chapter 4.

1.5.4. Software Development

During the software development phase, in which the evaluation application will be developed,
an iterative development process will be applied. An iterative development process allows
you to cope with advancing insights that arise while building the system [Som00]. Each of
the iterations encompasses a number of subsequent tasks: requirements elicitation, analysis
and design, implementation and testing. Once multiple iterations are completed and the
evaluation application is ”finished” it will be deployed. The iterative development process is
schematically displayed in Figure 1.1.

!"#$%&"'"()*+
,"*%-(+

.'/0"'"()123(+
4"*)+

,"/035'"()+

Figure 1.1.: Iterative development process

1.5.5. Validation of the model

To verify the validity of the model that is created to predict the user satisfaction based upon
a number of off-line metrics, a cross-validation method will be applied. With cross-validation
the data set is divided into training/validation set pairs that share data. This way even
relatively small data sets can be used for validating the model [Alp04].

Section 6.2 will describe the validation of the prediction model in great detail.

1.5.6. Questionnaire

After the user study is completed the participants of this study are asked to complete a short
questionnaire of ten open-ended and closed-ended questions. The purpose of the questionnaire
is to learn from the participants, who are likely to be experienced users of a TV programme
recommender system by then. The questionnaire will try to discover how important the
dimensions that will be investigated are to the users (or at least how important they think

14 Evaluating Recommender Systems

1.6. Reader’s guide

these dimensions are to them). Furthermore the questionnaire will be used to verify how the
dimensions rated by the users are interpreted and whether important dimensions were missed.

An on-line questionnaire will be used to answer these questions since it is a quick and easy
way to perform a survey under a large number of people [Bre06]. Moreover, an on-line
questionnaire makes it easy to compile and analyse the data.

1.6. Reader’s guide

The target audience of this thesis primarily consists of master students and researchers in the
field of (EPG) recommender systems that focus on the evaluation of such systems. Another
audience for which this thesis is relevant consists of professionals that actually want to eval-
uate a recommender system. Furthermore people that tend to build a recommender system
or perform research on recommendation algorithms might benefit from this thesis. Some
background knowledge with respect to mathematics and mathematical notations is desirable.

The structure of this thesis is largely analogous to the sub research questions presented in
section 1.3 and the steps taken in the engineering cycle described in subsection 1.5.1. Chapter
2 describes the results of the literature study that investigated existing recommender system
algorithms while Chapter 3 focusses on the state-of-the-art in recommender system evaluation.
Next, Chapter 4 explains how the user study carried out in this research was conducted, what
metrics were measured, how they were measures, and so on. Chapter 5 elaborates further
on the coherence discovered among user satisfaction and numerous evaluation metrics. The
ultimate goal of this research, the development and validation of a prediction method to
predict user satisfaction, will be described in Chapter 6. Finally the thesis is concluded in
Chapter 7. This chapter also describes future work provoked by this research.

Evaluating Recommender Systems 15

2
State-of-the-Art in Recommender Systems

Since the appearance of the first papers on recommender systems in the mid-1990s a lot of
research has been conducted in this area [AT05]. Many algorithms and techniques have been
proposed by both industry and academia, and researchers are still working to improve rec-
ommender systems. This chapter gives an overview of existing recommendation approaches,
as well as the state-of-the-art in the field.

In this chapter the following will be discussed

• Collaborative filtering algorithms (Section 2.2).

• Content-based filtering algorithms (Section 2.3).

• Hybrid forms that combine content-based and collaborative filtering (Section 2.4)

2.1. Recommendation approaches

Recommender systems try to predict what items a specific user would find interesting. These
predictions are usually based on information about the user (called a user profile, user model,
or user preferences), its interaction history (what the user bought, viewed, watched, read,
etc.), properties of the items (called item features) and/or other users. Most systems try to
predict how a user would rate a specific item, based upon this information, and then recom-
mend the items with the highest ratings. In order to predict these ratings, different prediction
techniques can be used. These prediction techniques come in three varieties: content-based,
collaborative (or social) based and hybrid forms [AT05, vS05, AK07].

Content-based prediction techniques make recommendations based on the features of items
that a user liked in the past. Recommender systems using this technique recommend items
that are similar to these items. Collaborative filtering recommender systems recommend items

Evaluating Recommender Systems 17

Chapter 2. State-of-the-Art in Recommender Systems

based on the items that people with a similar taste liked in the past. The third approach is
a hybrid form that combines both collaborative and content-based techniques.

Recommender systems can also be classified according to their algorithmic technique [BHK98].
Two different classes can be identified:

• Memory-based techniques calculate recommendations in real-time over the entire data
set.

• Model-based techniques learn a model from previous user activities and use this model
to classify new content according to its interestingness.

Usually the prediction approaches mentioned above try to estimate a utility function u :
A × B → R0, that, given a user ai ∈ A and an item bk ∈ B returns how much the user will
like that item. A and B are the sets of all users and items respectively. R0 is a measure
of utility, usually represented by an integer or real value. The items that are already rated
(either implicitly or explicitly) can be gathered in a rating matrix R = A × B . Table 2.1
shows an example of a rating matrix where each cell is a rating ri(bk) of user ai for item bk .
An empty cell means that the user did not rate the item. It is the recommender system’s
task to predict the value that should be in this cell.

User
Item 1 2 3 4
A 5 3 4
B 4 5
C 2 4
D 4 4
E 3 2 2
F 2 4
G 5 5

Table 2.1.: A sample rating matrix

In addition to algorithms that try to predict an item’s utility to a user, there are also algo-
rithms that try to order the items based on their interestingness without assigning an absolute
utility value to it. This approach is called preference-based filtering and is focusing on the
relative preference to a user [AT05]. Preference-based filtering will not be discussed in further
detail. Collaborative filtering, content-based filtering and hybrid recommendation approaches
will be discussed in the following sections.

2.2. Collaborative filtering

Collaborative filtering (CF) is the most widely used prediction technique in recommender
systems [MH04, ZMKL05]. The technique makes recommendations based on ratings that
users have assigned to items (i.e. the ratings in the rating matrix). There exist two different
approaches to collaborative filtering: user-based and item-based CF. The underlying idea of
user-based CF is that users who have rated the same items the same way (or at least similar)
are likely to have a similar taste. These users are therefore likely to rate the same item the

18 Evaluating Recommender Systems

2.2. Collaborative filtering

same way. Item-based CF on the other hand, assumes that items that have been rated the
same way in the past are probably similar items. A user will probably rate the item the same
as he rated similar items.

2.2.1. User-based collaborative filtering

User-based CF consists of three basic steps. First a neighbourhood of users that are most
similar to the active user (i.e. the user requesting recommendations) is constructed. This is
done by calculating the similarity sim(ai , aj) between user ai and all other users aj ∈ A. The
l most similar users then form ai ’s neighbourhood. In the second step the active user’s ratings
are predicted for items that are new to him (i.e. not yet rated by the user), but are rated by
members of his neighbourhood. The third and final step is the construction of a recommen-
dation list based on the predicted ratings. The prediction list does not necessarily consist of
the top-N rated items, since list diversification might be applied for example [ZMKL05].

In the neighbourhood formation step the similarity between the active user and all other users
must be calculated. There are several algorithms that provide a measure for user similarity.
Two of them, Pearson’s correlation and the cosine-based approach are described next.

sim(ai , aj) =

∑
bk∈Bij

(ri(bk)− ri)(rj (bk)− rj)√∑
bk∈Bij

(ri(bk)− ri)2
∑

bk∈Bij
(rj (bk)− rj)2

(2.1)

Pearson’s correlation coefficient is a measure for the strength and direction of a linear rela-
tionship between two variables. Equation 2.1 shows the Pearson correlation coefficient that
calculates the similarity between two users. In this equation Bij indicates the set of items
that are rated by both users ai and aj . ri(bk) is ai ’s rating from item bk and ri is the average
rating value for user ai as calculated in Equation 2.2. In this equation Bi is the set of items
rated by user ai .

ri =
1
|Bi |

∑
bk∈Bi

ri(bk) (2.2)

In the cosine-based approach the users are considered as vectors −→ai and −→aj in a m-dimensional
space, where m = |Bij |. The vectors thus represent the rating values for the items that were
rated by both users. The similarity is then calculated as the angle between those two vectors,
as shown in Equation 2.3.

sim(ai , aj) = cos(−→ai ,
−→aj)

=
−→ai • −→aj

|−→ai | · |−→aj |

=

∑
bk∈Bij

ri(bk) · rj (bk)√∑
bk∈Bij

ri(bk)2
√∑

bk∈Bij
rj (bk)2

(2.3)

Evaluating Recommender Systems 19

Chapter 2. State-of-the-Art in Recommender Systems

When Pearson’s correlation is applied to the running example as shown in Table 2.1, this
results in coefficients presented in Table 2.2. The table shows that users 3 and 4 are very
similar (correlation coefficient of 1.0), based on their ratings, while users 1 and 2 appear to
be each others opposites (strong negative correlation).

User
User 1 2 3 4
1 1.0000 -0.9978 0.5335 0.9962
2 -0.9978 1.0000 0.8682 -1.0000
3 0.5335 0.8682 1.0000 1.0000
4 0.9962 -1.0000 1.0000 1.0000

Table 2.2.: Pearson’s correlation coefficient indicates similarity among users

Once the user similarities are calculated, a neighbourhood Ãi is formed of the l users that
are most similar to the active user ai . This neighbourhood is then used to make a prediction
pi(bk) for each item bk that is rated by at least one neighbour, but not by the active user
itself. The ratings of the neighbours are used to make this prediction. Equations 2.4a-c show
three approaches, as identified in the literature, to aggregate the neighbours’ ratings to form
the prediction [AT05].

pi(bk) =
1

|Ãi |

∑
aj∈eAi

rj (bk) (2.4a)

pi(bk) = σ
∑

aj∈eAi

sim(ai , aj) · rj (bk) (2.4b)

pi(bk) = ri + σ
∑

aj∈eAi

sim(ai , aj) · (rj (bk)− rj) (2.4c)

The normalisation factor σ is defined as:

σ =
1∑

aj∈eAi
|sim(ai , aj)|

Equation 2.4a just takes the average rating of all neighbours Ãi . Equation 2.4b takes the sim-
ilarity between the active user and each of its neighbours into account and weights the rating
of more similar users higher (i.e. a weighted sum approach). On top of this Equation 2.4c
also takes into account how a certain user rates items on average.

In the running example, user 3 (a3) his neighbourhood (Ã3) would consist of users 2 and 4
(when l = 2), since these two users are most similar to him. When the recommender tries to
predict a3’s rating for item C it uses the ratings of a2 and a4, and combines them using one
of the aggregation methods described in Equation 2.4. When Equation 2.4a is applied the

20 Evaluating Recommender Systems

2.2. Collaborative filtering

predicted value p3(C) would become 1
2 × 2 + 4 = 3. Equation 2.4b results in p3(C) = 3.0706

and Equation 2.4b in p3(C) = 3.2313.

Once the active user’s rating is predicted for all items rated by at least one of its neighbours,
a recommendation list can be constructed and presented to the user. Usually this is done by
taking the N items that have the highest predicted rating, but other approaches exist as well.
One such approach is presented in [ZMKL05].

2.2.2. Item-based collaborative filtering

Item-based CF rests on the assumption that users that appreciate a certain item bk probably
also like a similar item bl (and thus give them the same rating). The three step approach
that is used in user-based CF is also applicable to item-base CF, besides that similarities are
calculated over pairs of items rather than users.

Pearson’s correlation can also be applied to calculate the similarity among items, based on the
ratings of all users. For the running example this would result in de correlation coefficients
as shown in Table 2.3.

Item
Item A B C D E F G
A 1.0000 -1.0000 1.0000 0.8944 -1.0000
B -1.0000 1.0000 1.0000 -0.9487 1.0000
C 1.0000 1.0000 1.0000 -1.0000 -1.0000
D 1.0000
E 0.8944 -0.9487 -1.0000 1.0000 -1.0000
F -1.0000 1.0000 -1.0000 -1.0000 1.0000
G 1.0000

Table 2.3.: Pearson’s correlation coefficient indicates similarity among items

These similarity measures can be used to determine the items that are most similar to the
item for which the prediction is calculated (analogous to the neighbourhood in user-based
CF). Based on the ratings for these similar items the predicted rating of the active user for
the item is calculated.

As shown by the examples the number of similarities that need to be calculated differs when
using user-based or item-based collaborative filtering. When user-based CF is applied roughly
1
2 |A|

2 similarities must be calculated, compared to 1
2 |B |

2 with item-based CF. So when the
number of users is much smaller than the number of items it is computationally cheaper to
apply user-based CF. Otherwise it is cheaper to use item-based CF.

2.2.3. Cold start problem

One of the main difficulties with collaborative filtering is that it suffers from the cold start
problem. The cold start problem occurs when the recommender system cannot draw any
inferences for users or items about which it has not yet gathered sufficient information. The
first time a user visits a specific recommender system for example it did not have rated any of
the items. Hence the recommender system does not know what that user’s likes and dislikes

Evaluating Recommender Systems 21

Chapter 2. State-of-the-Art in Recommender Systems

are. The same problem occurs when a new item is added to the recommender. Since nobody
has ever rated that item the recommender system cannot know to which other items it is
similar. Hence the recommender cannot recommend the item until a substantial number of
users rated it.

2.3. Content-based filtering

In content-based recommendation systems, items are characterised by a set of predefined
features. A movie for example, could be characterised by its cast, genres, theme, director
and a description of the plot. This metadata can be provided explicitly or extracted from
the content. Like items, users also have a profile. A user’s profile contains information about
its tastes, preferences and needs. Users can construct such a profile explicitly, but it can also
be learned from the user’s interaction with the recommender system. Content-based filtering
uses these profiles to determine the interestingness of each item and recommends those that
are most interesting.

There are two common approaches to determine an item’s interestingness, a heuristics-based
and a model-based approach. In a heuristics-based approach the profile of an item bk is
defined as a vector −→wk = (w1k , ...,wnk) of weights for each feature. These weights can be
TF-IDF (term frequency-inverse document frequency, a concept from information retrieval)
weights for example [Sal89, SB87]. A user’s profile is specified likewise: −→wi = (w1i , ...,wni).
The interestingness of item bk to user ai can then be calculated using the cosine similarity
measure as shown in Equation 2.3.

In a model-based approach predictions for an item’s interestingness are not based on a heuris-
tic formula, but on a model learned from the underlying data. Such a model is constructed
using techniques such as Bayesian classifiers, machine learning, decision trees and neural
networks [AT05].

Content-based filtering techniques are limited by the features of the items that are recom-
mended by the system. When a feature is not associated with an item, the recommender
system cannot use it in the recommendation process. Suppose that the movie ”One flew over
the cuckoo’s nest” is not labelled with the actor ”Jack Nicholson”, a Jack Nicholson fan might
not get this movie recommended. It thus is important to have a sufficient set of features, but
feature extraction has proven to be either labour intensive (when it is done manually) or error
prone (when it is done automatically) [AT05].

Another issue with content-based recommender systems is that they only recommend items
that have a high similarity score with respect to the user’s profile. This implies that only items
that are similar to items that were rated in the past get recommended. This issue is known
as overspecialisation and implies that users will never receive serendipitous recommendations
[AT05].

2.4. Hybrid forms

Hybrid recommender systems combine both collaborative and content-based filtering to over-
come the limitations (as described above) that each of the individual approaches suffers
from. Adomavicius and Tuzhilin [AT05] identified four methods to combine collaborative and
content-based filtering:

22 Evaluating Recommender Systems

2.5. Conclusion

1. let both the content-based and collaborative technique make a prediction and then
combine them,

2. incorporate some content-based techniques into a collaborative filtering approach,

3. incorporate some collaborative filtering techniques into a content-based approach, and

4. fully incorporate both techniques when building a hybrid recommender system.

The ratings predicted by each of the techniques can be combined by a linear combination
or voting scheme for example, but it’s also possible to choose one of the results based on
certain metrics (like confidence). An example of incorporating content-based filtering in a
CF recommender system is to construct a user’s neighbourhood based on the user profiles,
instead of rating history. The third approach can encompass dimension reduction techniques
on a group of content-based profiles for example. A single unifying recommendation model
can use both content-based and collaborative characteristics (like age and gender of users or
the genre of movies) in a single rule-based classifier for example.

2.5. Conclusion

This chapter presented three types of prediction strategies that can be used to predict a
user’s rating for an item that is not yet rated by him. The first and most widely used
strategy, called collaborative filtering, makes recommendations based on ratings that other
users have assigned to items. Based on these ratings the recommender tries to find either
users that are most similar to the active user or items that are similar to the item for which
the user’s rating is predicted. The first approach is called user-based collaborative filtering,
the latter is called item-based collaborative filtering.

The second strategy presented in this chapter is called content-based filtering. With content-
based filtering items are represented by a set of characteristics, called features. Each user has
a user profile that describes which features are valued by the user and which are not. The
recommender system then tries to match the feature vectors of the items against the user
profile in order to predict the user’s rating.

Since both techniques have limitations hybrid approaches were developed. By combining
collaborative and content-based filtering techniques the cold start problem that collaborative
filtering suffers from can be overcome for example. So, in conclusion, hybrid recommender
systems combine the best of two worlds and help to overcome the limitations of both collab-
orative and content-based filtering.

Evaluating Recommender Systems 23

3
State-of-the-Art in Recommender System

Evaluation

The previous chapter presented the most commonly used recommendation techniques. Each
technique has adherents that claim it to be an improvement over some other techniques, given
a particular purpose. However, no common notion of recommender system quality exists and
therefore comparing different systems is difficult. Many researchers recognised this problem
and several contributions that try to solve it have been presented. This chapter will present
the state-of-the-art in recommender system evaluation.

In this chapter the following will be discussed

• Approaches to evaluate recommender systems (Section 3.1).

• More than 15 different evaluation metrics in 7 dimensions (Sections 3.2–3.8)

3.1. Evaluation approaches

Recommender systems can be evaluated using off-line analysis, various live user experimental
methods or a combination of these two approaches [HKTR04]. Off-line analysis and live user
experiment approaches will be discussed in the following subsections.

3.1.1. Off-line evaluation

In an off-line evaluation, no actual users are involved and an existing data set (as described
in the following section) is used. The data set is split in a test and a training set. Using the
ratings in the training set the recommendation algorithm tries to predict the ratings in the
test set, which can then be compared to the actual ratings in the test set.

Evaluating Recommender Systems 25

Chapter 3. State-of-the-Art in Recommender System Evaluation

In K-fold cross validation (a common cross validation technique), the data set is partitioned
into K subsets. From these subsets, one is retained and used as the test set, the other subsets
are used as training set. This process is repeated K times, each time with a different test
set. Another commonly used approach is the leave-one-out cross-validation. This is in fact
a special case of the K-fold cross validation, where K equals the number of users in the data
set. Analogous to the leave-N-out approach the training set can have a specific size, like 2, 5,
10. This approach is referred to as ”given 2”, ”given 5”, et cetera.

The recommendation algorithm is evaluated by comparing the predicted and the actual ratings
in the test set. The results can be analysed using several metrics, as discussed in sections
3.2–3.8.

Off-line evaluations have the advantage that they are quick, economical and easy to conduct
on a large amount of data, several data sets and with multiple algorithms. When the data
set includes timestamps indicating when a certain item was rated, it is even possible to
repeat all the recommender system’s interactions. Off-line evaluation, however, only allows
the evaluation of predictions for items that were actually rated by the user, so sparsity limits
the set of items that can be evaluated. Moreover off-line metrics cannot measure ”true” user
satisfaction.

3.1.2. On-line evaluation

In an on-line evaluation users interact with a running recommender system and actually
receive recommendation. Feedback from the users is then collected by asking or observing
them. Such a live user experiment may be controlled (e.g., randomly assign users to different
conditions) or it may be a field study in which a recommender system is deployed in real life
and the effects of the system are observed. Conducting such evaluations is time consuming
and difficult, but for this research it is inevitable to cunduct an on-line evaluation since it is
the only way to measure true user satisfaction.

Ranking Rating
Item User RS User RS
A 1 1 5 5
B 2 5 4 3
D 3 4 4 4
G 4 6 4 2
E 5 3 3 5
C 6 2 2 5
F 7 7 2 2

Table 3.1.: Rating example

3.2. Accuracy metrics

From the countless number of dimensions you could measure, accuracy is by far the most
adopted [HKTR04, AT05, SPUP02, SPUP05, MH04, ZMKL05, CKP07, BHL07, ZK07, CdVP+07].
An accuracy metric empirically measures to what extent a ranking, as predicted by a recom-
mender system, differs from the actual ranking provided by the user. Accuracy metrics can

26 Evaluating Recommender Systems

3.2. Accuracy metrics

measure how well a user’s ratings can be reproduced by the recommender system, but also
how well a user’s ranked list is predicted. To illustrate this subtle difference an example is
shown in Table 3.1. On the left the recommender system (RS column) tried to reproduce the
true user ranking (User column), while on the right it tried to reproduce the user’s rating for
each of the items A to F.

Herlocker et al. identified three classes of accuracy metrics: predictive accuracy metrics,
classification accuracy metrics and rank accuracy metrics. The following subsections will
describe each of these classes and present metrics that are most commonly used.

3.2.1. Predictive Accuracy Metrics

Predictive accuracy metrics measure to what extent a recommender system can predict ratings
of users. These metrics are especially useful for systems that display the predicted ratings to
their users. Since rated items have an order, predictive accuracy metrics can also be used to
measure a system’s ability to rank items.

A widely used predictive accuracy metric is the mean absolute error, or MAE. Mean absolute
error takes the sum of the difference between the user’s rating and the predicted rating and
divides it by the number of items considered (as shown in Equation 3.1).

MAE =
1
|Bi |

∑
bk∈Bi

|ri(bk)− pi(bk)| (3.1)

With Bi denoting the items rated by user ai . According to Equation 3.1 the recommender
system’s predictions as shown in Table 3.1 have a mean absolute error of (|0|+ |1|+ |3|+ |0|+
| − 2|+ |0|+ |2|)/7 = 1.143.

Many variations of mean absolute error exist, such as mean squared error (MSE), root mean
squared error (RMSE) and normalised MAE (NMAE). The mean squared error measure
emphasises large errors by squaring each individual error, as shown in Equation 3.2. RMSE
is simply defined as the root of MSE.

MSE =
1
|Bi |

∑
bk∈Bi

(ri(bk)− pi(bk))2 (3.2)

In the running example this would result in a mean squared error of (02 + 12 + 32 + 02 +
(−2)2 + 02 + 22)/7 = 2.571. The RMSE would be

√
2.571 = 1.604.

Normalised MAE [GRGP01] is mean absolute error, multiplied by a normalisation factor σ
to normalise the value with respect to the range of rating values. This normalisation is done
in order to allow inter data set comparisons.

NMAE = σMAE =
1

rmax − rmin
MAE (3.3)

Herlocker et al. found that mean absolute error is less appropriate when the granularity of
true preference is small. Errors in the recommender system’s predicted ratings only affect

Evaluating Recommender Systems 27

Chapter 3. State-of-the-Art in Recommender System Evaluation

the user when it results in erroneously classifying an interesting item as not interesting or
vice versa. Carenini [Car05] elaborated further on this and identified that MAE is missing a
key aspect of the recommendation process. Caranini states that a RS user wants to decide
on whether an item is interesting or not, and therefore the value of a recommender system
depends on how it will impact users in making the right choice. Consider for example a user
a who will only watch movies rated 4.0 or higher (on a scale from 1-5). When the RS makes
the following predictions:

1. pa(b1) = 1, while ra(b1) = 3

2. pa(b2) = 3, while ra(b2) = 4

The first prediction has an absolute error of 2, but won’t affect the user since he is not
interested in item 1 anyway. The second item, however, is of interest to the user, but because
of the erroneous prediction (absolute error of 1) it will not be considered as interesting.

Carenini presented a user-specific accuracy metric that evaluates a RS’s ability to help users
selecting interesting items. This metric, called mean user gain, assumes a user-specific thresh-
old θi in order to calculate the quality of a recommendation:

UG(pi(bk)) =

{
ri(bk)− θi if pi(bk) ≥ θi

θi − ri(bk) otherwise

This user gain function is then used to determine the mean user gain in a similar way as the
mean absolute error is calculated (see Equation 3.4).

MUG =
1
|Bi |

∑
bk∈Bi

UG(pi(bk)) (3.4)

Assume for example that the user’s threshold θi = 3. Then the main user gain would be
(2 + 1 + −1 + 1 + 0 + 1 + −1)/7 = 0, 429. Note that, as opposed to the metrics presented
above, a higher value means a better performance.

The mean user gain is tending towards the class of accuracy metrics presented in subsection
3.2.2, since it distinguishes two possible situations: the user is interested in the item or not.

3.2.2. Classification Accuracy Metrics

The second class of accuracy metrics consists of metrics that measure to what extent a RS is
able to correctly classify items as interesting or not. The defect’s magnitude with respect to
the user’s true rating and the rating predicted by the RS is ignored in these metrics.

Precision and recall are two dominant measures for evaluation from the Information Retrieval
field, but they are popular in RS evaluation as well. Precision is defined as the ratio of relevant
items selected to the number of items selected. In other words, precision is a measure for the
efficiency of relevant item selection. Precision is defined in Equation 3.5, where Brs is the set
of selected items that are relevant, and Bs the set of selected items.

28 Evaluating Recommender Systems

3.2. Accuracy metrics

Precision =
|Brs |
|Bs |

(3.5)

Recall, shown in Equation 3.6, is defined as the ratio between the number of relevant items
selected and the total number of relevant items in B , the set of all items. In other words,
recall measures the breadth of the result.

Recall =
|Brs |
|Br |

(3.6)

Precision and recall require the ratings to be mapped onto a binary scale (relevant vs. not
relevant). This can be achieved by considering items rated 1-3 as non relevant and those rated
4-5 as relevant for example. In the running example the set Br of relevant items would be
{A,B ,D ,G}. Suppose a RS would present the set Bs = {A,C ,E} to the user, the precision
of this recommendation would be |{A,B ,D ,G}∩{A,C ,E}|/|{A,C ,E}| = 1/3 and the recall
|{A,B ,D ,G} ∩ {A,C ,E}|/|{A,B ,D ,G}| = 1/4.

Both precision and recall rely on the notion of relevance. Relevance, however, is determined
by a user’s taste at a certain moment in time, which makes it impossible to depict one fixed
threshold that classifies an item for a certain user as relevant or not (hence the mean user
gain metric, presented earlier). Furthermore a RS recommends items based on the likelihood
that a user will be interested in them, but ultimately it is the user who decides whether an
item was indeed relevant.

Although precision and recall are two different measures, they cannot be considered apart from
each other. It has been observed that precision and recall are inversely related. Furthermore
the number of recommendations returned by the RS relates to precision and recall. Generally,
when the number of recommended items increases, so does the recall, while precision decreases.
There exist several methods that take both precision and recall into account and produce a
single metric. Probably the most widely used one is the F-measure, as shown in Equation 3.7,
with α = 1.

Fα = (1 + α)
Precision × Recall

α× Precision + Recall
(3.7)

Other approaches that are often taken to relate precision and recall are to plot the average
precision against different levels of recall or to compute the mean average precision (MAP).
With mean average precision the average precision at the rank of each relevant document is
calculated as shown in Equation 3.8.

AP =
1

|Brs |
∑

b∈Brs

Precision(b) (3.8)

Two quite different classification accuracy metrics are the receiver operator characteristic
(ROC), and the related customer ROC curves [SPUP05, HKBR99, SPUP02]. A ROC curve
shows the hit/miss rates for different values of a classification threshold, but instead of varying

Evaluating Recommender Systems 29

Chapter 3. State-of-the-Art in Recommender System Evaluation

a threshold one can also vary the top n (a, b) tuples of an ordered recommendation list. The
hit and miss rates are defined as follows:

hit rate =
|Btp |

|Btp |+ |Bfn |

miss rate =
|Bfp |

|Bfp |+ |Btn |

Here Btp (which equals Brs), Bfp , Btn and Bfn are the sets of true positive, false positive, true
negative and false negative items respectively. ROC curves are constructed as described by
Schein et. al. [SPUP05, SPUP02].

1. Construct an descending list of tuples (ai , bj)k according to the ”≥” relation on the
predicted ratings pi(bj).

2. For each 0 ≤ n ≤ k , calculate the hit/miss rate caused by predicting the top n (ai , bj)k
by magnitude and plot this point.

In practice n will be incremented by some fixed amount in order to approximate the curve.
The ROC curve for the toy example shown in Table 3.1 would be calculated as follows:

Step 1: All predictions in Table 3.1 are made for the same user, say a1. Ordering the tuples
(a1, bj) in descending order with respect to p1(bj) results in the list [(1,A), (1,C), (1,E), (1,D), (1,B), (1,F), (1,G)]
of length k = 7.

Step 2: Assume a step size ∆k = 1. Starting with n = 0 will result in (0, 0). n = 1 will result
in (1, 0), n = 2 in (1, 1), n = 3 in (1, 2), ..., n = k = 7 in (4, 3). These co-ordinates are then
plotted in a graph, as shown in Figure 3.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Miss rate

H
it

ra
te

Figure 3.1.: An example ROC curve

One convenient property of ROC curves is that random recommendations can be represented
as a straight line from the origin to the upper-right corner of the graph, since at each time
half of the recommendations is a hit and the other half is a miss. A perfect recommender will
result in a curve that goes from the origin straight to the upper-left corner and then straight
to the upper right one, since first all ”true” relevant items are identified as such (100% hit
rate) and then all ”true” irrelevant ones.

30 Evaluating Recommender Systems

3.2. Accuracy metrics

Another advantage of ROC curves is that they can be summarised by a single metric rep-
resenting the area under the curve. This makes it easier to compare different recommender
systems. A random recommender would have an expected area of 0.5, while a perfect recom-
mender has area 1.0.

Schein et al. [SPUP05] criticised ROC curves since they reward recommender systems that
skew the number of recommendations to the users who rate most highly or are most active.
This can boost the performance and may lead to a misleading sense of performance. There-
fore Schein et al. proposed the Customer ROC (CROC) metric as a complement to ROC.
CROC curves measure to what extent a RS can provide good recommendations across a wide
user base. The curve is constructed similar to ROC curves, but requires the number of rec-
ommendations to be equal to each user (and thus normalises the number of data point per
user).

1. For each person ai , order the predicted ratings pi(bk) in a list by magnitude imposing
an ordering: (bk).

2. For each 0 ≤ n ≤ k , calculate hit/miss rates caused by recommending the top predicted
min(n, |Bai |) items to each user ai from their own list and plot the hit rate against the
miss rate.

Here Bai is the set of items in the test set recommended to user ai .

For CROC curves, the two properties described above do not hold. The curve of a perfect
recommender can have an area under curve that is less than 1.0 for example. This is the case
when the test set contains three people each with six observations (so |Bai | = 6 for i = 1, 2, 3):
user a1 likes four out of six items, user a2 likes two out of six items, and user a3 likes all six
items. When four items are recommended to each user, two false positives are encountered
at user a2 and thus the area under the curve decreases. In order to enable comparison, the
curve for the perfect recommender, given the test set, is also plotted in the graph as shown
in Figure 3.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Miss rate

Hi
t r

at
e

Optimal performance
Achieved performance

Figure 3.2.: Example of a CROC curve

Evaluating Recommender Systems 31

Chapter 3. State-of-the-Art in Recommender System Evaluation

3.2.3. Rank Accuracy Metrics

The third class of accuracy metrics identified by Herlocker et al. is the class of rank accuracy
metrics. These metrics evaluate a recommender system’s ability to recommend an ordered
list of items to a user, assuming that the order of the items on the list is important. Suppose
for example that a recommender system recommends the items A, B and D in this particular
order to the user from the running example. Although the user finds all of these items relevant,
he might prefer D over B and therefore would order the items (in order of preference) as A,
D, B. Rank accuracy metrics take this into account and penalise the recommender for not
producing the right order of items.

There are several correlation measures that can be used to determine the similarity of two
lists of recommendations. The most widely used are Spearman’s correlation coefficient and
Kendall’s Tau correlation. Spearman’s ρ correlation is a special case of the widely used
Pearson product-moment correlation coefficient (as described in section 2.2). The main dif-
ference is that the data is converted to rankings before calculating the coefficient [HKTR04].
Equation 3.9 shows Spearman’s rank correlation coefficient.

ρ =
∑

(x − x)(y − y)
n · stdev(x) · stdev(y)

(3.9)

Here x1, ..., xn ∈ x and y1, ..., yn ∈ y are the ranks of the items listed in the user’s ranked
list and the recommendation list respectively. Table 3.2 shows an example of the data point
(right) used in the calculation of Spearman’s rank correlation coefficient for the ranked lists
shown on the left. The corresponding ρ = 0.5.

Rank User RS Item Spearman
1 A A A (1,1)
2 G B B (3,2)
3 B E C (5,5)
4 E F D (6,7)
5 C C E (4,3)
6 D G F (7,4)
7 F D G (2,6)

Table 3.2.: Ranking example

Kendall’s Tau correlation takes a quite different approach to determine the correlation between
two ranked lists. This approach uses the number of concordant and discordant pairs-pairs.
A pair of tuples (x1, y1) and (x2, y2) is concordant when sgn(x2 − x1) = sgn(y2 − y1) and
discordant when sgn(x2 − x1) = −sgn(y2 − y1), where xi and yi are the ranks for item ai as
ranked by the user and predicted by the RS. The sgn function is defined as follows:

sgn(x) =

−1 x < 0
0 x = 0
1 1 > 0

32 Evaluating Recommender Systems

3.2. Accuracy metrics

The number of concordant pairs C and discordant pairs D are used by Herlocker et al. to
calculate τ as shown in Equation 3.10. TR and TP stand for the number of pairs of items
that have the same ranking in the true ordering and predicted ordering respectively.

τ =
C −D√

(C + D + TR)(C + D + TP)
(3.10)

When the example recommendation list shown in Table 3.2 is evaluated with Kendall’s Tau
correlation method, C , D , TR and TP must first be determined. Table 3.3 shows the result
of a pairwise comparison of the ranking tuples. Here + means a concordant pair and − a
discordant pair. This results in C = 13, D = 8, TR = 0 and TD = 0 and therefore τ = 0, 168.

A B C D E F G
A
B +
C + +
D + + +
E + + + +
F + - - - +
G + - - - - -

Table 3.3.: Kendall’s Tau correlation example

Another rank accuracy metric presented in the literature is the Half-life Utility Metric, pre-
sented by Breese et al. [BHK98]. This metric considers the fact that users probably won’t
browse very deeply into a ranked list and therefore a recommended item becomes less signif-
icant when it’s deeper in the list. The half-life utility metric estimates the expected utility
of a certain ranked list to a user. The expected utility of a list Bai = b1, ..., bk , sorted by
index k in order of declining pi(bk), for a user ai is defined as shown in Equation 3.11. In this
equation d is the default or neutral vote and α is a natural number denoting the rank of an
item on the list that has a 50% change of being viewed.

Rai =
∑
k

max(ri(bk)− d , 0)
2(k−1)/(α−1)

(3.11)

The overall Half-life Utility score R, over a test set is calculated as shown in Equation 3.12.

R = 100

∑
ai

Rai∑
ai

Rmax
ai

(3.12)

Here Rmax
ai

is the maximum achievable utility for user ai (i.e. the RS ranked the items exactly
as the user did). For the running example presented in Table 3.1 the calculation is shown in
Table 3.4, where d = 3 and α = 3.

Ra1 becomes 2, 729 and since Rmax
a1

= 3, 561, R becomes 76, 631.

Evaluating Recommender Systems 33

Chapter 3. State-of-the-Art in Recommender System Evaluation

k bk ri(bk) ri(bk)− d
1 A 5 2
2 E 3 0
3 C 2 0
4 D 4 1
5 B 4 1
6 F 2 0
7 G 4 1

Table 3.4.: Half-life Utility Metric example

The normalised distance-based performance measure (NDPM), originally proposed by Yao
[Yao95], can be used to compare two weakly ordered lists. In this comparison the number
of contradictory preference relations C− and compatible preference relations C u are used, as
well as the number of preferred relationships in a user’s ranking. A contradictory preference
relation between two items bk and bl happens when the RS rates bk higher then bl , but the
user did it the other way around. A compatible preference relation happens when the RS
rates bk higher then bl , but the user rated bk and bl equally. A relationship between two
items bk and bl is called a preferred relationship when the user did not rate the items equally.
The NDPM metric is then defined as shown in Equation 3.13.

NDPM =
2C− + C ··

2C i
(3.13)

Table 3.5 illustrates the computation of the NDPM measure for the two ranked lists shown
in Table 3.2. The table shows contradictory preference relations for items A to G. Items C
and F for example, have a contradictory preference relations since the user prefers C over F,
while the RS predicted it the other way around. For the example holds C− = 12, C u = 0
and C i = 42, so NDPM = 6/21

A B C D E F G
A
B !
C ! !
D !
E !
F ! ! !
G ! ! ! !

Table 3.5.: NDPM example: conflicting preference relations

An alternative way to evaluate a recommender system’s ability to recommend an ordered list
of items to a user is inspired by the edit distance as used in information retrieval. Originally
edit distance is defined as the number of operations needed to transform one string into
another. Considering the strings ”distance” and ”distanse” the edit distance would be 1 since
the ”c” needs to be substituted by a ”s” in order to transform the first string into the second

34 Evaluating Recommender Systems

3.2. Accuracy metrics

one. Other possible operations are the insertion and deletion of a character. There are various
algorithms to calculate the edit distance between two strings such as the Hamming distance
[Ham50], Levenshtein distance [Lev66], Damerau-Levenshtein distance [Dam64, Lev66] and
the Jaro-Winkler distance [Jar89].

The list of recommended items and the user’s ranking of this list can be considered to be
strings over an alphabet consisting of N elements, where N is the number of items. The edit
distance between these strings can then be computed analogous to strings over the Latin
alphabet. Consider the running example presented in Table 3.2. The edit distance between
the lists ”AGBECDF” and ”ABEFCGD” is 4, so it requires 4 operations to turn one list in
the other.

The relative edit distance is defined as the edit distance between two lists [b0, ..., bm] and
[b′0, ..., b

′
n] divided by the sum of the length of each list (i.e. m+n) as shown in Equation 3.14.

RED =
ED

m + n
(3.14)

The metric can be implemented using one of the edit distance algorithms mentioned above.
The pseudocode shown below shows the implementation of the relative edit distance metric
using Levenshtein distance [Lev66].

public double relEditDistance(int[] userList , int[] rsList) {

return LevenshteinDistance(userList , rsList) / (userList.length +
rsList.length);

}

Listing 3.1: Relative edit distance algorithm

public int LevenshteinDistance(int[] userList , int[] rsList) {

int d[0..m, 0..n]

for(int i = 0; i <= m; i++) {
d[i, 0] = i;

}
for(int j = 0; i <= n; j++) {

d[0, j] = j;
}

for(int i = 0; i <= m; i++) {
for(int j = 0; j <= n; j++) {

if (userList[i] == rsList[j]) {
cost = 0;

} else {
cost = 1;

}
d[i, j] = min(

d[i-1, j] + 1, // deletion
d[i, j-1] + 1, // insertion

Evaluating Recommender Systems 35

Chapter 3. State-of-the-Art in Recommender System Evaluation

d[i-1, j-1] + cost // substitution
);

return d[m, n];
}

Listing 3.2: LevenshteinDistance algorithm

3.3. Coverage

Besides accuracy there are a number of other dimensions that can be measured [ZMKL05,
HKTR04]. One of these dimensions that is mentioned in the literature is coverage. Coverage
measures the percentage of items for which the recommender system can make predictions or
recommendations. A recommender system cannot always generate a prediction since there
might be insufficient data. When an item has never been rated before an item-based prediction
technique cannot predict a particular user’s rating for that item for example.

There are two types of coverage identified by Herlocker et al. [HKTR04], called prediction
coverage and catalogue coverage. Prediction coverage is a measure for the percentage of items
that the recommender system can form predictions for. Catalog coverage on the other side is a
measure for the percentage of items that is ever recommended to any user. A higher coverage
means that the RS is capable to support decision making in more situations. Coverage can
be measured by taking a random sample of user/item pairs from the data set and then ask
the RS to provide recommendations for all of them. Both predictive and catalog coverage can
then be estimated.

Like precision and recall cannot be taken on their own, coverage cannot be considered in-
dependently from accuracy. A recommender system can possibly achieve high coverage by
making spurious predictions, but this has its repercussion on accuracy.

According to Herlocker et al. [HKTR04] it might be more useful to compute coverage only over
the items that a user is actually interested in. When a RS cannot form a recommendation for
an item that the user is not interested in anyway then it is considered not much of a problem.

3.4. Confidence

Recommendations made by a RS can be characterised along two dimensions: strength and
confidence. Strength indicates how much the user will like the recommended item. Confidence
indicates how sure the RS is about the accuracy of the recommendation. Both dimensions
are often conflated, resulting in the assumption that the higher an item’s predicted rating,
the better a user will like it. Extremely high predictions, however, are often based on a small
amount of user ratings (i.e. high strength, low confidence). As the number of ratings grows
the prediction will usually regress to the mean (i.e. low strength, high confidence).

Recommender systems have different approaches to deal with confidence. Most systems do
not display items with a confidence level that is below a certain threshold. Another approach
is to display the confidence of a recommendation to the user. Herlocker et al. investigated the
latter approach and found out that good confidence displays achieved significant improvement
in decision making. However, many recommender systems do not include some notion of
confidence.

36 Evaluating Recommender Systems

3.5. Diversity

Although measuring confidence is complicated since there are many dimensions that affect
it, McNee et al. [MLG+03] suggested a proposal. They investigated the strength of the
user’s neighbourhood (in a user-item based collaborative filtering RS), item similarity (in an
item-item based CF system) and the number of ratings the system has for a user or item.
The latter is based on the assumption that the system knows the user or item better when
it has more information about it. McNee et al. showed that in their particular case accuracy
improved when predictions were based on a larger number of ratings.

3.5. Diversity

Diversity of the items in a recommendation list is another aspect that might be important
to users and therefore must be measured [McN06]. A user who bought a book of ”The Lord
of the Rings” on Amazon for example, might receive recommendations for all other books of
Tolkien. Although the user probably likes all of these books (which results in a high accuracy)
he might not be completely satisfied. According to McNee [McN06] difference in list diversity
will have a large effect on the usefulness of recommendation lists and therefore McNee, Ziegler
and others [McN06, ZMKL05] presented the intra-list similarity metric.

The intra-list similarity metric, shown in Equation 3.15 is a measure for the diversity of a
recommendation list Lpi for a certain user ai , based upon predictions pi (see section 4.7 for
more information).

ILS (Lai) =

∑
x∈Lai

∑
y∈Lai ,x 6=y sim(x , y)

|Lai | · (|Lai | − 1)
(3.15)

Here sim(x , y) : B × B → [−1, 1] is a function that maps two items onto a value from -1 to
1, indicating their similarity with respect to a certain criterion (like genre, author, etc.) or
combination of criteria.

3.6. Learning rate

Many recommender systems incorporate learning algorithms that gradually become better
in recommending items. Collaborative filtering algorithms are likely to perform better when
more rating information is available for example. Content based filtering algorithms that
learn what attributes are important to a specific user also need feedback in order to learn
each attribute’s weight. Learning rate is a measure for how quickly an algorithm can produce
”good” recommendations. The metric for quality is usually accuracy. Some recommendation
algorithms only need a small number of ratings to produce sufficiently good recommenda-
tions while others might need extensive training before they reach the same level of quality.
Learning rates can be described by some asymptotic (and thus non-linear) function since the
quality of the recommendations cannot increase indefinitely. An example of a graph in which
the MAE is plotted against the number of ratings provided by the users is shown in Figure 3.3.

Herlocker et al. identified three different types of learning rates: overall learning rate, per item
learning rate and per user learning rate. The overall learning rate is defined as cumulative
quality over the number of ratings provided by all users for all items, while per item and per

Evaluating Recommender Systems 37

Chapter 3. State-of-the-Art in Recommender System Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratings

M
AE

Figure 3.3.: Example of learning rate graph in which the MAE is plotted against the number
of ratings

user learning rate only tak into account the ratings provided for a single item or by a specific
user respectively.

Learning rate is a strong indicator for a recommender system’s capability to cope with the
cold start problem. But despite the fact that the cold start problem is widely recognised by
researchers the evaluation of a recommender system’s learning rate has not been extensively
covered in the literature and no specific metrics exist.

3.7. Novelty and serendipity

A recommender system can produce highly accurate recommendations, have a reasonable
good coverage and still does not satisfy a user. Suppose for example that an EPG with
recommendation functionality recommends the news to every user. Although this probably
results in high accuracy it has no added value to the user, since he already knew the news and
would probably have viewed in anyway [TH01]. However, a recommendation that is obvious
to one user, might be new for another. An expert on recommender system evaluation prob-
ably finds a recommendation of Herlocker’s ”Evaluating collaborative filtering recommender
systems” obvious, while a user who is new to this field is dying to find such a paper.

Novelty and serendipity are two (closely related) dimensions for non-obviousness, as identified
by Herlocker et al. [HKTR04]. Serendipity is the experience of discovering an unexpected
and fortuitous item. This definition contains a notion of unexpectedness, which is the novelty
dimension. Novelty and serendipity metrics thus measure the non-obviousness of recommen-
dations and penalise ”cherry-picking”. The literature does not describe a metric that can be
used to measure novelty, nor serendipity.

38 Evaluating Recommender Systems

3.8. User satisfaction

3.8. User satisfaction

User satisfaction is a somewhat vague and soft aspect and therefore it is difficult to measure.
In the context of this research user satisfaction is defined as the extent in which a user is
supported in coping with the information overload problem. The dimensions described in the
above sections will probably support and/or inhibit user satisfaction to some extent. In order
to be able to determine the effect of these dimensions on user satisfaction, user satisfaction
itself must also be measured.

Herlocker et al. presented a number of dimensions along which user satisfaction evaluation
methods can be classified [HKTR04]. These dimensions are listed next.

• Explicit vs. implicit. The evaluation method can explicitly ask how satisfied the user is,
or it can be observed in some way. Implicit evaluation methods require assumptions in
order to translate the observations into a measure for user satisfaction, like an increase
in sales implies greater user satisfaction for example.

• Laboratory studies vs. field studies. Lab studies are studies in a controlled environment
while field studies take place in the user’s own real context.

• Outcome vs. process. The study can only focus on the outcome but it can also focus on
the process that originates to it.

• Short term vs. long term. Short term user evaluations might miss results that only
become apparent after a certain amount of time. The evolvability of a user’s taste is an
example of a phenomenon that can only be investigated in a long term user evaluation.

Studies that investigated user satisfaction with respect to recommender systems are scarce
and studies that focus on user satisfaction with respect to recommendations are even rarer.
Many studies that focus on user satisfaction are primarily concerned with human computer
interaction and do not focus on the recommendation list’s properties.

3.9. Conclusion

This chapter focused on how the performance of recommender systems is currently evaluated
as described in the literature. This evaluation is important in order to compare different
recommender systems and to be able to improve recommender system performance. The first
section described two different approaches to evaluate recommender systems: off-line and on-
line evaluation. With off-line evaluations no user participation is needed, which makes these
evaluations quick, economical and easy to conduct. When performing an on-line evaluation,
users interact with a running recommender system and actually receive recommendations.
Such an experiment can be quite importunate to the users and takes much longer to perform.

The remaining sections of this chapter explained a number of dimensions along which a
recommender system can be evaluated. The most widely evaluated dimension is accuracy,
which is a measure for a recommender system’s ability to reproduce the user’s ranking or
ratings. Three different classes of accuracy metrics can be identified: predictive accuracy
metrics, classification accuracy metrics and rank accuracy metrics. Numerous of these metrics
are described in detail in section 3.2.

Evaluating Recommender Systems 39

Chapter 3. State-of-the-Art in Recommender System Evaluation

Even though accuracy is by far the most widely used dimension to evaluate recommender
systems, recent research has shown that it is not equivalent to user satisfaction. A recom-
mender system that is extremely accurate might not be satisfying its users. Sections 3.3 to
3.7 therefore described other dimensions that were identified in the literature and can be
used to evaluate a recommender system. Among these dimensions are diversity, novelty and
serendipity. Methods for measuring user satisfaction, which is assumed to be the ultimate
dimension along which recommender systems should be evaluated, are finally described in
section 3.8.

The remainder of this thesis will describe how the coherence between user satisfaction and the
other metrics was measured and how user satisfaction can be predicted based on measurements
for these dimensions.

40 Evaluating Recommender Systems

4
Conducting the User Experiment

Since there exist no notable data sets that incorporate a measure for user satisfaction, a user
experiment needs to be conducted in order to be able to compare user satisfaction to off-line
metrics such as accuracy. This chapter describes the user experiment in detail and explains
how the metrics that were described in Chapter 3 are applied in an EPG context.

In this chapter the following will be discussed

• The general approach to the user experiment (Section 4.1).

• The construction of a representative user base (Section 4.2).

• The gathering of TV listing information (Section 4.3).

• The training of the recommender (Section 4.4).

• The strategies used to generate recommendations (Section 4.5).

• The way the recommendation lists are rated by the users (Section 4.6).

• The dimensions measured and the metrics used (Section 4.7).

4.1. Approach

The user experiment must be conducted to answer the following research sub question as
defined in section 1.3:

Research sub-question: How do the individual properties of a recommendation list and
user satisfaction cohere?

In order to answer this research question a recommender system is actually implemented as
part of an evaluation application. This application recommends TV programmes to its users

Evaluating Recommender Systems 41

Chapter 4. Conducting the User Experiment

and gathers feedback provided by the users about the recommendations. The recommen-
dation lists generated by the system are evaluated with respect to five different dimensions:
accuracy, diversity, novelty, serendipity and programme overlap, so the correlation between
these dimensions and user satisfaction can be calculated.

The evaluation is subdivided in two primary phases, the training phase and the recommenda-
tion phase. During the training phase a user is asked to rate the TV programmes he viewed
yesterday evening (or the evening before, in case he was not in the occasion to rate before).
The recommender system embedded in the evaluation application uses this feedback to train
its prediction algorithms. Once the recommender system has sufficient information about
a user he can proceed to phase two, the recommendation phase. In this phase the recom-
mendation system starts to provide the user with recommendation lists containing ten TV
programmes. These lists are generated using a prediction technique that is likely to provide
a list with certain properties (i.e. high accuracy, low diversity, etc.). After the second phase
provided enough data points, the experiment comes to an end for the user.

The following sections describe the steps to be taken in more detail.

4.2. User Base

A representative user base is important to a sound user experiment [BKH01]. Since the
intended audience of an electronic programme guide’s recommender system can by really
broad, the user base for this experiment should be diverse as well. To achieve this the
users solicited to take part in the research are not restricted to colleagues (same field of
expertise), fellow students (same level of education) or friends. Instead everybody that wants
to participate can register and take part in the experiment.

The size of the user base needed to reach a certain confidence level is really hard to determine.
Equation 4.1 shows how the number of users n coheres to the confidence interval (1− α).

P{X̄n − kr
Sn√
n

< µ < X̄n − kl
Sn√
n
} = 1− α (4.1)

Variables kr and kl depend on how X1, ...,Xn are distributed. Assuming a normal distribution
kr and kl are tn−1, 1

2
α and −tn−1, 1

2
α respectively. However, it is problematic to estimate the

variables X̄n and Sn . Moreover it is hard to say how many targeted users will actually
participate in the research and how active they will be. Not everybody watches that much
TV for example.

To assure an as large user base as possible and to stimulate active participation, a person-
alised DVD Box is offered to the user that participates best in the experiment. Furthermore
participating in the research is made as less intrusive and time consuming as possible and the
evaluation application is made easily accessible.

Users that decide to take part in the user experiment have to provide some demographic
information in order to complete their registration. The information includes gender, age,
marital status, education level and household size. It is used to see whether the user base is
homogeneous and can be used as input for the recommendation engine.

42 Evaluating Recommender Systems

4.3. Gathering the Content

4.3. Gathering the Content

In order to make the evaluation application as realistic as possible it will recommend actual
TV programmes. This prevents the users from getting the feeling of doing senseless work
and makes it more enjoyable to participate. Moreover, some users might be using a (non
recommending) EPG anyway and just switch to the evaluation application.

The TV programme data that will be used during the experiment is provided by AKN, a ser-
vice providing organisation of three Dutch broadcasting companies: AVRO, KRO and NCRV.
The data provided by AKN is accurate, complete and is electronically available through an
XML feed. The XML feed contains metadata such as genre, actors, textual description, year
of premiere, director and presenters.

4.4. Training the Recommender

Users that decided to take part in the research and subscribed themselves to the evaluation
application receive an e-mail message on a daily basis. This e-mail message requests the user
to visit the evaluation application (simply by clicking on a URL provided in the message) and
to rate the TV programmes they watched the evening before. Users also have the possibility to
provide feedback on programmes they have watched the day before yesterday and three days
ago, since it is not inconceivable that they forget it sometimes. Moreover, people that provided
their business’ e-mail address might otherwise not be able to provide feedback on Friday’s
TV programmes. Of course users are free to rate other programmes as well. Adjusting
a previously provided rating is also no problem. Users rate programmes on a five-point
Likert scale [Lik32] by selecting one to five stars. The five-point Likert scale is used in most
recommender systems and users are therefore likely to be familiar with rating items this
way. Rating a TV programme with one star indicates the user does not like that particular
programme, while rating it five stars means he really likes it. The meaning of the scale is
explained to the users as it is explained in the previous sentence.

The ratings provided by users are used to train the different prediction algorithms used by
the recommendation engine. The recommendation techniques that are applied are described
in section 4.5.

In order to prevent the rating matrix from becoming really sparse and to reduce the time it
takes to rate the programmes, the evaluation application only covers TV programmes broad-
casted during prime time (19:00 - 00:00) on the mainstream channels in The Netherlands.
During prime time broadcasters broadcast 5-6 programmes on average, resulting in a TV list-
ing containing about 100 programmes. This number of programmes is comprehensible to the
users and it will not take to much time to find and rate the programmes they have watched
or want to rate.

The training phase for a specific user ends when the prediction algorithms have sufficient data
to make recommendations for that user.

4.5. Generating the recommendations

Generating the list of recommendations for the users of the evaluation application is one of
the most important activities in the user study. The properties of the recommendation lists

Evaluating Recommender Systems 43

Chapter 4. Conducting the User Experiment

Figure 4.1.: Utente TV listing with stars to rate the programmes

must vary over the dimensions that will be presented in section 4.7. To assure an accurate
distribution over each of the properties that are investigated, seven different recommendation
strategies are applied. The following subsection will describe each of these recommendation
strategies in more detail.

Each recommendation strategy generates the recommendations using a combination of a
prediction strategy and a clipping strategy. The prediction strategy predicts a user’s rating
for a list of TV programmes. The clipping strategy turns this list of predictions into a list of
ten recommendations. The clipping strategy can therefore heavily influence the properties of
the list of recommended programmes.

4.5.1. Random recommendations

The random recommendation strategy is the baseline recommendation strategy in the exper-
iment. It tries to give an accurate prediction of a user’s rating for all TV programmes that
are broadcasted that evening and then randomly selects 10 programmes that will be recom-
mended to the user. Duplicates of programmes in the list are allowed and properties such as
diversity, novelty and programme overlap are not influenced in any way. The predictions are
made using series level collaborative filtering. This technique will be described next.

44 Evaluating Recommender Systems

4.5. Generating the recommendations

4.5.2. Series level Collaborative Filtering

This recommendation strategy combines a collaborative filtering technique on the series level
with a simple top-N clipping strategy. The prediction strategy calculates for each user ai the
correlation with respect to each other user aj . This leads to a |A| × |A| matrix containing all
the correlations between users. Based on this correlation matrix a neighbourhood is created
for each user ai and TV programme bk , consisting of the eight users that are most similar
to ai and rated at least one programme in Bc (i.e. the set of programmes belonging to
the same TV show as bk) in the past. Analogous to the aggregation functions described in
subsection 2.2.1 the ratings of the user’s neighbours are combined to predict the rating of
user ai for programme bk . The aggregation method used in this strategy uses the weighted
sum approach that takes into account the average rating of a user as defined in Equation 2.4c.
A key difference however is that the series level CF strategy aggregates the average ratings
of the neighbours for all episodes of a TV show instead of ratings for that specific episode.
Thus, rj (bk) is substituted by:

r̂j (bk) =
1
|Bj |

∑
bk∈Bj

rj (bk) (4.2)

This approach is necessary since bk itself is unlikely to be rated before by any user because
it probably has never been broadcasted before. Therefore one has to deal with a continuous
cold start problem. Since most users rate different episodes of the same TV show in a similar
way this approach can be taken.

The top-N clipping strategy simply sorts the programmes in descending order of predicted
rating and returns the top 10 predicted programmes. This top 10 list is likely to contain
different episodes of the same TV show since different TV channels broadcast the same show
or a programme is repeated later the same evening.

4.5.3. Unique series level Collaborative Filtering

The unique series level collaborative filtering strategy uses the same prediction strategy as the
series level CF strategy, but instead of simply recommending the top 10 predicted programmes
it uses a different clipping strategy. This clipping strategy returns the top 10 predicted
programmes after removing all duplicates. Two programmes are considered duplicates if they
are episodes of the same TV show. This strategy strives to be accurate, as well as diverse.

4.5.4. Demographics based Collaborative Filtering

The third recommendation strategy is a variation on collaborative filtering. Instead of cre-
ating a neighbourhood based on similar rating behaviour of users it uses similarity of user
demographics. Demographic information that is used by this prediction strategy includes age,
gender, marital status, level of education, household size and the industry in which the user
is working/studying. For every two users the similarity of each of these aspects is derived.
Then the correlation between the users is calculated. Again these correlations form a corre-
lation matrix that is the basis for the creation of neighbourhoods. These neighbourhoods are

Evaluating Recommender Systems 45

Chapter 4. Conducting the User Experiment

created analogous to those of the series level collaborative filtering strategy. The aggregators
are also similar.

The demographics based collaborative filtering strategy uses a variation of the clipping strat-
egy used in the unique series level CF strategy. Instead of removing all duplicates this strat-
egy randomly removes some duplicates, so the recommendation list might contain several
programmes from the same TV show.

4.5.5. User’s inverse rating

The goal of the user’s inverse rating strategy is to recommend TV programmes that the user
does not like at all. The prediction strategy is used to achieve this, since it takes the user’s
average rating for the TV show from which the programme is part and predicts the inverse
of it. The ratings are inverted by mapping them to the domain [-1, 1], multiplying them by
-1 and then converting them back to the domain [1, 5]. After the user’s ratings are inverted,
the top-N clipping strategy is applied to the predictions.

The user’s inverse rating strategy is likely to produce highly inaccurate recommendations and
that is exactly its purpose.

4.5.6. Novel unique series level Collaborative Filtering

The novel unique series level CF strategy is another variation of the series level CF strategy.
It uses series level collaborative filtering to predict a user’s rating for a TV programme as
described in subsection 4.5.2. The clipping strategy then removes all programmes from the
list that are not novel to the user (i.e. all programmes that are part of a TV show for which
the user have never rated a specific episode) and returns the top 10 predicted programmes
from the remainder of the list.

The novel unique series level collaborative filtering strategy tends to produce recommenda-
tions that are novel to the user, sacrificing some accuracy.

4.5.7. Unique known series level Collaborative Filtering

This series level collaborative filtering strategy is the opposite of the novel unique series
level CF strategy. Instead of recommending programmes that are novel to a user it only
recommends episodes of series that the user is familiar with. Therefore the novelty of the
recommendation list is likely to be really low and its accuracy very high.

4.6. Rating the recommendations

Once the recommender system has sufficient information about a user (see the previous sec-
tion) the recommendation system starts to provide the user with recommendations. The
system shows a list of ten recommendations for TV programmes that are broadcasted that
evening. The user is asked to provide feedback on how satisfied he is with the list of recom-
mendations, as well as which programmes are novel to him. Furthermore the user can provide
feedback on how diverse and how surprising he thinks the list is. Lateron this feedback can
be used to see whether any of the metrics described in Chapter 3 correspond to the user
perception of these two aspects. Feedback on the recommendation list is also provided on a

46 Evaluating Recommender Systems

4.7. Dimensions and Metrics

five-point Likert scale. Figure 4.2 shows the user interface for displaying the recommendations
and acquiring feedback.

Figure 4.2.: Utente recommendation list

The recommendation system build into the evaluation application utilises several prediction
algorithms, each generating recommendations with certain properties (i.e. high accuracy, low
diversity, etc.). All of these predictions are stored in a database and when a user logs in, a
prediction strategy is assigned to him in a round robin fashion. Suppose for example that the
systems utilises three different recommendation strategies s1, s2 and s3 and that the following
5 users log in in the sequence: a4, a10, a2, a12, a8. Then user a4 receives a recommendation
list generated using prediction strategy s1, user a10 gets s2, a2 get s3, a12 gets s1 again, and
so on. The dimensions that are varied by using different prediction strategies are described
in the following section.

During the recommendation phase of the user experiment, users are still required to rate
individual TV programmes, analogous to the training phase described earlier. These ratings
enable the derivation of the exact accuracy of a recommendation list for example.

4.7. Dimensions and Metrics

During the recommendation phase the recommendation engine recommends list of TV pro-
grammes along different dimensions (see section 4.6). A list can be very diverse but fairly
inaccurate for example. The exact properties of each list cannot be controlled by the recom-
mendation engine, since they differ per item and per user. This implies that the recommen-
dation engine cannot tell in advance whether the list of recommended TV programmes that
is displayed to a user will be accurate for example. It is possible, however, to determine the
exact properties of a recommendation list afterwards, using the user’s feedback. Assume for

Evaluating Recommender Systems 47

Chapter 4. Conducting the User Experiment

example that the evaluation application displays a list of recommendations Lpi to user ai that
was generated using recommendation strategy sn , which on average makes highly accurate
predictions. Once the user has rated the programmes that were recommended to him it is
possible to calculate the exact accuracy of the list Lpi , as well as its diversity, novelty, et
cetera.

0 5 10 15
0

5

10

15

Accuracy
0 5 10 15

0

5

10

15

Diversity
0 5 10 15

0

5

10

15

Novelty

Figure 4.3.: Example scatter plots

When these values are plotted against the measured user satisfaction this results in a scatter
plot as shown in Figure 4.3 for example. Note that each recommendation list results in exactly
one data-point in each plot.

It is important to make a distinction between properties of a single recommendation, a list of
recommendations and the prediction strategy that generated the recommendations. Accuracy,
for example, is a property of a single recommendation [MRK06], while diversity is a property
of a recommendation list [MRK06, ZMKL05]. Moreover, learning rate is a property of a
recommendation strategy. Since the user satisfaction with respect to a recommendation
list is investigated some of the properties must be aggregated to form a recommendation list
property. This aggregation can be done simply by taking the average over all recommendations
for example. Suppose that a recommendation list consisting of two recommendations makes
an error of 2 for the first recommendation and 1 for the second. The average error of the list
thus is 1.5. In fact, this is analogous to the mean absolute error metric.

This research is focusing on five different dimensions: accuracy, diversity, novelty, serendipity
and programme overlap. All of these dimensions, except for programme overlap were identified
by Herlocker et al. [HKTR04] as potentially influential with respect to user satisfaction.
Programme overlap is a list property that is specific to recommending TV programmes since
they usually are broadcasted on a specific time (at least now that is the case). The following
subsections will discuss each of these dimensions in more detail and will present the metrics
used in the research to measure them.

4.7.1. Accuracy

From the countless number of dimensions you could measure, accuracy is by far the most
adopted in research to date [HKTR04, AT05, SPUP02, SPUP05, MH04, ZMKL05, CKP07,
BHL07, ZK07, CdVP+07]. Accuracy is believed to be a very important aspect of user sat-
isfaction [ZMKL05] and the metric of choice for many researchers since it is widely adapted

48 Evaluating Recommender Systems

4.7. Dimensions and Metrics

and easy to measure [CdVP+07]. Accuracy is therefore measured in this research as well.

Herlocker et al. [HKTR04] identified three different classes of accuracy metrics: predictive
accuracy metrics, classification metrics and rank accuracy metrics. These metrics were ex-
plained in more detail in Section 3.2. Herlocker et al. investigated the most popular accuracy
metrics and empirically showed that these metrics can be clustered into three classes (which
are different from the classes mentioned above). This research incorporates five different
metrics:

• Mean Absolute Error

• Area under ROC curve

• Precision and recall

• Spearman’s correlation

• Relative Edit Distance

The first three metrics cover the entire spectrum, as shown in Table 4.1. The fourth metric
is a flash of intuition that might be interesting to investigate as well.

Predictive Classification Rank
C1 Spearman, RED
C2 ROC, precision
C3 MAE

Table 4.1.: Accuracy metrics spectrum

In the context of this research mean absolute error of a list of recommendations is defined as
shown in Equation 4.3.

MAE =
1

|Lpi |
∑

bk∈Lpi

|r̂i(bk)− pi(bk)| (4.3)

Where Lpi is defined as the ordered sequence [b1, ..., bN] of items bk ∈ B , representing the
top-N recommendation list for user ai . Note that the list is not necessarily sorted on pi(bk).
Since a user is unlikely to rate all the TV programmes in the listing, ri(bk) might not be
defined (i.e. ri(bk) = ⊥). Therefore a strategy is needed to deal with this. It is possible to
exclude the item from the computation when it is not rated by the user for example. The main
disadvantage of this approach is that it might not be possible to evaluate a recommendation
list. Another possibility is to take some default value as the rating [HKTR04]. The default
value can be either user-dependent (e.g. the average rating of the user, or the average rating
of the user for other episodes of the same series) or user-independent (e.g. a constant value).
The downside of this approach is that the true user’s rating can differ greatly from the default
value.

This research tries to approximate the true user’s rating and therefore uses the most specific
data available for each user. r̂i as used in Equation 4.3 is therefore specified as follows:

Evaluating Recommender Systems 49

Chapter 4. Conducting the User Experiment

r̂i(bk) =

ri(bk) if ri(bk) 6= ⊥
avg(Bc

i) if ri(bk) = ⊥ ∧ Bc
i 6= �

avg(Bi) otherwise

(4.4)

where

avg(Bi) =
1
|Bi |

∑
bk∈Bi

ri(bk)

In this case Bc
i is the set of episodes of the TV series to which bk belongs (i.e. all Friends

episodes when bk is an episode of Friends for example) that are rated by user ai .

Classification accuracy metrics, such as ROC, measure a recommender system’s ability to
recommend interesting items (i.e. classify items as interesting / not interesting). Therefore
these metrics require the items to be classified as interesting or not. This classification can
be done, based on the user’s true rating and the recommender system’s predicted rating for
an item. In other words, the rating scale needs to be transformed into a binary scale. This
is done by assuming that items rated greater than or equal to a certain threshold θi are
interesting. All other items are assumed to be not interesting. The predictions made by the
recommender system are classified analogous. The situation where an item was not rated by
the user can occur here too and the same strategies to deal with this can be applied.

The hit and miss rates used to construct the ROC curve are defined as:

hit rate =
|Btp |

|Btp |+ |Bfn |

miss rate =
|Bfp |

|Bfp |+ |Btn |

Here Btp , Bfp , Btn and Bfn are the sets of true positive, false positive, true negative and false
negative items respectively. These sets are formally specified as:

Btp = {bk ∈ B : ri(bk) ≥ θ ∧ pi(bk) ≥ θ}
Bfn = {bk ∈ B : ri(bk) ≥ θ ∧ pi(bk) < θ}
Bfp = {bk ∈ B : ri(bk) < θ ∧ pi(bk) ≥ θ}
Btn = {bk ∈ B : ri(bk) < θ ∧ pi(bk) < θ}

TV programmes with a (predicted) rating greater than or equal to θ are considered to be
relevant.

The construction of the ROC curve is described in subsection 3.2.2. Calculating the area
under the curve is straightforward.

The second classification accuracy metric that is incorporated in this research is precision.
Precision is defined as the number of recommended items that are considered relevant by the

50 Evaluating Recommender Systems

4.7. Dimensions and Metrics

user, divided by the number of recommendations. Again, a recommendation is considered
relevant when the user’s rating r̂i(bk) it greater than or equal to θ. Since there are ten items
recommended to each user, the metric that is calculated is what is called the precision at 10.

A rank accuracy metric such as Spearman’s rank correlation measure is interesting to in-
corporate in the research since it can help to determine whether users are sensitive to the
ordering of the recommendations. In the context of this research Spearman’s ρ is defined as
shown in Equation 4.5.

ρ =
∑

(x − x)(y − y)
N · stdev(x) · stdev(y)

(4.5)

Where x1, ..., xN ∈ x are the ranks of the items bk ∈ Lpi (i.e. 1, ...,N) and y1, ..., yN ∈ y are
the ranks corresponding to the first N items bk ∈ Rai . Here Rai is defined as the ordered
sequence [b1, ..., bM] of items bk ∈ B rated by user ai , sorted on ratings r̂i(bk).

Instead of trying to recreate what the user’s top-N recommendation list should have looked
like based on his ratings and comparing it to the list created by the recommender system,
another approach can be taken. By comparing the ranking of the N items in the recommended
list Lpi to the user’s ranking of the same N items the recommender system’s ability to rank
the items relative to each other can be measured.

4.7.2. Diversity

Ziegler et al. [ZMKL05] observed that a more diverse recommendation list can lead to higher
user satisfaction, even though its accuracy is lower. Therefore diversity is one of the dimen-
sions investigated in this research. Ziegler et al. proposed a metric to capture the diversity
of a list with respect to a certain criterion, called the intra-list similarity metric (as shown in
section 3.5). Equation 4.6 aggregates the scores for several different criteria into one metric.

Diversity =
1
|C |

∑
c∈C

ILS (Lai)
−1 (4.6)

The similarity function sim(x , y) is redefined as simc(x , y) : B × B → [0, 1], a function that
maps two items onto a value from 0 to 1, indicating their similarity with respect to a certain
criterion c ∈ C ⊆ {genre, actors, director , series, premiere, ...}. Since a intra-list similarity
score implies a low diversity the inverse of the function is taken.

Because the similarity function for each of the criteria is simply defined as:

simc(x , y) =

{
1 if x ≡ y with respect to criterion c
0 otherwise

the inverse of the intra-list similarity function can be defined as the number of items that
differ with respect to criterion c, divided by the total number of items in the list.

Besides this off-line metric, diversity will also be measured by asking the user to rate the
diversity of the list. Users can indicate how diverse they think the list of recommendations is

Evaluating Recommender Systems 51

Chapter 4. Conducting the User Experiment

by assigning 1 (not diverse) to 5 (really diverse) stars to it.

4.7.3. Novelty

Novelty is an indicator for the ”non-obviousness” of a recommendation. It is defined analogous
to the metric introduced by Baeza-Yates and Ribeiro-Neto [BYRN99] as the ratio between
the number of novel items in the recommendation list and the total number of items in this
list. Equation 4.7 shows the exact definition of novelty adapted in this research.

Novelty =
1

|Lpi |
∑

bk∈Lpi

si(bk) (4.7)

Here si(bk) is a function that returns 1 when the item bk is novel to user ai and 0 otherwise.

si(bk) =

1 if bk is marked as novel by user ai

1 if bk ∈ Bc
i

0 otherwise

A recommendation is considered novel when the user has not seen the TV programme be-
fore. Since the evaluation application cannot possibly know whether the user has seen the
programme before he needs to indicate this himself by (un)checking a checkbox for example.

4.7.4. Serendipity

Serendipity is defined in section 3.7 as ”the experience of discovering an unexpected and
fortuitous item” or by the Oxford American Dictionary as ”the occurrence and development of
events by chance in a happy or beneficial way”. These definitions entail two different aspects:
unexpectedness and fortuitousness. A recommendation is said to be unexpected when it is
novel and fortunate when the user considers it interesting. This implies the following logical
relation:

serendipitous ⇐⇒ novel ∧ interesting

So, when a recommendation is serendipitous it is also novel and interesting (and the other way
around). The previous subsection defined when a recommendation is novel and subsection
4.7.1 defined when a recommendation is considered interesting. Combining these definitions
leads to Equation 4.8, which is the ration of the number of serendipitous items and the total
number of items in the recommendation list.

Serendipity =
1

|Lpi |
∑

bk∈Lpi

s ′(bk) (4.8)

In this formula s ′(bk) is a function that returns 1 when the item bk is both novel and inter-
esting. Otherwise it will result in 0.

52 Evaluating Recommender Systems

4.8. Evaluation setup

s ′(bk) =

{
1 if bk is novel ∧ ri(bk) ≥ θ

0 otherwise

Like diversity this dimension will also be measured by asking the user to rate the serendipity
of the list using a scale from one to five.

4.7.5. Programme overlap

Another aspect that might influence user satisfaction when recommending lists of TV pro-
grammes is programme overlap. Consider for example a list of ten TV programmes that is
recommended to a user. The list might normally be rated high by the user, but when all
ten TV programmes are broadcasted at the same time the user probably considers the list
useless.

P1

P2

P3

time →

Table 4.2.: Three programmes in time

A possible way to determine the degree of overlap within a list of recommendations is to
calculate the ratio of the time you can effectively watch any TV programme and the total
duration of the TV programmes in the list. Take the three programmes shown in Table 4.2
for example. The maximum time you can watch any of these TV programmes is equal to the
duration of P1, say 1 hour, while the sum of the duration of the three programmes is 135
minutes. The overlap ratio for the list therefore is 1− 60

135 . This metric is formally defined in
Equation 4.9.

Overlap = 1−
∑

bk∈Lpi

∑
bl∈Lpi∧bk 6=bl

overlap(bk , bl)∑
bk∈Lpi

duration(bk)
(4.9)

Another possible way to measure the degree of overlap within a list, is to take the ratio of
the number of programmes you can watch from start to end and the total number of TV
programmes in the recommendation list. In the example shown in Table 4.2 the user can only
watch one programme out of three, so the overlap ration is 1− 1/3 = 2/3.

4.8. Evaluation setup

In order to run the user experiment the recommender system and evaluation application must
actually be build. Building such a system is a challenge in its own right since many practical

Evaluating Recommender Systems 53

Chapter 4. Conducting the User Experiment

issues like usability, scalability and flexibility for example become relevant. As described in
Appendix A there do exist recommendation frameworks, but none of these systems allow users
to provide feedback on the recommendations itself. Furthermore none of the existing systems
enables you to easily use multiple recommendation strategies alongside each other and none
of the systems provided a user interface. Therefore building the evaluation application is
inevitable.

Figure 4.4 shows the evaluation application architecture. The architecture contains two main
components, the recommender system and the web application used by the users to provide
feedback on TV programmes and recommendations.

Evaluation Database
User

Duine
Recommender System

Evaluation Application

recommendations /
listings / etc.

predictions

programme data

Controller

application controls

send e-mail

ratings
listings /

 recommen-
dations

Duine databases

PHP5 web-
application running
on a Apache
Webserver

MySQL database

Utente Webservice

ratings

CRON job / JAVA
applicatie

Java Webservice
running on the Jetty
application server

MySQL database

SOAP requests over
port 8181

SOAP requests over
port 8181

Figure 4.4.: System design

4.8.1. Recommendation application

The recommendation engine generates recommendations for TV programmes based on feed-
back provided by the users through the web application. One of the recommendation strate-
gies is actually using an open source recommender system called Duine1 [vS05] to generate
predictions. The other recommendation strategies are build from scratch using the Java
programming language.

1http://sourceforge.net/projects/duine

54 Evaluating Recommender Systems

4.9. Conclusion

4.8.2. Web application

The web application acts as the user interface through which the participants provide feedback
on TV programmes and recommendations. Furthermore it is responsible for the distribution
of recommendation list generated using different strategies among the users of the application.

4.9. Conclusion

This chapter described in detail how the user experiment that will be conducted as part of this
research will be performed. The goal of the user experiment is to gather sufficient data, so the
coherence between user satisfaction and the individual properties of a recommendation list
can be determined. To achieve this goal an actual recommender system will be implemented
as part of an on-line evaluation application. The user study consists of two phases. During
the first phase users will have to rate TV programmes they are familiar with or that they
recently watched. Based on the feedback on TV programmes, the recommender system that
is part of the evaluation application will start generating recommendations. In phase two
of the study the application will recommend TV programmes that are broadcasted that
evening to its users. These recommendation lists are deliberately varied with respect to the
accuracy, diversity, novelty, serendipity and programme overlap dimensions. This is achieved
by generating seven different lists of recommendations and presenting these lists to the users
in a round-robin fashion. Users are asked to provide feedback on how satisfied they are with
this list. Furthermore, 15 different metrics are applied to the recommendation lists so their
values can be compared to the corresponding user satisfaction of the same list.

Evaluating Recommender Systems 55

5
Determination of Coherence

The previous chapter described how the data was collected that is needed to determine
whether user satisfaction and the other evaluation metrics cohere. This chapter describes
how the data was processed and what correlations were discovered. Furthermore the results
of a questionnaire among the participants of the user study, inclined to find out what other
aspects might influence user satisfaction with respect to TV programme recommendations, is
presented.

In this chapter the following will be discussed

• The pre-processing and filtering steps taken before the correlations can be calculated
(Section 5.1).

• Some statistics on the participating users (Section 5.2).

• The correlations that exist between the different dimensions and user satisfaction (Sec-
tion 5.3).

• The results of the questionnaire (Section 5.6).

5.1. Processing the data

The data collected during the user study needs to be processed in order to determine correla-
tions between user satisfaction and the dimensions defined in section 4.7. The following steps
were taken to come to the results of the user study:

1. Filter the raw data;

2. Implement the metrics;

3. Apply the metrics and

Evaluating Recommender Systems 57

Chapter 5. Determination of Coherence

4. Plot the data and calculate correlations using Matlab.

In the first step the data was filtered. All users that registered themselves for the experiment,
but did not made it to the recommendation phase were removed, together with all the data
related to them (such as ratings, recommendations, their profile, and so on). This filtering
step reduced the user base from 133 to 70 users. The effect of this filtering step is nil since
the 63 users that were filtered out did not participate in the recommendation phase of the
user study and thus never rated a recommendation list. Therefore they did not generate any
data points and had no effect on the results.

The top-5 of users that rated most TV programmes and recommendations accounts for 51.1%
of all ratings. Since it is possible that they randomly rated all the TV programmes and
recommendations just to win the DVD box, the effects of these users on the results were
investigated by filtering them out. The results differed only slightly when the top-5 rating
users were removed so their rating behaviour appears to correspond to that of the other 65
users and there is no reason to believe that they randomly rated the items or tried to influence
the research in any way.

Implementing the metrics described in section 4.7 in the Java programming language is quite
straightforward. The mathematical formulas are easily transformed into Java code. The
difficulty, however, was to write code that is efficient so it does not take too long to calculate
a metric’s values. After the metrics were implemented they were applied to the (filtered)
data. Most implementations of the metrics have indicators that indicate the validity of each
metric’s value. They indicate for example how many of the recommended TV programmes
were not rated by the user. The validity indicators determine whether the metric’s value is
considered as a valid data point or not. Valid data points were printed in .mat files which
were imported into Matlab. Matlab and its statistical toolbox were used to further process
the data.

5.2. User statistics

In order to come to a user base consisting of diverse users, everybody could register and
participate in the research. Colleagues, fellow students, friends and family were explicitly
asked to participate, while others were recruited through posters, bulletin boards, on-line
messengers and websites. Eventually 141 users registered themselves. Eight of them never
rated a TV programme while 133 users rated at least one programme. From the 133 users
that rated one or more TV programmes, 63 never rated a recommendation list. The other
70 users participated actively during the entire user study. Each user that registered himself
provided some demographic information. Figure 5.1 shows the age, household size and level
of education for the 70 users that actively participated in the research. In the education level
plot the bars represent the number of users with an academic, HBO, MBO (level 3 or 4),
VMBO/MBO (level 2) and MAVO/HAVO/VWO degree respectively.

Figure 5.2 shows marital status (1 = married, 2 = single and 3 = living together) and the
industry in which the user is working / studying. Most users are working in the field of infor-
mation and communication technology (bar 17), health care (bar 13) and telecommunication
(bar 20). The last bar (27) represents the users not working in any of the predefined sectors.

The number of TV programmes and recommendation lists rated per user differs greatly (as

58 Evaluating Recommender Systems

5.3. Determine correlations

0 20 40 60 80
0

10

20

30

40

50

60

70

User

Ag
e

1 2 3 4 5
0

5

10

15

20

25

Nu
m

be
r o

f U
se

rs
Household size

1 2 3 4 5
0

10

20

30

40

50

60

Nu
m

be
r o

f U
se

rs

Level of education

Figure 5.1.: User’s age (left), household size (middle) and level of education (right)

1 2 3
0

5

10

15

20

25

30

Marital status

Nu
m

be
r o

f U
se

rs

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Industry

Nu
m

be
r o

f U
se

rs

Figure 5.2.: User’s marital status (left) and industry (right)

shown in Figure 5.3). The top-5 rating users provided more than half of the total num-
ber of ratings for TV programmes. The number of ratings for recommendation lists is less
contrasting.

5.3. Determine correlations

For each of the predefined metrics its correlation with user satisfaction is calculated using
Matlab. The measure of correlation that is adapted is Spearman’s rank correlation coefficient,
since it is a non-parametric measure for correlation that does not require the correlation to
be linear. Furthermore this correlation coefficient does not make any assumptions on the
frequency distribution of the variables [HW99]. The latter is important since users might
not experience an equal distance between the successive ratings (e.g. the perceived distance
between 3 and 4 stars might be smaller than the distance between 4 and 5 stars).

Whether a correlation coefficient is significant or not is determined by the corresponding
p-value [Kre99]. The p-value is defined as

P(O | H0)

so the chance that the observed situation (O) happens under the assumption that the null

Evaluating Recommender Systems 59

Chapter 5. Determination of Coherence

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

User

#
P

ro
g

ra
m

m
e

 r
a

ti
n

g
s

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

User

#
L

is
t

ra
ti
n

g
s

Figure 5.3.: Number of programme and list ratings per user

hypothesis (there is no correlation between the two variables) holds. The null hypothesis is
rejected when P(O | H0) < 1

2α, where α is the significance level of choice (usually 1% or 5%).
The significance level is divided by two since a two-tailed significance test is performed. A
small p-value thus indicates that there exists a correlation that is significantly different from
0.

Besides calculating the correlation between each metric and user satisfaction, the data points
are plotted to see how they are distributed. The following subsections describe the results for
each of the dimensions and metrics described in section 4.7.

5.3.1. Accuracy

Accuracy metrics empirically measure to what extent a rating or ranking, as predicted by
the recommender system, matches the rating/ranking of the user. As mentioned in section
4.7.1, the user’s rating for a recommended TV programme is not always known, so a strategy
to cope with this is needed. The strategy adopted in this research tries to approximate the
user’s rating as close as possible. The validity indicators of each of the accuracy metric imple-
mentations indicate how certain the metric was of the user’s ratings. When the uncertainty
is too high, the data point will be discarded. Data points are discarded when less than θv

programmes and/or series were rated by the user. Thus with θv = 3 a list containing 10
recommendations is rejected when 7 or more TV programmes were not rated by the user.

The investigated thresholds are θv = 0, θv = 3 and θv = 10. With θv = 0 all lists are
accepted since the threshold is effectively left aside. The average number of cases in which
the programme nor the TV show was rated is 2.9768. So to discard all lists where the number
of unrated programmes and/or series is above average, θv = 7 is chosen. Finally, θv = 10
requires all programmes and/or series to be rated. This constraint causes a lot of data
points to be discarded, but ensures a close approximation of the user’s rating. The resulting
correlation coefficients for θv = 0, θv = 7 and θv = 10 are shown in Table 5.1.

The number of data points on which the correlations are based differs for Mean Absolute
Error, Area under ROC and precision depending on the value of θv . For θv = 0 the number
of data point for MAE is 2755 for example, but for θv = 7 it is 1696 and for θv = 10 it
is further decreased to 1182. These numbers are the same for the Area under ROC metric,

60 Evaluating Recommender Systems

5.3. Determine correlations

while precision has slightly more valid data points (3085, 1917 and 1264 respectively).

θv = 0 θv = 7 θv = 10
Metric Corr. Sig. Corr. Sig. Corr. Sig.
Mean Absolute Error -0.406 0.000 -0.611 0.000 -0.698 0.000
Area under ROC curve
- with θr = 3 0.441 0.000 0.492 0.000 0.485 0.000
- with θr = 4 0.289 0.000 0.326 0.000 0.367 0.000
Precision
- with θr = 3 0.559 0.000 0.673 0.000 0.743 0.000
- with θr = 4 0.563 0.000 0.666 0.000 0.708 0..000
Spearman’s correlation
- User’s list -0.098 0.000 -0.098 0.000 -0.098 0.000
- User’s top-10 0.175 0.000 0.175 0.000 0.175 0.000
Relative Edit Distance
- User’s list -0.243 0.000 -0.243 0.000 -0.243 0.000
- User’s top-10 -0.024 0.175 -0.024 0.175 -0.024 0.175

Table 5.1.: Accuracy metric correlations

Both the area under ROC and precision metric work on a binary scale (either relevant or
not relevant). The threshold θr determines when a (recommendation for a) TV programme
is considered relevant or not. A TV programme rated/predicted θr or higher is considered
relevant, otherwise it is considered irrelevant. The effect of θr on the correlations is shown in
the table.

The p-values in Table 5.1 show that all correlations are significant, except for the correlation
between user satisfaction and the user’s top-10 RED at the 0.05 significance level. Further-
more it shows that the strongest correlation exists between user satisfaction and precision.
When θr = 3 and θv = 10 the correlation coefficient is 0.743. This strong correlation indi-
cates that users find it important that the recommender system can accurately classify a TV
programme as (non)relevant and subsequently only recommends the relevant programmes.
Recommending TV programmes that a user does not like reduces user satisfaction.

The correlation between Mean Absolute Error and user satisfaction is slightly weaker and
negative into the bargain. The correlation is negative since a higher Mean Absolute Error
leads to lower user satisfaction. The correlation might be weaker because users probably do
not care whether the recommender is able to predict their ratings correctly, as long as it is
able to recommend relevant TV programmes. Predicting the user ratings correctly is closely
related to recommending relevant TV programmes however, since all recommendations are
based upon these predictions. This is substantiated by the existence of a strong correlation
between precision and Mean Absolute Error (a correlation coefficient of -0.805).

The correlation coefficients for the rank accuracy metrics Spearman’s correlation and Relative
Edit Distance are the weakest accuracy metrics. This probably indicates that the order in
which the recommendations are presented is not really important to the user. However,
the weak correlations might also be caused by the metric’s inability to construct the true
user’s top-10 list of recommendations. The metric constructs this list based upon the user’s

Evaluating Recommender Systems 61

Chapter 5. Determination of Coherence

ratings for series as provided before and after the list was recommended (see Equation 4.4),
but whether it corresponds to the true user’s top-10 is uncertain and hard/impossible to
verify. Furthermore programmes that are not rated by the user are excluded from the list
and therefore penalise the metric.

5.3.2. Diversity

The diversity dimension is measured with four different metrics. First of all each user is asked
to rate the diversity of a list of recommendations on a scale from 1 to 5. Furthermore diversity
is measured with respect to genre, series and channel. The resulting correlations are listed in
Table 5.2.

Metric Corr. Sig.
User’s diversity 0.464 0.000
Genre diversity 0.129 0.000
Series diversity 0.217 0.000
Channel diversity 0.171 0.000

Table 5.2.: Diversity metric correlations

All diversity metrics appear to be significant, but none of the off-line metrics is correlated to
user satisfaction as strong as the on-line metric. From the three off-line metrics, series level
diversity has the strongest correlation to user satisfaction, probably because users penalise
lists that contain reruns of the same TV programme.

The perception of diversity is apparently not determined by one single aspect, but probably
by a combination of diversity of aspects such as genre, series and channel. Other aspects
that might be contributing to the perception of diversity are the kind of programme, actors,
director or just the feeling of variation.

5.3.3. Novelty

The novelty aspect of a recommendation list is measured with the series level novelty metric
as explained in subsection 4.7.3. The correlation between this metric and user satisfaction is
shown in Table 5.3.

Metric Corr. Sig.
Series level novelty -0.056 0.001

Table 5.3.: Novelty metric correlations

The correlation with series level novelty is significant at the 5% significance, but the correlation
is very weak and slightly negative. This weak correlation might be caused by the fact that
most participants only provide (positive) feedback on TV programmes they like. The series
level novelty metric assumes that programmes that were not rated by the user are novel
to him. Therefore many programmes the user does not like are unintentionally labelled as
novel. To overcome this problem the feedback provided by the users on the novelty of each
programme is used. Users could label each recommended TV programme as ”known” or

62 Evaluating Recommender Systems

5.3. Determine correlations

”unknown”. Unfortunately many users forgot to label the recommendations on a regular
basis, making it impossible to distinguish between novel programmes and programmes that
the user had seen before.

5.3.4. Serendipity

The series level serendipity metric uses the same method as series level novelty to determine
whether a TV programme is novel to the user or not. Programmes that are novel and relevant
are said to be serendipitous. Therefore the TV programmes must be mapped upon a binary
scale as with classification accuracy metrics. Here the same threshold values for θr are used
to determines when a (recommendation for a) TV programme is considered relevant or not.
The resulting correlation coefficients are shown in Table 5.4.

θv = 0 θv = 7 θv = 10
Metric Corr. Sig. Corr. Sig. Corr. Sig.
User’s serendipity -0.279 0.114 -0.279 0.114 -0.279 0.114
Reconstructed user’s
serendipity

0.517 0.000 0.628 0.000 0.609 0.000

Series level serendipity
- with θr = 3 0.140 0.000 0.167 0.000 0.136 0.000
- with θr = 4 0.134 0.000 0.139 0.000 0.107 0.000

Table 5.4.: Serendipity metric correlations

The correlation between the ratings of users on serendipity and their satisfaction appears
not to be significant since the p-value is larger than the significance level of 0.05. The
measure for serendipity based on feedback provided by the users is probably negative since
they also rate ”surprisingly bad” lists of recommendations as serendipitous. Users thus provide
feedback on how surprised they are with respect to the recommendation list instead of how
serendipitous the list is experienced. To correct for this the user’s serendipity is multiplied
by the average rating for the recommended TV programmes, resulting in the reconstructed
user’s serendipity. This way a ”surprisingly bad” list becomes less serendipitous than a
list that is surprising and good. The correlations coefficients for the reconstructed user’s
serendipity are quite high. Moreover all reconstructed user’s serendipity correlations appear
to be significant. However, these high correlations might be caused by the involvement of the
(strongly correlated) precision.

The off-line metric series level serendipity also appears to be significant, although it is a lot
weaker than the reconstructed user’s serendipity. The problems that series level novelty suffers
from, namely that irrelevant programmes are not rated by users and therefore are labelled
as novel, do not affect the series level serendipity metric. Programmes that are incorrectly
labelled as novel are only labelled as serendipitous when the true user’s rating (i.e. r̂i(bk) as
defined in Equation 4.4) is larger than or equal to θr . The resulting correlation coefficients
show that serendipity is important to users, but only to a limited degree.

Evaluating Recommender Systems 63

Chapter 5. Determination of Coherence

5.3.5. Programme overlap

The correlations between user satisfaction and the two metrics for programme overlap are
listed in Table 5.5.

Metric Corr. Sig.
Programme Overlap Ratio 0.015 0.401
Effective Overlap Ratio -0.212 0.000

Table 5.5.: Programme overlap metric correlations

Table 5.5 shows that there is a large difference between the two programme overlap metrics
with respect to their correlation with user satisfaction. The p-value of 0.401 indicates that
there is a 40% change that a correlation coefficient of 0.015 is observed under the assumption
that there exists no correlation between the Programme Overlap Ratio and user satisfaction.
Therefore the null hypothesis cannot be rejected. The absence of a correlation between
Programme Overlap Ratio might be caused by the fact that users did not take the time on
which a TV programme is broadcasted into consideration and therefore do not notice any
possible overlap.

The negative correlation between Effective Overlap Ratio (EOR) and user satisfaction seems
really counterintuitive. It means that the more programmes overlap (lower EOR) the more
satisfied a user is with the list of recommendations. The cause of this observation proba-
bly lies in the fact that the most popular TV programmes are broadcasted within a small
timeframe (say 8:00pm - 10:00pm) on different channels. Users that are not concerned with
programme overlap and rate the recommendation lists based on the presents of relevant TV
programmes thus rate lists with much overlap (and a low EOR) higher. Furthermore, many
TV programmes have one or more reruns late at night. These programmes are less likely to
overlap with other recommendations, and thus lead to a high Effective Overlap Ratio. As
described in subsection 5.3.2, lists with many duplicates on a series level are less valued by
users however. This might contribute to the negative correlation as well.

5.4. Clusters / types of users

The correlations presented in the previous section are calculated over all users that partic-
ipated in the user study. It is not unlikely however that the importance of the dimensions
differs per user. Some users might prefer a diverse list over a highly accurate one, while others
prefer a list that is serendipitous. These differences make that the overall correlation for a
specific metric might not correspond to the correlation between the metric and the satisfaction
of a specific user.

In order to investigate whether there exist groups of users that favour a specific dimension
or combination of dimensions over another, users can be clustered based on the dimensions
they deem to be important. For each of these groups the correlations to the metrics that are
discriminating to that group must be stronger while others are weaker. To create the clusters
of users with similar discriminating metrics the following steps need to be taken:

1. Calculate for each user the correlation between the user’s satisfaction and each metric.

64 Evaluating Recommender Systems

5.4. Clusters / types of users

2. Create clusters of users that are most similar with respect to the correlations calculated
in step 1.

3. Calculate the correlations per metric for each of the clusters created in step 2.

Each of these steps will be described in more detail in the following subsections.

5.4.1. User’s correlations

The importance of each of the dimensions presented in section 4.7 with respect a specific user
is determined by calculating its correlation with that user’s satisfaction. Analogous to the
correlation measure used to calculate the overall correlations, Spearman’s rank correlation
coefficient will also be adapted here. The result is a matrix with for each user a row and for
each metric a column where each cell is the corresponding correlation coefficient.

5.4.2. Clustering the users

Clustering algorithms divide data into groups, called clusters, such that the similarity within
a group (the intra-cluster similarity) is maximised according to some distance measure, while
the similarity between groups (the inter-cluster similarity) is minimised. The distance measure
used to cluster the users is the Euclidean distance between the user’s correlations (as described
in the previous subsection). This way the clustering algorithm groups users with similar
correlations together.

The clustering toolkit Cluto 1 is able to cluster high dimensional data maximisedsets using
a number of clustering algorithms that operate either directly in the object’s feature space
or in the object’s similarity space. The toolkit is applied to create the clusters of users using
the clustering criterion function shown in Equation 5.1. This function is maximised to get an
optimal clustering.

k∑
i=1

√ ∑
v ,u∈Si

sim(v , u) (5.1)

In this equation Si represents the ith cluster (with 1 ≤ i ≤ k) and v and u are objects in a
certain cluster.

Determining the number of ”true” groups in a data set is a fundamental and largely unsolved
problem in cluster analysis [SJ03, RWN03, TWH01]. This makes is really hard to determine
the number of clusters k you are trying to find. The approach taken in this research to
determine k is to generate clusters using 2 ≤ k ≤ 10. For each of these clusters the descriptive
features are calculated. The set of descriptive features is determined by selecting the metrics
that contribute the most to the average similarity between the items in a cluster. Next, k
is chosen as the largest number of clusters such that the intersection of the main descriptive
feature for each of the clusters is empty. It appears that k = 4 meets this criterion and
therefore the users will be grouped into four clusters.

1http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

Evaluating Recommender Systems 65

Chapter 5. Determination of Coherence

Table 5.6 shows the internal and external quality measures as provided by Cluto. In this
table each of the rows corresponds to one of the clusters, indicated by its cluster id (Cid).
The column labelled ”Size” displays the number of users in that cluster. The column ”ISim”
displays the average similarity between the users in the cluster (i.e. the internal similarity)
while the column ”ISdev” displays the internal standard deviation of the average similarities.
The columns ”ESim” and ”ESdev” display the same information for external similarities. The
right most column labelled ”Descriptive features” displays the three most descriptive features
for the cluster together with a percentage that indicates how descriptive that feature is.

Cid Size ISim ISdev ESim ESdev Descriptive features
1 15 0.630 0.085 0.186 0.104 UsersDiversity (22.4%),

UsersSerendipity (17.0%), Precision
(13.4%)

2 24 0.614 0.106 0.217 0.070 Precision (25%), MeanAbsoluteError
(19.2%), UserDiversity (10.5%)

3 12 0.407 0.097 0.011 0.157 SeriesLevelNovelty (31.0%),
SeriesLevelSerendipity (18.8%),
Precision (11%)

4 20 0.179 0.155 0.117 0.142 UsersSerendipity (23.1%),
MeanAbsoluteError (16.0%),
Precision (12.3%)

Table 5.6.: Internal and external quality measures for 4-way user clustering

Table 5.6 shows that the largest cluster (cluster 2, consisting of 24 users) contains users that
are similar with respect to the correlation between their user satisfaction and the accuracy
metrics precision and Mean Absolute Error. The intra-cluster similarity is high, indicating
that the similarity between the users in the cluster is high as well. The external similarity
however is also fairly high, probably because precision is also important to the users in the
other clusters. The importance of precision to the other clusters is illustrated by the fact that
this metric is also descriptive to these clusters, but to less extent.

The cluster with the highest intra-cluster similarity (cluster 1) has user’s diversity and user’s
serendipity as its most descriptive features. The users in this cluster probably value diversity
and serendipity above average while their correlation coefficients for the other metrics differ
to greater extent.

Cluster 3 contains users that have equivalent correlations between user satisfaction and se-
ries level novelty, series level serendipity and precision. Series level novelty is the strongest
descriptive feature for this cluster, indicating that this metric is most similar among the
members of the cluster.

The fourth cluster has a low average similarity between the users in the cluster, probably
because this cluster contains the residual user, e.g. the users that did not fit to one of the
other clusters. The internal standard deviation is the highest for this cluster which is also an
indication that this cluster is not really homogeneous.

66 Evaluating Recommender Systems

5.4. Clusters / types of users

5.4.3. Correlations per cluster

In order to verify whether the identified clusters indeed contain users that value the same
dimensions, their correlations can be calculated for each of the metrics. The correlation
coefficient of the descriptive feature should differ significantly from the correlation found
when all users are considered.

To calculate the correlations between user satisfaction and each of the metrics, only data
points associated with users contained in a specific cluster are taken into account. The
results are listed in Table 5.7. The last row in both tables show the overall correlation for the
metrics.

C
id

M
ea

n
A

b
so

lu
te

E
rr

or

A
re

a
U

n
d
er

R
O

C

P
re

ci
si

on

U
se

rs
D

iv
er

si
ty

C
h
an

n
el

L
ev

el
D

iv
er

si
ty

G
en

re
L
ev

el
D

iv
er

si
ty

S
er

ie
s

L
ev

el
D

iv
er

si
ty

S
er

ie
s

L
ev

el
N

ov
el

ty

1 -0.392 0.385 0.501 0.636 0.174 0.207 0.208 0.012
2 -0.486 0.477 0.632 0.446 0.250 0.154 0.276 -0.164
3 -0.149 0.474 0.297 0.241 -0.160 -0.129 -0.062 0.463
4 -0.259 0.321 0.469 0.247 -0.084 0.011 0.145 -0.082
- -0.406 0.441 0.559 0.464 0.171 0.129 0.217 -0.056

C
id

U
se

rs
S
er

en
d
ip

it
y

R
ec

on
st

ru
ct

ed
U

se
rs

S
er

en
d
ip

it
y

S
er

ie
s

L
ev

el
S
er

en
d
ip

it
y

O
ve

rl
ap

R
at

io

E
ff
ec

ti
ve

R
at

io

T
op

-N
S
p
ea

rm
an

U
se

r
L
is

t
S
p
ea

rm
an

U
se

r
L
is

t
R

E
D

1 0.543 0.718 0.048 -0.030 -0.214 0.160 -0.040 -0.135
2 -0.205 0.531 0.195 0.070 -0.230 0.190 -0.199 -0.281
3 -0.235 0.085 -0.026 -0.145 -0.152 0.142 0.274 -0.310
4 -0.511 0.045 0.275 -0.036 -0.142 0.133 0.027 -0.168
- -0.279 0.517 0.140 0.015 -0.212 0.175 -0.098 -0.243

Table 5.7.: Correlations per cluster with θv = 0 and θr = 3

Table 5.7 shows that the correlations for cluster 1 with respect to the accuracy metrics are
weaker than the overall correlations. The correlations for user’s diversity, user’s serendipity
and reconstructed user’s serendipity on the other hand became (much) stronger. This indi-

Evaluating Recommender Systems 67

Chapter 5. Determination of Coherence

cates that the users in cluster 1 indeed consider the descriptive features as important. It also
shows that the users in this cluster on average find diversity more important than users in
the other clusters.

In cluster 2 all accuracy metrics appear to have a stronger correlation than the corresponding
overall correlations. This is in line with the features that are descriptive to this cluster. The
cluster consists of participants for whom accurate recommendations are most important. The
differences between this cluster’s correlations and the overall correlation coefficients are not
as large as that of cluster 1. This is probably because cluster 2 is the largest cluster and
therefore has a large impact on the overall correlations.

Cluster 3, with series level novelty as its most descriptive feature is indeed strongly correlated
with this metric. Another observation is that mean absolute error and precision have only
a relatively weak correlation with respect to the overall correlations for these metrics, while
the correlation for area under ROC is similar.

The accuracy correlations for the fourth cluster are all weaker than the corresponding overall
correlations. User’s serendipity and series level serendipity on the other hand are stronger
correlated to user satisfaction. In contrast to cluster 1 users in cluster 4 have an contrary
correlation with respect to user’s serendipity. This might be caused by the way the users rated
the serendipity of the recommendation list. Users in cluster 4 probably rated a list that was
really bad as serendipitous, while users in cluster 1 only considered a list to be serendipitous
when is was surprisingly good.

5.5. Combinations of multiple variables

The previous two sections only focused on the relation between user satisfaction and a single
other metric and did not take any combinations of metrics into account. It is possible however
that combinations of metrics have a different effect on user satisfaction than each of the
metrics in itself. Suppose a user gets a list of TV programmes recommended that is not really
accurate, but very novel. Even though accuracy is important to the user he might appreciate
the list since its novelty is high. It thus is possible that combinations of metrics enhance or
abate each others effect on user satisfaction.

In statistics, multivariate analysis is concerned with the observation and analysis of more than
one statistical variable at a time. Many different types of multivariate analysis exist such
as multivariate analysis of variance (MANOVA), regression analysis, principal component
analysis, artificial neural networks and so on [TFFT00]. Jan Telman, an expert in the field of
statistics at TNO Science and Industry, was consulted to provide guidance and advice during
this stage of the research.

Jan Telman advised to employ discriminant analysis since it is quite robust with respect
to skewness. This is important since the observed values for the different variables are not
normally distributed. The variables are tested for normality using the Jarque-Bera normality
test [JB80].

Discriminant analysis identifies whether changes in the independent variables have a signifi-
cant effect on the dependent variables. Furthermore it tries to identify the interactions among
the independent variables and the association between dependent variables. Chapter 6 de-

68 Evaluating Recommender Systems

5.6. Questionnaire

scribes descriminant analysis in more detail and presents the model that resulted from the
employment of discriminant analysis.

5.6. Questionnaire

When the user study was finished all participants were asked to fill in a questionnaire provided
through the evaluation website. The purpose of the questionnaire was to learn from the
participants, who were experienced users of a TV programme recommender system by then.
The questionnaire consisted of ten questions. Some of these questions asked to indicate the
importance of certain aspects to the user, while others tried to discover how the dimensions
were interpreted. Furthermore the questionnaire was a means to discover whether important
dimensions were missed. Detailed results of the questionnaire are listed in appendix D.

The questionnaire provided some interesting results. First of all the questionnaire confirmed
many of the observations described above. Predictive and classification accuracy for example
proved to be the most important dimensions to the users, while ranking accuracy is less
important. This corresponds to the results of the questionnaire. Programme overlap appears
not to be of great importance to users, even though they indicated in the questionnaire that
viewability is. Obviously programme overlap is not an important factor when it comes to
viewability and users take other aspects into consideration to determine the viewability (like
the time when the TV programme is broadcasted).

Second, the questionnaire showed that users generally consider a list of recommendations
diverse when the recommended TV programmes differ with respect to genre. However, the
correlation between diversity as rated by the user and the genre level diversity metric (see
Equation 4.6) is not as strong as series level diversity and channel level diversity.

Third, most participants indicated that they experience a recommendation list as serendip-
itous when it contains recommendations for TV programmes that they would not have dis-
covered themselves. This definition however makes it really hard to measure whether a list is
serendipitous and to what extent. Many users also consider a recommendation list containing
TV programmes that they have not seen before serendipitous, this aspect was covered by the
novelty metric however. Since the definition of serendipity differs greatly it might explain
why there is no correlation between user satisfaction and serendipity.

5.7. Discussion

While the coherence between the dimensions identified in Chapter 3 and user satisfaction
were determined some issues and possible limitations were identified. The remainder of this
section will describe these issues.

First of all, Spearman’s rank correlation measures to what extent a set of data points is strictly
increasing (positive correlation) or decreasing (negative correlation). Figure 5.4 illustrates
this. The left-most relation has a Spearman’s rank correlation coefficient of 1, even though
it is not a straight line. The relation in the middle has a correlation of -1. So, Spearman’s
rank correlation assumes a strong correlation when a greater diversity results in a higher (or
lower) user satisfaction.

However, it is unlikely that an ever increasing diversity for example, results in a further

Evaluating Recommender Systems 69

Chapter 5. Determination of Coherence

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Diversity

Us
er

 s
at

isf
ac

tio
n

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Diversity

Us
er

 s
at

isf
ac

tio
n

0 0.2 0.4 0.6 0.8 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Diversity

Us
er

 s
at

isf
ac

tio
n

Figure 5.4.: A strictly increasing (left), strictly decreasing (middle) and a non strictly increas-
ing / decreasing (right) relation

growth of the user satisfaction. Ziegler et. al. ([ZMKL05]) discovered that the relation
between diversity and user satisfaction looks more like the right-most plot in Figure 5.4.
Thus there appears to exist an optimum in the diversity of a recommendation list. Further
diversification results in a decrease of the user satisfaction. The existence of such a relation
results in a lower correlation coefficient, even though a strong relation might exist.

Secondly, the user base appeared not to be as diverse as anticipated. Since most of the partic-
ipants were colleagues working at TNO Information and Communication Technology people
working in the information and communication technology sector were overrepresented. The
education level is also quite skewed since TNO employees are all highly educated. Further-
more a large number of university students and staff participated. The number of participants
having an academic degree is therefore overrepresented as well.

Another issue is the translation of the user’s ratings (on a scale from 1 to 5) onto a binary
scale (relevant/irrelevant). The translation is done using a single threshold θr . Choosing this
threshold is relatively arbitrary. Furthermore different users might consider differently rated
items as relevant. One user might consider an item rated with 3 or more stars relevant for
example, while another only considers items rated 5 stars as relevant. This issue can be solved
by using user specific thresholds as suggested by Carenini [HKTR04, Car05]. Choosing this
user specific threshold is also arbitrary however.

Finally, the quality of the user clustering might be suboptimal due to the lack of sufficient
data for some users. For each of the dimensions the correlation to each user’s satisfaction is
calculated. But since some users only provided a small number of ratings their correlations
might not be significant. When a large number of users is assigned to the same cluster based
on poor data, this might affect the within cluster correlations.

70 Evaluating Recommender Systems

6
Creating and Validating the Prediction Model

The ultimate goal of this research is to develop a method that is able to predict the user
satisfaction achieved by an EPG/RS system, based on various off-line metrics. To achieve
this a model is created based on the discriminating metrics that were identified in the previous
chapter. How exactly this model is created and how it performs is the subject of this chapter.

In this chapter the following will be discussed

• How the prediction model is created (Section 6.1).

• How the validity of the model is tested (Section 6.2).

• Discussion of the results described in this chapter (Section 6.3).

6.1. Creating the model

Creating a model to predict the user satisfaction based on more than one variable requires
the application of multivariate statistical methods. Multivariate methods simultaneously
analyse data on several variables and incorporate knowledge on correlations among variables.
The different variables are usually considered as a single element, a k-tuple consisting of
(x1, x2, ..., xk) values [Acz93, TFFT00].

The prediction of the user satisfaction can be interpreted as a classification problem with
five classes. Given a number of observed recommendation list properties (x1, x2, ..., xk) the
goal is to classify the user’s satisfaction as 1, 2, ..., 5 stars. Statistical and machine learning
approaches exist that try to solve the classification problem. On the advise of Jan Telman,
an expert in the field of statistics, it is decided to employ discriminant analysis as a method
to predict the user satisfaction based upon the observed list properties.

Evaluating Recommender Systems 71

Chapter 6. Creating and Validating the Prediction Model

6.1.1. Discriminant analysis

Discriminant analysis is a technique for classifying a number of observations x = (x1, x2, ..., xk)
into predefined classes Π1, ...,Πg . In this research the number of groups g is five and the
observations consist of the measured values for the off-line metrics. Each of the groups Πj

has a probability density function fj (x) that describes the chance that a measurement x is
part of that group. In the case that fj (x) is known (which is rarely the case) allocating x
to one of the groups is easy. It will be allocated to the group for which fj (x) has the largest
value. When only the form of fj is known, only the parameters of the function need to be
estimated. This parameter estimation can be done using a data set that includes a (preferably
large) number of observations, together with information on the group to which they belong.
In the case that even the form of the probability density function is unknown there is an
empirical approach to discriminant analysis where rules are tried to be found that discriminate
between the different groups [MKB80, Krz88]. One such approach encompasses Fisher’s linear
discriminant function. This approach will be used in this research since the probability density
functions are unknown for each of the five groups and since it is a robust method with respect
to skewness (a measure for the asymmetry of the probability distribution).

A discriminant function L = c + b1x1 + b2x2 + ... + bkxk is a linear function that maximises
the among-groups variation relative to the within-groups variation [Acz93, Krz88]. The dis-
criminant function thus is a direction in space that maximises the separation between groups
and can be described by a linear function as shown in Figure 6.1. A detailed description of
Fisher’s discriminant function is not within the scope of this thesis. See [MKB80], [Krz88],
[TFFT00] or [Acz93] for more details.

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

L

Figure 6.1.: Example of a discriminant function L = c + b1x1 + b2x2 when x = (x1, x2)

The statistical analysis tool SPSS is used to compute Fisher’s discriminant function for each
of the groups Π1, ...,Πg , based on a data set that includes observations and information on
the group to which the case belongs. This results in the discriminant weights b1, ..., bk for the
corresponding input variables.

Once the linear discriminant function has been calculated, an observation x is allocated

72 Evaluating Recommender Systems

6.1. Creating the model

to a group based on its discriminant score Li . The discriminant scores are calculated by
substituting the observations (x1, x2, ..., xk) into each of the discriminant functions. The group
that achieves the highest discriminant score with respect to x has the highest probability to
be the group to which x belongs.

How these functions can be applied to predict user satisfaction will be described in the next
subsection.

6.1.2. The prediction method

The method to predict user satisfaction is based on discriminant analysis, as described above.
The input of the discriminant functions are the observed values for Mean Absolute Error,
Area Under ROC, Precision, Channel Level Diversity, Genre Level Diversity, Series Level
Diversity and Series Level Serendipity. These metrics happen to have the strongest correlation
to user satisfaction, as described in Chapter 5, and can be measured without explicit user
intervention. SPSS was used to determine the discriminant weights. The weights for each class
(rows) and metric (columns) that were found for the various dimensions can be represented
as a matrix, as shown next:

B =

7.701 0.241 13.878 26.448 17.730 2.825 0
5.045 −0.980 14.526 29.594 20.600 2.296 0
4.994 −2.057 17.834 29.576 21.737 4.868 0
5.011 −1.375 19.419 28.990 21.660 7.983 0
4.684 −0.333 19.524 27.532 18.312 12.206 0

The matrix’ columns contain the weights for Mean Absolute Error, Area Under ROC, Preci-
sion, Channel Level Diversity, Genre Level Diversity, Series Level Diversity and Series Level
Serendipity respectively. The last column only contains zero values, indicating that Series
Level Serendipity is not a discriminating variable (even though there exists a correlation be-
tween this metric and user satisfaction). Exactly why Series Level Serendipity does not add
to user satisfaction when it is combined with the other metrics requires further investigation,
but it might be possible that its effect is cancelled out by the remaining metrics. Since the
weights for Series Level Serendipity are all zero, it can be left out of the equation. The
constant values c1, ..., c5 of Fisher’s linear discriminant functions are also provided by SPSS:

C =

−24.222
−20.808
−24.265
−28.020
−30.859

The discriminant scores d1, ..., d5 can now be computed as shown in Equation 6.1. In this
equation x1, ..., x7 are the observed metric values for Mean Absolute Error, Area Under ROC,
Precision, Channel Level Diversity, Genre Level Diversity, Series Level Diversity and Series
Level Serendipity respectively.

Evaluating Recommender Systems 73

Chapter 6. Creating and Validating the Prediction Model

d1

d2
...
d5

 =

b1,1 b1,2 · · · b1,7

b2,1 b2,2 · · · b2,7
...

...
. . .

...
b5,1 b5,2 · · · b5,7

x1

x2
...
x7

 +

c1

c2
...
c5

 (6.1)

As explained earlier, the predicted value for the user satisfaction, based upon the observation
x is i when di is the highest discriminant score. The overall prediction method can therefore
be formally defined as shown in Equation 6.2.

c(x) = {i ∈ [1, 5] : di ≥ dj ∧ i 6= j ∀ i , j} (6.2)

In the equation di is the result of Equation 6.1.

6.2. Validating the model

In order to verify the validity of the model its classification accuracy must be tested. When
creating the model SPSS already tests the classification accuracy using the data on which
the model is fitted. SPSS applies the model it creates to predict for each item to which
class it belongs. These predictions are then compared to the actual classes. This method of
evaluation is not really righteous, since the model is evaluated on the same data that was
used to construct it and thus it could have known how to ”predict” the user satisfaction.

The results of the evaluation as performed by SPPS during the model creation is shown in
Table 6.1. The table displays for each class how many of its items were allocated to each of
the other classes.

User Satisfaction Predicted
Actual 1 2 3 4 5

1 365 (77.2%) 75 (15.9%) 28 (5.9%) 5 (1.1%) 0 (0.0%)
2 42 (12.2%) 153 (44.6%) 110 (32.1%) 36 (10.5%) 2 (0.6%)
3 16 (3.9%) 86 (21.1%) 181 (44.4%) 120 (29.4%) 5 (1.2%)
4 3 (0.9%) 34 (9.7%) 99 (28.3%) 197 (56.3%) 17 (4.9%)
5 0 (0.0%) 7 (5.7%) 15 (12.3%) 73 (59.8%) 27 (22.1%)

Table 6.1.: Classification results

The table shows for example that 365 (e.g. 77.2%) of the recommendation lists that were
rated with one star were also predicted to be rated with one star. Furthermore is shows that
120 lists that were predicted to have been rated with 4 four stars were in fact rated with three
stars. The table also shows that 923 out of 1696 entries are correctly classified. This means
that the model is able to predict 54.42% of the users ratings for user satisfaction correctly
(as opposed to 20%, which would be achieved when the ratings were randomly predicted).
However, Table 6.1 also shows that when the model misclassifies a list, the error it makes is
usually small. Therefore it is interesting to measure to what extent the model can predict
the user satisfaction instead of how many predictions are exactly the same as the true user’s

74 Evaluating Recommender Systems

6.2. Validating the model

rating.

The predictive accuracy (as opposed to classification accuracy) can be determined by cal-
culating the mean absolute error over the predicted and true user’s rating. To measure the
predictive accuracy a validation methodology called cross validation is applied, since the gen-
eralisation ability of the model is important [Alp04]. The following subsection will describe
K-fold cross validation in more detail.

6.2.1. K-fold cross validation

The classification evaluation as implemented by SPSS is performed on the same data set
that is used to construct the model. It is therefore possible that the created model is able
to predict the user satisfaction really accurately for the data on which the model is trained,
while it performs much worse on yet-unseen data. To overcome this problem, cross validation
can be applied.

With cross validation a part of the data set is retained when creating the model so it can be
used to evaluate it later on. The data that is used to test the model is called the validation
set, while the data that is used to create the model is called the training set [Alp04]. Both
sets do not overlap (i.e. the sets are disjoint). The part of the data that is used for training
and the part that is used for validation can be varied so that multiple validations can be
performed.

In K-fold cross validation the data set is divided randomly into K (almost) equal-sized non-
overlapping parts X1, ...,XK , called the folds. These folds are then combined into K training
/ validation pairs (T1,V1), ..., (TK ,VK) where:

V1 = X1 T1 = X2 ∪X3 ∪ · · · ∪XK

V2 = X2 T2 = X1 ∪X3 ∪ · · · ∪XK

...
...

VK = XK TK = X1 ∪X2 ∪ · · · ∪XK−1

For each of these pairs the model is trained on the training set and validated on the validation
set. The expected performance of the model trained on all data for data that is yet unknown
to the model is then said to be the mean of the K validity scores. Since the mean absolute
error is used as the metric for validity the overall performance of the model is calculated as
shown in Equation 6.3.

MAE =
1
K

K∑
j=1

(
1
|Vj |

∑
x∈Vj

|r(x)− pj (x)|
)

(6.3)

In this equation the prediction for the user satisfaction for recommendation list x , denoted
as pj (x) is based on the model created on training set Tj . The true user’s rating for the
recommendation list is denoted as r(x).

Evaluating Recommender Systems 75

Chapter 6. Creating and Validating the Prediction Model

6.2.2. Evaluation results

In the validation of the predictive model created in this research K is chosen to be 4 since the
cost of creating the training / validation sets, training the model and the determination of the
mean absolute error becomes really high for large values of K . These exorbitant costs were
primarily caused by the fact that the datasets had to be split using MS Excel, the model was
created using SPSS and the calculation of the accuracy using a custom build Java tool. The
results of each of these steps had to be transfered to the next step by hand. Unfortunately
automating the task would be even more time consuming.

With 4-fold cross validation, the data set is thus randomly subdivided into 4 subsets. On
each of these subsets a model is validated that was created based on the other three subsets.
The results of this 4-fold cross validation are shown in Table 6.2.

Error size
V MAE #0 #1 #2 #3 #4
1 0.75887 335 (41.0) 359 (43.9) 108 (13.2) 15 (1.8) 0 (0.0)
2 0.72093 356 (43.6) 344 (42.1) 107 (13.1) 9 (1.1) 1 (0.1)
3 0.71603 360 (44.0) 339 (41.5) 108 (13.2) 10 (1.2) 0 (0.0)
4 0.76103 338 (41.4) 353 (43.3) 107 (13.1) 18 (2.2) 0 (0.0)

Avg. 0.73922 347 (42.5) 349 (42.7) 108 (13.2) 13 (1.6) 0 (0.0)

Table 6.2.: K-fold cross validation of the prediction model

The table lists for each fold the mean absolute error and the number of times an error of size 0
to 4 occurred. The value between parentheses is the corresponding percentage of occurrences.
The last row contains the average for each of the columns.

Table 6.2 shows that the prediction model on average achieves a mean absolute error of
0.73922 on data that is unknown to the model. This implies that the user satisfaction can be
quite accurately predicted since the prediction method is less than one point of the mark on
average.

6.3. Discussion

The attentive reader might notice that discriminant analysis was employed to create the
predictive model, even though the data appeared not to be distributed normally. This is a
correct observation, since discriminant analysis assumes a multivariate normal distribution.
Discriminant analysis is said to be relatively robust even when there is a modest violation of
this assumption [Lac75, Kle80]. This claim indeed appears to be true, since the validation
of the model (as described in section 6.2) shows that the model created using discriminant
analysis is quite accurate.

Another critical note might be placed by the choice of K in the K-fold cross validation.
Usually K is chosen to be somewhere between 10 and 30, but since the cost of creating the
training / validation sets, training the model and the determination of the mean absolute
error was really high in the validation setup, K was chosen to be 4. This choice can be

76 Evaluating Recommender Systems

6.3. Discussion

justified by the fact that the observed mean absolute error differs only slightly for each of the
folds.

Evaluating Recommender Systems 77

7
Conclusions and Future Work

The main objective of this research was to determine how user satisfaction achieved by a
recommender system recommending TV programmes could be predicted without requiring
user participation. This chapter describes how this objective was met and presents further
conclusions drawn from the research (section 7.1). Then, in section 7.2, some hints to potential
future work as a result of the research are presented.

7.1. Conclusions

During this research the following research question was answered; How can the user satis-
faction achieved by an EPG/RS system be predicted based on various off-line metrics? To
achieve structured completion of the overall research a number of sub questions was answered.
These sub questions are:

• What recommendation techniques do exist, how do they work and what are their ben-
efits?

• What is the state-of-the-art in recommender system evaluation and what aspects are
important to evaluate?

• What is user satisfaction and how can it be measured?

• How do the individual properties of a recommendation list and user satisfaction cohere?

The following paragraphs will answer these questions.

Three different prediction techniques can be distinguished in the literature: collaborative
filtering, content-based filtering and hybrid forms that combine the other two techniques.
One of the main issues of collaborative filtering is that it suffers from the cold start problem.
Content-based filtering on the other hand suffers from overspecialisation. Hybrid prediction
techniques try to overcome these problems by avoiding the limitations of each technique.

Evaluating Recommender Systems 79

Chapter 7. Conclusions and Future Work

Furthermore, literature describes seven different dimensions that can be used to evaluate a
recommender system: accuracy, coverage, confidence, diversity, learning rate, novelty and
serendipity. Accuracy is by far the most widely used when evaluating recommender systems,
although research has shown that it is not equivalent to user satisfaction.

An evaluation application to measure user satisfaction was implemented that enabled users to
rate recommendation lists on a five-point Likert scale. This user study, collecting 9762 ratings
of 70 users over a period of 3 months, showed that the accuracy metrics mean absolute error,
precision and area under ROC have the strongest correlation with user satisfaction. Ranking
accuracy metrics such as relative edit distance and Spearman’s rank correlation appeared
to have a weaker correlation, possibly because the order of the recommended items is less
important. Other metrics that proved to have a strong correlation to user satisfaction are
user’s diversity, series level diversity, user’s serendipity and effective overlap ratio.

Clustering the users into four clusters, based on the individual correlations between 15 differ-
ent metrics and user satisfaction showed that the users in each of these clusters value distinct
list properties. Users in one of the cluster were similar with respect to diversity, while two
other clusters contained users that were alike regarding accuracy and serendipity respectively.
The fourth cluster contained users that did not discriminate themselves with respect to any
of the dimensions. The clustering proved to be valid since the within-cluster correlation co-
efficients showed that the correlations with the metrics that best described the clusters were
indeed stronger.

The prediction method developed in this research utilises discriminant analysis using Fisher’s
discriminant functions. This technique was used to construct a model that classifies the ob-
served values for Mean Absolute Error, Area Under ROC, Precision, Channel Level Diversity,
Genre Level Diversity, Series Level Diversity and Series Level Serendipity into the classes
”rated with 1 star”, ”rated with 2 stars”, ..., ”rated with 5 stars”. The resulting model is
shown in Equation 7.1.

d1

d2

d3

d4

d5

 =

7.701 0.241 13.878 26.448 17.730 2.825
5.045 −0.980 14.526 29.594 20.600 2.296
4.994 −2.057 17.834 29.576 21.737 4.868
5.011 −1.375 19.419 28.990 21.660 7.983
4.684 −0.333 19.524 27.532 18.312 12.206

x1

x2

x3

x4

x5

x6

 +

−24.222
−20.808
−24.265
−28.020
−30.859

 (7.1)

The predicted user satisfaction for a recommendation list with observed metrics x1, ...x6 is i
where di is the highest discriminant score.

The application of 4-fold cross validation showed that the prediction method on average
achieves a mean absolute error of 0.73922 on data that is unknown to the model. This denotes
that the user satisfaction achieved by a recommender system recommending TV programmes
can be accurately predicted using the method developed in this research.

80 Evaluating Recommender Systems

7.2. Future work

7.2. Future work

During the research many potentially interesting and relevant research subjects presented
themselves, but to keep focused on the objectives of this research these topics had to be
discarded. This section briefly discusses these subjects for possible future work.

First of all, more research into the goals of users of an EPG/RS systems need to be performed.
Why do people use such a system? Is it because they want to discover content that is new
to them? Do they want to spend less time in finding their favourite TV shows? Or are there
other reasons for using an EPG/RS? Closely related to these goals are the tasks that users try
to address when using an EPG/RS. Do they want to find all interesting programmes or are
users satisfied when the system recommends 10 sufficiently interesting TV shows? Do users
expect the recommender to prove them to be credible by recommending TV programmes that
are known to them (and considered to be interesting)? It is important to understand these
goals and tasks when evaluating a recommender system and even though the questionnaire
addressed this subject more (ethnographic) research into it would be valuable.

Secondly, it is conceivable that more dimensions that add to user satisfaction can be identified.
Although the questionnaire did not reveal any missing dimensions that play a role in the
perceived user satisfaction, a more extensive research might uncover dimensions that also
appear to be important. These dimensions might help to further improve the prediction
method.

Another question that needs more extensive research is whether the prediction method de-
veloped in this research is also applicable to other domains. It is possible that users value
other properties of the recommendation list when it contains recommendations for books or
movies for example. Furthermore the prediction method needs a value for the Channel Level
Diversity of the recommendation list. This metric is EPG specific, but maybe it can be left
out of the equation without penalising the performance too much.

Fourth, the performance of the prediction method might be further improved when a large(r)-
scale user study is performed with a more diverse user base. Finding sufficient people that
wanted to participate in the user study was a tough job and therefore demanding a wide
variety of users was a luxury that could not be afforded. When the user experiment could be
repeated as part of an existing EPG/RS system with tens of thousands of users the resulting
data could be used to develop a predictive model that is even more accurate.

Furthermore, it might be interesting to investigate whether the people that were assigned to
the same cluster (as described in Section 5.4) share common demographic information such
as age, gender and level of education. When this appears to be the case, it becomes possible
to determine what dimensions the user would value in advance. The recommender system
can then tailor its recommendations without letting its users rate the recommendation lists.

Finally, a prediction method that is able to produce a more fine grained prediction could be
developed. The method developed in this research is able to predict the user satisfaction on
a five-point scale, but conceivably it is also possible to refine this scale. Maybe it is even
possible to predict the user satisfaction on a continuous scale.

Evaluating Recommender Systems 81

A
Existing recommender systems

Recommender systems have changed from novelties used by a few researchers to serious
business tools that are becoming widely used in various domains. Recommender systems are
especially popular for recommending books, music, movies and TV programs among others. In
this appendix some e-commerce sites and services using recommender systems are discussed.

A.1. Amazon.com

Probably the best known application of recommender system technology is Amazon.com.
Users of Amazon.com receive recommendations in various forms. An example is the ”Cus-
tomers who bought” feature that recommends items that were bought by people who bought
a particular item (as shown in Figure A.1).

Figure A.1.: Amazon’s ”Customers who bought” feature

Users that have an Amazon.com account and are signed-in also receive a number of recom-
mendations, based on their buying history (as shown in Figure A.2). The user can specify
from which category he likes to receive recommendations, by clicking on it.

Amazon.com uses item-based collaborative filtering (CF) to predict what items you probably
like best from the enormous set of potentially interesting items [LSY03]. Scalability is an
important issue here, since Amazon.com has tens of millions of customers and products. The

Evaluating Recommender Systems 83

Appendix A. Existing recommender systems

Figure A.2.: Amazon’s ”Today’s recommendations for you”

item-based collaborative filtering algorithm matches each of the user’s purchased and rated
items to similar items and combines those items into a recommendation list for the user.
To determine what items are similar, the algorithm builds a similar-items table by finding
items that customers tend to purchase together. This approach is different from most other
recommender algorithms that calculate a similarity metric for each pair of items.

Amazon’s algorithm can be described as follows:

For each item in product catalog, I1
For each customer C who purchased I1

For each item I2 purchased by customer C
Record that a customer purchased I1 and I2

For each item I2
Compute the similarity between I1 and I2

The similarity between two products is computed as the angle between two M dimensional
vectors P1 and P2, where each dimension corresponds to a user who has bought that item or
not. The similarity is calculated as follows:

similarity(
−→
P1,

−→
P2) = cos(

−→
P1,

−→
P2) =

−→
P1 •

−→
P1

|
−→
P1| · |

−→
P1|

Given the similar-items table, the algorithm quickly finds items similar to each of the user’s
purchases and ratings. These items are then aggregated and the most popular or correlated
items are actually recommended.

A.2. TiVo

Another application of recommender systems can be found in TiVo. TiVo is a combination of
a digital video recorder (DVR) and a television-viewing service that is really popular in the
United States. The DVR is able to record TV shows on its hard-disk in the form of MPEG
streams, which can be viewed later on. Users can also pause and rewind live TV (called ”time
shifting”) as well as recorded shows. The TiVo service provides a range of features, such as

84 Evaluating Recommender Systems

A.2. TiVo

a smart electronic program guide (EPG), recommender system (RS), home movie sharing,
on-line scheduling, access to Internet radio, podcasts, weather and traffic information, et
cetera.

TiVo’s main benefits are that it allows viewers to watch shows at times convenient to them
and facilitates means that enable users to find the shows they like in the proliferation of
hundreds of TV channels.

TiVo’s recommender system, called TiVo Suggestions helps users to find shows they probably
like. TiVo Suggestions uses a combination of item-based collaborative filtering and Bayesian
content based filtering (CBF) techniques to make recommendations. Collaborative filtering
techniques base their recommendations on like-minded users (i.e. users who like similar pro-
grams as the user requesting the recommendations). Content-based recommenders, however,
use features from the items themselves (like genre, cast, age of the show, etc.) valued by the
user, to generate recommendations [AvS04].

Figure A.3.: TiVo’s suggestions

The process of recommendation starts with feedback provided by the user. This feedback
can be either explicit or implicit. Explicit feedback in TiVo can be provided by using the
”thumbs up” or ”thumbs down” button. Explicit ratings range from +3 to -3. Implicit ratings
are ratings derived from a user’s behaviour (i.e. the portion of a show viewed, the show is
recorded, etc.). TiVo only uses the fact that a user recorded a show as implicit rating. The
user’s feedback is used to build a profile of likes and dislikes.

The user’s profile is periodically transmitted to TiVo’s server cluster. The anonymized profiles
are not permanently stored on the server due to privacy concerns and are only kept at the
server during the calculation of recommendations.

Then the item-item correlations are computed at TiVo’s servers. Since TiVo is based on
an item-based collaborative filtering algorithm, it determines the similarity between items
instead of users. The underlying idea is that items that are rated the same way in the past,

Evaluating Recommender Systems 85

Appendix A. Existing recommender systems

are probably similar. TiVo prepares a package of correlation pairs that are then sent to the
set-top box.

Using the downloaded correlation package, TiVo predicts the user’s ratings for all upcoming
shows. These predictions are then combined with content-based predictions, calculated by the
set-top box. The application of a content-based filter algorithm helps to overcome the ”cold-
start” problem (the situation in which the user did not provide enough feedback to calculate
predictions). The suggestion list is constructed by combining the highest rated predictions
and shows already rated by the user. The show that is on top of the suggestion list can even
be recorded automatically by the DVR.

A.3. MeeVee

MeeVee is an on-line TV guide that can provide users with a personalised TV listing. The
personalisation is based on a list of interests that a user can compose. Interests are not
limited to TV shows and also include, among others, people, topics & hobbies, movies and
sports. Once a user has composed a list of interests, MeeVee is not only able to construct a
personal TV listing, but can also recommend on-line video content from hundreds of sources.
The techniques that are used by MeeVee are not described, but their websites states that it
is patented.

Figure A.4.: MeeVee’s TV listing

A.4. Zie.nl

Zie.nl is an on-line programme guide targeted at The Netherlands. One of Zie.nl’s features
is a personalised cloud of TV programmes and web video snippets (as shown in Figure A.5).
The cloud is personalised based on feedback on the programmes / snippets as provided by the
user. To conquer the cold-start problem users that register themselves to Zie.nl are asked to
provide feedback on popular Dutch actors and TV shows during the registration procedure.

86 Evaluating Recommender Systems

A.5. Other recommender systems

Figure A.5.: TV programme recommendations in Zie.nl

A.5. Other recommender systems

Besides the applications described above there are numerous other websites and applications
that employ recommender system technologies. Some of them are listed next.

• Yahoo! Movies, a movie recommendation service

• eBay, an on-line auction website

• NetFlix, an on-line movie rental service

• iTunes, Apple’s audio and video player including the iTunes store

• CDNOW.com

• MovieLens, a recommender system that provides movie recommendations

• Jester, a joke recommender system

• Last.fm

• MyStands

• Pandora

• StumbleUpon

A.6. Open-source software libraries

Various open-source software libraries exist that provide developers with means to add rec-
ommendation features to applications or web sites. The following software libraries do exists:

Evaluating Recommender Systems 87

Appendix A. Existing recommender systems

• Duine (http://sourceforge.net/projects/duine)

• Taste (http://taste.sourceforge.net)

• Cofi (http://www.nongnu.org/cofi)

• CoFE (http://eecs.oregonstate.edu/iis/CoFE)

• Colfi (http://colfi.wz.cz)

• RACOFI (http://www.daniel-lemire.com/fr/abstracts/COLA2003.html)

• SUGGEST (http://glaros.dtc.umn.edu/gkhome/suggest/overview)

• Vogoo (http://www.vogoo-api.com)

• Consensus (http://exogen.case.edu/projects/consensus)

88 Evaluating Recommender Systems

B
Recommender systems expertise

The design and implementation of recommender systems requires expert knowledge. This
knowledge is not widespread and only few people or organisations have expertise in this field.
This appendix describes some of them.

B.1. Telematica instituut

The Telematica Instituut is a Dutch public-private partnership, managed by a consortium of
companies. The institute is involved in the ”MultimediaN N9 Media & I-services” project
that strives to develop high-quality multimedia solutions. Personalisation of multimedia con-
tent guides is one of the research areas in this project1. Project manager of this research
programme is Dr. Mark van Setten, who obtained his doctorate with a thesis on recom-
mender systems [vS05]. Within the Gigaport and MultimediaN research programmes, Mark
developed a toolkit for building recommender systems. This toolkit, called Duine, allows
several prediction techniques to be combined, which greatly increases the accuracy of recom-
mendations. Furthermore it allows developers to add their own recommendation techniques.
The toolkit has been released as an ’open source’ product on SourceForge2 in 2006.

B.2. Stoneroos

Stoneroos Interactieve Televisie is a cross platform entertainment company that designs and
develops games, TV formats, applications and business solutions for broadcasting corporations
and network providers. Stoneroos is involved in a project called Passepartout, together with
researchers and students of the Technical University of Eindhoven (TU/e) and companies such
as Philips. Within this project Stoneroos developed an electronic program guide (EPG) with
recommendation functionality (see Figure B.1). One of the contributors, Dr. Lora Aroyo,

1http://www.telin.nl/index.cfm?language=en&id=1060&context=1063
2http://sourceforge.net/projects/duine

Evaluating Recommender Systems 89

Appendix B. Recommender systems expertise

who currently holds a research position at the Vrije Universiteit Amsterdam, is an expert
in the field of recommender systems. She and the other researchers of TU/e developed a
framework, called SenSee, that enables easy searching in TV content. SenSee’s is part of
iFanzy, the EPG system that Stoneroos tends to bring to the market. iFanzy can be fully
adapted to the preferences of its users.

Figure B.1.: Screenshot of StoonRoos’ iFanzy

B.3. Fraunhofer

The Media Interoperability Lab of Fraunhofer FOKUS 3 is a research group with expertise in
the areas of interactive applications, media handling, and mobile telecommunications. This
expertise is used to develop ”Next Generation Media Delivery Platforms featuring live, on
demand, context-aware, and personalized interactive media empowered by the Open IMS
Playground”. The Media Interoperability Lab’s R&D activities are focused on ”Metadata
management & Personal Content Management” and ”Movie Recommendation” among others.

Fraunhofer FOKUS has developed a recommender toolkit as stated on their website: ”The
Recommender Toolkit is a personalization framework developed at the Fraunhofer FOKUS. It
offers high adaptability for multiple services and varying personalization approaches. To en-
able real-time recommendations, while still having the best possible recommendation quality,
the learning algorithm works offline. Both content-based algorithms -which consider one users
viewing behavior- as well as collaborative algorithms -which use community based approaches-
can be used and exchanged while the system is running.”4 No further information is provided
by the institute.

3http://www.fokus.fraunhofer.de/bereichsseiten/testbeds/nextgenmedialab/
4http://www.fokus.fraunhofer.de/testbeds/nextgenmedialab/IPTVAS.php

90 Evaluating Recommender Systems

B.4. ChoiceStream

B.4. ChoiceStream

ChoiceStream5 is a personalisation company located in Cambridge, Massachusetts. Choic-
eStream offers business solutions in three different areas: online services, TV providers and
mobile operators. Their products and services are used by companies such as Yahoo! (Yahoo!
Movies), AOL, DirectTV, Overstock.com, MovieLink, etc. One of ChoiceStream’s prod-
ucts, called RealRelevance Video Suite, includes TV planner functionality that can construct
personalised TV listings. The algorithms and technologies used by ChoiceStream are not
described on their website.

B.5. Baynote

Baynote6 is a start up company, located in Cupertino, California, USA. The company delivers
on-demand recommendation technology for websites and provides recommendation solutions
for eCommerce, media, marketing and support activities. Baynote’s recommender system
does not collect explicit feedback and solely relies on implicit feedback/information gathered
from pages visited by the user. Recommendations are delivered as a web service. The web
service can provide product and content recommendations, as well as a social search results.

B.6. Minekey

Minekey7 is another start up, located in Sillicon Valley that provides a recommendation
service. Minekey’s recommendation service gathers implicit user information through their
surfing behaviour. The recommendation engine acquires click stream data and combines
this with metadata of the content to extract the ”themes of interest” for a specific user.
Moreover it uses some form of collaborative filtering to derive meaningful associations and
relationships amongst the various ”themes of interest.” These relations are then used to make
recommendations to users. As a proof of concept, Minekey provides widgets that discover
interesting content for users.

B.7. Other commercial companies

Other companies that deliver personalisation related products are:

• Loomia (http://www.loomia.com)

• Criteo (http://www.criteo.com)

• SourceLight (http://www.sourcelight.com)

• Collarity (http://www.collarity.com)

• MediaRiver (http://www.mediariver.com)

5http://www.choicestream.com
6http://www.baynote.com
7http://www.minekey.com

Evaluating Recommender Systems 91

Appendix B. Recommender systems expertise

B.8. Universities

A lot of recommender system expertise is concentrated in universities around the world.
Probably the most active research group in this field is GroupLens 8. GroupLens consists
of faculty and student researchers affiliated to the Department of Computer Science and
Engineering at the University of Minnesota. They published a large number of scientific
publications over the past few years, that had a great impact in the research community.
Some of the researchers left the group, however, and now they start to concentrate on other
topics (like online communities, mobile and ubiquitous technologies, digital libraries and local
geographic information systems) as well.

In The Netherlands recommender system technology is researched at Delft University of
Technology, Vrije Universiteit Amsterdam and University of Twente.

8http://www.grouplens.org

92 Evaluating Recommender Systems

C
Mathematical notations

This appendix gives an overview of the mathematical notations used throughout the report.

• A = the set of users {a0, . . . , an}

• B = the set of items {b0, . . . , bm}

• ri(bk) = rating of user ai for item bk

• pi(bk) = predicted rating of user ai for item bk

• ci(bk) = confidence of the prediction pi(bk)

• R = the rating matrix A × B consisting of ratings ri(bk) of all users ai ∈ A for items
bk ∈ B

• Bi = {bk ∈ B : ri(bk) 6= ⊥} (i.e. all items rated by user ai)

• Bij = {bk ∈ B : ri(bk) 6= ⊥ ∧ rj (bk) 6= ⊥} (i.e. all items rated by both users ai and aj)

• Bc = the set of items {b0, . . . , bn} contained in a certain cluster c (all TV programmes
from a certain genre for example).

• Bc
i = {bk ∈ Bc : ri(bk) 6= ⊥} (i.e. all items in a certain cluster c rated by user ai)

• Ak = {ai ∈ A : ri(bk) 6= ⊥} (i.e. all users who rated item bk)

• Akl = {ai ∈ A : ri(bk) 6= ⊥∧ ri(bl) 6= ⊥} (i.e. all users that rated both items bk and bl)

• Ãi = the neighborhood of l users aj ∈ A that are most similar to the active user ai

• |X | = the number of items in set X

• Rai = the ordered sequence [b1, ..., bN] of items bk ∈ B rated by user ai , sorted on
ratings ri(bk)

Evaluating Recommender Systems 93

Appendix C. Mathematical notations

• Lpi = the ordered sequence [b1, ..., bN] of items bk ∈ B representing the top-N recom-
mendation list for user ai

• η = sparsity coefficient of a ratings set

• σ = normalization factor

94 Evaluating Recommender Systems

D
Questionnaire Results

After the user study was completed the participants of this study were asked to complete
a short questionnaire of ten open-ended and closed-ended questions. The purpose of the
questionnaire was to learn from the participants, who are likely to be experienced users of a
TV programme recommender system by now. The results of this questionnaire are presented
in this appendix.

Question 1: During the research a number of aspects were investigated. Give for each of
the aspects an indication of its importance to the quality of the recommendation list.

Dimension 1 2 3 4 5 Avg
Accuracy 2 4 13 27 19 3.88
Ranking accuracy 9 18 21 15 2 2.74
Programme overlap 11 16 19 17 2 2.74
Viewability 5 5 16 28 11 3.54
Diversity 0 10 12 33 10 3.66
Serendipity 2 15 19 19 9 3.28

Table D.1.: Questionnaire results for question 1

Question 2: When do you experience a recommendation list as divers?

Answer #
When the list contains many different TV shows 18
When the programmes in the list differ with respect to genre 61
Other 2

Table D.2.: Questionnaire results for question 2

Evaluating Recommender Systems 95

Appendix D. Questionnaire Results

Other definitions mentioned by the respondents:

• When the TV programmes are broadcasted by different TV corporations

Question 3: When do you experience a recommendation list as surprising?

Answer #
When I have not seen most of the recommended programmes before 37
When I would not have discovered the recommended programmes myself 47
When the list fitted extremely well to my expectations 17
When the list fitted to my expectations really poorly 18
When the combination of the recommendations was nice 13
Other 1

Table D.3.: Questionnaire results for question 3

Question 4: Are there any aspects that you think are important to the quality of the
recommendation list that are not listed in question 1?

Answer #
No 59
Yes 6

Table D.4.: Questionnaire results for question 4

Aspects mentioned by the respondents are:

• No reruns of TV shows

• No irrelevant TV programmes

• Viewability

• Diversity with respect to channels

• Known / unknown ratio

Question 5: During phase one of the user study:

Answer #
I tried to provide feedback on every TV programme, even though I had
not seen it

11

I provided feedback on those series/programmes I watch regularly 32
I only provided feedback on TV programmes I actually watched 21

Table D.5.: Questionnaire results for question 5

96 Evaluating Recommender Systems

Question 6: During phase two of the user study:

Answer #
I quitted participating in the user study 14
I tried to provide feedback on every TV programme, even though I had
not seen it

11

I provided feedback on those series/programmes I watch regularly 30
I only provided feedback on TV programmes I actually watched 10

Table D.6.: Questionnaire results for question 6

Question 7: How did you decide to participate in the user study?

Answer #
The research seemed interesting to me 38
I wanted to win the DVD-box 9
I wanted to help Joost with his graduation 60
I liked to receive recommendations for TV programmes 11
Other 3

Table D.7.: Questionnaire results for question 7

Other motivations mentioned by the respondents:

• I think the problem is relevant

• Djoerd asked me to participate

Question 8: What would be a motivation for you for using a recommender system that
recommends TV programmes?

Answer #
There are too many TV programmes and channels, I suffer from infor-
mation overload

24

I do not want to spend time finding interesting TV programmes 10
I need suggestions on what to watch since I do not know it myself 7
I would like to discover TV programmes that I am unfamiliar with 41
Other 12

Table D.8.: Questionnaire results for question 8

Other motivations mentioned by the respondents:

• I do not want to miss programmes I would be interested in

• To discover new TV programmes besides the shows I regularly watch

Evaluating Recommender Systems 97

Appendix D. Questionnaire Results

Question 9: Please specify to what extent you agree with the following theses.

Dimension 1 2 3 4 5 Avg
I would use an on-line service that recom-
mends TV programmes

7 8 21 21 8 3.23

I would use an altered version of Utente 9 17 15 19 5 2.91
I would like to receive more than 10 recom-
mendations

27 19 9 7 2 2.03

Table D.9.: Questionnaire results for question 9

98 Evaluating Recommender Systems

Summary

Recommender systems are systems that help people to cope with the ever increasing amount of
potentially interesting content. The enormous amount of available content makes it impossible
to go through all the items yourself to decide whether it is useful or not and thus finding
relevant items becomes more and more difficult. This problem has also become relevant
for people watching television, since the introduction of digital television induced a further
growth of available TV channels, and consequently a growing number of available TV shows.

Recommender systems use knowledge about a user’s preferences (and those of others) to
recommend them items that they are likely to enjoy. To achieve this three different prediction
strategies can be utilised. The first, called content-based filtering tries to match the set of
item characteristics and the set of user preferences. The more an item’s characteristics match
the user’s preferences the better he will like the item. The second prediction strategy, called
collaborative filtering, bases its predictions on ratings that other users have assigned to items.
Based on these ratings either similar users or similar items can be identified, which are then
used to predict a user’s rating for a particular item. The third technique combines both
content-based filtering and collaborative filtering and is therefore called a hybrid prediction
technique.

Nowadays, many different recommender systems exist such as Amazon.com, Netflix, Last.fm,
MyStrands and iTunes for example. This fosters the need for means to evaluate and compare
different systems. However, recommender system evaluation has proven to be challenging
since a recommender system’s performance depends on, and is influenced by many factors.
The data set on which a recommender system operates for example has great influence on its
performance. Furthermore, the goal for which a system is evaluated may differ and therefore
require different evaluation approaches. Another issue is that the quality of a system recorded
by the evaluation is only a snapshot in time since it may change gradually.

Despite these challenges there exist many ways to evaluate recommender systems and research
is still performed in this area. Although there exists no consensus among research on what
recommender system’s attributes to evaluate, accuracy is by far the most popular dimension
to measure. However, some researchers believe that user satisfaction is the most important
quality attribute of a recommender and that greater user satisfaction is not achieved by an ever
increasing accuracy. Other dimensions for recommender system evaluation that are described
in literature are coverage, confidence, diversity, learning rate, novelty and serendipity. It is
believed that these dimensions contribute in some way to the user satisfaction achieved by a
recommender system.

In order to investigate how these dimensions cohere with respect to user satisfaction in an
electronic programme guide (EPG) context, a user study is performed. During this user study

Evaluating Recommender Systems 99

Appendix D. Questionnaire Results

133 people subscribed to an evaluation application specially designed and build for this pur-
pose. The user study consisted of two phases. During the first phase users had to rate TV
programmes they were familiar with or that they recently watched. This phase resulted in
36.353 programme ratings for 7.844 TV programmes. Based on this data, the recommender
system that was part of the evaluation application could start generating recommendations.
In phase two of the study the application displayed recommendations for tonight’s TV pro-
grammes to its users. These recommendation lists were deliberately varied with respect to the
accuracy, diversity, novelty and serendipity dimensions. Another dimension that was altered
was programme overlap. Users were asked to provide feedback on how satisfied they were with
the list. Over a period of four weeks 70 users provided 9762 ratings for the recommendation
lists.

For each of the recommendation lists that were rated in the second phase of the user study, the
five dimensions (accuracy, diversity, novelty and serendipity) were measured using 15 different
metrics. For each of these metrics its correlation with user satisfaction was determined using
Spearman’s rank correlation. These correlation coefficients indicate whether there exists
a relation between that metric and user satisfaction and how strong this relation is. It
appeared that accuracy is indeed an important dimension in relation to user satisfaction.
The accuracy metrics mean absolute error, precision and area under ROC were among the 8
strongest correlations that were found. Other metrics that had a strong correlation were user’s
diversity, series level diversity, user’s serendipity and effective overlap ratio. This indicated
that diversity, serendipity and programme overlap are important dimensions as well, although
to lesser extent.

During the determination of the correlations per metric it appeared that there exist great dif-
ferences among the participants of the user study. Therefore it was also investigated whether
clusters of users that favour a specific dimension or combination of dimensions over another
could be created. This was done based on the individual correlations between the 15 metrics
and user satisfaction, using the clustering toolkit Cluto. The four clusters that were created
indeed encompassed users with similar preferences with respect to the five dimensions. Users
in one of the cluster were similar with respect to diversity, while two other clusters contained
users that were alike regarding accuracy and serendipity respectively. This was illustrated by
the fact that the within-cluster correlations for the metrics that were valued by the users in
that cluster were much stronger / weaker.

Based on these results the main objective of the research (i.e. to develop a method to predict
user satisfaction based on various off-line metrics) was pursued. In order to achieve this goal an
expert in statistics was consulted. This expert advised to utilise a method from multivariate
statistics, called discriminant analysis to construct a model that can be used to predict the
user satisfaction. This model was created using the statistical software package SPSS. To
evaluate the performance of the constructed prediction method, K-fold cross validation was
employed to calculate its mean absolute error. This showed that the prediction method can
predict the user satisfaction achieved by a recommender system based on the off-line metrics
Mean Absolute Error, Area Under ROC, Precision, Channel Level Diversity, Genre Level
Diversity, Series Level Diversity with a mean absolute error of 0.73922.

100 Evaluating Recommender Systems

Bibliography

[Acz93] Amir D. Aczel, Complete business statistics, second ed., IRWIN, Boston, 1993.

[AK07] Gediminas Adomavicius and YoungOk Kwon, New recommendation techniques
for multicriteria rating systems, IEEE Intelligent Systems 22 (2007), no. 3, 48–55.

[Alp04] Ethem Alpaydin, Introduction to machine learning, The MIT Press, October
2004.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin, Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions,
IEEE Transactions on Knowledge and Data Engineering 17 (2005), no. 6, 734–
749.

[AvS04] Kamal Ali and Wijnand van Stam, Tivo: making show recommendations using a
distributed collaborative filtering architecture, KDD ’04: Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data mining
(New York, NY, USA), ACM Press, 2004, pp. 394–401.

[BHK98] J.S. Breese, D. Heckerman, and C. Kadie, Emperical analysis of predictive algo-
rithms for collaborative filtering, Proceedings of Fourteenth Conference on Un-
certainty in Artificial Intelligence, Morgan Kaufmann, 1998, pp. 43–52.

[BHL07] Marcel Blattner, Alexander Hunziker, and Paolo Laureti, When are recommender
systems useful?, September 2007.

[BKH01] J.E. Bartlett, J.W. Kotrlik, and C.C. Higgins, Organizational research: determin-
ing appropriate sample size in survey research, Information Technology, Learning
and Performance Journal 19 (2001), no. 1, 43–50.

[Bre06] Glynis Marie Breakwell, Research methods in psychology, SAGE, 2006.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto, Modern information retrieval,
Addison Wesley, May 1999.

[Car05] G. Carenini, User-specific decision-theoretic accuracy metrics for collaborative
filtering, ’Beyond Personalization’, Intelligent User Interfaces Conference (IUI’05)
(San Diego, California, USA), January 2005.

[CdVP+07] M. Clements, A. P. de Vries, J. A. Pouwelse, J. Wang, and M. J. T. Reinders,
Evaluation of Neighbourhood Selection Methods in Decentralized Recommendation
Systems, 2007, SIGIR 2007 Workshop, pp. 38–45.

[CKP07] Jinhyung Cho, Kwiseok Kwon, and Yongtae Park, Collaborative filtering using
dual information sources, IEEE Intelligent Systems 22 (2007), no. 3, 30–38.

Evaluating Recommender Systems 101

Bibliography

[CLA+] Dan Cosley, Shyong K. Lam, Istvan Albert, Joseph A. Konstan, and John Riedl,
Is seeing believing? how recommender interfaces affect users’ opinions.

[Dam64] Fred J. Damerau, A technique for computer detection and correction of spelling
errors, Commun. ACM 7 (1964), no. 3, 171–176.

[GRGP01] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins, Eigentaste: A
constant time collaborative filtering algorithm, Inf. Retr. 4 (2001), no. 2, 133–151.

[Ham50] Richard W. Hamming, Error detecting and error correcting codes, Bell Syst. Tech.
J 29 (1950), no. 2, 147–160.

[HKBR99] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl, An
algorithmic framework for performing collaborative filtering, SIGIR ’99: Proceed-
ings of the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval (New York, NY, USA), ACM Press, 1999,
pp. 230–237.

[HKTR04] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl,
Evaluating collaborative filtering recommender systems, ACM Trans. Inf. Syst. 22
(2004), no. 1, 5–53.

[HMAC02] C. Hayes, P. Massa, P. Avesani, and P. Cunningham, On-line evaluation frame-
work for recommender systems, Workshop on Personalization and Recommenda-
tion in E-Commerce (Malaga), Springler, 2002.

[HW99] Myles Hollander and Douglas A. Wolfe, Nonparametric statistical methods, 2nd
edition ed., Wiley, New York, 1999.

[Jar89] M. A. Jaro, Advances in record linking methodology as applied to the 1985 cen-
sus of tampa florida, Journal of the American Statistical Society, vol. 64, 1989,
pp. 1183–1210.

[JB80] Carlos M. Jarque and Anil K. Bera, Efficient tests for normality, homoscedasticity
and serial independence of regression residuals, Economics Letters 6 (1980), no. 3,
255–259.

[Kle80] W.R. Klecka, Discriminant analysis, Sage Publications, Beverly Hills, California,
1980.

[Kre99] E. Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons Inc., 1999.

[Krz88] W. J. Krzanowski (ed.), Principles of multivariate analysis: a user’s perspective,
Oxford University Press, Inc., New York, NY, USA, 1988.

[Lac75] P.A. Lachenbruch, Discriminant analysis, Hafner Press, New York, 1975.

[Lev66] Vladimir I. Levenshtein, Binary codes capable of correcting deletions, insertions,
and reversals, Tech. Report 8, 1966.

[Lik32] Rensis Likert, A technique for the measurement of attitudes, Archives of Psychol-
ogy (1932), no. 140, 1–55.

[LSY03] G. Linden, B. Smith, and J. York, Amazon.com recommendations: item-to-item
collaborative filtering, Internet Computing, IEEE 7 (2003), no. 1, 76–80.

102 Evaluating Recommender Systems

Bibliography

[MAC+02] Sean M. Mcnee, Istvan Albert, Dan Cosley, Prateep Gopalkrishnan, Shyong K.
Lam, Al M. Rashid, Joseph A. Konstan, and John Ried, On the recommending
of citations for research papers, Proceedings of the 2002 ACM conference on
Computer supported cooperative work (2002), 116–125.

[McN06] Sean Michael McNee, Meeting user information needs in recommender systems,
Ph.D. thesis, University of Minnesota, June 2006.

[MH04] Matthew R. Mclaughlin and Jonathan L. Herlocker, A collaborative filtering al-
gorithm and evaluation metric that accurately model the user experience, SIGIR
’04: Proceedings of the 27th annual international conference on Research and
development in information retrieval (New York, NY, USA), ACM Press, 2004,
pp. 329–336.

[MKB80] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate analysis, Academic
Press, London, 1980.

[MLG+03] Sean McNee, Shyong Lam, Catherine Guetzlaff, Joseph Konstan, and John Riedl,
Confidence displays and training in recommender systems, Proceedings of IFIP
INTERACT03: Human-Computer Interaction (Zurich, Switzerland), IOS Press,
2003, pp. 176–183.

[MRK06] Sean M. McNee, John Riedl, and Joseph A. Konstan, Being accurate is not
enough: how accuracy metrics have hurt recommender systems, CHI ’06: CHI
’06 extended abstracts on Human factors in computing systems (New York, NY,
USA), ACM, 2006, pp. 1097–1101.

[RWN03] Habtom W. Ressom, Dali Wang, and Padma Natarajan, Computational methods
for identifying number of clusters in gene expression data, Neural Networks and
Computational Intelligence, 2003, pp. 233–238.

[Sal89] Gerard Salton, Automatic text processing – the transformation, analysis, and
retrieval of information by computer, Addison–Wesley, 1989.

[SB87] Gerard Salton and Chris Buckley, Term weighting approaches in automatic text
retrieval, Tech. report, Ithaca, NY, USA, 1987.

[SJ03] Catherine A. Sugar and Gareth M. James, Finding the number of clusters in a
dataset: An information-theoretic approach, Journal of the American Statistical
Association 98 (2003), 750–763.

[SKKR01] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John Reidl, Item-
based collaborative filtering recommendation algorithms, World Wide Web, 2001,
pp. 285–295.

[Som00] Ian Sommerville, Software engineering, 6th ed., Addison Wesley, August 2000.

[SPUP02] A. Schein, A. Popescul, L. Ungar, and D. Pennock, Methods and metrics for
cold-start recommendations, Proceedings of the 25th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2002), 2002, pp. 253–260.

Evaluating Recommender Systems 103

Bibliography

[SPUP05] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock,
Croc: A new evaluation criterion for recommender systems: World wide web
electronic commerce, security and privacy (guest editors: Mary ellen zurko and
amy greenwald), Electronic Commerce Research 5 (2005), no. 1, 51+.

[TFFT00] Barbara G. Tabachnick, Linda S. Fidell, Linda Fidell, and Barbara Tabachnick,
Using multivariate statistics, fourth ed., Allyn & Bacon, Boston, MA, August
2000.

[TH01] L. Terveen and W. Hill, Beyond recommender systems: Helping people help each
other, HCI in the New Millennium (J. Carroll, ed.), Addison Wesley, 2001.

[TWH01] Robert Tibshirani, Guenther Walther, and Trevor Hastie, Estimating the number
of clusters in a data set via the gap statistic, Journal Of The Royal Statistical
Society Series B 63 (2001), no. 2, 411–423.

[vS05] Mark van Setten, Supporting people in finding information, Ph.D. thesis, Univer-
siteit Twente, November 2005.

[WH06] R. J. Wieringa and J. M. G. Heerkens, The methodological soundness of re-
quirements engineering papers: a conceptual framework and two case studies,
Requirements engineering 11 (2006), no. 4, 295–307.

[Yao95] Y. Y. Yao, Measuring retrieval effectiveness based on user preference of docu-
ments, Journal of the American Society for Information Science 46 (1995), no. 2,
133–145.

[ZK07] Yi Zhang and Jonathan Koren, Efficient bayesian hierarchical user modeling for
recommendation system, SIGIR ’07: Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval
(New York, NY, USA), ACM, 2007, pp. 47–54.

[ZMKL05] Cai-Nicolas Ziegler, Sean M. Mcnee, Joseph A. Konstan, and Georg Lausen,
Improving recommendation lists through topic diversification, WWW ’05: Pro-
ceedings of the 14th international conference on World Wide Web (New York,
NY, USA), ACM Press, 2005, pp. 22–32.

104 Evaluating Recommender Systems

List of Figures

1.1. Iterative development process . 14

3.1. An example ROC curve . 30
3.2. Example of a CROC curve . 31
3.3. Example of learning rate graph in which the MAE is plotted against the number

of ratings . 38

4.1. Utente TV listing with stars to rate the programmes 44
4.2. Utente recommendation list . 47
4.3. Example scatter plots . 48
4.4. System design . 54

5.1. User’s age (left), household size (middle) and level of education (right) 59
5.2. User’s marital status (left) and industry (right) 59
5.3. Number of programme and list ratings per user 60
5.4. A strictly increasing (left), strictly decreasing (middle) and a non strictly in-

creasing / decreasing (right) relation . 70

6.1. Example of a discriminant function L = c + b1x1 + b2x2 when x = (x1, x2) . . 72

A.1. Amazon’s ”Customers who bought” feature 83
A.2. Amazon’s ”Today’s recommendations for you” 84
A.3. TiVo’s suggestions . 85
A.4. MeeVee’s TV listing . 86
A.5. TV programme recommendations in Zie.nl . 87

B.1. Screenshot of StoonRoos’ iFanzy . 90

Evaluating Recommender Systems 105

List of Tables

2.1. A sample rating matrix . 18
2.2. Pearson’s correlation coefficient indicates similarity among users 20
2.3. Pearson’s correlation coefficient indicates similarity among items 21

3.1. Rating example . 26
3.2. Ranking example . 32
3.3. Kendall’s Tau correlation example . 33
3.4. Half-life Utility Metric example . 34
3.5. NDPM example: conflicting preference relations 34

4.1. Accuracy metrics spectrum . 49
4.2. Three programmes in time . 53

5.1. Accuracy metric correlations . 61
5.2. Diversity metric correlations . 62
5.3. Novelty metric correlations . 62
5.4. Serendipity metric correlations . 63
5.5. Programme overlap metric correlations . 64
5.6. Internal and external quality measures for 4-way user clustering 66
5.7. Correlations per cluster with θv = 0 and θr = 3 67

6.1. Classification results . 74
6.2. K-fold cross validation of the prediction model 76

D.1. Questionnaire results for question 1 . 95
D.2. Questionnaire results for question 2 . 95
D.3. Questionnaire results for question 3 . 96
D.4. Questionnaire results for question 4 . 96
D.5. Questionnaire results for question 5 . 96
D.6. Questionnaire results for question 6 . 97
D.7. Questionnaire results for question 7 . 97
D.8. Questionnaire results for question 8 . 97
D.9. Questionnaire results for question 9 . 98

Evaluating Recommender Systems 107

	Introduction to the Research Project
	Problem background
	Relevance of the problem
	Research question
	About TNO Information and Communication Technology
	Research methods
	Engineering cycle
	Literature study
	User Study
	Software Development
	Validation of the model
	Questionnaire

	Reader's guide

	State-of-the-Art in Recommender Systems
	Recommendation approaches
	Collaborative filtering
	User-based collaborative filtering
	Item-based collaborative filtering
	Cold start problem

	Content-based filtering
	Hybrid forms
	Conclusion

	State-of-the-Art in Recommender System Evaluation
	Evaluation approaches
	Off-line evaluation
	On-line evaluation

	Accuracy metrics
	Predictive Accuracy Metrics
	Classification Accuracy Metrics
	Rank Accuracy Metrics

	Coverage
	Confidence
	Diversity
	Learning rate
	Novelty and serendipity
	User satisfaction
	Conclusion

	Conducting the User Experiment
	Approach
	User Base
	Gathering the Content
	Training the Recommender
	Generating the recommendations
	Random recommendations
	Series level Collaborative Filtering
	Unique series level Collaborative Filtering
	Demographics based Collaborative Filtering
	User's inverse rating
	Novel unique series level Collaborative Filtering
	Unique known series level Collaborative Filtering

	Rating the recommendations
	Dimensions and Metrics
	Accuracy
	Diversity
	Novelty
	Serendipity
	Programme overlap

	Evaluation setup
	Recommendation application
	Web application

	Conclusion

	Determination of Coherence
	Processing the data
	User statistics
	Determine correlations
	Accuracy
	Diversity
	Novelty
	Serendipity
	Programme overlap

	Clusters / types of users
	User's correlations
	Clustering the users
	Correlations per cluster

	Combinations of multiple variables
	Questionnaire
	Discussion

	Creating and Validating the Prediction Model
	Creating the model
	Discriminant analysis
	The prediction method

	Validating the model
	K-fold cross validation
	Evaluation results

	Discussion

	Conclusions and Future Work
	Conclusions
	Future work

	Existing recommender systems
	Amazon.com
	TiVo
	MeeVee
	Zie.nl
	Other recommender systems
	Open-source software libraries

	Recommender systems expertise
	Telematica instituut
	Stoneroos
	Fraunhofer
	ChoiceStream
	Baynote
	Minekey
	Other commercial companies
	Universities

	Mathematical notations
	Questionnaire Results
	Summary
	Bibliography
	List of Figures
	List of Tables

