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‘An idea. Resilient, highly
contagious. Once an idea
has taken hold of the brain
it’s almost impossible to
eradicate. An idea that is
fully formed - fully
understood - that sticks;
right in there somewhere.’

(Character of Cobb, From
the film ‘Inception’, 2010)

‘A picture is worth a
thousand words. An
interface is worth a
thousand pictures.’

(Ben Shneiderman)

‘We have to learn to see
technical devices and
software as others see
them. Feeling a sense of
pride in getting a device to
do what we want doesn’t
mean we’re clever, it
means the design was
wrong.’

(Jeremy Allison)



Summary

The goal of this thesis is the user-independent recognition of dynamic, single-
handed gestures using a dataglove. This research focuses on the technology be-
hind the recognition of these gestures. It wants to try and find suitable technolo-
gies, compare them and research ways to optimise the use of these technologies
to increase recognition performance.

The dynamic hand gestures described in this research were defined by research-
ing the tasks users do when controlling a large display surface. Nine gestures
were defined to cover different aspects of navigating a user interface. Using a
dataglove for hand pose data and an additional sensor for position and orienta-
tion data, data was recorded on all nine gestures from eight users in a Wizard of
Oz experiment. The aim of this experiment was the simulation of a real-world
environment in which users control two applications with the nine gestures.

With the recorded data three types of recognisers that were suitable for the
goal of this thesis were trained and tested: Discrete Hidden Markov Models
(DHMMs), Continuous Hidden Markov Models (CHMMs) and Latent-Dynamic
Conditional Random Fields (LDCRFs). Different data pre-processing methods
and parameter tuning were applied to try and increase their recognition rate.
Contrary to expectation, the DHMMs and CHMMs performed poorly and only
LDCRFs were able to achieve a satisfying recognition rate on the recorded data
set. Initial testing of the LDCRFs on user independence also showed satisfying
recognition rates.

This thesis shows that the user-independent recognition of dynamic hand ges-
tures using a dataglove is feasible. Even though this research describes only a
part of the process involved in designing hand gesture interaction, it can without
a doubt play an effective role in its realisation.
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Samenvatting

Het doel van deze masterscriptie is het gebruikersonafhankelijk herkennen van
dynamische handgebaren met behulp van een dataglove. Het onderzoek richt
zich op de technologie achter het herkennen van deze gebaren. Er is gezocht
naar geschikte technologieën en deze zijn met elkaar vergeleken. Daarnaast zijn
manieren onderzocht om ze te optimaliseren met als doel het herkenningsper-
centage te verhogen.

Negen dynamische handgebaren worden in deze scriptie beschreven en zijn gede-
finieerd aan de hand van een analyse van de taken die gebruikers uitvoeren
wanneer zij een groot scherm bedienen. In een zogeheten ‘Wizard of Oz’-experiment
is met behulp van een dataglove en een extra sensor data opgenomen met be-
trekking tot de vorm, positie en oriëntatie van de hand. In dit experiment werd
ernaar gestreefd een zo echt mogelijke omgeving na te bootsen waarin de ge-
bruikers twee applicaties bedienen met de negen gebaren.

Vervolgens zijn drie verschillende recognisers getraind en getest: Discrete Hid-
den Markov Models (DHMMs), Continuous Hidden Markov Models (CHMMs)
en Latent-Dynamic Conditional Random Fields (LDCRFs). Om het herken-
ningspercentage van deze recognisers te verhogen, zijn verschillende datavoor-
bewerkingsmethoden en de effecten van het afstellen van de recogniserparame-
ters onderzocht. Geheel onverwachts presteerden de DHMMs en CHMMs slecht,
de LDCRFs waren de enige met een bevredigend herkenningspercentage. De
LDCRFs gaven tevens bevredigende resultaten in de initiële gebruikersonafhanke-
lijkheidstests.

Dit onderzoek toont aan dat het gestelde doel haalbaar is. Hoewel dit onderzoek
slechts een deel beschrijft van het ontwerpproces van handgebareninteractie,
kan het zonder twijfel een effectieve rol spelen in het realiseren ervan.
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Preface

Since my teenage years I have been fascinated by the interfaces used in the
television series ‘Star Trek: The Next Generation’. The speech interface in par-
ticular fascinated me and I daydreamed more than once about its application
in future homes. It enabled control and the exchange of knowledge by the in-
tuitive use of verbal language or so it seemed. At the beginning of my master’s
I was introduced to the Natural Interaction paradigm and learned that speech
interfaces are designed with naturalness in mind to be intuitive to use. This
introduction fed my interest in natural interaction and its use of the vision,
speech and touch modalities. After doing an independent research assignment
involving the gestural modality I knew I wanted to do a larger project to further
explore the possibilities of gesturing. This became my final research project for
obtaining my master’s degree. What lies before you are its results.

Even though I believe in the ‘User-Centered Design’ philosophy, in which inter-
faces are designed from a user perspective, I wanted to approach this project
from a technological perspective. This allowed me to explore the technologies
behind the recognition of dynamic hand gestures, to research how these tech-
nologies perform and to try to find ways to optimise their use.

To quote one of my supervisors at the beginning of the project: ‘Data is every-
thing with these technologies’. A statement which is inherently true when con-
sidering that the machine learning techniques explored in this research solely
use data to ‘learn’ pattern characteristics. I personally have found it to be
true after having observed the positive and negative effects various data pre-
processing methods have on gesture recognition.

As every data set is different and previous research did not provide much detail,
I tried to get a feel for the data characteristics by iteratively training and testing
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recognisers. Although this gave me the insight I wanted, I sometimes made one
iteration too many, which jeopardised my schedule. Fortunately, my supervisors
were there to drop me a hint as to when to ‘terminate’ the iterative loop.

This thesis mainly contributes to the field of gesture recognition by showing that
user-independent recognition of hand gestures is feasible using a technology that
to the best of my knowledge had previously not been used for dynamic hand
gesture recognition as presented in this thesis. A comparison is also made with
commonly used technologies. In addition, contributions are made on the topic
of data pre-processing in support of gesture recognition. Some research is also
done on the numerical stability of the algorithm implementations used.

User-independent recognition of dynamic hand gestures remains a challenging
task. I hope this thesis provides inspiration for future research in the field of
hand gesture interaction.
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Chapter 1
Introduction

During the 1980s personal computers were introduced into working environ-
ments with the office as the most striking example. Interaction was provided
through a keyboard, mouse and a relatively small display. In the last few decades
computers evolved and displays became larger. In addition, computers and dis-
plays are no longer restricted to working environments. Nowadays they can
be found in shopping centres, train stations, municipal offices and other pub-
lic environments, in which large display surfaces often provide context-related
information in an interactive way. Interacting with these surfaces by using a
keyboard and mouse can be obtrusive and constraining in such environments
[86, 10], which has serious consequences for how users experience these environ-
ments. The interaction design that is part of these environments should become
more natural and intuitive to the user [32] and it should not draw attention to
the technology behind it or impose a high cognitive load on the user. Moreover,
the interaction with computers (or machines in general) should be adapted to
the user and not force the user to adapt [50]. This change in the way of thinking
about Human Computer Interaction has resulted in novel ways of interaction.

The different human modalities inspired scientists to design new ways of nat-
ural interaction. Speech (one of the modalities) recognition technologies have
existed since the early 1950s [14], but it was not until the mid 1980s when ad-
vances in statistical processing sparked a renewed interest in the field.

Another human modality, the modality of touch inspired touch and multi-touch
surfaces for computer systems, which were invented in the early 1980s. They
redefined interaction through direct manipulation, which allows the user to ma-
nipulate objects directly using actions that (loosely) correspond to those in the
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Chapter 1 | Introduction

physical world [76, 30]. Advances in technology increased the size of newer gen-
erations of touch and multi-touch surfaces while greatly reducing their cost. As
a result the use of touch and multi-touch surfaces in different environments is
increasing steadily. Mouse actions were simply replaced by touch actions, with
which a user navigated a graphic user interface [26]. More efficient recognition
techniques popularised the recognition of strokes and led to the recognition of
single-handed strokes of different forms [42]. In the last decade, advances in
multi-touch technologies increased the popularity of the recognition of bimanual
gestures on touch surfaces [18, 27].

However, research into gesture-based interaction was not limited to touch sur-
faces. From the mid 1980s research has also been done on interaction through
gestures with parts of the body that are interpreted by a computer [99, 59].
Gesture interaction is a broad field and includes the recognition of full body mo-
tion [62], as well as head motion [56], facial expressions [63] and hand gestures
[29], the latter being the subject of this thesis. A user interacting through hand
gestures makes gestures with the hands and arms in mid-air. These gestures
are observed and interpreted by a recogniser system, different types of which
have been researched. Most of these systems can be categorised into one of two
groups, based on either static hand pose recognition or dynamic gesture recogni-
tion [86, 54]. The systems in the former group measure and interpret the actual,
static shape of the hand. A good example of this is the research on the recog-
nition of sign language [37]. Dynamic gesture recognition on the other hand
involves gestures that change over time such as the waving gesture [11]. While
making this gesture, the position and orientation of the arm and hand vary
over time, the specific variations of which need to be recognised, which is pre-
cisely what makes this type of recognition dynamic. Dynamic gesture recogni-
tion makes the recognition of gestures that are less constrained possible, which
gives the user more freedom [79].

Gesture recognition can be further categorised into user-dependent [48] and
user-independent [70] recognition. The performance of user-dependent recognis-
ers depends on them being tuned to the individual user. They therefore require
some type of calibration in order to become familiar with a particular user’s spe-
cific characteristics before they can be used effectively [60]. User-independent
recognisers do not needthis type of calibration and instead use their capacity to
generalise the gestures of users: any user can use this type of recogniser imme-
diately as no preparation (e.g. calibration) is required.
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The focus of this thesis is on the development and evaluation of a dynamic, user-
independent gesture recogniser. The following sections give a clear overview of
the goals and boundaries of this research.

1.1. Motivation

A technology-driven approach was chosen due to the availability of certain hard-
ware: a dataglove consisting of seventeen functional flex sensors. In previous
research this glove has been used to measure the pose of a hand and provide
data to a pose recogniser [23]. Three poses were defined to recognise four in-
terface actions: clicking, dragging, zooming and rotating. A fourth pose was
defined to function as a rest pose, to which no interface action was assigned. A
training set of fifty samples for every pose was created. The test set consisted
of fifteen samples in total that were different to those in the training set. All
test samples were from a single person. The test results showed that fourteen
out of the fifteen (93%) test samples were recognised correctly if the user’s hand
returned to the resting pose in between gestures. All fifteen (100%) were recog-
nised correctly when the hand transitioned smoothly from one pose to the next.
No significant tests were done with other users as part of this research. How-
ever, tests with another user in an informal setting showed that the recogniser
only randomly recognised the correct poses at best. The recogniser was only
trained and tuned to a single specific user.

To embrace the unobtrusiveness natural interfaces strive for, the interaction
should not draw attention to the technology, but rather to the task at hand.
For both user-dependent and user-independent recognisers learning has to take
place to memorize the gesture set [38]. However, users of user-independent
recognisers do not have to go through a calibration or training phase prior to
using them.

The research described at the beginning of this section concerns hand pose recog-
nition, which is particularly relevant for sign languages. Gestures that change
over time, also known in the field as ‘dynamic’, are more relevant to other con-
texts. They are often used to recognise human motion [94], thereby diversifying
possible gesture interaction. This is also why in this thesis the choice was made
to research user-independent recognition of dynamic gestures.

3
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1.2. Thesis subject

Although the field of gesture recognition includes many ways of gesturing this
thesis is about recognising hand gestures. It was inspired by the results from
and owes a word of thanks to Fikkert [20], who describes single-handed and
bimanual gestures for controlling large display surfaces that are out of arms-
reach. Fikkert’s main focus is to find suitable gestures while taking into account
human behaviour. The focus of this thesis is the technology behind the recog-
nition of these gestures in order to enable recognition and research ways to op-
timise the use of those technologies to increase recognition performance. This
thesis focuses on single-handed gestures as their recognition is less complex.

The drop in recognition performance in previous research [23] means the gesture
recognition process cannot be extended to other users. Furthermore, dynamic
gestures are extremely suitable for controlling large displays based on the fact
that the dynamic gestures that Fikkert [20, ch. 4 & 5] considers all contain some
form of motion in either arm, hand or fingers. This thesis researches the chal-
lenges posed by user-independent recognition of dynamic gestures when applied
to the control of large display surfaces that are out of arms-reach.

One of the challenges is to define a gesture set for users to control large display
surfaces. For example, several gestures can be defined for controlling a display
for zooming in on an image. In front of a large display you could make a pulling
gesture, one you make when pulling a closed door towards you to open it. Similar
to pulling the door towards you, pulling the image towards yourself allows a
closer look. Another ’zoom in’ gesture could start with both hands put together.
Moving the hands in opposite directions could then start the zooming process.
A third gesture for zooming in could involve moving the tips of the thumb and
index finger from or to each other, while keeping the remaining three fingers
in a fist. This is the so-called ’Pinch’ gesture [91]. From the user’s perspective
the recognition of all of these gestures would be ideal. However, when seen
from a technological perspective the recognition of all gestures becomes very
complex. As this thesis focuses on a solution to hand gesture recognition from
a technological point of view this complexity needs to be limited. That way the
necessary calculations remain computationally tractable. As a consequence a
small subset of hand gestures needs to be defined, which is done according to the
existing literature on hand gesture recognition and the context of this thesis.

Another challenge is the usability of the interface, which depends among other
things on the percentage of successfully recognised gestures. For instance can
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users complete their tasks successfully if there is a margin for error or is there
little to no room for error? Qualitative empirical research involving users is
required to answer this question, which is not part of this research due to its fo-
cus on recognition technology. This research therefore assumes a linear relation
between usability and percentage of successfully recognised gestures.

Its goal is the user-independent recognition of dynamic gestures, which in the
most ideal situation means that every user regardless of age, gender, size, etc.,
should be able to simply put on the glove and start operating the interface with-
out calibration or user training. This leads to many variables and a very com-
plex system. In order to make the research slightly less complex and to be able
to clearly see how different technologies and their parameters affect the recogni-
tion percentage, a particular group of users is targeted in this thesis, the study
of which will reveal any characteristics that need to be taken into account during
the recognition process.

The recognition technology that is used greatly influences the performance of
the recognition interface. The choice of technology depends on what kind of ges-
ture is selected for controlling large display surfaces. As the purpose of this
thesis is to recognise dynamic gestures, a recognition technology that takes tem-
poral changes into account is the better choice. When a selection of recognition
technologies has been made, experimenting with different parameter settings is
also a possibility to further increase the percentage of successfully recognised
gestures [19, 31]. The training data used to train the recogniser is also of great
importance, because when noisy data is used, the interface has more difficulty
recognising the gestures. Moreover, the training data should not be limited to
one user, but should include at least a few users, a representative sample of the
target group. This way the gesture recogniser increases its capacity to recognise
gestures from users not available during training [93], which raises the follow-
ing question: ’How does the number of users available at training affect this
capacity?’

In short, having taken on the challenges described in the previous paragraphs,
the ultimate goal of this thesis is to achieve a percentage of successfully recog-
nised gestures that is usable for a large group of users.
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1.3. Research questions

This research would like to answer the following questions with respect to the
above-mentioned goal.

1. Can dynamic hand gestures be recognised independent of users?
a) Which technologies are suitable for this purpose?

i. What effect does pre-processing the data set have on the perfor-
mance?

ii. What effect does the tuning of parameters have on the perfor-
mance?

iii. How does a traditional technology compare to a novel one?

iv. What effect does the quantity of available user data have on the
performance?

b) Can a recogniser be made user independent for a large group?

1.4. Research context

In the film ‘Minority Report’1, the main character, John, is a chief of police who
tries to prevent crimes before they take place. John and his team have access to
a special crime lab. In this lab John stands in front of a transparent display and
sifts through large amounts of data (mostly images and video’s) about the future.
One of the methods he uses to control the interface is hand gesture interaction
out of arms-reach of the display. John wears special gloves and makes single-
handed or bimanual gestures to control the interface. Figure 1.1a and 1.1b show
John’s gloves and John controlling the interface.

Although this example may seem futuristic and unfeasible, it has been done.
The scientists and developers who helped shape a realistic image of the tech-
nologies shown in the film, were able to make a hand gesture interface with
similar features to that in the film. It was and still is being developed by Ob-
long Industries2 and their spatial operating environment as they call it has been
christened ‘g-speak’.

John’s fictional crime lab is a good example of the use of large displays, which
are also used in the real world. As Fikkert [20] mentions, large displays can also
be found in future homes [84], offices, schools and other public environments. In

1See http://www.imdb.com/title/tt0181689/. Last visited on July 13th, 2010.
2See http://www.oblong.com. Last visited on July, 13th, 2010.

6

http://www.imdb.com/title/tt0181689/
http://www.oblong.com


Chapter 1 | Introduction

(a) Special gloves
John uses to make
gestures.

(b) John controlling the interface and reflecting
with team members.

Figure 1.1.: Stills from the film Minority Report.

future homes they will be the interface for the interactive systems in the home.
In offices they will be used to display and interact with images and documents
during meetings. Schools will use them to display animated learning aids to help
students with their studies. Municipal offices, examples of public environments,
will use large displays to provide information to visitors, enabling them to find
their way around the building.

A more creative use of large displays in public environments is interactive art
for example. Surrounding users with display surfaces would immerse them in a
virtual world, as Fikkert [20] mentions, which they could navigate and in which
they could manipulate objects [17]. This world can either be a realistic or virtual
projection. It is expected that users explore these worlds independently and find
out about its functionalities. They could also be artistic canvasses. The goal
is to let the users be creative and make their own artistic creations. Museums
are also good examples of public environments which could benefit from gesture
interaction [39].

Fikkert also mentions operating theatres as locales for gesture-based interfaces.
Surgeons could access patient information, for example, MRI, CT and X-ray im-
ages themselves without having to ask support staff to access it for them. In ad-
dition, gesture-based interfaces have the advantage that surgeons do not have
to touch any form of controller to access patient information, which keeps their
hands sterile and allows the surgeon to remain at the patient’s side.

Busy shopping streets are examples of environments we are all familiar with.
Shop keepers increasingly use displays in their windows to advertise the prod-
ucts to the public. The displays do not only show information about the shop or
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the products in the window, but passers-by can also interact with them [89]. Dis-
plays that are able to detect when passers-by stand in front of them can adapt
the information displayed. Passers-by can also interact personally by browsing
the products available in the shop using simple taps, knocks or gestures. The
interaction does not have to be limited to the detection of someone standing in
front of the display, as mobile phones could take this to the next level by ex-
changing information with the display.

Life scientists have to deal with large amounts of experimental data [15]. To
fully address this data, a multidisciplinary team of experts doing complex and
computationally intensive analysis and experimentation is needed. In an ef-
fort to accelerate the process of analysing and visualising large biological data
sets, discuss results and address biological research questions, an e-BioLab was
built at the University of Amsterdam [69]. The e-BioLab provides the life sci-
entists with a large, high-resolution, tiled display, high-bandwidth connectivity
and access to high-performance computing. A multidisciplinary team of scien-
tists working together co-located trying to solve problems in fields of biology,
genetics, bioinformatics and micro array experiments amongst others. The en-
vironment employs a methodology facilitating the re-use of methods and applies
domain dedicated Problem Solving Environments. The use of the e-BioLab in
actual practice has turned out to facilitate lively and focused discussions. In-
sights into problems were gained at a faster pace, which would have been nearly
impossible without the use of the e-BioLab. The large display surface used in the
e-BioLab is a tiled display that consists of twenty 21-inch LCD computer screens
arranged in a 4 by 5 matrix. The software used in the e-BioLab to render the dis-
play is the Scalable Adaptable Graphics Environment (SAGE)3. Basically, what
SAGE does is merge many smaller displays into one large display and provide an
architecture to control those displays as one. In the architecture a simple win-
dow management system is included opening every object in its own window.
The display is controlled by an operator sitting behind a desktop system. Figure
1.2 shows the layout of the laboratory used at the University of Amsterdam.

The participating scientists need to ask the operator to display images or other-
wise change the screen. Scientists other than the operator might not be able to
do that, because they are unfamiliar with the interface for controlling the large
display. A gesture-based interface could be of benefit to them in this environ-
ment giving them more freedom and flexibility, as studies in similar contexts
show [4, 90]. The scientists could make gestures while standing in front of the

3See http://www.evl.uic.edu/cavern/sage/index.php. Last visited on January 14, 2010.
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Figure 1.2.: The layout of the e-BioLab, taken from [69].

display to display the images they need or to manipulate them while discussing
them with fellow scientists. This removes the need for an operator to control the
display and the communication between scientists and operator, during which
requests could possibly be misunderstood. It gives the scientists more freedom
to control the display as they see fit, without having to trouble the operator. The
ultimate goal would be to enable two or more scientists to control the display by
making gestures simultaneously. The e-BioLab is taken as an example through-
out this thesis to research the practical application of hand gesture interaction.
This practical application is then extended to the use of controlling large display
surfaces with hand gestures in general.

1.5. Method

The goal of this thesis is the user-independent recognition of dynamic gestures.
Figure 1.3 depicts the method used.
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Figure 1.3.: The method used (in phases). Phases five and six were repeated for each
recogniser. Phases five, six and seven were repeated for each recogniser tech-
nology.

In order to recognise dynamic gestures the first step was to define a dynamic
gesture set based on the current literature and the context described in section
1.4. Having targeted a user group a small study was carried out to discover their
characteristics. With the gesture set and results of the user study, a Wizard of
Oz experiment was held [12], the goal of which was to create a data set contain-
ing instances of all gestures from as many users as possible. In this experiment
the user seemingly controlled two applications by using the gestures from the
gesture set, by which is meant that the user makes the gesture while it is be-
ing interpreted and translated into interface actions by the researcher. While
the users were making the gestures the data they generated was recorded and
globally segmented. The data was recorded using a dataglove that the users
wore. This right-handed glove has several flexion sensors to measure how the
wrist and fingers are bent. In order to incorporate the position and orientation
of the hand in 3D space, a magnetic tracking sensor was attached to the glove.
The data recorded through these devices formed the basis for the training of the
recognisers. In order to make the data suitable for training, it had to be cleaned
from noise and precisely segmented (i.e. the beginning, end and class of ges-
ture had to be marked). Recognisers were trained and tested with the cleaned
and segmented data. Seventy-five percent of the data was used for training.
The remaining twenty-five percent was reserved for testing the percentage of
successfully recognised gestures on data unseen during training. The effects on
the recognition performance by tuning the recognisers through pre-processing of
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the data set were studied in combination with variations in the parameter set-
tings of the recognition technologies. Using this method a comparison was made
between a traditional and a novel technology with regard to their recognition
performance.

1.6. What this thesis is not about

This thesis does not address issues of intuitiveness and efficiency with regard to
the use of hand gestures and how users experience them in this regard. Instead
it focuses on the optimisation of the technical aspect of hand gesture recognition.

As several researchers have pointed out, it is important to define gestures which
are intuitive, come natural to humans and are easy to remember [21, 86]. Al-
though this thesis uses related literature to define a gesture set, it has a different
focus and therefore does not contain research on the intuitiveness, naturalness
and remembrance of individual gestures.

The gestures recognised are from a single hand only. Recognising gestures made
by two hands would be ideal and would add to the gesture interaction possibil-
ities [74]. Unfortunately, it would also complicate the research in such a way
that it does not agree with the time frame for this thesis.

1.7. Thesis structure

This thesis is structured as follows. Chapter 2 continues with the definition of a
dynamic gesture set suitable for controlling large display surfaces at a distance.
Consecutively, Chapter 3 explains in detail the Wizard of Oz experiment setup
and the properties of the recorded data. The technologies that were researched
and applied to user-independent, dynamic gesture recognition are described in
Chapter 4. In Chapter 5 the performance results obtained during the recogniser
experiments are analysed and explained. The significance of these results is
interpreted in Chapter 6. Lastly, recommendations for future research are made
in Chapter 7.

11



Chapter 2
Tasks and Gestures

This chapter describes the dynamic hand gestures and how they were defined.
The gestures were found by researching the tasks users do when controlling a
large display surface. Section 2.1 describes the context of this research, finds a
list of tasks specific to that context and shows that the tasks are context inde-
pendent. In Section 2.2 a detailed analysis of the tasks addresses the question
if these could be translated to gestures without any change and Section 2.3 con-
cludes by describing the hand gestures as they are finally used.

2.1. Tasks in the e-BioLab

In Section 1.4 the e-BioLab was described in which a group of multidisciplinary
scientists work together to address questions in the fields of life sciences. One
of the tools available in the lab is a large display surface, which is used to visu-
alise these datasets. Currently, the display is controlled by an operator from a
separate desktop or small tablet PC. The operator is a scientist specially trained
in operating the system and software used to control the display. If other scien-
tists in the lab want to change what is being displayed they need to go via the
operator. This is where a hand gesture interface could improve the method of
control..

Driven by the possibilities and advantages of such an interface, this example
and its context were further explored in this thesis. An initial list of user tasks
was compiled from Kulyk et al. [41] and Rauwerda et al. [69], describing a
formative user study, the e-BioLab and its setup. Only user tasks which involve
controlling the large display were considered. In this context the term ‘user task’
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is defined as described in Stone et al. [80, ch. 4, § 1.1]: “A task is a structured
set of related activities that are undertaken in some sequence." The initial list
of tasks, structured in two categories is shown in Table 2.1.

Image viewing Volume viewing (3D)

• Panning
• Zooming
• Selecting

• Rotating
• Zooming
• Selecting

Table 2.1.: Initial list of user tasks for controlling the large display in the e-BioLab.

Revisiting this list in an interview with the operator of the e-BioLab resulted in
the more complete listing as shown in Table 2.2.

Tasks currently possible Tasks possible in the future

1. Window management
a) Resizing
b) Repositioning
c) Minimising and

maximising
d) Closing

2. Image viewing
a) Panning
b) Zooming

1. Volume viewing (3D)
a) Rotating
b) Zooming
c) Switching between

3D view modes
d) Switching between

model layers

Table 2.2.: Modified list of tasks after having discussed Table ?? with the display opera-
tor.

This list is further divided into two new categories: tasks that are technologi-
cally possible and currently used in e-BioLab sessions and tasks that are cur-
rently not (yet) technologically possible, but are desired for the future. An ad-
ditional difference with Table 2.1 is that the window management tasks were
added. Amongst those are the tasks for resizing, repositioning and closing win-
dows equal to that in traditional Windows-Icon-Menus-Pointing (WIMP) inter-
faces [20, 88].

This thesis limits its research to these subcategories, because they are actually
used in the e-BioLab. Possible integration of the interface with the existing lab
systems in the future is for that reason easier as well.

The applicability of the window management tasks are not limited to the e-
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BioLab. They are easily imaginable in other contexts involving interfaces with
window management systems. The same holds for the image viewing tasks.
Therefore, we can define the tasks of Table 2.2 independent from any context as
shown in Table 2.3.

Tasks currently possible

1. Window management
Resizing Enlarging and/or shrinking the size of a window on the large

display, given that the window is not minimised.
Repositioning Moving the window left, right, up and down the

2-dimensional axes of the large display, given that the window is not
minimised.

Minimising Hide the contents of the window and reduce it to the form of a
small bar at the bottom of the display, given that the window is
maximised or demaximised.

Deminimising Restore the window to its previous position and size and
show its contents, given that the window is minimised.

Maximising Enlarge the window across the whole display, stretching its
contents, given that the window is minimised or demaximised.

Demaximising Restore the window to its previous position and size,
given that the window is maximised.

Closing Completely close the window, so that it is not in any way present
on the display.

2. Image viewing
Panning The 2-dimensional repositioning of an image that is bigger than

the window it is viewed in, so another, invisible part of that image is
displayed.

Zooming in Enlarging an image from a specific point of focus in a
window so as to see it from closer by and in more detail.

Zooming out Shrinking an image from a specific point of focus in a
window so as to see more of the image and less detail.

Table 2.3.: The tasks of Table 2.2, context independently defined.

2.2. From e-BioLab tasks to elemental tasks

This section aims to translate the tasks from Table 2.3 into suitable hand ges-
tures. Recall the definition of ‘user task’ from paragraph 2.1. The important part
in this definition is that a task consists of a set of activities. This implies that a
task can be further subdivided into activities, also called actions [80, ch. 4, § 1.1].
Applying this notion to the tasks already defined it becomes apparent that they
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too consist of actions. The tasks window resizing and repositioning, for example
have as precondition that a window needs to be selected before they can be exe-
cuted. The other tasks in the list are similar. They all have certain preconditions
which need to be satisfied before the actual task can be done. These precondi-
tions form a part of the set of actions of a task. Until now the analysis and defini-
tion of these tasks were approached from a user perspective (hence, ‘user task’).
However to get tasks which can be directly translated into gestures it makes
more sense to approach it from an interface perspective. Although that perspec-
tive uses a different terminology, the definitions remain the same. For example,
the term ‘user task’ from the user perspective is termed ‘general interface task’
in the interface perspective. The term ‘action’ is termed ‘elemental interface
task’, which are tasks defined at such a low level that they can be executed di-
rectly. They have no preconditions which need satisfaction. Fikkert [20, § 3.2]
describes them as being at the heart of interfaces: “They build up an interface
by being repeated throughout the various facets of the whole interaction.” He
also describes the best example being the Windows-Icon-Mouse-Pointer (WIMP)
design. In this design the elemental interface tasks (also elemental tasks) of
point-and-click events are used and reused over and over again.

From this it follows that elemental tasks can be translated into hand gestures.
This means that the general tasks need to be subdivided one level further to
identify the elemental tasks. Before that is done however, the problem of mis-
understanding should be addressed. Misunderstanding about when the user
makes a gesture which should be interpreted by the interface and when not.
Buxton [5] describes three states in which the input can be. Alternating be-
tween the first two describes the problem of misunderstanding. Buxton calls the
first state the zero or ’out-of-sync’ state and the second state the first or ‘Track-
ing’ state in which no input is given and the system tracks a user’s input. Now
take the following gesturing example, a user zooms in on an image and after-
wards points out a particular part to colleagues. The zooming in task should be
interpreted, however pointing should not. The interface should change from the
zero state to the tracking state while zooming and returning to the zero state af-
terwards. However, the interface should stay in the zero state while pointing out
the parts to colleagues. There is no clear signal or cue given when to change from
zero to tracking and back [5]. This problem is not unique to gesture interaction.
Speech interaction has the same problem in the form of the interface not clearly
knowing when its addressed and when not. There is no clear difference between
when to interpret and when not, then a gesture or spoken utterance should be
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interpreted in one context, but not in another. Keeping contextual information
could play an important part in solving this problem. A solution to this problem
for gesture interaction might also contain the use of various interaction zones
a user stands in. Interaction zones define the role users play in a collabora-
tive setting [24]. However, to research such a solution is outside of the scope of
this thesis. In this research an on/off switch available on the hardware is used.
Naturally, gestures are interpreted when the hardware is switched on and stops
when it is switched off. This provides two extra elemental tasks, activate and
deactivate.

Returning to breaking down the general tasks in elemental tasks, Table 2.4 gives
an overview. In this overview it is assumed that only a single task is executed.

# General interface task Elemental interface tasks
1 Resizing activate - point - select - enlarge / shrink - deactivate
2 Repositioning activate - point - select - move - deactivate
3 Minimising activate - point - select - minimise - deactivate
4 Deminimising activate - point - select - deminimise - deactivate
5 Maximising activate - point - select - maximise - deactivate
6 Demaximising activate - point - select - demaximise - deactivate
7 Closing activate - point - select - close - deactivate
8 Panning activate - point - select - move - deselect - deactivate
9 Zooming in activate - point - select - zoom in - deselect - deactivate

10 Zooming out activate - point - select - zoom out - deselect - deactivate

Table 2.4.: Overview of general interface tasks and their corresponding elemental inter-
face tasks.

The reader notices that tasks 1, 9 and 10 and tasks 2 and 7 have basically the
same elemental tasks, see Table 2.4. Although they are used in a different con-
text, the result is the same. The names of the general tasks appear to suggest
a different meaning, however at the elemental level they are identical. Incor-
porating these facts in a new, merged overview, it is reduced to that in Table
2.5.
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# General interface
task

Elemental interface tasks

1 Resizing / zooming in
/ zooming out

activate - point - select - enlarge / shrink - deactivate

2 Repositioning /
panning

activate - point - select - move - deactivate

3 Minimising activate - point - select - minimise - deactivate
4 Deminimising activate - point - select - deminimise - deactivate
5 Maximising activate - point - select - maximise - deactivate
6 Demaximising activate - point - select - demaximise - deactivate
7 Closing activate - point - select - close - deactivate

Table 2.5.: Merged overview of general interface tasks and corresponding elemental in-
terface tasks.

Figure 2.1 shows a model in which the elemental tasks are generalised in how a
single task is executed.

Activate Point Select

Deselect

DeactivateTask related action

Figure 2.1.: A model for executing a single general task.

The model specifically shows the execution of a single task. Naturally, general
tasks are executed consecutively by users. This makes the constant activation
and deactivation in every task of the gesture interface superfluous. Therefore
it is reduced to just one activation and deactivation at the beginning and end of
the interaction.

As Figure 2.1 describes a model for a single general task, how would a model
look like that incorporates all elemental tasks and the possible transitions be-
tween them? A model which in fact describes the possible inputs and their con-
sequences. Such models exist for graphical input and several were described
in existing literature. Buxton [5] describes such a model having three states in
which the graphical input can be. This model can for example represent point,
select and drag interactions for indirect input devices like mice, but direct input
devices like touch screens also. However, this is different for free-hand direct
interaction as Fikkert [20] describes. He denotes the three states from Buxton’s
model as: out of range, tracking and selected, which is equal to deactivated,
pointing and selected in Figure 2.1. For the elemental tasks activate, point and
select a separate state is created. The remaining elemental tasks described in
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Table 2.5 are not modelled in Buxton’s model. Those tasks can basically be con-
sidered as different manipulations in an interface, which is what Fikkert does.
Furthermore Fikkert [20] describes that various extensions to Buxton’s model
were made in the past to model extra elemental tasks. However, most of these
extensions fall short in their capacity to generalise over different interface ma-
nipulations and that is what is necessary with direct free-hand interface input.
Fikkert solves this shortage by following the approach of Hinckley [28]. Hinck-
ley’s approach introduces a new state in the model for every new mouse button,
in which every mouse button introduces a new form of manipulation. The dis-
advantage is that the model grows fast, because every new state introduces new
state transitions with the existing states. To prevent this, Fikkert extends Bux-
ton’s model with a fourth state. In this state all manipulation tasks are modelled
dynamically. The fourth state is implemented in a way such it adapts to the task.
In this way all remaining elemental tasks besides activate, point and select can
be modelled. Figure 2.2 shows the four-state model taken from Fikkert [20]. It
also shows the ‘Manipulating’ state having various ‘substates’ representing the
types of manipulations. The possible transitions between states are represented
by the arrowhead-arcs in this thesis.

Out of range
#0

Tracking
#1

Selected
#2

Zoom out

Zoom in

Maximize

Demaximize

Minimize

Deminimize

Close

Manipulating
#3

In range

Out of range

Select

Deselect

Release

ReleaseActivate

Reposition

Out of range

Figure 2.2.: Four-state model taken from Fikkert [20] in which the types of interface
manipulations from this research are represented as ‘substates’ of the fourth
state. The substates are mutually fully connected, but to reduce clutter the
arrowhead-arcs are left out.
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2.3. From elemental tasks to gestures

The goal of this chapter, to have a set of hand gestures defined for general tasks,
is achieved in this last paragraph. Table 2.6 lists the twelve elemental tasks for
which gestures need to be defined.

• Activate
• Deactivate
• Point
• Select

• Deselect
• Enlarge / Zoom in
• Shrink / Zoom out
• Maximise

• Demaximise
• Minimise
• Close
• Reposition

Table 2.6.: Exhaustive list of elemental tasks to define gestures for.

Multiple gestures for doing many of the elemental tasks above are defined by
Fikkert [20][21]. In various experiments he evaluated the intuitiveness of ges-
tures and which gesture users would use when confronted with in real life. The
following subparagraphs describe per pair of tasks (e.g. activate / deactivate,
minimise / deminimise etc.) the hand gestures chosen. The decisions are based
on the results described in the previously mentioned literature.

2.3.1. Activate and deactivate

Several ‘gestures’ have been thought of for activating and deactivating the in-
terpretation of gestures by the interface. The first option that came to mind was
the user moving his hand above a certain threshold height regarding his body
to activate the interface. However, this is physically hard to endure for longer
periods. Additionally, one goes above the threshold pretty quick if the user just
likes to point out something on the display without having it interpreted as a
gesture. As described in section 2.2 making use of different interaction zones
is another option. Although this option may have great potential it is beyond
the scope of this thesis. For the remainder of this research a button is relied on
to activate and deactivate the interface according to the user’s needs. An on/off
switch located on the hardware is used for this purpose.

2.3.2. Point

Pointing comes down to controlling a pointer in two dimensions on the large
display surface. This has the similar concept of that of a mouse controlling a
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pointer in the WIMP metaphor. The hardware used provides for a 3-dimensional
position signal. This signal can be used to control a pointer on a 2-dimensional
surface in real-time. However, the pointer should not be moved when a user
makes another gesture. Therefore the pointer can only be controlled when in
the pointing mode. This mode is active when the user shapes his hand in the
form of a pistol in the upright position. In this way a user can immediately do
a select to minimise the delay in the workflow, then pointing and selecting is
often used in conjunction. Pointing itself is based on ray-casting as experiments
from Fikkert [20] have shown, users rated this highest on both intuitiveness
and ‘would use’. If the user’s hand is not shaped in a pistol the pointer remains
on the last pointed location. This way the user can also point out objects on
the display without having the interface interpret it as a gesture. Figure 2.3a
visualises the pointing gesture.

2.3.3. Select and deselect

For selecting the results of the experiments in [20] have shown that the Air-
Tap is rated the highest on intuitiveness, physical strain and ‘would use’. The
ThumbTrigger gesture does not fall behind much. Although the AirTap is rated
highest, the ThumbTrigger better suits the context of this research, considering
the hardware used. Based on this fact the ThumbTrigger gesture is used for
selecting. The hand is shaped like a pistol and the thumb taps the middle finger
to do a select task.

In regard to deselecting, the results show that the DropIt (stretched hand, palm
facing downwards) and Select other (select background, empty space or other
object) gestures are rated highest. Considering the fact that the focus of this
research is on the technical realisation of gesture recognition, the choice is made
to use the Select other gesture. It is equal to the gesture chosen for selecting,
resulting in recognising two elemental tasks with one gesture. Additionally, the
users mentioned that they were familiar with this concept of deselecting from
the WIMP style interfaces. See Figure 2.3b for a visualisation of the gestures.
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(a) (b)

Figure 2.3.: Gestures for Pointing (2.3a) and Selecting + Repositioning (e.g. Dragging,
2.3b).

2.3.4. Reposition

Basically the gesture for repositioning objects on a large display surface is the
same as that of pointing only with a little extra. The movement of the hand
across the x and y axes of the large display enables the selected object to be
repositioned. Note the words ‘selected object’ in the previous sentence. In fact
this gesture uses position and select gestures to accomplish its goal.

2.3.5. Enlarge, zoom in and shrink, zoom out

For these elemental tasks Fikkert [20] also experimented with different ges-
tures. Two gestures were found to be rated highest: ‘Move hands apart’ and
‘Move fingers apart’. Given that this research is limited to gesturing with a
single hand, the gesture ‘Move hands apart’ is removed as a candidate, leaving
‘Move fingers apart’ as the gesture of choice. This gesture can be done in multi-
ple ways. By moving thumb and index finger from or to each other, by moving
thumb and all other fingers from or to each other (as in grasping something
between thumb and fingers). Additionally, the scaling factor of enlarging and
shrinking (or zooming in or out for that matter) can be interpreted in two ways.
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By repeatedly moving thumb and fingers from or to each other or by distributing
the total scale across the whole distance between thumb and fingers. With the
latter the user only has to move his thumb and fingers from or to each other
once. Given that and that people are already familiar with the variant of this
gesture for touch screens, the choice has been made to use thumb and index
finger gesture with the scaling across the distance between them. Figure 2.4
visualises the gestures.

Figure 2.4.: Gestures for enlarging / zooming in and shrinking / zooming out.

2.3.6. Maximise and demaximise

Once again, this means pushing a window across the whole display (maximise)
and to restore it from this state to its last size (demaximise). Fikkert [20] has
not experimented with gestures for these elemental tasks. In existing literature
nothing could be found on this subject as well. When thinking about possible
one-handed gestures for these two elemental tasks, one tends to think in the
direction of the enlarge and shrink gestures. Then to maximise and demaximise
is basically ‘enlarge to full screen’ and ‘shrink to previous size’. The difference
is that no scaling distribution is needed. So, instead of moving thumb and index
finger slowly from or to each other, moving thumb and other fingers explosively
from or to each other might be intuitive and easy for the users to do. Moving
thumb and other fingers apart explosively signals to maximise the selected win-
dow whereas moving thumb and other fingers to each other explosively until
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they touch signals a demaximise. Partially these gestures are derived from en-
larging and shrinking pictures in the interaction with multi-touch devices. See
figures 2.5a and 2.5b for a visualisation.

(a) (b)

Figure 2.5.: Gestures for Maximising (2.5a) and Demaximising (2.5b).

2.3.7. Minimise and deminimise

Given that the goal of minimising is to send a window downwards hiding its
contents only showing its titlebar, the gesture of waving it down seems intuitive
and easy to use. The Apple iPhone also uses this gesture in a slightly different
form for its touch screen. To deminimise the opposite gesture is used, wave the
window up. These gestures also have an analogy in daily life in form of signalling
an audience to sit down or stand up. Basically, one signals windows to ‘sit down’
or ‘stand up’ instead of an audience. A visualisation of the gestures is shown in
Figures 2.6a and 2.6b.
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(a) (b)

Figure 2.6.: Gestures for Minimising (2.6a) and Deminimising (2.6b).

2.3.8. Close

Closing windows by gesturing is also not much written about in current litera-
ture. When observing gestures people make in daily life, the closing of windows
is comparable to something which is not needed anymore, can be removed or is
disapproved to be shown on the display. To express this people in daily life often
make a wavy gesture of disapproval or just waving it ‘away’. With this gesture
the hand is usually stretched in a relaxed way. Additionally, the thumb points
upwards. Starting the gesture, the palm of the hand faces towards the user af-
ter which the wrist turns slightly to let the back of the hand face upwards in the
end. See Figure 2.7 for a visualisation.
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Figure 2.7.: Gesture for closing.
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Chapter 3
Hand gesture data

Hand gesture recognition is a concrete case of a pattern recognition problem.
To recognise patterns, samples of these patterns are needed to discover their
distinctive characteristics. Without going into further detail here, patterns are
recognised by ‘matching’ new patterns’ characteristics to those from the trained
samples. This means that samples of the gestures defined in Chapter 2 are
needed to discover their characteristics.

This chapter is about how the necessary gesture samples were collected for train-
ing and testing a recogniser. A total of 2034 samples were collected for the nine
gestures. Considering the purpose of this thesis is to recognise dynamic hand
gestures user-independently, this thesis wanted to collect samples from as many
users as possible. The following sections describe the sensors used for recording
data, the experiment setup and the properties of the data set collected.

3.1. Used sensors

When considering the sensors used to recognise gestures the field of hand ges-
ture recognition is generally divided into two categories [54]. Glove-based ap-
proaches use instrumented gloves to measure the flexion of the fingers, the posi-
tion and orientation of the hand. The category of vision-based approaches uses
cameras to record images of the user who is making gestures. In this category
this thesis also includes marker-based solutions, since the markers are recorded
through different types of cameras as well. Differences between these two ap-
proaches are described along several dimensions including accuracy, resolution,
latency, range of motion, user comfort and cost. As Mitra et al. [54] and Mandel

26



Chapter 3 | Hand gesture data

[50] point out, the advantages of using a vision-based approach is that it does not
hinder the ease and naturalness of the user’s interaction. Nothing needs to be
worn and no cables can hinder gesturing as compared to a glove-based approach
where the user wears a glove and cables that attach the device to a computer.
Advantages of glove-based approaches are that the hand and fingers are mea-
sured directly and the data can be provided at a higher sampling frequency.
Vision-based approaches cannot track the hand in such detail without having
to use computationally intensive calculations slowing down the tracking pro-
cess. The first step in that process is always having to extract information from
the images. Glove-based approaches on the contrary provide usable information
immediately. Vision-based approaches also have to cope with line-of-sight occlu-
sion, situations in which the hand is occluded by some object between the camera
and the hand. Glove-based approaches do not have this disadvantage. Interfer-
ence from the environment in which the tracking devices are placed, could also
influence the recognition accuracy. The video stream from cameras could be dis-
torted by high frequency signals or vibrating objects, for example. With most
glove-based approaches additional sensors are used to track the 3D position and
orientation of the hand. These are often based on ultra-sonic or magnetic tech-
nologies. Other ultra-sonic signals or metal surfaces from the environment could
respectively interfere with the accuracy of these sensors.

Considering these advantages and disadvantages, a glove-based approach was
chosen for this research. The main reasons for this are that datagloves provide
direct measurement, no images need to be processed before the needed informa-
tion is finally extracted. Additionally, datagloves provide the measurement of
the hand posture without complex high-dimensional parameter reconstruction
methods. From the dataglove used, signals of each sensor were read through a
RS-232 interface device and put in an array of integers. As the research pro-
gressed, the discovery was made that further post-processing of the array of
integers proved advantageous to the recognition rate. Refer to Section 5.2 for
more details.

In this research a CyberTouchTM dataglove from CyberTouch Systems1 was
used. Figure 3.1 shows the version used in this thesis.

This glove has eighteen high-accuracy joint-angle measurement sensors. They
measure the flexion and abduction of the fingers and the wrist and thumb rota-
tion. Unfortunately, because of wear and tear, two sensors have broken down.

1See http://www.cyberglovesystems.com/hardware/products/cybertouch.php. Last visited on Jan-
uary 6, 2010.
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Figure 3.1.: The CyberTouchTM dataglove, main unit and peripherals used.

The wrist yaw and the thumb rotation cannot be used in this research. The
wrist yaw measures the rotation of the wrist to the left or right with respect
to the lower arm (see Figure 3.2a). Such rotation is found in a waving gesture
for example. It is not found in any of the gestures in this research. The thumb
rotation sensor measures the thumb rotation of the metacarpal bone, see Figure
3.2b for a description.

This rotation is found in the Select, Zoom in and Zoom out gestures when the
thumb rotates from alongside to under the the index finger. Unfortunately, this
could affect the recognition of the gestures, because without the thumb rotation
they are more difficult to discriminate. These classes needed to be closely ob-
served in the corresponding experiments. A total of sixteen sensors have been
used. The glove also has 6 vibro-tactile actuators to provide feedback. However,
these are not used in this research.

Considering the defined gestures, 3D position and orientation information is re-
quired of the lower arm. Unfortunately, the dataglove does not provide such
information. Therefore the Flock Of Birds system2 from the Ascension Technol-
ogy Corporation was used. This system is able to measure the 3D position and
orientation of an object by attaching sensors to them. It consists of a Standard
Range Transmitter (SRT) unit that sends out a pulsed DC magnetic field, one
ore more Fast Bird Bus units and one or more Flock Of Birds sensors [2]. See

2See http://www.ascension-tech.com/realtime/RTflockofBIRDS.php. Last visited on January 6,
2010.
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(a) The wrist rotates around the yaw axis, a ro-
tation which is not used in any of the de-
fined gestures.

(b) The thumb metacarpal (and the other
thumb bones) rotates around the TR axis
with value jTR

Figure 3.2.: Explanations of the wrist yaw and thumb rotations taken from [40].

Figure 3.3 for the various components.

One sensor and a SRT connected to the FBB unit were used in this research.
The dataglove has a special spot just below the wrist, where the Flock Of Birds
sensor was attached. This way, the 3D position and orientation of the lower
arm were measured. The actual output given by the Flock Of Birds system was
configured to x, y, z position coordinates and x, y, z, w quaternion orientations.

3.2. Experiment setup

An experiment was designed to collect gesture samples of the nine classes of
gestures. In this experiment users were asked to make gestures using the data-
glove and Flock Of Birds sensor. To simulate a real hand gesture environment
as much as possible, the experiment was held in one of the labs at the university
that contained a large display surface. The display surface was generated by two
projectors hanging from the ceiling next to each other. They projected on a wide,
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Figure 3.3.: The Ascension Flock Of Birds system used.

white screen that was made of special projecting cloth. The resolution used was
2560 pixels in width and 1024 pixels in height. The video signal came from two
graphics cards in a quad core PC. Both the dataglove and Flock Of Birds were
connected to this PC via USB-to-serial converters. The Flock Of Birds sensor
was attached to the dataglove at the back of the wrist. Figure 3.4 shows the
setup of the experiment room.
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Figure 3.4.: Layout of the recording experiment room. On the right the experiment was
explained to participants. On the left, the gestures of the participant were
recorded and interpreted by the researcher.

The PC was running Windows XP and had 4 GB RAM. The data recording ap-
plication was written in Java on top of the Squidy interaction library3. Squidy’s
goal is to provide a framework of extensions for integrating input devices, pro-
cessing components (e.g. filters, 2D recognizers, etc.) and system actions, to ease
research and development of novel interfaces. Squidy extensions were devel-
oped for the dataglove and Flock Of Birds. Additionally, a data recorder and log
editor was developed to record and edit the gesture data. In a pipeline fashion,
the dataglove and Flock Of Birds were connected to the log editor as input. The
log editor was connected to the already existing Mouse I/O extension, so that the
user could control the cursor on screen. In between a Kalman filter extension
filtered the data on hand jitter. See Figure 3.5 for a screenshot of the Squidy
setup of the above extensions.

The user controlled two applications with the defined gesture set. The first ap-

3See http://www.squidy-lib.de. Last visited on August 27, 2010.
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Figure 3.5.: Screenshot of Squidy pipeline for recording gesture data.

plication under control was the Firefox plugin CoolIris4, a 3D photo wall with
which photos can be selected, dragged, zoomed, brought to full screen, etc. A
very interactive application suited for hand gesture interaction. With this ap-
plication samples from the point, select+drag, maximise, demaximise, zoom in
and zoom out gestures were collected. The second application was the card game
memory, which was uniquely developed for this experiment in Adobe Flash. The
goal was to match movie posters from a top and bottom row by selecting them,
swiping them up or down in the ‘memory machine’ at the centre of the screen,
wait for result and swipe the machine clean to start over. With this applica-
tion samples of the point, select, minimise, deminimise and close gestures were
collected.

The experiment was designed as a ‘Wizard of Oz’ experiment. In such an ex-
periment a prototype system is developed, but without the actual automated
recogniser module. That part is played by the ‘Wizard’, usually one of the re-

4See http://www.cooliris.com. Last visited on March 12, 2010.
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searchers on the project. In general this type of experiment is commonly used
to research how users react to the possibilities of new technologies before they
are developed. In the field of gesture recognition it is common to collect data this
way for training a recogniser. To collect that data a researcher needs to interpret
the participant’s gestures during recording.

During the actual experiment, when a participant entered the room, the re-
searcher explained the goal of the experiment and the gesture set to use. The
participant was assisted in putting on the glove, so it fits tightly. Afterwards,
the Flock Of Birds sensor was attached to the dataglove at the back of the wrist.
To align the sensor the participant was asked to stand near the magnetic field
generator, so that the Flock Of Birds sensor was centred above it. This way, the
centre of the magnetic field corresponded with the center of the screen. After
having a short practice with the gestures on the CoolIris application, the record-
ing started. Participants were encouraged to explore the applications on their
own. Sometimes the researcher gave hints on what to do next if the participant
did not know how to proceed.

The researcher sat behind the desk on which the computer was located and had
a screen for himself to control the recording process. Additionally, the researcher
pushed the correct keys on his keyboard after he saw a participant make a ges-
ture as those described in section 2.3. That was done according to the proto-
col described in Appendix B. A crude segmentation and classification was also
added to the recording log file while pressing the keys. When the recording was
complete, the participant was assisted in taking of the dataglove and Flock Of
Birds sensor. Afterwards the participant was thanked and received a candy bar
of choice, as a small token of gratitude.

3.3. Data description

Data was recorded from a total of twenty-two participants. One of them is fe-
male. One is Iranian, two are German and nineteen are Dutch. Three partici-
pants are left-handed, which is notable because the dataglove is only made for
the right hand. The quality of the data of these participants could be degraded
because they had to do the gestures with their right hand. Furthermore, two
participants are aged between 10-20, seventeen participants between 20-30 and
three between 30-40. Considering their current occupation, one is a BA student,
two are Postdoc researchers, three are Bachelor students at a University of Ap-
plied Sciences, four are Ph. D. students and twelve are MSc. students. Five
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participants have no experience regarding hand gesture interfaces. One partici-
pant has experience with conventional mouse gesturing and one has experience
with 3D mouse gesturing. Two participants have experience with mid-air bi-
manual laser-pointer gesture recognition and two have experience with mid-air
hand gesturing through vision-based gesture recognition. Gesturing with the
Wii gaming console5 was experienced by Five participants. Fifteen have experi-
ence with either multi-touch phones or screens or both. For the full details of all
participants see Appendix C.

From the twenty-two participants available, the data of six Dutch, right-handed,
male participants was segmented and labeled in the scheduled time (partici-
pants no. 3, 4, 9, 15, 18 and 21 of Appendix C). Among them are one Ph. D.
student, two Postdoc. researchers and three MSc. students. These were primar-
ily selected because they gave the most usable and clear samples of every gesture
which was determined after having reviewed a visualisation of the recorded ges-
tures from all participants. This resulted in a total of 2034 gesture samples for
the nine classes. Table 3.1 shows the number of gesture samples per gesture
class.

Class Close Demax. Demin. Max. Min. Point Select Zoom in Zoom out
Samples 120 88 115 154 139 851 462 57 58

Table 3.1.: Number of gesture samples per class.

With gesture sample, a sequence of feature values is meant. They were recorded
at around 70 Hz. One feature value has twenty-three dimensions. It contains
three dimensions for the position feature, four dimensions for the orientation
feature and sixteen dimensions for the hand posture feature. Both the position
and orientation feature are in doubles and their range lies between [−1,+1]. The
hand posture feature is in integers in the range of [0, 255]. Figure 3.6 shows a
plot of two close gesture samples from the same participant.

Notice the differences between the two samples although they are made by the
same participant. This could be an obstacle for a recogniser. Additionally, the
data from the sensors are in two completely different intervals. This could also
lead to poor recognition from a recogniser, because the recogniser might concen-
trate on the more prevalent data. To prevent this, it is better to have all features
in the same interval. Another aspect of the data that is notable is the length of
each sample. All samples have different lengths. That concerns samples within

5See http://www.wii.com. Last visited on July 28, 2010.
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(a) Position and orientation data of a Close ges-
ture.
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(b) Glove data of the Close gesture from 3.6a.
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(c) Position and orientation data of a second
Close gesture.
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(d) Glove data corresponding to the Close ges-
ture of 3.6c.

Figure 3.6.: Plots of two samples of the close gesture. Both are from the same partici-
pant. Figures 3.6a and 3.6c show the position and orientation data in their
original [−1, 1] interval. Figures 3.6b and 3.6d show the glove data in their
original [0, 255] interval.

classes, but also between classes. Since the patterns are practically scaled vari-
ants of each other, it makes it harder for a recogniser to recognise.
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Recognition technologies

Considering gesture interaction from a machine perspective, machines and more
specifically computers find themselves in a changing real-world environment.
Changing in the sense that multiple users make gestures which the computer
needs to recognise. These users all gesture in a different way, no matter how
small that difference is. Humans seem to have the almost ‘magical’ ability to
recognise the meaning of gestures. Computers (or machines in general) do not
have this ability and need to learn the mapping between the input and the char-
acteristics of gesture classes in order to recognise gestures. Amongst others the
field of Human Computer Interaction uses machine learning for this purpose [1].
This way the computer that is in a changing environment is given the ability to
learn. The advantage of this ability is that the interaction designer need not
foresee and provide solutions for all possible situations [1].

In this thesis’ case, the case of hand gesture recognition, the aim is to learn a
mapping between a certain kind of input and output. In this thesis, the input
is gesture data and the output the correct class of the gesture. Machine learn-
ing has different categories of learning applications. For example, Association
learning [92, § 3.4], Classification [7], Regression [16], Supervised / Unsuper-
vised learning [25] and Reinforcement learning [85]. Considering these applica-
tions the aim of hand gesture recognition in this thesis falls into the application
of Supervised / Unsupervised learning. In supervised learning a mapping be-
tween input and output is learned from supervised data [1]. That data contains
the correct values provided by a supervisor. The difference with unsupervised
learning is that these correct values are not available, only the input data re-
mains. Fortunately, that is not the case in this thesis. As described in section
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3.3 the recorded input has been manually segmented and classified. With this
data supervised learning techniques can be applied to learn the mapping be-
tween input data and gesture classes. Many different supervised learning tech-
niques exist [6]. Considering the purpose of this thesis is to recognise dynamic
gestures not all of these techniques are suitable. Because of the dynamic nature
the techniques are required to handle data that changes over time. Additionally,
a comparison was made between a traditional and more recent technique to see
how recent developments in recognition technologies affect hand gesture recog-
nition in this thesis’ context. By these criteria Hidden Markov Models (HMMs)
[13] were selected as the traditional technique and a more recent development
is the technique of Latent-Dynamic Conditional Random Fields (LDCRFs) [57].

The above technologies are applied to develop and research a hand gesture
recogniser. To develop such a recogniser the common process of supervised learn-
ing is applied. That process is briefly explained in this paragraph. After having
created the data set described in section 3.3 the data set is divided into a train-
ing and test set. The gesture samples in the training set are used to train a
recogniser according to the parameter settings specified. After the training is
complete, the recogniser is tested on the gesture samples from the test set. This
provides an objective test, since the recogniser has not seen the gestures in the
test set. After all gestures from the test set have gone through the recogniser,
the results in this research case are represented in the total recognition rate
and a confusion matrix. The total recognition rate expresses the performance
of the recogniser in the percentage of correctly recognised gestures. The confu-
sion matrix displays how many gestures are classified in the available gesture
classes. One row of the matrix specifies for that particular gesture how many
instances of that gesture from the test set are classified (or misclassified for that
matter) in the available classes. See Figure 4.1 for a visual representation of the
recognition development process.

Split

Pre-process

Data
set

Training set

Settings

Train

Pre-processed
training set

Test

Gesture
recogniser

Test set

Pre-process
Pre-processed
test set

Recognition
rate,

Confusion
matrix

Training set
dependent pre-
process settings

Figure 4.1.: The recogniser development process with all inputs and outputs.
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The following sections in this chapter describe the principles of the applied
recognition technologies, their characteristics and their parameters.

4.1. Hidden Markov Models

The theory behind HMMs was known for close to eighty years, but advances
in the optimisation of Markov chains in the mid 1960s [3] were the cause of
renewed interest in HMMs [67]. From the beginning of the 1970s HMMs are ap-
plied in different research fields ranging from speech recognition [22] to predict-
ing financial variables [68] and from handwriting recognition [49] to nucleosome
position prediction in bioinformatics [95]. HMMs have gained this popularity in
all the different research fields because of their ability to take the temporal as-
pects into account of data that changes over time. In the course of the last fourty
years many variants of HMMs have been researched [31, 34, 58].

A HMM is a statistical model. HMMs recognise patterns which are learned
through observing sequences of a particular kind of data. It models a system
which is considered to be in one of a set of a particular number of states. The sys-
tem modelled is assumed to be a Markov process. A process is a Markov process
when it qualifies the criteria that the conditional probability distribution of fu-
ture states of the process, given the present state and a constant number of past
states, depend only upon the present state. Additionally, in a HMM the states
of the system are hidden, not observable. With not observable is meant that the
state of the system is not known at any point in time [1, 67, 66]. Fortunately,
observations, sequences of observations, O, are available that are generated by
those hidden states. From these observation sequences the optimal hidden state
sequence, Q, could be inferred given the Hidden Markov Model, λ. Let us now
formally define the properties of a HMM. A HMM, λ, consists of a number of
hidden states S, and the properties A, B and Π. A = aij , the state transition
distribution between states Si and Sj , B = bj(Ot), the observation probability
distribution of emitting observation Ot at stateSj and Π = πi, the probability
that state Si is the initial state [66]. Given a number of observation sequences,
the following three basic problems for HMMs are of interest [66]:

1. Given the observation sequence O = O1O2...O3, and a model λ = (A,B,Π),
how is P (O|λ), the probability of the observation sequence given the model
efficiently computed?

2. Given the observation sequence O = O1O2...O3, and the model λ, how is
a corresponding state sequence Q = q1q2...qT chosen which is optimal in
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some meaningful sense (i.e. best “explains” the observations)?
3. How are the model parameters, λ = (A,B,Π) adjusted to maximise P (O|λ)?

This thesis is particularly interested in training a HMM from the observation
sequences (i.e. gesture samples) recorded in the experiment of Chapter 3 (i.e.
problem 3). In addition, recognising gestures from observation sequences given
that model (i.e. problem 1) is also of interest.

Then, given an observation sequence, O, and a HMM λ = (A,B,Π) the first of the
basic HMM problems can now be solved. The observation sequence probability,
P (O|λ), is determined by means of the forward procedure. In this procedure, the
forward α is calculated as follows [13, 66]:

α1(i) = πibi(O1), 1 ≤ j ≤ N (4.1)

αt+1(i) =

 N∑
i=1

αt(i)aij

 bj(Ot+1), 1 ≤ t ≤ T − 1; 1 ≤ j ≤ N (4.2)

In a similar way, a backward procedure exists in which the backward variable
β is calculated [13, 66]. However, this procedure is only required in solving the
third of the basic HMM problems. However, it is described here, because of
its similarity to the forward procedure. The backward variable is calculated as
follows:

βT (i) = 1, 1 ≤ j ≤ N (4.3)

βt(i) =

N∑
j=1

aijbj(Ot+1)βt+1(j), t = T − 1, T − 2, ..., 1; 1 ≤ j ≤ N (4.4)

The calculation of the forward and backward variables often result in extremely
small probabilities, going beyond the boundaries of machine calculation. There-
fore, the forward and backward variables are scaled by a coefficient, c, keeping
the calculation within machine calculation boundaries [13, 66]. The scaling co-
efficient is carefully determined in the following way:

ct =
1∑N

i=1 αt(i)
(4.5)

It is then simply applied to formulas 4.1, 4.2, 4.3 and 4.4.
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The observation sequence probability, P (O|λ), is finally determined by:

P (O|λ) =

N∑
i=1

αT (i) (4.6)

Before solving the third basic HMM problem a solution is needed to the second
problem. To find the optimal state sequence associated with the given observa-
tion sequence David et al. [13] and Rabiner [66] et al. introduce a new variable:

γt(i) = P (qt = Si|O, λ) (4.7)

The probability of being in state Siat time t, given the observation sequence O,
and the model λ. It can be expressed in terms of the forward-backward variables:

γt(i) =
αt(i)βt(i)∑N

i=1 αt(i)βt(i)
(4.8)

The third basic HMM problem is to determine a method to adjust the model
parameters (A,B,Π) to maximise the probability of the observation sequence
given the model. No analytical way exists to solve this problem. Therefore a
solution is proposed that locally maximises P (O|λ) by an iterative procedure as
the Baum-Welch algorithm[13, 66]. This procedure introduces a new variable:

ξt(i, j) = P (qt = Si, qt+1 = Si|O, λ) (4.9)

The probability of being in state Sjat time t, and state Siat time t + 1, given
the model and the observation sequence. ξt(i, j) can be written in terms of the
forward-backward variables as follows:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N

j=1 αt(i)aijbj(Ot+1)βt+1(j)
(4.10)

All required formulas are now defined to reestimate the A and Π HMM param-
eters [13, 66]:

Π = πi = expected frequency in state Si at time (t = 1) = γ1(i) (4.11)

A = aij =
expected number of transitions fromstate Si to state Sj

expected number of transitions fromstate Si
=

∑T−1

t=1 ξt(i, j)∑T−1

t=1 γt(i)

(4.12)
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Reestimating the B parameter depends on the observation density used. Sub-
sections 4.1.1 and 4.1.2 define these for the discrete and continuous cases re-
spectively.

To train a HMM, the number of hidden states needs to be defined. Hidden states
try to capture and model the substructure of a gesture. With substructure, im-
portant and defining moments in a gesture is meant that largely discriminate
a gesture. Hence, an important parameter, because varying the number of hid-
den states varies the substructure model. A second important parameter is the
hidden state architecture. The number of hidden states can be arranged in dif-
ferent ways. They are connected like graphs in graph theory. Hidden states are
the nodes in a graph that are connected to each other by lines representing the
transitions. Two of the most common architectures used are the ergodic and
left-to-right ones. In the ergodic architecture every state is directly connected to
every other state, including itself (see Figure 4.2a).

S0 S1 S2 S4S3

(a)

S0 S1 S2 S4S3

t

t

(b)

Figure 4.2.: An example of the ergodic (4.2a) and left-to-right (4.2b) state architec-
tures. Because of bidirectional transitions in Figure 4.2a the arrows are
not shown.

Left-to-right however applies an architecture in which the states are traversed
in one direction (see Figure 4.2b). The underlying state sequence associated
with the model has the property that as time increases either the state index
increases or stays the same [66]. This is also called a BAKIS architecture. The
effects the settings of these two parameters have on the recorded data set are
studied in this thesis. The final goal is to find the optimal settings for this data
set.

For every gesture class a HMM was trained. The nine HMMs were parallelly
connected as proposed by David et al. [13]. Figure 4.3 shows an example.

The start and end states (i.e. Sstart and Send) describe the equal circumstances
in which all the parallelly connected HMMs start and end. They are imaginary
and serve no special purpose. Recognising a gesture involves calculating the
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HMM 1
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Figure 4.3.: Example of the parallelly connected HMMs. The start and end states (i.e.
Sstartand Send) connecting the HMMs are imaginary.

observation sequence probability in every HMM. The gesture is classified in the
class of the HMM that resulted in the highest probability.

In the comparison of recognition technologies two types of HMMs were included:
Continuous HMMs (CHMMs) and Discrete HMMs (DHMMs). Both are trained
and tested by algorithms which differ slightly. To train and test the HMMs the
‘gpdsHMM’ toolbox1 for MATLAB2 was used. This toolbox has algorithms to
train both CHMMs and DHMMs.

The following subsections describe the formal theory behind DHMMs and CHMMs
and the parameters their implementations provides.

4.1.1. Discrete Hidden Markov Models

Discrete HMMs differ from Continuous HMMs in that they handle discrete ob-
servations from a finite set of symbols. The continuous stream of data from the
sensors is discretised in a finite set of symbols. The conventional way to discre-
tise the continuous observation is by the process of Vector Quantization (VQ).
VQ is a process in which all continuous observations are matched to a finite set
of symbols, {vk}k=1,...,M where N denotes the size of that set. Then the observa-
tion vector, Ot of the observation sequence, O = O1, O2...OT is obtained as follows

1See http://www.gpds.ulpgc.es/download/. Last visited on September 30, 2010.
2See http://www.mathworks.com. Last visited on September 30, 2010.
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[13]:
∀m 6=k Ot = k ↔ d(xt, vk) < d(xt, vm) (4.13)

with k being the index of the symbol vk and d(xt, vk) being the distance between
xt and vk.

David [13] proposes the use of the Linde, Buzo and Gray algorithm (LBG) [47]
in combination with the k-Means algorithm to calculate a finite set of N symbols
from training data. A set of N symbols is calculated for each component in the
observation vector. They try to find the symbol set size and vectors in which the
overall distortion between the original observations and their quantisations is
minimised. The proposed algorithm makes use of the ‘Initial guess by splitting’
[47] in which M -level quantisers are considered with M = 2

R where R = 0, 1, ...,

and continues until an initial guess for an N -level quantiser with an acceptable
level of distortion is achieved. The algorithm is as follows [87, § 2.2][47]:

1. Initialisation: Set M = 1 and calculate the centroid of this symbol for
all observation vector components with all observation vectors from the
training set.

2. Given the set of symbols containing M vectors {yi; i = 1, ...,M}‘split’ each
vector yi into two close vectors yi + ε where ε = 1 + randn(M) ∗ DF and
DF is the Distance Factor defining the maximum percentage of distance
between the symbols of the current set with M symbols and the new set
with 2M symbols.

3. If M = N , the initial guess for the N -level quantisation algorithm has been
achieved. Else if M < N run the k-Means algorithm for an M -level quan-
tiser on the set of M symbols to minimise its Mean Square Error (MSE)
and then return to step 2.

4. Run the k-Means algorithm for an N -level quantiser on the set of N sym-
bols to minimise its MSE and then terminate.

k-Means is used to compute N centroids for the N symbols and iteratively up-
dates the centroids given the training data. The k-Means algorithm is as follows
[87, § 2.2]:

1. Initialisation: the N first training vectors are the centroid(0).
2. Each added vector is assigned to the closest centroid(t) and the centroid(t+

1) are recalculated with the new vectors added.
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3. The algorithm is terminated when:∑
||centroid(t)− centroid(t+ 1)|| < threshold

or

iterationnumber > maxnumber of iterations

The default values of threshold and maxnumber of iterations are in the case of
this thesis 0.005 and 10, respectively. These were taken from the toolbox [87] and
not modified in this research.

With the above algorithms, hard matching decisions are made. Which means
that the information about how observations match other symbols is discarded.
Because of the large variability between the incoming observations those obser-
vations can be matched to such a displaced symbol in that this displacement is
a source of misrecognition [13]. In an attempt to minimize that source of mis-
recognition David et al. [13] propose the use of ’Multi-labeling’. The difference
with the conventional VQ method is that multi-labeling makes a soft decision
about which symbol is closest to the incoming observation. Multi-labeling gen-
erates an output vector which components indicate the relative closeness of each
symbol to the incoming observation. So, the multi-labeling finite set of symbols,
N , maps the training vector xt into an observable vector Ot =

{
w(xt, vk)

}
k=1,...,C

,
which is calculated with:

w(xt,vk) =
1/d(xt, vk)∑C
m=1 1/d(xt,vm)

(4.14)

Now that the discretisation process is defined, let us turn to solving the three
basic HMM problems for DHMMs.

The first basic HMM, given an observation sequence, O, and a DHMM λ =

(A,B,Π), is solved with the previously described Equations 4.1 through 4.6.
However, this research uses a discrete observation distribution with multi-labeling
and therefore bj(Ot) is determined by [13]:

bj(Ot) =
c∑

k=1

w(xt, vk)bj(vk) (4.15)

In the implementation of the gpdsHMM toolbox, c, is defined as the L most
significant values of w(xt,vk) for each xt where L is lower than C, from Equa-
tion 4.14. This reduces the computational load and makes the multi-labelling
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approach to DHMMs more efficient [87, § 2.2.1]. The default value of c in the
toolbox is 1. According to David [13], good results were obtained with the value
of 1 for c (i.e. taking only the component of the closest symbol into account).

A solution to the second problem of finding the optimal state sequence associated
with the given observation sequence is given by Equation 4.18.

The problem of (re)estimating the parameters of the DHMM, λ = (A,B,Π), the
third basic HMM problem, is solved by Equations 4.11 and 4.12 for Π and A after
having calculated ξ by Equation 4.10. However, B is (re)estimated differently
considering the discrete, multi-labeled observation distribution:

bj(k) =

∑T
t=1 γt(j)w(xt, vk)∑T

t=1 γt(j)
(4.16)

With the above Equations DHMMs can now be trained and tested.

In previous research on gesture recognition with DHMMs the effects of the three
parameters (i.e. number of states, architecture and number of symbols) have
also been studied. Unfortunately, most of this research includes gesture recog-
nition using computer vision and only limited includes recognition using data-
gloves. Although computer vision may employ a different kind of input method
(usually one or two cameras), most of the features used are similar to those
used from the dataglove. For this reason the results from previous research
also including computer vision is used to guide initial parameter settings. In
that research a four to ten state left-to-right architecture is mostly employed
[97, 98, 72, 77, 78] However some approaches like Yamato et al. [96] utilize a
larger number of hidden states (36). All approaches report above 90% recogni-
tion rate. As mentioned previously, little research is available on HMM glove-
based recognition, however, Lee et al. [44] describe an approach using a five
state left-to-right model. Properties of the gesture recognition process are of-
ten similar and whether to use an ergodic or left-to-right architecture and the
number of states are often derived from an estimation of states which a gesture
maximally could have [77, 78]. Some estimate the number of states by looking
at the number of distinct features in the data [72]. Others just intuitively esti-
mate a number of states and go from there [96, 97, 98]. All use these settings as
initial values and try to improve on them empirically. In this thesis most ges-
tures change over time. Considering that and assuming the fact that a gesture is
somehow always completed before starting another, a left-to-right architecture
is more appropriate, because of its constraint that it can only move through the
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state sequence in one direction. When estimating the complexity of the gestures
intuitively, the number of states the gestures need are estimated in the range of
two to five states.

Next to these parameters the VQ process, unique to the DHMM, is guided by
the parameter specifying the size of the finite set of symbols, N . The effects
of this parameter were studied in this research. In previous research, Yamato
et al. [96] recognised six human motion categories using seventy-two symbols
and obtained 90.0% for user-dependent and 70.8% for user-independent recog-
nition. Yang et al. [97] used 256 symbols in their recognition of digits drawn
by following the path of the mouse. They obtained 99.78% recognition on a
user-dependent isolated recognition task of nine gestures. Using fourty-eight
symbols, Yoon et al. [98] obtained 93.25% with recognising hand gestures using
their combination of weighted x-y-v features. Experiments with other features
(e.g. location, angle and velocity) and combinations of these in different coordi-
nate systems resulted in recognition from 41.79% to 92.96%. In those experi-
ments the number of symbols ranged between two to fourty-eight. Considering
these settings, the choice was made to use twenty symbols for the experiments
in which the data pre-processing methods were tested. To tune the number of
symbols in the final DHMM, the same strategy was adopted as Mäntylä [52] in
which the number of symbols is doubled from sixteen until 256. Further tuning
by increments of two was applied to the interval which showed the best results
(see Subsection 5.3.1).

4.1.2. Continuous Hidden Markov Models

Continuous HMMs are characterised by the way they handle continuous obser-
vations. With Discrete HMMs, the symbols observed are quantified in a finite
set. For Continuous HMMs, the distribution of the emitted symbols is continu-
ous. It is assumed that the general observation can be represented in this re-
search by a finite mixture of Gaussians, M , also the mixture component. There-
fore, in the continuous case, b(Ot) is defined as [13, 66]:

b(Ot) =

M∑
m=1

cjmN (Ot, µjm, Ujm), 1 ≤ j ≤ N (4.17)

Then, given an observation sequence, O, and a CHMM λ = (A,B,Π) the first of
the basic HMM problems is solved by Equations 4.1 through 4.5. The observa-
tion sequence probability, P (O|λ), is determined by means of Equation 4.6.
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The second basic HMM problem is solved by Equation 4.6, which for the contin-
uous case is:

γt(i) =

[
αt(i)βt(i)∑N

i=1 αt(i)βt(i)

][
cikN (Ot, µjm, Ujm∑M

m=1 cikN (Ot, µjm, Ujm

]
(4.18)

A solution to the third basic HMM problem, (re)estimating the model parame-
ters of a CHMM, is given by Equations 4.11 and 4.12 for the parameters Π and
A. B is (re)estimated in the continuous case according to the Equation 4.17.
The following are the reestimation formulas for the parameters of the mixture
of Gaussians (c and N (µ,U)) [13, 66]:

cjk =

∑T

t=1 γt(j, k)∑T

t=1

∑M

m=1 γt(j, k)
(4.19)

µjk =

∑T

t=1 γt(j, k)Ot∑T

t=1 γt(j, k)
(4.20)

Ujk =

∑T

t=1 γt(j, k)(Ot − µjk)(Ot − µjk)∑T

t=1 γt(j, k)
(4.21)

Considering Equation 4.17 and the mixture of Gaussians reestimation Equa-
tions 4.19, 4.20 and 4.21 it can be seen that the Gaussian mixture component,
M , influences the modeling of the general observation. This changes the HMMs
ability to model the observation distribution, affecting its capability to recognise
gestures. So, M is an additional parameter which needs to be tuned to opti-
mise the recognition of gestures with CHMMs. Unfortunately, most of current
literature on HMM hand gesture recognition uses DHMMs. For that reason
no previous values for the mixture of Gaussians parameter unique to CHMMs
were available other than one or two or ‘more’ [35, 34]. Additionally, similar to
DHMMs, the number of states and state architecture parameters also apply to
CHMMs.

To study the effects of these parameters on the recognition rate and to find the
optimal settings, the method of testing as described in the introductory text of
this chapter was used. These tests were run to test the combinations of parame-
ter settings. Both the number of hidden states and the Gaussian mixture compo-
nent were tested in the range of two to thirty with increments of two. Tests with
combinations of these parameters were run with the ergodic and left-to-right
state architecture.
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4.1.3. Numerical instability

During the initial HMM tuning experiments, columns in the confusion matrices
were observed which were completely zero. Numerical overflows appeared to be
the cause which occurred during the training of the HMMs. The training algo-
rithms used were the versions of the Baum-Welch algorithm for Discrete and
Continuous HMMs. As described in Rabiner’s tutorial on HMMs [66, Section
V. - A.] both versions make use of scaling factors to avoid numerical underflow.
The factors are the normalisation values of the forward probabilities for every
timestep, t, per gesture instance. Both forward and backward probabilities are
normalised with these factors, so that they cancel each other out when reesti-
mating the state transition probabilities.

The case with the data set recorded in this thesis was that it contained gesture
instances of more than 250 timesteps. Because of that length the multiplica-
tions for calculating the forward and backward probabilities also grew. With
this growth the forward and backward probabilities become extremely small. As
a consequence the scaling factors become extremely large, until they go beyond
the upper boundary of machine calculation. That is where the overflow errors
occurred and the training process derailed.

In addition, there was dissatisfaction with the recognition obtained with the
training runs free from overflows, because recognition rates with HMMs in other
contexts were consistently higher. Also, it was acknowledged that it could be be-
cause of multiple causes (too little training data, use of other HMM variants, too
long observation sequences, etc.). However, the loss in precision was mainly be-
lieved to be the biggest influence. Therefore the numerical stable HMM training
method described by Mann [51] was implemented. Mann gives a detailed de-
scription of an approach to deal with extremely small conditional probabilities.
This approach entails working with the logarithms of those probabilities. To
work with logarithms, four Equations are defined (see Equations 1-10 in Mann
[51]). These Equations are essentially standard logarithm operations extended
to correctly handle zero values. They must be handled, because events can have
zero probability and taking the logarithm of zero is not a number. With these
four basic Equations defined, the calculation of the forward (α), backward (β),
gamma (γ) and epsilon (ε) probabilities were reimplemented according to algo-
rithms five to nine in Mann [51] respectively. The reestimation of the initial state
(π), state transition (A) and observation symbol probability distributions(B)

were reimplemented according to algorithms nine to eleven.
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4.2. Latent-Dynamic Conditional Random Fields

In many classification problems involving sequential data a solution is researched
to predict a label for each frame. Additionally, these sequences of data are un-
segmented having no marked beginning or end. Facing these problems in the
area of computer vision, Morency et al. [57] proposed a new visual gesture
recognition algorithm based on Conditional Random Fields (CRFs) [43]. Their
Latent-Dynamic Conditional Random Fields (LDCRFs) aims to provide a solu-
tion for the problem of recognising individual classes of gestures and detecting
the beginning and end of such gestures in unsegmented sequences. The HMMs
of Section 4.1 only aim to recognise individual classes of gestures. Without ex-
tensions, the traditional HMM does not have the ability to detect the beginning
and end of gestures in unsegmented sequences. This is particularly useful in
real-time recognition of hand gestures and also provides the ability to further
improve LDCRFs with unsegmented data once trained. As LDCRFs are based
on CRFs, they too are discriminative models. Discriminative models provide
a probabilistic model only for the target variables conditioned on the observed
variables. In this research that is a mapping between a sequence of observations
and a sequence of hand gesture labels. HMMs are generative models. These
models provide a full probabilistic model for a joint probability distribution over
observation and label sequences. However, to optimally learn such a model,
the observations are assumed to be conditionally independent from each other.
The main advantage of discriminative models is that this assumption is relaxed.
An assumption that is otherwise too restrictive for data distributions of many
classes.

LDCRFs can capture both subgesture patterns and dynamics between gesture
classes, this is also termed intrinsic and extrinsic class dynamics respectively.
“LDCRFs discover latent (i.e. hidden) structure that best differentiate visual
gestures and distinguishes subtle motion patterns such as natural head nods
and eye gaze aversion” [55, 57]. In comparison with previous discriminative
models like Conditional Random Fields (CRFs) [43], LDCRFs incorporate hidden
state variables modeling the substructure of gestures where CRFs do not. CRFs
only model the transitions between gestures, thereby exclusively capturing the
extrinsic dynamic. Hidden-state Conditional Random Fields (HCRFs) [65] are
an extension to CRFs in which the use of hidden states was first introduced.
Hence, LDCRFs combine the strengths of CRF and HCRF in capturing both
intrinsic substructure and extrinsic dynamics.
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Equal to the task of Morency et al. [57], this thesis also wants to learn a map-
ping between a sequence of observations and a sequence of labels. They give the
following definitions [57]. Let a sequence of observations be x = {x1, x2, ..., xm}
and a sequence of labels y = {y1y2, ..., ym}. Each yj is a class label for the jth

observation frame of a hand gesture sequence and is a member of a set Y of
possible class labels. Each observation frame is represented by a feature vector
φ(xj) ∈ Rd, in this thesis’ case, the 23 dimensional vector of 3D position, ori-
entation and hand posture data. For each sequence a vector h = {h1h2, ..., hm}
of “sub-structure” variables is also assumed. Not observed in the training ex-
amples, they are the hidden variables in the model. Given these definitions, a
LDCRF is defined (Equation 2 in [57]):

P (y|x, θ) =
∑

h:∀hj∈Hyj

P (h|x, θ) (4.22)

where Hyj is a set of possible hidden states, hj , for the class label yj and H, the
union of all Hy sets. P (h|x, θ) is defined (Equation 3 in [57]):

P (h|x, θ) =
1

Z(x, θ)
exp

(∑
k

θk · Fk(h, x)

)
(4.23)

and the partition function, Z(x, θ), as:

Z(x, θ) =
∑
h

exp

(∑
k

θk · Fk(h, x)

)
(4.24)

and Fk, the feature function as:

Fk(h, x) =
m∑
j=1

fk(hj−1, hj , x, j) (4.25)

Each feature function is either a state function sk(hj , x, j) or a transition func-
tion tk(hj−1, hj , x, j), where state functions, sk, depend on a single hidden vari-
able, while transition functions, tk, depend on pairs of hidden variables [57].

To learn the model parameters, Morency et al. [57] follow the initial defining
work of CRFs [43]. The following objective function is used to learn the parame-
ter θ∗ (Equation 4 in [57]):

L(θ) =
n∑
i=1

logP (yi|xi, θ)−
1

2σ2
||θ||2 (4.26)
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where the first term is the conditional log-likelihood of the training data and
the second term the log of a Gaussian prior with variance σ2. Gradient as-
cent with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimisation tech-
nique is proposed to search for the optimal parameter values under the criterion,
θ∗ = argmaxθL(θ). The gradients of both objective functions with respect to the
parameters, θk, associated to either state function, sk (see Equations five and six
in Morency et al. [57]), or transition function, tk, is shown to be computable in
O(m) using belief propagation [57, 61]. The transition functions are defined one
for each hidden state pair (h

′
, h
′′
) and are expressed as:

tk(hj−1, hj , x, j) =

1 if hj−1 = h
′
andhj = h

′′

0 otherwise

Weights, θk, associated with a transition for hidden states that are in the same
subset, Hyi , model the intrinsic dynamics (i.e. substructure patterns). The
weights associated with transition functions for hidden states from different
subsets model the extrinsic dynamics (i.e. external dynamics between gesture
classes) [57]. The number of state functions, sk, are equal to the length of the
feature vector, φ(xj), times the number of possible hidden states, |H|. In this the-
sis, a 23 dimensional feature vector is used with up to five number of states. The
total number of state functions in the model used in this research is 23×5 = 115.

Given a new test sequence, x, the most probable label sequence, y∗, is to be
estimated that maximises the conditional model:

y∗ = argmax
∑

h:∀hi∈Hyi

P (h|x, θ∗) (4.27)

where the parameter values, θ∗, are learned from training sequences. The fol-
lowing algorithm is used [57]:

1. For all observation frames, j, from the observation sequence, y∗j

a) Compute the marginal probabilities P (hj = a|x, θ∗) for all possible
hidden states a ∈ H using belief propagation.

b) Sum the marginal probabilities according to the disjoint sets of hidden
states Hyj into the log-likelihood for every gesture class.

2. Sum the log-likelihoods of all observation frames per gesture class.
3. Determine the maximum log-likelihood summed in step 2 and assign the

associated label.
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Just as with HMMs, computing the marginal probabilities (step 1a) for long
observation sequences consists of many probability multiplications. That may
cause numerical instability. However, the implementation used in this research
solved this by replacing the multiplications by additions of the logarithms of the
probabilities.

Since the introduction of LDCRFs in 2007 in the field of head gesture recognition
they have also been applied in the fields of human action recognition [46] and
speech recognition [81]. The inference algorithms of LDCRFs have also been
further developed [82]. Besides these fields it seems that LDCRFs have not
yet been applied in this thesis’ research context. Since LDCRFs have proven to
outperform traditional models in other, similar fields, results are promising for
this thesis’ research.

LDCRFs provide several parameters to tune it to the sequences modelled, ef-
fecting the final recognition performance. Similar to the CRFs, LDCRFs have
a regularisation parameter. Regularisation is used to remove overfitting of the
data by using a penalty on weight vectors whose influence in the total training
process is too large [83]. Values for this parameter setting used in previous re-
search [55, 57] have been 0.001, 0.01, 1, 10, 100, 1000, 10000 and 0. Like HCRFs,
LDCRFs use a number of states to model the internal substructure of a gesture.
Values used in previous research [55, 57] range from two to six hidden states.
The third parameter is the window size. With this parameter the concatenation
of feature vectors of multiple frames can be used to create the input feature used
during training. For example, if the window size is one, only the feature vector of
the current frame is used. If however, the window size is three, the input feature
used is a concatenation of the feature vectors from three frames. Namely, the
current frame, the one preceding it and the future frame. Values of the window
size ranged from 1 to 31 in previous experiments [55, 57]. The effects of these
parameters on the final recognition performance were studied in this thesis us-
ing the described values of these three parameters as guidance. In those studies
the HCRF library v1.3d3 of Morency et al. [57] was used.

3See http://sourceforge.net/projects/hcrf/. Last visited on October 5, 2010.
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Chapter 5
Experiments and results

This chapter describes the results of the experiments carried out with the aim
to increase the recognition rate (i.e. the percentage of gestures recognised cor-
rectly). Section 5.1 describes the results obtained with unprocessed data. The
results obtained upon applying the pre-processing methods are described in Sec-
tion 5.2. First the methods were applied one-by-one (Subsections 5.2.1 to 5.2.5)
and subsequently various method combinations were investigated (Subsection
5.2.6). The effects of tuning the recogniser parameters were also studied (Sec-
tion 5.3). In the final section of this chapter the results of our tests on user-
independent recognition are described.

5.1. Unprocessed data

To obtain a baseline, experiments were first performed on the unprocessed data
set. The following parameter settings were initially used to train the recognis-
ers. For Continuous HMM (CHMM): four states, four Gaussians and left-to-right
architecture; for Discrete HMM (DHMM): four states, twenty symbols and left-
to-right architecture; and for the Latent-Dynamic Conditional Random Field
(LDCRF): one hidden state, a regularisation factor of 10 and a window size of
0. All recognisers were trained using 75% of the data set. The remaining 25%
was used as a test set. Each time a training was started the training and test
sets were randomly chosen from the total data set. Three training / test runs
were done for each setting. Table 5.1 shows the average recognition rates for the
three recognition technologies.
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Technology Recognition rate
CHMM 35.31%
DHMM 43.40%
LDCRF 92.56%

Table 5.1.: Recognition rates based on default parameter settings using unprocessed
data.

As the table shows, DHMMs performed a little better than CHMMs. However,
both performed poorly compared to LDCRF.

5.2. Pre-processed data

Shalabi et al. [73] have researched the effects of pre-processing the training
data to better support the training process of the recogniser. Their research
shows that data pre-processing methods can positively affect the recognition
rate. Chaturvedi et al. [8, § 4.2] have studied the performance of Artificial Neu-
ral Networks and found that the training performance depends on how the data
is represented. Different methods of pre-processing are described by Priddy et
al. [64, ch. 3] to obtain better results with automated recognition systems. For
the purposes of this research the following pre-processing methods were used:
rescaling [33], normalisation [64, ch. 3], interpolation [33], dimension reduction
[33] and feature extraction [31]. The same parameter settings as described in
Section 5.1 were used in training the recognisers. The results are shown for each
method in the following subsections. The final subsection (5.2.6) describes the
results obtained by combining pre-processing methods.

5.2.1. Rescale

As the values of the 3D position and orientation data are already in the interval
[−1, 1] the glove data is also rescaled to this interval. In the researcher’s opinion,
as the recogniser is trained on data in one interval recognising gestures should
become easier. This way, the chance that recognisers focus themselves on data in
a particular interval is eliminated. Both the training and test sets were rescaled.
Table 5.2 shows the recognition rates using rescaled data.

Compared to unprocessed data, CHMMs performed considerably better. DHMMs
and LDCRFs performed slightly better, but not significantly.
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Technology Recognition rate using
unprocessed data

Recognition rate using
rescaled data

CHMM 35.31% 43.89%
DHMM 43.40% 44.31%
LDCRF 92.56% 93.35%

Table 5.2.: Recognition rates based on default parameter settings using rescaled data.
The rates of Table 5.1 are shown for comparison.

5.2.2. Normalisation

Normalisation smooths the differences between instances of the same gesture
[9]. This makes the data independent of the sensor range. Although there are
many data normalisation methods, this research is limited to min/max normali-
sation as it is the most commonly used method [33, 73]. With min/max normal-
isation, the minimum and maximum value of a feature column are determined
and taken as −1 and 1 respectively. Subsequently all data in the column is
normalised between these values [8, 64]. Equation 5.1 shows the min/max nor-
malisation equation as proposed by Priddy et al. [64]:

yi = (maxtarget −mintarget)×
[

(xi −minvalue)

(maxvalue −minvalue)

]
+mintarget (5.1)

where yi is the normalised value, mintarget and maxtarget are −1 and 1 respec-
tively. The values minvalue and maxvalue are the respective minimum and max-
imum values of a feature column. Table 5.3 shows the resulting recognition
rates.

Technology Recognition rate using
unprocessed data

Recognition rate using
normalised data

CHMM 35.31% 42.47%
DHMM 43.40% 46.02%
LDCRF 92.56% 91.39%

Table 5.3.: Recognition rates based on default parameter settings using normalised
data. The rates of Table 5.1 are added for comparison.

Compared to unprocessed data, the recognition rate of CHMMs improved signif-
icantly. DHMMs also improved slightly. LDCRFs performed slightly less well.
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5.2.3. Interpolation

Gesture instances from the data set are of different lengths (i.e. the number of
samples). For example, instances of the same gesture have similar patterns, but
are ‘stretched-out versions’ of each other, as Figure 5.1 shows. This is a possible
source of misrecognition for a recogniser.
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(a) An instance of the demaximise gesture.
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(b) Another, ‘stretched-out’ instance of the demaximise gesture.

Figure 5.1.: Examples of the demaximise gesture showing two different instances by the
same user. For reasons of clarity, only the glove data is shown.

Interpolation is used to ensure that gesture instances have the same length.
This is done byeither reducing or increasing the length of a gesture to make it
equal to the mean length of all gesture instances in the data set [33, 71]. Re-
ducing the number of samples in a gesture is done by removing samples evenly
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distributed across the entire instance. Increasing the number of samples is done
by evenly adding samples between the existing ones through linear interpola-
tion. Figure 5.2 shows the interpolated variants of the gestures from Figure 5.2.
The patterns of the interpolated gestures are now more alike. The recognition
results obtained using interpolation are shown in Table 5.4.
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(a) The interpolated variant of Figure 5.1a.
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(b) The interpolated variant of Figure 5.1b.

Figure 5.2.: Two interpolated instances of the demaximise gesture from the same user.
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Technology Recognition rate using
unprocessed data

Recognition rate using
interpolated data

CHMM 35.31% 39.58%
DHMM 43.40% 48.27%
LDCRF 92.56% 90.61%

Table 5.4.: Recognition rates based on default parameter settings using interpolated
data. The rates of Table 5.1 are shown for comparison.

Compared to the experiments using unprocessed data, both CHMMs and DHMMs
improved considerably when interpolation was used. However, with LDCRFs
the recognition rate decreased slightly.

5.2.4. Dimension reduction through Principal Component Analysis

Training a recogniser becomes increasingly more complex as the number of di-
mensions of the input vector (i.e. the variables to be measured) increases. The
input feature vector has 23 dimensions as described in Chapter 3. A compari-
son with previous research in glove-based hand gesture recognition shows that
this is on the high side. Murakami et al. [59] use a sixteen-dimensional in-
put vector to train an Artificial Neural Network for dynamic gesture recogni-
tion. Jong-Sung et al. [37] also use sixteen-dimensional input for single-handed
sign language recognition. Fewer features are also used in visual hand gesture
recognition. In order to recognise dynamic, bimanual gestures based on strokes
Shamaie et al. [74] track the x, y-velocities of both hands, resulting in a four-
dimensional input vector to recognise bimanual dynamic gestures. Just et al.
[31] applied three-dimensional position and difference features to the detection
of bimanual gestures. This resulted in a feature vector of six dimensions for a
single hand. The corresponding recognition rates lie between 70% and 99%.

One of the more commonly used techniques to reduce complexity is Principal
Component Analysis (PCA) [75, 64]. The goal of PCA is to reduce the dimensions
by showing how much information each feature from a given set of features con-
tributes to the total. In other words, the features that have the largest variance
are the most descriptive for determining differences between data sets. Fea-
tures that have little variance are removed, resulting in a reduced input feature
vector.

In the experiments reduction was performed through PCA by calculating the
percentage of each feature’s variance in respect to the total. For the purposes
of this research the threshold for removing a feature was set to 1.5% (i.e. if it
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contributes less than 1.5% to the total variance). This value was chosen because
it proved to reduce a considerable amount of dimensions during initial experi-
ments without losing too much variance. A PCA on unprocessed data shows that
the 23 dimensions are reduced to eight, which still retain 95% variance. Figure
5.3 shows a scree graph of the principal component variances. Such a plot often
shows a clear separation between the fraction of total variance where the ‘most
important’ components cease and the ‘least important’ components begin. Such a
point is clearly seen between principal components one and two. However, prin-
cipal component one only explains less than 50% of the total variance. Hence,
more components were used in the reduction. The effects of this reduction on
the recognition rate are shown in Table 5.5.
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Figure 5.3.: Scree graph of PCA on the data set with 23 dimensions. For each principal
component it is shown how much it explains the data (percentage of vari-
ability). The solid line summates the percentage of variability across the
principal component axis.

Technology Recognition rate using
unprocessed data

Recognition rate using data
with PCA applied

CHMM 35.31% 22.68%
DHMM 43.40% 32.74%
LDCRF 92.56% 84.34%

Table 5.5.: Recognition rates based on default parameter settings using data with fewer
dimensions through PCA. The rates of Table 5.1 are shown for comparison.
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All three recognition technologies did not benefit from the dimension reduction.
On the contrary, all recognition rates decreased significantly when compared to
the experiments using unprocessed data. This was unexpected because only as
little as 5% of the variance from the total data set was removed as a consequence
of the dimension reduction. A possible explanation could be that the data was
not in the same units prior to doing the PCA (the position / orientation data dif-
fers from the glove data) [53]. Better results might be obtained by combining
this method with rescale or min/max normalisation. In Section 5.2.6 on combin-
ing pre-processing methods, the results of this experiment are described.

5.2.5. Adding the position difference feature

According to previous research [31, 36], using the difference between two posi-
tions as a feature proved useful in recognising hand gestures. The aim in this
research is that this new feature adds significantly to the determination of dif-
ferences between data sets. As a consequence, a significant positive effect on
the recognition rate should be observed. The difference in the 3D position data
between each consecutive sample was calculated and added at the end of the 23
dimension feature vector. As described in the literature, the first observation
vector of each observation sequence was discarded after having added the dif-
ference feature of the first and second sample to the feature vector of the second
sample. The difference between the second and third sample was added to the
third, the difference between third and fourth to the fourth and so on. The dif-
ference between two positions was multiplied by 100 to obtain values within the
same order of magnitude as those of the 3D position.

PCA was used to find out if the new feature added important information to the
total feature vector. A comparison of the results of the PCA with those in Figure
5.3 shows that the eight dimensions that contribute the most value in both cases
were not significantly different. In other words, the position difference feature
is not of value in this recognition process. The results of the experiments shown
in Table 5.6 confirmed this conclusion. The recognition rates remained virtually
the same or decreased due to the added complexity of the extra dimensions.
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Technology Recognition rate using
unprocessed data

Recognition rate using data
with position difference

CHMM 35.31% 35.50%
DHMM 43.40% 40.11%
LDCRF 92.56% 90.02%

Table 5.6.: Recognition rates based on default parameter settings and with the extracted
position difference feature added to the feature vector. The rates of Table 5.1
are shown for comparison.

5.2.6. Combined methods

The combination of pre-processing methods may lead to a greater improvement
in recognition rates when compared to the individual methods. The previous
subsections showed that the rescale, normalisation and interpolation pre-processing
methods were effective with regard to recognition based on HMMs. The recogni-
tion rates increased considerably when compared to the results obtained using
unprocessed data. However, the new position difference feature showed no effect
and reducing the dimensions through PCA showed a decrease with regard to all
recognisers. With LDCRF only a slight increase was observed when rescaling
was applied to the data. The other methods either had no effect on the recogni-
tion rate or decreased it.

Combinations involving PCA reduction, rescale and min/max normalisation are
also of interest because of the fact that PCA might give better results when all
data is in the same unit (as explained in Section 5.2.4).

Considering these facts, combining pre-processing methods is only useful for the
HMM recognisers. Table 5.7 shows the pre-processing method combinations and
the resulting recognition rates.
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Combinations Recognition
rate CHMMs

Recognition
rate DHMMs

Recognition
rate LDCRFs

Rescale - Min/Max normalisation 42.60% 44.71% 91.00%

Rescale - PCA reduction
41.55%
(-6.84%)

42.60%
(-6.81%)

84.93%
(-6.76%)

Min/Max normalisation - PCA
reduction

41.68%
(-7.62%)

40.57%
(-7.49%)

86.30%
(-6.52%)

Min/Max normalisation -
Interpolation

52.53% 54.14% N.A.

Rescale - Interpolation 52.66% 49.90% N.A.
Rescale - Min/Max normalisation -
PCA reduction

39.25%
(-7.66%)

41.62%
(-7.56%)

86.11%
(-6.52%)

Rescale - Min/Max normalisation -
Interpolation

56.08% 54.63% N.A.

Rescale - Min/Max normalisation -
PCA reduction - Interpolation

53.78%
(-7.61%)

54.44%
(-7.58%)

N.A.

Table 5.7.: Recognition results using pre-processing method combinations. PCA reduc-
tion removed 12 dimensions. The value in brackets indicates how much in-
formation was lost in the process. N.A. indicates that the combination was
not considered useful to be tested for the recogniser in question.

Comparison of the results of the method combination listed first 5.7 to those in
tables 5.2 (rescale only) and 5.3 (min/max normalisation only), shows that there
is no improvement. The recognition rates obtained using this method combi-
nation are similar to those obtained using rescale and min/max normalisation
respectively. With regard to CHMMs this method combination performs slightly
less well (approximately 1%) when compared to the results using only rescale.
With regard to DHMMs this method combination performs slightly less well
(approximately 2%) when compared to the results using min/max normalisation
only.
The second method combination listed, PCA reduction on rescaled data ensures
that HMMs performs significantly better than PCA reduction on unprocessed
data (Table 5.5). The rate of CHMM recognition was increased by about 19%
and for DHMMs by about 10%, but no significant effect was observed with re-
gard to LDCRFs. This occurred with a minimal loss of variance (< 7%) and a
reduction of twelve dimensions.
Combining min/max normalisation with PCA reduction had with regard to CHMMs,
an equal effect on the recognition rate (19%), with regard to DHMMs a less pos-
itive effect (~8%) and with regard to LDCRFs a positive effect (~2%) compared
to the previous method combination.
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The method combination listed in row four of the table shows considerable in-
creases in the recognition rates of all but the LDCRFs recogniser.
The combination of rescale and interpolation performs significantly better than
the two separately. Wehn compared to rescale (Table 5.2) the recognition rates
were increased by approximately 9% and 6% for CHMMs and DHMMs respec-
tively. When compared to interpolation (Table 5.4) the recognition rates were
increased by about 13% and 2% for CHMMs and DHMMs respectively.
Adding PCA reduction to the rescale and min/max normalisation method combi-
nation (see sixth row of Table 5.7) had a negative effect on the recognition rates
of the HMMs. For both CHMMs and DHMMs the recognition rate decreased
by about 3%. The recognition rate of the LDCRFs was not significantly affected.
When compared to PCA reduction on rescaled data, DHMMs performed less well
by approximately 1% and CHMMs also by about 2%.
The rescale, min/max normalisation and interpolation method combination re-
sulted in considerable increases in the recognition rates for both CHMMs and
DHMMs. When compared to the rescale and min/max normalisation method
combination the recognition rate increases were about 13% (CHMMs) and 9%
(DHMMs) and when compared to the rescale and interpolation method combina-
tion approximately 3% (CHMMs) and 4% (DHMMs). For CHMMs, this method
combination also performed better by about 4% when compared to the min/max
normalisation and interpolation method combination. DHMMs performed vir-
tually the same.
For the method combination listed in the last row PCA reduction was added
to rescale, min/max normalisation and interpolation. When compared to the
previous method combination, PCA reduction reduced 12 dimensions for both
CHMMs and DHMMs, but at the cost of about 2% in recognition for CHMMs and
under one percent for DHMMs. However, when compared to the other method
combinations this method combination performed second best and has the ad-
vantage of reducing complexity.

5.3. Choosing parameters

This section describes the results of the experiments in which the parameters of
all recognisers were tuned. First the Discrete HMMs were tuned, as described
in Subsection 5.3.1, then the Continuous HMMs (Subsection 5.3.2) and lastly
the Latent-Dynamic Conditional Random Fields (Subsection 5.3.3).
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5.3.1. Discrete HMMs

Combining the rescale, min/max normalisation and interpolation pre-processing
methods gave the best recognition results with regard to DHMMs (54.63%, Ta-
ble 5.7). Because of the numerical instability described in Subsection 4.1.3
the HMM training algorithms were reimplemented and the data was also nor-
malised to the interval [0, 2]. The tuning experiments described in this subsec-
tion were run on the renormalised data set with interpolation applied.

In Subsection 4.1.1 the number of symbols was described as an additional pa-
rameter to the number of states. The results on finding the interval with the
best recognition rates are shown in Figure 5.4.
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Figure 5.4.: Recognition rates per 16 and 32 number of symbols for each 2m states where
m = 1...15.

It shows two lines which represent the recognition rates of 16 and 32 symbols.
The best recognition rates were obtained with 16 symbols. The highest being
57.99% with 16 states. Because DHMMs with 32 symbols performed signifi-
cantly worse than with 16 symbols, tests with a higher number of symbols were
not considered useful.

Through tuning in the range of 8 to 18 symbols the optimal settings for the
number of symbols and states were obtained. Figure 5.5 shows the results. The
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setting of 26 states and 8 symbols gave the best result with a recognition rate of
65.48%.
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Figure 5.5.: Recognition rates of the final tuning experiments per 8 + 2n number of sym-
bols for all 2m states where n = 0...4 and m = 1...15. Best recognition rate:
65.48% (26 states, 8 symbols).

In Subsection 4.1.2 a third parameter for tuning was described: the hidden state
architecture. Throughout the previous experiments the left-to-right architecture
was used because within a left-to-right algorithm the state number progresses
as time progresses. Intuitively, this closely resembles the hand gesture process.
More closely than with an ergodic architecture, as with this architecture it is
possible to jump back and forth from any state to any other state. Therefore,
training the DHMMs with an ergodic architecture should intuitively result in a
lower recognition rate. The DHMMs was trained and tested with this architec-
ture on the best state and symbol setting from Figure 5.5. The average recogni-
tion rate after training and testing three times was 63.58%. Only slightly lower
than with a left-to-right architecture, which is explained by the use of random
training and test sets.
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5.3.2. Continuous HMMs

For recognition with CHMMs the best combination of pre-processing methods
was: rescale, min/max normalisation and interpolation (56.08%, Table 5.7). As
with DHMMs, the HMM training algorithms were reimplemented as described
in Subsection 4.1.3 and the data was also normalised to the interval [0, 2]. The
tuning experiments described in this subsection were run on the renormalised
data set with interpolation applied.

The first tuning experiments were done to determine the most optimal parame-
ter settings for CHMMs. Unfortunately, it was not possible to run experiments
as far as we wanted. Taking the logarithms of probabilities did make the train-
ing of CHMMs numerically stable, but it also made it less efficient. Because the
duration of an experiment multiplied by about three, it was only possible to run
the experiments for 2, 4, 6 and 8 Gaussians. Figure 5.6 shows the results.
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Figure 5.6.: CHMM recognition rates using logarithms of probabilities.

The best recognition rate in these experiments was obtained using 26 states and
2 Gaussians: 70.22%.

Using these settings the effects of changing the state architecture parameter
were studied. All the results in this subsection were obtained with the left-
to-right architecture. Three experiments were then run with the ergodic state
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architecture using the parameters that gave the best recognition rate (i.e. 26
states and 2 Gaussians). The average recognition rate was 71.04%.

5.3.3. Latent-Dynamic Conditional Random Fields

With regard to LDCRFs no pre-processing method had a positive effect on the
recognition rate, with the exception of rescaling. Therefore, the tuning experi-
ments were all executed with rescaled data. The parameters of LDCRFs were
described in Section 4.2. This subsection shows the results of the experiments to
tune these parameters. When tuning one parameter, the other parameters kept
their default values as described in Section 5.1.

The first parameter that was tuned was the number of hidden states. Because
a satisfying recognition rate had already been obtained using one hidden state,
increasing the number of hidden states was not expected to have much effect.
Table 5.8 shows the results and confirms this expectation. The recognition rate
does not increase.

Number of states Recognition rate
1 93.35%
2 90.61%
3 93.15%
4 92.96%
5 91.59%

Table 5.8.: Results of the experiments on tuning the LDCRF hidden state parameter.

The second parameter that was tuned was the regularisation factor. Experi-
ments using this parameter were executed with values ranging from 10−3 to 0
and from 1 to 103, which were taken from Morency et al. [57]. The results of the
experiments are shown in Table 5.9.

Regularisation factor Recognition rate
0.001 40.70%
0.01 46.77%
0.1 86.69%
1 91.78%
10 93.35%

100 90.41%
1000 89.43%

Table 5.9.: Results of the experiments on tuning the LDCRF regularisation factor pa-
rameter.
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The recognition rate increased and reached its maximum in this table at a reg-
ularisation factor of 10. It then seemed to decrease, but a higher maximum
could possibly be obtained by running experiments with a regularization factor
between 1 and 100. However, this would require more timeconsuming tests, for
which there was no time in the current research.

The last LDCRF parameter that was studied was the window size parameter.
Table 5.10 shows the results.

Window size Recognition rate
0 93.35%
1 94.52%
2 94.32%
3 95.10%

Window size Recognition rate
4 94.91%
5 93.93%
6 93.15%

Table 5.10.: Results of the experiments on tuning the LDCRF window size parameter.

It shows a slight upward trend in the recognition rate with a maximum at a
window size of 3 and it then shows a downward trend. Therefore, taking a
window size of 3 is for the purposes of this research the most beneficial to the
recognition rate.

5.4. Quantity of available user data

To see how the quantity of available user data affects the performance, eight ex-
periments were run. Only experiments with LDCRFs were run, considering the
fact that the highest recognition rates were achieved with LDCRFs (see Section
5.3). Table 5.11 shows the recognition rates for the increasing number of users
using unprocessed data with untuned parameter settings. As the table shows,
the increasing quantity of available user data has a significant positive effect on
the performance. After six users it seems that most of the variation in gestures
has been seen in this case, because the seventh and eighth user do not add to
the recognition rate.

Number of users Recognition rate
1 85.19%
2 86.41%
3 90.03%
4 90.41%

Number of users Recognition rate
5 91.60%
6 92.56%
7 92.53%
8 91.82%

Table 5.11.: The recognition rates of LDCRFs using an increasing quantity of user data.
Rates are based on unprocessed data and using untuned parameter settings.
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5.5. User independence

The ultimate goal of this thesis is to achieve a recognition percentage that is
usable for a large group of users. Because training data is not available from all
potential users, the recogniser should generalise over unseen users. It should
satisfactorily recognise gestures independent of its user. This section shows the
results that were obtained while testing our recogniser for user independence.
Subsection 5.5.1 describes the method of testing used. Subsection 5.5.2 gives
a description of the additional data that was prepared for the tests and 5.5.3
shows the results of the tests.

5.5.1. Method

As subject for our tests the LDCRF recogniser was chosen because it performed
the best in the previous experiments. In the tests in the previous sections the
training set contained randomly selected data of all users available. The test set
contained the remaining data of all users. In the tests in this section the training
set contained all data from a particular number of users and the test set all data
of the remaining users. The difference being that the recogniser is now tested
on users not seen during the training process at all. To create a more similar
setting to that of the tests in the previous sections, the LDCRF was trained on
the six already available users. As test set data from two additional users was
segmented and labelled (see Subsection 5.5.2). To research the user independent
behaviour of our recogniser, tests were executed with test sets containing the
data of user 1 and user 2 separately. Tests were also run in which User 1 was
added to the training set and User 2 to the test set and vice versa. This way, the
effect of more training data on user independence was studied.

5.5.2. Data

Data of two additional users was cleaned and segmented for the user indepen-
dence tests. Both users are male, between 20 to 25 years old and right-handed.
User 1 has a bachelor’s degree in computer science and has some experience
with gesture interfaces through the use of touch screens and the Wii gaming
console. User 2 was doing his bachelor thesis in Art & Technology at the time of
recording. He has additional experience with gesture interfaces through multi-
touch surfaces. Table 5.12 shows the number of samples used in the tests for
both users.
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Class Close Demax. Demin. Max. Min. Point Select Zoom in Zoom out
User 1 22 13 24 21 23 274 87 6 8
User 2 26 20 24 24 24 238 129 39 14
Total 48 33 48 45 47 578 217 45 22

Table 5.12.: Number of gesture samples per class from the two additional users.

Just as in the previous sections, the data with which the recogniser was trained
and tested was rescaled to the [−1, 1] interval.

5.5.3. Results

This subsection shows the test results. The recogniser was trained using the
parameter settings which obtained the best results in Subsection 5.3.3: 1 hidden
state, regularisation factor of 10 and a window size of 3. Four tests were run
using the data sets of the additional users, the results of which are shown in
Table 5.13.

Test Recognition rate
6 users training, test with User 1 91.21%
6 users training, test with User 2 90.71%
6 users + User 1 training, test with User 2 91.64%
6 users + User 2 training, test with User 1 94.77%

Table 5.13.: Recognition rates obtained with the tests on user independence. ‘6 users’ is
taken to mean the six already available users and ‘User 1’ and ‘User 2’ are
taken to mean the two additional users from whom the data was segmented
and labelled especially for these tests.

The recognition rates of the tests listed in the first two rows are lower compared
to the 93.35% of Table 5.2. In those tests the results were obtained by training
the LDCRFs on the gesture styles of all users with independent training and test
sets. However in this section all styles but one were used for training purposes,
the one that was not formed the test set. This explains the lower recognition
rates. When you look at their confusion matrices shown in tables 5.14 and 5.15,
it becomes clear that the Point gesture instances were mainly misrecognised.
Furthermore, the Select gesture instances were also frequently misrecognised
according to Table 5.14.
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Class Close Demax. Demin. Max. Min. Point Select Zoom in Zoom out Total
1 21 0 0 0 1 0 0 0 0 22
2 1 12 0 0 0 0 0 0 0 13
3 0 0 24 0 0 0 0 0 0 24
4 0 0 0 21 0 0 0 0 0 21
5 0 0 0 0 23 0 0 0 0 23
6 0 0 0 0 0 251 10 2 11 274
7 0 0 0 0 0 13 74 0 0 87
8 0 0 0 0 0 1 0 2 3 6
9 0 0 0 0 0 0 0 0 8 8

Table 5.14.: Confusion matrix of the results obtained using 6 users as training set and
User 1 as test set. Recognition rate: 91.21%

Class Close Demax. Demin. Max. Min. Point Select Zoom in Zoom out Total
1 22 0 0 0 4 0 0 0 0 26
2 0 20 0 0 0 0 0 0 0 20
3 0 0 24 0 0 0 0 0 0 24
4 0 0 0 24 0 0 0 0 0 24
5 0 0 0 0 24 0 0 0 0 24
6 0 0 0 0 0 196 10 2 30 238
7 0 0 0 0 0 0 129 0 0 129
8 0 0 0 0 0 0 0 39 0 39
9 0 0 0 0 0 0 0 4 10 14

Table 5.15.: Confusion matrix of the results obtained using 6 users as training set and
User 2 as test set. Recognition rate: 90.71%.

The misrecognition in both tables is explained by the great difference in gesture
style between the training and test users in combination with the definition of
the gestures. The Point and Select gestures are similar to each other, because
a Select gesture starts and ends with a Point pose of the hand. Zoom in and
out are similar because they only differ in the way the thumb and index finger
move (either toward or from each other). These similarities make it difficult for
a recogniser to discriminate between either the Point or Select gestures and the
Zoom in or out gestures. In addition, Point gestures were also misrecognised
as Zoom in or out gestures. A possible explanation could be the fact that some
of the Point instances looked similar to the starting pose of the Zoom gestures.
This was however, not confirmed.

The results of the tests listed in the third and fourth row of Table 5.13 show
an increase in recognition rate compared to the results listed in the first two
rows. These increases are explained by a better recognition of the Point gesture
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as tables 5.16 and 5.17 show. However, the recognition of Zoom out gestures
decreased slightly.

Class Close Demax. Demin. Max. Min. Point Select Zoom in Zoom out Total
1 19 2 0 1 0 0 0 0 0 22
2 0 13 0 0 0 0 0 0 0 13
3 0 0 24 0 0 0 0 0 0 24
4 0 0 0 21 0 0 0 0 0 21
5 0 0 0 0 23 0 0 0 0 23
6 0 0 0 0 0 272 2 0 0 274
7 0 0 0 0 0 14 73 0 0 87
8 0 0 0 0 0 0 0 5 1 6
9 0 0 0 0 0 0 0 5 3 8

Table 5.16.: Confusion matrix of the results obtained using 7 users as training set and
User 2 as test set. Recognition rate: 91.64%

Class Close Demax. Demin. Max. Min. Point Select Zoom in Zoom out Total
1 24 0 0 0 2 0 0 0 0 26
2 0 20 0 0 0 0 0 0 0 20
3 0 0 24 0 0 0 0 0 0 24
4 0 1 0 23 0 0 0 0 0 24
5 0 0 0 0 24 0 0 0 0 24
6 0 0 0 0 0 202 5 6 25 238
7 0 0 0 0 0 1 128 0 0 129
8 0 0 0 0 0 0 0 39 0 39
9 0 0 0 0 0 0 0 5 9 14

Table 5.17.: Confusion matrix of the results obtained using 7 users as training set and
User 1 as test set. Recognition rate: 94.77%.
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Conclusion

Considering the results from Chapter 5, let us first look at the initial research
questions and answer them:

1. Can dynamic hand gestures be recognised independent of users?
a) What technologies are suited for this purpose?

i. What effect does pre-processing the data set have on the perfor-
mance?

ii. What effect does the tuning of parameters have on the perfor-
mance?

iii. How does a traditional technology compare to a novel one?

iv. What effect does the quantity of available user data have on the
performance?

b) Can a recogniser be made user independent for a large group?

The main research question (1) is answered by this thesis as a whole. It details
one approach to user-independent recognition of dynamic hand gestures using a
dataglove and a position and orientation sensor. The sensors recorded training
data in a Wizard of Oz experiment. The recorded data was manually segmented
and then used to train and test recognisers.

The effects of pre-processing on the performance varied per recogniser (1a, i).
Both rescaling and min/max normalising the data to the [−1, 1] interval (Sub-
sections 5.2.1 and 5.2.2) had a significant positive effect on the recognition rate
of CHMMs, because both pre-processing methods improved the visibility of the
patterns in the data. DHMMs and LDCRFs were not significantly affected by
these two methods. For DHMMs this could be due to the vector quantisation
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process that minimises the effects prior to the actual training. For LDCRFs it
could be that these two methods did not make the distinct differences between
gesture classes stand out compared to the other data.
Interpolating the data had a large positive effect on both HMMs (see Subsection
5.2.3). Gestures within a class were more alike in the case of HMMs when the
gesture instances were interpolated to the same length. For LDCRFs, interpo-
lation could possibly have removed discriminating features, which could explain
the small negative effect.
Dimension reduction through Principal Component Analysis (PCA) when ap-
plied to unprocessed data had a significant negative effect on all recognisers
(see Subsection 5.2.4). After applying it to standardised data it still had a neg-
ative effect, albeit a smaller one. It is possible that PCA removed important
dimensions which all recognisers used to discriminate gestures. However, a con-
siderable reduction in training time was observed.
The introduction of the position difference feature (see Subsection 5.2.5) had no
significant effect on the recognition with CHMMs and LDCRFs. This can be
explained by comparing the PCA of the data with this feature to the PCA of
the data without this feature (Figure 5.3). The comparison showed no signifi-
cant increase in the variance of the principal components. The negative effect
on DHMMs could possibly be explained by the added complexity to the vector
quantisation process due to the extra dimensions.
With regard to the pre-processing methods, it can be concluded that the method
combination of rescale, min/max normalisation and interpolation gave the best
results for both HMM technologies (CHMM: 56.08%, DHMM: 54.63%, Table 5.7).
For LDCRFs rescaling on its own gave the best results (93.35%, Table 5.2).

The effects of tuning the recogniser parameters were generally beneficial to the
recognition rate (1a, ii). The numerical overflows encountered during tuning
were solved with a numerically stable reimplementation of the HMM algorithms
(see Subsection 4.1.3). DHMMs were modelled best with 8 symbols, 26 states
and the left-to-right architecture (see Subsection 5.3.1). CHMMs were modelled
best with 2 Gaussians, 26 states and again the left-to-right architecture (see
Subsection 5.3.2). With a larger number of symbols and Gaussians, the increase
in recognition rate levelled off sooner as the number of states increased. For
both HMMs the number of states were equal. This confirmed that the internal
substructure of the gestures had been found, despite the low recognition rates.
LDCRFs performed best with 1 hidden state, a regularisation factor of 10 and
a window size of 3. The hidden state parameter had no significant effect on the
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recognition rate (see Table 5.8). The question is whether LDCRFs can find any
internal substructure within the gestures. The regularisation factor improved
the recognition rate in an asymptotic manner (see Table 5.9). The window size
parameter improved the recognition rate slightly when varied from 0 to 3 (see
Table 5.10).

The traditional CHMM and DHMM technologies do not compare to LDCRFs in
this case (1a, iii). From the beginning LDCRFs have significantly outperformed
both CHMMs and DHMMs. Having applied pre-processing methods and tuned
the recogniser parameters, LDCRFs still outperformed both, providing satis-
factory recognition rates (>=93.35%), whereas CHMMs (70.22%) and DHMMs
(66.10%) did not. Unfortunately, this could not be explained, but it is assumed
that the different nature of the models is what is causing this, as HMM is gen-
erative and LDCRF in contrast is discriminative. The advantage of the latter is
that it does not aim to fully model a data distribution, which is more complex.
While comparing the traditional technologies it was found that CHMMs outper-
formed DHMMs by about 5%, most likely because the DHMMs discretise the
continuous observations during which important information is lost.

With LDCRFs experiments were run to study the effect of the quantity of user
data on the performance (1a, iv). It can be concluded that a larger quantity of
user data can have a positive effect on the performance. However, the experi-
ments also indicate that there is probably a point where adding new data does
not outweigh the cost of training.

In almost all user-independence tests, LDCRFs achieved satisfactory recogni-
tion rates of over 91%. Although these results were achieved with test sets of
only two users, the researcher is confident that LDCRFs are suitable for user-
independent dynamic gesture recognition (1b).

In the course of this research into recognising user-independent dynamic hand
gestures many aspects relating to the technology behind the recognisers were
discovered. For example, how data pre-processing and parameter tuning af-
fect them. Knowledge was gained on how to apply certain technologies to best
achieve the goal. However, there is more to hand gesture interaction. Issues
including how users will receive such a technology and if and how they will
use it in completing their tasks have not been studied. The approach used pro-
vided over 91% recognition independent of users, which means that about 1 in
10 user gestures is not recognised correctly. The recognition of a particular ges-
ture is often connected to a certain interface action, which when applied to this
research means that an unintended interface action is executed with every mis-
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recognition. This could be disastrous when, for example, important information
is thereby accidentally deleted. To prevent such misrecognitions, variants of
likelihood thresholding are proposed by [45, 34]. Zobl et al. [100] propose using
confidence measures. In addition, human errors could also be made (i.e. making
the wrong gesture for a certain action). It would be interesting to find out if
users could easily recover from such errors and how. Another question that is
of interest is whether 91% recognition of gestures suffices for usable interface
interaction. Do users mind remaking 1 in 10 gestures, for example? Both these
issues and the technological aspect of gesture recognition are important.

This research has only studied hand gesture interaction in part. Nevertheless,
it can be concluded that the recognition of user-independent dynamic hand ges-
tures as described in this thesis is not only feasible, but it can without a doubt
also play an effective role in the successful realisation of hand gesture interac-
tion.
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This research has answered the question whether the user-independent recog-
nition of dynamic hand gestures is feasible. One of the recognition technologies
that was applied has shown satisfying results. The following paragraphs de-
scribe several ideas for future research.

Continuous Hidden Markov Models (CHMMs) and Discrete Hidden Markov Mod-
els (DHMMs) performed poorly in the tests when compared to Latent-Dynamic
Conditional Random Fields (LDCRFs). This was unexpected considering the
fact that previous research had shown higher recognition rates [98, 34]. The
training and test data were taken as a starting point in order to try and find an
explanation. Since numerical overflow was experienced even when scaling was
applied, it is possible that the observation sequences were too long. In addition,
our data was recorded at a frame rate of 70 fps. Vision-based recognition com-
monly employs a frame rate of only 30 fps. The observation sequences used in
this research are thus 2.33 times longer. Future research could resample the
data set to 30 fps and study the recognition rate with shorter observation se-
quences. Another explanation can be found in the fact that the same parameter
settings were used for each gesture class. Given that the gestures are not the
same, a different number of states, Gaussians or symbols per gesture could pos-
sibly give a better fit on the data. Future research could provide insight into
the effect varying the parameter settings depending on gesture class has on the
recognition rate. The state architecture parameter could possibly increase the
performance of the HMMs. A left-to-right hidden state architecture was used
with only two transitions. Adding transitions between more states could pos-
sibly improve the recognition rate, because the HMM can then ‘skip’ states, if
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dealing with a short gesture.
Even though benchmark tests for the DHMM algorithms used had shown that
the extension of multi-labelling improved recognition, this might not be the case
for the real-world context of this research. In future research this could be tested
using DHMM algorithms without the extension.

Before expanding this research with LDCRFs to new topics, future research
should first study why varying the hidden state parameter had no significant
effect on the recognition rate. By running the same tests with the ‘ancestral’
CRF and HCRF algorithms it would become clear whether the extensions of LD-
CRF add to the recognition of gestures. Furthermore more tests could be done
with regard to user independence. By employing cross validation tests on the
current data set the claims on user independence could be reinforced.
More gesture data was recorded than was used in the end. This data could possi-
bly still be used in training the LDCRFs for unseen variation among the gesture
classes. To find out if this data contributes to the variation, future research
could establish a method for determining whether a new data set contains un-
seen variation. This method could provide a measure for making the decision to
add data from an unseen user for later offline retraining.
During this research the HMM algorithms used were adapted for parallel pro-
cessing, which greatly reduced the training time on multicore commodity PCs.
Future research could study the potential of parallel processing in general. In
addition, the HCRF library could also be adapted for parallel processing. Ad-
vances have also been made in the use of the chips of graphic cards (GPU) for
intensive parallel calculations1. GPUs are optimised for multiplication opera-
tions for fast 3D graphics rendering. That optimisation could potentially be of
use in this research, because the training algorithms also rely heavily on multi-
plication operations. By using the GPU the CPU could be offloaded to do other
tasks.
One of the directions in which to expand this research with LDCRFs is the devel-
opment of a real-time recognition system. In the long run such a system could
be used to design a hand gesture interface. One of the most important topics
that would need to be covered for such a system is the automatic segmenta-
tion of gestures from a continuous data stream. LDCRFs are also suited to this
task, because they model both the dynamics within and between gesture classes
[57]. They classify each observation in a sequence of observations, which gives a
starting point for discriminating the beginning and end of a gesture in a stream.

1See http://gp-you.org. Last visited on October 5, 2010.
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As the above paragraphs show, there are still many avenues to explore. However,
with this thesis, a firm foundation for future research further exploring these
avenues has been laid.
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Appendix A
Flock Of Birds Quick Manual

The aim of this manual is to briefly explain the necessary configurations to read
position and orientation data from the Ascension Flock of Birds system1 (FOB)
in the Java programming language. It was written as an appendix to a master
thesis 2 Figure A.1 shows the FOB system this manual applies to.

Figure A.1.: The Ascension Flock of Birds system used.

All these components (except for the USB-to-serial perhaps) should be available
to you. You might also have purchased additional Fast Bird Buses (FBBs) and

1See http://www.ascension-tech.com. Last visited on January 6, 2010.
2Thesis ‘User-independent recognition of dynamic hand gestures using a dataglove’ by M. Ganze-

boom, October, 2010.
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FOB sensors which you would like to use. This manual starts with explaining
how to configure the hardware in multiple contexts and continues with giving
instructions on how to read from the FOB system through the Java driver. That
driver should have been bundled with this manual. Throughout this manual,
references are made to the official FOB installation and operation guide revision
C (hereafter I&O guide), which is supplied to you with this manual or can be
downloaded from Ascension Tech’s FTP servers3.

A.1. Configuring the FOB hardware

Assuming that multiple FBBs and FOB sensors are at your disposal, the FOB
system can be configured in two ways depending on the context the FOB system
is going to be used. If your context asks for the use of multiple FOB sensors,
the system needs to be configured in ‘FOB mode’. If only a single FOB sensor is
required this manual recommends ‘Standalone mode’. This manual was written
as part of a master thesis on hand gesture recognition in which the FOB system
was used in standalone mode. For that reason, the main focus is on configuring
for that mode. Instructions are derived for FOB mode, but they are not based on
practical experiences.

Standalone mode
Collect all the components shown in Figure A.1. Take the FBB and connect the
Standard Range Transmitter (SRT) to the front port. Connect the FOB sensor,
RS-232 serial cable and the Electronics Unit (EU) to the right ports on the back
of the FBB.

FOB mode
Connect the FOB sensors and EUs to all FBBs as described under standalone
mode. Interconnect the FBBs with the FBB inter-unit bus cables (Figure 2, I&O
guide, pg. 4) and connect the SRT to the master FBB (the first FBB).

Connect the first (or only) FBB to a PC. Do not yet plug in the power cord of
the EU to the wall socket. First, take a look at the eight dipswitches on the
backpanel of the FBB (switches under the label ‘DIP SWITCH’). To be in normal
operating mode (and not in test mode), dipswitch 8 must be in the up position
on all FBBs to be used (I&O guide 2.1.7, pg. 10). We assume that the ‘Normal
Addressing Mode’ for giving each Bird unit (i.e. SRT or FOB sensors) a unique

3See ftp://ftp.ascension-tech.com/MANUALS/Flock_of_Birds_Manual-RevC.pdf. Last down-
loaded on October 14, 2010.
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address is sufficient for your context (supports up to one SRT and 13 FOB sen-
sors). For other addressing modes see Subsection 2.1.7 of the I&O guide, page
11.
To use the maximum FOB baud rate (115200 baud), dipswitches 1, 2 and 3
should be in the down position. Note that all FBBs in the setup must use the
same baud rate. For setting the FOB baud rate to other settings see Figure 4
on page 12 of the I&O guide. Dipswitches 4, 5, 6 and 7 are used to define the
address of a Bird unit connected to the FBB.

Standalone mode
In this mode one FBB, FOB sensor, SRT and corresponding cables are to be used.
Dipswitches 4, 5, 6 and 7 must all be in the up position, which gives the FOB
sensor the address 0.

FOB mode
Multiple FBBs and FOB sensors are to be used in this mode with a single SRT,
assuming that the FBBs are interconnected as described above. Configure dip-
switches 4, 5, 6 and 7 on each FBB so that each connected FOB sensor has a
different address. Which address is assigned to a FBB is not important, as long
as the assigned addresses are continuous (i.e. no address is skipped). The ad-
dresses must also be set to 1 or higher (else single mode operation is configured).
For example, to set the address of a FOB sensor to 1 flip the dipswitches 4, 5, 6
and 7 to up, up, up, down. The second sensor then has its address set to 2 by
flipping the same switches to up, up, down, up. The third is set to 3 by up, up,
down, down and so on.

On the front of every FBB there is a switch which can be set to either ‘FLY’ or
‘STBY’. This switch is used to let the FBB perform its power up functions. It is
not an on/off power switch. To cut the power to the FBBs unplug the power cord.
Flip the switch to ‘STBY’ if not in that position already. Then plug the power
cord of all EUs into sockets.

Standalone mode
Flip the switch of the single FBB to the ‘FLY’ position. The (red) light indicator
next to the switch will blink on and off 5 times and then stays on. At that
time, the SRT and sensor will start operating and the FBB is ready to accept
commands from the host computer. When the switch is flipped to ‘STBY’ the
light indicator turns off, the SRT and sensors are shut off and the FBB wil not
respond to any host computer commands.

FOB mode

92



Appendix A | Flock Of Birds Quick Manual

Flip the switches of all FBBs one-by-one to the ‘FLY’ position (the order does
not seem to be important) and check that the (red) light indicator next to the
switch will blink on and off 5 times and then goes off. The host computer must
then send the master FBB an AUTO-CONFIG command (explained later). On
receipt of this command the light indicators on all FBBs will turn on and stay on
continuously without blinking if operating correctly. If indicators do blink, refer
to Section 11.0 of the I&O guide for the error codes.

For more details on the above power up process refer to Subsection 5.2.1 of the
I&O guide. Assuming that the hardware is powered up properly, the configura-
tion of the hardware is now complete. The next section explains how to use the
driver.

A.2. Accessing the FOB

Accessing the Flock Of Birds (FOB) system through the Java programming lan-
guage is done with the driver supplied with this manual. The driver consists of
a single Java class in one file called ‘FOBDriver.java’. With this driver the Bird
units (i.e. FOB sensors and SRT) can be controlled through the Fast Bird Bus
(FBB) from the host computer. The commonly used control commands described
in the I&O guide are implemented. This section explains how a connection to
the FOB system is established from the host computer, how the FOB software is
properly configured and how position and orientation data can be read from the
FOB. We assume that the reader is experienced in programming in Java and
therefore omit irrelevant details about the Java syntax and setup. From this
point, the FOB hardware is assumed to be correctly configured in one of the two
configurations as described in Section A.1.

Establishing a connection with the FOB hardware

Communicating with the FOB system is done via the RS-232 serial protocol. To
be able to access the serial ports from Java the RXTX library is needed. Down-
load the binaries from the RXTX website 4. At time of writing, release 2.1-7r2
is the most recent stable version and was used in writing this manual. Put the
binary files for your specific operating system on the java library path (tip: java
property java.library.path) and the ‘RXTXcomm.jar’ on the class path (tip: en-
vironment variable ‘CLASSPATH’). Establishing a connection between the FOB
hardware and the host computer from Java is done in the following way:

4See http://rxtx.qbang.org/wiki/index.php/Download. Last visited on October 14, 2010.
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1. Integrate the FOBDriver.java file into your Java project.

2. Instantiate a new FOBDriver object via the default (empty) constructor.

3. Determine the serial port of the host computer to which the FOB system is
connected.

4. At the time you want to establish a connection, call the
FOBDriver.open(String port) method with the serial port number
from step 3 as parameter.

5. Pause the Java thread that establishes the connection for about 2000 mil-
liseconds. This is necessary to apparently give the FOB system enough
time to initialise properly.

6. See the API comments of the open method to interpret the status value
returned.

After the connection is successfully established, the FOB system needs to be con-
figured to return the form of position and orientation information you require.
The 3D position information is read by the FOBDriver in an x, y, z coordinate and
the orientation in either axis angles, a matrix or a quaternion (see Section 9.0 of
I&O guide). Currently, the FOBDriver supports to set the output to the combi-
nations POSITION/ANGLES and POSITION/QUATERNION. However, meth-
ods for the other modes are easily implemented. Depending on the FOB system
being setup in standalone or FOB mode the following instructions apply:

Standalone mode

1. To let the FOB system output position and orientation information in the
format of POSITION/QUATERNION, call the
FOBDriver.setSingleFlockToPosQuat()method after having success-
fully established a connection. Use the
FOBDriver.setSingleFlockToPosAngle() to set the output to POSI-
TION/ANGLE format.

2. Depending on the placement of the SRT in your total system setup, differ-
ent hemispheres of the magnetic field the SRT outputs can be enabled. In
our example the SRT is placed on the floor so only the upper hemisphere is
required. To configure that call
FOBDriver.setHemisphereForSingleFlock(int hem)method with the
parameter FOBDriver.UPPER_HEMISPHERE. (Parameters defining other
hemispheres are similarly defined in FOBDriver.java).

3. To expand the range of the FOB sensors from the default 36 inch to 72
inch, the FOBDriver.expandRangeCommand(int nrOfBirds) method
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should be called with the number of FOB sensors in use as the parameter.

4. To request the current position and orientation in the format just config-
ured, call the method
FOBDriver.getPointInStandardGraphicMode(Tuple3f pos, Quat4f orient).
The returned position and orientation are already converted from the As-
cension to the standard computer graphics axes alignment. (see API com-
ments and I&O guide, pg. 152)

FOB mode

1. Call the method FOBDriver.sendMasterFBBAutoConfigCommand(int nrOfBirds)

to send the master FBB the AUTO-CONFIG command. Indicator lights on
the front panel of all FBBs turns on and stays on continuously.

2. To let the FOB system output position and orientation information in the
format of POSITION/QUATERNION, call the
FOBDriver.setMultiFlock(int nrOfBirds)method after having suc-
cessfully established a connection and use the total number of birds in use
as the parameter. No method has been implemented to let the FOB system
output other formats.

3. Depending on the placement of the SRT in your total system setup, differ-
ent hemispheres of the magnetic field the SRT outputs can be enabled. In
our example the SRT is placed on the floor so only the upper hemisphere is
required. To configure that call
FOBDriver.setHemisphereForMultiFlock(int hem, int nrOfBirds)

method with the parameter FOBDriver.UPPER_HEMISPHERE and the to-
tal number of birds in use as the second parameter.

4. To expand the range of the FOB sensors from the default 36 inch to 72
inch, the FOBDriver.expandRangeCommand(int nrOfBirds) method
should be called with the number of FOB sensors in use as the parameter.

5. Send the master FBB the AUTO-CONFIG command, like in step 1.

6. To request the current position and orientation of a specific FOB sensor,
call the method
FOBDriver.getPoint(int birdNr, Tuple3f pos, Quat4f orient).
The returned position and orientation are not yet converted to the standard
computer graphics axes alignment (see API comments and I&O guide, pg.
152).
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7. Use the
FOBDriver.convertToStandardGraphicMode(Vector3f ascVector)

and FOBDriver.convertToStandardGraphicMode(Quat4f ascQuat)

methods to convert them into the standard computer graphics axes align-
ment when required.

That finishes this section on accessing the FOB system with the necessary com-
mands. For more command reference see Section 9.0 and possible errors (e.g.
continuous blinking of FBB indicator lights) in Section 11.0 of the I&O guide.
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After having greeted and instructed the participant of the data recording exper-
iment, the dataglove and Flock of Birds sensor were put on. The participant
practiced a few minutes, to get a feeling for the cursor control. When the partic-
ipant was ready, the researcher started the recording process and followed the
protocol below.

1. Press the ’Y’ key once on the keyboard to enable cursor control to the par-
ticipant

2. While controlling the CoolIris application and there are less than fifteen
instances of every gesture, do:

a) If gesture Select is observed, press the ‘W’ key once to execute a left
mouse button click

b) Else if the start of gesture Drag is observed, press the ‘W’ key once to
execute a left mouse button press

c) Else if the end of gesture Drag is observed, press the ‘W’ key once to
execute a left mouse button release

d) Else if the Zoom in gesture is observed, press the ‘E’ key repeatedly
until the participant stops the gesture or pauses moving thumb and
index finger

e) Else if the Zoom out gesture is observed, press the ‘D’ key repeatedly
until the participant stops the gesture or pauses moving thumb and
index finger

f) Else if the Maximise gesture is observed, press the ‘O’ key once
g) Else if the Demaximise gesture is observed, press the ‘D’ key once
h) Else if the participant makes an undefined gesture or one that devi-
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ates from its description, say out loud that the gesture is not recog-
nised

3. Press the ’Y’ key once on the keyboard to disable cursor control to the par-
ticipant

4. Stop the recording and change onscreen application to the Movie Memory
application

5. Ask the participant to centre the Flock of Birds sensor above the magnetic
field generator

6. Start the recording and press the ’Y’ key once on the keyboard to enable
cursor control to the participant

7. While controlling the Movie Memory application and there are less than
fifteen instances of every gesture, do:

a) If gesture Select is observed, press the ‘W’ key once to execute a left
mouse button click

b) Else if the Minimise gesture is observed, press the ‘P’ key once
c) Else if the Deminimise gesture is observed, press the ‘L’ key once
d) Else if the Close gesture is observed, press the ‘S’ key once
e) Else if the participant makes an undefined gesture or one that devi-

ates from its description, say out loud that the gesture is not recog-
nised

8. Press the ’Y’ key once on the keyboard to disable cursor control to the par-
ticipant

9. Stop the recording
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Characteristics of experiment
participants

To train a hand gesture recogniser an experiment was held to collect data. The
experiment is explained in Chapter 3. Data was recorded from 22 participants.
The target group was students and young academic researchers. The table be-
low shows their characteristics and previous experience with gesture interfaces.
The rows marked bold and italic are the participants from which the data was
used in training and testing the recognisers in Sections 5.1 to 5.4. The data of
participants eleven and fifteen was used in Section 5.5 for testing the user inde-
pendence.

# Age Gender Nation. Occupation Left-handed Experience
1 20-30 M Dutch Ph.D.

student

No Gesturing with Wii and

multi-touch phones

2 20-30 M Dutch MSc.

student

No Gesturing with

multi-touch screens

3 20-30 M Dutch MSc.
student

No Gesturing with
multi-touch phones

4 20-30 M Dutch MSc.
student

No Gesturing with Wii
and multi-touch
phones

5 20-30 M Iranian Bachelor

student

No None
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# Age Gender Nation. Occupation Left-handed Experience
6 10-20 F Dutch Bachelor

student

No Gesturing with

multi-touch phones

7 20-30 M Dutch MSc.

student

No Gesturing with

multi-touch phones,

multi-touch table

8 20-30 M Dutch MSc.

student

Yes Gesturing with

multi-touch table and

screens

9 20-30 M Dutch Postdoc
researcher

No None

10 10-20 M Dutch BSc. student No None

11 20-30 M GermanBachelor
student

No Mouse gestures,
gesturing with
multi-touch screens

12 20-30 M Dutch MSc.

student

No Gesturing with

multi-touch phones and

screens

13 20-30 M Dutch MSc.

student

No Gesturing with

multi-touch phones,

touch screens and

mid-air vision-based

gesture recognition

14 20-30 M Dutch MSc.

student

Yes Gesturing with

multi-touch phones

15 20-30 M Dutch MSc.
student

No None

16 20-30 M German BA student No None

17 30-40 M Dutch Ph. D.

student

Yes Gesturing with

multi-touch phones

18 30-40 M Dutch Ph. D.
student

No Gesturing with Wii,
multi-touch screens
and mid-air,
bimanual
laser-pointer gesture
recognition
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# Age Gender Nation. Occupation Left-handed Experience
19 20-30 M Dutch MSc.

student
No Gesturing with

multi-touch phones
and screens

20 20-30 M Dutch Ph. D.

student

No Gesturing with Wii and

3D Mouse

21 30-40 M Dutch Postdoc
researcher

No Gesturing with Wii
and bimanual
laser-pointer gesture
recognition

22 20-30 M Dutch MSc.

student

No Gesturing with

multi-touch screens and

mid-air vision-based

gesture recognition
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