
Action Semantics applied to
Model Driven Engineering

Gijs Stuurman

Master Thesis

Computer Science, Track Software Engineering

26 November 2010

Supervisors:
Dr. I. Kurtev
Dr. C. Bockisch
Dr. Selim Ciraçi

Faculty of Electrical Engineering,
Mathematics and Computer Science
University of Twente, Enschede, The Netherlands

Abstract

Model Driven Engineering (MDE) is a software engineering approach using a
high level of abstraction to model software systems. These models drive the
development activities. The power of such models is that they are technology
independent and are often expressed in Domain Specific Languages (DSL). The
practice of MDE is to create a modeling language or metamodel in which to
express models.
A language requires a formal definition of its semantics. For modeling languages
there are various approaches to specify the static semantics. However, there
is no standard approach to specify the dynamic semantics, which specifies the
execution behavior of models.
Action semantics (AS) is a framework for the formal description of program-
ming languages. Peter Mosses developed action semantics as a new formalism
that would improve the shortcomings of denotational and structural operational
semantics. AS aims to be both precise and pragmatic. A semantic framework
needs to be precise by being unambiguous, complete and consistent. Its prag-
matic aim is to aid the language creator by using a human readable, English-like
syntax and including first class constructs to model common computational con-
cepts such as control flow, bindings and storage.
In this work, action semantics is adapted from its origin in programming lan-
guages to modeling languages. Whereas programming languages use grammars
and abstract syntax trees, modeling languages use metamodels and models,
which may contain cycles. This difference is the biggest challenge that has been
resolved.
This work provides action semantics as a semantic framework for modeling
languages. This is done by modeling action semantics for MDE as a modeling
language itself with the action semantics metamodel. Tool support consists of
a compiler which compiles a model to an action tree that defines the semantics
of a model. A simulator is also provided that can run action trees, either with
a GUI or on the command line. This simulator allows the semantic description
of a modeling language to be used for prototyping. Action semantics for MDE
has been successfully used to specify the execution behavior of two modeling
languages.

i

Acknowledgements

I would like to thank Ivan Kurtev for being my supervisor. Ivan provided guid-
ance and feedback throughout this work, whilst illustrating the larger field of
academic research. The friendly cooperation has been invaluable to realize this
work.
I would also like to thank the other committee members; Christoph Bockisch
and Selim Ciraçi for reviewing my thesis.

Gijs Stuurman, November 2010, Enschede

iii

Table of Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Research Questions . 3
1.4 Contributions . 3
1.5 Outline . 4

2 Basic Concepts 5
2.1 Introduction . 5
2.2 Model Driven Engineering . 5
2.3 Semantics in general . 8
2.4 Semantics for MDE . 9
2.5 Semantic formalisms . 10
2.6 Conclusion . 11

3 Action Semantics 13
3.1 Introduction . 13
3.2 Origin . 13
3.3 Example . 14
3.4 Actions, Data and Yielders . 16
3.5 State . 17
3.6 Combinators . 18
3.7 Facets . 20
3.8 Theory of Action Semantics . 20
3.9 Evolution of Action Semantics 21
3.10 Conclusion . 21

4 Action Semantics for MDE 23
4.1 Introduction . 23
4.2 Modeling Action Semantics . 23
4.3 Action Semantics metamodel . 24
4.4 Tools and artifacts . 28

4.4.1 Implementation of the Compiler 29
4.4.2 Implementation of the Simulator 31

4.5 Changes to Action Semantics . 32
4.6 Conclusion . 32

5 Challenges in applying Action Semantics to MDE 35
5.1 Introduction . 35
5.2 Denotations over models . 35
5.3 Cycles . 39

5.3.1 Unfolding and unfold . 40
5.3.2 Problems with cycles in models 41
5.3.3 Compiler algorithm . 42

v

TABLE OF CONTENTS

5.3.4 Extension to the unfolding and unfold actions 44
5.4 Multiplicities . 45
5.5 Inheritance . 49
5.6 Conclusion . 51

6 Case Studies 53
6.1 Introduction . 53
6.2 Activity Diagram . 53
6.3 Production Line Language . 60

6.3.1 Possible improvements . 64
6.4 Conclusion . 66

7 Conclusion 67
7.1 Introduction . 67
7.2 Summary . 67
7.3 Evaluation . 68
7.4 Comparison to Related Work . 70
7.5 Discussion . 72
7.6 Future Work . 75

References 77

Appendix A: Action Semantic Descriptions 81

Appendix B: Action Trees 99

Appendix C: CD 103

vi

1
Introduction

1.1 Background

Instead of using a programming language to solve a problem, one can create
its own modeling language to solve problems in a domain. Model Driven Engi-
neering (MDE) is a software engineering approach to create modeling languages
using a high level of abstraction to model domains [Ken02]. The practice of MDE
is to create a modeling language or a metamodel in which to express models.
The power of such models is that they are technology independent and are of-
ten expressed in Domain Specific Languages (DSL) [Deu00]. The high level of
abstraction in MDE is high in relation to the distance to the implementation of
software systems or programming languages. Using this high level of abstraction
the models can be expressed in terms of the domain, making it more expressive
and better suited for use by domain experts.
There are multiple frameworks to define the abstract syntax or structure of a
modeling language. An open problem is the definition of semantics for modeling
languages. Semantics formally define the meaning of a language and programs,
model or sentences expressed in that language. The semantics of a language
allows reasoning, comparison and analysis. This holds for any language from
mathematical notation, natural language, such as English, to programming lan-
guages. These uses require a semantic formalism to be precise, while usability
of a semantic framework requires it to be pragmatic.
Static semantics define the well-formedness, typing and structure of a sentence,
program or model. For programming and modeling languages the dynamic se-
mantics define the computational behavior of a program or model. Dynamic
semantics define the run-time behavior during the execution of a program or
model. As the purpose of most modeling languages is to ultimately create exe-
cutable software, a formalism to define their dynamic semantics is required.
Different semantic formalisms have already been explored for adaptation for
MDE. Most of these formalism originated in the field of programming languages.
These include structural operational semantics for MDE [Wol09], graph trans-
formations [Lar06] and others [Rom07,Che05]. We propose to explore action
semantics [Mos92] for defining the semantics of modeling languages.
Action semantics was created as a semantic formalism to define the dynamic
semantics of programming languages by Peter Mosses [Mos92]. Mosses aimed
to produce a semantic framework that was as precise as existing frameworks,
but was also more pragmatic by including constructs for ordinary computational
concepts such as control flow, bindings and storage. By using a human readable,

1

CHAPTER 1. INTRODUCTION

English like syntax instead of a mathematical notation action semantic is also
more pragmatic by being easier to read, understand and define. Action semantic
specifications are also aimed to be composable, which fits the possibility of
composing modeling languages.

1.2 Problem Statement

MDE is the practice of creating modeling languages with metamodels with which
one can express models. Because MDE is a software engineering approach most
of these models become software artifacts that can be executed. The behavior of
a model is the execution as defined by its dynamic semantics. Thus an approach
is needed to specify the dynamic semantics of models in MDE.
Current approaches such as using informal specifications in natural language
as found in design documents are insufficient for these purposes as these can
be ambiguous and imprecise. Another way is to formally specify semantics by
mapping the semantics onto a well understood domain. Existing approaches to
specify semantics map onto mathematical concepts, such as the lambda calcu-
lus, logic or graph transformations. Most of these formal approaches were first
applied to programming languages.
Formal specification approaches might be sound but suffer from the large con-
ceptual gap between the domain of the model and the mathematical constructs.
This makes the semantics difficult to understand, specify and to use, which is
particularly caused by the difficulty of grasping and defining the large mathe-
matical equations that are required.
Therefore a way to specify the semantics for modeling languages is needed that
is formal and usable. The required formal qualities are to be unambiguous,
complete and consistent to support reasoning, code generation, verification and
validation. The usability property is defined as human readable, modular, com-
posable and matching the level of abstraction in MDE to aid the designer of a
modeling language.
Action semantics [Mos96] occupies the middle of the gap between a domain
and mathematical constructs. The specifications are in a readable and English
like syntax, modular and composable to ease the construction and usage of the
semantics. The level of abstraction is higher than mathematical approaches by
introducing common computational concepts, such as storage and abstractions.
The aim of action semantics is to produce formal semantic specifications that
reflect ordinary computational concepts and are easy to read, understand and
compose. Thus a formalization framework that is both precise and pragmatic.
Action semantics originates from the field of specifying semantics for program-
ming languages. It has been used to specify the semantic definitions for Pascal,
ADA, Java and ML [Wat09]. Because of its origin with programming languages
action semantics is designed to work with grammars and abstract syntax trees.
In MDE metamodels and models serve the same purpose but are different by
being object-oriented and being graphs rather than trees.
The aim of this thesis is to explore if action semantics can be applied to MDE
to provide formal, understandable, modular and usable semantic specification
of models.

2

1.3. RESEARCH QUESTIONS

1.3 Research Questions

The research objective of this thesis is to adapt action semantics to specify
dynamic semantics for modeling languages. The following research questions
will guide the adaptation of action semantics from the field of programming
languages to MDE.

• RQ 1: Can action semantics be applied to modeling languages in model
driven engineering, having its origin from programming languages?

– RQ 1.1: Model driven engineering languages represent models as
graphs, programming languages use abstract syntax trees. What adap-
tations are needed for using graph structures?

– RQ 1.2: Programming languages use grammars whereas model driven
engineering uses metamodels. How can action semantics be used with
inheritance, attributes, references and multiplicities as used in meta-
models?

• RQ 2: Action semantics is a good fit for programming languages because
the entities map more closely to computational constructs than the math-
ematical approaches. Which level of abstraction of computational con-
structs in action semantics is needed for model driven engineering?

• RQ 3: What tool support is needed to allow action semantics to be used
in model driven engineering?

– RQ 3.1: How can the behavior or dynamic semantics of a model be
shown by using action semantics and a tool?

Questions related to the composability of semantic specifications for different
metamodels and the composition of metamodels are not explored. We do not
explore if the human readability of AS and its other pragmatic qualities bring
benefits to developers.

1.4 Contributions

This work provides the following contributions:

• Adaptation of Action Semantics from programming languages to MDE

In this work, action semantics is adapted from its origin in programming
languages to modeling languages. Whereas programming languages use
grammars and abstract syntax trees, modeling languages use metamod-
els and models, which may contain cycles. This difference is the biggest
challenge that has been resolved.

• Action semantics metamodel

Action semantics can be used to specify the dynamic semantics of modeling
languages. For this purpose action semantics itself is modeled as a model-
ing language. Chapter 4 introduces the action semantics metamodel and
the tool chain for using action semantics for modeling languages. Chapter
5 addresses the design of the metamodel by describing the challenges that
have been met.

3

CHAPTER 1. INTRODUCTION

• Tool support: Compiler

Given the action semantic specification of a modeling language and a
model conforming to that language, the compiler compiles the semantic
specification of the execution behavior of the model. This specification
is in the form of an action tree, which conforms to the action seman-
tics metamodel. Section 4.4 and 5.3 discusses the internal working of the
compiler.

• Tool support: Simulator

The simulator provides an implementation of action semantics that can be
used to execute action trees. The simulator provides both a GUI that sup-
ports stepping through an action tree and a command line interface. With
the simulator the semantic specifications of models can be prototyped.

1.5 Outline

This thesis has a linear structure. Readers familiar with the basic concepts in
chapter 2 or action semantics in chapter 3 may skip those chapters.

Chapter 2 introduces the basic concepts. First model driven engineering (MDE)
is introduced. Then semantics in general, semantics for MDE and semantic
formalisms are discussed.
Chapter 3 explains action semantics. After the introduction of the origin and
motivation for action semantics, the formalism is introduced with a simple ex-
ample. Then the constructs from action semantics are explained. Finally the
theory and evolution of action semantics are discussed.
Chapter 4 lays out the approach for using action semantics for MDE. Action
semantics itself is modeled as a modeling language with the action semantics
metamodel. Then the tools and artifacts that are used when defining the se-
mantics of a modeling language are described.
Chapter 5 documents how the challenges that have been encountered have been
met. Most of these challenges have to do with the differences between the use of
grammars and abstract syntax trees in programming languages, while modeling
languages use metamodels and models, which are graphs. The biggest challenge
of possible cycles in graphs that model looping behavior is addressed in section
5.3.
Chapter 6 shows two case studies of using action semantics to specify the dy-
namic semantics of modeling languages with action semantics. The first case
study is a modeling language with possible cycles in its model and illustrates
the challenge from section 5.3. The second case study is a domain specific model-
ing language with semantics on a higher level of abstraction than seen in earlier
examples.
Chapter 7 concludes this work with a comparison to related work, an evaluation
and a discussion. Finally, future work contains possible continuations upon this
work.

4

2
Basic Concepts

2.1 Introduction

This thesis introduces the use of action semantics to specify the execution seman-
tics for modeling languages built using model driven engineering. First model
driven engineering is explained. Then semantics in general and its application
in the field of model driven engineering are introduced. Semantic formalizations
other than action semantics close out this chapter. Action semantics is explained
in depth in the next chapter.

2.2 Model Driven Engineering

Model driven engineering (MDE) provides a higher level of abstraction for soft-
ware engineering by using models as abstractions. In MDE, models are the
unification concept in the same way that objects are in object-oriented program-
ming. Model driven architecture is an approach to software system specification
that separates the specification of functionality from the specification of the im-
plementation of that functionality on a specific technology platform [OMG03].
MDE extends model driven architecture (MDA) in which models are the princi-
ple artifacts, with the notion of the software development process [Ken02]. MDA
practices and standards are defined by the Object Management Group (OMG),
a consortium consisting of researchers and industry. OMG promotes the use of
modeling and models as the main activity and artifacts of software development.
The use of models directs the course of understanding, design, construction, de-
ployment, maintenance, interoperability and modification [Mil03].
With models being the most important concept in MDE a proper definition of a
model is needed; A model is an abstraction of a part of reality and is expressed in
a modeling language. A model provides knowledge for a certain purpose [Kur05].
This definition conveys that models abstract from reality and help understand-
ing, communication and and analysis. This is a common practice in various
engineering disciplines of separating a specification from its implementation.
The level of abstraction in model driven engineering purposefully creates a gap
between the domain and the implementation technology. This gap allows for
technology independence and portability of software systems. This has been a
goal of OMG, particularly after the quick introduction of various technologies
that use the web.
The practice of MDE, therefore, is to create modeling languages that can express

5

CHAPTER 2. BASIC CONCEPTS

models. This modeling language is defined as a metamodel: A meta-model is a
model of the conceptual foundation of a language, consisting of a set of basic
concepts, and a set of rules determining the set of possible models denotable in
that language [Fal98].
A model expressed in a modeling language has a “conformsTo” relation between
the model and its meta-model. This “conformsTo” relation is similar to the “in-
stanceOf” relation in object-oriented programming and the way that a sentence
in English is part of the English language. A metamodel defines the abstract
syntax of a language.
Domain Specific Languages (DSL) are often used in combination with model
driven engineering. Domain specific languages are languages tailored to a spe-
cific application domain. They offer substantial gains in expressiveness and ease
of use compared with general-purpose programming languages in their domain
of application [Mer05]. Models can be built with domain specific languages as
they allow for more expressiveness and better usability by using a specific syntax.
By transforming models expressed in DSLs to an intermediate representation
conforming to a metamodel, the technology and implementation independence
remains. This is in contrast to embedded DSLs that commit to an implementa-
tion or programming language.
Metamodels itself need to be expressed in some modeling language as well.
We use the standard metamodel called Ecore [Eco]. Ecore is similar to the
MetaObject Facility (MOF) provided by OMG and is also similar to UML. The
Ecore standard is part of a larger technology set called the Eclipse Modeling
Framework (EMF), that includes support for code generation and creation and
editing and serialization of models. As is common with other languages such as
BNF the top level language is expressed in itself, to avoid infinite recursion.
Following [OMG03] the relation between the different models is as follows:

Figure 2.2.1: Model levels

6

2.2. MODEL DRIVEN ENGINEERING

Of course there is also a relationship between the model level M0 and M1, as the
models are always designed for a certain purpose and model a part of reality.
The relationship between reality and a model is sometimes call “representedBy”
[Bez05]. This relationship is omitted as it is of a much less formal nature than
the relationships between the model artifacts. The inverse of the conforms to
relation is called the ”modelOf” relation.
With the reality and Ecore metametamodel being fixed, most of the design
activities in MDE concern the creation of a metamodel in which models can be
expressed.
Most of the semantic formalizations that will be explained or used in this thesis
have their origin with programming languages. Therefore a comparison between
programming languages and MDE is presented here.

Figure 2.2.2: MDE and programming languages

Fig 2.2.2 depicts the different positions of MDE and programming languages
with regard to the gap between a problem in a domain and the solution in
the form of the implementation of a system. The higher level of abstraction in
MDE creates a larger gap towards the implementation. This is the technology
independence that MDE aims for. The implementation gap between MDE and
an implementation is bridged by transforming models into other model or code
which finally results in an implementation.
Another difference between MDE and programming languages is the representa-
tion of an instance of a modeling or programming language. For a programming
language this is a program, in MDE this is a model. A program is represented
by an abstract syntax tree. This tree is the result of parsing a program written
in a concrete syntax. This concrete syntax is often textual, but might as well
be visual. An instance in a modeling language is a model, which is a graph. A
representation of a model when using Ecore is an XML file. This means that
there is a more clearer distinction between the concrete syntax and an abstract
representation in MDE than there is in programming languages.

Programming languages Model Driven Engineering
Focus General purpose Domain specific
Defined by Grammar Metamodel
Instances Abstract syntax tree Model (graph)

Table 2.2.1: Comparison between MDE and programming languages

Table 2.2.3 sums up the differences between programming languages and MDE.
Particularly the representation of instances of a language with graphs rather
than trees will be a challenge for adaptation of action semantics for MDE, as
will be shown in later chapters.

7

CHAPTER 2. BASIC CONCEPTS

2.3 Semantics in general

Semantics formalize the meaning of things. Knowing the meaning of something
is required to be able to reason about, compare and analyze it. The most com-
mon way to communicate the meaning of something is to use natural language
such as English. But natural languages can be quite ambiguous and imprecise. A
more formal way to communicate meaning is through mathematical constructs.
But even mathematical notation requires a specification for its semantics. For in-
stance the expression 3 * 2 + 5 is only correctly interpreted when the precedence
rules for multiplication and addition are correctly applied. Thus the semantics
for mathematics gives the unambiguous interpretation of (3 * 2) + 5 = 6 + 5
= 11. When the semantics is not formally defined someone needs to make his
own interpretation which may lead to different interpretations.
Therefore there is a need to be able to specify semantics unambiguously, com-
pletely and consistently. To be unambiguous is to be understood in only one
way. This means that a semantic specification should be interpreted the same
by everybody. Semantic specifications are complete when the meaning for all
constructs or compositions are expressed or can be derived from the specifica-
tions. A complete semantic specification may however include parts that are
explicitly not specified. For instance the order of evaluation. Finally, a semantic
specification should be consistent, such that parts of the specification will not
lead to contradictions.
These qualities have to be met by both the language or domain with which
semantics are expressed as well as for the specifications that are made with
this language. Of course the former should support and guide the latter. When
semantic specifications are unambiguous, complete and consistent, they can be
used with mathematical techniques such as validation, proofs and simulation
[Mos92].

The semantics of programming languages and modeling languages serve these
purposes:

• Reasoning and documentation: the semantics specification documents the
design and meaning of models which is needed to be able to communicate
between users of a modeling language

• Implementation: a designer needs the semantics in order to build an im-
plementation

• Code generation: tools that generate code for an implementation need the
semantics to do so

• Verification and validation: the semantics are needed to be able to check
whether models conform to certain specifications

For programming and modeling languages the semantics can be divided into
static and dynamic semantics:

• Static semantics: Semantics dealing with the structure of a construct,
model or program such as its well-formedness and typing

• Dynamic semantics: Semantics describing the behavior or run-time effect
of a construct, model or program

8

2.4. SEMANTICS FOR MDE

This thesis uses action semantics as a semantic framework to specify the dynamic
semantics of modeling languages. Therefore, unless specifically noted otherwise,
we mean dynamic semantics when referring to semantics.

2.4 Semantics for MDE

This section explains semantics in the context of MDE. For modeling languages
the semantics serve various different purposes, as they do for programming lan-
guages. The same distinction between static and dynamic semantics from pro-
gramming languages can also be made. Finally, the design process of modeling
languages and the artifacts in MDE create requirements for a semantic frame-
work to be useful with MDE.
Semantics for MDE serves the same purposes as for programming languages
that were explained in the previous section. These purposes are reasoning and
documentation, implementation, code generation and verification and valida-
tion. Another usage of a semantic specification is to create a prototype from
it. This is possible for programming languages as well, but fits particularly well
with the philosophy of MDE to create implementation technology independent
metamodels. Building a prototype from a semantic specification is related to
using it for the implementation and code generation purposes. It can also be a
useful aid for the reasoning and documentation and verification and validation.
With prototyping a working system can be created for a model conforming to a
metamodel before the transformations into a specific technology platform need
to be defined.
The distinction between static and dynamic semantics from programming lan-
guages is also applicable to MDE:

• Static semantics: Well-formedness and typing of metamodels and models
and the conforms to relation between a model and its metamodel

• Dynamic semantics: Semantics describing the execution behavior or run-
time effect of a model

Static semantics specify the allowed structures in a language, such as well-
formedness and proper typing of models. For natural and programming lan-
guages the static semantics are expressed in the grammar of the language. In
MDE metamodels are used instead of grammars. Which models are allowed is
defined by the structure of their metamodel. Where this object-oriented struc-
ture of a metamodel is insufficient in expressing constraints on models, anno-
tations can be used. A common language used for expressing constraints is the
Object Constraint Language [OCL03]. For instance a constraint concerning two
attributes can not be expressed in the object-oriented structure and requires a
separate annotation. This is the same as with languages where constraints that
can not be expressed in the grammar are described in an additional notation.
The dynamic semantics for a modeling language is the computational meaning
of model. This is the execution behavior or run-time effect of a model. This
computational meaning specifies the behavior of a model during an execution
and the end result if any. Through the “conformsTo” relation both the static and
dynamic semantics for models follow from their metamodel. This is the same in
natural and programming languages where the semantics for a language specify
the meaning of a sentence, program or model expressed in that language.

9

CHAPTER 2. BASIC CONCEPTS

Creating modeling languages is the primary activity in MDE. For each new
language that is created the semantics for the language need to be defined. How
to express the static semantics for this language follows from the choice of using
an MDE approach and the Ecore metamodel. However, currently there is no
standard approach within MDE to express the dynamic semantics.
For programming languages the semantics are specified for grammars and can
be applied to programs in that language. For modeling languages the semantics
need to be defined for a metamodel and this specification defines the semantics
for a model conforming to that metamodel. A semantic framework for MDE
should therefore work nicely with the constructs used in metamodels.
Model driven engineering is a software engineering approach that shares the
characteristics of other engineering approaches of being an iterative process.
Therefore the creation of models and software is usually an evolution. A semantic
framework for specifying the semantics of modeling languages should fit nicely
with this process, where the semantic definition of a language can follow the
evolution of the language. Also in MDE and modeling in general, abstraction
is a major part of the design effort as well as striving for composability. An
approach to specifying semantics should also share these characteristics.

2.5 Semantic formalisms

The meaning of a language is defined by mapping the structure of a language
onto a semantic domain [Har04]. The structure of a language is the abstract
syntax following the grammar of a programming languages or the metamodel of
a modeling language. A semantic domain for the purpose of expressing compu-
tational behavior can be anything from a description in natural language to a
more precise mathematical domain. Possible mathematical domains range from
logic reasoning to computational descriptions using the lambda calculus. The
following are popular ways for providing this mapping and domain: Axiomatic
Semantics, Denotational Semantics, Structural Operational Semantics, Graph
Transformations and Action Semantics.

• Axiomatic Semantics
Axiomatic semantics is based on Hoare triplets and logic [Hoa69]. Given a
part of the language and a matching precondition, the post condition will
hold. Composing these axioms will create a deduction tree for the whole
semantic specification of program or model.

• Denotational Semantics
Denotational semantics uses semantic equations over parts of a language
to map onto mathematical objects [Sto77]. The semantic functions are ap-
plied on the root of an abstract syntax tree that conforms to the grammar
of the language. As semantic functions may apply semantic functions to
sub parts this recursive application over an entire abstract syntax tree
gives one specification for a program. The mathematical objects are func-
tions from the state before into a new state that capture the effects of
statements in a language. The whole specification for a program is func-
tion from the input state to its output. Various mathematical constructs
have been used as a domain in denotational semantics. Among these was
the lambda calculus. Later monads were used to represent state and for

10

2.6. CONCLUSION

composability of semantic specifications. See for instance the aptly named
”Semantic Lego” thesis about modular denotational semantics. [Esp95].

• Structural Operational Semantics
Structural operational semantics is also a compositional formalization
based on labeled transition systems [Plo81]. Compositional means that
the semantics for a structure is defined by the composition of the parts of
that structure. In the transition system the nodes represent the run-time
state of a program. Rules based on the structure of a language are used to
construct proof trees. Each of such proofs is a transition to a new state.
In [Wol09] Structural Operational Semantics is applied to MDE.

• Graph Transformations
Graph transformations [Bar02, Hec06] also define a labeled transition sys-
tem. The nodes are graph representations of a state of a program. The
transitions are graph transformation rules that match and alter the graph.

• Action Semantics
Action semantics [Mos92] uses the mapping constructs from denotational
semantics to map onto a domain that has first class entities for common
computational constructs such as control flows, bindings and storage. Ac-
tion semantics is explained in depth in chapter 3.

2.6 Conclusion

This chapter explained the concepts of model driven engineering and semantics.
The usages of semantics for MDE and semantic formalizations were introduced.
The rest of this thesis will show action semantics as a framework to specify the
semantics for modeling languages created with MDE. The basic concept not
discussed so far is action semantics itself, which will be introduced in the next
chapter.

11

3
Action Semantics

3.1 Introduction

This chapter introduces the final basic concept, which is the semantic formal-
ism action semantics. Action semantics and its origin are introduced in section
3.2. To aid the understanding of action semantics for unfamiliar readers, this
chapter provides a simple calculator language as a running example. This ex-
ample is explained in section 3.3 that also introduces the concepts which action
semantics shares with denotational semantics. The main concepts of action se-
mantics of actions, data and yielders are introduced in section 3.4. Section 3.5
explains the modeling of state through computations. Section 3.6 introduces
action combinators that allow new actions to be defined by combining actions.
Action semantics uses an organization into facets explained in section 3.7. This
chapter closes with the theoretical background and evolution of action semantics
in section 3.8 and 3.9.

3.2 Origin

Action semantics (AS) is a framework for the formal description of programming
languages [Mos92]. Peter Mosses started developing action semantics in 1992
as a new formalism that would improve the shortcomings of denotational and
structural operational semantics. Mosses found making formal specification with
denotational semantics difficult to create accurately, to modify and to extend,
despite its elegant theory. Basic computational concepts such as control flows,
bindings and storage get obscured by the mathematical notation in denotational
semantics [Slo95]. The aim of action semantics is to produce formal semantic
specifications that reflect ordinary computational concepts and are easy to read,
understand and compose. Thus a formalization framework that is both precise
and pragmatic.
Action semantics has first class entities for control flows, bindings, modification
of state and parameter passing. By providing a notation and a way to compose
these concepts, these are not obscured by an encoding into a mathematical
notation such as the lambda calculus. Mosses also created a new notation to
use with these concepts. In the earliest versions of action semantics these were
combinator symbols such as ⊕ and ⊗. As this notation suffered from the same
readability issues as the lambda calculus, Mosses opted for a human readable,
English like syntax. This syntax for action semantics is called “action notation”.

13

CHAPTER 3. ACTION SEMANTICS

Action semantics follows the approach of denotational semantics where syntactic
entities on the left hand side of the semantic equation are mapped onto its
denotation on the right hand side. These semantic equations or functions make
the denotational specifications composable. However the semantic functions do
not map onto a mathematical domain as with denotation semantics but onto
actions. Actions are written in action notation. This action notation has the
first class entities actions, data and yielders to describe the concepts of control
flow, bindings and state. Denotational semantics allows for arguments in the
semantic equation that are passed into the definition on the right hand side. In
action semantics there is no such argument as an action always is a function
from an input state to an output state. Semantic equations in Action Semantic
Definitions consist of a name, a part to which the equation is applicable and
the action notation on the right hand side. For readability Mosses introduced a
notation that mixes prefix, infix notation of actions together with the usage of a
vertical bar to group actions. Nested action form a tree, which in this notation
has its root node on the left and uses vertical bars to indicate branching.

3.3 Example

This chapter has a running example to illustrate various parts of action seman-
tics. The example is a simple language that models calculations on a calculator.
This language includes simple arithmetic and a way to store and recall a number
from memory. This memory function is usually present on a simple calculator
with the M+ button for storing a number by adding it to the current number
in memory and the Mrec button to recall the number. The example is based on
the calculator example from [Slo95].

Calculation ::= Expr+

Expr ::= Expr "+" Expr

| Expr "M+"

| "Mrec"

| Number

Number ::= "0" .. "9"

Figure 3.3.1: Grammar for the cal-
culator language

Figure 3.3.2: Abstract syntax tree of
a simple addition

Fig 3.3.2 shows an abstract syntax tree representation of a calculation conform-
ing to the grammar of the calculator language shown in Fig 3.3.1. The concrete
syntax or transformation to arrive at the abstract syntax tree by pressing but-
tons on a calculator is not shown here.
To get a semantic specification of the simple addition example the semantics for
the calculator language will be defined using action semantics. This specification
is a collection of semantic equations similar to an approach using denotational
semantics. The application of these semantics equations to the abstract syntax
tree produces the semantic specification of the execution of the simple addition.

14

3.3. EXAMPLE

01: evaluate Plus [lhs:Expr rhs:Expr] =
02: | | evaluate $lhs
03: | and
04: | | evaluate $rhs
05: then
06: | give (sum (given integer-sort 1, given integer-sort 2))

07: evaluate Number [n:Int] =
08: give yield $n

Figure 3.3.3: Semantic equations for the calculator language

Fig 3.3.3 shows the two semantic equations corresponding to the Expr + Expr
and Number parts of the grammar. On the left hand side of the equation is its
name and the part of the grammar the equation can be applied to. On the right
hand side is the action notation that describes the semantics for that part. This
right hand side includes other semantic equations applied to sub parts. This
can be seen in line 02 and 04 in the semantic equation for Plus that applies
semantic equations to its left hand side and right hand side. This composability
that originated in denotational semantics allows the expression for Plus to be
expressed without knowing exactly what the sub parts of the expression are.
This matches very closely to the structure of the rules in the grammar and the
general design principle of abstraction. The notation with the dollar sign is used
to refer to parts on the left hand side of a semantic equation that are sub parts
of an abstract syntax tree. The notation introduced by Mosses’ uses capital let-
ters for these references.

The application of the semantic functions to the abstract syntax tree of the
addition example produces the action tree that is the semantics for execution
of the expression 3 + 4:

01: | | give (yield 3)
02: | and
03: | | give (yield 4)
04: then
05: | give (sum (given integer-sort 1, given integer-sort 2))

Figure 3.3.4: Action tree representing the behavior of the simple addition

The end result of running the action tree from Fig 3.3.4 will produce the number
7.

This example showed various parts from action semantics: defining semantic
equations that match the structure of the definition of a grammar, composability
of semantic equations and the composability of actions. Hopefully this example
was also intuitively understood as per Mosses’ readability claims.
The example illustrated how action semantics can be applied to define the se-
mantics of a language. The following section will explain the concepts from
action notation and the action semantics model for computation in more detail.

15

CHAPTER 3. ACTION SEMANTICS

3.4 Actions, Data and Yielders

An action represents computational behavior by information processing. Values
passed to an action are used to generate new values that reflect changes in the
state of the computation. Actions are steps in a computation that may complete
(finish successfully), fail or diverge (not finish at all). Actions are functions but
they are restricted in their allowed input and results to allow composition.
The information flowing through and between actions and stored in memory is
data. This data is classified into algebraic sorts in action semantics. In action
semantics there are sorts for the usual data such as integers, truth values, lists,
sets and maps and new sorts can be defined. Sorts can be defined in action
semantics by algebraic specifications that specify mathematical objects and their
operations. Data specific to action semantics such as memory cells, bindings
and abstractions are also defined as sorts. The data in action semantics can be
qualified according to their lifetime and propagation between actions:

• Transient : intermediate results from actions

• Scoped : bindings of tokens to data

• Stable: data stored in cells in memory

Yielders are contained within actions and produce data. Their evaluation might
use the information passed into action of any of the above mentioned types.
The evaluation of a yielder cannot change any information as state mutation
can only be done by actions.

To aid the understanding of the previous concepts the action and yielders that
are used in the example from the calculator language are explained in more
detail. In the action tree in Fig 3.3.4 the following actions and yielders were
used:

• Actions

– give Y : Gives the data yielded by evaluating the yielder Y

– A1 and A2: Combines actions A1 and A2 by passing the incoming
data to both and by merging the result from both actions. This is
parallel composition of actions.

– A1 then A2: Composes actions A1 and A2 by passing the incoming
data to A1 and the result thereof to A2, which result is the result for
the whole action. This is sequential composition of actions.

• Yielders

– yield Datum: Puts Datum into the transient data

– given Sort N : Retrieves the N th datum from the transients and
checks if the data belongs to Sort

– sum Y1 Y2: Puts the result of the addition of Y1 to Y2 into the
transient data

16

3.5. STATE

3.5 State

The state at run time of an action consists of transients, bindings and storage
that hold data. Actions can modify this state and yielders can produce data
from this state. The transients are a list of data that hold intermediate results
to be passed between actions. This is information with the nature of use it or
loose it. Any information that a subsequent action may need can be put into the
transients by previous actions. The bindings consist of bindings from tokens to
data. These bindings are identifiers for data or memory locations in the storage.
The storage models the computational concept of memory and more specifically
a heap. In action semantics the memory is abstracted into cells that have an
index and can store any data sort.

The following semantic equations specify the semantics for the M+ and Mrec

button from the calculator language.

01: meaning Calculation [exprs:Expr*] =
02: | | allocate a cell
03: | then
04: | | | store (yield 0) in (given cell-sort 1)
05: | | and
06: | | | bind "memory" to (given cell-sort 1)
07: before
08: | evaluate $exprs

09: evaluate M+ [expr:Expr] =
10: | | evaluate $expr
11: | and
12: | | give (bound cell-sort to "memory")
13: then
14: | | store (sum (given integer-sort 1)

(stored integer-sort in (given cell-sort 2)))
in (given cell-sort 1)

15: | and
16: | | give (given integer 1)

17: evaluate Mrec [] =
18: give (stored integer-sort in (bound cell-sort to "memory"))

Figure 3.5.1: Semantic equations for the memory construct of the calculator
language

The calculator has one memory location into which a number can be stored
and from which a number can be retrieved. The default number in this memory
location is 0, this behavior is expressed in the semantic equation for Calculation
in line 04 in Fig 3.5.1. In action semantics there is a requirement for a seman-
tic function called “meaning” that can be applied to the root of a grammar.
Here this root is Calculation and defines the initialization of the memory that is
required in every semantic specification of a program in the calculator language.

17

CHAPTER 3. ACTION SEMANTICS

The actions and yielders related to storage used in these semantic equations are:

• Actions

– allocate a cell : This action both allocates a new cell in the storage
and puts this cell in the transients as well. This is one of the few
actions in action semantics that touches two types of data at the
same time.

– store Y1 in Y2: Stores the data produced by the yielder Y1 in the cell
yielded by Y2

– bind T to Y : Creates a binding from token T to the data produced
by the yielder Y

• Yielders

– stored S in Y : Gives the data stored in the cell yielded by Y when
the data is of sort S

– bound S to T : Gives the data bound to the token T when it is of sort
S

Most of the attention so far has been on actions that either touch the tran-
sients, bindings or storage. The following section introduces the combinators
that combine these actions.

3.6 Combinators

In action semantics every action has a precise goal and usually only touches
either the transients, bindings or storage part of the state. This allows the action
to be intuitively understood. To build more complex actions and behavior these
small buildings blocks can be combined with combinator actions. Combinators
combine two actions by directing the flow of information into its sub actions
and by merging the results.
The semantic equation for a Calculation in the calculator language initializes a
storage cell that will be the memory in the calculator. Part of this equation Fig
3.5.1 is repeated here. The then and and combinators are used here to combine
different actions that all have a specific purpose.

01: | allocate a cell
02: then
03: | | store (yield 0) in (given cell-sort 1)
04: | and
05: | | bind "memory" to (given cell-sort 1)

Figure 3.6.1: Actions and combinators from the calculator language

As said the state in action semantics consists of transients, bindings and storage.
The following figure shows how the flow of this state is handled by combinators
throughout the execution of actions in Fig 3.6.1:

18

3.6. COMBINATORS

Figure 3.6.2: Flow of state as defined by the then and and combinator from Fig
3.6.1

The then combinator passes the output from one action into the next one.
The and combinator combines two actions be giving them the same input and
merging their output. After the allocate a cell action the transients consists of
“cell(0)”. Both the subsequent store and bind action require this data in the
transients to store a number in the cell and to bind a token to it respectively.
The and combinator does just that passing both the same input and combining
their output. Also for both the store and bind action it holds that “cell(1)”
is no longer in the transients after the action. This is exactly the definition of
transients and their “use it or loose it” nature.
Combinators also have particular behavior when an action does not complete
by producing a new state with transients, bindings and storage but fails instead.
For both the then and and combinator when any of the sub actions fails, the
whole combinator action will fail and have Failure as its result. For instance a
given Sort N yielder can fail when there is no N th data or when it is not of sort
Sort.

Fine grained actions together with combinators allow for a host of different
computational constructs to be expressed in action semantics. The use of com-

19

CHAPTER 3. ACTION SEMANTICS

binators also works very well with the approach from denotational semantics
where the semantics of a program is constructed from the building blocks of
semantic equations. Combinators also allow sub actions to only concern them-
selves with the information from the state that they require, the flow of the other
information is handled by combinators to supply a subsequent action with the
information it may need.

3.7 Facets

Mosses categorizes actions according to the type of information they affect.
Each of these categories is called a facet. A key notion is that a combinator
behaves neutrally with the information from others facets. Therefore the flow of
information from another facet is implicit in a combinator. This allows for the
introduction of new facets that do not require an upgrade to existing facets or
specifications using those facets. This is Mosses’ approach to solve the problem
from other semantic formalizations where the introduction of new information
impacted every description by requiring a rewrite to encode the new construct.
The following facets are defined in action semantics:

• Basic facet: actions that concern control flow such as choice, interleaving
and sequencing

• Functional facet: actions and yielders that produce and consume transient
data

• Declarative facet: actions and yielders that produce and consume bindings

• Imperative facet: actions and yielders that allocate, inspect and update
the storage

• Reflective facet: actions and yielders that represent and enact abstractions
of actions

• Communicative facet: actions and yielders that model agent based con-
currency

There is also a hybrid facet for actions that use information from more than
one facet at once. There are surprisingly few actions in the hybrid facet. This
supports Mosses’ modularity claim as most actions belong to a facet that affects
only of type of one type of information [Wan97].

3.8 Theory of Action Semantics

Mosses started the development of action semantics by improving on the prag-
matics of semantic formalizations. However a formalization is not usable without
a well-founded theory. Action semantics is a denotational semantics that map
onto the action notation that Mosses developed. This action notation has been
formalized by using “Unified Algebras” [Mos89] and by mapping action notation
onto “Structural Operational Semantics” [Plo81, Mos92] and later “Modular
Structural Operational Semantics” [Mos99].

20

3.9. EVOLUTION OF ACTION SEMANTICS

Unified algebra is used to define the data notation that are in action semantics
such as integers, text, lists and maps. Also any data sort a user may want to
define need to be defined using unified algebra. Unified algebra is also used to
define action notation. For instance, for combinators the algebraic properties
such as being associative, total or partial and/or commutative are defined. As
well as the action that is the unit for a combinator action. Using these techniques
Mosses defined a kernel of action semantics into which the whole action notation
can be reduced. This kernel has been formalized using (modular) structural
operational semantics. Mosses lauds his unified algebra as a nice fit for the
formalization of action semantics. But in [Wat09] this choice for an unknown
formalism is cited as a reason against adoption of action semantics. Theories for
testing equivalence and bisimularity are also given by Mosses [Mos92].
In [Wan97] action semantics and “Modular Monadic Semantics” are synthesized
into one formalism. Modular monadic semantics is used to formalize the seman-
tics of action semantics. This approach also allows new facets to be formalized
by building upon the semantic specification of the facets from the kernel of
action semantics. Mosses had a similar aim by redefining the semantics with
modular structural operational semantics [Wat09].

3.9 Evolution of Action Semantics

Through the years action semantics has been used to specify the semantics
for various programming languages. There are action semantic descriptions for
(parts of) Ada [Mos92], PASCAL, Java and ML done by Mosses together with
Watt and Brown. The “Architecture and Language-Neutral Distribution For-
mat” [Tof93] has been developed in industry and uses action semantics to for-
malize semantics. Also tools have been developed for compiler generation based
on action semantic descriptions. These are the Actress [Bro92], ANI [Mou93],
Albaco [Mou99], Cantor [Pal92] and OASIS [Orb94] projects. In [Doh93] ac-
tion semantic descriptions are used to create prototypes. The usage of action
semantics prompted Mosses to review the action notation which led to AN-2
[Las00]. This version introduces some new actions while combining the concepts
of actions and yielders and completely redesigns the communicative facet. AN-2
is smaller than the original action semantics, however it has not been used as
much.

3.10 Conclusion

This chapter introduced the semantic framework of action semantics. The se-
mantic equations from denotational semantics and the entities specific to action
semantics of actions, data and yielders have been introduced. Using a simple
calculator language as an example action semantics has been shown to be both
precise and pragmatic.
Through the years, action semantics itself has grown and changed by incorpo-
rating feedback from usages of action semantics. In this work action semantics
and the actions, data and yielders as defined and organized in [Wan97] will
be used. The approach of action semantics to store and enact action with the
mechanism of abstractions will be introduced and used in section 5.3. Section

21

CHAPTER 3. ACTION SEMANTICS

5.3 also introduces the looping construct from action semantics.
This chapter also concludes the introduction of all the basic concepts that form
the basis of using action semantics with MDE. With both MDE and action
semantics being explored the two can now be combined.

22

4
Action Semantics for MDE

4.1 Introduction

The aim of this thesis is to adapt action semantics for model driven engineering.
To ease the use of action semantics within model driven engineering, action
semantics itself will also be modeled with a MDE approach. This chapter will
first describe the design of action semantics for MDE with MDE in section 4.2.
Section 4.3 introduces the action semantics metamodel. The tool chain and its
tools and artifacts involved with using action semantics for MDE is laid out in
section 4.3. Finally some actions in the metamodel that differ from actions as
defined by Mosses are explained in section 4.4. The challenges overcome during
the adaptation of action semantics from the domain of programming to modeling
languages will be addressed in chapter 5.

4.2 Modeling Action Semantics

Action semantics is used to specify the run-time semantics of metamodels. Such
semantic descriptions specify the behavior of the execution of models. These
semantics descriptions can be used for documentation, reasoning, simulation,
verification and validation and code generation. As noted earlier, the usability
for designers of semantics require a formalism that can be read and written
by the designers and the users of a model as well as a formalism with formal
properties to support usage by tools. Modeling action semantics with MDE will
also allow the artifacts of action semantics to be used with the Ecore tool chains.
These artifacts are both the action semantics descriptions with the semantic
equations that define the semantics of a metamodel and the action tree that
specifies the execution semantics of a model.

The action semantics metamodel is the metamodel for action semantic descrip-
tions and the compiled action trees. Because of this action semantics metamodel,
the action semantic descriptions and action trees are implementation and tech-
nology independent artifacts. This thesis provides a compiler and simulator,
which uses standard MDE practices. This allows integration with other MDE
tools and transformations into code or models.

23

CHAPTER 4. ACTION SEMANTICS FOR MDE

Figure 4.2.1: Action Semantics modeled using Model Driven Engineering

• Ecore: The metamodel from EMF, both the domain and action semantics
are modeled with this metametamodel

• Domain modeling language

– Domain Metamodel : Defines the modeling language to express models
in the domain

– Domain Model : A particular model in the domain

• Action Semantics

– Action Semantics Metamodel : Defines the modeling language to ex-
press action semantics and semantic equations using action semantics

– Action Semantic Description: The specification of the semantics of
the domain metamodel consisting of semantic equations that use ac-
tion semantics

– Action Tree: A tree consisting solely of actions that defines the se-
mantics for a particular model

Fig 4.2.1 gives an overview of how the design of action semantics for MDE
mirrors the design of modeling languages with MDE. The conceptual relation
defines semantics is between an action semantic description and a metamodel
for domain. Through the conforms to relation between the domain metamodel
and domain models the domain metamodel and Action Semantic Descriptions
together define the semantics for all domain models. Again, we have chosen
Ecore as metametamodel for use with the EMF tool chain.

4.3 Action Semantics metamodel

The action semantics metamodel serves as a metamodel for both the action se-
mantic descriptions and action trees. This is because both the action semantic
descriptions and action trees require a metamodel for the action, yielder and

24

4.3. ACTION SEMANTICS METAMODEL

data constructs from action semantics. The right hand side of a semantic equa-
tion consists of actions and an action trees consists solely of actions. To express
semantic equations a couple more constructs are needed to model equations and
denotations on the left hand side of an equation.
Therefore, the action semantics metamodel consists of two parts: a part with
action notation consisting of actions, yielders, combinators and sorts; and a part
to define semantic equations. Fig 4.3.1 shows the action semantics metamodel
and these two parts.

25

CHAPTER 4. ACTION SEMANTICS FOR MDE

Figure 4.3.1: The Action Semantics for MDE Metamodel with both an Action
Semantic Description and Action Tree model conforming to the metamodel

26

4.3. ACTION SEMANTICS METAMODEL

Fig 4.3.1 shows parts from the action semantics metamodel and part of an action
semantic description and an action tree. The important parts of the metamodel
are highlighted here:
Action semantics metamodel

• ActionSemanticDefinition: a collection of semantic equations

– SemanticEquation:

∗ name: name of the equation, common names are “evaluate” for
expressions, “execute” for statements and the top level equation
must be called “meaning”

∗ denotation: class from the domain metamodel the equation is
applicable to.

∗ action: actions on the right hand side of the equation

– Denotation: the name of a class or a type of collection

∗ FieldDenotation: denotations of attributes or properties of a class
that can be referred to on the right hand side of an equation

– Action and tokens used on the right hand side of a semantic equa-
tions:

∗ Denotate: semantic function call that will return an action, is
modeled as an action to allow it to be composed with other
actions.

∗ ReferenceToken: Occurences of a ReferenceToken are replaced
with the value of the FieldDenotation that it refers to. See for
example $value in Fig 4.3.1

– ActionTree: A tree of actions that models execution behavior with
action semantics

– All the other construct model the constructs from action semantics
as defined by Mosses:

∗ Action
· give, complete, fail, bind, etc..
· Combinator : combines two actions by directing the flow of

information into the sub actions and by merging the results
and, then, before, or, otherwise, etc..

∗ Yielder
yield, given, etc..

∗ Sorts
cellsort, integersort, etc..

The two usages for the action semantics metamodel are to model semantic equa-
tions and action trees. Therefore the action semantics metamodel consists of a
part for semantic equations and actions. The Denotate action and ReferenceTo-
ken that are used on the right hand side of a semantic equation is where these
two parts meet and overlap.
On the right hand side of a semantic equation the action notation is mixed with
references to the denotation that refers to the domain model. See for example
the $value token in the semantic equation in Fig 4.3.1. To facilitate this notation

27

CHAPTER 4. ACTION SEMANTICS FOR MDE

such ReferenceTokens are part of action notation in the metamodel. This allows
references to the left hand side on the right hand side of the equation where they
are mixed or nested within other actions. Because of the way ReferenceTokens
are modeled in the action semantics metamodel they can also appear in action
trees. However conceptually such an appearance would make no sense and it
is not allowed, but not enforced by the metamodel. Perhaps a better approach
would have been to create a metamodel consisting solely of action notation and
a metamodel for denotations that uses the action notation metamodel. This
conceptual separation is not enforced as both concepts are in the same action
semantics metamodel for practical reasons. Working with one metamodel is
easier than working with two metamodels and their composition. Also, as will
be explained in section 4.4, the action trees are compiled by a compiler and not
hand written, which prevents ReferenceTokens to appear in action trees.
The following section explains how the models that conform to the action se-
mantics metamodel are constructed and used. It also explains the tools that
are provided to support these usages. Design decisions and challenges that were
handled during the construction of the action semantic metamodel and the
adaptation from programming languages to MDE are addressed in chapter 5.

4.4 Tools and artifacts

The action semantics metamodel forms the basis of the modeling language that
allows the semantics for metamodels to be defined with action semantics. By
defining semantic equations for a domain metamodel the semantic specifications
for the model in that domain can be constructed. The tools and artifacts that
are in this work flow are described here:

Figure 4.4.1: Tool chain and artifacts

With the artifacts and tools from Fig 4.4.1 the purpose is to allow users of

28

4.4. TOOLS AND ARTIFACTS

the domain metamodel and modeling language to construct domain models
and to get the semantics for this model in the form of an action tree. Other
usages that do not require the tools include using the semantic specification as
documentation. The purpose and users of the artifacts and tools from Fig 4.4.1
are as follows:

• Artifacts (Ecore files)

– Domain metamodel : Metamodel that defines a modeling language;
created by the designer of this modeling language

– Domain model : A particular model expressed in the domain modeling
language; to be created by a user of the modeling language

– Action semantics metamodel : The metamodel for action semantics
for MDE; provided

– Action semantic descriptions: A collection of semantic equations that
specifies the semantics of the domain modeling language; created by
the designer of the modeling language

– Action Tree: A semantic description in the form of a action tree that
defines the semantics of the execution of a particular domain model,
generated by the compiler

• Tools

– Compiler : Generates an action tree; the compiler is provided

– Simulator : Simulates an action tree, thereby showing the execution
semantics of a domain model; the simulator is provided

All the artifacts are Ecore files. These are XMI representations of Ecore models
in XML files. Most of these have the “.ecore” file extension, but this is not
required. Both the compiler and simulator are tools in the form of jar files,
which are provided with this thesis.

4.4.1 Implementation of the Compiler

The compiler applies the semantic equations defined in an action semantic de-
scription to an input model conforming to the domain metamodel. The algo-
rithm that the compiler follows is the same approach as in denotational seman-
tics. First the semantic equation with the name “meaning” is applied to the root
of the domain model. This requires that every metamodel has a root class and
thus every model a root object. It is always possible to introduce such a root
class, therefore this is not a restriction on which metamodels can be used with
action semantics for MDE. Any application of semantic equations on the right
hand side of this equation make this approach construct an action tree. This
action tree is written into an Ecore file. The action tree specifies the execution
semantics of the domain model. The adaptation of the approach from action
semantics (and similar to denotational semantics) for programming languages
to action semantics for MDE is further elaborated in chapter 5. The most im-
portant adjustment to the algorithm in the compiler is the handling of possible
cycles in the graph representation of model, as explained in section 5.3.

29

CHAPTER 4. ACTION SEMANTICS FOR MDE

The compiler is implemented in Clojure [Clj]. The Eclipse EMF libraries [Eco]
are used to work with Ecore files. The inner workings of the compiler is as
follows:
Input :

• Domain metamodel and domain model

• Action semantics metamodel and action semantic descriptions, containing
the semantic equations

Both the metamodels are required as input, because the ecore libraries require
them to construct a run-time representation of the models. All four files are
XML files containing serialized Ecore representations.

• Step 1 : The semantic equations from the action semantic descriptions are
loaded and transformed into a mapping. This mapping consists of a custom
representation of the name and type on the left hand side of a semantic
equation to the ecore representation of the right hand side.

• Step 2 : The domain model is loaded and the reference to the root object
in the model is found. This is a run-time representation of the ecore file.

• Step 3 : A denotator is constructed. The denotator is a function that given
the name of a semantic function and an object from a model, will try to
find the applicable semantic equation and apply it. The result of such an
application is an action tree.

• Step 4 : The denotator is applied given the name of the semantic function
“meaning” and the root object in the domain model.

• Step 5 : When an applicable semantic equation is found for an object the
following steps are taken:

– Step 5.1 : Any references on the right hand side of the semantic equa-
tion are resolved by looking up the reference in the object. This
resolves ReferenceTokens, see for instance the $value example in Fig
4.3.1.

– Step 5.2 : Any appearance of an application of a semantic equations
on the right hand side invokes the denotator recursively. This step
includes the algorithm to recognize and handle cycles in the model
(see section 5.3).

– Step 5.3 : The result of applying the denotator to an object is an
action tree in the form of a run-time representation of Ecore objects,
conforming to the action semantics metamodel.

Ouput : The run-time representation of the action tree is serialized into an
.ecore file. This is file has the same name as the domain model input file, with
“-tree_gen.actionsemantics4mde” appended. This file is the semantic speci-
fication for the input model.

30

4.4. TOOLS AND ARTIFACTS

> java -jar compiler.jar
AS4MDE.ecore CalculatorLang.actionsemantics4mde
CalculatorLang.ecore model.calculationlang

Wrote Action Tree to:
model.calculatorlang-tree_gen.actionsemantics4mde

Figure 4.4.2: Example execution of the compiler

4.4.2 Implementation of the Simulator

The simulator can visualize the execution of an action tree. The GUI version will
show each step in the execution of an action tree by showing the input for each
action and the outcome. Another simulator is the command line tool that will
not show the intermediate steps but only the result of executing the entire ac-
tion tree. See Fig 6.2.7 for a screenshot of the GUI and Fig 6.2.8 for an example
output of running simulator on the command line. As with the compiler, both
versions of the simulator are implemented in Clojure and use the Eclipse EMF
libraries. Both tools share the implementation of an action semantics run-time.

Input : Action tree
For instance: “model.calculatorlang-tree_gen.actionsemantics4mde”, which
was used as an example for the compiler.

• Step 1 : The input tree is loaded and each action, yielder and other element
in the tree is mapped into a run-time representation. The result of this
step is an executable action tree. The run-time representations follow the
implementation of action semantics in [Rue93]. Every action is a function
from an input state to a new state or failure. Such a state consists of
transients, bindings and storage.

• Step 2 : In order to run the action, the top level action is applied to an
empty state, consisting of empty transients, empty bindings and an empty
storage. The result of the application of this action is the final state of
simulation.

– Extra Step for the GUI : The GUI does an additional step before step
2. It attaches an observer to every action. This allows for the input
and output of action to be displayed and for the execution of every
action to be paused.

Output : The output is the final state of the top-level action. This is state con-
sisting of transients, bindings and storage, or a Failure state.

> java -jar simulator.jar
AS4MDE.ecore CalculatorLang.ecore
model.calculatorlang-tree_gen.actionsemantics4mde

Transients: [7]
Bindings: [memory --> cell(0)]
Storage: [cell(0) --> 0]

Figure 4.4.3: Example execution of the simulator

31

CHAPTER 4. ACTION SEMANTICS FOR MDE

4.5 Changes to Action Semantics

The action semantics metamodel implements a subset of the actions and yielders
as defined by Mosses in [Mos92]. However, the organization into facets from
“Modular Monadic Action Semantics” [Wan97] is used. This is done as the
work in [Wan97] makes a synthesis of all the various extension and alterations to
action semantics that have been introduced after the book by Mosses. “Modular
Monadic Action Semantics” includes one action not found in [Mos92] and one
action that works differently. These are the otherwise and choose action. Both
are used frequently in the action semantic descriptions that were written for the
examples in this thesis, therefore they are explained here.
The otherwise action is a combinator action that executes an alternative action
in case the result from the other action is failure. With the otherwise action
the order in which the actions are tried is fixed. This is in contrast to the non-
deterministic or action combinator that was introduced in the original action
semantics. To explain the otherwise combinator, first the or combinator is in-
troduced:

• A1 or A2: A non-deterministic combinator. It will non-deterministically
choose A1 or A2 to execute and will return its result, if the chosen action
fails the other action is executed and its result returned

• A1 otherwise A2: A combinator similar to the or combinator, but will
always execute A1 first, and only execute A2 if A1 returns failure.

The choose action randomly chooses an item from a list. This differs from the
choose action in the original action semantics where it chooses a random item
from a sort.

In “Action Semantics” [Mos92]:

• choose Sort : randomly chooses an item from Sort

In “Modular Monadic Action Semantics” [Wan97] and the action semantics
metamodel:

• choose Yielder : randomly chooses an item from the list returned by Yielder

4.6 Conclusion

This chapter introduced the action semantics metamodel by modeling action
semantics with MDE. The tools and artifacts that are used in the tool chain
for this modeling language have been introduced. This tool chain consists of a
compiler and simulator and artifacts that need to be written by designers and
artifacts that are tool generated. The action semantic descriptions for a domain
metamodel need to be written, while the compiler can generate the action tree
for a domain model from the model and the action semantic descriptions as
input. This action tree is the semantic specification of a domain model. The
simulator can be used to run this action tree.
The following chapter will address the challenges that were met while adapting
action semantics from programming languages to MDE and the impact this had

32

4.6. CONCLUSION

on the design of the action semantic metamodel and modeling language and the
tools.

33

5
Challenges in applying Action Semantics

to MDE

5.1 Introduction

Action semantics originated as a semantic formalism for programming lan-
guages. The aim of this thesis is to apply action semantics to MDE. While
trying to use action semantics with modeling languages a couple of challenges
appeared due to the differences between the domain of programming languages
and MDE. These challenges are:

• Denotations over models instead of grammars and abstract syntax trees
(section 5.2)

• Possible cycles in models which are graphs rather than trees (section 5.3)

• Multiplicities (section 5.4)

• Inheritance (section 5.5)

This chapter describes these challenges and their solutions and how these so-
lutions are reflected in the design of the action semantics metamodel and the
tools from the previous chapter.

5.2 Denotations over models

Programming languages work with grammars, abstract syntax trees and concrete
syntax. Model driven engineering works with metamodels, models and possibly a
concrete syntax. Using semantic equations with MDE is explained in this section.

Originally action semantics and the parts of denotational semantics that it uses
have been defined for programming languages. Action semantic descriptions
for programming languages define semantic equations over the grammar of a
programming language. These semantic equations are applied to an abstract
syntax tree of a program. Instead of grammars and abstract syntax trees MDE
works with metamodels and models, which are graphs. This section explains how
semantic equations can be defined over metamodels and be applied to models.
This is the first step that was taken during the adaptation of action semantics
from programming languages to MDE.

35

CHAPTER 5. CHALLENGES IN APPLYING ACTION SEMANTICS TO
MDE

Programming languages MDE
Sem. equations defined over Grammar Metamodel
Sem. equations applied to Abstract Syntax Tree Model (graph)

Table 5.2.1: Semantic equations definition and application domains

This section will introduce semantic equations defined over metamodels that can
be applied to models. The signature of these semantic equations will denotate
classes in a metamodel and can be applied to elements in a model. Semantic
equations are modeled with the action semantics metamodel that was introduced
in the previous chapter. The details on how semantic equations are modeled in
the metamodel are elaborated in this section. To create a proper understanding
of semantic equations an example from programming languages is shown first.
Then the semantic equations for MDE are applied to an example modeling
language.

Grammar Abstract Syntax Tree

Statement ::=
| "if" Expression "then" Statement
| "print" String
|

Expression ::=
| Expression "==" Expression
| Expression "+" Expression
| Number

if ((1 + 2) == 3)
then
print OK

Figure 5.2.1: Simple if statement in a programming language

01: execute ["if" E:Expression "then" S1:Statement] =
02: | evaluate E
03: then
04: | | check (the given truth-value 1 is true)
05: | then
06: | | execute S1
07: or
08: | | check (the given truth-value 1 is false)
09: | then
10: | | complete

Figure 5.2.2: Semantic equations for an “if” statement in a programming lan-
guage

The semantic equation in Fig 5.2.3 from [Mos92, p. 28] defines the semantics for
a common “if” statement in a programming language. The grammar, an exam-
ple program and the corresponding AST are shown in Fig 5.2.2. The semantic

36

5.2. DENOTATIONS OVER MODELS

equation has on the left hand side a mix of the concrete syntax of an “if” state-
ment as found in the grammar, combined with references to the expression and
statement that refer to the nested parts in the AST. These references E and S1
occur again on the right hand side of the equation.

In model driven engineering the metamodel of a language fulfills the function of
the grammar of a programming language. A model of a metamodel has the same
function as an abstract syntax tree. However both a metamodel and models are
graphs and not trees. The grammar of the example programming language in
Fig 5.2.2 refers to parts of the concrete syntax of the programming language.
The syntax for a modeling language does not occur in a metamodel or model
representation.
The concrete syntax of a modeling language, whether it is textual or visual
is more distinct part in MDE than it is in programming languages. In fact
a modeling language does not necessarily have a concrete syntax. Therefore
semantic equations in action semantics for MDE are defined over metamodels
and applied to models.

Metamodel Model

Figure 5.2.3: Metamodel and model for the Activity Diagram language as visu-
alized in Ecore/Eclipse

37

CHAPTER 5. CHALLENGES IN APPLYING ACTION SEMANTICS TO
MDE

Fig 5.2.4 shows the metamodel and an example model for the Activity Diagram
language that is used as a case study in chapter 6. Again note that there is no
concrete syntax for either the metamodel or model, instead the representation
as used by the Eclipse editor for Ecore is shown. Alternative representations
include showing the XML representation of both artifacts. The following figure
demonstrates how semantics equations work with models:

01: execute Assign [e:Expr varName:String next:Node] =
02: | | | denotate evaluate $e
03: | | and
04: | | | | give (cell-sort bound to $varName)
05: | | | otherwise
06: | | | | | allocate a cell
07: | | | | then
08: | | | | | | regive
09: | | | | | and
10: | | | | | | bind $varName (given cell-sort 1)
11: | then
12: | | store (given integer-sort 1) (given cell-sort 2)
13: before
14: | denotate execute $next

Figure 5.2.4: Semantic equation for an Assign object from the Activity Diagram
language

Fig 5.2.5 shows a semantic equation that specifies part of the semantics of the
Activity Diagram language by using action semantics for MDE. Instead of using
the concrete syntax and structure from the grammar as seen with programming
languages in Fig 5.1.3, the semantic equation is defined using the structure and
properties of classes in the metamodel. The rest of this section will focus solely
on the form of semantic equations in action semantics for MDE and how they
are modeled in the action semantics metamodel. The semantics that is specified
by the semantic equation for the example modeling language is not important.

A semantic equation has a signature consisting of a name and a class name
and the properties of the class that will be used on the right hand side of
the equation. The properties for a class can be either attributes or references.
The left hand side of the semantic equation in Fig 5.2.5 breaks down into the
following parts:

• evaluate: The name of the semantic equation

• Assign: The name of the class the semantic equation is applicable to

• [e:Expr varName:String next:Node] : A collection of properties of a class

– e:Expr : A reference named e to an Expr class

– varName:String : An attribute named varName that is of type String

– next:Node: A reference to a Node class, this property is defined in
the superclass SeqNode

38

5.3. CYCLES

In the metamodel for action semantics for MDE (Fig 4.2.2) these parts corre-
spond to SemanticEquation, ObjectDenotation, and FieldDenotations.

The type and names of the properties used in the semantic equation are the
same as found in the metamodel in Fig 5.2.4. In the semantic equation for a
programming language in Fig 5.2.3 these names could be freely chosen. Mosses
uses capital letters for these names, which make them stand out in the action
tree on the right hand side of the equation. The semantic equations for MDE
use the names of properties as defined in a metamodel, which may or may
not be capitalized. Instead of using capitalization as a cosmetic indicator, the
references to properties are prefixed with a $ sign on the right hand side of
the equation. The properties of the assign class are both used as arguments to
semantic functions calls ($e and $next in line 02 and 14) and as tokens in actions
($varName on both line 04 and 10). The collection of properties of a class does
not need to contain all the properties of that class. Only the properties that
are used on the right hand side of the semantic equation need to be specified.
The name of the class a semantic equation is applicable to is used to see if a
semantic equation can be applied to an object.
Also different from the semantic equation for programming languages is the
denotate keyword that precedes the calls to the semantic equations in line 02
and 14. The semantic equations as introduced by Mosses use no such keyword. It
is in the DSL for action semantics for MDE as it makes the parsing of semantic
equations vastly easier. The denotate keyword and the $ token are both a relic
from a prototype of action semantics for MDE that was an embedded DSL.
However also in the current tool chain this notation makes parsing easier because
the tokens indicate constructs that are not actions and yielders from action
semantics but template constructs.
On the right hand side of a semantic equation it is also possible to refer to
the object that is matched on by using the $this reference. This token is an
anaphora and is therefore always available, without needing to specify it with
the other properties of a class. The $this reference is useful for applying another
semantic equation on the same object.

5.3 Cycles

Applying semantic equations to an abstract syntax tree of a program is a straight
forward proces, when the semantic equations are well-formed. Doing the same
to models in MDE, that are graphs and may contain cycles, might lead to an
infinite recursion. This problem is solved by the compiler using the looping con-
structs from action semantics.

Action semantics gives a finite representation of a program’s behavior, even if
the program execution might be infinite. For instance, a program using a loop
can run indefinitely. However this program conforms to a finite grammar and is
represented by a finite abstract syntax tree. The semantic specification for this
program is built by using the denotational semantics approach of applying the
semantic equations on the abstract syntax tree representation of the program.
This results in an action tree that is the semantic specification for the behavior
of the program.

39

CHAPTER 5. CHALLENGES IN APPLYING ACTION SEMANTICS TO
MDE

With action semantics for MDE, we would like to have the same property of be-
ing able to specify infinite behavior with a finite semantic specification. However
in MDE the origin of possible infinite run-time behavior can not only arise from
explicit looping constructs, but from cycles in the graph of a model as well. For
looping constructs in modeling languages that are similar to a common “while”
construct in programming languages the existing unfolding action from action
semantics can be used. For loops that occur due to a cycle in the graph of a
model of references and objects the approach from denotational semantics needs
to be extended to avoid infinite recursion with the application of semantic func-
tions. This will be done by the compiler of action semantics for MDE, which
will use the existing unfolding action from action semantics to generate finite
descriptions of infinite execution semantics.

5.3.1 Unfolding and unfold

First the unfolding and unfold actions from action semantics will be introduced,
which allow finite expression of possibly infinite actions. This example semantic
equation specifies the semantics for a “while” looping construct common in
many imperative programming languages:

01: evaluate While [guard:Expr body:Statement*] =
02: unfolding
03: | | denotate evaluate $guard
04: | then
05: | | | | check (given truth-sort#1 is true)
06: | | | then
07: | | | | | denotate execute $body
08: | | | | then
09: | | | | | unfold
10: | | or
11: | | | | check (given truth-sort#1 is false)
12: | | | then
13: | | | | complete

Figure 5.3.1: Action Semantic Description for the “while” construct

The semantic equation in Fig 5.3.1 follows the obvious pattern of checking the
boolean guard expression, then executing the true branch which executes the
body and repeats or executing the false branch which simply completes in this
case. The repeated check of the guard expression and executing the true branch
are accomplished by the unfolding action in line 02 that wraps the whole action
and the unfold action in line 09.
In action semantics, these actions are defined as: “unfolding A” performs A but
whenever it reaches the dummy action unfold it performs A instead. In semantic
descriptions for iterative control flow constructs usually only one unfold is nested
within an unfolding action but the number of occurrences of unfold is unlimited.
Modeling languages that contain looping construct similar to a “while” loop can
use these existing unfolding constructs from action semantics for programming
languages in the semantic equations.

40

5.3. CYCLES

5.3.2 Problems with cycles in models

In MDE metamodels and models can have cycles from an object to itself through
references and other objects. Such cycles are not local to one object and can
therefore not be addressed within one semantic equation. The following model
is an example of such a cycle, which models a loop in the execution behavior:

Figure 5.3.2: Visual representation of a cycle in an Activity Diagram

Fig 5.3.2 shows a part of a model of an Activity Diagram, which is part of a case
study in chapter 6. The interesting part is the cycle from the Test object through
the false reference, Assign object and next reference. This part of the graph has
similar looping behavior as a common “while” construct, but its behavior is the
result of multiple objects and references combined. A model with a Test object
that does not create a loop would for instance also be possible. This is why
specifying the semantics of the looping behavior with the unfolding actions in
the semantic equation for a Test class is not possible.
The compiler for action semantics for MDE takes a model and the action se-
mantic descriptions with the semantic equations as input. The compiler applies
the semantic equations on the input model and will recognize when it does so in
a loop and will insert the unfolding and unfold actions to specify the semantics
of this loop.

41

CHAPTER 5. CHALLENGES IN APPLYING ACTION SEMANTICS TO
MDE

Semantic Equation Action tree

01: execute Test [e:Expr
false:Node
true:Node] =

02:| denotate evaluate $e
03:then
04:||| check (given truth-sort#1)

is (yield false)
05:|| then
06:||| denotate execute $false
07:| or
08:||| check (given truth-sort#1)

is (yield true)
09:|| then
10:||| denotate execute $true

00: ...
00: ... some actions ...
01:unfolding
02:|| ... some actions ...
03:| then
04:|||| check (given truth-sort#1)

is (yield false)
05:||| then
06:|||| ... unfold
07:|| or
08:|||| check (given truth-sort#1)

is (yield true)
09:||| then
10:|||| ... some actions ...

Figure 5.3.3: Semantic equation that is part of a loop and the resulting Action
Tree with inserted unfolding and unfold actions

The template on the right hand side of the semantic equations in Fig 5.3.3 ap-
pears in the action tree in the same figure. This right hand side appearing in the
action tree is the result of the application of the semantic equation on a Test
object. The semantic equation execute for the Test class in Fig 5.3.3 has an
application of a semantic equation to the false reference in line 06. This seman-
tic equation will at some point apply the semantic equation execute to the Test
object again. This will lead to an infinite recursion. The compiler recognizes this
and inserts the unfolding and unfold actions, as can be seen in the action tree in
Fig 5.3.3. The template from the right hand side of the execute semantic equa-
tion occurs again, but is wrapped by the unfolding action in line 01. Somewhere
down in the sub tree of this wrapped action the application of the semantic
equation execute to the Test object is replaced by the unfold action, as can
be seen in line 06. This action tree has the same structure as the “while” con-
struct from Fig 5.3.1, where it was explicitly constructed in a semantic equation.

By having the compiler insert the unfolding actions the semantic functions can
still be defined over single classes in a metamodel and not be concerned with
any nesting they may end up in. This solves the problem of possible cycles in
the graph structure of a model that model looping behavior, while defining the
semantics for a language can still be done at the level of individual classes.

5.3.3 Compiler algorithm

The algorithm in the compiler that recognizes loops and inserts the unfolding
and unfold actions is as follows. The compiler follows the approach of generating
the semantic specification for a program by applying semantic equations to
an abstract syntax tree. This approach in action semantics is similar to the
approach of denotational semantics. The recognition of cycles and the insertion
of unfolding and unfold actions is combined within this approach. For MDE
the compiler applies the semantic equations to a model represented as a graph.

42

5.3. CYCLES

The process is started by applying a semantic equation named “meaning” to
the root of a model. Whenever the right hand side of a semantic equation has
an application of a semantic equation to a reference of the object, the result of
this application is used to construct the action tree. The result of this process is
an action tree that specifies the behavior and execution semantics of the input
model. The recognition of cycles and inserting unfolding and unfold actions by
the compiler is shown in Fig 5.3.4:

// set of (semantic-equation, domain-object) pairs applied
// so far in this branch

01: current-denotations := empty
// set of (semantic-equation, domain-object) pairs whose
// result will need to be wrapped in an "unfolding" action

02: actions-to-wrap := empty
03: function denotate(semantic-equation, domain-object):action {
04: if ((semantic-equation, domain-object)

element-of current-denotations)
05: then {

// Arrived at the beginning of a loop
// Insert an unfold action instead and mark the
// whole application of the semantic equation to
// the domain object to be wrapped in an
// "unfolding" action.

06: actions-to-wrap add (semantic-equation, domain-object)
07: return unfold;
08: } else {

// Store that we are constructing this action
09: current-denotations put (semantic-equation, domain-object)
10: action := build-action(semantic-equation, domain-object)

// build-action fills the action template on the
// right hand side of the semantic equation with
// the attributes and references from
// domain-object, possibly calling this
// denotate function.

11: if ((semantic-function, domain-object)
element-of actions-to-wrap)

12: then {
13: result := unfolding action
14: } else {
15: result := action
16: }
17: actions-to-wrap remove (semantic-equation, domain-object)
18: current-denotations remove (semantic-equation, domain-object)
19: return result;
20: }

Figure 5.3.4: Pseudo code description of the compiler loop recognition and
unfolding insertion

The compiler uses two functions to construct an action tree from an input model

43

CHAPTER 5. CHALLENGES IN APPLYING ACTION SEMANTICS TO
MDE

and semantic equations. The denotate function applies a semantic equations to
an object in the input model and returns an action, which often consists of
nested actions and is then an action tree. The build-action function in line 10
fills in the right hand side of semantic equation by resolving any references to
attributes or references in an objects. This build-action function will also pos-
sibly apply semantic equations to references in an object. The rest of the code
does book keeping to recognize when such an application of a semantic func-
tion results in a loop and returns the appropriate unfold action, as seen in line
07. Whenever an unfold action gets inserted the whole right hand side of the
semantic equation it is nested in gets wrapped by an unfolding action, as seen
in line 13.

The graph structure of models does not only allow for cycles, it also allows
for nested cycles or intertwined cycles to occur in models. Also cycles longer
than the loop in the example with two references and objects are possible. The
approach shown for single cycles needs a small extension before being applicable
to all the different sorts of cycles that may exist in models.

5.3.4 Extension to the unfolding and unfold actions

The result of the compiler algorithm applied to a model with a cycle nested
within another cycle will create a nesting of an action wrapped in an unfolding
action, containing another action wrapped with unfolding that contains two
unfold actions. Each of these unfolds corresponds to a different unfolding. The
semantics for an unfold action is to substitute it with the action contained in the
surrounding unfolding action. For both unfold actions this will be the innermost
unfolding action in this example. This is not the intended behavior for one of
these unfold action.
A small extension is required to be able to make each unfold action correspond
to the correct unfolding action in case of nested loops. The solution in our
approach is to extend the unfolding and unfold actions with a label to be able
to differentiate between nested unfoldings. With a label the signatures for both
actions become:

• unfolding label Action
performs Action, but whenever it reaches the dummy action unfold label,
it performs Action instead

• unfold label
this action will be replaced by the action wrapped by the enclosing un-
folding action with the same label

Semantic equations that use the unfolding and unfold constructs will need to
define a label. The unfolding and unfold actions that are inserted by the compiler
will have a label that is generated by the compiler. Unfolding actions are used to
prevent infinite recursion from the recursive application of a semantic equation
to an object. Therefore the label for this unfolding action is generated from
these two artifacts to ensure uniqueness of the label for nested unfoldings. For
a semantic equation a unique identifier is the combination of its name and
the name of the class the equation can be applied on. A model has no unique
identifier other than its hashcode, unless explicitly modeled in its metamodel.

44

5.4. MULTIPLICITIES

For that reason the hashcode of an object is used as its identifier for this part
of the label.
The label that is generated by the compiler therefore consists of a name and
type from the semantic equation and a number from the hashcode of the object.
This makes the label not too obscured which is nice as these labels show up in
the generated action tree.

This extension stays close to the original unfolding and unfold action in action
semantics, as is evident from the way the unfolding and unfold actions are im-
plemented in the simulator developed for this thesis. The implementation for
both operators is based on the implementation of action semantics in ML for
semantic prototypes [Rue93]. This implementation expresses both the unfold-
ing and unfold actions by only using other actions and yielders from action
semantics. Because the implementation is defined by actions and yielders that
are already in action semantics, the semantic specification of action semantics
itself does not need to be extended to include the extended unfolding and unfold
actions.

01: unfolding label Action =
02: | furthermore
03: | | bind label to (abstraction-of Action)
04: hence
05: | Action

06: unfold label =
07: enact (bound abstraction-sort to label)

Figure 5.3.5: Implementation of the extended unfolding and unfold construct
with action semantics

The abstraction-of yielder and enact action in Fig 5.3.5 are part of the reflective
facet of action semantics. abstraction-of turns actions into abstractions that can
be stored in the bindings or storage and retrieved and enacted at run-time. In
the implementation in [Rue93] the label in lines 03 and 07 was a constant. In
our approach this label is specified explicitly in the unfolding and unfold action.

With the extension of adding a label to the unfolding and unfold actions and
the compiler algorithm to insert them where needed, it is possible to make a
finite semantic description of infinite behavior.

5.4 Multiplicities

Grammars for programming languages allow for options and repetitions. In
metamodels these are modeled with multiplicities.

When a grammar of a programming language has an option or repetition in the
production rules the nodes in the abstract syntax tree of a program can have
a variable number of children. For example, a rule in a grammar for the body
of a function can contain any number of statements. In modeling languages

45

CHAPTER 5. CHALLENGES IN APPLYING ACTION SEMANTICS TO
MDE

such constructs are modeled with multiplicities of references in the metamodel.
Semantic equations match on parts of models conforming to a metamodel. So far
all the example semantic equations match only on single objects. The approach
to handling multiplicities in references is explained in this section by using the
calculator language as an example. The modeling of semantic equations with
multiplicities in the action semantics metamodel is also explained.

Calculation ::= Expr+

Figure 5.4.1: Production rule in the grammar for the calculator language con-
taining a repetition

Figure 5.4.2: Part of the metamodel for the calculator language

The calculator language from chapter 4 had the production rule from Fig 5.4.1 in
its grammar, that states that a Calculation consists of one or more Expressions.
The same part of the calculator language defined by a metamodel is shown in
Fig 5.4.2 where the same structure is expressed using multiplicities. The Calcu-
lation rule in the grammar allows for abstract syntax trees where a Calculation
node has at least one branch with an Expr child. A model conforming to the cal-
culator metamodel will have a Calculation object with an attribute called exprs
containing a collection of one or more Expressions. This structure is equivalent
to the abstract syntax tree representation.

In [Mos92, Sec. 2.2] semantic equations for grammars containing optional and
repeating clauses are described. The equivalent multiplicities in metamodels are
shown in Table 5.4.3:

Grammar rule Metamodel reference multiplic-
ity

? Optional 0..1
* Repeatable 0..*
+ Obligatory repeatable 1..*

n..m where 0 ≤ n < m ≤ ∗

Figure 5.4.3: Comparison between multiplicities in grammars and metamodels

As shown in the last row of table 5.4.3 the multiplicities for a reference can
also be a range between zero and unlimited. Action semantics for programming
languages allows for semantic equations that match on multiplicities, similar
to denotational semantics. These semantic equations are structured to combine
the semantic specification of the items contained in the multiplicities. For an

46

5.4. MULTIPLICITIES

abstract syntax tree containing a node with a variable number of child nodes this
means that the semantic equations handling the multiplicity simply combine
the semantic specifications from applying the appropriate semantic equation
to each node individually. With action semantics the semantic equations for
multiplicities usually consists of a combinator action and semantic equations
applied to the child nodes. The notation in [Mos92] uses tuples in the semantic
equations that are applicable to multiplicities. Such a tuple consists of a pair of
the first child node and the rest of the child nodes. Action semantics for MDE
uses the same approach by abstracting collections into having a first and rest
element, similar to the head and tail of a list. This approach is often found in
functional and logic programming languages.

Model Semantic equation

01: evaluate [Expr] [first:Expr] =
02: denotate evaluate $first

Figure 5.4.4: Semantic equation applicable to a multiplicity of 1

Fig 5.4.4 shows a semantic equation applicable to a collection of size 1 and an
example model of the calculator language it is applicable to. The brackets sur-
rounding Expr is the syntax for semantic equations that work on collections.
This semantic equation “evaluate” simply states that the semantics for a col-
lection of one item is the application of the semantic equation “evaluate” to the
first (and only) item of the collection. In the metamodel for action semantics for
MDE this denotation over a collection is called a SingleListDenotation. The field
denotation first is the only denotation that is allowed in this kind of semantic
equations.

Model Semantic equation

01: evaluate [Expr | Rest] [first:Expr,
rest:Expr*] =

02: | denotate evaluate $first
03: and
04: | denotate evaluate $rest

Figure 5.4.5: Semantic equation applicable to a multiplicity of 2 or more

Fig 5.4.5 shows a semantic equation applicable to a collection consisting of at
least 2 items and a model conforming to the calculator language it is applicable
to. The model is a Calculation consisting of 3 Expressions. The three expressions
in the calculation are the result of pressing the “=” button after each expression

47

CHAPTER 5. CHALLENGES IN APPLYING ACTION SEMANTICS TO
MDE

on a calculator. The semantic equation only consists of the and combinator that
combines the applications of semantic equations to the items in the collection.
The syntax for a semantic equation applicable to a multiplicity of two or more
are the brackets surrounding the type name Expr, the vertical bar and “Rest”.
In the action semantics for MDE metamodel this is called a ListDenotation. The
only allowed field denotations are first, which is the first item in the collection,
and rest which refers the whole tail of the collection. The field denotation rest is
a collection itself, as indicated by the * following the Expr type. The semantic
equation for a collection consisting of only one item and a semantic equation
applicable to collections of two items or more are sufficient to denotate any
collection of any size with at least one item. This uses the destructuring prin-
ciple for lists that is common in most functional programming languages. The
semantic equation evaluate [Expr | Rest] will be applied until rest contains
just one item, to which the semantic equation evaluate [Expr] will be applied.

One final case needs to be addressed for collections that are empty. The calcula-
tor language requires a Calculation to consist of at least one item. But references
that have a multiplicity of zero or more can also occur in metamodels. For exam-
ple consider the case where the multiplicity of a reference between a Calculation
and Expr is 0..*.

Model Semantic equation

01: evaluate [Expr Empty] [] =
02: complete

Figure 5.4.6: Semantic equation applicable to a multiplicity of 0

The semantic equation in Fig 5.4.6 shows the syntax for matching on an empty
collection. In the action semantics for MDE metamodel this is called an EmptyList-
Denotation. The semantic equation here shows that the semantics for a Calcu-
lation consisting of zero Expressions is the simple action complete. The action
complete returns empty transients and empty bindings and does nothing with
any information flowing into the action. There is an explicit notation for empty
collections because action semantic descriptions are constructed by combining
the application of semantic functions on parts of a model. This allows the ap-
plication of a function to a collection to always return an action that can be
composed with the other parts, regardless of the number of items in a collection.

Our approach has semantic equations for empty collections, collections with
one item and collections of 2 items or more. Theoretically an approach with
only semantic equations for empty and non-empty collections would suffice. Our
approach is more practical because a semantic equation for an empty collection
is only required when the multiplicities for the reference includes zero.
The semantic equations for collections are applicable to any collection in an
Ecore model. Collections can be references with multiplicities as well as an at-
tribute of a class that is a collection. The semantic equations use the same
approach for both because in Ecore both are uniformly modeled with the same
List interface.

48

5.5. INHERITANCE

In this whole section collections were considered consisting of generalized Expressions,
without needing knowledge of what kind of Expression it actually is. In the cal-
culator language subclasses of the expressions are for instance the Plus and
Number classes. This structure is very common in object-oriented structures as
found in metamodels in MDE. Action semantics and the semantic equations
for collection works very well with these structures, because of the approach of
action semantics of composing actions with combinators. This allows the com-
position of the semantics of a collection to be done by combining the semantic
specification of the items in the collections, while the semantic equations for
collections and classes stay separate.

5.5 Inheritance

Ecore allows for inheritance and generalization following object-oriented model-
ing principles that imply shared semantics for classes.

Models in MDE are usually designed and constructed using object-oriented anal-
ysis and design. Any class or super class encapsulates shared behavior and a class
inheriting from such a super class designates that it shares the same features.
It would therefore make sense to be able to express the semantics of a model by
using denotations over classes at whatever level they are defined.
Currently only denotations in semantic equations over concrete classes are sup-
ported in action semantics for MDE. This means that the concrete type of an
object is used to find a semantic equation that can be applied to it. The left
hand side of a semantic equation must specify the concrete class it is applicable
to. Consequently the concrete class of an object is used to find which semantic
equations is applicable to it.
An example of a case where a super class defines most of the semantics for its
sub classes can be found in the calculator language:

49

CHAPTER 5. CHALLENGES IN APPLYING ACTION SEMANTICS TO
MDE

Figure 5.5.1: Part of the calculator language metamodel

The semantic equations for both the Plus and Minus classes show that the
common concepts captured by the BinaryExpr class is duplicated:

01: evaluate Plus [lhs:Expr rhs:Expr] =
02: | | denotate evaluate $lhs
03: | and
04: | | denotate evaluate $rhs
05: then
06: | give (sum (given integer-sort 1, given integer-sort 2))

07: evaluate Minus [lhs:Expr rhs:Expr] =
08: | | denotate evaluate $lhs
09: | and
10: | | denotate evaluate $rhs
11: then
12: | give (difference (given integer-sort 1, given integer-sort 2))

Figure 5.5.2: Semantic equations for expressions in the calculator language

The two semantic equations only differ in the type of yielder that is applied to
the values of the left and right hand side of the expression. The actions in line

50

5.6. CONCLUSION

02 through 05 and 08 through 11 are the semantics for a BinaryExp, yet these
actions are replicated in both equations. It would be nice if these semantics
could be expressed at the class level where they originate. However, in action
semantics this is currently not possible. Also note that in line 01 and 07 the
semantic equations have the concrete types Plus and Minus in their signature
and the abstract type Expression in the collection of properties. The applica-
tions of semantic equations on the properties lhs and rhs in lines 02, 04, 08 and
10 will use the concrete class of the properties.

The reason for only allowing semantic equations for concrete types is that the
object orientation in Ecore has very few restrictions. A class may for instance
inherit from two different classes which inherit from a common super class.
This is the so-called “Diamond Problem”. In the Java programming language
the problem is prevented by allowing a class only one superclass. If action se-
mantics for MDE would allow semantic equations over non-concrete classes a
situation could occur where more than one semantic equation is applicable. To
resolve such conflicts a precedence between different semantic equations must
be defined or be configurable. The choice to only allow semantic equations for
concrete classes is chosen because with it those conflicts can not occur and there-
fore do not need a construct to resolve them. The down side is that the same
semantics need to be repeated, as is the case for Plus and Minus.

In the previous section semantic equations for collections have been introduced.
In Fig 5.4.2 a Calculation consisted of multiple Expressions in a collection. This
Expr class is obviously not a concrete class. However, this class is only used to
refer to collections consisting of classes with the Expr type. The application of a
semantic function to the first item of a collection will still try to find a semantic
function that matches the concrete type of that object.

The duplication of semantic specifications for shared behavior is not desired
in a design or specification. However, to prevent the conflicts between multiple
applicable semantic equations, semantic equations are only allowed on concrete
classes.

5.6 Conclusion

This chapter answered the research question “Can action semantics be applied
to modeling languages in model driven engineering, with its origin from pro-
gramming languages?” (R1). The answer to this question with the challenges
and solutions outlined in this chapter is yes. The biggest challenge encountered
is the possibility of cycles in models addressed in section 5.3. The solution to
this challenge was found by having the compiler insert the unfolding and unfold
constructs from action semantics into action trees. With the challenges resolved,
action semantics can now be used with MDE. The following chapter will intro-
duce two case studies of two modeling languages with their semantics defined
with action semantics.

51

6
Case Studies

6.1 Introduction

The adaption of action semantics for MDE has been guided by a couple of case
studies. Most of these examples are the same as used in [Wol09]. All the ex-
amples consist of a metamodel, example models and a semantic specification
done with action semantics. In this chapter two examples are discussed: a mod-
eling language for simplified activity diagrams and a modeling language for a
production line.

6.2 Activity Diagram

The first example is a modeling language for activity diagrams. The activity di-
agram language is a simple diagrammatic language that can be used to visualize
the control flow of programs. It is not the activity diagram language from UML.
The example model that uses this metamodel is a simple loop with a counter:

Figure 6.2.1: Visual representation of the count example activity diagram

The count example in Fig 6.2.1 uses a variable “a” that will require the use
of the storage and bindings concepts from action semantics. Having these com-
putational concepts available here will be shown to be as useful for modeling
languages as they are for programming languages. This small example also con-
tains a cycle that requires the automatic insertion of the unfolding construct by
the compiler.

53

CHAPTER 6. CASE STUDIES

Figure 6.2.2: Activity Diagram Metamodel (from [Wol09])

The metamodel in Fig 6.2.2 has a single root class Diagram as required (see
section 4.3). Also the possibility of cycles can be seen from the “next” reference
from SeqNode to Node. Most of the right side of the metamodel is concerned
with being able to express simple expressions with simple arithmetic and boolean
operators.
The semantics for the activity diagram modeling language will be specified using
action semantics for MDE. This is done by creating action semantic descriptions
consisting of semantic equations. The semantic equations will be used to con-
struct an action tree that specifies the semantics of a model in the activity
diagram language by filling in and combining the action templates on the right
hand side of the equations. In our framework the semantic equations are ex-
pressed over concrete classes or collections in the metamodel of the modeling
language (see section 5.2, 5.4 and 5.5).

01: meaning Diagram [nodes:Node*] = denotate execute $nodes

02: execute [Node | Rest] [first:Node, rest:Node*] =
denotate execute $first

03: execute StartNode [next:Node] = denotate execute $next

Figure 6.2.3: Semantic equations from the action semantic description for the
activity diagram language

The semantic equations all follow the pattern that the semantics of a node
consists of the semantics for the node itself and the nodes following it. The
semantic equation for all the Nodes will include the application of denotate
execute $next. Of course the StopNode does not include this application. The
behavior of an activity diagram starts at the StartNode. The first three semantic
equations in Fig 6.2.3 expresses this. The mandatory semantic equation named
“meaning” is defined for the root object Diagram. From the property “nodes”
of the Diagram node the StartNode needs to be found, which is the first Node
in the collection. This uses the notation for collections and multiplicities in line

54

6.2. ACTIVITY DIAGRAM

02 as introduced in section 5.4. The $rest field denotation is not used on the
right hand side of the second semantic equation. This is because this equation
is only used to apply the execute equation to the StartNode. All the other nodes
in the diagram are reached by following the $next reference from each previous
node, as seen in line 03.

04: execute Assign [next:Node, e:Expr, varName:String] =
05: | | | denotate evaluate $e
06: | | and
07: | | | | give (cell-sort bound to $varName)
08: | | | otherwise
09: | | | | | allocate a cell
10: | | | | then
11: | | | | | | regive
12: | | | | | and
13: | | | | | | bind $varName (given cell-sort#1)
14: | then
15: | | store (given integer-sort#1) (given cell-sort#2)
16: before
17: | denotate execute $next

Figure 6.2.4: Semantic equation for the Assign node

The semantic equation for the Assign nodes handles three tasks: the denotation
of the following nodes, evaluating the expression on the right hand side of an
Assign node and storing this value in a variable. The first task is achieved by
the “denotate execute $next” at the end of the action in line 17. The ”next”
field of type Node is a property from the super class SeqNode. As mentioned in
the discussion of inheritance in section 5.5 semantic equations are only allowed
on concrete types, therefore the “denotate execute $next” call will occur in all
semantic equations for subtype of the SeqNode class. In line 05 the Expression
is evaluated and the result from “denotate evaluate $e” will be an integer in
the transients and no bindings. Line 07 through 15 store this value from the
transients in a variable. The store action in line 15 takes care of storing the
value for the variable in the appropriate cell. The given yielders in the store
action indicate that the transients passed to this action needs to consists of an
integer and a cell.
The evaluation of this integer value and obtaining the cell are independent
actions that are combined by the and action combinator in line 06. As said,
the result from “denotate evaluate $e” will be an integer in the transients and
no bindings. The result of the other part of the and combinator will be a cell
in the transients and possibly a new binding for the variable in the bindings.
The and combinator takes care of concatenating the transients and merging the
bindings.
The otherwise sub-action involving line 07 through 13 is a bit more elaborate
because the semantics for an Assign node concerns both the creation and usage
of a variable. Whenever an Assign node is encountered in an activity diagram
the variable that is being assigned to may already exist from an earlier assign-
ment or needs to be created. The otherwise combinator will try the left hand
side action of give first, which will succeed when there is a binding with “var-

55

CHAPTER 6. CASE STUDIES

Name” in the bindings or will fail when there isn’t such a binding. Only when
the give action returns a failure the second action is executed, which in this case
allocates a cell and creates the appropriate binding to the cell. This pattern re-
quired the otherwise action and is why it is included in the changes to action
semantics as explained in section 4.4.

The semantic equation for Assign is a good example of how the runtime of
action semantics is modeled and used and how combinators can be used to keep
sub-parts of actions specific and contained.

18: execute Test [e:Expr, next:Node, alternative:Node] =
19: | denotate evaluate $e
20: then
21: | | | check (given truth-sort#1) is (yield true)
22: | | then
23: | | | denotate execute $next
24: | or
25: | | | check (given truth-sort#1) is (yield false)
26: | | then
27: | | | denotate execute $alternative

Figure 6.2.5: Semantic equation for the Test node

The Test node is the most interesting in an activity diagram as it has two
successor nodes. Similar to the semantic equation of the Assign node first an
action to evaluate the expression is denotated in line 19. This denotation will
produce a boolean value in the transients. The check actions in line 21 and 25
will complete if the is yielder is true and will fail when it is false. This fail
construct is used to guide the choice of the non-deterministic or combinator.
The or action will try one sub-action and returns the result of this sub-action
when it completes. If the sub-action fails the other sub-action is tried. The
order in which the sub-action are tried is non-deterministic, as specified in the
original action semantics. In the Assign node we used the otherwise combinator
that does guarantee the order in which the sub-action are tried. This otherwise
combinator was introduced in improvements of action semantics [Wan09] (see
also section 4.4).
A Test node in an Activity Diagram can be the source of a possible cycle, that
has looping behavior. However in this semantic equation we do not have to take
care of such possibility. This will be done by the compiler, as explained in section
5.3.

56

6.2. ACTIVITY DIAGRAM

28: execute StopNode [] = complete

29: evaluate Var [name:String] =
give (integer-sort stored in (cell-sort bound to $name))

30: evaluate Number [value:Int] = give (yield $value)

31: evaluate BinaryExp [lhs:Exp, bop:BinaryOp, rhs:Exp] =
32: | | denotate evaluate $lhs
33: | and
34: | | denotate evaluate $rhs
35: then
36: | denotate evaluate $bop

37: evaluate Eq [] =
give (given integer-sort#1) is (given integer-sort#2)

38: evaluate Plus [] =
give (sum (given integer-sort#1) (given integer-sort#2))

Figure 6.2.6: Semantic equations for the other nodes in the count example ac-
tivity diagram

The last few semantic equations in Fig 6.2.6 are mostly denotations for expres-
sions. In the action semantic descriptions these semantic functions are all named
“evaluate”. The semantic functions that denotate nodes in a diagram all have
the name “execute”. These names for denotations over expressions and state-
ments is common within action semantic descriptions. The semantic equation
for a StopNode in line 28 only inserts the complete action and does not contain
any other denotations. At this node the application of semantic functions will
stop. Fig 6.2.3 through 6.2.6 form the complete action semantic description for
the activity diagram modeling language, although some semantic equations for
expressions that are not used in the count example are omitted. Together with
the loop insertion by the compiler this complete specification is enough to built
semantic specifications for models of the activity diagram modeling language.

With the action semantic description for the activity diagram modeling lan-
guage the semantic specification for the count example can be constructed. The
following four artifacts are needed as input for the compiler:

• Action Semantics Metamodel : Fig 4.2.2
This metamodel is a static artifact as explained in section 4.3 and can
therefore technically be embedded in both the compiler and simulator,
however, for practical and illustrative purposes it is explicitly needed and
mentioned as input.

• Action Semantic Description
The semantic equations for the activity diagram modeling language are in
Fig 6.2.3 through 6.2.6.

• Activity Diagram Metamodel Fig 6.2.2

57

CHAPTER 6. CASE STUDIES

• Activity Diagram Model
For this case study it is the count example from Fig 6.2.1

The compiler will apply the semantic equations in the action semantic descrip-
tions to the count example model. Together with the algorithm for cycles in
models from section 5.3 this will produce an action tree that conforms to the
action semantics metamodel. This action tree is the semantics for the count
example. The whole action tree is shown as visualized by the simulator:

Figure 6.2.7: AS4MDE Simulator Showing the action tree example for the count
example

Fig 6.2.7 shows the semantics of the count example with the action tree as
shown in the AS4MDE Simulator. This simulator is provided with this thesis
and can visualize the execution of actions. The screen shot of the simulator
shows the action specification being run. The highlighted unfold action in line 42

58

6.2. ACTIVITY DIAGRAM

designates that this action is about to be executed. Before an action is executed
it is shown in yellow-orange in the simulator, after an action completes it is
shown in green, when it fails it is shown in red.
The unfolding and unfold actions in line 13 and 42 are inserted by the compiler
as explained in section 5.3.
The “before” and “after” panels show the input and result state for an action.
In this case there is no output state, as the action hasn’t run yet. The “before”
state contains the following:

• Transients:
Empty transients; there are no intermediate values passed to this action

• Bindings:
“UF executeTest13610289”, this token maps to an abstraction. It holds
the abstraction of the action wrapped by the unfolding action in line 13.
The “UF ” preamble is inserted by the compiler to mark it as generated.
The name “executeTest13610289” is the semantic equations name and the
type and hashcode of the object in the model that caused a loop. “a”, this
token maps to a cell that is in the storage. “a” is the $varName and $name
property used in the semantic equations for Assign, Test and Var in Fig
6.2.4, 6.2.5 and 6.2.6

• Storage:
The storage contains one cell, currently holding the value 2. This means
that the executing of this semantic specification initialized “a” to 1 and
that the Assign node “a = a + 1” has been visited once, before arriving
at the unfold action to model the loop.

The abstraction bound to the “UF executeTest13610289” is in the bindings,
while the variable “a” has an indirection to the cell in the storage. This is
because the abstraction will not change once put in the bindings, while the
binding for “a” will remain the same, but the value it maps to can be changed.
Running the whole specification will result in this final state:

Transients: []
Bindings: [a --> cell(0)]
Storage: [cell(0) --> 5]

Figure 6.2.8: Outcome of running the whole semantic specification for the count
example

First, it should be noted that this is indeed the desired outcome as it shows
the variable “a” to be 5. Second, the binding for the unfolding abstraction is no
longer in the bindings. This is because this binding only exists within the scope
of the nesting of the unfolding action. The final result for the whole semantic
specification is the state that is the result of the top level before action in line 12.

The action tree for the semantic specification contains a part that will never
be executed during the simulation. These are the actions in line 34 through 38.
These actions are in the action tree as a result of the application of the semantic
equation execute to the Assign node “a := a + 1”. Because there are two Assign

59

CHAPTER 6. CASE STUDIES

nodes in the count example the template from the semantic equation “execute
Assign” from Fig 7.2.4 appears twice in the action tree in line 01 through 13
for a := 1 and line 31 through 41 for “a := a + 1”. As said earlier the semantic
equation “execute Assign” needs to consider both the case that the variable is
already initialized and the case that the variable does not exist yet in the bind-
ings and storage. It is not uncommon for such unreachable actions to occur in
action trees. This is because semantic equations only consider the object they
are applied to and not the composition of this object with other objects in a
particular model. There may be models that cause the execution of both cases.
For instance, when a variable is reinitialized within a loop. The simulator also
shows in the top right corner the number of steps that have been taken to arrive
at this action. This number is not fixed when there is a non-deterministic action
such as or in a semantic specification. During one run it might always first check
a branch that will fail whilst other times always choosing the branch that will
succeed.

Appendix B contains two other example models of the activity diagram lan-
guage. These examples have nested cycles.

This case study shows how semantic descriptions for a metamodel can be used
to construct the semantics for a model. It also demonstrated how the seman-
tic equations can be kept simple and human readable and how the compiler
compiles these into an action tree. The semantic equations for each class in the
metamodel of the activity diagram language are all self-contained and only use
the constructs from action semantics that they require. For instance, the se-
mantic equation that evaluates an expression only uses the transients while the
semantic equation for the Assign node combines uses of the transients, bindings
and storage. This case study did not only show how action semantics can be
used with MDE but it also contained the challenge of possible cycles in models.
The approach in the compiler outlined in section 5.3 proved to be sufficient for
this example.

6.3 Production Line Language

The second case study is the production line language example from [Rom07].
The example is a domain specific modeling language (DSML) using a visual
syntax for models. The work in [Rom07] uses the example to illustrate their
approach for formal and tool support for MDE with Maude [Cla07]. The example
is used here only to illustrate a possible usage of action semantics with MDE and
not to compare the two approaches. All the examples shown so far have mostly
been programming languages modeled with MDE, with the exception of the
possible loops in the activity diagram language. The production line language
also models computation but with some abstractions that have a less straight
forward mapping onto computations than the examples seen so far. The goal of
this case study is to show that action semantic can also be used for specifying
the dynamic semantics for modeling languages that are different from common
programming languages, for which action semantics was originally created.
The production line language is a modeling language for production lines that
create hammers from a head and a handle. The production line consists of ma-

60

6.3. PRODUCTION LINE LANGUAGE

chines that can generate heads and handles and machines that can assemble a
head and a handle into a hammer. The production line is not completely auto-
mated as there is no automatic transportation of the output from one machine
into another. Machines use trays to get their input from and to store their out-
put in. A human operator moves between trays to move parts from one tray
into another. Finally, both the machines and trays have a certain production
and storage capacity.

Figure 6.3.1: Production line language metamodel (from [Rom07])

Fig 6.3.1 shows the metamodel for the production line language. The meta-
model also contains constraints that are not expressed with the object-oriented
structure of the metamodel, but are expressed with invariants on the right hand
side of the metamodel. These constraints define that an operator can only move
parts between connected trays and they define the capacity limits of trays. The
example model of a production line language used for this case study is shown
in Fig 6.3.2:

Figure 6.3.2: The hammer production line (from [Rom07])

Fig 6.3.2 shows the model of the hammer production line. On the left side the
HandleGen and HeadGen generators produce Handle and Head parts in their
trays. The Operator moves parts into the input tray for the Assembler. Finally,
the Assembler produces Hammers in its output tray. This example model is
particularly interesting due to the capacity that is chosen for the generators
and trays. The Assembler takes a Head and Handle part from its input tray to
produce a Hammer. When its input tray is filled to its capacity with either four

61

CHAPTER 6. CASE STUDIES

Heads or four Handles the Assembler cannot create any more Hammers. This
is a possible deadlock in the production line, because the Operator is defined to
only move parts into trays following the connecting arrow between the Trays.
This possible scenario is the reason this domain specific modeling language was
used as an example in [Rom07], which focuses on verification of modeling lan-
guages.

The approach we use in defining the semantics for the production line language
is inspired by the approach taken in [Rom07]. In [Rom07], the semantics for the
production line language is defined using graph transformations. The semantics
consists of a number of graph rewriting rules that modify a representation of
the model. This is a graph of the model shown in Fig 6.3.2. Every rule has a
guard and an action part. When a guard matches on the current graph repre-
sentation of the model, its action can be executed. Usually this action modifies
the graph, thereby enabling other rules. When multiple rules are enabled one
rule is randomly chosen to be executed.
The semantic specification of the production line language with action seman-
tics uses the same approach with rules consisting of a guard and action pair.
However, action semantics does not have the built-in mechanism of checking and
enacting rules, as it is in graph transformations. Therefore, the semantic equa-
tions for the production line language constructs a main loop that performs the
checking and enacting of rules explicitly. Action semantics has a run-time model
consisting of transients, bindings and storage. This run-time does not include
a representation of the input model. There is no static or modifiable represen-
tation of the input model like there is in the graph transformation approach.
Therefore, the parts from the model that are dynamic are explicitly modeled in
the semantic equations by creating bindings and storage for them.

The action semantic definitions for the production line language are in appendix
[[??? to be included when the as dsl/notation is done]]. The approach for spec-
ifying the semantics with action semantics will be illustrated by explaining a
run-time state of the action tree for the example hammer production line as
visualized in the simulator.

62

6.3. PRODUCTION LINE LANGUAGE

Figure 6.3.3: The hammer example action tree in the simulator

Fig 6.3.3 shows the action tree that has been compiled by applying the semantics
equations from the action semantic descriptions for the production line language
to the hammer example from Fig 6.3.2. The specification of the semantics for
the production line language with action semantics will be illustrated with the
three highlighted, numbered parts of Fig 6.3.3.

1. Explicit mapping of dynamic parts of the model into the bindings and
storage

2. Rule consisting of a guard and action for every machine and operator in
a production line

3. Main loop checking and enacting rules

1. Explicit mapping of dynamic parts of the model into the bindings and storage
Action semantics has explicit constructs for computational concepts such as
control flow, bindings and storage. The input model conforming to the meta-
model is not part of these concepts and the model cannot be referred to or used
neither statically nor dynamically. As can be seen in the workflow in Fig 4.3.2,
the compiler takes a model and semantic equations as input and constructs an
action tree, which is the semantic specification of the input model. In this com-
pilation step the input model is only statically used. Therefore the semantic
equations for machines and trays explicitly put their properties in the binding
and storage, the result of which can be seen at highlight 1 in Fig 6.3.3. These

63

CHAPTER 6. CASE STUDIES

properties named “ counter”, “ contents” and “ nelems” model the production
capacity of machines and the parts and total number of parts in a tray. This is
different from the approach of graph transformations that is used in [Rom07]
where the model is available and modifiable during execution. With action se-
mantics, parts of the model are explicitly modeled with bindings and storage.
This is the same approach that was used to specify the semantics of a variable
in the activity diagram example from section 6.2.

2. Rule consisting of a guard and action for every machine and operator in a
production line
In both the informal explanation of the semantics of the production line language
and the formal graph transformation approach used in [Rom07] the semantics
for a machine and operator are an action that can be performed when the
production line is in a certain state. Machines can produce a Head or Handle
when there is room in their output tray to put it in and their own capacity is
sufficient. Likewise an operator can move a part from one tray to the next when
there is such a part and a tray with sufficient room for the part. The operator can
also move to operate other trays when other trays have parts to move. Highlight
2 in Fig 6.3.3 shows these rules in the bindings and storage. The bindings is
named “rules” and in the storage it can be seen that the rules consists of a list
of pairs of abstractions. These two abstractions are the guard and action for a
rule. The semantic equations for machines and operators inserted the actions
into the action tree that create and store these abstractions. Thus the semantics
for machines and operators are expressed as creating a rule that has a guard
and action. The guard of a HeadGen machine uses the current state of bindings
and storage to check if the corresponding action is applicable. The guard checks
if its “HeadGen counter” capacity is greater than zero and if its output tray
has a “HeadGen nelems” count less than its capacity. The corresponding action
actually changes the state by reading and writing to the storage to set the
different counters and contents to the appropriate values.
Recall that abstractions are a construct from action semantics that enable ac-
tions to be stored in the bindings or storage and they can be retrieved and
enacted, as seen earlier in section 5.3.

3. Main loop checking and enacting rules
As said, the checking and enacting of rules is explicitly modeled. The actions
that model this are shown at highlight 3 in Fig 6.3.3. This whole highlighted
action below the before action (line 03) is a loop that checks all the rules that are
enabled and puts the corresponding actions in the transients (line 05-28). From
these enabled actions in the transients one abstraction is chosen (line 34) and
executed (line 36). This main loop is the basis of the whole semantic specification
of the production line language. It is therefore part of the top level semantic
equation named “meaning” that is applied to the root object in a production
line language model.

6.3.1 Possible improvements

This case study shows that action semantics can also be used for a DSML, which
has a different model of computation than the straightforward programming lan-
guages in earlier examples. The constructs from action semantics as defined by

64

6.3. PRODUCTION LINE LANGUAGE

Mosses and the adaptations for MDE from this work were sufficient to create
the semantic specification. This case study also showed possible improvements
to action semantics. These improvements are better support for storing parts of
a model in the storage, functional programming constructs to replace usages of
the unfolding construct and semantic equations for abstract classes.

Improvement 1: Storing parts of a model in the storage
Highlight 1 in Fig 6.3.3 shows the parts of the model that are dynamic need to
be explicitly mapped into the bindings and storage. In this case study this is
done be creating tokens such as “HeadGen counter”, which is a string combining
the name of machine and its property. In the semantic equations this appears a
couple of times with the following actions:

elaborate HeadGen [id:String, counter:int, min:Tray, mout:Tray] =
| | allocate a cell
| then
| | | store (yield $counter) (given cell-sort#1)
| | and
| | | bind ($id & "_counter") (given cell-sort#1))
...

Figure 6.3.4: Common pattern to create a binding for a property of an object

(give (stored-in (bound-to cell-sort ($id & "_counter")))

Figure 6.3.5: Common pattern to retrieve a binding for a property of an object

Fig 6.3.4 and 6.3.5 show the pattern of actions that is common when encod-
ing a property of an object into the bindings and storage. A cleaner approach
would be to introduce new actions and yielders in action semantics that can
create these bindings and memory cells in one step. For instance store-mapping
$counter to replace fig 6.3.4 and give (stored-mapping $id.counter) to replace fig
6.3.5. A whole new facet for action semantics that deals with mapping models
into the bindings and storage could be introduced.

Improvement 2: Functional programming constructs to replace usages of unfold-
ing
The semantic equations for the production line language use the unfolding loop
and list data construct from action semantics at various places. Most of these
loops are low level implementations of the map, filter and reduce (foldl) higher-
order functions from functional programming. Because the loops are low level
implementations, some of the actions that are used to initialize and break from
loops obscure the semantics the actions try to define. The semantics of the
higher order functions map, filter and reduce are well-defined and commonly un-
derstood, therefore using these constructs instead of explicit loops would result
in smaller semantic functions and action trees while defining the same semantics.

Improvement 3: Semantic equations for abstract classes
Finally, the production line language metamodel has a HeadGen and a Handle-

65

CHAPTER 6. CASE STUDIES

Gen machine which both inherit from the Generator abstract class, as shown
in Fig 6.3.1.These machines share the semantics of generating a part of a ham-
mer. This shared semantics is captured in the common superclass Generator. In
section 5.5 it is explained that semantic equations over abstract classes are not
possible. Therefore the semantic equations for the HeadGen and HandleGen are
identical, except in the places where a Head or Handle occurs. This is another
example why the other approaches concerning inheritance mentioned in section
5.5 should be explored.

6.4 Conclusion

The activity diagram and production line language case studies show that action
semantics for MDE can be used to define the semantics for both of these model-
ing languages. The activity diagram case study answers the first research ques-
tion (RQ1, section 1.3) affirmatively. Action semantics can indeed be adapted
for use with modeling languages. The production line language case study is
a domain specific modeling language with semantics on a higher level of ab-
straction than seen in earlier examples. MDE generally uses a higher level of
abstraction than programming languages, for which action semantics was orig-
inally designed. The successful production line language case study positively
answers the second research question (RQ2, section 1.3): Action semantics can
be used to specify the semantics of modeling languages that use a higher level of
abstraction than programming languages. The two case studies also introduce
possibilities for improvements. Most of these improvements are the introductions
of new actions and yielders to make the semantic equations more succinct.

66

7
Conclusion

7.1 Introduction

In this thesis we adapted the semantic framework of action semantics to specify
the execution semantics of modeling languages. The result is action semantics
for MDE that incorporates the changes and adaptations required to make action
semantics work with the higher level of abstraction within MDE in relation to
programming languages, where action semantics originated. The thesis provides
a compiler and a simulator that can compile and simulate semantic specifications
of models. The next section gives a summary of the thesis. Then the results are
evaluated and discussed. The final section discusses open issues and future work.

7.2 Summary

Chapter 1 outlines the motivation and background for this work. Model driven
engineering (MDE) is the software engineering practice of creating modeling
languages to solve problems in a particular domain. The semantics of a language,
whether it is a natural language such as English, a programming language or
a modeling language, specifies the meaning of a sentence, program or model
expressed in that language. Modeling languages require a semantic framework
to define their semantics with. The specification of the dynamic semantics for
modeling languages is an open issue, for which we propose to adapt action
semantics.
Chapter 2 introduces the basic concepts of MDE and semantic formalizations. A
modeling language created with MDE is defined by a metamodel and instances
of that language are models that conform to the metamodel. Metamodels de-
fine the structure of a modeling language in the same way a grammar does for
a programming language. Similarly, the notion of an abstract syntax tree in
programming languages is a model represented as a graph in MDE. The final
sections of chapter 2 introduce semantics. The formal definition of the semantics
of a language is required to be able to reason about a language. For this pur-
pose semantic framework needs to be unambiguous, complete and consistent.
The semantics for modeling languages created with MDE are used for reason-
ing and documentation, implementation, code generation and verification and
validation.
Chapter 3 introduces action semantics. Action semantics was created by Peter
Mosses in ’92 as a framework for the formal description of programming lan-

67

CHAPTER 7. CONCLUSION

guages. The aim of action semantics is to produce formal semantic specifications
that reflect ordinary computational concepts and are easy to read, understand
and compose. Thus a formalization framework that is both precise and prag-
matic. Action semantics uses the same approach from denotational semantics
with semantic equations that map constructs of a language onto its semantic
specification. In action semantics this mapping is onto action notation. Action
notation has the first class entities actions, data, yielders and a model for the
run time of a computation consisting of transients, bindings and storage. Ac-
tions and yielders all have a very specific purpose and can be combined with
combinators to express more elaborate semantics.
In chapter 4 action semantics itself is modeled with MDE. The action semantics
metamodel incorporates the changes to action semantics that are required for the
adaptation from programming languages to modeling languages. The metamodel
is also the center of the work flow of specifying the semantics for a modeling
language. The action semantic description of a language consisting of semantic
equations can be fed to the compiler together with a model conforming to the
language’s metamodel. The compiler will generate an action tree, which is the
semantic specification of the semantics of the model. The simulator can be used
to visualize the execution of action trees.
The adaptations to action semantics for MDE from its origin with program-
ming languages are explained in chapter 5. A common theme is the usages of
models within MDE which are graphs, while programming languages uses gram-
mars and abstract syntax trees. First denotations over models are introduced.
The biggest challenge is the possibility of cycles in the graph representation
of models. The solution to this challenge is to have the compiler recognize the
recursive application of semantic equations and to resolve this by inserting loop-
ing actions in the action tree to model these cycles. This approach reuses the
existing looping constructs from action semantics. Then how semantic equations
for multiplicities work is explained. Finally, the decision to only allow semantic
equations over concrete classes is elaborated.
Chapter 6 discusses two case studies of modeling languages with their semantics
defined with action semantics for MDE. Models of the activity diagram language
can contain cycles and is used to illustrates how the compiler solves the recursive
application of semantic equations. The production line language is a domain
specific modeling language and has a model of computation that is of a higher
level of abstraction than the earlier examples, which were mostly programming
languages modeled with MDE. Both case studies show that the adaptation of
action semantics from programming languages to MDE as shown in this thesis
can be used to define the semantics of modeling languages.

7.3 Evaluation

The aim of this thesis is to explore if action semantics can be applied to MDE
to provide formal, understandable, modular and usable semantic specification
of models. We will evaluate this work with relation to this aim by revisiting the
research questions that guided this effort.

• RQ 1: Can action semantics be applied to modeling languages in model
driven engineering, having its origin from programming languages?

68

7.3. EVALUATION

– RQ 1.1: Model driven engineering languages represent models as
graphs, programming languages use abstract syntax trees. What adap-
tations are needed for using graph structures?

– RQ 1.2: Programming languages use grammars whereas model driven
engineering uses metamodels. How can action semantics be used with
inheritance, attributes, references and multiplicities as used in meta-
models?

In the context of this work RQ 1 is answered affirmatively by the two successful
case studies in chapter 6. More specifically, MDE and modeling languages can
be seen as a higher level of abstraction in relation to using programming lan-
guages to built software systems. Action semantics was developed for use with
programming languages and therefore the differences between programming and
modeling languages needed to be addressed. Programming languages use gram-
mars and abstract syntax trees to represent programs, while modeling languages
use metamodels and models, which are graphs. With modeling languages there
is also a more stricter separation between the abstract and concrete syntax of
a language. The implications of working with graphs rather than trees is the
subject of RQ 1.1 and is answered in section 5.3. The recursive application of
semantics equations on trees, which is an approach action semantics shares with
denotational semantics, does not necessarily finish on models in modeling lan-
guage that are graphs. The solution to this problem is to have the compiler
insert the looping constructs from action semantics when an infinitely recursive
application of a semantic function is found. The compiler is part of the tools
and artifacts for action semantics for MDE (section 4.4).
The definition of a modeling language with its metamodel also includes in-
heritance, attributes, references and multiplicities, which are not used or used
differently in the definition of programming languages with grammars and syn-
tax. This is the subject of RQ 1.2 and is answered in sections 5.2, 5.4 and 5.5.
Action semantics uses semantic equations to map parts of a language onto its se-
mantic definitions. Semantic equations in action semantics for MDE are defined
for classes in a metamodel and this handles the issues of inheritance, attributes,
properties and multiplicities.

• RQ 2: Action semantics is a good fit for programming languages because
the entities map more closely to computational constructs than the math-
ematical approaches. Which level of abstraction of computational con-
structs in action semantics is needed for model driven engineering?

Peter Mosses, the creator of action semantics, introduced constructs to model
the common computational concepts of control flow, bindings and storage (see
chapter 3). In other semantic frameworks these constructs were often obscured
by a mathematical notation. The explicit run time model that includes bindings
and storage makes it straight forward, for instance, to define the semantics
of creating and using a variable. This makes action semantics a good fit for
programming languages where these types of constructs are often found. The
abstractions in a modeling languages do not necessarily match the run time
model in action semantics. Most of the example languages in this thesis are
programming languages modeled with MDE, for which action semantics worked
well. The production line language case study from section 6.3 is a modeling

69

CHAPTER 7. CONCLUSION

language with semantics on a higher level of abstraction. Also for this modeling
language action semantics proved to be expressive enough, although the case
study also showed possible improvements.

• RQ 3: What tool support is needed to allow action semantics to be used
in model driven engineering?

– RQ 3.1: How can the behavior or dynamic semantics of a model be
shown by using action semantics and a tool?

Action semantics for MDE is itself a modeling language. Therefore it is modeled
with MDE and this resulted in the action semantics metamodel (section 4.3).
Both the action semantic descriptions for a modeling language consisting of
semantic equations and action trees, which are the semantic specification for a
model, conform to the action semantics metamodel. Action semantics for MDE
is modeled with Ecore and can therefore be used with the Eclipse tool chain.
A compiler has been built that applies the semantic equations from an action
semantic specification of a modeling language to a model of that language and
creates an action tree. The compiler contains the algorithm to solve the possible
loops in the graphs representations of models (see section 5.3). The action tree is
the semantic specification of the model. The simulator (section 4.4) can be used
to run and visualize the action tree. Together the tool support consists of using
Ecore and the compiler and simulator. This tool support was sufficient to create
prototypes for the two case studies in chapter 6. Action trees are Ecore files and
can therefore serve as input to other tools or transformations, for instance code
generators.

7.4 Comparison to Related Work

This work consists of using action semantics to specify the semantics for mod-
eling languages. It will be compared here to related work regarding action se-
mantics and other semantic formalisms for specifying semantics for modeling
languages.

Action Semantics
Action semantics was created to specify the semantics of programming lan-
guages. The same tool support that is desired of semantic frameworks for mod-
eling languages has been realized for programming languages by using action
semantics. This work provides a compiler that can compile a semantic spec-
ification of a model from the semantic equations, the metamodel and model
as input. The result is an action tree that can be simulated in the simulator.
Actress [Bro92], Albaco [Mou99], Cantor [Pal92] and OASIS [Orb94] all pro-
vide tool support in the form of compiler generation based on action semantic
descriptions. They all create a compiler from the semantics and syntactic defi-
nition of a language as a stand-alone compiler for that language. The compiler
in our work interprets the semantic equations for a modeling language before
compiling a model of that language. The related work varies in the amount of
analysis that is done to create optimizations in both the compiler for a language
and the resulting bytecode or machine code for models. Our work does no opti-
mizations. The simulator from this work serves as an interpreter of action trees

70

7.4. COMPARISON TO RELATED WORK

and there is no compiler to compile the action trees into executable code.

Action semantics has first class entities for computational constructs such as
control flows, bindings and storage. This level of abstraction makes it easy to
create interpreters for the action notation used in action semantics. [Mou93] de-
scribes the “Action Notation Interpreter” (ANI) and [Rue93] implements action
semantics in Standard ML. The simulator in this work is similar to both. The
layout of the simulator with the before and after state of each action and the
highlighting of actions is similar to ANI. The implementation of the interpreter
in the simulator is based on the implementation in [Rue93] (see section 5.3).

Action semantics was chosen to explore as a semantic framework for modeling
languages because it aims to support composable semantic specifications for
languages. However, composing modeling languages and their semantic specifi-
cations is outside of the scope of this work. In [Doh03] Doh and Mosses succeed
in composing a programming language by composing small modules of pro-
gramming constructs, such as control flow and arithmetic, and their semantic
specification with action semantics. This work serves as a first step towards a
similar system for modeling languages.

The semantics for action semantics itself are specified using (modular) struc-
tural operational semantics [Plo81] by Mosses [Mos92, Mos99]. In [Wan97] action
semantics is synthesized with modular monadic semantics [Esp95]. In [Gay02]
monadic semantics are also used to create modular semantic specifications. This
work only uses the semantics of action semantics for the implementation in the
simulator. For other usages of semantic specifications with action semantics both
the structural operational semantics and modular monadic mappings should be
considered.

Other semantic formalisms for modeling languages
The semantic formalism of action semantics is characterized by the mapping
from an input model into an action tree. This input model is static and is
not part of the action tree. Any elements of a model that are used will need
to be explicitly mapped into the bindings and storage. Graph transformations
[Bar02, Hec06] takes a different approach. A model is represented as a graph
and modified by applying graph transformation rules on the graph. Where ac-
tion semantics provides a run time model with transients, bindings and storage,
using graph transformations these constructs need to be encoded within the
graph. Action semantics also focuses on modularity and composability of se-
mantic specifications, whilst graph transformations does not.

In [Rom07] graph transformations are used as to specify the semantics for the
production line language DSML (see the case study in section 6.3). The pro-
duction line language has a graphical syntax, which is a graph (see Fig 6.3.2).
The semantics for the modeling language is defined by creating graph transfor-
mation rules. When more than one graph transformation rule is applicable, one
is chosen randomly. In our approach we explicitly create a similar approach,
by creating a loop with action semantics by checking and enacting rules that
use the mapping in the bindings and storage. [Rom07] translates the graph
transformation approach into the term rewriting system Maude [Cla07]. Using

71

CHAPTER 7. CONCLUSION

Maude the semantic specification are used for verification and validation. Our
work does neither verification nor validation and mapping action semantics onto
other formalisms is not pursued.

As said, the semantics for action semantics itself are defined by Mosses with
structural operational semantics (SOS). In [Wol09] structural operational se-
mantics is used to specify the semantics of modeling languages. That work
faced the same difficulties between programming and modeling languages en-
countered in this work, particularly the usage of abstract syntax trees versus
models (graphs). SOS has labeled transitioning systems as its semantic domain.
The nodes are graph representations of models and the transitions are proof
trees constructed from rewriting rules. Mosses created action semantics after
finding it difficult to work with SOS, in this regard our approach provides the
same improvements for semantic specifications for modeling languages.

7.5 Discussion

Here we discuss our views on using action semantics as a semantic framework
to specify the semantics of modeling language created with MDE. The most
important constructs and concepts from action semantics and their application
within MDE discussed are: semantic equations, run time model, action notation,
action semantics for MDE, and modeling languages and semantics. Finally, some
thoughts on the development of modeling languages in general are discussed.
Semantic Equations
The adaptation of semantic equations to work with metamodels worked out
well. Specifying the semantics for a programming language or modeling lan-
guage requires a mapping from the definition of a language to its meaning. In
action semantics, this mapping is done with semantic equations, which Peter
Mosses took from denotational semantics. Semantic equations are adapted to
work with metamodels in this work and they work nicely with the concept of
a metamodel. The classes in a metamodel are a unit of abstraction and seman-
tic equations associate a class with its semantics at the same level of abstraction.

Run time model
Action semantic has an explicit run time model consisting of transients, bindings
and storage. In all of the examples in this thesis a run time and memory model
is required. Having a run time model defined by the semantic framework was
therefore a nice property of action semantics. It prevented the need to create an
ad-hoc encoding for such constructs, which was exactly what Peter Mosses tried
to avoid. In particular the notion of transients, which allows information to be
passed between actions, turned out be very useful. It is similar to the construct
in programming language of return values of functions, that allow for procedu-
ral abstraction and with it a way to structure the semantic specifications into
smaller and contained parts. The production line language shows that the run
time model can benefit from a way to store and manipulate elements of models
in the storage. It would follow the spirit of action semantics if new actions and
yielders would be created for this purpose, rather than encoding the constructs
with the existing actions and yielders.

72

7.5. DISCUSSION

Action notation
Action notation in action semantics are actions, data and yielders and the human
readable syntax for them. For readability, Peter Mosses created the notation of
nested actions by using trees with the root on the left and branching upwards
and downwards using vertical bars to indicate the branches (see for example
the action tree in Fig 3.3.3 and Fig 6.2.7). While this notation is nice to read
and understand, it is not written in the same way, because there is currently no
editor to support writing in this manner. This is also true for the syntax that
was created for the action semantics metamodel. This discrepancy between the
displaying and writing action specifications hinders usability. The English like
syntax for action semantics was chosen by Mosses to allow action specifications
to be intuitively understood. Actions with names such as before and give are
easy to understand, however, actions such as furthermore and thence certainly
will not immediately convey their proper meaning. This is of course true for
any language or notation and action semantics is no exception. But this does
tamper the human readability claim.

Action Semantics for MDE
Action semantics for MDE is a framework for the formal specification of mod-
eling languages. Within this framework action semantics is a domain specific
language (DSL) for semantics. While a modeling language aims to be a lan-
guage at the right level of abstraction in respect to the problem domain, action
semantics succeeds in being at the right level of abstraction to specify the se-
mantics of computations. In this respect action semantics and MDE combine
nicely.

Modeling languages and Semantics
The problem that initiated this work is the need for a way to specify the se-
mantics of modeling languages. The semantics for a language is a necessity for
any language and perhaps this need should be the starting point when deciding
to create a modeling language. Currently the creation of a modeling language
starts with a blank slate, an empty metamodel and thus no abstract syntax
and then also no semantic specifications. This has been the design process of
every modeling language in this thesis. However, a lot of these modeling lan-
guages shared a lot of concepts and semantics. For most metamodels a way
to express simple mathematical expression was recreated. It would be nice if a
modeling language could be constructed by composing existing metamodels and
their semantic specifications. This requires a way to compose both metamodels
and semantic specifications. This is the reason action semantics was chosen to
investigate as a semantic framework, as it allows semantic specifications to be
composed. Action semantics, modular monadic semantics and modular monadic
action semantics all agree on the need for combinators, functions and other
functional programming constructs to achieve modularity for semantic specifi-
cations [Wan97, Gay02]. For action semantics these constructs proved useful to
construct semantic specifications with actions as the smallest pieces. The expe-
riences with these constructs in this work suggest that the same constructs are
also suitable for composition of whole semantic specifications.

Notes on the development of modeling languages
This thesis uses a number of modeling languages; the example languages for

73

CHAPTER 7. CONCLUSION

which the semantics are defined with action semantics and the action semantics
modeling language itself (section 4.3).The following are notes on the experiences
of developing modeling languages. First, most of the example modeling language
shared a common subset of the language that models simple arithmetic. This
underlines the need for reusable and composable parts of modeling languages
(see previous section).
Second, the tool support for building modeling languages, provided by Ecore
and Eclipse, is not well suited for the development of modeling languages. The
generated editors and other support by Ecore and Eclipse work well for modeling
languages in their final state. However, they are very cumbersome to use during
the evolution and iterative development of a language. A change in a metamodel
require editors and artifacts to be regenerated and restarted, which is a nuance
in any development process.
Action semantics for MDE was prototyped as an embedded DSL because of the
lack of reusable building blocks for modeling languages and the poor tool sup-
port by Ecore and Eclipse. The host language for this DSL is the Clojure [Clj]
language, a Lisp for the JVM, with direct interoperability with the Java language
and libraries. Because it is a Lisp, it has support to work with abstract and con-
crete syntax in the form of s-expression in the language with meta-programming
facilities such as macros. Secondly, the benefit of embedding a DSL in a host
language is the availabilities of the constructs within the host language. For the
Clojure language these include not just arithmetic and function abstractions,
but also a collections framework including lazy sequences. These are abstrac-
tions and features which can be helpful for any modeling language, regardless
of its domain.
Finally, all of this is contained within one language, which supports dynamic
and iterative development with its editor, read-eval-print-loop and debugging
support. Reusable common abstractions, embedded language support with s-
expression and editor support allow the creator of a modeling language to focus
on building a language to solve problems in a domain with an iterative, ex-
ploratory development process. All of this is available when parenthesis are
preferred over angle-brackets.

Current state of this work
The current state of action semantics for MDE allows for the following usages.
The semantics for a modeling language, with an Ecore metamodel, can be speci-
fied by creating semantic equations. These semantic equations are built with the
action semantics modeling language, which has the action semantics metamodel
(see section 4.3). The compiler (section 4.4) compiles the semantic specification
for a model, in the form of an action tree. Action trees also conform to the action
semantics metamodel and are also Ecore files. The simulator (section 4.4) can
execute the action trees, either visually by stepping through the action tree or
on the command line showing only the final state. With this work the semantics
for a modeling language can be specified and models can be prototyped.

74

7.6. FUTURE WORK

7.6 Future Work

This section will outline enhancements and improvements to the current work
and further extensions upon this work. This thesis explored the use of action
semantics with MDE by adapting action semantics from its origin in program-
ming languages. As outlined previously in this conclusion this adaptation has
been successful. Future work for action semantics for MDE includes extending
action semantics with a facet for storing parts of a model, composing semantic
specifications, extended tool support and using action semantic specification for
usages other than prototyping and simulation.

Facet for model storage and modification
The action notations and facets from action semantics that are used in this work
are the facets, actions, data and yielders that are used in action semantics as
defined by Mosses. These existing facets proved sufficient to be able to specify
the semantics of modeling languages. The production line language case study
from section 6.3 shows that a way to store elements of a model in memory is
desired. This can be achieved by creating actions and yielders that can store
and manipulate elements of a model in the storage. Such enhancement should
be contained within a facet, which is the way Mosses categorizes actions, data
and yielders (see section 3.7). Action semantics aimed to be pragmatic by pro-
viding constructs which are abstractions of common constructs in programming
languages. A facet with actions and yielders specifically for models and model-
ing languages will make action semantics for MDE more pragmatic. Such a new
facet will provide first class entities to use elements of a model in the action
semantics run-time. This is similar to the first class entities that exist in action
semantics to enable working with variables in programming languages and their
mapping in memory and bindings.

Inheritance and Semantic Equations
This work currently only allows semantic equations over concrete classes (see
section 5.5). However, as noted, inheritance in a metamodel implies shared se-
mantics for an inheriting class and its super classes. Therefore, it would make
sense to be able to express semantic equations over abstract or super classes.
The production line language case study (section 6.3) shows how the lack of this
possibility leads to duplication in semantic equations. An alternative solution
to this challenge is therefore desired.

Case studies using I/O and concurrency
The purpose of most modeling languages is to ultimately create executable soft-
ware. Software will require a way to handle input and output events and possibly
concurrency. Action semantics provides facets with actions and yielders for this
purpose. These facets have not been used in any of the examples or case studies
in this work. Specifying the semantics of modeling languages that include these
constructs with action semantics should be explored.

Composable languages and semantics
One of the reason to explore action semantics as a semantic framework to specify
the semantics of modeling languages is the usage of action semantics for com-

75

CHAPTER 7. CONCLUSION

posable semantic specifications. Creating modeling languages by composition of
languages or language fragments is a research topic within MDE and this would
require composable semantic specifications for these languages as well.

Implement AS for MDE by following Modular Monadic Action Semantics
Extensibility, reusability, modularity and composability of semantics specifica-
tions is recurring theme and aim for semantic frameworks. Many semantic frame-
works [Esp95,Wan97,Gay02] use monads and monad transformers [Wad90] to
achieve these aims. Monads are not used explicitly in action semantics, although
action semantics uses related concepts in the form of combinators and actions
as functions. The synthesis of action semantics and modular monadic semantics
in modular monadic action semantics [Wan97] shows how action semantics can
be mapped onto and implemented by using monads. The implementation of the
subset of action semantics in this work is rather monolithic. An implementation
based on [Wan97] can retain the same syntax and readability of action seman-
tics, while the underlying implementation is more suitable to extensions. This
should work well with the other suggestions of future work, such as the creation
of a new facet for storing elements of models.

Traces in semantic specifications
An action tree is the semantic specification for a model. This action tree is the
result of the application of semantic equations to the model. An action tree has
no traces back to the model and semantic equations it originated from. Having
such traces would aid the development and debugging of semantic specifications
for modeling languages. The traces should include the origin of each action in
the action tree by showing the element from the input model and the semantic
equation that was applied to it. If the modeling language has a concrete syntax,
a trace to lines in the input file should also be included.

Extension of compiler and simulator with language interpreters
The tool support that is provided with this work includes a compiler and a simu-
lator. The compiler compiles the semantic specification of a model into an action
tree by using the semantic equations defined for the modeling language. The sim-
ulator can execute action trees, both visually and at the command line. Other
possible approaches include generating compilers and interpreters for modeling
languages. [Wat09] contains an overview of existing tools that generate compil-
ers and interpreters from action semantic descriptions and semantic equations
for programming languages. Any such tool for action semantics for MDE will
need to address the issue of possible cycles in models, which is handled by the
compiler provided with this work (see section 5.3).

Using Action Semantics for verification and validation
The specifications with action semantics are formal and therefore suitable for
reasoning and documentation. Within this work the semantic specifications for
modeling languages are only used for prototyping by using the simulator. The
semantic specifications can also be used for verification and validation, such
as reachability and model checking analysis. Using action semantics for MDE
for these purposes, will rely on existing approaches for action semantics and
its underlying theory of structural operation semantics as defined by Mosses or
modular monadic semantics from [Wan97].

76

References

[Bar02] Baresi, L., Heckel, R., Tutorial introduction to graph transforma-
tion: A software engineering perspective. In Proc. Graph Trans-
formation - First International Conference, Barcelona, Spain,
2002

[Bez05] Bézivin, J., On the unification power of models, Software and
Systems Modeling, Volume 4-2, pp. 171 - 188, 2005

[Bro92] Brown, D.F., de Moura, H.P., Watt, D.A., Actress: an action se-
mantics directed compiler generator. LNCS, vol. 641, pp. 95109.
Springer, 1992

[Che05] Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson E., Semantic
anchoring with model transformations. Springer LNCS, 2005

[Cla07] Clavel, M., Duran, F. et al.: All About Maude - A High-
Performance Logical Framework. LNCS, vol. 4350, Springer, Hei-
delberg, 2007

[Clj] Clojure, http://www.clojure.org
[Deu00] Van Deursen, A., Klint, P., and Visser, J., Domain-specific lan-

guages: an annotated bibliography. SIGPLAN Not. 35, 6, pp.
26-36, 2000

[Doh93] Doh, K.G., Schmidt, D.A., Action semantics-directed prototyp-
ing, Computer Languages, 19-4, pp. 213-233, 1993

[Doh03] Doh, K.G., Mosses, P.D., Composing programming languages by
combining action-semantics modules, Science of Computer Pro-
gramming, 47-1 pp. 3-36, 2003

[Eco] Ecore, http://www.eclipse.org/modeling/emf/?project=emf
[Esp95] David Espinosa. Semantic Lego. PhD thesis, Columbia Univer-

sity, 1995
[Fal98] Falkenberg, E., et al. A Framework of Information Systems Con-

cepts, The FRISCO report. 1998
[Gay02] Gayo, J.E.L., Reusable semantic specications of programming

languages, SBLP 2002 - VI Brazilian Symposium on Program-
ming Languages, 2002

[Har04] Harel, D., Rumpe. B., Meaningful modeling: Whats the semantic
of “semantics”?, Springer LNCS, 2004

[Hec06] Heckel, R., Graph transformation in a nutshell. Electr. Notes
Theor. Comput. Sci, 148(1), pp. 187198, 2006

[Hoa69] Hoare, C.A.R., An axiomatic basis for computer programming.
Communications of the ACM 12-10, 1969

[Ken02] Kent, S., Model Driven Engineering. In Proceedings of IFM2002,
LNCS 2335, Springer, 2002

[Kur05] Kurtev, I. Adaptability of Model Transformations, PhD Thesis,
University of Twente, 2005

77

[Laa09] Laarman, A.W.: An Ontology Based Metalanguage with Explicit
Instantiation. Masters thesis, University of Twente, 2009

[Lar06] de Lara, J., Vangheluwe, H., Defining visual notations and their
manipulation through meta-modelling and graph transformation.
Journal of Visual Languages and Computing 15, pp. 309-330,
2006

[Las00] Lassen, S., Mosses, P.D., Watt, D.A.: an introduction to AN-2:
the proposed new version of action notation. In Mosses, P.D.,
Moura, H. (eds.) Proceedings of the Third International Work-
shop on Action Semantics, pp.. 19-36, BRICS, 2000

[Mer05] Mernik, M., Heering, J., and Sloane, A. M., When and how to
develop domain-specific languages. ACM Comput. Surv. 37-4,
pp. 316-344, 2005

[Mil03] Miller, J., Mukerji, J. MDA Guide Version 1.0.1. Object Man-
agement Group, 2003

[Mou93] Moura, H., Action Notation Transformations. PhD thesis, Uni-
versity of Glasgow, 1993

[Mou99] Moura, H.P., Menezes, L.C., The ABACO System - An Algebraic
Based Action COmpiler. Lecture Notes In Computer Science, vol.
1548. pp. 527-529 Springer-Verlag, 1999

[Mos89] Mosses, P.D., Unied algebras and action semantics. STACS 1989.
LNCS, vol. 349, pp. 1735. Springer, Heidelberg, 1989

[Mos92] Mosses, P.D., Action Semantics, Cambridge Tracts in Theoretical
Computer Science 26, Cambridge University Press, 1992

[Mos96] Mosses, P.D.,Theory and practice of action semantics, MFCS ’96,
Proc. 21st Int. Symp. on Mathematical Foundations of Computer
Science, volume 1113 of LNCS, pp. 371, Springer-Verlag, 1996

[Mos99] Mosses, P.D., A Modular SOS for Action Notation, In Mosses,
P.D., Watt, D.A. (eds.) Proceedings of the Second International
Workshop on Action Semantics, BRICS, 1999

[OCL03] Object Constraint Language (OCL). OMG Document 03-10-14,
2003

[OMG03] MDA Guide version 1.0.1. Object Management Group, 2003
[Orb94] Orbeak, P., OASIS: An optimizing action-based compiler gen-

erator. In Proceedings of the 5th International Conference on
Compiler Construction, Edinburgh, Springer-Verlag, 1994

[Pal92] Palsberg, J., Provable Correct Compiler Generation, PhD thesis,
University of Aarhus, 1992

[Plo81] Plotkin, G.D., A structural approach to operational semantics.
Technical report, University of Aarhus, 1981

[Rom07] Romero, R., Rivera, J.E., Duran, F., Vallecillo, A., Formal and
tool support for model driven engineering with Maude. Journal
of Object Technology, 2007

[Rue93] Ruei, R., Slonneger, K., Semantic prototyping: Implementing ac-
tion semantics in Standard ML, University of Iowa, 1993

78

[Slo95] Slonneger, K., Kurtz, B., Formal Syntax and Semantics of Pro-
gramming Languages: A Laboratory Based Approach, Addison-
Wesley Longman, 1995

[Sto77] Stoy, J.E., Denotational Semantics: The Scott-Strachey approach
to programming language theory. The MIT Press series in com-
puter science. 1977

[Tof93] Toft, J.U., Feasibility of using RSL as the specification language
for the ANDF formal specification. Technical Report, DDC In-
ternational A/S, 1993

[Wad90] Wadler, P., Comprehending monads, Proceedings of the 1990
ACM Conference on Lisp and Functional Programmging, pp. 61-
78, Nice, France, 1990

[Wan97] Wansbrough, K., A modular monadic action semantics, Master
thesis, Dept. of Computer Science, University of Auckland, 1997

[Wat09] Watt, D.A., Action Semantics in Retrospect. In Mosses
Festschrift, LNCS 5700, Springer-Verlag, pp 4-20, 2009

[Wol09] Wolterink, T.J.L. Operational Semantics applied to Model
Driven Engineering. University of Twente, 2009

79

Appendix A: Action Semantic
Descriptions

Activity Diagram Language

01: meaning Diagram [nodes:Node*] =
denotate execute $nodes

02: execute [Node | Rest] [first:Node, rest:Node*] =
denotate execute $first

03: execute StartNode [next:Node] =
denotate execute $next

04: execute Assign [next:Node, e:Expr, varName:String] =
05: | | | denotate evaluate $e
06: | | and
07: | | | | give (cell-sort bound to $varName)
08: | | | otherwise
09: | | | | | allocate a cell
10: | | | | then
11: | | | | | | regive
12: | | | | | and
13: | | | | | | bind $varName (given cell-sort#1)
14: | then
15: | | store (given integer-sort#1) (given cell-sort#2)
16: before
17: | denotate execute $next

18: execute Test [e:Expr, next:Node, alternative:Node] =
19: | denotate evaluate $e
20: then
21: | | | check (given truth-sort#1) is (yield true)
22: | | then
23: | | | denotate execute $next
24: | or
25: | | | check (given truth-sort#1) is (yield false)
26: | | then
27: | | | denotate execute $alternative

28: execute StopNode [] = complete

29: evaluate Var [name:String] =
give (integer-sort stored in (cell-sort bound to $name))

81

30: evaluate Number [value:Int] =
give (yield $value)

31: evaluate BinaryExp [lhs:Exp, bop:BinaryOp, rhs:Exp] =
32: | | denotate evaluate $lhs
33: | and
34: | | denotate evaluate $rhs
35: then
36: | denotate evaluate $bop

37: evaluate Eq [] =
give (given integer-sort#1) is (given integer-sort#2)

38: evaluate Plus [] =
give (sum (given integer-sort#1) (given integer-sort#2))

82

Production Line Language

001: meaning Line [machines:Machine*, operator:Operator*, trays:Tray*] =
002: | | | | allocate a cell
003: | | | then
004: | | | | | regive
005: | | | | and
006: | | | | | bind "rules" (given cell-sort#1)
007: | | then
008: | | | store empty-list (given cell-sort#1)
009: | before
010: | | | denotate elaborate $trays
011: | | before
012: | | | | denotate elaborate $machines
013: | | | before
014: | | | | | | give empty-list
015: | | | | | then
016: | | | | | | | denotate elaborate_operable_trays $trays
017: | | | | | | then
018: | | | | | | | bind "Operable_trays" (given list-sort#1)
019: | | | | before
020: | | | | | denotate elaborate $operator
021: before
022: | unfolding ’mainloop
023: | | | furthermore
024: | | | | | | give (list-sort stored in (cell sort bound to "rules"))
025: | | | | | and
026: | | | | | | give empty-list
027: | | | | thence
028: | | | | | unfolding ’guardcheck
029: | | | | | | | | | regive
030: | | | | | | | | and-then
031: | | | | | | | | | | give (head-of (head-of (given list-sort#1)))
032: | | | | | | | | | then
033: | | | | | | | | | | enact (given abstraction-sort#1)
034: | | | | | | | then
035: | | | | | | | | | | | check (given truth-sort#3 is yield true)
036: | | | | | | | | | | and-then
037: | | | | | | | | | | | | give (tail-of (given list-sort#1))
038: | | | | | | | | | | | and-then
039: | | | | | | | | | | | | give (concat-list (given list-sort#2)

(unit-list (head-of (tail-of (head-of (given list-sort#1))))))
040: | | | | | | | | | otherwise
041: | | | | | | | | | | | give (tail-of (given list-sort#1))
042: | | | | | | | | | | and
043: | | | | | | | | | | | give (given list-sort#2)
044: | | | | | | | | then
045: | | | | | | | | | unfold ’guardcheck
046: | | | | | | otherwise
047: | | | | | | | give (given list-sort#2)

83

048: | | thence
049: | | | | | check (given list-sort#1 is empty-list)
050: | | | | then
051: | | | | | complete
052: | | | otherwise
053: | | | | | furthermore (choose (given list-sort#1))
054: | | | | thence
055: | | | | | | enact (given abstraction-sort#1)
056: | | | | | before
057: | | | | | | unfold ’mainloop

058: elaborate [Machine | Rest] [first:Machine, rest:Machine*] =
059: | denotate elaborate $first
060: and
061: | denotate elaborate $rest

062: elaborate [Machine] [first:Machine] =
063: denotate elaborate $first

064: elaborate [Machine Empty] [] =
065: complete

066: elaborate HeadGen [id:String, counter:int, min:Tray, mout:Tray] =
067: | | allocate a cell
068: | then
069: | | | store (yield $counter) (given cell-sort#1)
070: | | and
071: | | | bind ($id & "_counter") (given cell-sort#1))
072: before
073: | | | give (cell-sort bound to "rules")
074: | | then
075: | | | | regive
076: | | | and
077: | | | | | give (list-sort stored in (given cell-sort#1))
078: | | | | and
079: | | | | | | | denotate elaborate_guard $this
080: | | | | | | and
081: | | | | | | | denotate elaborate_action $this
082: | | | | | then
083: | | | | | | give (concat-list (unit-list (given abstraction-sort#1))

(unit-list (given abstraction-sort#2)))
084: | then
085: | | store (concat-list (given list-sort#2)

(unit-list (given list-sort#3))) (given cell-sort#1)

84

090: elaborate_guard HeadGen [id:String, counter:int, min:Tray, mout:Tray] =
091: give (closure of (abstraction of ()))
092: | | | give (integer-sort stored in

(cell-sort bound to ($id & "_counter")))
093: | | then
094: | | | give (greater-than (given integer-sort#1) (yield 0))
095: | and
096: | | | give (integer-sort stored in

(cell-sort bound to ($mout.id & "_nelems")))
097: | | then
098: | | | give (less-than (given integer-sort#1) (yield $mout.capacity))
099: then
100: | (give (both (given truth-sort#1) (given truth-sort#2))))))))

101: elaborate_action HeadGen [id:String, counter:int, min:Tray, mout:Tray] =
101: give (closure of (abstraction of ()))
102: | | | give (cell-sort bound to ($mout.id & "_contents"))
103: | | then
104: | | | | regive
105: | | | and
106: | | | | | give (list-sort stored in (given cell-sort#1))
107: | | | | then
108: | | | | | give (concat-list (given list-sort#1)

(unit-list (yield "head")))
109: | then
110: | | store (given list-sort#2) (given cell-sort#1)
111: and
112: | | | | give (cell-sort bound to ($mout.id & "_nelems"))
113: | | | then
114: | | | | | regive
115: | | | | and
116: | | | | | | give (integer-sort stored in (given cell-sort#1))
117: | | | | | then
118: | | | | | | give (sum (given integer-sort#1) (yield 1))
119: | | then
120: | | | store (given integer-sort#2) (given cell-sort#1)
121: | and
122: | | | | give (cell-sort bound to ($id & "_counter"))
123: | | | then
124: | | | | | regive
125: | | | | and
126: | | | | | | give (integer-sort stored in (given cell-sort#1))
127: | | | | | then
128: | | | | | | give (sum (given integer-sort#1) (yield -1))
129: | | then
130: | | | store (given integer-sort#2) (given cell-sort#1)

85

131: elaborate HandleGen [id:String, counter:int, min:Tray, mout:Tray] =
132: | | allocate a cell
133: | then
134: | | | store (yield $counter) (given cell-sort#1)
135: | | and
136: | | | bind ($id & "_counter") (given cell-sort#1))
137: before
138: | | | give (cell-sort bound to "rules")
139: | | then
140: | | | | regive
141: | | | and
142: | | | | | give (list-sort stored in (given cell-sort#1))
143: | | | | and
144: | | | | | | | denotate elaborate_guard $this
145: | | | | | | and
146: | | | | | | | denotate elaborate_action $this
147: | | | | | then
148: | | | | | | give (concat-list (unit-list (given abstraction-sort#1))

(unit-list (given abstraction-sort#2)))
149: | then
150: | | store (concat-list (given list-sort#2)

(unit-list (given list-sort#3))) (given cell-sort#1)

151: elaborate_guard HandleGen [id:String, counter:int, min:Tray, mout:Tray] =
152: give (closure of (abstraction of ()))
153: | | | give (integer-sort stored in

(cell-sort bound to ($id & "_counter")))
154: | | then
155: | | | give (greater-than (given integer-sort#1) (yield 0))
156: | and
157: | | | give (integer-sort stored in

(cell-sort bound to ($mout.id & "_nelems")))
158: | | then
159: | | | give (less-than (given integer-sort#1) (yield $mout.capacity))
160: then
161: | (give (both (given truth-sort#1) (given truth-sort#2))))))))

86

162: elaborate_action HandleGen [id:String, counter:int, min:Tray, mout:Tray] =
163: give (closure of (abstraction of ()))
164: | | | give (cell-sort bound to ($mout.id & "_contents"))
165: | | then
166: | | | | regive
167: | | | and
168: | | | | | give (list-sort stored in (given cell-sort#1))
169: | | | | then
170: | | | | | give (concat-list (given list-sort#1)

(unit-list (yield "handle")))
171: | then
172: | | store (given list-sort#2) (given cell-sort#1)
173: and
174: | | | | give (cell-sort bound to ($mout.id & "_nelems"))
175: | | | then
176: | | | | | regive
177: | | | | and
178: | | | | | | give (integer-sort stored in (given cell-sort#1))
179: | | | | | then
180: | | | | | | give (sum (given integer-sort#1) (yield 1))
181: | | then
182: | | | store (given integer-sort#2) (given cell-sort#1)
183: | and
184: | | | | give (cell-sort bound to ($id & "_counter"))
185: | | | then
186: | | | | | regive
187: | | | | and
188: | | | | | | give (integer-sort stored in (given cell-sort#1))
189: | | | | | then
190: | | | | | | give (sum (given integer-sort#1) (yield -1))
191: | | then
192: | | | store (given integer-sort#2) (given cell-sort#1)

193: elaborate Assembler [id:String, min:Tray, mout:Tray] =
194: | | give (cell-sort bound to "rules")
195: | then
196: | | | regive
197: | | and
198: | | | | give (list-sort stored in (given cell-sort#1))
199: | | | and
200: | | | | | | denotate elaborate_guard $this
201: | | | | | and
202: | | | | | | denotate elaborate_action $this
203: | | | | then
204: | | | | | give (concat-list (unit-list (given abstraction-sort#1))

(unit-list (given abstraction-sort#2)))
205: then
206: | store (concat-list (given list-sort#2) (unit-list (given list-sort#3)))

(given cell-sort#1)

87

207: elaborate_guard Assembler [id:String, min:Tray, mout:Tray] =
208: give (closure of (abstraction of()))
209: | | | give (integer-sort stored in

(cell-sort bound to ($min.id & "_nelems")))
210: | | then
211: | | | give (greater-than (given integer-sort#1) (yield 1))
212: | and
213: | | | | give (list-sort stored in

(cell-sort bound to ($min.id & "_contents")))
214: | | | then
215: | | | | | unfolding ’hashead
216: | | | | | | | | | regive
217: | | | | | | | | and
218: | | | | | | | | | give (head-of (given list-sort#1))
219: | | | | | | | then
220: | | | | | | | | | | check (given text-sort#2 is yield "head")
221: | | | | | | | | | then
222: | | | | | | | | | | give (yield true)
223: | | | | | | | | otherwise
224: | | | | | | | | | | give (tail-of (given list-sort#1))
225: | | | | | | | | | then
226: | | | | | | | | | | unfold ’hashead
227: | | | | | | otherwise
228: | | | | | | | give (yield false)
229: | | | | and
230: | | | | | unfolding ’hashandle
231: | | | | | | | | | regive
232: | | | | | | | | and
233: | | | | | | | | | give (head-of (given list-sort#1))
234: | | | | | | | then
235: | | | | | | | | | | check (given text-sort#2 is yield "handle")
236: | | | | | | | | | then
237: | | | | | | | | | | give (yield true)
238: | | | | | | | | otherwise
239: | | | | | | | | | | give (tail-of (given list-sort#1))
240: | | | | | | | | | then
241: | | | | | | | | | | unfold ’hashandle
242: | | | | | | otherwise
243: | | | | | | | give (yield false)
244: | | and
245: | | | | give (integer-sort stored in

(cell-sort bound to ($mout.id & "_nelems")))
246: | | | then
247: | | | | give (less-than (given integer-sort#1) (yield $mout.capacity))
248: then
249: | give (both (both (given truth-sort#1) (given truth-sort#2))

(both (given truth-sort#3) (given truth-sort#4)))

88

250: elaborate_action Assembler [id:String, min:Tray, mout:Tray] =
251: give (closure of (abstraction of()))
252: | | | | give (list-sort stored in

(cell-sort bound to ($min.id & 253"_contents")))
254: | | | and
255: | | | | give empty-list
256: | | then
257: | | | | unfolding ’removehead
258: | | | | | | | | regive
259: | | | | | | | and
260: | | | | | | | | give (head-of (given list-sort#1))
261: | | | | | | then
262: | | | | | | | | | check (given text-sort#3 is yield "head")
263: | | | | | | | | and
264: | | | | | | | | | give (concat-list (given list-sort#2)

(tail-of (given list-sort#1)))
265: | | | | | | | otherwise
266: | | | | | | | | | | give (tail-of (given list-sort#1))
267: | | | | | | | | | and
268: | | | | | | | | | | give (concat-list (given list-sort#2)

(unit-list (given text-sort#3)))
269: | | | | | | | | then
270: | | | | | | | | | unfold ’removehead
271: | | | | | otherwise
272: | | | | | | give (given list-sort#2)
273: | | | then
274: | | | | store (given list-sort#1)

(cell-sort bound to ($min.id & "_contents"))
275: | then
276: | | | | give (list-sort stored in

(cell-sort bound to ($min.id & "_contents")))
277: | | | and
278: | | | | give empty-list
279: | | then
280: | | | | unfolding ’removehandle
281: | | | | | | | | regive
282: | | | | | | | and
283: | | | | | | | | give (head-of (given list-sort#1))
284: | | | | | | then
285: | | | | | | | | | check (given text-sort#3 is yield "handle")
286: | | | | | | | | and
287: | | | | | | | | | give (concat-list (given list-sort#2)

(tail-of (given list-sort#1)))
288: | | | | | | | otherwise
289: | | | | | | | | | | give (tail-of (given list-sort#1))
290: | | | | | | | | | and-then
291: | | | | | | | | | | give (concat-list (given list-sort#2)

(unit-list (given text-sort#3)))
292: | | | | | | | | then
293: | | | | | | | | | unfold ’removehandle

89

294: | | | | | otherwise
295: | | | | | | give (given list-sort#2)
296: | | | then
297: | | | | store (given list-sort#1)

(cell-sort bound to ($min.id & "_contents"))
298: then
299: | | | | give (cell-sort bound to ($min.id & "_nelems"))
300: | | | then
301: | | | | | regive
302: | | | | and
303: | | | | | | give (integer-sort stored in (given cell-sort#1))
304: | | | | | then
305: | | | | | | give (sum (given integer-sort#1) (yield -2))
306: | | then
307: | | | store (given integer-sort#2) (given cell-sort#1)
308: | and
309: | | | | | give (cell-sort bound to ($mout.id & "_contents"))
310: | | | | then
311: | | | | | | regive
312: | | | | | and
313: | | | | | | | give (list-sort stored in (given cell-sort#1))
314: | | | | | | then
315: | | | | | | | give (concat-list (given list-sort#1)

(unit-list (yield "hammer")))
316: | | | then
317: | | | | store (given list-sort#2) (given cell-sort#1)
318: | | and
319: | | | | | give (cell-sort bound to ($mout.id & "_nelems"))
320: | | | | then
321: | | | | | | regive
322: | | | | | and
323: | | | | | | | give (integer-sort stored in (given cell-sort#1))
324: | | | | | | then
325: | | | | | | | give (sum (given integer-sort#1) (yield 1))
326: | | | then
327: | | | | store (given integer-sort#2) (given cell-sort#1)

328: elaborate [Tray | Rest] [first:Tray, rest:Tray*] =
329: | denotate elaborate $first
330: and
331: | denotate elaborate $rest

332: elaborate [Tray] [first Tray] =
333: denotate elaborate $first

90

334: elaborate Tray [id:String, nelems:int, parts:Part*] =
335: | | give empty-list
336: | then
337: | | | denotate elaborate $parts
338: | | then
339: | | | | | allocate a cell
340: | | | | and
341: | | | | | regive
342: | | | then
343: | | | | | store (given list-sort#2) (given cell-sort#1))
344: | | | | and
345: | | | | | bind ($id & "_contents") (given cell-sort#1)
346: and
347: | | allocate a cell
348: | then
349: | | | store (yield $nelems) (given cell-sort#1)
350: | | and-then
351: | | | bind ($id & "_nelems") (given cell-sort#1)

352: elaborate [Operator Empty] [] = complete

353: elaborate [Operator] [first:Operator] =
354: denotate elaborate $first

355: elaborate [Part Empty] [] = regive

356: elaborate [Part] [first:Part] =
357: denotate elaborate $first

358: elaborate [Part | Rest] [first:Part, rest:Part*] =
359: | denotate elaborate $first
360: then
361: | denotate elaborate $rest

362: elaborate Head [] =
363: give (concat-list (unit-list (yield "head")) (given list-sort#1))

364: elaborate Handle [] =
365: give (concat-list (unit-list (yield "handle")) (given list-sort#1))

366: elaborate Hammer [] =
367: give (concat-list (unit-list (yield "hammer")) (given list-sort#1))

91

367: elaborate Operator [id:String, from:Tray, to:Tray] =
368: | | | | | denotate mappings_tray $from
369: | | | | and
370: | | | | | denotate mappings_tray $to
371: | | | then
372: | | | | give (concat-list (unit-list (given list-sort#1))

(unit-list (given list-sort#2)))
373: | | and
374: | | | allocate a cell
375: | then
376: | | | store (given list-sort#1) (given cell-sort#2)
377: | | and
378: | | | bind ($id & "_current_trays") (given cell-sort#2)
379: before
380: | | | then (give (cell-sort bound to "rules"))
381: | | then
382: | | | | regive
383: | | | and
384: | | | | | give (list-sort stored in (given cell-sort#1))
385: | | | | and
386: | | | | | | | | denotate elaborate_transfer_guard $this
387: | | | | | | | and
388: | | | | | | | | denotate elaborate_transfer_action $this
389: | | | | | | then
390: | | | | | | | give (concat-list (unit-list (given abstraction-sort#1))

(unit-list (given abstraction-sort#2)))
391: | | | | | and
392: | | | | | | | | denotate elaborate_move_guard $this
393: | | | | | | | and
394: | | | | | | | | denotate elaborate_move_action $this
395: | | | | | | then
396: | | | | | | | give (concat-list (unit-list (given abstraction-sort#1))

(unit-list (given abstraction-sort#2)))
397: | then
398: | | store (concat-list (given list-sort#2)

(concat-list (unit-list (given list-sort#3))
(unit-list (given list-sort#4)))) (given cell-sort#1)

92

399: elaborate_transfer_guard Operator [id:String, from:Tray, to:Tray] =
400: give (closure of (abstraction of ()))
401: | give (list-sort stored in

(cell-sort bound to ($id & "_current_trays")))
402: then
403: | | | | give (integer-sort stored in

(head-of (tail-of (head-of (given list-sort#1)))))
404: | | | then
405: | | | | give (greater-than (given integer-sort#1) (yield 0))
406: | | and
407: | | | | | give (integer-sort stored in

(head-of (tail-of (head-of (tail-of (given list-sort#1))))))
408: | | | | and
409: | | | | | give (head-of (tail-of (tail-of (tail-of

(head-of (tail-of (given list-sort#1)))))))
410: | | | then
411: | | | | give (less-than (given integer-sort#1) (given integer-sort#2))
412: | then
413: | | give (both (given truth-sort#1) (given truth-sort#2))

414: elaborate_transfer_action Operator [id:String, from:Tray, to:Tray] =
415: give (closure of (abstraction of()))
416: | give (list-sort stored in

(cell-sort bound to ($id & "_current_trays")))
417: then
418: | | | | regive
419: | | | and
420: | | | | | give (head-of (tail-of (tail-of (head-of

(given list-sort#1)))))
421: | | | | then
422: | | | | | | | regive
423: | | | | | | and
424: | | | | | | | | | give (list-sort stored in (given cell-sort#1))
425: | | | | | | | | then
426: | | | | | | | | | | regive
427: | | | | | | | | | and
428: | | | | | | | | | | | give empty-list
429: | | | | | | | | | | and
430: | | | | | | | | | | | choose (given list-sort#1)
431: | | | | | | | then
432: | | | | | | | | unfolding ’removechosen
433: | | | | | | | | | | | regive
434: | | | | | | | | | | and
435: | | | | | | | | | | | give (head-of (given list-sort#1))
436: | | | | | | | | | then
437: | | | | | | | | | | | | check (given text-sort#3 is given text-sort#4)
438: | | | | | | | | | | | and
439: | | | | | | | | | | | | | give (concat-list (given list-sort#2)

(tail-of (given list-sort#1)))
440: | | | | | | | | | | | | and
441: | | | | | | | | | | | | | give (given text-sort#3)

93

442: | | | | | | | | | | otherwise
443: | | | | | | | | | | | | | give (tail-of (given list-sort#1))
444: | | | | | | | | | | | | and
445: | | | | | | | | | | | | | | give (concat-list (given list-sort#2)

(unit-list (given text-sort#4)))
446: | | | | | | | | | | | | | and
447: | | | | | | | | | | | | | | give (given text-sort#3)
448: | | | | | | | | | | | then
449: | | | | | | | | | | | | unfold ’removechosen
450: | | | | | then
451: | | | | | | | store (given list-sort#2) (given cell-sort#1)
452: | | | | | | and
453: | | | | | | | give (given text-sort#3)
454: | | then
455: | | | | | give (head-of (tail-of (tail-of (head-of

(tail-of (given list-sort#1))))))
456: | | | | and
457: | | | | | give (given text-sort#2)
458: | | | then
459: | | | | | | give (given cell-sort#1)
460: | | | | | and
461: | | | | | | | give (list-sort stored in (given cell-sort#1))
462: | | | | | | and
463: | | | | | | | give (unit-list (given text-sort#2))
464: | | | | then
465: | | | | | store (concat-list (given list-sort#2) (given list-sort#3))

(given cell-sort#1)
466: | and
467: | | | | | give (head-of (tail-of (head-of (given list-sort#1))))
468: | | | | then
469: | | | | | | regive
470: | | | | | and
471: | | | | | | | give (integer-sort stored in (given cell-sort#1))
472: | | | | | | then
473: | | | | | | | give (sum (given integer-sort#1) (yield -1))
474: | | | then
475: | | | | store (given integer-sort#2) (given cell-sort#1)
476: | | and
477: | | | | | give (head-of (tail-of (head-of (tail-of

(given list-sort#1)))))
478: | | | | then
479: | | | | | | regive
480: | | | | | and
481: | | | | | | | give (integer-sort stored in (given cell-sort#1))
482: | | | | | | then
483: | | | | | | | give (sum (given integer-sort#1) (yield 1))
484: | | | then
485: | | | | store (given integer-sort#2) (given cell-sort#1)

94

486: elaborate_move_guard Operator [id:String, from:Tray, to:Tray] =
487: give (closure of (abstraction of()))
488: | give (list-sort bound to "Operable_trays")
489: then
490: | unfolding ’hastarget
491: | | | | | regive
492: | | | | and
493: | | | | | | give (head-of (given list-sort#1))
494: | | | | | then
495: | | | | | | | | give (not ((given list-sort#1) is

(list-sort stored in (cell-sort bound to ($id & "_current_trays")))))
496: | | | | | | | and
497: | | | | | | | | | | give (integer-sort stored in

(head-of (tail-of (head-of (given list-sort#1)))))
498: | | | | | | | | | then
499: | | | | | | | | | | give (greater-than (given integer-sort#1)

(yield 0))
500: | | | | | | | | and
501: | | | | | | | | | | | give (integer-sort stored in

(head-of (tail-of (head-of (tail-of (given list-sort#1))))))
502: | | | | | | | | | | and
503: | | | | | | | | | | | give (head-of (tail-of (tail-of

(tail-of (head-of (tail-of (given list-sort#1)))))))
504: | | | | | | | | | then
505: | | | | | | | | | | give (less-than (given integer-sort#1)

(given integer-sort#2))
506: | | | | | | then
507: | | | | | | | give (both (given truth-sort#1)

(both (given truth-sort#2) (given truth-sort#3)))
508: | | | then
509: | | | | | | check (given truth-sort#2) is (yield true)
510: | | | | | and
511: | | | | | | give (yield true)
512: | | | | otherwise
513: | | | | | | give (tail-of (given list-sort#1))
514: | | | | | then
515: | | | | | | unfold ’hastarget
516: | | otherwise
517: | | | give (yield false)

95

518: elaborate_move_action Operator [id:String, from:Tray, to:Tray] =
519: give (closure of (abstraction of()))
520: | | | give (list-sort bound to "Operable_trays")
521: | | and
522: | | | give empty-list
523: | then
524: | | unfolding ’findmoves
525: | | | | | | regive
526: | | | | | and
527: | | | | | | | give (head-of (given list-sort#1)))
528: | | | | | | then
529: | | | | | | | | | give (not (given list-sort#1) is

(list-sort stored in (cell-sort bound to ($id & "_current_trays")))))
530: | | | | | | | | and
531: | | | | | | | | | | | give (integer-sort stored in

(head-of (tail-of (head-of (given list-sort#1)))))
532: | | | | | | | | | | then
533: | | | | | | | | | | | give (greater-than (given integer-sort#1)

(yield 0))
534: | | | | | | | | | and
535: | | | | | | | | | | | | give (integer-sort stored in (head-of

(tail-of (head-of (tail-of (given list-sort#1))))))
536: | | | | | | | | | | | and
537: | | | | | | | | | | | | give (head-of (tail-of (tail-of (tail-of

(head-of (tail-of (given list-sort#1)))))))
538: | | | | | | | | | | then
539: | | | | | | | | | | | give (less-than (given integer-sort#1)

(given integer-sort#2))
540: | | | | | | | then
541: | | | | | | | | give (both (given truth-sort#1)

(both (given truth-sort#2) (given truth-sort#3)))))))
542: | | | | then
543: | | | | | | | | check (given truth-sort#3) is (yield true)
544: | | | | | | | and
545: | | | | | | | | | give (tail-of (given list-sort#1))
546: | | | | | | | | and
547: | | | | | | | | | give (concat-list (given list-sort#2)

(unit-list (head-of (given list-sort#1))))
548: | | | | | | otherwise
549: | | | | | | | | give (tail-of (given list-sort#1))
550: | | | | | | | and
551: | | | | | | | | give (given list-sort#2))
552: | | | | | then
553: | | | | | | unfold ’findmoves
554: | | | otherwise
555: | | | | give (given list-sort#2)
556: then
557: | | choose (given list-sort#1)
558: | then
559: | | store (given list-sort#1)

(cell-sort bound to ($id & "_current_trays"))

96

560: elaborate_operable_trays [Tray Empty] [] =
561: regive

562: elaborate_operable_trays [Tray | Rest] [first:Tray, rest:Tray*] =
563: | denotate elaborate_operable_trays $first
564: then
565: | denotate elaborate_operable_trays $rest

566: elaborate_operable_trays [Tray] [first:Tray] =
567: denotate elaborate_operable_trays $first

568: elaborate_operable_trays Tray [next:Tray] =
569: | | | regive
570: | | and
571: | | | | | denotate mappings_tray $this
572: | | | | and
573: | | | | | denotate mappings_tray $next
574: | | | then
575: | | | | give (concat-list (unit-list (given list-sort#1))

(unit-list (given list-sort#2)))
576: | then
577: | | give (concat-list (given list-sort#1)

(unit-list (given list-sort#2)))
578: otherwise
579: | regive

580: mappings_tray [Tray Empty] [] = fail

581: mappings_tray Tray [id:String, capacity:int] =
582: | | | | give (yield $id)
583: | | | and
584: | | | | give (cell-sort bound to ($id & "_nelems"))
585: | | then
586: | | | give (concat-list (unit-list (given text-sort#1))

(unit-list (given cell-sort#2)))
587: | and
588: | | | | give (cell-sort bound to ($id & "_contents"))
589: | | | and
590: | | | | give (yield $capacity)
591: | | then
592: | | | give (concat-list (unit-list (given cell-sort#1))

(unit-list (given integer-sort#2))))))
593: then
594: | give (concat-list (given list-sort#1) (given list-sort#2)))))

97

Appendix B: Action Trees

Activity Diagram Language - Nested Loop 1

99

100

Activity Diagram Language - Nested Loop 2

101

102

Appendix C: CD

This thesis is accompanied with a compact disc that contains software, source
code, documentation and other files:

1. Thesis in Digital Form

Path /thesis/thesis.pdf

Description This thesis in digital pdf format.

2. Tools

Path /tools/

Description The compiler and simulator. Includes compiled versions and
all source code files.

3. Example Modeling Languages

Path /examples/

Description The example modeling languages; the Calculator and Pro-
duction Line Language. Includes the metamodels, example models
and the action semantic descriptions.

103

