
Marten Sijtema

Managing Variability in Model
Transformations for

Model-driven Product Lines
Extending the ATL model transformation language with

variability management capabilities

Thesis for the degree of
Master of Science

(Computer Science, track Software Engineering)

Dr. I. Kurtev
Graduation committee Dr. H. Sözer

I. Galvão Lourenco da Silva, MSc.

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente, Enschede, The Netherlands

Abstract

Various approaches show that Software Product Lines (SPLs) can be imple-
mented using the Model-Driven Engineering (MDE) concept of successive model
refinements. An important aspect of Product Line Engineering (PLE) is the
management of variability.

SPLs can build a set of member products which are subject to variability.
That is, the member products will have a varying set of features integrated.
Since model transformations can be used to instantiate and integrate compo-
nents of a system, they should also integrate the features.

This thesis proposes a framework to let the model transformation language
ATL manage variability. The approach is to extend ATL (called ATL’) with
a different type of rule called variability rule. This new type of rule works
in combination with a separate feature model and an annotation model. The
semantics is that a variability rule is only called if the corresponding feature is
selected in the feature model, or the matched source element is annotated with
the feature, as deduced from the annotation model.

The feature model and the annotation model form the drivers for the trans-
formation sequence; they are used for the configuration of features. Specifically,
the feature model defines the set of selected features, and the annotation model
provides a more granular way of specifying feature integration on a per-class
basis. The application engineering phase – the product derivation – is then
fully automated.

A compiler was written as a higher-order transformation (HOT), to imple-
ment the semantics of variability rules. This HOT compiles an ATL’ model
back to an ATL model. The HOT can be chained in front of a transformation
step, and thus be regarded as a pre-processor.

Throughout the thesis, a transformation sequence that can generate a fam-
ily of web-based, data-centric information systems with basic Create, Read,
Update, Delete (CRUD) support, is used as a case study. It is the context
for all the experiments and examples regarding variability. The transformation
sequence generates member products from an input (meta) model, the domain
model. The domain model describes a particular business domain and is an
instance of the Ecore meta meta model. Every generated information system
will provide means to store and manage data as described in the domain model,
and integrate a varying set of features.

Our solution ensured separation of concerns, modularity, and higher main-
tainability. The variability rules have similar quality characteristics as normal
rules, and its semantics follow the ATL philosophy of modular, declarative rules,
and implicit execution order.

i

Acknowledgements

I would like to use this page as an opportunity to thank some people for their
help and support.

First and foremost I would like to thank my first supervisor, Ivan Kurtev.
My first inspiration for a model-driven product line was during his course on
Model-driven Engineering. The idea of building a model-driven product line,
and doing ‘some research’ on it, was OK with Ivan, and he allowed me to do a
bottom-up research to see where the limitations were.

It turned out to be variability management, a very interesting topic, and
during the process his constructive input really helped me to stay on track. We
had a very nice informal way of working, and he helped me out with technical
questions very quickly.

He also encouraged me to write a paper about one of the results. The paper
got accepted for the MtATL 2010 workshop in Malaga, Spain. So we travelled
there, and had a good time.

In Malaga, I spoke with Frédérique Jouault, one of the authors of the ATL
language. He helped me out with a lot of questions about language intricacies,
and with some implementation issues. So, thanks to him as well.

Thanks, also, to Hasan Sözer and Ismênia Galvão Lourenco da Silva, for
taking the time to read and review this thesis, and participating in the commit-
tee.

I would also like to thank my parents and the rest of the family for being
supportive and interested in my life as a student. They wanted to make sure
that I graduated one day, and I am glad that I succeeded in this.

My final thanks goes out to all my friends, and in particular my girlfriend,
Irene. They made my life as a student so fun, entertaining and interesting,
especially when not at the university campus.

Now, the adventure begins. Starting with building a company around model-
driven engineering and software product lines, with my good friend and fellow
student Thijs ten Hoeve. I am looking forward to use these results from aca-
demic research and put it into practice as an entrepreneur!

Marten Sijtema, September 2010, Enschede

iii

Table of Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Background . 1

1.1.1 Model-driven Engineering 1
1.1.2 Product Line Engineering 2
1.1.3 Using MDE technology for building a product line 2

1.2 Problem statement . 3
1.3 Research objectives . 5
1.4 Contributions . 5
1.5 Outline . 5

2 Basic Concepts 7
2.1 Introduction . 7
2.2 Model-driven Engineering . 7

2.2.1 Everything is a model: models, meta models, and meta
meta models . 8

2.2.2 Implementations of the model stack 9
2.2.3 Model transformations . 10
2.2.4 Step-wise model refinement 11
2.2.5 Transforming models from one domain to another 11
2.2.6 Model injection and extraction 11
2.2.7 Domain-specific Languages and MDE 12

2.3 Product line Engineering . 12
2.3.1 What is a Software Product line? 12
2.3.2 Domain Engineering . 12
2.3.3 Application Engineering . 13
2.3.4 Software Platform . 13
2.3.5 Variability Management . 13

2.4 Using MDE for PLE . 16
2.5 Conclusions . 16

3 Case-study: Administrative, Web-based, Information Systems 17
3.1 Introduction . 17
3.2 Requirements . 18
3.3 Transformation sequence . 19

3.3.1 Relation to Product Line Engineering (PLE) 22
3.4 Conclusions . 23

v

vi Table of Contents

4 Variability Management in Transformation Sequences 25
4.1 Introduction . 25
4.2 Requirements of our CRUD platform 26
4.3 Classification of variabilities in the transformation Sequence . . . 26

4.3.1 Source model independent variability 27
4.3.2 Source model dependent variability 27

4.4 Feature diagrams for the case . 28
4.5 Annotation models . 29
4.6 Conclusions . 30

5 Extending ATL with Variability Rules 31
5.1 Introduction . 31
5.2 Concept and Motivation . 31
5.3 Problems in the current ATL . 32

5.3.1 Solution 1 — Using Rule Inheritance 33
5.3.2 Solution 2 — Adding a feature model 34
5.3.3 Solution 3 — Matching on the Feature Model Elements . 35

5.4 Managing Source Model Independent Variability 36
5.4.1 Semantics . 36
5.4.2 Implementing Variability Rules using a Higher-order Trans-

formation . 37
5.4.3 Extending the Concrete Syntax using TCS for Indepen-

dent Variability . 39
5.5 Managing Source Model Dependent Variability 40

5.5.1 Extending Syntax of Variability Rules Further 41
5.5.2 Resulting Code after Running the HOT 42
5.5.3 The new ATL’ Meta Model and TCS template 44
5.5.4 Annotation of the models — A separate annotation model 45

5.6 Conclusions . 46

6 Usage Guidelines for Variability Rules 49
6.1 Introduction . 49
6.2 Situations in where to use or not to use variability rules 49

6.2.1 Scenario 1 — Feature realization artefacts introduced in
MM n . 49

6.2.2 Scenario 2 — Feature realization artefacts introduced in
MM n+1 . 52

6.2.3 Scenario 3 — Feature realization artefacts introduced in
MM n–1 . 52

6.2.4 Recommended scenario . 54
6.3 Setting up a transformation sequence to handle variability 55
6.4 Step 1 — Model variability in feature model 55
6.5 Step 2 — Model variability in meta models 55
6.6 Step 3 — Define variability rules for each feature 56

6.6.1 Case A: independent variability 56
6.6.2 Case B: Dependent variability 56

6.7 Step 4 — Define annotations in an annotation model 58
6.8 Conclusions . 58

Table of Contents vii

7 Evaluation 59
7.1 Introduction . 59
7.2 Quality Properties of Variability Rules 59

7.2.1 Expressiveness . 59
7.2.2 Modularity . 60
7.2.3 Maintainability and Usability 60
7.2.4 Performance . 60
7.2.5 Reusability and Adaptability 61
7.2.6 Conclusions of the quality properties 61

7.3 Evaluation of the Feature models and Annotation models 62
7.3.1 Feature model . 62
7.3.2 Annotation model . 62
7.3.3 Checking feature selection validity for source model de-

pendent variability . 62
7.4 Limitations and future improvements 63
7.5 Comparison to other Approaches 65

7.5.1 Variability Management in a Model-Driven Software Prod-
uct Line . 65

7.5.2 Weaving Variability into Domain Metamodels 65
7.5.3 Variability within Modeling Language Definitions 66
7.5.4 Leveraging model transformations by means of annotation

models . 66
7.5.5 Aspect-Oriented Model-Driven Software Product Line En-

gineering . 67
7.5.6 Traceability between Feature Model and Software Archi-

tecture . 67
7.5.7 FeatureMapper: Mapping Features to Models 68
7.5.8 Using Feature diagrams with Context Variability to model

Multiple Product Lines for Software Supply Chains 68
7.6 Conclusions . 69

8 Conclusion 71
8.1 Summary . 71
8.2 Answers to the Research Questions 72

8.2.1 Applications of this Framework in other contexts 73
8.3 Future Work . 74
8.4 Final Remarks . 74

A Appendix: Compact Disc 79

List of Figures

1.1 Chapter dependencies . 6

2.1 Model stack in MDE . 8
2.2 Feature model meta model . 14
2.3 Cars feature model . 15
2.4 Legenda for Feature models . 15

3.1 Sample input model . 19
3.2 Screenshot of generated application 20
3.3 Transformation sequence Case . 21
3.4 CRUD system metamodel . 22

4.1 Feature model with independent variabilities 28
4.2 Feature model with dependent variabilities 29

5.1 An example ATL transformation scenario 33
5.2 The point where the ATL meta model was extended 38
5.3 Higher order transformation: ATL’ to ATL 38
5.4 Effect of running the HOT with independent variability rules . . 39
5.5 Extended transformation sequence with higher-order transforma-

tion . 40
5.6 Controller-View part of target meta model 41
5.7 The point where the ATL meta model was extended further . . . 44
5.8 Annotation meta model . 46

6.1 m-1 step transformation sequence 50
6.2 Feature realization artifact(s) introduced in MM n 51
6.3 Feature realization artifact(s) introduced in MM n+1 53
6.4 Feature realization artifact(s) introduced in MM n-1 54
6.5 Preferred structure of target meta model with source model de-

pendent variability . 57

ix

1
Introduction

1.1 Background

1.1.1 Model-driven Engineering

The classical way for understanding complex real-world problems, is to build a
model. Essentially, a model is a simplification of the real-world problem, that
is, it is more abstract. Raising the level of abstraction helps understanding the
complex world. A model can be anything, from a mathematical equation to a
graph-like diagram to a tangible object. In software engineering, the concept
of MDE was introduced to continue the trend of raising the level of abstraction
[AK03]. MDE facilitates in bridging the gap between software models with a
high level of abstraction and program code, which contains all the nitty-gritty
details and has a very low level of abstraction. This means that in MDE, models
play a direct role in software engineering, having models that are interpretable,
and transformable by machine [Ken02].

A statement used for MDE is: “In MDE, everything is a model” [Béz05].
This means that every artefact in the MDE process can be regarded (and inter-
preted) as a model, be it manually or in an automated fashion.

Without MDE, software engineers start out with models, and eventually end
up with program code. Programmers would interpret a model manually, and
write program code that corresponds to the model, but has more details added
– a lower abstraction level. Often, this gap is very large. MDE technologies try
to automate the process of lowering the abstraction level, by providing facilities
to refine models in a step-wise fashion.

A key MDE concept to achieve this is called model transformations. As
the term implies, models are step-wise transformed (or refined) from a high
abstraction level to a lower one, eventually reaching the abstraction level of
program code, or at least a level where it can be executed directly. A model
transformation is written in a model transformation language like ATL [JK06],
or MediniQVT [IKV].

1

2 Chapter 1. Introduction

In recent years, there are different applications of model transformations,
other than step-wise refinement. For instance, it is used to transform models
from one domain to one of another domain.

With MDE, one has to create (or reuse) a meta model for each abstraction
level, to be able to write a model transformation. A model can be developed
using a modeling language. A modeling language uses a meta model which
specifies the ‘grammar’ for each model. That is, a meta model defines the
structure which all models created with the modeling language follow. We say
that if a model conforms to a meta model, it is an instance of a meta model.

1.1.2 Product Line Engineering

When building a family of software products, one can apply the concepts of PLE
[PBvdL05]. A product family is a set of products that share a common base
in terms of functionality or architecture, but differ on certain aspects. In other
words, the members of a product family have commonalities and variabilities.
PLE provides methodologies to effectively capture and reuse the common parts,
and also provide techniques to manage the variable part.

To do so, building a product line consists of two phases: domain engineering
and application engineering. In the domain engineering phase, all the com-
mon parts (ie. models, modules, etc.) are developed, as well as models that
describe the variable parts and their relations. These models, documents and
modules are called domain artefacts. The development of domain artefacts is
done systematically, with the focus on reusability. This means that developed
components have to be generic.

In the application engineering phase, different common parts and variable
parts from the domain engineering phase are assembled into one application.

One of the hardest parts is the management of variability. Often a feature
model is defined which describes all the possible options that a member of the
family can have [BPSP04]. Ideally, the feature model is separate, and used
to configure the final product, after which a family member can be derived
automatically.

The concepts of PLE and MDE can be used together. The automatic prod-
uct generation can be quite complex because of feature integration, and MDE
technologies have proven to be well-suited for integrating common parts and
selected variants [GPA+07, VG07].

1.1.3 Using MDE technology for building a product line

Research work from the past has shown us [GPA+07, VG07] that activities,
artefacts and infrastructure of Product-Line Engineering (PLE) can be executed
with concepts, technologies and methodologies from Model-driven Engineering
(MDE). This thesis describes a (bottum-up) research that starts with a product
line built with a proven MDE paradigm: step-wise model refinement. Then, a
prominent problem was identified with this approach: variability management
was hard.

The product line in this thesis consists of web-based, data-centric informa-
tion systems, with basic support for the data operations Create, Read, Update,
Delete. For instance, a typical member product could be a basic Customer-
Relations Management (CRM) system, where customer/relations could be dis-

1.2. Problem statement 3

played, added, updated, or removed. Note that it does not matter what the
data is: it could be customers, persons, appointments, inventory, etc. Chapter
3 describes the example case in more detail.

The product line is built with a MDE infrastructure, that is, it is a trans-
formation sequence. The transformation sequence, and its elements (ie. models
and meta models) can be regarded as a software platform, which is a common
term from PLE. Family products are automatically derived by automated step-
wise model refinement. In the initial version of the software platform, one could
build a model (a class diagram) containing the elements that should be man-
ageable in the final product (in the CRM case it would contain a Customer and
a Relations class for instance). In other words, one should model the domain
logic of the eventual system in a class diagram. This model would be the input
of the transformation sequence, which step-wise refines it until working code is
generated.

1.2 Problem statement

The transformation sequence has a main problem in its inability to integrate
variable components into a final product. Specifically, given a fixed input model,
there would be one possible derived product. In practice, however, feature
configuration is important. For instance whether or not to integrate a search
module, what kind of database technology to use, what kind of user interface
to use to display the data, etc.

Variability management (with a fixed input model) in the context of our
transformation sequence is the main focus of this thesis. We try to solve the
problem for the more general concept of step-wise model refinement; given a
fixed input model x and a step-wise refining transformation sequence t, a set
of possible products S should be derivable. Furthermore, elements (ie. models,
transformations, etc.) of t should have a good quality characteristics.

The quality properties of the model transformation definitions should be the
following:

• maintainability and ease-of-use, by using declarative code as much as pos-
sible, thus avoiding imperative code as much as possible,

• modularity, using modular constructs as much as possible, which should
also improve reusability,

• extensibility, a transformation definition should be easily extended with
the integration of new features,

• separation of concerns: concern of configuration separated from model
transformations.

We will use the popular open-source model transformation language ATL
for specifying our model transformations. The following problem statement is
addressed:

Problem Statement. In MDE-based Product-lines, many variable com-
ponents should be integrated/instantiated by executing model transformations.

4 Chapter 1. Introduction

The popular model transformation language ATL is not capable of expressing
this whilst conserving the quality properties stated above.

The problem statement leads to the following research question.

Main Research Question. How to manage variability in ATL model trans-
formation definitions in MDE-based product lines that derive products by step-
wise refinement?

The main research question does not only apply to our transformation se-
quence, but any step-wise refinement transformation sequence that needs to
integrate variable parts. It is assumed, however, that ATL is used as the model
transformation language. Furthermore, the running example case is used as a
starting point in assessing the practical needs and problems, which means that
it is a bottom-up research.

The main research question can be divided into three sub-questions.

RQ1. What kinds of variability are presented in product members of model-
driven product lines?

The goal is to identify and classify variability that exist in the product
members. The eventual product is what counts, thus we use variability needs
in products as a starting point. Once, from a ‘business’ point of view, there is
insight in the potential variable requirements between the generated products,
the second sub-question emerges.

RQ2. How can the MDE infrastructure be adapted to manage these types of
variability, conserving the quality characteristics from above?

In other words, what technologies, methodologies, (meta) models or guide-
lines are needed to manage the variability efficiently? The result needs to be im-
plemented, achieving better variability management in the product line. There
will be an evaluation of to what extent this was achieved.

The previous question can be made more specific, by applying it to ATL,
the model transformation language. An assessment needs to be done to what
extent ATL is suitable for variability management. Limitations of ATL need to
be overcome on this subject. This leads to the final research question:

RQ3. What are the limitations of ATL when it comes to variability man-
agement, and how can these be overcome?

1.3. Research objectives 5

1.3 Research objectives

The main objective is a transformation sequence that is able to manage (rele-
vant) variability efficiently. To do so, the infrastructure is examined, and lim-
itations are identified. However, it is essential that the solution could also be
applied in other situations. That is, the solution should be reusable for other
transformation sequences that need to manage variability.

1.4 Contributions

We now list the main contributions of this thesis.

• By answering RQ1, we created a classification of relevant variability that
occurs in model transformations in model-driven product lines. We iden-
tified two types of variability: source model dependent, and source model
independent variability, which will be explained in Chapter 4

• An enhanced MDE infrastructure was developed, with means for managing
variability in an efficient way, answering RQ2.

• Answering RQ3 pinpointed the problem of ATL in its ability to manage
variability, and provided a solution for this, in the form of variability rules.

• To accommodate variability rules, we created a feature model editor, an
annotation model editor, and a HOT. The HOT interprets variability
rules, and implements the semantics. The status of the package is cur-
rently a proof-of-concept, but is usable.

• Along with these artefacts, we defined a set of usage guidelines, that is, a
recipe for using the infrastructure. This is described in Chapter 6.

• The usage guideline shows that our concept can work in any transforma-
tion sequence that involves variability.

1.5 Outline

• Chapter 2 introduces the basic concepts used throughout the thesis. It
will explain key concepts within MDE and PLE and some applications of
these engineering disciplines.

• Chapter 3 explains the product line example that is used throughout this
thesis. Since it is used as context for all the examples, and since it comes
from the business, this chapter will provide the context and motivation.

• Chapter 4 explains that variability that occurs in the example product
line. It is not a general chapter about variability management, but geared
towards the product line of this research. It identifies what types of vari-
ability occurs in the product members of the product line.

• Chapter 5 explains the problem with the transformation sequence as it was
at the beginning of the research, and provides a solution. The solution is
to extend the ATL model transformation language such that it can cope

6 Chapter 1. Introduction

with the variability types that were identified. Furthermore, it explains
what types of extra models (being feature models and annotation models)
need to be used in the transformation sequence to be used as parameters
in the ATL solution.

• Chapter 6 explains guidelines on how to use the extended ATL and the
supporting models.

• Chapter 7 evaluates the solution, by comparing it to other approaches.

• Chapter 8 concludes this research. This chapter answers the research
questions.

The next chapter can safely be skipped if one is already familiar with MDE
and PLE concepts. The chapter dependencies are shown in Figure 1.1.

Figure 1.1: Dependencies of the chapters.

2
Basic Concepts

2.1 Introduction

This chapter introduces basic concepts, definitions, and common technologies
and applications in the field of Model-driven Engineering and Product-line En-
gineering. It can be skipped if one is already familiar with them. Also, this
chapter is more elaborate than the concepts introduced in the introduction.

Section 2.2 is about model-driven engineering. It discusses models, meta
models, meta meta models, model transformations, different frameworks, the
XML Metadata Interchange (XMI) format, and a few common application areas
of MDE.

Section 2.3 is about PLE. It discusses the philosophy, and the phases prod-
uct line engineers divide their projects in. Also, a key concept within PLE is
discussed: variability management. It shows some approaches. This chapter
explains the general concept, more information about variability management
in the context of step-wise model refinement using MDE technologies can be
found in Chapter 4.

2.2 Model-driven Engineering

The original motivation of model-driven engineering is the notion that there
is a gap between the abstraction level of program code and problem domain
models. In the classical way of software engineering, the first stages of a project
would be to develop requirements of a system, followed by the development of
models. Models would give a better understanding of the system that is to be
developed, and can be made from different perspectives, and can vary in level
of detail. The level of detail, called ‘level of abstraction’ or ‘abstraction level’,
often is much higher (that is: more abstract or less detailed) than the eventual
program code. This ‘semantical gap’ potentially causes trouble. Software design
models are interpreted manually by the programmers who write the eventual

7

8 Chapter 2. Basic Concepts

code, and because of the lack of detail, there is a potential problem of the code
being inconsistent with its corresponding (set of) model(s).

To bridge this gap, and to overcome the potential inconsistency of models
and code, MDE was proposed. A main goal was to be able to connect models
to code, or to let code follow from models, in a (semi-)automated fashion. To
do so, a paradigm was proposed which based around a fundamental principle:
In MDE, everything is a model. This is comparable to the object-oriented
paradigm, where everything is an object.

2.2.1 Everything is a model: models, meta models, and
meta meta models

Having a model as a central artefact, some structure is needed to facilitate
the automated processing of models. In programming languages, this would
be done by grammars, concrete syntaxes and their corresponding parsers. In
MDE, this structure is provided by, indeed, models. Specifically, the structure
of every model is expressed in a (graphical or textual) modeling language, and
the structure (read: grammar) of this language is described in a model, called
the meta model [Béz06].

Meta models are, again, all following the structure of a different kind of
model: the meta meta model [Béz06]. Ideally, there is just one meta meta
model, thus all meta models obey the same meta meta model. The meta meta
model is following its own structure; it is expressed in terms of itself. Schemat-
ically, we have the model stack shown in Figure 2.1.

Figure 2.1: Three level model stack used in MDE.

The instanceOf relation is an important relation in MDE, and is defined as
shown in Definition 1. This definition is, however, nor complete nor formal, it
is shown here to provide an intuition.

2.2. Model-driven Engineering 9

Definition 1 (Instance of relation). A (meta) model M is an instance
of a meta (meta) model MM if it is created using the modeling language which
is based on MM .

Here, the three levels are shown. The stack provides a good structure to
create modeling languages and thus models of any domain. Furthermore, its
structure allows tools to automatically generate parsers and editors for modeling
languages. The following list relates the concepts discussed so far:

• A modeling language allows the creation of models (M1).

• A modeling language follows the structure, or ‘grammar’, of a meta model
(M2).

• All meta models, and thus all modeling languages, follow the structure of
a common meta meta model (M3).

• The stack allows tools to (semi)-automate the creation of the infrastruc-
ture for a modeling language, consisting of: concrete syntaxes, parsers,
editors, and code generators.

To conclude this section, the following definitions are given following the
analysis by Kurtev [Kur05].

Definition 2 (Model). A model is an abstraction of a part of the reality
for a specific purpose. A model is expressed in a modeling language.

Definition 3 (Modeling language). A modeling language is a well un-
derstood (not always formal) language which describes the concepts and their
relations in a part of reality.

Definition 4 (Meta model). A meta model (at M2) is a model of a mod-
eling language.

Definition 5 (Meta meta model). A meta meta model is a model (at
M3) of a modeling language, that is, a model to which a meta model conforms
to. A meta meta model is expressed in terms of itself, thus is an instance of
itself.

Some attempts have been made that try to formalize the concepts discussed
here [Fav04][Béz06]. We will not elaborate on this further.

2.2.2 Implementations of the model stack

There are multiple frameworks that use the stacked structure shown in Figure
2.1. A few of them are mentioned briefly.

XML and BNF from an MDE point of view

The eXtensible Markup Language (XML) [xml] also has a stacked structure. An
XML document (M1) is an instance of an XML Schema (M2). An XML Schema
in turn is an instance of an XML Meta Schema. The XML Meta Schema is an

10 Chapter 2. Basic Concepts

instance of itself. Note that XML was not initially invented for the purpose of
MDE, but it does follow the stacked structure.

The stacked structure also holds for a normal computer program, written in a
programming language. One could observe that the grammar of a programming
language is written in Backus-Naur Form (BNF). BNF, in turn, is written in
itself. An actual program (M1) is an instance of its grammar (M2) is an instance
of BNF (M3).

Model-Driven Architecture, by Object Management Group

The Object Management Group (OMG) proposed a generic concept called
Model-Driven Architecture (MDA™). Their meta meta model is called the Meta
Object Facility (MOF). MOF 1.4 [MOFa] and MOF 2.0 [MOFb] are the released
versions.

The main idea was that MOF would be a meta meta model for the Unified
Modeling Language (UML). However, there was a problem with it: many people
found it too complex. To reduce this complexity, a subset of MOF was defined,
called Essential MOF (EMOF). Unfortunately, this is still not practical enough.

Eclipse Modeling Framework

There was demand for a simpler approach than MOF. Probably the most pop-
ular one is called the Eclipse Modeling Framework (EMF) [BBM03]. This ap-
proach follows the same concept as MDA, and was geared to practical use.
EMFs meta meta model is called ECore. ECore is very similar to EMOF.

Today, there is a large suite of tools based on EMF, and these can all be used
from the popular Eclipse IDE. These tools range from code generators, parser
generators, concrete syntax specification tools, model-to-model and model-to-
text transformation languages, and rich editors complete with outline, syntax
highlighting, auto-completion, etc.

We also use the EMF framework, and a range of tools that are implemented
around it.

2.2.3 Model transformations

A benefit of the model stack is that models can be transformed into other
models. In other words, it allows the transformation of a model which is an
instance of meta model A into a model which is an instance of meta model
B. This activity is called model transformation. Model transformations are
expressed in model transformation languages.

Note that a model transformation language is a modeling language. So
model transformation languages are also based on a meta model, and every
written model transformation can be regarded as an instance of a meta model.
Following this principle, it is possible to write a transformation that transforms
a model into an instance of a transformation language meta model, meaning
that the output of the transformation is a transformation itself. This is called
a higher-order transformation (HOT) [TJF+09][TCJ10]. We use a higher-order
transformation as a compiler.

2.2. Model-driven Engineering 11

2.2.4 Step-wise model refinement

A common application of model transformations is to transform a model with a
higher level of abstraction (ie. an instance of a more abstract meta model, or an
instance of the same meta model, but with less detail), into a model with a lower
level of abstraction. One can step-wise refine a model until the abstraction level
is low enough to be executed directly, or to be easily converted into program
code. This thesis uses this concept of step-wise model refinement [BSR03] to
generate web-based, data-centric information systems with basic Create, Read,
Update, Delete (CRUD) operations.

Such a sequence of model transformation steps is called a transformation
sequence. In our transformation sequence case, as the next chapter will show,
we start off with an abstract model which only models the general concepts of a
specific domain. In the transformation steps that follow, details are added (ie.
there is more detail in the meta model, and thus in the instances of these meta
models, the models) like database classes, user interface classes, etc.

2.2.5 Transforming models from one domain to another

More recently, it proved useful to create model transformations that transform
a model from one domain into one from another domain. For instance, to
transform models from the database query language MySQL to Oracle’s query
language. Also attempts have been made to transform object-oriented models
into relational database models and vice versa (see for instance [SQL]), giving a
model-driven approach for Object-Relational Mapping, comparable with ORM
technologies like Hibernate [Hib].

2.2.6 Model injection and extraction

Often it is convenient to have a graphical or textual concrete syntax for modeling
languages.

For textual modeling languages, there are for example XText[oAW] and TCS
[JBK06]. Both are used in this thesis. XText allows the specification of a
grammar enriched with language constructs. From the grammar a meta model
is inferred, which conforms to ECore. XText generates a parser and an editor
as an Eclipse plugin for the specified syntax.

The same applies for a similar technology called TCS (Textual Concrete
Syntax). The difference with this approach is, that one first specifies the meta
model (also conforming to Ecore), and then provides a template for the concrete
syntax. Like XText, a parser is generated along with an editor.

There is a key concept used by both systems: injection and extraction
[JBK06]. Injection is the process of parsing a textual version of a model, into a
run-time, object-oriented, in-memory model. The model can be used by trans-
formation engines, code generators, or tools that analyze model properties. An
injector is automatically generated by TCS and XText.

The reverse process, having an in-memory model and serializing it to a
textual version of the model (in its correct syntax), is called extraction. The
extractors are capable of pretty-printing the model, that is, using information
from the XText/TCS grammar to indent the code on the correct places.

12 Chapter 2. Basic Concepts

Observe that the meta model of a modeling language is the main guide in the
injection and extraction process. Given the fact that each meta model conforms
to the ECore meta meta model, all EMF tools use a common ground, which
makes it easy to develop new tools.

To conclude this section, let us look back at the previous one. An injec-
tor/extractor pair for the MySQL language and Oracle query language would
be needed to convert existing MySQL files into Oracle files. This requires hav-
ing a meta model conforming to ECore. There are various people that proposed
such meta models.

The injector/extractor paradigm can be used to cross the borders of tech-
nology domains, and allows to make this technology compatible with the world
of MDE.

2.2.7 Domain-specific Languages and MDE

When code generators or interpreters are written that process an injected model,
a programming language is born. This can be a general purpose language, or a
domain specific language (DSL) [MHS05]. Due to the large set of EMF-based
tools dedicated for the creation of DSLs, MDE proves to possess practical ways
of creating DSLs.

2.3 Product line Engineering

Although the focus is more on MDE, there is a substantial use of PLE concepts
in this thesis. Therefore, we explain the common terminology.

2.3.1 What is a Software Product line?

An SPL is, a set of related software products. As an example, consider Mi-
crosoft’s Office Suite. It includes MS Excel, MS Word, MS Visio etc. The
important characteristic of an SPL is that the different products in it share a
common base, that is, they have commonalities. On the other hand, the differ-
ent members of the product line (also called ‘family members’) can have specific
features not integrated in other members. These two opposite sets are called
commonalities and variabilities.

The fundamental idea of PLE is to capture commonality amongst products,
and manage the variability. To do so effectively, the creation of an SPL is done
in two phases: the Domain engineering phase, and the Application engineering
phase.

2.3.2 Domain Engineering

In this phase, it is investigated what is common amongst products. For these
common parts, software artefacts are created. This can range from various
design models, requirements, or actual programmed modules. Once this is done,
these domain artefacts can be reused. Thus, there is a systematic (although not
necesarilly formally specified) way of building domain knowledge and capturing
this in reusable artefacts.

2.3. Product line Engineering 13

These artefacts consist of a common reference architecture, which is the
most important reusable asset. Furthermore, the different components should
be generic, to ease integration in member products.

The variable part, which is inevitably existent in an SPL, has to be man-
aged. The variation points are often modeled in a separate model. This model
describes the points on which different member products can differ. Also, it puts
constraints in what features are allowed in combination with other features.

2.3.3 Application Engineering

Once the domain artefacts are established, one can create different member
products using the domain artefacts. This activity is called application engi-
neering. The composition/integration of different domain artefacts can be done
automatically or manually.

Ideally, there are domain artefacts that facilitate the derivation of member
product in the application engineering phase. An example would be domain-
specific languages (DSLs).

2.3.4 Software Platform

The eventual set of domain artefacts and application engineering facilities in an
SPL can be considered a Software Platform. Pohl et al. [PBvdL05] defined a
software platform as:

“A software platform is a set of software subsystems and inter-
faces that form a common structure from which a set of derivative
products can be efficiently developed and produced.”

Observe that it is possible to consider the CRUD information system gener-
ator case a Software Platform.

2.3.5 Variability Management

Variability is a term used to denote the different solutions that are available for
a certain concern. Or, according to [hs10]:

“Variability Management is the overall process of defining what
is common and what is different across Products in a Product Line
(i.e. allowable Product Configurations), as well as managing the set
of actual Product Configurations.”

Managing the integration of variable components tends to be complex. A
good starting point has proven to be to model the variable parts separately,
and treat it as an orthogonal concern [PBvdL05]. This means that there is
an orthogonal variability model, which contains a notion of all the variable
variants, or features from products in the SPL. One way of expressing an Or-
thogonal Variability Model (OVM) is by the graphical syntax of a feature model
[PBvdL05].

14 Chapter 2. Basic Concepts

Feature Models

Feature models describe the features in a system, and allow for selecting a subset
of features according to the selection/configuration rules applied to the features.
Typically, in the simpler case, a feature model is a tree, where each subtree is
a feature. Feature models supply a few constructs to constraint the possible
selection of features:

• mandatory — the feature has to be selected,

• optional — the feature can or cannot be selected,

• alternatives — operates on multiple features, stating that precisely one of
them has to be selected, like an xor-operator,

• m-to-n — atleast m and at most n features that are operated on should
be selected. Cardinalities denote the value of m and n. If cardinalities are
omitted, the default values of m and n are 0 and the number of operands
of the m-to-n operator, respectively, which makes the m-to-n operator an
inclusive-or operator.

Furthermore, there are two types of links which put additional constraints
between features:

• requires — the source feature requires the target feature to be selected, in
order for the source feature to be selectable,

• excludes — the source feature, if selected, excludes the target feature from
being selected.

Figure 2.2 shows the meta model of a feature model, which is created by
us. There are other meta models, but there is not a standard representation
of feature models in EMF, thus we generated a tree-based editor from our own
meta model using standard tools. This eased the usage of feature models in our
model transformations.

Figure 2.2: Feature model meta model.

2.3. Product line Engineering 15

Example Feature Model

An example feature model is shown in Figure 2.3. Figure 2.4 shows the legenda.
Here, a car is used as an example, which can typically vary on a lot of aspects.
One could in this case opt for a diesel engine xor a petrol engine. The exclusive-
or relationship, that is the alternative relationship is denoted by an open arc
grouping. If this grouping arc is filled, it means that one or more of the features
from the group are allowed for selection, as is the case with engine add-ons. In
some versions of feature models cardinalities are added to specify a minimum
and maximum number of selected features in a specific group. Some features
are optional (denoted by an edge with an open circle), like the airconditioning.
Lastly, a gearbox is mandatory, which is denoted by a solid circle at the end of
an edge.

Figure 2.3: Example feature model in the domain of cars.

Figure 2.4: Feature model legenda.

It is important to stress the word ‘orthogonal’. It means that the variability
model is not only separate, but also relates to all domain artefacts and reference
architectures. In other words, traces can be made between elements from the
OVM to various domain artefacts.

These traces or mappings can be useful for (semi-)automatic feature inte-
gration.

Especially in the application engineering phase, where different features have
to be integrated into a member of the SPL, efficient variability management is
important. The ideal case is to automate the integration and composition of
variable and common features into a product.

16 Chapter 2. Basic Concepts

2.4 Using MDE for PLE

Observe that MDE frameworks like EMF would be a good candidate for helping
to develop domain artefacts (ie. models and meta models), because of the well-
defined structure of models and meta models. There are researches showing that
automatic product derivation from a set of domain artefacts can be done effi-
ciently with MDE technologies like model-to-model transformations and model-
to-text transformations. Specifically, the step-wise refinement paradigm proves
very powerful [HKW08][ACR].

In our opinion, using MDE for PLE is a good approach. When developing,
relating and/or generating domain artefacts, MDE provides exactly the right
structure and tools to do so. The M3 level makes sure that everything is coming
from the same base, easing the required mappings and transformations that have
to be made. MDE technologies are furthermore very well suited for generating
DSLs and all the infrastructure like code-generators, editors, and parsers. This
is the main motivation for building the CRUD information system product line
from this thesis using step-wise model refinement.

2.5 Conclusions

This section showed the basic concepts in MDE and PLE. For MDE, It intro-
duced the model stack, meta models, models, and model transformations. For
PLE, the key concepts of Domain engineering and Application engineering were
explained, and noted that variability management is an important challenge.

Then, these two fields of research were linked to each other, by the observa-
tion that MDE technology would be useful in building a software product line.
It also stated that a step-wise, model refining transformation sequence, which
is an MDE concept, can be regarded as a software platform, a PLE concept.

3
Case-study: Administrative, Web-based,

Information Systems

3.1 Introduction

Throughout this report all the experiments are carried out on a transformation
sequence case. This chapter describes this case, which also will be the context
for most examples in this report. The case has proven to be a good way to
validate the concepts that were developed. The transformation sequence is also
called a software platform.

For the purpose of experimenting we developed a transformation sequence
that generates web-based, administrative information systems with simple Cre-
ate, Read, Update and Delete (CRUD) functionality and a persistency layer.
The approach is comparable to the way web services are generated using the
framework described by Xiaofeng et al. [YZZ+07], with the difference that the
systems generated in this case are more client-side (ie. web-browser) oriented,
and their software is more server-side oriented. However, their approach demon-
strates that such an approach is feasible as it is improving development speed.

As far as motivation goes, the main motivation is very similar to the approach
of Generative Programming by Czarnecki et al. [CE00], which is to “improve
reusability by providing parameterized components which can be instantiated for
different choices of parameters”. Also, like in Czarnecki et al., this case also
involves “modeling families of software systems by software entities such that,
given a particular requirements specification, a highly customized and optimized
instance of that family can be automatically manufactured on demand from ele-
mentary, reusable implementation components by means of configuration knowl-
edge”.

These two statements say that the motivation is to configure a set of prod-
ucts reusing pre-fabricated generic components, and that the integration of these
components should be automated. The model-driven approach from this thesis

17

18 Chapter 3. Case-study: Administrative, Web-based, Information
Systems

has the exact same motivation. The configuration involves variability in com-
ponents, models and modules, and this thesis describes how to handle this in a
model-driven context. Our approach is less about parameterizing components,
and more about specifying integration rules in a model transformation defini-
tion by matching on elements from the source model of a model transformation.
That is, the model transformation definition is regarded as a starting point for
managing variability, and configuring a generated member product.

3.2 Requirements

The (high-level) functional requirements of the transformation sequence and its
generated family products are (amongst other, we list the most important here):

1. The transformation sequence shall generate an administrative application
for a domain. The domain is described by an Ecore model, that is, a class
diagram, and is the input for the transformation sequence.

2. For every class in the input model, a data overview shall be generated.
There shall be buttons for adding new items, editing existing ones, and
deleting items. The type of the attribute shall determine the editor for a
field. There shall be support for different types of data overviews: a grid
view, a tile view, and a tree view. One should be able to configure this on
a per-class basis.

3. Data is to be persisted in a database. Two databases are supported:
MySQL (relational database) and Google App Engine (object database,
cloud-solution). It should be configured beforehand which one is to be
integrated.

4. For each reference of a class A to a class B, the system shall have a drag
and drop interface. This way, the user can connect B items to A items
conveniently.

5. All data should support sorting (by clicking on the column headers), fil-
tering, and searching.

6. Users should be able to login to and logout from the system.

Also, there are some quality requirements that are important:

1. The generated shall be expressed in the Google Web Toolkit language,
and follow proven design patterns like Model-View-Controller (MVC).

2. The generated code shall be adaptable and extensible. If eventual systems
need to be adapted or extended, it should be possible to do so without
modifying the generated code, for instance by using inheritance.

3. The transformation specifications shall be extensible and adaptable. Specif-
ically, it should be capable of generating systems according to a feature
configuration, without having to change the transformation specification
manually. Also, when extra features are added, the impact on other code
should be low. Lastly, concerns should be separated as much as possible.

3.3. Transformation sequence 19

The quality requirements are the most important, but also the hardest to
verify if they are achieved. We want to end up with a flexible software platform,
that is highly configurable and flexible. This can be achieved when the code is
adaptable and extensible.

For the eventual code, we use established object-oriented paradigms to achieve
this (ie. MVC patterns), but it is also important that the ATL code has similar
quality properties. If all steps of the transformation sequence have good qual-
ities, there are more points where the systems can be adapted and extended,
ideally in a non-invasive and low-impact way. This increases the flexibility of
the transformation sequence as a whole, and thus increases the spectrum of
potential information systems that can be generated.

3.3 Transformation sequence

The input of the transformation sequence is a class diagram. For example,
the simple class diagram in Figure 3.1 will be transformed in a system shown
in 3.2. The diagram conforms to the Ecore meta meta model, and contains
domain entities. For each EClass C, the eventual system will contain a grid like
overview of this class, with the attributes as columns, after which an instance
of C can be created, read (viewed), updated (edited) and deleted.

Figure 3.1: Sample input meta model, which conforms to the Ecore meta meta
model.

The transformation sequence is shown in Figure 3.3. On the meta meta
model level (M3), Ecore is shown. On the meta model level (M2), there are five
different meta models:

• Input — This meta model conforms to Ecore and is the input meta model1.
This model contains domain entities, like someone would model in an early
stage of the development of an information system. Notice that this model
is on M2, making the transformation diagonal. This is the reason this
model is called ‘input meta model’ rather than the ‘input model’.

1In this thesis, the terms domain model, input model, and input meta model are used
interchangeably.

20 Chapter 3. Case-study: Administrative, Web-based, Information
Systems

Figure 3.2: Screenshot of a system generated by the case.

• ATL — This is the meta model of the model-to-model transformation
language ATL. An instance of meta model is an actual transformation. It
transforms a model conforming to Ecore meta meta model into a model
conforming to the CRUD system meta model.

• CRUD system — This is the meta model of a CRUD system implemented
in an object oriented language, as shown in Figure 3.4. It typically contains
Model, View and Controller artefacts (this means that the instances of this
meta model will contain {Person, Task, Hobby}Model, {Person, Task,
Hobby}View, and {Person, Task, Hobby}Controller in the case of Figure

3.3. Transformation sequence 21

Figure 3.3: Transformation sequence of the case. Solid arrows shows the trans-
formation order, dashed lines show instanceOf relationships.

3.1), as well as data access classes that can access data stores, to model
persistency. This meta model can be enhanced with numerous features,
and in the real-world it will be more elaborate than this prototype, but
this example is kept simple for clarity.

• XPand — XPand is a model-to-text transformation language, that is based
on the paradigm of templates. It is a very simple yet effective way to
serialize models to text, in our case Java code. An instance of this meta
model is a transformation template. It transforms instances of the CRUD
system meta model to instances of the Java meta model.

• Java — The last meta model is a familiar one: Java. The system is
actually implemented in the GoogleWebToolkit (GWT) framework, which
shares its syntax with Java. It is a technology to provide a Java-like
programming style (including all the mature Java tools like unit tests,
debuggers, strong typing, etc.) for interactive web applications. The
GWT compiler compiles this Java code into HTML/Javascript, which
means there are no plugins required for running this application.

Let us look back at the CRUD system meta model from Figure 3.4. Observe
that an instance of this will have a set of MVC classes instantiated. This
means that a class from the input model is now transformed and refined into
three parts: a Model, a View and a Controller. The model will contain a
reference to a ModelEntry, this will keep the information of one item from
the domain class. For instance, if the input model has a class ‘Person’, there
now will be a PersonModel, PersonModelEntry, PersonModelView (or one/more
of the subtypes) and PersonController. The ModelEntry has attributes, and
references, which are copied from the normal references and attributes that
exist in an Ecore model. In this example, a PersonModelEntry will eventually

22 Chapter 3. Case-study: Administrative, Web-based, Information
Systems

Figure 3.4: Simplified version of the CRUD system metamodel. It contains fa-
miliar patterns like Model-View-Controller and a data access class for accessing
databases.

be a run-time Java object containing one Person. The PersonModel is there to
group them together.

Finally, each Model class has a reference to a DataAccess class. This is
a common pattern where the actual communication (reads and writes) with
the data store is separated from the MVC pattern, making it is easy to swap
database technologies. Also, because it is a web-application, the DataAccess
classes will reside on the server, whilst the Model(Entry) instances reside on the
client, in the browser.

The real CRUD system meta model is on the CD-ROM in the Appendix. It
has much more details and contains other features.

3.3.1 Relation to Product Line Engineering (PLE)

The purpose of this transformation sequence is to be able to generate a family
of information systems; CRUD based, data-oriented, web-based administration
systems. It does not matter if one would like to manage car parts, books, people,
music or appointments. We also would like to be able to generate a family of
systems for one specific input meta model. In this last case, members could
differ on things like database technology, color schemes, and the way data is
presented.

Because of these characteristics and requirements of the transformation se-

3.4. Conclusions 23

quence, we state that it can be considered a product line. Therefore, PLE
concepts and methodologies apply.

The (meta) models from the transformation sequence can be regarded as
domain artefacts, resembling to the domain engineering phase of PLE. The
application engineering is done by running the transformation sequence with a
certain input meta model.

In the application engineering phase, there are multiple places where cus-
tomizations can take place to yield a different member product. One could
modify the transformation sequence (ie. the meta models or the transforma-
tions) to change aspects of a particular generated application, although this
compromises the reusability of the transformation sequence. Alternatively, one
could extend the generated code using normal object-oriented constructs like
inheritance. The downside of this is that the abstraction level might be too low,
and it neglects the MDE philosophy of bridging the gap between high and lower
level of abstraction.

In this thesis the framework will be adapted such that the management of
variability is easier, and does not only come down to modifying the generated
code, or modifying the transformation sequence. Instead, the domain artefacts
will be as generic and reusable as possible, where the concern of feature config-
uration is separated (ie. not integrated in) from the models in Figure 3.3.

3.4 Conclusions

We discussed the transformation sequence that acts as a software platform
for generating web-based, administrative information systems. It consumes an
Ecore input model, and is refined to an instance of a CRUD system meta model,
which is then again refined into an instance of the Java meta model. It is impor-
tant that the transformation sequence is extensible and adaptable, which also
goes for the generated applications. This means that both the eventual Java
code and the transformation definitions should have these qualities.

The goal is to get a software platform that is highly configurable, extensible,
and well-maintainable. Ideally, extensions should be non-invasive and have a
low impact on other parts of the system. The configuration mechanism should
be separated as a concern.

The next chapter will zoom in on the variability that has to be managed
in the case of an information system generating transformation sequence as
discussed in this chapter.

4
Variability Management in
Transformation Sequences

4.1 Introduction

Variability already was discussed in Chapter 2. However, this chapter will put
the focus on the manifestation of variability in transformation sequences. In
other words, it will classify the relevant types of variability that can occur in
parts of the transformation sequence. As a context, the case of the previous
chapter is used as example.

As an example variation point in the running example software platform
(with a fixed input meta model), consider database technology. Say, one could
choose a relational database or opt for an XML database. Different options like
these are called variants, and the concern that groups these variants is called
a variation point. We use the terms variants and features interchangeably,
and consider them synonymous. Variability has to be managed, that is, there
should be an effective way of modeling and implementing different variants in
transformation sequences, and a particular set of selected variants should be
automatically integrated in the generated system.

To model variability, we use the concept and notation of feature models
[BPSP04]. Recall that in PLE, it is considered useful to treat variability as an
orthogonal concern. That is, it is a phenomenon that can be separated from
domain models, modularized in its own model. The variants (or features, as
they are called) in the model can be mapped onto realization artifacts in the
domain (meta) models.

The next section formalizes the requirements of the variability management
concern in our case.

25

26 Chapter 4. Variability Management in Transformation Sequences

4.2 Requirements of our CRUD platform

We propose a formal way of explaining what our platform should be capable
of, from the variability management perspective. It will show what is meant by
variability in our example transformation sequence.

The software platform can be regarded as an injective function f , which
produces a system s for a given input meta model x. For the rest of this section
it holds that x ∈ X where X is the set of all Ecore models, and s ∈ S, where S
is the set of all information systems.

Thus, for the initial transformation sequence it holds that:

f ∶X → S, where f defined by: f(x) = s (4.1)

Because it is injective, when the input model is different, the resulting system
will be different:

f(x′) = s′, where s ≠ s′ (4.2)

Of course, changing x could be regarded as a type of variability. This type,
however, is not problematic, and the initial version of f is capable of dealing
with such variability; x is just a parameter. The problem, however, is that for
a fixed x, a (finite) set S′ of systems should potentially be generated:

f(x) = S′, where S′ ⊂ S (4.3)

Since f is a function, and a function has at most one correspondence in the
codomain for each input, more parameters are needed to be able to generate
a set of systems. This yields f ′. Here, the parameters are a feature model
fm (with a particular feature set selected) and an annotation model am. The
annotation model is explained later in this chapter, and is an additional source
of feature configuration. It holds that fm is an element of the set of feature
models FM : fm ∈ FM . Similarly it holds that am ∈ AM , AM being the set of
all annotation models:

f ′ ∶X × FM ×AM → S, where f ′ defined by: f ′(x, fm,am) = s (4.4)

Now we can vary fm and/or am, but keep x fixed, allowing to generate
different systems:

f ′ ∶X × FM ×AM → S, where f ′ defined by: f ′(x, fm′, am′) = s′, and s ≠ s′

(4.5)
The research question RQ2 (“How can the MDE infrastructure be adopted

to manage these types of variability, conserving good quality characteristics?”)
can be related to Equation 4.4, by replacing the words ‘the MDE infrastructure
by’ f ′.

4.3 Classification of variabilities in the transfor-
mation Sequence

With the feature model being orthogonal, the features from this model will
correspond to realization artefacts (ie. classes, attributes or references) in meta

4.3. Classification of variabilities in the transformation Sequence 27

models, which can be instantiated into a model. In our case, this correspondence
is made explicit by a transformation written in the model-to-model transforma-
tion language, ATL. In other words, all the possible variants from the feature
model will correspond to a set of realization artefacts which reside in meta
models, and ATL provides the mapping.

The mapping is not only a trace, but ATL will instantiate and integrate
the realization artefacts once a mapping is there, which allows us to do the
configuration of the family members of the product line with the feature model as
driver. Following that, the transformation sequence can generate an application
with the selected features integrated.

However, sometimes the feature model alone is not enough as a configuration
driver, sometimes also information from the source model (of a model-to-model
transformation step) is needed. To illustrate, we consider two types of variabil-
ity that may occur in the example case product line: the variants either depend
on configuration information from the source model of a model-to-model trans-
formation step, or they don’t. These two cases are respectively called source
model dependent and source model independent variability, and are explained
by example in the next two subsections. Ideally, the transformation language
ATL should be able to handle both cases efficiently.

Then, we can achieve what is formally described in Equation 4.4.

4.3.1 Source model independent variability

In source model independent variability there is only a mapping (for the concern
of variability configuration) between feature realization artefacts from a meta
model and the feature model. That is, there is no mapping needed between the
feature model and the input model. As an example consider the variation point
database technology as pointed out in the introduction of this chapter. It has
two alternative implementations: a relational database and an XML-database.
Now, no matter what the source model looks like, only the feature model’s selec-
tion (ie. relational xor XML is selected) determines what realization artefacts
from the target meta model are instantiated in the resulting generated model
of the transformation step.

Typically, variants that are technology related –and thus have system-wide
implications– fall into this category.

Comparing it to the formal definitions from Section 4.2, this means that if
an ecore model x, a feature model fm and an empty annotation am are put
into f ′ from Equation 4.4.

Only an input model and a feature model are needed to produce a system
using the platform.

4.3.2 Source model dependent variability

Variability that falls into this category does depend on the source meta model.
For example, in the feature model we support two alternative ways of presenting
the data to the user, a Grid view and a Tree view. So, if the source model has
a class ‘Person’, which has a one-to-many reference to a class ‘Task’, it means
that the eventual system will store persons and tasks, and these lists of person
and task data will be shown in either a grid or a tree view. This means that the
target meta model will have a realization artefact for a GridView and one for a

28 Chapter 4. Variability Management in Transformation Sequences

TreeView. It could very well be that we want to instantiate a GridView for the
Person class, but a TreeView for the Task class. So, without information from
the source model, the transformation cannot be completed, which differs from
the independent case.

Source model dependent variability is also modeled in the feature model, but
cannot be ‘selected’ or ‘deselected’, as is the case with independent variability.
Instead, the source model should be annotated with the feature, in order to
provide the information needed by ATL in the transformation step.

As Section 4.5 will explain, we use a separate annotation model for annotat-
ing a model. The approach of [VBVM09] has shown that this is a useful way of
parameterizing a model, without cluttering it with the annotation.

4.4 Feature diagrams for the case

This section provides some example feature models and explain how they man-
ifest in the transformation sequence. Figure 4.1 and 4.2 show (a selection of)
independent and dependent variabilities respectively. Note that these could be
mixed in one model, in fact, the complete feature model of our transformation
sequence mixes these types into one feature model. The main responsibility of
the feature model is to constraint the selection space. As mentioned, there is no
such thing as ‘being selected’ for source model dependent features. However, it
does make sense to model it to explicitly state the selection constraint. Section
7.3 shows why.

Consider the variants shown in the independent variability model of Figure
4.1. As stated before, these variants are not (from a configuration point of
view) related to entities in the source meta model. Often, such features are
technology related or reason about overall (ie. not per-EClass of per-EAttribute)
behaviour/structure, meaning that every feature can be selected or deselected,
regardless of the source meta model’s structure.

Figure 4.1: Feature model with only source model independent variability.

This is not the case for the dependent variabilities. Figure 4.2 shows depen-
dent variability. These features could be mixed into the model from Figure 4.1,
but are isolated here for clarity.

The Person class from the source meta model will be connected to a Grid-
View, whilst the Task will be connected to a TreeView. Note that this model

4.5. Annotation models 29

does not show how the Grid and Tree views are realized, because the realiza-
tion artefacts of Grid and Tree will reside as meta entities (classes, references,
attributes, etc.) in the target meta model. It is the responsibility of the ATL
model-to-model transformation to instantiate these views and connect them to
(copies of) the appropriate entities from the source meta model. This example
shows that such features cannot be selected or deselected, as was the case with
the independent variabilities. It could very well be that a Grid view is ‘selected’
for the Person class, but ‘deselected’ for the Task class. Consequently, if the
source model is replaced by a different model, a new mapping has to be made,
in order to be able to run the transformation.

Figure 4.2: Feature model with source meta model dependent variabilities. In
the source meta model drawn below, the Person data entity will be using a Grid
view, whilst the Task entity will be using a Tree view.

The fact that a feature is dependent or independent cannot be concluded
from the feature model alone. It will be inferred from the annotation model; if
an entry for a certain feature exists there, it is regarded as a dependent feature.
Similarly, the non-existence implies that the feature is independent. This leaves
the feature model oblivious from these concepts, allowing the use of any feature
model representation.

4.5 Annotation models

The approach of annotating an input model will be with a separate annotation
model. The approach of [VBVM09] has shown that this is a useful way of pa-
rameterizing a model, without cluttering it with the annotation. An annotation
model a is a model that annotates a different model x. It matches a (set of) ele-
ments from x, and puts one or more annotations on this. One could for instance

30 Chapter 4. Variability Management in Transformation Sequences

express in a modeling language which creates annotation models something as
follows (x ∈ instanceOf(Ecore)): ‘annotate all EClasses with name “A”, “B”
or “C” with annotations “feature 1”, “feature 2” and “feature 3”’.

This way, the annotations are separated from x. Preferably, a modeling
language with a declarative syntax is able to create such models. Our approach
will be to have a syntax which can be compared to Cascading Style Sheets
(CSS) [CSS], the popular language for decorating HTML elements (ie. < table >,
< div >, < ul >, etc.) with style information (ie. font-size, background, border-
color, etc.).

Figure ?? shows an example textual representation.

1 EClass [name=’ ’ Person ’ ’] {
2 Grid , otherFeature1
3 }
4
5 EClass [name=’ ’Task ’ ’] {
6 Tree
7 }

Listing 4.1: Example annotation model.

4.6 Conclusions

To conclude this chapter, two types of variability are identified, and these should
be handled by the model-to-model transformation ATL. It also proposed to
model the variability separately in a feature model. For the dependent variabil-
ity case, extra information is needed in the form of annotations on the input
model. Annotations reside in a separate annotation model, to prevent the input
meta model from being cluttered. The next chapter will explain how this is
achieved, by first showing that the current version of ATL is not well-suited to
handle the configuration requirements. Therefore, the next chapter introduces
a new ATL concept, called variability rules, which solves the issue of managing
these two kinds of mappings.

5
Extending ATL with Variability Rules

5.1 Introduction

This chapter introduces first-class variability management means for the model
transformation language ATL [JK06], using a separate feature model for con-
figuration. First, the management of independent variability is shown, since it
is the simpler case. Later, in Section 5.5, the implementation is extended to
handle source model dependent variability.

As a starting point, the basic modular construct of rule-based model trans-
formation languages is used: a rule. In ATL, there are five types of rules:
normal rules, abstract rules, rules that inherit from other rules (ie. sub rules),
lazy rules and called rules. This chapter introduces variability rules. Ide-
ally, variability rules should have the same quality properties as normal rules.
Parts of this chapter have been published for the MtATL2010 workshop on ATL
transformations [Sij10].

5.2 Concept and Motivation

Variability rules are best used in the context of a transformation sequence which
successively refines models, and where blueprints of feature realization artefacts
reside in the meta models, as is the case in our running example transformation
sequence. Thus, meta models define the complete product space by defining
feature realizations for every feature. The variability rules instantiate and inte-
grate a particular set of feature realizations from the meta models into a final
product, according to the feature model’s selection.

The reason for using a transformation rule as key construct for managing
variability is the observation that features from a feature model have to be
associated with, or mapped to, feature realization artefacts in order to enable
automatic product derivation. Specifically, the feature model should be the
driver for configuring/assembling a product family member. Rules are purpose-

31

32 Chapter 5. Extending ATL with Variability Rules

built for defining mappings. Furthermore, since rules have mature mechanisms
for matching, querying and creating (instances of) meta model elements, and
thus (instances of) feature realization elements, they are well-suited for inte-
grating feature realizations with the rest of the system. Furthermore, rules are
modular constructs with a declarative nature, which makes them easy to use
and allow elegant implementations as opposed to more imperative solutions.

5.3 Problems in the current ATL

Recall that as a requirement we would manage the variability in the model
transformation definition, while conserving quality properties like extensibility
and adaptability (see research question RQ2). Also, we stated that new features
could be added in a non-invasive way, with low impact on other code (see the
quality requirements in Section 3.2). Lastly, declarative code should be as used
as much as possible, and imperative code should be avoided. On these points
there are some problems in the current situation, as we explain here; it explains
the current shortcomings of ATL when it comes to managing variability.

Model transformations are a central concept in MDE, and by using a trans-
formation sequence as a software product line generator, model transformations
should be capable of dealing with variabilities.

Recall the running example case where input meta models conforming to
Ecore are transformed into a model of a web-based, data-centric information sys-
tems with basic create/read/update/delete (CRUD) operation support, which
is in turn transformed into code. The model-to-model step is shown in Figure
5.1. The meta model outMM is an excerpt of the real case meta model, and only
shows a Model class (note: a Model from the Model-View-Controller pattern),
as well as a DatabaseTechnology element.

Every derived instance model of outMM will contain a Model element for
each instance of an EClass element from the source meta model inM. This Model
element will have the same name as the EClass’s name attribute, concatenated
with the string ‘Model’. In this case, there is only one instance of EClass in the
source meta model, Person, resulting in the instantiation of a Model element
with the name attribute set to ‘PersonModel’. Note that a different input meta
model is likely to have multiple instances of EClass, and will therefore transform
in a model with multiple instances of the Model meta class. In the real case, an
MVC pattern is generated for each EClass.

The variability in this case (apart from varying the input model) is the type
of database technology that a resulting application uses. There are two variants,
as shown in the feature model FM : a relational database denoted by RDBMS,
and an object database GoogleAppEngine. The meta model outMM shows that
each Model element has a DatabaseTechnology element aggregated.

In the feature model FM of this example, the RDBMS variant is selected,
so the resulting model outM has an instance of an RDBMS realization artefact
for each EClass source element.

The example is used to show that normal ATL rules are ineffective in man-
aging variability in the case, as the next attempts will show.

5.3. Problems in the current ATL 33

Figure 5.1: Typical model-to-model transformation scenario, using ATL and a
feature model FM.

5.3.1 Solution 1 — Using Rule Inheritance

In ATL, rule inheritance could be used for guiding the feature assembly process
in the above example, as shown (partially) in Listing 5.1.

1 abstract rule EClass2Model {
2 from
3 a : inMM ! EClass
4 to
5 model : outMM ! Model ,
6 db : outMM ! DatabaseTechnology
7 }
8
9 rule EClass2Model RDBMS extends EClass2Model {

10 from
11 a : inMM ! EClass (true)
12 to
13 model : outMM ! Model ,
14 db : outMM ! RDBMS
15 }
16

34 Chapter 5. Extending ATL with Variability Rules

17 rule EClass2Model GoogleAppEngine extends EClass2Model {
18 from
19 a : inMM ! EClass (fa l se)
20 to
21 model : outMM ! Model ,
22 db : outMM ! GoogleAppEngine
23 }

Listing 5.1: Using rule inheritance in normal ATL to deal with variability man-
agement is insufficient.

Note that the from-clause in the rule EClass2Model matches on inMM!EClass,
stating that the instantiation of the feature realization artefact should be done
for each EClass instance. We use rule inheritance to instantiate a specific vari-
ant.

There is a sub rule for each feature, both specializing the rule EClass2Model
with a specific database technology. According to the selected feature, here
simply switched by true if selected, and false otherwise, the correct sub rule is
called, and the super rule’s content is inherited.

This situation shows that feature realizations often have to be integrated into
the common base, according to some rationale, here for each EClass. Therefore
we used rule inheritance, which seems a necessary strategy, but the problem
with this is that ATL does not support matching a single source model element
by more than one rule. So, what if there are more features, apart from database
technology, that also have to be instantiated for each EClass? Or what if both
features are allowed, because they are, for instance, both optional (ie. both
from-clauses are set to true)? Then, multiple rules should be called for a single
source element, which is not supported.

Note that also, the true/false must be switched manually here, or helpers
have to be implemented that navigate the feature model and check if a particular
feature is selected. So, the reusability of this model transformation is low,
and changing a feature selection means changing the transformation definition.
Ideally, we would have a transformation specification that is not affected when
features are changed.

5.3.2 Solution 2 — Adding a feature model

Solution 1 could be extended, to also make use of a feature model FM as input.
Then, one could create a boolean expression in each from-clause returning a
boolean that is true if the feature is selected in FM and false otherwise, as
shown in Listing 5.2, line 13 and line 24. Although this prevents from having the
selection mechanism in the transformation definition, the problem of matching
multiple rules for a single element remains. So we gained a bit here, but there
is still a fundamental problem.

1 abstract rule EClass2Model {
2 from
3 a : inMM ! EClass
4 to
5 model : outMM ! Model ,
6 db : outMM ! DatabaseTechnology
7 }
8
9 rule EClass2Model RDBMS extends EClass2Model {

5.3. Problems in the current ATL 35

10 from
11 −− i s S e l e c t e d que r i e s the Feature model ,
12 −− to see i f f e a t u r e i s s e l e c t e d
13 a : inMM ! EClass (thisModule . i s S e l e c t e d (’RDBMS’))
14 to
15 model : outMM ! Model ,
16 db : outMM ! RDBMS
17 }
18
19 rule EClass2Model GoogleAppEngine extends EClass2Model {
20 from
21 −− i s S e l e c t e d que r i e s the Feature model ,
22 −− to see i f f e a t u r e i s s e l e c t e d
23 a : inMM ! EClass
24 (thisModule . i s S e l e c t e d (’ GoogleAppEngine ’))
25 to
26 model : outMM ! Model ,
27 db : outMM ! GoogleAppEngine
28 }

Listing 5.2: Using rule inheritance in normal ATL to deal with variability man-
agement is insufficient even when a Feature model is added.

This solution would be usable in model transformation languages that do
support matching multiple rules for a single element. However, as mentioned,
the ATL model transformation language is popular, so there is motivation to
have variability management means in ATL as well.

We just stated that it is usable, but a good variability management solution
would ideally abstract the user from checking a feature model manually. We
prefer a solution where the variable parts are specified declaratively in a modular
construct like a rule, yielding a stable transformation specification. This solution
would come close however, with the main problem not being able to match
multiple rules for a single element.

5.3.3 Solution 3 — Matching on the Feature Model Ele-
ments

As an alternative, a rule which matches on elements from the feature model FM
could be used, instead of matching on the input meta model (Listing 5.3). Such
a solution usually avoids having different rules with the same from-clause. But
doing something ‘for each EClass’ is now not possible, which was specifically
intended.

1 rule selectRDBMS {
2 from
3 a : FM ! RDBMS (a . i s S e l e c t e d)
4 to
5 . . .
6 }

Listing 5.3: Selecting on elements from the feature model breaks the intent of
the transformation developer.

This point is important. Writing transformations in ATL consists for a large
part of matching source elements in the from-clause. Writing a rule actually
starts from there, thus a transformation developer would have reasons to match

36 Chapter 5. Extending ATL with Variability Rules

on a set of elements, and group what is to be done for this matched set in a
rule. The fact that the developer has to manage variability, should not make
him or her have to do tricks (ie. writing OCL-expressions that iterate over sets
of source elements) to achieve the same result! It would be too intrusive, and
would complicate the model transformation definition.

One could use imperative code, which is not recommended. As mentioned,
we prefer declarative, modular constructs.

Thus, there is not a good way to let features guide a model transformation,
at least not without resorting to imperative ATL code. We provide a more
elegant, easy to use solution, by extending ATL with the concept of variability
rules, as the next section will explain.

5.4 Managing Source Model Independent Vari-
ability

This section describes the concept of variability rules. The syntax and semantics
are not much different from normal ATL rules. The version discussed here
provides means to manage source model independent variability, the simpler
case. Later, in Section 5.5 the case of source model dependent variability is
discussed.

A variability rule looks like a normal rule, preceded by with the variability
keyword:

1 variabi l ity rule RDBMS configures EClass2Model {
2 from
3 −− same as EClass2Model ’ s from c lause
4 a : inMM ! EClass
5 to
6 db : outMM ! RDBMS (
7 name <− a . name+’RDBMS’
8)
9 }

10
11 variabi l ity rule GoogleAppEngine configures EClass2Model {
12 from
13 −− same as EClass2Model ’ s from c lause
14 a : inMM ! EClass
15 to
16 db : outMM ! GoogleAppEngine (
17 name <− a . name+’ GoogleAppEngine ’
18)
19 }

Listing 5.4: Extended concrete syntax of ATL with variability rules.

Observing the example from Listing 5.4, the syntax is a bit different than
normal rules. In the first line, ‘RDBMS’ refers to the feature from the feature
model. Secondly, ‘EClass2Model’ refers to a normal rule. The variability rule
is said to ‘configure’ a normal rule. Finally, the from-clause is identical to the
one in ECLass2Model.

5.4.1 Semantics

The semantics of variabiilty rules is as follows:

5.4. Managing Source Model Independent Variability 37

• A variability rule ‘configures’ a normal rule, specializing its implementa-
tion, just like rule inheritance,

• a variability rule is executed for each match, but if and only if the corre-
sponding feature is selected in the feature model,

• multiple variability rules can have the same from-clause,

• multiple variability rules can configure the same normal rule.

Thus, specific feature realization artefacts can be instantiated from the target
meta model. Also, multiple rules that match on a single source model element
can be called. This solution is very comparable to a conventional declarative
mapping in a normal rule, the implicit execution order property still holds.
Furthermore, the concern of selecting features is now cleanly separated. It is
the feature model editor’s responsibility to facilitate/constraint the selection.
Variability rules act as a template; a modular piece of code that is not part
of an (explicitly defined) imperative process, used for instantiating a particular
feature.

Consequently, a developer can write one or more variability rules for each
feature, without having to worry about concerns like selection constraints or
execution order. The developer can just declaratively define what should be
instantiated if a certain feature is selected.

The next section shows how variability rules are implemented.

5.4.2 Implementing Variability Rules using a Higher-order
Transformation

The variability rules are implemented by a higher-order transformation (HOT),
as shown in Figure 5.3. The HOT is created as follows:

1. The ATL meta model was extended, yielding the ATL’ meta model. The
extension is not large; one EClass was added, as shown in Figure 5.2. The
configures-clause points at the MatchedRule that is extended, just like a
sub-rule would with the extends-clause, where it points at a MatchedRule.
The name of the variability rule is stored in the attribute variantName
and denotes the name of the feature in the feature model.

2. The concrete syntax of ATL was extended with variability rules, a cor-
responding editor is created. We used the tool TCS (Textual Concrete
Syntax) for the syntax extension, which generates editors for concrete
syntaxes. The syntax is based on the extended ATL meta model, ATL’.
Section 5.4.3 explains briefly how this is done.

3. A HOT was developed in ATL which transforms an ATL’ model into an
ATL model. The workings of this HOT are explained below.

The HOT will be a used as preprocessing step in a transformation sequence.
The resulting ATL model is subsequently executed, to yield the aimed result.

The compilation step of the HOT works as follows. First all the to-clauses
of variability rules whose feature is selected are gathered (ie. union), and these
are grouped by the rule they configure. Then, these consolidated to-clauses are

38 Chapter 5. Extending ATL with Variability Rules

Figure 5.2: The point where the ATL meta model was extended to yield the
ATL’ meta model.

Figure 5.3: A feature model together with a variability rule enriched ATL file
(ATL’ M) are transformed into a native ATL file with only the selected features
transformed into normal ATL rules.

added to the normal rule that is configured. This results in a set of normal
rules whose to-clauses only contain the to-clauses from the relevant variability
rules, effectively resulting in a transformation that transforms a source model
into a target model containing the selected features. In other words, the result
is semantically equivalent to executing multiple rules that match on the same
source model element. In the current version, no error-handling is done when
merging to-clauses, like variable name clashes. This is left as future work, and
should be added when industrializing the concept.

Figure 5.4 shows this effect of the HOT schematically.
Figure 5.5 shows how the HOT is integrated in the complete transformation

step. Observe that it acts as a preprocessor.

5.4. Managing Source Model Independent Variability 39

Figure 5.4: Effect of running the HOT with independent variability rules. The
to clauses of the selected variability rules are merged into the base rule.

Note that since there is no de-facto standard for feature (meta) models, we
used our own. If one would want to use its own, a custom version of the (simple)
ATL helper function isSelected(f ∶ Feature) ∶ Boolean (residing in the HOT)
should be included in the higher-order transformation.

5.4.3 Extending the Concrete Syntax using TCS for Inde-
pendent Variability

The ATL meta model was extended into ATL’. Since ATL and ATL’ conform to
the Ecore meta meta model, extension is done by the inheritance relationship.
The ATL meta model was extended on the EClass MatchedRule. For this, a
V ariabilityRule EClass was built, as shown in Figure 5.2.

Next, the original ATL.tcs template file was downloaded and modified. The
TCS tool now generated an ATL’ editor, parser and injector, which could be
run as an Eclipse plugin. Listing 5.5 shows what was added to the ATL.tcs file,
yielding the new concrete syntax. Note that the superRule reference is used to
be able to inherit variables from configured base rules, meaning that variability
rules have the same characteristics as sub rule (from rule inheritance).

1 template Va r i ab i l i t yRu l e context addToContext
2 : ”variabi l ity ” ”rule” variantName
3 ”configures”
4 (i sDe f i n ed (superRule) ?
5 superRule { r e f e r sTo=name ,
6 importContext }) ”{” [
7 inPattern
8 (i sDe f i n ed (v a r i a b l e s) ?
9 ” us ing ” ”{” [

10 v a r i a b l e s
11] ”}”
12)
13 (i sDe f i n ed (outPattern) ? outPattern)
14 (i sDe f i n ed (act ionBlock) ? act ionBlock)

40 Chapter 5. Extending ATL with Variability Rules

15] ”}”
16 ;

Listing 5.5: The TCS template file of ATL’ where the extended syntax is spec-
ified

5.5 Managing Source Model Dependent Vari-
ability

At this stage, the implementation of variability rules cannot handle source model
dependent variability, because there are no means to define a mapping between
a feature and a particular source meta model element.

Therefore the syntax and semantics of variability rules are extended further,
as shown here. The approach uses annotations to define which features should
be applied to a given class, reference, or attribute (the annotation method is
shown in Section 5.5.4, where a separate annotation model is introduced). For
example, one could annotate the class Person with << Grid >>, to let it have
a Grid view. Thus, feature selection is done in the source meta model, which
differs from the independent variability case, where the feature selection is done

Figure 5.5: The complete transformation sequence, extended with higher-order
transformation. This transformation first transforms an ATL’ and Feature
model into a normal ATL model. This ATL model consists of the original
rules from the ATL’ model, where the effects from the variability rules whose
features are selected in the feature model are copied and consolidated into the
normal rules they configure.

5.5. Managing Source Model Dependent Variability 41

by setting the boolean variable isSelected in the feature model.

5.5.1 Extending Syntax of Variability Rules Further

The variability rules shown in Listing 5.6 (line 15 and 28) show a small syntax
change; next to referring to a rule that is configured, also a target meta element
is specified. Figure 5.6 shows the target meta model of the transformation. As
shown in the rule EClass2Model, a Controller element is created in the to-
clause, identified by the variable c. The variability rules point to this variable by
the dot-notation in the configures-clause, and create a GridV iew respectively
TreeV iew element.

This is the only syntax change, compared to the normal variability rules. In
fact, the dot-notation classifies a variability rule as dependent variability rule,
whereas omitting it assumes that the rule will manage independent variability.

Both View elements have to be connected to the eventual Controller c,
if-and-only-if the element matched in the from-clause is annotated with ‘Grid’
respectively ‘Tree’. Note that Grid and Tree are the name of the variability
rule, and these are string-matched on the feature model, thus have to exist in
the feature model to be effective.

In the target meta model, the relation between Controller and V iew is called
views. Therefore, the variable names of these elements in the to-clause of the
variability rules are also called views. These elements can have sub-elements,
so the to-clause can be more complex. As long as the views variable exists and
is the root of the elements of the to-clause, this works.

If the feature model allows it (ie. Grid and Tree are not alternatives, but
both optional for instance), one could also connect both views to the controller.
Then, the EClass a, in the from-clause of the base rule, has to be annotated
with both Grid and Tree.

Figure 5.6: Excerpt of target meta model with a controller which contains views
by the views reference

42 Chapter 5. Extending ATL with Variability Rules

The target meta element is the point where the elements from the to-clause
of the variability rules will be bound. So, after running the HOT, the base rule
EClass2Model will create a Controller instance, which has a binding for the
appropriate feature. This binding is dynamic, ie. at transformation run-time
it is determined if the EClass a is annotated with Grid or Tree. The next
section explains how the binding works, by showing how the variability rules
are compiled into normal ATL constructs.

1 −−Base ru l e
2 rule EClass2Model {
3 from
4 a : inMM ! EClass
5 to
6 c : outMM ! Cont r o l l e r (
7 . . .
8 −− After running the HOT, the views are
9 −− bound here , s ince the v a r i a b i l i t y

10 −− r u l e s s p e c i f i e d t h i s
11)
12
13 }
14
15 variabi l ity rule Grid configures
16 EClass2Model . c {
17 from
18 a : inMM ! EClass
19 to
20 −−The ’ views ’ v a r i a b l e w i l l be woven
21 −− in the base ru le ’ s Con t ro l l e r
22 −− a f t e r running the HOT
23 views : outMM ! GridView (
24 name <− a . name+’ TreeView ’
25)
26 }
27
28 variabi l ity rule Tree configures
29 EClass2Model . c {
30 from
31 a : inMM ! EClass
32 to
33 −−The ’ views ’ v a r i a b l e w i l l be woven
34 −− in the base ru le ’ s Con t ro l l e r
35 −− a f t e r running the HOT
36 views : outMM ! TreeView (
37 name <− a . name+’ TreeView ’
38)
39 }

Listing 5.6: Extended concrete syntax of ATL with variability rules again to
handle dependent variability.

5.5.2 Resulting Code after Running the HOT

After the HOT has run, the resulting ATL model will look as shown in Listing
1.4. Every dependent variability rule will be compiled into a lazy rule. The lazy
rule is called by the rule that is configured. The point from which it is called is,
in this case, the Controller with variable c, as the configures-clause stated. The

5.5. Managing Source Model Dependent Variability 43

lazy rule call is part of an if-then-else expression, where the rule is only called
if the source model element isAnnotatedWith a certain feature.

This if-then-else statement is dynamic (ie. not hardcoded) from the per-
spective of the compiled ATL model, because it is the nature of the mapping.
Hardcoding the binding is not possible, since it can differ per EClass in this case.
Thus, the binding needs to be postponed to run-time of the ATL model that is
resulted from the HOT. The reason is that now the HOT (as shown in Figure
2) does not require the input meta model as an input; just the feature model
and the ATL model. This makes the HOT more modular, and reusable. Also,
the HOT does not have to be run again, after the annotation model changes.

1 −−Base ru le , a f t e r the HOT has run
2 rule EClass2Model {
3 from
4 a : inMM ! EClass
5 to
6 c : outMM ! Cont r o l l e r (
7 . . .
8 views <− i f
9 thisModule . isAnnotatedWith (a , ’ GridView ’)

10 then
11 thisModule . Grid (a)
12 else
13 Sequence {}
14 endif ,
15 views <− i f
16 thisModule . isAnnotatedWith (a , ’ TreeView ’)
17 then
18 thisModule . Tree (a)
19 else
20 Sequence {}
21 endif ,
22)
23
24 }
25
26 −− The v a r i a b i l i t y r u l e s are
27 −− compiled in to l a z y r u l e s
28 lazy rule Grid {
29 from
30 a : inMM ! EClass
31 to
32 views : outMM ! GridView (
33 name <− a . name+’ TreeView ’
34)
35 }
36
37 lazy rule Tree {
38 from
39 a : inMM ! EClass
40 to
41 views : outMM ! TreeView (
42 name <− a . name+’ TreeView ’
43)
44 }

Listing 5.7: The HOT compiles the variability rules to lazy rules and the bind-
ings are done in the specified meta element in the base rule.

The reader might have noticed that our approach allows for illegal feature

44 Chapter 5. Extending ATL with Variability Rules

selections, if the annotations in the input meta model are wrongly put. To
see why, assume that the class Person has two annotations: << Grid >> and
<< Tree >>. But the feature model states that these are alternatives, so only
one is allowed. The check can no longer be the responsibility of the feature
model editor, as was the case with source model independent variability. In
fact, the semantics of what is allowed and what not can be interpreted in various
ways: (i) a Grid and a Tree are alternatives per matching element (in this case
inMM!EClass), or (ii) model-wide, ie. in the whole model there can be either
Grid xor Tree views. Situation (i) is the most useful in the example case, as the
examples show; there is much use of integrating features on a per class basis.
The validity check, however, is left as future research.

5.5.3 The new ATL’ Meta Model and TCS template

To incorporate dependent variability rules, the ATL’ meta model and TCS tem-
plate were extended further. Figure 5.7 and Listing 5.8 show these extensions.

Figure 5.7: The point where the ATL meta model was extended to yield the
ATL’ meta model. This version incorporates dependent variability rules.

1 template DependentVar iab i l i tyRule context addToContext
2 : ”variabi l ity ” ”rule” variantName ”configures” (
3 i sDe f i n ed (superRule) ? superRule {
4 r e f e r sTo=name , importContext
5 }
6) ” .” (i sDe f i n ed (c on f i gu r a t i on) ?
7 c on f i gu r a t i on { s epa ra to r =” ,”}) ”{” [
8 inPattern
9 (i sDe f i n ed (v a r i a b l e s) ?

10 ” us ing ” ”{” [
11 v a r i a b l e s
12] ”}”
13)
14 (i sDe f i n ed (outPattern) ? outPattern)
15 (i sDe f i n ed (act ionBlock) ? act ionBlock)
16] ”}”
17 ;

5.5. Managing Source Model Dependent Variability 45

18
19 template DepVarRuleConfiguration
20 context addToContext
21 : [(i sDe f i n ed (outPatternElement) ?
22 outPatternElement{ r e f e r sTo=varName , importContext}
23)]
24 ;

Listing 5.8: The TCS template file of ATL’ where the extended syntax is spec-
ified now has support for dependent variability rules

The DepV arRuleConfiguration element from Figure 5.7 is a necessity for
creating the concrete syntax in TCS. Specifically, it is necessary to define the
separate template-construct in line 19 of Listing 5.8.

5.5.4 Annotation of the models — A separate annotation
model

The approach of annotating an input model will be with a separate annota-
tion model. The approach of [VBVM09] has shown that it is a useful way of
parameterizing a model, without cluttering it with the annotation.

It is convenient to define a simple concrete syntax for creating the anno-
tations, as the example Listing 5.9 shows. Here, a model element of the type
EClass, named Person is annotated with the features Grid, and otherFeature1.
A different EClass, with name attribute Task, is annotated with Tree. Fur-
thermore, a model element of type EReference named hasTask is annotated
with feature otherFeature2. The syntax is inspired by the Cascading Style Sheet
(CSS) language used to decorate web-pages with style information like font-size,
borders, background-color etc., in a non-invasive, declarative way.

1 EClass [name=’ ’ Person ’ ’] {
2 Grid , otherFeature1
3 }
4
5 EClass [name=’ ’Task ’ ’] {
6 Tree
7 }
8
9 EReference [name= ‘ ‘ views ’ ’] {

10 otherFeature2
11 }

Listing 5.9: Concrete and simple syntax of defining annotations.

The concrete syntax is developed by the tool called XText [oAW], which
generated a parser and an editor. The grammar is shown in Listing 5.10, and
the meta model is shown in Figure 5.8. This meta model is generated by XText.
This is the difference between XText and TCS, XText infers the meta model
from the grammar, while with TCS, one starts with making a meta model.

Note that TCS also could have been used, but this tool is no longer main-
tained, because of insufficient resources. It was used for the extension of ATL
however, because ATL is still written using TCS. Extending the syntax would
take more time if it first had to be ported to XText.

1 grammar n l . sytemat ic . d s l . AnnotationDSL
2 with org . e c l i p s e . xtext . common . Terminals

46 Chapter 5. Extending ATL with Variability Rules

3
4 generate annotationDSL ”http :// annotationDSL”
5
6 Root :
7 (annotat ions+=Annotation)∗
8 ;
9

10
11 Annotation :
12 metaClass=ID ’ [’ (s e l e c t o r s+=Se l e c t o r)∗ ’] ’ ’ { ’
13 (f e a t u r e s+=ID)∗
14 ’ } ’
15 ;
16
17 S e l e c t o r :
18 ’name ’ ’= ’ va l=STRING
19 ;

Listing 5.10: The grammar of the annotation model.

Figure 5.8: Annotation meta model, generated by XText

5.6 Conclusions

This chapter addressed the problem of handling variability in a product line
that is implemented using a transformation sequence. It stated that normal
ATL rules are able to handle variability, but not without problems (ie. impera-
tive code, changing the transformation after the feature selection has changed).
Therefore the approach was to create variability management means by intro-
ducing a new type of rule called variability rules. The motivation for adding a
new type of rule was the observation that rules are purpose-built to do map-
pings, thus they are a good candidate to do the required mapping between
feature model and meta models. Also, rules provide mature mechanisms for
matching, querying, and instantiating meta model elements.

Our concept achieved at least three things. First, the implicit execution
order is maintained, yielding the same modularity properties as normal rules.
Second, all the advanced mapping features of normal ATL can be used, as well

5.6. Conclusions 47

as the rationale that is behind conventional rules; the developer can use the same
rationale (of matching elements) for variability rules as for normal rules. Third,
because it is a higher-order transformation, the ATL engine is not modified,
so there is not a new ATL version that has to be installed (and maintained!).
Instead, one could just chain the HOT into the transformation sequence.

We have shown ways to solve two types of variability: source model inde-
pendent, and source model dependent variability. For the latter, there are some
open issues left, the main one being that there is not yet a way to check if a
selection is valid. This check can no longer be outsourced to the feature model
editor because it needs information from the source model. A simple annotation
model with a convenient, CSS-like, concrete syntax was developed, which keeps
the source model from being cluttered by annotations.

6
Usage Guidelines for Variability Rules

6.1 Introduction

This chapter explains how to use variability rules in practice. Section 6.2 shows
three potential situations in where to use or not to use variability rules. Sec-
tion 6.3 onwards describes a step-by-step guide in setting up a transformation
sequence which can handle variability efficiently. These sections cover all the
artefacts, like feature models, meta models, annotation models and transforma-
tion definitions, that play a role in the transformation sequence.

6.2 Situations in where to use or not to use vari-
ability rules

With a reusable HOT implemented, this section shows how variability rules
can help managing both types of variability in three conceptual situations. In
every scenario, we consider a transformation sequence of m-1 transformation
steps, as shown in Figure 6.1. For each scenario step n < m is considered,
and it is explained if and how variability rules are useful. The source of each
transformation could be a manually created model or a generated one. For
either one the following theory will apply.

All scenario’s are stated in terms of the step the feature realization artefacts
of a certain feature are introduced in the transformation sequence.

We abbreviate meta model with ‘MM’.

6.2.1 Scenario 1 — Feature realization artefacts introduced
in MM n

In scenario 1, the first notion of a certain feature x in terms of realization
artefacts is in MM n, as Figure 6.2 shows.

49

50 Chapter 6. Usage Guidelines for Variability Rules

Figure 6.1: A transformation sequence with m models, or m− 1 transformation
steps.

In the scenario displayed in Figure 6.2, variability is handled by variability
rules. In the source meta model MM n the variation point p is introduced, and
is specialized to variant x using a variability rule.

A variability rule for x and for y will be present in the ATL transformation,
where the to-clauses are different, creating x- respectively y-related realization
artefacts depending on the feature model. The parent feature p of the source
model acts as a point for a normal ATL rule to match upon in the from-clause.

Listing 6.1 shows an example of the use of variability rules in scenario 1.
Note that if the source model had x or y instantiated (instead of the Par-

entFeature p), one could use normal rules to match on x or y. In that case, it
be compared to Scenario 3, below.

1 variabi l ity rule x configures BaseRule {
2 from
3 a : MMn ! p −−parent f e a t u r e o f x & y
4 to
5 x a : MMn+1 ! x . a (
6 x b <− x b ,
7 x c <− x c
8) ,
9 x b : MMn+1 ! x . b (

10 x c <− x c
11) ,
12 x c : MMn+1 ! x . c
13 }
14
15 variabi l ity rule y configures BaseRule {
16 from
17 a : MMn ! p −−parent f e a t u r e o f x & y
18 to
19 . . .
20 }

Listing 6.1: Example variability rule for feature introduction in MM n.

Similarly, but more concretely, consider the following example, in Listing
6.2, for the running case transformation sequence. Here we have a feature group
DataBaseTechnology in the source meta model, with two variants, RDBMS
or XML. This means that the first occurrence of the feature is in the source

6.2. Situations in where to use or not to use variability rules 51

Figure 6.2: Usage scenario 1: Feature realization artifact(s) introduced in MM
n.

meta model, which is the concept of Scenario 1. Note that, as with the previous
example, if the from-clause of the rules would have been like a ∶MMn!RDBMS

52 Chapter 6. Usage Guidelines for Variability Rules

or a ∶MMn!XML, one could have used normal rules, as it is then already clear
from the source model which feature should be integrated. In this case, the
source model just states: ‘there is a DataBaseTechnology’, and the transforma-
tion definition’s task is to instantiate the correct specialization, according to the
feature model.

1 variabi l ity rule RDBMS configures DB2DBSpecial ization {
2 from
3 a : MMn ! DataBaseTechnology
4 to
5 db : MMn+1 ! RDBMS
6 }
7
8 variabi l ity rule XML configures DB2DBSpecial ization {
9 from

10 a : MMn ! DataBaseTechnology
11 to
12 db : MMn+1 ! XML
13 }

Listing 6.2: Concrete example variability rule for feature introduction in MM
n.

6.2.2 Scenario 2 — Feature realization artefacts introduced
in MM n+1

In scenario 2, the source meta model has no notion of the variation point
ParentFeature or the feature x or y. This scenario is closely related to the
previous one, but here the from-clause is matching anything from MM n, ie.
the source meta model does not match on feature realization artefacts like in
Listing 6.2.

Strictly speaking, scenario 1 is not different from this one, except that the
from-clause matches on a feature realization artefact, and scenario 2 matches on
anything from MM n. Scenario 1 is put here in the first place for completeness.
However, it might make sense to explicitly model the concern in the source meta
model, as in Listing 6.1 and 6.2, for instance because of model clarity. Another
reason might be that this yields the possibility to do its configuration in the
feature model, while still having a notion of the grouping feature in the source
model.

As we shall state later more elaborately, scenario 2 is the preferred one.
In fact, our transformation sequence case only uses variability rules where the
situation is like scenario 2. This means that in the target meta model of a
transformation step the first notion of a particular feature realization artefact
occurs. So as an example, look at the variability rules for database technology
in Listing 5.4

6.2.3 Scenario 3 — Feature realization artefacts introduced
in MM n–1

To cover all the grounds, we demonstrate the case of a feature realization that
has been introduced before, in MM n–1, shown in Figure 6.4. Here, normal rules
are used for the mapping. Using normal rules is appropriate, because the fact

6.2. Situations in where to use or not to use variability rules 53

Figure 6.3: Usage scenario 2: Feature realization artifact(s) introduced in MM
n+1.

that feature x is selected can be inferred by the existence of an instance of it in
the source model. One can match on x in the from-clause without the chance of
running into the problem of having to match multiple rules for a single source
element. The feature configuration concern is out of the equation in scenario 3;
it has already taken place in an earlier step.

54 Chapter 6. Usage Guidelines for Variability Rules

The next section gives our recommendation on what scenario is preferable,
and what rationale should be applied in a transformation sequence design.

Figure 6.4: Usage scenario 3: Feature realization artifact(s) introduced in pre-
vious meta model MM n-1. Using normal rules is appropriate, because the fact
that feature x is selected can be inferred by the existence of an instance of it in
the source model.

6.2.4 Recommended scenario

As a best practice guideline, having something like scenario 2 (Figure 6.3) is
recommended. Then, feature realization artefacts are introduced in the target
meta model of a transformation, and the variability rules instantiate the features
(ie. create instances of these realization meta artefacts) in their to-clause. In
steps that follow, one could just use normal rules to match on the realization
artefacts from the source meta model and refine it, like in scenario 3 (Figure
6.4). The fact that a feature is selected, and thus introduced following scenario
2 in a previous step, can be inferred from the very existence of an instance of a
feature realization artefact in the source model.

6.3. Setting up a transformation sequence to handle variability 55

As a consequence, variability rules are only used when necessary, and normal
rules are used as much as possible. The variability rules will now act as an
integrator/instantiator of feature realization artefacts. We prefer to use normal
rules in steps that follow, because the rules will now be regular refinement
mappings, and the concern of feature selection is now taken out of the equation
in these steps (as in scenario 3). Only at introduction-time variability rules are
used.

The final result is that one can just change selections in the feature model,
or make annotations in the annotation model, and the transformation sequence
will generate a system integrating features following the feature diagram and
the annotation model.

6.3 Setting up a transformation sequence to han-
dle variability

Like many other language constructs, variability rules are only effective if used
right. This section describes a set of guidelines that can be used to achieve the
best result.

The following sections explain the design decisions one should take, when
defining a step-wise refining transformation sequence with variability manage-
ment.

This chapter considers a transformation sequence that already has the com-
mon parts integrated. The variable parts now have to be added to the transfor-
mation definition, and the next sections show how.

6.4 Step 1 — Model variability in feature model

Whenever a new type of variability is identified, one should add it to the feature
model. This gives insight in the constraints that a certain feature will have.
Now, one can categorize the variants in terms of source model (in)dependence
variability. In the dependent case, one needs to add annotations in a later phase.

6.5 Step 2 — Model variability in meta models

As mentioned earlier, variability rules are meant to work with the feature re-
alization artefacts residing in meta models. Therefore, one has to model the
realizations in the meta models. First, one has to decide on which step in the
transformation sequence, and thus in which meta model, the feature realiza-
tion should be introduced. Some features are of a higher abstraction level than
others. The higher the abstraction, the earlier it will be introduced.

When features are of the type ’alternatives’ or ’one or many’, one should
consider modeling them with inheritance or a comparable construct. This is a
convenient way, and it will allow a simple one-to-one mapping with variability
rules. In other words, the variability rule definition will be more modular and
thus more reusable and adaptable.

56 Chapter 6. Usage Guidelines for Variability Rules

6.6 Step 3 — Define variability rules for each
feature

For both cases, source model independent variability and source model depen-
dent variability, one is encouraged to write the variability rules in the transfor-
mation definition for which the target meta model is the model that introduces
the feature. In other words, one is encouraged to follow the situation shown in
Figure 6.3.

6.6.1 Case A: independent variability

In this case, there will be at least one variability rule for each feature. One has to
determine according to which rationale the feature should be instantiated. For
instance, if the source meta model is ECore, it could be for each EClass, or for
each EAttribute. Thus, one has to determine the relevant source meta element
to be matched. Usually, there is already a rule with the same from-clause. This
rule can be used as base rule.

Since we consider the independent case, the transformation definition for
this feature is finished.

If a single feature has to be integrated for multiple source elements (ie. for
each EAttribute and for each EReference), one can create multiple variability
rules with the same name, differing on the base rule they configure. Then, one
would have something like shown in Listing 6.3.

1 variabi l ity rule FeatureX configures
2 EAttr ibute2SomethingElse {
3 from a : e co re ! EAttr ibute
4 to . . .
5 }
6
7 variabi l ity rule FeatureX configures
8 EReference2SomethingElse {
9 from a : eco re ! EReference

10 to . . .
11 }

Listing 6.3: Integrating a single feature according to multiple source elements.

Typically, the decisions on ‘what to match’ depend on the way the meta
models is structured. One can use the same thought process as used in normal
ATL, with normal ATL rules.

6.6.2 Case B: Dependent variability

As far as matching goes, the rationale is the same as with independent variability
rules. However, since the integration of a certain feature can differ on a per-
source element basis, the feature should be modeled in the target meta model
in a certain way. Concretely, one should make sure the situation is similar as
shown in Figure 6.5.

Here, each common element A is generated from an element srcA by a certain
rule, say rule X (see Listing 6.4). In this situation, each A has a reference r
to one of the feature specializations {F1, F2, F3}. Thus, each feature will be

6.6. Step 3 — Define variability rules for each feature 57

integrated for each srcA, and bound to each A eventually (if it is annotated
with a feature).

This means it is not possible to instantiate a dependent feature that is not
connected via a reference to an element from the to-clause of the configured
base rule. Thus we have the following requirement on the target meta model.

Target meta model requirement: In the target meta model it is required
to have a reference s from an element created by a base rule B to a dependent
feature F . Then, the variability rule instantiating this feature should configure
B.s.

1 rule X {
2 from s : sourceMM ! srcA
3 to t : targetMM !A
4 }

Listing 6.4: Base rule transforming the common element srcA into A.

Figure 6.5: Preferred structure of target meta model with source model depen-
dent variability.

With this structure a dependent variability rule will be easy to create. In
our situation this rule will look as Listing 6.5. Note that the variable name of
the feature is the same as the reference: r. This is obligatory, since the HOT
will resolve the binding using the first variable name of the to-clause.

It is of course possible that the feature realization artefacts consist of more
elements. One should try to keep one root element for every feature realization
subgraph, and put it as the first element in the to-clause of the variability rule.
This element has outgoing reference edges, and only one incoming edge (r in
this case). If this is obeyed, one can create multiple elements in the to-clause of
the variability rule, and this can be linked accordingly. Other references should
be resolved using the resolveTemp() method of ATL.

1 variabi l ity rule F1 configures X. t {
2 from s : sourceMM ! srcA
3 to r : targetMM ! F1
4 }

Listing 6.5: Dependent variability rule for feature F1.

58 Chapter 6. Usage Guidelines for Variability Rules

The question could be asked: ‘isn’t this too restrictive?’. We don’t think
so. When creating a target meta model in which a set of dependent features is
introduced, one knows on which source element a feature depends. That is, one
knows which source element should be annotated. It is natural to have a base
rule, like in listing 6.4, which generates a target element (A) from this source
element (srcA). The only requirement, then, is to have a reference between this
target element and the features.

We cannot think of situations where having this link gives a problem. If
there are any, then this is the limitation of the current version of dependent
variability rules.

6.7 Step 4 — Define annotations in an annota-
tion model

With everything in its place, one can add annotations on elements of the source
models. One annotation model drives a certain configuration (in combination
with a feature model). If a different configuration has to be made, either the
feature model has to be changed, or the annotation model.

6.8 Conclusions

This architecture can manage variability, and facilitates the automated inte-
gration of variable parts into end products. The annotation model and feature
model are the drivers. Next to that, the concerns are separated in different
models. The variability rules are declarative, with implicit rule ordering.

The next chapter gives an evaluation of what was achieved, focusing on the
most important new asset: variability rules.

7
Evaluation

7.1 Introduction

This chapter looks back at what was achieved, and puts it in perspective by
comparing it to other approaches. The key result was the introduction of vari-
ability rules in ATL. Therefore we first assess the quality characteristics of this
approach. After that, the additional required models, feature models and an-
notation models, are discussed.

7.2 Quality Properties of Variability Rules

The quality assessment can be done over different aspects of the variability
rules. The assessment is based on the following quality characteristics: expres-
siveness, modularity, maintainability and usability, performance, reusability and
adaptability. These value of these quality properties can be quite subjective,
therefore we compare it to normal ATL first. If variability rules match the
quality characteristics of normal ATL rules, we consider it successful.

The quality properties reusability and adaptability are put in perspective
with Kurtev et al.’s [KvdBJ07, Kur05] work.

7.2.1 Expressiveness

Variability rules match normal rules to a great extent when it comes to declar-
ative expressiveness. However, the current implementation does not support
the using-clause and do-clause. For the running case, we did not need these
construct, and they are left as future work. It should not be hard to implement.

Furthermore, OCL expressions can be used just like in normal rules. The
only thing that is not possible anymore is putting OCL guards (ie. OCL expres-
sions that return a boolean) in the from-clause of variability rules to prevent
a rule from calling. However, guards are not needed, because the semantics of

59

60 Chapter 7. Evaluation

variability rules determines whether a rule should be called or not, determined
by the feature model and, in the source model dependent variability case, the
annotation model. Thus, if variability rules are used as intended, the expres-
siveness matches the normal rules to a great extent.

As far as the semantics is concerned – call a rule if-and-only-if the corre-
sponding feature is selected – a transformation developer can now achieve vari-
ability management by simple declarative variability rules. This is an advantage
over using normal rules and imperative code, where one has to do tedious work
to create a transformation with the same semantics. Thus, the expressiveness
of ATL’ is better than normal ATL.

7.2.2 Modularity

Variability rules share characteristics with sub-rules which extend a base rule.
In fact, variability rules are inspired by them. Like sub-rules, variability rules
can use all the declared variables in the base rule. Furthermore, they are non-
invasive; the base rule is oblivious to what sub-rules it has and what variability
rules configure the base rule. So, as far as modularity goes, there is no difference
between rule inheritance and variability rules.

As far as the HOT is concerned, the HOT is a modular and reusable com-
ponent, with well-defined in- and outputs. It can just be chained in a transfor-
mation sequence as a preprocessor.

7.2.3 Maintainability and Usability

Variability rules are as declarative as normal rules, so they are as easy to un-
derstand and use as normal rules. Furthermore, because the ATL’ compiler is
written as a higher-order transformation, one does not have to maintain two
ATL engines. In fact, users of the HOT can benefit from updates to the ATL
engine. This makes it easier to maintain. After the HOT has run, the resulting
ATL model can be used for further processing, so one can use the normal ATL
debugger to step through code. Also, one can see the results of the HOT pre-
processor, and see what it compiled to. The resulting code is human-readable,
improving usability.

Furthermore, the same philosophy of matching source elements have to be
used with variability rules, just like normal rules. Therefore the same paradigm
of matching source elements and creating target elements for each of these
matched elements, applies. Therefore, next to the fact that the syntax is not
very different to normal rules, makes it relatively easy to learn.

These two properties are hard to judge on how successful we were in obtain-
ing them. This thesis will not make a more thorough attempt.

7.2.4 Performance

Running a higher-order transformation might be slower than integrating the
variability rule code generation in the ATL compiler. Yet, we think that the
benefits on the other fronts makes it a small price to pay. In the real-life product
line case described throughout our thesis, it is not a show stopping disadvan-
tage. We trade better variability management for eventual lower performance
in transformation execution. Also, running the HOT takes less than a tenth

7.2. Quality Properties of Variability Rules 61

of a second on our computers, whereas model-to-text transformation form the
bottleneck, because they have to create a lot of files, which is a slow process.
Thus, performance is not an issue in our case.

7.2.5 Reusability and Adaptability

As Kurtev et al. [KvdBJ07, Kur05] have pointed out, reusability and adapt-
ability of transformation rules are two quality properties which are important.
Here we assess how well variability rules are doing.

Transformation definitions can now be modular along the variability dimen-
sion, which was not possible before. Specifically, the instantiation of variants –
the features – can be modularized, improving reusability.

However, recall that variability rules can be, as far as coupling goes, com-
pared to rule inheritance. According to Kurtev et al., rule inheritance has some
limitations concerning adaptability. They claim that rule inheritance introduces
tight coupling to the base rule.

This being true, we think that it is still a good solution. The reason lies
in the nature of variability. Typically, parts of a common rule (ie. elements of
the to-clause of the base rule) are variable. These variable parts (ie. the fea-
ture realization artefacts) in the meta models are often conveniently modeled
via an inheritance relation. Having an inheritance-like relation in the transfor-
mation language allows for a straight-forward, one-to-one mapping between the
variability rules and the features in the meta models.

If the base rule changes, the variability rule has to change, which is a down-
side. The upside of the inheritance-like relation between variability rules and
base rules, is the fact that variability rules can use the variables from the base
rule. Note that this is especially useful if the target meta model also uses an
inheritance relationship between the variation points and the variants, that is,
the feature group and the possible features.

As a solution to the coupling problem, the configures-clause of an (indepen-
dent) variability rule could be made optional. Then, there is no shared scope of
variables of the base rule, but the advantage is that the variability rule is not
coupled to anything. For some features that are loosely coupled in the meta
models, this might be useful. The optional configures-clause is not implemented
in the current version, and is left for future research.

7.2.6 Conclusions of the quality properties

To conclude this section we claim that on the reusability quality of the complete
transformation definition, variability rules bring a real benefit. The variability
rules add means for handling variable aspects.

Furthermore, because of the declarative nature, the rules are more simple,
and no imperative code is needed, making the rules shorter and easier to com-
prehend. Simple rules influence the actual need for reusability.

As a final remark, quality properties have effect on each other, and we do
not claim to provide a quantified assessment on the values of these quality
properties. We do claim that variability rules are a step forward; a number of
quality characteristics is improved.

62 Chapter 7. Evaluation

7.3 Evaluation of the Feature models and An-
notation models

Here we evaluate the other artefacts. There are two models needed: feature
models, and annotation models, for which we discuss the pros and cons of their
usage.

7.3.1 Feature model

For the source model independent case, the results are satisfactory, because
only a feature model is needed. A feature model can be created by any feature
model editor, provided it has an injector that can load a textual or graphical
representation into an EMFModel object.

The advantage is that the configuration – and its constraints! – can be out-
sourced to a feature model editor, which can take the responsibility of checking
the validity of the feature model, and prevent the user from making forbid-
den selections. This outsourcing means that we do not have to worry about
the configuration semantics at all, but just focus on what to do if a feature is
selected !

7.3.2 Annotation model

On the source model dependent variability case, there is no way around some
sort of annotation. There are multiple places where annotations can be put:
in the input model, in the feature model, or as a separate model. Having a
separate annotation model is a benefit, in our opinion, because of at least four
reasons.

Firstly, it does not clutter the input model with annotations. Secondly,
the input model is oblivious that it is being annotated, improving modularity
and separation of concerns. Thirdly, the convenient and simple syntax of the
annotation model can be compared to Cascading Style Sheets (CSS), which is
comparable as far as usability goes. Fourthly, putting the annotations in the
feature model, in some way, compromises the reusability of the feature model,
because the annotations need to be removed for every new domain model, thus
having them in a separate model is beneficial.

7.3.3 Checking feature selection validity for source model
dependent variability

Features that have to be instantiated on a per-class or per-attribute basis, ie.
the source model dependent variabilities, have a fundamental problem. When
they are put in a feature model, it is not clear what is a valid feature selection
and what not.

If a feature model only contains source model independent variability, its fea-
ture selection can be validated by an algorithm (often integrated in the feature
model editor). The algorithm cannot validate source model dependent feature
selections, since there is no such thing as ‘a feature selection’; a feature can be
‘selected’ for one instance of class A in the input model, but ‘deselected’ for a
different instance of class A. Instead, a feature selection being ‘valid’ now also
depends on the annotation model, and this should be checked by the HOT.

7.4. Limitations and future improvements 63

However, for the feature selection validity check we first should define what
is ‘valid’ and what is not. We propose the following semantics, explained by an
example.

Consider a target meta model where a class Controller has a reference to one
or more V iews. The class V iew has two sub-classes: GridV iew and TreeV iew.
The feature model FM , states that GridV iew and TreeV iew should be alter-
natives (ie. xor). The Controller-View combination elements are created for
each EClass element of the source model. The variability rules will look like
Listing 7.1.

1 −−Base ru l e
2 rule EClas s2Contro l l e r {
3 from
4 a : inMM ! EClass
5 to
6 c : outMM ! Cont r o l l e r
7 }
8
9 variabi l ity rule GridView configures

10 EClass2Model . c {
11 from
12 a : inMM ! EClass
13 to
14 views : outMM ! GridView (
15 name <− a . name+’ TreeView ’
16)
17 }
18
19 variabi l ity rule TreeView configures
20 EClass2Model . c {
21 from
22 a : inMM ! EClass
23 to
24 views : outMM ! TreeView (
25 name <− a . name+’ TreeView ’
26)
27 }

Listing 7.1: Feature constraints from the feature model operate on a per-
Controller basis in this example due to the .c part of the configures-clause
pointing at a Controller element.

We now state that the V iew features should be alternatives per-Controller,
due to the fact that the configures-clause points at a Controller (defined in the
.c-suffix). This means that for an EClass instance A, the transformation creates
a Controller with a TreeV iew xor GridV iew. A Controller generated from
a different EClass instance B, can also have a GridV iew xor TreeV iew. So,
for example, if a Controller C has both a TreeV iew and a GridV iew, this is
invalid.

In the running example case, this seems the most reasonable semantics. The
check is not implemented, and is left as future work.

7.4 Limitations and future improvements

The implementation that is provided here can be regarded as a proof-of-concept,
so there is room for improvement. The following list shows the recommended

64 Chapter 7. Evaluation

improvements:

• Currently, only EClasses can be annotated.

The HOT’s isAnnotatedWith(...) method uses a hardcoded EClass as pa-
rameter. This method should be re-implemented with a reflective nature,
to be able to check if an element of any type is annotated with a certain
feature.

• Make variability rules possible without the configures-clause for looser
coupling

There might be feature realization artefacts that have loose coupling in the
target meta models to common parts, that is, features that have no depen-
dencies on other elements and are very easy to compose. For those features
it might make sense to have variability rules without the configures-clause
pointing to a base rule. Then, such a rule will have no coupling to a base
rule, improving reusability. This is not yet implemented, for the reason
that the variability in the running case did benefit from the inheritance-
like relation of configuring a base rule, due to the fact that the scope of
the variables was shared.

• In the current version, only classes can be matched to create new elements
in the target model.

If one wants to use variability rules on attributes or references, this is not
possible. However, this is also not possible in normal ATL (ie. one cannot
create a rule that only creates an attribute, it also has to create a first-class
element like an EClass, after which the attribute can be set). In most cases
this is not a problem, since most meta models have first-class elements for
things like references and attributes, to be more flexible. In the case
of Ecore, there are classes EReference and EAttribute. In the CRUD
system meta model they are called ModelReference and ModelAttribute,
respectively. Variability rules work well in such a case.

• The XText parser that parses annotation models is currently not very
mature.

It is now capable of annotating only by selecting on a name attribute.
Probably it would be nice to allow other attributes, or even full OCL ex-
pressions. Such a feature has impact on the HOT, since the isAnnotatedWith(...)
helper that is generated need to be more generic. This could be made
generic by reflection.

• The infrastructure should make sure that all features that are used in an
annotation model actually exist in the feature model.

This could be implemented in the annotation model parser, or in the HOT.
Currently, the developer needs to manually check if all features are spelled
correctly in the annotation model.

• The HOT should check if a source model dependent feature selection is
valid.

It should do this by querying the annotation model, and assessing if the
set of annotations is valid, according to the semantics described in Section
7.3.

7.5. Comparison to other Approaches 65

• Industrialize the whole package, that is:

– Minimize the amount of configuration needed for a user that wants
to use the HOT,

– Include a package with an easy-to-use injector, which parses a ATL’
file, and injects it into a runtime EMFModel object. Currently this
parser is in a separate Eclipse project,

– ATL’ projects should easily be created in Eclipse, complete with a
parser and an injector.

7.5 Comparison to other Approaches

There are other approaches that need to manage variability, albeit in different
contexts. This section lists some of them, and compares them to the solution
from this thesis, as far as that is possible. Some approaches are not solving
the core problem that we wanted to solve, but reason about other parts of the
infrastructure. Therefore they are also included here.

7.5.1 Variability Management in a Model-Driven Software
Product Line

The work of Garces et al. [GPA+07] comes close to both the goals of this
research, and the way they implemented it. Like in our research, they want
to manage variability in model-driven product lines, hence the corresponding
title. In their approach, they also create custom rules that are meant to manage
variability from a feature model. Their rules are called (i) base rules, (ii) control
rules and (iii) specific rules.

The difference with the approach here, is that their rules are implemented
in ATL itself. They propose a pattern of combining these rules in a specific
way to handle variability. So control rules are in fact rules that have controller
functionality that decide whether a feature has to be called. This feature, then,
is implemented in a specific rule, which is a called rule. The control rule decides
if the specific rule is to be called.

In other words, Garces et al. propose an ATL software pattern, a specific
structuring of ATL rules, which has to handle the variability.

The disadvantage of their approach is that the ATL definitions become more
complex, and involve more imperative code. Their advantage is that no HOT
is needed, just normal ATL will do. Furthermore, our approach is more declar-
ative, and abstracts the user from the semantics of integrating a set of features.

To conclude, while their research goal corresponds with ours, we think that
our solution yields model transformation definitions with better quality proper-
ties (as defined before).

7.5.2 Weaving Variability into Domain Metamodels

According to Morin et al. [MPL+09], there is variability in Domain-Specific
Modeling Languages (DSMLs). DSMLs can describe a wide range of different
models. These models often share a common base, and vary on some parts.
Variability is often managed using a separate variability language, which they

66 Chapter 7. Evaluation

find a bigger learning curve for DSML stakeholders. Furthermore, they see it
as a significant overhead in the development of product lines for DSMLs. They
consider Model-Driven DSMLs, where the product line and also the derived
products are models.

They proposed to consider variability as an aspect to be woven into the
DSML, that is, into the domain meta models, to introduce variability capabil-
ities. It is a reusable variability aspect, defined at the meta model level. The
variability concepts and their relationships are described independently from
any domain meta model. The result is that an architect can model artefacts
from the domain with variability included.

Morin et al. generate modeling languages with variability management ca-
pabilities, whereas here, the variability handling and configuration happens in
the transformation sequence itself.

7.5.3 Variability within Modeling Language Definitions

There is a considerable quantity of variability mechanisms in use by modeling
languages today. The approach of Cengarle et al.[CGR09], attempted to formal-
ize the semantics of modeling languages, in particular UML 2. The objective
was to specify variability management formally. These formal semantics can be
used in any object based modeling language. In other words, their work is about
variability within a language, ie. in the development of the language itself, not
the variability that can be expressed using the generated language.

Their solution is a taxonomy of variability mechanisms. In the context
of modeling language definitions, there can be three kinds of variability: i)
Presentation, ii) Syntactic and iii) Semantic variability. Next to this taxonomy
they provide a framework to manage and document the variation points in a
modeling language. Their approach is to specify a modeling language using
MultiCore, which generates an abstract syntax tree (AST). This specification
includes a model of the concept of variability.

The method they used in dealing with variability, in this case in modeling
languages, is based on traditional code generation. Because this use of tradi-
tional methods, there is no concept of source model dependent and independent
variability. This means that variability is expressed differently, not like in this
thesis which opts for a declarative approach.

7.5.4 Leveraging model transformations by means of an-
notation models

Vara et al. [VBVM09] described a way of annotating models which act as a
driver for configuring a model. This work inspired me to use annotation models,
rather than clutter the input model with annotations. Their approach is used
in the context of databases, and schema generations/transformation.

Like their approach, our approach uses helpers in the ATL transformation
that check if something is annotated. In their approach, this is a manual process,
whereas in our case, the annotation check is now woven into the transformation
definition by the HOT. Our approach results in more declarative code as with
is possible with their approach. So, their concept is the same as ours, but we
raise the level of abstraction a bit further.

7.5. Comparison to other Approaches 67

7.5.5 Aspect-Oriented Model-Driven Software Product Line
Engineering

According to Voelter and Groher [GV09], effectiveness of a software product
line depends on how well feature variability is managed in the whole devel-
opment cycle. They also realize that aspect-oriented software development
and model-driven software development are different, but can complement each
other. Their idea is to integrate these two practices for the sake of variability
management capabilities.

Their approach is to use the openArchitectureWare toolset to define feature
models, that will be woven with solution space models, done by aspect weaving.
This approach allows to have a separate, orthogonal feature model that config-
ures the input model. On multiple levels in the transformation sequence, aspects
are used to modularize crosscutting variabilities. A case study of a SmartHome
is used to demonstrate the approach.

This project shows an interesting, thorough approach for managing variabil-
ity throughout a model-driven software product line. Aspect-orientation is used
in models, in model-to-model transformation code, and in model-to-text trans-
formation code. Consequently, a developer has the freedom to implement the
variability it encountered –as specified by the feature model– on multiple levels
of the transformation sequence.

The difference with this approach is that they do not use ATL as the model-
to-model transformation language, thus they do not solve the problem for ATL
users. Furthermore, the approach in this thesis does not use aspect orientation,
but standard model element matching and new semantics. In other words, our
solution provides a rule based mapping mechanism between feature models and
feature realization artefacts in meta models. We have a different method of
managing variability, with as advantage that the same philosophy as normal
rules is used, lowering the learning curve for developers.

Most importantly, their problem can also be solved by our variability rules.

7.5.6 Traceability between Feature Model and Software
Architecture

Satyananda et al.[SLKH07] discuss the problem of identifying traces between
a feature model and software architectural artifacts from the problem domain.
They argue, that this can be done manually for small cases, but an automated
approach would be useful in larger systems. Their approach is based on For-
mal Concept Analysis. First a functional decomposition from both the feature
description and architectural description is (automatically) extracted. This is
possible due to a functional decomposition language construct in the definition
of both models. After that, FCA uses these functional decompositions and the
feature model and the architectural model as input, analyzes it, and returns
a mapping between feature model and architectural model. The mapping is
created using a graph-searching algorithm.

The problem they try to solve is a relevant one, also in the field of MDE.
In the end, a feature model should be connected to artifacts from the transfor-
mation sequence. However, their approach is purely PLE based, and does not
speak about the concepts of model transformations. With our MDE approach,
the traces are made available by the model transformation. Therefore, the MDE

68 Chapter 7. Evaluation

approach solves this issue, that is relevant for PLE, advertising the use of MDE
technologies in the creation of product lines.

7.5.7 FeatureMapper: Mapping Features to Models

In PLE, feature models are often used to manage variability, and to derive
products from a common set of artifacts. To be effective, a mapping is needed
between features and solution space artifacts, which allows for automatic prod-
uct derivation. Heidenrich et al.[HKW08] approached this problem by building
a tool called FeatureMapper, that maps features from a feature model to soft-
ware artifacts, but also interprets and visualizes these mappings. It support
automatic mapping, where the mapping is made while the developer is mod-
eling solution space models. The tool provides a record-mode for this, which
records what the developer is modeling. Finally, the tool can interpret a map-
ping to create models that only include the parts that are needed for a given
variant. This transformation can be started by the tool, but also comes as an
openArchitectureWare workflow component.

The FeatureMapper would in our case map features to feature realization
artefacts from the meta models. Thus it would do the same as ATL does in
our case, if one obeys Scenario 2 (see Section 6.2), where the feature realization
artefacts are residing in the target meta model of a transformation. However,
ATL is perfectly capable of doing this, and also provide OCL expressions. Thus
the FeatureMapper would not be advantageous over the use of ATL in our
case. The FeatureMapper could be used to manage source model dependent
variability, but we prefer to use the CSS like syntax of the annotation model.
This is not intrusive, and declarative, and textual, although this makes the
FeatureMapper not necessarily a less suitable approach of mapping elements to
features.

7.5.8 Using Feature diagrams with Context Variability to
model Multiple Product Lines for Software Supply
Chains

Hartmann and Trew [HT08] discuss the use of feature diagrams to model multi-
ple product lines. Often, there is contextual variability in multiple product lines.
Therefore they introduce the concept of Context Variability. They illustrate it
with examples from the automotive industry, for a car infotainment system.
The context model here consists of the region a car is sold, the price class of the
car, etc. The context variability model constrains the feature model, enabling
the possibility to model multiple product lines supporting several dimensions in
the context space.

The relation to their work is that the transformation sequence of their project
can potentially generate multiple product lines. This is because it receives
input at the meta model level; each input model is defined as a meta model.
This means the domain changes per system generated with the transformation
sequence. The input meta model independent variability (shown in Figure 4.1),
as it is called in our report, can be regarded as Context Variability, the term used
in [HT08]. However, since in this thesis there is no need for multiple product
lines, this is not implemented.

7.6. Conclusions 69

7.6 Conclusions

In this evaluation chapter, we explained what was achieved, and put it in
perspective against other approaches. Also, the variability rules implemen-
tation was evaluated. We stated that the implementation works as a proof-
of-concept, but should be industrialized more. Specifically, some editors need
to be more mature, with mechanisms like constraint validation built-in, and
the isAnnotatedWith(...) method of the HOT should be re-implemented using
reflection, such that any meta model element type can be fed to it. Industri-
alizing also means adding an ATL’ editor and injector, that is more mature as
the current version.

Another improvement would be to make the configures-clause optional. In
some cases, features that are loosely coupled (or not coupled at all) do not
necessarily need to be instantiated or integrated for each meta element. This,
however, needs some experimentation, and a more thorough study. Rules with-
out a configures-clause would be less coupled, and thus more modular, due to
not being dependent on a base rule.

To conclude, the proof-of-concept is usable, but there is room for improve-
ment, on the tool-support aspect.

8
Conclusion

This last chapter formulates the conclusion of this thesis. First a summary is
given of the thesis, focusing on what is delivered, and what is the quality of
the delivered product. The section following the summary answers the research
questions.

8.1 Summary

The motivation for the research in our thesis started by the observation that the
model-driven product line case lacked in the management of variability. Specif-
ically, there was a need for configuring the individual applications (ie. family
members) that were derived by the product line. It was chosen to make the
model transformation language ATL capable of dealing with variability in the
case of developing applications by step-wise refinement. The reason was that
ATL would be a good candidate to provide mappings between features from a
feature model and feature realizations artefacts from the meta models. What’s
more, ATL is well-known for creating target elements from source elements in
a declarative way, but lacked good language constructs for handling variability.
Therefore, we followed the ATL philosophy; create a language construct mod-
eled after an ATL rule, which can match its quality properties. These quality
properties consists of expressiveness, modularity, implicit execution order.

The concept is called variability rules which follow the semantics of sub-
rules. Like sub-rules, variability rules reuse a base rule, but the difference is
that they are only called when a corresponding feature is selected in the feature
model, for the source model independent variability case. However, sub-rules
suffered the problem of being unable to match one source element by multi-
ple sub-rules. Variability rules’s semantics is to overcome this problem, which
was necessary, since potentially multiple features should be integrated for each
particular type of source element.

The initial variability rules could not cope with source model dependent

71

72 Chapter 8. Conclusion

features, features that can be applied on a per-class basis. Therefore the syntax
was extended further, to be able to specify what to do if a class from the source
model is annotated with a certain feature.

So, in the case of source model dependent variability, there is also information
needed from the input model (ie. the source model of the transformation). This
information is provided by annotating the source model. To prevent cluttering
of the source model, a separate annotation model was created, which decorates a
domain model. Its syntax is modeled after Cascading Style Sheets, the popular
language for decorating HTML files.

The implementation of a compiler that compiles an ATL’ file, that is a file
with ATL rules and variability rules, was done using a higher-order transfor-
mation (HOT), written in ATL. The HOT compiles an ATL’ model back into
an ATL model, with only selected featured enabled. The resulting ATL model
can be used for further processing, so the HOT acts as a preprocessor. A major
advantage of using a HOT is that the normal ATL engine is not touched. Thus
it benefits from update to the ATL engine.

It was shown that variability rules are best used in situations where a fea-
ture is introduced in the target meta model of the transformation. The other
situations can be handled with normal ATL rules, although it is theoretically
possible to use variability rules in the scenario where the feature is introduced
in the source meta model. It is however, not recommended, since the fact that
it exists in the source model means that it is selected in the feature model.

8.2 Answers to the Research Questions

The following section looks back at the original research questions, and states
how they are answered. These research questions were distilled after observing
some limitations of the initial version of the transformation sequence. The
research questions were made as general as possible, yielding results that can
be used in other contexts. Answering the sub-research questions should yield
an answer to the overall research question.

The first sub-question was: What kinds of variability are apparent in the
example case?

This can be answered by stating that there are two types of relevant vari-
ability, source model independent variability, and source model dependent. The
first one needs only information from the feature model to be handled properly,
whilst the latter also needs an annotation model. The dependent case is more
complex by nature. Consequently, the variability rule syntax is more elaborate.
It also means that the feature model editor can no longer be the one to check
validity of a feature selection. The check has still to be done, by the higher-order
transformation for example, which is left as future work.

The following questions follows the former one:
How can the MDE infrastructure be adapted to manage these types of vari-

ability?
The infrastructure was adapted by adding three things: a separate feature

model, a separate annotation model and variability rules, a language construct
added to ATL, yielding ATL’. Our approach achieved separations of concerns,
modularity, which increases maintainability and usability. The declarative na-
ture of variability rules, which follows the philosophy of normal rules means

8.2. Answers to the Research Questions 73

there is not a steep learning curve. It also means that there is no need for
imperative code, something which is discouraged by the ATL philosophy.

The final question’s answer is partially stated in the previous paragraph,
and was the following:

What are the limitations of ATL when it comes to variability management,
and how can these be overcome?

The limitations of ATL were in the first place in the inability to match
multiple rules for a single source element. This key feature was provided by
variability rules. These rules use a feature model and an annotation model to
declaratively state what feature realization artefacts from the target meta model
should be instantiated and integrated in the target model. This solves the ATL
limitations rather nicely, since all the quality characteristics of normal rules are
maintained: modularity, declarative code, implicit execution order, and the full
set of OCL expressions are available.

These questions answered the main, global research question:
“’How to manage variability in MDE-based product lines that derive products

by step-wise refinement using the ATL model transformation language?.’
This means that the final answer was that there should be a separate feature

model, a separate annotation model, and a modified version of ATL, called ATL’,
which features variability rules. The combination allowed a modular, declara-
tive solution, with the concerns of configuration and annotation separated from
the transformation code. Due to the nature of the source model dependent
variability type, there was the need for annotation, which meant there had to
be made a compromise to the ease and separation of feature configuration; no
longer is the feature model the only driver for selecting features. However, the
solution has as characteristics that the annotation, is non-invasive, uses a simple
syntax, and is truly separate from the rest of the architecture. Consequently,
the other models are oblivious to the existence of the annotation model.

8.2.1 Applications of this Framework in other contexts

The example transformation sequence described in this thesis was the motivation
for most of the solutions provided. This section assesses the extent to which it
can be applied in other situations.

The solution, that is, the combination of feature model, annotation model
and variability rules, can be applied in other situations. Now follows a list which
states some situations:

• Any step-wise refining transformation sequence with the need for config-
uration.

Meaning that as soon as there is variability to be integrated in the out-
put of the transformation sequence, one can provide a solution using the
framework of our thesis. One should model the variability in a feature
model, encode the way the features should be integrated in variability
rules, and depending on the nature of the variability, should annotate the
input model.

• Translating models to different platform specific models.

A common use of MDE is to create multiple platform specific models
(PSM) from an platform independent model (PIM), which could be used

74 Chapter 8. Conclusion

to generate for instance a Java application and a C#.NET application
from a common PIM.

Rather than having two ATL transformations, one for each platform, one
could use variability rules. With two ATL transformations, there is a po-
tential code scattering. Then, only the ones that are relevant for a partic-
ular platform could be called, by configuring the feature model. Not only
is the integration of features beneficial, but also the fact that the variable
parts are modeled in a separate model, which increases the understanding
of the differences between platforms.

In this situation, mostly source model independent features are likely to
exist, rather than dependent features. This means that an annotation
model might not be necessary.

A potential problem of this strategy could be (as opposed to having two
ATL transformations), that the target meta model contains realization
artefacts of both platforms, but this depends on the size and complexity.
On the other hand, ATL allows for multiple target models, so it can be
overcome.

8.3 Future Work

Some improvements could still be made. First, source model dependent features
are not checked for validity, because extra information is needed from outside the
feature model. In the classical case, and also in the source model independent
variability case, the feature model could be validated on its own. That is,
no other information is needed to validate a feature model only consisting of
source model independent features. When source model dependent features are
included, there is also the need of the input diagram, and the annotation model.
Then, following self-defined semantics, a check should be done. This is left as
future work.

Other future work includes: improving the parsers, and industrializing the
proof-of-concept, by making it easier to create ATL’ projects and run them.

8.4 Final Remarks

When some of the future work would be completed, our infrastructure is a
useful framework for creating product lines in a model-driven way. However, it
is already used in practice by our case, so the current status is already usable.
Industrializing the package will make it easier for other people to use it, which
hopefully leads to a growing user base. While our information system case is
further developed in the near future, we try to improve the tools alongside with
it.

The appendix contains all the source-code and models on a CD-rom, and is
a good place to get started.

References

[ACR] H. Arboleda, R. Casallas, and J.C. Royer. Dealing with Constraints
during a Feature Configuration Process in a Model-Driven Software
Product Line. DSM’07, pages 178–183.

[AK03] C. Atkinson and T. Kühne. Model-driven development: A meta-
modeling foundation. IEEE Software, 20:36–41, 2003.

[BBM03] F. Budinsky, S. A. Brodsky, and E. Merks. Eclipse Modeling Frame-
work. Pearson Education, 2003.

[Béz05] J. Bézivin. On the unification power of models. Software and System
Modeling, 4(2):171–188, 2005.

[Béz06] J. Bézivin. Model driven engineering: An emerging technical space.
In GTTSE, volume 4143 of Lecture Notes in Computer Science,
pages 36–64. Springer, 2006.

[BPSP04] D. Beuche, H. Papajewski, and W. Schröder-Preikschat. Vari-
ability management with feature models. Sci. Comput. Program.,
53(3):333–352, 2004.

[BSR03] D. Batory, J. Neal Sarvela, and A. Rauschmayer. Scaling step-wise
refinement, 2003.

[CE00] K Czarnecki and U. W. Eisenecker. Generative programming: meth-
ods, tools, and applications. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 2000.

[CGR09] M. V. Cengarle, H. Grönniger, and B. Rumpe. Variability within
modeling language definitions. In A. Schürr and B. Selic, editors,
MoDELS, volume 5795 of Lecture Notes in Computer Science, pages
670–684. Springer, 2009.

[CSS] Cascading style sheets, http://www.w3.org/style/css/.

[Fav04] J. Favre. Towards a basic theory to model model driven engineering.
In In Workshop on Software Model Engineering, WISME 2004, joint
event with UML2004, 2004.

[GPA+07] K. Garces, C. Parra, H. Arboleda, A. Yie, and R. Casallas. Variabil-
ity management in a model-driven software product line. In Avances
en Sistemas e Informática, volume 4 No. 2, pages 3–12, Sept 2007.

[GV09] I. Groher and M. Voelter. Aspect-Oriented Model-Driven Software
Product Line Engineering. Lecture Notes in Computer Science,
5560:111–+, 2009.

75

76 References

[Hib] Hibernate orm framework, http://www.hibernate.org/.

[HKW08] F. Heidenreich, J. Kopcsek, and C. Wende. Featuremapper: map-
ping features to models. In ICSE Companion ’08: Companion of the
30th international conference on Software engineering, pages 943–
944, New York, NY, USA, 2008. ACM.

[hs10] IDI Software http://www.idi software.com/resources/defns.html.
Definition variability management, 04 2010.

[HT08] H. Hartmann and T. Trew. Using feature diagrams with con-
text variability to model multiple product lines for software supply
chains. In SPLC ’08: Proceedings of the 2008 12th International
Software Product Line Conference, pages 12–21, Washington, DC,
USA, 2008. IEEE Computer Society.

[IKV] IKV++Technologies. Mediniqvt, http://www.ikv.de.

[JBK06] F. Jouault, J. Bézivin, and I. Kurtev. Tcs:: a dsl for the specification
of textual concrete syntaxes in model engineering. In GPCE ’06:
Proceedings of the 5th international conference on Generative pro-
gramming and component engineering, pages 249–254, New York,
NY, USA, 2006. ACM.

[JK06] F. Jouault and I. Kurtev. Transforming models with ATL. In
Satellite Events at the MoDELS 2005 Conference, pages 128–138.
Springer, 2006.

[Ken02] S. Kent. Model driven engineering. In IFM ’02: Proceedings of
the Third International Conference on Integrated Formal Methods,
pages 286–298, London, UK, 2002. Springer-Verlag.

[Kur05] I. Kurtev. Adaptability of Model Transformations. PhD thesis, Uni-
versity of Twente, ISBN 90-365-2184-X, 2005, 2005.

[KvdBJ07] I. Kurtev, K. van den Berg, and F. Jouault. Rule-based modulariza-
tion in model transformation languages illustrated with atl. Science
of Computer Programming, 68(3):138 – 154, 2007. Special Issue on
Model Transformation.

[MHS05] M. Mernik, J. Heering, and A. M. Sloane. When and how to de-
velop domain-specific languages. ACM Comput. Surv., 37(4):316–
344, 2005.

[MOFa] Meta object facility 1.4, http://www.omg.org/technology/documents/formal/mof.htm.

[MOFb] Meta object facility 2.0, http://www.omg.org/spec/mof/2.0/.

[MPL+09] B. Morin, G. Perrouin, P. Lahire, O. Barais, G. Vanwormhoudt, and
J. Jézéquel. Weaving variability into domain metamodels. Model
Driven Engineering Languages and Systems, pages 690–705, 2009.

[oAW] oAW. Xtext http://www.eclipse.org/xtext/.

References 77

[PBvdL05] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 1
edition, 2005.

[Sij10] M. Sijtema. Introducing variability rules in atl for managing vari-
ability in mde-based product lines. In MtATL Workshop 2010, 2010.

[SLKH07] T. K. Satyananda, D. Lee, S. Kang, and S. I. Hashmi. Identify-
ing traceability between feature model and software architecture
in software product line using formal concept analysis. In ICCSA
’07: Proceedings of the The 2007 International Conference Compu-
tational Science and its Applications, pages 380–388, Washington,
DC, USA, 2007. IEEE Computer Society.

[SQL] Mysql to km3, http://www.eclipse.org/m2m/atl/atltransformations/.

[TCJ10] M. Tisi, J. Cabot, and F. Jouault. Improving higher-order transfor-
mations support in atl. In Laurence Tratt and Martin Gogolla, edi-
tors, Theory and Practice of Model Transformations, volume 6142 of
Lecture Notes in Computer Science, pages 215–229. Springer Berlin
/ Heidelberg, 2010.

[TJF+09] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the use
of higher-order model transformations. In Model Driven Architec-
ture - Foundations and Applications, volume 5562 of Lecture Notes
in Computer Science, pages 18–33. Springer Berlin / Heidelberg,
2009.

[VBVM09] J. M. Vara, V. A. Bollati, B. Vela, and E. Marcos. Leveraging model
transformations by means of annotation models. In F. Jouault,
editor, MtATL, pages 96–102, 2009.

[VG07] M. Voelter and I. Groher. Product line implementation using aspect-
oriented and model-driven software development. In SPLC ’07:
Proceedings of the 11th International Software Product Line Confer-
ence, pages 233–242, Washington, DC, USA, 2007. IEEE Computer
Society.

[xml] exstensible markup language, http://www.w3.org/xml/.

[YZZ+07] X. Yu, Y. Zhang, T. Zhang, L. Wang, J. Hu, J. Zhao, and X. Li.
A model-driven development framework for enterprise web services.
Information Systems Frontiers, 9:391–409, 2007. 10.1007/s10796-
007-9042-7.

A
Appendix: Compact Disc

Accompanying this report is a CD containing all the files that are needed to
replicate the case. This appendix explains the directory structure.

On the root level, there are three directories:

• /Code

This contains the code, consisting of models, meta models, editors and
transformation definitions. In this directory there are seven sub directo-
ries.

– /1. input model
Contains the input (meta) model, used to generate the system shown
on Figure 3.2 in chapter 3. It is an instance of Ecore.

– /2. feature model
Contains the feature model from the case, as well as the meta model,
and an Eclipse Genmodel project to generate an editor plugin.

– /3. annotation model
Contains the annotation model from the case, as well as the meta
model, and an XText project to generate an editor plugin.

– /4. ATL-prime
Contains the ATL’ meta model, a model (.fatl) and an injected ver-
sion (.xmi), and a TCS project to inject and extract ATL’ models,
and an editor. The term featureATL is used in filenames as ATL’.

– /5. ATL-prime to ATL HOT
Contains the Eclipse project for the HOT.

– /6. Ecore to CRUD
Contains an Eclipse ATL project for transforming a HOT-processed
transformation, which transforms an Ecore model, with an annota-
tion model as guide, into a CRUD model.

79

80 Appendix A. Appendix: Compact Disc

– /7. CRUD model
Contains the CRUD meta model, called gwt.ecore.

• /Presentation

Contains the presentation slides used for the collocquium. It was created
with Apple Keynote, but also a Microsoft Powerpoint export is included.
This may have influence on the visual effects. Also note that the slides
are not self-describing, they require a presenter in order to make sense.

• /Report

Contains the report, as well as the LATEX source files and images. For all
the diagrams, the .graphml source files are also included. These can be
edited by yEd, amongst other programs (or one could write an injector,
and make them available as EMF representation for automated process-
ing!).

	Abstract
	Acknowledgements
	Introduction
	Background
	Model-driven Engineering
	Product Line Engineering
	Using MDE technology for building a product line

	Problem statement
	Research objectives
	Contributions
	Outline

	Basic Concepts
	Introduction
	Model-driven Engineering
	Everything is a model: models, meta models, and meta meta models
	Implementations of the model stack
	Model transformations
	Step-wise model refinement
	Transforming models from one domain to another
	Model injection and extraction
	Domain-specific Languages and MDE

	Product line Engineering
	What is a Software Product line?
	Domain Engineering
	Application Engineering
	Software Platform
	Variability Management

	Using MDE for PLE
	Conclusions

	Case-study: Administrative, Web-based, Information Systems
	Introduction
	Requirements
	Transformation sequence
	Relation to Product Line Engineering (PLE)

	Conclusions

	Variability Management in Transformation Sequences
	Introduction
	Requirements of our CRUD platform
	Classification of variabilities in the transformation Sequence
	Source model independent variability
	Source model dependent variability

	Feature diagrams for the case
	Annotation models
	Conclusions

	Extending ATL with Variability Rules
	Introduction
	Concept and Motivation
	Problems in the current ATL
	Solution 1 — Using Rule Inheritance
	Solution 2 — Adding a feature model
	Solution 3 — Matching on the Feature Model Elements

	Managing Source Model Independent Variability
	Semantics
	Implementing Variability Rules using a Higher-order Transformation
	Extending the Concrete Syntax using TCS for Independent Variability

	Managing Source Model Dependent Variability
	Extending Syntax of Variability Rules Further
	Resulting Code after Running the HOT
	The new ATL' Meta Model and TCS template
	Annotation of the models — A separate annotation model

	Conclusions

	Usage Guidelines for Variability Rules
	Introduction
	Situations in where to use or not to use variability rules
	Scenario 1 — Feature realization artefacts introduced in MM n
	Scenario 2 — Feature realization artefacts introduced in MM n+1
	Scenario 3 — Feature realization artefacts introduced in MM n–1
	Recommended scenario

	Setting up a transformation sequence to handle variability
	Step 1 — Model variability in feature model
	Step 2 — Model variability in meta models
	Step 3 — Define variability rules for each feature
	Case A: independent variability
	Case B: Dependent variability

	Step 4 — Define annotations in an annotation model
	Conclusions

	Evaluation
	Introduction
	Quality Properties of Variability Rules
	Expressiveness
	Modularity
	Maintainability and Usability
	Performance
	Reusability and Adaptability
	Conclusions of the quality properties

	Evaluation of the Feature models and Annotation models
	Feature model
	Annotation model
	Checking feature selection validity for source model dependent variability

	Limitations and future improvements
	Comparison to other Approaches
	Variability Management in a Model-Driven Software Product Line
	Weaving Variability into Domain Metamodels
	Variability within Modeling Language Definitions
	Leveraging model transformations by means of annotation models
	Aspect-Oriented Model-Driven Software Product Line Engineering
	Traceability between Feature Model and Software Architecture
	FeatureMapper: Mapping Features to Models
	Using Feature diagrams with Context Variability to model Multiple Product Lines for Software Supply Chains

	Conclusions

	Conclusion
	Summary
	Answers to the Research Questions
	Applications of this Framework in other contexts

	Future Work
	Final Remarks

	Appendix: Compact Disc

