
Master’s thesis

Tool Support for Change Impact
Analysis in Requirement Models

Exploiting semantics of requirement relations as traceability
relations

Author:
Wietze Spijkerman

Committee:
dr. I.Kurtev MSc. (1st supervisor)

A.Göknil MSc.
dr. M. Daneva

Research Group:
Software Engineering

Faculty of Electrical
Engineering, Mathematics and

Computer Science

University of Twente

October 26, 2010

2

Abstract

In the process of software engineering, eliciting requirements yields the first
software artifacts; software requirements specifications. Software requirements
are used to describe what a software system should do and are used to validate
if the implementation satisfies the needs determined for it. From the moment
that the first artifacts are produced, they are subject to change.

Software artifacts are related to each other through traceability information.
Using the traceability information, change impact analysis is performed and it
is determined which related software artifacts require changes as well.

However, without additional semantics of traceability information an ex-
plosion of impacts occurs. This means that change impact analysis yields all
related artifacts and causes many false positives. Existing literature states that
additional semantics should be employed to counter the explosion of impacts.

Recent research yielded a metamodeling approach for requirements mod-
els that describes semantics for requirements relations. Tool support has been
developed following this approach, that allows for inferencing and consistency
checking of requirements models using these relations. However, the tool pro-
vides no support for performing change impact analysis.

In this work, the semantics of requirements relations are exploited for the use
of change impact analysis. This is done by identifying a classification of change
for the formalized requirements model. Consequently different rationales of
change are identified. It is determined that domain changes drive the change
impact analysis. By combining the formalization for the rationale of change and
the determined change classification, the semantics of requirements relations
allow for a more precise propagation of change. It also enables semi-automatic
support for relation validation, as well as identifying inconsistencies of multiple
changes.

Existing tool support for the metamodeling approach is extended to sup-
port change impact analysis using the semantics of requirements relations. The
approach is then evaluated by performing an example case study. The exam-
ple case study yields that using semantics of requirements relation for change
impact analysis requires additional effort. The investment of additional effort
yields a more precise change impact analysis and reduces the problem of the
explosion of impacts.

i

ii

Acknowledgements

The author would like to thank his parents and Floor van Doorn for their un-
relinquished support during his journey through academic education. Without
their support the journey would undoubtedly have been a longer one.

The author would like express his gratitude to his original supervisors Klaas
van den Berg, Arda Göknil and Ivan Kurtev for their guidance and supervision
during the work that led to the writing of this thesis.

Lastly, the author would like to thank Berteun Damman for his willingness
to share his extensive knowledge on LATEX.

Wietze Spijkerman, October 2010, Deventer

‘We are all shaped by the tools we use, in particular: the formalisms we use
shape our thinking habits, for better or for worse, and that means that we have

to be very careful in the choice of what we learn and teach, for unlearning is
not really possible.’

- Edsger Wybe Dijkstra (May 11, 1930 August 6, 2002)

iii

iv

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Problem statement . 1
1.3 Approach . 3
1.4 Contributions . 3
1.5 Outline of the document . 4

2 Concepts and background 7
2.1 Introduction . 7
2.2 Model Driven Engineering . 7
2.3 Requirements Engineering . 8
2.4 Change Impact Analysis . 11
2.5 Conclusion . 13

3 Formalized requirements & relations 15
3.1 Introduction . 15
3.2 Requirements metamodel . 15
3.3 Formalization of requirements . 16
3.4 Formalization of requirement relations 17
3.5 Conclusion . 18

4 Change classification 19
4.1 Introduction . 19
4.2 Structure of requirements . 19
4.3 Semantics of requirement changes 23
4.4 Semantics of change rationale . 26
4.5 Conclusions . 29

5 Propagation & consistency checking 31
5.1 Introduction . 31
5.2 Change propagation . 31
5.3 Change consistency checking . 45
5.4 Discussion of the approach . 47
5.5 Conclusion . 49

v

vi CONTENTS

6 Tool support 51
6.1 Introduction . 51
6.2 Requirements for TRIC-CIA . 51
6.3 Architecture of TRIC . 55
6.4 Design . 57
6.5 Implementation . 62
6.6 Tool usage . 65
6.7 Conclusion . 72

7 Evaluation 73
7.1 Introduction . 73
7.2 Example case study . 73
7.3 Comparison of approaches . 77
7.4 Conclusion . 83

8 Conclusion 85
8.1 Introduction . 85
8.2 Summary . 85
8.3 Answers to the research questions 86
8.4 Future work . 88

A CMS Requirements Specification Document 95

B Formalization of CMS requirements 99

Nomenclature

AIS Actual Impact Set

CIA Change Impact Analysis

CIP Change Impact Prediction

CIS Candidate Impact Set

CMS Course Management System

CNF Conjunctive Normal Form

DAO Data Access Object

EMOF Essential Meta Object Facility

FOL First Order Logic

MDE Model Driven Engineering

MOF Meta Object Facility

OWL Web Ontology Language

QuadREAD Quality-Driven Requirements Engineering and Architectural
Design

RCP Rich Client Platform (of Eclipse framework)

RE Requirements Engineering

SE Software Engineering

SHA Secure Hashing Algorithm

SIS Starting Impact Set

SWEBOK Software Engineering Body of Knowledge

TRIC Tool for Requirement Inferencing and Consistency checking

UI User Interface

UML Unified Modeling Language

XML Extensible Modeling Language

vii

viii CONTENTS

Chapter 1

Introduction

1.1 Introduction

In software engineering, one of the first steps towards realizing the software
product is eliciting requirements. These requirements are made more concrete
by the architectural design of the software. From the start of the software devel-
opment process, until the end of the system’s lifecycle, the environment in which
the system is used evolves. New requirements are introduced or existing ones
are changed. For the software system to remain competitive in the environment
in which it is used, these changed requirements should be reflected by changes in
the architectural design, which are then in turn implemented by changes in the
detailed design and so on. An overview of artifacts in the software development
process and the evolution of these artifacts is depicted in Figure 1.1.

Overlooking required changes in early phases of the software development
process leads to increased costs when these required changes are detected during
later phases. The Quality-Driven Requirements Engineering and Architectural
Design (QuadREAD) project aims at bridging the gap between early analysis
phases and subsequent realization phases.

By performing change analysis on the evolved requirements, the impact of
the changing requirement on other requirements is determined. This analysis
can be regarded as getting the correct representation of what the system should
do. The sum of changed requirements can then be traced to their related ar-
chitectural design artifacts to determine required changes in the architecture.
These artifacts describe how the system should be made. The work in this the-
sis focuses on performing analysis of evolving requirements and their resulting
impacts on related requirements.

1.2 Problem statement

Change impact analysis (CIA) is often performed using traceability information.
Traceability information consists of trace links that relate artifacts from same
or different types to each other. By following the traceability links from the
changed artifact a reachability analysis is performed. This analysis yields the
prediction of possibly impacted artifacts, which possibly require changing.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Overview of software engineering process. The dotted outline indi-
cates the scope of this thesis.

Without the use of semantics, all reachable artifacts following traceability
links will be yielded by the change impact prediction. Bohner et al. formulate
this problem as the ‘explosion of impacts’, which yields imprecise results, e.g. a
lot of false positives and negatives[1]. Hence, the requirement engineer may have
to analyze all predicted impacts resulting from a single change. Bohner et al.
state that ‘change impact analysis must employ additional semantic information
to increase the accuracy of finding more valid impacts’[1]. However, current
state of the art tool support does not employ these additional semantics.

This leads to the following problem statement:

There is a gap between current and desired change impact analysis
tool support. Current tool support lacks well-defined semantics for
performing change impact analysis for changing artifacts. Desired
tool support uses semantics for performing precise change impact
analysis.

This problem statement leads to the following research questions::

R1 Can CIA using semantics of traceability information in require-
ments models be provided with tool support?

R2 What is the change classification for requirements of formalized
requirements model?

1.3. APPROACH 3

R3 What are the propagation results using this classification of
change?

R4 How does CIA using semantics of traceability information com-
pare to CIA without semantics?

In this work CIA is performed in the context of requirements models. Göknil
et al.[2] propose a metamodeling approach to represent requirements and re-
lations between requirements that has well-defined semantics. Tool support
is available for constructing requirements models following this approach, but
support for performing CIA using semantics of trace relations is lacking.

1.3 Approach

In this work the core requirements metamodel of Göknil et al.[2] is used for the
semantics of requirements and requirements relations. The composition of tex-
tual requirements using the requirement primitives as described by Wasson[3]
is investigated to determine what kind of changes can be made to textual re-
quirements. These are then mapped to the formalized requirements. Using the
mapping onto the formalized requirements, the classification of change for the
formalized requirements is determined.

The different sources that cause changing requirements are investigated. By
identifying the differences between the different rationales of change, the se-
mantics of rationale of change for requirements is determined. Using the for-
malization of evolving requirements, an exhaustive case analysis is performed
for each combination of change type and requirements relation. This analy-
sis yields change propagation alternatives for each case. Using semantics of
change propagation, relation validation and impact consistency checking can be
performed.

By exploring the change propagation alternatives over possible propagation
paths, change impact prediction using the determined semantics can be per-
formed. This is realized by a tool that extends the current tool ‘Tool for Re-
quirements Inferencing and Consistency checking’ (TRIC) with support for CIA.
The approach of exploiting semantics of requirements relations as trace relations
is evaluated by an example case study both with and without semantics.

1.4 Contributions

This thesis provides the following contributions:

A classification of change for formalized requirements.

In Chapter 4 the structure of textual requirements is mapped to the for-
malized requirements. From the resulting mapping, classification of change is
identified for the formalized requirement.

A formalization for the rationale of change.

In Chapter 4 formalization for the rationale of change is given, to define do-
main changes as the needed propagation of change that causes the requirements
model to change.

4 CHAPTER 1. INTRODUCTION

Change impact alternatives for the classification of change and for-
malized requirements relation types.

In Chapter 5 an exhaustive case analysis is performed to derive change im-
pact alternatives for each change type and the formalized requirements relations.

Tool support for CIA using semantics of requirements relations.

In Chapter 6 the implementation is described, which is in turn evaluated in
Chapter 7 by using an example case study.

1.5 Outline of the document

The outline of this thesis is depicted in Figure 1.2.

Figure 1.2: Outline of the thesis, excluding Chapter 1 and 8

Chapter 2 introduces basic concepts used in this thesis, essential for under-
standing the work.

Chapter 3 describes the formalized requirements and formalized requirements
relations as described by Göknil et al.[2].

Chapter 4 describes the mapping of the structure of textual requirements to
the formalized requirement, that lead to the classification of change for
the formalized requirements model. The classification of change is then
formalized. Classification of change rationale in literature is described,
and a formalization for refactoring and domain changes is given.

Chapter 5 describes the rules for the propagation of change. By performing
a case analysis for each change type and requirements relation, impact
alternatives are determined. For each of these propagation types, rules
are described for inconsistency checking in the case of requirements with
multiple impacts.

1.5. OUTLINE OF THE DOCUMENT 5

Chapter 6 describes the tool support. High level requirements are given for
the change impact analysis support for the tool. The adapted architecture
is described, together with the design and implementation. The chapter
elaborates on use of the main features of the tool.

Chapter 7 describes comparison of change impact analysis performed with and
without using semantics of requirement relations.

Chapter 8 describes the conclusion of the thesis and future work.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Concepts and background

2.1 Introduction

This chapter introduces the basic concepts used in this thesis. In literature con-
cepts can have multiple definitions and here the definitions used in this work are
described. In section 2.2 the Model Drivfen Engineering software development
paradigm is described. Section 2.3 describes Requirements Engineering (RE),
software requirements and traceability. In section 2.4 change impact analysis is
described together with the problem of ‘explosion of impacts’. This chapter is
summarized in section 2.5.

2.2 Model Driven Engineering

Model Driven Engineering (MDE) is a software development paradigm. MDE
gives basic principles for the use of models as primary engineering artifacts in
software development. Models abstract from reality and help understanding,
communication and analysis. A model is defined by Bézivin and Gerbé[4] as:

‘A model is a simplification of a system built with an intended goal
in mind. The model should be able to answer questions in place of
the actual system’

In the context of MDE, some authors such as Kleppe et al. use a more
restrictive definition of a model[5]:

‘A model is a description of a (part of) systems written in a well-
defined language. A well-defined language is a language with well-
defined form (syntax), and meaning (semantics), which is suitable
for automated interpretation by a computer.’

In MDE, a software system is specified as a set of models that are repeatedly
refined until a model is obtained that captures enough details such that it can
be implemented. MDE combines process and analysis with architecture[6].

An important aspect of MDE is the emphasis it puts on bridges between
technological spaces, and on the integration of bodies of knowledge developed
by different research communities[7]. Different models can be used to express

7

8 CHAPTER 2. CONCEPTS AND BACKGROUND

different concerns, such as functionality, maintainability, etc. MDE emphasizes
the need to have productive models that can be automatically manipulated by
programs. To make the models productive, it is necessary to completely and
formally define them[8].

In MDE a metamodel is constructing a formal definition of a modeling lan-
guage, and thus describing the rules to which the structure of a model must
adhere. Metamodels are expressed in metamodeling languages such as MOF[9]
or Ecore[10]. When a model respects the metamodel structure, the model is
said to be conform to the metamodel or an instance of the metamodel.

In this thesis, the used requirements models are realized according to the
principles of MDE.

2.3 Requirements Engineering

Zave[11] defines the area of Requirements Engineering (RE) as:

‘Requirements engineering is the branch of software engineering con-
cerned with the real-world goals for, functions of, and constraints on
software systems. It is also concerned with the relationship of these
factors to precise specifications of software behavior and to their evo-
lution over time and across software families.’

Van Lamsweerde[12] summarizes the different activities performed in the
area of RE as:

Domain analysis: Study of the environment in which the software is to be
used. Identification of stakeholders and analysis of the current problems
and opportunities and the resulting general objectives of the software.

Elicitation: Exploration of alternative models for the target system to meet
the general objectives resulting from domain analysis. Components of the
alternative models are identified, possibly with the help of hypothetical
interaction scenarios.

Negotiation and agreement: Alternative requirements/assumptions are
evaluated; risks are analyzed. Agreement between stakeholders is reached.

Specification: Requirements and assumptions are formulated in a precise way.

Specification analysis: Specifications are checked for deficiencies (e.g. in-
adequacy, incompleteness or inconsistency) and feasibility (in terms of
resources required, development costs etc.)

Documentation: Various decisions made during the process are captured to-
gether with the underlying rationale and assumptions.

Evolution: The requirements are modified to accommodate corrections.

In this thesis the focus lies on the ‘Evolution’ activity in the RE in general
and analysis of evolving requirements and determining the ripple effect caused
by changes in particular.

2.3. REQUIREMENTS ENGINEERING 9

2.3.1 Software Requirements

The oldest definition of a requirement is attributed to Ross and Schoman[13]
who describe it as:

‘requirements definition is a careful assessment of the needs that a
system is to fulfill. It must say why a system is needed, based on
current or foreseen conditions, which may be internal operations or
an external market. It must say what system features will serve
and satisfy this context. And it must say how the system is to be
constructed.’

In this thesis the working definition of a requirement is a general definition
as described in SWEBOK[14]:

‘A requirement is a property which must be exhibited by a system.’

Requirements are categorized as functional and non-functional requirements
by Sommerville[15] as follows:

Functional system requirements: These are system services which are ex-
pected by the user of the system. In general, the user is uninterested in
how these services are implemented so the software engineer should avoid
introducing implementation concepts in describing these requirements.

Non-functional requirements: These set out the constraints under which
the system must operate and the standards which must be met by the
delivered system.

In this thesis the use of ‘requirement’ without further classification indicates
a functional requirement.

2.3.2 Requirements Traceability

General traceability is defined by the IEEE Standard Glossary of Software En-
gineering Terminology[16] as:

‘the degree to which a relationship can be established between two or
more products of the development process, especially products hav-
ing a predecessor-successor or master-subordinate relationship to one
another’

Traceability can be established between any artifacts produced during the
software engineering process. Requirements may capture traceability informa-
tion to refer to other artifacts produced during the software engineering process,
or to other related requirements.

Götel and Finkelstein[17] define traceability in the context of RE as:

‘Requirements traceability refers to the ability to follow the life of
a requirement in a forward and backward direction (i.e., from its
origins, through its development and specification, to its subsequent
deployment and use, and through all periods of on-going refinement
and iteration in any of these phases.)’

10 CHAPTER 2. CONCEPTS AND BACKGROUND

The concepts of forward and backward direction of traceability have standard
definitions in literature[18]:

Forward traceability is the ability to trace a requirement to components of
a design or implementation.

Backward traceability is the ability to trace a requirement to its source, i.e.
to a person, institution, law, argument, etc.

Traceability to and from requirements to other products of the development
process are traditionally used to indicate that the resulting implemented systems
meet the necessary capabilities described by contractual agreements. Traceabil-
ity is also used to indicate that rationale behind design decisions are sound and
thus used as a measure of system quality and software process maturity[19].

A distinction is made between how the requirement specification came to
be, and how the requirement specification is used, so-called pre- and post-
requirements specification traceability[17]:

Pre-requirements specification traceability refers to those aspects of a re-
quirement’s life prior to its inclusion in the requirements specification.

Post-requirements specification traceability refers to those aspects of a
requirement’s life that result from inclusion in the requirements specifica-
tion.

The above mentioned definitions and categorizations of traceability con-
cern the traceability between requirements and other (non-requirements) ar-
tifacts. To determine how separate requirements captured by a requirements
specification relate to each other, traceability can be added between individ-
ual requirements. This led to the definitions of inter- and extra-requirements
traceability[20]:

Inter-requirements traceability refers to the relationships between require-
ments.

Extra-requirements traceability refers to the relationships between re-
quirements and other artifacts.

In this thesis the focus lies on post inter-requirements traceability.

2.3.3 Requirements traceability metamodel

By using inter-requirements traceability, traceability information can be cap-
tured in a requirements model which indicates relatedness between require-
ments. The requirements traceability can be used in development activities
and decision making during software development, for example release plan-
ning, requirements validation, change impact analysis, testing and requirements
reuse[21]. Each entity and link in the meta-model can be specialized and in-
stantiated to create organization or project specific traceability models.

Ramesh and Jarke[22] provide a (simple) requirements traceability meta-
model, which is depicted in Figure 2.1.

Within the presented research the focus lies on the trace relations between
the objects that represent the physical requirements documentation.

2.4. CHANGE IMPACT ANALYSIS 11

Figure 2.1: Traceability meta model[22]

2.4 Change Impact Analysis

A change of requirements affects the existing artifacts. Existing artifacts should
be updated to reflect the changes. Software systems grow in size and complexity
beyond the point where software engineers are able to comprehend them. As
a result change impact analysis is performed to determine the requirements
that require change to ‘counter’ the deterioration that occurs when changing
requirements. Change Impact Analysis (CIA) is defined by Heindl[23] as:

‘the activity where the impacts of a requirement’s change on other
artifacts are identified’

Bohner uses a similar working definition for CIA in [1]:

‘The determination of potential effects to a subject system resulting
from a proposed software change.’

The set of artifacts affected by the initial or proposed change is categorized as
the starting impact set (SIS). By performing trace-based change impact analysis
the traceability links from the SIS are followed to other artifacts. The artifacts
reached through the traceability links, which make up the candidate impact set
(CIS), are considered candidates for change, and need to be checked to determine
if they are affected. In the case that such artifact is affected, it is considered
to be in the actual impact set (AIS). From an artifact just added to the AIS
traceability links from that artifact need to be followed to determine if there
are artifacts that should be added to the CIS. In this regard, the CIA process
is iterative and explorative in nature.

Bohner categorizes these impacts as direct and indirect[1]:

Direct impacts occur when the artifact affected is reached by a
direct trace relation from an artifact that is in the ‘starting impacted
set’.

12 CHAPTER 2. CONCEPTS AND BACKGROUND

Indirect impacts occur when the artifact affected is reached by an
acyclic path of trace relations from an (affected) artifact that is in
the ‘candidate impacted set’.

Indirect impacts are also referred to by Bohner as an N-level impact where
N is the number of intermediate traces between the artifact belonging to the
SIS to the found impact.

The result of CIA is a change impact prediction (CIP), which is defined by
Arnold and Bohner[24] as:

‘Change impact prediction enumerates the set of artifacts to be af-
fected by the change impact analysis.’

The CIA is performed using the traceability information available. Perform-
ing CIA on a requirements model which uses traceability information that lacks
additional semantics, the traditional predecessor-successor semantics are used.
This will result in a reachability analysis. CIA indicates the set of requirements
that is potentially affected by a requirement change, based on transitivity. There
is no indication if a propagation occurs or not.

Consider the traceability matrices in Figure 2.2 and Figure 2.3. Figure 2.2
indicates the traceability relation between the different software requirements.
An × indicates a traceability relation from the requirement indicated in the
row to the requirement indicated in the column. Figure 2.3 is the result after
applying a reachability analysis. This matrix indicates from each requirement
every other requirement can be reached by using the traceability information.
This means that when performing a change impact prediction of a change on
any given requirement in this model, the prediction would yield all requirements
captured in this model as possibly impacted by the change.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
R1 × × ×
R2 × × ×
R3 × × ×
R4 × × ×
R5 × × ×
R6 × × ×
R7 × × ×
R8 × × ×
R9 × × ×
R10 × × ×

Figure 2.2: Traceability matrix indicating trace relations

The assumption that the likelihood of a propagated change decreases when
the level of indirect impact becomes higher are not guided by semantics[1]. To
counter the problem of the explosion of impacts, Bohner states that additional
semantics must be employed to perform more precise CIA.

2.5. CONCLUSION 13

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
R1 1 2 3 2 1 2 2 3 1
R2 2 1 2 1 2 1 2 3 2
R3 2 2 1 1 3 2 1 2 2
R4 3 2 2 2 2 1 2 1 1
R5 1 2 3 1 2 2 1 2 2
R6 2 1 2 2 1 2 2 3 1
R7 3 2 1 2 2 1 2 3 1
R8 3 1 2 1 2 3 2 1 2
R9 3 2 1 2 1 3 3 2 1
R10 2 1 2 2 1 3 2 1 2

Figure 2.3: Trace reachability matrix with distance indicator

2.5 Conclusion

This chapter described the basic concepts and background of the research pre-
sented in this thesis. For the different fields of research, the work performed in
this thesis is positioned. The research in this thesis focuses on providing tool
support for performing change impact analysis of evolving requirements models,
using inter-requirements traceability.

For this research to be placed in the broader context of MDE, well defined
syntax and semantics are required for the CIA on requirements models.

14 CHAPTER 2. CONCEPTS AND BACKGROUND

Chapter 3

Formalized requirements &
relations

3.1 Introduction

The main goal of this work is to provide tool support for performing CIA on
inter-requirements models, using the semantics of trace relations. Research per-
formed within the QuadREAD project, which is a joint research project by
the University of Twente and various business partners, yielded a requirements
metamodeling approach proposed by Göknil et al.[2]. This metamodeling ap-
proach contains well-defined semantics for requirements and requirement rela-
tions. When semantics of requirements, formalized requirements or semantics
of requirements relations is used, they refer to the proposed formalization by
Göknil et al. The relations captured by by the metamodel are requirement re-
lations found in literature. This semantics of requirement relations will be used
as traceability information to perform CIA.

In section 3.2 the requirements metamodel is described. Section 3.3 describes
the formalization of requirements and section 3.4 describes the formalization of
the requirement relations. This chapter is concluded in section 3.5.

3.2 Requirements metamodel

The requirements metamodel captures formal requirement relationship types.
These formal requirements relations allow for reasoning about requirements,
such as inferencing and consistency checking. The requirements metamodel is
based on a review of literature. The proposed requirements metamodel is de-
picted in Figure 3.1. Additional entities that are not related to the requirement
relations formalization, such as stakeholder and testcases have been left out for
overview purposes.

The metamodel has a ‘RequirementsModel’ as main entity, which captures
zero or more requirements. Each ‘Requirement’ has a number of attributes
and is identified by an ID. Requirements can be related to each other through
‘Relationship’. The metamodel describes five relationship types. These relations
have the following informal definitions in literature[2]:

15

16 CHAPTER 3. FORMALIZED REQUIREMENTS & RELATIONS

Figure 3.1: Requirements metamodel with formal definitions[2]

Contains: This relationship enables a complex requirement to be decomposed
into parts. A composite requirement may state that the system shall do
A and B and C, which can be decomposed into the requirements that the
system shall do A, the system shall do B, and the system shall do C.

Refines: A requirement R1 refines a requirement R2 if R1 is derived from R2

by adding more details to it. The refined requirement can be seen as an
abstraction of the detailed requirements.

Partially refines: A requirement R1 partially refines a requirement R2 if R1

is derived from R2 by adding more details to parts of R2 and excluding
the unrefined parts of R2. This relation can be described as a special
combination of decomposition and refinement.

Requires: A requirement R1 requires requirement R2 if R1 is fulfilled only
when R2 is fulfilled. The required requirement can be seen as a pre-
condition for the requiring requirement.

Conflicts: A requirement R1 conflicts with a requirement R2 if the fulfillment
of R1 excludes the fulfillment of R2 and vice versa.

3.3 Formalization of requirements

In the metamodel depicted in Figure 3.1, the requirement is defined by Göknil et
al. in first order logic (FOL). This formalization follows from the general notion
of a requirement as described by the Software Engineering Body Of Knowledge
(SWEBOK)[14] and is defined as follows[2]:

Requirement R is a tuple 〈P, S〉 where P is a predicate (the property
or properties) and S is the set of systems that satisfy P , i.e. ∀s ∈
S : P (s)

3.4. FORMALIZATION OF REQUIREMENT RELATIONS 17

Predicate P can be represented in a conjunctive normal form (CNF) as
follows:

P = p1 ∧ p2 ∧ · · · ∧ pn−1 ∧ pn; where n ≥ 1 and pn is the disjunction
of literals. From here on the CNF will be written as (p1 · · · pn).

In this formalization P is the intentional definition of the requirement and
S is the extensional definition of the requirement.

3.4 Formalization of requirement relations

Here the formalization of each of the requirement relationships are presented.
For example use of these requirement relations, see Göknil et al.[2] or the pro-
vided tutorial for requirements relations[25].

3.4.1 Contains

Let R1 = 〈P1, S1〉, R2 = 〈P2, S2〉, . . . , Rk = 〈Pk, Sk〉 be requirements where
k ≥ 2. P2, P3, . . . Pk are formulas in CNF as follows:

Pi = (pi
1 · · · pi

mi
); mi ≥ 1, i ∈ {2, . . . , k}

R1 contains R2, . . . , Rk iff P1 is derived from P2, P3, . . . , Pk as follows:

P1 = P2 ∧ P3 ∧ · · · ∧ Pk ∧ P ′

where P ′ denotes properties that are not captured in P2, P3, . . . , Pk. Thus
Therefore, S1 ⊂ S2, S1 ⊂ S3, . . . , S1 ⊂ Sk.
Note: Complete decomposition is not assumed. It also does not mean that P2

and P3 are disjunct.

3.4.2 Refines

Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 be requirements. P1 and P2 are formulas
and the CNF of P2 is:

P2 = (p1 · · · pn) ∧ (q1 · · · qm); n ≥ 1, m ≥ 0

Let p′1, p
′
2, . . . , p

′
n−1, p

′
n be the disjunction of literals such that p′i → pi, for

i ∈ {1, . . . ,m}, and the following statements hold:

1. P1 = (p′1 · · · p′n) ∧ (q1 · · · qm); n ≥ 1, m ≥ 0

2. ∃s ∈ S2 : s /∈ S1

Then R1 refines R2.

3.4.3 Partially Refines

Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 be requirements. P1 and P2 are formulas
and the CNF of P2 is:

P2 = (p1 · · · pn) ∧ (q1 · · · qm), ; m, n ≥ 1

18 CHAPTER 3. FORMALIZED REQUIREMENTS & RELATIONS

Let q′1, q
′
2, . . . , q

′
m−1, q

′
, be the disjunction of literals such that q′i → qi, for i ∈

{1, . . . ,m} and the following statements hold:

1. P1 = q′1 ∧ q′2 ∧ · · · ∧ q′m−1 ∧ q′m

2. ∃s ∈ S2 : s /∈ S1, ∃s ∈ S1 : s /∈ S2 and ∃s ∈ S1 ∩ S2

Then R1 partially refines R2.

3.4.4 Requires

Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 be requirements. Then R1 requires R2

when:

1. ∀s ∈ S1 : s ∈ S2 and

2. ∃s ∈ S2 : s /∈ S1

3.4.5 Conflicts

Let R1 and R2 be requirements such that R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉.
R1 conflicts R2 ↔ ¬∃s : s ∈ S1 ∧ s ∈ S2 : P1(s) ∧ P2(s).

This means that S1 ∩ S2 = ∅.

3.5 Conclusion

As mentioned in section 3.3, the formalization of requirements is defined in
both intentional terms (over the properties captured by the requirement) and
extensional terms (over the set of systems that satisfy the requirement).

All requirement relations are defined of the set of systems that satisfy the
requirement and are expressed over the extensional definitions of the require-
ment.

Additionally, for some requirement relationships (contains, refines and par-
tially refines) the formalization is expressed using relations over the intentional
definitions of the requirement, e.g. the properties captured by the related re-
quirements.

Chapter 4

Change classification with
formal semantics

4.1 Introduction

Requirements are subject to change from the moment that they are elicited. To
determine the granularity of change, the structure of requirements needs to be
known. Granularity of change alone is not sufficient to determine the impact on
related requirements. Additional information concerning the rationale of change
is needed. By identifying the change source, the rationale of why a requirement
is being changed, is determined.

In section 4.2 literature on structure of textual requirements is presented. By
identifying parts that can be changed in the textual requirement, the granularity
of change is determined. These parts of the textual requirement are mapped onto
the formalized requirement of Chapter 3. From this mapping the classification
of change for the formalized requirement is determined.

In section 4.3 the change classification for the formalized requirements are
defined in FOL.

In section 4.4 literature on classification of requirement evolution is pre-
sented. Following the classification of requirement evolution, two types of change
rationales are identified and formalized.

In section 4.5 this chapter is summarized and concluded.

4.2 Structure of requirements

The formalized requirement in the requirement model represents the textual
requirement from the requirements specification document. To determine in
which way the requirement in the model can be changed, first the structure of the
textual requirement is investigated. By determining the structure of a textual
requirement, the various elements that compose a requirement are identified. In
literature, textual requirements are composed of elements of increasingly finer
granularity. The identified elements in textual requirements are then mapped
onto the formalized requirements.

19

20 CHAPTER 4. CHANGE CLASSIFICATION

4.2.1 Textual requirements

Heninger explicitly mentions six requirements which a software requirements
document should satisfy[26]:

1. It should only specify external system behavior

2. It should specify constraints on the implementation

3. It should be easy to change

4. It should serve as a reference tool for system maintainers

5. It should record forethought about the life-cycle of the system

6. It should characterize acceptable responses to undesired events

Although requirements 4-6 can be regarded as non-functional (quality) re-
quirements for the requirements document, requirements 1 and 2 explicitly men-
tion the external behavior and constraints on this behavior respectively. These
are both reflected in the actual requirements in the document. This indicates
that elements of different granularities are present in requirements as a whole.

Wasson further refines this as to how requirements are structured. He states
that a textual requirement should be interpreted by identifying key elements
of the requirement, the so-called requirement primitives. These requirement
primitives compose the textual requirements. The different types of requirement
primitives described by Wasson are the following[3]:

• Capability to be provided

• Relational operators

• Boundary constraints, thresholds, tolerances or conditions (limitations)

Each requirement describes a capability that the system should provide. This
is the main functionality that should be provided. The functionality can be fur-
ther refined by adding additional information which makes the capability more
specific. This is done by setting limitations on the capability, certain thresh-
olds or other limitations such as tolerances, conditions or boundary constraints.
Compared to Heninger Wasson explains in further detail as to how the limi-
tations are related to the capability. This is through the relational operator,
which describes how the added additional information is related to the main
capability.

Using Wasson’s primitives, the part-whole composition of the requirement
in the textual domain in an UML diagram is presented in Figure 4.1.

Figure 4.1: Textual requirement structure using Wasson’s primitives

From this composition it is interpreted that requirements describe capabil-
ities that the implemented system should provide. These capabilities can be

4.2. STRUCTURE OF REQUIREMENTS 21

described more precisely by adding limitations. Limitations are bound to the
capability by a relational operator.

To illustrate the structure of a textual requirement using Wasson’s primi-
tives, consider the following example:

Example: decomposition of textual requirement

R97: ‘The system shall allow only the administration to manage courses’

Using Wasson’s requirement primitives and terms of capabilities, limitations and
relational operators, requirements structure can be determined. The capability
that this requirement describes is that the system should provide the function-
ality of managing courses. This functionality is limited in such a way that this
capability is only provided to the administration. The requirement is also clear
as to how this limitation is imposed on the capability, by means of permission
based on usertype, which is thus the relational operator.
Decomposition of requirement using Wasson’s primitives:

Capability: The system shall [provide functionality of] managing courses

Relational operator: Limited by user type

Limitations: Only by the administration

The glossary of the requirements specification document states that ‘managing’
is defined as the operations ‘creating’, ‘reading’, ‘updating’, and ‘deleting’, and
thus can be regarded as four separate capabilities.

4.2.2 Formalized requirements

The definition used by Göknil et al. is that a textual requirement is a description
of a system property or system properties which need to be fulfilled[2].

The notion of Göknil’s property corresponds to Wasson’s capability. The
property can be changed in such a way that the set of systems satisfying the
changed property is changed, while the main capability remains the same. Fol-
lowing Wasson’s primitives it is interpreted that the property of the formalized
requirement captures may capture elements of finer granularity. These elements
are classified as constraints.

The composition for the formalized requirement including the ‘constraint’
elements is presented in an UML diagram, depicted in Figure 4.2.

Figure 4.2: Requirement structure for the formalized requirement

Thus, a requirement is expressed by the set of properties which the system
should provide, which can be expressed in more detail by contained constraints.

Using this composition of the formalized requirement, consider the example
requirement:

22 CHAPTER 4. CHANGE CLASSIFICATION

Example: decomposition of formalized requirement

R97: ‘The system shall allow only the administration to manage courses’

Using the formalization of requirements, the requirement is defined as follows:
R97 = 〈P97, S97〉
P97 = P1 ∧ P2 ∧ P3 ∧ P4

Such that property P97 is decomposed into four properties P1, P2, P3 and P4

with:
Using formalized requirements:

Property P1: enable(x1, y) ∧ create(x1) ∧ course(y) ∧ allow(x1, z) ∧
administrator(z) ∧ ¬lecturer(z) ∧ ¬student(z)

Constraint in P1: allow(x1, z) ∧ administrator(z) ∧ ¬lecturer(z) ∧
¬student(z)

Property P2: enable(x2, y) ∧ read(x2) ∧ course(y) ∧ allow(x2, z) ∧
administrator(z) ∧ ¬lecturer(z) ∧ ¬student(z)

Constraint in P2: allow(x2, z) ∧ administrator(z) ∧ ¬lecturer(z) ∧
¬student(z)

Property P3: enable(x3, y) ∧ update(x3) ∧ course(y) ∧ allow(x3, z) ∧
administrator(z) ∧ ¬lecturer(z) ∧ ¬student(z)

Constraint in P3 allow(x3, z)∧administrator(z)∧¬lecturer(z)∧¬student(z)

Property P4 enable(x4, y) ∧ delete(41) ∧ course(y) ∧ allow(x4, z) ∧
administrator(z) ∧ ¬lecturer(z) ∧ ¬student(z)

Constraint in P4 allow(x4, z)∧administrator(z)∧¬lecturer(z)∧¬student(z)

With the following predicate symbols:

enable(x, y): stating that object x is provided over y by the system.

create(x): stating that x is the ‘creating’ operation.

read(x): stating that x is the ‘reading’ operation.

update(x): stating that x is the ‘updating’ operation.

delete(x): stating that x is the ‘deleting’ operation.

course(x): stating that x is a course.

allow(u, x): stating that object x is allowed to u.

administrator(x): stating such that x is an administrator user.

lecturer(x): stating that x is a lecturer user.

student(x): stating that x is a student user.

4.3. SEMANTICS OF REQUIREMENT CHANGES 23

4.3 Semantics of requirement changes

Following such composition of the formalized requirement, in properties which
can capture constraints, a classification of changes for the requirement model
can be determined. This is done by applying the basic operations of ‘create’,
‘read’, ‘update’, ‘delete’ (CRUD)[27] on the different elements of the requirement
model. The requirement model consists of requirements and relations. The
changes are listed below.

Requirement changes

• Add requirement

• Delete requirement

• Update requirement

– Add property to requirement

– Delete property from requirement

– Change property in requirement

– Add constraint to requirement

– Delete constraint from requirement

– Change constraint in requirement

Requirement relation changes

• Add requirement relation

• Delete requirement relation

• Update requirement relation

– Change directionality of requirement relation

– Change requirement relation type

– Change directionality and relationship type

Elementary requirement changes to the requirements model are formalized
below. To denote change, the 7→ symbol is used, in the following way: R 7→ Rl

to denote a change in general, where R is the requirement before the change and
Rl is the requirement after the change. In the same fashion, change is indicated
for properties and sets of systems. Specific kind of changes are denoted by
denoting the type of change over the 7→ symbol.

4.3.1 Update requirement

Update a requirement R = 〈P, S〉 in one of the following ways:

• By adding a property pt to the requirement R, denoted as R
+pt7→ Rl.

• By deleting a property pt from the requirement R, denoted as R
−pt7→ Rl.

24 CHAPTER 4. CHANGE CLASSIFICATION

• By changing a property pt captured by the requirement R, denoted as

R
pt 7→ptl

7→ Rl.

• By adding a constraint ct to an existing property pt of the requirement R,
denoted as R

+ct7→ Rl.

• By deleting a constraint ct from an existing property pt of the requirement
R, denoted as R

−ct7→ Rl.

• By changing a constraint ct captured by requirement R, denoted as

R
ct7→ctl

7→ Rl.

Add property pt to requirement R

Adding a property pt to a requirement such that the requirement expresses the
added functionality. The requirement is changed such that it also captures the
newly added property pt. This is formalized as follows:

Let R = 〈P, S〉 be the requirement before adding the property pt, and let
Rl = 〈P l, Sl〉 be the requirement after adding the property pt, where P is a
formula in CNF as follows:

• P = (p1 · · · pi); i ≥ 1

Then R
+pt7→ Rl iff P l is derived from P as follows:

• P l = P ∧ Ppt, where Ppt denotes the properties that are captured in pt

The set of systems Sl not only satisfies the previously captured property P
but also the newly added property P l, thus the set of systems satisfying P l is
such that Sl ⊂ S.

Delete property pt from requirement R

Deleting a property pt from a requirement is such that some functionality is
removed from the requirement and thus no longer expressed by the requirement.
The requirement is changed such that the removed property pt is no longer
captured by the requirement. This is formalized as:

Let R = 〈P, S〉 be the requirement before deleting the property pt, and let
Rl = 〈P l, Sl〉 be the requirement after deleting the property pt, where P is a
formula in CNF as follows:

• P = (p1 · · · pn) ∧ (q1 · · · qm); n, m ≥ 1

Then R
−pt7→ Rl iff P l is derived from P as follows:

• P l = (p1 · · · pn); n ≥ 1, where (q1 · · · qm); m ≥ 1 denotes properties that
are captured in pt and removed.

The set of systems Sl is such that Sl ⊃ S.

4.3. SEMANTICS OF REQUIREMENT CHANGES 25

Change property pt in requirement R with property ptl

Changing a property pt to ptl in a requirement is a composite change. The
change is composed of ‘delete property pt’ from the requirement and ‘add prop-
erty ptl’ to the requirement. Effectively the deleted property is replaced by
another property. Due to the explicit nature of relation between the deleted
property and the added property by means of replacement, the composite op-
eration of ‘change property’ is given. This is formalized as:

Let R = 〈P, S〉 be the requirement before changing the property pt with
the property ptl, and let Rl = 〈P l, Sl〉 be the requirement after changing the
property pt with property ptl, where P is a formula in CNF as follows:

• P = (p1 · · · pv) ∧ (q1 · · · qw); v ≥ 1, w ≥ 0

Then R
pt7→ptl

7→ Rl iff P l is derived from P as follows:

• P l = (t1 · · · tz) ∧ (q1 · · · qw); z ≥ 1, w ≥ 0, where (p1 · · · pv); n ≥ 1 denotes
properties that are captured in pt and (t1 · · · tz); z ≥ 1 denotes properties
that are captured in ptl.

For this change, a subset of superset relation from the sets of systems before
and change can not be guarentueed.

Add constraint ct to property pt of requirement R

Adding a constraint ct to a property pt indicates that by adding more detail to
the property, thus it becomes more specific. This is formalized as follows:

Let R = 〈P, S〉 be the requirement before adding constraint ct to the prop-
erty pt, and let Rl = 〈P l, Sl〉 be the requirement after adding the constraint ct
to the property pt with property ptl, where P is a formula in CNF as follows:

• P = (p1 · · · pn) ∧ (q1 · · · qm); n ≥ 1, m ≥ 0

Let pl
1, p

l
2, . . . , p

l
n−1, p

l
n be the disjunction of literals such that pl

j → pj for
j ∈ {1, . . . , n}.
Then R

+ct7→ Rl iff P l is derived from P by replacing every pj in P with pl
j for

j ∈ {1, . . . , n} such that the following two statements hold:

1. P l = (pl
1 · · · pl

n) ∧ (q1 · · · qm); n ≥ 1, m ≥ 0

2. ∃s ∈ S : s /∈ Sl

Delete constraint ct from property pt of requirement R

By deleting a constraint ct from a property pt, detail is removed from the re-
quirement. This means that the requirement becomes less stringent, and the
property more abstract. This is formalized as follows:

Let R = 〈P, S〉 be the requirement before deleting the constraint ct from the
property pt, and Rl = 〈P l, Sl〉 be the requirement after deleting the constraint
ct from the property pt, where P is a formula in CNF as follows:

• P = (pl
1 · · · pl

n) ∧ (q1 · · · qm); n ≥ 1, m ≥ 0

26 CHAPTER 4. CHANGE CLASSIFICATION

Let p1, p2, . . . , pn−1, pn be the disjunction of literals such that pl
j → pj for

j ∈ {1, . . . , n}.
Then R

−ct7→ Rl iff P l is derived from P by replacing every pl
j in P with pj for

j ∈ {1, . . . , n} such that the following two statements hold:

1. P l = (p1 · · · pn) ∧ (q1 · · · qm); n ≥ 1, m ≥ 0

2. ∃s ∈ Sl : s /∈ S

Change constraint ct of the requirement R with constraint ctl

Similar to changing a property, changing a constraint is a composite change of
replacing one constraint by another. It is formalized as follows:

Let R = 〈P, S〉 be the requirement before changing the constraint ct with
the constraint ctl, and Rl = 〈P l, Sl〉 be the requirement after changing the
constraint ct with the constraint ctl, where P is a formula in CNF as follows:

• P = (p1 · · · pn) ∧ (q1 · · · qm); n, m ≥ 1

Then R
ct7→ctl

7→ Rl iff P l is derived from P as follows:

• P l = (t1 · · · tz) ∧ (q1 · · · qm); m, z ≥ 1, where (p1 · · · pn); n ≥ 1 denotes
constraints that are captured in ct and (t1 · · · tz); z ≥ 1 denotes constraints
that are captured in ctl

4.4 Semantics of change rationale

Semantics of requirement changes as described in section 4.3 do not elaborate
on why a change needs to be performed on the requirements model. To identify
what the cause of requirements models change is, literature is consulted to
determine reasons of software evolution.

The following sources of software evolution are identified[28][29]:

Domain covers the model of the real world considered by the system, i.e., the
environment. Any change in that model may force the system change.
Changes originating from this source are considered ‘adaptive mainte-
nance’.

Experience The users of the system gain experience over time and they may
require some improvements for the system, which in turn may cause the
system to evolve. These changes are considered ‘perfective maintenance’.

Process includes the organizations and methods that may also impact the
system and cause it to change. These changes are considered ‘corrective
maintenance’.

Within the scope of requirements engineering, Van Lamsweerde introduces
requirement description qualities such as good structuring and modifiability [30].
The requirements engineer may change the requirements model to improve the
quality of the requirements descriptions. This is analog to ‘perfective mainte-
nance’ found in software evolution. Changes to requirement models caused by
perfective maintenance are considered ‘model refactoring’ in this thesis.

4.4. SEMANTICS OF CHANGE RATIONALE 27

Evolution of requirements also leads to changes to the requirements model.
This Van Lamsweerde names these changes as domain changes [30]. Domain
changes can be regarded as ‘adaptive maintenance’ of the requirements model.

In this thesis, changes to the requirements model as a result from changes
in the implementation are not considered.

4.4.1 Formalization of requirements model

Individual requirements and relations are formalized as described in Chapter
3, but does not describe the formalization of the requirements model. The
requirement model consists of the set of requirements captured by the model.
Requirements are expressed using properties and the systems satisfying these
properties. The model can therefore be represented as the set of all captured
properties and the resulting satisfying system. The requirements model RM is
formalized as follows:

• RM is a collection of requirements R1 = 〈P1, S1〉, R2 = 〈P2, S2〉, . . . , Rk =
〈Pk, Sk〉, with k ≥ 1.

• RM is a tuple 〈PRM , SRM 〉, with:

– PRM = P1 ∧ P2 ∧ · · · ∧ Pk, the set of properties captured by the
requirements in the requirements model

– SRM = S1 ∩ S2 ∩ · · · ∩ Sk, the set of systems that satisfy PRM such
that ∀s ∈ SRM : PRM (s)

• Thus PRM can be represented in a conjunctive normal form (CNF) in the
following way: PRM = (p1 · · · pn)

Using this formalization for requirement model, both types of considered
change rationales for requirement model changes, refactoring and domain change
are formalized.

4.4.2 Formalization of refactoring

Refactoring is changing the model without modifying overall system properties
described in the model, in order to improve structuring of the model. The
requirements model after change still reflects the domain. This is illustrated in
Figure 4.3.

Figure 4.3: Overview of refactoring the requirements model

28 CHAPTER 4. CHANGE CLASSIFICATION

Refactoring is formalized as follows: RM
refactoring−−−−−−−→ RM l denotes a series of

changes for model refactoring where RM = 〈PRM , SRM 〉 is the requirements
model RM before the refactoring, and RM l = 〈P l

RM , S′RM 〉 is the requirements
model RM after the refactoring. PRM and P l

RM , where are described in the
following way:

1. PRM = P l
RM = (p1 · · · pn), with n ≥ 1 and pn the disjunction of literals

2. SRM = Sl
RM

4.4.3 Formalization of domain change

Domain changes are changes to the requirements model in order to modify the
overall system properties described by the model. Changes to the model caused
by domain changes affect the properties described in the whole requirements
model. When a property is removed as a result of a domain change, all oc-
curences of this property in the model should be deleted from the model. This
is illustrated in Figure 4.4.

Figure 4.4: Overview of domain change

Domain changes are formalized as follows:

• RM
domain change−−−−−−−−−→ RM l denotes a series of changes caused by domain

change where

• RM = 〈PRM , SRM 〉 is the requirements model RM before the domain
change

• RM l = 〈P l
RM , Sl

RM 〉 is the requirements model RM after the domain
change

Then:

1. ¬equals(PRM , P l
RM), where two formulas are equal when they have the

same predicate symbols and arguments

2. SRM 6= Sl
RM , where SRM 6= ∅

4.5. CONCLUSIONS 29

4.5 Conclusions

From the structure of textual requirements as described in section 4.2 using
Wasson’s primitives, the granularity of change for the formalized requirement
has been determined in section 4.2.2.

The decomposition of formal requirements allows for the classification of
requirement model changes as listed in section 4.3. Two types of requirement
model changes have been identified; changes to requirements and changes to
requirements relations. The requirements change types are then formalized in
FOL.

In section 4.4 the different rationales that can be attributed to as why a
requirement is changed are described as found in literature. For the rationales
within the scope of this research, namely refactoring and domain changes, the
formalization of these change types are described in subsections 4.4.2 and 4.4.3.

Now that changetypes and rationales of change have been identified and for-
malized, changes can be mapped onto requirement model changes that take into
account requirements related by requirement relationships. This way changes
the rationale of domain changes and the requirements relation can be used to
determine if/how related requirements are impacted.

30 CHAPTER 4. CHANGE CLASSIFICATION

Chapter 5

Change propagation &
consistency checking

5.1 Introduction

Classification and formalization of change presented in the previous chapter
allow identification of change impacts. By using the requirements relations of
the requirements metamodel as traceability information, CIA can be performed.
With well-defined semantics of change classification, requirements and relations,
propagation of change can be derived.

In section 5.2 the working definition of impact is presented. From this defini-
tion of impact, domain changes are used to determine the propagation of change
for formalized requirement changes. With this formalization an exhaustive case
study for each change type together with each type of requirements relation
is performed to derive impact alternatives for each case. The change impact
alternatives can be used to provide change impact predictions.

Section 5.3 describes how consistency checking can be performed for multiple
impacts on the same requirement.

In section 5.4 taken approach is discussed. This chapter is then concluded
in section 5.5.

5.2 Change propagation

5.2.1 Impact

From the definitions of Bohner and Heindl used in section 2.4, impact can be in-
terpreted as the effect that a change has on other software artifacts. By changing
software artifacts, without updating the traceability information, deterioration
occurs. Therefore trace information should be updated in order to prevent this
deterioration. Thus the impact is directly related to updating software artifacts
in order to prevent deterioration. The working definition for impact is:

Impact is the needed change of software artifacts caused by a change
made in software artifacts.

31

32 CHAPTER 5. PROPAGATION & CONSISTENCY CHECKING

Consider the semantics for refactoring and domain changes as described in
section 4.4. The set of changes considered as refactoring does not change the set
of properties that is captured by the requirements model, nor does it change the
set of systems satisfying these requirement changes. Derived from the working
definition of impact, which considers the needed change to cause the change
propagation, it is determined that refactoring does not result in needed changes
to be propagated.

The set of changes captured by a domain change however, do change the set
of properties captured by the requirements model and the systems satisfying
them. Domain changes are considered changes that may cause impact on related
requirements. As a result change propagation is determined for domain changes.

5.2.2 Rules for impact propagation

In the requirements model, both requirements and relations are regarded as soft-
ware artifacts. Therefore impact over a relation that results from a requirement
change is indicated for each requirement relation by:

1. Impact on requirement

2. Impact on requirements relation

To determine the rules for change propagation, the semantics for domain
change is considered. The given definition of domain change is such that RM =
〈PRM , SRM 〉 before the domain change, and RM l = 〈P l

RM , Sl
RM 〉 such that

RM 6= RM l. Thus when the requirements model is affected by a domain
change, RM 6= RM l must be ensured.

Semantics of requirements relations as described in Chapter 3 provides ad-
ditional information about what properties related requirements capture and
which sets of systems are satisfied by them. By using the requirements rela-
tions, it can be determined if the formalization for domain change holds.

Moreover, relations can become invalid due to change of a requirement. Al-
though the formalization of domain change holds, the relation becomes invalid
if the change is not propagated to the related requirement. In this situation,
the requirements engineer can decide to remove the relation or to update the
related requirement. In the latter case the relation is maintained.

It is derived that a propagation of change occurs when:

1. RM 6= RM l does not hold

2. Although (1) is satisfied the requirements relation becomes invalid, and
propagation of the change can prevent this

Here (1) is a case that must be fulfilled, where case (2) poses the choice
to either propagate the change over the relation, or delete the requirements
relation.

5.2.3 Implications of domain change

Model changes that reflect domain changes imply additional information about
the change. These are made explicit:

5.2. CHANGE PROPAGATION 33

a. add property to requirement: The added property is not already cap-
tured by the model.

b. add constraint to property in requirement: The property to which
the constraint is added does not capture that or a more stringent con-
straint anywhere else in the model.

c. remove property from requirement: The removed property should be
removed from all (related) requirements capturing this property.

d. remove constraint from property in requirement: The removed con-
straint from a certain property should be removed from all (related) oc-
currences of that property in the model.

e. change property in requirement: All (related) occurrences of the prop-
erty that is changed should be changed.

f. change constraint in property in requirement: The changed con-
straint of a certain property should be changed in all (related) occurrences
of that property in the model.

g. delete relation: The (current) requirement relation has become invalid,
but gives no indication if other requirements relations are applicable.

5.2.4 Change impact propagation

The needed and possible propagated change can be determined when considering
the following:

• Requirement change reflects a domain change

• Classification of change

• Semantics of requirements relation to related requirement

An systematic case analysis is performed to determine the propagation alter-
natives for each combination of change type, requirements relation and direction
of propagation. The change impact alternatives for each of the combinations
of change types with requirements relations are denoted in Tables 5.1 and 5.2.
Each impact alternative is denoted as a tuple (a,b), with a denoting the im-
pact on the related requirement and b denoting the impact on the requirements
relation. Multiple alternatives are separated by the logical OR symbol |. For
brevity, NI indicates ‘no impact’ and DR indicates ‘delete relationship’.

The tables are followed by two illustrations of a single case analysis.

34 CHAPTER 5. PROPAGATION & CONSISTENCY CHECKING

Case 1 Case 2 Case 3

Change R1
cont−−−→ R2 R1

ref−−→ R2 R1
p.ref−−−→ R2

a. add Rx (NI, NI) (NI, NI) (NI, NI)

b. del R1 (del R2, DR) (del R2, DR) (R2
−pt7→ Rl

2, DR)

c. R1
+pt7→ Rl

1 (NI, NI) (NI,DR) | (NI, DR) |
(R2

+pt7→ Rl
2, NI)

d. R1
−pt7→ Rl

1 (NI, NI) (R2
−pt7→ Rl

2, NI) | (R2
−pt7→ Rl

2, NI)

(NI, DR)* | (R2
−pt7→ Rl

2, DR)*

(R2
−pt7→ Rl

2, NI) |
(del R2, DR)

e. R1
pt 7→ptl

7→ Rl
1 (NI, NI) | (R2

pt 7→ptl

7→ Rl
2, NI) | (R2

pt 7→ptl

7→ Rl
2, N

(R2
pt 7→ptl

7→ Rl
2, NI) (R2

pt 7→ptl

7→ Rl
2, DR)* (R2

pt 7→ptl

7→ Rl
2, DR)

f. R1
+ct7→ Rl

1 (NI, NI) | (NI, NI) (NI, NI)
(NI, DR) |

(R2
+ct7→ Rl

2, NI)

g. R1
−ct7→ Rl

1 (NI, NI) | (NI, NI) | (NI, NI) |
(R2

−ct7→ Rl
2, NI) (NI, DR)* | (NI, DR) |

(R2
−ct7→ Rl

2, NI) | (R2
−ct7→ Rl

2, NI) |
(R2

−ct7→ Rl
2, DR)* (R2

−ct7→ Rl
2, DR)

h. R1
ct 7→ctl

7→ Rl
1 (NI, NI) | (NI, NI) | (NI, NI) |

(R2
ct7→ctl

7→ Rl
2, NI) (R2

ct7→ctl

7→ Rl
2, NI) (R2

ct7→ctl

7→ Rl
2, NI)

i. del R2 (R1
−pt7→ Rl

1, DR) (del R1, DR) (del R1, DR)

j. R2
+pt7→ Rl

2 (NI, DR) | (NI, DR)** | (NI, NI) |
(R1

+pt7→ Rl
1, NI) (R1

+pt7→ Rl
1, NI)

k. R2
−pt7→ Rl

2 (R1
−pt7→ Rl

1, NI) (R1
−pt7→ Rl

1, NI) | (NI, NI) |
(R1

−pt7→ Rl
1, DR)* (NI, DR)** |

(R1
−pt7→ Rl

1, NI) |
(del R1, DR)

l. R2
pt 7→ptl

7→ Rl
2 (R1

pt 7→ptl

7→ Rl
1, NI) (R1

pt 7→ptl

7→ Rl
1, NI) | (NI, NI)

(R1
pt7→ptl

7→ Rl
1, DR)* (R1

pt 7→ptl

7→ Rl
1, NI)

(R1
pt 7→ptl

7→ Rl
1, DR)

m. R2
+ct7→ Rl

2 (NI, DR)** | (NI, DR) | (NI, NI) |
(R1

+ct7→ Rl
1, NI) (R1

+ct7→ Rl
1, NI) (R1

+ct7→ Rl
1, NI)

n. R2
−ct7→ Rl

2 (R1
−ct7→ Rl

1, NI) (R1
−ct7→ Rl

1, NI) | (NI, NI) |
(R1

−ct7→ Rl
1, DR)** (R1

−ct7→ Rl
1, NI) |

(R1
−ct7→ Rl

1, DR)

o. R2
ct 7→ctl

7→ Rl
2 (R1

ct 7→ctl

7→ Rl
1, NI) (R1

ct7→ctl

7→ Rl
1, NI) (NI, NI) |

(R1
ct 7→ctl

7→ Rl
1, NI)

p. Del Relation (NI,NI) (NI,NI) (NI,NI)

Table 5.1: Change impact alternatives table (part 1). * indicates that both
related requirements become equivalent, ** indicates possibility of a different
type of relationship

5.2. CHANGE PROPAGATION 35

Case 4 Case 5

Change R1
req−−→ R2 R1

conf−−−→ R2

a. add Rx (NI, NI) (NI, NI)

b. del R1 (NI, DR) | (NI, Dr)
(del R2, DR)

c. R1
+pt7→ Rl

1 (NI, NI) (NI, NI)

d. R1
−pt7→ Rl

1 (NI, NI) | (NI, NI) |
(NI, DR) | (NI, DR)

(del R2, DR)

e. R1
pt7→ptl

7→ Rl
1 (NI, NI) | (NI, NI) |

(NI, DR) | (NI, DR)
(del R2, DR)

f. R1
+ct7→ Rl

1 (NI, NI) (NI, NI)

g. R1
−ct7→ Rl

1 (NI, NI) | (NI, NI) |
(NI, DR) | (NI, DR)

(del R2, DR)

h. R1
ct7→ctl

7→ Rl
1 (NI, NI) | (NI, NI) |

(NI, DR) | (NI, DR)
(del R2, DR)

i. del R2 (NI, DR) | (NI, DR)
(del R1, DR)

j. R2
+pt7→ Rl

2 (NI, NI) (NI, NI)

k. R2
−pt7→ Rl

2 (NI, NI) | (NI, NI) |
(NI, DR) | (NI, DR)

(del R1, DR)

l. R2
pt 7→ptl

7→ Rl
2 (NI, NI) | (NI, NI) |

(NI, DR) | (NI, DR)
(del R1, DR)

m. R2
+ct7→ Rl

2 (NI, NI) (NI, NI)

n. R2
−ct7→ Rl

2 (NI, NI) | (NI, NI) |
(NI, DR) | (NI, DR)

(del R1, DR)

o. R2
ct7→ctl

7→ Rl
2 (NI, NI) | (NI, NI) |

(NI, DR) | (NI, DR)
(del R1, DR)

p. Del Relation (NI,NI) (NI,NI)

Table 5.2: Change impact alternatives table (part 2). * indicates that both
related requirements become equivalent, ** indicates possibility of a different
type of relationship

36 CHAPTER 5. PROPAGATION & CONSISTENCY CHECKING

Consider the following derivation for the domain change of adding a
property to R1 while R1 contains R2, which provides only a single propagation.

Example: derivation for Change c. Case 1: R1
+pt7→ Rl

1×R1 contains R2

• Let RM be such that it captures requirements R1 and R2.

• Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 such that R1 contains R2, thus
P1 = P2 ∧ Pother.

• Thus RM = 〈PRM , SRM 〉, with PRM = P1 ∧ P2 and SRM = S1 ∩ S2.

• Let the domain change be adding a property to R1, thus R1
+pt7→ Rl

1, with
P l

1 = P2 ∧ Pother ∧ Ppt.

• Then RM 6= RM l holds, for RM l = 〈P l
RM , Sl

RM 〉, with P l
RM = P l

1 ∧ P2.

• The requirements relation Rl
1 contains R2 is still valid, thus there is no

choice to propagate the change.

• Thus the impact alternative is no impact on related requirement, no im-
pact on relation; (no impact, no impact).

Consider the following derivation for the domain change of adding a
constraint to R2 while R1 refines R2 that has propagation alternatives.

Example: derivation for Change m. Case 2: R2
+ct7→ Rl

2 ×R1 refines R2

• Let RM be such that it captures requirements R1 and R2.

• Let R1 = 〈P1, S1〉 and R2 = ∧P2, S1 such that R1 refines R2

• Thus P1 = (p′1 · · · p′i) ∧ (q1 · · · qj) and P2 = (p1 · · · pi) ∧ (q1 · · · qj) with
i ≥ 1, j ≥ 0, such that p′i → pi

• Thus RM = 〈PRM , SRM 〉, with PRM = P1 ∧ P2 and SRM = S1 ∩ S2.

• Let the domain change be adding a constraint to a property to R2, thus
R2

+ct7→ Rl
2.

• Then the added constraint is either added to the property described by
(p1 · · · pi) or (q1 · · · qj):

– Constraint added to (p1 · · · pi): P l
2 = (pl

1 · · · pl
i) ∧ (q1 · · · qj)

– Constraint added to (q1 · · · qj): P l
2 = (p1 · · · pi) ∧ (ql

1 · · · ql
j)

• In either case, RM 6= RM l holds, for RM l = 〈P l
RM , Sl

RM 〉

• But relation R1 refines Rl
2 is no longer valid because

– if constraint is added to (p1 · · · pi) then p′i → pl
i does not hold

– if constraint is added to (q1 · · · qj) then qi → ql
i does not hold

5.2. CHANGE PROPAGATION 37

• Thus the requirement engineer is posed with the choice to either propagate
the change, to maintain the refines relation, such that the impact to R1

is add constraint. Or he can choose to delete relation.

• Thus (R1
+ct7→ Rl

1, no impact) or (no impact, delete relation).

5.2.5 Explanation and limitation of the change impact ta-
ble

As depicted in Table 5.1 some impact possibilities are indicated with one or
two asterisks. Given a single requirement change and after applying the change
the possibility exists that two requirements become equivalent (indicated by
*). Similarly, the alternatives marked with a double asterisk (**) indicate cases
where an other relation may be valid. In none of the cases for the conflicts rela-
tion, an impact is determined for the related requirement. The only alternatives
are to reflect either no impact at all, or a deletion of relation.

From the impact alternatives table, depicted in Table 5.1 the following obser-
vations are made, which are explained in more detail in the following paragraphs:

1. Adding a requirement to the model causes no impact

2. Adding a property to a container property can not propagate to the con-
tained property

3. There are possibilities where two requirements become equivalent (indi-
cated by *)

4. There are possibilities where there are emerging requirements relations
(indicated by **)

5. Cases that concern the ‘conflicts’ relation never lead to propagation

6. The only propagated impact for the cases concerning ‘requires’ is ‘delete
requirement’

‘Add requirement’ causes no impact

The requirements relations existing in the model are used to determine and
propagate impact. When adding a new requirement to the model, there are no
relations connected to the requirement. These need to be manually added to
the model by the requirements engineer first. In the situation where the added
requirement captures properties that contradict other requirements, conflicts
relations can be used to indicate this. Consequently, changes can be made to
the model to resolve these conflicts relations. These changes in turn may be
model changes of a type other than ‘add requirement’, and in turn propagate
change using the newly added requirements relations.

Automatic trace detection is out of scope of this thesis.

Propagate only the needed change

Propagation of change is determined by the rules as presented in subsection
5.2.2. As a result, a change is propagated as long as it is determined by the

38 CHAPTER 5. PROPAGATION & CONSISTENCY CHECKING

requirements relation that RM 6= RM l does not hold. Alternatively, when
this holds, a change may optionally be propagated if it can be determined that
without propagation the relation does no longer hold. If this can not be deter-
mined, propagation of change is not considered a ‘needed change’ and can not
be derived, and are model changes from refactoring.

Due to propagating only the needed change, a clear distinction is made be-
tween impact propagation and refactoring performed to the requirements model.
If a relation is ensured to remain valid after the change, impact on the related
requirement can not be determined.

The requirements engineer is responsible for refactoring the model to in-
clude changes to requirements that are not considered needed or cause existing
relations to become invalid.

Requirements becoming equivalent

The change impact alternatives table indicates a few cases where an alternative
indicates where both requirements become equivalent (indicated by *). As a
result, the original requirement relation is no longer valid. There is no change
classification nor relation to indicate the equivalence of two requirements. For
determining impact propagation, only the change type and the requirements
relation are considered. The explicit formula of properties that the requirement
captures are not considered. Using this information actual equivalence can not
be determined, and only possibility of the relation becoming invalid can be
given.

Consider the following example:

Example: R1
−pt7→ Rl

1 ×R1
contains−−−−−−→ R2 (Change d. Case 1)

• Let RM be such that it captures requirements R1 and R2

• Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 such that R1 contains R2, thus
P1 = P2 ∧ Pother.

• Then RM = 〈PRM , SRM 〉, such that PRM = P2 ∧ Pother

• Let deleting a property from R1 be R1
−pt7→ Rl

1, where Rl
1 = 〈P l

1, S
l
1〉 is

such that P l
1 = P2 and Sl

1 = S2

• Then Rl
1 = R2

• Thus RM l = 〈P l
RM , Sl

RM 〉, such that P l
RM = P2, and RM 6= RM l holds

• However, Sl
1 ⊂ S2 does not hold and thus the contains relation is no

longer valid.

• As a result, the relation and should be removed.

Although both requirements are equivalent after the change, the only indi-
cated impact is removing the relation. Changing the model to reflect that both
requirements are the same is considered refactoring and should be performed
by the requirements engineer manually.

5.2. CHANGE PROPAGATION 39

Newly emerging relations

Similar to the cells marked with an asterisk, there are cases where the relation
is removed while another relation may be valid (indicated by **). The indicated
impact however is delete relation. The same rationale applies here, that actual
properties captured by the requirements are not taken into account, only the
change type and relation. Emerging relations can therefore not be determined
automatically and is left to requirements engineer.

Consider the example:

Example: R2
+pt7→ Rl

2 ×R1
refines−−−−→ R2 (Change j. Case 2)

• Let RM be such that it captures requirements R1 and R2

• Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 such that R1 refines R2

• Let P1 = (p′1 · · · p′i), P2 = (p1 · · · p′i) with i ≥ 1

• Let the added property to R2 be described as (q1 · · · qj), with j ≥ 1

• Then Rl
2 = 〈P l

2, S
l
2〉 with P l

2 = (p1 · · · pi) ∧ (q1 · · · qj), i, j ≥ q

• The refines relation does no longer hold, and should be removed

• As a result the relation is deleted.

• By formalization of the partially refines relation R1 partially refines Rl
2

holds

• This emerging relation is not indicated by the impact.

While the given relation is deleted, a different relation is valid. Maintaining
the relationship between the requirements without the propagation of change is
also considered refactoring and is not covered by domain change propagation.

The ‘delete relation’ only indicates that the relation is no longer valid, but
does not give an indication whether or not an other relation holds for require-
ments after applying the change. The requirements engineer should be aware of
these situations and refactor the model accordingly.

No impact propagation over conflicts relation

None of the impact alternatives for cases using the conflicts relation indicate
an impact for the requirement. This is due to the conflicts relation being only
extentionally defined as the disjunction of sets of systems satisfying the individ-
ual requirement. There is no intentionally defined relation describing how the
properties captures by requirements are related. It can therefore not be deter-
mined if there is a direct impact on the related requirement over the conflicts
relation.

40 CHAPTER 5. PROPAGATION & CONSISTENCY CHECKING

Consider the following example:

Example: R1
−pt7→ Rl

1 ×R1
conflicts−−−−−−→ R2 (Change d. Case 5)

• Let RM be such that it captures requirements R1 and R2

• Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 such that R1 conflicts R2

• Let P1 = (p1 · · · pi) ∧ (q1 · · · qj), i, j ≥ 1

• Let P2 = (p1 · · · pi) ∧ (r1 · · · rk), i, k ≥ 1

• Then P1 and P2 capture a property described by (p1 · · · pi), i ≥ 1 that is
captured by both requirements

• Let the deleted property be (p1 · · · pi), i ≥ 1

• Then by removing this property, the impact alternatives listed are (no
impact, no impact) | (no impact, delete relation).

• Thus after deleting the property, it is still captured by R2

Although deleting property pt from R1 is considered a domain change, after
applying the change, and determining (either alternative) impact, property pt
is still captured by the model. This is inconsistent with the formalization of
domain change, unless the change of removing pt is propagated to R2 following
an alternative path.

Because the conflicts relation is only extentionally defined, and the set of
systems satisfying both requirements is empty, the change can not be related to
either a set of systems that is captured by both requirements, nor a property
captured by the related requirement R2 (due to lack of intentional definition
of conflicts relation). The only way to delete property p from R2 is through
propagation over a shared requirement Rx which captures property p and is
related to both R1 and R2 through a contains relation, such that R1

contains−−−−−→ Rx

and R2
contains−−−−−→ Rx. The requirements engineer should be aware that conflicting

requirements that also share properties, should have this property modeled by
a third requirement explicitly. Making such modeling decisions is the only way
to ensure that PRM 6= P l

RM , after propagating the change.

Only one impact type over requires relation

Similarly to the conflicts relation, the requires relation is also only extentionally
defined. The difference between the conflicts and requires relation is, that the
requires relation indicates that the sets of systems satisfying the requirements
are related through a subset relation, rather than disjunction. This allows for
course change propagation. Without intentional definitions, the exact type of
propagation of change can not be determined, and thus the only propagation
of impact that can be determined is deleting the related requirement to ensure
that RM 6= RM ′ holds. The requirements engineer should be aware of this
coarseness of impact over requires relations.

5.2. CHANGE PROPAGATION 41

5.2.6 Change Impact Prediction

Prediction categories

The formalism of the requirements model and the formalism for domain changes
allows the distinction between actual propagation, potential propagation, and no
propagation to related requirements. This leads to the following three categories
of possibility of propagation:

1. Ensured propagation: The relation leading from the impacted require-
ment to the related requirement ensures that ¬(RM 6= RM l) if the re-
lated requirement is not changed. As a result the related requirement
must be changed.

2. Possible propagation: The requirements relation leading from the im-
pacted requirement to the related requirement leads to a combination of
following possibilities, which requires further investigation by the require-
ments engineer:

a. RM 6= RM l is ensured and the relation is ensured to hold, and thus
no impact on the related requirement.

b. RM 6= RM l is ensured, but the relation is not ensured to hold. The
requirement engineer may propagate the change or delete relation.

c. RM 6= RM l is not ensured if the related requirement is not changed,
and thus the related requirement is impacted.

3. No propagation: The relation leading from the impacted requirement to
the related requirement ensures that RM 6= RM l. There is no possibility
of propagating the change. The relation may become invalid however.

These categories allow change impact prediction, given a change and a re-
quirement relation. The result is an indication of the degree of propagation.
The possibility of propagation is derived from the change impact alternatives
table where each of the possible changes to requirements elements as mentioned
in section 4.3 with cases which contain the five requirements relation contains,
refines, requires, conflicts and partially refines are combined.

Using the categorization for possibility of propagation the propagation pos-
sibility for each combination of requirements relation and requirements model
change are derived. The results are depicted in Table 5.3. This table describes
the likelihood of impacting the related requirement.

This table can be used to cover the ‘base’ scenario of a single elementary
change that is introduced to the requirements model. For this, all requirements
relations fanning out from the impacted requirements are considered, together
with the classification of change.

Given a change type on a certain requirement, reachability analysis is per-
formed. The degree of propagation possibility is indicated by the change impact
prediction rules. The analysis results in an overview of reachable requirements
with an indication of the possibility of impact. E.g. the prediction yields ‘en-
sured impact’, ‘possible impact’ or ‘no impact’ for each requirement.

42 CHAPTER 5. PROPAGATION & CONSISTENCY CHECKING

Case 1 Case 2 Case 3 Case 4 Case 5

Change R1
cont−−−→ R2 R1

ref−−→ R2 R1
p.ref−−−→ R2 R1

req−−→ R2 R1
conf−−−→ R2

a. add Rx no no no no no

b. del R1 yes yes yes maybe no

c. R1
+pt7→ Rl

1 no maybe no no no

d. R1
−pt7→ Rl

1 maybe yes yes maybe no

e. R1
pt 7→ptl

7→ Rl
1 maybe yes yes maybe no

f. R1
+ct7→ Rl

1 maybe no no no no

g. R1
−ct7→ Rl

1 maybe maybe maybe maybe no

h. R1
ct 7→ctl
7→ Rl

1 maybe maybe maybe maybe no

i. del R2 yes yes yes maybe no

j. R2
+pt7→ Rl

2 maybe maybe no no no

k. R2
−pt7→ Rl

2 yes yes maybe maybe no

l. R2
pt 7→ptl

7→ Rl
2 yes yes maybe maybe no

m. R2
+ct7→ Rl

2 maybe maybe maybe no no

n. R2
−ct7→ Rl

2 yes yes maybe maybe no

o. R2
ct 7→ctl
7→ Rl

2 yes yes maybe maybe no

p. Del Relation no no no no no

Table 5.3: Change prediction table; ensured propagation (yes), possible propa-
gation (maybe), and no propagation (no)

Change Type Prediction

Additional to providing impact prediction, the classification of change can be
indicated as well. By repeatedly and exhaustively applying the change impact
alternatives table for the initial change, all possible choices for change propa-
gation are determined. This can be regarded as constructing a decision tree,
where the initial change is the starting node in the tree. Outgoing edges from
the initial node indicate each possible propagation alternative over each relation
connected to the initially changed requirement.

For each possible alternative a new decision tree is constructed. This way
all reachable requirement over the requirements relations are reached, with all
possible propagation alternatives. This process can be regarded as exhaustively
constructing a decision tree for all reachable requirements from the initially
impacted requirement.

The set of all possible propagation paths and their corresponding impacts
can be used to provide both the indication of the change type when an im-
pact is determined, as well as the propagation path from the initially changed
requirement to the impacted requirement.

5.2. CHANGE PROPAGATION 43

Consider the following example for generating a decision tree:

Example: decision tree

Consider the requirements model as depicted in Figure 5.1, with ‘delete prop-
erty’ as initial change on R2.

Figure 5.1: Example requirements model with R2 in SIS

Reachability analysis, based on a depth-first search yields the two paths and
their reached requirements:

1. R2, R3, R4

2. R2, R1

For both paths, the decision trees are constructed, depicted in Figure 5.2 and
Figure 5.3.

Figure 5.2: Generated decision tree for R2, R1

Figure 5.3: Generated decision tree for R2, R3, R4

44 CHAPTER 5. PROPAGATION & CONSISTENCY CHECKING

The result of the change impact prediction is depicted in Table 6.4.

Requirement Impacted Impact types

R1 yes delete property

R2 yes delete property

R3 maybe no impact, delete property,
delete requirement

R4 no no impact

Table 6.4: Change impact prediction results including change types

5.2.7 Relation validation

Related requirements can be impacted by one and the same initial change once.
This is a result of Bohner’s definitions of directly and indirectly impacted re-
quirements, that an indirectly impacted requirement is reached by an acyclic
path [1]. However, Bohner’s definition does not cover multiple (different) paths
leading from the initially impacted requirement to an indirectly impacted re-
quirement.

Consider the following example:

Example: multiple propagation paths to same requirement

Consider the example requirements model depicted in Figure 5.4, where R1 is
the initially impacted requirement.

Figure 5.4: Requirements model with R1 in SIS.

Two different propagation paths exist to indirectly impact R4:

Path 1: From R1 to R2; From R2 to R3; From R3 to R4

Path 2: From R1 to R2; From R2 to R4

Consider ‘Path 1’; the propagation from R2 to R4 is determined over R3. How-
ever, the relation between R2 to R4 is not (yet) considered. A propagation from
R4 back to R2 is not possible; for this would lead to an acyclic path. Bohner’s
definition however does not state anything about the additional propagation
from R2 to R4.

In this approach a requirement reached by multiple paths from the same
changed requirement can only be impacted once by the same initial change.

5.3. CHANGE CONSISTENCY CHECKING 45

The first determined impact on a requirement from an initial change determines
the impact on the requirement. Additional relations that result in an additional
path to an already impacted element should be checked for validity.

5.3 Change consistency checking

The impact alternatives listed in Table 5.1 lists changes, following the classifi-
cation of change to the requirements model. A domain change is regarded as a
composition of multiple changes to the requirements model. These requirement
model changes are composed of requirement changes. This is depicted in a UML
diagram in Figure 5.5.

Figure 5.5: UML diagram representing structure of requirement model changes
at the start of performing CIA

The simplest domain change consists of a single requirements model change,
that in turn consists of one requirement change. Domain changes can lead to
complex requirement model changes. These are composed of multiple affected
requirements.

Additionally to the complexity of the model change, it may also be desirable
to analyse the different change impact alternatives.

Thus, three dimensions of complexity for performing CIA are identified:

1. The number of unique domain changes that impact the requirements
model

2. The number of requirements that are initially identified as changed

3. The number of alternative impact propagation paths that are considered

The first two dimensions may lead to situations where multiple impacts
are determined on a single requirement. In these cases, a contradiction may
arise. Inconsistencies resulting from multiple impacts can be indicated to be
ensured, possible or absent. Below are listed examples for an ensured and
possible inconsistency.

Example: ensured inconsistency

Consider two impacts to be determined for R, which lead to an ensured incon-
sistency :

1. R
+pt7→ Rl

2. delete R

46 CHAPTER 5. PROPAGATION & CONSISTENCY CHECKING

In R
+pt7→ Rl, Rl is formalized as:

• Rl = (p1 · · · ptn) ∧ (q1 · · · qm), with n, m ≥ 1

Where (q1 · · · qm) indicates the properties captured by R before the change and
(p1 · · · pn) represents the added property pt to R. Rl should hold after the
change.
delete R is defined as:

• R = (q1 · · · qm), m ≥ 1 does not hold

This leads to an ensured contradiction because (q1 · · · qm), m ≥ 1 should both
hold and not hold. Thus both ‘add property’ and ‘delete requirement’ impacts
on the same requirement leads to an ensured inconsistency.

Example: possible inconsistency

Consider two impacts to be determined for R, which lead to a possible incon-
sistency :

1. R
pt 7→ptl

7→ Rl

2. R
−pt7→ Rl

In R
pt7→ptl

7→ Rl, R and Rl are formalized as:

• R = (p1 · · · pn) ∧ (q1 · · · qw), with n ≥ 1, m ≥ 0

• Rl = (t1 · · · tz) ∧ (q1 · · · qw), with z ≥ 1, m ≥ 0

Where (p1 · · · pn) indicates the properties captured by pt and (t1 · · · tz) indicates
the properties captured by ptl.
R
−pt7→ Rl is formalized as:

• R = (p1 · · · pi) ∧ (q1 · · · qj), with i, j ≥ 1

• Rl = (q1 · · · qj), with j ≥ 1

Where (p1 · · · pi) indicates the properties captured by pt that are removed from
the requirement. Thus after deleting the property from R, (p1 · · · pi), i ≥ 1
should no longer hold.
Then either situation occurs:

1. The disjunction of literals in CNF described by (p1 · · · pi), i ≥ 1 are not
captured by the replaced property described by (t1 · · · tz), z ≥ 1, e.g.
∀px, x ∈ i : px 6= ty, with y ∈ {1, . . . , z}

2. The disjunction of literals in CNF described by (p1 · · · pi), i ≥ 1 captures
at least one literal such that ∃px, x ∈ i : px = ty, with y ∈ {1, . . . , z}

In the first case, no contradiction is determined, and both changes can be per-
formed on the requirement. In the second case, a contradiction arises because
a literal is still captured by Rl that should no longer hold. Thus a requirement
both impacted by ‘change property’ and ‘delete property’ can be inconsistent.

5.4. DISCUSSION OF THE APPROACH 47

The Table 5.5 gives the contradicting changes based on semantics of domain
changes and change types in change classification.

Change a. b. c. d. e. f. g. h.

a. del R no yes no yes yes no yes no

b. R
+pt7→ R′ yes no no no no no no no

c. R
−pt7→ R′ no no no maybe maybe no maybe no

d. R
pt7→ptl

7→ R′ yes no maybe maybe maybe maybe maybe no

e. R
+ct7→ R′ yes no maybe maybe no maybe maybe no

f. R
−ct7→ R′ no no no maybe maybe no maybe no

g. R
ct7→ctl

7→ R′ yes no maybe maybe maybe maybe maybe no

h. no impact no no no no no no no no

Table 5.5: Table indicating the possible inconsistencies when a requirement is
affected by multiple impacts

According to the table, two changes for the same requirement are classifiable
by three degrees of contradiction:

Yes: It is ensured that both impacts lead to a contradiction

Maybe: Impacts may cause a contradiction, and this should be investigated

No: The absence of contradiction is ensured

5.4 Discussion of the approach

In this section, the various parts of the approach are discussed.

5.4.1 Formalization in FOL

FOL is used to formalize the semantics of classification of changes, change ra-
tionale and propagation of changes. There are limitations to the expressiveness
of FOL. Permissible or obligatory properties, indicating a degree of possibility
can not be expressed using FOL. There are other formalizations of requirements
which can be used to express these properties, for example modal and deontic
logic[31][32].

The formalization in FOL allows the expression of changes in commonly
occurring requirements descriptions, including for example real-time or perfor-
mance requirements. The expressiveness of FOL is considered sufficient for
inferencing of requirements relations and consistency checking of the formal-
ized requirements model. In this work, the expressiveness of FOL is considered
sufficient to use for semantics for classification of change and rationale of change.

48 CHAPTER 5. PROPAGATION & CONSISTENCY CHECKING

5.4.2 Mapping textual requirements to requirement
model

Modeling of the requirements and requirements relations is carried out by the
requirements engineer. How and which textual requirements should be rep-
resented in the requirements model is not determined by the approach. The
approach is agnostic about differences between functional and non-functional
requirements. Thus the requirement engineer is free to construct his model and
determine relations as he sees fit.

Construction of the model abstracts from the actual formalization of the re-
quirement. The decomposition into properties and constraints is not explicitly
captured by the model. The requirements engineer can be guided by the infor-
mal definitions of semantics of the relations and can be guided by tutorials[25].

The benefit is that although the semantics of requirements relations needs
to be known, knowledge to formalize the requirements is not required. The
learning curve is therefore less steep and time consuming than when explicit
formalization of requirements is needed.

By abstracting from the explicit mapping of textual requirements require-
ments to properties and their predicates certain capabilities are lost, such as:

• Automatic detection of equivalent requirements due to a change.

• Automatic trace generation resulting from changed/added requirements

The benefits of the underlying semantics can still be used. By using the
tool support for inferencing of requirements relations and checking model con-
sistency, that allow for improving the model[2].

5.4.3 Classification and propagation of changes

The structure of the formalized requirement is derived from Wasson’s
primitives[3] to determine the different types of changes that can be made to
the formalized requirement. By having a one-to-one mapping from the Wasson’s
primitives onto the formalized requirement, knowledge of the textual domain can
be used in the requirements model.

By defining the classification of change in terms closely related to terms
that are known in the textual domain, an abstraction is made from the specific
changes in the FOL formalization. This way, the requirements engineer can
perform CIA on textual requirements and still use well-defined requirements
relations. This implies a less steep learning curve, for the requirements engineer
can be guided by tutorials.

As mentioned before, the model does not capture explicit mapping to FOL.
The change classification does not explicitly indicate to which property or prop-
erties the change in the requirement is applied. As a result some loss of infor-
mation occurs. Specific change propagations such as those where requirements
become equivalent or where new relations emerge can not be automatically de-
tected. This means that to keep track of what actually has to be changed in
the requirements, the requirements engineer has to keep track of the changes in
the textual requirement.

The propagation of change is driven by domain change. Refactoring does
not imply needed changes, for the systems described by the sum of all require-
ments remain the same. From the working definition of impact as ‘the needed

5.5. CONCLUSION 49

change’ and the requirements relations to and from the change requirement,
change propagation is determined. By using the domain change rather than
refactoring, the ‘needed’ change is determined. This provides clear semantics
for propagation.

The drawback of this separation of ‘domain change’ propagation and sub-
sequent ‘refactoring’ is that for each application of changes to the model, the
requirements engineer may have to refactor the model. Where these steps were
previously intertwined, they are now interleaved.

5.4.4 Semantics of requirements relations

Requirements relations can be categorized as ‘extensionally’ defined and ‘inten-
tionally’ defined. Intentionally defined relations such as contains, refines, par-
tially refines allows for deriving change impact propagation alternatives based
on both the sets of systems satisfying the requirement and the properties over
which the intentionally defined relations are given. This leads to more precise
impact alternatives, as can be seen in the change impact alternatives Table 5.1
on page 34.

The propagated types of change for the intentionally defined relations cap-
ture all types. The propagated types of change for the extentionally defined
relations requires and conflicts only capture ‘no impact’ and ‘delete require-
ment’.

The semantics for the ‘conflicts’ relation specifically are ill-suited for the use
of change impact analysis using direct impacts, as illustrated in paragraph 5.2.5.
The requirements engineer should be aware of this issue, and make according
modeling choices to ensure proper (indirect) propagation of change when dealing
with conflicts relations.

Requirements relations in the requirements metamodel may imply other re-
quirements, and effectively this means that multiple relations may exist between
two requirements. For example, the contains relation implies that the requires
relation also holds, and thus both requirements are related through a contains
relation and a requires relation. When propagating change over the require-
ments relation, the ‘strongest’ explicitly denoted requirements relation is taken
into account, e.g. the contains relation.

5.5 Conclusion

In this chapter the semantics of change rationale and semantics for change
types are used together with the formalized requirements relations to deter-
mine change propagation rules, which in turn lead to change impact alternatives
(section 5.2).

The formalization can be used to determine ensured impacted, possibly im-
pacted and unimpacted requirements using the generation of decisiontrees (sub-
section 5.2.6), as well as to validate requirements relations (subsection 5.2.7).

When dealing with the analysis of multiple requirement changes at the same
time, the formalization of change types and change propagation allows for im-
pact consistency checking, that can indicate the ensured, possible and absence
of impact inconsistencies (section 5.3)

50 CHAPTER 5. PROPAGATION & CONSISTENCY CHECKING

In section 5.4 the approach is discussed. The requirements engineer should be
aware of the limitations of the approach, of which the most important limitation
is the possibility of deficient results of using the ‘conflicts’ relation.

Chapter 6

Tool support

6.1 Introduction

In research prior to this thesis, proof-of-concept tool support for the metamod-
eling approach for requirement metamodels as proposed by Göknil et al.[2] has
been developed by Veldhuis[33]. The tool ‘Tool for Requirements Inference and
Consistence Checking’ (TRIC) is developed using the Eclipse Rich Client Plat-
form (Eclipse RCP)[34]. TRIC is extended to provide support for performing
CIA.

This chapter describes the requirements, architecture, design and implemen-
tation of the extension of TRIC with support for CIA. First the requirements
for the extension are described in section 6.2. These requirements are used to
construct the activity diagrams of performing CIA using tool support by the
requirements engineer. Following the requirements, the extended architecture
of TRIC with the CIA components is presented in section 6.3. In this section,
added and altered components and their purposes are described. In section 6.4
the design of the added and altered components in the architecture is described.
Section 6.5 describes implementation decisions that are made. Section 6.6 de-
scribes the main features and usage of the implementation. This chapter is then
concluded in section 6.7.

6.2 Requirements for TRIC-CIA

TRIC is extended with support for performing CIA. In this section, the func-
tional requirements for performing CIA are listed. From these requirements,
the activity diagram for the intended use of TRIC is determined.

6.2.1 Functional requirements

The change propagation alternatives described in Chapter 5 allows for change
impact prediction and consistency checking of changes. These lead to the follow-
ing functional requirements for the extension of TRIC with support for change
impact analysis:

R1 Supporting change impact analysis for domain changes. The re-
quirements engineer identifies domain changes. The changes are proposed

51

52 CHAPTER 6. TOOL SUPPORT

to the requirements model captured by TRIC. Subsequently, analysis
on the change is performed by the requirements engineer. Changes are
propagated to other requirements using the change impact alternatives
determined in Chapter 5. TRIC shall support updating and removing
proposed changes.

R2 Checking change consistency. Multiple impacts from different pro-
posed changes may lead to (possible) inconsistencies as described in section
5.3, which results from the classification of change. TRIC shall support
change consistency checking of multiple changes impacting the same re-
quirement. TRIC shall indicate the degree of inconsistency. Additionally,
TRIC shall identify causes of inconsistencies.

R3 Providing change impact prediction. TRIC shall provide support for
prediction of the possibility of impact as wel as the prediction of change
type for each impact. TRIC shall provide feedback as to how the change
impact prediction results are related to the propagation alternatives.

R4 Applying changes to requirements model. When the change impact
analysis is completed, TRIC shall support applying the analyzed impacts
to the requirements model. After application of the changes the require-
ments model is updated to reflect the changes.

R5 Providing visual feedback. When performing CIA, TRIC shall provide
visual feedback to the requirements engineer. When inconsistencies are
detected a visualization of inconsistencies should be provided. Change
impact predictions shall be visually represented for the requirements en-
gineer to inspect them.

6.2.2 Supported activities

The activity diagram shown in Figure 6.1 depicts the activities of performing
change impact analysis, done by the requirements engineer. Due to the require-
ments engineer being the only actor in this activity diagram, the actor symbol
is left out.

Modeling requirements: This activity takes the requirements document as
input and produces the requirements model as output. The requirements
model consists of requirements and their given and inferred relations. The
definitions given in Chapter 3 are used to identify the requirements rela-
tions. The modeling process is divided into three activities: requirements
reformulating, trace generating and trace validating. This modeling pro-
cess is supported by TRIC through inferring requirements relations and
requirements model consistency checking. Although the activity is not
part of the actual change impact analysis, it provides the requirements
model on which the CIA is performed. Additionally this activity captures
refactoring.

Interpreting change request: This activity takes the current requirements
model and the change request as input. The requirements engineer iden-
tifies domain changes that result from comparison of the change request
and the current requirements model.

6.2. REQUIREMENTS FOR TRIC-CIA 53

Figure 6.1: Activity diagram of performing CIA

Proposing change: This activity takes the requirements model and the dif-
ferences between the requirements model and the requirements document
as input and produces the proposed changes to the requirements model as
output. The requirements engineer proposes changes to the requirements
model based on the interpretation of the domain changes in stakeholder
needs. This activity captures proposing one single change at once to the
model. The modeling process is iterative and the requirements engineer
can introduce multiple changes consecutively without propagating the pro-
posed changes. Therefore, the performing change impact analysis process

54 CHAPTER 6. TOOL SUPPORT

may continue after proposing changes activity iteratively without propa-
gating proposed changes.

Propagating change: This activity takes the requirements model with pro-
posed changes as input and produces the propagated proposed changes
in the requirements model as output. The activity is semi-automatic.
Propagation rules are defined based on the formal definitions of the re-
quirements relations and change types as described in subsection 5.2.4.
The requirements engineer selects the propagation from the selection of
possible propagations proposed by the tool. The activity denotes one
propagation of a single change in the model. The modeling process is
iterative and the requirements engineer may propagate multiple changes
multiple times consecutively without proposing any other change.

Updating change: This activity takes the requirements model with proposed
changes which are to be updated. The activity produces a requirements
model with updated proposed changes. Propagated changes resulting from
the previously unchanged change may be removed from the change impact
analysis. This activity also supports the removal of proposed or propa-
gated changes.

Analyzing change impact prediction: This activity takes the requirements
model and a proposed change as import and gives a change impact analy-
sis prediction for this proposed change as output. Output is the result of
an automated reachability analysis that provides a prediction which indi-
cates the possibility of impact and impact change types for requirements
captured by the requirements model.

Checking consistency of changes: This activity takes the requirements
model including the proposed and proposed propagated changes as input
and gives inconsistencies between proposed changes as output. Inconsis-
tent changes are determined, if there are any. For each inconsistency the
degree of inconsistency is determined, as described in subsection 5.2.6. If
consistencies are detected, the requirements engineer can resolve these by
updating changes that lead to inconsistencies.

Updating model with changes: This activity takes the requirements model
with proposed changes as input and produces the requirements model
reflecting the proposed domain change(s) as output. The activity is semi-
automated. The requirements engineer first changes the requirements in
the model according to proposed changes. Then the requirements relations
that may have become invalid due to the changes, are validated. Updating
the model with changes can only be performed if there are no ensured
inconsistencies of changes. During this activity, the set of proposed and
propagated changes can no longer be changed.

The process described by the activity diagram in Figure 6.1 is iterative.
Once the process has ended, the requirements engineer may start a new activity
by ‘Interpreting change request’ of new domain changes to the requirements
model and subsequently start a new CIA. Each individual CIA is concluded by
updating the requirements model with the changes captured by the performed
CIA. Considering that CIA is only provided for domain changes, refactoring the
model after performing CIA is left up to the requirements engineer.

6.3. ARCHITECTURE OF TRIC 55

6.3 Architecture of TRIC

The high-level architecture for TRIC with extension for CIA support is de-
picted in Figure 6.2. First the existing components and their responsibilities
as intended by Veldhuis[33] are listed. Then the added components and their
intended responsibilities for CIA are described. Finally, the components that
should be altered are listed.

Figure 6.2: The extended layered architecture for TRIC with CIA

6.3.1 Existing components

The following components are present in TRIC:

OWL Model: The requirement (meta)models are represented with Ontology
Web Language[35] (OWL) ontology. The models are used in the JENA
(FOL) reasoner to inference requirements relations and perform require-
ment model consistency checking. Requirements models are also stored as
an OWL ontology.

Data Access Objects: To separate data representation and application logic,
Data Access Objects (DAO) are used for internal representation of objects
captured by the OWL model and are used as an intermediate layer for in-
teraction between the Modeling Environment and the OWL model. This
way the application layer can be unaware of the specific underlying struc-
ture of OWL.

Modeling Environment: The modeling environment is the bridge between
the user interface and the internal components.

56 CHAPTER 6. TOOL SUPPORT

Inference Engine: Relations that can be derived from existing relations are
determined by the inference engine. The inference engine makes use of the
JENA reasoner to prepare the model and subsequently processes them so
that implicitly captured relations are made explicit.

Requirements Consistency Checker: The consistency checker validates a
requirements model with inferred relations and checks for contradictions
in requirements relations.

Visualization Engine: This component captures the methods of constructing
JGraph graphs for visual representation of views on requirements models.

Eclipse RCP: Eclipse Rich Client Platform is a framework for developing and
deploying (client) applications. Eclipse RCP provides a platform that
deals with events, controllers and UI elements. TRIC is developed as a
plugin for this framework.

JGraph: JGraph[36] is an open-source graph visualization library, used to pro-
vide views of requirements models.

6.3.2 Added components

The following components extend TRIC for CIA support:

Change Impact Analysis Environment: Analysis of requirement changes
to requirements models are performed through use of the Change Impact
Analysis Environment. This component keeps track of proposed changes
and propagation choices made by the requirements engineer. It provides
interaction with Change Impact Prediction Engine. This component also
provides the interaction with the Change Impact Consistency Checker.
The component is responsible for updating the requirements model with
the proposed changes once the CIA is completed.

Change Impact Prediction Engine: This component is responsible for au-
tomatic generation of decision trees. It determines change impact predic-
tions and change type predictions related to a proposed change.

Change Impact Consistency Checker: This component checks the consis-
tency of proposed changes. Each requirement is affected by multiple pro-
posed changes is checked to determined if these changes are consistent.

XML File: The change impact analysis can be loaded from and stored to an
XML file. The XML captures the current state of the change impact
analysis and refers to requirements and requirements relations in the re-
quirements model.

6.3.3 Altered components

The following components are altered to extend TRIC with CIA support:

Modeling Environment: This component is altered to interact with the
Change Impact Analysis Environment. By altering the component, it also
provides the user interface for the Change Impact Analysis Environment.

6.4. DESIGN 57

Visualization Engine: The Visualization Environment is extended to provide
the visualization of change propagation paths.

6.4 Design

The following non-trivial design choices are made;

1. CIA is separated from the requirements model (subsection 6.4.1)

2. CIA is performed on a graph representation of the requirements model,
by representing changes as cannotated edges (subsection 6.4.2)

3. Only given relationships are used in CIA (subsection 6.4.3)

4. Propagation and consistency checking are not implemented using the
JENA reasoner (subsection 6.4.4)

5. Depth first traversal with interleaving impact alternative cannotations is
used as algorithm to perform CIP (subsection 6.4.5)

Each of these design choices is described in more detail in the following
subsections.

6.4.1 Separation of CIA and requirements model

Multiple analyses may be performed for a change. Each individual analysis
should therefore be captured separately from the requirements model. Rather
than capturing all changes in the requirements model, a separation is made
between the requirements model and the change impact analysis . The change
impact analysis is captured in a separate model.

Changes of the performed analysis are not considered final until the whole
analysis process is finished. Then the changes from the analysis are considered
final and are applied to the requirements model. Thus the CIA model cap-
tures the proposed changes and the resulting determined proposed propagated
impacts.

The changes are categorized as followed:

Proposed change: A change for which the impact, or lack thereof, on the
target requirement and relation has been determined.

Candidate change: A change for which the source requirement is known to
be impacted, but the impact on the relation and target requirement are
not yet determined.

For each proposed change, the change impact analysis model offers the possi-
bility of adding a description for the proposed change. This allows for capturing
the rationale of determined impact or the lack thereof.

58 CHAPTER 6. TOOL SUPPORT

6.4.2 Using graph representation

Because the propagation may occur in both directions over the requirements
relation, the change impact model takes a representation of the requirements
model as an undirected graph. Its edges have a reference to the appropriate
relations in the requirements model. The vertices are references to the require-
ments captured in the model. The information is captured in an adjacency list
which refers to the requirements described by the Modeling Environment. The
graph can be further cannotated to indicate additional information needed for
CIA.

Representation of change

Changes are propagated over the requirements model relations, e.g. over the
edges of the representing graph. The initially proposed change to the model is
an exception to this, for it is not a change that is propagated over a relation.
Instead, the initial change may be thought of to originate from outside the
requirements model. Changes are represented as cannotations to edges of the
graph representation of the requirements model. The cannotations captured the
following information for propagation of change:

Source vertex: Reference to the requirement that is the source of the change
propagation

Target vertex: Reference to the requirement to which the change is propa-
gated

Relation: Reference to the requirements relation in the requirements model.

Impact on requirement: Impact on target requirement, if determined.

Impact on relation: Impact on requirements relation, if determined.

Origin: Reference to the initially proposed change of which this change is a
propagated change.

Description: Textual representation and/or motivation of the determined im-
pact.

The initial change is represented as an edge where the source vertex and the
target vertex are the requirement that captures the initially proposed change.
The relation and impact on relation cannotations are not set. After an ini-
tial change is proposed, the relations of the initially impacted requirement are
marked as candidate changes.

When a candidate change is investigated, the impact on the related require-
ment is determined. This determined information such as the description, im-
pact on relation and impact on requirement are captured by the edge cannota-
tion. The edge is subsequently added to the list of visited edges and removed
from the list of unvisited edges. Consequently, when a propagated change has
been determined, newly candidate changes are determined and added to the list
of candidate changes. Determining new candidate changes takes into account
acyclic paths and impact on requirement.

6.4. DESIGN 59

An example CIA scenario is illustrated by the two figures, Figure 6.3 and
Figure 6.4, which both depict an example requirements model. The require-
ments model is depicted in black, the proposed changes are depicted in red and
the candidate changes are depicted in blue. In Figure 6.3 the initial change is
proposed, leading to two candidate changes. In Figure 6.4 change is propagated
from the initial change to a related requirement. Subsequently new candidate
changes are determined.

Figure 6.3: Example change impact model representation with initial proposed
change in red and candidate changes in blue

Figure 6.4: Example change impact model representation with proposed changes
in red and candidate changes in blue

For each initially proposed change, a separate change impact analysis is
performed. Proposed changes are regarded as cannotated edges that have been
visited, whereas candidate changes are regarded as cannotated edges that have
not been visited yet.

Change impact matrix

A change impact matrix is created for each initially proposed change. The
change impact matrix is similar to a traceability matrix, but it captures addi-
tional information of cannotated candidate and proposed changes for that given
initial proposed change. The change impact matrix indicates which changes are
visited, and which are candidate changes.

60 CHAPTER 6. TOOL SUPPORT

The following figure depicts the two change impact matrices corresponding
to Figure 6.3 and Figure 6.4 are given. The rows indicate the source of the
propagation, columns denote the target of the propagation. Blue cells indicate
candidate changes, whereas red cells indicate proposed changes. Marked cells
with an × symbol indicate a requirements relation.

R1 R2 R3 R4

R1 × ×
R2 × × ×
R3 × ×
R4 ×

R1 R2 R3 R4

R1 × ×
R2 × × ×
R3 × ×
R4 ×

Figure 6.5: Change impact matrices. Left matrix represents figure 6.3 before
propagating the change and right matrix represents Figure 6.4 after propagating
change from R1 to R2

Propagation of changes using the change impact matrix can be done until
there are no more candidate changes left to determine the impact for, and the
change propagation for that particular initially proposed change is done.

Interactive decision trees

Using the change impact matrix allows for an overview of propagation of change.
However, it represents the chosen propagations only. It does not allow com-
parison of multiple change propagation alternatives caused by the same initial
change. This support is provided by performing analysis using a decision tree
that captures all possible change propagation paths.

Instead of providing the exhaustive change propagation analysis, only the
initial change is depicted and the requirements engineer can expand the tree
interactively. This way, the different impact alternatives can be analysed sepa-
ratedly, and multiple results of finished impact propagations can be compared
to each other. After comparing the different results caused by different chosen
impact alternatives, one analysis can be chosen.

The decision tree is represented using the following symbols:

Black squares: Represents a visited decision node

Gray square: Represents an unvisited decision node, indicating that the de-
cision tree can be expanded

Yellow square: Represents an end node, indicating that no more decisions can
be made

An illustration of a partially built decision tree is given in Figure 6.6, repre-
senting the change impact analysis after propagating change as depicted in the
right change impact matrix in Table 6.5.

Decisions made interactively building the decision tree are alternating deci-
sions of the following two types:

1. Decide for which candidate change the impact is determined

6.4. DESIGN 61

Figure 6.6: An example partially built interactive decision tree for the initial
change R1

−pt7→ Rl
1

2. Decide the propagated change for the selected candidate change

Once the requirements engineer is done with analyzing multiple possibili-
ties of change impact propagation, he can select a specific visited decision node
or end node, and use the sequence of made decisions as the determined pro-
posed/propagated changes.

6.4.3 Propagation over given relations only

TRIC provides inferring new relations from given relations by using the seman-
tics of relations. In the design of change propagation, inferred relations are not
considered for the following reasons:

1. There is a dependency relation between given and inferred requirements
relations. When a given relation is removed, the depending inferred rela-
tion is no longer valid. This indicates that given relationships and inferred
relationships can not be treated equally during change impact analysis.

2. Consistency checking and inferring relationships are considered activities
performed during the modeling of the requirements. During requirements
modeling, the requirements engineer uses the inference engine to identify
implicitly defined relationships. If the requirements engineer validates
certain inferred relations, the engineer must change these inferred rela-
tionships to given ones.

Only explicitly given requirements relations are considered links over which
impact can be propagated. If the requirements engineer wants to use inferred
relations for change impact analysis, these relations must be modeled explicitly
as given relations.

6.4.4 Impact alternatives and consistency checking

The original inferencing and consistency checking for TRIC is implemented us-
ing the JENA First Order Logic reasoner. The design choice for the determined

62 CHAPTER 6. TOOL SUPPORT

impact alternatives in subsection 5.2.4 and section 5.3 is to implement the al-
ternatives as a lookup table in Java. The standard JENA ruleset is not able to
properly deal well with the disjunction of ‘alternatives’. Consider for example
the following rule which can not be implemented in JENA:

if x is human, then x is either male or female

In the case that x is male, the possibility that x is a female is deemed false
is not captured by monotonic logic, which JENA uses for its rule engine. This
means that all disjunctions for change impact alternatives must be rewritten to
monotonic logic. Expressing possibilities of nonmonotonic logic in monotonic
logic can be done[37], but is considered out of scope for this work.

This design does not modify JENA and implement the change impact alter-
natives and consistency checking of changes in java.

6.4.5 Change impact prediction

Change impact prediction is performed by exhaustively generating all change
impact alternatives for each candidate change. This is done by performing
an exploration algorithm that determines all possible paths leading from the
initially proposed change. For each unique path, given the initial change type,
all possible propagation paths are determined.

The paths can be generated by either a depth-first traversal or breadth-first
traversal. Because all unique paths are to be generated, there is no optimal
solution. For this approach, the time complexity for both algorithms are equal.
For the implementation of the change impact prediction the depth-first traversal
algorithm is used.

The result of this process is all possible propagations from the initially im-
pacted requirement to all reachable requirements. By consequently analyzing
these propagations, it is determined if and how requirements can be impacted.

6.5 Implementation

In this section the implementation of the following features is explained:

• Determining and representing change impact prediction results

• Application of analysis and changing the requirements model

• Synchronizing the change impact model and RM through using hash for
loading and saving CIA’s

6.5.1 Change impact prediction results

CIP is performed by interleaving a depth-first traversal over the requirements
relations with the different propagation alternatives. The result of the CIP is all
unique paths of change propagations with their exhaustively determined impact
possibilities.

Presented in Listing 6.1 is the pseudocode for generating all possible paths
through decision trees given a change. The implementation combines the reach-
ability analysis using depth-first traversal with the generation of propagation
alternatives. Its input is the following arguments:

6.5. IMPLEMENTATION 63

Change: Cannotated edge representing a change

Graph: Graph representation of the requirements model

Path: Current stack of determined changes (followed edges)

Its methods are:

getRelatedEdges(Change, Graph): Given a Change and Graph, return
all related Changes (edges) of the target Requirement when the impact
on target requirement is other than ‘no impact’. This method returns an
empty set if the impact on target requirement is ‘no impact’.

removeKnownEdges(nextChanges, Path): Given a list of Changes and
the already known Path of visited changes, this method returns the list of
changes not resulting in cyclic paths, or capturing already visited edges.

getImpactAlternatives(Change): Given an cannotated edge that cap-
tures the requirements relation, the direction of the change propagation
and the type of change, this method returns the set of change propagation
alternatives.

01: dfsPaths(Change, Graph, Path)
02: path.add(Change)
03: nextChanges := getRelatedEdges(Change, Graph)
04: nextChanges := removeKnownEdges(nextChanges, Path)
05: foreach(nChange ∈ nextChanges)
06: ImpactAlternatives = getImpactAlternatives(Change)
07: foreach(Impact ∈ ImpactAlternatives)
08: nextChange := pChange.copy
09: nextChange.setImpact(Impact)
10: newPath := Path.copy
11: dfspaths(nextChange, Graph, newPath)
12: if(nextChanges = ∅)
13: allPaths.add(cPath)

Listing 6.1: Algorithm for interleaving depth-first search with all possible
impact alternatives.

After performing CIP all possible impact propagations from the given initial
change are captured in ‘allPaths’. The captured possible change propagations
are analyzed to determine if requirements are impacted in all paths that contain
them to determine the degree of impact for the requirement:

Ensured: In each propagation path that contains the requirement, the require-
ment is impacted

No impact: In each propagation path that contains the requirement, the re-
quirement is unimpacted

Possible impact: The requirement is both found impacted and unimpacted

64 CHAPTER 6. TOOL SUPPORT

The number of generated paths depends on the degree of connectivity of the
graph and the different impact propagations. To deal with the great number of
unique propagation paths that resulting from the CIP, the results are presented
in three steps, becoming increasingly more detailed.

1. Initial overview of all requirements, their degree of impact possibility and
their change type predictions.

2. Overview of all propagation paths reaching one selected requirement,
grouped by change type prediction and requirements contained in the
propagation path.

3. Visual representation in which one specific order of propagation paths is
displayed.

6.5.2 Applying the CIA

After the CIA has been performed, the proposed changes are applied to the
requirements model if there is no ensured inconsistency in proposed changes.
The requirements engineer should decide if detected possible inconsistencies of
changes are actual inconsistencies or not.

The following steps are taken in order to apply the results of the CIA:

1. Update requirements descriptions

2. Validate relations

3. Delete requirements and relations

Requirement descriptions are updated in the same order that the changes
are determined in CIA. Effectively, for every change the description of the re-
quirement is updated. The requirements engineer can alter the description and
add notes about why that impact is determined. Each requirement and relation
is either marked for deletion or to be kept.

When all changes have been applied to the requirement descriptions, rela-
tions that have contradicting impacts as a result of the propagation of multiple
proposed changes are checked. The requirements engineer reviews the updated
related requirements and determines if the relation is still valid. Invalid relations
are deleted.

After all relations that have contradicting impacts have been validated, re-
lations that are deemed invalid or otherwise marked for deletion are deleted.
Subsequently all requirements marked for deletion are deleted. When the re-
quirements model is updated, the CIA is reverted to one without proposed
changes.

6.5.3 Matching requirements model with change impact
model

A change impact model should be saved to and loaded from XML files. These
models are stored separately from the requirements models. To ensure that the
CIAs is performed on the correct requirements model after loading the model
from storage, a SHA1[38] hash is computed from the requirements and saved

6.6. TOOL USAGE 65

with the change impact model. The hash function takes attributes from all
requirements and relations as input and provides a string, the hash, as output.

Upon opening a change impact model, the hash from the requirements model
is computed and compared to the hash loaded from the change impact model
XML file. Only if the computed and loaded hash match, the change impact
model is processed.

6.6 Tool usage

The most important features of the tool are described in the following subsec-
tions:

• Propose change

• Proposed change propagation

• Display proposed change inconsistencies

• Implement proposed changes in the requirements model

• Change impact prediction of a proposed change

6.6.1 Propose change

Changes can be proposed to requirements in the model. This is done through
the context menu of the requirements view (right-click on requirement) and
selecting ‘Propose change’ from the menu. Figure 6.7 depicts the GUI for change
proposal for the initial change of ‘change constraint’ on R97, which supports the
activity of ‘Proposing Changes’ as depicted in the activity diagram in Figure
6.1 in Chapter 6.

Figure 6.7: Screenshot of ‘Propose Change’ dialog window

The requirements engineer needs to select the appropriate change type in
the drop-down list, from possible change type alternatives. Additionally the
reason for this proposed change can be noted in the ‘Change Description’ text
area.

66 CHAPTER 6. TOOL SUPPORT

After proposing the change, the requirements in the requirements view are
updated and cannotated with the classification of being in the ‘starting impact’
set or ‘candidate impact’ set. The requirements relations fanning out of the
changed requirement R97 are marked in the Impact Matrix View as depicted
in Figure 6.8. Views similar to the Impact Matrix View are also available in
commercial requirements management tools, such as RequisitePro in order to
determine the impacted requirements.

Figure 6.8: Screenshot of tool interface using Matrix Impact View

In the Impact Matrix View, arrows indicate the given relations with their
directions. A red arrow indicates an uninspected relation. Because multiple
changes can be proposed to the requirements model, a separate Impact Matrix
View is kept for each individual proposed change.

The left-hand side of the window lists the requirements of the model with the
proposed change requirement (R97) tagged as Starting Impact (SI) and (part of
the) related requirements (R5, R59, R60, R100 and R102) tagged as Candidate
Impact (CI). At the bottom of the left-hand side of the windows, statistics of the
CIA such as number of impacted requirements and uninspected requirements
are listed.

6.6.2 Proposed change propagation

The requirements engineer can select the candidate impacted requirements to
propagate the proposed change to these requirements. This is done through
either the context menu of the requirements view (right-click on requirement)
and selecting ‘Determine proposed impact on requirement’, or double-clicking
an uninspected requirements relation in the Impact Matrix View. Figure
6.9 depicts the ‘Determine Proposed Impact’ dialog window for the relation
R97 conflicts R59.

6.6. TOOL USAGE 67

Figure 6.9: Screenshot of ‘Determine Proposed Impact’ window

The requirements engineer has to select the appropriate proposed change for
the related requirement, which is selected from the possible impact alternatives
given the drop-down list. Motivation for the choice of impact can be given in
the ‘Change Description’ text area.

Both the requirements view interface as the Impact Matrix view only al-
low one specific analysis of proposed changes. Different propagated proposed
changes can not be analyzed simultaneously. To support simultaneous analy-
sis of different impact propagations, tool support for building decision trees is
provided. Using the Decision Tree on a proposed change allows to explore the
decision trees. Figure 6.10 depicts the interface for building the decision tree.

Each node in this interface indicates a decision. The arrows leading to
a node indicate decision for each step. The decision tree can be expanded by
making decisions. Once analysis using the interactive decision tree is concluded,
the requirement engineer can select one path of decisions. By pressing the
‘Use Analysis’ button the decisions captured by the path from the tree root
to the selected node are used as the working Proposed Change Propagations.
These propagations are then reflected in the CIA. This feature however, is to
illustrate that different alternatives can be represented simultaneously, but it
lacks functionality such as entering Change Descriptions.

6.6.3 Display proposed change inconsistencies

As determined from semantics for classification of change, consistency check-
ing for multiple proposed changes on the same requirement can be performed.
Figure 6.11 depicts the initial Impact Inconsistency view.

The initial Impact Inconsistencies view lists the requirements that have con-
tradicting proposed changes. For each requirement, an indication is provided.
The inconsistency of changes is denoted as either ensured or possible. The types

68 CHAPTER 6. TOOL SUPPORT

Figure 6.10: Screenshot of ‘Interactive Decisiontree’ window

Figure 6.11: Screenshot of Impact Inconsistencies window

of impacts leading to the (possible) inconsistency are listed.
The tool provides an explanation for inconsistencies. Consider the exam-

ple of the contradicting proposed changes ‘Change Constraint to Property of
Requirement’ and ‘Delete Property for requirement R97 as depicted in Figure
6.12. Each individual propagation path of the proposed change leading to the
inconsistency can be visualized.

6.6.4 Implement proposed changes in the model

The tool enables the requirements engineer to implement proposed and propa-
gated proposed changes according to the propagation path. The first proposed
change in the path is implemented first. Then, propagated proposed changes
are implemented, as depicted in Figure 6.14.

6.6. TOOL USAGE 69

Figure 6.12: Screenshot of Impact Inconsistency Visualization window

70 CHAPTER 6. TOOL SUPPORT

Figure 6.13: Screenshot of Implementing the propagated proposed change

6.6. TOOL USAGE 71

6.6.5 Implement proposed changes in the model

The tool enables the requirements engineer to implement proposed and propa-
gated proposed changes according to the propagation path. The first proposed
change in the path is implemented first. Then, propagated proposed changes
are implemented, as depicted in Figure 6.14.

Figure 6.14: Screenshot of Implementing the propagated proposed change

72 CHAPTER 6. TOOL SUPPORT

6.6.6 CIP of a proposed change

The tool provides impact prediction for a proposed change. All possible prop-
agation paths in the requirements model are traversed in order to determine
alternative change types for the propagation. Figure 6.15 depicts an example of
the results for performing CIP.

Figure 6.15: Screenshot of results of CIP for ‘change constraint’ on R97

The CIP results list all requirements in the model. For each requirement,
an indication is given if the requirement is impacted by the proposed change
by either yes, no or maybe. The different change impact types are listed in the
third column.

The tool also provides the propagation paths per requirement for the impacts
listed in the CIP results.

6.7 Conclusion

In this chapter tool support has been described. In Section 6.2 the high-level
functional requirements are described. Subsection 6.2 describes the intended
supported activities.

Section 6.3 describes the high-level architecture of the components. The
existing and added components, as well as the altered components are listed
and their responsibilities are described.

In Section 6.4 the non-trivial design choices are described. The choices con-
sists of the separation of the change impact model and requirements model, the
representation of changes as graph edges and the categorization of visited and
unvisited changes. In CIA, only given relationships are considered for propa-
gation, while inferred relations are not used to determine change propagation.
The propagation and consistency checking rules are implemented in java, rather
than using the reasoner engine JENA.

The implementation as described in section 6.5 mentions the non-trivial
implementation choices made.

Chapter 7

Evaluation

7.1 Introduction

In this chapter CIA using semantics of requirements relations is compared to
CIA without using the semantics as provided by common industry standard
tools. This is done by using an example case study of performing CIA.

To the best of our knowledge, there is no existing literature on CIA using se-
mantics of traceability relations in requirements models, therefore a comparison
of the used approach with literature is omitted.

In section 7.2 the construction of the example case study used for the eval-
uation is described.

Section 7.3 describes the comparison of performing CIA with semantics of
relations with an approach not using this semantics. For comparison a model
found in literature on tracing activities is described. Consequently single impact
propagation rules are compared between the approaches as well as a comparison
of results produced by CIP.

This chapter is summarized and concluded in section 7.4

7.2 Example case study

In this section the construction of the example case study is described. First the
approach as to how the example model is constructed is described, followed by
the construction of the example case study model. Then two example change
requests are described, which will be used for the comparison of performing CIA
using semantics of change to the ‘traditional’ approach.

7.2.1 Approach

To evaluate CIA with use of semantics of requirements relations, first an example
requirements model is constructed. This constructed requirements model is the
model used for the case study. The requirements specification document that is
used, is the Course Management System (CMS). The textual requirements are
formalized in FOL. The composition of the textual requirements is identified
using Wasson’s primitives. These primitives are then used to determine the de-

73

74 CHAPTER 7. EVALUATION

composition of the formalized requirements using properties and their captured
constraints.

The actual approach of mapping textual requirements to FOL is considered
out of scope for this thesis. It is performed to determine and justify used require-
ments relations. Pairwise comparison of formalized requirements is performed
to determine the relations between requirements.

TRIC is used to model the requirements. Inferencing of requirements re-
lations using TRIC is performed to check if there are any emerging relations
that were undetected during identifying requirements relations. Subsequently
consistency checking is performed to check the validity of the model.

7.2.2 Construction of example model

Explicitly formalizing textual requirements in FOL and performing pairwise
comparison of requirements to identify requirements relations are time consum-
ing. Due to limited available time, a subset of the textual requirements of the
CMS requirements specification document is used for this case study.

The 14 requirements used from teh CMS requirements specification docu-
ment are listed in Appendix A. Assumptions about the requirements are explic-
itly listed in Appendix A as well. The decomposition of the used requirements
using Wasson’s primitives and the identification of the properties and their cap-
tured constraints are listed in Appendix B.

Pairwise comparison is performed on the formalized requirements. The re-
sulting relations and their requirements are modeled in TRIC. Consequently the
inferencing engine is run. The results are listed in Table 7.1

Relation # Given # Inferred

conflicts 5 0

contains 1 0

partially refines 2 0

refines 4 0

requires 30 5

total 42 5

Table 7.1: Statistics reported by TRIC after running the inferencing engine

The results indicate 5 found inferred requires relations. Investigation of these
inferred relations yielded that 1 requires relation is inferred from a contains
relation. The other 4 requires relations are inferred from refines relations. Both
the contains and refines relations imply (the weaker) requires relation. For
performing CIA with semantics, the most stringent relation should be used.
These were already explicitly captured by the model, thus there is no need to
also capture the inferred requires relations.

Running the consistency checker yielded no inconsistencies. The requirem-
nents relations resulting from the pairwise comparison are listed in the trace-
ability matrix depicted in Table 7.2. Cells containing a relation indicate the

7.2. EXAMPLE CASE STUDY 75

requirement relation from the requirement in the row to the requirement in the
column, e.g. R5 refines R4.

1 4 5 6 8 9 10 11 16 59 60 97 100 102
R1
R4
R5 rf
R6 rf rq
R8 rq rq rq rq rq
R9 rq rq rq
R10 rq rq rq rf rq
R11 rq rq rq
R16 rq rq rq rq
R59 rq cf cf cf
R60 rq rq rq rq prf cf cf cf
R97 rq rq rq cf cf ct
R100 rq cf cf
R102 rq cf cf prf rf

Table 7.2: Requirement relations of the constructed requirements model. Con-
tains (ct), conflicts (cf), refines (rf), requires (rq) and partially refines (pq)

7.2.3 Change requests

CIA is performed on two change requests. These change requests are such that
they represent domain changes. The change requests describe the following
changes to the requirements model:

1. The exclusive restriction that only administration should be allowed to
manage courses should be removed.

2. Lecturers should also be allowed to manage course information that
changes while the course is being given.

For both changes, the following actions are performed;

Identify initially impacted requirement: The initially impacted require-
ment is identified in the requirements model, to which the initial change
will be proposed.

Determine classification of change: The classification of change to the ini-
tially changed requirement is determined.

Derive resulting impacts: The expected model changes for each change sce-
nario are listed, which are a result of applying the CIA and performing
proper change propagation.

Change request 1

The property capturing that only administration should be allowed to manage
courses is captured by requirement R97. Therefore, R97 is identified as the
initially impacted requirement.

The indication that only the administration is allowed to do so, is identified
as a limitation using Wasson’s primitives and as a constraint in the formalized
requirement. Considering this constraint should be changed such that the only is

76 CHAPTER 7. EVALUATION

removed from the constraint, the classification of change is identified as ‘change
constraint’.

The requested domain change is thus mapped to changing the constraints
which impose the exclusiveness of the administration as follows (predicates con-
tained in the parentheses indicate constraint that is part of the property) such

that R97
ct7→ctl

7→ Rl
97:

R97 = enable(x, y) ∧ manage(x) ∧ course(y) ∧ (allow(x, z) ∧
administrator(z) ∧ ¬lecturer(z) ∧ ¬student(z))
Rl

97 = enable(x, y) ∧ manage(x) ∧ course(y) ∧ (allow(x, z) ∧
administrator(z))

The constraint explicitly captures that only administration is allowed, such
that the operation is not allowed to the other users of the system; lecturer and
student. To apply the domain change, the constraint should be changed in such
a way that both the lecturer and student users are not explicitly disallowed
to perform the managing operation. The expected resulting impacts from per-
forming this change are determined by checking where this constraint of only
allowing administration to create, read, update and/or delete courses occurs.
The identified impacted requirements are R100 and R102. The identified impact
type for both requirements is ‘change constraint’:

• Change constraint in R100, such that its constraint does no longer capture
¬student(z) ∧ ¬lecturer(z)

• Change constraint in R102 such that its constraint does no longer capture
¬student(z) ∧ ¬lecturer(z)

As a result the conflict between ‘only’ allowing administration to manage
courses and (also) allowing lecturers to do so as well is resolved. To reflect this,
the conflicts relations should be removed:

• Remove relation R97 conflicts R59

• Remove relation R97 conflicts R60

• Remove relation R59 conflicts R100

• Remove relation R59 conflicts R102

• Remove relation R60 conflicts R100

• Remove relation R60 conflicts R102

Change request 2

The glossary states that information that changes while the course is being
given is considered ‘dynamic course information’. Thus, the change request is
such that the requirements should be changed such that lecturers are allowed to
manage dynamic course information. Requirement R59 indicates that lecturers
should be allowed to manage static course information. The change request is
interpreted as changing this requirement in such a way that it also captured dy-
namic course information to be allowed to be managed by lecturers. Therefore,
R59 is identified as the initially impacted requirement.

7.3. COMPARISON OF APPROACHES 77

The type of change of altering the requirement to allow managing of dynamic
course information is considered as ‘add property’. The formalized requirement
before and after the change, such that R59

+pt7→ Rl
59:

R59 = enable(x, y) ∧ manage(x) ∧ course information(y) ∧
static(y) ∧ allow(x, z) ∧ lecturer(z)
R59 = enable(x1, y1) ∧ manage(x1) ∧ course information(y1) ∧
static(y1) ∧ allow(x1, z) ∧ enable(x2, y2) ∧ manage(x2) ∧
course information(y2) ∧ static(y2) ∧ allow(x2, z) ∧ lecturer(z)

The added property explicitly states that lecturers should be allowed to
manage dynamic course information. There are no expected resulting impacted
requirements by adding this property.

7.3 Comparison of approaches

In this section we compare the use of CIA using semantics of requirements re-
lations to one that does not use semantics of relations. Industry standard tools
used to support CIA such as IBM Rational Requisite Pro (RRP)[39][40], Bor-
land CaliberRM[41], Topteam Analyst[42] and Telelogic DOORS (now Rational
DOORS)[43] do not employ semantics of (specific) requirements relations when
used for performing CIA[44]. In this comparison, using semantics for require-
ments relations is compared to the use of a general traceability relation without
additional semantics, such as used by RRP.

7.3.1 Approach

To evaluate how CIA with semantics of requirements relations compares to CIA
without this semantics the context of as how the model is constructed should be
considered as well. First literature on the traceing activity diagram is described.
The activities described by this model are used for comparison of the various
activities leading up to and including performing CIA.

First the construction of the model is compared. Then the propagation rules
of both approaches are compared. Subsequently the results of CIP using the
change scenarios are compared for both approached. The comparison is then
concluded with emerging features resulting from using semantics of requirements
relations that are not found in CIA performed without semantics.

7.3.2 Tracing Activity Model

The tracing activity model as proposed by Heindl and Biffl[23][45] is used as the
to identify the various activities that entail capturing traceability relations and
performing subsequent CIA. The model describes the following activities that
are performed to establish and use traceability:

Trace Specification: Definition of types of traces that are to be captured
and maintained. For example, traces between requirements and design
artifacts or/and traces between requirements themselves.

78 CHAPTER 7. EVALUATION

Trace Generation: The activity of identifying and explicitly capturing traces
between artifacts to the trace specification. One way to capture the traces
is by using traceability matrices.

Trace Usage: Using the traces as input of tracing applications like change
impact analysis, change impact prediction or consistency checking.

Trace Validation: Checking if the existing traceability information is valid or
needs to be updated.

Trace Rework: The actual adjusting of the artifacts and relations to reflect
these updates.

The activities described by the Trace Activity Model are used in the following
subsections as a guideline of what to compare of both approaches.

7.3.3 Trace specification and generation

RRP only has one traceability type, which is the general traceability relation.
The relation is such that it indicates direction, to detect cyclic paths. The
relation can be denoted as a tuple of (trace from, trace to). Thus the relation
is such that if R1 traces to R2 then R2 traces from R1.

The requirements relations contains, refines, partially refines, requires and
conflicts are based on literature study[2]. It is assumed that each traceability
relation is interpreted as one of these requirements relations.

As a result, the relations detected by the pairwise comparison can be inter-
preted as generic trace relations used by RRP, with an exception of the conflicts
relation, which would cause a cyclic trace. The resulting traecability matrix for
use of RRP for the example model is depicted in Table 7.3.

1 4 5 6 8 9 10 11 16 59 60 97 100 102
R1
R4
R5 ×
R6 × ×
R8 × × × × ×
R9 × × ×
R10 × × × × ×
R11 × × ×
R16 × × × ×
R59 ×
R60 × × × × ×
R97 × × × × × ×
R100 × × ×
R102 × × × × ×

Table 7.3: Traceability relations of the constructed requirements model. ×
indicates a trace relation from the requirement in the row to the requirement
in column

The trace specification as employed by RRP is straightforward and uncom-
plicated. The requirements engineer can intuitively understand and apply the
notion of the traceability relation, without required knowledge of additional
semantics.

When constructing the model using semantics of requirement relations, it
is not only determined if requirements are related to eachother, but also how

7.3. COMPARISON OF APPROACHES 79

they are related to each other. To understand the different ways in which re-
quirements are related to each other specifically, knowledge of the semantics of
relations is required. This imposes additional effort to using specific require-
ments relations.

By investing this additional effort, the requirements model becomes more
detailed as to how different requirements are related to each other. It allows for
inferencing and inconsistency checking of requirements relations in the model[2].

7.3.4 Peforming CIA

Performing step by step CIA is started by marking initially changed require-
ments. Current tool support such as RRP does not consider a classification
of change. As a result the initial change is indicated as ‘changed’. Conse-
quently traceability information is used to determine which requirements should
be checked. Relations connected to the initially changed requirement are marked
for inspection.

Introducing the initial change while using semantics of requirements relations
requires determining a change type for the initial change. The requirements en-
gineer therefore requires knowledge about the semantics of change types before
being able to identify the initial change type. This requires additional effort
compared to using RRP.

Propagation of change

Without semantics of relations there is no notion of classification of change. As
such, a mapping from a requirement change to a change classification is not
needed. Without the classification of change, the change impact alternatives
for related requirements are limited. The classification of change has two cat-
egories, ‘changed’ and ‘not changed’. As a result, the impact alternatives are
limited as well. By following a trace relation the related requirement is either
changed, or not. To determine change propagation using RRP, the engineer
has to manually determine if the related requirement should be changed. If the
related requirement should be changed, the engineer manually determines in
what way the requirement should be changed..

Additionally, due to lack of semantics, trace relations should either be kept
or removed. From these categories, change impact alternative are derived for
CIA as performed by using RRP, without semantics for the ‘change’ requirement
change and depicted in Table 7.4.

Change Rx trace to Ry Rx trace from Ry

a. Change Rx (NI,NI) | (Change Ry, NI) | (NI,NI) | (Change Ry, NI) |
(NI, DR) | (Change Ry,DR) (NI, DR) | (Change Ry, DR)

b. Change Ry (NI,NI) | (Change Rx, NI) | (NI,NI) | (Change Rx, NI) |
(NI, DR) | (Change Rx,DR) (NI, DR) | (Change Rx, DR)

Table 7.4: Change impact alternatives for ‘trace to’ and ‘trace from’ relations
without additional semantics

From Table 7.4 it is interpreted that the requirements engineer is not guided
if the related requirement is impacted. Propagation alternatives are the same

80 CHAPTER 7. EVALUATION

for every case. In the case that a related requirement is changed, there is no
support for determining how the requirement should be changed.

The change impact alternatives resulting from using semantics of require-
ments relations listed in Tables 5.1 and 5.2 in Chapter 5, provide guidance for
the requirements engineer. The change impact alternatives determine if prop-
agation of change can occur at all. In some cases propagation of change is
ensured, consider for example Change i. Case 1: delR2×R1 contains R2 which
provides the ensured propagation of deleting a property from R1, R1

−pt7→ Rl
1.

In some other cases absence of propagation of change is ensured, consider for
example Change c. Case 3: R1

+pt7→ Rl
1 ×R1 partially refines R2, which ensured

absence of propagation. When multiple impact alternatives are derived, the en-
gineer needs to determine which choice is applicable in that specific case. The
derived impact alternatives guide the engineer in determining if and how the
related requirement should be changed.

Change impact prediction

CIP without employing additional semantics is performed by doing a reachabil-
ity analysis[1]. Similarly, when performing CIP in RRP a reachability analysis
is performed. To determine the CIP using RRP a reachability analysis is per-
formed on the requirement model described by Table 7.3. The result using
distance indicators is listed in Table 7.5. From this table it is concluded that
all requirements are reachable from any other requirement.

1 4 5 6 8 9 10 11 16 59 60 97 100 102
R1 2 2 2 1 1 1 1 1 1 1 1 1 1
R4 2 1 1 1 1 1 1 1 2 1 1 2 2
R5 2 1 1 1 1 1 1 1 2 1 1 2 2
R6 2 1 1 1 2 2 2 2 3 2 2 3 3
R8 1 1 1 1 2 2 1 2 2 2 2 2 2
R9 1 1 1 2 2 1 2 2 2 2 2 2 2
R10 1 1 1 2 2 1 1 2 2 2 2 2 2
R11 1 1 1 2 1 2 2 1 2 1 2 2 2
R16 1 1 1 2 2 2 2 1 2 2 2 2 2
R59 1 2 2 3 2 2 2 2 2 1 1 1 1
R60 1 1 1 2 2 2 2 1 2 1 1 1 1
R97 1 1 1 2 2 2 2 2 2 1 1 1 1
R100 1 2 2 3 2 2 2 2 2 1 1 1 1
R102 1 2 2 3 2 2 2 2 2 1 1 1 1

Table 7.5: Reachability matrix with distance indicators

Based on the reachability analysis results depicted in table 7.5 it is deter-
mined that CIP performed for both example change requests 1 and 2 yield
the same results; all requirements captured by the model are predicted to be
impacted.

Using CIP based on semantics of requirements relations as described in sub-
section 5.2.6 for each requirement the degree of impact possibility can be deter-
mined, as well as the different types of impacts.

The results of performing CIP using semantics of change type and relations,
using tool support are depicted in Figures 7.1 and 7.2.

The following benefits using semantics of requirements relations are identified
from comparing the CIP results:

7.3. COMPARISON OF APPROACHES 81

Figure 7.1: CIP results for ‘change constraint’ on R97

Figure 7.2: CIP results for ‘add property’ on R59

• CIP yields a set of impacted requirements that is smaller than all reach-
able requirements in non-worst-case scenarios, as indicated by the CIP
results depicted in Figure 7.2. This shows that CIP using semantics of
requirements relations reduces the problem of explosion of impacts.

• CIP provides a change impact type prediction given for each requirement.
Therefore CIP using semantics of requirements relations provides more
precise results. Only the possible change types are indicated, whereas the
possibility of other change types are ensure to be impossible.

The worst-case time complexity of the algorithm for CIP using semantics
of requirements relations is O(n!) for a complete graph, with n vertices. The
worst-case time complexity of a shortest path algorithm of O(n log(n)), with
n vertices. It is concluded that the algorithm to perform CIP using semantics
of requirements relations scales worse than the CIP algorithm that performs a

82 CHAPTER 7. EVALUATION

reachability analysis.

7.3.5 Trace validation

RRP does not support trace validation. Traceability relations do not capture
semantical information about the related requirements. Due to the lack of
additional semantics about the trace relations, it can not be determined if or
not a trace relation becomes invalid due to a change. As a result trace relation
validation needs to be performed manually. For each determined impact, the
engineer has to manually determine if the trace relation is still valid after the
change.

Performing CIA using semantics of requirements relations provides semi-
automatic validation of relations. The change impact alternatives are such that
they determine the impacts on both the related requirement and the relation.
Some cases are unsupported for change validation. Consider the following
change impact alternatives case:
Example: No support for trace validation

Consider Change g. Case 2: R1
−ct7→ Rl

1 × R1 refines R2 in Table 5.1. The
following four alternatives are provided:

1. (NI,NI)

2. (NI,DR)

3. (R2
−ct7→ Rl

2,NI)

4. (R2
−ct7→ Rl

2,DR)

Which is the same as the change impact alternatives provided by RPP, apart
from the added change impact type. The requirements engineer has to determine
manually which choice is applicable in the specific case.

Other cases provide trade validation. Consider the following change impact
alternatives case:
Example: support for trace validation

Consider Change j. Case 1: R2
+pt7→ Rl

2 × R1 contains R2 in Table 5.1. The
following two alternatives are provided:

1. (NI,DR)

2. (R1
+pt7→ Rl

1,NI)

The requirements engineer can either determined to propagate the change or
not. In the case that the change is not propagated, it is ensured that the relation
is no longer valid. In the case that the change is propagated, it is ensured that
the relation remains valid.

7.3.6 Trace rework

As described in section 6.6, implemented tool support for CIA using semantics of
requirements relations allows the proposal of change and subsequent propagation

7.4. CONCLUSION 83

of proposed changes. The requirements model is not altered until the result of
the CIA is applied to the model. By accepting the result and consequently
applying the proposed changes, the requirements model is changed.

When multiple different impacts are determined for the affected requirements
relations, the tool provides the possibility to the engineer to determine if the
relations are still valid or not.

Many industry standard tools in general and RRP in particular do not sup-
port change proposal. Using RPP, the support for CIA is triggered as soon as
actual changes are made to the requirements model.

7.4 Conclusion

This chapter provided an evaluation of performing CIA using semantics of re-
quirements. This is done by comparing the the construction of an example
model using semantics of requirements relations and subsequently performing
CIA to an approach without this semantics.

Using semantics of requirements relations for CIA is a trade-off. It requires
additional effort to construct the requirement model compared to using generic
traceability information. Additional time is spent identifying the specific re-
quirements relations. To perform CIA, additional effort is also needed. The
classification of change needs to be identified for a requirement change, before
CIA using semantics of requirement relations can be performed. However, this
investment during requirements modeling leads to benefits in further CIA ac-
tivities.

Using semantics of requirement relations for CIA provides propagation al-
ternatives. By providing the impact alternatives the requirements engineer is
provided with clear alternatives which to chose from, which guides him in de-
cisionmaking. By having clearly defined impact alternatives the requirements
engineer is supported. Additionally, using semantics of requirement relations al-
lows for semi-automated requirements validation while propagating changes. As
illustrated, in some cases the validation of the requirements relation is implicitly
determined by choices of impact alternatives.

When performing CIP the problem of change impact explosion remains the
same in the worst case scenario. In other scenarios the result of predicted
impacted requirements resulting from performing CIP is a subset of all reach-
able requirements. In this regard, using semantics of requirements relations as
traceability information does counter the change impact explosion. The results
yielded by CIP provide more detailed information as to how the requirements
are impacted.

84 CHAPTER 7. EVALUATION

Chapter 8

Conclusion

8.1 Introduction

This chapter concludes the thesis. Section 8.2 summarizes the research per-
formed in the thesis. In section 8.3 the research questions are answered. Section
8.4 describes the future work.

8.2 Summary

Eliciting software requirements is one of the first steps in developing software
systems. From the moment that the first software artifacts are created, they
are subjected to change. To determine what the impact of changes on existing
software artifacts are, change impact analysis (CIA) is performed.

Current tool support does not employ semantics for specific relations between
requirements. As a result, impact analysis performed suffers from the problem
of ‘explosion of impacts’. Bohner states that additional semantics should be
employed to counter this problem[1], as described in Chapter 2.

Research performed by Göknil et al. in the Quality-Driven Requirement En-
gineering and Architectural Design (QuadREAD) project yielded a requirements
meta-model with well-defined semantics for requirements and their relations[2].
Chapter 3 describes the formalization of these requirements and relations in
First Order Logic (FOL). The relations can be categorized as extentionally
(such as the ‘requires’ and ‘conflicts’ relation) and intentionally defined (such
as the ‘contains’, ‘refines’ and ‘partially refines’ relation). ‘Tool for Require-
ments Inferencing and Consistency Checking’ (TRIC) has been developed for
automatic reasoning over requirements relations. However, the previous version
of TRIC did not support change impact analysis (CIA).

The lack of support for CIA led to the main research question of this thesis:
‘Can CIA using semantics of traceability information in requirements models be
provided with tool support’.

In Chapter 4, literature on the composition of textual requirements is pre-
sented. The elements that Heninger[26] and Wasson[3] describe, are mapped to
formalization of textual requirements of by Göknil et al. By using the struc-
ture and formalization of a textual requirement, a classification of requirement
changes with formal semantics is provided. The change classification does not

85

86 CHAPTER 8. CONCLUSION

express itself about why the change is applied. To identify the rationale of
change, sources that lead to software evolution are identified using literature.
Domain changes and refactoring are considered within the scope of this thesis.
These are in turn both formalized in FOL.

Chapter 5 covers the propagation of change. From the working definition of
impact as ‘the needed change of software artifacts caused by a change made in
software artifacts’, it is interpreted that domain changes drive the change impact
analysis. By having clear semantics for the propagation of change, change im-
pact alternatives for domain changes can be derived as described in subsection
5.2.4. Separation of needed change and desired change allows the propagation
of change to cover only the needed change. Refactoring the model, e.g. the
changes not considered needed, is performed separately. Using the semantics
of requirements relations and change propagation, relation validation can be
supported, as described in subsection 5.2.7. Change impact prediction (CIP)
is performed by exhaustively generating all possible change propagations us-
ing all different change impact alternatives. The result of the CIP provides
additional information about how requirements are impacted, as well as an in-
dication if requirements are impacted. By using the semantics for classification
of change, possible and insured inconsistencies can be automatically identified
when multiple impacts are determined for requirements. The main limitation
of the approach is the lack of propagation over the conflicts relation and the
imprecise impact propagation over the requires relation. These are caused due
to not being intentionally defined.

Chapter 6 describes the requirements for performing CIA using the semantics
of requirements relations. The requirements are represented in the architecture,
and in turn by design and implementation. An important design choice is
that the CIA is performed separately from the requirements model. This way
the analysis can be performed as a whole without altering the requirements
model. When the CIA is accepted, proposed changes are applied to the model.
Prototype support for analysing multiple different CIA results is implemented
through interactively building the decision trees. Although building decision
trees lacks the functionality to enter textual description of changes, it provides
an interface that allows for comparing multiple different analyses of the same
change.

CIA with semantics of requirements relations is evaluated in Chapter 7. By
doing a comparison of CIA with semantics of requirements relations and without
semantics, it is determined that it requires additional effort to construct the
requirement models and perform subsequent CIA. Investing additional effort
provides guidance during change impact propagation and allows for a more
precise CIP. The example change scenario indicates that worst-case scenario
CIP still yields all related requirements as the impacted set. Even in a worst-
case scenario CIP provides additional information with regards to the impact
types. In other scenarios the explosion of impacts is reduced. From this it is
concluded that the problem of ‘change impact explosion’ is reduced.

8.3 Answers to the research questions

The main goal of this research was to provide tool support that uses the se-
mantics of requirements relations to perform CIA. The main research question

8.3. ANSWERS TO THE RESEARCH QUESTIONS 87

therefore was:

Can CIA using semantics of traceability information in requirements
models be provided with tool support?

As described in Chapter 6 and evaluated in Chapter 7, tool support is devel-
oped to perform CIA by using semantics of requirements relations. However, to
determine how CIA based on semantics of requirements relations was performed,
it first needed to be determined in what way the formalized requirements could
be changed. This led to the question:

What is the change classification for requirements of formalized re-
quirements model?

As described in Chapter 4, it is identified that the formalized requirements,
in addition to properties, also capture constraints. The change classification is
determined by these two elements. These elements can be added to, changed in
and deleted from requirements. Additionally requirements can be added to or
removed from the model. The classification of changes is formalized using FOL
as described in section 4.3.

By knowing the classification of changes that can be applied to the require-
ments, the question is posed as to what the impacts of these changes are. This
leads to the question:

What are the propagation results using this classification of change?

The classification of changes does not capture why changes are made to the
model. In Chapter 5 impact is interpreted as needed change, and it is determined
that only domain changes cause needed change. Rules for change propagation
as described in subsection 5.2.2 are determined based on the formalization of
domain change and formalization of the requirements relation. A systematical
case analysis is performed that covers all cases of propagation of change types
over requirements relations. For each case the propagation alternatives are
determined. The change impact alternatives are listed in Tables 5.1 and 5.2.

By having determined the change impact alternatives for each impact case,
it should be determined how using the semantics of requirements relations for
change propagation compared to not using these semantics. This led to the
question:

How does CIA using semantics of traceability information compare
to CIA without semantics?

CIA using semantics of requirements relations is compared to CIA without
these semantics in Chapter 7. Knowledge about the semantics of requirements
relations is required to construct the requirements model. Constructing a re-
quirements model using specialized requirements relations requires each relation
to be classified. Understanding of the classification of change is required to per-
form CIA using semantics of requirements relations. Using semantics of require-
ments relations for CIA requires these additional efforts from the requirements
engineer, which are not required when performing CIA without semantics of
requirements relations.

88 CHAPTER 8. CONCLUSION

Investing time in understanding the semantics and constructing a require-
ments model using these yields the following benefits during CIA:

• Better support for change propagation though provided impact alterna-
tives

• Semi-automated validation of requirements relations

• More precise CIP with indication of impact possibilities and impact change
types

• Reduction of the problem of explosion of impacts

8.4 Future work

8.4.1 Extentionally defined relations

The requires and conflicts relations are only defined over the sets of systems cap-
tured by the requirements, as described in Chapter 3. As illustrated in Chapter
5, by being only extentionally defined, imprecise results may be produced when
performing CIA using these semantics. The problem that arises from using the
conflicts can be countered by making additional modeling decisions. The prob-
lem of having delete requirement as the only propagation of impact over the
requires relation however, can not be countered in this way.

Additional research is required to investigate if intentionally defined relations
can be identified for these requirements relations, to prevent imprecise results
from occurring.

8.4.2 Determine scalability

The evaluation performed in this work considers a requirements model of 14
requirements. A requirements model of this size can not be considered com-
parable to actual requirements models used in practice. CIA using semantics
of requirements relations requires more time and additional knowledge to con-
struct a requirements model and propagate the changes. However, it does yield
better results.

The time complexity of the CIP algorithm using semantics of requirements
relations is O(n!) for a requirements model that is represented by a complete
graph. Additional research should determine how well the CIP algorithm scales
for larger requirements models, both in constructing the requirements model
and performing the CIA.

8.4.3 Extra requirements change impact analysis

Now that CIA can be performed using semantics of requirements models, the set
of requirement changes resulting from an initial change can be determined. Fol-
lowing the paradigm of MDE, the next step is to research how these changes can
be propagated to other models used in the SE process, using extra-requirements
relations. Identifying relations between requirements models and their related
components in architectures would allow the results of CIA as yielded by this
thesis to be the input for the CIA performed on the architectural models.

8.4. FUTURE WORK 89

Research of semantics of intra-requirement relations should be performed to
pave the way for performing CIA using intra-requirement relations.

90 CHAPTER 8. CONCLUSION

Bibliography

[1] S. Bohner, “Software change impacts - an evolving perspective,” Software
Maintenance, IEEE International Conference on, vol. 0, p. 263, 2002.

[2] A. Göknil, I. Kurtev, K. B. van den, and J.-W. Veldhuis, “Semantics of
trace relations in requirements models for consistency checking and infer-
encing,” Software and Systems Modeling, vol. Online, December 2009.

[3] C. S. Wasson, System analysis, design, and development: Concepts, princi-
ples, and practices. Wiley series in systems engineering and management,
Hoboken, NJ: Wiley-Interscience, 2006.

[4] J. Bézivin and O. Gerbé, “Towards a precise definition of the omg/mda
framework,” in ASE ’01: Proceedings of the 16th IEEE international
conference on Automated software engineering, (Washington, DC, USA),
p. 273, IEEE Computer Society, 2001.

[5] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003.

[6] S. Kent, “Model driven engineering,” in IFM ’02: Proceedings of the Third
International Conference on Integrated Formal Methods, (London, UK),
pp. 286–298, Springer-Verlag, 2002.

[7] J.-M. Favre, “Towards a basic theory to model model driven engineering,”
Workshop on Software Model Engineering, WISME 2004, joint event with
UML2004, 2004.

[8] B. Baudry, C. Nebut, and Y. L. Traon, “Model-driven engineering for re-
quirements analysis,” in EDOC ’07: Proceedings of the 11th IEEE Interna-
tional Enterprise Distributed Object Computing Conference, (Washington,
DC, USA), p. 459, IEEE Computer Society, 2007.

[9] omg, Meta Object Facility (MOF) Core Specification Version 2.0, 2006.

[10] I. Garćıa-Magari no, R. Fuentes-Fernández, and J. J. Gómez-Sanz, “A
framework for the definition of metamodels for computer-aided software
engineering tools,” Inf. Softw. Technol., vol. 52, no. 4, pp. 422–435, 2010.

[11] P. Zave, “Classification of research efforts in requirements engineering,”
ACM Comput. Surv., vol. 29, no. 4, pp. 315–321, 1997.

91

92 BIBLIOGRAPHY

[12] A. van Lamsweerde, “Requirements engineering in the year 00: a research
perspective,” in ICSE ’00: Proceedings of the 22nd international conference
on Software engineering, (New York, NY, USA), pp. 5–19, ACM, 2000.

[13] D. T. Ross and K. E. Schoman, “Structured analysis for requirements def-
inition,” IEEE Trans. Softw. Eng., vol. 3, no. 1, pp. 6–15, 1977.

[14] A. Abran, P. Bourque, R. Dupuis, J. W. Moore, and L. L. Tripp, Guide to
the Software Engineering Body of Knowledge - SWEBOK. Piscataway, NJ,
USA: IEEE Press, 2004 version ed., 2004.

[15] I. Sommerville, Software Engineering (7th Edition) (International Com-
puter Science Series). Addison Wesley, May 2004.

[16] I. O. Electrical and E. E. (ieee), IEEE 90: IEEE Standard Glossary of
Software Engineering Terminology. 1990.

[17] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the requirements
traceability problem,” in Requirements Engineering, 1994., Proceedings of
the First International Conference on, pp. 94–101, 1994.

[18] R. Wieringa, “An introduction to requirements traceability,” tech. rep.,
University of Vrije, Amsterdam, September 1995.

[19] C. M. University, “Capability maturity model integration,” July 2010. [on-
line] http://www.sei.cmu.edu/cmmi/.

[20] F. A. C. Pinheiro, “Requirements traceability,” in Software Requirements,
2003, Kluwer International Series in Engineering and Computer Science,
753, pp. 91–113, Kluwer, 2003.

[21] A. G. Dahlstedt and A. Persson, “Requirements interdependencies: state
of the art and future challenges,” in Engineering and Managing Software
Requirements, pp. 95–116, Springer-Verlag, 2005.

[22] B. Ramesh and M. Jarke, “Toward reference models for requirements trace-
ability,” IEEE Transactions on Software Engineering, vol. 27, pp. 58–93,
2001.

[23] M. Heindl and S. Biffl, “Modeling of requirements tracing,” in CEE-SET
(B. Meyer, J. R. Nawrocki, and B. Walter, eds.), vol. 5082 of Lecture Notes
in Computer Science, pp. 267–278, Springer, 2007.

[24] R. S. Arnold and S. A. Bohner, “Impact analysis - towards a framework
for comparison,” in ICSM ’93: Proceedings of the Conference on Software
Maintenance, (Washington, DC, USA), pp. 292–301, IEEE Computer So-
ciety, 1993.

[25] A. G “Tutorial: Requirements relations and definitions with examples.”

[26] K. L. Heninger, “Specifying software requirements for complex systems:
New techniques and their application,” IEEE Trans. Softw. Eng., vol. 6,
no. 1, pp. 2–13, 1980.

BIBLIOGRAPHY 93

[27] H. Kilov, “From semantic to object-oriented data modeling,” in ICSI (P. A.
Ng, C. V. Ramamoorthy, L. C. Seifert, and R. T. Yeh, eds.), pp. 385–393,
IEEE Computer Society, 1990.

[28] D. E. Perry, “Dimensions of software evolution,” in In Proceedings of the
IEEE International Conference on Software Maintenance. IEEE Computer,
pp. 296–303, Society Press, 1994.

[29] B. P. Lientz and E. B. Swanson, Software Maintenance Management.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1980.

[30] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, March 2009.

[31] S. Goldsack and A. Finkelstein, “Requirements engineering for real-time
systems,” Software Engineering Journal, vol. 6, no. 3, pp. 101–115, 1991.

[32] E. Dubois, “Use of deontic logic in the requirements engineering of com-
posite systems,” pp. 125–139, 1993.

[33] J. Veldhuis, “Tool support for a metamodeling approach for reasoning
about requirements,” April 2009.

[34] J. McAffer and J.-M. Lemieux, Eclipse Rich Client Platform: Designing,
Coding, and Packaging Java(TM) Applications. Addison-Wesley Profes-
sional, 2005.

[35] M. Dean and G. Schreiber, “OWL web ontology language reference,” W3C
recommendation, W3C, February 2004.

[36] J. Ltd, “Jgraphx (jgraph 6) user manual,” September 2010. [online]
http://www.jgraph.com/doc/mxgraph/index javavis.html.

[37] J. Meyer and W. van der Hoek, “Non-monotonic reasoning by monotonic
means,” in Logics in AI (J. van Eijck, ed.), vol. 478 of Lecture Notes
in Computer Science, pp. 399–411, Springer Berlin / Heidelberg, 1991.
10.1007/BFb0018455.

[38] D. E. Eastlake and P. E. Jones, “Us secure hash algorithm 1 (sha1).” http:
//www.ietf.org/rfc/rfc3174.txt?number=3174.

[39] IBM, “Rational requisite pro,” June 2009. [online]
http://www.rational.com/products/reqpro/.

[40] P. Zielczynski, Requirements Management Using IBM Rational Requi-
sitePro. IBM Press, 1 ed., 2007.

[41] Borland, “Requirements management software.” http://www.borland.
com/us/products/caliber/index.html.

[42] TechnoSolutions, “Topteam analyst for requirements management, require-
ments management, use cases, use case diagram, use case model, uml
use case, uml tool, authoring tool, traceability, actors.” http://www.
technosolutions.com/topteam_requirements_management.html.

94 BIBLIOGRAPHY

[43] IBM, “Ibm - rational doors - software.” http://www-01.ibm.com/
software/awdtools/doors/.

[44] M. Abma, “Evaluation of requirements management tools with support for
traceability-based change impact analysis,” September 2009.

[45] M. Heindl and S. Biffl, “Requirements tracing strategies for change impact
analysis and re-testing,” Technical Report, Technical University of Vienna,
2007.

Appendix A

CMS Requirements
Specification Document

This is the subset of the requirements from the Course Management System as
referenced in Göknil et al.[2]1.

R1: The system shall provide static course information

R4: The system shall provide dynamic course information

R5: The system shall be able to store dynamic course information

R6: The system shall be able to represent dynamic course information

R8: The system shall enable students to retrieve contact information of stu-
dents and lecturers of subscribed courses

R9: The system shall provide the history of a course (view contents of a course
over the years)

R10: The system shall provide the history of attended courses

R11: The system shall enable students to subscribe/unsubscribe to courses

R16: The System shall allow sending messages to individuals, teams or all
course participants at once

R59: The system shall allow lecturers to manage static course information

R60: The system shall allow lecturers to limit the number of students subscrib-
ing to a course

R97: The system shall allow only the administration to manage courses

R100: The system shall allow only the administration to update static course
information

R102: The system shall allow only the administration to specify the minimum
number of students for a course. If there are too little subscriptions in a
semester, that course will not be given during that semester.

1http://wwwhome.cs.utwente.nl/~goknila/sosym/CMS_Model2.owl

95

96 APPENDIX A. CMS REQUIREMENTS SPECIFICATION DOCUMENT

Glossary

The following glossary words are present in the original CMS document.

Static Course Information: Information of a course which does not change
while a course is given, but between semesters. This includes the lecturer,
amount of ects and study material.

Dynamic Course Information: Information of a course which changes while
a course is given. This includes news messages, archived files and roster.

Manage: Managing involves the creation, reading, updating and deleting.

Added to glossary

The following glossary words have been added:

Attending: Following a course, and thus being subscribed to that course.

Course: A course consists of all information of that course.

Store: Retaining something in order to be available for future use.

Limit: The greatest possible degree of something.

Roster: Refers to the meaning of the Dutch word ‘rooster’ which indicates a
schedule of planned lectures, rather than the English definition of roster
which places the emphasis on the list of items (and possibly accompanied
with the tasks for each name).

Assumptions

The following assumptions are made about the domain:

1. Students can subscribe to courses before the start of and during semesters.

2. Information can only be represented by the system if it is present in the
system, and therefore ‘stored’ in some manner.

3. ‘Stored’ is interpreted as retaining information

4. A roster refers to the Dutch meaning of the word ‘rooster’ which implies
a schedule, in this case a schedule of courses during a semester.

5. Students subscribed to a course are considered to be attending (to the
lectures of) that course.

6. Students subscribe to courses themselves.

7. ‘Course’ itself, as an object, contains both static and dynamic course in-
formation.

8. Course names do not change while the course is given.

9. Limiting the number of subscriptions to a course is interpreted as setting
a maximum to the number of subscriptions.

97

10. Limiting the maximum number of subscriptions to a course is done before
the course is given.

11. Setting a minimum number of subscriptions to a course is done before the
course is given.

98 APPENDIX A. CMS REQUIREMENTS SPECIFICATION DOCUMENT

Appendix B

Formalization of CMS
requirements

R1 The system shall provide static course information

Using Wasson’s primitives:

Capability: The system shall provide static course information

Using FOL formalization:

Property: enable(x, y) ∧ provide(x) ∧ course information(y) ∧ static(y)

With the following predicate symbols:

enable(x, y): stating that functionality x is provided over y

provide(x): such that x is the ‘providing’ operation

course information(y): such that y is ‘course information’

static(y): such that y is ‘static’

R4 The system shall provide dynamic course information

Using Wasson’s primitives:

Capability: The system shall provide dynamic course information

Using FOL formalization:

Property: enable(x, y) ∧ provide(x) ∧ course information(y) ∧ dynamic(y)

With the following predicate symbols:

enable(x, y): stating that functionality x is provided over y

provide(x): such that x is the ‘providing’ operation

course information(y): such that y is ‘course information’

dynamic(y): such that y is ‘dynamic’

99

100 APPENDIX B. FORMALIZATION OF CMS REQUIREMENTS

R5 The system shall be able to store dynamic course infor-
mation

Using Wasson’s primitives:

Capability: The system shall be able to store dynamic course information

Using FOL formalization:

Property: enable(x, y) ∧ store(x) ∧ course information(y) ∧ dynamic(y)

With the following predicate symbols:

enable(x, y): stating that functionality x is provided over y

store(x): such that x is the ‘storing’ operation

course information(y): such that y is ‘course information’

dynamic(y): such that y is ‘dynamic’

R6 The system shall be able to represent dynamic course
information

Using Wasson’s primitives:

Capability: The system shall be able to represent dynamic course information

Using FOL formalization:

Property: enable(x, y)∧ represent(x)∧ course information(y)∧ dynamic(y)

With the following predicate symbols:

enable(x, y): stating that functionality x is provided over y

represent(x): such that x is the ‘represent’ operation

course information(y): such that y is ‘course information’

dynamic(y): such that y is ‘dynamic’

R8 The system shall enable students to retrieve contact
information of students and lecturers of subscribed courses

Using Wasson’s primitives:

Capability: The system shall enable to retrieve contact information of sub-
scribed courses

Relational operator 1: Limited by user type.

Constraint 1: To students.

Relational operator 2: Limited by participation

Constraint 2: If subscribed to the same course

101

Using FOL formalization:

Property a: enable(x1, y1) ∧ allow(x1, z) ∧ student(z) ∧ course(c) ∧
subscribed(z, c) ∧ retrieve(x1) ∧ contact information(y1) ∧
information of(y1, u1) ∧ lecturer(u1) ∧ subscribed(u1, c)

Constraint a1: allow(x1, z) ∧ student(z) ∧ course(c)

Constraint a2: subscribed(z, c) ∧ subscribed(u1, c)

Property b: enable(x2, y2) ∧ allow(x2, z) ∧ student(z) ∧ course(c) ∧
subscribed(z, c) ∧ retrieve(x2) ∧ contact information(y2) ∧
information of(y2, u2) ∧ student(u2) ∧ subscribed(u2, c)

Constraint b1: allow(x2, z) ∧ student(z) ∧ course(c)

Constraint b2: subscribed(z, c) ∧ subscribed(s, c)

With the following predicate symbols:

enable(x, y): stating that functionality x is provided over y

allow(x, z): stating that functionality x is allowed to z

student(z): such that z is a student

course(c): such that c is a course

subscribed(z, c): stating that object z is subscribed to c

retrieve(x): such that x is the ‘retrieve’ operation

contact information(y): such that y is contact information

information of(y, u): stating that information of object y is related to object
u

lecturer(u): such that u is a lecturer

R9 The system shall provide the history of a course

Using Wasson’s primitives:

Capability: The system shall provide the history of a course.

Using FOL formalization:

Property: emable(x, y) ∧ provide(x) ∧ course(y) ∧ history(y)

With the following predicate symbols:

enable(x, y): stating that functionality x is provided over y

provide(x): such that x is the ‘providing’ operation

course(y): such that y is a course

history(y): such that y is history

102 APPENDIX B. FORMALIZATION OF CMS REQUIREMENTS

R10 The system shall provide the history of attended
courses

Using Wasson’s primitives:

Capability: The system shall provide the history of courses

Relational operator: Limited by participation

Constraint: Those that have attendance

Using FOL formalization:

Property: enable(x, y) ∧ provide(x) ∧ course(y) ∧ history(y) ∧ attended(y)

Constraint: history(y) ∧ attended(y)

With the following predicate symbols:

enable(x, y): stating that functionality x is provided over y

provide(x): such that x is the ‘providing’ operation

course(y): such that y is a course

history(y): such that y is history

attended(y): such that y is attended

R11 The system shall enable students to sub-
scribe/unsubscribe to courses

Using Wasson’s primitives:

Capability 1: The system shall enable to subscribe to courses.

Capability 2: The system shall enable to unsubscribe to courses.

Relational operator: Limited by user type.

Constraint: By students.

Using FOL formalization:

Property a: enable(x1, y)∧subscribe(x1)∧course(y)∧allow(x1, z)∧student(z)

Constraint a1: allow(x1, z) ∧ student(z)

Property b: enable(x2, y) ∧ unsubscribe(x2) ∧ course(y) ∧ allow(x2, z) ∧
student(z)

Constraint b1: allow(x2, z) ∧ student(z)

With the following predicate symbols:

enable(x, y): stating that functionality x is provided over y

subscribe(x): such that x is the ‘subscribing’ operation

103

unsubscribe(x): such that x is the ‘unsubscribing’ operation

course(y): such that y is a course

allow(x, y): stating that operation x is allowed to y

student(z): such that z is a student

R16 The system shall allow sending messages to individuals,
teams or all course participants at once

Using Wasson’s primitives:

Capability: The system shall allow sending messages to individuals, teams or
all course participants at once

Using FOL formalization:

Property a: enable(x) ∧ sending message(x, y1) ∧ recipient(y1) ∧
individual(y1)

Property b: enable(x) ∧ sending message(x, y2) ∧ recipient(y2) ∧ team(y2)

Property c: enable(x) ∧ sending message(x, y3) ∧ recipient(y3) ∧
individual(y3) ∧ subscribed(y3, z) ∧ course(z)

With the following predicate symbols:

enable(x): such that operation x is provided

sending message(x, y): stating that x is the operation of sending a message to
y

recipient(y): such that y is a recipient of messages

individual(y): such that y is an individual

team(y): such that y is a team

course(z): such that z is a course

subscribed(y, z) : stating that y is subscribed to y

R59 The system shall allow lecturers to manage static course
information

Using Wasson’s primitives:

Capability: The system shall enable managing static course information

Relational operator: Limited by user type.

Constraint: By lecturers.

104 APPENDIX B. FORMALIZATION OF CMS REQUIREMENTS

Using FOL formalization:

Property a: enable(x1, y)∧ course information(y)∧ static(y)∧ create(x1)∧
allow(x1, z) ∧ lecturer(z)

Constraint a1: allow(x1, z) ∧ lecturer(z)

Property b: enable(x2, y) ∧ course information(y) ∧ static(y) ∧ read(x2) ∧
allow(x2, z) ∧ lecturer(z)

Constraint b1: allow(x2, z) ∧ lecturer(z)

Property c: enable(x3, y)∧ course information(y)∧ static(y)∧update(x3)∧
allow(x3, z) ∧ lecturer(z)

Constraint c1: allow(x3, z) ∧ lecturer(z)

Property d: enable(x4, y) ∧ course information(y) ∧ static(y) ∧ delete(x4) ∧
allow(x4, z) ∧ lecturer(z)

Constraint a1: allow(x4, z) ∧ lecturer(z)

With the following predicate symbols:

enable(x, y): stating that functionality x is provided over y

course information(y): such that y is course information

static(y): such that y is static

create(x): such that x is the ‘creating’ operation

read(x): such that x is the ‘reading’ operation

update(x): such that x is the ‘updating’ operation

delete(x): such that x is the ‘deleting’ operation

allow(x, z): stating that operation x is allowed to z

lecturer(z): such that z is a lecturer

R60 The system shall allow lecturers to limit the number of
students subscribing to a course

Using Wasson’s primitives:

Capability: The system shall enable limiting the number of students subscrib-
ing to a course.

Relational operator: Limited by user type.

Constraint: By lecturers.

105

Using FOL formalization:

Property: enable(x, y)∧ set max subscriptions(x)∧ course(y)∧ allow(x, z)∧
lecturer(z)

Constraint: allow(x, z) ∧ lecturer(z)

Wit the following predicate symbols:

enable(x, y): stating that functionality x is provided over y

set max subscriptions(x): such that x is the ‘setting maximum number of sub-
scriptions’ operation

course(y): such that y is a course

allow(x, z): stating that operation x is allowed to z

lecturer(z): such that z is a lecturer

R97 The system shall allow only the administration to man-
age courses

Using Wasson’s primitives:

Capability: The system shall enable managing courses

Relational operator: Limited by user type.

Constraint: Only by administrators.

Using FOL formalization:

Property a: enable(x1, y) ∧ create(x1) ∧ course(y) ∧ allow(x1, z) ∧
administrator(z) ∧ ¬lecturer(z) ∧ ¬student(z)

Constraint a1: allow(x1, z)∧ administrator(z)∧¬lecturer(z)∧¬student(z)

Property b: enable(x2, y) ∧ read(x2) ∧ course(y) ∧ allow(x2, z) ∧
administrator(z) ∧ ¬lecturer(z) ∧ ¬student(z)

Constraint b1: allow(x2, z)∧ administrator(z)∧¬lecturer(z)∧¬student(z)

Property c: enable(x3, y) ∧ update(x3) ∧ course(y) ∧ allow(x3, z) ∧
administrator(z) ∧ ¬lecturer(z) ∧ ¬student(z)

Constraint c1: allow(x3, z) ∧ administrator(z) ∧ ¬lecturer(z) ∧ ¬student(z)

Property d: enable(x4, y) ∧ delete(x4) ∧ course(y) ∧ allow(x4, z) ∧
administrator(z) ∧ ¬lecturer(z) ∧ ¬student(z)

Constraint d1: allow(x4, z)∧ administrator(z)∧¬lecturer(z)∧¬student(z)

With the following predicate symbols:

enable(x, y): stating that functionality x is provided over y

106 APPENDIX B. FORMALIZATION OF CMS REQUIREMENTS

course(y): such that y is a course

create(x): such that x is the ‘creating’ operation

read(x): such that x is the ‘reading’ operation

update(x): such that x is the ‘updating’ operation

delete(x): such that x is the ‘deleting’ operation

allow(x, z): stating that operation x is allowed to z

administrator(z): such that z is an administrator

student(z): such that z is a student

lecturer(z): such that z is a lecturer

R100 The system shall allow only the administration to up-
date static course information

Using Wasson’s primitives:

Capability: The system shall enable updating static course information

Relational operator: Limited by user type.

Constraint: Only by administrators.

Using FOL formalization:

Property: enable(x, y) ∧ update(x) ∧ course information(y) ∧ static(y) ∧
allow(x, z) ∧ administrator(z) ∧ ¬lecturer(z) ∧ ¬student(z)

Constraint: allow(x, z) ∧ administration(z) ∧ ¬lecturer(z) ∧ ¬student(z)

With the following predicate symbols:

enable(x, y): stating that functionality x is provided over y

course information(y): such that y is course information

static(y): such that y is static

allow(x, z): stating that operation x is allowed to z

update(x): such that x is the ‘updating’ operation

administrator(z): such that z is an administrator

student(z): such that z is a student

lecturer(z): such that z is a lecturer

107

R102 The system shall allow only the administration to spec-
ify the minimum number of students for a course. If there
are too little subscriptions in a semester, that course will
not be given during that semester

Using Wasson’s primitives:

Property: enable(x, y) ∧ set minimum subscriptions(x) ∧
course(y)landallow(x, z)∧administrator(z)∧¬lecturer(z)∧¬student(z)

Constraint: allow(x, z) ∧ administrator(z) ∧ ¬lecturer(z) ∧ ¬student(z)

With the following predicate symbols:

enable(x, y): stating that functionality x is provided over y

set minimum subscriptions(y): such that y is the operation of ‘setting mini-
mum number of descriptions’

course(y): such that y is a course

allow(x, z): stating that operation x is allowed to z

administrator(z): such that z is an administrator

student(z): such that z is a student

lecturer(z): such that z is a lecturer

