
Master Thesis

Threat Detection Systems

Author:
Frank van Vliet
s0002720
frank@root66.org

Graduation committee:
dr. D. Bolzoni

prof. dr. P.H. Hartel
dr. F. Kargl

Distributed and Embedded Security Group,
Faculty of Electrical Engineering,

Mathematics and Computer Science

October 17, 2010

Contents

Contents i

Abstract 1

1 Introduction 3
1.1 Scenario 1: risk management 5
1.2 Scenario 2: network security monitoring 6
1.3 Problem definition 7
1.4 Overview . 8

2 Risk management 9
2.1 Standards . 11
2.2 Literature . 14
2.3 TDS in Risk Management 16

3 Network Security 19
3.1 Standards . 19
3.2 Literature . 20
3.3 TDS in Network Security 22

4 Threat Detection System 25
4.1 Architecture . 26
4.2 Intrusion Detection System 28
4.3 Threat classifier . 34
4.4 Threat profiler . 42

5 Benchmark and results 51
5.1 Testing methodology 52
5.2 Real network experiment 53
5.3 Hacker experiment 60
5.4 Discussion . 68

6 Conclusion 71
6.1 Recommendations for further research 72

i

A Attack and Penetration test documentation 77
A.1 Description . 77
A.2 Result . 77
A.3 Vulnerability Score 78
A.4 Solution . 80

B Snort configuration 81

C Checklist comparison 85

D First version of the signatures for the Basic Web
Application Scan Checklist 89

E First version of the signatures for the Advanced Web
Application Scan Checklist 93

F Final version of the signatures for the basic web ap-
plication scan checklist 97

G Final version of the signatures for the advanced web
application scan checklist 101

General References 105

Web References 109

ii

Abstract

Traditionally, Intrusion Detection Systems generate a large stream
of alerts for all the attacks on a network. This thesis presents a
Threat Detection System, which generates a list of threats (either
human beings or automated computer programs) attacking the net-
work and assigns properties to them such as skill, the intensity of
their attacks and whether they are a computer or a human. This al-
lows security experts to focus only on the threats that are dangerous
and is the basis for a quantitative approach to risk management.

1

Chapter 1

Introduction

“If you think technology can solve your security problems,
then you don’t understand the problems and you don’t under-
stand the technology” —Bruce Schneier

Traditional Intrusion Detection Systems focus on detecting attack instances
on a computer network. The work presented in this thesis is different, since
the attack instances are used to construct a profile of the actual attacker.
An attacker is named a “threat” and can be a human being or an au-
tonomous computer program. The system is therefore named a Threat
Detection System (TDS) and will improve the security of a computer net-
work.

Security is often defined as a combination of confidentiality, integrity, and
availability of assets [36]. In the old world of paper and snail-mail, security
meant that assets (for example some piece of information) must be kept
secret, we must be able to trust the integrity of that piece of information,
and the asset should be available to legitimate users when they need it. In
the new world based largely on the Internet, security is still important for
the same reasons.

When computer systems are connected to the Internet, the systems them-
selves and the information they contain are assets and their security are
threatened by hackers, worms, virii and botnets which are named threats
[2], [36]. These threats, which are persons or computer programs, search
for weaknesses (named vulnerabilities) of the computers and information
(named assets) and try to exploit them using attacks, compromising the
assets’ confidentiality, integrity, availability, or a combination of those [2],
[36]. The definitions are illustrated in Figure 1.1.

3

Assets

VulnerabilitiesThreats

Attacks

exploit

contain

Figure 1.1: Definition of threat, exploit, attack, vulnerability and asset

A computer system is secure when threats cannot exploit the vulnerabilities
of that system. There are two approaches towards secure computer systems
[2]: The first approach consists of removing the vulnerabilities of the system
or adding defenses that makes the exploitation of them harder. The time
and skill required for a threat to compromise the system increases, and
the threat will (hopefully) stop attacking voluntarily. It is impossible to
locate and eliminate all vulnerabilities of a system, therefore using only
this first approach is not the best way to secure the system [2]. The second
approach consists of the detection of threats while they are attacking the
system and stopping them before they are successful in compromising it, for
example by removing their access to the system and involving the police. A
combination of the two approaches is best, since reacting to threats takes
time that can be obtained by eliminating the vulnerabilities [2].

The motivation for this master thesis can be illustrated with two scenarios
where a security expert is implementing the two described approaches to
computer security and is having problems performing her task effectively.
These problems, and the solution to these problems, are the basis for the
problem description of this thesis. The first scenario features a security
expert who helps a client by identifying vulnerabilities of their network,
so they can be eliminated. In the second scenario, the security expert is
tasked with securing a network by monitoring all network communications
to find threats. The expert faces different problems in each scenario, but
can benefit from the same solution that will be described in section 1.3.

4

1.1 Scenario 1: risk management

In the first scenario, a security expert assesses the security of a website
(a web shop selling products) for a client by performing an attack and
penetration test. This test consists of both automated and manual testing
and results in a list of vulnerabilities which require the attention of the
client.

For this scenario, only one vulnerability is discussed: a SQL injection vul-
nerability. The vulnerability allows threats to manipulate the queries which
are executed on the database of the website, enabling the threat to read
all the information in the database. Since the database contains all client
and order information, this attack would compromise the confidentiality of
this information. The full documentation of this vulnerability, as reported
by the security company Pine Digital Security, is included in Appendix A.

Each vulnerability poses a risk to the client, who has to decide whether
to accept the risk or mitigate it by solving the problem, implementing
controls or using insurance. This is the essence of risk management [31].
In the world of commerce, such decisions are ideally based on money; if the
risk is expressed in an expected loss dollar-figure, it can be compared to the
cost of solving the problem and other mitigation solutions. To calculate
the expected loss, the likelihood (what is the chance of the risk happening)
is multiplied by the impact (what is the cost if the risk happens) [31].
However, both the likelihood and the impact are hard to quantify.

Determining the impact of the risk (a dollar amount of loss) is a question for
the financing department of the client and should not be the responsibility
of the security expert. The likelihood however, is something that is asked
of a security expert to calculate. Currently, calculating the likelihood is
not possible as there are no clear data or metrics on this [31]. Hence,
the likelihood is often defined using categories of “high”, “medium” and
“low” [34], resulting in an approximation of each risk. In this scenario, the
likelihood is categorized as “high”, since the commonly used NIST standard
defines this as: “The threat-source is highly motivated and sufficiently
capable, and controls to prevent the vulnerability from being exercised are
ineffective” [34]. This definition is inaccurate, since it is not taking into
account any quantitative information, for example, whether threats are
trying to compromise the website at all.

The problem of selecting a likelihood for each vulnerability can be solved
using a divide and conquer approach; the problem can be split into two
smaller problems which can be solved separately. The answers of the
smaller problems can then be combined to give a quantitative basis to
an estimation on the likelihood of a vulnerability. First, the security ex-
pert creates a threat profile for each vulnerability to specify the type of

5

threat that is able to exploit this vulnerability. This profile could include
properties like the skill level, the intensity of the attacks, and so forth.
Security experts can have a consensus on how these threat profiles are cre-
ated for each vulnerability, so this is not guesswork. In this scenario, the
threat-profile associated with the SQL injection vulnerability could contain
the information as presented in Table 1.1.

Table 1.1: Threat-profile for the SQL Injection vulnerability

Attribute Value Motivation

skill basic SQL injection is a basic skill
android human Several manual steps (i.e. logging in) are required to exploit

this vulnerability
intensity any This vulnerability can be exploited in a single attack

Second, a history of threats active on the system is referenced to ascertain
how often a threat capable of exploiting the vulnerability is active on the
network. In this example, it could be determined that there are (for exam-
ple) five threats in the past week capable of exploiting this vulnerability.
This does not provide an exact likelihood of the risk, but provides a quan-
titative basis for companies to prioritize risks that go beyond the “high”,
“medium” and “low” categories used by current standards.

1.2 Scenario 2: network security
monitoring

In the second scenario, the security expert is tasked with monitoring a net-
work of computers for threats. The security expert has two options. First,
she could try to read all traffic passing through the network and act when
she identifies packets that belong to an attack. It is infeasible to read all
packets on any active network. It is possible to sample the packets into
flows or streams and use that information to identify suspicious behaviors
[32], but this does not provide the same level of details for analysis. The
second option of the security expert is to automate the reading of all net-
work traffic using an Intrusion Detection System (IDS). These systems (try
to) automatically detect intrusions and inform the security expert about
them.

In both cases, the expert is wasting much of her time looking at information
that is probably not interesting. Many attacks on the network consist of
automated (worm) attacks and script kiddie attacks using a downloadable

6

tool to exploit well-known security problems [56]. These attacks have no
effect on the security of a network when security patches are timely installed
on each system. A large team of analysts is required to evaluate all attacks
on a network.

To help the security expert focus only on the important information, it
would be helpful if the information were somehow classified. The expert
would then start by looking at the most important events, zoom in on
them and review the events that are related. She would spend no time
researching uninteresting worm-attacks and could focus on the few real
attacks the network is facing.

To make a better distinction between important attacks and uninteresting
ones, one should not only classify the attack, but also the threat performing
the attack. There are several types of threats, ranging from professional
hackers with many resources to hobbyists who are hacking in their spare
time to computer worms without any intelligence. If the network is patched
and most of the vulnerabilities are eliminated, the security expert could
create a profile of threats that would still be able to compromise the security
of the network. If a system would allow the security expert to focus on
the threats that match such a threat profile, the expert can monitor the
network effectively.

1.3 Problem definition

Both scenarios have illustrated the need for information about threats on
a network and their profiles. This master thesis will therefore work on the
following problem definition:

Design a system to detect and profile threats on a computer net-
work to improve risk management and network security moni-
toring.

The problem definition contains the following sub questions:

1. How can a system detecting and profiling threats improve risk man-
agement?

2. How can a system detecting and profiling threats improve network
security monitoring?

3. How to design a system that is capable of detecting threats on a
computer network?

7

4. How to design a system that is capable of profiling threats?

The methodology for designing such a system consists of the following
steps:

1. Research risk management to verify if the likelihood prediction of a
vulnerability is a problem and if current research is capable of solving
this problem.

2. Research network security monitoring to verify if network security
monitoring can be improved by adding the concepts of threats and
threat profiles and if current research is already presenting solutions
for this.

3. Design the architecture of a system that is capable of solving the
problems as defined in the previous two steps. The architecture will
consist of at least two components, one for the detection of threats
and one for profiling them.

4. Implement a system that meets the problem definition using the de-
fined architecture. The choices made in the design of the system
must be documented and where possible, are configurable depending
on the specific needs of a security expert performing the risk man-
agement or network security monitoring. The system will include
an example set of algorithms to profile specific properties of threats.
These algorithms are accompanied with guidance on how to interpret
the results of these algorithms and how security experts can use them
for risk assessment and network security monitoring.

5. Test the system in a real network with real threats following a prede-
fined testing methodology. This test verifies if risk management and
network security monitoring benefit from the system.

1.4 Overview

This thesis begins with a discussion on risk management (chapter 2) and
Network Security (chapter 3), providing the context of the presented re-
search. Then, the architecture (section 4.1) and implementation (chapter 4)
of the system are presented. These chapters describe how and why the sys-
tem is created. To verify the system works and the problem statement can
be answered affirmatively, the system is tested in chapter 5 including the
test methodology and the actual results of the tests. This is followed by a
conclusion and recommendations for future research in chapter 6.

8

Chapter 2
Risk management

This chapter first describes the general methods for risk management that
could be used for computer security, followed by a description of a standard
for risk management that is used in the professional world. These descrip-
tions provide a context and identify problems in risk management as it is
currently used. Then, the current state of the art in academic research on
these problems is described, followed by an answer to the question “How
can a system improve risk management?”.
The most basic form of risk management can be derived from the ruling of
Judge Learning Hand:

Since there are occasions when every vessel will break from her
moorings, and since, if she does, she becomes a menace to those
about her; the owner’s duty, as in other similar situations, to
provide against resulting injuries is a function of three variables:
(1) The probability that she will break away; (2) the gravity of
the resulting injury, if she does; (3) the burden of adequate
precautions. Possibly it serves to bring this notion into relief
to state it in algebraic terms: if the probability be called P; the
injury, L; and the burden, B; liability depends upon whether B
is less than L multiplied by P: i.e., whether B < PL.[22]

In this basic form, the estimated loss is calculated and compared to the cost
of solving the problem. When the solution is cheaper than the expected
loss, the solution is implemented, else the risk is accepted.
The tradition methods for risk management used a similar formula to calcu-
late the Annualized Loss Expectancy (ALE) (Equation 2.1). This formula
considers the impact of each harmful outcome ({I1, ..., In}) and the fre-
quency each of these outcomes occur (F1, ..., Fn) [30]. One of the problems

9

of this method is that it suffers from a lack of actual data to estimate
values for impact and likelihood [31]. In the mid-1980s, a framework for
computer security risk management emerged from this model. To calcu-
late the risk, each combination of the assets, security concerns, threats, and
vulnerabilities must be evaluated. This is a task of infeasible proportions
[31].

ALE =
n∑

i=1

(IiFi) (2.1)

Based on this Annualized Loss Expectancy (ALE) method of risk man-
agement, different methods were developed to manage risks [26]. The first
method is the Integrated Business Risk Management model. This model al-
lows security risks to be managed like other business risks [31]. These risks
are identified and then managed using financial (contracts and insurance)
or strategic (avoidance, control, cooperation, imitation, and flexibility) [26]
management. A problem with this method is that it simplifies the security
risks, because they are handled the same way as other business risks and
therefore focus on bottom-line business impact instead of the computer
security interactions [31].

The second method consists of the valuation-driven methodologies. These
methodologies simply ignore the likelihood and only focus on the value
of each asset. This greatly simplifies the risk management, but results in
either over-securing or under-securing since these methods have no notion
of the likelihood of each problem [31].

The third method consists of the scenario analysis approaches. These ap-
proaches consist of the analysis of possible scenario’s by which computer
security is compromised [31]. An example of this is the execution of an
attack and penetration test, where the system is compromised on purpose
to detect the vulnerabilities and their associated scenario’s. Since there
is no guarantee that all scenario’s are found, this leads to a false sense of
security [31].

The final method consists of using best practices. These practices are ofter
the industry standard of doing things as well as possible. They consist of
design and implementation requirements that are already tailored to the
possible threats and vulnerabilities of this industry. A problem with this
method is the uncoupling of best practices from the actual risks involved,
where best practices are implemented because they are best practices with-
out regard to the actual risks involved. [31].

Currently, performing a perfectly accurate risk management for computer
security is still impossible; the traditional method, based on the Annual-
ized Loss Expectancy, requires an assessment of infeasible proportions and

10

newer methods that require less work fail to accurately capture all impor-
tant aspects of risk management [31]. Furthermore, all methods suffer from
a lack of actual data to estimate values for impact and likelihood [31]. If
the methods could use actual data to estimate impact or likelihood, then
risk management could be improved [31]. To identify how the lack of actual
data is currently affecting risk management as it is used in the professional
world, the following section will describe a commonly used standard for
risk management in information technology systems.

2.1 Standards

In the professional world, where risk management is used in real situations,
a few standards are used. First, there is the Risk Management Guide for
Information Technologies Systems [34] by the National Institute of Stan-
dards and Technology. This guide contains a process for risk assessment
and for risk management. Second, there is a standard by the International
Organization for Standard named “ISO27005: Information security risk
management”. For this research, the NIST standard is used as it is open
and specifically focusses on risks.

In 2002, the National Institute of Standards and Technology (NIST) re-
leased the Risk Management Guide for Information Technology Systems
[34]. This guide implements risk management in two steps. First, a risk
assessment is executed by identifying systems, threats, vulnerabilities, ex-
isting controls, likelihood, impact, and finally determining the risk and
recommending further controls. Secondly, a risk mitigation process is ex-
ecuted to accept, avoid, limit, plan for, solve or transfer each risk. This
method for risk management could be an implementation of the Integrated
Business Risk Management model earlier discussed, as the standard states:

Because the elimination of all risk is usually impractical or close
to impossible, it is the responsibility of senior management and
functional and business managers to use the least-cost approach
and implement the most suitable controls to decrease mission
risk to an acceptable level, with minimal adverse impact on the
organization’s resources and mission.[34]

Note that this model uses only qualitative values (“high”, “medium” or
“low”). Risk assessment by the NIST standard consists of nine steps, which
are summarized as following:

Step 1: System Characterization Identify all system-related informa-
tion. This includes the hardware, software, system interfaces, system

11

missions, and the persons who support and use it. This also includes
the data that are stored within the system and their requirements on
availability, integrity, and sensitivity.

Step 2: Threat Identification List the possible threats (named threat-
sources in this standard) of the system (hackers, criminals, terrorists,
spies, employees). For each threat, the motivation (challenge, de-
struction, monetary gain, revenge, competitive advantage) and the
possible actions (hacking, social engineering, bribing, bombing) are
identified.

Step 3: Vulnerability Identification Identify all vulnerabilities in the
system. These vulnerabilities can be gathered using automated scans,
penetration testing and auditing. Each vulnerability should be matched
to the actions of threats.

Step 4: Control Analysis Identify all controls implemented in the sys-
tem or organization to minimize or eliminate the likelihood or impact
of vulnerabilities. Possible controls are access control, intrusion de-
tection systems and encryption.

Step 5: Likelihood Determination Estimate the likelihood of exploita-
tion for each vulnerability. This is based on the motivation and ca-
pability of the threats and the existence and effectiveness of the im-
plemented controls. The likelihood is a qualitative value with three
options:

• High, the threat is highly motivated and sufficiently capable and
controls to prevent the exploitation of this vulnerability do not
exist or are ineffective.

• Medium, the threat is motivated and capable, but controls are
implemented to hinder successful exploitation of the vulnerabil-
ity.

• Low, the threat lacks motivation or capability, or controls are
implemented to prevent or significantly hinder the vulnerability
from being exploited.

Step 6: Impact Analysis Estimate the impact of successful exploitation
for each vulnerability. Like the likelihood determination, the value
for impact analysis is also qualitative with three options:

• High, exploitation of this vulnerability results in high costs or
significantly violates, harms, or hinders an organization’s mis-
sions, reputation or interest.

12

• Medium, exploitation of this vulnerability leads to considerable
costs or violates, harms, or hinders the organization’s missions,
reputation or interest. A medium value is also attributed to
vulnerabilities whose exploitation leads to human injury.

• Low, the exploitation of this vulnerability leads to some costs
or noticeably affects the organization’s mission, reputation or
interest.

Step 7: Risk Determination Determine the risk for each vulnerability.
The risk is calculated based on the product of the likelihood value
(high = 1.0, medium = 0.5, low = 0.1) and the impact value (high =
100, medium = 50, low = 10) = Risk. The product of these values
is then transformed to a qualitative value using the following scale:
1<= low <= 10; 10 < medium <= 50; 50 < high <= 100. The
inaccurate and arbitrary definition of risk as defined is the step is the
motivation for this thesis.

Step 8: Control Recommendations List possible controls and alter-
native solutions. During the risk assessment process, the possible
solutions and controls are already introduced. For example, a vul-
nerability in a web site could be solved by changing the code or solved
by implementing an application level firewall to prevent this vulnera-
bility from being exploited. Each proposed control or alternative so-
lution should consider their effectiveness (is it solving the problem),
legislation and regulation, organizational policy, operational impact
and safety and reliability.

Step 9: Results Documentation Document the results. This docu-
mentation could describe the risk assessment approach (participants,
techniques used to gather information and a description of the qual-
itative values used), the system characterization (output of Step 1),
the threat statement (output of Step 2) and finally a list of vulnera-
bilities and their gathered information.

One problem of the risk assessment is the lack of actual data to estimate
the likelihood and impact [31], as described in the previous section. For
the likelihood, this standard uses a qualitative value (“high”, “medium” or
“low”) is based on abstract concept such as motivation and capability of
threats.

To illustrate this problem, an example is provided using a web-shop that
is vulnerable to SQL injection. To calculate the risk of this vulnerability,
step one has identified that the customer information within the database
has requirements on confidentiality, integrity, and availability. Step two

13

has identified hackers on the Internet as a possible threat which can per-
form hacking actions (those qualifications are directly copied from [34]).
To perform step three, an attack and penetration test is executed by Pine
Digital Security [58], a Dutch company that specializes in security test-
ing. The documentation about the SQL Injection vulnerability is included
in Appendix A. Then, step four, identifies controls that can minimize or
eliminate the likelihood or impact of this vulnerability, which in this exam-
ple are not existent. The fifth step is the determination of the likelihood.
Based on this standard, a value of “high” must be given since the threat
is motivated and capable, and no controls are implemented to prevent the
threat from exploiting the SQL Injection vulnerability. Then, step six,
estimates the impact of this vulnerability to be “high”, because the confi-
dentiality of the customer database including the credit card information
can be compromised completely. If this information is published online,
it would significantly harm the organizations mission to sell products on-
line. The likelihood and impact are multiplied in step seven to determine
the risk of this vulnerability to be “high”. The documentation included in
Appendix A also describes the recommended solution that is part of step
eight. Finally, in step nine, the previous steps are documented and the
vulnerability is reported as being a “high” risk.

In this example, steps two (threat identification), five (likelihood estima-
tion), six (impact estimation) and seven (risk determination) are vague
and fail to accurately describe the vulnerability. This problem was already
described in the previous section and is attributed to a lack of actual data
[31].

If a system is designed to provide historical information on the number
of active threats on a computer network, the threat identification, and
likelihood estimation could be improved. This system will not solve the
impact estimation or risk determination problems, and will not be able to
exactly state what the chance is for a vulnerability to be exploited. But,
it is possible to define a profile based on motivation and capabilities and
know how many threats met this profile during a specific time, thereby
improving the likelihood estimation.

2.2 Literature

In the academic world, the lack of quantitative data is a known problem
and different systems are proposed to obtain this. However, these systems
have their own set of problems, since their applicability to the real world
is often limited.

In 2004, Gehani and Kedem proposed the first system to automatically

14

calculate the risk of a system and respond accordingly [13]. This system
calculates the risk based on events from an Intrusion Detection System and
manages this risk by altering the exposure of the system; each request for
access is granted based on the current risk level of that system. Although
the system is designed to autonomously respond to risks, which is infeasible
in real world setting, the system does automatically calculate the likelihood
component of each risk in a quantitative manner. However, the likelihood
is calculated by testing whether the attack matches completely or only
partial to some specification. This could improve the likelihood calculation
of known attacks, but not for new vulnerabilities for which the attacks
cannot be enumerated.

In 2008, He et al proposed a system using game theory [16]. This system
also identifies the lack of qualitative data and computes this using a game
theoretical model. According to this model, the likelihood component of
a risk is based on the cost and benefits for both attackers and defenders.
An equilibrium is calculated and assumed to be the likelihood component.
However, two major assumptions are made by this model, which are not in
line with real world situations. First, attackers are assumed to be equal;
there is no difference in likelihood for one threat to another. This is obvi-
ously not in line with the real world, since some vulnerabilities can only be
exploited by attackers with a certain level of skill. Second, an attack will
always succeed when no defensive measurements are implemented. This is
not in line with the real world since the success depends on motivation,
skill set and environmental elements such as authentication.

In 2009, Li and Gou proposed a method using a Hidden Markov Model
(HMM) [23]. Although the usage of HMM has been proposed prior to this
research [15], the research of Li and Gou uses a real-time quantitative HMM
network to continuously update the risk values for each host. By using the
alerts from an IDS, the risk is calculated based on the severity, the key
level of the asset, the priority, and the reliability. This is not according to
the likelihood and impact values of the traditional risk assessment method-
ology, but provides a score from 0 to 9 that is an improvement over the
“high”, “medium” and “low” qualification values used in this traditional
methodology. The main problem of this method however, is that research
focusses only on known vulnerabilities in commonly used software. Since
these vulnerabilities are mitigated by implementing a proper version man-
agement process, the research fails to solve the problem of real world risk
assessment.

15

2.3 TDS in Risk Management

Currently, Risk management lacks adequate data to quantitatively deter-
mine the likelihood of a risk and therefore improve from having actual data
on the threats on a network and their profiles. When designing the Threat
Detection System (TDS), it is important to ensure that it can provide this
information on a real network.
For each vulnerability, the security expert assessing it must be able to se-
lect applicable threat profiles; the types of threats that are able to exploit
the vulnerability. The system should then return the number of threats
meeting these profiles that were detected during a specified time. If, for
example, the risk of a vulnerability is assessed that requires advanced skills,
for example, an XML External Entity Attack, the system should only re-
turn the number of threats that have the capability of performing such
advanced attacks. Instead of using vague concepts such as motivation and
capability, the exact number of threats capable of exploiting the vulnera-
bility is presented.
The profile of a threat consists of several properties. The security expert
should define the threat profiles by selecting the properties that are required
to exploit the vulnerability. For this research, the properties to estimate the
likelihood value as defined in the NIST standard [34] are chosen. However,
because other security experts can disagree on the properties they would
like to use; the system must be designed to accept properties that are
defined and programmed by other security experts.
The following list describes the properties that are selected for this re-
search. These provide the security expert with a three properties, and
implementing them illustrates the working of the TDS.

Skill class A threat has several skills that are used to exploit vulnerabili-
ties (the NIST standard calls them capabilities). While it is tempting
to be able to select the exact skill that is required to exploit a vul-
nerability, this assumes an ability of the TDS to detect all possible
skills of a threat. Because the system will be used on real networks,
it will be impossible to configure the TDS to detect all possible skills.
When using skill classes where threats possessing one skill are likely
to possess the other skills in the same class, the TDS can be config-
ured to detect a portion of the skills within the class to still provide
useful data. This is a tradeoff between completeness and accuracy
and must be configurable in the TDS to be changed by the security
expert executing the risk assessment.

Android class Some vulnerabilities require the threat to be an actual
human to exploit it, for example, when the threat first must register

16

and then log in with her new credentials. This is not possible for
automated tools, scanning the Internet for vulnerabilities to exploit.

Intensity class The intensity of the attacks by a threat can be relevant
information as it is closely related to motivation. There is a difference
in threats that try some attacks for a few minutes and threats that
actively spend months attacking a system or network.

It is important to note that for all three properties, the TDS must consider
a possible hierarchy of classes. A threat performing a skill in an advanced
skill class will also possess the skills in the basic skill class. Likewise, a
threat capable of performing manual attacks is also able to download a
tool and perform automated attacks.

When the likelihood of a vulnerability is estimated, the TDS can be queried
for the number of threats possessing a specified skill and intensity class over
a specified time which can improve the likelihood estimation and thereby
the risk assessment of a vulnerability.

17

Chapter 3
Network Security

The security of a computer network is based on three components: confi-
dentiality, integrity, and availability. These components apply to the assets
(data or systems) within the network [36]. To protect those assets, there
are two approaches that are commonly implemented [2].

The first approach to network security is analog to building a large wall
around a city; the bigger and higher the wall is; the harder it is for threats
to get inside the city. It is universally accepted that there is no such thing
as perfect security, which means that a threat with sufficient capabilities
and resources is always able to climb over the wall.

The second approach to network security consists of monitoring the net-
work for threats. Using firewalls, those threats can be stopped before they
compromise the network.

The best network security is achieved using a combination of the two,
making it hard for a threat to compromise the network and allowing the
network security staff to stop them before they succeed. This combination
could be modeled in Risk Management practices by defining the process of
stopping the threats as controls that decrease the likelihood a threat can
exploit a vulnerability [34].

3.1 Standards

The professional world of computer security focusses mainly on the first
approach to network security: making it as hard as possible for a threat
to compromise the network. This includes installing the latest patches,
installing firewalls, and ensuring that there are no vulnerabilities in the
software (a detailed list of security measurements to be taken is documented

19

in the Certified Secure Checklists [61], [62], [63] and [64], and in various
system security handbooks [54], [48]). Often, an attack and penetration
test is performed to reveal vulnerabilities which are subsequently resolved
(possible using a risk management approach as described in the previous
chapter). The security that is achieved by this approach is defined by the
motivation of the threats; the network is secure if threats stop their attacks
voluntarily: because they get bored, it takes too much effort, or another
network is easier to compromise and therefore is more attractive. This
means that the security of a network depends on the threats stopping their
actions.

The second approach to network security is the active stopping of threats.
Using some form of detection (either manual, automated or a combination),
threats that attack the network can be detected and preventative measures
can be taken to stop them. Richard Bejtlich, author of the book “The Tao
of Network Security Monitoring: Beyond Intrusion Detection” [2], is one
of the leading experts on network security monitoring in the professional
world. His ideas on network security are invaluable for security profes-
sionals working with real networks that have to be defended against real
threats. According to Bejtlich, an important part of building a defensible
network (next to limiting the intruder’s freedom, offering only a minimum
number of services, and ensuring the network can be kept current) is the
ability to watch the network. This should be anticipated during the design
of a network and allows for the ability to audit all critical parts of the net-
work. Watching a network results in indications and warnings. Indications
are actions that are observable or discernible and confirm or deny enemy
capabilities and intentions [2]. These indications are what Intrusion Detec-
tion Systems call alerts. These indications are interpreted by analysts who
generate warnings when indications are serious. It is important to note
that the collection of information can be automated ([59], [42], [50], [47]),
but the analysis always requires real people [2]. The escalation of an indi-
cation to a warning should be decided by a human, capable of analyzing
the context of the indication.

3.2 Literature

Many different types of Intrusion Detection Systems are developed to aid
network security monitoring. These systems automatically detect attacks
and report them in so called alerts either directly to the security experts
tasked with monitoring the network, or via a Security Information Man-
agement server that aggregates the alerts (illustrated in Figure 3.1).

There are different distinctions in Intrusion Detection Systems [1]. First,

20

Internet

Firewall / Router

Database Server

Mail Server

Web Server

Host IDS

Host IDS

Host IDS

Network
 IDS

Security Information Management
Server

Alerts

Alerts

Alerts

Alerts

Figure 3.1: An example deployment of IDS in combination with SIM

there are host based and network based systems; the Host based Intru-
sion Detection Systems are installed on the computer they are monitoring,
analyzing the log files and changes to the system and Network based Intru-
sion Detection Systems are installed on a network and analyze the network
traffic for attacks. Second, there are two approaches in how attacks are
detected: anomaly based and signature based.

In Anomaly based Intrusion Detection Systems [21], [24], [38], [40], a profile
of supposed good traffic is created and new network traffic is matched
to this profile of good traffic to find anomalies. This system requires a
training phase to create the profile of good traffic. This is a problem
since the security expert must train the system with known-good network
traffic, which is infeasible in real networks; the expert would need to capture
weeks of network traffic and then manually remove all attacks to create this
known-good traffic and when the network changes, for example by adding
a server, the known-good traffic is no longer representative for the network
and has to be created again. Also, anomaly-based IDS cannot distinguish
between the different type of attacks; they can only state that the traffic is
different from normal traffic [17]. These problems are the topic of ongoing
research [6], [4], [5], [7], [32].

The other approach to Intrusion Detection Systems is signature based [1].

21

This approach (similar to anti-virus) employs a set of attack signatures and
matches them against network traffic. All traffic matching a signature is
considered to be an attack and is reported as such. This type of IDS can
only detect attacks for which a signature is created, which means that it
cannot detect new attacks [1].

A problem of IDS generally is that it generates a large stream of alerts
that is too much to process manually. A solution to this problem is the use
of Security Information Management (SIM) systems, which combine the
results of multiple IDSs [12, 51]. Such systems allow the security expert to
view the alerts of multiple Intrusion Detection Systems (as illustrated in
Figure 3.1). Using SIM, several techniques can be implemented to reduce
the number of alerts and therefore the workload of the security experts
monitoring the network [29].

The first type of reduction in number of alerts consists of correlating alerts
that are similar using different data mining techniques and distance func-
tions [8], [20], [37], [33]. When multiple Intrusion Detection Systems are
used, one attack can trigger multiple alerts (one from each IDS) and us-
ing these correlation systems, these alerts are clustered in one high-level
alert describing the complete attack. Also, with many worms and bot-nets
active on the Internet, many identical attacks are launched from many dif-
ferent systems. These correlation systems can cluster these alerts of these
attacks in one high-level alert containing all those identical attacks.

The second type of reduction in number of alerts consists of using attack
scenarios, also called attack plans [3], [9], [10], [35]. Threats perform at-
tacks based on an attack plan, which consists of different states until some
target is reached [3]. This reduction combines multiple attacks in one alert
describing the complete sequence of attacks.

The third reduction in number of alerts is achieved by using attack trees
[27], [28]. By creating an attack tree containing the attacks and how the
correlate, it is possible to see whether high-level goals are reached.

3.3 TDS in Network Security

The staff monitoring the network for threats could greatly benefit from a
system that can automatically detect problems. Current systems (Snort
[59], Bro [42], ModSecurity [47] and OSSEC [50]) are only capable of de-
tecting known attacks which lead to a long list of attacks that have no real
impact on the network. The staff needs to go through an endless list of
attacks which don’t even contain the interesting events.

22

The TDS could help the monitoring staff by presenting a list of threats
and their skill and intensity(as described in TDS in Risk Management
(section 2.3)). Since most threats have no chance of compromising the
network (because they lack the required skill class or intention class), the
staff can focus only on threats that have an actual chance of compromising
the network.

Security Information Management systems allow the attacks to be corre-
lated, but currently do not assign properties to threats. This research could
be used to as part of these systems.

23

Chapter 4
Threat Detection System

This chapter describes the architecture and implementation of the Threat
Detection System (TDS). The requirements for the system are defined in
the previous two chapters and are the following:

1. Detect threats on a real computer network.

2. Determine the profile of these threats using threat properties that
can be configured or defined by security experts.

3. Implement a skill, android, and intensity property as examples.

4. Allow a security expert to specify a threat profile and timeframe and
return the matching threats.

Based on these requirements for the prototype TDS, the following decisions
are made:

1. The TDS is plug-and-play. There is no time, and money required to
adapt the system for a specific network. This allows the system to
be used directly in a new network.

2. The TDS connects passively to the network, for example using a
SPAN port on a switch or router. Therefore, the system does not
influence the integrity and availability of the network in any way. An
alternative would be the installation of sensors or each computer (to
allow host based intrusion detection), but then the system will not
be plug-and-play.

3. The TDS supports IPv4. In the future, it would be useful to include
IPv6, but this is beyond the scope of this prototype.

25

4. The TDS supports HTTP. Nowadays, most attacks (60% of the at-
tacks observed on the Internet [44]) are performed on websites and
limiting the scope of the prototype to this protocol demonstrates the
working of the TDS without the implementation of every possible
protocol.

First, the architecture of a system that is capable of implementing these
requirements is described in section 4.1, followed by the implementation
of the separate components in section 4.2 to section 4.4. For each compo-
nent, the choices that are made are documented. section 4.4 also provides
guidance for security experts on using the implemented threat properties.

4.1 Architecture

This section describes the architecture of the Threat Detection System
(TDS). It describes the ideas behind the system and describes the function
of each component. The actual implementation of these components can
be replaced to adapt the system to different environments.

The most important concept behind the Threat Detection System is the
shift from detecting attacks to detecting the actual attackers (threats) and
their properties (such as skill). Detecting threats is accomplished using
the output of one or more Intrusion Detection Systems (each detecting
attacks) and clustering the attacks in groups of attacks that belong to a
single threat. The result of this process is a list of threats and their attacks.
The Intrusion Detection Systems are not required to detect 100% of the
attacks, since one attack for each threat is theoretically sufficient to detect
that threat. Then, for each threat, a set of properties like skill is determined
based on the attacks they performed or some external knowledge database.
The accuracy of the properties determined for each threat depends on the
amount of attacks detected of this threat; more detected attacks of a threat
increase the accuracy of the properties determined for this threat.

The TDS therefore consists of three components which are illustrated in
Figure 4.1: one or more Intrusion Detection Systems (IDS), a threat clas-
sifier and one or more threat profilers. This architecture allows one com-
ponent, for example, the implementation of the IDS, to be replaced by a
different IDS or use multiple IDS concurrently. It is also possible to scale
the system by installing many IDS components on separate systems that
all report to one thread classifier.

The responsibilities for each component are defined as following:

26

Alerts

List of threats and
their attacks

Threat Classifier

IDS

Threat Profiler

Input

Output

List of threats, their attacks and their properties

TDS

Network traffic

IDS
IDS

Threat Profiler
Threat Profiler

Figure 4.1: Components of the TDS

Intrusion Detection System The Intrusion Detection System (IDS) is
responsible for detecting attacks in the network traffic. Different
types of IDS could be used, but they must be able to detect actual
threats on actual networks. To allow the threat profiler to determine
the skill of a threat, the IDS must be able to identify the attack
method used for each attack. The architecture of the system does
not require an 100% detection rate from the IDS, since a few attacks
of each threat already allow the threat to be detected and profiled.
When more attacks of the threat are detected, the accuracy of the
threat profile increases.

Threat classifier The classifier (a clustering algorithm) translates the
alerts generated by the IDS in a list of threats and their attacks.
This translation can be performed based on (a combination of) the
MAC address, the IP address, or the user name, depending on the
network traffic. The architecture does not dictate a specific way of
classifying the threats, but the performance of the system increases
when the classifier is more accurate in grouping the alerts per threat.

27

Threat profiler The threat profiler is responsible for determining a spe-
cific property of a threat, such as the skill. To perform its function,
a threat profiler receives a list of threats and their attacks from the
threat classifier component. It is important to note that only concrete
properties can be determined. Abstract properties like “intent” and
“motivation” seem logical properties to profile, but cannot be reliably
assessed and should not be used. Subjective properties that depend
on some interpretation, like skill, can be used when they can be re-
liably assessed given a specific interpretation, but the interpretation
must be configurable since other users of the system could disagree
with the interpretation and want to change it.

The architecture of the Threat Detection System provides a novel way
of intrusion detection: a shift from detecting attacks to detecting threats
and their properties. The architecture allows the system to be adapted to
different environments and to use third party components when available.

4.2 Intrusion Detection System

The Intrusion Detection System is the component that detects the attacks
on a network. Each attack is represented by an alert that is sent to the
threat classifier for further processing. This section describes the choices
for the used software and configuration of this software. Furthermore, a
new set of signatures to detect generic attack types is presented.

Software

There are many Intrusion Detection Systems available such as Snort [59],
Bro [42], Modsecurity [47] and OSSEC [50]. A selection was made using
the following requirements:

• The IDS must directly work on any network as this is a requirement
of the TDS. The system can be placed in any network and should
just work, without a training period to adapt to the network. This
means that the IDS cannot require training or a special configuration
to work on a network and that anomaly-based IDS are not an option.

• The IDS must be able to passively monitor IPv4 network traffic;
more specifically, it must be able to monitor the traffic from a live
interface. This means that host based IDS and systems that are part
of the server software are not an option.

28

• The IDS must be able to reassemble IP fragments, TCP streams
and decode HTTP traffic. Each layer in the OSI model has it’s own
encoding and fragmentation techniques and those must be handled
by the IDS as all signatures in the IDS depend on the unambiguity of
the network traffic. This is a vulnerable part of any signature based
IDS, since the reassembling and decoding is specific for each operating
system, software product, network layout, and temporal information
like the ordering of packets and the time between them. All signature
based IDS can be evaded by exploiting this weakness, but the IDS for
this TDS does not need to be perfect. Unlike a traditional IDS, where
every undetected attack is a problem, the TDS can still perform as
long as some attacks of the threat are detected, but is less accurate.

• The IDS must use signatures that match the attack method in stead
of exact attacks (or exploits). Real threats to networks create their
own attacks and are also be able to exploit custom software. This
means that signatures only matching known vulnerabilities in specific
applications or only match specific exploits are unacceptable.

Currently, none of the third party IDS products available meet all the re-
quirements. Snort [59] and Bro [42] can satisfy all except one requirement;
they fail to use generic attack signatures and therefore only detect known
exploits [57]. ModSecurity [47] is a product that is able to detect generic
attack signatures, but is host based and does not meet the passive monitor
requirement. Since Snort is the generally preferred IDS [46], it is chosen
as the third party IDS product to be used in this TDS. A custom set of
signatures is created to fulfill the requirement on generic attack method
signatures.

Configuration

The configuration of the Snort IDS consists of single configuration file that
is included in Appendix B. This configuration is basically instructing Snort
to listen traffic on TCP port 80 (HTTP). It will verify the IP and TCP
checksum of incoming packets and will handle fragmentation in both IP and
TCP. More information about the configuration is included in comments
in Appendix B.

Signatures

The signatures accompanying Snort are inadequate to detect real threats
performing real attacks; the signatures detect only specific exploits for

29

specific vulnerabilities in specific software [57]. These signatures work only
adequately when protecting against computer worms performing one spe-
cific attack on a known vulnerability in a commonly used software product.
Since most of the websites consist of custom software, using the signatures
accompanying Snort is not useful and a new set of signatures is created for
use in this Threat Detection System.

The attacks performed by real threats can be described using generic at-
tack methods, such as SQL Injection and Cross Site Scripting. To develop
a set of signatures that match these generic attack methods, a complete
overview of these attack methods is required. There are some lists avail-
able describing the attack methods and three resources are particularly
interesting: the OWASP top 10 [55], the CWE/SANS Top 25 Most Dan-
gerous Software Errors [43] and the Certified Secure Web Application Scan
Checklists [64], [62].

The OWASP top 10 is a list of the 10 most critical security risks in web
applications [55], grouped in rather generic categories as “Injection Flaws”
or “Broken Authentication and Session Management”. The CWE/SANS
Top 25 Most Dangerous Software Errors [43] is a list of the 25 most dan-
gerous problems found in software in generic. Both lists are not useable
since they list only a subset of attack methods.

The Certified Secure Web Applications Scan Checklists list all possible
attacks that can be performed by beginning threats (the basic scan checklist
[64]) and advanced threats (the advanced scan checklist [62]). Although
it is not possible for these checklists to be 100% complete, they provide
much better coverage of the attack methods than the OWASP Top 10 and
the CWE/SANS Top 25. A comparison between the three is provided
in Appendix C, which illustrates the coverage of the basic and advanced
checklist when compared to the OWASP Top 10 and the CWE/SANS Top
25.

For many items in the Certified Secure Web Application Scan Checklists,
one or more signatures are created with an annotation to the specified
checklist item they match. However, for some checklist items, it was not
possible to create signatures that would not be triggered accidentally by
legitimate users of the systems. An example of this is the checklist item
“Check for identifier based authorization” (basic scan checklist item 1.3).
The documentation states [60]:

Identifier based authentication is using an identifier (the id=5
parameter in a url) to allow access to an object. If you are for
example authorized to view the following url:

• http://server/userinfo.php?id=23421

30

Then you can change the url to something different and view
the user information of someone else:

• http://server/userinfo.php?id=23422

Creating a signature to match this behavior, would require the IDS to
report any changes of a number in the URL. Normal browsing behavior
can easily match this behavior, and such a checklist item is therefore not
implemented in the signatures.

A first version of the list of signatures for the basic and advanced check-
lists is included in Appendix D and Appendix E. These appendixes include
comments about the checklist items for which no way was found to match
only the attack and no legitimate network traffic. The developed set of
signatures covers 35% of the attack methods as defined by the checklists.
Although this appears to be a low percentage of the known attack methods,
they cover most of the common attack methods such as SQL Injection and
Cross Site Scripting (ranked 1 and 2 in both the OWASP Top 10 and the
CWE/SANS Top 25). In terms of performance, threats could evade this
system using only attacks that are not implemented in signatures. How-
ever, this means that they cannot use many popular attack methods, sig-
nificantly hindering their possibilities. Future research should investigate
the implementation of more checklist items in the signature set, to provide
better coverage, and increase the performance of the system (allowing the
system to detect more threats).

Signature tuning

The performance of the Intrusion Detection System component is impor-
tant for the performance of the complete Threat Detection System. A
common criterion of IDS is the false positive rate, indicating the number
of detected attacks that are not attacks. In the TDS, a false positive in
the IDS can introduce a threat which is not a threat at all, which is a false
positive in the TDS.

To test the false positive rate of the signatures, the IDS is placed within
a real network hosting around 100 websites for 28 days. Because this
test is executed on a real network, the IP addresses, exact URLs, and
identifying headers are anonymized in all examples (replaced with the word
“anonymized”) to preserve privacy. A total of 8115 attacks were detected
by the IDS of which 2699 were false positives. This is a false positive rate
of 0.33 and is a bad result for any IDS. To understand this high rate of false
positives, it is important to closely examine the cause. In Table 4.1, a list is

31

presented of IDS signature and their true positives and false positives. This
table clearly shows that one rule is the cause of most the false positives.

Table 4.1: Preliminary Test: Signatures, True Positives and False Positives

signature true
posi-
tives

false
posi-
tives

checklist item

1120001 3 0 Check for default and predictable accounts
1120002 1 0 Check for default and predictable accounts
1210001 250 2578 Check for filename injection / path traversal
1210002 3 0 Check for filename injection / path traversal
1220001 187 0 Check for SQL injection
1220002 354 0 Check for SQL injection
1220003 1833 0 Check for SQL injection
1230001 176 0 Check for cross site scripting
1230003 13 0 Check for cross site scripting
1230005 4 0 Check for cross site scripting
1240001 5 0 Check for system command injection
1240002 0 1 Check for system command injection
1310001 15 0 Check for uploading of (dynamic) scripts
2091001 0 2 Check for uploading outside of intended directory
20210001 2431 88 Check for extraneous files in document root
20340001 6 0 Check for accessible CVS/SVN directories
20340002 7 0 Check for accessible CVS/SVN directories
20650001 0 30 Check for brute-force user name enumeration
20770001 3 0 Check for SSI injection
20790001 125 0 Check for dynamic scripting injection

Of the 2699 false positives, 2578 false positives are generated by just one
signature (1210001), matching path traversal attacks where the threat is
allowed op open files and uses ../ to open files different directories on the
system. It is possible to just delete this signature matching path traversal.
However, the signature also matched 250 true positives which would no
longer be detected by the IDS. When the contents of the false positives in
reviewed, 2555 of the false positives are created by just one IP address that
keeps sending requests as illustrated in Listing 4.1. Another user copy-
pasted the URL found on the Google result page. This URL contained
three dots since it was abbreviated as illustrated in Listing 4.2. Other false
positives for this signature are listed in Listing 4.3.
GET /anonymized HTTP/1 .1
Accept : t ex t / p la in , t ex t /html , ∗ / ∗ ; q=0.3
TE: t r a i l e r s
Host : anonymized

32

Refe r e r : . . / . . /
User−Agent : Moz i l l a /4 .0 (eknip /1 . 60)
Connection : TE

Listing 4.1: 1 of the 2555 similar false positives by one IP address. The
host was indexing large parts of a website and used ../ in the Referer header
field. This field is used to communicate to the web server which page was
visited previously to this page and allows websites to know which other
websites link to them. Using ../ in this field is highly unlikely, but the host
in this case did not try to attack the network.

GET /anonymized / . . . / anonymized . html

Listing 4.2: A user copied an abbreviated URL from Google instead of
clicking it. The abbreviation introduced the ... in the URL

GET / nl / . . / . . / . . / . . / anonymized HTTP/1 .1
GET /anonymized / . . / anonymized . g i f HTTP/1 .1

Listing 4.3: Two other false positives for signature 1210001, matching path
injection. In this case, the browser is erroneously sending the ../ content,
thereby triggering the signature

The false positives for the signature 1240002 were triggered by a user up-
loading a video file that happened to contain the signature for system
command injection. Another false positive was for signature id 2091001,
where a user uploaded a file with the name “webcam-t01 kleiner..jpg” which
triggered the signature that looks for uploading outside the directory (it
matched “..”). This signature is improved to match “../” and “.." instead of
just “..”.

The false positives generated for signature id 20210001 were matched be-
cause users were legitimately visiting sites containing /admin, /website and
/test. The signature matches when a user scans for extraneous files in the
document root and triggers when more than 10 such requests are made
within 60 seconds. The three hosts that triggering the true positives were
each using more than 100 requests within 60 seconds. Therefore, signa-
ture will be improved by raising the limit to trigger this signature to 100
requests within 60 seconds.

Finally, the false positive generated for signature id 20650001 was matched
because a user forgot his or her password 30 times. Here, the signature
will not be changed since this warrants further investigation.

In the end, manually handling 2699 false positives in 28 days averages to
around 96.4 false positives a day. This is impractical to work within real live
situations. To improve the rate, the signatures are improved (Appendix F,
Appendix G.

33

4.3 Threat classifier

The threat classifier receives a list of attacks on the network and groups
them based on the threat. This results in a list of all threats and for each
threat a list of their attacks.

There are many different ways of classifying a set of attacks, but this prob-
lem has two special properties. First, there is no training set available as
part of the requirements of the system. Without a training set, the algo-
rithm must use unsupervised classification. Second, the result should be a
grouping of the attacks instead of a model that can classify new attacks in
the correct group. Based on these properties, the classification requires a
clustering algorithm:

Clustering is the unsupervised classification of patterns (obser-
vations, data items, or feature vectors) into groups (clusters)[18].

Other classification algorithms either try to detect if a pattern is part of
a group (for example Bayesian classification or minimum error rate clas-
sification) or the algorithms require a training set (discriminant analysis)
[11]. Such algorithms cannot be used as classifier in this research.

The clustering algorithm typically consists of the following steps [19]:

1. pattern representation, describing the pattern (attack in this case)
into features,

2. definition of a distance function between to patterns,

3. clustering or grouping,

4. data abstraction (if needed), and

5. assessment of output (if needed).

The following sections will each discuss one step of the clustering algorithm
and how it relates to the classification problem of this research.

Pattern representation

Pattern representation is the step in the clustering algorithm that selects
the patterns to use and the features of these patterns to use [18]. This step
could also decide the number of clusters to use, but for this project this
number is unknown and is not decided (the number of threats is unknown).

34

The patterns to use are already decided by the Intrusion Detection System
part of this research; of all the possible network communications, only the
actual attacks are selected and presented to the classifier as patterns. This
also allows for the idea that the complete research could be modeled as a
clustering algorithm; the IDS and Threat profiler are part of the clustering
algorithm.

For each pattern (attack), there are many different features that can be
selected. Each feature can be of the following types [14]:

1. Quantitative features: e.g.

a) Continuous values (e.g., weight);
b) Discrete values (e.g., the number of computers);
c) interval values (e.g., the duration of an event).

2. Qualitative features;

a) nominal or unordered (e.g., color);
b) ordinal (e.g., military rank).

There are however, no theoretical guidelines how to choose the features
to use, and most algorithms conveniently assume that the best features
are just available for the clustering step [18]. To itemize a list of possible
features to extract from the patterns, a detailed look on the patterns is
required. Each pattern (attack) consists of one or more IP headers, one or
more TCP headers, one HTTP request, one time stamp, one IDS signature
and the matching data. This results in the following list of possible features:

Generic pattern information The pattern generated by the TDS con-
tains some information about the attack

Timestamp The IDS will add a timestamp to each attack, denoting
the date, and time with microsecond resolution the attack was
detected.

Signature ID The signature id denotes which signature matched
on the packet and triggered the alert.

Matching data The matching data are the part of the network traf-
fic that matched the signature.

IP [52] The IP packet is used to transmit information from one computer
to another.

35

Version Normal communications over the Internet use IP version 4.
In the future, IP version 6 will also be used, but this is outside
the scope of this research.

Header length The IP header length field is calculated from the
packet to contains the length of the IP header.

Differentiated Services [49] The IP differentiated Services field
used to be the Typo of Service field but is replaced in 1998.
Now, it is used to classify network traffic so network operators
can give certain classes (for example VOIP) priority over others.

Total length The IP total length field is calculated from the packet
to contains the total length of the IP packet.

IP identification The IP identification field is a random value for
each IP packet.

Reserved flag The IP reserved flag field is always set to zero.

Don’t fragment flag The IP don’t fragment flag is used to denote
that the packet should not be fragmented.

More fragments flag When a packet is fragmented, the IP more
fragments flag denotes that more fragments are following.

Fragment offset When a packet is fragmented, the IP fragment
offset field denotes the offset of this fragment in the complete
packet.

Time to live Routers use the IP time to live field to prevent loops.
Each router forwarding the packet will decrease this field by one.
When this field reaches zero, the packet is discarded.

Protocol The IP protocol field denotes the protocol encapsulated in
the IP packet. In this research, the value of this field is always
six (TCP)

Header checksum The IP header checksum field is calculated from
the IP header to detect corruption.

Source address The IP source address denotes the sender of the
packet. This information is also provided by the IDS for each
pattern.

36

Destination address The IP destination address denotes the re-
cipient of the packet. This information is also provided by the
IDS for each pattern.

IP options The IP options field is used to include various options
like time stamp and MTU information.

IP data In this research, the IP data will always be a TCP packet.

TCP [53] A TCP packet is used for a TCP connection.

Source port The TCP source port denotes the port used by the
sender.

Destination port The TCP destination port denotes the port used
by the receiver.

Sequence number The TCP sequence number is a random value
for each TCP connection.

Acknowledgement number The TCP acknowledgement number
is a random value for each TCP connection.

Data offset The TCP data offset field denotes the offset of the TCP
data in the packet.

Explicit Congestion Notification flags [65] The TCP explicit con-
gestion notification flags are used to signal network congestion.

Control bits The TCP control bits (URG, ACK, PSH, RST, SYN,
FIN) are used to control the TCP connection (setup, data trans-
mission, and teardown).

Window The TCP window field is used to denote the size of the
receiver window. This field is used to inform the recipient how
many data can be transmitted before an acknowledgement is
required.

Checksum The TCP checksum field is calculated from the packet
and is used to detect corruption.

Urgent pointer The TCP urgent pointed denotes data that are
considered urgent.

TCP options The TCP options field is used to include various op-
tions like window scaling, selective acknowledgement and times-
tamp information.

37

TCP data In this research, the TCP data will always be a HTTP
request

HTTP request [41, 45] The HTTP request is a request from a web
browser to a web service.

Method The HTTP method field denotes the action performed on
the service. Most often, this is either GET or POST.

URI The HTTP Uniform Resource Identifier denotes the resource
to access on the service.

Version The HTTP version field denotes the HTTP version used.
This is normally 1.1 but values of 1.0 are also used.

Headers The HTTP headers contain additional information about
the request like the browser version, the HTTP cookies and the
referring web page.

Body The HTTP body is only used for HTTP methods that upload
data to the service. This could be a file, or the content of a form
submitted using the POST method.

Of these possible features, most features are calculated based on the packet
or the connection and should not be used to identify the attacker. These
features could be used to identify attacks, but this is the responsibility of
the IDS component and not of the classifier. This leaves only the following
features to possibly use for the classifier:

• Generic pattern information

– Timestamp
– Signature ID
– Matching data

• IP

– Source address
– Destination address
– IP Options
– IP data

• TCP

38

– Source port
– Destination port
– TCP options
– TCP data

• HTTP request

– Method
– URI
– Version
– Headers
– Body

For this research, the source IP address is used based on the assumption
that threats do not change IP address during their attacks and that IP
addresses are not used by multiple threats. This assumption does not
hold in every case, but will provide a good starting point for this research.
Future research could extend the threat classifier to use multiple features
and thereby improve the accuracy of the classifier.

Clustering or Grouping

When the features of patterns are selected, the actual clustering or grouping
of patterns is performed. There are many different clustering algorithms,
each with their own properties. For this research, the following require-
ments and limitations are posed on the clustering algorithm:

1. The number of clusters (threats) is unknown;

2. One feature (the source IP address) is present for each pattern (at-
tack).

3. Each pattern (attack) must be grouped into one cluster (the threat).
Future research could allow for attacks to belong to multiple threats;
each with a certain confidence value indicating a confidence of this
attack belonging to this threat.

4. Each cluster (threat) is unrelated to other clusters (threats). Future
research could prove this assumption to be false and find clusters
within clusters (threats working together). For this research, the
threats are either grouped into multiple separate clusters or they are
grouped together in one cluster, depending on the source IP address
that is used.

39

123.123.0.0/16

123.123.0.0/17 123.123.64.0/17 123.123.128.0/17 123.123.192.0/17

123.123.0.0/18 123.123.0.128/18

Figure 4.2: Hierarchical clustering algorithm

230.123.234.23

132.23.82.213

82.93.42.2

72.92.123.5

Figure 4.3: Partitional clustering algorithm

Clustering algorithms are split in hierarchical and partitional algorithms.
The hierarchical algorithms organize the patterns into a tree (a nested
series of partitions [18]) as illustrated in Figure 4.2, where the partitional
algorithms create a partition without nesting as illustrated in Figure 4.3.

For this research, each cluster represents the attacks of one threat. Since
the assumption is that each threat uses one IP address, the clustering
algorithm is very simple: all threats from one IP address belong to the
same cluster.

Evaluation of assumption

An important assumption in this research is that threats use one IP address.
This section discusses the validity of this assumption.

40

Literature states that threats can use a different IP address for each step
of their attack [2]. However, practical experience in this field tells that this
is not the case for real hackers, but only for automated worms. Hackers
will use a system they earlier compromised as source of their attack, but
are unlikely change systems (and therefore IP address) during the attack.

To evaluate this assumption, a distinction is made between targeted and
un-targeted attacks. Targeted attacks involve a threat that is focussing
on a specific network. Such a threat is either executing attacks from his
own system or operating a set of computers to camouflage the attack. For
un-targeted attacks, a worm or virus is circulating the Internet infecting
systems at random. Each compromised system then starts attacking other
systems. A special case of this is the botnet, where compromised systems
become part of a network that is controlled by a person or group of persons.

For the un-targeted attacks by worms, virii and botnets, it could be rea-
soned that their attacks should be clustered together; this would lead to
one threat for each worm, virus, or botnet attacking the network. How-
ever, it could also be reasoned that the computers are compromised and
should be counted as separate threats; they are each trying to compromise
the network. If the TDS would combine the attacks of one worm, virus, or
botnet in one threat instead of separate threats for each infected computer,
it would change the scenario where, for example, 100 threats perform 5 at-
tacks each, to a scenario where 1 threat performs 500 attacks. This changes
the characteristics of the threat to a targeted attack (one threat, many at-
tacks) instead of an un-targeted one (many threats, few attacks). For this
thesis, the choice is therefore made to count each compromised computer
performing attacks on the network as separate threats.

For targeted attacks, the assumption is that threats will not camouflage
their attacks by using multiple systems. When threats do use multiple
systems, they are detected as multiple threats performing a few attacks
each. It is possible for a threat to use one IP address to perform a few
complicated attacks, and several other IP addresses to perform many easy
attacks. The system will now detect one threat with an advanced skill level
executing a few attacks, and some threats with a beginning skill level exe-
cuting a few attacks each. In the case of network security monitoring, the
security expert is notified of multiple threats attacking the network. When
using the system for risk management, the security expert must allow for
an error rate in the system; when 10 threats are detected with a beginning
skill level and 1 threat with an advanced skill level, it is possible the risk
is over-estimated since all threats are actually one. In both scenarios, the
threat is detected multiple times instead of just once.

Threats could also share their computer with multiple threats, detected by
the system as one threat performing many attacks instead of a few threats

41

performing a few attacks. In the scenario of network security monitoring,
the security experts focus on all activity of the IP address of this threat,
and are being more efficient: instead of looking at multiple IP address they
only have to look at one. In the scenario of risk management, sharing a
computer causes an under-estimation of the number of threats on a network
and this error rate should be taken into account when using the system.

In conclusion, targeted threats gain from sharing their computer when the
system is used for risk management: the risk is under-estimated. This
under-estimation error rate is calculated in chapter 5.

4.4 Threat profiler

The threat profiler component of the Threat Detection System receives a
list of threats and their attacks from the threat classifier component. For
each threat, a set of concrete properties is assigned. Although it would be
pleasant to assign a “motivation” or “intent” property to a threat, this is
abstract and cannot be objectively measured. Therefore, only properties
that can be objectively measured should be implemented. This research
implements the number of attacks detected by system for this threat as on
objectively measured property.

The research also implements a subjective property: the skill of the threat.
Although this skill property subjective, it is based on objective measurable
facts: the attack methods detected for the threat. The interpretation of
these facts is subjective and is therefore configurable: a security expert
with a different opinion on skill could configure the system to reflect her
ideas.

Finally, an abstract property is also implemented: the android property
stating whether the threat is a human or a computer program. Abstract
properties should not be implemented at all, because they constitute of
concepts that cannot be measured. For this research, the android prop-
erty is implemented because there is a simple measurable fact (how fast
are attacks performed) that is a strong indicator whether the threat is
a computer (the attacks are performed inhumanly fast) or a human (not
all attacks are performed inhumanly fast). By implementing this abstract
property, the added value of such properties can be determined.

Intensity class profiler

The intensity profiler defines the attack intensity of a threat, which is an
objective fact that can be measured by the system. The NIST standard [34]

42

uses motivation instead of attack intensity, but because motivation is an
abstract interpretation for which no measurement that can be performed
by a computer is known, this research cannot provide a motivation profiler.
The intensity profiler can measure the number of attacks and the rate of
these, and leave the interpretation of this data to the security expert.

The intensity profiler could measure several statistics for each threat that
could be used to determine the intensity class of this threat. For example,
the total number of attacks is an important metric to identify the motiva-
tion of threats. However, since not all threats are using tools to perform a
large number of attacks, another important metric is the number of minutes
the threat is active attacking the network.

This research could assign the number of attacks and the number of minutes
active to each threat. However, to allow security experts to select generic
classes instead of a specific number of attacks or minutes, four intensity
classes are introduced as illustrated in Thresholds for the intensity classes
(one of the thresholds must be met) (Table 4.2). Since these classes are on
interpretation of the data, the thresholds are configurable to allow different
interpretations by other security experts. The thresholds in this implemen-
tation are chosen on personal experience with attack & penetration testing
and are explained in more depth in section 4.4.

Table 4.2: Thresholds for the intensity classes (one of the thresholds must
be met)

Intensity Class Number of attacks Number of minutes active

Intensity 1 > 1 > 1
Intensity 2 > 10 > 5
Intensity 3 > 100 > 25
Intensity 4 > 1000 > 125

Skill class profiler

The skill profiler defines the skill class of a threat, which is a subjective
property. The implementation of this profiler is based on a subjective
opinion of skill and is therefore configurable by other security experts to
match their opinions.

The Intrusion Detection System component can detect generic attack meth-
ods and annotates each detected attack with the signature that was trig-
gered which is linked to an attack method. For each attack method, a
choice is made whether this method can be used by beginning threats or

43

only by more advanced threats. All methods listed in the Certified Secure
Basic Web Application Scan Checklist [64] are well known and easy to per-
form, the methods listed in the Certified Secure Advanced Web Application
Scan Checklist [62] are either complicated to perform or known by only a
few.

The skill profiler is based on the idea that a threat performing an attack
method listed in the basic checklist is of at least basic skill; the threat
is therefore able to perform any of the attack methods listed in the basic
checklist since all methods listed in the basic checklist are well known and
easy to perform. If the threat performs an attack listed in the advanced
checklist, the threat is either capable of performing a complicated attack
method or has knowledge of an attack method that is not widely known.
The threat is therefore considered to be able to perform any of the at-
tack methods listed in the advanced (or basic) checklist. The concepts of
“basic”, “advanced”, “easy”, “complicated”, “known”, “not widely known”
are all subjective and implemented using the interpretation of the Certified
Secure checklists. If a security expert disagrees with these interpretations,
she can easily change to the algorithm to reflect a different set of classes.

The relationship between the signatures, the checklist items, and the re-
sulting skill class is presented in Table 4.3. This information is stored in
a relational database that can be queried by the skill class profiler. The
security expert using the TDS must consider the hierarchy of the classes;
a threat able to perform an attack from the “advanced” class, is also able
to perform an attack from the “basic” class.

The skill property of a threat is therefore calculated by locating the check-
list of each signature. When a threat performs only attacks listed in the
basic checklist, the skill of the threat is defined as “basic”. A threat per-
forming at least one attack in the advanced checklist is defined as “ad-
vanced”. It is not possible for a threat to have a “none” skill class, because
any threat detected by the system has executed at least one attack and is
therefore defined with at least a “basic” skill level.

Android profiler

The android profiler defines whether the threat is a computer or a human.
This is an abstract property, and such properties cannot be accurately
implemented in a computer program. The android profiler is implemented
to test the accuracy if such a property implemented.

For this property, the profiler is implemented based on the observation
of inhuman behavior. Threats that manually execute attacks are likely
to think before the next request and have to manually type the attack.

44

Table 4.3: Relationship between signatures, checklist items, and skill
classes

Signature Checklist item Skill class

1120001 Check for default and predictable accounts basic
1120002 Check for default and predictable accounts basic
1120003 Check for default and predictable accounts basic
1120004 Check for default and predictable accounts basic
1120005 Check for default and predictable accounts basic
1120006 Check for default and predictable accounts basic
1210001 Check for filename injection / path traversal basic
1210002 Check for filename injection / path traversal basic
1220001 Check for SQL injection basic
1220002 Check for SQL injection basic
1220003 Check for SQL injection basic
1230001 Check for cross site scripting basic
1230002 Check for cross site scripting basic
1230003 Check for cross site scripting basic
1230004 Check for cross site scripting basic
1230005 Check for cross site scripting basic
1230006 Check for cross site scripting basic
1230007 Check for cross site scripting basic
1230008 Check for cross site scripting basic
1240001 Check for system command injection basic
1240002 Check for system command injection basic
1310001 Check for uploading of (dynamic) scripts basic
20210001 Check for extraneous files in document root advanced
20340001 Check for accessible CVS/SVN directories advanced
20340002 Check for accessible CVS/SVN directories advanced
20370001 Check for accessible non-parsed dynamic scripts advanced
20650001 Check for brute-force username enumeration advanced
20650002 Check for brute-force username enumeration advanced
20710001 Check for double decoding of headers / parameters advanced
20710003 Check for double decoding of headers / parameters advanced
20710004 Check for double decoding of headers / parameters advanced
20710005 Check for double decoding of headers / parameters advanced
20760001 Check for XSL(T) injection advanced
20770001 Check for SSI injection advanced
20790001 Check for dynamic scripting injection advanced
20810001 Check for XML external entity parsing advanced
20820001 Check for XML external DTD parsing advanced
2091001 Check for uploading outside of intended directory advanced
2091002 Check for uploading outside of intended directory advanced
2094001 Check for uploading of configuration files advanced
2094002 Check for uploading of configuration files advanced

45

Figure 4.4: Timing of attacks performed by a computer. For this illustra-
tion, data of the Real network experiment, as described in the Benchmark
and results chapter, is used.

Therefore, when the interval between two attacks is too small, it must be
have been a computer program performing these attacks. The algorithm
to define the android therefore uses a set of threshold values. Different
thresholds for attacks within one second, within one minute, and within
one hour are set.

A threat is identified being a computer program when all attacks are per-
formed at inhuman speed, as defined by the thresholds. The timing of
the attacks performed by a computer program is illustrated in Figure 4.4.
When a threat performs at least some manual attacks, the threat is iden-
tified as being a human being. Such a threat could perform only manual
attacks (illustrated in Figure 4.5) or a combination of manual attacks and
automated attacks (illustrated in Figure 4.6).

In this profiler, a threat is considered human when the number of attacks
that are not part of computer attacks is above a certain threshold. For
example, if the threat executes only a tool, then all attacks are within
the computer thresholds and no human attacks will be counted. If the
threat then tries some attacks himself, they will count towards the human
threshold.

The exact thresholds are configurable, but they represent properties of
the actual threats and therefore will not change much between different
networks. This means that the thresholds can be set once using an experi-
ment. The values can then be used by many different networks, under the
assumption that the threats will not change.

46

Figure 4.5: Timing of attacks performed by a human. For this illustration,
data of the Hacker experiment, as described in the Benchmark and results
chapter, is used.

Figure 4.6: Timing of attacks performed by a human who also uses some
computer tools. For this illustration, data of the Hacker experiment, as
described in the Benchmark and results chapter, is used.

47

Usage

The following definition for the classes can be used when using the skill,
android, and intensity property in risk management and security monitor-
ing:

basic skill class The threat is capable of executing the attacks against
vulnerabilities that are listed in the Certified Secure Basic Web Ap-
plication Scan Checklist [64].

advanced skill class The threat is capable of executing the attacks against
vulnerabilities that are listed in both the Certified Secure Basic Web
Application Scan Checklist and the Certified Secure Advanced Web
Application Scan Checklist [62].

Computer class The threat is using a computer programs to perform
attacks. The security expert could select the computer class when
exploiting the vulnerability can be performed by a tool.

Human class The threat is an actual human beings using a browser or
telnet to manually attack systems. When a threat is (also) performing
manual attacks, the chances of exploiting a vulnerability are generally
much higher as they can think about what happens and alter their
approach; automated tools will fail when the system is not responding
as expected. The security expert must select the human class when
assessing a vulnerability that requires actual thinking and manual
steps (for example requiring a captcha [39]).

intensity 1 class The threat has executed at least one attack on the net-
work.

intensity 2 class The threat has executed at least 10 attacks on the net-
work or is active for 5 minutes. This means that the threat did not
try just one thing and left when it didn’t work, as is usual for worms
and virii. The threat will not be able to find all vulnerabilities, but
there is a chance that a vulnerability is found and exploited.

intensity 3 class The threat has executed at least 100 attacks on the
network or is active for 25 minutes. This threat could be interpreted
as being serious about compromising the network and is likely to be
able to exploit vulnerabilities that are simple for his skill class.

intensity 4 class The threat has executed at least 1000 attacks on the
network or is active for 125 minutes. This threat could be interpreted
as being very serious about compromising the network and is likely
to be able to exploit vulnerabilities that are difficult for his skill class.

48

When using the TDS to improve the estimation of a vulnerability as part
of risk management, the security expert should locate the attack method
required to exploit the vulnerability in either the basic or the advanced
checklist. This checklist then corresponds to the skill class that is required
for threats to be capable of exploiting this vulnerability. Because of the
hierarchy in the classes, when the vulnerability is listed in the basic check-
list, the threats of the advanced skill must also be included in the query.
If the vulnerability is not listed on either of the checklists (as they can-
not be complete), the security expert has to decide on which checklist the
vulnerability belongs.

Then, the security expert should determine if the vulnerability can only be
exploited by a human. An example of this would be the case where the
threat must register for an account and then log in to the system; these
steps are too complicated for an automated tool and therefore, the human
class is selected. In all other cases, the security expert selects the computer
class and human class for this vulnerability, as both computer programs
and humans can exploit the vulnerability.

Finally, the security expert selects the intensity class that is required for
this vulnerability. The intensity class should correspond with the number
of attacks, and the amount of time required to identify the vulnerability.
Some vulnerabilities can be identified in one attempt, for example cross site
scripting. Other vulnerabilities require a few attempts, for example, SQL
injection. How many attacks are required to exploit the vulnerability is
irrelevant, since the threats will first identify if a vulnerability exists before
attempting to exploit it. For the metrics, it is important to also count the
threats looking for this vulnerability, even when they don’t find it. As with
the skill and android class, the classes of higher intensity should also be
selected: instead of selecting just intensity 2, also intensity 3 and 4 must
be selected.

When the appropriate classes are selected for the vulnerability, the security
expert can consult the TDS. The query to the TDS could for example
be ‘how many threats of (basic skill or advanced skill) and human and
(intensity 2 or intensity 3 or intensity 4) were identified on the network in
the last 7 days’. This number will not be the exact chance that a threat will
exploit the vulnerability but is a number that can be used in the estimation
[31].

If a security expert uses the TDS for network security monitoring, the
skill, android, and intensity properties provide information about the active
threats. By referencing the checklists, the possible attacks of the threats
become clear and a decision to further investigate this threat can be made.
Because the attacks of uninteresting threats are grouped together, the se-
curity expert will spend little time investigating those uninteresting events.

49

Chapter 5
Benchmark and results

In this chapter, the testing methodology and results are presented for a
final evaluation of the system. The results show if the research meets the
problem definition:

Design a system to detect and profile threats on a computer net-
work to improve risk management and network security moni-
toring.

An important measure to evaluate IDSs, is the rate of false positives and
false negatives. Ideally, these measurements are performed using a labelled
data set that is representative for the purpose of the system. In this case,
a data set that contains attacks of threats which are annotated (labelled),
could determine the number of users that are falsely detected as being a
threat (false positive rate) and the number of threats that are not detected
at all (false negative rate). The only publicly available data set that is
current and provides labels for each threat and attack, contains only the
netflow information and not the full contents of the network packets [32]
and is therefore not suitable for this research.

To evaluate if the system provides meaningful information to security ex-
perts performing risk management and network security measurement, the
results of the system are analyzed in two scenarios. First, a test is exe-
cuted by placing the system in a real network for 4 days. For this network
the threats and their attacks are unknown, but all detected threats can
be manually evaluated and false positives can be found, providing an in-
dication of the false positive rate of the system. In the second test, the
system is placed in a network containing only threats. The network hosts
a web hacking challenge and is therefore not representative for real world
scenario’s (the attacks are similar, but in the real world the threats have

51

no permission to attack the sites and therefore could behave differently).
Since the threats are known and fill out a questionnaire, this test allows to
test the false negative rate of the system which is not possible in a scenario
that is truly representative for the real world containing unknown threats
and unknown attacks.

5.1 Testing methodology

Both tests consist of a number of steps to ensure the quality and accuracy
of the results. In this section, the steps are shortly described.

1. Basic information about the network (number of hosts, number of
websites, and bandwidth information) is documented.

2. A choice is made for online or offline analyses of the network traffic.

a) For online analysis (test 1), the TDS is installed on a system
that has access to the network traffic (for example using a SPAN
port).

b) For offline analysis (test 2), a full network trace for tcp port 80
is created using tcpdump1.

3. For the period of collecting information, the system is regularly ver-
ified to be functioning properly.

4. After a documented period of time, the network monitoring is closed.
For offline analysis, the trace is now transferred to the TDS running
on a standalone computer which will process it.

5. The number of attacks detected by the IDS component of the system
is documented, along with a breakdown in number of attacks per
signature.

6. For test one, each attack is manually verified to be a true attack.
The captured trace can provide more information and context to
each attack. The false positive rate of the IDS component of the
system is now calculated and documented along with the actual false
positives and when possible a reasoning for this error.

7. For both tests, the performance of the threat classifier is discussed.
This cannot be 100% accurate in the first test, since no information
is known about the source IP addresses of the threats. In the second

1tcpdump -i interface -s 0 -w trace port 80

52

test, the IP addresses is recorded for each threat and this information
can be used to evaluate the classifier.

8. For both tests, the properties that are assigned to threats are dis-
cussed. As in the previous step, this cannot be 100% accurate since
no information about the exact properties of each threat is known in
the first test.

9. For test one, the number of threats for which only false positive at-
tacks are found, is documented as the false positive rate of the com-
plete system. The reason why these threats are found as such is
already documented in the step documenting the false positive rate
of the IDS component.

10. For test two, the number of threats that have been recorded to com-
plete a hackme challenge, but are undetected by the system, are
documented as the false negative rate of the complete system. If pos-
sible, the reason why this threat wasn’t detected is documented as
well.

11. For test two, the correlation between the skill of the threats deter-
mined by the questionnaire and the skill of the threat determined by
the system is calculated.

5.2 Real network experiment

The first test is the baseline scenario. During the development of the
system, it was placed within a real network hosting around 100 websites
for the duration of 28 days to get a general idea of the working of the
system and setting the system parameters. In this experiment, the system
is placed within the same network for four days to evaluate the performance
of the TDS in a real network.

IDS results

The IDS component of the TDS is responsible for detecting the actual
attacks on the network. The false positive and false negative rate of this
component has direct influence on the performance of the TDS. However,
the false negative rate of this component should not have that much impact
on the performance of the TDS, as long as some attacks are detected for
each threat.

In this scenario, a total of 1343 attacks were detected by the IDS of which
540 were false positives. This is a false positive rate of 0.40. In Real network

53

experiment: Signatures, True Positives and False Positives (Table 5.1), a
breakdown of is given of true and false positives for each IDS signature.

Table 5.1: Real network experiment: Signatures, True Positives and False
Positives

signature true
posi-
tives

false
posi-
tives

Checklist item

1210001 221 540 Check for filename injection / path traversal
1220001 10 0 Check for SQL injection
1220002 168 0 Check for SQL injection
1220003 128 0 Check for SQL injection
1230001 71 0 Check for cross site scripting
20210001 184 0 Check for extraneous files in document root
20650001 8 0 Check for brute-force user name enumeration
20790001 13 0 Check for dynamic scripting injection

The false positives generated by the IDS are all originating from one IP
address, using “../” in the Referrer header field as illustrated in Listing 5.1.
As previously documented section 4.2, these requests aren’t meant as file-
name injection attacks, but could have been attacks in another context.
No other false positives are detected by the IDS.
GET /anonymized HTTP/1 .1
Accept : t ex t / p la in , t ex t /html , ∗ / ∗ ; q=0.3
TE: t r a i l e r s
Host : anonymized
Re f e r e r : . . / . . /
User−Agent : Moz i l l a /4 .0 (eknip /1 . 60)
Connection : TE

Listing 5.1: One threat performed 540 requests that were falsely detected
as an attack. The threat was indexing large parts of a website and used ../
in the Referer header field. This field is used to communicate to the web
server which page was visited previously to this page and allows websites
to know which other websites link to them. Using ../ in this field is highly
unlikely, but the threat in this case did not try to attack the network.

Threat classifier and profiler results

The 1343 attacks that are detected by the IDS are clustered by the threat
classifier in 47 threats. A breakdown of threats and their properties is
provided in Table 5.2. For each threat, the accuracy of the threat classifier
and threat profiler is evaluated:

54

Table 5.2: 47 threats and their properties

id skill android intensity incorrect classification

1 basic computer intensity 3
2 advanced computer intensity 3
3 basic computer intensity 3
4 basic computer intensity 1
5 basic computer intensity 1
6 basic computer intensity 1
7 basic computer intensity 2
8 basic computer intensity 2
9 basic computer intensity 2

10 basic computer intensity 1
11 basic computer intensity 1
12 basic computer intensity 1
13 basic computer intensity 1
14 basic computer intensity 1
15 basic computer intensity 1
16 basic computer intensity 1
17 basic computer intensity 1
18 basic computer intensity 1
19 basic computer intensity 1
20 basic computer intensity 1
21 basic computer intensity 1
22 basic computer intensity 1
23 basic computer intensity 1
24 basic computer intensity 1
25 basic computer intensity 1
26 basic computer intensity 1
27 basic computer intensity 1
28 basic computer intensity 1
29 basic computer intensity 2
30 basic computer intensity 2
31 basic computer intensity 2
32 basic computer intensity 2
33 basic computer intensity 2
34 basic computer intensity 2
35 advanced computer intensity 1
36 advanced computer intensity 1
37 advanced computer intensity 1
38 basic computer intensity 1
39 basic computer intensity 1
40 basic computer intensity 1
41 basic computer intensity 1
42 basic computer intensity 2
43 basic human intensity 1 wrong android

55

Table 5.2: 47 threats and their properties

id skill android intensity incorrect classification

44 basic computer intensity 1
45 basic computer intensity 1
46 basic human intensity 1 wrong android
47 basic computer intensity 1

• The 540 false positives are represented by 1 threat (id 1) that isn’t a threat
and therefore a false positive, as discussed in section 5.2 and illustrated in
Listing 5.1. The profile of this threat consists of the basic skill class and
an intensity of 3 (a threat being serious about compromising the system).
The threat is listed as computer, which is correct since it automatically
downloads many pages using some tool. Security experts monitoring this
network should investigate this threat and then conclude this threat is a
false positive.

• One threat (id 2) that is listed with advanced skill and intensity 3, per-
formed 292 attacks by using a tool on multiple occasions (10 times in 2
days). The intensity class is appropriate for this behavior, and the tool
is able to perform advanced attacks like searching for extraneous files on
the website. This threat is listed as a computer, which is correct since
only automated attacks are performed. The threat profile for this threat
is therefore accurate.

• Four threats (ids 3-6) performed many SQL injection attacks illustrated
in Listing 5.2, one of which is listed as intensity 3 for performing 104
attacks and listed with a basic skill for only performing attacks listed in
the basic checklist. All threats are listed as computers, which is correct.
This intensity and skill class are appropriate for this threat.

• There are 22 threats (ids 7-28), all part of a bot-net that perform an
identical filename injection attack as illustrated in Listing 5.3. Three of
these threats are profiled with intensity class 2, because they performed
more than 10 attacks. All threats are profiled to be of basic skill, which
is correct since they perform only filename injection attacks. Also, all
threats are listed being a computer which is also correct. These attacks
are the beginning of a string of attacks named “Local File Inclusion”,
and detecting such attacks in their first stage could be useful for network
security monitoring.

• Interestingly, six threats (ids 29-34) performed similar SQL injection at-
tacks (illustrated in Listing 5.4) simultaneously. The number of attacks
for each host is 30, which could a method of camouflaging the attacks of
one threat. Instead of one threat with intensity class 3, this threat is re-
ported as 6 threats, each with intensity class 2. Apparently, camouflaging

56

is happening on real networks. All threats are listed as being computers,
which is correct.

• Three threats (ids 35-37) performed an advanced dynamic scripting in-
jection attack (illustrated in Listing 5.5) and therefore have the advanced
skill property. These threats executed a few attacks (6, 6 and 1 attacks
per threat) and therefore are listed as intensity 1. Also, these threats are
correctly listed as computers since this attack is performed by a tool.

• Two threats (ids 38 and 39) performed a cross site scripting attack, as
illustrated in Listing 5.6. These threats are systems of Yahoo and Scout-
jet, which suggests that some website embedded an attack in their links.
This could be a novel way of performing attacks anonymously. The inten-
sity (1), skill (basic) and android (computer) classes for these threats are
appropriate.

• An interesting event is illustrated in Listing 5.7 caused by two threats
(ids 40 and 41). In this case, a threat performed a normal SQL injection
attack and Google repeated this attack within seconds. The reason for this
behavior is the use of Google analytics on the target website. Apparently,
when Google analytics is included on a URL that is not yet known by
Google, it will be downloaded by Google. This could also be an interesting
new way of performing attacks anonymously. The intensity (1) and skill
(basic) classes for these threats are appropriate. The android (computer)
class is also acceptable, since only one attack is not enough to determine
if the threat is a human.

• Three threats (ids 42-44) performed a filename injection similar to threats
7-28, as illustrated in Listing 5.8. These threats however, are part of a
different bot-net since their requests are slightly different. For one of these
threats, the profiler incorrectly assigns the human class. The skill (basic)
and intensity (2, 1 and 1) classes are correct.

• One threat (id 45) performed sql injection attacks on a site using an au-
tomated tool (illustrated in Listing 5.9). The skill (basic), android (com-
puter) and intensity (1) classes are correct for this threat.

• One threat (id 46) performed a filename injection attack as illustrated in
Listing 5.10, similar to threats 7-28 and threats 42-44. This threat is also
different in the exact attack, and is incorrectly assigned the human class.
The skill (basic) and intensity (1) classes are correct.

• Finally, one threat (id 47) performed a filename injection attack as illus-
trated in Listing G.1 which is, again, similar to threats 7-28, 42-44 and
46. This threat is correctly assigned the basic, computer and intensity (1)
classes.

This experiment shows that the system is capable of detecting threats on a real
network. The false positive rate of the system during this experiment is 1 out of

57

47 (2.1%). The profiler correctly identified the skill and intensity class to each
threat, and identified the correct android class for all except two threats (4.3%).

GET /cmsms/ index . php? page=anonymized\%27\%20\%61\%6E
\%64\%20\%27\%36\%27\%3D\%27\%35 HTTP/1 .1

User−Agent : Moz i l l a /4 .0 (compatible ; MSIE 6 . 0 ; Windows NT 5 . 0)
Accept : ∗/∗
Host : anonymized
Cache−Control : no−cache
Cookie : CMSSESSIDfcd6a619=ad57bbc5c6c31bb6b2c3ef38c1fbc09c

Listing 5.2: 4 threats performed many SQL injection attacks on different
sites using the same sql injection encoding (%27%20%61)

GET /? opt ion=com_preventive&c o n t r o l l e r
= . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / proc / s e l f /
envi ron\%00 HTTP/1 .1

TE: d e f l a t e , gz ip ; q=0.3
Connection : TE, c l o s e
Host : anonymized
User−Agent : libwww−p e r l /5 .832

Listing 5.3: 22 threats performed this path traversal attack. By including
the /proc/self/environ file, the threat can easily test if the website is
vulnerable to this attack

ey=1&h i t=1&opt ion=com_zoom&itemid=66&page=view&ca t i d=6&pageno
=1\%20and\%201=2\%20union\%20 s e l e c t \%20CONCAT(0 x27 , 0 x7c , 0
x5f , 0 x7c) ,CONCAT(0 x27 , 0 x7c , 0 x5f , 0 x7c) ,CONCAT(0 x27 , 0 x7c , 0 x5f
, 0 x7c) ,CONCAT(0 x27 , 0 x7c , 0 x5f , 0 x7c) ,CONCAT(0 x27 , 0 x7c , 0 x5f , 0
x7c) ,CONCAT(0 x27 , 0 x7c , 0 x5f , 0 x7c) ,CONCAT(0 x27 , 0 x7c , 0 x5f , 0 x7c
) ,CONCAT(0 x27 , 0 x7c , 0 x5f , 0 x7c) ,CONCAT(0 x27 , 0 x7c , 0 x5f , 0 x7c) ,
CONCAT(0 x27 , 0 x7c , 0 x5f , 0 x7c) ,CONCAT(0 x27 , 0 x7c , 0 x5f , 0 x7c) ,
CONCAT(0 x27 , 0 x7c , 0 x5f , 0 x7c) ,CONCAT(0 x27 , 0 x7c , 0 x5f , 0 x7c) ,
CONCAT(0 x27 , 0 x7c , 0 x5f , 0 x7c) ,CONCAT(0 x27 , 0 x7c , 0 x5f , 0 x7c)
\%20/∗ HTTP/1.1

User−Agent : c zxt2s
Host : anonymized
Cookie : dd9d28a1e5ca5f12f0e5797c7a4bae3b=

f6 f f f f 1370072c1402d83d9e74d0e0e f ; mosv i s i t o r =1; PHPSESSID=9
pvv0cqhp9lekph1dul280rvo1

Listing 5.4: 6 threats performed this SQL Injection attack (only the
matching part of the request is displayed)

GET // l i b / adodb_lite /adodb−per f−module . i nc . php? last_module=
zZz_ADOConnection\%7B\%7Deval ($_GET[w]) ; class\%20
zZz_ADOConnection\%7B\%7D//&w=inc lude ($_GET[a]) ;&a=http ://
www. dong69 . co . kr /xe/ganyot/ t e s t ?? HTTP/1 .1

TE: d e f l a t e , gz ip ; q=0.3
Connection : TE, c l o s e
Host : anonymized

58

User−Agent : Moz i l l a /4 .0 (compatible ; MSIE 7 .0 b ; Windows NT 6 . 0)

Listing 5.5: 3 threats performed this dynamic scripting injection attack.
This attack includes a script hosted on www.dong69.co.kr that contains
the actual commands being executed

GET /anonymized /22 ’></s c r i p t ></p> HTTP/1.1
Host : anonymized
User−Agent : Moz i l l a /5 .0 (compatible ; ScoutJet ; +http ://www.

s c o u t j e t . com/)
Accept−Encoding : gz ip
Accept : ∗/∗
Connection : c l o s e

Listing 5.6: Two threats (yahoo and scoutjet) perform this Cross Site
Scripting attack, probably because some website included a link with this
attacks. This is an interesting attack since threats are able to use search
engines to perform their attacks

GET /?ID=1\%20OR\%201=2 HTTP/1 .1
Host : anonymized
Connection : Keep−a l i v e
Accept : ∗/∗
User−Agent : Mediapartners−Google
Accept−Encoding : gzip , d e f l a t e

Listing 5.7: Two threats (including google) performed this SQL Injection
attack

GET /components/ com_joomlalib/ standa lone /stubjambo . php? baseDir
= . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / proc / s e l f /
envi ron\%00 HTTP/1 .0

Host : anonymized
Accept : ∗/∗
User−Agent : Moz i l l a /5 .0

Listing 5.8: 3 threats performed this filename injection attack which is
similar to the previous filename injection attack but uses different headers

GET / index . php? id=84\%20aND\%208\%3D8 HTTP/1 .1
User−Agent : Moz i l l a /4 .0 (compatible ; MSIE 6 . 0 ; Windows NT 5 . 0)
Accept : ∗/∗
Host : anonymized
Cache−Control : no−cache
Cookie : PHPSESSID=ogg6qb008ja019as7 jbv i0dc53 ; fe_typo_user=10

ad246fa5d01227bc1130f8 fe90 fd42 ; anonymized

Listing 5.9: 3 threats performed this filename injection attack which is
similar to the previous filename injection attack but uses different headers

59

GET / index . php? page = . . / . . / . . / . . / . . / . . / . . / . . / proc / s e l f / envi ron
\%00 HTTP/1 .0

Host : anonymized
Via : 1 . 1 cachead l l i nk −1:33127 (Lusca)
X−Forwarded−For : 187 . 17 . 191 . 168
Cache−Control : max−age =2419200

Listing 5.10: One threat performed this filename injection attack which is
similar to the previous filename injection attack but uses different headers

GET / index . php?module=PostWrap&page = . / . . / . . / . . / . . / . . / . . / . . / . . /
e t c /passwd HTTP/1 .1

TE: d e f l a t e , gz ip ; q=0.3
Connection : TE, c l o s e
Host : anonymized

Listing 5.11: One threat performed this filename injection attack which is
similar to the previous filename injection attack but uses different headers

5.3 Hacker experiment

To evaluate the ability of the TDS to identify the skill of threats, an experiment
is conducted by inviting hackers to compromise a website and then complete a
questionnaire to identify their skill level. For each hacker, the skill level identified
by the questionnaire is compared to the skill level as reported by the TDS, to
calculate the correlation between the two.

Question

The main question of this experiment is whether the TDS can accurately profile
the threats:

What is the correlation between the skill level detected by the TDS
and the skill level determined by a questionnaire?

Hypothesis

The hypothesis of this test is:

If hackers are invited to attack a computer that is monitored by the
TDS and complete a questionnaire to assess their skill, then there is
a strong, positive correlation between the two, which is statistically
significant.

60

Experiment

This experiment consists of the following steps:

1. The link to this experiment is posted on hacker forums and asks profes-
sional penetration testers to participate.

2. Participants are provided with a description of the experiment.

3. Participants are provided with the following guidelines:

• You are invited to hack a website (named “Best Gadgets”) we have
set up for this experiment. You are only allowed to hack “Best
Gadgets” and should use only web-attacks (so no denial of service
attacks please).

• The website includes both easy and difficult vulnerabilities you can
try to exploit. It is ok if you find only a few of these vulnerabilities
or none at all.

• While you are hacking the sites, it would be helpful if you keep some
notes on the things you have tried and the things you have found.
Later in the questionnaire, we will ask you what types of attacks you
have tried and if you succeeded in them.

• When you want to stop hacking (anywhere from a few minutes to a
few hours is ok), just press the “Finish hacking” button. You are then
asked some questions (in a small questionnaire) about your hacking
experience and the things you have tried and found on the website.

• The information you provide in the questionnaire and the attacks
you perform on the hacker challenge will only be used in scientific
research. Only anonymized and aggregated data and anonymized
examples of interesting attacks will be published.

• We want to correlate your hacking attacks with the answers you
provide on the questionnaire. Therefore we will send you a link to
“Best Gadgets” that includes an identifier.

• If you like to be informed on the results of this experiment, you can
state this in the questionnaire.

4. Participants provide their e-mail address and receive a link to the website
containing a unique identifier.

5. Participants continue to the website containing the following vulnerabili-
ties

a) Accessible non-parsed dynamic script in login.php.bak

b) Cross Site Scripting in the ‘leave a message’ box

c) Filename Injection Attack in the page parameter of the URL

61

d) SQL Injection in the error parameter of the URL
e) XML External Entity Attack in the XMLRPC-Ajax communication
f) XSLT Injection Attack in the search field

6. Participants have a button at the bottom of the screen “finish hacking”
to continue with the questionnaire of the experiment.

7. Participants answer a questionnaire containing the following questions

a) Demographic questions
i. What is your gender? (male/female)
ii. In what year were you born?
iii. What country are you from?
iv. What is your highest academic degree? (High School Diploma,

Bachelor’s Degree, Master’s Degree, Doctorate, Other (please
specify))

b) Skill quesions
i. How would you rate your hacking skill? (1-5 rating: 1=very

basic skill, 5=very advanced skill)
ii. Please describe your training/certificates in computer security

(if any)
iii. How would you rate your ability to perform attacks on the fol-

lowing security problems? (1-5 rating: 1=I never heard about
this attack, 2=I have heard about the attack, but cannot per-
form it, 3=I can perform a basic version of this attack, 4=I can
perform different forms of this attack, 5=I know all there is of
this attack.)

iv. Accessible non-parsed dynamic scripts: an attack where the
hacker tries to find backups of scripts that are left by editors

v. Cross Site Scripting: an attack where the attacker can inject her
HTML code (including Javascript) in the website

vi. Filename Injection or Path Traversal: an attack where the at-
tacker fool the system to open different files, also in different
directories

vii. SQL Injection: an attack where the attacker can execute her
own database statements, or alter the normal statements

viii. XML External Entity: an attack where the attacker can open
files on the system by using the XML External Entity feature

ix. XSL(T) Injection: an attack where the attacker can inject her
own XSL statements, or alter the normal statements.

c) Did you try the following attacks on the website (“Best Gadgets”)?
(1=I did not try this attack, 2=I tried the attack briefly, but it didn’t
work, 3=I tried the attack for a while, but it didn’t work, 4=I tried
the attack and it worked, 5=I used this attack to compromise the
system.)

62

i. Accessible non-parsed dynamic scripts: an attack where the
hacker tries to find backups of scripts that are left by editors

ii. Cross Site Scripting: an attack where the attacker can inject her
HTML code (including Javascript) in the website

iii. Filename Injection or Path Traversal: an attack where the at-
tacker fool the system to open different files, also in different
directories

iv. SQL Injection: an attack where the attacker can execute her
own database statements, or alter the normal statements

v. XML External Entity: an attack where the attacker can open
files on the system by using the XML External Entity feature

vi. XSL(T) Injection: an attack where the attacker can inject her
own XSL statements, or alter the normal statements.

d) Final thoughts

i. Would you like to be informed on the results of this experiment?
(Yes/No)

ii. Do you have any comments or thought you would like to share?

8. The skill level for each participant is identified using the questionnaire
based on the skill level definition provided in section 4.4. If the participant
said she performed an advanced attack (accessible non-parsed dynamic
scripts, XML External Entity, XSL(T) Injection), her level is defined as
“advanced”. If the participant said to have performed only one or more
basic attacks (Cross Site Scripting, Filename Injection or SQL Injection),
her level is defined as “basic”. When no attacks are performed, her level
is defined as “none”.

9. The skill level for each participant is determined using the TDS.

10. The correlation between the two skill levels for the participants is calcu-
lated using Spearman’s Rank Order Correlation Coefficient.

Results

The experiment is executed from 2010-08-07 14:40:43 to 2010-09-01 12:05:12.
During this time, the questionnaire was submitted 95 times. Using control ques-
tions in the questionnaire, 30 participants are filtered because they provided
conflicting information or did not complete the questionnaire. An example of
conflicting information is a participant stating that she had no knowledge of
performing SQL injection attacks but also stating that she performed an SQL
injection attack. Another three participants are filtered because they submitted
the questionnaire multiple times. This leaves 59 participants that provided clean
data.

63

Table 5.3: Number of male and female participants

Gender # fraction

male 58 0.98
female 1 0.02

The 59 participants are a random selection, since the experiment was announced
on different public mailing-lists and forums. Table 5.3 to Table 5.6 illustrate the
demographic properties of the data set.

Table 5.4: Year of birth of participants

Year of birth # fraction

1970 1 0.02
1973 1 0.02
1974 1 0.02
1976 2 0.03
1977 2 0.03
1978 2 0.03
1979 1 0.02
1980 2 0.03
1981 1 0.02
1982 1 0.02
1983 2 0.03
1984 4 0.07
1985 3 0.05
1986 7 0.12
1987 5 0.08
1988 2 0.03
1989 4 0.07
1990 5 0.08
1991 5 0.08
1992 2 0.03
1993 3 0.05
1995 1 0.02
1996 2 0.03

Using a unique identification number for each participant, which they received
in their e-mail, it is possible to track the IP addresses of each participant. Using
this data, it can be concluded that no IP addresses are used by two or more
participants. Furthermore, there are 12 participants that used 2 or more IP
addresses, but only one of those participants performed attacks from 2 different
IP addresses. Within this data set, this participant represents 1.7% of the data

64

Table 5.5: Education of participants

Education # fraction

No answer 1 0.02
High School Diploma 22 0.37
Bachelor’s Degree 11 0.19
Master’s Degree 11 0.19
Doctorate’s Degree 3 0.05
Other 11 0.9

Table 5.6: Country of participants

Country # fraction

Argentina 2 0.03
Bhutan 1 0.02
China 1 0.02
Estonia 2 0.03
France 4 0.07
Guyana 1 0.02
Hungary 1 0.02
India 3 0.05
Israel 1 0.02
Italy 3 0.05
Mexico 2 0.03
Netherlands 13 0.22
Philippines 1 0.02
Portugal 2 0.03
Spain 8 0.14
United Kingdom 2 0.03
United States 12 0.20

65

set, which supports the assumption that hackers do not commonly use multiple
IP addresses. This statement does require further research, since this experiment
allowed participants to compromise the system and therefore did not require
them to hide their tracks.

The 59 participants performed a total of 12915 attacks, illustrated in Table 5.7.
The system contained filename injection, SQL injection, cross site scripting,
extraneous files, XSL(T) injection and XML external entity vulnerabilities. The
table shows that many other attacks were also performed, since the participants
did not know which vulnerabilities were present in the system.

Table 5.7: Hacker experiment: Signatures and matches

signature matches Checklist item

1120001 18 Check for default and predictable accounts
1120003 1 Check for default and predictable accounts
1210001 3616 Check for filename injection / path traversal
1210002 142 Check for filename injection / path traversal
1220001 592 Check for SQL injection
1220002 3750 Check for SQL injection
1220003 270 Check for SQL injection
1230001 1043 Check for cross site scripting
1230003 67 Check for cross site scripting
1230004 23 Check for cross site scripting
1230005 55 Check for cross site scripting
1230007 2 Check for cross site scripting
1240001 69 Check for system command injection
1310001 5 Check for uploading of (dynamic) scripts
20210001 2752 Check for extraneous files in document root
20340001 5 Check for accessible CVS/SVN directories
20340002 23 Check for accessible CVS/SVN directories
20370001 279 Check for accessible non-parsed dynamic scripts
20650001 115 Check for brute-force username enumeration
20760001 50 Check for XSL(T) injection
20770001 20 Check for SSI injection
20790001 5 Check for dynamic scripting injection
20810001 12 Check for XML external entity parsing

An import function of the TDS is the ability to assign the correct skill to threats.
Using the questionnaire to determine the skill of the participant and the skill
defined by the TDS, it is possible to calculate the correlation between the two.
Using Spearman’s Rank Order Correlation Coefficient, the correlation is calcu-
lated to be 0.598. In a data set of 59 participants, this is statistically significant
(a correlation of 0.30 is required for the significance level of 1%).

To verify the results of the questionnaire and the results of the TDS, a sample

66

Table 5.8: Skill as identified by the questionnaire and the TDS

Skill by Questionnaire Skill by TDS Number

None None 3
None Basic 5
None Advanced 1
Basic None 1
Basic Basic 18
Basic Advanced 7
Advanced none 1
Advanced Basic 15
Advanced Advanced 8

of 10 randomly selected participants is manually reviewed. During this manual
review, the HTTP requests are analyzed and attacks are annotated. Then,
using the same definition of skill as used in the questionnaire and the TDS,
the skill of the participant is determined by the skill level of her most difficult
attack. The results of this manual review are illustrated in Table 5.9. This table
clearly shows that the skill of the participant is not adequately assessed using
the questionnaire. The result of this experiment is therefore that the TDS can
assess the skill of threats more accurately than a questionnaire could do. In a
practical scenario, this means that the system will provide better results than
would be possible if the threats of that system filled in a questionnaire.

Table 5.9: Skill determined by the questionnaire, manual review and the
TDS

id questionnaire skill manual skill TDS skill

1 none basic basic
2 advanced advanced advanced
3 basic advanced advanced
4 advanced basic basic
5 advanced basic basic
6 basic basic basic
7 basic basic basic
8 basic basic basic
9 basic none none

10 none none none

Finally, the android profiler can be evaluated using these results. The android
profiler should identify each threat as being a human but failed to do this for
13 of the 59 participants (22%). The reason for this poor performance is the
way the web application is set up; when the threat enters his or her attack in

67

the search field, the field is transmitted to the server after each character using
XmlRpc-Requests. Each request is detected separately as an attack, and the
timing between the requests is inhuman.

5.4 Discussion

During the design of the system, many assumptions are made that are not sci-
entifically proven. These assumptions include:

• the simplification that each threat only uses one IP address

• the Certified Secure checklists accurately define basic and an advanced
skills

• computer programs can be detected by the rate of their attacks

Therefore, the system is designed and implemented to be easily configurable to
accommodate different opinions.

The assumption that each threat uses only one IP address was proven to be
wrong for one threat in the real network experiment. Six threats were detected
which are actually one that is camouflaging her attacks by using five computers.
Instead of one threat performing 180 attacks (intensity class 3), the threat is now
listed as six threats performing 30 attacks each (intensity class 2). In the hacker
experiment, also one out of 59 threats used multiple (2) IP addresses to perform
her attacks. While these results show that threats sometimes use multiple IP
addresses, it is not a commonly used tactic and resulted in both cases in more
threats being reported with a lower intensity class each.

The performance of the Threat Detection System is measured by the false posi-
tive rate, the false negative rate, and the accuracy of the profiles determined for
each threat. The real network experiment was used to identify the false posi-
tive rate on a real network, but could not identify the false negative rate or the
accuracy since the threats are inherently unknown on a real network. In this
real network, one out of the 47 detected threats was a false positive. Internally,
the Intrusion Detection System component detected 1343 attacks of which 540
were no attacks and therefore false positives. This high number of false positives
would be a bad performance for any Intrusion Detection System, but since all
false positives are triggered by the same threat, the performance of the Threat
Detection System is only affected slightly. It could even be argued that this one
threat is doing something unusual, and should therefore be investigated anyway.

The false negative rate of the Threat Detection System could not be identified
using a real network, since the threats on this network are unknown. It would
be useful if future research provided a data set containing real network traffic
and a labeling of all threats and attacks in this data set. For this research,

68

an experiment is conducted inviting many security experts and hackers to com-
promise a website specifically designed to be compromised. Participants first
register and are therefore known, but not to the system. In this experiment,
the system detects threats in a data set containing mostly threats, which is only
possible since the system uses a signature based intrusion detection system com-
ponent and no machine learning or anomaly based components. At the end of
the experiment, the system detected all threats resulting in a false negative rate
of 0. This means that for each threat, at least one attack is detected. Since
threats try many different attacks on a website, trying to compromise it, the
system performs well while only detecting 35% of all possible web attacks. A
problem with this experiment is that the vulnerabilities which were introduced
are all covered by the signature set. This allows for the argument that a website
containing different vulnerabilities, which are not part of the signature set, could
be compromised without the Threat Detection System noticing it. While this
is true, the participants of the experiment were not told which vulnerabilities
were present in the website and they could try whatever attack they wanted
to perform; all 59 participants chose to perform at least one attack that was
detected by the system.

Finally, the accuracy of the profiles determined for each threat is identified. The
participants in the experiment filled out a questionnaire after performing their
attacks on the website. This questionnaire was supposed to identify the skill
of each participant which could then be compared to the skill identified by the
Threat Detection System. The correlation between the skill determined by the
questionnaire and the skill determined by the TDS is 0.598, which is signifi-
cant for a data set of 59 (a correlation of 0.30 is required for the significance
level of 1%). However, such a number is vague and does not show the whole
picture. When manually examining the network traffic of 10 randomly selected
participants, it turns out that the participants cannot accurately answer ques-
tions about the attacks they performed. When manually reviewing their network
traffic, labeling their attacks and manually identifying their skill class based on
the criteria described in section 4.4, the TDS was identifying the correct skill
class for each of the 10 participants. This means that the TDS can more ac-
curately identify the skill class of a threat, than would be possible using the
questionnaire. While this could be a fault in the design of the questionnaire,
the fact that the TDS identified the skill identically to a manual review by a
security expert, proves the skill class identified for each threat to be accurate.

The android class determined for each threat is less accurate than the skill
class, as 22% of the human participants are determined to be a computer. This
inaccuracy in inherent to determining such an abstract property. However, the
android class is useable for security experts as long as the error rate is taken
into account.

69

Chapter 6

Conclusion

The system presented in this thesis automatically detects and profiles threats
on a real network. When placed in a new network without any changes to its
configuration, one of the 47 detected threats was falsely identified as a threat (a
false positive) and two of the 47 detected threats were falsely identified as being
a human. When placed in a network containing only human threats, the system
correctly identifies the skill of each threat and identifies them as being human
78% out the time. To achieve this, three contributions to the professional and
academic world are made.

First, the signatures for an open source intrusion detection system (Sort [59])
are developed to detect many generic types of attacks (like SQL Injection and
Cross Site Scripting). Currently, signatures used in such systems can detect only
specific attack instances to known vulnerabilities. The presented set of signatures
allows intrusion detection systems to detect attacks on unknown vulnerabilities.

Second, an extension on this intrusion detection system using the new set of sig-
natures is developed shifting the focus from the attacks detected on the network
to the actual threats (a human or autonomous computer program) attacking
the network and their properties (such as skill). This paradigm shift is a new
approach to intrusion detection, and the system is therefore named a Threat
Detection System (TDS). By focussing on the threats instead of the attacks,
the system is not required to achieve a 100% detection rate of attacks on the
network. Threats are detected when they perform at least few attacks which are
detected by the system.

Finally, algorithms are presented to determine three properties for each threat:
skill, intensity of the attacks and whether the threat is a human or an au-
tonomous computer program. These algorithms are accompanied by guidance
on how to interpret their results and how to apply them to risk management
and network security monitoring. This allows experts to directly use this system
without changes to the configuration.

71

On itself, the presented signatures for the open source intrusion detection sys-
tem allow academics to research real threats on real networks and allow security
experts to monitor actual attacks on their computer networks. The complete
Threat Detection System allows security experts evaluating the risk of a vulner-
ability to retrieve the actual number of threats that are active on the network
and are capable of exploiting this vulnerability. It also allows security experts
monitoring the security of a network to focus only on threats that are capable of
compromising the network. Academics can use this system as basis for their own
research on threats and adapt it to detect different properties or automatically
respond to certain types of threats.

Combined, these contributions improve the accuracy of risk management and
the efficiency of network security monitoring. This meets the problem definition
for this thesis: “Design a system to autonomously detect and profile threats on
a computer network to improve risk management and network security monitor-
ing.”

6.1 Recommendations for further research

This research covers many aspects of computer security and therefore hasn’t
covered every detail in depth. A number of topics could benefit from further
research.

• One of the main assumptions of this thesis is that security experts cannot
correctly define the likelihood of a vulnerability being exploited. It also
assumes that security experts can correctly identify the threat profile that
is required to exploit a vulnerability. These assumptions have not been
verified in this research and could benefit from further research.

• In this research, attack types that could not be implemented without trig-
gering many false positives are not implemented at all. Using a different
Intrusion Detection System that has different capabilities in defining the
signatures could help creating a complete set.

• The signatures presented in this research focus only on web attacks. Fur-
ther research could implement signatures that match generic attacks aimed
at different services or at different layers in the network stack.

• The lack of a publicly available data set containing labelled attacks and
threats prevents research as presented in this thesis to compare its perfor-
mance to other research. Further research could really improve the field of
intrusion detection by presenting an accurate, realistic and labelled data
set containing both attacks and normal network traffic.

• Further research of threat classification could better classify the attacks
in threats, possible using more features than just the source IP address.

72

One camouflaging attack was detected during the test on a live network,
so this is happening.

• This research uses three threat properties to define a threat profile. Fur-
ther research could try to create more properties and perhaps use external
databases (netflow information, p0f information, low level packet data) to
assign different and more accurate properties to threats.

73

Appendices

75

Appendix A
Attack and Penetration test

documentation

This appendix contains the sample documentation of a SQL Injection vulner-
ability by the security company Pine Digital Security. This documentation is
included and translated (with permission) from the Pine Digital Security Sample
Attack and Penetration Test report [58].

A.1 Description

When the communication with a SQL database includes user input, there is a
possibility for SQL Injection. This problem allows a threat to have his input
interpreted as SQL commands (instead of just ‘data’).

A.2 Result

Result Vulnerability Score

Fail 6.8

A SQL Injection vulnerability is found in the order history of the Test Product.
Figure A.1 illustrates the normal functionality to query order information. When
the order number is changed from 6 to 6 AND 1=1, a different page is displayed
is illustrated in Figure A.2.

The user input (6 AND 1=2) is internally used in a SQL command. The part
AND 1=2 causes no order information to be found. When this input is changed
to AND 1=1, the order information can be found as illustrated in Figure A.3.

77

Figure A.1: http://oscommerce.hackme.certifiedsecure.com/account.php?orders=6

Figure A.2: http://oscommerce.hackme.certifiedsecure.com/account.php?orders=6
AND 1=2

This vulnerability allows threats to alter the SQL commands. This allows them
to retrieve information from the database, like credit-card information as illus-
trated in Figure A.4.

A.3 Vulnerability Score

The vulnerability score is based on the following categories and is calculated
using the “Common Vulnerability Scoring System” version 2[25].

Access Vector: Network The vulnerability can be exploited from anywhere
on the Internet.

78

Figure A.3: http://oscommerce.hackme.certifiedsecure.com/account.php?orders=6
AND 1=1

Figure A.4: http://oscommerce.hackme.certifiedsecure.com/account.php?orders=6
UNION SELECT 1,2,transaction_return_value,4,5,6,7 from
osc_orders_transactions_history #

79

Access Complexity: Low The vulnerability can be exploited at any moment,
without restrictions.

Authentication: Single A single authentication is required to exploit this vul-
nerability and anyone can get an account for free via a simple registration
on the site.

Confidentiality: Complete All information stored in the system can be com-
promised using this vulnerability.

Integrity: None This vulnerability has no direct impact on the integrity of
the system.

Availability: None This vulnerability has no direct impact on the availability
of the system.

A.4 Solution

It is important to check the source code of the Test Product for any user input
that is used in SQL commands without validation or escaping (for example using
the PHP mysql_real_escape_string() function). More information about this
function can be found at http://php.net/manual/en/function.mysql-real-escape-
string.php.

80

Appendix B
Snort configuration

Snort c o n f i g u r a t i o n f i l e f o r the Threat Detec t ion System (TDS
)

#
by Frank van V l i e t
f r a n k @ c e r t i f i e d s e c u r e . n l

The IDS must d e t e c t a t t a c k s o r i g i n a t i n g from any network
(EXTERNAL_NET) and de s t i n ed to any network (HOME_NET) .
var EXTERNAL_NET any
var HOME_NET any

Each se r v e r in the d e s t i n a t i o n network (HOME_NET) can be
an HTTP ser ve r (HTTP_SERVERS) l i s t e n i n g on por t 80
(HTTP_PORTS) .
var HTTP_SERVERS $HOME_NET
portvar HTTP_PORTS [8 0]

Ca l cu l a t e the checksum f o r IP , TCP packe t s . This has a
s l i g h t impact on the performance , but does a l l ow the IDS
to more a c c u r a t e l y reassemb le IP packe t s and TCP streams .
The UDP and ICMP p r o t o c o l s are o u t s i d e the requirements
and t h e i r checksum i s thus ignored .
c o n f i g checksum_mode : none

Disab l e a l e r t s t h a t are generated when decoding the
packe t s . This w i l l r e s u l t i s some f a l s e n e g a t i v e s when
t h r e a t s are t r y i n g to evade the IDS , but turn ing i t on
w i l l r e s u l t in many f a l s e p o s i t i v e s caused by network
erro r s and c l i e n t so f tware problems .
c o n f i g d i sab le_decode_ale r t s
c o n f i g d i s ab l e_ ipopt_a l e r t s
c o n f i g d i sab l e_tcpopt_a l e r t s
c o n f i g d i sab le_tcpopt_exper imenta l_a ler t s
c o n f i g d i sab l e_tcpopt_obso l e t e_a l e r t s

81

c o n f i g d i sab le_tcpopt_ttcp_ale r t s
c o n f i g d i s ab l e_t t cp_a l e r t s

The Frag3 preproces sor w i l l reassemb le IP packe t s . A
s p e c i f i c problem with IP reassembly i s the the Ptacok
& Newsham IDS evas ion techn i que :
h t t p ://www. snor t . org / docs / idspaper /
#
The preproces sor i s con f i gured to t rack up to 65536
fragments , which i s the maximum number o f fragments
of one IP packe t .
#
The preproces sor i s futhermore con f i gured to wai t f o r
180 seconds f o r b e f o r e they t imeout .
#
This shou ld be adequate f o r normal t r a f f i c . Later
ve r s i on s o f t h i s TDS shou ld focus on improving t h i s
c o n f i g u r a t i o n to prevent IDS evasion , f o r example
by a u t o m a t i c a l l y d e t e c t i n g the f ragmenta t ion
p r o p e r t i e s o f each hos t on the network .
pr ep ro c e s s o r f rag3_g loba l : max_frags 65536
pr ep ro c e s s o r frag3_engine : t imeout 180

The Stream5 preproces sor w i l l reassemb le TCP f l o w s .
Like Frag3 , t h i s reassembly can be evaded by a t t a c k s .
#
The preproces sor i s con f i gured to t rack up to
256000 tcp connec t ions s imu l t an iou s l y , to t rack TCP
connect ions and not t rack UDP or ICMP connect ions
(s ince UDP and ICMP a t t a c k s are o u t s i d e the
requirements o f t h i s TDS) .
#
The preproces sor i s con f i gured to on ly reassemb le
connect ions on 80.
pr ep ro c e s s o r stream5_global : max_tcp 256000 , \

track_tcp yes , \
track_udp no , \
track_icmp no

pr ep ro c e s s o r stream5_tcp : por t s both 80

The h t tp_inspec t preproces sor w i l l decode a l l HTTP
t r a f f i c .
#
The preproces sor i s con f i gured to use the d e f a u l t
unicode codepage 1252 (used f o r decoding Unicode
charac t e r s) . I t i s p o s s i b l e t h a t d i f f e r e n t
webservers use d i f f e r e n t codepages , which would
a l l ow t h r e a t s to evade the IDS . Future v e r s i on s o f
t h i s TDS cou ld t r y to s o l v e t h i s problem .
#
The preproces sor i s con f i gured to use the d e f a u l t
p r o f i l e f o r each HTTP ser ve r . This p r o f i l e uses

82

the common methods o f decoding , t h a t cou ld be
d i f f e r e n t from the a c t u a l HTTP s e r v e r s . The
preproces sor shou ld on ly decode t r a f f i c on
por t 80 , and decode up to 1000 charac t e r s o f
the c l i e n t r e que s t . The a l e r t s generated wh i l e
decoding the HTTP t r a f f i c are ignored s ince they
conta in too many f a l s e p o s i t i v e s . Future v e r s i on s
of t h i s IDS cou ld t r y to improve t h i s s i t u a t i o n .
pr ep ro c e s s o r http_inspect : global iis_unicode_map \

unicode .map 1252
pr ep ro c e s s o r http_inspect_server : \

s e r v e r d e f a u l t \
p r o f i l e a l l \
por t s { 80 } \
cl ient_f low_depth 1000 \
post_depth 500 \
no_alert s

Uni f i ed l o g f i l e s are s t o r ed in b inary format and
conta in both the a l e r t in format ion and the packe t
conten t s .
output a l e r t _ u n i f i e d : f i l ename snor t . a l e r t
output l og_un i f i ed : f i l ename snor t . l og

The f o l l o w i n g s i g n a t u r e s (named r u l e s in Snort)
are loaded :
∗ bas ic−web . r u l e s : Rules matching a t t a c k s from
the CS Basic Web App l i ca t i on Scan Check l i s t ,
∗ advanced−web . r u l e s : Rules matching a t t a c k s
from the CS Advanced Web App l i ca t i on Scan
C h e c k l i s t .
var RULE_PATH r u l e s
i n c lude $RULE_PATH/ bas ic−web . r u l e s
i n c lude $RULE_PATH/advanced−web . r u l e s

Listing B.1: Configuration for the Snort Intrusion Detection System

83

Appendix C
Checklist comparison

Certified Secure Basic Web Application Scan Checklist

Id Description OWASP Top 10 Sans Top 25

1.0 Authentication and Authorization
1.1 Check for client side authentication 3 6
1.2 Check for default and predictable accounts 3, 6 6
1.3 Check for identifier based authorization 4 5
2.0 User Input
2.1 Check for filename injection / path traversal 1 7
2.2 Check for SQL injection 1 2
2.3 Check for cross site scripting 2 1
2.4 Check for system command injection 1 9
3.0 File Upload
3.1 Check for uploading of (dynamic) scripts 8
4.0 Sessions
4.1 Check for Cross Site Request Forgery 5 4

Certified Secure Advanced Web Application Scan Checklist

Id Description OWASP Top 10 Sans Top 25

1.0 Multi-system Services
1.1 Check for HTTP request smuggling
2.0 Design
2.1 Check for extraneous files in document

root
3.0 Information Disclosure
3.1 Check for too verbose error messages 6 16

85

Certified Secure Advanced Web Application Scan Checklist

Id Description OWASP Top 10 Sans Top 25

3.2 Check for debug enabling using a pre-
dictable parameter

3.3 Check for valuable information in
robots.txt

3.4 Check for accessible CVS/SVN directories
3.5 Check for accessible configuration directo-

ries
3.6 Check for accessible backup files
3.7 Check for accessible non-parsed dynamic

scripts
4.0 Privacy and Confidentiality
4.1 Check for missing anti-caching headers
4.2 Check for unencrypted transmissions of

sensitive information
9 10

4.3 Check for sensitive information stored in
cookies

4.4 Check for sensitive information in exter-
nally archived pages

5.0 Integrity
5.1 Check for client side state management
6.0 Authentication and Authorization
6.1 Check for missing authentication 8 19
6.2 Check for authentication based on the

knowledge of a secret URL
6.3 Check for identifier based authentication
6.4 Check for too verbose authentication-

failure logging
6.5 Check for brute-force username enumera-

tion
6.6 Check for brute-force password guessing
6.7 Check for denial of service by locking out

accounts
6.8 Check for authentication or authorization

based on obscurity
7.0 User Input
7.1 Check for double decoding of headers /

parameters
7.2 Check for XML injection 1
7.3 Check for XPath injection 1
7.4 Check for LDAP injection 1
7.5 Check for HTTP header injection 1
7.6 Check for XSL(T) injection 1

86

Certified Secure Advanced Web Application Scan Checklist

Id Description OWASP Top 10 Sans Top 25

7.7 Check for SSI injection 1
7.8 Check for resource identifier injection 10 23
7.9 Check for dynamic scripting injection 1 13
7.10 Check for regular expression injection 1
8.0 XML
8.1 Check for XML external entity parsing
8.2 Check for XML external DTD parsing
9.0 File Upload
9.1 Check for uploading outside of intended

directory
9.2 Check for incorrect handling of very large

files
9.3 Check for local file disclosure via upload

filename
9.4 Check for uploading of configuration files
10.0 Email
10.1 Check for automated spamming via (feed-

back) scripts
11.0 Sessions
11.1 Check for session-cookies without the se-

cure flag
11.2 Check for session-cookies without the

httponly flag
11.3 Check for predictable session-ids
11.4 Check for session collisions
11.5 Check for session-fixation 3
11.6 Check for external session-hijacking
11.7 Check for insecure transmission of session-

cookies
3

11.8 Check for missing session revocation if
session-id transmitted unencrypted

12.0 Cryptography
12.1 Check for unproven cryptographic algo-

rithms
24

87

Appendix D

First version of the signatures for
the Basic Web Application Scan

Checklist

Rules f o r the C e r t i f i e d Secure Basic Web App l i ca t i on Scan
C h e c k l i s t

1.0 Authen t i ca t ion and Author i za t ion
1.1 Check f o r c l i e n t s i d e a u t h e n t i c a t i o n or a u t h o r i z a t i o n
This cannot be e a s i l y captured in a r u l e
1.2 Check f o r d e f a u l t and p r e d i c t a b l e accounts
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 1 .2 Check f o r d e f a u l t and
p r e d i c t a b l e accounts " ; f low : to_server , e s t a b l i s h e d ; content :
"name=admin " ; nocase ; pcre : " / pass∗=admin/UPi " ; s i d
: 1 1 2 0 0 0 1 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 1 .2 Check f o r d e f a u l t and
p r e d i c t a b l e accounts " ; f low : to_server , e s t a b l i s h e d ; content :
" user=admin " ; nocase ; pcre : " / pass∗=admin/UPi " ; s i d
: 1 1 2 0 0 0 2 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 1 .2 Check f o r d e f a u l t and
p r e d i c t a b l e accounts " ; f low : to_server , e s t a b l i s h e d ; content :
"name=admin " ; nocase ; pcre : " / pass∗=password/UPi " ; s i d
: 1 1 2 0 0 0 3 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 1 .2 Check f o r d e f a u l t and
p r e d i c t a b l e accounts " ; f low : to_server , e s t a b l i s h e d ; content :
" user=admin " ; nocase ; pcre : " / pass∗=password/UPi " ; s i d
: 1 1 2 0 0 0 4 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 1 .2 Check f o r d e f a u l t and
p r e d i c t a b l e accounts " ; f low : to_server , e s t a b l i s h e d ; content :

89

"name=guest " ; nocase ; pcre : " / pass∗=guest /UPi " ; s i d
: 1 1 2 0 0 0 5 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 1 .2 Check f o r d e f a u l t and
p r e d i c t a b l e accounts " ; f low : to_server , e s t a b l i s h e d ; content :
" user=guest " ; nocase ; pcre : " / pass∗=guest /UPi " ; s i d
: 1 1 2 0 0 0 6 ;)

1.3 Check f o r i d e n t i f i e r based a u t h o r i z a t i o n
This cannot be e a s i l y captured in a r u l e

2.0 User Input
2.1 Check f o r f i l ename i n j e c t i o n / path t r a v e r s a l
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .1 Check f o r f i l ename
i n j e c t i o n / path t r a v e r s a l " ; f low : to_server , e s t a b l i s h e d ;
content : "=" ; content : " . . / " ; d i s t anc e : 0 ; content : " . . / " ;
d i s t anc e : 0 ; s i d : 1 2 1 0 0 0 1 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .1 Check f o r f i l ename
i n j e c t i o n / path t r a v e r s a l " ; f low : to_server , e s t a b l i s h e d ;
content : "=" ; content : " . . \ \ " ; d i s t anc e : 0 ; content : " . . \ \ " ;
d i s t anc e : 0 ; s i d : 1 2 1 0 0 0 2 ;)

2.2 Check f o r SQL i n j e c t i o n
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .2 Check f o r SQL i n j e c t i o n " ;
f low : to_server , e s t a b l i s h e d ; pcre : " /OR\ s +’?\d+’?\ s∗=\s ∗ ’?\d

+/UPi " ; s i d : 1 2 2 0 0 0 1 ;)
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .2 Check f o r SQL i n j e c t i o n " ;
f low : to_server , e s t a b l i s h e d ; pcre : " /AND\ s +’?\d+’?\ s∗=\s ∗ ’?\

d+/UPi " ; s i d : 1 2 2 0 0 0 2 ;)
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .2 Check f o r SQL i n j e c t i o n " ;
f low : to_server , e s t a b l i s h e d ; pcre : " /UNION[\ s (]+SELECT/UPi " ;
s i d : 1 2 2 0 0 0 3 ;)

2.3 Check f o r c ros s s i t e s c r i p t i n g
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; u r i c on t en t : "</
s c r i p t >" ; nocase ; s i d : 1 2 3 0 0 0 1 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; u r i c on t en t : "<s c r i p t

s r c " ; nocase ; s i d : 1 2 3 0 0 0 2 ;)
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; u r i c on t en t : "
j a v a s c r i p t : a l e r t " ; nocase ; s i d : 1 2 3 0 0 0 3 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e

90

s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; u r i c on t en t : "<i f rame
" ; nocase ; s i d : 1 2 3 0 0 0 4 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; content : "</s c r i p t >"
; http_client_body ; nocase ; s i d : 1 2 3 0 0 0 5 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; content : "<s c r i p t
s r c " ; http_client_body ; nocase ; s i d : 1 2 3 0 0 0 6 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; content : " j a v a s c r i p t
: a l e r t " ; http_client_body ; nocase ; s i d : 1 2 3 0 0 0 7 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; content : "<i f rame " ;
http_client_body ; nocase ; s i d : 1 2 3 0 0 0 8 ;)

2.4 Check f o r system command i n j e c t i o n
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .4 Check f o r system command
i n j e c t i o n " ; f low : to_server , e s t a b l i s h e d ; pcre : " / [| ‘] \ s ∗(
s l e e p | ping | id | l s | d i r | whoami | reboot | shutdown | nc | socat)
∗ [| ‘] / UPi " ; s i d : 1 2 4 0 0 0 1 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .4 Check f o r system command
i n j e c t i o n " ; f low : to_server , e s t a b l i s h e d ; pcre : " /\ ;\ s ∗(s l e e p |
ping | id | l s | d i r | whoami | reboot | shutdown | nc | socat) /UPi " ; s i d
: 1 2 4 0 0 0 2 ;)

3.0 F i l e Upload
3.1 Check f o r up load ing o f (dynamic) s c r i p t s
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 3 .1 Check f o r uploading o f (
dynamic) s c r i p t s " ; f low : to_server , e s t a b l i s h e d ; pcre : " /
f i l ename =.∗\ . (php | c g i | shtml | asp | aspx | j sp) / i " ; content : "POST"
; http_method ; nocase ; s i d : 1 3 1 0 0 0 1 ;)

4.0 Cross S i t e Request Forgery
This cannot be e a s i l y captured in a r u l e

Listing D.1: First version of the signatures for the Basic Web Application
Scan Checklist

91

Appendix E
First version of the signatures for

the Advanced Web Application
Scan Checklist

Rules f o r the C e r t i f i e d Secure Advanced Web App l i ca t i on Scan
C h e c k l i s t

#1.0 Multi−system Serv i c e s
##1.1 Check f o r HTTP req u e s t smugg l ing

#2.0 Design
##2.1 Check f o r ex traneous f i l e s in document roo t
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 2 .1 Check f o r extraneous
f i l e s in document root " ; f low : to_server , e s t a b l i s h e d ; pcre : "
/\/ (. psq l_h i s to ry | acceso \/ | access−l og | a c c e s s . l og | a c c e s s \/ |
acces s_log | (abbrev iated in t h i s i l l u s t r a t i o n) | phpinfo . php) $
/Ui " ; d e t e c t i o n _ f i l t e r : t rack by_src , count 10 , seconds 60 ;

s i d : 20210001 ;)
#3.0 Informat ion Di sc l o sure
##3.1 Check f o r too verbose error messages
##3.2 Check f o r debug enab l i ng us ing a p r e d i c t a b l e parameter
##3.3 Check f o r v a l u a b l e in format ion in robo t s . t x t
##3.4 Check f o r a c c e s s i b l e CVS/SVN d i r e c t o r i e s
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 3 .4 Check f o r a c c e s s i b l e
CVS/SVN d i r e c t o r i e s " ; f low : to_server , e s t a b l i s h e d ;
u r i c on t en t : " / . svn/ " ; s i d : 20340001 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Advanced−Web−Appl icat ion−Scan 3 .4 Check f o r a c c e s s i b l e
CVS/SVN d i r e c t o r i e s " ; f low : to_server , e s t a b l i s h e d ;
u r i c on t en t : " /CVS/ " ; s i d : 20340002 ;)

##3.5 Check f o r a c c e s s i b l e c o n f i g u r a t i o n d i r e c t o r i e s
Handled by 2.1

93

##3.6 Check f o r a c c e s s i b l e backup f i l e s
Handled by 2.1
##3.7 Check f o r a c c e s s i b l e non−parsed dynamic s c r i p t s
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 3 .7 Check f o r a c c e s s i b l e
non−parsed dynamic s c r i p t s " ; f low : to_server , e s t a b l i s h e d ;
pcre : " / (\ . \ $\$\$ | \ . \ $db | \ . 1 1 3 | \ . abbu | \ . abk | \ . bac | \ . bak | \ .
bck | \ . bcm | \ . bdb | \ . bkp | \ . bks | \ . bps | \ . bup | \ . cbk | \ . da0 | \ . dbk
| \ . dov | \ . gho | \ . jbk | \ . l l x | \ .mem| \ . nb7 | \ . nbk | \ . nco | \ . nrs | \ .
oeb | \ . o ld | \ . oyx | \ . qbx | \ . q i c | \ . tbk | \ . tmp | \ . win | \ . win | \ . x lk
| \ . o r i g | \ . swp | \ . swo | ~ | \ . backup | \ . v) $/Ui " ; s i d : 20370001 ;)

#4.0 Privacy and C o n f i d e n t i a l i t y
##4.1 Check f o r miss ing ant i−caching headers
##4.2 Check f o r unencrypted t ransmis s ions o f s e n s i t i v e

in format ion
##4.3 Check f o r s e n s i t i v e in format ion s t o r ed in cook i e s
##4.4 Check f o r s e n s i t i v e in format ion in e x t e r n a l l y arch i ved

pages
#5.0 I n t e g r i t y
##5.1 Check f o r c l i e n t s i d e s t a t e management
#6.0 Authen t i ca t ion and Author i za t ion
##6.1 Check f o r miss ing a u t h e n t i c a t i o n
##6.2 Check f o r a u t h e n t i c a t i o n based on knowledge o f a s e c r e t

URL
##6.3 Check f o r i d e n t i f i e r based a u t h e n t i c a t i o n
##6.4 Check f o r too verbose au then t i ca t i on−f a i l u r e l o g g i n g
##6.5 Check f o r brute−f o r c e username enumeration
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−app l i c a t i on−Scan 6 .5 Check f o r brute−f o r c e
username enumeration " ; f low : to_server , e s t a b l i s h e d ; content :
"name=" ; nocase ; pcre : " / pass∗=/UPi " ; d e t e c t i o n _ f i l t e r :
t rack by_src , count 20 , seconds 60 ; s i d : 20650001 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Advanced−Web−Appl icat ion−Scan 6 .5 Check f o r brute−f o r c e
username enumeration " ; f low : to_server , e s t a b l i s h e d ; content :
" user=" ; nocase ; pcre : " / pass∗=/UPi " ; d e t e c t i o n _ f i l t e r :
t rack by_src , count 20 , seconds 60 ; s i d : 20650002 ;)

##6.6 Check f o r brute−f o r c e password gues s ing
by 6.5
##6.7 Check f o r d e n i a l o f s e r v i c e by l o c k i n g out accounts
by 6.5
##6.8 Check f o r a u t h e n t i c a t i o n or a u t h o r i z a t i o n based on

o b s c u r i t y
##6.9 Check f o r changing a password wi thout knowledge o f the

o ld password
#7.0 User Input
##7.1 Check f o r doub le decoding o f headers / parameters
i t i s not p o s s i b l e to match t h i s r u l e wi thout many many f a l s e

p o s i t i v e s
##7.2 Check f o r XML i n j e c t i o n
i t i s not p o s s i b l e to match t h i s r u l e wi thout many many f a l s e

p o s i t i v e s

94

##7.3 Check f o r XPath i n j e c t i o n
i t i s not p o s s i b l e to match t h i s r u l e wi thout many many f a l s e

p o s i t i v e s
##7.4 Check f o r LDAP i n j e c t i o n
i t i s not p o s s i b l e to match t h i s r u l e wi thout many many f a l s e

p o s i t i v e s
##7.5 Check f o r HTTP header i n j e c t i o n
##7.6 Check f o r XSL(T) i n j e c t i o n
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 7 .6 Check f o r XSL(T)
i n j e c t i o n " ; f low : to_server , e s t a b l i s h e d ; pcre : "/<x s l : value−
o f /UPi " ; s i d : 20760001 ;)

##7.7 Check f o r SSI i n j e c t i o n
##7.8 Check f o r resource i d e n t i f i e r i n j e c t i o n
i t i s not p o s s i b l e to match t h i s r u l e wi thout many many f a l s e

p o s i t i v e s
##7.9 Check f o r dynamic s c r i p t i n g i n j e c t i o n
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 7 .9 Check f o r dynamic
s c r i p t i n g i n j e c t i o n " ; f low : to_server , e s t a b l i s h e d ; pcre : " /(
i n c lude | passthru | exec | system |) \(∗\$_(GET|POST|COOKIE) \ [/ UPi
" ; s i d : 20790001 ;)

##7.10 Check f o r r e g u l a r expre s s i on i n j e c t i o n
#8.0 XML
##8.1 Check f o r XML e x t e r n a l e n t i t y pars ing
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 8 .1 Check f o r XML e x t e r n a l
e n t i t y par s ing " ; f low : to_server , e s t a b l i s h e d ; pcre : " /<\!

ENTITY\ s+\sSYSTEM\ s /UPi " ; s i d : 20810001 ;)
##8.2 Check f o r XML e x t e r n a l DTD pars ing
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 8 .2 Check f o r XML e x t e r n a l
DTD pars ing " ; f low : to_server , e s t a b l i s h e d ; pcre : " /<\!

DOCTYPE\ s+\sSYSTEM\ s /UPi " ; s i d : 20820001 ;)
#9.0 F i l e Upload
##9.1 Check f o r up load ing o u t s i d e o f in tended d i r e c t o r y
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 9 .1 Check f o r uploading
out s id e o f intended d i r e c t o r y " ; f low : to_server , e s t a b l i s h e d ;

pcre : " / f i l ename =.∗\ .\ . / i " ; content : "POST" ; http_method ;
nocase ; s i d : 2 0 9 1 0 0 1 ;)

##9.2 Check f o r i n c o r r e c t hand l ing o f very l a r g e f i l e s
##9.3 Check f o r l o c a l f i l e d i s c l o s u r e v ia upload f i l ename
##9.4 Check f o r up load ing o f c o n f i g u r a t i o n f i l e s
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 9 .4 Check f o r uploading o f
c o n f i g u r a t i o n f i l e s " ; f low : to_server , e s t a b l i s h e d ; pcre : " /

f i l ename =.∗\. h ta c c e s s / i " ; content : "POST" ; http_method ;
nocase ; s i d : 2 0 9 4 0 0 1 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Advanced−Web−Appl icat ion−Scan 9 .4 Check f o r uploading o f

c o n f i g u r a t i o n f i l e s " ; f low : to_server , e s t a b l i s h e d ; pcre : " /

95

f i l ename =.∗\. htpasswd/ i " ; content : "POST" ; http_method ;
nocase ; s i d : 2 0 9 4 0 0 2 ;)

#10.0 Email
##10.1 Check f o r automated spamming v ia (f eedback) s c r i p t s
#11.0 Ses s ions
##11.1 Check f o r ses s ion−cook i e s wi thou t the secure f l a g
##11.2 Check f o r ses s ion−cook i e s wi thou t the h t t p o n l y f l a g
##11.3 Check f o r p r e d i c t a b l e ses s ion−i d s
##11.4 Check f o r s e s s i o n c o l l i s i o n s
##11.5 Check f o r ses s ion−f i x a t i o n
##11.6 Check f o r e x t e r n a l se s s ion−h i j a c k i n g
##11.7 Check f o r in secure t ransmiss ion o f ses s ion−cook i e s
##11.8 Check f o r miss ing s e s s i o n revoca t i on on unencrypted

ses s ion−i d t ransmiss ion
#12.0 Cryptography
##12.1 Check f o r unproven cryp tog raph i c a l go r i t hms

Listing E.1: First version of the signatures for the Advanced Web
Application Scan Checklist

96

Appendix F
Final version of the signatures

for the basic web application
scan checklist

Rules f o r the C e r t i f i e d Secure Basic Web App l i ca t i on Scan
C h e c k l i s t

1.0 Authen t i ca t ion and Author i za t ion
1.1 Check f o r c l i e n t s i d e a u t h e n t i c a t i o n or a u t h o r i z a t i o n
This cannot be e a s i l y captured in a r u l e
1.2 Check f o r d e f a u l t and p r e d i c t a b l e accounts
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 1 .2 Check f o r d e f a u l t and
p r e d i c t a b l e accounts " ; f low : to_server , e s t a b l i s h e d ; content :
"name=admin " ; nocase ; pcre : " / pass∗=admin/UPi " ; s i d
: 1 1 2 0 0 0 1 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 1 .2 Check f o r d e f a u l t and
p r e d i c t a b l e accounts " ; f low : to_server , e s t a b l i s h e d ; content :
" user=admin " ; nocase ; pcre : " / pass∗=admin/UPi " ; s i d
: 1 1 2 0 0 0 2 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 1 .2 Check f o r d e f a u l t and
p r e d i c t a b l e accounts " ; f low : to_server , e s t a b l i s h e d ; content :
"name=admin " ; nocase ; pcre : " / pass∗=password/UPi " ; s i d
: 1 1 2 0 0 0 3 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 1 .2 Check f o r d e f a u l t and
p r e d i c t a b l e accounts " ; f low : to_server , e s t a b l i s h e d ; content :
" user=admin " ; nocase ; pcre : " / pass∗=password/UPi " ; s i d
: 1 1 2 0 0 0 4 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 1 .2 Check f o r d e f a u l t and
p r e d i c t a b l e accounts " ; f low : to_server , e s t a b l i s h e d ; content :

97

"name=guest " ; nocase ; pcre : " / pass∗=guest /UPi " ; s i d
: 1 1 2 0 0 0 5 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 1 .2 Check f o r d e f a u l t and
p r e d i c t a b l e accounts " ; f low : to_server , e s t a b l i s h e d ; content :
" user=guest " ; nocase ; pcre : " / pass∗=guest /UPi " ; s i d
: 1 1 2 0 0 0 6 ;)

1.3 Check f o r i d e n t i f i e r based a u t h o r i z a t i o n
This cannot be e a s i l y captured in a r u l e

2.0 User Input
2.1 Check f o r f i l ename i n j e c t i o n / path t r a v e r s a l
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .1 Check f o r f i l ename
i n j e c t i o n / path t r a v e r s a l " ; f low : to_server , e s t a b l i s h e d ;
content : "=" ; content : " . . / " ; d i s t anc e : 0 ; content : " . . / " ;
d i s t anc e : 0 ; s i d : 1 2 1 0 0 0 1 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .1 Check f o r f i l ename
i n j e c t i o n / path t r a v e r s a l " ; f low : to_server , e s t a b l i s h e d ;
content : "=" ; content : " . . \ \ " ; d i s t anc e : 0 ; content : " . . \ \ " ;
d i s t anc e : 0 ; s i d : 1 2 1 0 0 0 2 ;)

2.2 Check f o r SQL i n j e c t i o n
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .2 Check f o r SQL i n j e c t i o n " ;
f low : to_server , e s t a b l i s h e d ; pcre : " /OR\ s +’?\d+’?\ s∗=\s ∗ ’?\d

+/UPi " ; s i d : 1 2 2 0 0 0 1 ;)
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .2 Check f o r SQL i n j e c t i o n " ;
f low : to_server , e s t a b l i s h e d ; pcre : " /AND\ s +’?\d+’?\ s∗=\s ∗ ’?\

d+/UPi " ; s i d : 1 2 2 0 0 0 2 ;)
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .2 Check f o r SQL i n j e c t i o n " ;
f low : to_server , e s t a b l i s h e d ; pcre : " /UNION[\ s (]+SELECT/UPi " ;
s i d : 1 2 2 0 0 0 3 ;)

2.3 Check f o r c ros s s i t e s c r i p t i n g
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; u r i c on t en t : "</
s c r i p t >" ; nocase ; s i d : 1 2 3 0 0 0 1 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; u r i c on t en t : "<s c r i p t

s r c " ; nocase ; s i d : 1 2 3 0 0 0 2 ;)
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; u r i c on t en t : "
j a v a s c r i p t : a l e r t " ; nocase ; s i d : 1 2 3 0 0 0 3 ;)

98

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; u r i c on t en t : "<i f rame
" ; nocase ; s i d : 1 2 3 0 0 0 4 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; content : "</s c r i p t >"
; http_client_body ; nocase ; s i d : 1 2 3 0 0 0 5 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; content : "<s c r i p t
s r c " ; http_client_body ; nocase ; s i d : 1 2 3 0 0 0 6 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; content : " j a v a s c r i p t
: a l e r t " ; http_client_body ; nocase ; s i d : 1 2 3 0 0 0 7 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .3 Check f o r c r o s s s i t e
s c r i p t i n g " ; f low : to_server , e s t a b l i s h e d ; content : "<i f rame " ;
http_client_body ; nocase ; s i d : 1 2 3 0 0 0 8 ;)

2.4 Check f o r system command i n j e c t i o n
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 2 .4 Check f o r system command
i n j e c t i o n " ; f low : to_server , e s t a b l i s h e d ; pcre : " / [| ‘] \ s ∗(
s l e e p | ping | id | l s | d i r | whoami | reboot | shutdown | nc | socat)
∗ [| ‘] / UPi " ; s i d : 1 2 4 0 0 0 1 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Basic−Web−Appl icat ion−Scan 2 .4 Check f o r system command
i n j e c t i o n " ; f low : to_server , e s t a b l i s h e d ; pcre : " /\ ;\ s ∗(s l e e p |
ping | id | l s | d i r | whoami | reboot | shutdown | nc | socat) /UPi " ; s i d
: 1 2 4 0 0 0 2 ;)

3.0 F i l e Upload
3.1 Check f o r up load ing o f (dynamic) s c r i p t s
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Basic−Web−Appl icat ion−Scan 3 .1 Check f o r uploading o f (
dynamic) s c r i p t s " ; f low : to_server , e s t a b l i s h e d ; pcre : " /
f i l ename =.∗\ . (php | c g i | shtml | asp | aspx | j sp) / i " ; content : "POST"
; http_method ; nocase ; s i d : 1 3 1 0 0 0 1 ;)

4.0 Cross S i t e Request Forgery
This cannot be e a s i l y captured in a r u l e

5.0 Misce l l aneous
5.1 Check f o r a p p l i c a t i o n or se tup s p e c i f i c problems

Listing F.1: Final version of the signatures for the Basic Web Application
Scan Checklist

99

Appendix G
Final version of the signatures

for the advanced web application
scan checklist

Rules f o r the C e r t i f i e d Secure Advanced Web App l i ca t i on Scan
C h e c k l i s t

#1.0 Multi−system Serv i c e s
##1.1 Check f o r HTTP req u e s t smugg l ing

#2.0 Design

##2.1 Check f o r ex traneous f i l e s in document roo t
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 2 .1 Check f o r extraneous
f i l e s in document root " ; f low : to_server , e s t a b l i s h e d ; pcre : "
/\/ (. psq l_h i s to ry | acceso \/ | access−l og | a c c e s s . l og | a c c e s s \/ |
acces s_log | (abbrev iated in t h i s i l l u s t r a t i o n) | phpinfo . php) $
/Ui " ; d e t e c t i o n _ f i l t e r : t rack by_src , count 100 , seconds
60 ; s i d : 20210001 ;)

#3.0 Informat ion Di sc l o sure
##3.1 Check f o r too verbose error messages
##3.2 Check f o r debug enab l i ng us ing a p r e d i c t a b l e parameter
##3.3 Check f o r v a l u a b l e in format ion in robo t s . t x t
##3.4 Check f o r a c c e s s i b l e CVS/SVN d i r e c t o r i e s
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 3 .4 Check f o r a c c e s s i b l e
CVS/SVN d i r e c t o r i e s " ; f low : to_server , e s t a b l i s h e d ;
u r i c on t en t : " / . svn/ " ; s i d : 20340001 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Advanced−Web−Appl icat ion−Scan 3 .4 Check f o r a c c e s s i b l e
CVS/SVN d i r e c t o r i e s " ; f low : to_server , e s t a b l i s h e d ;
u r i c on t en t : " /CVS/ " ; s i d : 20340002 ;)

##3.5 Check f o r a c c e s s i b l e c o n f i g u r a t i o n d i r e c t o r i e s

101

Handled by 2.1
##3.6 Check f o r a c c e s s i b l e backup f i l e s
Handled by 2.1
##3.7 Check f o r a c c e s s i b l e non−parsed dynamic s c r i p t s
#a l e r t t cp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg

: " CS−Advanced−Web−Appl ica t ion−Scan 3.7 Check f o r a c c e s s i b l e
non−parsed dynamic s c r i p t s " ; f l ow : to_server , e s t a b l i s h e d ;

pcre : " / (\ . \ $\$\$ | \ . \ $db | \ . 1 1 3 | \ . abbu | \ . abk | \ . bac | \ . bak | \ .
bck | \ . bcm | \ . bdb | \ . bkp | \ . bks | \ . bps | \ . bup | \ . cbk | \ . da0 | \ . dbk
| \ . dov | \ . gho | \ . j b k | \ . l l x | \ .mem| \ . nb7 | \ . nbk | \ . nco | \ . nrs | \ .
oeb | \ . o l d | \ . oyx | \ . qbx | \ . q i c | \ . t b k | \ . tmp | \ . win | \ . win | \ . x l k
| \ . o r i g | \ . swp | \ . swo | ~ | \ . backup | \ . v) $/Ui " ; s i d :20370001 ;)

#4.0 Privacy and C o n f i d e n t i a l i t y
##4.1 Check f o r miss ing ant i−caching headers
##4.2 Check f o r unencrypted t ransmis s ions o f s e n s i t i v e

in format ion
##4.3 Check f o r s e n s i t i v e in format ion s t o r ed in cook i e s
##4.4 Check f o r s e n s i t i v e in format ion in e x t e r n a l l y arch i ved

pages
#5.0 I n t e g r i t y
##5.1 Check f o r c l i e n t s i d e s t a t e management
#6.0 Authen t i ca t ion and Author i za t ion
##6.1 Check f o r miss ing a u t h e n t i c a t i o n
##6.2 Check f o r a u t h e n t i c a t i o n based on knowledge o f a s e c r e t

URL
##6.3 Check f o r i d e n t i f i e r based a u t h e n t i c a t i o n
##6.4 Check f o r too verbose au then t i ca t i on−f a i l u r e l o g g i n g
##6.5 Check f o r brute−f o r c e username enumeration
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 6 .5 Check f o r brute−f o r c e
username enumeration " ; f low : to_server , e s t a b l i s h e d ; content :
"name=" ; nocase ; pcre : " / pass∗=/UPi " ; d e t e c t i o n _ f i l t e r :
t rack by_src , count 20 , seconds 60 ; s i d : 20650001 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Advanced−Web−Appl icat ion−Scan 6 .5 Check f o r brute−f o r c e
username enumeration " ; f low : to_server , e s t a b l i s h e d ; content :
" user=" ; nocase ; pcre : " / pass∗=/UPi " ; d e t e c t i o n _ f i l t e r :
t rack by_src , count 20 , seconds 60 ; s i d : 20650002 ;)

##6.6 Check f o r brute−f o r c e password gues s ing
by 6.5
##6.7 Check f o r d e n i a l o f s e r v i c e by l o c k i n g out accounts
by 6.5
##6.8 Check f o r a u t h e n t i c a t i o n or a u t h o r i z a t i o n based on

o b s c u r i t y
##6.9 Check f o r changing a password wi thout knowledge o f the

o ld password
#7.0 User Input
##7.1 Check f o r doub le decoding o f headers / parameters
#a l e r t t cp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg

: " CS−Advanced−Web−Appl ica t ion−Scan 7.1 Check f o r doub le
decoding o f headers / parameters " ; f l ow : to_server ,

102

e s t a b l i s h e d ; content :"%2522"; s i d :20710001 ;)
#a l e r t t cp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg

: " CS−Advanced−Web−Appl ica t ion−Scan 7.1 Check f o r doub le
decoding o f headers / parameters " ; f l ow : to_server ,
e s t a b l i s h e d ; pcre : "/^GET .∗%25(22|27 |3 c | 3 e)/Bi " ; s i d
:20710003 ;)

#a l e r t t cp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg
: " CS−Advanced−Web−Appl ica t ion−Scan 7.1 Check f o r doub le
decoding o f headers / parameters " ; f l ow : to_server ,
e s t a b l i s h e d ; content :"%253 c " ; nocase ; s i d :20710004 ;)

#a l e r t t cp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg
: " CS−Advanced−Web−Appl ica t ion−Scan 7.1 Check f o r doub le
decoding o f headers / parameters " ; f l ow : to_server ,
e s t a b l i s h e d ; content :"%253 e " ; nocase ; s i d :20710005 ;)

##7.2 Check f o r XML i n j e c t i o n
i t i s not p o s s i b l e to match t h i s r u l e wi thout many many f a l s e

p o s i t i v e s
##7.3 Check f o r XPath i n j e c t i o n
i t i s not p o s s i b l e to match t h i s r u l e wi thout many many f a l s e

p o s i t i v e s
##7.4 Check f o r LDAP i n j e c t i o n
i t i s not p o s s i b l e to match t h i s r u l e wi thout many many f a l s e

p o s i t i v e s
##7.5 Check f o r HTTP header i n j e c t i o n
#a l e r t t cp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg

: " CS−Advanced−Web−Appl ica t ion−Scan 7.5 Check f o r HTTP
header i n j e c t i o n " ; f l ow : to_server , e s t a b l i s h e d ; pcre : " /\ n+:
+/U" ; s i d :20750005 ;)

##7.6 Check f o r XSL(T) i n j e c t i o n
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 7 .6 Check f o r XSL(T)
i n j e c t i o n " ; f low : to_server , e s t a b l i s h e d ; pcre : "/<x s l : value−
o f /UPi " ; s i d : 20760001 ;)

##7.7 Check f o r SSI i n j e c t i o n
##7.8 Check f o r resource i d e n t i f i e r i n j e c t i o n
i t i s not p o s s i b l e to match t h i s r u l e wi thout many many f a l s e

p o s i t i v e s
##7.9 Check f o r dynamic s c r i p t i n g i n j e c t i o n
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 7 .9 Check f o r dynamic
s c r i p t i n g i n j e c t i o n " ; f low : to_server , e s t a b l i s h e d ; pcre : " /(
i n c lude | passthru | exec | system |) \(∗\$_(GET|POST|COOKIE) \ [/ UPi
" ; s i d : 20790001 ;)

##7.10 Check f o r r e g u l a r expre s s i on i n j e c t i o n
#8.0 XML
##8.1 Check f o r XML e x t e r n a l e n t i t y pars ing
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 8 .1 Check f o r XML e x t e r n a l
e n t i t y par s ing " ; f low : to_server , e s t a b l i s h e d ; pcre : " /<\!

ENTITY\ s+\sSYSTEM\ s /UPi " ; s i d : 20810001 ;)
##8.2 Check f o r XML e x t e r n a l DTD pars ing

103

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Advanced−Web−Appl icat ion−Scan 8 .2 Check f o r XML e x t e r n a l
DTD pars ing " ; f low : to_server , e s t a b l i s h e d ; pcre : " /<\!

DOCTYPE\ s+\sSYSTEM\ s /UPi " ; s i d : 20820001 ;)
#9.0 F i l e Upload
##9.1 Check f o r up load ing o u t s i d e o f in tended d i r e c t o r y
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 9 .1 Check f o r uploading
out s id e o f intended d i r e c t o r y " ; f low : to_server , e s t a b l i s h e d ;

pcre : " / f i l ename =.∗\ .\ .\// i " ; content : "POST" ; http_method ;
nocase ; s i d : 2 0 9 1 0 0 1 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Advanced−Web−Appl icat ion−Scan 9 .1 Check f o r uploading
out s id e o f intended d i r e c t o r y " ; f low : to_server , e s t a b l i s h e d ;

pcre : " / f i l ename =.∗\ .\ .\\/ i " ; content : "POST" ; http_method ;
nocase ; s i d : 2 0 9 1 0 0 2 ;)

##9.2 Check f o r i n c o r r e c t hand l ing o f very l a r g e f i l e s
##9.3 Check f o r l o c a l f i l e d i s c l o s u r e v ia upload f i l ename
##9.4 Check f o r up load ing o f c o n f i g u r a t i o n f i l e s
a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "

CS−Advanced−Web−Appl icat ion−Scan 9 .4 Check f o r uploading o f
c o n f i g u r a t i o n f i l e s " ; f low : to_server , e s t a b l i s h e d ; pcre : " /

f i l ename =.∗\. h ta c c e s s / i " ; content : "POST" ; http_method ;
nocase ; s i d : 2 0 9 4 0 0 1 ;)

a l e r t tcp $EXTERNAL_NET any −> $HTTP_SERVERS $HTTP_PORTS (msg : "
CS−Advanced−Web−Appl icat ion−Scan 9 .4 Check f o r uploading o f

c o n f i g u r a t i o n f i l e s " ; f low : to_server , e s t a b l i s h e d ; pcre : " /
f i l ename =.∗\. htpasswd/ i " ; content : "POST" ; http_method ;
nocase ; s i d : 2 0 9 4 0 0 2 ;)

#10.0 Email
##10.1 Check f o r automated spamming v ia (f eedback) s c r i p t s
#11.0 Ses s ions
##11.1 Check f o r ses s ion−cook i e s wi thou t the secure f l a g
##11.2 Check f o r ses s ion−cook i e s wi thou t the h t t p o n l y f l a g
##11.3 Check f o r p r e d i c t a b l e ses s ion−i d s
##11.4 Check f o r s e s s i o n c o l l i s i o n s
##11.5 Check f o r ses s ion−f i x a t i o n
##11.6 Check f o r e x t e r n a l se s s ion−h i j a c k i n g
##11.7 Check f o r in secure t ransmiss ion o f ses s ion−cook i e s
##11.8 Check f o r miss ing s e s s i o n revoca t i on on unencrypted

ses s ion−i d t ransmiss ion
#12.0 Cryptography
##12.1 Check f o r unproven cryp tog raph i c a l go r i t hms

Listing G.1: Final version of the signatures for the Advanced Web
Application Scan Checklist

104

General References

[1] Y. Bai and H. Kobayashi. Intrusion detection systems: technology and
development. In Advanced Information Networking and Applications, 2003.
AINA 2003. 17th International Conference on, pages 710 – 715, March
2003.

[2] Richard Bejtlich. The tao of network security monitoring, Beyond Intrusion
Detection. Addison Wesley, July 2007.

[3] Salem Benferhat, Tayeb Kenaza, and Aicha Mokhtari. A naive bayes ap-
proach for detecting coordinated attacks. Computer Software and Applica-
tions Conference, Annual International, 0:704–709, 2008.

[4] Damiano Bolzoni, Bruno Crispo, and Sandro Etalle. Atlantides: an ar-
chitecture for alert verification in network intrusion detection systems. In
LISA’07: Proceedings of the 21st conference on Large Installation System
Administration Conference, pages 1–12, Berkeley, CA, USA, 2007. USENIX
Association.

[5] Damiano Bolzoni and Sandro Etalle. Boosting web intrusion detection sys-
tems by inferring positive signatures. In OTM ’08: Proceedings of the OTM
2008 Confederated International Conferences, CoopIS, DOA, GADA, IS,
and ODBASE 2008. Part II on On the Move to Meaningful Internet Sys-
tems, pages 938–955, Berlin, Heidelberg, 2008. Springer-Verlag.

[6] Damiano Bolzoni, Sandro Etalle, Pieter Hartel, and Emmanuele Zambon.
Poseidon: a 2-tier anomaly-based network intrusion detection system. In
IWIA ’06: Proceedings of the Fourth IEEE International Workshop on In-
formation Assurance, pages 144–156, Washington, DC, USA, 2006. IEEE
Computer Society.

[7] Damiano Bolzoni, Sandro Etalle, and Pieter H. Hartel. Panacea: Automat-
ing attack classification for anomaly-based network intrusion detection sys-
tems. In RAID ’09: Proceedings of the 12th International Symposium on
Recent Advances in Intrusion Detection, pages 1–20, Berlin, Heidelberg,
2009. Springer-Verlag.

[8] Tobias Chyssler, Stefan Burschka, Michael Semling, Tomas Lingvall, and
Kalle Burbeck. Alarm reduction and correlation in intrusion detection sys-

105

tems. In Detection of Intrusions and Malware & Vulnerability Assessment,
GI SIG SIDAR Workshop, pages 9–24, 2004.

[9] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion
detection framework. In Security and Privacy, 2002. Proceedings. 2002
IEEE Symposium on, pages 202 – 215, 2002.

[10] Oliver Dain and Robert K. Cunningham. Fusing a heterogeneous alert
stream into scenarios. In In Proceedings of the 2001 ACM workshop on
Data Mining for Security Applications, pages 1–13, 2001.

[11] Dick de Ridder Ferdinant van der Heijden, Robert Duin and David M. J.
Tax. Classification, Parameter Estimation and State Estimation: An En-
gineering Approach Using MATLAB. WileyBlackwell, September 2004.

[12] Abdoul Karim Ganame, Julien Bourgeois, Renaud Bidou, and Francois
Spies. A global security architecture for intrusion detection on computer
networks. Computers & Security, 27(1-2):30 – 47, 2008.

[13] Ashish Gehani and Gershon Kedem. Rheostat: Real-time risk management.
In Recent Advances in Intrusion Detection, pages 296–314. Springer, 2004.

[14] K. Chidananda Gowda and E. Diday. Symbolic clustering using a new
dissimilarity measure. Pattern Recogn., 24(6):567–578, 1991.

[15] Kjetil Haslum and A. Å rnes. Multisensor real-time risk assessment using
continuous-time hidden Markov models. Computational Intelligence and
Security, pages 694–703, November 2006.

[16] Wei He, Chunhe Xia, Haiquan Wang, Cheng Zhang, and Yi Ji. Game
Theoretical Attack-Defense Model Oriented to Network Security. Computer
Science and Software Engineering,, 2008.

[17] Kenneth L. Ingham and Hajime Inoue. Comparing anomaly detection tech-
niques for http. In Recent Advances in Intrusion Detection, 10th Interna-
tional Symposium, RAID 2007, pages 42–62, 2007.

[18] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Comput. Surv., 31(3):264–323, September 1999.

[19] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[20] Klaus Julisch. Clustering intrusion detection alarms to support root cause
analysis. ACM Transactions on Information and System Security, 6:443–
471, 2003.

[21] Christopher Kruegel, Giovanni Vigna, and William Robertson. A multi-
model approach to the detection of web-based attacks. Comput. Netw.,
48(5):717–738, 2005.

[22] United States et al. V. Carroll Towing Co., Inc., et al., 1947.

106

[23] Weiming Li and Zhengbiao Guo. Hidden Markov Model Based Real Time
Network Security Quantification Method. 2009 International Conference
on Networks Security, Wireless Communications and Trusted Computing,
pages 94–100, 2009.

[24] C. Manikopoulos and S. Papavassiliou. Network intrusion and fault detec-
tion: a statistical anomaly approach. Communications Magazine, IEEE,
40(10):76 – 82, October 2002.

[25] Peter Mell, Karen Scarfone, and Sasha Romanosky. A complete guide to
the common vulnerability scoring system version 2.0. Published by FIRST-
Forum of, pages 1–23, 2007.

[26] Kent D Miller. A framework for integrated risk management in international
business. Journal of international business studies, 23(2):311–331, 1992.

[27] Peng Ning, Yun Cui, and Douglas S. Reeves. Analyzing intensive intrusion
alerts via correlation. In In proceedings of the 5th International sympo-
sium on Recent Advances in Intrusion Detection (RAID 2002), pages 74–94,
2002.

[28] Peng Ning and Dingbang Xu. Learning attack strategies from intrusion
alerts. In CCS ’03: Proceedings of the 10th ACM conference on Computer
and communications security, pages 200–209, New York, NY, USA, 2003.
ACM.

[29] Peng Ning and Dingbang Xu. Hypothesizing and reasoning about attacks
missed by intrusion detection systems. ACM Transactions on Information
and System Security, 7:591–627, 2004.

[30] National Bureau of Standards. Guideline for automatic data processing risk
analysis, 1979. Federal information processing standards publication; 65.

[31] Kevin John Soo Hoo. How much is enough: a risk management approach
to computer security. PhD thesis, Stanford University, Stanford, CA, USA,
2000. Adviser-May, Michael M.

[32] Anna Sperotto, Ramin Sadre, F. van Vliet, and Aiko Pras. A Labeled Data
Set For Flow-based Intrusion Detection. IP Operations and Management,
pages 39–50, 2009.

[33] Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney. Practical
automated detection of stealthy portscans. J. Comput. Secur., 10(1-2):105–
136, 2002.

[34] Gary Stoneburner, Alice Goguen, and Alexis Feringa. Risk Management
Guide for Information Technology Systems, 2002. http://csrc.nist.gov/
publications/nistpubs/800-30/sp800-30.pdf.

[35] Steven J. Templeton and Karl Levitt. A requires/provides model for com-
puter attacks. In Proceedings of New Security Paradigms Workshop, pages
31–38. ACM Press, 2000.

107

http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf

[36] the International Organization for Standardization. Information technology
- security techniques - information security management systems - overview
and vocabular, 05 2009.

[37] Alfonso Valdes, , Alfonso Valdes, and Keith Skinner. Probabilistic alert
correlation. In In Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection (RAID 2001), pages 54–68, 2001.

[38] Frank van Vliet. Turnover Poseidon : Incremental Learning in Clustering
Methods for Anomaly based Intrusion Detection. In 4th Twente Student
Conference on IT, Enschede, 2006.

[39] Luis von Ahn, Manuel Blum, and John Langford. Telling humans and
computers apart automatically. Commun. ACM, 47(2):56–60, 2004.

[40] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based network intru-
sion detection. In Erland Jonsson, Alfonso Valdes, and Magnus Almgren,
editors, Recent Advances in Intrusion Detection, volume 3224 of Lecture
Notes in Computer Science, pages 203–222. Springer Berlin / Heidelberg,
2004. 10.1007/978-3-540-30143-1_11.

108

Web References

[41] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol
– HTTP/1.0. RFC 1945 (Informational), May 1996. http://www.ietf.
org/rfc/rfc1945.txt.

[42] Bro intrusion detection system - bro overview, 07 2010. http://www.
bro-ids.org.

[43] The Mitre Corporation. Cwe/sans top 25 most dangerous software errors,
9 2010. http://cwe.mitre.org/top25/.

[44] Rohit Dhamankar, Mike Dausin, Marc Eisenbarth, James King, Wolfgang
Kandek, Johannes Ullrich, Ed Skoudis, and Rob Lee. Sans: The top cyber
security risks, 9 2009.

[45] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616
(Draft Standard), June 1999. Updated by RFC 2817, http://www.ietf.
org/rfc/rfc2616.txt.

[46] Gordon Lyon. Top 5 intrusion detection systems, 2006. http://sectools.
org/ids.html.

[47] Modsecurity: Open source web application firewall, 07 2010. http://www.
modsecurity.org.

[48] M. Curtis Napier. Gentoo security handbook, 07 2005. http://www.
gentoo.org/doc/en/security/.

[49] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differ-
entiated Services Field (DS Field) in the IPv4 and IPv6 Headers. RFC
2474 (Proposed Standard), December 1998. Updated by RFCs 3168, 3260,
http://www.ietf.org/rfc/rfc2474.txt.

[50] Welcome to the home of ossec, 07 2010. http://www.ossec.net.

[51] Alientvault - creators of ossim - the oss correlation and security suite, 08
2010. http://www.alienvault.com.

[52] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Up-
dated by RFC 1349, http://www.ietf.org/rfc/rfc791.txt.

109

http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.bro-ids.org
http://www.bro-ids.org
http://cwe.mitre.org/top25/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://sectools.org/ids.html
http://sectools.org/ids.html
http://www.modsecurity.org
http://www.modsecurity.org
http://www.gentoo.org/doc/en/security/
http://www.gentoo.org/doc/en/security/
http://www.ietf.org/rfc/rfc2474.txt
http://www.ossec.net
http://www.alienvault.com
http://www.ietf.org/rfc/rfc791.txt

[53] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September
1981. Updated by RFCs 1122, 3168, http://www.ietf.org/rfc/rfc793.
txt.

[54] FreeBSD Documentation Project. Freebsd handbook, chapter 14 se-
curity, 2010. http://www.freebsd.org/doc/en_US.ISO8859-1/books/
handbook/security.html.

[55] The Open Web Application Security Project. Owasp top 10 - 2010: The ten
most critical web application security risks, 4 2010. http://www.owasp.
org/index.php/Category:OWASP_Top_Ten_Project.

[56] Robert Richardson. 2008 csi computer crime & security survey, 2008. i.
cmpnet.com/v2.gocsi.com/pdf/CSIsurvey2008.pdf.

[57] Martin Roesch and Brian et al. Caswall. web-attacks.rules, 2 2005. http:
//cvs.snort.org/viewcvs.cgi/snort/rules/web-attacks.rules.

[58] Pine Digital Security. Quickscan rapport. Technical report, Pine Digital
Security, Loire 130, The Hague, Netherlands, 04 2010.

[59] Snort :: Home page, 07 2010. http://www.snort.org/.

[60] Frank van Vliet. Certified secure web hacking principles - authentication
and authorization. Technical report, Certified Secure, Loire 128A, The
Hague, Netherlands, jan 2010.

[61] Frank van Vliet. Certified secure advanced server scan checklist.
Technical report, Certified Secure, Loire 128A, The Hague, Nether-
lands, January 2010. https://www.certifiedsecure.com/checklists/
cs-advanced-server-scan.pdf.

[62] Frank van Vliet. Certified secure advanced web application scan check-
list. Technical report, Certified Secure, Loire 128A, The Hague, Nether-
lands, January 2010. https://www.certifiedsecure.com/checklists/
cs-advanced-web-application-scan.pdf.

[63] Frank van Vliet. Certified secure basic server scan checklist. Tech-
nical report, Certified Secure, Loire 128A, The Hague, Nether-
lands, January 2010. https://www.certifiedsecure.com/checklists/
cs-basic-server-scan.pdf.

[64] Frank van Vliet. Certified secure basic web application scan check-
list. Technical report, Certified Secure, Loire 128A, The Hague, Nether-
lands, January 2010. https://www.certifiedsecure.com/checklists/
cs-basic-web-application-scan.pdf.

[65] R. Zuccherato and M. Nystrom. ISO/IEC 9798-3 Authentication SASL
Mechanism. RFC 3163 (Experimental), August 2001. http://www.ietf.
org/rfc/rfc3163.txt.

110

http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/security.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/security.html
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
i.cmpnet.com/v2.gocsi.com/pdf/CSIsurvey2008.pdf
i.cmpnet.com/v2.gocsi.com/pdf/CSIsurvey2008.pdf
http://cvs.snort.org/viewcvs.cgi/snort/rules/web-attacks.rules
http://cvs.snort.org/viewcvs.cgi/snort/rules/web-attacks.rules
http://www.snort.org/
https://www.certifiedsecure.com/checklists/cs-advanced-server-scan.pdf
https://www.certifiedsecure.com/checklists/cs-advanced-server-scan.pdf
https://www.certifiedsecure.com/checklists/cs-advanced-web-application-scan.pdf
https://www.certifiedsecure.com/checklists/cs-advanced-web-application-scan.pdf
https://www.certifiedsecure.com/checklists/cs-basic-server-scan.pdf
https://www.certifiedsecure.com/checklists/cs-basic-server-scan.pdf
https://www.certifiedsecure.com/checklists/cs-basic-web-application-scan.pdf
https://www.certifiedsecure.com/checklists/cs-basic-web-application-scan.pdf
http://www.ietf.org/rfc/rfc3163.txt
http://www.ietf.org/rfc/rfc3163.txt

	Contents
	Abstract
	Introduction
	Scenario 1: risk management
	Scenario 2: network security monitoring
	Problem definition
	Overview

	Risk management
	Standards
	Literature
	TDS in Risk Management

	Network Security
	Standards
	Literature
	TDS in Network Security

	Threat Detection System
	Architecture
	Intrusion Detection System
	Threat classifier
	Threat profiler

	Benchmark and results
	Testing methodology
	Real network experiment
	Hacker experiment
	Discussion

	Conclusion
	Recommendations for further research

	Attack and Penetration test documentation
	Description
	Result
	Vulnerability Score
	Solution

	Snort configuration
	Checklist comparison
	First version of the signatures for the Basic Web Application Scan Checklist
	First version of the signatures for the Advanced Web Application Scan Checklist
	Final version of the signatures for the basic web application scan checklist
	Final version of the signatures for the advanced web application scan checklist
	General References
	Web References

