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Abstract

Quantitative cerebral blood flow (CBF) can be obtained from dynamic sus-
ceptibility contrast (DSC) MRI using for instance the truncated singular
value decomposition (tSVD). Block-circulant SVD and reformulated SVD
(rSVD) are modified SVD approaches. The purpose of this study is to com-
pare the different approaches. The optimal truncation thresholds (PSVD) for
tSVD and block-circulant SVD are determined using simulated data. The
optimal PSVD minimizes the CBF estimation error over all residue functions
and CBF values. The observed optimal PSVD values are comparable to the
values published by other authors.

Most authors assume that the recirculation in the concentration curves
has to be removed. Using noise-free curves the CBF estimates are indepen-
dent of the recirculation. However, when noise is added, a shift in optimal
PSVD occurs. Selecting the PSVD of curves without recirculation will cause
underestimation of the curves with recirculation.

The methods are compared in their ability to reproduce CBF. The de-
termination of the PSVD per voxel using generalized cross validation and
L-curve criterion is investigated as well. The tSVD approach with the op-
timal fixed PSVD performs best. In the presence of negative delays, the
tSVD approach overestimates the CBF. Block-circulant and rSVD are delay-
independent. Due to its delay dependent behavior, the tSVD approach
performs worse in the presence of dispersion as well. However all SVD ap-
proaches are dependent on the amount of dispersion.

Furthermore different CBV calculation methods are compared: integra-
tion of the whole time signal, integration of the first pass, fitting of a gamma
variate function and integration of the area under the tissue impulse response
function obtained during deconvolution. The latter method performs best
for all CBF, CBV and SNR values.

Using clinical data, large variations in the CBF values obtained with the
methods and between tissue regions are observed.

After the comparisons it can be concluded that block-circulant SVD is
the most promising approach due to the delay independent behavior.
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Samenvatting

Met truncated singular value decomposition (tSVD) kunnen kwantitatieve
cerebral blood flow (CBF) waarden berekend worden uit dynamic suscepti-
bility contrast (DSC) MRI data. Block-circulant SVD en reformulated SVD
(rSVD) zijn aangepaste SVD methodes. Het doel van deze studie is het
vergelijken van de methodes. De optimale thresholds (PSVD) voor tSVD en
block-circulant SVD zijn bepaald met gesimuleerde data. De optimale PSVD

minimaliseert the CBF error voor alle residue functies en CBF waardes. De
gevonden PSVD waarden komen overeen met de literatuur.

De meeste onderzoekers nemen aan dat bloed recirculatie uit de curves
verwijderd moet worden. Met ruis vrije curves zijn de CBF schattingen
onafhankelijk van de recirculatie. Wanneer ruis toegevoegd wordt is er een
verschuiving in optimale PSVD zichtbaar. De PSVD van curves zonder recir-
culatie zorgt voor onderschatting van de curves met recirculatie.

Vervolgens is de accuraatheid van de methodes vergeleken. Verder is de
PSVD per voxel met behulp van generalized cross validation en L-curve cri-
terion onderzocht. De tSVD methode gecombineerd met de optimale vaste
PSVD geeft de beste CBF waarden. Bij negatieve vertragingen overschat
de tSVD methode de CBF. De block-circulant en rSVD methode zijn on-
afhankelijk van de vertraging. Door het vertraging afhankelijke gedrag van
tSVD presteert deze methode ook het slechtste bij aanwezigheid van disper-
sie. Echter alle SVD methodes zijn afhankelijk van de hoeveelheid dispersie.

Verder zijn er verschillende CBV bereken methodes vergeleken: inte-
gratie over de gehele tijdscyclus, integratie over de bolus passage, fitting
van een gamma variate functie en integratie van de tissue impulse response
functie verkregen bij de deconvolutie. Deze laatste methode was het beste
voor alle CBF, CBV en SNR waarden.

Gebruikmakend van klinische data werden grote verschillen in de CBF
schattingen gevonden tussen verschillende methodes en tussen verschillende
weefsels.

Na de vergelijkingen kan geconcludeerd worden dat block-circulant SVD
een methode is met veel potentie door het vertragings onafhankelijke gedrag.
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Introduction

This introduction chapter provides background information about perfusion
and perfusion imaging. It starts with a short introduction to stroke in
section 1.1. This is followed by a description of the currently used imaging
methods to detect and quantify brain perfusion in section 1.2. In section 1.4
a formulation of the goal of this thesis project is given. The introduction
concludes with an outline of the content of this thesis.

The circulation of blood through the body is an important process in
a living organism. Nutrients are carried in the blood to the tissue and
delivered in the tissue capillary bed. The delivery of blood to the capillary
bed is called perfusion. When tissue experiences a decrease or absence of
perfusion, the tissue can be quickly damaged. The perfusion of the brain
is called cerebral perfusion, which is essential to maintain brain function.
Stroke is an example of a disease concerning with reduced blood flow and
therefore reduced perfusion.

1.1 Stroke

Stroke is a type of vascular disease that affects the arteries leading to and
within the brain. The blood flow to the brain tissue can be hampered in two
ways. The most common kind of stroke, called ischemic stroke, is caused by
a clot inside the vessel that blocks the blood flow. The second type, called
hemorrhagic stroke, is caused by a rupture of the vessel wall. A briefly
interruption of the blood supply is called a transient ischemic attack (TIA).

Hypoperfused tissue can be divided into three compartments. Tissue
that will inevitably die (core), tissue that will in principle survive (oligemia),
and tissue that may either die or survive (ischemic penumbra) [1]. The final
tissue outcome depends on two factors, namely the severity and the duration
of the flow reduction. Unless early reperfusion occurs, the volume of the core
grows and the amount of penumbra decreases. Reperfusion of tissue can be
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2 Introduction 1

achieved using thrombolytic therapy when this is started within 6 hours [2].
There is the intention to perform follow-up studies to investigate the

recovery of stroke patients. During follow-up studies very subtle changes
should be measurable. Therefore a reliable and accurate perfusion quantifi-
cation method is needed.

1.2 Perfusion imaging

There are a few imaging techniques developed to evaluate brain hemody-
namics. The main imaging techniques are positron emission tomography
(PET) [3, 4], single photon emission computed tomography (SPECT) [5],
Xenon-enhanced computed tomography (Xe-CT) [6, 7], dynamic perfusion
computed tomography [8, 9] and magnetic resonance imaging (MRI) [10, 11].

MRI can be divided in two common techniques. One based on arterial
spin labeling (ASL) and one based on dynamic susceptibility contrast (DSC).
The ASL method is completely non-invasive and uses water in the arterial
blood as an endogenous tracer [12], while DSC perfusion MRI makes use of
an intravascular injected paramagnetic contrast medium [13].

All these imaging techniques provide information about the current state
of the brain. The information is provided in the form of parameters such
as cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit
time (MTT) and time to peak (TTP). The gold standard for quantitative
perfusion imaging is H2

15O positron emission tomography. This method
is frequently used as validation for other new techniques [3, 4, 14]. For
clinical purposes, the method has substantial disadvantages, including the
need for an arterial catheter to measure the arterial tracer concentration,
the application of radioactivity, and the limited availability of PET centers
with a cyclotron for the required on-site production of the radionuclide. For
follow up studies a less invasive method is essential. This thesis is focused
on DSC-MRI because of the disadvantages of PET and the need for another
less invasive method for follow up studies. Furthermore DSC-MRI data is
more widespread available compared to ASL data.

1.3 Magnetic resonance imaging

MRI is a medical imaging technique to visualize the internal structure of the
body using the hydrogen atoms in the body. The MRI scanner uses a strong
magnetic field to align the nuclear magnetization of hydrogen atoms to the
longitudinal direction. With radio frequency (RF) pulses the alignment of
the magnetization is altered systematically to the transverse direction. The
application of the RF pulse is called excitation. The detectable signal is
caused by the protons which return to their original magnetization align-
ment after the RF pulse is turned off. This process is called relaxation.
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The recovery of longitudinal magnetization is caused by a process called T1
recovery. The decay of the transverse magnetization is caused by a process
termed T2 decay. T2* decay is the decay of the signal as a combination
of the T2 decay itself combined with the dephasing due to magnetic field
inhomogeneities [15]. Inhomogeneities are areas within the magnetic field
that do not exactly match the external magnetic field. T1, T2 and T2*
are tissue dependent, therefore anatomical images can be made using the
measured time values.

1.3.1 Dynamic susceptibility contrast

Perfusion measurements by DSC-MRI utilize dynamic imaging with a rep-
etition time (TR) in the order of seconds to measure the signal changes
induced by the tracer in the tissue, as a function of time. Gadolinium (Gd)-
based chelates are commonly used as tracer. The tracer injection is usually
followed by a saline flush to obtain a short contrast bolus. During the first
pass of the bolus through the vessels of the brain, the extraction of contrast
agent is zero if the blood-brain barrier is intact [13].

However, the successive images show a signal decay of the spins during
the pass of the tracer bolus. This is visible as a drop in the signal intensity
curve, see Figure 1.1. When the blood-brain barrier is intact, the tracer is
compartmentalized within the vascular space of the brain. The compartmen-
talization leads to localized regions with differences in the magnetic fields
and to gradients in the magnetic field. A shortening of the homogeneous
T2 measured with a spin-echo experiment, or T2* measured with a gradient
echo experiment, will arise when the diffusion of water molecules between
regions of different fields occurs. This susceptibility process is described in
detail by Villringer et al. [16].
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Figure 1.1: Signal intensity time curve which shows a signal intensity drop after
30 seconds. This curve is obtained from a single voxel of a clinical dataset.
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Besides visualization of the brain hemodynamics, quantitative perfusion
values can be obtained as well. Using tracer kinetic models such as the
Meier-Zierler model [17], perfusion parameters are derived from the signal-
intensity changes in the brain. There are several postprocessing methods
to process the data. Variation in quantification has implications for clini-
cal studies, therefore it is important to validate the postprocessing method
which is used.

1.4 Project goal

Suppose a patient which comes into the emergency room with signs of stroke.
After the CT or MRI protocol, stroke is diagnosed. To investigate the re-
covery of these stroke patients follow up studies are needed. During follow
up studies subtle signal differences should be measurable, therefore an accu-
rate and reliable quantification method is necessary. Furthermore a method
without radiation is preferable because of the cumulated radiation effects
associated with follow up studies. This thesis is focused on quantification
of DSC-MRI. However there are multiple quantification methods present for
DSC-MRI and it is unknown which method performs best.

The ultimate project goal is the comparison of the commonly used quan-
tification methods used for DSC-MR perfusion imaging. This thesis will be
focused on the implementation of the current common used quantification
methods. Followed by the comparison of these methods with use of simu-
lated data. Finally the methods are tested using clinical data as well.

This thesis includes the following topics:

◦ A literature survey of existing quantification methods used for MR
perfusion imaging,

◦ Implementation of the method of choice, i.e. singular value decompo-
sition and signal integration methods in Matlab to obtain perfusion
quantities from simulated data and medical perfusion datasets,

◦ The development of a simple graphical user interface to choose the de-
sired quantification method for clinical datasets, and to make manual
selection of the arterial input function possible,

◦ Performing data simulations to obtain signal curves with known per-
fusion values. This is followed by a comparison of the known perfusion
data with the calculated perfusion data. The research questions are
listed in chapter 3.

◦ Comparison of the methods by calculation of the percentage difference
between methods using clinical data.
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1.5 Thesis outline

The ultimate goal of this thesis is the comparison of the commonly used
quantification methods. However, first one method has to be chosen to focus
on. Therefore this report starts with a literature survey of the quantification
methods. This overview is given in chapter 2. During the literature survey
some questions arose about the quantification methods. Therefore chapter 3
gives an overview of the subproblems which are investigated in this thesis.
Subsequently in chapter 4 the simulation of MR data is explained followed
by different investigations which are performed to answer the subproblems.
In addition chapter 5 contains a comparison using clinically obtained MR
data of 15 patients. In the conclusion of the report in chapter 6 the re-
search questions which were defined in chapter 3 are answered and some
recommendations for further research are made.





2

Quantification

Quantitative perfusion measurements may be derived by different postpro-
cessing methods [18]. Most methods demand for user-selected parameters
which may lead to variation in quantitative perfusion values. Therefore
there are (semi-)automatic methods as well. This chapter provides informa-
tion about several postprocessing methods which are commonly used. First
the theory behind the calculations is explained in section 2.1. In section 2.2
the different approaches to determine the arterial input function (AIF) are
mentioned. Section 2.3 gives information about the commonly used decon-
volution methods such as singular value decomposition. Section 2.4 provides
four methods to integrate the tracer concentration-time curve to calculate
CBV. This chapter concludes with a section about the assumptions used
during the quantification of perfusion data.

2.1 Theory

As described in subsection 1.3.1, with DSC-MRI a change in signal intensity
is visible during the experiment. The perfusion model of Meier-Zierler [17]
for non-diffusible tracers uses these signal intensity decay curves. Almost all
DSC-MRI perfusion quantification methods are based on this model. The
signal intensity of every voxel has to be converted to tracer concentration in
order to calculate hemodynamic parameters. Most authors assume that the
tissue concentration of the contrast agent is proportional to the change in
relaxation rate [18–22]. The relationship between the signal intensity, S(t),
and the change in relaxation rate, ∆R2(t), during the passage of the bolus
is then given by

S(t) = S0 exp
−TE·∆R2(t), (2.1)

7



8 Quantification 2

where S0 is the precontrast signal and TE the echo time. The concentration
C(t) can then be calculated using

C(t) = − 1

k · TE
ln

(
S(t)

S0

)
, (2.2)

where C(t) is the contrast agent concentration of the voxel at time t and
k is a proportionality constant which is unknown [21]. The value of k is
usually set to unity, as it appears as a coactor in both the numerator and
dominator in the calculation of cerebral blood volume (CBV) according to
Equation 2.4 and therefore drops out of the calculation.

Using the obtained concentration-time curves, perfusion parameters can
be calculated per voxel or per region-of-interest (ROI).

CBV is defined as the total volume of blood in a given region of the brain.
CBV has units of milliliters of blood per 100 gram of brain tissue (mL/100
g) [23]. By detecting the arterial as well as the total tissue concentration
as a function of time during the first pass of the contrast bolus, the CBV
can be determined from the ratio of the areas under the tissue and arterial
concentration time curves. The arterial concentration time curve is also
called arterial input function (AIF), because this curve is the theoretical
concentration-time input for all tissue voxels.

A correction factor

kH =
1− hlv

ρ(1− hsv)
, (2.3)

dependent of the hematocrit values in large (hlv) and small (hsv) vessels
and the brain density (ρ) is normally introduced. The incorporation of the
hematocrit values into the correction factor is due to the fact that the tracer
is distributed in the plasma volume rather than in the whole blood volume
[21]. The CBV can be calculated using

CBV = kH ·
∫
Ct(t)dt∫

AIF (t)dt
, (2.4)

where Ct and AIF are the concentration of the contrast material at time t
in the tissue and AIF voxels respectively [13, 21, 22].

The cerebral blood flow (CBF) is defined as the volume of blood moving
through a given brain region per unit time, representing the capillary flow in
the tissue. CBF has units of milliliters of blood per 100 gram of brain tissue
per minute (mL/100 g/min) [23]. To calculate the CBF the residue data
R(t) have to be known. R(t) is the fraction of the injected tracer still present
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in the vasculature at time t after an in theory infinitely short injection of
tracer into the artery. R(t) can be expressed as

R(t) = 1−
∫ t

0
h(t)dt, (2.5)

with h(t) the probability density function of the capillary transit times [21,
22]. Theoretically at time zero, the residue function has value one, R(0) =
1, and if the tracer is not bound to the arterial walls, the contrast will
disappear, R(∞) = 0. The product CBF ·R(t) is called the tissue impulse
response function, as it is the tissue concentration as a result of the infinitely
short AIF. However, in fact the AIF will not arrive as an infinitely short bolus
but will arrive over a time interval. With other words, the AIF is distributed
in time. The tissue concentration time curve becomes the convolution of the
tissue impulse response function and the shape of the AIF:

Ct(t) = CBF

∫ t

0
AIF (τ)R(t− τ)dτ

= CBF ·R(t)⊗AIF (t),

(2.6)

where ⊗ denotes convolution [13, 21, 22].
When an appropriate AIF is selected, the CBF can be determined by

deconvolution. Because R(0) = 1, theoretically CBF should be equal to
the initial height of the tissue impulse response function. However, this is
only valid without the presence of delay and dispersion. Therefore in several
articles the maximum of R(t) ·CBF is chosen as value for CBF [19, 22, 24]
which is used in this report as well.

The mean transit time (MTT) is a measure of the mean time for blood
to perfuse a region of tissue [23]. MTT is related to CBF and CBV by the
central volume principle:

MTT =
CBV

CBF
. (2.7)

2.2 Arterial Input Function

Quantification of CBF is done by deconvolution of the tissue concentration
curve with the AIF according to Equation 2.6. The most simple approach
is to select manually one AIF for the whole brain, this is called global AIF.
The manual global AIF is commonly estimated from the signal changes
in a major artery, for instance the middle cerebral artery, by selection of
one voxel or a region of interest (ROI). There are also methods which are
user-assisted; the method identifies candidate AIF locations based on peak
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concentration signal intensity and arrival time [25]. Finally it is possible
to determine the global AIF automatically as well. For example there is a
method based on adaptive thresholding [26] and a method based on the full
width at half maximum of the tracer concentration curves [27].

Because the contrast bolus has to travel a distance between the position
where the global AIF is measured and the tissue region of interest, bolus
delay and dispersion can occur. Therefore local AIF determination is pro-
posed as an AIF which is less prone to delay and dispersion. A smaller vessel
closer to the tissue region of interest is used to determine the local AIF.

2.3 Deconvolution approaches

To determine CBF and subsequently MTT, deconvolution of the tissue con-
centration curve with the AIF is required, according to Equation 2.6. The
approaches to deconvolve Equation 2.6 can be divided into three main cat-
egories: model-dependent, model-independent and statistical approaches.

2.3.1 Model-dependent approach

In the model-dependent deconvolution approach, the tissue residue function
R(t) is approximated by an analytical function that models the response of
the vascular structure. Assuming a specific shape for R(t) imposes assump-
tions on the tissue microvasculature. There are several model-dependent
models published.

Larson et al. [28] used an exponential function as shape for the residue
function. For this model several assumptions are made, such as: a multiple-
inlet, multiple-outlet region of interest can be represented as an equivalent
single-inlet, single-outlet system having the same plasma mean transit time.
However, when the underlying residue function is non-exponential, an error
will be introduced in the CBF estimates [22].

Østergaard et al. [29] presented a modified model which models the vas-
culature as one major feeding artery in series with 20 small vessels in parallel.
The original model is developed to describe major vessel transport as well as
microvascular tracer retention of the coronary circulation [30]. The resulting
gray-to-white matter CBF ratios, obtained with the modified model, were
in good agreement with literature values obtained using PET.

Finally, model-dependent deconvolution can be carried out in the fre-
quency domain as well [31]. Examination of the frequency components
of the residue function prior to noise filtering permits the determination
of the spectral components that are distorted by noise. The time-domain
representation of the exponential shaped residue function should become a
Lorentzian function in the frequency domain. Inspection of the less distorted
frequency data of the residue function allows the distorted data points to
be replaced by values calculated using a model based on the Lorentzian
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function. An advantage of frequency domain modeling is that there is no
necessity for assumptions regarding the shape of the tissue curves and the
AIF. However, this method is model-dependent and cannot be expected to
perform equally well for all residue models. In particular for models with
significant high-frequency content, such as the box and triangle shaped func-
tions, a more complex frequency-domain model is needed.

2.3.2 Model-independent approach

Model-independent deconvolution approaches do not require a priori as-
sumptions regarding the vascular structure [21]. The convolution function
is generally unstable, which means that an infinitesimal change in CTissue(t)
can cause a finite change in R(t). There are several techniques which were
used to deconvolve Equation 2.6 which mainly differ in the way they mod-
erate the effects of noise in the measurements.

Fourier deconvolution approach

In the Fourier transform (FT) approach, the convolution theorem of the FT
is utilized. Namely that the transform of two convolved functions equals the
product of their individual transforms. In mathematical form the convolu-
tion theorem can be written as

F {k ⊗ g} = F {k} · F {g} , (2.8)

where F {} denotes the discrete FT and k and g are functions. According
to the convolution theorem, Equation 2.6 can be solved by division in the
Fourier domain [21, 32]:

F {kHC(t)} = F {CBF ·R(t)⊗AIF (t)}
= F {CBF ·R(t)} · F {AIF (t)}

CBF ·R(t) = F−1

{
F {kHC(t)}
F {AIF (t)}

}
,

(2.9)

where F−1 {} denotes the inverse discrete FT.
In this form, the deconvolution approach is very sensitive to noise. How-

ever, the frequency representation of the concentration curves contain noise
at high frequencies and the physiological signal at low frequencies. This sep-
aration between data and noise makes it possible to use a filter to attenuate
the noise and retain the physiological data. A Wiener filter is a commonly
used filter to obtain the CBF [27, 32]. Smith et al. [33] used the FT decon-
volution together with fitting of a gamma-variate function to the concen-
tration data before deconvolution. The use of a gamma-variate function to
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remove the recirculation signal is explained in section 2.5.5. Wirestam et al.
[34] publicated two FT approaches, one with gamma-variate fitting to the
concentration data of every voxel, and one with a low-pass Hanning filter
without gamma-variate fitting. Sakoglu et al. [35] reported a method to find
the optimal filter by minimizing the mean-squared error (MSE) between the
noiseless and noisy scaled residue function. They found that the technique
was stable at low noise levels, but that it underestimated the CBF under
moderate noise conditions. The shaped filter function was also found to be
sensitive to distortion of the AIF.

Algebraic approach

In the algebraic approach, Equation 2.6 is rewritten into a matrix equation.
Assuming that tissue and arterial concentrations are measured at equidistant
time points t1, t2, t3, . . . , tN , the convolution theorem can be approximated
by a matrix equation [13, 21, 22]:

Ct(tj) = CBF

∫ tj

0
AIF (τ)R(t− τ)dτ

≈ CBF∆t

j∑
i=0

AIF (ti)R(tj − ti),

(2.10)

where Ct(tj) denotes the tissue concentration at time tj . Equation 2.10 can
also be written in matrix form as


Ct(t1)
Ct(t2)
. . .

Ct(tN )

 = CBF ·∆t


AIF (t1) 0 . . . 0
AIF (t2) AIF (t1) . . . 0

. . . . . .
. . . . . .

AIF (tN ) AIF (tN−1) . . . AIF (t1)

 ·


R(t1)
R(t2)
. . .

R(tN )

 , (2.11)

which can be solved iteratively for the elements of R(tj). The AIF matrix
is a lower triangular matrix and ∆t represents the TR. If the rows of the
AIF data matrix are close to being linear combinations of each other, then
the matrix is singular and inversion cannot be performed [21].

The technique described above assumes that arterial and tissue concen-
trations are constant between measurements. However, in dynamic MR
imaging, both concentrations are expected to show little variation within
the temporal resolution of the measurements. The constancy of these con-
centrations between measurements is thus a poor approximation. There-
fore Østergaard et al. [22] introduced a modification of the AIF matrix in
Equation 2.11 which assumed that AIF and R(t) both vary linearly with
time. The elements of the AIF matrix become

aij =

{
∆t(AIF (ti−j−1) + 4AIF (ti−j) +AIF (ti−j+1))/6 0 ≤ j ≤ i

0 else.
(2.12)
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To obtain a stable solution of Equation 2.11, noise has to be suppressed.
Knutsson et al. [21] and Østergaard et al. [22] give a description how to use
singular value decomposition (SVD) to calculate CBF. SVD is a factorization
method which is used widely in linear inverse problems. With SVD the
pseudoinverse of the AIF matrix can be calculated. Using SVD the AIF
data can be decomposed into three matrices:

AIF = U ·


w1 0 . . . . . . 0
0 w2 . . . . . . 0
0 0 . . . . . . 0
. . . . . . . . . . . . . . .
0 0 . . . . . . wN

 ·VT = U ·W ·VT (2.13)

where U and V are orthogonal matrices, so their inverses are equal to their
transposes. The inverse of AIF can then be written as [36]:

AIF−1 = V ·
[
diag

(
1

wj

)]
·UT . (2.14)

The tissue impulse response function, CBF ·R(t), can thus be calculated
as:

CBF ·R(t) = V ·
[
diag

(
1

wj

)]
·
(
UTkHC(t)

)
. (2.15)

The smallest singular values in matrixW correspond to high frequencies.
In an actual calculation of the SVD, even singular values that theoretically
should be zero will show up as extremely small but non-zero values in the
matrix W. This is caused by round-off errors and noise in the data. A
direct application of the calculated matrix W will produce large oscillations
in the final solution. Regularization refers to mathematical methods which
improve the stability in such problems.

One straightforward method is referred to as truncated SVD (tSVD)
[37, 38]. This method treats all singular values below a certain threshold,
also called truncation parameter (PSVD), as exact zeros. Using this method
the effects of noise are reduced. However, a high threshold can lead to
underestimation of the CBF [39]. The resulting found R(t) can be shown
to be the best possible solution in a least squared sense [36]. It is possible
to use a fixed PSVD for all curves. However there are methods to calculate
the PSVD for every curve separately as well. Generalized cross validation
(GCV) and L-curve criterion (LCC) are well-known methods for this voxel
based purpose [37].

An alternative regularization method is known as standard form Tikho-
nov regularization (SFTR). The solution of this method can be written by
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replacing diag[1/wj ] with diag[wj/(wj
2 + PSVD

2)] [38]. SFTR performs
a ’smooth’ truncation of the singular values. GCV or LCC are frequently
used methods for selection of the optimal PSVD for SFTR.

The standard SVD approach as described above is delay sensitive. Nowa-
days there are new, slightly modified, SVD approaches such as reformulated
SVD (rSVD) [40] and block-circulant SVD [19] which are reported to be
delay insensitive.

With rSVD the first nonzero estimate of the residue function is obtained
at time t = TOFFSET . The parameter TOFFSET must represent a time that
is larger than the absolute value of the largest expected experimental neg-
ative arrival time plus the duration of signal distortions introduced when
discarding singular values. It was found that TOFFSET = −n · TR with
n = 40 and TR ≤ 0.25 s gives practical equivalence CBF estimates of rSVD
compared with FT. With discrete Ct(t) data, this method is computation-
ally equal to shifting the experimental Ct(t) values by n samples. After
this computational time shift the SVD approach is equal to the previously
described SVD approach.

With block-circulant SVD the same basic SVD approach is used. In this
case both the AIF matrix and the Ct(t) vector are changed. By zero-padding
the N-points AIF-time and the tissue concentration-time curve to length L,
where L ≥ 2N, time aliasing can be avoided. Secondly, the matrix AIF is
changed.

a#ij =

{
ai,j 0 ≤ j ≤ i

aL+i,j,0 else.
(2.16)

Using this AIF matrix and the zero-padded tissue concentration curve,
the standard SVD approach can be followed.

Optimal choice

The optimal choice of some transform and algebraic approaches was studied
using Monte Carlo simulations [22]. The FT approach was found to un-
derestimate the CBF with short MTT. Calculating the CBF of two regions
with equal CBF but different CBV gives two different answers. The region
with the highest CBV, and therefore the highest MTT, will appear to have
a higher CBF. The FT approach is thus misleading in evaluating states of
high flow and short MTT unless the sampling rate can be improved relative
to the MTTs. Furthermore, when an unmodified Wiener filter is used, the
mean square error over the whole time range is minimized. However, the
first values of the impulse response function are of importance. A modified
Wiener filter [32] or Hanning filter will compensate these filter problems.
Finally, an advantage of the FT approach is the insensitivity to delay of the
AIF.
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The SVD approach showed a good ability to reproduce flow with good ac-
curacy independent of the underlying vascular structure and volume. With
decreasing SNR, the shape of the residue function becomes less detailed.
However, the initial and maximum point on the residue curves still remains
constant. At a SNR of below 50-100, the noise is too large to yield qualita-
tive information. The SVD approach has some drawbacks as well. First, the
results of the deconvolution are dependent of the chosen truncation value
[39] and secondly, the deconvolution is sensitive to delay and dispersion [41].
However, rSVD and block-circulant SVD are reported to be delay insensitive
[40].

There is not one optimal approach; all have their own advantages and
disadvantages. However, SVD and especially truncated SVD is the most
well accepted method.

2.3.3 Statistical approach

The residue function can be approximated using statistical approaches as
well. Statistical approaches do not require a priori assumptions regard-
ing the vascular structure. Vonken et al. [42] used an iterative maximum
likelihood expectation maximization algorithm (ML-EM) which is based on
the expectation maximization framework described by Dempster et al. [43].
The ML-EM algorithm makes an estimate of the tissue response function
(CBF ·R(t)), convolves it with the AIF and then compares the outcome with
the measured tissue concentration curves to correct the estimate. They re-
ported that the method is less sensitive to noise than other methods. Willats
et al. [44] proposed a modified ML-EM method that minimized the artifacts
associated with deconvolution by using a pointwise termination approach.
With this method, the sharp edges of a non-dispersed delayed concentration
curve can be reconstructed.

It is also possible to obtain the residue function using a Gaussian process
[45]. This method has the smoothness of the impulse response function
incorporated as a constraint.

Zanderigo et al. [46] proposed a deconvolution method based on non-
linear stochastic regularization (NSR). They reported that NSR performs
better than SVD and SFTR in reconstructing both the peak value and the
residue function, specially when dispersion was considered.

2.3.4 Summary deconvolution approaches

Deconvolution of the tissue concentration curve with the AIF is an im-
portant step in the quantification processing of perfusion data. There
are model-dependent, model-independent and statistical approaches. The
model-dependent approaches require a priori knowledge about the vascula-
ture. Exponential decrease has been proposed as a general model for tissue
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residue functions. However, this is wrong for more complicated vascular
structures and plug flow. A wrong assumption can introduce large errors in
the calculated residue function.

There are two well-known model-independent deconvolution approaches,
namely Fourier transform (FT) and singular value decomposition (SVD).
The FT uses the convolution theorem to calculate the residue function while
the SVD method uses matrix equations. Both approaches have advantages
and disadvantages. For example, FT is insensitive to delay of the AIF while
this approach underestimates CBF in voxels with high CBV and short MTT.
SVD is independent of the vasculature and CBV, but is dependent on the
cut-off value used during the deconvolution. Truncated SVD, SVD with a
certain threshold for the diagonal values of matrixW (Equation 2.13), is the
most used deconvolution method. This approach is less sensitive to noise.

For statistical deconvolution approaches, no a priori assumption about
the vascular structure are needed. This is an advantage for statistical ap-
proaches. Furthermore NSR is reported to be independent of bolus disper-
sion.

This thesis is focused on SVD deconvolution approaches because this is
the most used method in DSC-MRI quantification. Comparison of different
SVD approaches has not been done before to the best of our knowledge.
Furthermore different investigations are done with different types of SVD
approaches which makes it difficult to compare them. Therefore it is impor-
tant to know which approach performs best.

2.4 Signal integration methods

In general, the determination of CBV involves the integration of the tissue
concentration-time curve either on a pixel-by-pixel or a ROI basis. A typical
arterial and tissue concentration curve contains two peaks. This is explained
in more detail in section 2.5

There are several possibilities to perform the integration. The easiest
method is the numerical integration of the whole concentration-time curve,
i.e. from the arrival of the bolus till the end of the acquisition. This method
includes the recirculation, therefore it does not yield absolute CBV. How-
ever, Kosoir et al. [24] claim that the calculations of CBV are independent
of the recirculation.

The second method, which is frequently used, is the integration of the
concentration-time curve from the arrival time of the contrast bolus till the
minimum of the curve between the first pass and the recirculation. With this
method the recirculation is removed from the CBV calculations. Usually the
integration boundaries are determined on the signal-intensity curve which is
based on the mean signal-intensity of all the brain voxels. This means that
all voxels are integrated with the same boundaries. Therefore it is likely to
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underestimate CBV in areas with prolonged MTT where the first pass is
broadened, extending beyond the upper integration boundary.

Another method which is frequently used in perfusion imaging is fitting
a gamma variate function to the concentration-time curve. This procedure
is explained in section 2.5.5. Finally, CBV can be derived by integration of
the tissue impulse response function [32, 47].

Perkiö et al. [18] evaluated the use of the four postprocessing methods
for determination of CBV and MTT. They concluded that for relative CBV
and MTT measurements numerical integration over the whole time curve
is optimal in terms of computational efficiency, signal-to-noise ratio (SNR),
and accuracy of relative values. For absolute CBV and MTT measurements,
the area under the SVD deconvolved tissue curve provides the most accurate
estimates.

2.5 Assumptions

Although deconvolution of the concentration-time curves could in theory
provide accurate and reliable perfusion parameters, there are several as-
sumptions in the tracer kinetic model used in the quantification of perfusion.
These assumptions may be invalid in cerebral ischemia. In this section the
most important assumptions are mentioned.

2.5.1 Arterial input function measurement

As described in section 2.2, the AIF is in practice manually selected in a
major artery with the assumption that this represents the exact input to
the tissue. However, with selection of one incorrect global AIF the results
of all voxels will be influenced.

Firstly, delay and dispersion of the bolus from the location of AIF es-
timation to the tissue can cause an error in the quantification. This error
could vary between regions because of differences in the amount of delay and
dispersion between the tissue regions in the brain [48]. The rSVD and block-
circulant SVD approaches are insensitive to delay, however SVD approaches
are still sensitive to dispersion.

Secondly, due to the limited spatial resolution of a typical DSC-MRI
experiment, measurements of the AIF are likely to include signal compo-
nents from tissue surrounding the vessel. This is called partial volume effect
(PVE). Chen et al. [49] reported that PVE can induce significant CBF es-
timation biases. One approach to minimize the effects of PVE is scaling of
the estimated AIF. For example this can be done using the venous output
function measured from the sagittal sinus [50]. Selecting the AIF in large
vessels minimize the PVE effects, however the amount of delay and disper-
sion can be increased due to the longer distance between the AIF location
and the tissue voxels.
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Furthermore the AIF is dependent of the sequence that is used. While
gradient-echo is sensitive to the total vascular space, spin echo is more spe-
cific to the capillary bed. As a consequence of the latter, it has been sug-
gested that spin-echo sequences cannot provide an absolute measurement of
the AIF [50].

2.5.2 Blood-brain barrier

DSC-MRI quantification methods rely on the assumption that the blood-
brain barrier is intact. When the blood-brain barrier is damaged, the Gd
chelate will be transported into the extravascular space. As a consequence
the tracer is not compartmentalized anymore, leading to a reduction in
the T2/T2* relaxation in the extravascular tissue which affects the signal-
intensity time course [51]. This can cause an error in the final CBF and
CBV values.

2.5.3 Linearity concentration

The concentration of the contrast tracer, in both the tissue and the AIF,
is assumed to be linearly proportional to the change in relaxation rate.
Furthermore the proportionality constant has to be independent of tissue
type. However, the proportionality constant has been shown to be tissue
dependent [52]. This dependency can cause an error in the estimated values
compared between the different tissue types.

2.5.4 Hematocrit correction

In the absolute quantification of CBV and CBF, a correction factor based
on the brain density and the hematocrit values of the large and small vessels
is included in the calculations (Equation 2.3). It is known that hematocrit
levels in the tissue can increase during acute ischemia, and decreased levels
have been reported during chronic carotid artery stenosis. A local change
in hematocrit levels will affect the measurements [48].

2.5.5 Recirculation

A typical vessel and tissue concentration curve contains two peaks. First a
large peak corresponding to the first pass of the contrast bolus and secondly
a smaller peak corresponding to the recirculation of the contrast material.
Figure 2.1 shows an example of a theoretical AIF with recirculation. In the
AIF the separation of the two peaks can be clearly visible, however in tissue
concentration curves the second peak coincides most of the time with the
down slope of the first pass.
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Figure 2.1: Concentration-time curve with recirculation.

Most authors assume that the tracer recirculation has to be removed to
derive CBF and CBF [14, 31, 53]. One well-known method to remove the
tracer recirculation is fitting a gamma variate function to the first pass of
the concentration time curve. This approach is explained in section 2.5.5.
Recently, Kosior et al. [24] reported that it is a common misconception that
the tracer recirculation must be removed. Using simulations they showed
that the tracer recirculation does not have impact on the estimation of CBF.

Fitting a gamma variate function

The recirculation can be eliminated from the signal by using a gamma variate
function. This function is fitted to the first pass of the concentration-time
curve. The gamma variate function is usually expressed as

y(t) = A(t− t0)
ae−(t−t0)/b, (2.17)

which is valid for t > t0, where t is the time, t0 is the arrival time and A,
a and b are free parameters. The nonlinear methods of fitting the gamma
variate function to the observed concentration-time curves are computation-
ally intensive because it has to be done for all voxels separately. In addition,
the free parameters has to be defined beforehand to perform a fit. There
is also a simplified formulation of the gamma variate function which uses a
least-squares linear algorithm of fitting in the first-pass phase of the curve
[54]. This method is explained in more detail in Appendix A.
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Research questions

During the literature study several questions arose about the quantification
methods. This chapter provides a list of questions which are answered in this
thesis. First in section 3.1 the research question involving the calculation of
CBF are mentioned. This is followed by the questions related to the CBV
calculations in section 3.2.

3.1 CBF

◦ Deconvolution using fixed PSVD

One frequently used regularization approach is the use of a fixed trun-
cation parameter, PSVD . However the estimated CBF is dependent
on the PSVD . A large PSVD causes underestimation of CBF while
a small PSVD can overestimate CBF because it does not reduce the
noise enough. For SNR 100 and 20 optimal PSVD values of 20 and 4%
respectively using tSVD are reported [19, 22]. Using block-circulant
SVD these values are 10 and 5% respectively [19]. Other studies use
these values, therefore it is interesting to reproduce this investigation
to validate these findings. The following research question is formu-
lated:

Which PSVD values are optimal using tSVD and block-circulant SVD
with SNR 100 and 20?

◦ Tracer recirculation
In several studies [14, 31, 53], tracer recirculation is removed before
deconvolution. However this is a common misconception according to
Kosior et al. [24]. They show that it is unnecessary to remove tracer
recirculation from bolus-tracking data to derive CBF and CBV. How-
ever they investigated this using tracer concentration curves without
noise. This leads to the following question:

21
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Is CBF immune to tracer recirculation in the presence of noise as
well?

◦ Estimating CBF without delay and dispersion
tSVD, rSVD and block-circulant SVD are slightly different approaches.
So their performance in estimating CBF may be different as well. Fur-
thermore regularization can be applied using a fixed PSVD or using a
PSVD determined per voxel using GCV and LCC. Furthermore SFTR
can be used to perform a smooth truncation.

Which deconvolution method, tSVD, rSVD or block-circulant SVD,
provides the best CBF estimations? And which method to determine
the PSVD performs best?

◦ Estimating CBF in the presence of delay and dispersion
Delay and dispersion are two effects which can be present in tracer
concentration-time curves, especially in hypoperfused tissue. There-
fore it is important to investigate which method performs best in the
presence of delay and dispersion.

Which deconvolution method, tSVD, rSVD or block-circulant SVD,
provides the best CBF estimations in the presence of delay? And which
method in the presence of dispersion?

3.2 CBV

◦ Estimating CBV without delay and dispersion
There are multiple methods to calculate CBV. For example the tissue
concentration curves and the AIF can be integrated directly using the
discrete data. This can be done with different integration boundaries,
namely the start of the first pass till the end of the acquisition, or till
the end of the first pass. Furthermore, the area under the curves can
be estimated using a gamma variate fit. With this fit the recirculation
part of the concentration curves is eliminated from the CBV calcu-
lations. Finally it is possible to integrate the area under the tissue
impulse response function which is obtained by deconvolution.

Which of these four CBV calculation method provides the best CBV
estimations?



4

Simulations

Validation of different postprocessing methods can be done using phantom
measurements or using simulated data. The latter is used during this re-
search project. The performance of different postprocessing methods can be
investigated using Monte Carlo simulations. The data simulation is de-
scribed in section 4.1. Subsequently section 4.2 gives an overview of the
comparisons which are made. For each comparison the methods, results and
discussion are described separately.

4.1 Simulation of data

To compare different postprocessing methods, tissue and arterial concentra-
tion curves are needed. During the simulations first the arterial concentra-
tion curve, i.e. the AIF, is simulated. Using this AIF the tissue concentration
curves can be calculated.

4.1.1 Simulated arterial input function

An AIF is simulated using a gamma-variate function, with a shape and size
that is obtained using a standard bolus injection scheme [22]. The analytical
expression of the AIF is

AIF (t) =

{
0 t ≤ t0

A (t− t0)
a · e−(t−t0)/b t > t0

(4.1)

with A a scaling factor, t0 the contrast arrival time and a and b are shape
parameters which depend on the vasculature and blood flow. Parameters
used in this study where A = 1, t0 = 20 s, a = 3.0 and b = 1.5 s. The
repetition time (TR) is 1 second for all simulated datasets. Subsequently

23
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Figure 4.1: AIF with and without recirculation. The solid line shows the gamma
variate function, the dashed line describes the gamma variate function including
recirculation.

the recirculation is calculated by convolving the obtained AIF, with an ad-
ditional delay of 8 seconds, with an exponential with a time constant of 30
seconds. Figure 4.1 shows an AIF with and an AIF without recirculation.

4.1.2 Simulated tissue concentration curve

To investigate the performance of different deconvolution methods, tissue
curves produced with known residue functions R(t) are used. There are
three different models for the tissue residue function used in the simulations,
as done by Østergaard et al. [22]:

1. Box shaped residue function. This residue function is given by

R (t) =


0 t < 0
1 t ≤ MTT
0 t > MTT.

(4.2)

This function describes a vascular bed with ’plug flow’ where the cap-
illaries are parallel with equal length and mean transit times.

2. Triangular shaped residue function. This residue function is given by

R (t) =


0 t < 0

1− t
2·MTT t ≤ 2 ·MTT
0 t > 2 ·MTT.

(4.3)

This function describes an intermediate model between a single, well-
mixed compartment and a model of parallel capillaries with equal tran-
sit times (’plug flow’) [39].
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3. Exponential residue function. This residue function is given by

R (t) =

{
0 t < 0

e−
t

MTT 0 ≤ t.
(4.4)

This function describes the vasculature as one single, well-mixed com-
partment.

Figure 4.2 shows the graphs of the three types of residue functions.
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Figure 4.2: Three types of residue functions with MTT = 6s. a) Box shaped
residue function, b) Triangle shaped residue function, c) Exponential residue func-
tion. For clarity only the first 30 seconds are depicted.

The tissue concentration curves are calculated using Equation 2.6. With
different values for CBF, CBV and MTT different tissue curves can be ob-
tained. The values used for each comparison are mentioned in section 4.2.

The obtained concentration-time curves are converted to signal intensity-
time curves using

S(t) = S0e
−k·C(t)·TE (4.5)

which is equivalent to Equation 2.1 including a proportionality factor k
which is used to match a typical peak drop in signal intensity. For all
simulations, a proportionality factor k is selected that resulted in a 40%
peak signal drop at a flow rate of 60ml/100g/min and CBV = 4% using an
exponential residue function. These values correspond to values typically
found in human gray matter [22, 41]. Furthermore S0 depends on scanner
hardware and software and is entirely arbitrary. During the simulations S0

= 100 and TE = 30 ms are used. The signal intensity-time curve for the
AIF is similarly modeled as S(t), except that AIF is substituted for C(t).
The proportionality constant, k, is in this case selected to generate a peak
signal drop of 60% as done by Wu et al. [19]. To determine absolute flow
values at the end of the calculations, the calculated CBF values are rescaled
by the k-factors used.
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4.1.3 Add delay and dispersion

As mentioned by Calamante et al. [41], since it is in practice not possible
to measure the true AIF for every pixel, this is usually estimated from a
major vessel such as the middle cerebral artery by selection of one voxel
or a ROI. In subsequent calculations one single AIF is used for the whole
brain. The estimated AIF may undergo delay and/or dispersion between
the position of AIF recording and the position of the tissue. To simulate
delay and dispersion, the model described by Calamante et al. [41] is used.
This model will be explained briefly.

The effect of dispersion can be described mathematically as a convolution
with a vascular transport function h∗(t) from the site of measurement, the
estimated AIF, to the given pixel, the true AIF:

AIF (t) = AIF (est)(t)⊗ h∗(t). (4.6)

The tissue concentration then becomes

C(t) = CBF ·AIF (t)⊗R(t) = CBF ·
(
AIF (est)(t)⊗ h∗(t)

)
⊗R(t)

= CBF ·AIF (est)(t)⊗ (h∗(t)⊗R(t)) .
(4.7)

Equation 4.7 shows that simulation of dispersion is equivalent to a con-
volution of the estimated AIF with an effective residue function, R(eff) =
h∗ ⊗R. Calamante et al. [41] reported

h∗(t) = β · e−βt (4.8)

as a first approximation for the vascular transport function. With this ap-
proximation the assumption as a well-mixed compartment is used for the
vasculature. 1/β corresponds to the effective MTT from the position of AIF
recording to the position of the tissue.

Using this model, the effective residue function can be written as

R(eff)(t) =
β(

1
MTT − β

) ·
(
e−βt − e−t/MTT

)
. (4.9)

This effective residue function is used instead of the previously described
residue function to simulate dispersion. Figure 4.3 shows one tissue concen-
tration-time curve without dispersion and one curve with dispersion using
1/β = 6s. A clear spread of the peak and decrease of its height can be seen.
In addition, the peak of the curves shifts.

Subsequently delay of the curve can be simulated by shifting the obtained
tissue curve with a time delay, td.
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Figure 4.3: Effect of dispersion on the tissue concentration using CBV = 4ml/100g
with CBF = 60ml/100g/min. The solid line represents the nondispersed case, while
the dashed line shows the concentration for 1/β = 6s.

4.1.4 Add Noise

The obtained signal intensity-time curves are expanded into 1024 copies.
Zero-mean random Gaussian noise is added to each curve to generate 1024
different curves. With the Gaussian noise, curves with different signal to
noise ratios (SNR) are obtained. The SNR is given by

SNR =
S0

σ
(4.10)

where S0 denotes the baseline signal intensity and σ the standard deviation
of the noise at the baseline signal intensity. Two different noise values are
chosen with standard deviations 1 and 5, corresponding to SNRs of 100 and
20 respectively, based on literature [19].

Although the noise in MR magnitude images is characterized by a Rician
distribution, it has been shown to be well approximated by a Gaussian
distribution for SNR > 2 [55].

4.2 Comparisons

Using the simulated data described in section 4.1 the performance of dif-
ferent deconvolution approaches and different CBV calculation methods are
investigated. In this section, the methods of the different investigations
together with the corresponding results and discussion are described.

4.2.1 Optimal fixed truncation parameter

As described in section 2.3.2 one straightforward method for the regulariza-
tion of ill-posed problems is truncation of the singular values using a fixed
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threshold, PSVD . Wu et al. [19] reported optimal PSVD ’s for tSVD and
block-circulant SVD with SNR 20 and 100. In this research the optimal
PSVD is calculated for tSVD and block-circulant SVD using the method
described by Wu et al. [19] to validate these findings.

Method

For this investigation all three types (box, triangle and exponential) of
residue functions, as described in subsection 4.1.2, are used. All curves are
created without recirculation. The data is simulated over a time range of 200
seconds with TE = 65 ms to keep the parameters equal to the parameters
used in the article by Wu et al. [19]. CBV is either 4% or 2%. For CBV 4%,
flow values are varied between 10-70 mL/100 g/min in 10 mL/100 g/min
increments. For CBV = 2%, flows are evaluated from 5-35 mL/100 g/min
using 5 mL/100 g/min increments in order to maintain the same range of
MTT values as for CBV = 4%. MTT is calculated from the central volume
theorem (Eq. 2.7). Noise is added to obtain curves with SNR 20 and 100, as
described in subsection 4.1.4. The PSVD is varied between 0.1% and 90%.

For each PSVD the error at each of the 1024 iterations t (Et) is calculated
as

Et =
1

Nf
·
Nf∑
1

∣∣F − F ′∣∣, (4.11)

where F is the true CBF value, F ′ is the estimated CBF value and Nf

is the number of simulated CBF values. In this case Nf = 7, seven CBF
values are used for each CBV. The optimal PSVD is determined as the value
that minimized the averaged Et simultaneously over all assumed residue
functions, all CBV values and all 1024 iterations assuming zero time delay
and no dispersion.

Result

In total for each SNR and each SVD approach, six mean error-curves are
calculated using Equation 4.11. Namely for three types of residue functions
and two CBV values. The mean of these six curves is calculated. In this
way, one error curve per SNR and SVD approach is obtained. These mean
error curves are depicted in Figure 4.4. The minimum of each mean error
curve represents the optimal PSVD for the given SNR and SVD approach.

The optimal PSVD ’s for truncated and block-circulant SVD are listed
in Table 4.1. The PSVD ’s for block-circulant SVD are lower in comparison
with the values found for tSVD. As could be expected, the values are lower
for SNR 100 than for SNR 20.
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Figure 4.4: Mean error curves over three types of residue functions, two CBV
values and 1024 iterations. a) shows the curves calculated using tSVD. b) shows
the curves using block-circulant SVD. The dashed lines represent SNR 20, the solid
lines represent SNR 100. For clarity, the errorbars represent 2SD.

SNR tSVD block-circulant SVD

20 22.5% 15%
100 10% 5%

Table 4.1: Optimal PSVD values using tSVD and block-circulant SVD. Optimal
value is obtained using tissue concentration-time curves made with box, triangle and
exponential residue functions.

Discussion

Figure 4.4 shows the mean error curves over three types of residue functions
and two CBV values. The location of the minimum of the error curve
corresponds to the optimal PSVD . For PSVD ’s below the optimal PSVD the
noise is not suppressed enough and will cause an overestimation of the CBF
estimates. After the minimum is reached, the error increases for high PSVD ’s.
With a large PSVD , more singular values of the AIF matrix are removed and
therefore the residue function will contain less frequencies. This removal of
the singular values causes underestimation of the residue function and the
CBF estimates. Because of this under and overestimation by selection of a
improper PSVD errors in absolute CBF estimates can occur. These errors
can influence clinical decisions and the interpretation of follow-up studies.

The optimal PSVD ’s found in this research study are not exactly equal
to the values reported by Wu et al. [19]. For curves with SNR 20 Wu et
al. reported 20% and 10% for tSVD and block-circulant SVD respectively
while the results of this thesis are 22.5% and 15%. For curves with SNR 100
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combined with the block-circulant approach equal PSVD is found, namely
5%. However, for curves with SNR 20 combined with the tSVD approach
a large difference in optimal PSVD is found. The optimal PSVD of 10% is
more than twice the PSVD of Wu et al. namely 4%. Knutsson et al. [20]
investigated the influence of the PSVD as well. They reported a PSVD of 10%
for curves with an SNR higher than 70 which is comparable to the PSVD

reported in this thesis.
When articles mention a optimal PSVD , it is reported as one fixed value

as optimum. However, Figure 4.4 shows a range of values which give almost
the same error. Therefore for some deconvolution methods it is possible
to select a PSVD within a range of values. For example, for tSVD and
curves with SNR 20, an optimal PSVD can be selected between 20% and
25%. However, this is not valid for all deconvolution approaches. The error
curves of block-circulant SVD for a specific tissue concentration curve has a
narrower peak drop than error curves of tSVD. Because the optimal PSVD

is dependent on the value of CBF [39], the location of the peak drop shifts
with a change in CBF. Therefore the mean error over all CBF and CBV
curves is higher and the range of possible PSVD values is smaller.

Finally, as could be expected, there is a difference in optimal PSVD be-
tween the different SNR values. The truncation of the eigenvalues is per-
formed to suppress the noise in the obtained residue function. However,
when the original signals contain less noise, the amount of suppression can
be reduced, i.e. the optimal PSVD will be lower.

4.2.2 Optimal fixed truncation parameter for curves with
and without the presence of recirculation

Kosior et al. [24] reported that CBF calculations are immune for tracer re-
circulation. However this was investigated using tracer concentration curves
without noise. In practice all MRI signals contain noise, therefore it is
important to investigate whether CBF calculations are immune for tracer
recirculation in the presence of noise as well.

Method

To check if CBF calculations are independent of tracer recirculation, tracer
concentration-time curves with and without recirculation are created using
exponential residue function and the CBV and CBF parameters as described
in subsection 4.2.1. Data is simulated over a time range of 250 seconds to
avoid truncation of the curves including recirculation using the longest MTT
time (24s).

To validate the findings reported in the article [24], CBF estimates are
calculated using curves without noise. Because these curves do not contain
noise, weighting of the AIF matrix as described by Equation 2.12 is not
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performed and PSVD is set to 5e−7 which is equal to the PSVD used in the
article by Kosior et al. [24].

Finally noise is added, as described in subsection 4.1.4, to obtain signals
with SNR 20 and 100. Optimal PSVD ’s are calculated for the curves with
recirculation and compared with the PSVD ’s of the curves without recircu-
lation. Subsequently CBF estimates are calculated for CBV = 4% and CBF
is 10-70 mL/100 g/min with 10 mL/100 g/min increments using tSVD and
block-circulant SVD with the PSVD ’s determined with the curves without
recirculation.

Result

Figure 4.5 shows the CBFwithrecirculation/CBFwithoutrecirculation ratio calcu-
lated using tSVD and noise-free curves. When this ratio is one, the CBF
estimates of the curves with and without recirculation is equal. This means
that the CBF estimates are not influenced by tracer recirculation. So based
on the figure it can be concluded that CBF estimates are not influenced
by the presence of tracer recirculation when it is investigated with noise-
free tracer concentration curves. The same curve is found using rSVD and
block-circulant SVD.

0 10 20 30 40 50 60 70

1

CBF [ml/100g/min]

R
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Figure 4.5: The effect of tracer recirculation. The plot shows the ratio between the
CBF estimates of curves with recirculation and curves without recirculation. The
line represents the ideal situation. The crossed markers indicate the CBF ratios
calculated using tSVD. The graphs shows that CBF estimates are equivalent for
curves with and without tracer recirculation.

For the following results tracer concentration curves including noise with
SNR 20 and 100 are used. In Figure 4.6 the error curves for determination
of the optimal PSVD ’s are depicted. The optimal PSVD for curves with
recirculation is lower compared to the optimal PSVD for curves without
recirculation. However the mean error and standard deviation of both types
of curves is comparable. The obtained PSVD ’s are listed in Table 4.2.
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Figure 4.6: Mean error curve of curves with (dotted-line) and without (dashed-
line) recirculation using tSVD. The depicted graph is for SNR 20. The errorbars
represent 1SD.

SNR with recirculation without recirculation

tSVD
20 10% 20%
100 4% 10%

block-circulant SVD
20 7.5% 10%
100 2% 3%

Table 4.2: Optimal PSVD values for curves with and without recirculation using
truncated SVD and block-circulant SVD. Optimal value is obtained using tissue
concentration-time curves made with an exponential residue function.
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Subsequently using the optimal PSVD of the curves without recircula-
tion, CBF estimates are calculated for CBV = 4% and CBF is 10-70 mL/100
g/min with 10 mL/100 g/min increments. Figure 4.7 shows the CBF esti-
mates calculated using tSVD and curves with SNR 100. It can be seen that
the curves with recirculation are more underestimated than curves without
recirculation. This was valid for both tSVD and block-circulant SVD and
both SNR values.
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Figure 4.7: CBF estimation using tSVD with fixed PSVD (10%) based on curves
without recirculation. The figure shows CBV = 4% with CBF is 10-70 ml/100g/min
with (dotted-line) and without(dashed-line) recirculation.

Discussion

Kosior et al. [24] have shown that tracer recirculation does not impact esti-
mations of CBF. They investigated this with noise-free tissue concentration
curves. Using noise-free curves these findings are validated (see Figure 4.5)
for both tSVD and block-circulant SVD. Although CBF estimates are the-
oretically not influenced by the presence of tracer recirculation, Figure 4.6
shows that there is a difference in optimal PSVD for curves with and without
recirculation when noise is added to the curves. The error and the standard
deviation of the error are equal because the curves have the same SNR.

When the optimal PSVD of one type of curves is selected, the curves of
the other type will be over or underestimated. For instance, when the PSVD

of curves without recirculation is selected, the curves with recirculation will
be underestimated (see Figure 4.6). When one single image contains curves
with and without recirculation, the error of the CBF estimates will differ
between the voxels.
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4.2.3 CBF estimation with different deconvolution approaches
and methods to determine PSVD

It is important to know which deconvolution approach performs best. There-
fore the performance of the different approaches is compared. Furthermore
the determination of the PSVD is of importance, therefore methods to de-
termine PSVD are investigated as well.

Method

For this comparison, curves obtained with exponential residue function with
CBV = 2% with CBF = 5-35 mL/100 g/min in 5 mL/100 g/min increments
and CBV = 4% with CBF 10-70 mL/100 g/min in 10 mL/100 g/min in-
crements are used. The curves are simulated over a time range of 250 s
and include recirculation. First CBF estimates are calculated using noise-
free curves with tSVD, rSVD and block-circulant SVD. As described in
subsection 4.2.2 the AIF matrix is not weighted and PSVD is set to 5e−7.
Subsequently noise is added to obtain curves with SNR 20 and 100.

For all 14 curves the CBF estimates are calculated using tSVD, rSVD and
block-circulant SVD. All methods are performed with fixed PSVD ’s based on
the curves with recirculation (Table 4.2) and PSVD ’s determined per voxel
using GCV and LCC. Finally SFTR with GCV and LCC is calculated as
well.

The error is calculated according to Equation 4.11 using Nf = 7.

Result

The three deconvolution approaches (tSVD, rSVD and block-circulant SVD)
perform equally without the presence of noise (results not shown). All ap-
proaches are able to reproduce the true CBF. However, in the presence of
noise the performance of the different approaches is not equal (Figure 4.8).
When curves with SNR 100 and CBV = 4% or 2% are used, the tSVD
approach performs best followed by block-circulant and reformulated SVD
respectively. Using curves with SNR 20 the differences between the ap-
proaches increases, but still the tSVD approach performs the best.

Figure 4.9 shows the CBF estimates calculated using the tSVD approach
with fixed PSVD and PSVD determined using GCV and LCC. In both cases,
SNR 20 and 100, fixed PSVD provides the best CBF estimation, i.e. the
lowest error, followed by LCC and GCV PSVD respectively. This is found to
be the same for all deconvolution approaches, CBV values and SNR values.

Finally CBF estimates are calculated using SFTR. Figure 4.10 shows
that the SFTR approach with the PSVD based on GCV performs best, fol-
lowed by the tSVD with GCV and SFTR with LCC PSVD ’s respectively.
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Figure 4.8: CBF estimates using tSVD (dashed-line), rSVD (dash-dot-line) and
block-circulant SVD (dotted-line). The PSVD’s are listed in Table 4.2. The solid
line represents the true CBF. The figure shows CBV = 2% with CBF = 5-35
ml/100g/min including recirculation.
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Figure 4.9: CBF estimates using fixed (dashed-line), GCV (dash-dot-line) and
LCC (dotted-line) based PSVD’s. The solid line represents the true CBF. The figure
shows CBV = 2% with CBF = 5-35 ml/100g/min including recirculation.
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These findings are the same for curves with CBV = 2%. For curves with
SNR 100 there is no difference between the performance of the approaches.
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Figure 4.10: CBF estimates using GCV tSVD (dashed-line) and using SFTR
with GCV (dash-dot-line) and LCC (dotted-line) based PSVD’s. The solid line rep-
resents the true CBF. The figure shows CBV = 4% with CBF = 10-70 ml/100g/min
including recirculation.

Discussion

All methods perform equally when noise-free concentration curves are used.
This is because the same underlying deconvolution technique is used. When
noise is added to the concentration curves, differences between the decon-
volution approaches become visible. Figure 4.8 shows that tSVD performs
better compared to the other approaches. This higher underestimation using
block-circulant SVD is reported by Wu et al. [19] as well. They found an un-
derestimation of the CBF estimates when they use the block-circulant SVD
approach as described in this report. However, they also provide a slightly
different method to reduce the oscillations instead of the fixed PSVD . Using
a modified oscillation index the PSVD is varied until the estimated residue
function’s oscillation index falls below a user-specified value. In this way the
PSVD is optimized per concentration time curve. Using this modified oscil-
lation index they found better CBF estimates compared to the tSVD and
standard block-circulant SVD approach as used in this report. For rSVD
the PSVD of the standard tSVD is used. It is possible that this PSVD is too
high for rSVD and causes underestimation of the CBF.

Furthermore the influence of PSVD ’s determined using GCV and LCC
is investigated as well. The total error over the whole range of CBF val-
ues is calculated to determine the best approach. The results show that,
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looking at the whole range of CBF values, in all cases the fixed tSVD ap-
proach is superior to the tSVD approach using voxel-by-voxel calculated
PSVD ’s. Figure 4.9 shows that for SNR 20 and 100 the LCC determined
PSVD performs better for high CBF while the fixed PSVD performs better
for low CBF. In this investigation, the PSVD for fixed tSVD is optimized
for the tissue concentration curves which are used. However, in practice the
perfusion values are unknown, and therefore the optimal PSVD is unknown.
So it could be expected that voxel based determination of the PSVD will
perform better when there is a great variety in perfusion values and residue
functions. Sourbron et al. [37] suggest to use information of the neighbor
voxels to minimize noisy pixels in the GCV and LCC approaches.

Besides tSVD it is possible to perform a smoother truncation using
SFTR. For SFTR the PSVD ’s are determined using GCV and LCC. Fig-
ure 4.10 shows that the GCV approach provides the best CBF estimates.
For low SNR the SFTR approach using GCV is superior to the tSVD ap-
proach while the SFTR approach using LCC is comparable to the tSVD
approach. This is comparable to the findings reported by Calamante et al.
[56].

4.2.4 Estimating CBF in the presence of delay or dispersion

The AIF is selected in a major vessel. Therefore delay and dispersion can
occur between the location of AIF measurement and the tissue. In this
investigation the performance of the different deconvolution approaches is
compared in the presence of delay and dispersion.

Method

Three tissue concentration-time curves obtained with exponential residue
function are used for this comparison. The curves represent gray and white
matter and hypoperfused tissue [18]. These curves include recirculation and
are simulated over a time range of 250 seconds to avoid truncation of the
curves with the longest MTT times. The perfusion values used for this
dataset are listed in Table 4.3.

Tissue
CBV CBF MTT

(ml/100g) (ml/100g/min) (s)

White matter 4 60 4
Gray matter 2 20 6
Hypoperfused tissue 1.8 12 9

Table 4.3: CBV, CBF and MTT values of the three different tissue types.
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The optimal PSVD is dependent on the CBF value [39]. Therefore the
optimal PSVD is calculated using the described concentration-time curves
including curves with CBF - 10% and CBF + 10%. In summary, three CBF
values combined with three CBV values give nine concentration-time curves
involved in the optimal PSVD calculation.

To evaluate the sensitivity of CBF estimates to differences in tracer ar-
rival times between the AIF and tissue signal, the tissue curves are shifted
with respect to the AIF from -4 till +6 seconds with increments of 1 second.
Delays between 2-3 seconds are not uncommon in patients with cerebrovas-
cular disease, and the 6-sec delay limit was chosen to include all delays that
are observed in practice by Calamante et al. [41].

To evaluate the sensitivity to dispersion, data is simulated with values
of 1/β up to 5.5 seconds. This represents an extreme case according to
Calamante et al. [41].

Firstly, CBF estimates are calculated with noise-free curves, non-weighted
AIF matrix and PSVD = 5e−7. Secondly the CBF estimates are calculated
with curves with SNR 20 and 100. The calculations are done using tSVD,
rSVD and block circulant SVD. All methods are performed with fixed PSVD ’s
based on the curves with recirculation (Table 4.2) and PSVD ’s determined
using GCV and LCC. Finally SFTR with GCV and LCC is calculated as
well.

Result

First the optimal PSVD ’s are determined based on the tissue concentration-
time curves which are described in the methods. The optimal PSVD ’s for
SNR 20 and 100, tSVD and block-circulant SVD are listed in Table 4.4.
These values are used during the following steps of this investigation.

SNR tSVD block-circulant SVD

20 10% 7.5%
100 5% 2%

Table 4.4: Optimal PSVD values using tSVD and block-circulant SVD. The optimal
value is obtained using tissue concentration-time curves made exponential residue
functions and the perfusion values listed in Table 4.3.

This investigation can be divided into two parts, namely CBF estimates
calculated in the presence of delay and CBF estimates in the presence of
dispersion. First the results related to delay are described.

Figure 4.11 shows the CBFestimated/CBFtrue ratio for noise-free curves
calculated using tSVD and block-circulant SVD. rSVD shows exactly the
same results as block-circulant SVD, for clarity only block-circulant SVD is
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shown. CBF estimates calculated with the tSVD approach are overestimated
in the presence of negative delays and well estimated with delays greater
than zero. Furthermore the figure shows that CBF estimates calculated
with block-circulant SVD are delay independent within this range of delays.
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Figure 4.11: The effect of delay on CBF estimates of hypoperfused tissue curves.
The plot shows the ratio between the CBF estimates and the true CBF. The graph
includes tSVD (dashed-line) and block-circulant SVD (dotted-line).

In the presence of noise the same patterns can be recognized. Figure
4.12 shows that regardless of the CBV and CBF values tSVD overestimates
CBF for negative delays and performs equal to block-circulant and rSVD
for delays greater than zero. SFTR shows the same delay dependent results
as tSVD.

The solid lines in Figure 4.13 show for noise-free concentration curves
the CBFestimated/CBFestimatedwithoutdispersion ratio. All deconvolution ap-
proaches perform equal, therefore only one line is visible. The figure
shows that all approaches are dependent on the amount of dispersion.
When noise is added to the curves dependency on CBF is seen as well.
The figure shows that the delay independent approaches provide a higher
CBFestimated/CBFestimatedwithoutdispersion ratio. Furthermore the SFTR ap-
proach performs equal to the block-circulant and rSVD approaches (results
not shown).

Discussion

The optimal PSVD ’s of the tissue concentration curves, representing the
three types of tissues, are comparable to the PSVD ’s of the curves with
recirculation reported in subsection 4.2.2.

The CBFestimated/CBFtrue ratio gives the information that the CBF
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SNR 100, CBV = 1.8%
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Figure 4.12: The effect of delay on CBF estimates. The plots show the ratio
between the CBF estimates and the true CBF. a,c,e) SNR 20 with CBV = 1.8 2
and 4% respectively. b,d,f) SNR100 with CBV = 1.8 2 and 4% respectively, for
tSVD (dashed-line), rSVD (dash-dot-line) and block-circulant SVD (dotted-line).
The solid line shows the ideal ratio.
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Figure 4.13: The effect of dispersion on CBF estimates. The plots show the ratio
between the CBF estimates and CBF estimate of a curve without dispersion. a,c,e)
SNR 20 with CBV = 1.8 2 and 4% respectively. b,d,f) SNR100 with CBV = 1.8 2
and 4% respectively. The solid line shows the CBF estimates calculated with noise-
free curves. tSVD (dashed-line), rSVD (dash-dot-line) and block-circulant SVD
(dotted-line) are the approaches used.
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estimate calculated with the tSVD approach is dependent of the delay. In
the presence of negative delays, i.e. the peak of the tissue concentration
curve will appear before the peak in the AIF, the tSVD approach will over-
estimate the CBF values. For delays equal to or larger than zero seconds
tSVD becomes delay independent. Block-circulant and rSVD approaches
are delay independent for negative delays as well. Also when noise is added
to the curves, block-circulant and rSVD are able to estimate CBF near the
true CBF for negative delays. With noise the tSVD approach is delay inde-
pendent for delays larger than one second. Without noise and a delay of -4
seconds, the tSVD approach gives an estimated CBF which is 20 times the
true CBF. The curves with noise do not show such a large overestimation
due to the truncation of the eigenvalues.

The block-circulant and rSVD approaches seem to be delay indepen-
dent. However, the delay is varied from -4 till 6 seconds with increments
of 1 second, which is equal to the TR of the signal. Salluzzi et al. [57] re-
ported that the CBFmeasured/CBFtrue changes with a period equal to TR.
This variation is unwanted. When different voxels have different delays, the
error of the CBF estimates will differ between the voxels as well. So fur-
ther investigation to the delay independency of block-circulant and rSVD is
necessary.

Using SFTR the CBF estimates are delay dependent as well. This could
be expected because the SFTR approach is equal to the tSVD approach,
only the truncation is smoother. Therefore the delay dependent behavior of
the tSVD approach is still present using the SFTR approach.

When dispersion is added to the noise-free tissue concentration curves,
all approaches are unable to reproduce the true CBF. This is reported in
several other articles as well [41, 58, 59]. The performance of all approaches
using noise-free curves is equal. However, when noise was added to the
curves, the delay independent approaches perform better. Ko et al. [58]
reported a difference between the approaches as well.

Adding dispersion to the tissue concentration curves causes broadening
of the bolus and subsequently a shift of the peak. According to Ko et
al. [58] this is the reason why tSVD underestimates the CBF more in the
presence of bolus dispersion. This is found in our investigation as well.
Namely with zero seconds delay, the tSVD approach gives a higher CBF
estimation compared to one second delay (see Figure 4.12). Therefore the
CBF estimate without dispersion and therefore zero delay is higher for tSVD
compared to block-circulant and rSVD. For a dispersion constant 1/β =
0.25 seconds a delay of one second exists which causes a change in CBF
estimate due to both the bolus broadening and the additional delay. After
one second delay, comparable to 1/β = 0.25 s, the CBFestimate/CBFtrue

ratio becomes constant and the CBF estimates are only dependent on the
amount of dispersion. Therefore the shape of the curves become equal after
1/β = 0.25 s.
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Furthermore Murase et al. [39] investigated the relationship between the
optimal PSVD and the amount of dispersion. Figure 8 in their report shows
that for dispersion constants below 5 seconds the optimal PSVD changes.
The larger the amount of dispersion, the lower the optimal PSVD . When
a lower PSVD is selected, a higher CBF estimation will be provided. It
could be possible that block-circulant and rSVD approaches have a different
dependency on the PSVD or are less dependent on the PSVD because without
dispersion the PSVD is already lower.

Finally the performance of the SFTR approach is comparable to the
block-circulant and rSVD approaches. This is comparable to the findings
by Calamante et al. [56]. They reported that the SFTR approach provides
a more accurate representation of the initial part of the residue function in
the presence of dispersion.

4.2.5 Estimating CBV

As described in section 2.4 CBV can be calculated using several methods.
This investigation is performed to check if there is a difference in the ability
to provide the true CBV between the integration methods.

Method

For this investigation, the tissue concentration-time curves as described in
subsection 4.2.3 are used. CBV is calculated using Equation 2.4. Therefore
the area beneath the tissue concentration curves and the AIF are needed.
To calculate the CBV, there are different integration methods which can be
used. The same integration method is used for both the tissue concentration
curves and the AIF. Four methods are compared using the simulated curves:

1. Whole area: Integration over the whole time cycle.
For this method, the discrete Ct(t) data is used directly. The inte-
gration boundaries are the arrival time of the tracer contrast bolus
and the end of the acquisition time. To determine the arrival time of
the bolus, the mean signal intensity-time curve over all voxels and its
standard deviation is calculated. Then the arrival time is determined
as the time when the signal intensity exceeds five times the standard
deviation.

2. First pass: Integration over the first pass.
The start of the integration boundaries is equal to the first boundary
of the whole time cycle method, namely the arrival time of the tracer
contrast bolus. The end of the integration boundary is reached when
the mean tissue concentration curve, calculated over all voxels, drops
below 30% of the peak concentration.
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3. Gamma variate: Integration with gamma variate fit.
For this method, first a gamma variate function is fitted to the AIF
and tissue concentration curves. The fitting of the gamma variate
function is described in Appendix A. Before the fitting procedure,
the AIF and tissue concentration curves are smoothed equivalently to
Equation 2.12. Finally the area under the fitted curves is calculated.

4. Deconvolution area: Integration of the area under the tissue impulse
response function.
During the CBF calculation, the tissue impulse response function is
estimated using deconvolution. The area under the function is equal
to the CBV as well. In this method, the area under the AIF is not
needed. During this investigation tSVD using optimal fixed PSVD as
determined in subsection 4.2.1 is used.

For both CBV values, fourteen CBV estimates are obtained, namely for
seven CBF values combined with two SNR values. To compare the per-
formance the mean CBV estimate over the seven CBF values is calculated.
In summary, for every CBV value and SNR one mean CBV estimate is
obtained.

Result

Four types of integration are used during this investigation. For every CBV
(2% and 4%) seven CBF values are used. The mean of the estimated CBV
over these seven CBF values is calculated and listed together with the stan-
dard deviation in Table 4.5. The gamma variate fitting method has some
outliers because the algorithm was not always able to fit the curve. These
outliers are removed before calculation of the mean CBV.

CBV 4% 2%
SNR 20 100 20 100

whole area 4.31 ± 1.73 4.32 ± 0.29 2.52 ± 1.51 2.21 ± 0.26
first pass 2.52 ± 17.6 3.94 ± 0.24 2.59 ± 27.1 1.98 ± 0.12

gamma variate 6.46 ± 2.80 7.14 ± 2.35 3.13 ± 4.42 3.59 ± 1.10
deconvolution 3.94 ± 1.86 4.01 ± 0.28 2.29 ± 1.46 2.05 ± 0.27

Table 4.5: The CBV estimates using four integration methods. The CBV esti-
mates are the mean over seven CBF values. For the gamma-variate method, the
outliers are first removed.

The table shows that the whole area and deconvolution area integration
methods both perform better than the first pass and gamma variate meth-
ods. Furthermore using curves with SNR 100 a better estimate is provided.
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Discussion

For this investigation, four different integration methods are implemented.
The gamma variate fitting procedure as currently implemented was not a
robust algorithm. The algorithm was able to fit the first pass of the AIF for
all SNR and CBF values. However for the tissue concentration curves, the
algorithm was not able to distinguish the first pass from the recirculation.
Therefore the gamma variate fit of the tissue concentration curves includes
the recirculation as well and the CBV is overestimated.

The three other methods only use the discrete concentration data. The
whole area method overestimates the CBV but with a relative small stan-
dard deviation. This small standard deviation is caused by the amount of
samples used in the integration. The first pass method underestimates the
CBV with a factor 1.5 and has for SNR 20 a high standard deviation. In
contrary to the whole cycle method, just 5 to 9 samples are used in this
integration. This small amount of samples causes the large standard devi-
ation. Furthermore during this investigation simulated datasets containing
only one type of concentration curves, i.e. based on one CBF and one CBV
value, are used at once. This means that the mean curve over all voxels
is based on just one set of values. In practice multiple perfusion values
are present in one image. The integration boundaries are determined us-
ing the mean curve over all voxels. So it can be expected that curves with
long MTTs will be underestimated while curves with short MTTs will be
overestimated.

Finally the area under the tissue impulse response function gives a good
CBV estimate with a low standard deviation.

When the mean CBV is over or underestimated, but with a small stan-
dard deviation, the error between the voxels in the image will be constant.
When the mean CBV is estimated well, but with a large standard deviation,
the error between the voxels in the image will be different. It is preferred
to have a method which gives a good CBV estimate with a low standard
deviation. Therefore the area below the deconvolution area is preferable.
This is found by Perkiö et al. [18] as well. They reported that integration
over the whole cycle is preferable for relative CBV measurements while the
area under the deconvolved curve provides the most accurate estimates for
absolute CBV.
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Clinical data

After comparison of different post processing methods with simulated data,
the methods can be compared using clinical data as well. This chapter gives a
short comparison between the different methods using clinical data obtained
from 15 patients with a transient ischemic attack (TIA). First the MRI
acquisition is mentioned in section 5.1. Subsequently the comparison which
is done is explained in section 5.2. This section consists of a method, result
and discussion part.

5.1 Clinical data MRI acquisition

The analysis of the clinical data is performed retrospective. All data is
obtained between may 2006 and may 2008. The data of 15 patients, 10
female and 5 male, (age:55.7 ± 11.4 (mean ± SD)) suffering from a TIA
is used. Contrast-enhanced T2* weighted images were collected using a
gradient-echo sequence (TR/TE = 2280ms / 47ms ) on a clinical MR scanner
(Siemens). During the imaging sequence, contrast agent (Dotarem) was
injected. All studies consisted of 19 slices with a thickness of 5mm collected
over 30 timepoints.

5.2 Comparison

When clinical data is used, the true perfusion values are unknown. Therefore
the methods are compared to each other to get an idea of the differences
between the methods. A graphical user interface is made to investigate the
datasets. An overview of the graphical user interface is given in Appendix B.
It is possible to run the quantifications as scripts as well.
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Method

From the clinical MR data, first the skull is removed from the dataset by
thresholding of the image. Subsequently concentration time curves have to
be calculated for every voxel. This is done using Equation 2.2. To determine
the CBF and CBV the AIF has to be known. In this investigation an
automatic AIF-identification algorithm is used as described by Caroll et al.
[26]. All data are quantified by tSVD, rSVD and block-circulant approaches
with the PSVD ’s as determined in subsection 4.2.1 for SNR 20. This SNR is
comparable to the SNR of clinical data [19, 56]. The CBV is calculated by
integration of the area under the tissue impulse response function.

After calculation of the CBF maps, the percentage difference between
the methods is calculated. This is the absolute difference between the two
methods divided by the average value of the two methods. This can be
written in equation form:

%Difference =
M1 −M2

(M1 +M2)/2
· 100, (5.1)

where M1 and M2 are the CBF values of method 1 and method 2 respec-
tively. Finally the mean percentage difference and its standard deviation
over all voxels in the dataset is calculated.

Result

Table 5.1 shows the mean percentage difference between the methods calcu-
lated using all voxels in the dataset. A positive percentage difference indi-
cates that the first method has higher CBF values than the second method.
So the tSVD approach provides higher CBF estimates compared to rSVD.

Figure 5.1 shows one example of a percentage difference image for one
brainslice. The figure shows that the percentage difference is not equal for
the whole brain slice. For example in the figure, the percentage difference
in white matter is negative, while the percentage difference in gray matter
is positive. This is shown by the large standard deviations in Table 5.1 as
well.

Discussion

The comparison using clinical data is just performed to give an indication
between the differences of the methods. The percentage difference is calcu-
lated over the whole acquired dataset. In some datasets, voxels of the skull
are still included in the calculations because they had the same signal inten-
sity as brain voxels. The percentage differences differ between brain slices,
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% Difference
Patient nr. tSVD vs. rSVD tSVD vs. bcSVD rSVD vs. bcSVD

1 43.5 ± 23.2 -2.89 ± 15.7 -46.3 ± 22.4
2 37.8 ± 21.8 -7.92 ± 12.8 -45.4 ± 21.2
3 23.9 ± 33.1 -28.3 ± 19.9 -51.4 ± 26.0
4 41.5 ± 35.3 -12.8 ± 15.7 -52.9 ± 36.4
5 43.3 ± 27.5 -9.39 ± 14.2 -52.1 ± 26.2
6 26.1 ± 33.5 1.17 ± 19.5 -25.1 ± 32.5
7 32.8 ± 25.6 -3.45 ± 12.1 -36.3 ± 15.6
8 -0.98 ± 21.3 -12.0 ± 16.3 -10.9 ± 17.0
9 59.6 ± 35.3 -3.87 ± 21.2 -63.0 ± 34.5
10 15.9 ± 23.9 -8.38 ± 18.1 -24.0 ± 26.5
11 13.4 ± 23.1 -4.98 ± 12.2 -18.2 ± 22.6
12 18.6 ± 23.4 -7.15 ± 16.7 -25.6 ± 24.2
13 22.8 ± 29.6 -4.09 ± 10.9 -26.7 ± 30.1
14 14.5 ± 18.9 6.82 ± 16.0 -7.78 ± 22.2
15 10.3 ± 26.5 -11.6 ± 19.1 -21.4 ± 28.6

mean ± SD 26.9 ± 26.8 -7.25 ± 16.0 -33.8 ± 25.7

Table 5.1: Percentage difference between tSVD, rSVD and block-circulant SVD
using clinical data of 15 patients.
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Figure 5.1: Percentage difference between tSVD and rSVD. A negative percentage
means that tSVD provides a higher CBF estimate than rSVD. The figure shows that
the percentage difference is not equal for all voxels in the brainslice. This is brain
slice 13 of patient 6.
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and between tissue types as can be seen in Table 5.1. The large standard
deviation shows that the percentage difference is not equal for all voxels, i.e.
there is a large variability of the results.

To investigate the difference between the tissue regions, ROIs should be
drawn in the image and compared with each other. Then information about
the CBF estimates between the different methods is obtained.

None of the datasets show regions of low perfusion. This could be ex-
pected, because the datasets are from patients with a TIA instead of a
stroke.



6

Conclusions and
Recommendations

The goal of this research project was to compare different quantification
methods to select the best method for evaluation of follow-up studies. For this
purpose Monte-Carlo simulations are performed to obtain data with known
perfusion values. With these simulated datasets several research questions
are investigated. The final selection of the best method is still not possible,
therefore more research is necessary. In this chapter the research questions
as described in chapter 3 are answered. Furthermore recommendations are
given for further research to find the best post processing method to calculate
perfusion values.

6.1 Research questions

Using the simulated data the research questions as described in chapter 3
are investigated. In this section all research question will be answered.

◦ Which PSVD values are optimal using tSVD and block-circulant SVD
with SNR 100 and 20?
The PSVD is used to truncate the eigenvalues of the AIF matrix. Due
to the truncation, noise is suppressed and a more accurate CBF es-
timate is obtained. For SNR 20 optimal PSVD ’s of 22.5 and 15% for
tSVD and block-circulant SVD respectively are found. For SNR 100
these values were 10 and 4% respectively. These values are comparable
to the values reported by other researchers [19, 20].

◦ Is CBF immune to tracer recirculation in the presence of noise as
well?
Kosior et al. [24] reported that CBF estimates are immune for tracer
recirculation. This is indeed valid for noise-free tissue concentration
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curves. However, when noise is added to the curves the optimal PSVD

is different between the curves with and without recirculation. For
example using tSVD, an optimal PSVD of 20% is found for curves with
SNR 20 without recirculation, and an optimal PSVD of 10% is found for
these curves with recirculation. The differences in optimal PSVD cause
differences in the error of the CBF estimates between voxels within one
image. This differences in errors can cause misinterpretations which
can have influences on clinical decisions and interpretations of follow
up studies.

◦ Which deconvolution method, tSVD, rSVD or block-circulant SVD,
provides the best CBF estimations? And which method to determine
PSVD performs best?
All deconvolution approaches were applied to different concentration
time curves to investigate the differences between the approaches.
With these curves and the optimal PSVD ’s which are optimized for
the curves used, tSVD is found as the best method. Furthermore the
different regularization methods are compared. When the fixed PSVD

is optimized, this performs better than voxel based GCV and LCC.
However, in clinical data the PSVD can not be optimized. It can be
expected that GCV and LCC will perform better in the presence of
multiple residue types, and a width range of perfusion values.

◦ Which deconvolution method, tSVD, rSVD or block-circulant SVD,
provides the best CBF estimations in the presence of delay? And which
method in the presence of dispersion?
In the presence of negative delays, tSVD fails to reproduce the true
CBF. Using one global AIF, negative delays are not uncommon.
Therefore tSVD is not the preferred method. The SFTR approach
is delay dependent as well, because only the way of truncation dif-
fers from the tSVD approach. Therefore the SFTR approach is not
preferred as well. The block-circulant and rSVD approaches are both
delay independent and are therefore better methods in the presence of
delay.

In the presence of dispersion all methods perform comparably. How-
ever because of the delay dependency of the tSVD approach, this ap-
proach has a larger underestimation of the dispersed CBF. The SFTR
approach performs better than tSVD due to the smooth truncation.

◦ Which of the four CBV calculation method provides the best CBV es-
timations?
CBV can be calculated in several ways. In this investigation four calcu-
lation methods are compared. The methods used in this investigation
are: integration of the whole acquisition data, integration of the first
pass, integration under the gamma variate fit and integration under
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the tissue impulse response function obtained during deconvolution.
For both SNR, 20 and 100, and both CBV values the area under the
deconvolved residue function gives the most accurate CBV estimates.
This is found by Perkiö [18] as well.

6.2 Which method is the best?

Using these research questions and the corresponding answers it is still not
possible to select the best post processing approach. The estimates provided
by the approaches are dependent on several factors. One important factor is
the truncation parameter PSVD . The optimal PSVD is dependent on multiple
factors such as noise, CBF and dispersion.

In this study delay and dispersion are investigated. During the investi-
gations in this report a constant PSVD is assumed for the dispersed curves.
Furthermore, only a fixed dispersion, corresponding to narrowing of a vessel
is investigated. Dispersion can be caused by a long vessel pathway as well,
giving a dispersion constant which is dependent on the arrival time [58].
However all SVD approaches are dependent of dispersion.

Furthermore there are a lot of assumptions made during the calcula-
tions, such as the linear relationship of the concentration and the change
in relaxation rate. Finally the CBF estimates are still dependent on the
acquired data parameters such as the repetition time, the echo time, and so
on. To compare follow up studies, it is necessary to know more about the
parameters used in the calculations.

However, it is possible to say which method has the highest potential
to be the best method. The tSVD and SFTR approaches are not prefer-
able because of the delay dependent behavior of the approaches. The tSVD
approach was not the best method in the presence of dispersion as well.
The block-circulant and rSVD approaches are comparable. However with
the block-circulant approach the tissue curves are zero padded to make the
curves twice as long. This longer curves causes bigger matrices and there-
fore the computation time is much longer. For example with a dataset
with the sizes 256 pixels x 256 pixels x 19 slices x 30 timesteps, the rSVD
approach takes 200 seconds while the block-circulant approaches takes 450
seconds. However, for the rSVD approach the amount of zero padding is
a manual input. The block-circulant approach works with all delay values
without manual input. This is an advantage of the block-circulant method.
Therefore block-circulant SVD has the highest potential.

For the CBV calculations the area under the tissue impulse response
function is the most promising method. When the deconvolution is further
improved, the CBV estimation is further improved as well.
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6.3 Recommendations

As already described, the selection of the best method is still a difficult
question. Therefore some recommendations are made for further research.
With these recommendations more insight in the behavior of the SVD ap-
proaches is obtained. Using this additional information, hopefully the best
SVD approach can be selected to compare follow up studies.

In this study it has been shown that the optimal PSVD changes between
curves with and without recirculation. Therefore it could be expected that
voxel based determination of the PSVD using GCV or LCC works better
than the use of a fixed PSVD when both types of curves are present. It is
recommended to compare the error of CBF estimates using GCV and LCC
to see if these voxel based determination of the PSVD works better.

To investigate the influence of the CBF estimates in the presence of
delay, only delay values which are a multiple of TR are used. Salluzzi et al.
[57] reported that the CBFmeasured/CBFtrue changes with a period equal
to TR. This variation changes with the selection of the PSVD . Therefore it
is recommended to investigate and compare the behavior of the approaches
in the presence of delays which are not a multiple of TR.

During dispersion, broadening of the bolus occur combined with a shift
of the peak concentration. Now one dispersion model is used with fixed
dispersion constant. Ko et al. [58] reported that the dispersion could be
delay dependent as well when the dispersion is caused by a long vessel instead
of narrowing of the vessel. Furthermore, during this investigation only the
CBF estimates were taken into account. However the reproduction of the
shape of the residue function is of importance as well. The total shape of
the residue function can be used for flow heterogeneity [56].

Unfortunately all SVD approaches are dependent on the amount of dis-
persion. Using a local AIF, the distance between the AIF measurement and
the tissue is shortened. This shorter distance will cause less dispersion and
delay and therefore more accurate CBF estimates will be obtained.

Finally during this investigation only simulated data is used. The as-
sumptions based on the linearity of the concentration and the change in
relaxation rate is not taken into account in this way. Therefore it recom-
mended to make a perfusion phantom and to perform real perfusion mea-
surements using a MR machine with known perfusion values. One method
to make a phantom is reported by Ebrahimi et al. [60, 61].



A

Simplified formulation of
gamma variate function

The simplified formulation of the gamma variate function proposed by Mad-
sen [54] begins with the usual form described by

y(t) = A · (t− t0)
α · e−(t−t0)/β , (A.1)

where t0 denotes the bolus arrival time and A, α and β are free shape
parameters. Because t0 can be estimated easily, the origin of the graph can
be shifted in such a way that it coincides with t0. The function can then be
expressed as

y(t) = A · tα · e−t/β. (A.2)

The parameter β can be written in terms of α and tmax. tmax is the time t
at which y(t) reaches its maximum. Taking the first derivative of A.2 and
setting it to zero will yield tmax in terms of α and β, or β in terms of tmax

and α.

y′(t) = 0

= A ·
[
α · tα−1

max · e−tmax/β − tαmax · e−tmax/β/β
]

= A · tα−1
max · e−tmax/β [α− tmax/β]

(A.3)

tmax = α · β and β =
tmax

α
(A.4)

Substitution of β in Equation A.2 gives

ymax = A · tα · e−α·t/tmax (A.5)
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Subsequently letting t = tmax will yield A in terms of ymax, tmax and α:

ymax = y(tmax) = A · tαmax · e−αtmax/tmax → A = ymax · tαmax · eα. (A.6)

Substitution of A into Equation A.5 yields

y(t) = ymax · t−α
max · eα · tα · e−αt/tmax (A.7)

Using t′ = t/tmax, Equation A.7 can be further simplified.

y(t′) = ymax · t−α
max · eα · tαmax · t′α · e−αt′

= ymax · t′α · eα(1−t′)
(A.8)

From this equation ymax and α can be found from a linear least-squares es-
timation. Taking into account that ln(tα) = α · ln(t), the following equation
is obtained if the natural logarithm is taken:

ln(y(t′)) = ln(ymax) + α(1− t′ + ln(t′)). (A.9)

From this equation ymax and α can be obtained. Subsequently using
Equation A.4 and Equation A.6 β and A can be calculated respectively.
Finally using Equation A.1 the shape of the gamma variate fit is obtained.



B

Graphical User Interface

To investigate the differences between post processing methods a graphical
user interface (GUI) is made. When the GUI is opened, first the location of
the dataset on the computer is asked. Subsequently all parameters can be
changed manually (see Figure B.1). With these parameters the concentra-
tion maps are calculated.

Figure B.1: In this window all parameters used to calculate the concentration can
be changed.

Using the dataset panel at the right top, the total dataset can be visual-
ized (see Figure B.2). The graph at the right bottom can show the manual
selected AIF and the automatic calculated AIF using the adaptive thresh-
olding method as described by Caroll et al. [26]. Finally when a brain voxel
is selected, the concentration time curve of the selected voxel, together with
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its corresponding gamma variate fit, can be shown as well.
The options panel gives the user the opportunity to select the desired

deconvolution method to determine CBF, the integration method to deter-
mine CBV and the truncation method to suppress noise. Furthermore it is
possible to change the method of AIF selection between manual selection
by drawing a region of interest or selecting a voxel and automatic AIF se-
lection. Finally the use of smoothed AIF and tissue data can be selected in
this option panel.

Figure B.2: This is the GUI which makes it possible to scroll through the dataset,
select the desired quantification methods and runs the quantification.

After running the selected quantification a final window (see Figure B.3)
is opened which shows the calculated CBV, CBF, MTT and TTP maps.
Within this window a region of interest can be selected to calculate the
mean values within this region. This final window makes it possible to
scroll through the final datasets to see if there is a region of low perfusion.

Finally it is possible to run the whole quantification procedure as a script
as well. Using the script a batch of calculations can be performed.
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Figure B.3: A GUI to scroll through the final obtained CBV, CBF, MTT and
TTP maps. Using the select ROI menu information about the selected region can
be obtained.
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