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Abstract

The potential approach is a useful tool in physics, and the successful treatment of such

concept turned out to be reproducible, in the late eighties, in the field of cooperative

game theory. This report is devoted to the modified potential approach for values on

cooperative games, particularly for the Shapley value, the Solidarity value, and the class

of values satisfying efficiency, linearity and symmetry (ELS values).

Chapter 1 introduces the basic concepts in the field of game theory, especially in

the cooperative part. Besides the set-valued solutions, such as the imputation set and

the stable set, we primarily discuss the Shapley value and the Solidarity value, both of

which are single-valued solutions. After presenting several properties of solutions using in

axiomatization, two equivalent forms of ELS values are studied in particular. Concerning

the noncooperative part, games in normal form and the famous solution concept–Nash

equilibrium are discussed.

In Chapter 2, the classical potential approach, which depict the equivalence between

the classical gradient and the Shapley value, is introduced. In view of the classical poten-

tial, we consider a more general concept called the modified potential, which also satisfies

the 0-normalized property, but with a modified gradient in the efficiency condition. Con-

cerning this new concept, a value possesses a modified potential representation only when

it equals to the modified gradient. For the ELS value, in which the Shapley value and

the Solidarity value are two special cases, we discuss its sufficient and necessary condition

when it admits a modified potential representation, especially in the separable case.

In Chapter 3, the Shapley value can be written as a linear combination of the corre-

sponding coordinates based on the unanimity game. In order to simplify such expression,

we define another basis analogously to the collection of unanimity games, associated with

the Shapley value. Similarly, two new basis of the game space, with respect to the Soli-

darity value and ELS values respectively, are defined, such that these two values admit a

simple sum expression concerning their coordinates. According to these basis, the modified

potential admits a new expression, thus the modified potential representation of different

values can be verified. In the last section, the concept of the potential game, which belongs

to the field of noncooperative game theory, is introduced. We investigate the Solidarity

value and the ELS value representations of potential games, which are closely related to

its Shapley value representation.

Chapter 4 presents the reduced game and the corresponding reduced game property,

which says the payoffs of players in a subset should not change or they should have no

reason to renegotiate, if they apply the same solution rule among themselves as in the

original game. For the Shapley value, Sobolev defined a special reduced game, such that

the Shapley value in such (n − 1)-person reduced game equals to that in the original n-

person game. By the modified potential approach discussed in Chapter 2, we find the
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same reduced game for the Shapley value, and further, new reduced games corresponding

to the Solidarity value as well as ELS values.

Chapter 5 summarizes all the results we got in previous chapters, and gives an example

concerning the Shapley value, in which the classical potential approach is extended to the

Abelian group structure.



Notation

N = {0, 1, 2, . . .} the set of natural numbers

R the set of real numbers

Z the set of integers

N = {1, 2, . . . , n} the player set

(N, v) the cooperative game with player set N

(N,D, u) the noncooperative game with player set N

S(S ⊆ N) the subset of N

s, |S| the cardinality of the set S

GN the space of cooperative games with player set N

G the universe of all game spaces

GN,D the space of cooperative games with action choices

RN the vector space with coordinates indexed by N

Rn the n-dimensional vector space

π the permutation of N

v = (vS)S⊆N the worth vector of cooperative games

(vd)d∈D the worth vector of cooperative games with action choices

u = (ui)i∈N the worth vector of noncooperative games

D = D1 × . . .×Dn the strategy space of noncooperative games

P the classical potential

P ′ the modified potential

∇P the classical gradient

∇′P ′ the modified gradient

Sh = (Shi)i∈N the Shapley value of cooperative games

i
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ENSC = (ENSCi)i∈N the egalitarian non-separable contribution value of cooper-

ative games

Sol = (Soli)i∈N the Solidarity value of cooperative games

Φ = (Φi)i∈N the ELS value of cooperative games

V the potential function of potential games
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Chapter 1

Introduction

In this chapter, we introduce the basic concepts in the field of game theory, especially in

the cooperative game theory.

In the cooperative part, some special game concepts, for instance, unanimity game,

monotone game, and convex game, are presented. Concerning the solution part, a list of

famous solution concepts is given, including core, kernel, stable set and nucleolus. After

introducing the well-known single-valued solution called Shapley value, we discuss some

frequently-used properties of solutions. For a special class of values satisfying efficiency,

linearity and symmetry, we study its equivalent forms, and write the Solidarity value in

agreement with the latter form.

In the noncooperative part, the concept of n-person game’s normal form and the

famous Nash equilibrium are introduced. Particularly, for the mixed extension of any

finite bimatrix game, we present the Equilibrium point theorem and the Minimax theorem

after defining the common value of such games and optimal strategy sets of both players.

1.1 Game theory

Game theory is a formally mathematical field which studies situations of competition

and/or cooperation among involved parties. It provides general mathematical techniques

for analyzing situations in which two or more agents make decisions that will influence one

another’s benefit. Game theory is a very dynamic and expanding field with large number

of applications, which ranges from strategic questions in warfare to analogizing economic

competition and cooperation, from fair distribution in social problems to behavior of

animals in competitive situations, and certainly much more other aspects closely related

to our common life.

Game theoretical approaches are classified into two branches: cooperative and non-

cooperative game theory. The usual distinction between these two classes is, players can

form coalitions and make binding agreements on how to distribute the payoffs of these

coalitions in cooperative games, whereas in noncooperative games players have explicit

strategies and can not make binding agreements. This distinction is not sharp in some

1
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case however, for instance, the theory of implementation is concerned with representing

outcomes from cooperative solutions as equilibrium outcomes of specific noncooperative

solutions.

1.2 Cooperative games

Cooperative games describe what each possible coalition can earn by cooperation. It is

more abstract than noncooperative games, because strategies are not explicitly modeled.

1.2.1 Preliminaries

In the cooperative game with transferable utility (TU-game), the earning of a coalition can

be expressed by a single number, whereas in the cooperative game with nontransferable

utility (NTU-game), the possibilities from cooperation for each coalition are described by

a set. More generally, the single number in the TU-game is an amount of money and the

implicit assumption is that, it makes sense to transfer this utility among the players.

Definition 1.2.1. A cooperative game with transferable utility or TU-game is an

ordered pair (N, v), where N is a finite set of players, and v : 2N → R is a characteristic

function satisfying v(∅) = 0.

In the following chapters, the cooperative game we considered is always with transfer-

able utility, i.e., TU-game.

Definition 1.2.2. A nonempty subset S of N , is called a coalition, and the associated

real number v(S) is called the worth of coalition S.

The size of coalition S is denoted by |S| or, if no ambiguity arises, by s. Particularly, n

denotes the size of the player set N . The coalition N is called the grand coalition. Given

a transferable utility game (N, v) and a coalition S, we denote by (S, v) the subgame

obtained by restricting v to subsets of S only.

Example 1.2.3. (Glove game)[19] Let N = {1, 2, . . . , n} be divided into two disjoint

subsets L and R. Members of L possess a left hand glove, members of R a right hand

glove. A single glove is worth nothing, a right-left pair of gloves has value of one euro.

This situation can be modeled as a TU-game (N, v), where for each S ∈ 2N , we have

v(S) := min{|L ∩ S|, |R ∩ S|}, and particularly v(N) := min{|L|, |R|}.

Let GN denote the set of all cooperative TU-games with player set N . Then the set GN

of characteristic functions of coalitional games forms a (2n − 1)-dimensional linear space,

with the usual operations of addition and scalar multiplication of functions. Denote by G
the universe of all game spaces.
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Definition 1.2.4. A basis of space GN is supplied by the collection of the unanimity

game
{

(N, uT ) | T ∈ 2N \ {∅}
}

, that are defined by,

uT (S) =

{
1 if T ⊆ S
0 otherwise

(1.1)

The interpretation of the unanimity game uT is that a unitary gain (or cost savings)

can be achieved if and only if all players in coalition T are involved in cooperation.

Theorem 1.2.5. For each v ∈ GN , we have,

v =
∑

T∈2N\{∅}

cvTuT with cvT =
∑
R⊆T

(−1)t−rv(R)

If v(S) ∈ {0, 1} for all S ⊆ N , and v(∅) = 0, v(N) = 1, then game (N, v) is simple.

Note that the unanimity game uT , T ∈ 2N \ {∅} is a special simple game. We call a

game (N, v) monotone if v(S) ≤ v(T ), for all S, T ⊆ N and S ⊆ T . Game (N, v) is

called zero-normalized if for all i ∈ N , v({i}) = 0. A superadditive game (N, v) satisfies

v(S)+v(T ) ≤ v(S∪T ), for all S, T ⊆ N and S∩T = ∅. Particularly, it is called inessential

or additive if the equality holds, or equivalently, v(S) =
∑

i∈S v({i}) for all S ⊆ N . A

game is called convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), for all S, T ⊆ N . Conversely,

(N, v) is a concave game, if and only if (N,−v) is convex.

Consider a game (N, v), for any i ∈ N , the utopia vector µ(v) = (µi(v))i∈N ∈ RN is

defined by µi(v) := v(N)− v(N \ {i}), and the vector a(v) = (ai(v))i∈N ∈ RN satisfying

ai(v) = maxS3i

[
v(S)−

∑
j∈S\{i} µj(v)

]
is called the minimal right vector . A game (N, v)

is quasi-balanced if for all i ∈ N , ai(v) ≤ µi(v) and
∑

i∈N ai(v) ≤ v(N) ≤
∑

i∈N µi(v).

Definition 1.2.6. Let v ∈ GN , for each i ∈ N and S ⊆ N , the marginal contribution

of player i to the coalition S is,{
v(S)− v(S \ {i}) if i ∈ S
v(S ∪ {i})− v(S) if i 6∈ S

1.2.2 Solution concepts

Two main problems appear when researching on a game, one is which coalitions can form,

the other one is how to distribute payoffs among all players. In cooperative games, one

only need to consider the second problem, because players will always choose to join the

grand coalition due to superadditivity.

Definition 1.2.7. A value ψ = (ψi)i∈N is a mapping which assigns to every cooperative

game v ∈ GN exactly one element ψ(N, v) ∈ Rn.

Thus, a value ψ that associated a payoff vector ψ(v) = (ψi(v))i∈N ∈ Rn with every

game (N, v), assigns a payoff profile to every cooperative game. The value ψi(v) of player
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i in the game (N, v) represents an assessment by i of his gains from participating in the

game. For a payoff vector x ∈ Rn and a coalition S ⊆ N , we denote by x(S) =
∑

i∈S xi
the total payoff to the members of the coalition S. Note that only payoff vectors x ∈ Rn

satisfying
∑

i∈N xi ≤ v(N) are reachable in the game (N, v).

Consider a game (N, v), a payoff vector x on Rn is said to be efficient if, for all v ∈ GN ,∑
i∈N

xi = v(N)

The preimputation set I∗(v) denotes the set of all efficient payoff vectors in the game

(N, v), i.e.,

I∗(v) :=

{
x ∈ Rn |

∑
i∈N

xi = v(N)

}
Definition 1.2.8. A payoff vector x ∈ Rn is in the imputation set I(v) for the game

(N, v) if it is efficient and individually rational, i.e.,

I(v) :=

x ∈ Rn | ∑
j∈N

xj = v(N) and xi ≥ v({i}) for all i ∈ N


Note that if the proposed allocation x ∈ I(v) is such that there is at least one player

i ∈ N whose payoff xi satisfies xi < v({i}), the grand coalition would never form, because

such a player would prefer not to cooperate since acting on his own can obtain more.

Hence, the individual rationality condition should hold, i.e., for all i ∈ N , xi ≥ v({i}).
If the criterion of individual rationality is strengthened by demanding not only one

player, but every coalition S ⊆ N , which means the coalition S should receive at least

the worth it can obtain by operating on his own, i.e.,
∑

i∈S xi ≥ v(S), then we have got

another set-valued solution concept, which can be depicted as a multifunction from GN to

Rn.

Definition 1.2.9. The core [9] C(v) of a game (N, v) is the set,

C(v) :=

{
x ∈ I(v) |

∑
i∈S

xi ≥ v(S) for all S ⊆ N

}
Although the core is empty in some cases, it is still one of the most important set-

valued solutions. If C(v) 6= ∅, then elements of C(v) can be easily obtained, because the

core is defined by a finite system of linear inequalities.

For a game (N, v), let x, y be two imputations, then x dominates y if there exists a

coalition S ⊆ N , S 6= ∅, such that
∑

j∈S xj ≤ v(S) and xi > yi for all i ∈ S. In other

words, players in S strictly prefer the payoff from x to those from y, and they can threaten

to leave the grand coalition if y is used, because the payoff they obtain on their own is at

least as large as the allocation they receive under x.

Definition 1.2.10. Given a game v ∈ GN , a set A(v) ⊆ I(v) is a stable set [28] for the

game v if it satisfies,
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• If x, y ∈ A(v), then not x dominates y.

• If x 6∈ A(v), then there is some y ∈ A(v) such that y dominates x.

Thus, a stable set satisfies the two conditions of internal stability (no payoff vector in

A(v) is dominated by another) and external stability (any payoff vector outside A(v) is

dominated by at least one vector in A(v)).

Consider a game (N, v), let x ∈ Rn be an efficient payoff vector, then the excess

of S with respect to x in the game v is ev(S, x) := v(S) −
∑

j∈S xj . Note that the

negative(positive) excess ev(S, x) can be regarded as a measure of the (dis)satisfaction by

coalition S if payoff vector x was suggested as the final payoff. The greater ev(S, x), the

more ill-treated S would feel.

Definition 1.2.11. Let svij(x) denote the maximum surplus of player i over player j

different from i with respect to x in the game v ∈ GN , i.e.,

svij(x) := max

{
v(S)−

∑
k∈S

xk | S ⊆ N \ {j}, S 3 i

}

This surplus at the payoff vector x is the maximal amount player i can gain (or lose,

if negative) without player j by withdrawing under the payoff vector x, assuming that the

other players of the formed coalition are satisfied with their payoffs under x.

Definition 1.2.12. The kernel [4] χ(v) of a game (N, v) is the set of imputations x,

such that, for every pair of players i, j,
(
svij(x)− svji(x)

)
(xj − v({j})) ≤ 0(

svji(x)− svij(x)
)

(xi − v({i})) ≤ 0

The kernel is defined as the set of all imputations where no player has his bargaining

power over another. If svij(x) > svji(x), player i has more bargaining power than j with

respect to x, but player j is immune to i’s threats if xj = v({j}), because he can obtain

this payoff on his own.

For a game (N, v) and a payoff vector x ∈ Rn, let θ(x) be the 2n-tuple, whose compo-

nents are the excesses ev(S, x), S ⊆ N , arranged in nonincreasing order, i.e.,

θi(x) ≥ θj(x) whenever 1 ≤ i ≤ j ≤ 2n

Consider two payoff vectors x, y, we say θ(x) is lexicographically smaller that θ(y), if

there exists an integer 1 ≤ k ≤ 2n, such that θi(x) = θi(y) for 1 ≤ i < k, and θk(x) < θk(y).

Definition 1.2.13. For a game (N, v), the nucleolus [21] is the lexicographically minimal

imputation, based on this ordering.
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Note that the nucleolus is always unique. When the core is non-empty, the nucleolus

is in the core, and it is always in the kernel.

One of the most well-known single-valued solution concepts is the Shapley value, which

is quite different from the core, because it assigns a unique payoff distribution to the players

in the the grand coalition to every TU-game.

Definition 1.2.14. For any v ∈ GN , the Shapley value [22] Sh = (Shi)i∈N is given by,

Shi(N, v) :=
∑

S⊆N\{i}

s!(n− s− 1)!

n!
[v(S ∪ {i})− v(S)] for all i ∈ N (1.2)

In the following chapters, we will always let h(n, s) := (s−1)!(n−s)!
n! , in order to simplify

the expression. For instance, the Shapley value of player i in the game v can be represented

as,

Shi(N, v) =
∑

S⊆N\{i}

h(n, s+ 1) [v(S ∪ {i})− v(S)]

Definition 1.2.15. Let (N, v) be a game. For each coalition T , the dividend 4v(T ) [10]

is defined, recursively, as follows,{
4v(∅) := 0

4v(T ) := v(T )−
∑

S$T 4v(S) if |T | ≥ 1

The relationship between the Shapley value and dividends is that, the Shapley value

of player i equals to the sum of all equally distributed dividends of coalitions to which

player i belongs.

Theorem 1.2.16. [10] Let v =
∑

T∈2N\{∅} c
v
TuT as in (1.1). Then, it holds,

• 4v(T ) = cvT for all T 6= ∅

• Shi(N, v) =
∑

T⊆N
T3i

4v(T )
|T | for all i ∈ N

Definition 1.2.17. For a game (N, v), the egalitarian non-separable contribution

value ENSC = (ENSCi)i∈N [13] is defined by,

ENSCi(N, v) := µi(v) +
1

n

v(N)−
∑
j∈N

µj(v)

 for all i ∈ N (1.3)

The ENSC value arises from both the separable contribution principle, applied to the

the game itself, and the egalitarianism. That is, the resulting allocation is determined

by the egalitarian division of what is left of the total savings v(N) after any player i is

conceded to get his separable contribution µi(v).
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Definition 1.2.18. For a game (N, v), the Solidarity value [15] Sol = (Soli)i∈N is

defined by,

Soli(N, v) =
∑
S⊆N
S3i

(s− 1)!(n− s)!
n!

· 1

s

∑
j∈S

[v(S)− v(S \ {j})] for all i ∈ N (1.4)

The Solidarity value is based on the assumption that if a coalition S forms, then

players who contribute to S more than the average marginal contribution of a member

of S support in some sense their weaker partners in S. Sometimes, it happens that the

Solidarity value belongs to the core of a game while the Shapley value does not.

1.2.3 Properties of solutions

After Shapley [22] introduced the Shapley value in 1953, the axiomatization approach to

values has been widely used. The purpose is to pose a minimal list of desirable properties

that fully characterize the solution. Let ψ be a value on GN , we mention now some

desirable properties for single-valued solution concepts. Extensions of these properties to

set-valued solution concepts are straightforward.

• Individual rationality: ψi(v) ≥ v({i}), for all v ∈ GN , i ∈ N .

• Efficiency:
∑

j∈N ψj(v) = v(N), for all v ∈ GN .

• Additivity: ψ(v) + ψ(w) = ψ(v + w), for all v, w ∈ GN .

• Linearity: ψ(αv + βw) = αψ(v) + βψ(w), for all α, β ∈ R, v, w ∈ GN .

• Symmetry: ψπ(i)(πv) = ψi(v), for all i ∈ N , v ∈ GN , and every permutation π on

N . The game (N, πv) is given by (πv)(S) = v(π−1(S)) for all S ⊆ N .

• Substitution property: ψi(v) = ψj(v), for substitutes i and j in any game (N, v).

Players i and j are called substitutes if both of them are more desirable, or equiv-

alently, the equality for their marginal contributions v(S ∪ {i}) = v(S ∪ {j}), for all

S ⊆ N \ {i, j}.

• Dummy player property: ψi(v) = v({i}), for all v ∈ GN and for all dummy

players i in (N, v), i.e., players i ∈ N such that v(S ∪ {i}) = v(S) + v({i}) for all

S ⊆ N \ {i}.

• Null player property: ψi(v) = 0, for all v ∈ GN and for all null players i in

(N, v), i.e., players i ∈ N such that v(S ∪ {i}) = v(S) for all S ⊆ N \ {i}.

• A-null player property: ψi(v) = 0, for all v ∈ GN and for all A-null players i in

(N, v), i.e., for every coalition T containing i, Av(T ) = 1
t

∑
j∈T (v(T )−v(T\{j})) = 0.

• Covariance (strategic equivalence): ψ(αv+β) = αψ(v)+β, for all v ∈ GN , α >

0, and β ∈ Rn. Here the game (N,αv+β) is given by (αv+β)(S) := αv(S)+
∑

j∈S βj
for all S ⊆ N , S 6= ∅.
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• Continuity: if for every pointwise convergent sequence of games {(N, vk)}∞k=0, the

limit of which is the game (N, v), the corresponding sequence of values {ψ(vk)}∞k=0

converges to the value ψ(v).

The first axiomatization concerning the Shapley value given by L.S Shapley [22] states

that, a solution satisfies additivity, symmetry, efficiency and the dummy player property

if and only if it is the Shapley value. Afterwards, there appeared many other axiomatiza-

tion methods using different lists of properties for the Shapley value. For other solution

concepts, there also exists various kinds of axiomatizations. For instance, the Solidarity

value [15] is characterized by additivity, symmetry, efficiency and A-null player property.

Remark: Note that, both the Shapley value and the Solidarity value are efficient, linear

and symmetric, because a value satisfies additivity if and only if it is linear. Obviously,

additivity can be deduced from linearity. Next we show the other direction is also true.

Let ψ be a value of game v ∈ GN that satisfies additivity, then ψ(−v) +ψ(v) = 0, that is,

ψ(−v) = −ψ(v). Thus, for every n ∈ Z,

ψ(nv) = nψ(v)

Furthermore, for every q ∈ Z, q 6= 0,

ψ(v) = ψ(q
1

q
v) = qψ(

1

q
v)

Therefore,

ψ(
1

q
v) =

1

q
ψ(v)

Consider an arbitrary rational number p
q , then for every v ∈ GN ,

ψ(
p

q
v) = pψ(

1

q
v) =

p

q
ψ(v)

Since rational numbers are dense in real numbers and ψ is continuous, we have ψ(kv) =

kψ(v) for every k ∈ R. Therefore ψ is linear.

1.2.4 ELS values

For the class of values satisfying efficiency, linearity and symmetry, in which the Shapley

value and the Solidarity value are two special cases, there exists an explicit formula.

Theorem 1.2.19. [20] A value Φ : GN → Rn verifies efficiency, linearity and symmetry

if and only if there exists ρs(s = 1, 2, . . . , n− 1) such that, for any v ∈ GN ,

Φi(v) :=
v(N)

n
+
∑
S$N
S3i

ρs
v(S)

s
−
∑
S⊆N
S 63i

ρs
v(S)

n− s
for all i ∈ N (1.5)
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Proof. It can be checked easily that a value defined by (1.5) satisfies the three properties.

Next we show the other direction holds.

Suppose a value Φ on GN satisfies efficiency, linearity and symmetry. Consider a basis

of the game space GN , which is a collection of games
{

(N, eT ) | T ∈ 2N \ {∅}
}

, defined by,

eT (S) =

{
1 if S = T

0 if S 6= T

By linearity, for any v ∈ GN , all i ∈ N ,

Φi(v) = Φi

∑
T⊆N
T 6=∅

v(T )eT

 =
∑
T⊆N
T 6=∅

v(T )Φi(eT ) (1.6)

By symmetry, for any T $ N , there exist some λT and τT , such that,

Φi(eT ) =

{
λT if i ∈ T
τT if i 6∈ T

Note that, λT and τT only depend on the size t. In fact, for λT , consider a coalition

T $ N , two players i, j 6∈ T , then i and j are substitutes in the game (N, eT∪{i}+ eT∪{j}).

By symmetry, we have Φi(eT∪{i} + eT∪{j}) = Φj(eT∪{i} + eT∪{j}), which means, λT∪{i} =

λT∪{j}. Therefore, we can use λt instead of λT , so do τT .

By efficiency, for T = N , we have Φi(eN ) = 1
n for any i ∈ N ; for T $ N , it holds

tλt + (n− t)τt = 0, therefore by (1.6), for all i ∈ N ,

Φi(v) =
v(N)

n
+
∑
T$N
T3i

λtv(T )−
∑
T⊆N
T 63i

t

n− t
λtv(T )

Let ρt := tλt, then we can obtain (1.5).

We denote by ELS the class of values satisfying these three properties. Consider

another coefficient αn,s instead of ρs, there exists another equivalent form for this class of

values.

Corollary 1.2.20. [7] A value Φ : GN → Rn verifies efficiency, linearity and symmetry

if and only if there exists a fixed collection of constants An = {αn,s|1 ≤ s ≤ n − 1} such

that, for any v ∈ GN ,

Φi(v) :=
v(N)

n
+

∑
S$N\{i}

h(n, s+1)αn,s+1v(S∪{i})−
∑

S⊆N\{i}

h(n, s+1)αn,sv(S) for all i ∈ N

(1.7)

Remark: For all 1 ≤ s ≤ n − 1, let ρs := sh(n, s)αn,s in (1.5), then we can obtain (1.7)

directly.
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Example 1.2.21. Remind the Solidarity value (1.4), which belongs to the ELS class. We

can rewrite it as follows,

Soli(N, v)

=
∑
S⊆N
S3i

h(n, s) · 1

s

∑
j∈S

[v(S)− v(S \ {j})]

=
∑
S⊆N
S3i

h(n, s)v(S)−
∑
S⊆N
S3i

h(n, s) · 1

s

v(S \ {i}) +
∑

j∈S\{i}

v(S \ {j})


=

∑
S⊆N\{i}

h(n, s+ 1)v(S ∪ {i})−
∑

S⊆N\{i}

h(n, s+ 1)
v(S)

s+ 1
−
∑
S⊆N
S3i

h(n, s)
∑

j∈S\{i}

v(S \ {j})
s

(1.8)

Consider the last part in (1.8), by changing the order of summations, we have,∑
S⊆N
S3i

h(n, s)
∑

j∈S\{i}

v(S \ {j})
s

=
∑

j∈N\{i}

∑
S⊆N
S3i,j

h(n, s)
v(S \ {j})

s

=
∑

j∈N\{i}

∑
S⊆N\{j}

S3i

h(n, s+ 1)
v(S)

s+ 1

=
∑

j∈N\{i}

∑
S⊆N\{i,j}

h(n, s+ 2)
v(S ∪ {i})
s+ 2

=
∑

S$N\{i}

∑
j∈N\(S∪{i})

h(n, s+ 2)
v(S ∪ {i})
s+ 2

=
∑

S$N\{i}

(n− s− 1)h(n, s+ 2)
v(S ∪ {i})
s+ 2

Submit the equation above into (1.8), the Solidarity value equals to,

Soli(N, v)

=
∑

S⊆N\{i}

h(n, s+ 1)v(S ∪ {i})−
∑

S⊆N\{i}

h(n, s+ 1)
v(S)

s+ 1
−

∑
S$N\{i}

(n− s− 1)h(n, s+ 2)
v(S ∪ {i})
s+ 2

=
v(N)

n
+

∑
S$N\{i}

[
h(n, s+ 1)− n− s− 1

s+ 2
h(n, s+ 2)

]
v(S ∪ {i})−

∑
S⊆N\{i}

h(n, s+ 1)
v(S)

s+ 1

=
v(N)

n
+

∑
S$N\{i}

h(n, s+ 1)
v(S ∪ {i})
s+ 2

−
∑

S⊆N\{i}

h(n, s+ 1)
v(S)

s+ 1
(1.9)

In the following chapters, we will always use (1.9) when concerning the Solidarity value.



CHAPTER 1. INTRODUCTION 11

1.3 Noncooperative games

In the field of noncooperative game theory, players make decisions independently. Al-

though they may be able to cooperate, any cooperation must be self-enforcing. For a

noncooperative game, we always consider it in normal form when players independently

choose one of their strategies, and payoffs take place depending on the chosen strategies.

In such case, each player wants to maximize his own payoff.

Definition 1.3.1. An n-person game in normal form is described by the 2n-tuple,

(D1, D2, . . . , Dn;u1, u2, . . . , un)

where strategy set Di contains the pure strategies of player i, and ui : D1×D2×. . .×Dn →
R is the payoff function of player i.

Example 1.3.2. (Oligopoly model) [25] Cournot introduced the model in 1838, which

contains n products of mineral water, the costs for producer i at quantity di is c(di) and

the sales price per unit is B
(∑n

j=1 dj

)
. Then the game in normal form is Di = [0,∞)

and

ui(d1, . . . , dn) = max

0, diB

 n∑
j=1

dj

− c(di)


Consider the two-person game in normal form (D1, D2;u1, u2), then this game is called

a zero-sum game if u2 = −u1. When D1 and D2 are finite sets, it is a finite game. We call

it a bimatrix game (E,F ) with m × n-payoff matrices E = [eij ]m×n and F = [fij ]m×n if

D1 = {1, 2, . . . ,m}, D2 = {1, 2, . . . , n} (possibly m,n = ∞), u1(i, j) = eij , u2(i, j) = fij .

If F = −E in the bimatrix game, it is a matrix game with m× n-payoff matrix E.

In noncooperative games, the most well-known solution concept is the Nash equilib-

rium, named after John Forbes Nash. We consider it in the two-person game, and the

n-person game case can be deduced similarly.

Definition 1.3.3. (d∗1, d
∗
2) is a Nash equilibrium of the game (D1, D2;u1, u2) if,

u1(d∗1, d
∗
2) ≥ u1(d1, d

∗
2) for all d1 ∈ D1

u2(d∗1, d
∗
2) ≥ u2(d∗1, d2) for all d2 ∈ D2

The Nash equilibrium is a solution concept in which each player is assumed to know

the equilibrium strategies of the other players, and no player has anything to gain by

changing only his own strategy unilaterally.

Definition 1.3.4. The mixed extension of an m×n-bimatrix game (E,F ) is given

by (Sm, Sn;H1, H2) where for all p ∈ Sm, q ∈ Sn,

Sm =

{
p ∈ Rm | p ≥ 0,

m∑
i=1

pi = 1

}
; Sn =

q ∈ Rn | q ≥ 0,

n∑
j=1

qj = 1


H1(p, q) = pEqT =

m∑
i=1

n∑
j=1

pieijqj ; H2(p, q) = pFqT =
m∑
i=1

n∑
j=1

pifijqj
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The Nash equilibrium in such bimatrix game can be extended from its common defini-

tion. For this mixed strategy, Nash introduced a well-known theorem which can be proved

by the L.Brouwer fixed point theorem.

Theorem 1.3.5. (Equilibrium point theorem) [25] The mixed extension of each finite

bimatrix game possesses a Nash equilibrium.

Definition 1.3.6. For the mixed extension of a finite matrix game, i.e., F = −E, the

upper and lower value is,

v(E) := supp∈Sminfq∈SnpEqT

v(E) := infq∈Snsupp∈SmpEqT

Definition 1.3.7. The value of the mixed extension of a finite matrix game are v(E) =

v(E) = v(E). The optimal strategy sets of the players are

O1(E) :=
{
p∗ ∈ Sm | p∗EeTj ≥ v(E) for all j = 1, . . . , n

}
O2(E) :=

{
q∗ ∈ Sn | eiEq∗T ≤ v(E) for all i = 1, . . . ,m

}
von Neumann introduced the famous Minimax theorem concerning the finite matrix

game, and the minimax solution is just the same as the Nash equilibrium in such games.

Theorem 1.3.8. (Minimax theorem) [25] For each finite matrix game E : v(E) =

v(E), O1(E) 6= ∅ and O2(E) 6= ∅.

1.4 Overview

In this section we give an overview of our contributions to the study of game theory.

This report makes use of the modified potential approach, to study the Shapley value, the

Solidarity value and the class of values satisfying efficiency, linearity and symmetry.

Chapter 1 introduces basic concepts and notations in the field of game theory, especially

in the cooperative game theory. A list of set-valued and single-valued solutions, and their

properties used in axiomatization are presented. For the noncooperative game, its normal

form and the Nash equilibrium are introduced.

In Chapter 2, based on the definition of the potential given by Hart and Mas-Colell

[11], who proved the equivalence between the gradient of potential and the Shapley value,

we define another type of the potential called modified potential, which is closely related

to the weighted pseudo-potential presented by Driessen and Radzik [7]. Consider a value

of the cooperative game, it admits a modified potential representation if and only if it

belongs to ELS values and satisfys two more conditions concerning the coefficient of such

values.

Chapter 3 considers the collection of unanimity games, which is a basis of the game

space. We define a new basis with respect to the Shapley value, Solidarity value, and all

ELS values, respectively, such that all these values can be represented as a simple sum
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of the corresponding coordinates. The modified potential of ELS values can be expressed

by coordinates of the corresponding new basis, thus its modified potential representation

can be verified. In view of these new basis, we define the Solidarity value and ELS values

representations of potential games on the basis of the Shapley value representation given

by Takashi [27].

In Chapter 4, by the potential approach, we obtain the reduced game corresponding

to the Shapley value, which is the same as the Sobolev’s reduced game. Make use of the

similar modified potential approach, reduced games with respect to the Solidarity value

and all ELS values are defined, respectively, such that these values satisfy the reduced

game property with respect to their own reduced games.

Finally in Chapter 5 we give an example concerning the Shapley value, in which the

classical potential approach is extended to the Abilian group structure.



Chapter 2

Modified potential representation

The concept of potential was once frequently used in Physics, and was brought into the

field of mathematics successfully in the late eighties. Based on the definition of potential

given by Hart and Mas-Colell [11] who proved the equivalence between the gradient of

potential and the Shapley value, we aim to define another type of the potential called the

modified potential. According to the 0-normalized condition and efficiency, the modified

potential can be calculated based on the definition of the modified gradient. For the

ELS value, we find it admits a modified potential representation if it satisfies another two

conditions. Furthermore, when a value admits such modified potential representation,

there exists special relationships among the coefficients of the modified gradient, which

can be simplified if separable.

2.1 Classical potential representation

The potential approach is a successful tool in physics. Daniel Bernoulli (1738) was the

first to introduce the idea that a conservative force can be derived by a potential in

Hydrodynamics.

An illustrative example is the gravitational vector field, which says that the gravita-

tional force acting on a particle is a function of its position in the space, i.e., f = f(−→r ) =

f(x, y, z). The work done by moving a particle continuously from position A to B through

the path σ is the integrate of f(−→r ) on σ, i.e., W =
∫
σ f(−→r )d−→r . The gravitational field is

conservative in the sense that it is path independent . But a field is conservative if there

exists a continuous differentiable function P , such that W = −
∫
σ∇Pd

−→r . Therefore,

−∇P (−→r ) = f(−→r ).

There exist several characterizations of conservative vector field, e.g., every contour

integral with respect to the vector field is zero. Surprisingly, the successful treatment of

the potential in physics turned out to be reproducible, in the late eighties, in cooperative

game theory.

Concerning the solution part for TU-games, Hart and Mas-Colell [11] was the first to

introduce the potential approach to values on cooperative TU-games. They proved that

14
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the Shapley value [22] can result as the vector of marginal contributions of a particular

potential, the uniqueness of which is implied by the efficiency. Nevertheless, Dubey et al.

[8] showed that semivalues, which does not satisfy the efficiency, also can be obtained by

an associated potential. For the class of values which satisfies efficiency, linearity and sym-

metry, Driessen and Radzik [7] proved such value admit a pseudo-potential representation.

Ortmann [16] clarified several analogues between the potential concepts in the coopera-

tive game theory (without the efficiency constraint) and physics. In addition, Calvo and

Santos [3] established that, any value that admits a potential representation is equivalent

to the Shapley value in the sense that the value of any games is equal to the Shapley value

of a strongly adapted game arising from initial games as well as the value itself.

In summary, the concept of the potential is a powerful tool within the solution part

for TU-games.

Definition 2.1.1. A potential [11] is a function P : G → R, P (∅, v) = 0, satisfying, for

every v ∈ G, ∑
i∈N
∇iP (N, v) = v(N) (2.1)

Here the i’s component of the gradient ∇iP (N, v) := P (N, v) − P (N \ {i}, v) with v

the restriction to N \ {i} in the last expression.

Definition 2.1.2. A value ψ is said to possess a potential representation if it is the

discrete gradient of a real-valued potential P , i.e. ψ = ∇P .

If P is a potential then (2.1) says that the ‘gradient’ ∇P (N, v) := (∇iP (N, v))i∈N is

an efficient payoff vector for the game (N, v), and in particular, note that,

P ({i}, v) = v({i})

P ({i, j}, v) =
1

2
[v({i, j}) + v({i}) + v({j})]

More generally, it follows from (2.1) that,

P (N, v) =
1

n

[
v(N) +

∑
i∈N

P (N \ {i}, v)

]
(2.2)

so the potential of game (N, v) is uniquely determined by the potential of subgames of

(N, v).

Example 2.1.3. Hart and Mas-Colell [11] showed that, there exists a unique potential

P : G → R, such that, for every game (N, v), the resulting payoff vector (∇iP (N, v))i∈N
coincides with the Shapley value (1.2) of the game. Moreover, the potential of any game

(N, v) is uniquely determined by efficiency applied only to the game and its subgames (i.e.,

to (S, v) for all S ⊆ N).

This classical potential P is given by, for any v ∈ G,

P (N, v) =
∑
S⊆N

h(n, s)v(S) (2.3)



CHAPTER 2. MODIFIED POTENTIAL REPRESENTATION 16

Using (2.2), one can prove the existence and uniqueness of P (N, v) recursively starting

with P (∅, v) = 0.

By the definition of the gradient, for all i ∈ N ,

∇iP (N, v) = P (N, v)− P (N \ {i}, v)

=
∑
S⊆N

h(n, s)v(S)−
∑

S⊆N\{i}

h(n− 1, s)v(S)

=
∑

S⊆N\{i}

[h(n, s+ 1)v(S ∪ {i}) + h(n, s)v(S)]−
∑

S⊆N\{i}

h(n− 1, s)v(S)

=
∑

S⊆N\{i}

h(n, s+ 1)v(S ∪ {i})−
∑

S⊆N\{i}

[h(n− 1, s)− h(n, s)]v(S)

=
∑

S⊆N\{i}

h(n, s+ 1)[v(S ∪ {i})− v(S)]

= Shi(N, v)

Therefore, the Shapley value is the unique value that admits a classical potential

representation.

Example 2.1.4. For any game (N, v), consider another value also satisfying the efficiency

principle, the so-called egalitarian non-separable contribution value ENSC (1.3).

If we simply let P (N, v) = v(N), then the ENSC value can be represented as, for all

i ∈ N ,

ENSCi(N, v) =
1

n
P (N, v)− P (N \ {i}, v) +

1

n

∑
l∈N

P (N \ {l}, v)

Note that, the classical gradient with respect to the Shapley value is a linear combina-

tion which contains two different items, P (N, v) and P (N \{i}, v). Whereas in the ENSC

value, we can represent it by a linear combination of three items, one of which is different

from that of Shapley value, say 1
n

∑
l∈N P (N \ {l}, v).

2.2 Modified potential representation

Driessen and Radzik [7] introduced a special definition called weighted pseudo-potential

representation, with respect to a specific kind of values. Based on their results, and the

potential representation for Shapley value as well as ENSC value discussed in the previous

section, we aim to give a general potential representation for values on TU-games.

2.2.1 General representation

In this new potential representation, we use three items to prescribe a player’s gain from

participating in a game (N, v). Firstly, a player receives some share of the solution P ′(N, v)

from the game; secondly, players different from i will contribute some efforts to the game

according to P ′(N, v), so we remove what other players would gain. In this way, we adopt
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(−P ′(N \ {i}, v)) as well as the average sum (− 1
n

∑
l∈N P

′(N \ {l}, v)), and distinguish

each part by taking into account different shares assuming symmetry with respect to the

size of the player set. Thus, we have the following definition.

Definition 2.2.1. Consider three sequences a ≡ (ak)k∈N, b ≡ (bk)k∈N, c ≡ (ck)k∈N of

real numbers and a function P ′ : G → R, P ′(∅, v) = 0.

• The modified gradient ∇′P ′ = (∇′iP ′)i∈N is defined to be, for any n-person game

(N, v), i ∈ N ,

∇′iP ′(N, v) = anP
′(N, v)− bnP ′(N \ {i}, v)− 1

n
cn
∑
l∈N

P ′(N \ {l}, v) (2.4)

• Function P ′ : G → R is called a modified potential, if it satisfies, for any n-person

game (N, v), ∑
i∈N
∇′iP ′(N, v) = v(N) (2.5)

This modified potential P ′ satisfies the 0-normalized condition and its modified gra-

dient is efficient according to (2.5), which is similar to the potential defined by Hart and

Mas-Colell [11]. The only difference is that, we use the modified gradient ∇′P ′ instead

of ∇P in the efficiency condition (2.1). Evidently, if an = bn = 1, cn = 0, the modified

gradient would equal to the classical one, i.e., ∇P = ∇′P ′.
Remark: Consider the 1-person game, the efficiency condition (2.5) would reduce to

a1P
′(N, v) = v(N). In order to achieve P ′(N, v) = v(N) in 1-person game, we restrict

that a1 = 1. Concerning such coefficient, in the following chapters, we will always respect

a1 = 1.

Definition 2.2.2. A value ψ = (ψi)i∈N on G has a modified potential representation,

if there exists three sequences of real numbers a = (ak)k∈N, b = (bk)k∈N, c = (ck)k∈N with

a1 = 1 and ak 6= 0 for all k > 1, and a modified potential P ′ : G → R, such that, its

associated modified gradient satisfies, for any n-person game (N, v), all i ∈ N ,

ψi(N, v) = ∇′iP ′(N, v) = anP
′(N, v)− bnP ′(N \ {i}, v)− 1

n
cn
∑
l∈N

P ′(N \ {l}, v) (2.6)

In this definition, we restrict ak 6= 0 for all k > 1, to make sure that the totalitarian

fraction of the potential P ′(N, v) for any n-person game (N, v) does not vanish. Therefore

we can guarantee the uniqueness of the modified potential P ′.

Remind in Example 2.1.3, there exists a unique classical potential P with respect to the

Shapley value. In fact, based on the efficiency principle (2.5) and the modified potential

representation (2.6), there exists a general expression for the modified potential which can

be calculated recursively.

Theorem 2.2.3. Fix three sequences of real numbers a = (ak)k∈N, b = (bk)k∈N, c =

(ck)k∈N with a1 = 1 and ak 6= 0 for all k > 1.
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• For any v ∈ GN , the modified potential P ′ is uniquely given by,

P ′(N, v) =
∑
S⊆N

h(n, s)qn,sv(S) (2.7)

• For any v ∈ GN with n > 1, the associated modified gradient ∇′P ′ is, for all i ∈ N ,

∇′iP ′(N, v) =
v(N)

n
+bn

∑
S$N\{i}

h(n, s+1)qn−1,s+1v(S∪{i})−bn
∑

S⊆N\{i}

h(n, s+1)qn−1,sv(S)

(2.8)

where qn,s is defined to be,
qn,s =

n∏
j=s+1

(bj + cj)

n∏
j=s

aj

for all 1 ≤ s ≤ n− 1

qn,n =
1

an

(2.9)

Remark: During the proof, we will use the following relationship, for all 1 ≤ s ≤ n− 1,

qn,s = qn−1,s · qn,n · (bn + cn) (2.10)

qn,s = qn,s+1 · qs,s · (bs+1 + cs+1) (2.11)

Proof. Fix three sequences of real numbers a = (ak)k∈N, b = (bk)k∈N, c = (ck)k∈N with

a1 = 1 and ak 6= 0 for all k > 1. For any game (N, v), we have,

v(N)
(2.5)
=
∑
i∈N
∇′iP ′(N, v)

(2.4)
=
∑
i∈N

[
anP

′(N, v)− bnP ′(N \ {i}, v)− 1

n
cn
∑
l∈N

P ′(N \ {l}, v)

]
= nanP

′(N, v)− (bn + cn)
∑
l∈N

P ′(N \ {l}, v)

which is equivalent to,

P ′(N, v) =
1

nan
v(N) +

bn + cn
nan

∑
l∈N

P ′(N \ {l}, v) (2.12)

Uniqueness is obvious according to this recursive formula, next we show the existence of

this modified potential P ′ recursively, starting from the 0-normalized condition P ′(∅, v) =

0.

For 1-person game, i.e. n = 1, because P ′(∅, v) = 0 and a1 = 1, the efficiency condition

is reduced to P ′({i}, v) = v({i}) for all i ∈ N .
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Suppose (2.7) holds for all (n− 1)-person game, we have,∑
l∈N

P ′(N \ {l}, v) =
∑
l∈N

∑
S⊆N\{l}

h(n− 1, s)qn−1,sv(S)

=
∑
S$N

(n− s)h(n− 1, s)qn−1,sv(S)

= n
∑
S$N

h(n, s)qn−1,sv(S)

(2.13)

Substituting the expression above into (2.12), one can get,

P ′(N, v) =
1

nan
v(N) +

bn + cn
nan

∑
l∈N

P ′(N \ {l}, v)

=
1

nan
v(N) +

bn + cn
an

∑
S$N

h(n, s)qn−1,sv(S)

By (2.10), the equation above changes to,

P ′(N, v) =
qn,n
n
v(N) +

∑
S$N

h(n, s)qn,sv(S)

=
∑
S⊆N

h(n, s)qn,sv(S)

Thus, (2.7) holds for n-person game. By this inductive proof, the modified potential

P ′ is of form (2.7).

For the i’s component of the modified gradient ∇′P ′, we have,

∇′iP ′(N, v)

(2.4)
= anP

′(N, v)− bnP ′(N \ {i}, v)− 1

n
cn
∑
l∈N

P ′(N \ {l}, v)

(2.7)
= an

∑
S⊆N

h(n, s)qn,sv(S)− bn
∑

S⊆N\{i}

h(n− 1, s)qn−1,sv(S)− cn
∑
S$N

h(n, s)qn−1,sv(S)

By the relation (2.10), the equation above can be simplified as follows,

∇′iP ′(N, v)

=
v(N)

n
+ bn

∑
S$N

h(n, s)qn−1,sv(S)− bn
∑

S⊆N\{i}

h(n− 1, s)qn−1,sv(S)

(2.11)
=

v(N)

n
+ bn

∑
S$N\{i}

h(n, s+ 1)qn−1,s+1v(S ∪ {i}) + bn
∑

S⊆N\{i}

(h(n, s)− h(n− 1, s))qn−1,sv(S)

=
v(N)

n
+ bn

∑
S$N\{i}

h(n, s+ 1)qn−1,s+1v(S ∪ {i})− bn
∑

S⊆N\{i}

h(n, s+ 1)qn−1,sv(S)
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Example 2.2.4. Let the three sequences a = (ak)k∈N, b = (bk)k∈N, c = (ck)k∈N of real

numbers with a1 = 1 and ak 6= 0 for all k > 1 be arbitrary. Consider the Shapley value

(1.2), for any game (N, v), we have bnqn−1,s = 1 when 1 ≤ s ≤ n− 1.

If we let s be (n − 1) and (n − 2) respectively, the relationship between bn and qn−1,s

would lead to bn = an−1 and cn−1 = 0.

Therefore, the Shapley value has various modified potential representations, given by,

Shi(N, v) = ∇′iP ′(N, v) = anP
′(N, v)− an−1P

′(N \ {i}, v) (2.14)

and the modified potential is,

P ′(N, v) =
1

an

∑
S⊆N

h(n, s)v(S) (2.15)

Evidently, if we choose the unitary sequence a = (ak)k∈N = 1, then the modified

potential gradient is reduced to the classical one given by Hart and Mas-Colell [11].

2.2.2 Representation for ELS values

Besides the Shapley value, Driessen and Radzik [7] showed that, there exists a special class

of values satisfying efficiency, linearity and symmetry (ELS values (1.7)), which admits a

weighted pseudo-potential representation. This conclusion is also suitable for our modified

potential gradient.

Theorem 2.2.5. Let Φ be a value on G, then Φ admits a modified potential representation

(cf. Definition 2.2.2), if and only if Φ is the ELS value (1.7), in which the collection of

constants An = {αn,s|1 ≤ s ≤ n− 1} with n > 1 satisfies two conditions:

• For all 1 ≤ s ≤ n− 1,
αn,s−1

αn,s
is independent of n provided αn,s 6= 0;

• If there exist some s, 1 ≤ s ≤ n− 1, s.t. αn,s = 0, then αn,k = 0 for all k ≤ s.

Proof. (⇒) Suppose Φ has a modified potential representation with three sequences a =

(ak)k∈N, b = (bk)k∈N, c = (ck)k∈N of real numbers satisfying a1 = 1 and ak 6= 0 for all

k > 1. Then Φ agrees with (2.8).

If bn = 0, then for all i ∈ N , it holds Φi(N, v) = v(N)
n . If bn 6= 0, we consider a

collection of constants An = {αn,s | 1 ≤ s ≤ n− 1} with n > 1, such that,

bnqn−1,s = αn,s for all n > 1 and 1 ≤ s ≤ n− 1 (2.16)

Thus, it holds that, for all n > 1 and 1 ≤ s ≤ n− 1,

αn,s−1

αn,s

(2.16)
=

bnqn−1,s−1

bnqn−1,s

(2.11)
=

bs + cs
as−1

(2.17)

αn,s−1
(2.16)

= bnqn−1,s−1
(2.11)

= αn,sqs−1,s−1(bs + cs) (2.18)
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So αn,s is uniquely determined by (2.16) based on three sequences a, b, c, and the two

conditions in the theorem is equivalent to the relation (2.17) and (2.18), respectively.

(⇐) Suppose the value Φ is the ELS value with form (1.7) and satisfies the two conditions

in the theorem, then the collection of constants An = {αn,s | 1 ≤ s ≤ n − 1} with n > 1

is well defined.

For all n > 1 and 1 ≤ s ≤ n, consider three sequences a, b, c, where as can be choosen

arbitrarily with as 6= 0, a1 = 1, bs and cs are defined as follows,

bs = as−1αs,s−1 for all 1 < s ≤ n, n ≥ s+ 1 (2.19)

cs = as−1

(
αn,s−1

αn,s
− αs,s−1

)
for all 1 < s ≤ n, n ≥ s+ 1 (2.20)

Note that, the two conditions in the theorem guarantee the correctness of form (2.20).

Assume for all i ∈ N , Φi(N, v) 6= v(N)
n , we claim αn,n−1 6= 0. In fact, if αn,n−1 = 0,

then by the second condition in the theorem, for all 1 ≤ t ≤ n− 1, it holds αn,t = 0. Thus

Φi(N, v) = v(N)
n , which contradicts the assumption.

Therefore, bn 6= 0, and there exists at least one k, k ≥ n, such that, αk,n−1 6= 0. By

(2.19) and (2.20), for all 1 < s ≤ n, n ≥ s+ 1,

bs + cs = as−1
αk,s−1

αk,s
= as−1

αn,s−1

αn,s
(2.21)

Make use of the equation above, then,

qn−1,s
(2.9)
=

∏n−1
j=s+1(bj + cj)∏n−1

j=s aj

(2.21)
=

1

an−1

αn,s
αn,n−1

(2.19)
=

1

bn
αn,s

Therefore, we have,

αn,s = bnqn−1,s for all n > 1 and 1 ≤ s ≤ n− 1

Thus, the value Φ has a modified potential representation which arises from the three

constructed sequences a, b, c.

During the above proof, we obtain the relationship among the three sequences a, b, c

which is depicted in the following corollary.

Corollary 2.2.6. Let Φ be the ELS value (1.7) satisfying the two conditions in Theorem

2.2.5. Then for any n-person game (N, v) with n > 1,

Φi(N, v) = ∇′iP ′(N, v) = anP
′(N, v)−bnP ′(N\{i}, v)− 1

n
cn
∑
l∈N

P ′(N\{l}, v) for all i ∈ N
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where the three sequences a = (ak)k∈N, b = (bk)k∈N, c = (ck)k∈N of real numbers are

defined recursively to be, for all 1 < s ≤ n,
as is chosen arbitrarily with as 6= 0 and a1 = 1;

bs := as−1αs,s−1;

cs := as−1

(
αn,s−1

αn,s
− αs,s−1

) (2.22)

Note that by the relation (2.22), the modified potential (2.7) can be written as the

following expression which only contains one undecided sequence a = (ak)k∈N,

P ′(N, v) =
1

an · αn,n

∑
S⊆N

h(n, s)αn,sv(S)

For the collection of constants An = {αn,s|1 ≤ s ≤ n − 1} with n > 1, we restrict

them to satisfy two conditions, one of which is the quotient of αn,s−1 and αn,s should be

independent of n provided αn,s 6= 0. In order to avoid this assumption, we suppose the

coefficient αn,s is separable, i.e., αn,s = µnνs, which means αn,s result from a product of two

independent sequences, one refers to n, and the other one to s. In this way, the quotient

of αn,s−1 and αn,s only depends on s. By (2.22), we can get the following corollary.

Corollary 2.2.7. Let Φ be the ELS value (1.7) on G, suppose αn,s = µnνs for all 1 ≤ s ≤
n− 1, where µn and νs are two independent sequences refers to n and s, respectively. For

any n-person game (N, v) with n > 1,

Φi(N, v) = ∇′iP ′(N, v) = anP
′(N, v)−bnP ′(N\{i}, v)− 1

n
cn
∑
l∈N

P ′(N\{l}, v) for all i ∈ N

where the three sequences a = (ak)k∈N, b = (bk)k∈N, c = (ck)k∈N of real numbers are

defined recursively to be, for all 1 < s ≤ n,
as is chosen arbitrarily with as 6= 0 and a1 = 1;

bs := as−1µsνs−1;

cs := as−1νs−1

(
1
νs
− µs

) (2.23)

in addition, the collection of constants An = {αn,s|1 ≤ s ≤ n − 1} should satisfy that, if

there exist some s, 1 ≤ s ≤ n− 1, s.t. αn,s = 0, then αn,k = 0 for all k ≤ s.

In this circumstance, the number qn,s in the modified potential is just 1
an

νs
νn

, therefore

(2.7) can be reduced to,

P ′(N, v) =
1

anνn

∑
S⊆N

h(n, s)νsv(S) (2.24)
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Example 2.2.8. Consider the Solidarity value (1.4), αn,s here is separable with µn =

1, νs = 1
s+1 for all 1 ≤ s ≤ n − 1. By (2.23), we have bn = 1

nan−1, cn = an−1, an
is chosen arbitrarily with an 6= 0 and a1 = 1. The Solidarity value admits a modified

potential representation as follows:

Soli(N, v) = ∇′iP ′(N, v) = anP
′(N, v)− 1

n
an−1P

′(N \ {i}, v)− 1

n
an−1

∑
l∈N

P ′(N \ {l}, v)

(2.25)

where the modified potential is,

P ′(N, v) =
n+ 1

an

∑
S⊆N

h(n, s)
v(S)

s+ 1
(2.26)

Evidently, the assumption that αn,s(1 < s ≤ n − 1) is separable is helpful for the

calculation. Next we verify the correctness of the modified potential representation for the

Solidarity value.

In view of the modified potential P ′ for the Solidarity value, we have,

P ′(N \ {i}, v) =
n

an−1

∑
S⊆N\{i}

h(n− 1, s)
v(S)

s+ 1∑
l∈N

P ′(N \ {l}, v)
(2.13)

=
n2

an−1

∑
S$N

h(n, s)
v(S)

s+ 1

Substituting expressions above into (2.25), then the modified gradient ∇′iP ′ equals to,

∇′iP ′(N, v) = (n+ 1)
∑
S⊆N

h(n, s)
v(S)

s+ 1
−

∑
S⊆N\{i}

h(n− 1, s)
v(S)

s+ 1
− n

∑
S$N

h(n, s)
v(S)

s+ 1

=
v(N)

n
+
∑
S$N

h(n, s)
v(S)

s+ 1
−

∑
S⊆N\{i}

h(n− 1, s)
v(S)

s+ 1

=
v(N)

n
+

∑
S$N\{i}

h(n, s+ 1)
v(S ∪ {i})
s+ 2

−
∑

S⊆N\{i}

(h(n− 1, s)− h(n, s))
v(S)

s+ 1

=
v(N)

n
+

∑
S$N\{i}

h(n, s+ 1)
v(S ∪ {i})
s+ 2

−
∑

S⊆N\{i}

h(n, s+ 1)
v(S)

s+ 1

(1.9)
= Soli(N, v)

Therefore, the modified gradient ∇′iP ′ in (2.25) equals to the Solidarity value, which

means (2.25) is a proper modified potential representation for the Solidarity value (1.4).



Chapter 3

Representations of the potential

game

Based on the collection of unanimity games, which is a well-known basis of GN , we aim

to define a new basis with respect to the Shapley value, the Solidarity value, and all ELS

values, respectively, such that all these values can be represented as a simple sum of the

corresponding coordinates. The modified potential of the ELS value can be represented

as a new linear combination with respect to the new basis, thus its modified gradient can

be verified. Making use of this new basis, we consider the potential game, which is a

special noncooperative game concept that admits a potential function. Inspired by the

Shapley value representation of the potential game discussed by Takashi [27], we present

its Solidarity value and ELS values representations, respectively.

3.1 New basis associated to values

Remind in Theorem 1.2.5, the characteristic function of any game can be represented as

a linear combination of unanimity games uT with coordinates cvT for all T ∈ 2N \ {∅}.
Making use of this basis, we can represent the Shapley value in terms of cvT .

3.1.1 Shapley value

The Shapley value (1.2) in the unanimity game uT with form (1.1) is, for any T ∈ 2N \{∅},

Shi(N, uT ) =
∑

S⊆N\{i}

h(n, s+ 1)[uT (S ∪ {i})− uT (S)] for all i ∈ N (3.1)

• i 6∈ T . For all S ⊆ N \ {i}, it holds uT (S ∪ {i}) = uT (S), thus Shi(N, uT ) = 0.

24
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• i ∈ T . For all S ⊆ N \ {i}, it holds uT (S) = 0, thus by (3.1),

Shi(N, uT ) =
∑

S⊆N\{i}

h(n, s+ 1)uT (S ∪ {i})

(1.1)
=

∑
S⊆N\{i}
S⊇T\{i}

h(n, s+ 1)

=
n−1∑
s=t−1

(
n− t

s− t+ 1

)
h(n, s+ 1)

=
1

t

(
n

t

) n−1∑
s=t−1

(
s

t− 1

)

=
1

t

Remark: During the derivation above, we use the combinatorial result,

n−1∑
s=t−1

(
s

t− 1

)
=

(
n

t

)
for all 1 ≤ t ≤ n (3.2)

In fact, suppose the equation holds when n = k − 1, then for n = k,

k−1∑
s=t−1

(
s

t− 1

)
=

k−2∑
s=t−1

(
s

t− 1

)
+

(
k − 1

t− 1

)

=

(
k − 1

t

)
+

(
k − 1

t− 1

)
=

(
k

t

)

Therefore, Shi(N, uT ) = 1
t when i ∈ T , and 0 otherwise. By the linearity of the

Shapley value, we derive that, for all i ∈ N ,

Shi(N, v) = Shi

N,∑
T⊆N
T 6=∅

cvTuT

 =
∑
T⊆N
T 6=∅

cvTShi(N, uT ) =
∑
T⊆N
T3i

cvT
t

(3.3)

Next we consider another basis of the space GN , which is associated with the Shapley

value.

Definition 3.1.1. A basis of the space GN concerning the Shapley value is supplied by the

collection BSh =
{

(N, uShT ) | T ∈ 2N \ {∅}
}

, defined by,

uShT (S) =

{
t if T ⊆ S
0 otherwise

(3.4)

Theorem 3.1.2. For each v ∈ GN , we have,
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• v =
∑

T∈2N\{∅} c
v,Sh
T uShT with cv,ShT = 1

t

∑
R⊆T (−1)t−rv(R)

• Shi(N, v) =
∑

T⊆N
T3i

cv,ShT for all i ∈ N

Proof. For any S ⊆ N ,∑
T⊆N
T 6=∅

cv,ShT uShT (S) =
∑
T⊆S
T 6=∅

tcv,ShT

=
∑
T⊆S
T 6=∅

∑
R⊆T

(−1)t−rv(R)

=
∑
R⊆S

s∑
t=r

(
s− r
t− r

)
(−1)t−rv(R)

=
∑
R⊆S

(1− 1)s−rv(R)

= v(S)

By the similar derivation as in the unanimity game uT , one can derive that Shi(N, u
Sh
T ) =

1 if i ∈ T , and 0 otherwise, which means, for all i ∈ N ,

Shi(N, v) = Shi(N,
∑
T⊆N
T 6=∅

cv,ShT uShT ) =
∑
T⊆N
T 6=∅

cv,ShT Shi(N, u
Sh
T ) =

∑
T⊆N
T3i

cv,ShT

3.1.2 Solidarity value

Next we consider the Solidarity value (1.4), which is also efficient, linear, and symmetric.

We already derived in Example 1.2.21 that, the Solidarity value (1.4) can be written as,

Soli(N, v) =
v(N)

n
+

∑
S$N\{i}

h(n, s+ 1)
v(S ∪ {i})
s+ 2

−
∑

S⊆N\{i}

h(n, s+ 1)
v(S)

s+ 1
(3.5)

Consider two characteristic functions v, w ∈ G, then the relationship between the

Solidarity value and the Shapley value is, Soli(N, v) = Shi(N,w) when,{
v(S) = w(S)(s+ 1) where S $ N

v(N) = w(N)

Based on uShT and the relation above, we define another basis associated to the Soli-

darity value.

Definition 3.1.3. A basis of the space GN concerning the Solidarity value is supplied by

the collection BSol =
{

(N, uSolT ) | T ∈ 2N \ {∅}
}

, defined by,

uSolT (S) =


t if S = N

t(s+ 1) if T ⊆ S and S $ N

0 otherwise

(3.6)
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Theorem 3.1.4. For any v ∈ GN , we have,

• v =
∑

T∈2N\{∅} c
v,Sol
T uSolT with cv,SolT =

1
t

∑
R⊆T (−1)t−r 1

r+1v(R) if T $ N
1
n

[
v(N) +

∑
R$N (−1)n−r 1

r+1v(R)
]

if T = N

• Soli(N, v) =
∑

T⊆N
T3i

cv,SolT for all i ∈ N

Proof. For any S $ N , one can prove
∑

T⊆N
T 6=∅

cv,SolT uSolT (S) = v(S) by a similar derivation

as for the Shapley value; consider the case S = N , we have,∑
T⊆N
T 6=∅

cv,SolT uSolT (N) =
∑
T$N

T 6=∅

tcv,SolT + ncv,SolN

=
∑
T$N

T 6=∅

∑
R⊆T

(−1)t−r
1

r + 1
v(R) + ncv,SolN

=
∑
R$N

∑
T$N,T 6=∅

T⊇R

(−1)t−r
1

r + 1
v(R) + ncv,SolN

=
∑
R$N

n−1∑
t=r

(
n− r
t− r

)
(−1)t−r

1

r + 1
v(R) + ncv,SolN

=
∑
R$N

[
n∑
t=r

(
n− r
t− r

)
(−1)t−r −

(
n− r
n− r

)
(−1)n−r

]
1

r + 1
v(R) + ncv,SolN

=
∑
R$N

[
(1− 1)n−r − (−1)n−r

] 1

r + 1
v(R) + ncv,SolN

=
∑
R$N

(−1)n−r+1 1

r + 1
v(R) + ncv,SolN

= v(N)

Next we calculate the Solidarity value on this new basis uSolT via (3.5),

• i 6∈ T . For all S $ N \ {i}, T ⊆ S ∪ {i} is equivalent to T ⊆ S, thus,

Soli(N, u
Sol
T ) =

uSolT (N)

n
− h(n, n)

uSolT (N \ {i})
n

=
t

n
− t

n
= 0
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• i ∈ T . For all S ⊆ N \ {i}, it holds uT (S) = 0, thus,

Soli(N, u
Sol
T ) =

1

n
uSolT (N) +

∑
S$N\{i}

h(n, s+ 1)
uSolT (S ∪ {i})

s+ 2

(3.6)
=

1

n
t+ t

∑
S$N\{i}
S⊇T\{i}

h(n, s+ 1)

= t
n−1∑
s=t−1

(
n− t

s− t+ 1

)
h(n, s+ 1)

=
t

t

(
n

t

) n−1∑
s=t−1

(
s

t− 1

)

(3.2)
= 1

Due to the linearity of the Solidarity value, for all i ∈ N ,

Soli(N, v) = Soli

N,∑
T⊆N
T 6=∅

cv,SolT uSolT

 =
∑
T⊆N
T 6=∅

cv,SolT Soli(N, u
Sol
T ) =

∑
T⊆N
T3i

cv,SolT (3.7)

3.1.3 ELS values

For the Shapley value and the Solidarity value, we have already found new basis associated

with them. Based on these two special cases, we derive a general basis, which concerns all

the values satisfying efficiency, linearity and symmetry (ELS values).

Definition 3.1.5. A basis of the space GN concerning the ELS value (1.7) is supplied by

the collection BΦ =
{

(N, uΦ
T ) | T ∈ 2N \ {∅}

}
, defined by,

uΦ
T (S) =


t if S = N
t

αn,s
if T ⊆ S and S $ N

0 otherwise

(3.8)

Theorem 3.1.6. For any v ∈ GN , we have,

• v =
∑

T∈2N\{∅} c
v,Φ
T uΦ

T with cv,ΦT =

1
t

∑
R⊆T (−1)t−rαn,rv(R) if T $ N

1
n

[
v(N) +

∑
R$N (−1)n−rαn,rv(R)

]
if T = N

• Φi(N, v) =
∑

T⊆N
T3i

cv,ΦT for all i ∈ N

Proof. First we verify v =
∑

T∈2N\{∅} c
v,Φ
T uΦ

T .
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• S $ N ∑
T⊆N
T 6=∅

cv,ΦT uΦ
T (S) =

1

αn,s

∑
T⊆S
T 6=∅

cv,ΦT t

=
1

αn,s

∑
T⊆S
T 6=∅

∑
R⊆T

(−1)t−rαn,rv(R)

=
1

αn,s

∑
R⊆S

∑
T⊆S,T 6=∅

T⊇R

(−1)t−rαn,rv(R)

=
1

αn,s

∑
R⊆S

αn,rv(R)
s∑
t=r

(
s− r
t− r

)
(−1)t−r

=
1

αn,s

∑
R⊆S

αn,rv(R)(1− 1)s−r

= v(S)

• S = N∑
T⊆N
T 6=∅

cv,ΦT uΦ
T (N) =

∑
T$N

T 6=∅

tcv,ΦT + ncv,ΦN

=
∑
T$N

T 6=∅

∑
R⊆T

(−1)t−rαn,rv(R) + ncv,ΦN

=
∑
R$N

αn,rv(R)
∑

T$N,T 6=∅
T⊇R

(−1)t−r + ncv,ΦN

=
∑
R$N

αn,rv(R)

n−1∑
t=r

(
n− r
t− r

)
(−1)t−r + ncv,ΦN

=
∑
R$N

αn,rv(R)

[
n∑
t=r

(
n− r
t− r

)
(−1)t−r −

(
n− r
n− r

)
(−1)n−r

]
+ ncv,ΦN

=
∑
R$N

αn,rv(R)[(1− 1)n−r − (−1)n−r] + ncv,ΦN

=
∑
R$N

(−1)n−r+1αn,rv(R) + ncv,ΦN

= v(N)

According to Corollary 1.2.20, Φ can be represented as, for all i ∈ N ,

Φi(N, v) =
v(N)

n
+

∑
S$N\{i}

h(n, s+ 1)αn,s+1v(S ∪ {i})−
∑

S⊆N\{i}

h(n, s+ 1)αn,sv(S)

Using the formula above, we calculate Φi(N, u
Φ
T ),
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• i 6∈ T . For any S $ N \ {i}, T ⊆ S ∪ {i} is equivalent to T ⊆ S, thus,

Φi(N, u
Φ
T ) =

uΦ
T (N)

n
− h(n, n)αn,n−1u

Φ
T (N \ {i}) =

t

n
− t

n
= 0

• i ∈ T . For any S ⊆ N \ {i}, it holds uΦ
T (S) = 0. Thus,

Φi(N, u
Φ
T ) =

uΦ
T (N)

n
+

∑
S$N\{i}

h(n, s+ 1)αn,s+1u
Φ
T (S ∪ {i})

(3.8)
=

t

n
+ t

∑
S$N\{i}
S⊇T\{i}

h(n, s+ 1)

= t
n−1∑
s=t−1

(
n− t

s− t+ 1

)
h(n, s+ 1)

=
1(
n

t

) n−1∑
s=t−1

(
s

t− 1

)

(3.2)
= 1

By the linearity of the value Φ, we have, for any i ∈ N ,

Φi(N, v) = Φi

N,∑
T⊆N
T 6=∅

cv,ΦT uΦ
T

 =
∑
T⊆N
T 6=∅

cv,ΦT Φi

(
N, uΦ

T

)
=
∑
T⊆N
T3i

cv,ΦT (3.9)

Suppose the coefficient αn,s in the ELS value is separable, i.e., αn,s = µnνs for all n

and 1 ≤ s ≤ n− 1, we have the following conclusion.

Definition 3.1.7. A basis of the space GN concerning the ELS value (1.7) is supplied by

the collection BΦ =
{

(N, uΦ
T ) | T ∈ 2N \ {∅}

}
, defined by,

uΦ
T (S) =


t if S = N
t

µnνs
if T ⊆ S and S $ N

0 otherwise

(3.10)

Corollary 3.1.8. For any v ∈ GN , we have,

• v =
∑

T∈2N\{∅} c
v,Φ
T uΦ

T with cv,ΦT =


µn
t

∑
R⊆T (−1)t−rνrv(R) if T $ N

1
n

[
v(N) + µn

∑
R$N (−1)n−rνrv(R)

]
if T = N

• Φi(N, v) =
∑

T⊆N
T3i

cv,ΦT for all i ∈ N
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Remark: When there exist some αn,s = 0, for n > 1 and 1 ≤ s ≤ n − 1, or equivalently

µnνs = 0 in the separable case, the definition of the basis in (3.8) and (3.10) do not hold

any more. However, the conclusion in the Theorem 3.1.6 and Corollary 3.1.8 are still true.

We take the ENSC value with form (1.3) as an example.

Remind that, the ENSC value is defined by, for any v ∈ GN , all i ∈ N ,

ENSCi(N, v) = v(N)− v(N \ {i}) +
1

n

v(N)−
∑
j∈N

(v(N)− v(N \ {j}))


=
v(N)

n
− v(N \ {i}) +

1

n

∑
j∈N

v(N \ {j})

=
v(N)

n
− n− 1

n
v(N \ {i}) +

1

n

∑
j∈N\{i}

v(N \ {j}) (3.11)

Comparing the equation above to the ELS value (1.7), we have,{
h(n, n)αn,n−1 = n−1

n

h(n, n− 1)αn,n−1 = 1
n

Therefore, αn,n−1 = n − 1, and for all s, 1 ≤ s < n − 1, it holds αn,s = 0. Next we

verify the conclusion in the Theorem 3.1.6 and Corollary 3.1.8. By the definition of cv,ΦT ,

for T = N ,

cv,ΦN =
1

n

v(N) +
∑
R$N

(−1)n−rαn,rv(R)


=

1

n

[
v(N)−

∑
i∈N

αn,n−1v(N \ {i})

]

=
1

n

[
v(N)−

∑
i∈N

(n− 1)v(N \ {i})

]

For any i ∈ N , T = N \ {i}, we have,

cv,ΦN\{i} =
1

n− 1

∑
R⊆N\{i}

(−1)n−r−1αn,rv(R)

=
1

n− 1
αn,n−1v(N \ {i})

= v(N \ {i})
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For any other T with size t < n− 1, it holds cv,ΦT = 0. Thus,∑
T⊆N
T3i

cv,ΦT = cv,ΦN +
∑

j∈N\{i}

cv,ΦN\{j}

=
1

n

[
v(N)−

∑
i∈N

(n− 1)v(N \ {i})

]
+

∑
j∈N\{i}

v(N \ {j})

=
1

n
v(N)− n− 1

n
v(N \ {i}) +

1

n

∑
j∈N\{i}

v(N \ {j})

(3.11)
= ENSCi(N, v)

In fact, in this case, we can define the basis in the Theorem 3.1.6 and Corollary 3.1.8

in the following way,

uΦ
T (S) =


t if S = N , or s < n− 1
t

n−1 if T ⊆ S and s = n− 1

0 otherwise

Then, it holds v =
∑

T∈2N\{∅} c
v,Φ
T uΦ

T . Here we only have to consider the two cases

T = N and T = N \ {i} for any i ∈ N ,

• T = N ∑
T⊆N
T 6=∅

cv,ΦT uΦ
T (N) =

∑
T⊆N
T 6=∅

tcv,ΦT

= ncv,ΦN + (n− 1)
∑
i∈N

cv,ΦN\{i}

= v(N)

• T = N \ {i} ∑
T⊆N
T 6=∅

cv,ΦT uΦ
T (N \ {i}) = cv,ΦN\{i} = v(N \ {i})

In the above example, we discuss the case when there exist some k, such that, αn,k 6= 0,

and for all s < k, αn,s = 0. For these special ELS values, we can define uΦ
T as follows,

uΦ
T (S) =


t if S = N , or s < k
t

αn,s
if T ⊆ S and k ≤ s < n

0 otherwise

Then the conclusion in the Theorem 3.1.6 and Corollary 3.1.8 holds.
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3.2 Modified potential representation on new basis

For every efficient, linear and symmetric value Φ, we already found a basis associated with

it, such that, player i’s payoff Φi(N, v) can be represented as the total sum of cv,ΦT for

all coalitions containing i. We can obtain a new expression for the modified potential for

value Φ in terms of such coordinates cv,ΦT , T ∈ 2N \ {∅}.

Example 3.2.1. Consider the Shapley value (1.2), which can be represented as Shi(N, v) =∑
T⊆N
T3i

cv,ShT for all i ∈ N , where cv,ShT is defined in Theorem 3.1.2.

According to Example 2.2.4, consider the modified potential (2.15) for the Shapley value

on the basis uShT ,

P ′(N, uShT )
(2.15)

=
1

an

∑
S⊆N

h(n, s)uShT (S)

(3.4)
=

t

an

∑
S⊆N
S⊇T

h(n, s)

=
1

an

1(
n

t

) n∑
s=t

(
s− 1

t− 1

)

(3.2)
=

1

an

Therefore by the linearity of P ′, we have P ′(N, v) = 1
an

∑
T⊆N
T 6=∅

cv,ShT . Similarly for the

(n − 1) person game, P ′(N \ {i}, v) = 1
an−1

∑
T⊆N\{i}

T 6=∅
cv,ShT , thus the modified potential

representation for the Shapley value is, for all i ∈ N ,

∇′iP ′(N, v)
(2.14)

= anP
′(N, v)− an−1P

′(N \ {i}, v)

=
∑
T⊆N
T 6=∅

cv,ShT −
∑

T⊆N\{i}
T 6=∅

cv,ShT

=
∑
T⊆N
T3i

cv,ShT

(3.3)
= Shi(N, v)

Based on the example above which is associated with the Shapley value, we want to

find the general modified potential for all ELS values by means of coordinates cv,ΦT .

Theorem 3.2.2. For all efficient, linear, and symmetric value Φ (1.7), concerning the

new basis uΦ
T with form (3.8), the modified potential can be represented as,

P ′(N, v) =
1

nanαn,n

∑
T⊆N
T 6=∅

[n− t(1− αn,n)]cv,ΦT (3.12)
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and the modified gradient ∇′P ′ is equivalent to value Φ, i.e., for every game (N, v), i ∈ N ,

∇′iP ′(N, v) = Φi(N, v) =
∑
T⊆N
T3i

cv,ΦT (3.13)

In fact, if αn,s is separable, we can get a similar theorem as follows, and a proof will

be given in this case. The inseparable case can be proved in the same way.

Theorem 3.2.3. For all efficient, linear, and symmetric value Φ (1.7), suppose the co-

efficient αn,s is separable (cf. Corollary 2.2.7), concerning the new basis uΦ
T with form

(3.8), the modified potential can be represented as,

P ′(N, v) =
1

nanµnνn

∑
T⊆N
T 6=∅

[n− t(1− µnνn)]cv,ΦT (3.14)

and the modified gradient ∇′P ′ is equivalent to value Φ, i.e., for every game (N, v), i ∈ N ,

∇′iP ′(N, v) = Φi(N, v) =
∑
T⊆N
T3i

cv,ΦT (3.15)

Proof. On the basis uΦ
T , the modified potential P ′ on G with form (2.24) can be rewritten

as,

P ′(N, v)
(2.24)

=
1

anνn

∑
S⊆N

h(n, s)νsv(S)

=
1

anνn

∑
S$N

h(n, s)νs
∑
T⊆S
T 6=∅

t

µnνs
cv,ΦT +

1

nan

∑
T⊆N
T 6=∅

tcv,ΦT

=
1

anµnνn

∑
T$N

T 6=∅

tcv,ΦT

n−1∑
s=t

(
n− t
s− t

)
h(n, s) +

1

nan

∑
T⊆N
T 6=∅

tcv,ΦT

(3.2)
=

1

anµnνn

∑
T$N

T 6=∅

cv,ΦT
1(
n

t

) (n− 1

t

)
+

1

nan

∑
T⊆N
T 6=∅

tcv,ΦT

=
1

anµnνn

∑
T$N

T 6=∅

n− t
n

cv,ΦT +
1

nan

∑
T⊆N
T 6=∅

tcv,ΦT

=
1

nanµnνn

∑
T⊆N
T 6=∅

[n− t(1− µnνn)]cv,ΦT
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Similarly, for the (n− 1) person game,

P ′(N \ {i}, v)
(2.24)

=
1

an−1νn−1

∑
S⊆N\{i}

h(n− 1, s)νsv(S)

=
1

an−1νn−1

∑
S⊆N\{i}

h(n− 1, s)νs
∑
T⊆S
T 6=∅

t

µnνs
cv,ΦT

=
1

an−1µnνn−1

∑
T⊆N\{i}

T 6=∅

tcv,ΦT

n−1∑
s=t

(
n− t− 1

s− t

)
h(n− 1, s)

=
1

an−1µnνn−1

∑
T⊆N\{i}

T 6=∅

tcv,ΦT
1(

n− 1

t

) n−1∑
s=t

(
s− 1

t− 1

)

(3.2)
=

1

an−1µnνn−1

∑
T⊆N\{i}

T 6=∅

cv,ΦT

Thus we have, ∑
l∈N

P ′(N \ {l}, v) =
∑
l∈N

1

an−1µnνn−1

∑
T⊆N\{l}

T 6=∅

cv,ΦT

=
1

an−1µnνn−1

∑
T$N

T 6=∅

(n− t)cv,ΦT

Therefore, the modified gradient is,

∇′iP ′(N, v)
(2.6)
= anP

′(N, v)− bnP ′(N \ {i}, v)− 1

n
cn
∑
l∈N

P ′(N \ {l}, v)

(2.23)
= anP

′(N, v)− an−1µnνn−1P
′(N \ {i}, v)− 1

n
an−1νn−1

(
1

νr
− µn

)∑
l∈N

P ′(N \ {l}, v)

=
1

nµnνn

∑
T⊆N
T 6=∅

[n− t(1− µnνn)]cv,ΦT −
∑

T⊆N\{i}
T 6=∅

cv,ΦT − 1− µnνn
nµnνn

∑
T$N

T 6=∅

(n− t)cv,ΦT

=
∑
T⊆N
T 6=∅

cv,ΦT −
∑

T⊆N\{i}
T 6=∅

cv,ΦT

=
∑
T⊆N
T3i

cv,ΦT

Until here we get the same form for Φ as in Theorem 3.1.6.

Remark: For the (n− 1)-person game, the modified potential P ′(N \ {i}, v) is not just a

simple generalization of P ′(N, v), because the basis uΦ
T (3.8) is a sectional function, which

is different on S = N and S $ N .
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Example 3.2.4. Remind the Example 2.2.8 concerning the Solidarity value (1.4), we have

µn = 1, νs = 1
s+1 for all n and 1 ≤ s ≤ n. Using (3.14), the associated modified potential

is,

P ′(N, v) =
1

an

∑
T⊆N
T 6=∅

(n− t+ 1)cv,SolT

For the (n− 1)-person game,

P ′(N \ {i}, v) =
n

an−1

∑
T⊆N\{i}

T 6=∅

cv,SolT

∑
l∈N

P ′(N \ {l}, v) =
n

an−1

∑
T$N

T 6=∅

(n− t)cv,SolT

Therefore, it is easy to derive that, for every game (N, v), i ∈ N ,

∇′iP ′(N, v) = Soli(N, v) =
∑
T⊆N
T3i

cv,SolT

3.3 ELS values representation of Potential games

The concept of potential games was proposed by Monderer and Shapley [12], which means

games with potential functions. Note that, this potential function is different from the

modified potential we discussed in Chapter 2.

3.3.1 Potential games

The potential function is defined as a function of strategy profiles such that the change of

strategy concerned one player can be expressed in one global function. Potential games

can be either ordinal or cardinal. Here we mainly talk about the cardinal potential game,

which means the difference in individual payoffs for each player from individually changing

one’s strategy and other remains, have the same value as the difference in values for the

potential function, whereas in the ordinal potential game, only the signs of differences have

to be the same.

In such potential games, one has to consider different strategies for all the players

participated in the game. Thus, instead of the cooperative game (N, v), we consider

the noncooperative game (N,D, u) in this section, where N is a finite set of players,

D = (Di)i∈N is the finite strategy space, and u = (ui)i∈N is the payoff function.

Consider a strategy d in the strategy space D, we write d = (d1, d2, . . . , dn), in which

di is the strategy of player i. For a strategy containing all players but i, we denote

by d−i = (d1, d2, . . . , di−1, di+1, . . . , dn) and D−i = DN\{i}. If the strategy of player

i changes from di to d′i while that of other players remain, we use d\d′i, which is just

(d1, d2, . . . , di−1, d
′
i, di+1, . . . , dn). For a coalition S, S ⊆ N , we denote by DS = (Di)i∈S
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the subspace of the strategy space concerning players in coalition S. Similarly, we define

dS = (di)i∈S ∈ DS .

Formally, the potential game is defined as follows,

Definition 3.3.1. [12] (N,D,u) is called a potential game if there exists a potential

function V : D → R, such that for any i ∈ N , d′i ∈ Di, d ∈ D,

ui(d\d′i)− ui(d) = V (d\d′i)− V (d)

Slade [23] introduced a necessary and sufficient condition for potential games as follows.

Theorem 3.3.2. [23] (N,D, u) is a potential game if only if there exist functions V :

D → R and Qi : D−i → R, such that for any i ∈ N , d ∈ D,

ui(d) = V (d) +Qi(d−i)

Note that the potential function is not unique. In fact, Monderer and Shapley [12]

proved following lemma.

Lemma 3.3.3. [12] Let (N,D, u) be a potential game, V and V ′ be potential functions.

Then there exists a constant c such that V (d) = V ′(d) + c for any d ∈ D.

In a potential game, a single potential function can be used to find all Nash equilibria

due to the following result.

Lemma 3.3.4. [12] Let (N,D, u) be a potential game with a potential function V . Let

(N,D, (V )i∈N ) be a game in which every player’s payoff function is V . Then the set of

Nash equilibria of game (N,D, u) coincides with that of (N,D, (V )i∈N ).

Assume strategy sets D are intervals of real numbers, Monderer and Shapley [12]

discussed how to verify whether a game has a potential function.

Lemma 3.3.5. [12] Suppose the payoff functions ui : Di → R for player i ∈ N are

continuously differentiable, and let V : D → R. Then V is a potential function for game

(N,D, u) if and only if V is continuously differentiable, and

∂ui
∂di

=
∂V

∂di
for any i ∈ N

Theorem 3.3.6. [12] Suppose the payoff functions ui : Di → R for player i ∈ N are twice

continuously differentiable, then (N,D, u) is a potential game if and only if,

∂2ui
∂di∂dj

=
∂2uj
∂di∂dj

for any i, j ∈ N

Moreover, if d′ is an arbitrary (but fixed) strategy profile in D, then a potential function

is given by,

V (d) =
∑
i∈N

∫ 1

0

∂ui
∂di

(x(t))(xi)
′(t)dt

where x : [0, 1] → D is a piecewise continuously differentiable path in D that connects d′

to d (i.e., x(0) = d′ and x(1) = d).
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3.3.2 Representation of Potential games

Takashi [27] proved that a game admits a potential function if and only if the payoff

function coincide with the Shapley value of a particular class of cooperative games indexed

by the set of strategy profiles. In addition, a potential function of the game coincides with

a potential of the class of cooperative games. This particular class of cooperative games

is called the TU-games with action choices defined as follows.

Definition 3.3.7. [27] Given a set of players N and a strategy set D, the collection of

TU-games {vd}d∈D is called the TU-game with action choices, if for all d, d′ ∈ D, any

T ⊆ N ,

vd(T ) = vd′(T ) if dT = d′T

Note that in such games, the value of a coalition is determined by its members and the

strategies of its members, but not by strategies of players outside the coalition. Denote

by GN,D the set of all TU-games with action choices.

Theorem 3.3.8. [27] (N,D, u) is a potential game if and only if there exists a collection

{ΨT | ΨT : DT → R, T ⊆ N}, such that, for any d ∈ D,

ui(d) =
∑
T⊆N
i3T

ΨT (dT ) for all i ∈ N (3.16)

Moreover, the potential function is given by,

V (d) =
∑
T⊆N

ΨT (dT ) (3.17)

By defining ΨT (dT ) :=
c
vd
T
|T | (cf. Theorem 1.2.5), for all T ⊆ N , dT ∈ DT , Takashi

[27] proved the following theorem concerning the Shapley value, is equivalent to Theorem

3.3.8.

Theorem 3.3.9. [27] (N,D, u) is a potential game if and only if there exists {vd}d∈D ∈
GN,D, such that, for any d ∈ D,

ui(d) = Shi(N, vd) for all i ∈ N

Moreover, the potential function is given by,

V (d) =
∑
T⊆N

h(n, t)vd(T )
(2.3)
= P (N, vd)

Based on the theorem above, we want to define new representations of potential games

with respect to the Solidarity value and the ELS value, respectively.

Remind that we already find a basis uSolT with form (3.6) of the space GN . By using

the corresponding cv,SolT (cf. Theorem 3.7), we can rewrite the Solidarity value as a simple

sum, i.e., for all i ∈ N ,

Soli(N, v) =
∑
T⊆N
T3i

cv,SolT (3.18)
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For any T ⊆ N , define,

BSol(N, v) =
∑
T⊆N

cv,SolT (3.19)

On the restrict space GN,D, the Solidarity value can also be written as the sum but

with another cvd,SolT which is restricted to the game {vd}d∈D defined by,

vd =
∑

T∈2N\{∅}

cvd,SolT uSolT with cvd,SolT =

1
t

∑
R⊆T (−1)t−r 1

r+1vd(R) if T $ N
1
n

[
vd(N) +

∑
R$N (−1)n−r 1

r+1vd(R)
]

if T = N

(3.20)

Lemma 3.3.10. {vd}d∈D ∈ GN,D if and only if dT = d′T implies cvd,SolT = c
vd′ ,Sol
T for any

T ⊆ N , d, d′ ∈ D.

Proof. (⇒) Suppose {vd}d∈D ∈ GN,D, then for all R ⊆ T , vd(R) = vd′(R) if dT = d′(T ).

Thus by (3.20), dT = d′T implies cvd,SolT = c
vd′ ,Sol
T .

(⇐) Suppose that dT = d′T implies cvd,SolT = c
vd′ ,Sol
T for any T ⊆ N , d, d′ ∈ D. By

Theorem 3.1.4, for any T $ N ,

vd(T ) =
∑
R⊆N

cvd,SolR uSolR (T ) = (s+ 1)
∑
R⊆S

rcvd,SolR

and particularly, vd(N) =
∑

R⊆N rc
vd,Sol
R . Thus dT = d′T also implies vd(T ) = vd′(T ).

Therefore, {vd}d∈D ∈ GN,D.

Based on cvd,SolT and the above lemma, we have the following theorem.

Theorem 3.3.11. (N,D, u) is a potential game if and only if there exists {vd}d∈D ∈ GN,D,

such that, for any d ∈ D,

ui(d) = Soli(N, vd) for all i ∈ N (3.21)

Moreover, the potential function is given by,

V (d) = BSol(N, vd) (3.22)

Proof. (⇒) Suppose (N,D, u) is a potential game. By Theorem 3.3.8, there exists a

collection {ΨT | ΨT : DT → R, T ⊆ N}, such that,

ui(d) =
∑
T⊆N
T3i

ΨT (dT )

Let d ∈ D, consider the game {vd}d∈D. Define vd =
∑

T∈2N\{∅} c
vd,Sol
T uSolT , where

cvd,SolT = ΨT (dT ). Then,

ui(d) =
∑
T⊆N
T3i

ΨT (dT ) =
∑
T⊆N
T3i

cvd,SolT

(3.18)
= Soli(N, vd)

V (d) =
∑
T⊆N

ΨT (dT ) =
∑
T⊆N

cvd,SolT

(3.19)
= BSol(N, vd)
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(⇐) Suppose there exists {vd}d∈D ∈ GN,D, such that, for all i ∈ N , d ∈ D,

ui(d) = Soli(N, vd)

By Theorem 3.3.8, define ΨT (dT ) = cvd,SolT , and the potential function V (d) = BSol(N, vd) =∑
T⊆N c

vd,Sol
T , then, ∑

T⊆N
T3i

ΨT (dT ) =
∑
T⊆N
T3i

cvd,SolT = Soli(N, vd) = ui(d)

Thus by Theorem 3.3.8, (N,D, u) is a potential game.

Similar to the Solidarity value, we can define cvd,ΦT for ELS values as follows,

vd =
∑

T∈2N\{∅}

cvd,ΦT uΦ
T with cvd,ΦT =

1
t

∑
R⊆T (−1)t−rαn,rvd(R) if T $ N

1
n

[
vd(N) +

∑
R$N (−1)n−rαn,rvd(R)

]
if T = N

and the function BΦ on GN,D is given by,

BΦ(N, vd) =
∑
T⊆N

cvd,ΦT

Thus, there exists another representation for potential games.

Theorem 3.3.12. (N,D, u) is a potential game if and only if there exists {vd}d∈D ∈ GN,D,

such that, for any d ∈ D,

ui(d) = Φi(N, vd) for all i ∈ N

Moreover, the potential function is given by,

V (d) = BΦ(N, vd)



Chapter 4

Reduced game property for ELS

values

The Shapley value satisfies the reduced game property with respect to the Sobolev’s re-

duced game, which is a special game concept we aim to derive by the modified potential

approach introduced in Chapter 2. By the similar approach, there exist special reduced

games with respect to the Solidarity value and the ELS value, respectively. In this chapter,

we will always suppose that An = {αn,s | 1 ≤ s ≤ n − 1} concerning the ELS value (cf.

Corollary 1.2.20) is a nonzero sequence.

4.1 Reduced game property

To introduce the concept of a reduced game and the reduced game property, we first look

at an example.

Example 4.1.1. [17] Consider a three-person game (N, v) given in the following table,

the dividends (cf. Definition 1.2.15) of coalitions and the potential (cf. Definition 2.1.1)

of subgames are given in lines 3 and 4 of this table, respectively. It follows that,

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 1 2 3 5 6 9 15

4v(S) 0 1 2 3 2 2 4 1

P (S, v) 0 1 2 3 4 5 7 101
3

Sh(N, v) = (Sh1(N, v), Sh2(N, v), Sh3(N, v))

= (51P (N, v),52P (N, v),53P (N, v))

=

(
10

1

3
− 7, 10

1

3
− 5, 10

1

3
− 4

)
=

(
3

1

3
, 5

1

3
, 6

1

3

)
Sh({1, 2}, v) = (Sh1({1, 2}, v), Sh2({1, 2}, v)) = (4− 2, 4− 1) = (2, 3)

Sh({2, 3}, v) = (Sh2({2, 3}, v), Sh3({2, 3}, v)) = (7− 3, 7− 2) = (4, 5)

41
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Suppose that all players in this game agree on using the Shapley value, and consider

one possible coalition {1, 3}. Players 1 and 3 will have 31
3 + 61

3 = 92
3 if they pool their

Shapley value payoffs together. Another way to obtain this amount is to take the worth

of the grand coalition, 15, and to subtract player 2’s payoff, 51
3 .

Consider {1} as a subcoalition of {1, 3}. Player 1 could form a coalition with player

2 and obtain the worth 5, but he would have to pay player 2 according to the Shapley

value of game ({1, 2}, v), which is the vector (2, 3). So player 1 is left with 5 − 3 = 2.

Similarly, player 3 could form a coalition with player 2 and obtain v({2, 3}) = 9 minus

the Shapley value payoff for player 2 in the game ({2, 3}, v), which is 4. So player 3 is left

with 9− 4 = 5.

Thus, a ‘reduced game’ ({1, 3}, ṽ) has been constructed with ṽ({1}) = 2, ṽ({3}) = 5,

and ṽ({1, 3}) = 92
3 . The Shapley value of this game is

(
31

3 , 6
1
3

)
. Note that these payoffs

are equal to the Shapley value payoffs in the original game. This is not a coincidence; the

particular way of constructing a reduced game as illustrated here leaves the Shapley value

invariant.

For any game (N, v), a subset of players, say T , T ⊆ N , consider the game arising

among the players in T . The reduced game property means, in general, the payoff of

players in T should not change or they should have no reason to renegotiate, if they apply

the same ‘solution rule’ in the reduced game (T, ṽ) as in the original game (N, v). There

are many different ways to define the reduced game. Here we discuss one of the reduced

games, say the Sobolev’s reduced game [24].

Definition 4.1.2. [24] Given any n-person game with n ≥ 2, player i ∈ N , and payoff

vector x ∈ Rn, the corresponding reduced game (N \ {i}, vx) with respect to x is as

follows,

vx(S) :=
s

n− 1
(v(S ∪ {i})− xi) +

n− 1− s
n− 1

v(S) for all S ⊆ N \ {i} (4.1)

Note that the worth of any non-empty coalition in the above reduced game is obtained

as a convex combination of the worth of the coalition in the original game and the original

worth of the coalition together with the single player minus the payoff xi to the single

player i for his participation.

Definition 4.1.3. The solution ψ on G possesses the reduced game property (RGP),

if for any n-person game with n ≥ 2, ∅ 6= T ⊆ N and x ∈ ψ(N, v), it holds xT ∈ ψ(T, vx),

where xT ∈ RT denotes the restriction of x ∈ Rn to T ⊆ N .

In order to axiomatize the Shapley value on G, Sobolev [24] introduced the following

theorem concerning four different properties.

Theorem 4.1.4. [24] The Shapley value is the unique value on G which possesses the

Substitution property, Covariance, Efficiency and the reduced game property with respect

to the reduced game (4.1).
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Corollary 4.1.5. The Shapley value (1.2) satisfies the reduced game property with respect

to the reduced game (4.1), i.e., for any game (N, v), i ∈ N , if x = Sh(N, v), then,

Shj(N \ {i}, vx) = Shj(N, v) for all j ∈ N \ {i}

Proof. We prove this corollary in the following five steps.

• Step 1: Substituting the reduced game (4.1) into the Shapley value (1.2) in the

(n− 1)-person reduced game (N \ {i}, vx);

• Step 2: Calculate the coefficient of xi by combinatorial counting;

• Step 3: Rewrite xi which is just the Shapley value for player i in the game (N, v),

by distinguishing coalitions with or without player j;

• Step 4: Substituting the result of Step 2 and Step 3 into that of Step 1 to simplify

the Shapley value in the (n− 1)-person reduced game;

• Step 5: Compare the result of Step 4 with the Shapley value (1.2) for player j in the

game (N, v).

Step 1: By the definition of the Shapley value (1.2) and the reduced game (4.1), fix i ∈ N ,

for all j ∈ N \ {i},

Shj(N \ {i}, vx)
(1.2)
=

∑
S⊆N\{i,j}

h(n− 1, s+ 1)[vx(S ∪ {j})− vx(S)]

(4.1)
=

∑
S⊆N\{i,j}

h(n− 1, s+ 1)

[
s+ 1

n− 1
(v(S ∪ {i, j})− xi) +

n− s− 2

n− 1
v(S ∪ {j})

]

−
∑

S⊆N\{i,j}

h(n− 1, s+ 1)

[
s

n− 1
(v(S ∪ {i})− xi) +

n− s− 1

n− 1
v(S)

]
(4.2)

Step 2: Consider the coefficient of xi in the equation above,

−
∑

S⊆N\{i,j}

h(n− 1, s+ 1)
s+ 1

n− 1
xi +

∑
S⊆N\{i,j}

h(n− 1, s+ 1)
s

n− 1
xi

=− xi
n− 1

n−2∑
s=0

(
n− 2

s

)
h(n− 1, s+ 1)

=− xi
n− 1

(4.3)

Step 3: x here is the Shapley value in the n-person game, thus,

xi = Shi(N, v)

=
∑

S⊆N\{i}

h(n, s+ 1)[v(S ∪ {i})− v(S)]

=
∑

S⊆N\{i,j}

h(n, s+ 2)[v(S ∪ {i, j})− v(S ∪ {j})] +
∑

S⊆N\{i,j}

h(n, s+ 1)[v(S ∪ {i})− v(S)]

(4.4)
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Step 4: By (4.3), (4.2) is equivalent to,

Shj(N \ {i}, vx) =
∑

S⊆N\{i,j}

h(n− 1, s+ 1)

[
s+ 1

n− 1
v(S ∪ {i, j}) +

n− s− 2

n− 1
v(S ∪ {j})

]

−
∑

S⊆N\{i,j}

h(n− 1, s+ 1)

[
s

n− 1
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)

]
− xi
n− 1

Substituting (4.4) into the equation above, we have,

Shj(N \ {i}, vx) =
∑

S⊆N\{i,j}

[
h(n− 1, s+ 1)

n− 1
(s+ 1)− h(n, s+ 2)

n− 1

]
v(S ∪ {i, j})

+
∑

S⊆N\{i,j}

[
h(n− 1, s+ 1)

n− 1
(n− s− 2) +

h(n, s+ 2)

n− 1

]
v(S ∪ {j})

−
∑

S⊆N\{i,j}

[
h(n− 1, s+ 1)

n− 1
s+

h(n, s+ 1)

n− 1

]
v(S ∪ {i})

−
∑

S⊆N\{i,j}

[
h(n− 1, s+ 1)

n− 1
(n− s− 1) +

h(n, s+ 1)

n− 1

]
v(S)

After simplifying, the equation above changes to,

Shj(N \ {i}, vx)

=
∑

S⊆N\{i,j}

h(n, s+ 2)[v(S ∪ {i, j})− v(S ∪ {i})] +
∑

S⊆N\{i,j}

h(n, s+ 1)[v(S ∪ {j})− v(S)]

=
∑

S⊆N\{j}
S3i

h(n, s+ 1)[v(S ∪ {j})− v(S)] +
∑

S⊆N\{j}
S 63i

h(n, s+ 1)[v(S ∪ {j})− v(S)]

=
∑

S⊆N\{j}

h(n, s+ 1)[v(S ∪ {j})− v(S)]

Step 5: Note that the equation above is just Shj(N, v), therefore,

Shj(N \ {i}, vx) = Shj(N, v)

Thus, the Shapley value satisfies the reduced game property with respect to the reduced

game (4.1).

4.2 RGP by the modified potential approach

We already proved that the Shapley value satisfies the reduced game property (RGP)

with respect to the Sobolev’s reduced game. Next we use the modified potential approach

introduced in Chapter 2, to find the reduced game not only with respect to the Shapley

value, but also to the Solidarity value and the ELS value.
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4.2.1 Shapley value

Remind that in Example 2.1.3, we discussed the relationship between the classical potential

P and the Shapley value Sh, that is, for any game (N, v) with n ≥ 2, all i ∈ N ,

Shi(N, v) = P (N, v)− P (N \ {i}, v) (4.5)

where P (N, v) =
∑

S⊆N h(n, s)v(S).

Next we use the potential approach to derive the same reduced game (4.1) associated

with the Shapley value in the following five steps.

• Step 1: Substituting the potential P into the potential representation (4.5) for the

Shapley value;

• Step 2: Simplify the result of Step 1 by distinguishing coalitions with or without

player i;

• Step 3: Rewrite the result of Step 2, in order to make v(S ∪ {i}) and v(S) have the

same coefficient in different summations, respectively;

• Step 4: Recognize the Shapley value (1.2) from the result of Step 3, and split it

among the two other summations by combinatorial counting;

• Step 5: Repeat Step 1 with respect to the (n−1)-person reduced game, and compare

it to the result of Step 4.

Step 1: For any n-person game (N, v) with n ≥ 2, for all j ∈ N ,

Shj(N, v)
(4.5)
= P (N, v)− P (N \ {j}, v)

=
∑
S⊆N

h(n, s)v(S)−
∑

S⊆N\{j}

h(n− 1, s)v(S)

Step 2: For any i ∈ N \ {j}, distinguishing coalitions S with or without player i, then,

Shj(N, v) =
∑

S⊆N\{i}

[h(n, s+ 1)v(S ∪ {i}) + h(n, s)v(S)]

−
∑

S⊆N\{i,j}

[h(n− 1, s+ 1)v(S ∪ {i}) + h(n− 1, s)v(S)]

=
∑

S⊆N\{i}

h(n− 1, s)

[
s

n
v(S ∪ {i}) +

n− s
n

v(S)

]
(4.6)

−
∑

S⊆N\{i,j}

h(n− 2, s)

[
s

n− 1
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)

]
(4.7)

Step 3: In order to make the coefficient of v(S ∪ {i}) and v(S) respectively be identical

in (4.6) and (4.7), we split (4.6) into two summations,
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∑
S⊆N\{i}

h(n− 1, s)

[
s

n
v(S ∪ {i}) +

n− s
n

v(S)

]

=
∑

S⊆N\{i}

h(n− 1, s)

[(
s

n− 1
− s

n(n− 1)

)
v(S ∪ {i}) +

(
n− s− 1

n− 1
+

s

n(n− 1)

)
v(S)

]

=
∑

S⊆N\{i}

h(n− 1, s)

[
s

n− 1
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)

]
− 1

n− 1

∑
S⊆N\{i}

h(n, s+ 1) [v(S ∪ {i})− v(S)] (4.8)

Step 4: Note that (4.8) is just the Shapley value (1.2) with coefficient (− 1
n−1), thus,

Shj(N, v) =
∑

S⊆N\{i}

h(n− 1, s)

[
s

n− 1
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)

]

−
∑

S⊆N\{i,j}

h(n− 2, s)

[
s

n− 1
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)

]
− Shi(N, v)

n− 1

=
∑

S⊆N\{i}

h(n− 1, s)

[
s

n− 1
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)− s

n− 1
Shi(N, v)

]

−
∑

S⊆N\{i,j}

h(n− 2, s)

[
s

n− 1
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)− s

n− 1
Shi(N, v)

]
=

∑
S⊆N\{i}

h(n− 1, s)vx(S)−
∑

S⊆N\{i,j}

h(n− 2, s)vx(S)

Step 5: Compared to the result of Step 1, the equation above is just Shj(N \ {i}, vx).

Thus, we have obtained the Sobolev’s reduced game (4.1) by the potential approach.

4.2.2 Solidarity value

Next we consider another efficient, linear, and symmetric value, the Solidarity value (1.9).

By using the similar modified potential approach as the one for the Shapley value, we

want to find a reduced game with respect to the Solidarity value, such that, this value

satisfies the reduced game property.

Remind that in Example 2.2.8, we already obtained the modified potential representa-

tion for the Solidarity value. Let the nonzero sequence (ak)k∈N be arbitrary with a1 = 1,

for any n-person game (N, v) with n ≥ 2, all j ∈ N ,

Solj(N, v) = anP
′(N, v)− 1

n
an−1P

′(N \ {j}, v)− 1

n
an−1

∑
l∈N

P ′(N \ {l}, v) (4.9)

where the modified potential P ′ on G is,

P ′(N, v) =
n+ 1

an

∑
S⊆N

h(n, s)
v(S)

s+ 1
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We will split the total derivation in five steps similar to the one described in the

previous section, but to replace the Shapley value by the Solidarity value.

Step 1: Substituting the modified potential into (4.9), for all j ∈ N , we have,

Solj(N, v) =(n+ 1)
∑
S⊆N

h(n, s)
v(S)

s+ 1
−

∑
S⊆N\{j}

h(n− 1, s)
v(S)

s+ 1
− n

∑
S$N

h(n, s)
v(S)

s+ 1

=
∑
S$N

h(n, s)
v(S)

s+ 1
−

∑
S⊆N\{j}

h(n− 1, s)
v(S)

s+ 1
+
v(N)

n

Step 2: Distinguishing coalitions S with or without player i, then,

Solj(N, v) =
∑

S$N\{i}

h(n, s+ 1)
v(S ∪ {i})
s+ 2

+
∑

S⊆N\{i}

h(n, s)
v(S)

s+ 1

−
∑

S⊆N\{i,j}

h(n− 1, s+ 1)
v(S ∪ {i})
s+ 2

−
∑

S⊆N\{i,j}

h(n− 1, s)
v(S)

s+ 1
+
v(N)

n

=
∑

S$N\{i}

h(n− 1, s)

s+ 1

[
s

n

s+ 1

s+ 2
v(S ∪ {i}) +

n− s
n

v(S)

]
(4.10)

−
∑

S⊆N\{i,j}

h(n− 2, s)

s+ 1

[
s

n− 1

s+ 1

s+ 2
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)

]
(4.11)

+
1

n
v(N) +

1

n2(n− 1)
v(N \ {i})

Step 3: Split (4.10) into two summations,∑
S$N\{i}

h(n− 1, s)

s+ 1

[
s

n

s+ 1

s+ 2
v(S ∪ {i}) +

n− s
n

v(S)

]

=
∑

S$N\{i}

h(n− 1, s)

s+ 1

[(
s

n− 1
− s

n(n− 1)

)
s+ 1

s+ 2
v(S ∪ {i}) +

(
n− s− 1

n− 1
+

s

n(n− 1)

)
v(S)

]

=
∑

S$N\{i}

h(n− 1, s)

s+ 1

[
s

n− 1

s+ 1

s+ 2
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)

]

− 1

n− 1

∑
S$N\{i}

h(n, s+ 1)

[
1

s+ 2
v(S ∪ {i})− 1

s+ 1
v(S)

]
(4.12)

Step 4: Compare (4.12) to the Solidarity value (1.9), then we have,

Solj(N, v) =
∑

S$N\{i}

h(n− 1, s)

s+ 1

[
s

n− 1

s+ 1

s+ 2
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)

]

−
∑

S⊆N\{i,j}

h(n− 2, s)

s+ 1

[
s

n− 1

s+ 1

s+ 2
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)

]

+
v(N)

n
+
v(N \ {i})
n2(n− 1)

− 1

n− 1

[
Soli(N, v)− v(N)

n
+
v(N \ {i})

n2

]
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Split Soli(N, v) into the two summations, then,

Solj(N, v) =
∑

S$N\{i}

h(n− 1, s)

s+ 1

[
s

n− 1

s+ 1

s+ 2
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)− s(s+ 1)

n− 1
Soli(N, v)

]

−
∑

S⊆N\{i,j}

h(n− 2, s)

s+ 1

[
s

n− 1

s+ 1

s+ 2
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)− s(s+ 1)

n− 1
Soli(N, v)

]
+

1

n− 1
[v(N)− Soli(N, v)]

For all S $ N \ {i}, let,

vxSol(S) :=
s

n− 1

s+ 1

s+ 2
v(S ∪ {i}) +

n− s− 1

n− 1
v(S)− s(s+ 1)

n− 1
Soli(N, v)

and in particular, vxSol(N \ {i}) := v(N)− Soli(N, v), thus,

Solj(N, v) =
∑

S$N\{i}

h(n− 1, s)

s+ 1
vxSol(S)−

∑
S⊆N\{i,j}

h(n− 2, s)

s+ 1
vxSol(S)+

1

n− 1
vxSol(N \{i})

(4.13)

Step 5: Compare the equation above with the result of Step 1, one can find (4.13) is just

the Solidarity value (1.9) in the (n− 1)-person reduced game (N \ {i}, vxSol), thus,

Solj(N, v) = Solj(N \ {i}, vxSol)

From the derivation above, we obtain the following theorem.

Theorem 4.2.1. The Solidarity value (1.4) on G possesses the reduced game property

with respect to the following reduced game,

vxSol(S) :=

n−s−1
n−1 v(S) + s(s+1)

n−1

(
v(S∪{i})
s+2 − xi

)
if S $ N \ {i}

v(N)− xi if S = N \ {i}
(4.14)

that is, for all i ∈ N , when x = Sol(N, v),

Solj(N \ {i}, vxSol) = Solj(N, v) for all j ∈ N \ {i}

Proof. We will use the five steps described in the proof for Corollary 4.1.5, but to replace

the Shapley value by the Solidarity value.

Step 1: Consider the Solidarity value (1.9) in the (n − 1)-person reduced game (N \
{i}, vxSol), for all i ∈ N , j ∈ N \ {i},

Solj(N \ {i}, vxSol)

=
∑

S$N\{i,j}

h(n− 1, s+ 1)
vxSol(S ∪ {j})

s+ 2
−

∑
S⊆N\{i,j}

h(n− 1, s+ 1)
vxSol(S)

s+ 1
+
vxSol(N \ {i})

n− 1
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=
∑

S$N\{i,j}

h(n− 1, s+ 1)

s+ 2

[
n− s− 2

n− 1
v(S ∪ {j}) +

s+ 2

s+ 3

s+ 1

n− 1
v(S ∪ {i, j})− (s+ 2)

s+ 1

n− 1
xi

]

−
∑

S⊆N\{i,j}

h(n− 1, s+ 1)

s+ 1

[
n− s− 1

n− 1
v(S) +

s+ 1

s+ 2

s

n− 1
v(S ∪ {i})− (s+ 1)

s

n− 1
xi

]
+
v(N)− xi
n− 1

(4.15)

Step 2: Calculate the coefficient of xi in (4.15),

− 1

n− 1
xi −

n−3∑
s=0

(
n− 2

s

)
h(n− 1, s+ 1)

s+ 1

n− 1
xi +

n−2∑
s=0

(
n− 2

s

)
h(n− 1, s+ 1)

s

n− 1
xi

=− 1

n− 1
xi −

n−3∑
s=0

s+ 1

(n− 1)2
+
n−2∑
s=0

s

(n− 1)2

=− 1

n− 1
xi

(4.16)

Step 3: Note that x here is just the Solidarity value (1.9) in the n-person game, thus,

xi = Soli(N, v)

=
∑

S$N\{i}

h(n, s+ 1)
v(S ∪ {i})
s+ 2

−
∑

S⊆N\{i}

h(n, s+ 1)
v(S)

s+ 1
+
v(N)

n

=
∑

S$N\{i,j}

h(n, s+ 2)
v(S ∪ {i, j})

s+ 3
+

∑
S⊆N\{i,j}

h(n, s+ 1)
v(S ∪ {i})
s+ 2

−
∑

S$N\{i,j}

h(n, s+ 2)
v(S ∪ {j})
s+ 2

−
∑

S⊆N\{i,j}

h(n, s+ 1)
v(S)

s+ 1
+
v(N)

n
− v(N \ {i})

n2

(4.17)

Step 4: By (4.16) and (4.17), (4.15) equals to,

Solj(N \ {i}, vxSol)

=
∑

S$N\{i,j}

h(n− 1, s+ 1)
s+ 1

n− 1

v(S ∪ {i, j})
s+ 3

−
∑

S⊆N\{i,j}

h(n− 1, s+ 1)
s

n− 1

v(S ∪ {i})
s+ 2

+
∑

S$N\{i,j}

h(n− 1, s+ 1)
n− s− 2

n− 1

v(S ∪ {j})
s+ 2

−
∑

S⊆N\{i,j}

h(n− 1, s+ 1)
n− s− 1

n− 1

v(S)

s+ 1
+
v(N)− xi
n− 1

(4.18)
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Substituting (4.17) into the equation above, then,

Solj(N \ {i}, vxSol) =
∑

S$N\{i,j}

[
h(n− 1, s+ 1)

n− 1
(s+ 1)− h(n, s+ 2)

n− 1

]
v(S ∪ {i, j})

s+ 3

+
∑

S$N\{i,j}

[
h(n− 1, s+ 1)

n− 1
(n− s− 2) +

h(n, s+ 2)

n− 1

]
v(S ∪ {j})
s+ 2

−
∑

S⊆N\{i,j}

[
h(n− 1, s+ 1)

n− 1
s+

h(n, s+ 1)

n− 1

]
v(S ∪ {i})
s+ 2

−
∑

S⊆N\{i,j}

[
h(n− 1, s+ 1)

n− 1
(n− s− 1)− h(n, s+ 1)

n− 1

]
v(S)

s+ 1
+
v(N)

n
+
v(N \ {i})
n2(n− 1)

(4.19)

After simplifying, the equation above changes to,

Solj(N \ {i}, vxSol)

=
∑

S$N\{i,j}

h(n, s+ 2)
v(S ∪ {i, j})

s+ 3
+

∑
S⊆N\{i,j}

h(n, s+ 1)
v(S ∪ {j})
s+ 2

−
∑

S$N\{i,j}

h(n, s+ 2)
v(S ∪ {i})
s+ 2

−
∑

S⊆N\{i,j}

h(n, s+ 1)
v(S)

s+ 1
+
v(N)

n
− v(N \ {j})

n2

=
∑

S$N\{j}

h(n, s+ 1)[v(S ∪ {j})− v(S)] +
v(N)

n
+
v(N \ {i})
n2(n− 1)

(4.20)

Step 5: Note that the equation above is just Solj(N, v). Therefore,

Solj(N \ {i}, vxSol) = Solj(N, v)

Thus, the Solidarity value satisfies the reduced game property associated to the reduced

game vxSol defined by (4.14).

4.2.3 ELS values

Using the modified potential approach, we already find reduced games vx and vxSol asso-

ciated with the Shapley value and the Solidarity value, respectively. Next we want to use

the same method to find a general expression for all values satisfying efficiency, linearity

and symmetry.

In order to simplify the derivation, we suppose the coefficient αn,s of ELS values (1.7) is

separable, i.e., αn,s = µnνs for any n and 1 ≤ s ≤ n− 1. The calculation process is almost

the same but to use αn,s instead of the product of µn and νs, if αn,s is not separable.

By Corollary 2.2.7, let the nonzero sequence (ak)k∈G be arbitrary with a1 = 1, then

the modified potential representation for ELS values is, for any n-person game (N, v) with
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n ≥ 2, all j ∈ N ,

Φj(N, v) = anP
′(N, v)−an−1µnνn−1P

′(N \{j}, v)− an−1νn−1

nνn
(1−µnνn)

∑
l∈N

P ′(N \{l}, v)

where the modified potential P ′ on G is,

P ′(N, v) =
1

anνn

∑
S⊆N

h(n, s)νsv(S)

Remind the five steps we discussed in section 4.2.1. Next we will use the similar five

steps but to replace the Shapley value by the ELS value.

Step 1: Substituting the modified potential into the modified gradient, then for all j ∈ N ,

Φj(N, v) =
1

νn

∑
S⊆N

h(n, s)νsv(S)− µn
∑

S⊆N\{j}

h(n− 1, s)νsv(S)−
(

1

νn
− µn

) ∑
S$N

h(n, s)νsv(S)

=µn
∑
S$N

h(n, s)νsv(S)− µn
∑

S⊆N\{j}

h(n− 1, s)νsv(S) +
1

n
v(N)

Step 2: Distinguishing coalitions S with or without player i, the equation above changes

to,

Φj(N, v) =µn
∑

S$N\{i}

h(n, s+ 1)νs+1v(S ∪ {i}) + µn
∑

S⊆N\{i}

h(n, s)νsv(S)

−µn
∑

S⊆N\{i,j}

h(n− 1, s+ 1)νs+1v(S ∪ {i})− µn
∑

S⊆N\{i,j}

h(n− 1, s)νsv(S) +
v(N)

n

=µn−1

∑
S$N\{i}

h(n− 1, s)νs

[
µn
µn−1

νs+1

νs

s

n
v(S ∪ {i}) +

µn
µn−1

n− s
n

v(S)

]
(4.21)

−µn−1

∑
S⊆N\{i,j}

h(n− 2, s)νs

[
µn
µn−1

νs+1

νs

s

n− 1
v(S ∪ {i}) +

µn
µn−1

n− s− 1

n− 1
v(S)

]
+

1

n
v(N) +

µnνn−1

n(n− 1)
v(N \ {i})

Step 3: Split (4.21) into two summations, then,

µn−1

∑
S$N\{i}

h(n− 1, s)νs

[
µn
µn−1

νs+1

νs

s

n
v(S ∪ {i}) +

µn
µn−1

n− s
n

v(S)

]

=µn−1

∑
S$N\{i}

h(n− 1, s)νs

[
µn
µn−1

νs+1

νs

(
s

n− 1
− s

n(n− 1)

)
v(S ∪ {i})

]

+µn−1

∑
S$N\{i}

h(n− 1, s)νs

[
µn
µn−1

(
n− s− 1

n− 1
v(S) +

s

n(n− 1)

)
v(S)

]
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=µn−1

∑
S$N\{i}

h(n− 1, s)νs

[
µn
µn−1

νs+1

νs

s

n− 1
v(S ∪ {i}) +

µn
µn−1

n− s− 1

n− 1
v(S)

]
− µn
n− 1

∑
S$N\{i}

h(n, s+ 1)[νs+1v(S ∪ {i})− νsv(S)] (4.22)

Step 4: Compare (4.22) to the ELS value (1.7), then the equation above is equivalent to,

Φj(N, v)

=µn−1

∑
S$N\{i}

h(n− 1, s)νs

[
µn
µn−1

νs+1

νs

s

n− 1
v(S ∪ {i}) +

µn
µn−1

n− s− 1

n− 1
v(S)

]

−µn−1

∑
S⊆N\{i,j}

h(n− 2, s)νs

[
µn
µn−1

νs+1

νs

s

n− 1
v(S ∪ {i}) +

µn
µn−1

n− s− 1

n− 1
v(S)

]

+
v(N)

n
+

µnνn−1

n(n− 1)
v(N \ {i})− 1

n− 1

[
Φi(N, v)− v(N)

n
+
µnνn−1

n
v(N \ {i})

]
=µn−1

∑
S$N\{i}

h(n− 1, s)νs

[
µn
µn−1

νs+1

νs

s

n− 1
v(S ∪ {i}) +

µn
µn−1

n− s− 1

n− 1
v(S)− 1

µn−1

1

νs

s

n− 1
Φi(N, v)

]
(4.23)

−µn−1

∑
S⊆N\{i,j}

h(n− 2, s)νs

[
µn
µn−1

νs+1

νs

s

n− 1
v(S ∪ {i}) +

µn
µn−1

n− s− 1

n− 1
v(S)− 1

µn−1

1

νs

s

n− 1
Φi(N, v)

]
(4.24)

+
1

n− 1
[v(N)− Φi(N, v)]

Denote by vxΦ(S) the expression inside the bracket in (4.23) and (4.24), and let vxΦ(N \
{i}) := v(N)− Φi(N, v), then the equation above equals to,

Φj(N, v) = µn−1

∑
S$N\{i}

h(n−1, s)νsv
x
Φ(S)−µn−1

∑
S⊆N\{i,j}

h(n−2, s)νsv
x
Φ(S)− 1

n− 1
vxΦ(N\{i})

Step 5: Note that, compared to the result of Step 1, the equation above is just the ELS

value (1.7) of player j in the (n − 1)-person reduced game (N \ {i}, vxΦ). Therefore we

have,

Φj(N, v) = Φj(N \ {i}, vxΦ)

From the derivation above, we get the following theorem.

Theorem 4.2.2. If αn,s is separable, i.e., αn,s = µnνs, the ELS value (1.7) on G possesses

the reduced game property with respect to the following reduced game,

vxΦ(S) :=

{
µn
µn−1

n−s−1
n−1 v(S) + 1

µn−1νs
s

n−1 [µnνs+1v(S ∪ {i})− xi] if S $ N \ {i}
v(N)− xi if S = N \ {i}
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that is, for all i ∈ N , when x = Φ(N, v),

Φj(N \ {i}, vxΦ) = Φj(N, v) for all j ∈ N \ {i}

Example 4.2.3. Consider the Solidarity value (1.4), which is a special case in the class of

ELS values. We already got in Example 2.2.8 that, µn = 1, νs = 1
s+1 for all 1 ≤ s ≤ n−1.

In view of Theorem 4.2.2, we can calculate the reduced game for the Solidarity value by

substituting µn and νs into the general expression of reduced games for all ELS values.

One can verify that, it is equivalent to (4.14).

Until here we have discussed the separable case for the ELS value. In the general case,

we have the following theorem.

Theorem 4.2.4. The ELS value (1.7) on G possesses the reduced game property with

respect to the following reduced game,

vxΦ(S) :=


αn,s

αn−1,s

n−s−1
n−1 v(S) + 1

αn−1,s

s
n−1 [αn,s+1v(S ∪ {i})− xi] if S $ N \ {i}

v(N)− xi if S = N \ {i}
(4.25)

that is, for all i ∈ N , when x = Φ(N, v),

Φj(N \ {i}, vxΦ) = Φj(N, v) for all j ∈ N \ {i}

Proof. Make use of the similar five steps as the proof for Corollary 4.1.5, but to replace

the Shapley value by the ELS value.

Step 1: Remind the expression for the value Φ (1.7) in the (n− 1)-person reduced game

(N \ {i}, vxΦ), fix i ∈ N , for all j ∈ N \ {i},

Φj(N \ {i}, vxΦ)

=
∑

S$N\{i,j}

h(n− 1, s+ 1)αn−1,s+1v
x
Φ(S ∪ {j})

−
∑

S⊆N\{i,j}

h(n− 1, s+ 1)αn−1,sv
x
Φ(S) +

1

n− 1
vxΦ(N \ {i})

=
∑

S$N\{i,j}

h(n− 1, s+ 1)αn,s+2
s+ 1

n− 1
v(S ∪ {i, j})−

∑
S⊆N\{i,j}

h(n− 1, s+ 1)αn,s+1
s

n− 1
v(S ∪ {i})

+
∑

S$N\{i,j}

h(n− 1, s+ 1)αn,s+1
n− s− 2

n− 1
v(S ∪ {j})−

∑
S⊆N\{i,j}

h(n− 1, s+ 1)αn,s
n− s− 1

n− 1
v(S)

+
v(N)− xi
n− 1

−
n−3∑
s=0

(
n− 2

s

)
h(n− 1, s+ 1)

s+ 1

n− 1
xi +

n−2∑
s=0

(
n− 2

s

)
h(n− 1, s+ 1)

s

n− 1
xi

(4.26)
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Step 2: Consider the coefficient of xi,

− 1

n− 1
xi −

n−3∑
s=0

(
n− 2

s

)
h(n− 1, s+ 1)

s+ 1

n− 1
xi +

n−2∑
s=0

(
n− 2

s

)
h(n− 1, s+ 1)

s

n− 1
xi

=− 1

n− 1
xi −

n−3∑
s=0

s+ 1

(n− 1)2
xi +

n−2∑
s=0

s

(n− 1)2
xi

=− 1

n− 1
xi

Step 3: Here xi is just the ELS value (1.7) for player i in the game (N, v), thus,

xi = Φi(N, v)

=
∑

S$N\{i}

h(n, s+ 1)αn,s+1v(S ∪ {i})−
∑

S⊆N\{i}

h(n, s+ 1)αn,sv(S) +
v(N)

n

=
∑

S$N\{i,j}

h(n, s+ 2)αn,s+2v(S ∪ {i, j}) +
∑

S⊆N\{i,j}

h(n, s+ 1)αn,s+1v(S ∪ {i})

−
∑

S⊆N\{i,j}

h(n, s+ 2)αn,s+1v(S ∪ {j})−
∑

S⊆N\{i,j}

h(n, s+ 1)αn,sv(S) +
v(N)

n
− αn,n−1

n
v(N \ {i})

(4.27)

Step 4: Concerning the result of Step 2, (4.26) is reduced to,

Φj(N \ {i}, vxΦ)

=
∑

S$N\{i,j}

h(n− 1, s+ 1)αn,s+2
s+ 1

n− 1
v(S ∪ {i, j})−

∑
S⊆N\{i,j}

h(n− 1, s+ 1)αn,s+1
s

n− 1
v(S ∪ {i})

+
∑

S$N\{i,j}

h(n− 1, s+ 1)αn,s+1
n− s− 2

n− 1
v(S ∪ {j})−

∑
S⊆N\{i,j}

h(n− 1, s+ 1)αn,s
n− s− 1

n− 1
v(S)

+
1

n− 1
v(N)− 1

n− 1
xi

Substituting (4.27) into the equation above, then,

Φj(N \ {i}, vxΦ)

=
∑

S$N\{i,j}

αn,s+2

[
h(n− 1, s+ 1)

n− 1
(s+ 1)− h(n, s+ 2)

n− 1

]
v(S ∪ {i, j})

+
∑

S$N\{i,j}

αn,s+1

[
h(n− 1, s+ 1)

n− 1
(n− s− 2) +

h(n, s+ 2)

n− 1

]
v(S ∪ {j})

−
∑

S⊆N\{i,j}

αn,s+1

[
h(n− 1, s+ 1)

n− 1
s+

h(n, s+ 1)

n− 1

]
v(S ∪ {i})

−
∑

S⊆N\{i,j}

αn,s

[
h(n− 1, s+ 1)

n− 1
(n− s− 1) +

h(n, s+ 1)

n− 1

]
v(S) +

1

n
v(N) +

αn,n−1

n(n− 1)
v(N \ {i})
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After simplifying, we have,

Φj(N \ {i}, vxΦ)

=
∑

S$N\{i,j}

αn,s+2h(n, s+ 2)v(S ∪ {i, j}) +
∑

S⊆N\{i,j}

αn,s+1h(n, s+ 1)v(S ∪ {j})

−
∑

S$N\{i,j}

αn,s+1h(n, s+ 2)v(S ∪ {i}) +
∑

S⊆N\{i,j}

αn,sh(n, s+ 1)v(S) +
1

n
v(N)− αn,n−1

n
v(N \ {j})

=
∑

S$N\{j}

h(n, s+ 1)[αn,s+1v(S ∪ {j})− αn,sv(S)] +
1

n
v(N)− αn,n−1

n
v(N \ {j})

Step 5: Compared with (4.27), the equation above is just the ELS value Φj(N, v), there-

fore,

Φj(N \ {i}, vxΦ) = Φj(N, v)

Thus, (4.25) is a proper reduced game with respected to ELS values.

Remark: Until here, we talked about the (n − 1)-person reduced game (N \ {i}, vxΦ)

associated to the ELS value. Next we consider a game with one more player deleted, i.e.,

the (n− 2)-person reduced game (N \ {i, j}, (vxΦ)N\{i,j}), in which j ∈ N \ {i}.
We can achieve such reduced game by deleting player j from the (n−1)-person reduced

game (N \ {i}, vxΦ). Another way is to delete player i from the (n − 1)-person reduced

game (N \{j}, vxΦ). In fact, both the two ways will arrive at the same result, which means,

the reduced game is independent of the order of players deleting from the original game.

We consider the (n − 2)-person reduced game (N \ {i, j}, (vxΦ)N\{i,j}), obtained by

deleting player j from the reduced game (N \ {i}, vxΦ), where i ∈ N , j ∈ N \ {i}.
For all S $ N \ {i}, by the definition of the (n− 1)-person reduced game (4.25),

(vxΦ)N\{i,j} (S)

=
αn−1,s

αn−2,s

n− s− 2

n− 2
vxΦ(S) +

αn−1,s+1

αn−2,s

s

n− 2
vxΦ(S ∪ {j})− 1

αn−2,s

s

n− 2
xj

=
αn−1,s

αn−2,s

n− s− 2

n− 2

[
αn,s
αn−1,s

n− s− 1

n− 1
v(S) +

αn,s+1

αn−1,s

s

n− 1
v(S ∪ {i})− 1

αn−1,s

s

n− 1
xi

]
− 1

αn−2,s

s

n− 2
xj

+
αn−1,s+1

αn−2,s

s

n− 2

[
αn,s+1

αn−1,s+1

n− s− 2

n− 1
v(S ∪ {j}) +

αn,s+2

αn−1,s+1

s+ 1

n− 1
v(S ∪ {i, j})− 1

αn−1,s+1

s+ 1

n− 1
xi

]
=
αn,s+2

αn−2,s

s(s+ 1)

(n− 1)(n− 2)
v(S ∪ {i, j}) +

αn,s
αn−2,s

(n− s− 1)(n− s− 2)

(n− 1)(n− 2)
v(S)

+
αn,s+1

αn−2,s

s(n− s− 2)

(n− 1)(n− 2)
v(S ∪ {j}) +

αn,s+1

αn−2,s

s(n− s− 2)

(n− 1)(n− 2)
v(S ∪ {i})

− 1

αn−2,s

s

n− 2
xj −

1

αn−2,s

s

n− 2
xi

Note that, v(S ∪ {i}) and v(S ∪ {j}) share the same coefficient, so do xi and xj .

Therefore for the class of values satisfying efficiency, linearity and symmetry, its reduced

game has no relation on the order of players.
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Conclusions

In this chapter, we first summarize overall results in previous chapters, and then give an

example which extend the classical potential approach to the Abelian group structure.

5.1 Overall results

In this monograph, the modified potential approach is applied to study the Shapley value,

the Solidarity value, and particularly, the class of values satisfying efficiency, linearity

and symmetry (ELS values). In terms of the weighted pseudo-potential presented by

Driessen and Radzik [7], we consider a modified potential and the associated modified

gradient. By these concepts, a value on G admits a modified potential representation, if

and only if it belongs to ELS values and satisfies two more conditions. In order to express

the Shapley value, Solidarity value and all ELS values respectively by a simple sum of

special coordinates, we define the basis of G with respect to different values. By these new

basis, the modified potential of these values own a new form, and the correctness of the

corresponding modified potential representation can be verified consequently. Based on

the Shapley value representation of the potential game, its Solidarity value and ELS values

representations are defined. Making use of the potential approach, we obtain the reduced

game with respect to the Shapley value, which is the same as the Sobolev’s reduced game.

Applying the similar modified potential approach, we derive reduced games corresponding

to the Solidarity value and all ELS values, respectively, such that these values satisfy the

reduced game property.

5.2 Extension to the group structure

We want to extend the results above to the group structure, in order to offer them a general

meaning. The concept of a group is central to abstract algebra, because other algebraic

structures, such as rings, fields, and vector spaces can all be seen as groups endowed with

additional operations and axioms.
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Concerning the operations needed in our calculations, we consider the Abelian group,

also called the commutative group. It is a group in which the result of applying the group

operation to two group elements does not depend on their order. Abelian groups generalize

the arithmetic of addition of integers. They are named after Niels Henrik Abel.

Definition 5.2.1. [1] An Abelian group is a set F , together with an operation
⊕

that

combines any two elements a and b to form another element denoted a
⊕
b, where (F ,

⊕
)

must satisfy five Abelian group axioms:

• Closure: a
⊕
b is in F , for all a, b in F .

• Associativity: (a
⊕
b)
⊕
c = a

⊕
(b
⊕
c) holds, for all a, b and c in F .

• Identity element: there exists an element e in F , such that for all elements a in

F , e
⊕
a = a

⊕
e = a holds.

• Inverse element: for each a in F , there exists an element b in F , such that

a
⊕
b = b

⊕
a = e, where e is the identity element, we denote b = a−1.

• Commutativity: a
⊕
b = b

⊕
a holds, for all a, b in F .

In fact, whether the concept of the modified potential approach is possible to generalize

to the Abelian group is still waiting for verifying. We give here a simple example, in which

the classical potential approach is extended.

Consider a group game (N, v,F), where N is a finite player set, F is an Abelian group

with operation
⊕

, v : 2N → F satisfying v(∅) = e, where e is the unit of group F . So the

worth v(S) of coalition S is an element of the group F . For any group game (N, v,F),

the Shapley value can be defined as,

Shi(N, v,F) =
⊕

S⊆N\{i}

[v(S ∪ {i})
⊕

v(S)−1]h(n,s+1) for all i ∈ N

where (v(T ))
a
b = (v(T ))a

⊕
(v(T )−1)b for any T ⊆ N and a, b ∈ N.

The classical potential in the Abelian group changes to,

P (N, v,F) =
⊕
S⊆N

(v(S))h(n,s)

consider the (n− 1)-person game, we have,

P (N \ {i}, v,F) =
⊕

S⊆N\{i}

(v(S))h(n−1,s)

Note that the operation
⊕

is reduced to common + if we consider the classical Shapley

value and the corresponding potential.
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Next we show the difference of P (N, v,F) and P (N \ {i}, v,F) is Shi(N, v,F), that

is, the gradient equals to the Shapley value holds even in the Abelian group structure. By

definition, the classical gradient ∇iP (N, v) equals to,

∇iP (N, v) = [P (N, v,F)]
⊕

[P (N \ {i}, v,F)]−1

=

⊕
S⊆N

(v(S))h(n,s)

⊕ ⊕
S⊆N\{i}

(v(S))h(n−1,s)

−1

=

 ⊕
S⊆N\{i}

(v(S ∪ {i}))h(n,s+1)

⊕ ⊕
S⊆N\{i}

(v(S))h(n,s)

⊕ ⊕
S⊆N\{i}

(v(S)−1)h(n−1,s)


=

 ⊕
S⊆N\{i}

(v(S ∪ {i}))h(n,s+1)

⊕
 ⊕
S⊆N\{i}

(
v(S)

⊕
. . .
⊕

v(S)︸ ︷︷ ︸
⊕

v(S)−1
⊕

. . .
⊕

v(S)−1︸ ︷︷ ︸
) (5.1)

=

 ⊕
S⊆N\{i}

(v(S ∪ {i}))h(n,s+1)

⊕ ⊕
S⊆N\{i}

(v(S)−1)h(n,s+1)


=

⊕
S⊆N\{i}

[v(S ∪ {i})
⊕

v(S)−1]h(n,s+1)

=Shi(N, v,F)

Note that in (5.1), the number of v(S) and v(S)−1 are h(n, s) and h(n− 1, s), respec-

tively. Therefore, by the Associativity and Inverse element property, we can delete the

surplus and simplify it.

From this simple example, one can find the calculations and properties used in the

derivation is more complex in operation
⊕

than in the common +. Hence it is still a

question to verify whether all of our results can be extended to the group structure.
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