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Summary
Mathematical programming is a vast area of research in mathematics. On the basis of spe-
cial structure this field can be further classified into many other, not necessarily completely
distinct, classes. In this thesis we will focus on two classes, namely Cone Programming
and Semi-infinite Programming.

Semi-infinite programming represents optimization problems with infinite many con-
straints and finitely many variables. This field emerged in 1924, but the name semi-infinite
programming was coined in 1965.

Cone programming is the class of problems in which the variable should belong to a
certain cone. The most interesting application of cone programming is cone program-
ming relaxation which has numerous example in combinatorial optimization and other
branches of science and mathematics. The most popular and well known cone programs
are semidefinite programs. These programs got popularity due to there huge application
in combinatorial optimization. Another class of cone programing is copositive programing.
Copositive programming has recently gained attention of researchers for their application
to solve hard combinatorial optimization problems. Our main focus in this thesis will be
on copositive programming.

Another problem of interest is to analyze the way how we can represent these different
classes in terms of each other. We will consider the restrictions and benefits we will obtain
for these kind of representations. Normally these kind of representations helps to use
algorithms available for one class, for the solution/approximation or finding good bounds
for other classes of problems.

Eigenvalue optimization can be seen as the building block for the development of
semidefinite programming. In this thesis we will investigate this relationship to answer
the question whether one can solve semidefinite program by formulating it as an equiva-
lent eigenvalue optimization with the aid of semi-infinite programming.

In summary, SIP and SDP are old and well studied problems and copositive program-
ming is a new area of research. Moreover there are some relationships among copositive ,
semidefinite and semi-infinite programming. So in this thesis we will focus on these three
problems,

1. Survey of Copositive programming and its application to solve integer programs.

2. Semi-infinite representation of copositive and semidefinite programming

3. Semi-infinite solution methods for solving SDP problem by use of eigenvalue problem.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

Mathematical programming represents, the class of problems in which we maximize/minimize
some function with respect to some side conditions called constraints. This area of math-
ematics is further subdivided into classes of convex and non-convex programming.

Convex programming problems are considered less hard comparative to non-convex
programming. Convex programming contains both hard and easy solvable problems. If
the feasibility problem in a convex program can be solved in polynomial times then these
problems can be solved/approximated in polynomial time.

Every convex program can be formulated as cone program. Cone programming is well
known from decades. Specifically its special cases like second order cone programming
and/or Semidefinite programming are very well studied in literature. Feasibility problems
for the semidefinite and second order cone programs can be solved in polynomial time
hence these two classes are polynomial time solvable/aprroximable. Another subclass of
cone programming is copositive programming which is rather new and can be applied to
many combinatorial optimization problems. Since the feasibility problem for copositive
programming cannot be determined in polynomial time hence existence of a polynomial
time algorithm for this class of problem is out of question unless P = NP .

The notion of semi-infinite programming is used to denote the class of optimization
problems in which the number of variables are finite but constraints are infinite. This
class contains both convex and nonconvex optimization problem. Cone programs can be
formulated as a special sub class of semi-infinite programming as we will see in chapter 5.
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1.2. PROBLEM STATEMENT

1.2 Problem Statement

Semidefinite programming (SDP) is a very well studied problem so is semi-infinite pro-
gramming (SIP). In contrast to SDP and SIP, copositive programming(CP) is a relatively
new area of research. CP, SIP and SDP have some connections; we will investigate these
connections in this thesis. Integer programming is an important class of mathematical
programming. In terms of CP and SDP relaxations of hard combinatorial optimization
problems, integer programming has some obvious connections with SDP and CP.

This thesis is mainly concerned with following questions,

1. Survey of copositive programming and its application for solving integer programs.

2. Semi-infinite representation of copositive and semidefinite programming

3. Semi-infinite solution methods for solving SDP problem by use of an eigenvalue prob-
lem.

1.3 Literature Review

The topic of the thesis is quite wide, covering large subclasses of mathematical program-
ming. For ease of reading and presentation we will divide our literature review into different
subsections. Although copositive programming and semidefinite programming are special
classes of cone programming, we will discuses them in different subsections.

1.3.1 Integer Programming

The area of integer programming is as old as linear programming. The development of
this theory is progressed with the progress of discrete optimization. There is an overlap
of literature available on integer programming, semidefinite programming and copositive
programming. Since the strength of copositive programming and semidefinite programming
lies in relaxation of hard combinatorial optimization problems. These problems are first
formulated as integer programs then relaxations are formulated.

Here we would like to mention some classics on the theory and application of integer
programming. A classic is the book by Alexander Schrijver [129], this book covers both
theoretical and practical aspects of integer programming. Another title covering history of
integer programming is edited by Spielberg and Guignard-Spielberg [133]. The proceedings
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1.3. LITERATURE REVIEW

of the conferences "Integer programming and combinatorial optimization" [1, 11, 15, 16,
39, 40, 41, 56, 86, 98] covers recent developments in the area of integer programming for
combinatorial applications.

1.3.2 Cone Programming

Conic programming represents an important class of mathematical programming. Conic
programming includes both linear and nonlinear programs. If the cone under consideration
is convex, than we will have convex conic programs. Convex conic programming has a
number of applications in engineering and economics. Let K be any convex cone (see
Definition 2.6), and K∗ is its dual then we consider the following optimization problem,

min
X
〈C,X〉

s.t.

〈Ai, X〉 = bi, ∀i = 1, ...,m

X ∈ K

where Ai, C ⊂ Sn and K ⊂ Sn is a convex cone and 〈C,X〉 = trace(CTX) is the standard
inner product. The dual of the above program can be written as follows

max
y

bTy

s.t.
m∑
i=1

yiAi + Z = C

y ∈ <m, Z ∈ K∗

Cone programming can be seen as general abstraction of linear programming. Semidefinite
programming and copositive programming are two well known subclasses of cone program-
ming. Most of the theoretical results and algorithms for Linear programming (LP) can
be generalized in a straightforward manner to the case of cone programming. But there
are some differences. Existence of a feasible solution in linear programming results in a
zero duality gap for the primal and dual program. This is not true in general for cone
programming see [111].
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1.3. LITERATURE REVIEW

1.3.3 Semidefinite Programming

Perhaps the most well studied special class of conic programming is semidefinite program-
ming(SDP). SDP are optimization problems over the cone of semidefinite matrices. SDP
are natural extension of LP, where linear (in)equalities are replaced by semidefinitness con-
ditions. The earliest discussion on theoretical aspects of SDP was done in 1963(for details
see [138]). After initial discussions on theoretical aspects, a lot of researchers have paid
attention to this subject. Now the theory of SDP has become very rich and most aspects
like duality, geometry etc are very well discussed in literature. The well known book edited
by Wolkowicz et al [143] contains nice articles on both theoretical aspects of SDP and its
applications. Interior point methods for linear programming were introduced in 1984. In
1988, Nesterov and Nemirovsky [138] proved that by adaption of suitable barrier functions
interior point methods can be defined for a general class of convex programming. Indepen-
dent from Nesterov and Nemirovsky, Alizadeh [4] has specialized interior point methods
for SDP. By adaption of suitable barrier function one can solve/approximate SDP in poly-
nomial time with the help of interior point methods.

Semidefinite programs are well known for their applications in combinatorial optimiza-
tion. The use of SDP for combinatorial optimization was known from 1973 (see [138]),
but a first remarkable result in this area was obtained by Lovasz [102], who used semidef-
inite programs to bound the stability number of a graph by the so called theta num-
ber. In 1987, Shor (see Shor [131] or Vandenbeghe and Boyed [138]) gave his so called
Shor relaxation for general quadratic optimization problems with quadratic constraints.
Shor’s relaxation and the newly developed interior point methods for SDP have revolu-
tionized the study of SDP and it application in combinatorial optimization. The real
break through in SDP was achieved by Goemans and Williamson [68], when they found
a randomized approximation algorithm for the Max Cut problem. After the Max-cut re-
sults this field got attention of many researchers and number of nice results have been
obtained(see [5, 46, 66, 75, 94, 96, 123, 138, 143]). Wolkowicz [142] has collected a huge list
of references with comments on different aspects of cone and semidefinite programming.

1.3.4 Copositive Programming

Another interesting class of cone programming is copositive programming (CP). That is
cone programs over the cone of copositive matrices. CP is not solvable in polynomial
time. The main difficulty arises for checking the membership of a matrix in the cone of
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1.3. LITERATURE REVIEW

copositive or completely positive matrices. There is no efficient algorithm known for the
solution of copositive programs. There exists some approximation methods for solving
copositive programs. Beside the difficulty in the solution of copositive programs, a number
of combinatorial optimization problems have been modeled as copositive programs [30, 52,
115].

The study of copositive and completely positive matrices started with the work on
quadratic forms. An earliest definition of copositive matrices can be found in the work of
Motzkin [107]. Hall [70], has introduced the notion of completely positive matrices and
provided a first example that a "doubly nonnegative" matrix may not be completely posi-
tive. Other classic contributions for copositive and completely positive matrices are given
by [73, 105]. The most recent works covering theoretical and practical aspects of copositive
and completely positive matrices includes a book by Berman and Shaked-Monderer [12],
a thesis by Bundfuss [30] and an unpublished manuscript [80]. Moreover the interested
reader may also find article [6, 22, 31, 36, 42, 48, 53, 81, 126, 87, 137] interesting with re-
spect to theoretical properties and characterizations of completely and copositive matrices.
Although the list is not complete in any sense, it covers some classic articles dealing with
some state of the art results on copositive and completely positive matrices.

The relation of copositivity and optimization was known as early as 1989 [19]. Moreover
Danninger [42] has discussed the role of copositivity in optimality criteria of nonconvex op-
timization problem. The use of copositive programming relaxation for hard combinatorial
optimization problem was started by the paper of Preisig [118]. In 1998, Quist et al [119]
gave a copositive programming relaxation for general quadratic programming problem.
Recently after Quist et al, Bomze and De Klerk [25] applied the copositive programming
to standard quadratic optimization problems and gave an approximation algorithm for the
solution. To our knowledge the following is a complete list of all problem where copositive
programming is applied: standard quadratic optimization problem [24], stable set problem
[45, 51, 113], quadratic assignment problem [117], graph tri-partitioning [116], graph col-
oring [51, 69], clique number [17] and crossing number of graph [44]. Burer[34], has given
a relaxation of a special class of general quadratic problems and proved with the help of
some redundant constraint that his relaxation is exact.

6



1.4. STRUCTURE OF THE THESIS

1.3.5 Semi-infinite Programming

Semi-infinite programming is perhaps one of the oldest branches of mathematical program-
ming. A semi-infinite program is an optimization problem of the form,

min
x
f(x)

s.t.

gi(x) ≤ 0 ∀ i ∈ V

where f, g are real valued functions while V is any compact set. As one can see, semi-infinite
programs are mathematical programs over finite variables with infinite constraints, so is
the name semi-infinite. It is a well known fact that some cone programs can be expressed
as semi-infinite programs, see [90]. Semi-infinite programming has many application in en-
gineering and science [101]. SDP can be converted to a semi-infinite programming problem
[90]. Duality theory for semi-infinite programming is quite rich, a number of surveys and
books are available discussing theoretical and practical aspects of semi-infinite program-
ming [62, 63, 64, 101, 122, 130]. Lopez and Still have collected a huge list of literature
available for semi-infinite programming [100]. There does not exist an algorithm which
can solve all kind of semi-infinite optimization problem. In fact this is still an active area
of research in semi-infinite programming to find a good algorithm for solving a class of
semi-infinite programming problems.

1.4 Structure of the Thesis

This thesis consists of totally five chapters. Chapter one (the present chapter) deals with
the introduction and literature review of the thesis topic.

In the second chapter we will briefly discuss the cones of matrices and their properties.
We will also discuss copositive and completely positive matrices in detail in chapter 2.
Moreover this chapter also contains notations we will use throughout this thesis.

Chapter 3 will contain an introduction of cone programming. We will also discuss
semidefinite programming and its relation with quadratic programming.

Chapter 4 will deal with copositive programming. We will overview the combinato-
rial optimization problems where copositive programming is applied. We will also briefly
describe the algorithm available for solution/approximation of copositive programs.

Chapter 5 is the final chapter and deal with an introduction to semi-infinite program-
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1.4. STRUCTURE OF THE THESIS

ming. We will also state and prove strong duality result for Linear Semi-infinite programs.
Later we will use this strong duality result to establish similar result for copositive and
semidefinite programs. In the last section of this chapter we will discuss the semi-infinite
programming approach for the solution of semidefinite programs.
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Chapter 2

Cones and Matrices

The aim of this chapter is to introduce some basics on cones of matrices and related results
which we will need in our next chapters. The first section of this chapter is concerned
with some basic definition and self duality of semidefinite cones. The second section will
deal with the copositive matrices and cones. The last section will deal with the completely
positive cones. In the last section we will also show that the dual of the copositive cone is
the completely positive cone and vice versa.

2.1 Basic Definitions

Definition 2.1 (Kronecker Product). Let A ∈ <(m×n) and , B ∈ <(p×q) then the Kro-
necker product denoted by ⊗ is given by,

A⊗B =


a11B · · · a1nB
... . . . ...

am1B · · · amnB


Definition 2.2 (Inner Product). The standard inner product denoted by < ., . > is given
by 〈X, Y 〉 = trace(XTY ) =

∑
i

∑
j xijyij for X, Y ∈ <m×n, where trace(A = {aij}) =∑n

i=1 aii is the trace of a matrix A ∈ <(n×n).

Definition 2.3 (Convex Set). A subset S ⊂ <n is called convex if λx + (1 − λ)y ∈ S
for all x, y ∈ S and 0 ≤ λ ≤ 1. The convex hull of S denoted by conv(S) is the minimal
convex set which contains S.

9



2.1. BASIC DEFINITIONS

Definition 2.4 (Extremal Points). A point y of convex set S is extremal point if it can
not be represented as convex combination of two points different from y. In other words a
representation y = y1 + y1, y1, y2 ∈ S is possible if and only if y1 = λy, y2 = (1− λ)y where
0 ≤ λ ≤ 1.

Definition 2.5 (Extreme Ray). A face of a convex set S is a subset S ′ ⊆ S such that
every line segment in S which has a relative interior point in S ′ must have both end points
in S ′. An extreme ray is a face which is closed half-line.

Definition 2.6 (Convex Cone). A set K ⊂ <(m×n) which is closed under nonnegative
multiplication and addition is called convex cone, i.e.,

X, Y ∈ K ⇒ λ (X + Y ) ∈ K ∀ λ ≥ 0

A cone is pointed if K ∩−K = {0}. The dual of a cone K is a closed convex cone denoted
by K∗ and is given by,

K∗ =
{
Y ∈ <m×n : 〈X, Y 〉 ≥ 0, ∀X ∈ K

}
where < ., . > stands for the standard inner product.

Definition 2.7 (Recession Cone). Let S ⊂ <n be a convex set then the recession cone
is the set of vectors d ∈ <n such that

rec(S) = {d ∈ <n : x+ λd ∈ S, ∀ x ∈ S, λ ≥ 0}

where rec(S) denotes the recession cone of the set S.

2.1.1 Notation

Here we will enlist notations which we will use in next sections and chapters. Some of
them are already mentioned before, we will repeat them.

We will use ⊗ to denote the standard Kronecker product, vec(A) will denote the matrix
A ∈ <m×n when written, column wise, as a vector in <mn and conv(S) will denote the
convex hull of a set S. If P denotes a program then val(P ) will denote the optimum
value of the program and Feas(P ) will denote the set of feasible points of the program
P . Nn, Sn, S

+
n , Cn, C

∗
n will denote the cone of nonnegative, symmetric, semidefinite,

copositive and completely positive matrices respectively. We will use subscript such as xi

10



2.2. SEMIDEFINITE MATRICES AND CONES

to show ith element of vector x, while superscript such as vi will be used to show the ith

vector of a sequence of vectors. ei will denote the ith unit vector.

2.2 Semidefinite Matrices and Cones

Semidefinite matrices are very well studied in literature. We will give the definition of
semidefinite matrices and cones generated by such matrices. We will start by defining
nonnegative matrices,

Definition 2.8 (Nonnegative Matrix). An m×n matrix is nonnegative if all its entries
are nonnegative. If A in nonnegative then we will write A ≥ 0. The cone generated by all
n× n nonnegative matrices will be denoted by Nn.

Definition 2.9 (Symmetric Matrix). An n×n matrix A is called symmetric if AT = A,
where AT denotes the transpose of matrix A. The cone of symmetric matrices denoted by
Sn is the cone generated by all symmetric matrices.

Semidefinite matrices are very well studied due to their large application in system and
control engineering and many other areas of science. Here we will only define semidefinite
matrices and establish the self duality result of the semidefinite cone S+

n .

Definition 2.10 (Semidefinite Matrix). An n×n symmetric matrix A is called semidef-
inite if xTAx ≥ 0, ∀ x ∈ <n.

The set of all n × n semidefinite matrices define a cone called the cone of semidefinite
matrices. We will denote this cone by S+

n and if A ∈ S+
n we will write A�0.

Lemma 2.11 gives the duality result for semidefinite cone,

Lemma 2.11. The cone of semidefinite matrices is self dual, i.e., S+
n = (S+

n )∗

Proof. S+
n ⊆ (S+

n )∗: It is not difficult to show that X, Y ∈ S+
n , implies 〈X, Y 〉 ≥ 0.

(S+
n )∗ ⊆ S+

n : Let X ∈ (S+
n )∗, then for all x ∈ <n the matrix xxT is positive semidefinite.

So,
0 ≤ 〈X, xxT 〉 = trace(XxxT ) = xTXx

Hence X ∈ S+
n .

This completes the proof.
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2.3. COPOSITIVE MATRICES

2.3 Copositive Matrices

Copositive matrices were introduced in 1952 and can be defined as follows,

Definition 2.12 (Copositive Matrices). A symmetric matrix X of order n is copositive
if

xTXx ≥ 0 ∀ x ∈ <n+

Alternatively we can define copositive matrices as,

Definition 2.13. A symmetric matrix A is copositive if and only if the optimization prob-
lem

min
x≥0, ‖x‖=1

xTAx

has a nonnegative optimal value.

Remark Bundfuss and Dür[31] have described an algorithmic approach for testing copos-
itivity of a matrix based on the above definition. We will briefly discuss their approach in
section 4.3.3. For complete details see [31].

The set of all symmetric matrices of order n generate a cone called cone of copositive
matrices and is given by,

Cn =
{
X ∈ Sn : vTXv ≥ 0∀v ∈ <n+

}

We will write A ∈ Cn to describe that A is copositive or A is in cone of copositive matrices.
Checking copositivity is hard. For matrices of order less then 4, there exists some

characterization based on the structure of matrices. These condition can be checked easily,
for details see [80]. Another interesting result states that matrices of order less then 4
are copositive if and only if they can be decomposed as the sum a nonnegative and a
semidefinite matrix, see Theorem 2.14,

Theorem 2.14. Let n ≤ 4 then Cn = S+
n +Nn.

Proof. Consider S+
n +Nn ⊂ Cn. Since both S+

n ⊂ Cn and Nn ⊂ Cn and Cn is a cone hence
S+
n +Nn ⊂ Cn.

The other part of the proof is quite complicated and lengthy. We refer the interested reader
to [48].

12



2.3. COPOSITIVE MATRICES

For n > 4 we will have strict inclusion S+
n + Nn ⊂ Cn. The following counter example

shows that strict inclusion holds for n > 4,

Example Consider the so called Horn-matrix [30, 48, 52]

A =


1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1


Let x ∈ <n, then,

xTAx = (x1 − x2 + x3 + x4 − x5)2 + 4x2x4 + 4x3(x5 − x4)

= (x1 − x2 + x3 − x4 + x5)2 + 4x2x5 + 4x1(x4 − x5)

If x is nonnegative and x5 ≥ x4 then xTAx ≥ 0 for the first expression. For the second
expression above we should have x5 < x4 to obtain xTAx ≥ 0 for all nonnegative x. Hence
A is copositive and A /∈ S+

n +Nn (for complete details see [73]).

There are many characterizations of copositive matrices. But none of them is practical
except for some special cases. For tridiagonal and acyclic matrices, copositivity can be
tested in polynomial time (see [21, 82]). The copositivity of a matrix has relations with
the copositivity of principle sub-matrices. This fact is given in Proposition 2.15,

Proposition 2.15. If A is copositive then each principle sub-matrix of order n− 1 is also
copositive.

The converse of the above proposition is not true in general. However, in particular cases
the converse is also true,

Theorem 2.16. Let A ∈ Sn and each principle sub-matrix of order n − 1 is copositive.
Then A is not copositive if and only if A−1 exists and is entry wise non-positive.

The matrix of the form

(
1 x

x X

)
where x ∈ <n, X ∈ <n×n is often used in combinato-

rial application of copositive programming. Theorem 2.17, states the criteria for testing
copositivity of this kind of matrices.

13



2.4. COMPLETELY POSITIVE MATRICES

Theorem 2.17. Let x ∈ <n and X ∈ Sn. The matrix

A =

(
a x

x X

)
∈ Sn+1

is copositive if and only if

1. a ≥ 0, X copositive

2. yT (aX − xxT )y ≥ 0 for all y ∈ <n+ such that xTy ≤ 0

2.4 Completely Positive Matrices

One can define the completely positive matrices as follows,

Definition 2.18 (Completely Positive Matrix). A symmetric n×n matrix A is called
completely positive if it can be factorized such that A = BBT where B ≥ 0 is an arbitrary
nonnegative n×m matrix.

The set of all completely positive matrices generate a cone called the cone of completely
positive matrices, which can be defined as,

CPPn =

{
X ∈ Sn : X =

N∑
k=1

yk(yk)T with {yk}Nk=1 ⊂ <n+/ {0} , N ∈ N

}
∪ {0}

It is interesting to note that copositive and completely positive matrices are dual to each
other. In Lemma 2.19 we will proof this fact,

Lemma 2.19.

The dual of Cn is CPPn and vice versa i.e.

Cn = (CPPn)∗ and C∗n = CPPn

Proof. First We will show,
Cn = (CPPn)∗ (2.1)

Cn ⊂ (CPPn)∗: Let X ∈ Cn and Y ∈ CPPn. Since Y ∈ CPPn so there exists finitely many

14



2.4. COMPLETELY POSITIVE MATRICES

vectors yi ∈ <n+/{0}, i ∈ N ⊂ N such that Y =
∑
i

yiy
T
i . Now we consider,

〈X, Y 〉 =

〈
X,
∑
i

yiy
T
i

〉
=
∑
i

yTi Xyi︸ ︷︷ ︸
≥0

≥ 0

(CPPn)∗ ⊂ Cn : Consider A /∈ Cn. Then there exists x ≥ 0 such that 〈xTx,A〉 = xTAx <

0. Since xxT ∈ CPPn(by definition of CPPn) and 〈xTx,A〉 < 0 so A /∈ (CPPn)∗.
Hence (CPPn)∗ ⊂ Cn

For C∗n = CPPn, we will consider (2.1),and take dual on both sides to get

C∗n = (CPP ∗n)∗ = CPPn

The last equality follows from well known results, "if a cone K is closed and convex then
(K∗)∗ = K".

Since C∗n = CPPn in the rest of thesis we will use C∗n to represent cone of completely
positive matrices.

The cone of completely positive matrices is interesting with respect to combinatorial
application of copositive programming. Unlike copositive matrices the cone of completely
positive matrices is contained in the cone of semidefinite matrices hence we have,

C∗n ⊂ S+
n ⊂ Cn

Just like copositive matrices for matrices of order less than four it is easy to check their
membership in the cone of completely positive matrices,

Proposition 2.20. Let n ≤ 4 then C∗n = S+
n ∩Nn.

Proof. The inclusion C∗n ⊂ S+
n ∩Nn follows from definition of completely positive matrices.

Since A ∈ C∗n if and only if A = BBT where B ∈ Nn hence A ∈ Nn. Moreover A ∈ S+
n since

xTAx = xT
∑N

k=1 (yk)Tykx =
∑N

k=1 (ykxT )T (ykx) ≥ 0. For the other side of the inclusion
see [105].

In the literature matrices of the form S+
n ∩Nn are called doubly nonnegative matrices. For

arbitrary n the inclusion C∗n ⊂ S+
n ∩ Nn is always true. But the other side of inclusion is

not true in general,

15
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Example

A =


1 1

2
0 0 1

2
1
2

1 1
2

0 0

0 1
2

1 3
4

0

0 0 3
4

1 1
2

1
2

0 0 1
2

1


It is clear that A ∈ Nn, also A ∈ S+

n since,

xTAx =

(
1

2
x1 + x2 +

1

2
x3

)2

+

(
1

2
x1 +

1

2
x4 + x5

)2

+
1

2

(
x1 −

1

2
x3 −

1

2
x4

)2

+
5

8
(x3 + x4)2

but A is not completely positive (for a detailed proof see [72, page 349]).

Remark For a matrix of order less then five it is easy to check if the matrix is completely
positive. There exists examples where matrices of order five are doubly nonnegative but not
completely positive, hence doubly nonnegative matrices of order five got special attention
of researchers (see [12, 13, 36, 99, 145] and references there in).

By the definition, one can see that checking if A is completely positive amounts to checking
if there exists a matrix B ∈ <n×m+ such that A = BBT . It is not trivial to find this kind of
factorization. A big part of literature on completely positive matrices deals with finding
the least number m for which this factorization is possible. The minimal number m, the
so called cp-rank, is conjectured to be equal to

⌊
n2

4

⌋
where n is the order of the matrix.

As stated earlier the matrix of the form

(
1 x

x X

)
often occurs in combinatorial applica-

tion of copositive programming. One natural question arises if we are given with X ∈ C∗n,

can we construct a factorization of the matrix

(
1 x

x X

)
. Recently Bomze [22], has tried

to answer this question by giving sufficient conditions under which we can determine the
complete positivity of a matrix given the complete positivity of a principle block.

Another important property which is often used in SDP relaxation of hard combinatorial

problem is:

(
1 x

x X

)
∈ S+

n if and only if X −xxT ∈ S+
n . A natural question arises, can we

generalize this result to the case of completely positive matrices. In order to answer this
question we will start with following Lemma 2.21,

16



2.4. COMPLETELY POSITIVE MATRICES

Lemma 2.21. Let x ∈ <n+ and X − xxT ∈ C∗n then,

A =

(
1 x

x X

)
∈ C∗n

Proof. Let

Y =

(
a x̂

x̂ X̂

)
∈ Cn+1

where a ≥ 0, X̂ ∈ Cn and consider,

〈A, Y 〉 = a+ 2x̂Tx+ 〈X, X̂〉

= a+ 2x̂Tx+ 〈X − xxT , X̂〉+ 〈xxT , X̂〉

Since 〈X − xxT , X̂〉 ≥ 0, 〈xxT , X̂〉 ≥ 0, by duality of copositive and completely positive
matrices. Hence nonnegativeness of the above expression depends on x̂Tx, so we will
consider two cases,

Case 1: x̂Tx ≥ 0

〈A, Y 〉 = a︸︷︷︸
≥0

+2 x̂Tx︸︷︷︸
≥0

+ 〈X − xxT , X̂〉︸ ︷︷ ︸
≥0

+ 〈xxT , X̂〉︸ ︷︷ ︸
≥0

≥ 0

Case 2: x̂Tx ≤ 0 a > 0:

〈A, Y 〉 = a+ 2x̂Tx+ 〈X − xxT , X̂〉+ 〈xxT , X̂〉

=
1

a

(
a+

(
x̂Tx

)T (
x̂Tx

))2

+ xT (X̂ − x̂T x̂)x+ 〈X − xxT , X̂〉

By Theorem 2.17 we have, if x̂Tx ≤ 0 then xT (aX̂−x̂x̂T )x ≥ 0 or xT
(
X̂ − 1

a
x̂x̂T

)
x ≥

17



2.4. COMPLETELY POSITIVE MATRICES

0. Hence we will have,

〈A, Y 〉 =
1

a

(
a+

(
x̂Tx

)T (
x̂Tx

))2

+ xT
(
X̂ − 1

a
x̂x̂T

)
x︸ ︷︷ ︸

≥0

+ 〈X − xxT , X̂︸ ︷︷ ︸
≥0

〉

≥ 0

a = 0: Since x̂Tx ≤ 0 so by theorem 2.17,

(xT
(
aX̂ − x̂x̂T

)
x) = −(x̂Tx)2 ≥ 0

giving that x̂Tx = 0.

So for an arbitrary copositive matrix Y , 〈A, Y 〉 is nonnegative hence A is completely
positive. This completes the proof.

The converse of Theorem 2.21 namely "

(
1 xT

x X

)
∈ C∗n implies X − xxT ∈ C∗n" is not

true in general. The following is a counter example.

Example Let,

A =

1 2 1

2 5 1

1 1 3


It is clear that A ∈ N3 and A ∈ S+

3 since,

xTAx = 3

(
x3 +

1

3
(x1 + x2)

)
+

14

3

(
x3 +

5

14

)2

+
1

14
x2

1 ≥ 0 ∀ x ∈ <3

Hence by Proposition 2.20, A is completely positive. Now take,

X =

(
5 1

1 3

)
, x =

(
2

1

)

18



2.4. COMPLETELY POSITIVE MATRICES

Then we will have,

X − xxT =

(
1 −1

−1 2

)

Since X − xxT , has negative entries, so it cannot be completely positive.

Remark Let A =

(
1 x

x X

)
and x ∈ {0, 1}n, X ∈ {0, 1}n×n then the converse of Lemma

2.21 is also true owing to the result "A symmetric binary matrix is semidefinite if and only
if it is completely positive [97, Corollary 1]".

The interior of a cone plays an important role for establishing strong duality results. The
characterization of the interior is often required for checking strong duality. The interior of
copositive matrices consists of the so called strictly copositive matrices (A ∈ Sn is strictly
copositive if and only if xTAx > 0, ∀ x ∈ <+

n {0}). For the case of completely positive
matrices, characterization of the interior is not simple. Dür and Still [53] have given a
characterization for the interior of completely positive matrices,

Theorem 2.22. Let [A1|A2] describe the matrix whose columns are columns of A1 aug-
mented with columns of A2 then we can define the interior of the completely positive matrix
as,

int(C∗n) =
{
AAT |A = [A1|A2]whereA1 > 0 is nonsingular and A2 ≥ 0

}
Proof. For a proof see [53].
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Chapter 3

Cone and Semidefinite Programming

Conic programs are similar to linear programs in a sense that we have a linear objec-
tive function with linear constraints but there is an additional constraint which checks
the membership of the variable in a cone. The well known examples of conic programs
are linear programming, semidefinite programming and copositive programming. These
three examples are respectively programs on the nonnegative cone, semidefinite cone and
copositive cone.

In this chapter we will study the primal dual formulation of general conic programs and
then briefly discuss the duality theory of conic programs. The last sections of this chapter
are concerned with Semidefinite programming (SDP) and SDP relaxation of quadratic
programming. We will also describe some application of SDP.

3.1 Cone Programming

A large class of mathematical programs can be represented as a conic program. We will
consider the following formulation of a conic program

min
X
〈C,X〉

s.t.

ConeP 〈Ai, X〉 = bi, ∀i = 1, ...,m

X ∈ K
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3.1. CONE PROGRAMMING

where Ai, C ∈ Sn and K is a cone of symmetric n × n matrices. The dual of the above
program can be written as follows

max
y

bTy

s.t.

ConeD

m∑
i=1

yiAi + Z = C

y ∈ <m, Z ∈ K∗

3.1.1 Duality

In mathematical programming duality theory plays a crucial role for finding optimality
conditions and solution algorithms. Duality theory can be further classified into two cat-
egories weak duality and strong duality. In weak duality we investigate, if the optimal
value of the primal problem is bounded by the dual problem. Strong duality investigates
the conditions under which strict equality holds in the values of primal and dual solutions.
ConeP and ConeD satisfy weak duality. This fact is proved in Lemma 3.1,

Lemma 3.1 (Weak Duality). Let X and (y, Z) be feasible solutions for ConeP and ConeD
respectively then bTy ≤ 〈C,X〉

Proof. We have

bTy =
m∑
i=1

biyi =
m∑
i=1

yi〈Ai, X〉 =
m∑
i=1

〈yiAi, X〉 = 〈
m∑
i=1

yiAi, X〉

= 〈C − Z,X〉 = 〈C,X〉 − 〈Z,X〉

≤ 〈C,X〉

In the case of K being the nonnegative orthant whenever ConeP or ConeD are feasible we
have equality in the optimal values. If both ConeP and ConeD are feasible then we have
zero duality gap and both optimal values can be attained. Unfortunately this nice property
does not hold for more general classes of conic programs such as semidefinite programs, as
shown by the following example,
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3.1. CONE PROGRAMMING

Example Consider the conic program with,

C =

0 0 0

0 0 0

0 0 1

 , A1 =

1 0 0

0 0 0

0 0 0

 ,

A2 =

0 1 0

1 0 0

0 0 2

 , b =

(
0

2

)
and K = K∗ = S+

n

Then it is not difficult to verify that val(ConeP ) = 1 and val(ConeD) = 0 even though
both problems are feasible.

For strong duality in conic programs we need extra conditions on the constraints.

Definition 3.2 (Primal Slater Condition). We say a set of feasible points satisfies the
Slater condition for ConeP if there exists X ∈ int(K) such that 〈Ai, X〉 = bi.

The Slater condition for dual problems can be defined in a similar manner. By taking this
additional assumption we can derive a strong duality result as given in Theorem 3.3

Theorem 3.3 (Strong Duality). If the primal problem ConeP or its dual ConeD satisfies
the Slater condition then, val(ConeP ) = val(ConeD).

Remark The discussion of conic duality can be traced as early as 1958. This subject is
more flourished in the early 1990’s. The backbone for the development of this area is the
desire to extend Karmarkar’s polynomial time LP algorithm to the non-polyhedral case,
see [111] and references there in.

3.1.2 Examples of Cone Programming

For different values of K and K∗ we obtain a class of well known programming problems,

1. If K = <+
n the sol called nonnegative orthant, we will have linear programming. The

feasibility of one of the primal or dual program implies that strong duality holds.
Linear programming has huge applications in science and engineering. In fact the
term mathematical programming was first used as linear programming coined by
Dantzig in 1940. The simplex method was considered to be the first method for
solution of linear programs but now linear time algorithm like the ellipsoidal method
and interior point method exists for linear programming problems (see [125, 141]).
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2. If we consider K = K∗ = {(ξ, x) ∈ <×<n|ξ ≥ ||x||2} the so called second order cone,
then we will get the second order cone programming problem. In this case we need a
Slater condition for obtaining strong duality. Polynomial time algorithms also exists
for this class of problems. They have large application in control engineering.

3. For K = S+
n we obtain the semidefinite programming problems. Semidefinite pro-

gramming has large application in combinatorial optimization, control engineering,
eigenvalue optimization and many other areas of engineering and science. We will
discuss this class of problems in more details in the next section.

4. For K = Cn we will obtain copositive programs. It is interesting to note that this
is the first problem where the cone is not self dual. Moreover, no polynomial time
algorithm exists for this class of problems. This is relatively new area of cone pro-
gramming.

From the above examples it is evident that cone programming covers many mathematical
programming problems. For some specific kind of cone it is easy to solve the cone programs
but for other cases, we cannot solve them to optimality. Interior point methods are a
common choice for solving conic program. But for certain classes of conic programs, like
copositive programs, they failed to provide solutions [30, 115].

We will close this section by arguing that any convex program can be written as cone
programming problem. Consider the problem,

min
x

cTx

s.t

x ∈ Y

where Y is any closed convex set in <n. This problem can be seen as a conic programming
problem, where the dimension of the problem is increased by one,

min
x,ξ

cTx

s.t

ξ = 1

(x, ξ) ∈ K

with K = cl{(x, ξ) ∈ <n×<|ξ > 0, x/ξ ∈ Y } where cl(S) denotes the closure of the set S.
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3.2. SEMIDEFINITE PROGRAMMING (SDP)

Proposition 3.4. K is closed convex cone.

Proof. It is not difficult to show that, if Y ∈ K then λY ∈ K. Since (y, ξ) ∈ K implies
y
ξ
∈ Y , then for any λ ≥ 0 λy

λξ
∈ Y giving λ(y, ξ) ∈ K.

It is well known that if a set is convex, then its closure is also convex and vice versa. So
let us consider the set,

K̂ = {(x, ξ) ∈ <n ×<|ξ > 0, x/ξ ∈ Y }

We will show that K̂ is convex. Let Y1, Y2 ∈ K̂, 0 ≤ λ ≤ 1 with Yi = (yi, ξi) ∈ <n × <,
ξi > 0 and yi/ξi ∈ Y for i = 1, 2, where Y is a convex set.

λy1 + (1− λ)y2

λξ1 + (1− λ)ξ2

=
λ

λξ1 + (1− λ)ξ2

y1 +
(1− λ)

λξ1 + (1− λ)ξ2

y2

= ρ
y1

ξ1

+ (1− ρ)
y2

ξ2

where

ρ =
λξ1

λξ1 + (1− λ)ξ2

∈ [0, 1]

Since Y is convex so, ρy1/ξ1 + (1− ρ)y2/ξ2 ∈ Y . Hence

λy1 + (1− λ)y2

λξ1 + (1− λ)ξ2

∈ Y ⇒ (λy1 + (1− λ)y2, λξ1 + (1− λ)ξ2) ∈ K̂,

So K̂ is convex. Hence K is a closed convex cone.

3.2 Semidefinite Programming (SDP)

SDP can be regarded as one of the most well studied special cases of cone programming.
As mentioned earlier SDP can be seen as natural generalization of linear programming
where linear inequalities are replaced by semidefinitness conditions. Moreover it is one
of the polynomial time solvable(approximable) classes of cone programming. SDP has
become a very attractive area of research among the optimization community due to its
large applications in combinatorial optimization, system and control, solution of quadrat-
ically constrained quadratic programs, statistics, structural optimization and maximum
eigenvalue problem.
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SDP are optimization problems often written in the following form,

min
X
〈C,X〉

s.t.

SDP 〈Ai, X〉 = bi, ∀ i = 1, ...,m

X ∈ S+
n (orX �0)

where Ai, C,X ∈ Sn. The dual of the above program is given by,

max
y

bTy

s.t.

SDPD

m∑
i=1

yiAi + Z = C

y ∈ <m, Z ∈ S+
n

It is worth mentioning that the cone of semidefinite matrices is self dual, see Lemma
2.11. Being an extension of linear programming most of the algorithms available for linear
programming can be generalized for SDP in a straightforward manner. Beside many simi-
larities there are some major differences one of them is, as shown before, for general SDP
strong duality does not hold in general. In linear programming a pair of complementary
solutions always exists but this is not the case in SDP. For a rational linear program the
solution is always rational but this not the case for SDP. A rational SDP may have an
irrational solution. Moreover there does not exists a practical simplex like method for SDP
(for details see [138]). As a special case of cone programming the same duality theory
holds for SDP. Based on the structure of SDP many necessary and sufficient conditions
are formulated for an optimal solution of SDP. For a detailed discussion on duality theory
of SDP one can see [120, 121, 143]. Most appealing and useful application of SDP is SDP
relaxation, which has a number of applications in combinatorial optimization.

Remark It is usual in combinatorial applications of SDP that strong duality holds, so
optima can be obtained. SDP with zero duality gap were introduced by Borwein and
Wolkowicz [28] and Ramana [120]. Ramana et al [121] has given a good comparison of zero
duality gap results for SDP.
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3.2.1 Integer Programming

Almost all combinatorial optimization problems can be formulated as integer programs.
These programs may be linear or nonlinear depending on the specific problem. In this
section we will deal with integer programs with only linear constraints and quadratic
objective function. We consider the program,

min
x

xTQx+ 2cTx

s.t.

IP aTi x ≤ bi, ∀ i = 1, ...,m

xj ∈ {0, 1} ∀ j = 1, ..., n

Most of the Combinatorial optimization problems can be expressed as IP . But unfortu-
nately formulating a hard combinatorial problem as 0-1 integer program will not make the
original problem tractable because 0-1 integer programming is itself a hard problem. It is
well known that integer programming is NP-hard. The main difficulty lies in the integer
constraints, i.e. the constraints which ensure that the solution must be integer. By relaxing
this constraint one can obtain bounds on the solution of IP

The first and the most common relaxation, the so called LP relaxation, is to replace
the condition x ∈ {0, 1} by the condition x ∈ [0, 1]. This kind of relaxation is useful for
finding lower bounds on the optimum value of the original problem. We can state the
linear programming relaxation of IP as follows,

min
x

xTQx+ 2cTx

s.t.

IPLP aTi x ≤ bi, ∀i = 1, ...,m

x ∈ [0, 1]n

It is important to note that IPLP is central to the branch and bound methods, used to
approximate the solution of IP for details see [57, 95]. In order to strengthen the relaxation
IPLP of IP one need to avoid fractional solution as much as possible. Chvatal-Gomory
cuts (see [55, Chapter 9],[127, 129]) were introduced in order to avoid fractional solutions.
Another important technique to strengthen IPLP is lift and project methods developed
in the nineties and proved very useful for obtaining good bounds on solution of IP (see
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[85, 94, 127, 129] for more references see [2]).
Another common relaxation is the so called Lagrange relaxation which is based on the

Lagrange function. The Lagrange relaxation results in another optimization problem and
solving the dual problem will provide us with bounds on the optimum value, see [60, 96]).

SDP Relaxation

Yet another relaxation coined by Lovasz [102], is to relax the integer constraint by the
semidefinite constraint. This is possible due to the fact that xj ∈ {0, 1} can be equivalently
written as x2

j − xj = 0, hence IP can be written in the form,

min
x

xTQx+ 2cTx

s.t.

IP aTi x ≤ bi, ∀ i = 1, ...,m

x2
j − xj = 0 ∀ j = 1, ..., n

The SDP relaxation of the above program will be,

min
x
〈X,Q〉+ 2cTx

s.t.

IPSDP aTi x ≤ bi, ∀ i = 1, ...,m

Xjj = xj(
1 x

x X

)
�0

The above relaxation is possible since xxT = X implies that there exists a rank one
matrix X = xxT . We can replace the rank one constraint with the semidefinite constraint
obtaining the above relaxation. Another advantage is to gather all nonlinearities in one
variable X, which is further relaxed with a semidefinitness condition.
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3.2.2 Quadratically Constrained Quadratic Program

One can formulate the general quadratic programming problem with quadratic constraints
as follows,

minx xTQx+ 2(c0)Tx

s.t.

QP xTAix+ 2(ci)Tx+ bi ≤ 0 ∀i ∈ I

where Q,Ai, Q ∈ Sn and I = {1, ...,m}.
It is worth mentioning that the above program may not be convex. A standard way to

make this program convex is to gather all nonlinearities in one variable. For this we intro-
duce a matrix X, such that X = xxT and consider, xTQx = trace(QxxT ) =

〈
Q, xxT

〉
=

〈Q,X〉. Then the above program can be equivalently written as,

min
X
〈Q,X〉+ 2(c0)Tx

s.t.

QP 〈Ai, X〉+ 2(ci)Tx+ bi ≤ 0, ∀ i ∈ I

X = xxT

It is interesting to note that most of the conic relaxations in literature are based on in-
troducing some new redundant constraints along with replacing the constraints X = xxT

with the constraint of the form X ∈ K where K is a cone of matrices. If K = S+
n we will

have semidefinite relaxation.

It is not difficult to verify that xTAix+2(ci)Tx+bi =

〈(
bi (ci)T

ci Ai

)
,

(
1 xT

x X

)〉
, where

X = xxT . Let us define,

P =

{
Pi =

(
bi (ci)T

ci Ai

)
∀ i ∈ I

}
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Then the set of feasible points of QP will be defined as follows,

Feas(QP ) =

{
x ∈ <n :

〈
Pi,

(
1 xT

x xxT

)〉
≤ 0, ∀ Pi ∈ P

}

The SDP relaxation of QP relaxes the rank one matrix constraint X = xxT with the

constraint

(
1 xT

x X

)
�0, so we will have,

min
x,X

〈Q,X〉+ 2c0Tx

s.t.

QPSDP

〈
Pi,

(
1 xT

x X

)〉
≤ 0, ∀ i ∈ I(

1 xT

x X

)
� 0

Then the set of feasible points for the above program can be described by,

Feas(QPSDP ) =

x ∈ <
n :

∃X ∈ Sn such that

(
1 xT

x X

)
�0

and

〈
Pi,

(
1 xT

x X

)〉
≤ 0

, ∀ i ∈ I


Let us denote by Q+ all semidefinite quadratic functions i.e.

Q+ = {xTAx+ cTx+ bi : A ∈ S+
n , c ∈ <n, bi ∈ <}

Let K denote the convex cone generated by the quadratic functions xTAix + 2(ci)Tx + bi

i.e.
K = cone {P}
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Then we have following relaxation of QP

minx xTQx+ 2(c0)Tx

s.t.

QPS

〈
Pi,

(
1 xT

x xxT

)〉
≤ 0 ∀i ∈ I

Pi ∈ K ∩Q+

The relaxations QPSDP and QPS are equal,

Theorem 3.5.
Feas(QPSDP ) = Feas(QPS)

Proof. One can define the dual cone of K as,

K∗ = {V ∈ Sn+1 : 〈V, U〉 ≥ 0, ∀U ∈ K}

We can see that for the set of feasible points for QPS and QPSDP we have,

Feas(QPSDP ) =

{
x ∈ <n : ∃ X ∈ Sn such that

(
1 xT

x X

)
∈ (−K∗ ∩ S+

1+n)

}

Feas(QPS) =

{
x ∈ <n :

(
1 xT

x xxT

)
∈ −(K ∩Q+)∗

}

=

{
x ∈ <n :

(
1 xT

x xxT

)
∈ −

(
K∗ +

(
0 0T

0 S+
n

))}

Feas(QPSDP ) ⊂ Feas(QPS): Take x ∈ Feas(QPSDP ), then there exists X ∈ S+
n such that

(x,X) ∈ Feas(QPSDP ) then we can write(
1 xT

x xxT

)
=

(
1 xT

x X

)
+

(
0 0

0 xxT −X

)
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For Pi ∈ P we will have,

xTAix+ 2(ci)Tx+ bi =

〈
Pi,

(
1 xT

x xxT

)〉

=

〈
Pi,

(
1 x

x X

)〉
+

〈
Ai, (xx

T −X)︸ ︷︷ ︸
≤0

〉

≤ 0

So, x ∈ Feas(QPS).

Feas(QPSDP ) ⊃ Feas(QPS): For the converse let x ∈ Feas(QPS), then there exists some
H ∈ S+

n such that, (
1 x

x xxT +H

)
∈ −K∗

The matrix

(
1 x

x xxT +H

)
is positive semidefinite if and only if H is positive

semidefinite. Which is our assumption that H ∈ S+
n . Hence(

1 x

x xxT +H

)
∈ −K∗ ∩ S+

1+n

So x ∈ Feas(QSDP ).

This completes the proof.

Remark 1. The above results even holds if the index set I is infinite.

2. The relaxation QPS is first discussed by Fujie and Kojima [58] but its equality with
the SDP relaxation is proved by Kojima and Tunçel [88].

Another Semidefinite Relaxation

Several semidefinite relaxations of QP are discussed in the literature. The basic and
simple semidefinite relaxation is given by Shor [131]. In the Shor relaxation we will relax
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3.2. SEMIDEFINITE PROGRAMMING (SDP)

the constraint X = xxT , by the constraint X ∈ S+
n

min
X
〈Q,X〉+ 2cT0 x

s.t.

QPSDP 〈Ai, X〉+ 2cTi x = bi, ∀i = 1, ...,m

X ∈ S+
n

The Shor relaxation actually relax the rank one condition X = xxT by lifting matrix X
from the class of rank one matrices to the bigger class of semidefinite matrices.

The Shor-relaxation became central for finding the µ-approximation algorithm for hard
combinatorial optimization problems. Some nice µ -approximation algorithms were found
for problems like Max-Cut and box constrained problems (see [68, 119]).

3.2.3 Applications of SDP

Many state of the art results have been obtained by formulating the SDP relaxation of QP.
We will enlist some of them,

1. The most popular SDP relaxation is for Max-Cut problem. Using a SDP relax-
ation along with randomization Goemans and Williamson[68] has obtained a 0.878-
approximation algorithm for the Max-cut problem. This is the first major break
through for SDP. It has opened a way for application of SDP in combinatorial op-
timization problems. This problem is furthered discussed with reference to SDP by
[124].

2. The SDP relaxation of stability number of a graph resulted in the so called Lovarz
theta number. Theta number has not only provided a bound on the stability number
of the graph but also provided a polynomial time algorithm for finding the stability
number in perfect graph for details see [102, 113].

3. The well known spectral bundle methods for the eigenvalue optimization problem
are based on the concept of SDP. These methods are used for finding maximum or
minimum eigenvalues of a matrix. For details see [143].

4. SDP has been proved very useful for approximating nonlinear problems. Specifically
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quadratically constrained quadratic programs(QCQP) are approximated by the use
of SDP relaxations (for details see [9, 3, 138]).

5. There are many other complex problems for which SDP has provided promising re-
sults, this list of problems includes the satisfiability problem [7, 74], maximum clique
and graph coloring [23, 49, 50], non-convex quadratic programs [58], graph partition-
ing [61, 115, 144, 146], nonlinear 0-1 programming [92, 97], knapsack problem [77],
traveling salesman problem[47], quadratic assignment problem [115, 146], subgraph
matching [128], statistics [143, Chapter 16 and 17] [138], control theory [138], struc-
tural design [138, 143, Chapter 15] and many other areas of science and engineering.
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Chapter 4

Copositive Programming (CP)

Copositive programming is a relatively new area of research in cone programming. Only a
few papers and a thesis have been written, covering applications and algorithms for coposi-
tive programming. The main theme of this chapter is to introduce copositive programming
along with its application. We will also discuss some algorithms available for solving copos-
itive programming. We will start with an introduction into copositive programming. Then
we will give the applications of copositive programming. The final section of this chapter
is concerned with the algorithm available for solving copositive programs.

4.1 Copositive Programming

Copositive programs refer to cone programs of the form,

min
X
〈C,X〉

s.t.

CPP 〈Ai, X〉 = bi, ∀i = 1, ...,m

X ∈ Cn
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where Ai, C ⊂ Sn, and the dual

max
y

bTy

s.t.

CPD

m∑
i=1

yiAi + Z = C

y ∈ <m, Z ∈ C∗n

with Cn and C∗n are the cones of copositive and completely positive matrices respectively.
It is not difficult to see that the above programs are convex. But being convex does not
guaranty that we can solve these programs efficiently. The main difficulty lies in checking
the set of feasible points of both the primal and dual programs. It is co-NP hard to check
that a matrix is copositive (see Murty and Kabadi [110]).

Duality theory helps to find algorithms and solution procedures for mathematical pro-
grams. The same duality theory holds for copositive programs as for cone programs. As
mentioned before interior of a cone plays an important role for developing strong duality
results. Recently Dür and Still [53], has given characterization of the interior of the com-
pletely positive cone. In contrast to semidefinite programming duality theory for copositive
programming is not very well discussed. A recent paper by Eichfelder and Jahn [54] has
discussed the KKT type optimality condition along with duality for copositive program-
ming.

4.2 Applications

Copositive programming has been applied to a number of interesting problems. Here we
will briefly discuss these problems.
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4.2.1 Quadratic Programming

Consider the specific case of a quadratic program with only one quadratic constraint.

min
x

xTQx

s.t.

SQC xTAx = b

x ≥ 0

where A is a strictly copositive matrix and b ∈ <.
The connection between copositive programming and the above problem was first inves-

tigated by Preisig [118]. SQC contains some interesting problems like standard quadratic
programming over simplex and the maximum clique problem as special case. The coposi-
tive programming formulation of the above problem is,

min
X
〈Q,X〉

s.t.

SQCC∗
n

〈A,X〉 = b

X ∈ C∗n

The dual formulation of the above program is,

max
y

by

s.t.

SQCCn Q− Ay ∈ Cn

The set of feasible points of SQCC∗
n
is the intersection of the completely positive cone

and a hyperplane. The extremal rays (see Definition 2.5) of the completely positive cone
are rank one matrices xxT with x ≥ 0. So we have equivalence for SQCC∗

n
and SQC in

the special case if we choose the hyperplane in such a way so that the extremal points (see
Definition 2.4) of the feasible sets coincides with the extremal rays of completely positive
cone. The equivalence of SQC and SQCC∗

n
is given in Lemma 4.1
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Lemma 4.1. Let A ∈ Sn be strictly copositive then

1. if b>0 then the extremal points of the feasible set of SQCC∗
n
are exactly the rank-one

matrices X = xxT with xTAx = b and x ≥ 0.

2. The problems SQC, SQCC∗
n
and SQCCn are equivalent that is,

val(SQC) = val(SQCC∗
n
) = val(SQCCn)

Proof. For a proof see [30, Lemma 4.1]

Standard Quadratic Programs

A special case of SQC is the standard quadratic optimization problem (SQP). If we take
A = En = uuT , where u is a vector consisting of all ones, and b = 1, and consider the fact
(uTx)T eTx = 1 if and only if uTx = 1, then the standard quadratic optimization problem
over the simplex will be,

min
x

xTQx

s.t.

SQP uTx = 1

x ≥ 0

its copositive programming formulation will be,

min
X
〈Q,X〉

s.t.

SQPC∗
n

〈En, X〉 = 1

X ∈ C∗n
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where En = uTu is n−dimensional matrix. The corresponding dual formulation,

max
y

y

s.t.

SQPCn Q− yEn ∈ Cn

From Lemma 4.1, we can deduce,

Corollary 4.2. The optimization problems SQP, SQPC∗
n
and SQPCn are equivalent i.e.

val(SQP ) = val(SQPC∗
n
) = val(SQPCn)

Remark 1. It is interesting to note that the copositive and completely positive formu-
lation of the standard quadratic optimization problem is the first celebrated result
for copositive programming. Bomze et al [24] has given a polynomial time approxi-
mation scheme for the solution of the standard quadratic optimization problem for
details see [24, 25].

2. Bomze and Schachinger [27], have also established equivalence for multi standard
quadratic programming. In multi standard quadratic programming, quadratic func-
tion is maximized over the Cartesian product of several standard simplices. The
simplicies can differ in dimension, for details see [27, 30].

4.2.2 Quadratically Constrained Quadratic Program

Recall from subsection 3.2.2,

min
X
〈Q,X〉+ 2(c0)Tx

s.t.

QP 〈Ai, X〉+ 2(ci)Tx+ bi ≤ 0, ∀ i ∈ I

X = xxT

x ≥ 0
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where I = {1, ...,m},ci ∈ <n, bi ∈ <, consider the set P ,

P =

{
Pi =

(
bi (ci)T

ci Ai

)
∀ i ∈ I

}

The set of feasible points of QP is,

Feas(QP ) =

{
x ∈ <n :

〈
Pi,

(
1 xT

x xxT

)〉
≤ 0 ∀ Pi ∈ P

}

Here, instead of taking the SDP relaxation we will consider the copositive relaxation,
described in the program given below,

min
X
〈Q,X〉+ 2(c0)Tx

s.t.

QPCP

〈
Pi,

(
1 xT

x xxT

)〉
≤ 0 ∀ ∈ I(

1 xT

x X

)
∈ C∗n+1

Then the set of feasible points for the above program can be described by,

Feas(QPCP ) =

x ∈ <
n :

∃X ∈ Sn such that

(
1 xT

x X

)
∈ C∗n+1

and

〈
Pi,

(
1 xT

x X

)〉
≤ 0

, ∀ i ∈ I


Let us denote by Q′+, all copositive quadratic functions i.e.

Q′+ = {xTAx+ cTx+ γ : A ∈ Cn, c ∈ <n, γ ∈ <}

Let K denotes the convex cone generated by the quadratic functions xTAix+ 2(ci)Tx+ bi

i.e.
K = cone {P}
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Then we have following relaxation of QP

minx xTQx+ 2c0Tx

s.t.

QPS

〈
P,

(
1 xT

x xxT

)〉
≤ 0

P ∈ K ∩Q′+

The next theorem describes the relation between these two relaxations,

Theorem 4.3.
Feas(QPS) ⊂ Feas(QPCP )

Proof. One can define the dual cone of K as,

K∗ = {V ∈ Sn : 〈V, U〉 ≥ 0, ∀U ∈ K}

Let Q′+
∗ is the dual of Q′+, then by the definition of dual,(

a πT

π Π

)
∈ Q′+

∗ ⇔

〈(
a πT

π Π

)
,

(
γ cT

c A

)〉
≥ 0 ∀

(
γ cT

c A

)
∈ Q′+

From above we get,〈(
a πT

π Π

)
,

(
γ cT

c A

)〉
≥ 0⇒ aγ + 2cTπ + 〈Π, A〉 ≥ 0

⇒ a = 0, π = 0 and Π ∈ C∗n

hence Q′+
∗ =

(
0 0T

0 C∗n

)
.
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We can see that for the set of feasible points for QPS and QPCP we have,

Feas(QPCP ) =

{
x ∈ <n : ∃ X ∈ Sn such that

(
1 xT

x X

)
∈ (−K∗ ∩ C∗n+1)

}

Feas(QPS) =

{
x ∈ <n :

(
1 xT

x xxT

)
∈ −(K ∩Q′+)∗

}

=

{
x ∈ <n :

(
1 xT

x xxT

)
∈ −

(
K∗ +

(
0 0T

0 C∗n

))}

Feas(QPS) ⊂ Feas(QPCP ): Let x ∈ Feas(QPS) then there exists some H ∈ C∗n such that,(
1 xT

x xxT +H

)
∈ −K∗

Since xxT +H−xxT = H ∈ C∗n and x ≥ 0 so Lemma 2.21 implies

(
1 xT

x xxT +H

)
∈

C∗n+1. Hence, (
1 xT

x xxT +H

)
∈ −K∗ ∩ C∗n+1

establishing, x ∈ Feas(QPCP ).

This completes the proof.

4.2.3 Stable Set Problem

Let G = (V,E) be a graph with n vertices. Then a stable set of the graph is defined as a
set of vertices which are not adjacent to each other. The problem of finding the maximum
stable set (sets of maximum cardinality such that no two vertices in the sets are adjacent)
is NP-hard. The complement of the stable set problem is the clique problem. In clique
problems it is required to find the set of vertices in the graph such that the subgraph is
complete. Clique problem is also NP-hard and its decision version is NP-complete.

The stability number α(G) of a graph is defined as the cardinality of a maximum stable
set in graph G. Clique number ω(G) is the cardinality of a maximum clique in the com-
plement graph G (in the complement graph G of G, two vertices are adjacent if and only
if they are not adjacent in G).

Another problem which can be associated with the above two problems is the k-coloring
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problem which is defined as: given a graph G and an integer k ≥ 1 then k-coloring is the
assignment of k-colors to the vertices of G such that adjacent vertices have distinct colors.
The chromatic number or coloring number χ(G) of a graph is the smallest integer k for
which G has a k-coloring. It is interesting to note that k-coloring gives the partition of
vertices into k stable sets. The three problems have the following relation,

α(G) = ω(G) ≤ χ(G)

where Ḡ = (V, Ē) denote the complementary graph of G. For the mathematical program-
ming formulation of the stable set problem we associate with any stable set S ⊂ V a
characteristic vector xS ∈ {0, 1}n defined as,

(xS)v =

1 v ∈ S

0 v /∈ S

On the basis of the characteristic vector we can define a matrix X by,

X =
1

xTSxS
xSx

T
S

which has the property that |S| = 〈X, J〉, moreover X�0, Xij = 0, ∀ (i, j) ∈ E and
〈I,X〉 = trace(X) = 1, resulting in the following semidefinite relaxation of the maximum
stable set problem (see Lovasz [102]),

max 〈J,X〉

s.t.

MCSDP Xij = 0 ∀ i 6= j and (i, j) ∈ E

〈I,X〉 = 1

X ∈ S+
n

where J is a mtrix consisting of all ones. The optimum value of the above program gives
the so called Lovasz theta number i.e ϑ(G) = val(MCSDP ). Moreover ϑ(G) gives a bound
on the stability and the chromatic number of graphs,

Theorem 4.4. For any given graph G, one has

α(G) ≤ ϑ(G) ≤ χ(G)
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Remark A graph is called perfect if ω(G′) = χ(G′) for every induced subgraph G′ of
G. The existence of polynomial time algorithm for the stability and chromatic number
of perfect graphs became possible only after the definition of the theta number. The
inequalities given in the above theorem become strict equalities in case of perfect graphs
(see [94, 102]).

Having MCSDP it seems natural to consider a copositive relaxation of this problem. de
Klerk and Pasechnik [45] considered the following copositive relaxation of MCSDP ,

max 〈J,X〉

s.t.

MCCP Xij = 0 ∀ i 6= j and (i, j) ∈ E

〈I,X〉 = 1

X ∈ C∗n

Theorem 4.5. Let G(V,E) be given with |E| = n. The stability number of G is given by
val(MCCP ) i.e α(G) = val(MCCP ).

Proof. For proof see [45, Theorem 2.2].

Since X ∈ C∗n implies X is nonnegative. So 〈I, AX〉 = 0, where A = {aij} is the adjacency
matrix of the graph G, if and only if Xij = 0, ∀ i 6= j and (i, j) ∈ E. Hence we can write
the above program as follows,

max 〈J,X〉

s.t.

MCCP 〈I, AX〉 = 0

〈I,X〉 = 1

X ∈ C∗n

Now we can write the above program equivalently in the following form (for details see
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[45])

max 〈J,X〉

s.t.

MCCP 〈(A+ I)T , X〉 = 1

X ∈ C∗n

Remark The copositive relaxation of the stability problem is first discussed by de Klerk
and Pasechnick [45] in 2002. The chromatic and the stability number of a graph are perhaps
the most studied problems with respect to copositive programming [17, 45, 51].

4.2.4 Graph Partitioning

Let G = (V,E) be an undirected graph with a set of vertices V , having cardinality n and
the set of edges E with weight aij for each edge. Then the 3-partitioning of vertices is
the partition of the vertices into 3 disjoint sets S1, S2 and S3 of specified cardinalities such
that the total weight of all edges joining S1 and S2 is minimized. We use the symmetric
nonnegative matrix A called adjacency matrix of graph, with A = {aij} and aij > 0 if there
exists an edge eij ∈ E(G) (with weight aij), where eij denote the edge between vertices i
and j. If we denote the total weight of edges between sets S1 and S2 as cut(S1, S2), then
we have the optimization problem,

min cut(S1, S2) =
∑

i∈S1,j∈S2

aij

GP0 (S1, S2, S3) partitions of V (G)

|Si| = mi, i = 1, 2, 3

Let X ∈ {0, 1}(n×3) be a matrix whose jth columns is a vector xj of the form,

(xj)i = xij =

1 if i ∈ Sj
0 if i /∈ Sj

∀ j = 1, 2, 3
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then ∑
i∈S1,j∈S2

aij = xT1Ax2 = trace(Ax1x
T
2 )

=
1

2
trace(AXBXT ) =

1

2
〈X,AXB〉

where B =

0 1 0

1 0 0

0 0 0

. Then GP0 can be written as,

min
1

2
〈X,AXB〉

s.t.

GP0 XTX = Diag(m)

Xu3 = un

X ∈ {0, 1}(n×3)

where m =
(
m1,m2,m3

)T
is a vector such that mi = |Si|, i = 1, 2, 3.

A usual way to make quadratic program of the above form convex is to gather all
nonlinearities in a single constraint. Hence obtaining a program which has linear constraints
with exception of one nonlinear constraint of the form Y = xxT . In case of GP0, we will first
make the linear constraint quadratic and then we will linearize the quadratic terms, which
result in gathering all linearities in the constraint Y = xxT . Following is an equivalent
formulation of the above program,

min
Y

1

2
〈BT ⊗ A, Y 〉

s.t.

〈Bij ⊗ I, Y 〉 = miδij, ∀ 1 ≤ i ≤ j ≤ 3

〈J3 ⊗ Eii, Y 〉 = 1, ∀ 1 ≤ i ≤ n

GP 〈Vi ⊗W T
j , Y 〉 = mi, ∀ 1 ≤ i ≤ 3, 1 ≤ j ≤ n

〈Bij ⊗ Jn, Y 〉 = mimj, ∀ 1 ≤ i ≤ j ≤ 3

Y = xxT , x ∈ <3n
+
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where x = vec(X), Eij = eie
T
j , Bij = 1

2
(Eij + Eji), Vi = eiu

T
3 ∈ <3×3, Jn is n-dimensional

matrix consisting of only ones and Wi = eiu
T
n ∈ <n×n, 1 ≤ i ≤ 3, 1 ≤ j ≤ n.

Just like SDP relaxation, the rank one matrix constraint Y = xxT is relaxed by the
copositive constraint Y ∈ C∗3n, hence we will have,

min
Y

1

2
〈BT ⊗ A, Y 〉

s.t.

〈Bij ⊗ I, Y 〉 = miδij, ∀ 1 ≤ i ≤ j ≤ 3

〈J3 ⊗ Eii, Y 〉 = 1, ∀ 1 ≤ i ≤ n

GPCP 〈Vi ⊗W T
j , Y 〉 = mi, ∀ 1 ≤ i ≤ 3, 1 ≤ j ≤ n

〈Bij ⊗ Jn, Y 〉 = mimj, ∀ 1 ≤ i ≤ j ≤ 3

Y ∈ C∗3n

Povh and Rendl [116] proved that this relaxation of the partition problem is exact, ,

Theorem 4.6. Let x ∈ <3n
+ and Y ∈ Feas(GPCP ) then

Conv
{
xxT ;Y = xxT ∈ Feas(GP )

}
= Feas(GPCP )

Proof. see [116].

The immediate consequence of this theorem is the following corollary,

Corollary 4.7. val(GP ) = val(GPCP )

Remark 1. In GP if we replace Y = xxT by Y ∈ S+
n then we obtain an SDP relaxation.

Povh and Rendl [116] have proved that their proposed relaxation is equivalent to
another SDP relaxation proposed by Helmberg et al [76] (replace the constraint
X ∈ {0, 1}(n×3) with the constraint of the formXTun = m). SDP relaxation proposed
by Helmberg et al [76] is mainly used to obtain easy to compute lower bounds for
graph partitioning problems.

2. SDP relaxation of the partition problem is not only discussed by Povh and Rendl. As
a matter of fact there exist semidefinite relaxations of the more general k-partition
problem in which we divide vertices into k disjoint sets instead of only three sets, for
details see [61, 76, 144, 146].
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4.2.5 Quadratic Assignment Problem (QAP)

QAP is one of the most studied problems in combinatorial optimization. It was first
introduced by Koopmans and Beckmann [89] as facility location problem. Nowadays the
application of QAP is not restricted to facility location problem only. QAP has been applied
to other areas likes wiring problems in electronics, scheduling, parallel and distributed
computing, statistical data analysis, design of control panel, chemistry, archeology and
design of turbine runners etc [38].

In QAP you are given a set of n location and n facilities and the distance between these
locations. The objective of this problem is to find assignments of locations to facilities such
that the cost is minimized. Normally a permutation vector denoted by π is used to denote
the assignment. Koopmans and Beckmans presented this problem as:

min
∑
i,j

aijbπ(i)π(j) +
∑
i

ci,π(i)

s.t.

π is a permutation of {1, ..., n}

where A = {aij}, B = {bij}, C = {cij} ∈ <n×n. Each permutation can be represented by
the permutation matrix X = {xij}, with,

xij =

1 if π(i) = j

0 otherwise

Let Π be the set of the all permutation matrices X. Then QAP can be written as,

min 〈X,AXB + C〉

s.t.

X ∈ Π,

It can be seen easily that every permutation matrix is orthonormal since there is only one

47



4.2. APPLICATIONS

nonzero term in each row and column of the permutation matrix, so we can write,

Π =
{
X ∈ <n×n : XTX = I,X ≥ 0

}
then,

min 〈X,AXB + C〉

s.t.

XTX = I,

X ≥ 0

If we add an extra redundant constraint XXT = I in the above program then we obtain,

min
X
〈X,AXB〉

s.t.

QAP XTX = I,

XXT = I,

X ≥ 0

Let Y and Z be two symmetric matrices corresponding to the Lagrangian functions of the
constraints XTX = I and XXT = I respectively (for complete details see [8, 94]). Then
we obtain the following program,

max 〈I, Y + Z〉

s.t.

QAPLD (I ⊗ Y ) + (I ⊗ Z)≺ (B ⊗ A)

Y T = Y, ZT = Z

The optimum value of QAP and QAPLD is equal,

Theorem 4.8. val(QAP ) = val(QAPLD) giving that the strong duality holds for the pair
QAP and QAPLD.

Proof. see [8].
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Povh and Rendl [117], has extended the ideas by giving a copositive relaxation. They have
added one more redundant constraint by considering the fact that sum of all elements in
X is n, hence they have included the constraint 〈X, JXJ〉 =

(
uTXu

)2
= n2. By adding

this constraint QAP will become,

min 〈X,AXB + C〉

s.t.

XTX = I

QAPP XXT = I

〈X, JXJ〉 = n2

X ≥ 0

Just like QAPLD we introduce two matrices Y, Z and v ∈ <, the Lagrange variables cor-
responding to the constraints XTX = I,XXT and 〈X, JXJ〉 = n2 respectively. Moreover
consider the fact, 〈C,X〉 = 〈Diag(c), xxT 〉 for X ∈ Π and 〈X,PXQ〉 = 〈QT ⊗ P, xxT 〉 for
any X ≥ 0 where x = vec(X), c = vec(C) implies 〈X,AXB + C〉 = 〈B ⊗ A+Diag(c), Y 〉.
We obtain copositive relaxation of QAPP given below,

max
Z,Y,v

〈I, Y + Z〉+ n2v

s.t.

QAPP (C) B ⊗ A+Diag(c)− I ⊗ Y − Z ⊗ I − vJn2 ∈ Cn2

Z, Y ∈ Sn
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The dual of above program is given by,

min 〈B ⊗ A+Diag(c), T 〉

s.t.∑
i

T ii = I

QAPPD

〈
I, T ij

〉
= δij ∀i, j

〈Jn2 , T 〉 = n2

T ∈ C∗n2

where T =


T 11 · · · T 1n

... . . . ...
T n1 · · · T nn

 with T ij ∈ <n×n.

It is interesting to note that strong duality hold for the primal dual pair QAPPD
and

QAPP (C). Since QAPP (C), is strictly feasible (for Z = Y = −αI and v = 0 the matrix
B ⊗ A + Diag(c) + 2αIn2 is strictly copositive). Povh and Rendl have established the
equivalence of QAPP and QAPPD

, see Theorem 4.9,

Theorem 4.9. val(QAPP ) = val(QAPPD
)

Proof. see [117].

4.2.6 Mixed Binary Quadratic Programming

Recently Burer [34], has given a completely positive relaxation of a mixed quadratic binary
program. Burer has considered the program,

min
x

xTQx+ 2cTx

s.t

aTi x = bi, ∀ i = 1, ...,m

QPB x ≥ 0

xj ∈ {0, 1} ∀ j ∈ I
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where x ∈ <n and I ⊆ {1, ..., n}. Consider (aTi x)2 = b2
i ⇔ aTi xx

Tai = b2
i , we will add

these constraints in QPB. It is well known [55, 94], that the condition xj ∈ {0, 1} can be
equivalently stated as x2

j −xj = 0. If X = xxT then x2
j −xj = 0 implies Xjj = xj. Just like

in SDP we will relax the rank one matrix constraints X = xxT , x ≥ 0 by the constraint(
1 xT

x X

)
∈ C∗n+1 (since X = xxT if and only if

(
1 xT

x X

)
=

(
1

x

)(
1

x

)T

). Then we will

have the relaxation,

min
X,x

〈Q,X〉+ 2cTx

s.t.

CPPB aTi x = bi, ∀ i = 1, ...,m

aTi Xai = b2
i ∀ i = 1, ...,m

Xjj = xj ∀ j ∈ I(
1 xT

x X

)
∈ C∗n+1

In order to derive a relationship among the set of feasible points of QPB and CPPB we
make the following assumption,

Assumption 4.10. Let L =
{
x ≥ 0 : aTi x = bi ∀i = 1, ...,m

}
be the linear part of Feas(QPB)

then
x ∈ L ⇒ 0 ≤ xj ≤ 1 ∀ j ∈ I

.

Remark 1. It is clear that if Assumption 4.10 does not hold then it can be implied by
introducing at most |I| slack variables zj such that xj + zj = 1.

2. Bomze and Jerry [18] has noted that the above assumption can be replaced by a
weaker assumption namely

Assumption 4.11.

x ∈ L ⇒ xj is bounded for all j ∈ I

This weaker assumption can be enforced by introducing just one slack variable instead
of |I| slack variables.
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The recession cone of L is given by,

L∞ =
{
d ≥ 0 : aTi d = 0 ∀i = 1, ...,m

}
then it is clear from the Assumption 4.10 that if L 6= φ then,

d ∈ L∞ ⇒ dj = 0 ∀ j ∈ I (4.1)

In order to show that the relaxation of QPB is indeed exact, we will consider the new
feasible set namely Feas+(CPPB) and Feas+(QPB) which are linear parametrization of
Feas(CPPB) and Feas(QPB) respectively, and are defined by:

Feas+ (CPPB) =

{(
1 xT

x X

)
: (x,X) ∈ Feas (CPPB)

}

Feas+ (QPB) = Conv


(

1

x

)(
1

x

)T

: x ∈ Feas (QPB)



L+
∞ = Cone


(

0

d

)(
0

d

)T

: d ∈ L∞

 (4.2)

Theorem 4.12 gives the relationship between the above sets of feasible points,

Theorem 4.12. Feas+(CPPB) = Feas+(QPB) + L+
∞

Proof. Feas+(CPPB) ⊆ Feas+(P ) + L+
∞: For this we will prove that for any (x,X) ∈

Feas(CPPB) we have a decomposition of the form,(
1 xT

x X

)
=
∑
k∈ Φ+

λk

(
1

vk

)(
1

vk

)T

+
∑
k∈ Φ0

(
0

yk

)(
0

yk

)T

(4.3)

where
∑

k∈ Φ λk = 1, vk ∈ L ∀ k ∈ Φ+ and yk ∈ L∞ ∀ k ∈ Φ0.

Let (x,X) ∈ Feas(CPPB) and consider the completely positive decomposition,(
1 xT

x X

)
=
∑
i∈ Φ

(
ξk

yk

)(
ξk

yk

)T

(4.4)
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with yk ∈ <n+, ξk ∈ <+. We define, Φ+ = {k ∈ Φ : ξk > 0} and Φ0 = {k ∈ Φ : ξk = 0}.

From equation (4.4), we will have,(
1 xT

x X

)
=
∑
k∈ Φ

(
ξk

yk

)(
ξk

yk

)T

=
∑
k∈ Φ

(
ξ2
k ξky

kT

ξky
k ykyk

T

)
(4.5)

hence, ∑
k∈ Φ

ξ2
k = 1. (4.6)

We identify λk, k ∈ Φ+ by ξ2
k, hence giving

∑
k∈ Φ+

λk = 1.

From bi = aTi x and b2
i = aTi Xai, and (4.5), one can see,

bi = aTi x︸︷︷︸
=
∑
ξkyk

= aTi
∑
k∈Φ

ξky
k =

∑
k∈Φ

ξk(a
T
i y

k) ∀ i = 1, ...,m (4.7)

and
b2
i = aTi Xai = aTi

∑
k∈Φ

ykyk
T
ai =

∑
k∈Φ

(aTi y
k)2 ∀ i = 1, ...,m (4.8)

So we can write, from (4.6), (4.7), (4.8)(∑
k∈Φ

ξk(a
T
i y

k)

)2

=

(∑
k∈ Φ

ξ2
k

)(∑
k∈Φ

(aTi y
k)2

)

In Cauchy-Schwarz inequality, equality holds if and only if the two vectors (ξk : k ∈ Φ)

and (aTi y
k : k ∈ Φ) are linearly dependent, so in our case for all i = 1, ...,m, there

exists δi such that,
δiξk = aTi y

k ∀ k ∈ Φ, i = 1, ...,m (4.9)

If k ∈ Φ0 then ξk = 0 than (4.9), will become

aTi y
k = 0 ∀ k ∈ Φ0, i = 1, ...,m

hence yk ∈ L∞, ∀ k ∈ Φ0. Consider (4.7),

bi =
∑
k∈Φ

ξk(a
T
i y

k) =
∑
k∈Φ

ξk(δiξk) = δi
∑
k∈Φ

(ξk)
2 = δi
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So for all k ∈ Φ+, we will have

δiξk = aTi y
k

⇒ bi = aTi
yk

ξk
∀k ∈ Φ+

⇒ yk

ξk
∈ L ∀k ∈ Φ+

So we can conclude that vk := yk

ξk
satisfies the linear constraints.

For the binary constraint, let j ∈ I. From constraint Xjj = xj, we will get,∑
k∈Φ+

λk(v
k
j ) =

∑
k∈Φ+

λk(v
k
j )2 +

∑
k∈Φ0

( ykj︸︷︷︸
=0

)2

⇔
∑
k∈Φ+

λk
(
vkj − (vkj )2

)
= 0

In above expressionykj = 0, since (4.3) implies yk ∈ L∞ and from (4.1) we get
ykj = 0 for all j ∈ I. Moreover, since λk > 0 and 0 ≤ vkj ≤ 1, ∀ j ∈ I, so the
sum of nonnegative numbers is zero if and only if each one of them is zero that is
vkj − (vkj )2 = 0, giving that vkj ∈ {0, 1} ∀ j ∈ I. Hence the binary constraints are
satisfied for all j ∈ I. So decomposition of the from (4.3) exists and the inclusion
follows.

Feas+(QPB) + L+
∞ ⊆ Feas+(CPPB): Consider Feas+(QPB) ⊆ Feas+(CPPB) which fol-

lows directly from the construction. The recession cone (see Definition 2.7) of
Feas+(CPPB) given by,

rec(Feas+(CPPB)) =


(

0 dT

d D

)
∈ C∗1+n :

aTi d = 0 i = 1, ...,m

aTi Dai = 0 i = 1, ...,m

dj = Djj j ∈ I


Since

(
0 dT

d D

)
∈ C∗1+n, it should have a decomposition of the form (4.3) giving

d = 0, and the recession cone then simplifies to,

rec(Feas+(CPPB)) =

{(
0 0T

0 D

)
∈ C∗1+n :

aTi Dai = 0 i = 1, ...,m

Djj = 0 j ∈ I

}
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From (4.1) and (4.2) we can write,

L+
∞ = Cone


(

0

d

)(
0

d

)T

: d ∈ L∞

 = cone

{(
0 0T

0 ddT

)
: d ∈ L∞

}

which shows that L+
∞ is contained in the recession cone of Feas+(CPPB) so the

inclusion follows.
Hence the proof is complete.

The following is an immediate consequence of Theorem 4.12,

Theorem 4.13. Under Assumption 4.10, we have,

1. val(CPPB) = val(QPB)

2. If (x∗, X∗) is optimal for CPPB, then x∗ is in the convex hull of optimal solutions
for QPB.

Proof. 1. Let us define the linear function,

l(Y ) =

〈(
0 cT

c QT

)
, Y

〉
(4.10)

It is not difficult to verify that the optimum values of QPB and CPPB can be written
in terms of l(Y ) in following manner,

val(QPB) = min
Y ∈Feas+(QPB)

l(Y ) and val(CPPB) = min
Y ∈Feas+(CPPB)

l(Y )

Since Feas+(QPB) ⊆ Feas+(CPPB), hence we will have val(QPB) ≥ val(CPPB).
In order to obtain equality we will consider following two cases,

val(QPB) = −∞: If val(QPB) = −∞ then from val(QPB) ≥ val(CPPB), we obtain
that val(CPPB) = −∞, hence val(QPB) = val(CPPB). So in case of infinite
values the optimum values are same.

val(QPB) 6= −∞: From Theorem 4.12 we have,

Feas+(CPPB) = Feas+(QPB) + L+
∞
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The above equation suggests that if l is nonnegative over L+
∞ then optimum

values of QPB and CPPB coincides with each other. In order to show that l is
nonnegative over L+

∞ take d ∈ L∞ then,

l

(0

d

)(
0

d

)T
 =

〈(
0 cT

c Q

)
,

(
0

d

)(
0

d

)T〉
= dTQd

From above equation it is clear that l is negative only if dTQd is negative which
implies that we can have optimum value from negative orthant hence from
val(QPB) = minY ∈Feas+(QPB) l(Y ) we get val(QPB) = −∞ which is a contradic-
tion. Hence dTQd is nonnegative. Since d ∈ L∞ is arbitrary so l is nonnegative
on L∞.

2. Since (x∗, X∗) is optimal for CPPB hence it will have decomposition of the form (4.3)
that is, (

1 (x∗)T

x∗ X∗

)
=
∑
k∈ Φ+

λk

(
1 (vk)T

vk vkvk
T

)
+
∑
k∈ Φ0

(
0

yk

)(
0

yk

)T

giving that, x∗ =
∑

k∈Φ+
λkv

k. By Theorem 4.12, vk ∈ Feas(QPB) hence x∗ ∈
Cov{Feas(QP )}. Moreover vk is also optimal for QPB since,

val(CPPB) = l

((
1 (x∗)T

x∗ X∗

))
=
∑
k∈Φ+

λk〈Q, vk(vk)T 〉+ 2cT
∑
k∈Φ+

λkv
k +

∑
k∈Φ+

λk〈Q, yk(yk)T 〉

≥ val(QPB) = val(CPPB)

the last equality holds from part 1. Hence vk is optimal and this completes the proof.

Remark Bomze and Jarre [18], have showed that under the weak assumption we will
have Feas+(QPB) = Feas+(QPB) + L+

∞ = Feas+(CPPB), where Feas+(QPB) denotes
the closure of Feas+(QPB).

A disadvantage of CPPB is that it does not contain interior points. Since,

(
bi −ai

)(1 xT

x X

)(
bi

aTi

)
= 0, ∀

(
1 xT

x X

)
∈ Feas(CPPB)
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Thus the matrix

(
1 xT

x X

)
is not in the interior of semidefinite cone so by definition of com-

pletely positive matrices the matrix

(
1 xT

x X

)
can not lie in the interior of the completely

positive cone. Recall that the interior of feasible set of points for a certain cone program
is crucial for obtaining strong duality results. Therefore nonexistence of interior points is
a disadvantage. In order to solve this problem Burer, suggests to eliminate x from the
completely positive representation. Elimination of x is possible only if there exists some
y ∈ <m such that,

m∑
i=1

yiai ≥ 0 and
m∑
i=1

yibi = 1

If we consider above constraints then we can write CPPB after elimination of x as,

min
X
〈Q,X〉+ 2cTXα

s.t.

aTi Xα = bi, i = 1, ...,m

aTi Xai = b2
i , i = 1, ...,m

CPPreduced (Xα)k = Xkk ∀ k ∈ B

αTXα = 1

X ∈ C∗n

where,

α =
m∑
i=1

yiai ≥ 0

CPPreduced is equivalent to CPPB, as stated in next theorem.

Theorem 4.14. If there exists y ∈ <m such that
m∑
i=1

yiai ≥ 0 and
m∑
i=1

yibi = 1. We define

α =
m∑
i=1

yiai ≥ 0 then CPPreduced is equivalent to QPB i.e

1. opt(CPPreduced) = opt(CPPB)

2. If X∗ is optimal for CPPreduced, then X∗α is in the convex hull of optimal solution
for CPPB
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4.3 Algorithm

Copositive programming being a new area of research does not enjoy the luxury of hav-
ing some standard solution method. Although copositive programming has been applied
to a number of practical problems, still there is no algorithm for solving copositive pro-
gramming. Some efforts have been made for developing a solution procedure. But these
methods are not really efficient and have a number of deficiencies. Beside the fact that the
available methods are not good enough, they are still applied to practical problems.

To the best of our knowledge there exists three methods/procedures for solving copos-
itive programs. The oldest and most widely used method is based on an approximation
of the copositive cone by different cone hierarchies. Another method which is based on
inner and outer approximations of the copositive cone is also applied to certain practical
problems. The feasible descent method of Bomze et al [26] provides a choice for solving
copositive programs over the cone of completely positive matrices. In the next subsections
we will briefly discuss each of the above three procedures/methods for solving copositive
programs.

4.3.1 Approximation Hierarchy Based Methods

These methods are based on the quadratic form associated with copositive matrices. With
every matrix A we can associate a quadratic form. If this quadratic form is nonnegative for
nonnegative argument then the matrix is copositive. This quadratic form can be written
as finite sum of quadratic terms, with elements of A being coefficient of the polynomial,
hence for a certain matrix A ∈ Sn, we can define the polynomial,

PA(x) =
n∑
i=1

n∑
j=1

Aijx
2
ix

2
j

It is clear that A ∈ Cn if and only if PA(x) ≥ 0 for all x ∈ <n. So the problem of checking
copositivity of a matrix reduces to checking conditions when PA(x) is nonnegative. It is
not difficult to verify that PA(x) will be nonnegative if,

1. PA(x) can be written as sum of square

2. All the coefficients of PA(x) are nonnegative

Whenever the first condition holds the second condition become true automatically. It is
shown by Parrilo [112] that A ∈ S+

n + Nn if and only if PA(x) allows a sum of square
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distribution. Moreover if f(x1, ..., xn) is a homogeneous polynomial which is positive on
the standard simplex, then for sufficiently large r ∈ N, the polynomial

f(x1, ..., xn).

(
n∑
i=1

x2
i

)r

has positive coefficients. Using these two results Parrilo [112] has defined the following
cone hierarchy,

Kr =

{
A ∈ Sn|PA(x)

(
n∑
i=1

x2
i

)r

has a sum of square decomposition

}

It is shown by Parrilo that the cone Kr approximate Cn from interior since S+
n + N =

K0 ⊂ K1 ⊂ ... and int(Cn) ⊆ ∪r∈ NK
r. Hence one can approximate the copositive cone by

a set of linear matrix inequality due to the linear matrix inequality formulation of sum of
square decomposition. So each copositive program can be approximated by a large SDP.
The size of SDP can be exponential in the size of the copositive program.

By definition, PA(x) has nonnegative coefficients if and only if A ∈ Nn. By exploiting
this property de Klerk and Pasechnik[45] has defined the following cone hierarchy,

Λr =

{
A ∈ Sn|PA(x)

(
n∑
i=1

x2
i

)r

has nonnegative coefficient

}

de Klerk and Pasechnik have shown that Nn = Λ0 ⊂ Λ1 ⊂ ... and int(Cn) ⊆ ∪r∈NΛr. It
is not difficult to see that Λr ⊂ Kr for all r = 0, 1, ... (see [45, Corollary 3.6]), since if
P (x) has only nonnegative coefficients then it has sum of square decomposition. The cone
program over Λr result in linear programs since each cone is polyhedral.

The above cone hierarchy for approximating copositive cone results in solving either
SDP or linear programs. These programs are exponential in the size of copositive programs.
Hence for large r it is difficult to solve these programs. Beside this fact that for large r
it takes exponential time to solve certain copositive program, these kind of methods has
been applied efficiently for some practical problems (see [24, 44, 45, 116]). To the best of
our knowledge no such cone hierarchies exists for the cone of completely positive matrices.
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4.3.2 Feasible Descent Method

Bomze et al [26] has given a feasible descent method for solving optimization problems
over the completely positive cones. We will start with following problem,

min 〈C,X〉

s.t.

CPP1 〈Ai, X〉 = bi, i = 1, ...,m

X ∈ C∗n

Suppose there exists an initial feasible solutionX0 which has a factorizationX0 = (V 0)(V 0)T ,
then the next iteration point can be calculated by Xj+1 = Xj + ∇Xj, where ∇Xj is a
solution of following program,

min 〈C,∇X〉+ (1− ε) ‖∇X‖2
j

s.t.

CPP2 〈Ai,∇X〉 = 0, i = 1, ...,m

Xj +∇X ∈ C∗n

The norm ‖.‖j used in iteration j depends on the current iterate Xj. Using Xj+1 =

(V +∇V )(V +∇V )T , one can show that the above program can be written as (for details
see [26]),

min ε
〈
C, V (∇V )T +∇V V T + (∇V )(∇V )T

〉
+

(1− ε)
∥∥V (∇V )T +∇V V T + (∇V )(∇V )T

∥∥2

j

s.t.

CPP3 〈Ai, V (∇V )T +∇V V T + (∇V )(∇V )T 〉 = 0, i = 1, ...,m

V +∇V ∈ Nn

The objective function of the above program has become a non-convex quadratic function.
Algorithm 1 gives an implementable algorithm for solving above regularized problem.

The algorithm 1 gives a solution which is only locally optimal. The convergence of the
algorithm is not guarantied. The main disadvantage of this algorithm is the requirement
of an initial solution which itself a hard problem. Moreover finding the factorization of the
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Algorithm 1 Feasible descent method [26, Algorithm 2.1]
Require: ε ∈ (0, 1), V ≥ O with 〈Ai, V V T 〉 = bi ∀ i
set ∇V old = O and s̃i = 0 for all i. Set l = 1 and τ1 = 1− ε
Solve

min 〈2C(V +∇V old),∇V 〉+ (1− ε)
∥∥∇V old +∇V

∥∥2
+ τ1 ‖∇V ‖2

s.t.

〈2Ai(V +∇V old),∇V 〉 = s̃i, i = 1, ...,m

V +∇V old +∇V ∈ <n×k+

and denote the optimal solution by ∇V l.
Update ∇V old = ∇V old +∇V l and s̃i = bi − 〈Ai(V +∇V old), V +∇V old〉.
If
∥∥∇∇V old

∥∥ > 1 set ε = ε/2 and ∇V old = ∇V old/2
If
∥∥∇V l

∥∥ ≈ 0 then stop, ∇V old approximately solves CPP3 locally.
ELSE update l = l + 1, τ1 = 1.5 ∗ τl−1, and go to step 2.

solution matrix is not trivial.

4.3.3 ε−Approximation Algorithm

An algorithm for the solution of CPP (see section 4.1) is proposed by [32]. The algorithm is
based on some newly defined polyhedral inner and outer approximations of the copositive
cones. The idea is similar to the idea of approximating copositive cones by the cone hier-
archy. The problem of testing copositivity of a matrix can be converted to an optimization
problem over a simplex in following way.

1. A is copositive if and only if xTAx ≥ 0 for all x ∈ <n+ with ‖x‖ = 1

2. If we take 1−norm then the set ∆s = {x ∈ <n+ : ‖x‖1 = 1} is the so called simplex.

3. Hence A is copositive if and only if xTAx ≥ 0 for all x ∈ <n+ with x ∈ ∆s

For describing our algorithm we need to define simplicial partitions,

Definition 4.15. Let ∆ be a simplex in <n. A family P = {∆1, ...,∆m} of simplices
satisfying

∆ = ∪mi=1∆iand int(∆i) ∩ int(∆j) = 0,∀ i 6= j

is called a simplicial partition of ∆.
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Moreover the sets of vertices and edges of a simplex are defined as,

V (P ) = {v : v is a vertex of some simplex inP}

E(P ) = {(u, v) : u 6= v are vertices of the same simplex in P}

One can prove that a matrix A is copositive if vTAv ≥ 0 for all v ∈ V (p) and uTAv ≥ 0

for all (u, v) ∈ E(P ) (for details [32, Theorem 3]). Based on the described results we
define the two closed convex polyhedral cones IP and OP giving inner respectively outer
approximations of copositive matrix,

IP = {A ∈ Sn :vTAv ≥ 0, ∀ v ∈ V (P )

uTAv ≥ 0 ∀ (u, v) ∈ E(P )}

OP = {A ∈ Sn : vTAv ≥ 0, ∀v ∈ V (P )}

In the algorithm if the partitions get finer then the approximation of Cn gets monotonically
better for both inner and outer approximation cones. Since the cones IP and OP are
polyhedral, so optimizing over them results in solving linear programming problem. Solving
over IP gives upper and over OP gives lower bounds on optimal solution.

Under standard assumptions the Algorithm 2 is provably convergent. A drawback of
this algorithm is that, the constraints in the linear programs grow very quickly and the
constraint system contains a lot of redundancy. This results in more computer memory
usage. Moreover this algorithm is not applicable for the general model of Burer (see section
4.2.6) and provides poor results for box constrained optimization problems.

Remark Beside the methods/algorithms given above, some other attempts for a solution
of copositive programs over copositive or completely positive matrices are given in [17, 22,
35].
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Algorithm 2 ε-Approximation Algorithm for CPP
1: set P = {∆s}
2: solve the inner LP

min〈C,X〉
s.t.

〈Ai, X〉 = bi, i = 1, ...,m

X ∈ IP

let XI denotes the solution of this program
3: solve the outer LP

min〈C,X〉
s.t.

〈Ai, X〉 = bi, i = 1, ...,m

X ∈ OP

let XO denotes the solution of this program
4: if 〈C,XI〉−〈C,XO〉

1+|〈C,XI〉|+|〈C,XO〉| then
5: STOP XO is an ε− optimal solution of CPP
6: end if
7: choose ∆ ∈ P
8: bisect ∆ = ∆1 ∪∆2

9: set P ← P{∆} ∪ {∆1,∆2}
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Chapter 5

Semi-Infinite Programming (SIP)
Representation of CP and SDP

SIP, CP and SDP being subclasses of mathematical programming have some obvious con-
nections. In special cases these three classes can be represented by each other. In previous
chapters we have discussed about CP and SDP. In this chapter we will investigate the
connections among SIP, CP and SDP. We will start this chapter by giving description of
semi-infinite programming. Then we will give SIP representation of CP and SDP. The final
section of this chapter is devoted to SIP solution methods for SDP.

5.1 Semi-infinite Programming (SIP)

Semi-infinite programming is one of the oldest classes of mathematical programming. Being
oldest class it is very well studied in literature. The area of semi-infinite programming is
very rich in terms of theoretical results. A major drawback of semi-infinite programming
is the nonexistence of an efficient algorithm which can solve semi-infinite programs to
optimality. In special cases some other classes like cone programs can be represented as
semi-infinite programs.

The most general form of SIP is,

min
x∈<n

f(x)

s.t.

PSIP g(x, v) ≥ 0 ∀ v ∈ V
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where f, g are real valued (continuous) functions and V is a compact set. The set of feasible
points for PSIP is defined by infinitely many constraints,

Feas(PSIP ) = {x|g(x, v) ≥ 0, v ∈ V }

It is not difficult to show that Feas(PSIP ) is closed. Moreover PSIP will be convex if the
function f is convex and for every index v ∈ V , the constraint function gy(x) = g(x, v) is
concave that is −gv is convex. In convex SIP the set of feasible points is always convex
and every local minimizer is also global minimizer. First and second order optimality
conditions have been derived for Semi-infinite programming. These conditions are based on
generalized Farkas lemma and generalized Mangasarian-Fromowitz constraint qualification.

SIP arise naturally in many applications for example Chebyshev approximation. SIP has
been applied to some other areas like minimal norm problem in the space of polynomial,
mathematical physics, robotics, geometry, optimization under uncertainty, economics, ro-
bust optimization and system and control (see [79, 101, 139]).

Since the feasibility problem for SIP cannot be solved in polynomial time in general
hence existence of polynomial time algorithm for SIP is not possible unless P = NP .
Nonexistence of an efficient algorithm implies that one has to rely on numerical methods.
The numerical methods available can be classified to three main categories: Local reduction
method, discretization methods and exchange methods.

In the local reduction method the original problem is replaced by a locally equivalent
problem with finitely many inequality constraints. The problem can also be replaced by
a system of nonlinear equations with finitely many unknowns. This system can be solved
by Newton’s method and hence these methods have good convergence results. Reduction
based SQP-methods are one example of these kind of methods.

Discretization methods are based on solving a sequence of finite programs. The sequence
of finite programs are solved according to some pre-defined grid generation scheme or some
cutting plane scheme.

The exchange methods can be seen as a compromise between discretization methods and
reduction methods. Hence they are more efficient then discretization methods. Exchange
methods works in two phases, for complete details see [78, 79, 122].

Besides the methods discussed above, some other methods also exists for solution/approximation
of SIP. These methods includes interior point method [134, 136] and feasible direction
methods [101, 122].
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5.1. SEMI-INFINITE PROGRAMMING (SIP)

Remark The earliest description of SIP can be found in 1924, where it was discussed as
Chebyshev approximation. The term semi-infinite was first used by Charnes and Kortanek
in some papers devoted to linear semi-infinite programs (LSIP) (see [101]). Now the field
of semi-infinite programming is rather very well developed with respect to both theoretical
as well as practical point of view. In last decades more then 1000 articles and 10 books
have been published covering one or more aspect of SIP (see the huge list of references on
SIP collected by Lopez and Still [100]).

5.1.1 Linear Semi-infinite Program (LSIP)

In SIP when all the constraints and objective functions are linear then we will have a linear
semi-infinite program (LSIP). One can write LSIP in the following form,

min
x∈<n

cTx

s.t.

PLSIP aTv x ≥ bv ∀ v ∈ V

where av, c ∈ <n and bv ∈ <. The set of feasible points of PLSIP is a closed convex set,
since it is an intersection of closed half spaces. One can define different dual problems
associated with PLSIP . If PLSIP is continuous i.e. when V is compact and av, bv are
continuous function on V , then one can define the following dual,

max

∫
V

b(v)d(u(v))

s.t.

DLSIP

∫
V

b(v)d(u(v)) = c

u ∈ K+(V )

where v 7→ av ≡ a(v) and v 7→ bv ≡ b(v) andK+ is the cone of non-negative Borel measures
on the compact space V . Another dual which can be associated with PLSIP is the so called

66



5.1. SEMI-INFINITE PROGRAMMING (SIP)

Haar dual defined below,

max
∑
v∈V

uvbv

s.t.

DLSIP

∑
v∈V

uvav = c

uv ≥ 0, v ∈ V

where only a finite number of dual variables uv, v ∈ V attain positive values. DLSIP is
feasible if and only if c belongs to the cone generated by av, that is

DLSIP is feasible if and only if c ∈ cone{av|v ∈ V } (5.1)

Remark It is worth mentioning that the sum
∑

v∈V uvbv is finite, since by Caratheodory’s
theorem(see e.g. [55, Theorem 3.6]) this sum can be express with at most n non-zero
coefficients uy. The same is true for the sum

∑
v∈V uvav.

Let us write u = (uv) then,

Lemma 5.1. If x ∈ Feas(PLSIP ) and u ∈ FeasDLSIP then cTx ≥
∑
v∈V

uvbv

Proof. see e.g. [55, Theorem 12.17].

Before giving the strong duality result we give some basic definitions required for the strong
duality proof.

Definition 5.2 (Active Index Point). Let the vector x ∈ Feas(LSIP ) then the active
index set denoted by V (x) is given below,

V (x) = {v ∈ V |g(x, v) = 0} (5.2)

The set V (x) is a closed compact subset of V .

A strictly feasible direction at x is a vector d ∈ <n such that,

∇xg(x, v)d < 0 ∀ v ∈ V (x)
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Definition 5.3 (KKT Condition). A local minimizer x is said to satisfy the KKT con-
dition if there exist multipliers µ1, ..., µk ≥ 0 and indexes v1, ..., vk ∈ V (x) such that,

∇f(x) +
k∑
j=1

µj∇xg(x, vj) = 0T (5.3)

Just like cone programming strong duality does not hold in general for LSIP , we need to
define a constraint qualification.

Definition 5.4 (Slater Condition). The primal Slater condition holds

if there exists x ∈ <n with avx > bv ∀v ∈ V (5.4)

We say dual Slater condition holds if

c ∈ int(cone{av|v ∈ V }) (5.5)

Now we will state and prove strong duality result.

Theorem 5.5. 1 If the primal (5.4) and dual slater (5.5) conditions are satisfied. Then
primal and dual solutions x and u exists and val(PLSIP ) = val(DLSIP ).

Proof. Let A is a matrix with infinite mainly rows aTv , v ∈ V and b is a vector with infinite
components bv. The dual slater condition (5.5) implies that DLSIP is feasible. Hence weak
duality implies that PLSIP is bounded.

On the basis of the dual Slater condition we may assume that there exists a strictly
feasible dual basic solution,

ŷT = cT Â−1 > 0T

where Â is a basic submatrix of A. Scaling c if necessary we may further assume 0 < ŷ < 1.
Let ε > 0 such that for all c̃ = c+ εp, ‖p‖ ≤ 1,

ỹT = c̃T Â−1 still satisfies 0 ≤ ỹ ≤ 1 (5.6)

Let (xk) be a sequence of primal feasible solution such that cTxk → val(PLSIP ) and take p =
xk
‖xk‖

, with the assumption that for sufficiently large k, xk 6= 0. Hence we have perturbation

1This theorem is extracted from [55, Theorem 12.18,12.19 and corally 12.3]
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c̃ = c+ ε xk
‖xk‖

. Since we have cTxk → val(PLSIP ), hence for sufficiently large k,

val(PLSIP )− ε ≤ cTxk = c̃T − ε‖xk‖

= ỹTk Âxk − ε‖xk‖

≤ ỹTk b̂− ε‖xk‖

where b̂ is the right hand side subvector of b corresponding to Â. Hence,

ε‖xk‖ ≤ ỹTk b̂− valPLSIP + ε ≤
n∑
j=1

|b̂j| − val(PLSIP ) + ε

shows that ‖xk‖ is bounded. So (xk) must contain a convergent subsequence. Giving that
x = limxs, hence x is feasible since Feas(PLSIP ) is closed set and val(PLSIP ) = x. This
proofs the existence of an optimal solution x.

Now assume that x̂ is a Slater point for PLSIP . Then take d = x̂ − x, then for any
v ∈ V (x), we will have,

∇xg(x, v)d = aTv d = aTv (x̂− x) < bv − bv = 0

giving that d is a feasible direction. Since we have discovered a feasible direction d at x
hence x satisfies KKT-condition,

0T = ∇f(x) +
n∑
j=1

µj∇xgj(x, vj) = −cT +
n∑
j=1

µja
T
vj

with µj ≥ 0, vj ∈ V (x). So yvj = µj proves the claim. Now by definition of yv, we
find yT (b − A(x)) =

∑
j yvj(bvj − aTvjx) = 0 hence yT b = cTx implying val(PLSIP ) =

valDLSIP .

From (5.1) we get the intuition that there is some relationship between LSIP and cone
programming. Our next two sections are focused on this kind of relations.

Remark Although LSIP is linear and convex but the existence of polynomial time algo-
rithm is not possible for LSIP. The main difficulty lies in checking the constraint g(x, v) ≥
0 ∀ v ∈ V . Checking the feasibility of point x will result in solving a global minimization
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problem ,

min
y

g(x, v)

s.t.

v ∈ V

and to check that for a global minimum v the condition holds g(x, v) ≥ 0.

5.2 SIP Representation of CP

Consider the following copositive program,

min
x∈ <m

cTx

s.t.

PCP

m∑
i=1

xiAi + Z = B

Z ∈ Cn

where Ai, B ∈ Sn. Recall from Definition 2.13 that for any A ∈ Sn, we will have,

A ∈ Cn ⇔ vTAv ≥ 0 ∀ v ∈ V = {v ∈ <n+ | ‖v‖ = 1}

By the above definition we can have,

Z ∈ Cn ⇒ B −
m∑
i=1

xiAi ∈ Cn

⇒ vT

(
B −

m∑
i=1

xiAi

)
v ≥ 0 ∀ v ∈ V

⇒ aTv x− bv ≥ 0 ∀ v ∈ V
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where aTv = (vTA1v, v
TA2v, ..., v

TAmv) and bv = vTBv. Then we can write PCP equiva-
lently as,

min
x∈ <m

cTx

s.t.

PCP aTv x− bv ≥ 0 ∀ v ∈ V

Above is a LSIP with constraints aTv x ≥ bv, hence its dual can be written as

max
y

∑
v∈V

bvyv

s.t.

(DCP )
∑
v∈V

yvav = c

yv ≥ 0 ∀v ∈ V

Now if we consider,

vTBv −
m∑
k=1

xkv
TAkv =

m∑
i=1,j=1

bijvivj −
m∑
k=1

xk

m∑
i=1,j=1

(aij)kvivj

=
〈
vvT , B

〉
−

m∑
k=1

xk
〈
vvT , Ak

〉
then (PCP ) and (DCP ) can be written as follows,

min
x∈<m

cTx max
y

∑
v

yv
〈
vvT , B

〉
s.t. s.t.

PCP

m∑
k=1

xk
〈
vvT , Ak

〉
≤
〈
vvT , B

〉
∀ v ∈ V DCP

∑
v

yv
〈
vvT , Ak

〉
= ck, k = 1, ..., n

y ≥ 0
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Considering the fact that C∗n can also be described as C∗n = cone{vvT |v ∈ <n+} we can use
substitution, Y =

∑
yv[vv

T ] ∈ C∗n, hence primal and dual can take the form,

min
x∈ <m

cTx max
Y
〈Y,B〉

s.t. s.t.

PCP

m∑
i=1

xiAi + Z = B DCP 〈Y,Ak〉 = ck, k = 1, ...,m

Z ∈ Cn Y ∈ C∗n

Theorem 5.6 (Weak Duality). Let x and Y belongs to the set of feasible points of PCP
and DCP respectively then, cTx ≤ 〈Y,B〉.

Proof. Similar to the proof of Lemma 3.1.

Recall, for strong duality result the characterization of interior for primal and dual pro-
grams is often required. It is well known that the interior of copositive cone consist of the
so called strictly positive cones, i.e.

int(Cn) = {A ∈ Sn|xTAx > 0, x ∈ <n+}

where Sn is the set of symmetric matrices, hence the primal slater condition will be of the
form,

∃ x̂ ∈ <n s.t. Z =

(
B −

m∑
i=1

x̂iAi

)
∈ int(Cn) (5.7)

Since av = (〈A1, [vv
T ]〉, ..., 〈Am, [vvT ]〉) and the definition of completely positive cone, we

can write,
c ∈ int{(〈A1, Y 〉, ..., 〈Am, Y 〉)T |Y ∈ C∗n} (5.8)

Hence we will state the strong duality result,

Theorem 5.7. If the constraints qualification (5.7) and (5.8) holds then both primal and
dual have complementary optimal solution (x) respectively (Y ).

Proof. The proof is similar to the proof of Theorem 5.5
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5.3 SIP Representation of SDP

Consider the SDP with linear constraints and linear objective function,

min
x∈ <m

cTx

s.t.

PSDP

m∑
i=1

xiAi + Z = B

Z�0

where Ai, B are n× n symmetric matrices. We know that for any A ∈ S+
n , we will have,

A�0⇔ vTAv ≥ 0 ∀ v ∈ V = {v ∈ <n+ | ‖v‖ = 1}

by above definition we can have,

Z�0⇒ vT

(
B −

m∑
i=1

xiAi

)
v ≥ 0 ∀ v ∈ V

⇒ aTv x− bv ≥ 0 ∀ v ∈ V

where aTv = (vTA1v, v
TA2v, ..., v

TAmv) and bv = vTBv. Then we can write P equivalently
as,

min
x∈ <m

cTx

s.t.

PSDP aTv x− bv ≥ 0 ∀ v ∈ V
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Above is LSIP with constraints aTv x ≥ bv, hence its dual can be written as

min
y

∑
v∈V

bvyv

s.t.

DSDP

∑
v∈V

yvav = c

yv ≥ 0 ∀v ∈ V

PSDP and DSDP can also be written as follows,

min
x∈<m

cTx max
y

∑
v

yv
〈
vvT , B

〉
s.t. s.t.

PSDP

m∑
k=1

xk
〈
vvT , Ak

〉
≤
〈
vvT , B

〉
∀ v ∈ V DSDP

∑
v

yv
〈
vvT , Ak

〉
= ck, k = 1, ..., n

y ≥ 0

Using the substitution Y =
∑
yv[vv

T ] ∈ (S+
n )
∗

= S+
n , DSDP can be written as,

max
Y
〈Y,B〉

s.t.

DSDP 〈Y,Ak〉 = ck, k = 1, ...,m

Y ∈ S+
n

By Using above PSDP and DSDP weak and strong duality theorem can be formulated in
a similar manner as was done in last section. We will use LSIP representation of SDP in
next section.
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5.4 SIP Solution Approach for SDP

The primal and dual pair of SDP program can be written as,

max
Y
〈Y,B〉 min

x∈<m
cTx

s.t. s.t.

P 〈Ai, Y 〉 = ci, ∀i = 1, ...,m D g(x) = A0 −
m∑
i=1

Aixi

Y�0 g(x)�0

where Ai ∈ Sn ∀i = 1, ...,m and C are given matrices and c = {c1, c2, ..., cm} ∈ <m. A
matrix is positive definite if all its eigenvalues are positive. So the dual program can also
be written as follows,

min
x∈<m

cTx

s.t.

EOP λj(x) ≥ 0, ∀j = 1, ..., n

where λj(x) is the function of eigenvalues of the matrix g(x). Now if we consider g(x) as
parametric family of matrices depending linearly on parameter x, then we can write the
eigenvalue equation for g(x) = A0 −

∑m
i=1Aixi as,

g(x)v = λ(x)v

Now consider λj : <n → < as function of eigenvalues and vj : <n → <n as the corresponding
set of orthonormal eigenvectors for the above equation. One can see D and EOP are same
problem. But there are two major differences in D and EOP ,

1. The constraint in D are convex while in EOP they are concave,

2. In D constraint are differentiable. For EOP its is well known that the function λj is
continuous but differentiability is not satisfied.

The reason why we have converted SDP to EOP is the unavailability of fast solution
method for SDP . Although interior point methods are polynomial time methods, but for
most of practical problems where we have thousands of constraints these methods become
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annoying.
Here we will try to solve SDP problems by exploiting the structure of eigenvalues. So

we begin by investigating some properties of the eigenvalue function. Let us start with the
simple case when all the eigenvalues of the g(x) are simple for a fixed x ∈ Rn, then we will
have following result,

Theorem 5.8. Suppose that g(x) ∈ Cr(<n, Sn) for some r ≥ 0. Let λ : <n → < be a fixed
eigenvalue function of g(x) with corresponding eigenvector function v : <n → <n. If λ(x)

is a simple eigenvalue of g(x) locally near x then λ ∈ Cr(<n,<) and v ∈ Cr(<n,<n).

Proof. For the proof we consider the following function,

H(x, λ, v) =

g(x)v − λv = 0

vTv − 1 = 0
(5.9)

It can be easily verified that for a fixed x ∈ <n, if (λ, v) is a solution of H(x, λ, v) = 0

then (λ, v) is an eigenpair of g(x). Now consider H ∈ Cr(<n,<) since g(x) ∈ Cr(<n, Sn).
Moreover, the Jacobian |Dλ,vH(x, λ, v)| 6= 0, where |A| denotes determinant of A. To prove
this, we consider the Jacobian matrix J = Dλ,vH(x, λ, v) of (5.9),

J =

[
g(x)− λI −v

2v 0

]

J is singular if for some a ∈ <n and β ∈ <), the system,

(g(x)− λI)a− βv = 0

2vTa = 0

has only trivial solution, i.e. a = 0, β = 0. Multiplying the first equation by vT from left
we will get β = 0, hence our system reduces to,

(g(x)− λI)a = 0

2va = 0

First equation says that a belongs to the null space of g(x)− λI. So we can write a = αv.
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So from second equation we will get

2αvTv = 0

and by vTv = ‖v‖2 6= 0 we find α = 0, hence a is a zero vector. So |Dλ,vH(x, λ, v)| 6= 0,
now by implicit function theorem locally near x, λ ∈ Cr(<n,<) and v ∈ Cr(<n,<n).

It is interesting to note that in case of eigenvector function, the continuity of the eigenvector
function is not guarantied even in one parameter case, see the example below,

Example Consider the one parameter matrix, depending on x ∈ <,

g(x) = e−
1
x2

(
cos 2

x
sin 2

x

sin 2
x
− cos 2

x

)

g(x) is infinitely differentiable on <. The eigenvalue function is

λ(x) =

±e
− 1

x2 x 6= 0

0 x = 0

But we can not define any eigenfunction which is continuous at x = 0.

If the eigenvalue λ(x) is not simple we do not have smoothness result for eigenvectors but
these results holds for eigenvalues„

Theorem 5.9. Assume g ∈ Cr(<, Sn), r ∈ N∪ {∞}. The the eigenvalue function λj of F
can be defined in such a way that λj ∈ Cr(<n,<), j = 1, ..., n

Coming back again to EOP and D. Owing to the SIP representation of SDP we can write,

g(x)�0 ⇔ vTg(x)v ≥ 0∀ v ∈ V

With the assumption that Slater condition holds for P , the minimum of EOP can only be
obtained at minimum eigenvalue identified by the active index set since for v ∈ V (x) we
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have vTg(x)v = 0, so D can be written as,

min cTx

s.t.

λmin(vTg(x)v) = 0 ∀ v ∈ V (x))

Remark In [29], Bossum has discussed Newton type methods based on formulation of SDP
as eigenvalue problem. Krishnan and Mitchel [90] has developed methods based on SIP
representation of SDP and spectral bundle methods. With the help of example problems
like bisection and MaxCut they have compared their method with interior point methods.
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Chapter 6

Conclusion and Future Work

The main objective of this thesis was to explore the relationship between three different
classes of mathematical programming. Throughout this thesis we have concentrated on
copositive programming and related concepts. We have dealt with copositive, semidefinite
and semi-infinite programming with respect to integer programming or to be more precise
with respect to combinatorial optimization. In this chapter we will conclude about our
findings in this thesis. Since our emphasis is survey existing results so only few new results
are included in this thesis. In the last section of this chapter we will enlist some future work
associated with the topic of this thesis or more precisely with copositive programming.

6.1 Conclusion

Here we will discuss about our findings and results we have discussed in each chapter. If
some new results are included in any of chapter here we will pinpoint those results.

First chapter is introductory. The literature review part contains references to almost
all state of the art results for copositive programming. We have also given some literature
on semidefinite programming. The literature indicated in chapter 1 can be useful for new
researchers working in the field of copositive programming.

In the second chapter we have tried to collect some state of the art results on the cone
of completely positive and copositive matrices which we feel necessary for their application
in copositive programming. Our contribution in this chapter is Lemma 2.21. To the best
of our knowledge no similar result is available in literature. Moreover we have surveyed
some recent developments for the cone of completely positive and copositive matrices.

Chapter 3 is mainly a revision of some old results known for cone programming and
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semidefinite programming. Our main contribution in this chapter is an easy proof of
results by Koijma and Tuncel [88] for quadratically constrained quadratic programs and
its relaxations. Other contribution includes the indication of literature for different problem
for which semidefinite programming is proved useful.

Chapter 4 is our main chapter. In this chapter we have mainly dealt with the survey
of applications and methods/algorithm available for copositive programming. Bundfuss
[30] has also given the survey of applications but we have attempted to provide surveys on
available algorithm/solution procedure for copositive programming. Our main contribution
in this chapter is subsection 4.2.2. We have extended the result of Koijma and Tuncel (see
[88] or subsection 3.2.2) for the case of copositive programming. The result can be seen as a
positive step for determining copositive relaxation for quadratically constrained quadratic
programs.

In chapter 5 we have briefly described semi-infinite programming. It is well known that
linear conic programs can be represented as linear semi-infinite programs but no results are
available for copositive programming. We have represented copositive program as linear
semi-infinite program with the future objective to apply linear semi-infinite program meth-
ods for solving/approximating copositive programs. Moreover semi-infinite representations
of copositive programming is useful for developing duality results for copositive program-
ming. In the last section of the chapter we have represented semidefinite programming as
eigenvalue problem and proved some associated results for eigenvector and eigenvalue func-
tion. It is well known fact that semidefinite programming problems can be solved by the
methods of eigenvalue optimization. Spectral bundle methods are well known in this re-
gard. We have formulated the semidefinite programing problem as eigenvalue optimization
problem with the future goal of obtaining similar results for copositive programming.

6.2 Future Work

During the literature search and compiling of the thesis we have kept an eye on open
problems related to the topic of the thesis which can be interesting for future work. Here
we will list some of them with brief detail.

1. Copositive Programming and Burer’s MBQP(see subsection 4.2.6)

• Extension of Burer’s result to the case of quadratic constraints.

• The dual of Burer’s completely positive representation of QP is a copositive
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program. It is still not known whether there is any duality gap in copositive
and completely positive representation. This will be an interesting problem
since there exists some approximation methods for programs over the cone of
copositive matrices but no such methods exists for programs over the cone of
completely positive matrices.

2. Copositive Programming and Semi-infinite Programming

• Investigating the use of methods available for semi-infinite programming for
solving copositive programs.

• Since copositive programs can be represented as semi-infinite programs so the
use of discretization methods might result in good solution methods for coposi-
tive programming. Cone hierarchy based methods can be seen as discretization
methods. Hence we can expect good solution methods.

• Semi-infinite representation of semidefinite programs allows to deploy methods
of eigenvalue optimization for solving semidefinite programs. The similar can
be investigated for the case of copositive programming.

3. Copositive and Completely Positive Cones

• The complexity of completely positive matrices is conjectured (infact strongly
believed) to be NP-hard but no formal proof is given, it would be interesting to
give a formal proof.

• By further exploring the geometrical aspects of copositive matrices such as faces
of the copositive cone can help to develop more efficient algorithms.

• Finding characterization for extremal rays for copositive matrices.

• It would be nice to find some necessary and sufficient conditions for checking
copositivity or complete positivity for certain classes of matrices.

• It is already known that a binary symmetric matrix is completely positive if and
only if it is semidefinite. The question is "Is it easy to factor a binary matrix
into another binary matrix". For the three dimensional case Berman and Xu
[14] has formulated necessary and sufficient conditions for matrices with integer
entries but nothing is known for higher dimension.

• The so called CP-rank of completely positive matrices is conjectured to be n2

4
.

This conjecture is already proved for the special class of 5 dimensional matrices
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containing at least one zero. The proof for general class of matrices would be
interesting.

4. Miscellaneous

• Extension of PTAS given by Bomze and De Klerk [24], to the more general class
of quadratic programs.

• Finding cone hierarchy for completely positive matrices.

• Semidefinite relaxation for MaxCut and interior point methods resulted in 0.87
randomized approximation algorithm. It would be interesting to investigate if
we can get a similar result using copositive programming.

• Finding special cases when we can have equality in Theorem 4.3.

• Formulation of duality results which are specific for copositive programs can be
a big achievement for the development of new solution algorithms.
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