

MASTER THESIS

EFFICIENT

POINTCUT

PROJECTION

Remko Bijker

COMPUTER SCIENCE
SOFTWARE ENGINEERING GROUP

EXAMINATION COMMITTEE

Dr.-Ing. Christoph Bockisch
Dr. Pim van den Broek

29-10-2010

Software Engineering Group
University of Twente

Master thesis

Efficient pointcut projection

Author:
Remko Bijker

Supervisors:
Dr.-Ing. Christoph Bockisch

Dr. Pim van den Broek

October 29, 2010

Abstract

Pointcuts in aspect-oriented programming languages specify run-time events
which cause execution of additional functionality. Hereby, pointcuts typi-
cally have a pattern-based static component selecting instructions whose
execution triggers an event, e.g. a pattern that selects method-call instruc-
tions based on the target method’s name. Current implementations realise
identification of matching instructions by examining all instructions in the
executed program and matching them against all patterns found in the pro-
gram’s pointcuts. But such an implementation is slow. An optimised im-
plementation is therefore highly desirable in run-time environments which
support the dynamic deployment of aspects; slow pattern evaluation invari-
ably causes a slowdown of the entire application.

The patterns used in pointcuts supported by current languages, i.e.
method, constructor, and field signatures, are well structured. In order
to speed-up pattern matching, this structure can be exploited, both to cre-
ate indexes over the relevant instructions and to optimise the order in which
the sub-patterns are evaluated. In this thesis we present background on
pattern matching and outline two optimisation strategies. We furthermore
present two case studies that survey signatures and patterns that actually
occur in the real-world. This results in several heuristics that can improve
the performance of matching patterns to instructions.

The information gathered in the survey and the two outlines optimisa-
tion strategies are used to determine how efficient the different optimisation
strategies work at run-time. We present multiple implementations of these
optimisation strategies and compare their run-time performance. This re-
sults in several efficient optimisation strategies which can be chosen based
on variables such as the number of attachments that are going to be applied,
application size and memory requirements.

Master thesis - Efficient pointcut projection i

ii Remko Bijker - University of Twente

Contents

Contents

1 Introduction 1
1.1 Terminology . 1
1.2 Context and motivation . 2
1.3 Contents . 3

2 Data model of ALIA4J 5
2.1 Examples . 6

3 Problem statement 11
3.1 Sub problems . 11
3.2 Limitations . 12

4 Database query optimisation 13
4.1 Indices . 13

4.1.1 Theory . 13
4.1.2 Application of theory 15

4.2 Selectivity . 20
4.2.1 Theory . 20
4.2.2 Application of theory 22

4.3 Query reordering . 23
4.3.1 Theory . 23

4.4 Summary . 27
4.5 Conclusion . 29

5 Call-site and pattern survey 31
5.1 Call-site characteristics . 31

5.1.1 Methodology . 32
5.1.2 Acquired information 33
5.1.3 Class names . 33
5.1.4 Static initialisers . 34
5.1.5 Constructors . 34
5.1.6 Field reads and writes 36
5.1.7 Methods . 39
5.1.8 Summary . 43

Master thesis - Efficient pointcut projection iii

Contents

5.2 Pattern characteristics . 44
5.2.1 Methodology . 44
5.2.2 Acquired information 44
5.2.3 Static initialisers . 44
5.2.4 Constructors . 45
5.2.5 Field reads and writes 45
5.2.6 Methods . 45

5.3 Optimisation strategies . 46
5.3.1 Static initialisers . 46
5.3.2 Constructors . 46
5.3.3 Field reads and writes 47
5.3.4 Methods . 47
5.3.5 Conclusion . 48

6 Implementation 49
6.1 Methodology . 49

6.1.1 Benchmarking techniques 49
6.1.2 Benchmarked areas . 50
6.1.3 Setting up the benchmark data 50
6.1.4 Benchmark data . 51

6.2 Base . 52
6.3 Sub-pattern matching order 53
6.4 Sorting . 57

6.4.1 Sorting by class . 57
6.4.2 Sorting by name . 60
6.4.3 Sorting by name prefix 62
6.4.4 Evaluation . 64

6.5 Memory usage . 64
6.6 Evaluation . 65

7 Related work 67

8 Conclusion 69

9 Future work 71

Bibliography 73

A Benchmark data 75

B Benchmark result visualisation 83

iv Remko Bijker - University of Twente

Chapter 1

Introduction

Aspect-orientation languages are means to reduce the maintenance costs
for application components that cross-cut large parts of an application, e.g.
logging.

This section will first define the terminology used in this thesis, after
that the motivation and problem statement will be discussed.

The main contributions of Chapter 2, 4, and 5 are published in the
proceedings of the VMIL workshop [4].

1.1 Terminology

In aspect-orientation there are different, sometimes opposite, terminologies.
This section describes the terminology used in this report that is derived
from [18]. The terminology is based on the one used for the ALIA4J frame-
work [6].

Generic-function The logical grouping of functionality implementations
which may all be executed as the result of executing a call-site. They
apply to the same static context (have the same signature) but are
applicable in different dynamic situations.

Pattern Description of a generic-function’s signature, e.g. a MethodPattern
describes the signature of a method.

Context Run-time information about the program’s current call context,
e.g. from which method it is called.

Atomic predicate A single test to execute at run-time.

Predicate A boolean formula of atomic predicates to execute at run-time.

Action Functionality implementation that needs to be executed on a dis-
patch. This is the code part of an AspectJ advice.

Master thesis - Efficient pointcut projection 1

Chapter 1. Introduction

Specialisation Association of a pattern, predicate and contexts.

Attachment A collection of specialisations associated with an action.

Projection of specialisation All call-sites of generic-functions where the
signature of the called generic-function matches the pattern of the
specialization.

1.2 Context and motivation

In aspect-orientation implementations there are different times in the deploy-
ment of an application at which the needed support for can be applied [19].

Compile-time While compiling the application the compiler inserts the
predicate evaluations and actions at every possible projection of the
specialisations. This generally requires no modifications to virtual
machines or loaders; all needed code is part of the application.

Load-time While loading the application an overridden loader inserts the
predicate evaluations and actions at every possible projection of the
specialisations. The modifications to the loader mean that there is a
dependency on the workings of the virtual machine.

Run-time While running the application a hook is set at every possibly
projection of the specialisations. This hook calls the predicate eval-
uations and actions. The break points are implemented by either a
modified virtual machine or via debugging hooks.

In all implementations one needs to match call-sites to attachments. One
common optimisation is calculating what specialisation may match at any
given call-site and insert only code to execute the actions for the matching
attachments like AspectJ does. In this case adding the actions at compile-
time is a disadvantage because even if an attachment is not activated the
code has to be added. For load and run-time deployment one can omit the
code to execute an action if the attachment the action belongs to is not
activated, thus reducing the impact of the attachment.

Even if it is possible, there are many concepts in aspect orientation
that cannot be determined at compile/load-time, which is where matching
call-sites to an attachment has to be done at e.g. run-time. The trivial
solution to this matching is using a list of specialisations that is searched for
matches with the call-site the application’s execution is currently at. This
can be optimised by using the non run-time dependent to determine which
specialisations could possibly match at a given call-site.

This study evaluates different concepts from database query optimisa-
tion to determine whether they can have a beneficial performance effect on

2 Remko Bijker - University of Twente

1.3. Contents

matching call-sites to a specialisation. This study will put focus on a sur-
vey of used patterns and call-sites as well as an implementation to test the
actual merits of the proposed improvements in the ALIA4J framework.

1.3 Contents

The rest of this report is structured as follows: Chapter 2 describes the data
model of the ALIA4J framework, which is the model that will be used for the
examples. Chapter 3 explores the problem statement and sets the bound-
aries for this study. Chapter 4 will discuss different possible optimisations
using techniques from database query optimisation.

Chapter 5 discusses a survey of real world applications and patterns to
determine how to apply the theory from the first chapters to improve the
performance of implementation described in Chapter 6.

Chapter 7 compares this research with other studies after which Chap-
ter 8 evaluates the results and Chapter 9 discusses what follow-up research
can be done.

Master thesis - Efficient pointcut projection 3

Chapter 1. Introduction

4 Remko Bijker - University of Twente

Chapter 2

Data model of ALIA4J

In ALIA4J’s high level design an attachment is associated with an action,
schedule information which specifies relative ordering of actions, and a num-
ber of specialisations. A specialisation is associated with a pattern, contexts
and a predicate. This is visualised in Figure 2.1.

Attachment

Action Specialization ScheduleInfo

Context Predicate Pattern

AtomicPredicate

1..*

*

*

* 0..1

0..2

Figure 2.1: UML class diagram of an attachment in ALIA4J [6]

As mentioned earlier the main focus of this research lies on the patterns.
The patterns are split into five categories which can be used to describe all
the possible call-sites:

• Method pattern

• Constructor pattern

• Static initialiser pattern

• Field read pattern

• Field write pattern

Master thesis - Efficient pointcut projection 5

Chapter 2. Data model of ALIA4J

These patterns have all been split up in sub-patterns that are finally used
for matching, e.g. the constructor pattern only matches the (enclosing) class
type, modifiers, parameters and exceptions sub-patterns. The sub-patterns
are:

• Modifiers pattern Used to match the modifiers of a method, con-
structor or field that is accessed. Examples are private, public, but
also static, final, and many more. It is possible to specify an inverse
modifier, e.g. not final.

• Type pattern Used to match the return, parameter or exception type
of methods and exceptions or the type of a field. The type is matched
by either its fully qualified class/primitive name or a wild card, e.g.
java.* for all classes in the java package.

• Class type pattern Used to match the enclosing type of accessed
methods, constructors, static initialisers and field patterns. It works
the same as the type pattern, although primitive and array types are
not allowed.

• Name pattern Used to match the name of a method or field. Match-
ing can be done with exact matches or by means of regular expressions.

• Parameters pattern Used to match the parameters of a method or
constructor. Matching is done by means of matching type patterns for
the parameters including a wild card type that matches any number
of parameters.

• Exceptions pattern Used to match the exceptions that a method or
constructor have declared to be thrown. Matching is done by means
of matching type patterns for the exceptions.

All sub-patterns have the possibility of performing logical algebra on a num-
ber of sub-patterns, i.e. to negate the whole pattern, requiring matching
multiple patterns or requiring one of a set of patterns to match.

2.1 Examples

To make the concepts of ALIA4J more concrete this section will show a
number of examples, which will be used throughout this report to explain
the different concepts important to the individual parts of this study.

Listing 2.1 shows a number of snippets from a hypothetical transport
simulation game/model where cargo is moved by Vehicles, e.g. Trains and
Busses, between stations. Their relationship is shown in Figure 2.2.

Table 2.1 shows a number of patterns to apply on the source code. In
the table “*” means a wild card so everything matches that, “Vehicle+”

6 Remko Bijker - University of Twente

2.1. Examples

Vehicle

Train Bus

Station

Figure 2.2: UML class diagram of the example application used in this study

1 interface Vehicle {

2 Cargo GetTransportedCargo ();

3 int GetAmount ();

4 int GetCapacity ();

5 void ChangeAmount(int delta_amount)

6 }

7 static int Vehicle :: AfterCrash(Train t, Bus b) {

8 /* Busses implictly transport passengers */

9 int casualties = b.GetAmount ();

10 if (t.GetTransportedCargo () == CARGO_PASSENGER)

11 casualties += t.GetAmount ();

12 return casualties;

13 }

14 void Station :: MoveCargoToVehicle(Vehicle v) {

15 Cargo c = v.GetTransportedCargo ();

16 int waiting = this.waiting_cargo[c];

17 int capacity = v.GetCapacity () - v.GetAmount ();

18 int to_move = min(waiting , capacity);

19 v.ChangeAmount(to_move);

20 this.waiting_cargo[c] = waiting - to_move

21 }

22 void Station :: MoveCargoToStation(Vehicle v) {

23 Cargo c = v.GetTransportedCargo ();

24 int to_move = v.GetAmount ();

25 v.ChangeAmount(-to_move);

26 this.waiting_cargo[c] += to_move;

27 }

28 static void Vehicle :: CollsionDetect () {

29 ..

30 int casualties = AfterCrash(t, b);

31 ..

32 }

Listing 2.1: Code snippets from example application.

Master thesis - Efficient pointcut projection 7

Chapter 2. Data model of ALIA4J

Kind Type Class Name Parameter

1 call * Vehicle+ Get* *
2 call Cargo * Get* -
3 call void Vehicle+ ChangeAmount *
4 call int Vehicle AfterCrash Train, Bus
5 set int[] Station waiting cargo *

Table 2.1: The patterns to match in the example application.

Kind Type Class Name Parameter Line

1 call int Bus GetAmount - 9
2 call Cargo Train GetTransportedCargo - 10
3 call int Train GetAmount - 11
4 call Cargo Vehicle GetTransportedCargo - 15
5 get int[] Station waiting cargo - 16
6 call int Vehicle GetCapacity - 17
7 call int Vehicle GetAmount - 17
8 call void Vehicle ChangeAmount int 19
9 set int[] Station waiting cargo - 20

10 call Cargo Vehicle GetTransportedCargo - 23
11 call int Vehicle GetAmount - 24
12 call void Vehicle ChangeAmount int 25
13 set int[] Station waiting cargo - 26
14 get int[] Station waiting cargo - 26
15 call void Vehicle AfterCrash Train, Bus 30

Table 2.2: The generic-function call-sites in the snippets from Listing 2.1.

Generic-function call-sites
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
at

te
rn

s

1 X X X X X X X X
2 X X
3 X X
4 X
5 X X

Table 2.3: Patterns from Table 2.1 mapped to call-sites from Table 2.2.

8 Remko Bijker - University of Twente

2.1. Examples

means Vehicle or its sub classes, “-” means no parameters. For the “call”
patterns the “Type” is the return type of the called function whereas it is
the type of the (instance) variable for “set” patterns.

Table 2.2 lists the call-sites in the snippets. Some call-sites, e.g. call-
sites 7 and 11, are the same when looking at only the pattern, however due
to the a call-site being the place where a function is called, and not the
(unique) function that is called, they are different. For brevity the modifiers
information is omitted.

Finally Table 2.3 shows how the generic call-sites from Table 2.2 match
to the patterns of Table 2.1.

Master thesis - Efficient pointcut projection 9

Chapter 2. Data model of ALIA4J

10 Remko Bijker - University of Twente

Chapter 3

Problem statement

The aim of this study is to determine what methods from different fields of
software engineering can be used to improve the performance of matching
call-sites to patterns. The focus lies on the algorithms and data structures
that are used for efficiently matching call-sites to patterns. This matching
should take the structure of the executed application into account, i.e. it
should use matching heuristics based on the executed application.

On one hand the characteristics, including theoretical complexities and
trade-offs, of the algorithms and data structures have to be evaluated. On
the other hand, the actual performance effects of the best algorithms have
to be measured.

3.1 Sub problems

Even though the problem statement seems to imply that this research stud-
ies only the matching of call-sites to patterns the inverse is important for
ALIA4J as well. With ALIA4J there are two distinct points in the ‘execu-
tion’ time of an application where the matching takes place. The first is
when the specialisations, and thus patterns, are loaded and ALIA4J needs
to find the call-sites that match the new patterns. The second is when new
classes are loaded and ALIA4J needs to find the already loaded specialisa-
tions, and thus patterns, that match the call-sites in these classes.

To be more precise, “one call-site to many patterns”-look-ups and “one
pattern to many call-sites”-look-ups are needed by ALIA4J. This study,
however, focusses on the latter as that is the field where the benefits will
likely be the biggest as the number of call-sites is likely magnitudes bigger
than the number of patterns.

As such this study’s first sub problem is: what is the theoretically most
efficient method of matching call-sites to patterns?

To determine what the actual performance effects of the algorithms one
has to take a look at the structure of applications and patterns, and ap-

Master thesis - Efficient pointcut projection 11

Chapter 3. Problem statement

ply that knowledge to the implementation. This results in the following
two further sub problems: what are the general characteristics of call-sites
and generic-functions in real world applications? and what are the general
characteristics of patterns in real world aspects?.

The information gathered by solving these sub problems will then be
used to implement improvements that can and will be measured.

3.2 Limitations

As said before the “one pattern to many call-sites”-look-ups are a secondary
interest. The information from the survey and database query theory can be
used give an idea on how to improve these look-ups, but these improvements
are not implemented and as such their performance effects are not measured.

There might be cases where doing “call-sites of class to many patterns”-
look-up, although conceptually the right one, might be slower than a “pat-
tern to many call-sites”-look-up. For example one has two patterns that
match a specific function of a specific class. In this case checking whether
a call-site matches one of the patterns would mean going through all the
call-sites of the class whereas when matching the patterns to the call-sites
one can quickly determine that the (newly loaded) class does not have any
call-sites that match the pattern. Determining when this might be the case
is outside of the scope of this study.

An important observation that can be made is that, conceptually, the
signature of call-sites is a pattern without wild cards. This means that their
conceptual ‘design’ can be the same, i.e. when creating a database they could
have the same database model. The following design is assumed:

Pattern

ModifiersP TypeP ClassTypeP NameP ParametersP ExceptionP

*

Figure 3.1: UML class diagram of a pattern in ALIA4J

12 Remko Bijker - University of Twente

Chapter 4

Database query optimisation

There are several database optimisation techniques that might be used to
improve the performance of finding the projection of the specialisations.
These methods will be explained and evaluated in this chapter. The reader
is assumed to be familiar with basic SQL queries as described in e.g. [3, 10,
14, 15, 22].

4.1 Indices

The principle behind indices is that one performs an expensive operation
while changing data, including addition and removal, while making searching
less expensive. If applied properly this reduces the overall amount of time
spent.

4.1.1 Theory

There are many different ways to implement indices, but the most com-
mon ones are based on a B+-tree and hashing [3]. The execution cost of
the different methods for indexing, including no indexing, are given in Ta-
ble 4.1. As can be seen, using hashing is fastest in all common cases except
range look-ups, e.g. finding generic functions whose name starts with a given
character.

Table 4.1 also lists the extra space requirement in “pointers” and, for
the B+-trees, “keys”. The pointers are the abstraction of the links between
the different nodes of B+-trees and hashes. The keys are needed for B+-
trees because its design uses the search key in the nodes to facilitate the
searching/sorting. For simplicity it is assumed that keys have the same size
as pointers.

An unsorted array does not add any data for indexing, however an array
is, at least in Java, an array of primitives or an array of references, i.e. point-
ers as references to objects are placed in the array. This means that even an

Master thesis - Efficient pointcut projection 13

Chapter 4. Database query optimisation

Action Unindexed Indexed
(Unsorted) B+-tree Hash

Initial sort O(0) O(n log n) O(n)
Insertion O(1) O(log n) O(1)
Deletion O(1) O(log n) O(1)
Look-up O(n) O(log n) O(1)

Look-up (range) O(n) O(log n) O(3n) (0.5 load)
Extra space n 5n (2-order) 4n (0.5 load)

Table 4.1: Complexity of operations [3, 20]

unsorted simple array uses 1 pointer per row, resulting in n pointers being
used. With other programming languages, e.g. C++, it might be possible
to have an array of objects and then there would be no space overhead for
the array but insertion gets more overhead.

For B+-trees it is important to be aware of the fact that each node has
the same size which depends on the “fanout” of the tree, i.e. how many
children a node has. This is called the order of a B+-tree, e.g. a 2-order
B+-tree has two children. Nodes also have a pointer to the next node and
a key for each of the children, resulting in a size of 2m + 1 for a m-order
B+-tree. Given the fact that each (n) rows of a table is a child of a node,
there must be at least n/m “leaf” nodes and each m nodes have a parent. A
2-order B+-tree will be the deepest and as such be the upper limit of space
usage. A 2-order B+-tree will create n− 1 nodes for n rows. Multiply this
with the size of a node results in (2m+1)n = 5n. Higher order B+-trees will
be less deep, but they will waste more space for unused places for children,
however due to the lower depth space will be saved as less inter-node links
are needed.

For example a 5-order B+-tree with 25 leafs will have 6 nodes, resulting
in (2m + 1)n = 11 × 6 = 66 pointers whereas, for a 2-order B+-tree, there
would be 24 nodes, resulting in (2m + 1)n = 5 × 24 = 120 pointers for an
2-order B+-tree. For a B+-tree with 26 leafs a 5-order B+-tree would have 8
nodes and thus 88 pointers compared to 125 pointers for a 2-order B+-tree.
So, overall, higher order B+-trees are slightly more space efficient.

The space usage considerations for hash tables assume a closed address-
ing hash table, i.e. a hash table using a “collection” to resolve collisions
instead of using the “next”, determined by either n + 1 or another hash
function, free element in the hash table. Furthermore a “load factor” of
0.5 (50%) for the hash table is assumed. This collection that the hash table
links to can be a linked list, or a binary tree structure. For the space usage
a linked list is assumed as that is the easiest and most used variant [2]. A
linked list’s node stores two pointers; one for the “next” node and one for

14 Remko Bijker - University of Twente

4.1. Indices

the “leaf”. As each row in the (database) table is linked by a node, there
must be n nodes with 2 pointers and as such 2n pointers. The load factor
of 0.5 implies that for every node there are two rows in the database table,
thus there are 2n rows, i.e. pointers, in the hash table. These 2 pointers
per node and 2n pointers in the hash table result in 4n pointers being used
by the hashing. The 3n steps for “range look-ups” is directly related to the
assumed load factor of 0.5; for the range look-ups the whole table has to be
scanned, which is 2n entries long and the linked lists need to be traversed
adding another n steps.

When deciding what indexing method to use for optimising the pattern
to generic-function look-up one has to know how the index is going to be
used and thus what the patterns match generally on. As such statistics
about the used values must be gathered, e.g. a histogram of the values a
variable can have can be made [10].

4.1.2 Application of theory

To determine what indexing method to use it is necessary to know what
signature parts of generic-functions are going to be matched by the pat-
terns and more importantly how often and how, i.e. as a direct look-up like
name = ’GetCapacity’ or a range look-up like name = ’Get*’.

When looking at the patterns from Table 2.1 and the call-sites from
Table 2.2 one can count the occurrence of matches of each (name) pattern
in the call-sites. This results in the data gathered in Table 4.2 and it can
be seen as a histogram of the occurrences of a pattern. This data can then
be used to determine what kind of index is best suited.

Name Occurrences Percentage

1 Get* 8 53%
2 ChangeAmount 2 13%
3 AfterCrash 1 7%
4 waiting cargo 4 27%

Table 4.2: The patterns from Table 2.1 and their occurrences in the call-sites
from Table 2.2 out of 15 call-sites.

To determine which index is best suited, one first has to determine how
often the different actions are performed. Given the patterns from Table 2.1
that means one range look-up and three exact look-ups. However, one must
not forget the initial costs of sorting the table in the comparisons.

Assume n is the number of call-sites, m is the number of patterns and
oi is the number of call-sites that match a particular name pattern.

For an unsorted collection, i.e. an unindex collection, one has to loop the

Master thesis - Efficient pointcut projection 15

Chapter 4. Database query optimisation

collection once per pattern regardless whether it is a range or exact lookup.
This means n×m = 5 × 15 = 75 steps.

For a hash table one has the initial sort, two iterations of the whole table
and three look-ups with o steps to iterate over the data in the bucket of the
hash table. Assuming there are no hash collisions this means:

initial cost+ range look-up cost+ look-up cost =

n+ 2 × 3n+
3∑

i=1

(1 + oi) =

15 +
[
6 × 15

]
+
[
(1 + 2) + (1 + 1) + (1 + 4)

]
= 15 + 90 + 10

= 115 steps

The B+-tree sorted index has the same steps as a hash table, but there
is no need for a full scan of the table but only o scans for range look-ups.
For this example a 2-order B+-tree is assumed:

initial cost+ range look-up cost+ look-up cost =

n log2 n+
5∑

i=4

(log2 n+ oi) +
3∑

i=1

(log2 n+ oi) =

15 × 4 +
[
(4 + 8) + (4 + 8)

]
+
[
(4 + 2) + (4 + 1) + (4 + 4)

]
= 60 + 24 + 19

= 103 steps

The example clearly shows that the weak spot of hash indices is range
look-ups, whereas the initial sorting is the biggest cost factor for B+-tree
indices. However the log n look-up costs should not be ignored either as
with many patterns and call-sites that number becomes significant too.

To determine which indexing method is the best in a given circumstance
one has to look at all factors; the initial sorting, cost for simple look-ups
and the cost for range look-ups. In the following formula n is the number
of call-sites, p the number of patterns and l is the percentage of patterns
that is a range look-up. The cost equations ignore the actual iteration of
the data that matches.

hash cost = initial cost+ look-up cost+ range look-up cost

= n+ (1 − l)p+ l3pn

= (1 + l3p) n+ (1 − l)p

(4.1)

Equation 4.1 shows the simple cost estimation for hash tables. This
consists of the initial sorting cost, a single loop over the hash table (O(n)),
the simple look-up cost which involves a single hash look-up (O(1)), and the

16 Remko Bijker - University of Twente

4.1. Indices

range look-ups which involve scanning the whole hash table (O(3n)).

B+-tree cost = initial cost+ look-up cost+ range look-up cost

= n logq n+ (1 − l)p logq n+ lp logq n

= n logq n+ p logq n

= (n+ p) logq n

(4.2)

Equation 4.2 shows the simple cost estimation for q-order B+-trees, a
generalisation to the 2-order trees used in the previous examples. This con-
sists of the initial sorting cost (O(n logq n)), the simple look-ups (O(logq n))
and range look-ups (O(logq n)). As can be seen the simple look-ups and
range look-ups have the same access time.

These two formulas can be used to get an initial idea of the costs, but
they ignore how often a pattern matches. This means that when comparing
the estimates directly the B+-tree indices’ estimation will be too low with
respect to the hash table cost. This due to the fact that the hash table’s
cost estimation includes iterating over the matches of the range look-ups
whereas the B+-tree estimation does not.

B+-tree cost = hash cost

(n+ p)logqn = (1 + l3p) n+ p(1 − l)

l = −−ln n− p ln n+ n ln q + p ln q

(3n− 1) p ln q

(4.3)

Equation 4.3 shows the break even point between between a hash table
and q-order B+-tree. The result of the equation is the minimal percentage
of range look-ups from where a q-order B+-tree is more efficient. The final
equation was derived using Maple’s equation solver.

Figure 4.1 shows the break even point for range look-ups (l) given a
number of call-sites and patterns. As the break even point is in percentages
all cases bigger than 100% mean that the 2-order B+-tree implementation
would be more expensive than a hash table. Figure 4.1 shows that when
applying one or two patterns the hash table is always the fastest solution.
The more patterns are applied the lower the break even point becomes.
What is notable is that with an increasing number of patterns all break
even points eventually level out. This can be seen by the “500 call-sites”
case that levels out around 0.53% but is also visible in the figure for the
5000 and 50 000 cases.

The number of call-sites are chosen to reflect a range of projects in size.
For these numbers the assumption is made that there is one call-site per line
of code. 500 lines of code represents very small, usually helper, applications,
50 thousand to 500 thousand lines of code represent stand alone applications

Master thesis - Efficient pointcut projection 17

Chapter 4. Database query optimisation

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
0

0

0
.0

1
%

0
.1

0
%

1
.0

0
%

1
0

.0
0%

1
0

0
.00

%

5
0

0
5

k
5

0
k

5
0

0
k

5
M

5
0

M
5

0
0

M

N
u

m
b

e
r o

f p
a

tte
rn

s

Break even point hash and 2-order B+-tree in percentage

Figure 4.1: Break even point for range look-ups (l) for hash and 2-order
B+-tree by number of call-sites and patterns. If for a given number of
patterns the percentage of range look-ups is higher than at intersection with
the line for the number of call-sites, then using a 2-order B+-tree will be
more efficient.

18 Remko Bijker - University of Twente

4.1. Indices

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

2
-o

rd
e

r B
+

-tre
e

H
a

s
h

 (l=1
0

0
%

)
H

a
s

h
 (l=

5
0

%
)

H
a

s
h

 (l=
2

5
%

)
H

a
s

h (l=
1

2
.5

%
)

H
a

s
h

 (l=
0

%
)

N
u

m
b

e
r o

f p
a

tte
rn

s

Cost

Figure 4.2: Comparison of cost for applying a number of patterns for the
different indices and range look-ups (l) given 500 call-sites

Master thesis - Efficient pointcut projection 19

Chapter 4. Database query optimisation

such as Subversion, 5 million lines of code represent suites such as OpenOffice
whereas 50 to 500 million lines of code represents main stream operating
systems and distributions such as Windows and Debian [1].

Figure 4.2 shows the influence of the percentage of range look-ups in case
of 500 call-sites. As the percentage of range look-ups does not matter for a
B+-tree there is only one data set for B+-trees and a number of hash data
sets for different range look-up percentages (l). What clearly shows is the
bigger initial cost for setting up the B+-tree, roughly 9 (log2(500)) times
higher than for the hash table.

This figure can be compared with a small part of Figure 4.1. Both
figures show that for one or two patterns hashes are faster regardless of the
percentage of range look-ups and that the higher the number of patterns
becomes, the lower the percentage of range look-ups becomes for which a
hash table is faster than a B+-tree.

It can be concluded that different indexing mechanisms have different
characteristics and that determining which mechanism to use must be a
run-time decision. This means that the complexity considerations must be
done at run-time, making it both more complex and flexible.

4.2 Selectivity

The principle behind selectivity is that the most efficient way to search
a single table is determined. This is done by determining how complex,
computational-wise, the different selections are. A selection is a filter that
selects a subset of the whole table or the WHERE clause of SQL statements.

This section assumes a table “call sites” that contains all call-sites, sim-
ilar to Table 2.2, instead of the design described in Chapter 3.

4.2.1 Theory

The primary look-up is from pattern to call-sites and not the other way
around. The call-sites are stored in a (single) table which is scanned, i.e.
there is no need for optimising the aggregation of data from multiple tables.
There are (database) normalisations that would make the storage of call-
site signatures spread over multiple tables, but those would not be much
more than a table of types which are then linked to the call-sites table by
means of a foreign key which is usually associated with an index. For the
reverse look-up, i.e. from call-site to patterns, there seems to be use for a
join optimiser as there are (conceptually) several classes of sub-patterns that
can be queried independently.

However, the pattern to call-sites look-up is no more than doing a se-
lection on the call-sites table, like in Listing 4.1 which is a pattern that
matches all int with GetCapacity as name. This is where statistics about
the different (sub-)parts of call-sites become useful. These statistics can be

20 Remko Bijker - University of Twente

4.2. Selectivity

SELECT *

FROM call_sites

WHERE

return_type = ’int’ AND

name = ’GetCapacity ’

Listing 4.1: Example SQL query for pattern

used to estimate the “selectivity factor” (F) for each of the predicates of the
WHERE clause of a SQL statement [22]. The F for a predicate is determined
based on the estimated uniqueness of the value in the table.

This uniqueness can already be known because of the creation of his-
tograms which were needed for indices. Otherwise, one has to use another
heuristic. For such a heuristic a study of the actual call-sites in an applica-
tion needs to be performed.

A simple heuristic would be to determine the average number of call-sites
per generic-functions, but this assumes that they are evenly spread which
might not be the case.

The following gives the selectivity factors for different kinds of predi-
cates [22]. The selectivity factor (F) is in this case a number between 0 and
1. These selectivity factors are all independent best-guess values.

Exact pattern : pred = “GetName′′

F (pred) = #Occurrences(“GetName′′)/#call sites
F (pred) = 1/#generic functions
As can be seen there are two approaches to calculate the selectivity a
pattern. The first one is when one has information about how often
the pattern occurs, i.e. a histogram, whereas the latter has no specific
information.

Wild card pattern : pred = “Get∗′′
F (pred) = #Occurrences(“Get∗′′)/#generic functions
A wild card pattern is much trickier; a full wild card matches every-
thing and thus has a selectivity of 1. However, for partial wild card
patterns, like “Get*”, one needs to know how often it occurs or make
an educated guess based on the content of the non-wild card part of the
pattern. The educated guess needs research into how function names
are generally constructed and thus how unique the non-wild card part
will roughly be. See Chapter 5 for more information.

Inverse predicate : pred =!(pred′)
F (pred) = 1 − F (pred′)
Having an inversions might give a low selectivity, but be aware that it
might mean much more costly searches.

Master thesis - Efficient pointcut projection 21

Chapter 4. Database query optimisation

Conjunction of predicates : pred = pred′ and pred′′:
F (pred) = F (pred′) × F (pred′′)
Under the assumption that the predicates are independent, the chance
of row in the set matching pred’ to exist in the set matching pred” is
as big as the chance of a random row existing in the set of matching
pred”s. As such their selectivity factors can be multiplied.

Disjunction of predicates : pred = pred′ or pred′′

F (pred) = F (pred′) + F (pred′′) − F (pred′) × F (pred′′)
For the or predicates we can sum the factor of both predicates and
then exclude the intersection of the rows matching both predicates, i.e.
subtract the selectivity factor of the conjunction of pred’ and pred”.

The selectivity factor makes assumptions about even distribution and
independency between predicates. With applications this will generally not
be the case; some generic-functions will be referenced much more often than
others. Therefore optimisation based on selectivity factors can actually be
(way) worse than the best optimisation. However, getting the exact selec-
tivity factors means doing the actual selection which is the thing we want
to optimise, not execute more often.

4.2.2 Application of theory

Given Listing 4.1, what would be the selectivity? The first step is figuring
out what the selectivity of the different parts of the predicate. First the
return_type = ’int’; this is an exact pattern, however it occurs 5 times
in the 15 call-sites of Table 2.2. This means that F = 5/15 = 0.33. When
there is no histogram of the occurrences, it is impossible to tell it occurs
5 times and one has to estimate. The generic-functions have four different
return-types, so given the mean that would result in a F = 4/15 = 0.27.
The median amount of call-sites per return-type is 3.5, resulting in a F =
3.5/15 = 0.23.

The next step is determining name = ’GetCapacity’’s selectivity factor.
It occurs one time in the 15 call-sites giving it a F = 1/15 = 0.07. There are
5 different names, giving a F = 3/15 = 0.2 (the mean) which overestimates
the real number by a factor 3.

The final step is determining the AND’s selectivity factor. This is simply
F = 0.33 × 0.07 = 0.02, however with the estimations this would become
F = 0.27×0.2 = 0.06 which is closer to the actual selectivity of F = 1/15 =
0.07 than the version without estimates because the return_type = ’int’

does not add any restrictions once name = ’GetCapacity’ is evaluated.

When looking at wild card patterns, e.g. name = ’Get*’, the selectivity
factor calculation gets trickier. For example, making a histogram of the
first three letters would give a data set like in Table 4.3. This shows that

22 Remko Bijker - University of Twente

4.3. Query reordering

Name Occurrences

Get... 8
wai... 4
Cha... 2
Aft... 1

Table 4.3: Histogram of first three letters of name from the generic-function
call-sites in the snippets from Listing 2.1.

the pattern matches 8 in 15, or F = 0.53, of the generic-function call-sites,
however the mean and median would be respectively 3.75 and 3.

This means that there is possibly a need for histograms, but the real
question is how much better do histograms make the estimations? and how
much does making and querying histograms cost?. This requires extra study-
ing, but falls outside the scope of this research as more empirical information
is needed.

4.3 Query reordering

The principle behind query reordering is that an order of the individual
parts of the query is determined to yield the minimum amount of processing
required. This is done by determining how complex, computational wise,
the individual parts are as well as the size of the resulting search space. The
reordering results in a “search-plan”.

This section assumes the design described in Chapter 3, however the
theoretical explanation uses a different example as the design from Chapter 3
makes the example unnecessarily complex.

4.3.1 Theory

The major problem with determining the best order is that there are many
different orders and that the computational complexity and resulting search
space of the individual parts (n), e.g. sub-patterns, depends on the already
executed parts, basically meaning that there are in worst case n! different
orderings [3, 15].

However, the search space for the best search-plan can be drastically
reduced. For example when getting information from multiple tables by
making sure that the intermediate results stay relatively small. For example
imagine the SQL query in Listing 4.2 and the data as given in Table 4.4. In
this example a.ssn is a unique key, i.e. the values are unique and there is a
1-on-1 relation between a.id and b.id.

Master thesis - Efficient pointcut projection 23

Chapter 4. Database query optimisation

SELECT b.name

FROM a JOIN b ON a.id = b.id

WHERE a.ssn = ’1234’ AND b.gender = ’male’

Listing 4.2: Initial SQL query

a.ID a.SSN

1 2341
2 1234
3 3412
4 4123

b.ID b.Name b.Gender

1 Jane Female
2 John Male
3 Pete Male
4 Penny Female

Table 4.4: Example tables for Listing 4.2.

Table 4.5 shows what happens when first the Cartesian product of the
two tables is calculated before continuing with filtering that data. In total
the table would be 16 records long, the product of the size of both table a
and table b.

a.ID a.SSN b.ID b.Name b.Gender

1 2341 1 Jane Female
1 2341 2 John Male
1 2341 3 Pete Male
1 2341 4 Penny Female
2 1234 1 Jane Female
..

Table 4.5: Example of the Cartesian product of Table 4.4.

When first getting the record from a with ssn = ’1234’ as intermediate
result the Cartesian product would be significantly smaller as there can at
most one record in a with that ssn due to the unique key. The resulting
Cartesian product can be seen in Table 4.6. When taking indices into ac-
count one can optimise the scanning of the tables away, but this is explained
in Section 4.1. In these examples it is assumed that half of the people is
male.

The search space for the search-plan is reduced in three steps. First the
‘query tree’, i.e. the tree representation of the initial query, is simplified into
a “master plan”. The master plan groups consecutive commutative and as-
sociative operators of the same kind. For example (a JOIN b) JOIN c and
a JOIN (b JOIN c) are equivalent and can be stored as one JOIN operation
in the master plan.

The second step generates “logical query execution plans” from the mas-

24 Remko Bijker - University of Twente

4.3. Query reordering

a.ID a.SSN b.ID b.Name b.Gender

2 1234 1 Jane Female
2 1234 2 John Male
2 1234 3 Pete Male
2 1234 4 Penny Female

Table 4.6: Example of the Cartesian product of Table 4.4 using a reduced
intermediate result for a.

ter plan. At this stage the “selections”, e.g. a.ssn = ’1234’ are pushed
down in the ’query tree’. For example Listing 4.2 would be transformed into
Listing 4.3. The rationale behind this step is that reducing intermediate re-
sults speeds up execution, although there are cases where not fully pushing
down the selections results in a faster execution. For example when joining
two tables an index on the “join selection” means faster look-up of records
in the joined table. What would happen to the example tables can be seen
in Table 4.7.

SELECT d.name

FROM (

SELECT a.id

FROM a

WHERE a.ssn = ’1234’

) AS c JOIN (

SELECT b.id, b.name

FROM b

WHERE b.gender = ’male’

) AS d ON c.id = d.id

Listing 4.3: SQL query with fully pushed selections

a.ID a.SSN

2 1234

b.ID b.Name b.Gender

2 John Male
3 Pete Male

Table 4.7: Example tables for pushed down selections.

Doing the (pushed) selection before the join might remove this index
and just make the actual joining slower. An example of this is Listing 4.3
which would be slower to execute than Listing 4.4 when there is an index on
b.id because the intermediate results c and d do not have an index. In the
example the reduced a would be one record and the reduced b would contain

Master thesis - Efficient pointcut projection 25

Chapter 4. Database query optimisation

2 records, or half of b. On the join the whole reduced b would need to be
iterated, but what is worse is that there is no index on b.gender causing,
in effect, the whole of b to be iterated to get the intermediate set.

With the partial push, visualised in Listing 4.4, the join would use the
index on b.id and do a join with only one record in the table followed by the
b.gender = ’male’ selection. Because of this several plans are generated
with different levels of pushed down selections.

SELECT b.name

FROM (

SELECT a.id

FROM a

WHERE a.ssn = ’1234’

) AS c JOIN b ON c.id = b.id

WHERE b.gender = ’male’

Listing 4.4: SQL query with partially pushed selections

The third step simplifies the “logical query execution plans” into ‘left-
deep query trees’ which are the final output of the reordering. A left-deep
query tree is a binary tree of joins where the right node is always a leaf
node containing a single operation to do. Operations in this case would
be selections and joins. The advantage of such a tree is that implementing
“pipe-lining” is possible. With pipe-lining the results of a join are piped
into the next join which means that there is no need to store intermediate
results. The most important benefit is that this reduces the join search
space (joining n tables) from O(n!) to O(2n) [14].

To create an optimal left-deep tree all permutations of the joins must
be considered. As this number of permutation grows exponentially some
heuristics must be used to cut corners to create a good, although not neces-
sarily the best, query plan quickly. One of the methods that can be used is
dynamic programming as described by [22]. This method works as follows:
first several “1-relation plans” are made, at least one per tuple of to-be-
joined tables although there can be more depending on existing indices.
These plans are then evaluated, i.e. a value is given to the plan based on
their estimated execution cost. Then the best of these plans are chosen to
be joined with another table, i.e. a tuple for each chosen 1-relation plan with
a table that is not in the plan. This results in several “2-relation plans” that
are evaluated and the cycle continues until the n-relation plan has expanded
to contain all tables. This n-relation plan is the result, i.e. search-plan, of
the query optimiser [14].

26 Remko Bijker - University of Twente

4.4. Summary

4.4 Summary

With query reordering all of the theory from this Chapter comes together.
The existence and type of indices have great influence on the cost of exe-
cution, whereas the selectivity factor tells what might be the better way to
reduce the size of the intermediate data and then the query reordering helps
us to decide how to order the query to quickly determine a good plan for
executing the query.

The following example will show how all the theory can be applied. In
the example pattern 2 from Table 2.1 will be matched against the call-sites.
The first step is determining the selectivity of the different components of
the pattern that needs to be matched. The number of occurrences and their
selectivity can be seen in Table 4.8.

Sub-pattern T
o

m
at

ch

O
cc

u
rr

en
ce

s

S
el

ec
ti

v
it

y

In
d

ex

L
o
ok

-u
p

co
st

C
os

t
es

ti
m

at
e

Kind call 11 0.73 Hash O(1) 12
Modifiers public 11 0.73 B+-tree O(log n) 15

Type Cargo 3 0.20 Hash O(1) 4
Class * 15 1.00 Hash O(3n) 35
Name Get* 8 0.53 B+-tree O(log n) 12

Parameters - 12 0.80 None O(n) 15

Table 4.8: The selectivity information for pattern 2 and the used index per
sub-pattern.

The table clearly shows that the class sub-pattern selects everything
and as such is not useful for the result and that selecting on Cargo is the
most selective. However, the selectivity is not what the focus should be
on, but the expected cost which is shown in the last column. This cost is
the sum of the look-up cost and the cost for looping through linked lists
and/or range look-up, i.e. the number of occurrences. The expected costs
are important because doing a slightly less selective range look-up on a
B+-tree indexed variable is faster than doing a range look-up on a hash
table indexed variable. In the former case one would only need to scan the
resulting, usually significantly smaller, sub set on the most selective variable
which means doing less comparisons in total.

As query reordering is in essence a divide-and-conquer strategy, one can
see the steps to determining the best order as “rounds” in a match. Each
time the best solutions, i.e. order of a sub set of sub-patterns, go for a next

Master thesis - Efficient pointcut projection 27

Chapter 4. Database query optimisation

round that adds another sub-pattern until all sub-patterns of the pattern
are in the order.

When applying the methods from query reordering, the best or most
promising options are chosen. In this case the type sub-pattern is most
selective, i.e. should be evaluated first. The kind pattern and name pattern
are equally promising so both go to the next round.

In this second round a design difference between the modeling of the data
in databases and Java will be encountered. In databases each table is linked
to another by means of an identifier, which is usually indexed. However, in
Java connections are made by means of references. This means that the joins
in Java are essentially free, i.e. one just needs to loop over the intermediate
result set and query the sub elements directly. This means that reducing
the result set becomes most important, i.e. using the selectivity factors.

First pattern Second pattern Estimated. sel. Actual. sel Cost

Type Base 0.15 0.20 6
Type Modifiers 0.15 0.20 6
Type Name 0.11 0.20 6
Type Parameters 0.16 0.20 6
Base Modifiers 0.53 0.73 20
Base Type 0.15 0.20 14
Base Name 0.39 0.53 18
Base Parameters 0.58 0.53 21
Name Base 0.39 0.53 18
Name Modifiers 0.39 0.53 18
Name Type 0.11 0.20 14
Name Parameters 0.42 0.53 18

Table 4.9: The selectivity information for pattern 2 and the used index per
sub-pattern.

The next step is determining the cost and size of the result set. This can
be done by using the selectivity factors from Table 4.8 and applying that to
three call-sites selected in the first step. This results in Table 4.9. Note that
the class pattern is not in the table. This is because it is not selective at all
and therefore only makes the number of possible orderings bigger when it is
already known that it does not reduce the search set. The table shows the
estimated selectivity, using an histogram telling how often a pattern occurs,
which is the information the query optimiser has access to. The table also
shows the actual selectivity, i.e. how many call-sites actually match the two
sub-patterns, to show how far off the estimate is. The actual selectivity will
not be known at run-time as mentioned before. The last column the table
shows the estimated cost which is the cost from the previous round, i.e. how

28 Remko Bijker - University of Twente

4.5. Conclusion

many comparisons were done to get the first intermediate result, plus the
size of the expected result set, i.e. the size of the second intermediate result.

It has to be noted that after the first round the histogram data becomes
unreliable because there are usually correlations between sub-patterns. For
example the name pattern “Get*” and its return type non-void. Thus when
the “Get*” pattern is matched matching the return type for being non-void
is a waste of time. However, making the query optimizer aware of that fact
in a generic manner is far from trivial. Especially as it is unknown what
dependencies between sub-patterns or parts of a signature exist.

4.5 Conclusion

Three major facets from the database field have been studied: indexing
data sets, determining selectivity of a sub-pattern, i.e. how many results
will matching a sub-pattern give, and query reordering, i.e. ordering the
sub-pattern matches in the most effective way. All these facets can be used
to improve the performance of matching call-sites to patterns and vice versa.
However, the “join” optimisation of the latter method will not be needed.

Determining selectivity of a sub-pattern can be used to quickly reduce
the result set and thus reduce the number of evaluations, however it still
requires a full scan of the table when there is no index. As such selectiv-
ity measurements can only reduce the number of sub-pattern matches to
determine whether a particular pattern matches; it cannot skip patterns
completely when it is known they cannot match. However, as it is possible
to determine what index is best at run-time, the most selective sub-pattern
is a good, if not the best, candidate to add the index to.

Having indices on certain sub-patterns can be used to get a small sub
set of the initial data set by partly removing the need to scan the data
set. However, there are different indexing methods that have their own
characteristics. A (sorted) B+-tree can quickly scan a range of the data set
due to logarithmic access, however the costs for creating and maintaining a
B+-tree are high. A hash table has an extremely fast look-up for a specific
value, but for a range look-up a full scan of the table is needed. As a hash
table is bigger than an the actual data set, such range look-ups are more
costly than in an unsorted unindexed array.

As such the index to choose highly depends on the actual structure of
the application and the patterns that have to be matched. When the most
selective sub-pattern has lots of range look-ups a B+-tree will be the fastest
and a hash table will be slower than a normal table, but when the most
selective sub-pattern has only exact look-ups a hash table will outperform a
B+-tree, although the B+-tree’s look-up will outperform the normal table.

The high initial cost, logarithmic to the number of items in the data set,
of B+-trees are a major factor. It can be better to choose a slightly less

Master thesis - Efficient pointcut projection 29

Chapter 4. Database query optimisation

selective sub-pattern that has mostly exact look-ups and thus can use hash
look-ups. This will decrease the performance of the look-ups slightly, but an
application will most likely not keep loading specialisations, thus patterns,
or classes, thus call-sites, infinitely and therefore the extra look-up costs can
dwarf the cost for building the B+-tree.

As such the decision of what indexing method to use exactly depends
highly on the selectivity data which is extracted from the executed applica-
tion.

30 Remko Bijker - University of Twente

Chapter 5

Call-site and pattern survey

In the previous chapter we have presented indices and search-plan optimiza-
tion as possible optimizations for pattern evaluations. In order to apply
these mechanisms some knowledge about the structure of the data on which
queries are performed is needed. For instance, it must be known for which
sections of signatures the effort of keeping an index may pay off; for search-
plan optimization, heuristics are needed to estimate the selectivity of certain
sub-patterns.

In this chapter a survey of real-world applications and aspects is done to
be able to answer what the best strategy for optimizing pattern to call-site
look-up is. To answer this question the following sub problems have to be
addressed first: what are the general characteristics of call-sites and generic-
functions in real world applications? and what are the general characteristics
of patterns in real world aspects?.

These sub problems are solved in respectively Section 5.1 and Section 5.2.
Finally Section 5.3 formulates optimization strategies based on the findings
of both sections.

5.1 Call-site characteristics

For determining what performance optimizations are suitable for signature
pattern matching it is necessary to analyse real-world applications. From
these real-world applications the call-sites need to be extracted after which
one can determine the data that is significant for the optimizations. Signif-
icant in this context are selective parts of a signature. For example, when
all functions return the same type the selectivity of that return type is low.
For any other type, however, the selectivity is very high as it would never
select anything.

Master thesis - Efficient pointcut projection 31

Chapter 5. Call-site and pattern survey

5.1.1 Methodology

To acquire the call-site information a small tool, called Extract, has been
written to extract the call-site information from Java class files. Extract
uses ASM [8], a Java byte code framework, to read the Java class files and
parts of the SiRIn core, a reference implementation of ALIA4J, to determine
what generic-function a call-site belongs to.

The input to Extract is a list of Java class files or Java archives with
Java class files of a particular application. All Java class files and all classes
they reference are analysed recursively. Examples of referenced classes are
the super class, classes used as return or parameter type, classes of instance
variables and classes used in the implementation of a method. The final
result of Extract is a list with all generic-functions and the number of times
they were referenced.

The recursive behaviour of the analysis means that a large part of the
Java API’s implementation will be part of the output. However, the imple-
mentation of the Java API should be seen as a black box and one would
generally not want to add aspects that modify the API’s implementation.
AspectJ, e.g. thus applies aspects only to the files that it compiles itself;
this excludes the class files of the Java API. These internal calls are there-
fore ignored by this survey. Nevertheless, calls to the Java API from the
application are of importance. After the extraction the data is analysed
using common data mining techniques to find correlations and significant
information.

The applications that have been analysed in this context are the following
four:

• ANTLR A tool to construct parsers, compilers and translators.

• FreeCol A turn-based strategy game.

• LIAM A major part of the implementation of ALIA4J.

• TightVNC An application to remotely take over a desktop.

These applications are varied in nature in an attempt to get a general
view of the call-site characteristics instead of only getting a view of non-
graphical applications that do not use a network connection, as is commonly
the case for benchmark suites used in performance evaluation [5].

Larger applications such as Eclipse, an integrated development environ-
ment, and OpenOffice, an office suite, have been considered. But these ap-
plications have a complex system of plug-ins and dependencies which makes
it hard for Extract to cover all referenced classes. Tools like TamiFlex [7]
can alleviate this problem, but were not yet available when the survey was
conducted.

32 Remko Bijker - University of Twente

5.1. Call-site characteristics

5.1.2 Acquired information

Statistics The analysed applications have 2 432 classes containing a total
of 28 065 generic-functions and 150 432 call-sites. The following sections will
discuss the most salient features separately for each generic-function kind;
only the breakdown on class names is presented in a single section as it is
almost the same in all cases.

Storage Per generic-function kind there is also a discussion on the best
storage technique for quickly retrieving call-sites per sub-pattern kind on
the basis of the information gathered. The techniques considered here are
“bucket arrays”, like hash tables, and “sorted collections”, like B+-trees.

Section 5.1.8 summarises with a comparison of the storage techniques
over the different sub-patterns looking at differences and similarities in the
use of patterns between the different sub-patterns.

5.1.3 Class names

Statistics The combined test input consists of 2 432 different classes that
are spread over 147 packages, on average placing roughly 16.5 classes in each
package.

Depth Amount Percentage

0 20 0.8%
1 135 5.6%
2 414 17.0%
3 479 19.7%
4 333 13.7%
5 525 21.6%
6 526 21.6%

Table 5.1: Package depth for class names

Table 5.1 shows the classes’ package depth, i.e. the number of super
packages a class has before reaching the “unnamed” default package. The
20 classes with depth 0, i.e. the ones placed in the unnamed package, and
135 classes with depth 1 do not comply with the standard practice of using
a reverse DNS name. The classes at depth 2 are primarily from the Java
API, whereas classes at depths of 4 and more are almost exclusively used
by applications.

Due to the practice of using a reverse DNS name the first few levels of
package naming do not help in quickly reducing the search space. The way
package names are generally constructed, however, makes it reasonably easy
to determine a start and end point in a sorted set and thus reduce the amount

Master thesis - Efficient pointcut projection 33

Chapter 5. Call-site and pattern survey

of checks: Assume the classes of the Java API are lexically sorted by their
fully qualified name and are put in a sorted set. Then all classes that match
the java.lang..* pattern can be found by calculating a subset: the starting
point of the range is constructed by removing .* from the pattern, the end
point is constructed by replacing ..* with / (U+002F), whose codepoint
the Unicode character encoding places immediately after the . (U+002E).
Calculating the subset only requires two O(log n) comparisons. When a
pattern starts with .* then the whole sorted set is returned.

Storage When looking at the storage techniques the first option is using
a sorted collection. This has the benefit of ordering all classes lexically by
name; thus the aforementioned technique can be used. However, storing
all classes into buckets by package can be used to efficiently look up all
classes in a given package, but due to the use of sub-packages one has to
determine how to find all classes that are in a particular package or sub-
package. Either the buckets also contain references to sub-packages which
are then recursively searched or each class gets inserted into its package and
all ancestor packages. A major drawback of the latter technique is the fact
that the number of times the class is referenced is equivalent to the package
depth plus one. The former technique resembles the behaviour of a sorted
collection.

5.1.4 Static initialisers

Statistics A total of 571 static initialiser were found. The static initialisers
do not have a call-site, i.e. they are called implicitly, and the name, modi-
fiers, return type, parameters, and exceptions are the same for every static
initialiser. As such the only way to distinguish between static initialisers is
their containing class which means there is at most one per class.

Furthermore none of the static initialisers are of the Java API and as
such there are no class names starting with java.

Storage Static initializers only have one sub-pattern: the declaring-class
pattern. Thus, the same considerations as in Section 5.1.3 apply.

5.1.5 Constructors

Statistics A total of 3 034 constructors were found; on average about 1.25
constructors have been found per class.

Table 5.2 shows how often a particular modifier is used for a constructor.
The first set of four modifiers, the ones that govern access to the constructor,
are mutually exclusive and cover all constructors. As a result the total of the
first four modifiers is always exactly 100%. The other modifiers are optional
and multiple of them can be used per constructor.

34 Remko Bijker - University of Twente

5.1. Call-site characteristics

Modifier Amount Percentage

package visible 759 25.0%
public 1 971 65.0%
private 151 5.0%
protected 153 5.0%

transient 14 0.5%
annotation 53 1.7%
deprecated 7 0.2%

Table 5.2: Modifier usage for constructors

Parameters Amount Percentage

0 669 22.1%
1 1 171 38.6%
2 720 23.7%
3 241 7.9%
4 144 4.7%
5+ 89 2.9%

Table 5.3: Parameter usage for constructors

Table 5.3 relates the number of parameters to the amount of constructors
having such a parameter count. The 3 034 constructors declare a total of
4 420 parameters, giving about 1.5 parameters per constructor. Of all these
parameters 588 are of type java.lang.String, 564 are int and 158 are
boolean, from a total of 518 parameters types.

Of the 3 034 constructors 2 855 do not throw an exception, leaving 179
that do throw at least one. A total of 188 exceptions is declared; a few
constructors declare more than one exception. The exceptions most fre-
quently thrown are javax.xml.stream.XMLSteamException (84 times) and
java.io.IOException (40 times), which are both part of the Java API.

A total of 14 526 call-sites of constructors were found. Of these 64% call
a constructor from the Java API; only 36% of the calls are for creating appli-
cation specific classes. Classes from the java.lang package are constructed
39% of the time, with the StringBuffer/StringBuilder being responsible
for over 50% of the calls. Most of these string building calls are generated au-
tomatically by the compiler when it encounters the concatenation of strings
using the + operator. This means that in theory these call-sites should not
be affected by the aspects, however it is impossible to distinguish between
there implicitly generated calls and explicit calls.

Master thesis - Efficient pointcut projection 35

Chapter 5. Call-site and pattern survey

Storage The name of a constructor can be best stored in a sorted col-
lection as it is similar to the class names; it has many unique names as
well.

For the modifiers a bucket array is best as there are only a few valid
different buckets to consider. However, there are sometimes multiple buckets
a constructor would match with. In that case they have to be put in all,
but this is not a big problem as a relatively small amount would be placed
in multiple buckets. It has to be considered whether physically storing the
public modifiers bucket is needed at all, as it matches the vast majority of
constructors.

We consider three techniques to store parameters: First, the number of
parameters can be used to determine the bucket. Second, the first parameter
type can be used. (If a function has no parameters, void is used as first
parameter.) Third, the concatenation of all parameter-type names can be
stored lexically sorted.

The benefit of the first technique is that searching for a particular amount
of parameters is extremely efficient, whereas the second is efficient in finding
constructors that have a particular type as first parameter.

The third technique is well suited for finding constructors that start with
particular parameters, but finding constructors with a given length requires
looking through the whole collection.

Finally the exceptions can best be stored in a bucket as well. Here, each
declared exception is put into a bucket. Given the low amount of actually
declared exceptions and the low amount of constructors with more than one
declared exception this does not impact storage much. The constructors
that do not throw an exception are not stored specially.

5.1.6 Field reads and writes

Statistics In total, 3 884 fields have been found, yielding 1.6 fields per
class. Of these fields 3 874 are read and 3 863 are written. Some fields, pri-
marily with a protected access modifier, are not written to or not read. As
these fields are all part of the Java API this can be explained by the appli-
cation extending such a framework class and only then writing or reading
said fields.

An example of this can be seen with javax.swing.JComponent.ui. This
field of JComponent has a protected access modifier and a method to set
it. It does not have a function to read the value, though. Thus if a custom,
non Java API, sub lass of JComponent requires information from that field
it needs to access it directly. As a result there is a field read on that field,
but the application does not (directly) write to it, so there is no field write.

All static final reads are ignored because the majority of call-sites
can be silently destroyed by the compiler optimising them away.

In total, there are 2 697 different field names. The most frequently used

36 Remko Bijker - University of Twente

5.1. Call-site characteristics

field name logger is used 38 times which means that the field names them-
selves are all quite selective. The majority, 95.9%, of the field names start
with a lower case letter. Of the 3.2% of field names that start with an upper
case letter 55.6% are static. About 0.9% of all names start with either a
$ (U+0024) or a _(U+005F).

The field names have an average length of 9.7 characters. Around 99%
of these characters are letters. Looking at the first three characters does
not show any discernible patterns; the most prefix, can, is used in less than
1.75% of the field names. This means that the field names diverge relatively
fast in all cases.

The length and divergence of the field names can be used to estimate
the time required for one comparison of two strings. If, e.g., at most 1.75%
of the field names start with the same three letters one knows that in three
comparisons there is at most a 1.75% chance that further characters have
to be examined.

71 $
52 0
25 1
26 2

2 3
11 4
10 5

1 6
1 7
8 8

241 _
Field names English

2759 a 7.40% 8.17% 1.104187872 0.905642984 0.905642984 0.09
671 b 1.80% 1.49% 0.829427481 1.205650913 0.829427481 0.17

1645 c 4.41% 2.78% 0.630845982 1.585172972 0.630845982 0.37
1391 d 3.73% 4.25% 1.140513343 0.87679816 0.87679816 0.12
4578 e 12.27% 12.70% 1.034971612 0.966210076 0.966210076 0.03

556 f 1.49% 2.23% 1.494763597 0.66900211 0.66900211 0.33
906 g 2.43% 2.02% 0.829619536 1.205371807 0.829619536 0.17
588 h 1.58% 6.09% 3.86595898 0.258668032 0.258668032 0.74

2477 6.64% 6.97% 1.049034041 0.953257912 0.953257912 0.05
51 0.14% 0.15% 1.11906 0.893607135 0.893607135 0.11

274 k 0.73% 0.77% 1.050990657 0.951483244 0.951483244 0.05
2064 l 5.53% 4.03% 0.727425145 1.374711895 0.727425145 0.27
1127 3.02% 2.41% 0.796349707 1.255729726 0.796349707 0.20
2724 n 7.30% 6.75% 0.924196762 1.08202067 0.924196762 0.08
2727 7.31% 7.51% 1.026865105 0.973837747 0.973837747 0.03
1220 p 3.27% 1.93% 0.589799656 1.695490986 0.589799656 0.41

74 q 0.20% 0.10% 0.478877027 2.088218778 0.478877027 0.52
2599 r 6.97% 5.99% 0.859280777 1.16376396 0.859280777 0.14
2486 s 6.66% 6.33% 0.949355406 1.053346295 0.949355406 0.05
3537 t 9.48% 9.06% 0.955066192 1.047047847 0.955066192 0.04
1220 3.27% 2.76% 0.843269803 1.185860084 0.843269803 0.16

413 v 1.11% 0.98% 0.883325811 1.132085112 0.883325811 0.12
272 0.73% 2.36% 3.236497059 0.308976026 0.308976026 0.69
351 x 0.94% 0.15% 0.159410256 6.273122085 0.159410256 0.84
484 y 1.30% 1.97% 1.521366694 0.657303728 0.657303728 0.34
108 z 0.29% 0.07% 0.255587778 3.912550157 0.255587778 0.74

 i
 j

 m

 o

 u

 w

 a b c d e f g h i j k l m n o p q r s t u v w x y z
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

Field names English

Figure 5.1: Letter frequencies of field names compared to English

Figure 5.1 shows the letter frequencies in the field names which are fairly
similar to the letter frequencies in English, although there are a few letters
whose frequency differs significantly.

Table 5.4 shows how often a particular modifier is used for a field. This
table is almost identical to Table 5.2 with the exception that the percentages
for public and private modifiers are switched; fields are about ten times

Master thesis - Efficient pointcut projection 37

Chapter 5. Call-site and pattern survey

Modifier Amount Percentage

package visible 862 22.1%
public 236 6.1%
private 2 189 56.4%
protected 597 15.4%

static 395 10.2%
volatile 8 0.2%
transient 50 1.3%
annotation 22 0.6%
deprecated 9 0.2%

Table 5.4: Modifier usage for fields

more often private than constructors are. This situation is reversed for for
public.

Modifier Amount Percentage

package visible 40 10.1%
public 52 13.2%
private 291 73.7%
protected 12 3.0%

volatile 3 0.8%
annotation 22 5.6%

Table 5.5: Modifier usage for static fields

Table 5.5 shows the modifiers, but only for the static fields. What
stands out is that all package visible fields are also static and that there
are much fewer protected fields and fields without modifiers than for non-
static fields.

For field writes the (hypothetical) return type is always void whereas
for field reads there is no parameter type. As the return type of a field read
is the same as the parameter type of a field write for the same field, these
types are the same. Of these types 53% is either a primitive or comes from
the java.lang package, with int, boolean and java.lang.String taking
respectively 22%, 12% and 10% of the total.

Field reads and writes cannot throw checked exceptions.

A total of 27 979 field reads and 9 752 field writes, respectively 7.2 and
2.5 per field. Roughly 16.4% are reads from and 12.4% are writes to classes
from the Java API.

38 Remko Bijker - University of Twente

5.1. Call-site characteristics

Storage For storing the name a sorted collection makes finding a partic-
ular name or a range easy. Using a bucket array is possible, but either the
whole name has to be hashed or only the first character is taken into ac-
count. In the former case doing a name range look-up becomes expensive,
whereas in the latter case one still has to go through a long list of items
after the first bucket. If one were to chain the buckets per character one
would in effect be building sorted collection.

The modifiers can only be stored in a bucket array due to the limited
amount of options. It can be considered to not create a physical bucket for
the private fields as they match more than half of the fields and as such
are not very selective.

The type of the field can best be stored in a sorted collection. There are
quite a number of types, although it is very conceivable that a set of types
from one package is considered. In that case having a collection sorted on
the type name would make getting those ranges work in the same way as for
class names. However, it is conceivable to store the data in a bucket array
if there can be, e.g. due to a less powerful point cut languages, are no range
look-ups on the type of a field.

5.1.7 Methods

Statistics A total of 17 294 methods were found, which means about 7.1
methods have been found per class. There are 6 812 different names for the
methods, yielding 2.5 methods with the same name.

The average length of a method name is 12.3 characters; almost 3 char-
acters more than field names. Around 99% of the characters are a letter.

Figure 5.2 shows the letter frequency in the method names which is less
similar to the letter frequency in English. Letters “c”, “e”, and “t” are used
significantly more often whereas the usage of letters such as “h”, “w”, and
“y” have dropped by up to 75%.

Name Amount Percentage

get 4 596 25.6%
set 1 346 7.8%
cre 541 3.1%
acc 499 2.9%
add 413 2.4%

Table 5.6: Frequency of first three letters in method name

Contrary to the insignificance of the first three letters of field names the
first three letters of method names are significant as can be seen in Table 5.6.
What has to be noted is that 417 of the 499 methods that start with “acc”

Master thesis - Efficient pointcut projection 39

Chapter 5. Call-site and pattern survey

459 $
895 0
199 1
185 2

92 3
86 4
57 5
50 6
39 7
46 8
24 9

513 _ Field names English
15203 a 7.15% 8.17% 1.142960987 0.874920502 0.874920502 0.13

2370 b 1.11% 1.49% 1.339425688 0.746588638 0.746588638 0.25
9108 c 4.28% 2.78% 0.649878621 1.53874888 0.649878621 0.35
8136 d 3.82% 4.25% 1.112199228 0.899119488 0.899119488 0.10

31686 e 14.89% 12.70% 0.852909275 1.172457645 0.852909275 0.15
3247 f 1.53% 2.23% 1.459926677 0.684965907 0.684965907 0.32
8285 g 3.89% 2.02% 0.517464647 1.932499169 0.517464647 0.48
2599 h 1.22% 6.09% 4.988779592 0.200449826 0.200449826 0.80

13677 6.43% 6.97% 1.083654328 0.922803494 0.922803494 0.08
196 0.09% 0.15% 1.660861837 0.602097043 0.602097043 0.40

1358 k 0.64% 0.77% 1.209527305 0.826769264 0.826769264 0.17
9735 l 4.58% 4.03% 0.8796868 1.136768222 0.8796868 0.12
6612 3.11% 2.41% 0.774213829 1.291632831 0.774213829 0.23

13478 n 6.33% 6.75% 1.065398602 0.938615836 0.938615836 0.06
13474 6.33% 7.51% 1.185408452 0.843591083 0.843591083 0.16

6333 p 2.98% 1.93% 0.64806846 1.543046855 0.64806846 0.35
324 q 0.15% 0.10% 0.623845062 1.602962116 0.623845062 0.38

13476 r 6.33% 5.99% 0.945249383 1.057921876 0.945249383 0.05
13281 s 6.24% 6.33% 1.013596738 0.986585653 0.986585653 0.01
23797 t 11.18% 9.06% 0.80967802 1.235058845 0.80967802 0.19

5658 2.66% 2.76% 1.037121089 0.964207565 0.964207565 0.04
2472 v 1.16% 0.98% 0.841760485 1.18798639 0.841760485 0.16
1347 0.63% 2.36% 3.727713734 0.268260943 0.268260943 0.73
1697 x 0.80% 0.15% 0.18806482 5.317315586 0.18806482 0.81
2132 y 1.00% 1.97% 1.969963114 0.507623718 0.507623718 0.49

438 z 0.21% 0.07% 0.359464292 2.781917486 0.359464292 0.64

 i
 j

 m

 o

 u

 w

 a b c d e f g h i j k l m n o p q r s t u v w x y z
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

Field names English

Figure 5.2: Letter frequencies of method names against English

are access$n methods created by the compiler for inner classes that try to
access outer classes.

Table 5.7 shows how often a particular modifier is used for a method. As
multiple modifiers can be used at the same time the total is more than 100%.
What immediately catches one’s eye is that almost 80% of the methods are
public and that furthermore a large portion is static.

Table 5.8 shows the modifiers, but only for static methods. What
stands out is the majority of package visible methods are also static and
that there are almost no protected static methods. Note that abstract

static methods are impossible as one cannot override static methods.

Of 37.7% of the methods the return type is void. About 36.4% is a
primitive type or comes from the java.lang package, with int, boolean
and java.lang.String respectively taking 10.4%, 10.1%” and 7.7%. When
ignoring the void return type, these return types are similar to the type of
fields.

When considering the methods starting with get and set more closely,
one finds that there are 6 (0.01%) of the former methods have a return type
of void and 49 (3.6%) of the latter have a return type different from void.
This means that when encountering a pattern matching methods that start
with get or set in an aspect one can be fairly sure the method respectively
returns or does not return something. Consequently, the return-type check

40 Remko Bijker - University of Twente

5.1. Call-site characteristics

Modifier Amount Percentage

package visible 1 022 5.9%
public 13 399 77.5%
private 1 450 8.4%
protected 1 423 8.2%

static 2 178 12.6%
final 1 527 8.8%
synchronized 315 1.8%
volatile 127 0.7%
transient 62 0.4%
native 58 0.3%
abstract 1 623 9.4%
annotation 558 3.2%
deprecated 24 0.1%

Table 5.7: Modifier usage for methods

Modifier Amount Percentage

package visible 545 25.1%
public 1 331 61.1%
private 301 13.8%
protected 1 0.0%
final 353 16.2%

synchronized 23 1.1%
volatile 1 0.0%
transient 8 0.4%
native 25 1.1%
annotation 432 19.8%
deprecated 7 0.3%

Table 5.8: Modifier usage for static methods

Master thesis - Efficient pointcut projection 41

Chapter 5. Call-site and pattern survey

should be done in the last step.

Parameters Amount Percentage

0 6 568 38.0%
1 7 115 41.1%
2 2 247 13.0%
3 728 4.2%
4 342 2.0%
5+ 293 1.7%

Table 5.9: Parameter usage for methods

Table 5.9 relates the number of parameters to the amount of methods
having such a parameter amount. With 16 838 parameters there are roughly
0.94 parameters per method. That is about 0.5 (or 35%) less parameters
per method than parameters per constructor.

Of all passed parameters 11 595, or 68.9% have a type stemming from
the Java API, so 5 243 (31.1%) have a custom type. Of the parameters
stemming from the Java API 8 335 (49.5%) are either a primitive or from
the java.lang package. Looking at the specific types of parameters the
following can be gathered: 3 218 (19.1%) are int, 1 859 (11.0%) are of
the java.lang.String type, 970 (5.7%) are boolean and 734 (4.4%) are
java.lang.Object.

About 7.6% of the methods declare an exception. Of these 1 317 methods
992 declare one exception, 129 declare two, 191 declare three, and 5 declare
four. Of the declared exceptions 44% are application-specific and the re-
maining 56% are exceptions taken for the Java API. The majority, about
70%, of the methods that declare an exception are application methods.

In this survey two applications declared each 35% of those 70% leaving
about 15% for the other two (smaller) applications. When the number of
methods per application is taken into account then for each applications
about 7.1% of the application-specific methods declare an exception.

A total of 98 175 call-sites of methods have been found. Of these, 46.7%
call a method from the Java API; the other 53.3% of the calls are directed
at application-specific classes. The java.lang package is called in 21.8% of
the cases. Hereby, the pair StringBuffer/StringBuilder are responsible
for over 50% of those calls. Most of these string-building calls are gener-
ated automatically by the compiler when it encounters the concatenation
of strings using the + operator. This means that in theory these call-sites
should not be affected by the aspect. In practice, however, it is impossible
to distinguish between such implicitly generated and explicit calls.

Other Java API packages that are commonly called are GUI related,
such as javax.swing and java.awt at 13.9%, and java.util for 9.9%.

42 Remko Bijker - University of Twente

5.1. Call-site characteristics

Storage The storage techniques suitable for the sub-patterns of methods
are mostly described above for other generic-function kinds. The name pat-
tern is described in the section about fields, whereas the modifier, parameter
and exception pattern are described in the constructor section. The return
type is the exception. The return type, however, should be handled in a
unique fashion: while it follows the same technique as the type pattern of
fields, it also has a void type which the type pattern does not have. As
this matches a large part of the methods it should be considered whether
actually storing the bucket for void types is of use.

5.1.8 Summary

For most sub-patterns there are use cases for both bucket arrays and sorted
collections. As such information about the actually looked for patterns has
to be gathered before it is possible to determine which technique makes sense
for a particular sub-pattern.

Table 5.10 shows the sub-patterns, their technique and some remarks.
Some of the sub-patterns are not supported by all generic-function kinds.
In that case one has to ignore the sub-pattern information. In most cases
the data applies to all generic-function kinds that support the sub-pattern,
however with the modifier sub-patterns there is a difference between con-
structors and methods on one hand and fields on the other hand; for the
former the public access modifier is not selective whereas for the latter the
private access modifier is not selective.

Sub-pattern Storage Remarks

class name bucket when ranges are not used
class name sorted when ranges are used
name bucket when ranges are not used
name sorted when ranges are used
modifiers bucket for constructors and methods, except public
modifiers bucket for fields, except private
(return) type bucket when ranges are not used, except void
(return) type sorted when ranges are used
parameters bucket looks at first type
parameters bucket looks at parameter count
parameters sorted looks at all types
exceptions bucket

Table 5.10: Proposed storage techniques per sub-pattern

Master thesis - Efficient pointcut projection 43

Chapter 5. Call-site and pattern survey

5.2 Pattern characteristics

To be able to tell how often a particular part of a pointcut pattern is used
one needs to look at real-world aspects and the patterns they use in their
pointcuts. For example, if none of the aspects specify a class-name pattern
it would be of little use to build a sorted list of class names. As such
having this information can help avoiding mistakes made based solely on
the characteristics of the generic-functions.

5.2.1 Methodology

To acquire the characteristics of aspects a number of applications and aspect
libraries have been analysed. This analysis was mostly done by hand on the
source code of the aspects (all written in AspectJ). The manual work was
needed because in most of the cases the package name of classes was not
part of the join point as the class was imported or in the local package scope.

Aspect mining techniques, such as described in [9], that extract aspects
from real world applications has not been used as this would result in ap-
plication specific patterns that possibly would favour the larger applications
as they have more places where aspects could be found.

The following AspectJ applications and libraries and the patterns used
in them are analysed:

• ajlib-incubator; a library with aspects that are meant to be reusable.

• Contract4J5; aspects to support “design by contract” in Java.

• Glassbox; an application for monitoring other applications by using
aspects.

• NVersion, RecoveryCache; generic aspects for fault tolerance.

• Sable Benchmarks; set generic aspects used for benchmark purposes.

5.2.2 Acquired information

In total, 170 different patterns have been found in 242 different aspects.
What is noteworthy about the found patterns is that many of them were
found within code that limits the call-sites for a particular pattern to a
specific class or package. In these cases doing a full search of all call-sites
would be a waste of time; only looking at an unsorted list of call-sites within
a particular class or package would suffice.

5.2.3 Static initialisers

Two patterns have been found that look at static initialisers. One matches
for all static initialisers, whereas the other matches exactly one class.

44 Remko Bijker - University of Twente

5.2. Pattern characteristics

5.2.4 Constructors

In total, ten patterns matching a constructor have been found. Of these,
four have an “any class” pattern, one has a “any class in package” pattern
and the remaining five match a particular class. Two patterns match the
native modifier and one matches the public modifier. It has to be noted,
however, that the former two patterns do not make sense, as the native

modifier is prohibited for constructors by the Java language specification [11,
Chapter 8.8.3]; thus these patterns can never match. Furthermore there is
one pattern that requires an exception to be declared.

The ten patterns are used by sixteen different pointcuts; six pointcuts
use the “match any constructor” pattern, two times a “match any public
constructor” pattern. All other patterns have been found only once.

5.2.5 Field reads and writes

We found five field read and four field write patterns. Of these, four matched
“any class”, three “any class in package”, and two patterns matched a spe-
cific class. The latter two patterns furthermore matched a specific “name”
pattern. Two modifiers patterns matched public methods, while two others
did match on the modifiers respectively being static or not being static.

Only the “match any field read/write” patterns were found multiple
times; three and two times for field reads and field writes, respectively.

5.2.6 Methods

The majority of patterns are method patterns; 149 of the found patterns
match a method call. 36 of these match “any class,” 2 match “any class in
package”, and the remaining 111 match a specific class. Of these, 75 classes
match a class from the Java API.

18 patterns match a method with “any name”, 23 match the “first few
characters of a name“, one matches the “last characters of a name”, and the
remaining 107 match a specific name. A small number of the same name
patterns were found in different patterns, however, none in more than three
patterns. In total there are 103 unique patterns.

10 patterns match on the public, 2 on the native, and 1 on the static

modifier. Also, 3 patterns match methods without the static modifier.
One of the methods matches both the public and the static modifier.

13 return type patterns match void, 13 match a specific type and one
matches all non-void return types. The remaining patterns match any re-
turn type.

41 parameter patterns specify that there may be no parameters, 4 specify
that there must be exactly one parameter regardless of type, 12 parameters
have a specific pattern for the parameters, 3 describe the first parameter

Master thesis - Efficient pointcut projection 45

Chapter 5. Call-site and pattern survey

but allow more parameters, and the remaining 89 patterns match any pa-
rameters.

In total, 4 patterns match declared exceptions; in 2 of these cases any
exception suffices whereas in the others a specific exception must be declared
to be thrown.

Of the 212 found aspects 67 match any class. Of these 23 match any
name, resulting in 44 cases that describe at least a partial name. The former
all match on either public, non-static or “any” modifiers. Furthermore
the matched return types of these 23 are void, non-void and “any”. This
means that in the case no class and no name is given the pattern can be
considered to be a “match any” pattern in view of using sorted data sets for
look-up.

For patterns that match “any class in a package” the other sub-patterns
are generally match ”any” sub-patterns with the exception of an occasional
match public or match throws java.lang.Throwable. This means that in
that case the package could be used as initial data set.

Of the 212 found patterns 143 match a specific class and two match
a class within a specific package. Of these, 143 only six have a match
“any method name” pattern. 44 of the remaining 67 patterns match on the
method name. This leaves 23 patterns that do not match on the class or
method name. Of these 23 patterns, four are fairly selective as they specify
selective parameter types, modifiers or declared exceptions.

5.3 Optimisation strategies

This section describes the default optimization strategies that can be ex-
tracted from the Sections 5.1 and 5.2. As in those sections the optimization
strategy will be discussed per generic-function kind.

5.3.1 Static initialisers

Static-initialisers patterns can only be evaluated in one way: looking at the
class name. To optimise this, the generic-functions could be sorted by their
full class name to aid the look-up speed.

Due to the small amount of patterns matching on static initializers found
in the case study it is unclear whether an index data structure can pay off.
If such patterns occur sufficiently often, a sorted collection can offer quick
access.

5.3.2 Constructors

For constructors there are basically two sub-patterns that can be used for
optimization: A sorted collection with the full class names when a class
name is known and a bucket array with the call-sites per modifier otherwise.

46 Remko Bijker - University of Twente

5.3. Optimisation strategies

Hereby, the sorted list of class names would be the primary way of searching;
only if there is no class name to match, one can consider using the bucket
array.

In cases where modifiers other than public are used in method patterns,
matching that modifier using the bucket array should be considered due to
the high selectivity of those modifiers. However, when the full class name
is very selective, i.e. the class name has no wild cards in it, that would still
take precedence.

There are no aspects referring to declared parameters and exceptions of
a constructor. Therefore, we cannot deduce an optimal look-up and storage
strategy. Until sufficient data is available, we assume that carrying over the
results for methods is a reasonable starting point.

5.3.3 Field reads and writes

For field reads and writes the main optimization point is the class name as
well. Nevertheless, the modifiers are also useful, as the ones found in the
survey are also very selective with the exception of the private modifier.
In contrast, the field name and the type are not worth considering, even
though the name is actually very selective in this case. This is due to
the fact that it is rarely used and thus the overhead of building the index
outweighs the small extra selectivity over the class name which can be used
much more often. However, a majority of the patterns found in the survey
match everything; thus, in these cases there is little to optimize.

5.3.4 Methods

Most methods can be matched by their name. They are matching a specific
pattern making them not that selective, e.g., get* and set*. So in reality
they match more cases, first checking the class name will yield better initial
selectivity unless the class name can be anything.

Parameter and return types are the next most selective, however, in the
majority of the cases the class or name were already matched meaning that
as initial search parameter they are not very useful, especially because they
are matching very common types, such as void for return types (or being
parameter-less).

The modifiers of a method are in most cases not selective at all; most of
them match more than 75% of the methods. This actually makes the return
type more selective than the modifiers for the case where there are no class
or method names to match.

Exceptions are rarely used in patterns. Effectively, patterns that do refer
to declared exceptions just require that at least one exception is thrown but
they do not further specify patterns for the exception types. In the two
patterns we found in the case study that do specify a required exception type,

Master thesis - Efficient pointcut projection 47

Chapter 5. Call-site and pattern survey

the sub-pattern for the declaring class is more selective than the exceptions
sub-pattern. As such, the exceptions sub-pattern should not be evaluated
early.

5.3.5 Conclusion

Taking the above analysis into account, we now give a summary of the best
storage techniques for improving the performance of the pattern matching
in Table 5.11. Hereby, the numbers represent the order in which to evaluate
the sub-patterns.

Sub-pattern Technique Static init. Constr. Field Method

class name sorted 1 1 1 1
name sorted - - 3 2
modifiers bucket - 2 2 4
type bucket - - 4 -
return type sorted - - - 3
parameters sorted - 3 - 5
exceptions bucket - 4 - 6

Table 5.11: Best storage techniques per sub-pattern and order of use by kind

As can be seen, the class name is the best sub-pattern to start with. This
is usually followed by the modifiers, except for the case of methods; here,
the name of the method is a more selective secondary search parameter.
Methods also have a third search parameter, the return type.

Note, however, that this data depends on the generic-functions used by
the actual applications and on the aspects used to search for a subset of
these. If an application, for example, declares only a few checked exceptions
and all aspects look for a particular exception, then a simple bucket array
could be the most selective and thus best way to start the search.

Another example would be a pattern matching all public static meth-
ods starting with get. In that case the name sub-pattern would match
around 25% of the methods whereas the modifiers sub-pattern matches only
8% and thus the modifiers pattern would be the most selective.

48 Remko Bijker - University of Twente

Chapter 6

Implementation

6.1 Methodology

It is necessary to have a performance measuring methodology to determine
the performance effects of the proposed improvements. To compare the ac-
tual performance effects one has to use one of the benchmarking techniques.
The areas and the data used for benchmarking are described in this section
as well.

6.1.1 Benchmarking techniques

On a high level performance can be measured by looking at the execution
time whole application, or by looking at a small piece of an application
which is called micro benchmarking.

The advantage of the former technique is that it is easy to set up; just
run an application and time how long it takes. For better accuracy and
precision this is done multiple times in a row and then the mean of all runs
is taken. The major disadvantage is that the part this research is interested
in is a very small part of the running of an application.

Micro benchmarking does not have that problem as it looks at only
very specific parts of an application. It requires adding bits of code to
determine the time that passes between entering the area one is interested
in and leaving that same area. As the pieces of code that are evaluated are
relatively small this needs a high precision method of getting the time, e.g.
some measurements had an average length of less than 750 nanoseconds.
At this time-scale the disadvantage of micro benchmarking comes to light;
anything that interrupts the execution while in a time measured area of the
execution will have an enormous effect on the average.

In this study this disadvantage is mostly negated by explicitly trying to
remove as much of the interruptions as possible. This is done by, amongst
others, manually calling the garbage collector until the garbage collector
does not free more objects, manually yielding the execution so the chance the

Master thesis - Efficient pointcut projection 49

Chapter 6. Implementation

operating system’s scheduler does schedule another task is reduced, fixing
the frequency at which the CPU runs so its frequency does not fluctuate and
disabling as many things that generate interrupts as possible such as network
or background services. Even though this helps giving a more consistent
result there is, especially for the smaller cases, a lot of fluctuation between
runs. To reduce the “noise” from this fluctuation the methods are called
multiple times and then the lowest and highest 5% of the data point values
are removed. Of the remaining 90% the mean is calculated and used.

6.1.2 Benchmarked areas

The major area of interest is the actual matching of patterns against the
call-sites including the iteration of the call-sites. However, another area of
interest is the “sorting” of the call-sites or rather the insertion of the call-
sites in the collection of all found call-sites. Therefore this study will look at
two areas of interest: the actual matching and the insertion. It will not look
at the costs incurred with finding the call-sites in an application of applying
the attachment to the call-sites that match the associated pattern.

Though, for determining what the best order of sub-pattern matching
it is needed to know how effective the sub-patterns are. For this each sub-
pattern’s matching is benchmarked and compared to the “match”-to-“no
match” ratio of the single sub-patterns. In this case all sub-patterns are
evaluated and the lazy evaluation, returning “no match” on this first non-
matching sub-pattern, of the whole pattern is not performed.

6.1.3 Setting up the benchmark data

To set up the benchmark data it is necessary to have call-sites and patterns
to match against. The easiest way for this is by using NOIRIn or SiRIn,
two of ALIA4J’s reference implementations. However, NOIRIn matches a
call-site to a pattern, i.e. the matching happens in the inverse direction.
Furthermore both NOIRIn and SiRIn load call-sites whenever they come
across them. This means that one has to go through a large number of code
paths within an application to load all the call-sites.

To overcome this a small extension to “Extract” was written called
“Benchmark”. This tool extracts call-sites in the same way as “Extract”
and loads patterns from a comma separated file. These call-sites are in-
serted into the FIAL framework while being timed. After the time it takes
to get all call-sites matching the patterns, one lookup per pattern, is mea-
sured.

To efficiently perform these tests only the FIAL framework is reset be-
tween each measurement run, i.e. the loaded call-sites within FIAL are
cleared. The full benchmark returns the measurements of many runs.

50 Remko Bijker - University of Twente

6.1. Methodology

The sub-pattern matching measurements are done using the same mea-
surement, but it only returns the results of the sub-pattern matchings.

The FIAL framework does not support constructor and static initialisers
thus these are excluded from the benchmarks.

6.1.4 Benchmark data

For the benchmarking the same applications as for the survey in Chapter 5
are taken together with two larger “applications” to determine how the
different benchmarked algorithms scale in large applications. The bench-
marked “applications” are:

• ANTLR A tool to construct parsers, compilers and translators.

• FreeCol A turn-based strategy game.

• Java’s runtime Java platform’s core runtime API.

• Java’s tools Non-core Java platform classes like the Java compiler.

• LIAM A major part of the implementation of ALIA4J.

• TightVNC An application to remotely take over a desktop.

Application Methods Field reads Field writes Total

ANTLR 23 468 8 936 2 661 35 065
FreeCol 58 843 11 010 4 716 74 569
Java’s runtime 471 368 204 995 79 796 756 159
Java’s tools 120 633 41 528 14 242 176 403
LIAM 3 098 558 236 3 922
TightVNC 1 321 1 656 474 3 451

Total 678 731 268 713 102 125 1 049 569

Table 6.1: Amount of call-sites per application

The amount of benchmarked call-sites per application can be seen in
Table 6.1. It shows that, when looking at the size of these applications in a
logarithmic scale, there is a reasonable spread of application sizes given the
small set a benchmarked applications.

For Java’s runtime the call-sites in the classes of the API are evaluated
whereas for the other applications the call-sites in Java’s API are excluded.
Call-sites to Java’s API are always included.

The patterns that are used for this benchmark are as well from the survey
in Chapter 5. The only difference is that where some patterns were found
multiple times, all patterns are applied only once. This as FIAL caches the

Master thesis - Efficient pointcut projection 51

Chapter 6. Implementation

result of getting the call-sites of a pattern and as such getting it multiple
times would mean getting them from the cache which is relatively cheap. As
mentioned before the constructor and static initialiser patterns are ignored
as well resulting in 158 patterns that are looked up.

The benchmarks resulted in a lot of data. The most interesting results
will be discussed in this chapter and the full data and graphs can be found
in Appendix A. The small summary tables in this chapter refer to a table in
the appendix where more information about the range and accuracy of the
measurements can be found.

6.2 Base

The base benchmark, i.e. the benchmark using the original data structure
and algorithms, consists of two parts. A benchmark of the insertion of call-
sites and a benchmark of the matching of a pattern against the call-sites.
All further benchmarks will be normalised to these two when comparing
algorithms and implementations.

The base algorithm puts all call-sites in a hash table and iterates over
the complete table trying to match a pattern against all call-sites.

Insertion The base insertion is insertion of call-sites into a hash set. As
expected, the larger the application the longer a single benchmark run takes.

TightVNC LIAM ANTLR FreeCol Tools Runtime

73ns 82ns 171ns 167ns 178ns 188ns

Table 6.2: Average insertion time per call-site (Table A.1)

Table 6.2 shows the average insertion cost per call-site. The table shows
that the insertion for the two small applications are roughly equal and the
the same holds for the four larger applications. This might be explained
by the in-memory size of the hash tables, as described in Section 6.5. It it
conceivable that the smaller hash tables fit entirely in the CPU’s cache and
thus the CPU has to wait less for the requested data to be available.

Matching The base matching method, i.e. the original matching method,
is determined by matching all 158 method, field read and field write pat-
terns found in Chapter 5. Finally the average of that number is taken as
measurement for matching the average pattern.

Table 6.3 shows the average matching cost per call-site. The variation in
the matching times can be explained by the package names of the different
packages. Table 6.4 shows the “primary root package name”, which is the

52 Remko Bijker - University of Twente

6.3. Sub-pattern matching order

TightVNC LIAM ANTLR FreeCol Tools Runtime

275ns 686ns 580ns 781ns 692ns 642ns

Table 6.3: Average matching time per call-site (Table A.2)

Application Primary root package Class name length

TightVNC . 12.1
LIAM org.alia4j.liam. 27.8
ANTLR antlr. 19.8
FreeCol net.sf.freecol. 30.7
Java’s tools com.sun. 37.2
Java’s runtime java. 33.6

Table 6.4: Statistics about the application’s package and class names

part of the longest package name that is the same for the majority of the
classes, and the length of the average full class name.

As can be seen in the tables: the application with the shortest primary
root package name, i.e. TightVNC, matches fastest, whereas the applications
with the longest primary root package names match slowest. Furthermore
is the class name of influence, but a smaller influence than the length of
primary root package’s name.

However, the insertion of LIAM was much faster than the larger appli-
cations. If all call-sites were kept in memory, as suggested in the previous
section, the LIAM case should be much faster. As can be seen in Section 6.5
the memory usage for LIAM is significantly higher than any other appli-
cation. This higher memory usage suggests that the load factor for LIAM
is lower than for the other applications. This lower load factor means that
iterating the whole table consists of a relative large amount of empty entries.
That causes more empty entries need to be skipped per actual call-site and
thus the average matching time increases.

6.3 Sub-pattern matching order

The first few optimisations that are benchmarked are based upon the data
gathered from the aspects as described in Section 5.2 and 5.3, and the se-
lectivity principle. In other words, this section shows and evaluates the
performance of improvements to the matching without changing the data
structure where the call-sites are stored in.

Table 6.5 shows the sub-pattern matching order of the different methods
described in this section. The original method is seen as the “base” method
and the others are compared to that.

Master thesis - Efficient pointcut projection 53

Chapter 6. Implementation

Original Class-first Name-first
Sub-pattern Field Method Field Method Field Method

class name 3 3 1 1 2 2
name 4 4 3 2 1 1
modifiers 1 1 2 4 3 3
type 2 - 4 - 4 -
return type - 2 - 3 - 4
parameters - 5 - 5 - 6
exceptions - 6 - 6 - 5

Table 6.5: Sub-pattern order in different matching orders

Class-first The first match optimisation strategy is to use the order de-
fined in Section 5.3. In short the class name sub-pattern seems to be the most
selective when looking at the aspects and as such they should be checked
first, followed by the other sub-patterns. See Table 5.11 for more informa-
tion.

TightVNC LIAM ANTLR FreeCol Tools Runtime

1.07 1.08 1.05 0.99 1.19 1.12

Table 6.6: Relative time of class-first matching (Table A.3)

A comparison of the class-first matching to the original matching method
can be seen in Table 6.6. The numbers in the latter table show the relative
time the matching took compared to the original matching method. A
number larger than 1 means it took more time, thus its performance is
worse, whereas a number smaller than 1 means a speed-up. Overall it can
be said that the performance when matching the class-first is worse than
when the original method is used.

Sub-pattern efficiency As can be seen the results from Section 5.3 did
not improve the performance of the matching. This is primarily due to the
fact that that section did not take the “cost” of the sub-pattern matches
into account; a sub-pattern can be most selective, but if it costs a lot to
evaluate it might be more efficient to evaluate another sub-pattern first.

To determine what the best sub-pattern to start with is one has to know
both the time it takes to evaluate a sub-pattern and what the selectivity of
that sub-pattern is.

To determine this all sub-patterns have been benchmarked and their
selectivity was calculated based on the 158 method and field read/write
patterns of the survey and the call-sites of the benchmarked applications.

54 Remko Bijker - University of Twente

6.3. Sub-pattern matching order

These numbers are then normalised to respectively the time all sub-pattern
benchmarks took and the number of matchings. This means that for each
application and sub-pattern there are two numbers: the share of the match-
ing cost and the percentage of call-sites that did match. The efficiency is
then calculated using the following formula:

efficiency =
1 − matching share

share in matching cost

The resulting efficiency for the different sub-patterns can be seen in
Table A.4. For the methods the efficiency factors are relatively conclusive;
the different sub-patterns are ranked in the same order for all applications.

For fields the data is less conclusive; the ranking of the sub-patterns
differs per application and the type always has an efficiency of 0. The latter
has to do with the fact that the found patterns did never match on a field’s
type. The inconclusive ranking is primarily caused by the cost of the class
name matching for TightVNC; the cost is roughly 10% lower meaning that
the relative costs of name and modifier matching increase. This results in
an increase of the class sub-pattern’s efficiency factor and a decrease in the
efficiency factor for the others. Besides that the ranking of the class and
modifiers sub-patterns are occasionally reversed.

Nevertheless, the final ranking is the same regardless of whether the
individual rankings or the average efficiency factor is used to determine the
ranking. Table 6.5 shows the optimal ranking according to the efficiency
factor. This “name-first” ranking is primarily due to the fact that matching
the name sub-pattern is significantly cheaper than matching the class sub-
pattern.

Sub-pattern efficiency based matching The benchmark results using
the ranking of the aforementioned efficiency factors to order the sub-pattern
for matching are shown in Table 6.7.

TightVNC LIAM ANTLR FreeCol Tools Runtime

0.29 0.38 0.28 0.27 0.33 0.36

Table 6.7: Relative time of name-first matching (Table A.5)

As can be seen, the improvements are a significant threefold over the
original algorithm. This has mainly to do with the much higher efficiency
factor of the name sub-pattern than the class sub-pattern.

The relatively small improvement for LIAM furthermore enforces the
assumption that the load factor of the hash table for LIAM was significantly
lower than for the others. If more time is spent in iterating empty entries in
the hash table the improvements in matching will have a smaller effect on
the whole.

Master thesis - Efficient pointcut projection 55

Chapter 6. Implementation

Pattern optimised matching With this optimisation strategy the pat-
tern matching method is optimised on a per-pattern basis. The optimisa-
tions primarily include not doing pattern matches when it is certain they do
not match, e.g. matching an “any name” sub-pattern is not needed. It uses
the name-first order as basis.

This is implemented by creating a class with the optimised match method
at run-time taking the different sub-patterns of the to-be-matched pattern
into account.

TightVNC LIAM ANTLR FreeCol Tools Runtime

0.29 0.38 0.29 0.28 0.32 0.35

Table 6.8: Relative time of pattern optimised matching (Table A.6)

Table 6.8 shows the improvements against the base matching method.
The differences between pattern optimised matching and name-first match-
ing are small; for the smaller applications there is a small slowdown, whereas
the matching larger applications became slightly faster. This can all be ex-
plained by the overhead for creating the class.

Evaluation Of the three matching proposed optimisations the class-first
matching is worse than the original implementation in all but one case, i.e.
it is not an optimisation in practice.

The two other optimisations show roughly the same result; a three-
fold performance improvement in matching a single pattern. The pattern-
optimised method seems to scale better for large applications, although even
there the difference is almost negligible. Given the larger complexity of the
pattern optimised method the name-first method seems to be better. How-
ever, the pattern optimised method can be improved by looking at more
parts of the sub-patterns in an effort to improve its performance, i.e. to
reduce the amount of effort needed to determine a call-site does not match.

Another improvement to the pattern optimised method that can be con-
sidered is taking more selectivity information into account. For example
when it is known that a void get* method is matched one can perform the
return type after the name as that would be very selective. However, taking
more selectivity information into account means a larger overhead at the
class construction time. The relatively small improvement by not match-
ing certain sub-patterns does suggest that most time is actually spent in
iterating the hash table and as such further improvements to the matching
performance will be relatively insignificant.

56 Remko Bijker - University of Twente

6.4. Sorting

6.4 Sorting

The main idea behind storing the call-sites in a sorted structure is to trade
insertion performance for matching performance and ideally improve the
performance in general. In total three different sorting “keys” were imple-
mented:

• Class; using the full class name as sorting key.

• Name; using the full method/field name as sorting key.

• Name prefix; using the first three characters of the method/field name
as sorting key.

Implementation The basis of the implementation is a mapping between
the key and the call-sites where each key refers to multiple call-sites. This
map is sorted on the key.

The implementation uses a TreeMap which is comparable to a 2-order
B+-tree. As a TreeMap cannot map one key to multiple items it is needed to
let it map to another collection. In this case that is the same hash table as
the used in the original unsorted system. This makes the size of the sorted
map, and thus the lookup, related to the number of unique keys.

Lookups are done as described in Section 5.1.3. This means that in case
of a class name with wild card a sub map of the sorted map is requested. In
case of pattern matching a specific class a single lookup is done and when
any class is matched the whole map is iterated.

6.4.1 Sorting by class

Section 5.3 concludes that class names are best as initial sub-pattern to
search on.

Insertion Benchmark results of inserting the call-sites into a collection
that is sorted by class name are shown in Table 6.9.

TightVNC LIAM ANTLR FreeCol Tools Runtime

2.86 3.33 2.14 3.44 4.49 5.64

Table 6.9: Relative time for insertions when sorted by class name (Table A.7)

The larger applications are relatively slower than the smaller ones as
could be expected by the O(log n) complexity of insertion into a B+-tree.
The low relative value for ANTLR is due to the relatively high cost of
insertion into the original data structure. ANTLR furthermore has an ex-
traordinarily large number of methods and fields in some classes causing the
sorted tree to be relatively shallow.

Master thesis - Efficient pointcut projection 57

Chapter 6. Implementation

Original matching Table 6.10 shows the benchmark result of the original
matching method using the collection that is sorted by class name.

TightVNC LIAM ANTLR FreeCol Tools Runtime

0.07 0.09 0.08 0.08 0.09 0.09

Table 6.10: Relative time for original matching with data sorted by class
name (Table A.8)

The table shows the relative time taken for the matching. What is
immediately clear is that this matching method is at least 10 times faster
for all the applications than the original method. It also looks like the
performance improvements decrease in relation to the size of the application.
This might well be related to the depth of the sorted tree and its lookup
cost.

Sub-pattern efficiency As the range lookup already filters out a lot of
unmatchable call-sites the sub-pattern efficiency factors are different. Ta-
ble A.9 shows the efficiency factors given that the collection is sorted by
class name and that a range lookup can be done.

Unlike the base case the efficiency ranking for methods is less clear; the
name sub-pattern is definitely the most efficient, the class sub-pattern is the
worst as almost all call-sites match and the modifiers sub-pattern is second
worst. The return type, parameters and exceptions sub-pattern are very
close with their average ranking being equal and their average efficiency
factor differing by less than one percent.

Class Name Name prefix
Sub-pattern Field Method Field Method Field Method

class name 4 6 2 1 2 1
name 2 1 3 6 3 3
modifiers 1 5 1 2 1 2
type 3 - 4 - 4 -
return type - 4 - 3 - 6
parameters - 3 - 5 - 5
exceptions - 2 - 4 - 4

Table 6.11: Best sub-pattern order for different sorting keys

The efficiency ranking for methods is even less clear. As in Table A.4
the type sub-pattern matches everything, but now the class sub-pattern
is matched in all cases as well. The name sub-pattern did not match in
0.0024% of the time leaving the modifiers sub-pattern as the best ranked

58 Remko Bijker - University of Twente

6.4. Sorting

sub-pattern. Table 6.11 shows the best sub-pattern order for the different
sorting methods.

Sub-pattern efficiency based matching Table 6.12 shows the results
when the matching takes the aforementioned order of sub-pattern matches
into account.

TightVNC LIAM ANTLR FreeCol Tools Runtime

0.06 0.08 0.07 0.08 0.09 0.09

Table 6.12: Relative time for matching using efficiency factor with data
sorted by class name (Table A.10)

This implementation’s sub-pattern order is always around 10% faster
than the original sub-pattern matching order.

Pattern optimised matching Table 6.13 shows the benchmark results
when optimising the pattern matching by not performing the sub-pattern
matches that are certain to match. In this case the fact that a range lookup
is done is taken into account as well; when it is certain the class sub-pattern
is already matched that is not evaluated either. As more sub-patterns could
be removed it now shows a slight improvement over the matching order using
the efficiency factor.

TightVNC LIAM ANTLR FreeCol Tools Runtime

0.07 0.07 0.08 0.07 0.09 0.08

Table 6.13: Relative time for pattern-optimised matching with data sorted
by class name (Table A.11)

This implementation is slightly slower (less than 5%) for TightVNC and
ANTLR, which have short package names, whereas there is an improvement
of up to 20% LIAM. Overall the improvement is roughly 2.5% compared to
the efficiency ranking ordered matching.

Evaluation The matching when doing range lookups based on the class
name cannot be improved as impressively as the original storage method
did. When determining whether to go for the sub-pattern matching order
based on efficiency factors or for the optimised pattern matching one has
to look at the length of the primary root package. If that is short the
former method should be taken and if the primary root package is long the
optimised pattern matching has to be considered.

Master thesis - Efficient pointcut projection 59

Chapter 6. Implementation

6.4.2 Sorting by name

As seen in Section 6.3 the name has a significantly higher efficiency factor
when matching than the class name has. This section evaluates whether
this is also the case when the B+-tree is sorted by the name.

Insertion Table 6.14 shows the results for inserting the call-sites into a
collection sorted by the name of the fields and methods.

TightVNC LIAM ANTLR FreeCol Tools Runtime

4.53 4.37 2.27 3.61 4.16 5.99

Table 6.14: Relative time for insertions in a collection sorted by name (Ta-
ble A.12)

As can be seen in the table, sorting with this key is slower for all appli-
cations except the Java tools.

Original matching Table 6.15 shows the result of the original matching
method using the collection that is sorted by name.

TightVNC LIAM ANTLR FreeCol Tools Runtime

0.12 0.17 0.11 0.12 0.14 0.17

Table 6.15: Relative time for original matching with data sorted by name
(Table A.13)

The four largest applications show a gradual increase in time as can be
expected by the larger sorted collection. The large numbers for the two
smallest applications are likely due to favourable CPU cache effects fast in
the base benchmark and as such the improvements cannot be in line with
expectations.

The larger number for LIAM can, again, be explained by a lower load
factor for the secondary hash tables as was the case for the original case.
More time is spent in iterating the hash tables and as such the improvements
are smaller.

Sub-pattern efficiency Table A.14 shows the efficiency factors for the
different applications and sub-patterns and Table 6.11 shows the order for
sub-pattern matching that is most efficient based on that ranking.

Contrary to the efficiency factors for class names there are no cases where
there is no name to match. This is due to the fact that there are patterns
that match the last few characters of a name and as such still need to iterate
all call-sites.

60 Remko Bijker - University of Twente

6.4. Sorting

The efficiency of the name sub-pattern for methods is ranked lowest, the
class sub-pattern highest and the four others are pretty close although their
average ranking and ranking of their averages result in the same order. For
fields the type sub-pattern is again the lowest ranking pattern due to the
fact that no pattern matches it closely followed by the name sub-pattern.
The modifiers sub-pattern is ranked highest.

Sub-pattern efficiency based matching Table 6.16 shows the results
of matching using the efficiency ranking to order the sub-pattern matching.

TightVNC LIAM ANTLR FreeCol Tools Runtime

0.13 0.19 0.11 0.13 0.14 0.15

Table 6.16: Relative time for matching using efficiency factor with data
sorted by name (Table A.15)

When comparing Table 6.16 with the relative time taken for the original
matching order in Table 6.15 one can see that the matching takes longer
for all applications except the two largest. There is no clear explanation
for this behaviour besides the patterns that match the end of a name. In
that case all call-sites have to be iterated and evaluated and the order using
the efficiency factor moved the sub-pattern matching to the end, thus more
sub-patterns have to be evaluated in that case.

Pattern optimised matching Table 6.17 shows the results when opti-
mising the pattern matching by not performing the sub-pattern matches
that are certain to match. In this case the fact that a range lookup is done
is taken into account as well; when it is certain the name sub-pattern is al-
ready matched that is not evaluated either. As more sub-patterns could be
removed it now shows a slight improvement over the matching order using
the efficiency factor.

TightVNC LIAM ANTLR FreeCol Tools Runtime

0.13 0.18 0.11 0.12 0.13 0.16

Table 6.17: Relative time for pattern-optimised matching with data sorted
by class name (Table A.16)

As with the optimised matcher when the call-sites are sorted by class
name the smallest applications’ matching gets slightly slower whereas the
matching of the larger applications gets faster. However, the benefit for the
larger applications is smaller than when sorted by class.

Master thesis - Efficient pointcut projection 61

Chapter 6. Implementation

Evaluation Of the matching methods benchmarked the original seems to
be the best overall. The sub-pattern matching order based on the efficiency
factor is clearly slower and the optimised pattern matcher only seems to
have effect on applications with a large number of call-sites.

6.4.3 Sorting by name prefix

As concluded in Section 6.4.2 the initial sorting costs for sorting by name
are significantly higher than those for classes. Together with the notion that
the number of method/field names outweighs the number of classes and thus
the B+-tree gets quite deep it has to be considered whether sorting by only
the first three characters as mentioned in Section 5.1.

Insertion Table 6.18 shows the results for inserting the call-sites into a
collection sorted by the prefix, the first three characters, of the method and
field names.

TightVNC LIAM ANTLR FreeCol Tools Runtime

3.72 6.64 1.98 2.61 3.29 4.07

Table 6.18: Relative time for insertions in a collection sorted by name prefix
(Table A.17)

Sorting with this key is slower for small applications but faster for larger
applications when comparing it to sorting by class name. This can be ex-
plained by the fact that there is a limited number of keys for the name
prefix, but in small applications the number of methods and fields that use
the same prefix is small and thus relatively a lot of time is spent in the
B+-tree insertion and lookup instead of the relatively cheap insertion into
a hash table.

Original matching Table 6.19 shows the result of the original matching
method using the collection that is sorted by the first three characters of
the method or field name.

TightVNC LIAM ANTLR FreeCol Tools Runtime

0.14 0.19 0.12 0.14 0.14 0.17

Table 6.19: Relative time for original matching with data sorted by name
prefix (Table A.18)

The high values for the two smallest applications are explained by the
fast benchmark results of the original matching method and the low load
factor for LIAM’s hash tables.

62 Remko Bijker - University of Twente

6.4. Sorting

Sub-pattern efficiency Table A.19 shows the efficiency factors for the
different applications and sub-patterns and Table 6.11 shows the order for
sub-pattern matching that is most efficient based on that ranking.

The field matching efficiency factors are the same as the factors from
when the data is sorted by name. This is due to the fact that the patterns
only matched three character long names, or any name.

For the method the sub-patterns are more interesting; the class sub-
pattern is clearly the most efficient, but all others are roughly equally well.
The average of the rankings does not even match the ranking of the averages.
As a result of this there is no crystal clear order in which to evaluate the
sub-pattern, thus the ranking of the averages is taken.

Sub-pattern efficiency based matching Table 6.20 shows the bench-
mark results for matching using the sub-pattern matching order derived
from the efficiency ranking.

TightVNC LIAM ANTLR FreeCol Tools Runtime

0.13 0.18 0.12 0.11 0.13 0.16

Table 6.20: Relative time for matching using efficiency factor with data
sorted by name prefix (Table A.20)

This method is in all cases faster than the original matching sub-pattern
order.

Pattern optimised matching Table 6.21 shows the benchmark results
when optimising the pattern matching by not performing the sub-pattern
matches that are certain to match. In this case the range lookup is taken
into account, but only the if the pattern did match three or less characters
at the start; otherwise it will still do a name sub-pattern match.

TightVNC LIAM ANTLR FreeCol Tools Runtime

0.12 0.17 0.11 0.11 0.13 0.16

Table 6.21: Relative time for matching using efficiency factor with data
sorted by name prefix (Table A.21)

The performance of the optimised matcher is better than the perfor-
mance using only the efficiency factors.

Evaluation It is clear that the reordering the sub-pattern matches and
optimised sub-pattern matching has a beneficial effect. However, the dif-

Master thesis - Efficient pointcut projection 63

Chapter 6. Implementation

ferences are relatively small and as such the extra costs of construction the
optimised sub-pattern matchers might not be worth it.

6.4.4 Evaluation

In all cases sorting by the method and field name is not the fastest; its
insertion and matching are reliably slower than when sorting by name. This
leaves the sorting by class and name prefix.

On one hand the name prefix’s insertion is faster for all but the smallest
applications. On the other hand the matchings using the prefix name are
slower than when sorted by the class name. This means that the decision
on which algorithm to use depends on both the amount of call-sites and the
number of patterns that are going to be applied, e.g. when 5 patterns are
applied the method sorted by class name wins for all but the two largest
applications and when 10 patterns are applied the method sorted by class
name is best for all applications.

6.5 Memory usage

Besides performance implications related to the different optimisation strate-
gies there are memory implications as well. This section compares the mem-
ory requirements of the different base strategies, i.e. the memory require-
ments for the collection of call-sites. As can be seen in Table A.22 the extra
memory requirements depend heavily on the amount of call-sites in an appli-
cation, e.g. only 50% extra memory on top of the base is needed for a small
application whereas a 200% extra memory is needed for a large application.

Sorting by name always uses the most memory, but relatively to memory
usage when sorting by name it decreases. Furthermore for the smaller half of
the applications sorting by class name uses less memory than when sorting
by the prefix name and vice versa for the larger half. However, the difference
between the class and prefix sorted approaches never differs more than 10%
except for the smallest application.

The fact that the prefix sorted’s memory usage grows slower than for
class names can be found in the fact the the number of prefixes is more or
less limited whereas the number of classes is unlimited. As a result the hash
tables of the prefix approach will grow for larger applications whereas the
tree structure will primarily grow for the sort-by-class approach.

The reason the name sorted’s memory usage is this large in the small
applications is the fact that the initial hash table size is 16 items and when
adding only a few there will be a lot of overhead. However, the larger the
application the more a name will be reused and as such the smaller the
overhead of the initial hash table size gets.

When ignoring the data for LIAM, which is the outlier in almost all
of the above benchmarks, the memory behaviour of the different storage

64 Remko Bijker - University of Twente

6.6. Evaluation

methods becomes more visible. The average size per call-site for classes
remains constant around 70 bytes, whereas all others are becoming smaller
when more call-sites are loaded. The largest relative improvement can be
seen in the original hash table which becomes 55% smaller, the two others
become about 30% smaller.

6.6 Evaluation

As seen reordering the sub-pattern matches can improve the performance
of the matching threefold. The matching’s performance can be improved
another four times by sorting the call-sites and using that order to reduce
the amount of data that has to be scanned. However, this improvement is
offset by an factor four slowdown of the initial insertion of call-sites.

Only reordering the sub-pattern matches has no influence on the inser-
tion and as such going for the name-first ordering of the sub-pattern matches
is a good first step into improving the performance of the matching. A pat-
tern optimised sub-pattern matcher can be considered when the patterns are
to be applied to large applications although the improvement over the simple
name-first reordering is small and the complexity of creating a sub-pattern
matcher is big due to the creation of classes at run-time.

The improvements that can be made by sorting depend on the size of
the application due to the increasing insertion cost for larger applications
as well as the extra memory requirements, and the number of patterns that
are applied due to the break-even point between insertion slowdown and
matching speed-up.

Figure B.6 shows the relative time taken for the different insertion meth-
ods against. The high values for the first two, small, applications can be
explained by the fact that the base insertion was unexpectedly fast. The
rest shows that the larger the application gets the larger the slowdown in
insertion as expected by the O(log n) complexity of the B+-tree over O(1)
complexity for insertion into the hash table.

Figure B.7 shows the relative time taken for the different sub-pattern
efficiency based matching methods on differently sorted collections compared
to the original matching method. From this figure it is clear to see that when
the data is sorted by class the matching is fastest in all cases. The difference
between name and prefix matchings does not differ much, though it is still
faster than the sub-pattern efficiency based, i.e. name-first, matching on the
original data.

When combining the information shown in Figure B.6 and B.7 one can
deduce that given a large enough number of patterns to match the method
that sorts the data by the class is the fastest. The relative time for inser-
tion and matching one, two, five and ten average patterns can be seen in,
respectively, Figures B.2, B.3, B.4 and B.5.

Master thesis - Efficient pointcut projection 65

Chapter 6. Implementation

It is clear that when one pattern is to be applied the simple sub-pattern
match, name-first, reordered method is fastest, however all the sorted meth-
ods are faster than the original method except for the largest application.
When applying two patterns the class sorted method is equally fast or faster
than the name-first reordered method for the smaller half of the applications,
whereas the prefix sorted method is faster than class sorted for the larger
half.

From five applied patterns the class and prefix sorted methods are always
faster than the name-first reordered method and the class sorted method
becomes fastest for the four smallest applications. Finally with ten applied
patterns all sorted methods are faster than the name-first reordered method
with the class sorted method winning in all cases.

66 Remko Bijker - University of Twente

Chapter 7

Related work

Masuhara et al. have discussed the implementation of the weaver component
in the AspectJ compiler [17]. In particular, they also discuss the algorithm
used for finding join-point shadows for pointcuts. As mentioned in the intro-
duction, this entails an evaluation at all join-point shadows in the program.
The authors also suggest a mechanism they call fast match to rule out the
matching on a per-class-basis. This mechanism builds on the fact that each
Java class is represented in one bytecode file which contains the so-called
constant pool, i.e., a table of symbols used in the class. The symbols include
all signatures of methods and fields accessed by instructions in this class.

In the fast match approach, patterns are first evaluated against the signa-
tures in the constant pool. If no match was found, the class cannot contain
matching join-point shadows. Thus, no expensive parsing of the method
bodies’ instructions is required in order to find the location of join-point
shadows.

This approach does not consider the structure of signatures and pat-
terns themselves, but groups join-point shadows according to the locations
in which they occur. The constant pool is a summary of the occurring
join-point shadows and is used to exclude some locations from the search as
shortcut. Our approach is orthogonal to that and exploits common struc-
tures in signatures and patterns themselves.

The Steamloom virtual machine [12] supports dynamic aspect de-
ployment and therefore also seeks to improve performance of partial pointcut
evaluation. Steamloom implements an indexing mechanism that allows to
quickly map from matched signatures to the locations of the corresponding
join-point shadows. This is similar to the fast match in the AspectJ com-
piler, but also does not consider heuristics of common signature and pattern
structures.

In [13] Haupt and Mezini introduce a method for benchmarking the cost
of dynamic aspect deployment. This is a superset of what has researched
for this study as this study ignores the actual weaving, i.e. insertion of code

Master thesis - Efficient pointcut projection 67

Chapter 7. Related work

at the join-point shadows.

68 Remko Bijker - University of Twente

Chapter 8

Conclusion

To determine what the most efficient method for finding call-sites that match
a pattern several sub problems have to be solved. These are shortly sum-
marised before getting to the final conclusion.

What is the theoretically most efficient method of matching call-
sites to patterns? The theoretically most efficient method of matching
depends on the type of lookup that a sub-pattern needs to do. If the sub-
pattern always wants to look-up a specific value then using a hash table is
the preferred way, but when there are a lot of range look-ups then a sorted
tree can be more efficient. Whether this is more efficient depends on the
extra cost of constructing the sorted tree and the amount of range look-ups
that will be done.

What are the general characteristics of call-sites and generic-func-
tions in real world applications? Based on the call-sites and generic-
functions in a number of real world applications both a sorted tree or a hash
table are applicable for each sub-pattern, except that a sorted tree is not
applicable for the exception sub-pattern. The selectiveness of the different
sub-patterns depends a lot on the actual patterns that are used.

What are the general characteristics of patterns in real world as-
pects? For static initialisers and constructors not enough generic patterns
have been found in the real world to give a conclusive answer to this ques-
tion. For field reads and writes the class name seems the most selective
initial sub-pattern followed by the modifiers, name and type sub-patterns.
For methods the class name is the most selective initial sub-pattern, too,
followed by the name, return type, modifiers, parameters and finally excep-
tions sub-pattern. However the latter modifiers, parameters and exceptions
sub-patterns are rarely used in the patterns and as such usually not very
selective.

Master thesis - Efficient pointcut projection 69

Chapter 8. Conclusion

Of the most selective sub-patterns the class name and name sub-patterns
are best suited with a sorted data set, i.e. they use a reasonable number of
range lookups, whereas the modifiers and type sub-pattern are better suited
by a hash table.

What is the most efficient method of matching call-sites to pat-
terns? The most efficient method of matching depends on the number
of patterns that need to be matched and the size of the application. The
easiest optimisation, reordering the sub-pattern matches, that was made,
reduces the matching cost by about 67%, and when including the cost for
constructing the set of call-sites matching one pattern is about 55% faster.

When introducing changes to the data structure of the call-sites, i.e.
changing it to a set sorted by class, the matching cost can be reduced by
around 92.5%. However, the costs for constructing the data set are around
four times higher and the data structure requires between two to four times
more memory. Setting up the data set and matching one pattern is on
average only 20% faster, but when applying five patterns instead of one it
is faster than the simple “sub-pattern match reordering“ optimisation.

Sorting the data structure by the first three characters of method and
field names requires slightly less memory than when sorted by class name
for large applications and its insertion costs are lower as well. However,
the actual matching is slower. This means that for large applications with
a small amount of patterns this method is more efficient than when the
data structure is sorted by the class name, but it is slower than the easiest
optimisation.

Therefore it can be conclude that the reordering of sub-pattern matches
is the most efficient method up to around five patterns or when memory
usage is important. For the other cases the method with the data structure
sorted by class name is the most efficient.

70 Remko Bijker - University of Twente

Chapter 9

Future work

As the implementation of this study used a hybrid of the proposed techniques
from the theoretical section it would be interesting to see whether going
for a fully sorted tree of call-sites has any further beneficial effects. The
ranking of the sub-patterns using the efficiency factors could be used, but
even then there are multiple call-sites referring to a single generic-function.
It is therefore likely that such a study shows that the possible gains, like
range lookups for the second sub-patterns as well, would outweigh the extra
costs of sorting.

Furthermore one can study the optimal initial size and load factors for
the hash tables. For example for small applications using the data sorted
by name there will be a lot of hash tables that are fairly empty. In case of a
search all those mostly empty hash tables need to be iterated which wastes
time as well as memory. However, reducing the initial size will mean that
more rehashes need to be done.

Study other fields in software engineering that depend heavily on match-
ing to find more optimisations for the matching process. An example of such
a field is functional programming in which “decision trees” are constructed
that are either fast or small [16, 21]. From these trees code is generated that
performs the actual matching.

As described in Section 3.2, doing an inverse look-up might be faster in
some cases. It should be studied whether this is actually the case and if so,
how bit the benefits of doing the inverse look-up are.

As suggested in Section 6.2, the small applications’ performance might
be extremely quick due to the CPU’s cache. This should be confirmed by
performing the benchmarks on a machine a much smaller amount of cache
so it is impossible that all data fits in the cache.

As discussed in Chapter 6, the pattern optimised matching can possibly
be improved by putting more run-time knowledge of the application and
the patterns into consideration when determining the order in which the
sub-patterns are being matched and which sub-patterns not to match at all.

Master thesis - Efficient pointcut projection 71

Chapter 9. Future work

Finally the benchmarks and surveys performed in this study should be
expanded to cover a much larger set of applications and aspects, possibly
generated using aspect mining techniques [9], to confirm that results of these
small scale benchmarks and surveys apply in general as well.

72 Remko Bijker - University of Twente

Bibliography

Bibliography

[1] J.-J. Amor-Iglesias, et al. From pigs to stripes: A travel through De-
bian. In Proceedings of the 6th Debian Conference. Helsinki, FI, 2005.

[2] S. Baase and A. V. Gelder. Computer Algorithms: Introduction to
Design and Analysis. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[3] A. J. Bernstein and M. Kifer. Databases and Transaction Processing:
An Application-Oriented Approach. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2001.

[4] R. Bijker, C. Bockisch, and A. Sewe. Optimizing the evaluation of
patterns in pointcuts. In Proceedings of VMIL. 2010.

[5] S. M. Blackburn, et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proceedings of OOPSLA. 2006.

[6] C. Bockisch. An effcient and flexible implementation of aspect-oriented
languages. 2009.

[7] E. Bodden, et al. Taming Reflection (Extended version). Technical
Report TUD-CS-2010-0066, CASED, 2010.

[8] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: A code manipulation
tool to implement adaptable systems. In In Adaptable and extensible
component systems. 2002.

[9] M. Ceccato, et al. A qualitative comparison of three aspect mining tech-
niques. In IWPC ’05: Proceedings of the 13th International Workshop
on Program Comprehension. IEEE Computer Society, Washington, DC,
USA, 2005.

[10] S. Chaudhuri. An overview of query optimization in relational systems.
In PODS ’98: Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems. ACM, New
York, NY, USA, 1998.

Master thesis - Efficient pointcut projection 73

Bibliography

[11] J. Gosling, et al. Java
TM

Language Specification. Addison-Wesley, 3rd
edition, 2005.

[12] M. Haupt. Virtual Machine Support for Aspect-Oriented Programming
Languages. Ph.D. thesis, Technische Universität Darmstadt, 2006.

[13] M. Haupt and M. Mezini. Micro-measurements for dynamic aspect-
oriented systems. In M. Weske and P. Liggesmeyer, editors, Object-
Oriented and Internet-Based Technologies, volume 3263 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2004.

[14] Y. E. Ioannidis. Query optimization. ACM Comput. Surv., 28(1), 1996.

[15] M. Jarke and J. Koch. Query optimization in database systems. ACM
Comput. Surv., 16(2), 1984.

[16] F. Le Fessant and L. Maranget. Optimizing pattern matching. In ICFP
’01: Proceedings of the sixth ACM SIGPLAN international conference
on Functional programming. ACM, New York, NY, USA, 2001.

[17] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and opti-
mization model for aspect-oriented programs. In Proceedings of CC.
2003.

[18] R. Muschevici, et al. Multiple dispatch in practice. In OOPSLA ’08:
Proceedings of the 23rd ACM SIGPLAN conference on Object-oriented
programming systems languages and applications. ACM, New York, NY,
USA, 2008.

[19] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for aspect-
oriented programming. In AOSD ’02: Proceedings of the 1st interna-
tional conference on Aspect-oriented software development. ACM, New
York, NY, USA, 2002.

[20] R. Ramakrishnan and J. Gehrke. Database Management Systems.
McGraw-Hill, Inc., New York, NY, USA, 1999.

[21] R. L. Rivest and L. Hyafil. Constructing optimal binary decision trees
is NP-complete. In Information processing letters. 1975.

[22] P. G. Selinger, et al. Access path selection in a relational database
management system. In SIGMOD ’79: Proceedings of the 1979 ACM
SIGMOD international conference on Management of data. ACM, New
York, NY, USA, 1979.

74 Remko Bijker - University of Twente

Appendix A

Benchmark data

All benchmarks are made with an Intel R© CoreTM2 Duo CPU T9400 at
2.53GHz. On a 64 bits Linux (2.6.32 kernel) with OpenJDK 6b18-1.8.1-2.

The sections in the captions of the tables refer to a section in Chapter 6
which corresponds with the data in the table.

Tables that show the aggregation of raw data show the relative minimum,
maximum and standard deviation for easier comparison of the stability of
the measurements. The applications in tables are sorted by their amount of
call-sites, thus TightVNC (abbreviated as TVNC) is the smallest and the
Java runtime is the biggest.

For matching benchmarks the average for matching a pattern is taken
from the total time it takes to match all 158 patterns. Thus the actual run-
time of these benchmarks was 158 times larger, which is why the deviations
are generally smaller than the deviations for insertion.

When listing sizes in bytes (B) the “K” stands for 1 024 bytes and “M”
for 1 048 576 bytes.

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 241µs 308µs 5.85ms 12.1ms 31.2ms 142ms
Mean 253µs 322µs 5.99ms 12.4ms 31.3ms 142ms
Maximum 299µs 380µs 6.61ms 14.1ms 31.8ms 145ms
Std. dev. 10.4µs 12.4µs 138µs 359µs 103µs 526µs

Norm. min. 0.95 0.96 0.98 0.97 0.99 1.00
Norm. max. 1.18 1.18 1.10 1.14 1.02 1.02
Norm. dev. 0.04 0.04 0.02 0.03 0.00 0.00

Table A.1: Original insertion benchmark (Section 6.2)

Master thesis - Efficient pointcut projection 75

Appendix A. Benchmark data

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 941µs 2.67ms 20.2ms 58.1ms 121ms 479ms
Mean 948µs 2.69ms 20.3ms 58.2ms 122ms 485ms
Maximum 961µs 2.75ms 20.4ms 58.4ms 124ms 491ms
Std. dev. 3.91µs 15.9µs 49.1µs 75.0µs 643µs 3.05ms

Norm. min. 0.99 0.99 1.00 1.00 0.99 1.00
Norm. max. 1.02 1.02 1.01 1.00 1.02 1.01
Norm. dev. 0.01 0.01 0.00 0.00 0.01 0.01

Table A.2: Original matching with original sorting benchmark (Section 6.2)

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 1.01ms 2.87ms 21.2ms 57.6ms 144ms 541ms
Mean 1.01ms 2.90ms 21.3ms 57.7ms 145ms 545ms
Maximum 1.03ms 2.96ms 21.4ms 57.9ms 149ms 553ms
Std. dev. 4.80µs 17.1µs 43.5µs 62.0µs 967µs 3.80ms

Norm. min. 0.99 0.99 1.00 1.00 0.99 0.99
Norm. max. 1.02 1.02 1.00 1.00 1.02 1.01
Norm. dev. 0.01 0.01 0.00 0.00 0.01 0.01

Table A.3: Class-first matching with original sorting benchmark (Sec-
tion 6.3)

Sub-pattern TNVC LIAM ANTLR FC Tools RT Mean

Methods
Class 2.68 2.45 2.54 2.42 2.37 2.37 2.47
Name 4.71 4.88 5.70 5.63 5.47 5.63 5.34
Modifiers 0.25 0.23 0.24 0.21 0.27 0.28 0.25
Return type 0.97 1.26 1.08 1.14 1.16 1.13 1.12
Parameters 2.16 1.95 2.07 1.87 2.09 2.11 2.04
Exceptions 2.17 1.97 2.13 1.91 2.14 2.16 2.08

Fields
Class 1.64 1.36 1.50 1.40 1.39 1.33 1.44
Name 1.38 1.45 1.53 1.43 1.49 1.49 1.46
Modifiers 1.22 1.45 1.23 1.35 1.14 1.37 1.29
Type 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.4: Efficiency factors for sub-patterns (Section 6.3)

76 Remko Bijker - University of Twente

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 271µs 1.00ms 5.74ms 15.5ms 39.6ms 175ms
Mean 285µs 1.01ms 5.77ms 15.6ms 39.9ms 176ms
Maximum 290µs 1.04ms 5.81ms 16.0ms 41.2ms 178ms
Std. dev. 3.39µs 7.00µs 15.7µs 98.6µs 403µs 394µs

Norm. min. 0.99 0.99 1.00 0.99 0.99 1.00
Norm. max. 1.05 1.03 1.01 1.03 1.03 1.01
Norm. dev. 0.01 0.01 0.00 0.01 0.01 0.00

Table A.5: Sub-pattern efficiency based matching with original sorting
benchmark (Section 6.3)

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 269µs 1.01ms 5.85ms 16.0ms 39.0ms 169ms
Mean 271µs 1.02ms 5.87ms 16.0ms 39.1ms 169ms
Maximum 276µs 1.04ms 5.90ms 16.1ms 39.2ms 170ms
Std. dev. 1.25µs 4.75µs 14.0µs 21.2µs 38.5µs 207µs

Norm. min. 0.99 0.99 1.00 1.00 1.00 0.99
Norm. max. 1.02 1.02 1.01 1.00 1.00 1.02
Norm. dev. 0.00 0.00 0.00 0.00 0.00 0.00

Table A.6: Pattern optimised matching with original sorting benchmark
(Section 6.3)

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 691µs 1.24ms 12.6ms 42.3ms 139ms 801ms
Mean 724µs 1.31ms 12.8ms 42.8ms 141ms 803ms
Maximum 774µs 1.42ms 13.3ms 44.0ms 152ms 807ms
Std. dev. 19.0µs 38.2µs 127µs 334µs 2.47ms 1.54ms

Norm. min. 0.95 0.95 0.98 0.99 0.99 1.00
Norm. max. 1.07 1.08 1.04 1.03 1.08 1.01
Norm. dev. 0.03 0.03 0.01 0.01 0.02 0.00

Table A.7: Sorting by class insertion benchmark (Section 6.4.1)

Master thesis - Efficient pointcut projection 77

Appendix A. Benchmark data

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 63.4µs 238µs 1.67ms 5.05ms 11.5ms 44.0ms
Mean 64.8µs 240µs 1.68ms 5.06ms 11.5ms 44.1ms
Maximum 68.3µs 245µs 1.71ms 5.09ms 11.6ms 44.3ms
Std. dev. 0.96µs 1.55µs 9.66µs 10.4µs 16.4µs 65.4µs

Norm. min. 0.98 0.99 0.99 1.00 1.00 1.00
Norm. max. 1.05 1.02 1.02 1.01 1.00 1.00
Norm. dev. 0.01 0.01 0.01 0.00 0.00 0.00

Table A.8: Original matching with data sorted by class name benchmark
(Section 6.4.1)

Sub-pattern TNVC LIAM ANTLR FC Tools RT Mean

Methods
Class 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Name 3.38 3.42 3.41 4.05 4.00 4.25 3.75
Modifiers 0.52 0.50 0.51 0.44 0.52 0.56 0.51
Return type 1.05 1.32 1.18 1.16 1.17 1.10 1.16
Parameters 1.26 1.13 1.21 1.04 1.16 1.17 1.16
Exceptions 1.26 1.14 1.23 1.05 1.16 1.16 1.17

Fields
Class 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Name 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Modifiers 1.93 1.93 1.90 1.83 1.52 1.78 1.82
Type 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.9: Efficiency factors for sub-patterns for data sorted by class name
(Section 6.4.1)

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 59.0µs 215µs 1.48ms 4.46ms 10.6ms 40.9ms
Mean 60.2µs 222µs 1.50ms 4.48ms 10.7ms 41.7ms
Maximum 63.5µs 251µs 1.63ms 4.57ms 10.8ms 43.4ms
Std. dev. 0.91µs 7.96µs 25.3µs 25.4µs 47.9µs 661µs

Norm. min. 0.98 0.97 0.98 0.99 0.99 0.98
Norm. max. 1.05 1.13 1.09 1.02 1.01 1.04
Norm. dev. 0.02 0.04 0.02 0.01 0.00 0.02

Table A.10: Sub-pattern efficiency based matching with data sorted by class
name benchmark (Section 6.4.1)

78 Remko Bijker - University of Twente

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 61.0µs 180µs 1.51ms 4.26ms 10.6ms 40.0ms
Mean 62.7µs 184µs 1.54ms 4.29ms 10.7ms 40.5ms
Maximum 66.3µs 200µs 1.61ms 4.62ms 10.9ms 41.6ms
Std. dev. 0.97µs 3.47µs 22.2µs 44.7µs 68.0µs 384µs

Norm. min. 0.98 0.99 0.99 1.00 1.00 1.00
Norm. max. 1.05 1.02 1.02 1.01 1.00 1.00
Norm. dev. 0.01 0.01 0.01 0.00 0.00 0.00

Table A.11: Pattern optimised matching with data sorted by class name
benchmark (Section 6.4.1)

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 1.12ms 1.46ms 13.5ms 44.6ms 130ms 851ms
Mean 1.15ms 1.41ms 13.6ms 44.8ms 130ms 853ms
Maximum 1.22ms 1.45ms 14.1ms 45.5ms 132ms 858ms
Std. dev. 25.2µs 27.8µs 13.6µs 204µs 415µs 1.71ms

Norm. min. 0.97 0.96 0.99 0.99 1.00 1.00
Norm. max. 1.06 1.03 1.03 1.02 1.01 1.01
Norm. dev. 0.02 0.02 0.01 0.00 0.00 0.00

Table A.12: Sorting by name insertion benchmark (Section 6.4.2)

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 113µs 555µs 2.13ms 6.99ms 16.3ms 80.1ms
Mean 114µs 558µs 2.15ms 7.00ms 16.6ms 81.0ms
Maximum 118µs 570µs 2.20ms 7.03ms 17.1ms 82.4ms
Std. dev. 1.02µs 2.94µs 14.7µs 11.3µs 213µs 586µs

Norm. min. 0.99 0.99 0.99 1.00 0.99 0.99
Norm. max. 1.04 1.03 1.02 1.00 1.03 1.02
Norm. dev. 0.01 0.01 0.01 0.00 0.01 0.01

Table A.13: Original matching with data sorted by name benchmark (Sec-
tion 6.4.2)

Master thesis - Efficient pointcut projection 79

Appendix A. Benchmark data

Sub-pattern TNVC LIAM ANTLR FC Tools RT Mean

Methods
Class 1.90 1.76 1.93 1.83 1.72 1.67 1.80
Name 0.50 0.45 0.45 0.50 0.46 0.51 0.48
Modifiers 1.01 1.04 1.02 0.96 1.15 1.29 1.08
Return type 1.04 0.98 1.01 0.98 1.03 1.00 1.00
Parameters 0.95 1.00 0.85 0.92 0.94 0.95 0.94
Exceptions 0.96 1.01 0.86 0.93 0.96 0.96 0.95

Fields
Class 1.13 1.01 1.11 1.06 1.01 0.94 1.04
Name 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Modifiers 1.67 1.86 1.67 1.76 1.51 1.82 1.72
Type 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.14: Efficiency factors for sub-patterns using a data sorted by name
(Section 6.4.2)

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 125µs 495µs 2.28ms 7.21ms 16.6ms 74.9ms
Mean 128µs 500µs 2.31ms 7.28ms 16.7ms 75.3ms
Maximum 134µs 527µs 2.44ms 7.60ms 16.9ms 75.9ms
Std. dev. 1.78µs 5.67µs 27.6µs 72.8µs 44.2µs 260µs

Norm. min. 0.98 0.99 0.99 0.99 1.00 1.00
Norm. max. 1.05 1.05 1.05 1.04 1.01 1.00
Norm. dev. 0.01 0.01 0.01 0.01 0.00 0.00

Table A.15: Sub-pattern efficiency based matching with data sorted by name
benchmark (Section 6.4.2)

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 117µs 482µs 2.30ms 7.11ms 16.0ms 75.8ms
Mean 119µs 487µs 2.32ms 7.17ms 16.1ms 77.1ms
Maximum 130µs 501µs 2.38ms 7.37ms 16.2ms 79.3ms
Std. dev. 2.19µs 4.50µs 18.5µs 58.1µs 46.0µs 829µs

Norm. min. 0.98 0.99 0.99 0.99 1.00 0.98
Norm. max. 1.09 1.02 1.03 1.03 1.00 1.03
Norm. dev. 0.02 0.01 0.01 0.01 0.00 0.01

Table A.16: Pattern optimised matching with data sorted by name bench-
mark (Section 6.4.2)

80 Remko Bijker - University of Twente

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 910µs 2.07ms 11.7ms 32.2ms 103ms 579ms
Mean 942µs 2.14ms 11.8ms 32.4ms 103ms 580ms
Maximum 980µs 2.19ms 12.2ms 33.1ms 105ms 584ms
Std. dev. 18.3µs 34.5µs 75.2µs 182µs 506µs 1.35ms

Norm. min. 0.97 0.97 0.99 0.99 0.99 1.00
Norm. max. 1.04 1.03 1.03 1.02 1.01 1.01
Norm. dev. 0.02 0.02 0.01 0.01 0.09 0.00

Table A.17: Sorting by name prefix insertion benchmark (Section 6.4.3)

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 131µs 517µs 2.40ms 8.18ms 16.6ms 84.0ms
Mean 132µs 519µs 2.41ms 8.21ms 16.7ms 84.2ms
Maximum 136µs 524µs 2.43ms 8.25ms 17.7ms 84.4ms
Std. dev. 0.87µs 1.76µs 6.32µs 16.1µs 24.8µs 92.3µs

Norm. min. 0.99 1.00 1.00 1.00 1.00 1.00
Norm. max. 1.02 1.01 1.01 1.00 1.00 1.00
Norm. dev. 0.01 0.00 0.00 0.00 0.00 0.00

Table A.18: Original matching with data sorted by name prefix benchmark
(Section 6.4.3)

Sub-pattern TNVC LIAM ANTLR FC Tools RT Mean

Methods
Class 2.06 1.88 2.00 1.99 1.72 1.80 1.91
Name 1.02 0.88 0.84 1.27 0.87 1.09 1.00
Modifiers 0.92 1.05 0.97 0.85 1.10 1.17 1.01
Return type 0.95 0.94 0.96 0.89 1.00 0.96 0.95
Parameters 0.92 1.04 0.89 0.96 0.97 0.98 0.96
Exceptions 0.93 1.06 0.90 0.97 0.98 0.97 0.97

Fields
Class 1.13 1.01 1.11 1.06 1.01 0.94 1.04
Name 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Modifiers 1.67 1.86 1.67 1.76 1.51 1.82 1.72
Type 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.19: Efficiency factors for sub-patterns for data sorted by name
prefix (Section 6.4.3)

Master thesis - Efficient pointcut projection 81

Appendix A. Benchmark data

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 120µs 486µs 2.42ms 7.58ms 15.5ms 75.7ms
Mean 124µs 488µs 2.43ms 7.59ms 15.5ms 75.9ms
Maximum 134µs 493µs 2.45ms 7.61ms 15.6ms 76.1ms
Std. dev. 0.77µs 1.72µs 6.17µs 11.4µs 22.1µs 83.7µs

Norm. min. 0.99 1.00 1.00 1.00 1.00 1.00
Norm. max. 1.02 1.01 1.01 1.00 1.00 1.00
Norm. dev. 0.01 0.00 0.00 0.00 0.00 0.00

Table A.20: Sub-pattern efficiency based matching with data sorted by name
prefix benchmark (Section 6.4.3)

TNVC LIAM ANTLR FreeCol Tools Runtime

Minimum 117µs 453µs 2.26ms 7.09ms 15.3ms 77.3ms
Mean 117µs 455µs 2.27ms 7.11ms 15.3ms 77.5ms
Maximum 120µs 462µs 2.29ms 7.14ms 15.3ms 77.7ms
Std. dev. 0.74µs 2.02µs 6.11µs 11.9µs 20.2µs 829µs

Norm. min. 0.99 1.00 1.00 1.00 1.00 1.00
Norm. max. 1.02 1.02 1.01 1.00 1.00 1.00
Norm. dev. 0.01 0.00 0.00 0.00 0.00 0.00

Table A.21: Pattern optimised matching with data sorted by name prefix
benchmark (Section 6.4.3)

TNVC LIAM ANTLR FreeCol Tools Runtime

Total size
Base 162 KB 320 KB 1.47 MB 2.24 MB 5.72 MB 15.6 MB
Class 233 KB 482 KB 2.19 MB 4.87 MB 12.0 MB 50.6 MB
Name 396 KB 624 KB 2.46 MB 6.15 MB 14.5 MB 60.7 MB
Prefix 301 KB 507 KB 2.25 MB 4.80 MB 11.3 MB 47.3 MB

Size per call-site
Base 48.0 B 83.7 B 44.1 B 31.5 B 34.0 B 21.6 B
Class 69.0 B 126 B 65.6 B 68.5 B 71.1 B 70.1 B
Name 118 B 163 B 73.5 B 86.5 B 86.5 B 84.2 B
Prefix 89.4 B 132 B 67.4 B 67.5 B 67.1 B 65.6 B

Table A.22: Memory requirements (Section 6.5)

82 Remko Bijker - University of Twente

Appendix B

Benchmark result
visualisation

The figures in this appendix visualise the performance of the different meth-
ods as described in Chapter 6, specifically Section 6.6.

TightVNC LIAM ANTLR FreeCol JDK Tools JDK Runtime Average

0

20

40

60

80

100

120

140

160

180

Base Sorted by class Sorted by name Sorted by pref ix

Figure B.1: Memory requirements per call-site in bytes

Master thesis - Efficient pointcut projection 83

Appendix B. Benchmark result visualisation

TightVNC LIAM ANTLR FreeCol JDK tools JDK runtime Average

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

Name f irst By class By name By pref ix

Figure B.2: Relative times for insertion and one sub-pattern efficiency based
pattern matching for differently sorted collections

TightVNC LIAM ANTLR FreeCol JDK tools JDK runtime Average

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

Name f irst By class By name By pref ix

Figure B.3: Relative times for insertion and two sub-pattern efficiency based
pattern matchings for differently sorted collections

84 Remko Bijker - University of Twente

TightVNC LIAM ANTLR FreeCol JDK tools JDK runtime Average

0.000

0.100

0.200

0.300

0.400

0.500

0.600

Name f irst By class By name By pref ix

Figure B.4: Relative times for insertion and five sub-pattern efficiency based
pattern matchings for differently sorted collections

TightVNC LIAM ANTLR FreeCol JDK tools JDK runtime Average

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

Name f irst By class By name By pref ix

Figure B.5: Relative times for insertion and ten sub-pattern efficiency based
pattern matchings for differently sorted collections

Master thesis - Efficient pointcut projection 85

Appendix B. Benchmark result visualisation

Base Sorted by classSorted by nameSorted by prefix
1 2.86 4.53 3.72

LIAM 1 4.07 4.37 6.64
ANTLR 1 2.14 2.27 1.98

1 3.44 3.61 2.61
JDK tools 1 4.49 4.16 3.29
JDK runtime 1 5.64 5.99 4.07
Average 1 3.77 4.16 3.72

TightVNC

FreeCol

TightVNC LIAM ANTLR FreeCol JDK tools JDK runtime Average

0

1

2

3

4

5

6

7

Base Sorted by class Sorted by name Sorted by pref ix

Figure B.6: Relative times for insertion into differently sorted collections

Base Name first By class By name By prefix
1 0.29 0.06 0.13 0.13

LIAM 1 0.38 0.08 0.19 0.18
ANTLR 1 0.28 0.07 0.11 0.12

1 0.27 0.08 0.13 0.12
JDK tools 1 0.33 0.09 0.14 0.13
JDK runtime 1 0.36 0.09 0.15 0.16
Average 1 0.32 0.08 0.14 0.14

TightVNC

FreeCol

TightVNC LIAM ANTLR FreeCol JDK tools JDK runtime Average

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Name f irst By class By name By pref ix

Figure B.7: Relative times for sub-pattern efficiency based matching for
differently sorted collections

86 Remko Bijker - University of Twente

	Introduction
	Terminology
	Context and motivation
	Contents

	Data model of ALIA4J
	Examples

	Problem statement
	Sub problems
	Limitations

	Database query optimisation
	Indices
	Theory
	Application of theory

	Selectivity
	Theory
	Application of theory

	Query reordering
	Theory

	Summary
	Conclusion

	Call-site and pattern survey
	Call-site characteristics
	Methodology
	Acquired information
	Class names
	Static initialisers
	Constructors
	Field reads and writes
	Methods
	Summary

	Pattern characteristics
	Methodology
	Acquired information
	Static initialisers
	Constructors
	Field reads and writes
	Methods

	Optimisation strategies
	Static initialisers
	Constructors
	Field reads and writes
	Methods
	Conclusion

	Implementation
	Methodology
	Benchmarking techniques
	Benchmarked areas
	Setting up the benchmark data
	Benchmark data

	Base
	Sub-pattern matching order
	Sorting
	Sorting by class
	Sorting by name
	Sorting by name prefix
	Evaluation

	Memory usage
	Evaluation

	Related work
	Conclusion
	Future work
	Bibliography
	Benchmark data
	Benchmark result visualisation

