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Summary

I don’t think many people have ever read the report [. . . ]
How many read the summary?

John Sherman Cooper (1901 – 1991)

In the past decades traffic demand has been increasing nearly continuously,
which has provided governments all over the world with significant challenges.
In the Netherlands constructing new roads is, due to various reasons, not
longer considered to be the solution, the focus is now more on efficient use of
existing infrastructure.

One of the instruments that is frequently used to increase the efficiency
of infrastructure is Dynamic Traffic Management (DTM). In DTM we use
different measures such as directing traffic through traffic lights, adding or
removing lanes and variable speed limits to provide road users with the ‘best
possible’ infrastructure. It is however difficult to determine what is ‘best’,
especially now environmental and safety issues are becoming more and more
important. The best possible set of measures from a travel time perspective,
may very well result in very high CO2 emissions, annoyance due to excessive
noise and many fatalities.

It is therefore that research is being done on determining a set of possible
DTM applications that can be considered the best solutions. Here ‘best’
means that these solutions are not outperformed by any other solution on
all objectives. Unfortunately finding all solutions in this set is impossible,
it would easily take millennia to find them. Science has therefore resorted
to finding only a part of this set (but a representative one) using heuristics
such as Genetic Algorithms. However finding a part of this set using this
method still takes months, which is unacceptable in the traffic and transport
consultancy business. It is here where our research takes off.

Main goal of our research is therefore to accelerate the search for this set
of best solutions (also known as Pareto optimal set). In our research we focus
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solely on accelerations that can be obtained by using approximation tech-
niques, which is why our research goal is defined as ‘accelerating the search
for the Pareto optimal set found by multiobjective genetic algorithms for mul-
tiobjective network design problems, in which externalities are the objectives
and DTM measures the decision variables, using function approximations’.

It is therefore that we performed a literature study into approximation tech-
niques, from which we derived three main techniques: the Response Surface
Method (RSM), the Radial Basis Function (RBF) and Kriging/DACE. Be-
cause all of the approximation techniques have parameters that can be set, we
were able to develop 148 different variants. In order to be able to determine
which variant would provide the best results, we chose two simple road net-
works which could be used for testing and selected a set of quality measures
from literature.

We found that variants that score very good on one quality measure, do
not necessarily perform well on another. Furthermore we found that selecting
the right parameters can significantly influence the results of the approxima-
tion techniques. However eventually we can conclude that the Kriging/DACE
approach without optimising the power in the cost function is always amongst
the best performing approaches. Benefit of the Kriging/DACE approach is
that it does not only provide estimated objective values, but also the corres-
ponding estimated errors. Another solution which performs reasonably well,
and best on one quality measure, is the RSM approach with only cubic squared
interaction terms. Main benefits of the latter approach are that it is easy to
understand (it is the basis of the Least Squares Method) and that the approach
is extremely fast (it can determine objective values in less than a second). It
is therefore that we selected these two approaches as possible approximation
methods for the remainder of the research.

We also performed a literature study into how Genetic Algorithms (and NSGA-
II in particular) can be accelerated. It became clear that many of the ap-
proaches are quite complicated and/or require further optimisation, which
would lead to high computational effort. We therefore selected two approaches
which could easily be integrated into the original NSGA-II algorithm. The
first is the Inexact Pre Evaluation (IPE) which is a deterministic approach
and evaluates only those solutions which are, based on the approximated ob-
jective values, part of the Pareto optimal set. The second is the Probability
of Improvement (PoI) approach, which is stochastic and determines for each
solution the probability that it improves the Pareto optimal set. Next it only
evaluates the n best solutions or the solutions with a probability higher than
x%.

We combined the two approximation methods (RSM and DACE) and the two
acceleration approaches (IPE and PoI) into three different Approximation
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Method Assisted NSGA-II (AMAN) algorithms. The fourth combination was
impossible since PoI requires the expected error for each objective value and
RSM is not able to provide this information. In order to determine which of
the three approaches is best, we performed a literature study to find perform-
ance measures which can be used to compare Pareto fronts, and applied the
approaches to the two test networks mentioned earlier. Unfortunately we only
had time for a single run, which makes that the results are not indisputable.

We found that the results between the different AMANs (when compared
with the original NSGA-II algorithm) do not point towards a single ‘best’ ap-
proach. In fact, an approach that scores well on one performance measure can
easily score quite bad on another. However based on the combined results over
the two test networks, we find that PoI-DACE provides the most promising
results. Not only did it provide results that were comparable to the results of
the original NSGA-II algorithm, it also provided those results in only 50% of
the time that was needed by the NSGA-II algorithm. It is therefore that we
selected this approach to be used in the last phase of this research.

In the last phase we tested the PoI-DACE algorithm on the (more realistic)
case of Almelo. In this network we had seven controlled traffic lights and
two sections of motorway with variable speed limits. In order to determine
the performance of the PoI-DACE approach (in comparison with the original
NSGA-II algorithm) we used the performance measures which were also used
for comparing the AMANs on the test networks. Due to the fact that per-
forming a run for both the NSGA-II and the AMAN algorithm takes about
three weeks, we were, again, only able to perform a single run.

The results of the analysis were quite promising. The area that was dom-
inated by the NSGA-II, but not by the AMAN was only 3% of the total area
dominated by the NSGA-II algorithm. Furthermore we found that the spread
of solutions over the Pareto front was better and that a reduction of 30% in
calculation time is realisable. Unfortunately we also found that the influence
of stochasticity (there are a lot of random processes involved in NSGA-II), is
significant. In order to reduce the uncertainty in these conclusions, we would
have to perform dozens, if not hundreds, of runs.

We furthermore tried to interpret the Pareto optimal set that was found
from a traffic and transport engineering perspective, which appeared to be a
difficult task. Using grouped data and a multitude of boxplots we could, for
some of the DTM measures, determine a relation between the settings and the
resulting objective values. Unfortunately we were not able to find correlation
effects between different DTM measures, something that might be caused by
a lack of data.

Based on the results on the different test networks and the Almelo case we find
that it is highly likely that the proposed AMAN (and probably also the other
AMANs) can achieve a Pareto front that is comparable to the one found by
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NSGA-II. Besides PoI-DACE is able to do so with a reduction in calculation
time of 30%. We therefore can state that we can indeed accelerate the search
for the Pareto optimal set by applying approximation techniques.

It does however seem wise to do some further research. Especially the per-
formance of AMANs can be disputed, since only a single run has been per-
formed. In order to provide reliable results at least dozens of runs should be
performed before we can conclude, statistically, that a specific AMAN is equal
to the original NSGA-II algorithm.

We also recommend that the behaviour of the PoI approach, or more
specifically the change of approximated values and errors over time, is studied.
We were unable to apply a ‘better than x% policy’ because it appeared that
after a few iterations all solutions were accepted.

Finally we suggest that more time and effort is spend in analysing the
resulting Pareto front. Unfortunately we were unable to detect important
relationships between DTM measures, however that might be possible if suf-
ficient data and time is available.



Nederlandse Samenvatting

De boodschap is vaak omgekeerd evenredig
met de dikte van het boek [. . . ]
de essentie zou je in twee A-viertjes
kunnen samenvatten.

Doede Keuning (1943 – )

In de afgelopen jaren is de verkeersvraag sterk toegenomen, niet alleen in Ne-
derland, maar ook in de rest van de wereld. Om de bijbehorende problemen
het hoofd te bieden kan de Nederlandse overheid zich, mede door de Euro-
pese milieuwetgeving, niet langer richten op de aanleg van nieuwe wegen zoals
vroeger gebruikelijk was. De focus ligt daarom nu op het efficiënter gebruiken
van de bestaande infrastructuur.

Een van de technieken die daarvoor wordt ingezet is Dynamisch Verkeers
Management (DVM). DVM maakt gebruik van verkeerslichten (VRI’s) om
verkeersstromen te bëınvloeden, matrixborden om het aantal rijbanen of de
maximale toegestane snelheid te veranderen en Dynamische Route Informatie
Panelen (DRIPs) om de weggebruikers te voorzien van hoogwaardige infor-
matie over de toestand van het wegennet. Het uiteindelijke doel van de weg-
beheerder is een zo optimaal mogelijk verkeersnetwerk te presenteren voor de
gebruikers. De vraag is echter wat een ‘optimaal’ verkeersnetwerk is; de set
met maatregelen die leidt tot een minimale reistijd kan tevens de oplossing
zijn die leidt tot enorme CO2 uitstoot, veel geluidsoverlast en een groot aantal
verkeersslachtoffers.

Op dit moment wordt daarom onderzoek gedaan om een verzameling op-
lossingen te bepalen, die gezamenlijk als ‘beste’ aangemerkt kunnen worden.
Kortom, voor elke oplossing binnen deze verzameling bestaat er geen alterna-
tief dat beter scoort op alle doelfuncties. Deze verzameling kan echter zeer
groot zijn en het duurt daarom millenia voordat deze is gevonden. Er wordt
daarom vaak gebruik gemaakt van intelligente heuristieken, zoals Genetische
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Algoritmen, om een representatieve deelverzameling te vinden. Het vinden
van een dergelijke deelverzameling duurt echter nog steeds maanden en dat is
onacceptabel in de verkeerskundige advieswereld.

Het hoofddoel van dit onderzoek is dan ook om de zoektocht naar deze ver-
zameling beste oplossingen (beter bekend als Paretoverzameling) te versnellen.
Het onderzoek beperkt zich echter tot versnellingen die bereikt kunnen worden
door middel van approximatie technieken. De doelstelling is daarom gedefi-
nieerd als: ‘het versnellen van de zoektocht naar de Paretoverzameling voor
netwerkontwerp problemen met meervoudige doelfuncties zoals die door de Ge-
netische Algoritmen voor meervoudige doelfuncties gevonden worden, waar de
externe effecten van verkeer de doelfuncties zijn en de DVM maatregelen de
beslissingsvariabelen, gebruik makend van functie benaderingen’.

Het onderzoek begint daarom met een literatuurstudie naar approximatie
technieken op basis waarvan er drie zijn geselecteerd, te weten: de Response
Surface Method (RSM), Radial Basis Function (RBF) en Kriging/DACE. Op
basis van deze drie hoofdtechnieken zijn in totaal 148 verschillende approxi-
matie methoden ontwikkeld die vervolgens getest zijn op twee test netwerken.
De kwaliteit van de benaderingen is getest aan de hand van in de literatuur
beschreven criteria.

Uit het onderzoek blijkt dat methoden die zeer goed scoren op een van de
criteria, niet noodzakelijkerwijs ook goed scoren op een ander. Verder bleek
dat de gekozen parameters de kwaliteit van de antwoorden sterk bëınvloeden.
We kunnen concluderen dat de Kriging/DACE methoden waarbij de macht in
de kostenfunctie niet wordt geoptimaliseerd vrijwel altijd het beste te scoren.
Een ander groot voordeel van deze methode is dat deze niet alleen de ver-
wachte doelfunctiewaarde maar ook de bijbehorende voorspelfout genereerd.
Daarnaast bleek dat de meest eenvoudige methode, RSM met alleen kwadrati-
sche interactietermen, vaak redelijk goede voorspellingen geeft. Voordelen van
deze methodiek zijn dat deze eenvoudig uit te leggen is (het vormt de basis
van de kleinste-kwadratenmethode) en dat deze erg snel is (resultaten kunnen
binnen een seconde bepaald worden). Mede op basis van deze conclusies zijn
beide technieken uitgekozen om in het vervolg van dit onderzoek gebruikt te
worden.

Daarnaast is onderzoek gedaan naar de manier waarop deze benaderde functie-
waarden gebruikt kunnen worden binnen de bestaande Genetische Algoritmen
(en NSGA-II in het bijzonder). Het werd vrij snel duidelijk dat veel methoden
te gecompliceerd zijn of verdere optimalisatie vragen, wat de rekentijd alleen
maar doet toenemen. Daarom is voor twee relatief eenvoudige methoden ge-
kozen. De eerste methode is deterministich en is de Inexact Pre Evaluation
(IPE), waarbij alleen die oplossingen exact worden geëvalueerd die op basis
van de benaderde doelfunctiewaarden deel uitmaken van de Paretoverzame-
ling. De tweede methode is stochastisch en is de Probabilty of Improvement
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(PoI) methode waarbij voor elke oplossing de kans wordt bepaald dat deze
deel uitmaakt van de Paretoverzameling. Vervolgens worden alleen de n beste
oplossingen of de oplossingen met een kans groter dan x% exact geëvalueerd.

De twee approximatietechnieken (RSM en DACE) en de twee versnellingsme-
thoden (IPE en PoI) zijn vervolgens gecombineerd tot een drietal Approxima-
tion Method Assisted NSGA-II aproaches (AMANs). De vierde combinatie
was niet mogelijk omdat RSM geen voorspelfout bepaald en deze wel benodigd
is voor de stochastische Probability of Improvement methode. Om te kunnen
bepalen welke methode de beste is, is er in de literatuur gezocht naar kwa-
liteitscriteria voor Paretoverzamelingen, waarna de methoden zijn toegepast
op de eerder genoemde test netwerken. Helaas was er niet voldoende tijd voor
meerdere ‘runs’, waardoor de resultaten onzeker zijn.

Het bleek onmogelijk om uit de resultaten een beste methode te kiezen.
Sterker, ook hier bleek dat een methode die goed scoort op het ene crite-
rium niet per definitie goed scoort op het andere. Echter alle resultaten in
ogenschouw nemend, kan geconcludeerd worden dat de PoI-DACE methode
de beste resultaten lijkt op te leveren. Niet alleen leek de Paretoverzameling
sterk op die van de originele NSGA-II, ook bleek dat deze resultaten haalbaar
waren in 50% van de rekentijd die het originele GA nodig had.

In de laatste fase van dit onderzoek is daarom de PoI-DACE methode toe-
gepast op de (meer realistische) situatie van Almelo. Dit netwerk bestaat
uit zeven geregelde VRI’s en twee trajecten op de snelweg waar door middel
van matrixborden de maximale snelheid aangepast kan worden. Vanwege de
beperkte beschikbare tijd is ook hier slechts een ‘run’ uitgevoerd.

De resultaten bleken veelbeloved. Het gedeelte van de doelfunctieruimte
dat werd gedomineerd door NSGA-II maar niet door de AMAN was slechts
3% van het totale gebied dat door NSGA-II werd gedomineerd. Daarnaast
bleek dat de oplossingen beter over de doelfunctieruimte verdeeld waren en
dat een rekentijdreductie van 30% haalbaar was. Helaas is de invloed van
stochasticiteit aanzienlijk, waardoor er tientallen, zo niet honderden, ‘runs’
nodig zijn om statistisch betrouwbare resultaten te kunnen presenteren.

Daarnaast is getracht om de Paretoverzameling te interpreteren vanuit
een verkeerskundig oogpunt, iets wat niet eenvoudig bleek. Door de data te
groeperen konden er boxplots gemaakt, waarmee voor sommige DVM maatre-
gelen een relatie tussen de doelfuncties en de instelling van de DVM maatregel
aangetoond kon worden. Aantonen dat de instellingen van twee DVM maat-
regelen en de doelfunctiewaarden gecorreleerd zijn bleek echter, waarschijnlijk
mede door een gebrek aan data, niet mogelijk.

Op basis van de resultaten van de test netwerken en de ‘case’ Almelo kun-
nen we concluderen dat het zeer waarschijnlijk is dat de voorgestelde AMAN
(en mogelijkerwijs ook andere AMANs) een Paretoverzameling kunnen berei-
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ken die vergelijkbaar is met de Paretoverzameling die door NSGA-II wordt
gevonden. Daarnaast blijkt dat PoI-DACE dat kan in slechts 70% van de
tijd die NSGA-II daarvoor nodig heeft. We kunnen daarom stellen dat we de
zoektocht naar de Paretoverzameling inderdaad kunnen versnellen door het
gebruik van approximatie technieken.

Het is echter noodzakelijk om meer onderzoek te doen, vooral op het gebied
van de kwaliteit van de AMANs. In dit onderzoek zijn alle conclusies gebaseerd
op een enkele ‘run’ terwijl tientallen, of honderden, ‘runs’ nodig zijn voordat
statistisch juiste conclusies getrokken kunnen worden.

Daarnaast lijkt het verstandig om meer onderzoek te doen naar hoe de
benaderde functiewaarden en voorspelfouten zich gedragen in de PoI methode.
In dit onderzoek bleek het namelijk niet zinvol om een ‘beter dan x% politiek’
toe te passen, aangezien dit leidde tot het evalueren van alle oplossingen.

Tenslotte wordt aanbevolen om meer tijd en moeite te steken in het analy-
seren van de uitkomst, de Paretoverzameling. Het bleek in dit korte tijdsbestek
niet mogelijk om duidelijke relaties te vinden tussen de DVM maatregelen, iets
wat wellicht wel mogelijk is als er meer data en tijd beschikbaar is.
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Chapter 1

Introduction

Traffic is only one of the side effects of growth.

Roy Barnes (1948 – )

The quote by Roy Barnes can, in a way, be considered the starting point of
this research. Due to the continuous economic growth the demand for traffic
has been increasing over the past decades. Not just in the United States of
America, to which Roy Barnes probably was referring, but also in Europe and
especially in a densely populated area such as the Netherlands.

In the past the solution to the traffic demand problem was found in construct-
ing new infrastructure, but this is no longer a viable option as we will infer
in section 1.1. The solution that is currently in favour, the use of Dynamic
Traffic Management, brings along some other challenges. One of the problems
is that there are many different ways in which Dynamic Traffic Management
can be applied and we therefore have to define which solutions are considered
to be optimal.

In order to be able to determine the effect of different solutions of Dynamic
Traffic Management, we first have to define a framework which can be used to
model Dynamic Traffic Management measures. In section 1.2 we will therefore
explain why the Network Design Problem is a suitable framework for modelling
DTM measures. Unfortunately we will also show that it is virtually impossible
to find optimal solutions, which is why we have to resolve to algorithms to
find good solutions. Consequently we introduce three different algorithms in
section 1.3 and will elaborate more on one specific family of algorithms, which
are the Genetic Algorithms.

Up to this point we have been diverging the subjects of our research to
an extend where we are unable to complete the research within a reasonable
period of time. In section 1.4 we therefore determine the scope of this research,
by limiting the number of objectives that we are trying to attain. Furthermore

1
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we will select a single modelling framework (from section 1.2) and a single
algorithm (from section 1.3) with which we will continue our research.

Something that is probably just as important, is defining the main goal
of this research. We therefore first have to determine which problems we can
identify and decide how we would like to solve these problems. In section 1.5
we will accordingly briefly discuss two problems that we have identified and
select one specific problem, after which the (main) goal of this research can
be formulated.

It is at this point that we can, using the results from section 1.4 and 1.5,
determine which subjects are relevant for the remainder of the research. In
section 1.6 we therefore start by creating a research model, which provides an
overview of the different subjects we need to study in detail. In section 1.7
we continue by defining the questions that have to be answered, before we
have enough knowledge about the subjects from the research model. Finally
in section 1.8 we will explain how we will obtain the information to answer
the research questions.

Finally, having defined the main goal of our research and the strategy
which we will follow to attain this goal, we will provide an outline of this
thesis (section 1.9). In this outline we will explain where you are able to find
the answers to the different research questions, and as such where the different
subjects are discussed.

Let us now start by introducing the Dutch problem and Dynamic Traffic
Management.

1.1 The Dutch Road Network & Dynamic Traffic

Management Measures

In the past decade(s) the Dutch road network has become increasingly busy
and traffic-jams are a day-to-day practice for most commuters. In the past
these problems might have been tackled by expanding the existing road net-
work by constructing new roads or expanding existing ones. European legisla-
tion, however, restricts the construction of new roads, by enforcing new rules
concerning air and noise pollution. Furthermore there are problems related
to the increasing costs of expanding road networks, the time that is required
before work can actually start, and a lack of space. Dutch authorities have
therefore resolved to using the existing road network more efficiently rather
than expanding the current road network.

One of the options that is quite popular in the Netherlands is the use of
Dynamic Traffic Management (DTM). Dynamic Traffic Management is a term
that is used to describe many different (time or traffic dependent) measures
that influence the characteristics of the road network or the behaviour of road
users. There are (generally speaking) two different types of DTM measures,
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the first is the DTM measure that can be adjusted quite swiftly (but not
instantaneous). The most widely known example of such a DTM measure
is the Automated Traffic Control Signal (ATS). It is quite easy to change
the settings of an ATS (which influences the capacity of the crossing in a
certain direction) but this is rarely done in real-time.1 The second type of
DTM measure is able to make changes instantly, thus enabling the authorities
to react upon the current state of the network (real-time adjustment of the
DTM measure), or can be made in a quite short period of time. One of the
most commonly used examples of this type of DTM measures is the so-called
Variable Message Sign (VMS). These signs can be used to limit or increase the
number of lanes (‘crossing off’ lanes, allowing shoulder lanes to be used) which
directly influences the capacity of a specific road section, impose variable speed
limits and provide travel time, traffic-jam and other information to road users
which they can use to alter their route choice. ATS and VMS are therefore
amongst the most powerful tools in directing traffic.

In order to determine the resulting traffic conditions of a solution usually a
Dynamic Traffic Assignment (DTA) is used, which propagates traffic through a
network, simulating the behaviour of traffic over a period of time. These DTA
models are well suited to predict the results of different DTM measures, as long
as they influence the characteristics of the network (i.e. they should influence
speed or capacity of a specific road section). Although DTA models can also
be used to predict the effects of non-network changing DTM measures, such
as advanced traffic information, this does require a good behavioural model,
which is often not available.2 Using the results of these DTAs (flows and
speeds on road sections) the effects on travel time, air and noise pollution and
road safety (or other objectives) can be estimated.

As mentioned earlier it is possible to use DTM to influence the behaviour
of road users in real-time. However it is also possible to use DTM to provide
the road users (in fact all those involved) with the ‘best’ road network possible.
In that case for each time of the day a decision should be made concerning the
settings of the DTM measures, a so called ‘strategic’ policy. Deciding which
DTM measures should be implemented and when (which is what makes them
dynamic) is one of the most difficult decisions in traffic engineering. Good
examples of such ‘strategic’ policies are the speed limits of 100 and 80 km/h
on motorways around major cities and the use of additional lanes during peek
hours. However the application of these measures seems quite arbitrary. The
measures are implemented to attain a single objective, for instance reduction

1The ATS under consideration here is the ATS with a fixed cycle, the more and more
common ATS with detection loops do of course adapt their cycle in real-time.

2The behavioural model is here defined as a model that predicts which fraction of people
is going to react in which way on the information provided. The ‘ordinary’ network-changing
DTM measures only require a model that determines the effect of the changes on the utility
of a specific route, since model split and route choice (see e.g. Ortúzar & Willumsen, 2001)
are usually based on utility functions.
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Figure 1.1: Dominance and Pareto fronts

of noise, reduction of air pollution, reduction of travel times or (although less
frequently used) reduction of the number of casualties and fatalities. Therefore
the question arises whether the DTM measures, that are currently applied,
might have a deteriorating effect on other objectives. Therefore research has
started that tries to find a set of possible settings for DTM measures (for a
certain problem area), which are not dominated by other solutions.

In order to understand which solutions are called non-dominated we first
have to study the concept of dominance. We will explain dominance us-
ing Figure 1.1a. Let i be the index of the objective functions, a and b are
two solutions and fi(a) is the objective value for solution a on objective i.
Furthermore assume a minimisation problem. First there is the concept of
weak dominance, we say that a weakly dominates b (denoted by a � b) when
∀ i fi(a) ≤ fi(b). In Figure 1.1a this means that B, C and D all weakly dom-
inate A. Next there is dominance, a is said to dominate b (denoted by a ≻ b)
when ∀ i fi(a) ≤ fi(b)∧∃ i : fi(a) < fi(b). In Figure 1.1a we can therefore say
that both B and C dominate A. Finally there is strong dominance, a strongly
dominates b (denoted by a ≻≻ b) when ∀ i fi(a) < fi(b). In Figure 1.1a B
strongly dominates A.

Back to our original problem we can now state that we are looking for solutions
b that are not dominated, i.e. a 6≻ b. We do explicitly allow solutions to be
weakly dominated. We can now construct a so called Pareto front (black line
in Figure 1.1b) from all non dominated solutions. Furthermore we find an area
(grey) that is dominated by the solutions in our Pareto front, i.e. solutions in
this dominated area can be improved by using one of the solutions that is on
the Pareto front instead.
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In the next section we will explain why (and how) our problem can be de-
scribed as a Network Design Problem. Furthermore we will provide a brief
overview of traffic and transport related Network Design Problems in literat-
ure.

1.2 Network Design Problems

A formal (mathematical) Network Design Problem (NDP) usually starts with
a given (un)directed graph G = (V,E) a cost ce for each e ∈ E (or for each
arc in the directed case), and we like to find a minimum cost subset E′ of
the edges E that meets certain design criteria. The problem described above
(selecting DTM measures in order to attain certain objectives) can easily be
translated to a directed NDP. The graph G consists of a set of links (E), which
are connected to each other at a vertex (V ). In this case each DTM measure
adds one or more arcs e to an edge E, which gives the possibility to select a
subset E′ that optimises the objectives.

Literature suggests two ways of modelling the design variables, either dis-
crete using the Discrete NDP (DNDP) or continuous using the Continuous
NDP (CNDP). The DNDP models are used when the construction of new
links (or even complete networks) is considered (see: Poorzahedy & Turnquist,
1982; Drezner & Wesolowsky, 2003; Gao, Wu & Sun, 2005), whilst the CNDP
models are used when only the expansion of existing links (e.g. a change in
capacity or maximum speed) is considered (see: Meng, Yang & Bell, 2001;
Chiou, 2005; Zhang & Lu, 2007; Mathew & Sharma, 2009; Xu, Wei & Wang,
2009; Chen, Kim, Lee & Kim, 2010). However the expansion of an existing
link is often a discrete problem, one either adds another lane or one does
not. In that sense the use of a CNDP can be considered a relaxed version of
the problem, which is why DNDP models can also be used to model expan-
sion problems (see: LeBlanc & Abdulaal, 1978; Boyce & Janson, 1980). It is
therefore that we decided to model our problem as a DNDP.

Our problem should be described as a bilevel optimisation problem (bilevel
NDP). This is due to the fact that there are two decision makers involved (road
users and authorities) which have different objectives (Chen et al., 2010). Due
to the difference in objectives, a kind of game arises in which the authorities
set their decision variables in such a way that their objectives are optimised
(upper level optimisation), to which the road users respond by changing their
route choice (lower level optimisation). To this change in route choice the
authorities respond by adjusting their decision variables, and these reactions
circle until convergence has been reached (Figure 1.2).

Road users tend to be opportunistic people that try to maximise their
utility (or in case of travel minimise their disutility). In nearly all literature
the objective of the lower level (in this case road users) is therefore to minimise
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Road Authorities set DTM in order
to optimise the objectives

Road users change routes to
optimise travel time

DTM
link flows,

objective values

Figure 1.2: Bilevel Network Design Problem

travel time (TT) or (generalised) travel cost (GTC). This minimisation is
attained when the so-called (Stochastic) User Equilibrium (SUE or UE, also
known as user optimum) is reached, a point in which no road user can reduce
his (or hers) objective by changing to another route. (see: Poorzahedy &
Turnquist, 1982; Chiou, 2005; Gao et al., 2005; Poorzahedy & Rouhani, 2007;
Zhang & Lu, 2007; Xu et al., 2009; Chen et al., 2010). This is in accordance
with (and also known as) the first principle of Wardrop, which states ‘the
journey times in all routes actually used are equal and less than those which
would be experienced by a single vehicle on any unused route’ (Wardrop, 1952).

For the upper level the objective is usually to minimise total travel time
(Gao et al., 2005; Poorzahedy & Rouhani, 2007; Zhang & Lu, 2007) or travel
cost (Poorzahedy & Turnquist, 1982) over the entire network, also known as
the System Optimum (SO). At this SO the second principle of Wardrop ‘at
equilibrium the average journey time is minimum’ (Wardrop, 1952) applies.
When no budget constraints are used in the bilevel NDP, the construction
costs can be incorporated in the upper level objective function (Chiou, 2005;
Xu et al., 2009). There are only a few papers which use multiple objective
functions in the upper level, Chen et al. (2010) use travel time (SO) and
construction costs as two separate objective functions, Cantarella and Vitetta
(2006) use in-vehicle travel time, access and egress time as a result of parking
and CO emissions as their upper level objective functions whilst Friesz et al.
(1993) focus on minimising the transport costs, construction costs, vehicle
miles travelled and house removal. Sharma, Ukkusuri and Mathew (2009)
who provide an overview of multiobjective optimisation for transport NDP
are only able to list six papers. This shows that there is very little experience
with using externalities as objective functions in bilevel NDP.

Finally, a NDP is a NP-complete problem (Johnson, Lenstra & Rinnooy Kan,
1978), which means that it is not possible to solve it to optimality in polyno-
mial time. In fact, in order to determine the exact Pareto optimal set, a full
enumeration of all combinations of DTM measures is necessary. This however,
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is not possible (at least in reality) because the number of possible solutions
usually is very large.3 Determining a single lower level optimisation (using
DTA to determine the SUE) in a realistic network easily takes an hour, which
means that a full enumeration would take forever.4

In the next section we will introduce Genetic Algorithms and explain why they
can be used to reduce the computational effort of searching for the Pareto
optimal set.

1.3 Genetic Algorithms

Because the bilevel NDP is a NP-complete problem, a more intelligent ap-
proach has to be used in order to find (or at least approximate) the Pareto
optimal set (POS). For these kind of problems a lot of algorithms (also known
as metaheuristics) have been developed. These metaheuristics, which are de-
veloped since the 90s of the previous century, have proven themselves to be
flexible and are capable of finding good solutions, even when non-standard
objectives and binary or integer variables are involved (D. F. Jones, Mirrazavi
& Tamiz, 2002). Unfortunately most of these heuristics focus on single ob-
jective problems. If we limit ourselves to algorithms that can be modified to
work with multiobjective problems, Genetic Algorithms (GAs, also known as
Evolutionary Algorithms; EAs), Simulated Annealing (SA) and TABU Search
(TS) are the most commonly used algorithms (see for instance the book by
Pham and Karaboga (2000) for an overview of these algorithms).

There is very little literature available about which algorithm will per-
form best when being confronted with a multiobjective NDP. In fact even
when only considering single objective problems, literature still is uncertain
which algorithm performs better. Youssef, Sait and Adiche (2001) applied the
three algorithms to a floor planning problem and concluded that TS was best
(both in results and computational effort) but GA was a close second (though
required a lot of computational effort). Arostegui, Kadipasaoglu and Khu-
mawala (2006) applied the three algorithms to the facility location problem
and concluded that TS was to be preferred, since it was a more simple approach
and was less dependent on the selection of parameters. Strangely Kannan, Slo-
chanal and Padhy (2005) concluded more or less the opposite when applying
several algorithms to an investment planning problem, they found that TS is
amongst the worst solutions. Drezner and Wesolowsky (2003) found that TS
en GA were alternating the best solution, but decided that GA was in the
end the better approach. Braun et al. (2001) compared eleven heuristics and
concluded that GA was the best (although a relatively simple approach was a

3Consider a problem with two ATSs, each with ten possible settings and six time periods,
the number of possible solutions is

(

102
)6

= 1012 or one trillion solutions.
4In fact if each DTA took only 1 second, the full enumeration of the previous example

would take about 31, 710 years.
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good second) and Alabas, Altiparmak and Dengiz (2002) chose TS to be the
best algorithm, but this was solely based on the fact that TS only needed to
evaluate a small part of the solution space. Taking into account that in the
multiobjective NDP searching a large part of the solution space could even be
considered an asset (something that is also recognized by Lau, Ho, Cheng,
Ning & Lee, 2007) it is difficult to determine which algorithm is better. Note
that none of these papers focussed on multiobjective problems, something that
was taken into account in Possel (2009). He applied GA and SA to a problem
similar to the one under consideration now (a multiobjective NDP, with ex-
ternalities as upper level objective functions) and concluded that GA is most
likely the better algorithm. Based on these studies it seems that GA could be
considered a practical algorithm, something that is also reflected in the use
of this algorithm in studies towards NDP (see: Gen, Cheng & Oren, 2001;
Chakroborty, 2003; Drezner & Wesolowsky, 2003; Gen, Kumar & Kim, 2005;
Cantarella & Vitetta, 2006; Cantarella, Pavone & Vitetta, 2006; Poorzahedy
& Rouhani, 2007; Zhang & Lu, 2007; Schmöcker, Ahuja & Bell, 2008; Mathew
& Sharma, 2009; Sharma et al., 2009; Xu et al., 2009; Chen et al., 2010).

Genetic algorithms are the invention of John Holland (Holland, 1975) and are
based on the biological process of ‘natural selection’. The main idea is that
each solution (‘chromosome’) can be described by a series of bits (‘genes’), i.e.
each solution is described by the state of each explanatory variable. These
biological terms are used because the algorithm mimics the process of com-
bining two strings of DNA into one or two others. The algorithm moves
from one population of ‘chromosomes’ to another by crossover (combining
two ‘parents’ into one or two ‘children’, the ‘offspring’), mutation (randomly
changing the ‘genes’ of the ‘chromosome’) and inversion (inverting the ‘genes’
of a ‘chromosome’). By selecting only the best solutions found in the total set
of ‘parents’ and ‘offspring’ the algorithm ensures that good solutions can be
found, whilst preventing itself from finding only local optima. This algorithm
has proven itself in the past decades, since it has been applied to numerous
problems in the fields of optimisation, economics, immune systems, social sys-
tems etc. (Mitchell, 1996). Genetic algorithms, as discussed in the previous
paragraph, are designed to find a single optimal solution. However, due to
the nature of the algorithm, using a population of solutions, the algorithm
can easily be modified in order to cope with multiobjective problems.5 If one
selects the population to be large enough, this population will (eventually)
describe the Pareto optimal set. This is why at the end of the previous cen-
tury (and at the beginning of the current one) a lot of research has been done
in developing Multi Objective Genetic Algorithms (MOGAs), the best known
examples are Non-dominated Sorting Genetic Algorithm (NSGA; Srinivas &

5Genetic Algorithms only require that one is able to determine whether a solution is
better than another solution (rank the solutions). For multiobjective problems this can for
instance be done using the non-dominated sorting algorithm presented by Deb et al. (2002).
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Deb, 1994), Strength Pareto Evolutionary Algorithm (SPEA; Zitzler & Thiele,
1999), Pareto Envelope-based Selection Algorithm (PESA; Corne, Knowles &
Oates, 2000) and Pareto Archived Evolution Strategy (PAES; J. D. Knowles
& Corne, 2000a). In a fierce competition amongst followers of the different
algorithms, each algorithm was proven to be better than others in certain test
problems. Therefore additions and alterations were made to each of the al-
gorithms, which resulted in M-PAES (J. D. Knowles & Corne, 2000b), PESA-
II (Corne, Jerram, Knowles & Oates, 2001), SPEA2 (Zitzler, 2001), NSGA-II
(Deb, Pratap, Agarwal & Meyarivan, 2002) and finally SPEA2+ (M. Kim,
Hiroyasu, Miki & Watanabe, 2004).

It is difficult to determine which algorithm is better, since each one out-
performs others in specific test problems. It is also not clear if any of these ap-
proaches should be preferred when considering traffic related problems. Most
papers (see the list mentioned earlier) do use GAs, but do not use a specific
predefined GA. In fact only three studies that use a specific predefined GA
have been found. Sumalee, Shepherd and May (2009) use NSGA-II in their
optimisation of road charges and both Possel (2009) and Sharma et al. (2009)
studied a NDP with budget constraints. Although not using predefined GAs
might have advantages (one can optimise the GA for a specific case) it fails
to take advantage of research that has already been done in this field.

1.4 Research Scope

In the previous three sections we described how DTM measures could be used
to optimise traffic flows, how such a process could be modelled and which
algorithms can be used to find (or better: approximate) the Pareto optimal
set. In this section we will be more specific and decide which specific solutions
and approaches we will use throughout this research.

This research will focus solely on DTM measures that directly influence net-
work properties. This means that a DTM measure either influences the speed
(in fact speed limit) or the capacity of certain links in the network. This is
done because these DTM measures can fairly easy be modelled in existing
transportation models, whereas modelling DTM measures that influence be-
haviour (e.g. traffic jam information) require extensive behavioural models.
This leaves only three specific DTM measures that will be considered, which
are listed below.

Automated Traffic Control System (ATS) In reality an ATS would re-
quire a control that specifies which direction gets green light when and
for how long, however when using macroscopic models defining the capa-
city in a certain direction (which can be determined using the fractional
green time, road capacity and a factor that accounts for turning) gives
sufficient information;
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Variable Speed Sign (VSS) These signs alter the maximum speed on cer-
tain links;

Variable Message Sign (VMS) Although in reality these signs can be used
for a multitude of things, in this research we will limit its possibilities
to adding or removing additional lanes. These lanes can be either a
rush-hour lane, which usually is the hard shoulder of a motorway, or a
reversible lane. We will refer to this specific use of VMS as Variable
Lane Sign (VLS).

It is important to note that these measures will be applied dynamically, i.e.
they are allowed to change over time. This means that authorities can create
different optimal settings, e.g. for night, morning rush hour, daytime and
evening rush hour periods. Of course it is also possible to use different settings
within a single rush hour period. This does however also affect the method
that is used to determine the user equilibrium that is attained, something that
will be addressed later on.

We also limit the number of objectives that we like to attain by using DTM.
The main reason for limiting the number of objectives is that adding more
objectives only increases computational effort, without significantly contribut-
ing to this research. Furthermore it is important that the selected objectives
do not have a positive proportionality constant, otherwise minimising one
objective would automatically minimise the other. It should be possible to
determine the objective value using the information from the network model
and the DTA, this means that objective values should be determined using
nothing more then maximum speed, capacity, road type, speed and intensity.
Therefore three objectives have been selected, each representing another part
of the effects that are caused by traffic. In the equations used to describe the
objective values, the notation from Table 1.1 is used.

The first objective is the minimisation of congestion, which is measured using
the Total Travel Time (TTT; hours). This is probably one of the most used
objectives because it tries to attain an optimal solution from a transportation
system point of view (SO). Note that this is not the same as the stochastic
user equilibrium (SUE) solution that is used in the lower level optimisation.
The value of this objective function can easily be determined using:

z1 = TTT =
∑

k

∑

t

∑

m

fm
k (t)lk
vmk (t)

(1.1)

The second objective is to minimise pollution, which is measured using CO2

emissions (g). This objective is used because it gives a good view of the envir-
onmental effects of traffic, especially when global warning is concerned. The
objective value can be determined using the European ARTEMIS emission
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lk length of link k

δkd
indicator for road type, 1 if road k is of type d, 0 oth-
erwise

δkw
indicator for urbanisation level, 1 if road k is of level
w, 0 otherwise

ηw correction factor for urbanisation level w (dB(A))

αm, βm noise parameters for mode m

V ref
m reference speed for mode m (km/h)

fm
k (t) vehicle inflow on link k during time period t (veh)

vmk (t)
average speed on link k during time period t for mode
m (km/h)

ECO2
md (·) CO2 emissions of mode m depending on average speed

(grams / veh · km)

Lm(·) average sound power level for mode m, depending on
average speed (dB(A))

L̄w
weighted average sound power level on the network
with urbanisation level w (dB(A))

Table 1.1: Notation in Objective Functions

model database and the following equation:

z2 = CO2 =
∑

k

∑

t

∑

m

∑

d

fm
k (t)δkdE

CO2
md (vmk (t)) lk (1.2)

The third and last objective is to minimise noise, which is measured using
the weighted average sound power level at the source (dB(A)). This can be
determined using the Dutch standard method (Ministry of Housing, Spatial
Planning and the Environment, 2002):

z3 = noise = 10 · log

(∑
k

∑
w δkwlk10

L̄w−ηw
10∑

k

∑
w δkwlk

)

with L̄w = 10 · log

(∑
k

∑
w δkwlk

∑
m 10

Lm(·)
10∑

k

∑
w δkwlk

)

with Lm (·) = αm + βm log

(
vmk (t)

vrefm

)
+ 10 · log

(
qkm(t)

vmk (t)

)

(1.3)

As mentioned earlier, the NDP will be formulated as a bilevel optimisation
problem. However in contrast to most of the bilevel NDPs found in literat-
ure (see the overview in section 1.2 about NDPs) which use a Static Traffic
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Assignment model (STA) to optimise the lower level problem, we will use a
Dynamic Traffic Assignment model. The main reason for using a DTA instead
of an STA is that we would like to be able to change the settings of the DTM
measures during the day (in order to allow specific schedules for e.g. morning
and evening rush hours or even changing schedules within a rush hour). Al-
though this could be modelled using STA in quite small networks (the point at
which one reaches a DTM measure is more or less the same as the departure
time) this is virtually impossible in larger (real sized) networks. In that case
only DTAs are able to give (fairly) good predictions of the changing traffic
flows over the network.

In this research we therefore use the software program OmniTRANS (ver-
sion 5.1) which uses the Macroscopic DTA called Streamline. This model
is based on an adaptation of the fluid transmission model by Messmer and
Papageorgiou (1990), which was based on the model by Payne (1971), and
uses the single-regime speed-flow-density relationships of Van Aerde (1995).

Because the upper level of the bilevel NDP is a NP-complete problem, a
metaheuristic is used to approximate the optimal solution. From literature
(see the discussion in section 1.3 about Genetic Algorithms) it is clear that
genetic algorithms prove to be a good approach when struggling with complex
(hard) problems. Especially NSGA-II (Deb et al., 2002) appears to be robust
and capable of creating good solutions when applied to traffic related bilevel
NDPs (Possel, 2009; Sumalee et al., 2009). Therefore the NSGA-II algorithm
is chosen as the algorithm that will be used in this study.

The approach that is used to solve the bilevel NDP combines the knowledge
about bilevel programming, Dynamic Traffic Assignments, Genetic Algorithms
and externalities. Let us start by explaining the NSGA-II algorithm, which is
shown in Algorithm 1.1 in more detail.

The algorithm starts with N exactly evaluated parent solutions (P0), which
can be generated using Random Sampling (RS), Stratified Sampling (SS),
Latin Hypercube Sampling (LHS) or any other sampling approach (McKay,
Beckman & Conover, 1979). Based on the objective values the fitness of each
solution can be calculated using the non-dominated sorting and crowding dis-
tance algorithm. The non-dominated sorting algorithm which is shown in Al-
gorithm 1.2 determines for all solutions the rank of the Pareto front in which
they are located. The crowding distance algorithm, shown in Algorithm 1.3,
determines per front which solutions are farthest apart from all the other solu-
tions in that front. Solutions that are farther apart are considered to be more
valuable and thus get a higher fitness value. The N best performing solutions
are stored as the parents for the next generation (Pg+1) and the remainder
are stored in a database D that is used to prevent exactly evaluating the same
solutions twice. If we have reached the maximum number of generations G
we terminate the algorithm, otherwise we select 2N random parents (P ′

g+1)
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Algorithm 1.1 NSGA-II

1. Initialisation
Start with N exactly evaluated parent solutions P0

Define a set of offspring Q0 = ∅
Define a database for previously evaluated solutions D = ∅
Furthermore define the maximum number of generations G and set
g = 0

2. Fitness Assignment

Combine Rg = Pg ∪Qg

Determine fitness value by dominance and crowding distance

3. Selection
Select N best solutions (based on fitness) from Rg and store as Pg+1

Store remaining solutions in database, D = D ∪ (Rg \ Pg+1)

4. Termination

If g ≥ G terminate the algorithm, otherwise continue with step 5

5. Mating selection

Perform binary tournament selection with replacement and repair on
Pg+1 to determine mating pool P ′

g+1

6. Variation
Apply recombination and mutation to mating pool P ′

g+1 to create
offspring Qg+1

7. Function Evaluation

Determine objective values for all solutions in Qg+1

Set g = g + 1 and continue with step 2

which will mate in order to create N new children (Qg+1). We then exactly
evaluate the solutions in the offspring set (Qg+1), update g and continue with
step 2, i.e. we determine the fitness of the solutions in the combined set Rg.

When we state that we ‘exactly evaluate the solutions’ we follow the pro-
cedure as shown in Figure 1.3. The NSGA-II algorithm provides OmniTRANS
with the settings for the different DTM measures6 for all time periods. For
each solution OmniTRANS first determines the resulting links flows and link
speeds, after which these results (i.e. link flows and link speeds) are converted
to objective values using the objective functions (equations 1.1–1.3), which is
actually done by Matlab R© for computational convenience. The final objective

6We will elaborate on the settings of DTM measures in chapter 2.
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Algorithm 1.2 Non-dominated Sorting Algorithm (Deb et al., 2002)

for all p ∈ P do
Sp = ∅
np = 0
for all q ∈ P do
if p ≺ q then if p dominates q
Sp = Sp ∪ {q} add p to the set of solutions dominated by q

else if q ≺ p then
np = np + 1 increment the domination counter of p

if np = 0 then p belongs to the first front
prank = 1
F1 = F1 ∪ {p}

i = 1 initialize the front counter
while Fi 6= ∅ do
U = ∅ used to store the members of the next front
for all p ∈ Fi do
for all q ∈ Sp do
nq = nq − 1
if nq = 0 then q belongs to the next front
qrank = i + 1
U = U ∪ {q}

i = i + 1
Fi = U

Algorithm 1.3 Crowding Distance Algorithm (Deb et al., 2002)

l = |F| l is the number of solutions in F
for all i = 1 . . . l do
F [i]distance = 0 initialise distance

for all objectives o do
sort F on objective o
F [1]distance = F [l]distance = ∞ ensure that boundary points are always
selected
for i = 2 . . . l − 1 do for all other points
F [i]distance = F [i]distance + F [i+1].m−F [i−1].m

fmax
m −fmin

m
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NSGA-II

OmniTRANS
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determine the Dynamic
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link flows and link speeds
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to determine
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objective values

Matlab®

link flows and link speeds

Figure 1.3: Procedure for Exactly Evaluating Solutions

values are returned to NSGA-II to be used for the fitness assignment.

The problem solving method described above gives indeed good solutions to
the problem of minimising traffic externalities using DTM measures (Wismans,
Van Berkum & Bliemer, 2009, 2010). And although a MOGA is already a
much more intelligent approach than complete enumeration, it still needs to
evaluate a lot of solutions (DTAs and objective evaluations) which makes that
it easily takes months to solve a real-life problem. Secondly, there is very little
protection from evaluating solutions that are prospectless, which means that
computational time is spend in vain.

1.5 Research Goal

From this introduction two major drawbacks of the method that is now being
used arise. First of all creating a single DTA takes quite a lot of time, which
means that only a limited number of solutions can be evaluated. Secondly
the method also generates solutions that do not stand a chance, which could
be considered a loss of computational time, as that time also could have been
spend on evaluating a favourable solution. In order to use the computational
time more efficiently and improve the Pareto optimal set, it is desirable that
these two drawbacks are tackled. This means that the computational time
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should be used more efficiently by only evaluating favourable solutions.

A possible way to attain this situation is by developing a method that is
able to quickly estimate the objective value of a possible solution (i.e. without
evaluating the solution using a DTA) and use the result of this evaluation
within the optimisation process (e.g. to determine whether this solution should
be evaluated by a DTA). When focussing on this specific problem, we see that
there are already a number of solutions available (these solutions are needed
as ‘parents’ for the GA) which could be used in the problem solving method.
For single objective optimisation problems a well-known method is the trust
region optimisation (see e.g. Conn, Gould & Tointe, 2000). This method uses
an approximation method (also known as metamodel or surrogate model) to
evaluate solutions. There are many different approaches that can be used to
approximate the objective values. Another well-known method (often used in
social sciences) is regression analysis, which tries to fit a model to a set of
known solutions. Besides the standard linear regression functions a variety
of non-linear and multivariate functions exist, all serving a specific type of
parameters and goal functions. These functions approximate the results of the
DTA and could be used to determine whether a specific solution is interesting
enough to be evaluated by the DTA.

It seems that a well chosen approximation model, in combination with
the right explanatory parameters could be used to give a first estimate of the
results of a specific set of DTM measures. To the best of our knowledge such
an approach has not yet been developed or applied to a NDP, and the main
goal of this research is therefore defined as:

accelerating the search for the Pareto optimal set found by mul-

tiobjective genetic algorithms for multiobjective network design

problems, in which externalities are the objectives and DTM meas-

ures the decision variables, using function approximations.

Besides predicting whether a solution is interesting enough to be evaluated
by a DTA, approximations can be used in a number of ways. It would for
instance be possible to use the approximations to determine in which area
more data is required to improve the approximations, or the approximations
can be used to determine the results in areas in which a lot of information is
available. This means that several ways in which the Pareto optimal set can
be improved will be investigated, however which ways are viable is dependent
on the accuracy of the approximation function.

1.6 Research Model

Literature suggest that we start by creating a research model (Verschuren &
Doorewaard, 2005). Main goal of a research model is to create an overview
of the different subjects that should be studied, before a final conclusion can
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Improving the Pareto optimal set

Pareto Front
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Possible improvement
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Metamodel assisted EAApproximation literature Performance measures

Figure 1.4: Research Model

be drawn. This framework can then be used to define the research questions
and research methodology. We therefore developed a compact research model,
which is shown in Figure 1.4.

As mentioned above, the main goal is to improve the Pareto optimal set.
Improving implies that there is a clear view on what is a better solution (the
same solution in less time, a better solution in the same time, a solution of
which a higher percentage is indeed part of the Pareto optimal set, etc.) and
therefore the subject of Pareto front assessment criteria should be investigated.
These criteria can than be used to determine whether a solution (i.e. Pareto
front) is better. Based on these criteria a set of possible improvement methods
can be evaluated.

This set of possible improvement methods should be derived from the
combination of approximation methods and acceleration possibilities. The ap-
proximation methods will be derived from literature and will be selected based
on their performance on test cases. The acceleration possibilities will also be
derived from literature, but we will select suitable ones based on how well they
can be integrated in NSGA-II.

1.7 Research Questions

Based on the research goal and the research model described above four main
research questions can be developed. The first research question focuses on the
approximation methods and how well they approximate the objective func-
tions. The second research question focuses on the genetic algorithm and
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where there are opportunities to incorporate ‘intelligence’ into this genetic
algorithm. The third research question focuses on how the results of the two
previous questions can be combined into a single improvement method. And
finally the fourth and last research question applies the developed methods
from question three onto a realistic problem network. For each research ques-
tion a set of sub questions can be defined that explore the subject in greater
detail. This results in the following research questions:

1. How can the objective values of the bilevel NDP be approximated?

a) What approximation methods are used for complex problems in
literature?

b) What data is needed in order to ‘feed’ these methods?

c) How ‘good’ do these methods approximate the ‘true’ objective val-
ues?

i. Which criteria can be used to determine ‘good’?

ii. How do these methods score on these criteria when applied to
two different test networks?

2. In what way can the genetic algorithm be accelerated?

a) How can the genetic algorithm be accelerated according to literat-
ure?

b) Where in the genetic algorithm could ‘intelligence’ be incorporated?

c) What intelligence can be incorporated in the genetic algorithm?

3. Which improvement methods do indeed improve the search for the Pareto
optimal set?

a) Which approximation methods can be incorporated in the genetic
algorithm?

b) Which criteria can be used to describe an improvement of a Pareto
optimal set?

c) How do the improvement methods score on these criteria?

4. How do these methods cope with realistic networks?

Finally a conclusion can be drawn about which improvement method is most
suitable in which case, and to what extend this method is able to improve the
Pareto optimal set.
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1.8 Research Methodology

Main goal of defining a research methodology is to determine up front which
approach is to be used to answer a specific research question. Suitable ap-
proaches could for instance be literature study, interviews, testing and simu-
lation studies. In this thesis we decided to opt for two main approaches which
are literature study and testing. The former approach is mainly used to de-
termine what the current ‘state of the art’ is on a specific topic, whereas the
latter is used to check whether a chosen model or approach is suitable for our
problem.

In the remainder of this section we will discuss the methodology used, by
answering the question ‘what do we do, and why do we do it?’

In order to answer research question 1 we decided to perform a literature study
into approximation methods, where we focus on approximation methods that
are commonly used in combination with optimisation problems. Furthermore
we prefer approximation methods that are known to be combined with Genetic
Algorithms. So why do we perform a literature study?

Probably the most important reason is that we would like to get a good
idea how the different approximation techniques work. It would for instance
be interesting to see which equations and/or algorithms are required to obtain
the approximated objective values for, after all, applying an approximation
method that is so complicated that it requires more time than exactly evalu-
ating the objective values is of little use. Furthermore we need to know which
information is needed as input data for the approximation techniques, since
we have to be able to provide this information. Perhaps just as interesting are
the different variants that might have been applied in the past, because they
have often been optimised for a specific problem. Similarly it is interesting to
see which (predefined) parameters are part of the approximation techniques,
since they could be used to ‘fine tune’ the approximation technique.

It seems that after this literature study we should have a good and com-
plete overview of the possibilities of the different approximation techniques.
In order to reduce the complexity of the research, it seems requisite to reduce
the number of variants (i.e. different variants or different parameter settings)
of approximation techniques. It seems appropriate to combine this reduction
with research question 1c which makes that we a) have to perform a liter-
ature study into quality measures for approximation techniques; and b) test
which of the variants of the approximation techniques appear to be the ‘best’
according to these quality measures.

The literature study which we perform to answer research question 1(c)i
focusses primarily on well-known statistical techniques, which are commonly
used in determining whether a model is a reliable estimate of the real situation.
However in our situation it is probably just as interesting whether a variant
of an approximation technique is able to predict whether a solution is going
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to be part of the Pareto front, independent of the estimated objective value.
We therefore also try to find quality measures that measure this phenomenon.

Finally we will use the ‘testing’ approach to determine how good the vari-
ants are able to approximate the objective values (research question 1(c)ii).
However at the same time we will use this approach to determine which of
the variants are ‘best’ (and will therefore be used in the remainder of this
research). Of course there is the risk that a variant, which appears to per-
form extremely well in one case, performs extremely poor in another. We
therefore decided to use two different road networks for the test, only variants
that perform ‘good’ on both networks are considered as ‘best’ variants of ap-
proximation techniques. Using two different networks therefore increases the
chances that the chosen variants also perform ‘good’ on other networks.

For answering the second research question we follow a slightly different ap-
proach, although the start is similar. We start by performing a literature
study into the field of the Metamodel Approximated Evolutionary Algorithms
(MAEAs). The goal of this literature study is to provide an overview of dif-
ferent MAEA approaches that have been used in the past, and we thereby do
not limit ourselves to our field of interest (i.e. we do not limit ourselves to
traffic and transport related research).

It is likely that we have to reduce the number of MAEA approaches that
we are going to consider in the remainder of the research. Theoretically we
could use the testing approach again, however, it is likely that this would take
to much time since it would require us to combine different variants of approx-
imation techniques with all of the MAEA approaches. Furthermore it is likely
that not all MAEA approaches can be combined with the NSGA-II algorithm
or the approximation techniques that we decided to use. We therefore limit
the number of MAEA approaches using more qualitative criteria such as: a) is
the approach intuitive; b) can the MAEA approach be used in combination
with the chosen approximation techniques; and c) what is the computational
effort of the MAEA approach. Especially the latter criterion can be considered
relevant, since approaches that require new optimisation and approximation
models would probably require to much effort (i.e. evaluating solutions exactly
might be less expensive).

At this point we have arrived at research question 3 which we will answer
mainly by testing. However we start by combining the results from the pre-
vious two research questions into Approximation Method Assisted NSGA-II
algorithms (AMANs). We will also check whether the proposed AMANs are
indeed viable, i.e. we check whether the data that is provided by the approx-
imation methods is sufficient for the MAEA approaches.

What is furthermore important is that we perform a literature study in
order to answer research question 3b. Main goal is to determine how previous
research has defined an improvement in the Pareto optimal set, which can then
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be used to compare the different AMANs with the original NSGA-II algorithm.
Since it is likely that there are many different performance measures present
in literature, we decide to choose the criteria in such a way that they measure
the quality of the Pareto optimal set on different aspects.

We will test the results of the different AMANs and the original NSGA-II
algorithm on two different road networks, for reasons we already explained.
Main goal of the testing is to determine whether the results of the AMANs are
comparable to the results of the original (much more computational expensive)
NSGA-II algorithm. At the end we will choose one ‘best’ AMAN based on
critical discussion of the scores on the different performance measures.

The AMAN that is chosen as ‘best’ approach cannot be regarded the single
best approach, but it is the approach we will use to answer research question 4.
Again we will use the testing approach to answer this research question, since
we want to compare the solutions that are found by the original NSGA-II al-
gorithm and the selected AMAN algorithm. In order to compare the solutions
found by the two algorithms, we do again use the performance measures that
are defined in research question 3b.

Having answered all our research questions we are able to draw conclusions,
and determine whether we have achieved our research goal. Based on the
results from research questions 3 and 4 we are able to determine whether
the AMANs are indeed capable of producing Pareto optimal sets that are
comparable to the sets that are found by the original NSGA-II algorithm.
Furthermore we can determine what the possible reduction in computational
effort (calculation time) is. It is this reduction in calculation time which, in
combination with a comparable Pareto optimal set, can be considered the
improvement of the search.

1.9 Outline

In the previous section we have explained in detail which literature studies
and tests we are going to perform to answer our research questions and obtain
our research goal. In this section we will provide an outline of the remainder
of this thesis and explain which research questions are answered where in this
document. Figure 1.5 provides an overview of this outline.

Chapter 1 (Introduction), which you probably just read, starts with an in-
troduction to the problem and a brief literature overview of Network Design
Problems and Genetic Algorithms. Furthermore it contains the research scope,
research goal and research model which result in the research questions and
the research methodology. Summarised we can state that chapter 1 provides
an introduction to our research and discusses the research design.
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Figure 1.5: Outline of the Thesis

In chapter 2 (Modelling Dynamic Traffic Management) we discuss the problem
of how we should model the different Dynamic Traffic Management measures
in our Genetic Algorithm and approximation methods. As such, it is a some-
what independent chapter that provides a more theoretical background for our
research. Besides presenting how we model our DTM measures, we explain
what the consequences of this specific model are and provide a brief discussion
on how the problem size can be reduced. Furthermore we briefly explain how
more complicated DTM measures than the ones used in this thesis can be
modelled using our framework.

The test networks that are used in chapters 4 and 6 of this thesis, are
introduced in chapter 3 (Test Networks). Not only do we discuss the char-
acteristics of these networks, we also explain why these specific networks are
used.

Chapter 4 (Approximation Techniques) start by introducing three differ-
ent approximation techniques. We do discuss the mathematical background
of the approaches, provide an overview of how different parameters can be
estimated and discuss different variants that have been used in literature. We
continue by introducing different quality measures that describe how ‘good’
an approximation method approximates the objective values. We also provide
a quality measure that can be used specifically for multiobjective problems,
and indicates how ‘good’ an approximation method is in determining whether
the solutions are part of the Pareto optimal set (that has been found so far).
After presenting the results for the different quality measures for the different
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variants of the approximation techniques, we select two approaches that we
consider to be the ‘best’ amongst the evaluated variants.

We continue in chapter 5 (Metamodel Assisted Evolutionary Algorithms;
MAEAs) by discussing different MAEAs which we found in literature. Using
the criteria we discussed before we select two different MAEA approaches
that can be combined with the selected approximation techniques and can be
incorporated into the NSGA-II algorithm.

The results from chapter 4 and 5 are combined in chapter 6 (Accelerating
NSGA-II) in which we develop three new Approximation Method Assisted
NSGA-II (AMAN) algorithms. In order to be able to determine which of
these AMANs performs best, we develop a set of performance measures that
can be used to compare different Pareto fronts. We thereby distinguish three
categories of performance measures, dominance metrics, diversity metrics and
other performance measures. Furthermore we present the results for the three
AMANs and the original NSGA-II algorithm on both test networks. We con-
clude the chapter by selecting one AMAN that will be used in the next chapter.

We apply the selected AMAN and the original NSGA-II algorithm on the
slightly altered road network of Almelo in chapter 7 (Testcase Almelo). We
start by presenting the Almelo network, after which we discuss the results for
both the AMAN and the NSGA-II algorithm, using the performance measures
that were defined in the previous chapter. We also provide an overview of how
the Pareto fronts can be interpreted from a traffic and transport point of view.
This analysis is not performed in depth, as it is not part of our research. We
conclude by determining whether the Pareto front found by the AMAN is
comparable to the Pareto front found by the original NSGA-II algorithm.

We end this thesis with chapter 8 (Conclusions), which consists of the com-
bined conclusions of all the previous chapters, but also contains a final conclu-
sion that determines whether we attained our research goal. We provide an
overview of the subjects that require further research, before we can draw firm
conclusions about AMANs. Furthermore we provide the reader with a couple
of interesting subjects that could be used to improve or extend our knowledge
of AMANs and their application to Dynamic Traffic Management.





Chapter 2

Modelling

Dynamic Traffic Management

That which is static and repetitive is boring.
That which is dynamic and random is confusing.
In between lies art.

John A. Locke (1899 – 1961)

In this chapter we describe how different Dynamic Traffic Management meas-
ures affect the properties of the road network. We therefore start by intro-
ducing a typology of scales (section 2.1) after which we introduce a problem
framework and decide how DTM measures should be modelled. We further
specify these decisions, based on how the road network is affected by the DTM
measure, for each of the three measures in section 2.3.

In section 2.4 we provide a final overview of how we decided to model
the different DTM measures in both the Genetic Algorithm and the approx-
imation methods. Furthermore we provide a discussion (section 2.5) on how
researchers and principals can improve the results by redefining the DTM
measures.

2.1 Typology of Scales

Genetic Algorithms as well as approximation methods need input variables
that describe the current setting of each DTM measure. However, as we
will show in the next paragraphs, the ways in which these settings can be
described differ significantly. Even more important, the input variables for
the Genetic Algorithm are not necessarily the same as the input variables
for the approximation methods. Therefore we will first introduce a typology
of scales of measurement, after which we will explain for each of the selected
DTM measures how a setting influences the state of the road network. Finally
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we will select the input variables for both the Genetic Algorithm and the
approximation methods.

The typology of scales that will be used is the one introduced by Stevens
(1946). He defines four types of scale:

nominal where one uses labels, but cannot say anything about whether a
‘value’ is better or more than another ‘value’;

ordinal where one uses ranks, thus one can state that one is better or more,
but it is impossible to say something about the difference between the
two;

interval where one uses values, however only the difference between two val-
ues have meaning, the values itself are ‘meaningless’;

ratio where one uses values relative to an absolute zero, therefore not only
the differences but also the values itself have meaning.

Note that the former two are qualitative descriptors, whilst the latter two are
quantitative descriptors (and thus are always numeric values). The difference
between the latter two is somewhat difficult to grasp, but the easiest way is
to compare two important scales of temperature. The first is Celsius, which
has chosen an arbitrary zero value and thus is an interval scale, whereas the
second is Kelvin which has chosen the absolute zero (the temperature at which
particles have zero kinetic energy) and thus is a ratio scale. This difference
becomes even more clear if we apply the kinetic theory of gasses, doubling the
temperature in Celsius does not double the average energy of atoms, whereas
doubling the temperature in Kelvin does.

2.2 Problem Framework

In order to determine which type of scale we have to use when modelling
the DTM measures in Genetic Algorithms and approximation methods we
have to create a more formal framework. The main reason for creating this
framework is that it aids us in explaining clearly why certain typologies can
and why others cannot be used in a specific situation. In order to do so, we
define three sets of data.

The first set consists of the different DTM measures that are applied to
a road network. By definition it is not possible to have an ‘inactive’ DTM
measure, something that is perhaps best explained using an example. Consider
a situation in which we have a motorway where the traffic managers have
the possibility to cross off a specific lane using a Variable Lane Sign (VLS).
However if in the current situation the managers decided to allow traffic to use
this specific lane, we say that the DTM measure is ‘active’ by allowing this
lane to be used. If they would decide to cross off the lane, the DTM measure
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would still be ‘active’ although this time by denying the use of this lane. If
we say that set D consists of all DTM measures on the network and we use d,
d ∈ D, to denote a specific DTM measure. Now ∀ d ∈ D we can define a set
of possible settings, which we will call Sd, which is considered to be unique
for DTM measure d.

Secondly we define a set of controls C, we let c indicate a specific control
and obviously it holds that c ∈ C. Each of these controls is part of exactly one
DTM measure, so we can define Cd ⊆ C as the subset of controls influenced by
DTM measure d. Furthermore because of the aforementioned uniqueness (each
control is linked to exactly one DTM measure) we can state that Ci ∩ Cj = ∅
∀ i, j ∈ D, i 6= j. Last we can define |Cd| as the cardinality of the set Cd.

Finally we define set K as a set containing all the links in the network,
where k is used to denote a specific link, k ∈ K. In theory it is possible that
an individual link k is influenced by multiple DTM measures, and thus by
multiple controls. A good example would be a motorway section where it is
possible to add an additional link and simultaneously change the allowable
speed, both DTM measures being controlled separately. We can now define
Kc ⊆ K as the set of links controlled by control c, again |Kc| is used to denote
the cardinality.

It is perhaps necessary to explain how the framework introduced above works.
When changing a DTM measure d to a specific setting sd ∈ Sd we also change
all underlying controls c ∈ Cd to this specific setting sd. The controls store
the information on how the link properties should be changed when a specific
setting is applied, in fact it stores the exact value to which the link properties
should be set. Therefore all links k ∈ Kc have the same property value for
the properties that are changed using control c, which is changed by DTM
measure d (c ∈ Cd). Because each control can only change the property of all
underlying links to a single property value, we might require multiple controls
to describe a single DTM measure.1 We will apply this methodology to the
ATS, VSS and VLS DTM measures in the next sections.

In order to be able to incorporate our DTM measures into a Genetic Algorithm
we only require crude information, i.e. we do not require specific knowledge
of the network. In this case simply knowing which setting is applied for each
of the DTM measures is sufficient . Historically Genetic Algorithms were
designed requiring only binary data to represent the solution applied (see e.g.
Mitchell, 1996; Pham & Karaboga, 2000). However we would not like to limit
ourselves to DTM measures which can have only 2n solutions,2 especially since
it eliminates the possibility to use the quite common three-point (low-medium-
high) and five-point settings. It is therefore that we prefer to use an integer

1The ATS which we will discuss shortly, would be a good example of a case in which we
need multiple controls to describe a single DTM.

2Using binary data one would have to use DTM measures with 2, 4, 8, 16, . . . 2n settings.
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value to describe the setting that is applied for a specific DTM measure, i.e.
sd ∈ N

∗. This means we only require a string of t·|D| integers, where t denotes
the number of time periods for which we can select different settings and |D|
is the cardinality of the set of DTM measures.

Whereas we would like to use the crudest data available for the Genetic
Algorithms, we would like to get the most detailed information for the ap-
proximation methods. In theory this would mean that we use all property
information (e.g. maximum free-flow speed, outflow capacity, number of lanes,
etc.) from all the links in the network, however this would most likely result
in solutions in which all known points are fit exactly (heavily overdimensioned
problem) but none of the individual variables can be considered significant.
Furthermore it is likely that the computational effort of fitting such an ap-
proximation model would be so large, that the reduction in calculation time
would be marginal at best. We therefore tried to reduce the problem size
using the following criteria:

1. we use the most detailed property information available;

2. we use the property information at the highest level possible; and

3. we only use property information that is changed by the DTM measures.

Based on these criteria we decided to use the property information at control
level as variables for our approximation methods, since:

1. at the control level we have property information for all links k ∈ Kc

and therefore using the links k themselves does not contribute more
knowledge about the properties;

2. at the control level we know the property information, if we would go
any higher we would only know the setting sd; and

3. by using the data at the control level we do not use property information
that is unchanged, because that information is only available at link
level.

Because we now use the control level instead of the DTM measure level, we
require much more variables to describe a single solution. In fact, we re-

quire t ·∑|D|
d=1 |Cd| values to describe a single solution (note that |Cd| ≥ 1 by

definition).

In the following section we will explain how this framework affects the typology
of scale that can be used for the variables in the Genetic Algorithms and the
approximation methods.
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2.3 Modelling DTM measures

Because there are differences between each of the DTM measures (ATS, VSS,
VLS), we will discuss each of the proposed DTM measures seperately in the
following subsections. For each of the DTM measures we will discuss how
they affect the road network and we will subsequently decide how we should
model the DTM measures in the Genetic Algorithm and the approximation
methods.

Automated Traffic Control Signals

Starting with Automated Traffic Control Signals (ATSs), we see that each
ATS usually consists of all the signals that are needed to control a single
junction. There are many different ways in which traffic lights can be mod-
elled, from very simple methods that can be used in macroscopic assignment
to very complex methods that try to mimic individual vehicle behaviour in
microscopic assignments. In our situation it is not necessary to have a very
detailed model of a junction, since we use a macroscopic model and focus on
strategic DTM. We therefore decided to model an ATS using a set of outflow
restricting devices.

Going back to the framework introduced in the previous subsection we see
that in this case the property that is being changed is the outflow capacity (for
link k denoted by fmax

k ). In order to be able to determine which type of scale
is to be used for the approximation method variable, we need to determine
on what scale the outflow capacity can be measured. Since outflow capacity
is obviously a quantitative value and an outflow of zero has a clear scientific
meaning (there is no traffic whatsoever on this link) we can state that the
outflow capacity can be measured on a ratio scale. We therefore can also
state that we can use the ratio scale for the approximation method variables
for the ATS DTM measures.

Unfortunately typifying the scale of variables for the Genetic Algorithm is
slightly more complicated. We will explain this using the framework from the
previous subsection and a couple of (relatively simple) examples.

First, if an ATS would control only a single link (road section), it is clear
that this ATS only requires a single control and this control only influences
a single link, thus the cardinality of each subset is one (|Cd| = 1, |Kc| = 1).
We could now easily name each setting (and thus the variable for the Genetic
Algorithm) with the outflow capacity of this link and the variable could be
measured on a ratio scale (see Table 2.1a).

Second, it is possible that an ATS controls two different links (road sec-
tions). We can model this problem in two ways, although one approach is
clearly unrealistic. The first approach is to use a single control (|Cd| = 1)
which influences both links (|Kc| = 2, k = 1, 2), this would however result in
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setting link 1

100 100
200 200
400 400

(a) ATS with single link

setting link 1 link 2

1 100 400
2 200 300
4 400 100

(b) ATS with two links

setting link 1 link 2 link 3

a 100 400 200
b 100 200 400
c 200 300 200
d 200 200 300
e 400 100 200

(c) ATS with more links

Table 2.1: Examples of Different ATS Setting Scales

a intersection with a variable capacity, since fmax
1 = fmax

2 and thus the total
capacity of the intersection is equal to 2 · fmax

1 . Obviously an intersection in
which the total capacity increases depending on the setting that is applied is
unrealistic, and we therefore use the second approach which is to use a dual
control system (|Cd| = 2, c = 1, 2) where each control influences a single
link (|Kc| = 1 ∀ c = 1, 2). In order to maintain a fixed intersection capacity
(denoted by Q) it holds that |K1| · fmax

1 + |K2| · fmax
2 = Q. Table 2.1b gives

an example of such an ATS, and it is clear that we can no longer use the
ratio scale, since the value of zero has no scientific meaning anymore. We can
however use the interval scale by applying the setting numbers as shown in
Table 2.1b. Note that the difference between setting 2 and 4 is indeed twice
the difference between setting 1 and 2 (and that this holds for all links), which
is a requirement for the interval scale.

Third, we could now devise an ATS which controls three different links
(road sections) and, following the explanation from the previous paragraph, we
would have to model this problem using three controls (|Cd| = 3, c = 1, 2, 3)
each controlling a single link |Kc| = 1 ∀ c = 1, 2, 3). Furthermore it should
hold that |K1| · fmax

1 + |K2| · fmax
2 + |K3| · fmax

3 = Q, in order to maintain the
intersection capacity. However in this case we are unable to apply the interval
scale to the problem (see Table 2.1c) because the difference between setting
2 and 4 is no longer twice the difference between setting 1 and 2 for all the
links. In fact, it is impossible to rank the settings, since no setting is ‘higher’
or ‘lower’ than any other setting. This leaves us no other solution but using
the nominal scale for the variables in the Genetic Algorithm.

Obviously the same problem would remain to exist when a fourth, fifth,
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etc. link is added to the ATS. However in order to keep a consistent structure
(i.e. not dependent on the number of links that is being controlled) we decided
to use the nominal scale for the settings of the ATS measures and the variables
in the Genetic Algorithms.

Variable Speed Signs

Variable Speed Signs (VSSs) usually reduce the maximum speed (free-flow
speed) for vehicles on one or more (usually consecutive) road sections. How-
ever in contrast to the ATS from the previous subsection a VSS often changes
more than one link property. To illustrate this we can refer to the most com-
mon usage of VSSs, which is on a motorway. When for some reason road
managers decide to reduce the speed limit from 120 km/h to 100 km/h, this
only affects cars, lorries etc. still have to obey the 80 km/h speed limit spe-
cified for their mode. VSSs therefore do not (necessarily) affect all modes of
traffic equal, which is why we assume that VSSs change two link properties,
the speed limit for cars (vmax;car

k ) and the speed limit for trucks and lorries

(vmax;lorry
k ).

However it seems unnecessary to use both speed limits for our approxim-
ation methods, mainly because freight traffic accounts usually for only 10%
of the total traffic flow. The speed limit for car traffic therefore seems much
more important as a traffic predictor than the speed limit for trucks and lorries.
Furthermore it is likely that the dynamic speed limits for car traffic usually
are 120, 100 and 80 km/h, which means that the speed limit for freight traffic
becomes irrelevant (the speed limit is never changed, since the minimum speed
limit for car traffic is equal to the maximum speed limit for freight traffic).
We therefore decided to use the maximum speed for cars vmax;car

k as variable
for the approximation methods. Because a speed limit is a quantitative value
and a speed limit of zero has a scientific meaning (there is no traffic on this
link, since travel time would equal infinity), we are allowed to use the ratio
scale for this type of variable.

If we go back to the framework described earlier, we see that all the links
which are affected by the DTM measure can be directed by a single control,
since for all related links the same new speed limits are imposed. We can
therefore state that the cardinality |Cd| = 1, which has some benefits. In
this case however we do not change a single but two properties of each link
(speed limits of both cars and freight traffic) and although these properties are
quantitative, they behave differently (i.e. they have different intervals). We
can therefore not use the ratio or interval scale, however since the direction
of both properties is the same, we can use the ordinal scale to describe the
variables in the Genetic Algorithm.
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Variable Lane Signs

Finally Variable Lane Signs add additional lanes to the road network, thereby
expanding the capacity of a specific road section (or set of road sections).
However an increasing number of lanes is usually accompanied by a decreas-
ing capacity per lane, thus we effectively change two link properties, i.e. the
number of lanes sk and the capacity per lane qlanek .

However we can easily merge these two properties into a single indicator
that truly influences traffic behaviour, which is capacity per link, qk = sk · qlanek .
This new capacity per link can be measured using a ratio scale, since it is a
quantitative variable where zero has a scientific meaning (when the capacity
per lane or the number of lanes is zero, there is no traffic). We therefore de-
cided to use the capacity per link qk as the variable used in the approximation
methods.

Similar to the VSS described in the previous subsection, we only need a
single control to direct all links affected by the VLS (|Cd| = 1). Although it
appears that we can simply follow the reasoning from the previous subsection,
there is one major difference, which is that in this case the two properties
behave exactly opposite. If we however look at the effect on the road network
(i.e. the capacity of a link qk) we see that there clearly is a single direction and
we therefore do use the ordinal scale to describe the variables in the Genetic
Algorithm. Note that the interval scale cannot be applied because doubling
the number of lanes does not double the link outflow capacity.

2.4 Conclusion

For the approximation methods it seems fit to select those input variables
that have the strongest relation to what happens with the road network. We
therefore decided to select the characteristic attributes as input variables.
Note that all these variables are measured on a ratio scale, which means that
all mathematical operators can be applied.

It is a bit more difficult to select good variables that can be used in the
Genetic Algorithm. For the ATS we decided to use the nominal scale, whereas
for the VSS and VLS we are able to use the ordinal scale. It is important to
note that both scales do not require us to use specific values to describe the
variables, as would for instance be the case when interval scales were used (in
that case we would have to make sure that the property values of variable
value 2 are indeed twice the property values of variable value 1).

The reason why we have to determine the scales that are going to be
used up front, is that the nominal scale does not allow intelligent mutations.
Intelligent mutation is defined as mutations which assumes knowledge of the
problem. The most widely used intelligent mutation is ±1, in which a setting
is mutated to a setting that is one higher or one lower than the current one.
However in order to make this type of mutation legit, it is required that a
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setting higher of lower does have a meaning, which is the case in ordinal,
interval or ratio scales. For any of those scales, ±1 means that one decides
to use a setting that is close to the current one. When however a setting is
measured on a nominal scale ±1 implies selecting a random solution, since
the solution stored one above or below the current one does not necessarily
have any relationship with the current one. This ‘random selection’ however
is strongly biased, because we only consider solutions that we accidentally
stored close together. It is therefore that, when a setting is measured on a
nominal scale, only random mutation should be allowed.

Finally Table 2.2 provides an overview of the variables that are used in
the approximation methods as well as the scale that is used for the variables
in the Genetic Algorithms.

DTM measure Approximation Method Variable Scale in GA

ATS fmax
k ∀ k ∈ Kc, |Cd| ≥ 1 nominal

VSS v
max;car
k ∀ k ∈ Kc, |Cd| = 1 ordinal

VLS sk · qlane
k ∀ k ∈ Kc, |Cd| = 1 ordinal

Table 2.2: Overview of Variables for each of the DTM Measures

2.5 Discussion

There are some additional interesting issues we would like to address in this
chapter. The first issue is the influence of the number of time periods in which
the DTM measures are allowed to take different settings. Earlier we showed
that the number of variables in the Genetic Algorithm is equal to t · |D| and

the number of variables in the approximation methods is t ·∑|D|
d=1 |Cd|. Clearly

the number of variables is linearly dependent on the number of different time
periods that are considered. If we however look at the size of the solution
space (i.e. the total number of solutions that is theoretically possible, denoted
by Θ) we find that:

Θ =





|D|∏

d=1

|Sd|





t

(2.1)

Where |D| denotes the cardinality of the set of DTM measures (i.e. the total
number of DTM measures), |Sd| denotes the cardinality of the set of settings
of the dth DTM measure and t is the number of time periods.3 Since the

3If we, for example, want to determine the ‘optimal’ DTM measure schedule for the
morning peek hour (6.00am - 9.00am) we could subdivide this time period into six time

periods (6.00am - 6.30am, 6.30am - 7.00am, etc.). Main reason for using these six time
periods is that it is likely that we want different DTM settings in the first (6.00am - 6.30am)
and last (8.30am - 9.00am) time period.
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number of time periods is in the power, it is clear that the effect of t on
the size of the solution space Θ is enormous. Furthermore it is highly likely
that the larger the solution space, the more difficult it is to come close to the
true Pareto front. We therefore recommend that principals and researchers
rethink the number of time periods they find necessary, because the effects
on the outcome might be larger than expected. A possible solution is to first
apply the approach with two or three time periods. Based on these results
one can decide whether increasing the number of time periods might improve
the results and for which specific DTM measures such an increase would be
beneficiary. If a DTM measure is not changed within the two or three time
periods test run, it is unlikely that it will change in the ‘real’ six time period
run.

A second issue that might be interesting for principals and researchers alike
is the ability to incorporate ‘advanced’ DTM measures. We can best explain
this feature using an example: consider a situation in which we have two
ATS systems relatively close together with one major traffic flow using both
systems. If we would schedule both ATS systems independently solutions in
which this traffic flow is blocked at one ATS and given more or less free-flow on
the other are not unlikely. However it makes more sense that the two traffic
lights work together in the sense that the capacity that is reserved for this
major flow is equal on both intersections. We could model such a situation
by ‘merging’ the two ATS systems into a single DTM measure. Consider
the situation in which ATS 1 has four controls and ATS 2 has 5 controls
(for instance due to a one way bus lane). If we schedule both ATS systems
individually the size of the solution space Θ is (4 · 5)t = 20t. However if we
would merge the two ATS systems into a single one, we find that we only
have (4 + 5)t = 9t possible solutions. Actually we could reduce the size of
the solution space to 8t, since the two links on which the major traffic flow is
present can be directed by a single control.

There is however a catch when using these ‘advanced’ DTM measures that
require preknowledge. Because we severely limit the size of the solution space
it is very well possible that we ‘remove’ solutions that are actually really good.
One of the main advantages of letting a Genetic Algorithm determine possible
solutions is that the GA will also find unconventional solutions, which might
have been rejected by consultants or principals. The question is whether they
would still reject those solutions if they appeared to outperform many of the
other solutions.

In conclusion we can say that these approaches allow principals and researchers
to create a network with DTM measures as they like. It should however be
noted that some decisions can have a major effect on the computational effort
or on the quality of the solution. Care should therefore be taken when one
wants to reduce the size of the solution space by merging different DTM
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measures or increasing the solution space by increasing the number of time
periods.





Chapter 3

Test Networks

Testing leads to failure,
and failure leads to understanding.

Elbert Leander “Burt” Rutan (1943 – )

In order to understand how the different approximation models (chapter 4)
and Metamodel Assisted NSGA-II algorithms (AMANs; chapter 6) work, we
have to test these approaches. In this chapter we will therefore introduce
the two test networks that will be used to test the approximation methods
and AMANs. We decided to use two different networks, because testing an
approach on different situations will lead to better understanding of how well
this approach works in general.

In section 3.1 we therefore introduce a road network that has been used
in previous research on the topic of finding optimal Dynamic Traffic Manage-
ment. This enables future researchers to compare the results of both studies.
Furthermore we developed a new test network (section 3.2) which incorporates
more complicated issues found in real-life road networks.

3.1 Test Network I

The first test network was designed for the research by Wismans et al. (2009,
2010). They wanted a small test network in which there were only a limited
number of easily identifyable routes between one origin and one destination.
Furthermore they wanted to incorporate all issues that can be found in a
realistic network such as different levels of urbanisation, different levels of
‘Sustainable Safety’1 and roads with different emission properties. Similarly
they wanted a set of DTM measures which, when changed, would cause the
behaviour of road users to change significantly. Although this resulted in

1Dutch: Duurzaam Veilig Verkeer
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city centre

1,2 3

4

Motorway - 120km/h
Provincial - 180km/h
Municipal - 150km/h

2 x 1 lane
2 x 2 lanes
2 x 3 lanes

1 2

Figure 3.1: Layout of Test Network I

setting outflow capacity

a 500
b 600
c 700
d 800
e 900
f 1000
g 1100
h 1200
i 1300
j 1400
k 1500

(a) ATS - Regional Road →
Regional Road

setting outflow capacity

a 500
b 600
c 700
d 800
e 900
f 1000
g 1100
h 1200
i 1300
j 1400
k 1500

(b) ATS - Regional Road →
Local Road

setting outflow capacity

a 500
b 600
c 700
d 800
e 900
f 1000
g 1100
h 1200
i 1300
j 1400
k 1500

(c) ATS city centre

setting free-flow speed

1 120
2 100
3 80

(d) VSS motorway

Table 3.1: Settings of DTM Measures for Test Network I
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a somewhat theoretical construct, it does contain all elements that can be
found in a realistic network, whilst the results of a solution can be determined
relatively fast.

The road network comprises of two centroids with a one directional flow of
traffic (6000 pae/hr) and three different routes: a motorway (red), a regional
road (yellow) and a local road (blue) through a town (see Figure 3.1).

The motorway consists of 2× 3 lanes with a 120 km/h speed limit, but at
about 2/3 of the length of the motorway there is a fixed lane drop from three
to two lanes. The regional road starts with a 2×2 dual carriage way until the
fork with the local road, after that the regional road continues in a 2× 1 lane
configuration, both sections have a 80 km/h speed limit. The local road is a
normal urban main road with a 50 km/h speed limit.

There is an ATS (black circle; 1,2) that controls the flow of traffic at the
fork where the regional road and local road part (both flows are controlled
independently), an ATS in the town centre that limits the flow on the local
road (black circle; 3) and a VSS that limits the speed on a large part of the
motorway (black line along the motorway; 4). For each DTM measure the
possible settings and the corresponding characteristic attribute values can be
found in Table 3.1. Appendix A contains an overview of all attributes for each
DTM control separately.

The route over the motorway is the fastest and takes only 37 minutes when
travelling at free-flow speed, the local road is the first runner-up and takes 43
minutes at free-flow speed and finally the regional road takes 44 minutes at
free-flow speed. Because all these free-flow travel times are quite close together
the effects of traffic and DTM measures can be significant.

When all DTM measures are set to the median2 we can create a kind of
‘reference situation’. In this reference situation we find that after some time
long queues arise in front of ATS 1 and 2. Furthermore we see a large increase
in vehicle intensity just before the lane drop on the motorway. Both problems
delay traffic and probably lead to very high total travel times. Furthermore
we see that quite a lot of traffic passes through the city centre (1000 veh/hr)
which probably causes noise nuisance.

It is therefore that optimising the selected settings for the different DTM
measures could be interesting, could we reduce the total travel time and sim-
ultaneously reduce the noise in the city area?

2Note: since all ATS systems in this network control only a single link, we are able to
use the ratio scale for these ATS systems and thus we can determine the median.
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3.2 Test Network II

Although the first test network already contains a lot of different features, we
felt that there were some issues that were not incorporated in the network of
Wismans et al. (2009, 2010). We therefore decided to design a second test net-
work which is based on the same principles as the test network by Wismans et
al., i.e. we want a relatively small network were we can easily identify a limited
number of routes, whilst having different levels of urbanisation, ‘Sustainable
Safety’ and emission.

The additions we made were the introduction of multiple origins and des-
tinations (three and two respectively) and the interaction between different
traffic flows, using intersections and merging traffic on the motorway. We also
introduced DTM measures that directly or indirectly affect multiple traffic
flows. Furthermore we ensured that the intersections controlled by an ATS
have a fixed capacity Q, which was not the case in Test Network I. It is there-
fore that we consider our test network, although still a theoretical construct,
a more realistic network than Test Network I.

The second test network comprises of five centroids with a one directional
traffic flow from centroid one to centroid two of 7200 pae/hr, a one directional
traffic flow from centroid five to centroid 2 of 1200 pae/hr and a one directional
traffic flow from centroid three to centroid four of 2400 pae/hr. The traffic
from centroid one to centroid two has three possible routes: a motorway (red),
a regional road (yellow) which goes through some local areas (red ellipsoids)
and a local road (blue) through a town. The traffic from centroid three to
centroid four has only two possible routes: a regional road (yellow) or a local
road (blue) through a town centre (see Figure 3.2).

From centroid one to the three separate routes and from the three separate
routes to centroid two the road network consists of regional roads that are
closed for slow traffic and consist of 2 × 2 lanes with a 80 km/h speed limit.
The motorway, the first route, consists of 2 × 2 lanes with a 120 km/h speed
limit and halfway the traffic from centroid five to centroid two merges with the
traffic from centroid one to centroid two. The regional roads, the second route,
consist of 2×1 lane with a 80 km/h speed limit and are closed for slow traffic.
In the local areas the speed limit changes to 50 km/h. The route through the
town, the third one, starts with a part of regional road with 2 × 1 lane that
is open to slow traffic, with a speed limit of 80 km/h. In the town itself the
road is a normal urban road with a speed limit of 50 km/h. The junctions
inside the town are a somewhat theoretical construct, because they can only
go straight ahead, i.e. traffic from centroid one to centroid two cannot use the
upper curve.

There are two ATSs present in this network that control the flow inside the
town by dividing the capacity of 1400 pae/h over the two directions. There also
is a VSS that limits the speed on the first half of the motorway, thereby making
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city centre

Motorway - 120km/h
Provincial - 180km/h
Provincial - 150km/h
Municipal - 150km/h

2 x 1 lane
2 x 2 lanes

1
2

3 4

5

1 2

3

4

Figure 3.2: Layout of Test Network II

the motorway less attractive for traffic (and thereby reducing the problems on
the second part of the motorway). Furthermore there is a VLS that offers the
possibility to add an extra lane to the second half of the motorway, thereby
reducing the problems that are caused by merging traffic and thus making the
motorway more attractive. An overview of the corresponding characteristic
attribute values can be found in Table 3.2. A full overview of all attributes
for each DTM control can be found in appendix B.
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setting outflow capacity outflow capacity
1 – 2 3 – 4

a 1200 200
b 1100 300
c 1000 400
d 900 500
e 800 600
f 700 700
g 600 800
h 500 900
i 400 1000
j 300 1100
k 200 1200

(a) ATS 1

setting outflow capacity outflow capacity
1 – 2 3 – 4

a 200 1200
b 300 1100
c 400 1000
d 500 900
e 600 800
f 700 700
g 800 600
h 900 500
i 1000 400
j 1100 300
k 1200 200

(b) ATS 2

setting free-flow speed

1 120
2 100
3 80

(c) VSS

setting road capacity

1 4400
2 6600

(d) VLS

Table 3.2: Settings of DTM Measures for Test Network II
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Between centroid one and centroid two the fastest route is the motorway, which
takes only 36 minutes when travelling at free-flow speed. The routes using the
regional route and through the town centre are more or less equally fast and
take 42 minutes at free-flow speed. Between centroid three and centroid four
both routes are more or less comparable with a free-flow travel time of 33
minutes.

When both ATSs are switched to setting f , the VSS is switched to setting 2
and the VLS is switched off (i.e. we keep a two lane system) we have created a
‘reference situation’. The network is modelled in such a way that the majority
of the issues occur in the upper part of the network. First we find that queues
arise just before the first intersection inside the city centre. These queues
arise for both the traffic from centroid one to two as well as the traffic from
centroid three to four. Because both ATSs allow traffic flows of 700 veh/hr
in both directions we do not have any problems in front of the second ATS.
These problems may arise when the settings of ATS 1 and 2 are conflicting,
i.e. when one ATS prioritises the traffic from centroid one to two and the other
ATS prioritises traffic from centroid three to four.

As said, most problems arise in the upper part of the network. One of the
largest problems arises where the traffic from centroid five is merged with the
traffic from centroid one to centroid two that decided to use the motorway.
Here speed drops to less than 10% of the free-flow speed, thus causing massive
delays. On the motorway were the VLS is installed we also see that slowly
but surely the traffic becomes more and more dense, causing speed to drop
significantly (±50% of the free-flow speed). Another problem arises just before
the branching of the regional road into a ring road and a local road through
the city centre. Here again queues arise, although not as serious as on the
motorway, caused by the fact that too much traffic is forced on the regional
road due to delays on the motorway.

At the end of the simulation we find that nearly all traffic from centroid
three to four has been dealt with, whereas we still have traffic flowing from
centroid one to two. This suggest that we have not distributed the disutility
equally over all the routes, which might be reason to reconsider the active
settings of the DTM measures. Furthermore we find that the total travel
time on the network is probably average, although traffic on the motorway is
hindred significantly, we also see that traffic on the regional roads (especially
in the south) hardly faces delays. Similarly due to the limited traffic through
the city centre, we find that noise nuisance is only limited. It might however
be possible to reduce this even further by allowing more traffic to use the
motorway, thereby reducing the traffic through the urban areas around the
regional road. Finally we see that the CO2 emissions are relatively high, which
might be caused by the queues that arise throughout the network.

Concluding we can state that it is likely that we can improve all three object-
ives, e.g. using the third-lane expansion. This would cause travel time to drop
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and might therefore also reduce the CO2 emissions. Furthermore it may lead
to traffic avoiding the city centre and urban areas, because the alternatives
are faster, which reduces noise hindrance. In short, it is likely that changing
the settings of some of the DTM measures may very well improve the overal
situation on this, still somewhat imaginary, road network.

We can now use these two test networks to assess how ‘good’ certain ap-
proaches are. We will therefore use these test networks in chapter 4 to determ-
ine the quality of different variants of the proposed approximation methods.
Furthermore they will be used to assess the three different Approximation
Method Assisted NSGA-II algorithms that are developed in chapter 6.
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Approximation Techniques

All exact science is dominated by the
idea of approximation.

Bertrand Russell (1872 – 1970)

The main goal of this chapter is to answer research question 1 (as defined in
section 1.7): ‘How can the objective values of the bilevel NDP be approxim-
ated?’ In section 4.1 we therefore start with a brief overview of approximation
techniques and their taxonomy. It also provides a notation standard for ap-
proximation equations that will be used throughout this thesis.

The three algorithms that are found in literature (RSM, RBF and Kri-
ging/DACE) are discussed in depth in sections 4.2 – 4.4. For each of the al-
gorithms an explanation of the functioning of the algorithm is given and the
advantages and drawbacks are discussed. Furthermore recent extensions and
adaptations of the algorithms are mentioned, since they often provide im-
proved results or require less computational effort. After this we will have
answered subquestions 1a and 1b which focus on the application of approx-
imation techniques in complex problems and their requirements.

Next we aim at answering subquestion 1c: ‘How ‘good’ do these methods
approximate the ‘true’ objective values?’ and section 4.5 therefore introduces
the quality measures that will be used to assess the quality of the different
approximation methods. The methodology used can be found in section 4.6
and the results are presented in section 4.7.

Finally we are able to determine which of the proposed approximation
methods (and which variants) appear to be the best performing approximation
techniques. In section 4.8 we will therefore select two (different) approximation
techniques that will be used in chapter 6 to assist the NSGA-II algorithm.
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4.1 Literature Overview

In literature there are three main techniques that a) are used to approximate
objective functions; and b) are used in combination with GAs. These tech-
niques are Response Surface Method (RSM), Radial Basis Functions (RBFs)
and Kriging. The latter however is often used in a specific way and is then
referred to as DACE. D. R. Jones (2001) provides us with a taxonomy of all
metamodelling approaches and gives a good overview of what choices were
made in developing these approaches. An overview of metamodelling in gen-
eral can be found in the work by J. Knowles and Nakayama (2008) who clearly
describe the three approaches, whereas the work of Y. Jin (2005) gives leads
to which method may be preferred in which situation.

Researchers however cannot identify one single approach that is ‘best’,
Y. Jin (2005) argues that generally speaking RSM should be applied to small
simple problems whilst RBF and Kriging/DACE should be applied when dif-
ficult problems with many parameters are considered. Similarly Simpson,
Peplinski, Koch and Allen (2001) state that RSM should be applied to well
established problems with less than 10 parameters, whereas Kriging/DACE
should be used for complex problems that require a lot of flexibility and RBF
(Neural Networks; NN) should be used when many parameters are involved.
However both Y. Jin and Simpson et al. find that there is no single good
algorithm that can be selected up front.

Georgopoulou and Giannakoglou (2009) provide three different ways to
incorporate metamodels into GAs, which are listed below:

off-line trained metamodels without feedback Based on a training set,
generated using some sampling method, a metamodel is created. All
other solutions are based on this metamodel. This approach is therefore
especially suitable when there is no possibility to evaluate new samples.

off-line trained metamodels with feedback Based on a training set (gen-
erated using some sampling method) a metamodel is created, which is
used to determine a new set of ‘interesting’ solutions. These solutions are
then evaluated by the exact model. Every g generations this information
is used to update the metamodel in order to improve the estimates.

on-line trained local1 metamodels For each population member (in the
offspring set) a specially designed metamodel is created, using the in-
formation from the previous evaluated solutions. Based on the results
of the metamodels a selection of promising new population members is
evaluated.

1Local metamodels are here defined as models which only use neighbouring solutions to
approximate the objective value of a certain point, whereas global metamodels use all known
solutions and approximate the complete solution space.
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n number of solutions (points)

d
number of dimensions of the problem, in this case the
number of DTM measures

f exact value of f

f̃ estimated value of f

f̂ best estimator of f

‖fi − fj‖ distance between fi and fj

f a vector of f

F a matrix of f

|F| determinant of matrix F

FT transpose of matrix F

F−1 inverse of matrix F

F+ pseudoinverse of matrix F, an inverse which can also
be applied to non-square matrices

Table 4.1: Notation in Approximation Methods

The three algorithms are each capable of working in combination with any
of these three approaches. In our case the first approach is not advisable,
for it is possible to exactly evaluate solutions. It therefore seems wise to
use this exact knowledge to update the metamodel. The second approach
tries to create a global metamodel, however this is a difficult task, especially
when a lot of parameters are involved. It gives quite a lot of power to the
metamodel, which is responsible for searching good solutions in a complex
environment. Finally the third and last approach creates local metamodels,
that are specifically designed to predict the value of a single solution.

In this research we focus on global metamodels, since we would like to
find an approximation model for all solutions. Although local metamodels are
much easier to optimise,2 it requires a new optimisation for each solution that
has to be evaluated. This seems undesirable, especially since GAs require us
to evaluate many solutions.

In order to maintain a clear view on what is meant in the approximation
related equations, we will use the notation from Table 4.1 throughout this
thesis.

2The term optimise is used to indicate the process of finding the best variable values
for the approximation method. The best values are those values that ensure that the goal
function of the approximation method is optimised (e.g. minimising the error or maximising
the likelihood).
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4.2 Response Surface Method

The Response Surface Method (RSM) was introduced by Box and Wilson
(1951) and was originally intended as a guideline to designing experiments.
They consider a problem in which they approximate an objective using a
polynomial function, which is usually notated as follows:

f = b0 + bx + xTBx + . . . + ǫ (4.1)

Here b is a vector of bi and B is a square matrix of Bij (i, j = 1 . . . n). If we
assume a problem with two variables this gives the following approximation
(note that B12 = B21):

f = b0 + b1x1 + b2x2 + B11x
2
1 + B22x

2
2 + 2B12x1x2 + ǫ (4.2)

If we consider a problem in which we have investigated a number of points in
our problem space, we would like to find the Least Square Fit through these
points. However for this type of problem it is much more convenient to rewrite
the problem into a different formulation (equation 4.3), where xim denotes the
value of the ith variable for the mth point.




f1
f2
...
fn


 =




1 x11 x21 x211 x221 x11x21
1 x12 x22 x212 x222 x12x22
...

...
...

...
...

...
1 x1n x2n x21n x22n x1nx2n







a0
a1
...
a5


+




ǫ1
ǫ2
...
ǫn


 (4.3)

If we assume that ǫ ∼ (0, σ), we can rewrite this problem to:

f = Xa + ǫ (4.4)

Then the solution vector a can be found by determining:

a =
(
XTX

)−1
XT f (4.5)

Or the much shorter version:
a = X+f (4.6)

And the approximation of the objective value for a new point can be described
as:

f̃ = a0 + a1x1 + a2x2 + a3x
2
1 + a4x

2
2 + a5x1x2 (4.7)

Box and Wilson (1951) suggest the use of second-order polynomials, because
higher order polynomials require a lot of points (measurements) just to estim-
ate the approximation function. For a k-order full polynomial with d variables
the minimum number of points needed is:

nmin =
k∑

i=1

dk + 1 (4.8)
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Which is a function that increases rapidly with k. Therefore often a cubic
polynomial is used, which reduces the total number of points that is needed
to:

nmin = kd + 1 (4.9)

Box & Wilson propose a method in which one, when provided with multiple
designs, can determine for which design the bias, caused by leaving out higher
order polynomials, is larger. This gives researchers a tool to choose better
experimental designs in order to be able to maximise the results of their ap-
proximation.

Another useful tool that is provided by Box and Wilson (1951) in their pa-
per is the updating of the estimators and error terms without inverting large
arrays. This is beneficiary, because inverting large arrays is complex and costs
quite large amounts of computational power. If we would now consider the
situation in which already N1 experiments have been used for the approxima-
tion function and another N2 experiments have just been performed. If we let
C−1 denote

(
XTX

)−1
of the set of N1 points and W denotes a similar matrix

as X only for the N2 new points with objective values Z, then the updated
matrix C−1

0 , the new estimators aT0 and the new residual sums of squares s0
can be determined using:

C−1
0 = C−1 − JTGJ

aT0 = aT + ∆TGJ

s0 = s + ∆TG∆

(4.10)

where J = WC−1, G = (I + R)−1, R = WC−1WT and ∆ = Z−Wa.

Another issue that deserves some attention is underdetermined problems. A
problem is said to be underdetermined if the number of known points that
are used to estimate the parameters (in this case the vector a), is larger than
the number of parameters that have to be estimated. This situation can
easily be recognised since in this case the matrix X has more columns than
rows. In that case we are unable to find a unique solution that minimises
the error. In fact we could find a set of solutions that all have the same
minimal error, but have very different parameter values. We therefore use the
Moore-Penrose pseudoinverse, which is a generalized inverse that can also be
applied to rectangular matrices (see e.g. Ben-Israel & Greville, 2003). One of
the advantages of this specific pseudoinverse is that we exactly know which
solution is found, i.e. we find a unique solution. This unique solution does not
only minimise the error in objective value, but also minimises the differences
between the parameter values a.

The main reason why RSM is so popular is that it is quite simple, easy to
understand and is able give a good indication which solutions one should
investigate next. A good example of such an approach can be found in Bucher
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and Bourgund (1990) who apply RSM to the reliability analysis of structural
problems. They show that RSM is capable of finding good solutions whilst
still being much faster than finding an exact solution. Similarly Allen, Yu
and Bernshteyn (2000) applied RSM to the problem of designing fasteners in
the automotive industry. Not only do they use the factorial design approach3

for finding a near optimal solution, they also use multiple models (i.e. they
exclude some of the combination parameters) and thus make use of the ability
to determine which model is less sensitive to bias caused by higher order
polynomials. Finally Yunker and Tew (1994) use both RSM as well as a GA
to set the parameters of a computer network in such a way that the user costs
are minimised. Although GA outperforms RSM (by nearly 25%) they did not
consider computational time to be an issue. Would we also take computational
effort into account, we see that RSM only needs 25 runs per search, whilst GA
needs 682. This clearly indicates that RSM might very well be an interesting
technique to quickly find good solutions.

Although RSM is quite often mentioned as a possible metamodel to improve
or accelerate GAs (see e.g. Büche, Schraudolph & Koumoutsakos, 2005; Bhat-
tacharya, 2008; Georgopoulou & Giannakoglou, 2009) the true application of
RSM is not that frequent. This is probably due to the fact that the behaviour
of objectives of problems that require GAs are too complex to be approxim-
ated by RSM. Y. Jin (2005) states that RSM can be used when the number of
variables is quite low and the complexity is not too high. For problems with a
high complexity, i.e. problems with objective functions which are difficult to
predict, usually higher order (cubic, quartic or even higher) RSM is needed.
According to Y. Jin in those cases more intelligent approaches such as RBF
or Kriging should be applied. However there are a couple of recent studies
that do apply RSM (although often modified) to improve the results of GAs.
Already in 2001 Khoo and Chen designed a GA that used RSM to determine
possible interesting locations. Ölvander (2005) applies RSM in a different way,
he uses the partial derivative of the approximation function and the sensitivity
(on the Pareto front) to understand the underlying processes of his (hydraulic
pump) design problem. C. Kim, Wang and Choi (2005) improve the existing
RSM approach by using multiple approximation functions and determining
the expected value of a certain point by weighing these different functions
based on a (predefined) distance function. They thereby prevent RSM from
fitting a straight line through all the points and create a much more versatile
approximation function. Finally Zhou, Ong, Lim and Lee (2007) use both
RSM and RBF as local search techniques in order to improve the results that
have been evaluated by the exact objective function.

It can be concluded that although RSM is a simple and intuitive approach to

3See the book by Box, Hunter and Hunter (2005) or Law and Kelton (2000) for an
overview of experimental design and factorial design in particular.
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approximation it has not been used that much in literature. Major drawbacks
of the approach are that higher order relations as well as problems with many
variables (which require many observations) are expensive to model. However
for less complex relationships RSM can provide a very quick and accurate
approximation of the objective values.

4.3 Radial Basis Functions

Among the people who more or less introduced RBF were Moody and Darken
(1989). They proposed a network approach in which the radial between a
centre point and a solution measured the weight to which that centre point
contributed to the solution. Currently Gutmann (2001) is considered to be
one of the main contributors, by proving the necessity of additional variables
for specific distance functions. The concept of a RBF (or more precise a Radial
Basis Function Network) is depicted in Figure 4.1.

f̃(φ)

φ1(x) φ2(x) φ3(x) φm(x)

x1 x2 xn

Figure 4.1: Radial Basis Function Network

Here the output f̃ consists of the linear weighted sum of m radial basis func-
tions, which each are functions of n different values for x. If we now assume
that m = n and φi(xi) (i.e. the number of known solutions is equal to the
number of individual RBF distance functions and each RBF distance func-
tion is only dependent on a single known point), we can use the slightly more
generic approach by Gutmann (2001) who defines the RBF as follows:

f̃(x) =
m∑

i=1

λiφ (‖x− xi‖) + p(x) (4.11)

Here p(x) represents a polynomial function of x. We can however, as is often
done, abbreviate φ (‖xi − xj‖) to φ (rij). Next Gutmann proposes five dif-
ferent methods to determine the distance between the two points, a sixth is
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added based on Billings and Zheng (1995):

φ(r) = r (linear)
φ(r) = r3 (cubic)
φ(r) = r2 log r (thin plate spline)

φ(r) =
√
r2 + c2 (multiquadratic)

φ(r) = e−cr2 (Gaussian)
φ(r) = 1√

r2+c2
(inverse multiquadratic)

(4.12)

Gutmann (2001) gives a proof of the order of p(x) that is needed, something
that is summarised in Holmström, Quttineh and Edvall (2008). He states
that in a cubic or thin plate spline RBF a first order polynomial is needed,
whilst only a fixed value is needed when linear, multiquadratic or inverse
multiquadratic RBFs are used. Finally when Gaussian RBFs are used there
is no need to add a polynomial function. Note that this does not mean that
one cannot find a solution if no polynomial function p(x) is used. Research
has been done to determine which RBF provides the best solutions, Coulomb,
Kobetski, Costa, Maréchal and Jönsson (2003) states that Gaussian has overall
a good performance, whilst multiquadratic approaches only perform well on
specific test problems (and score poorly in real-life cases).

Mullur and Messac (2006) clearly describe how a solution can be found
for a RBF problem. For notation assume that we have n measurements
x1, . . . ,xi, . . . ,xn ∈ R

d where xi describes a known solution in d dimensions
(which means that there are d design variables). For now we assume single
objective optimisation and thus has each of these measurements an exact ob-
jective value f1, . . . , fn ∈ R. Mullur and Messac use a multiquadratic RBF
and use a static value for c.4 Now define:

Φ =




φ(r11) φ(r12) . . . φ(r1n)
φ(r21) φ(r22) . . . φ(r2n)

...
...

. . .
...

φ(rn1) φ(rn2) . . . φ(rnn)


 (4.13)

If we combine equation 4.11 with the knowledge that p(x) is empty when using
Gaussian RBF and the new notation described above and in equation 4.13 then
we can describe the problem in the same way Mullur and Messac (2006) do:

f = Φλ (4.14)

Note that this indicates that f is assumed to be a function of the distances
in solution space. Of course then the main goal is to find the vector λ which
is the vector that contains the values for λi which describe the linear weights

4It is not possible to optimise the value of c using the standard RBF approach, since c

is not a linear but a power term. It is however possible to try to optimise the problem for
different values of c and select that approach that provided the most plausible results.
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for the basis functions that minimise the error. The solution can be found (as
long as Φ is not singular) by:

λ = Φ−1f (4.15)

Mullur and Messac (2006) continue by expanding the existing RBF for good
reason. In Figure 4.2 the behaviour with respect to the distance between
two points is shown for different values of c using a multiquadratic distance
function φ(r) =

√
c2 + r2. It is obvious that if two solutions are further apart

the value of the RBF for that solution also increases. The suggestion, made by
Mullur and Messac, however, is that for solutions that are far apart (i.e. large
positive or negative values of r) the effects of distance are underestimated,
since in the long run limr→∞ φ(r) = r.
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Figure 4.2: Multiquadratic Radial Basis Function

It is therefore that Mullur and Messac (2005, 2006) decided to improve their
method by creating an extended RBF as shown in Figure 4.3 which can be
described by:

f̃(x) =
n∑

i=1

λiφ (‖x− xi‖) +
n∑

i=1

d∑

j=1

{
αL
ijφ

L(ξij) + αR
ijφ

R(ξij) + βijφ
β(ξij)

}

(4.16)
The values of φL(ξij), φ

R(ξij) and φβ(ξij) can be determined using the equations

from Table 4.2 where ξi = ‖x − xi‖ and ξji is the value of ξi for the jth

dimension. Furthermore there are two (prefixed) scaling parameters n ≥ 2
and γ.
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For the example in Figure 4.3 we selected n = 2 and γ = 5. Furthermore
(for convenience) we assumed that λi = 1 and αL

ij = αR
ij = βij = 1.
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Figure 4.3: extended Radial Basis Function

Region Range of ξji φL φR φβ

I ξji ≤ −γ (−nγn−1)ξji + (1 − n)γn 0 ξji
II −γ ≤ ξji ≤ 0 (ξji )n 0 ξji
III 0 ≤ ξji ≤ γ 0 (ξji )n ξji
IV ξji ≥ γ 0 (nγn−1)ξji + (1 − n)γn ξji

Table 4.2: extended Radial Basis Function Values for φ
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The problem of equation 4.16 can be solved similarly to the method before,
by describing a new matrix of coefficients Ā and solution vector ᾱ:

ᾱ =
{
λT (αL)T (αR)T βT

}T
(4.17)

Ā =




φ(r11) . . . φ(rn1)
...

. . .
...

φ(r1n) . . . φ(rnn)

φL
111 . . . φL

n11
...

. . .
...

φL
1nd . . . φL

nnd

φR
111 . . . φR

n11
...

. . .
...

φR
1nd . . . φR

nnd

φβ
111 . . . φβ

n11
...

. . .
...

φβ
1nd . . . φβ

nnd




T

(4.18)

The solution can then be found using the pseudoinverse of Ā, Ā+, by solving:

ᾱ = Ā+f (4.19)

The main advantage of this approach is that the importance of the RBF
decreases strongly outside a certain ‘trusted region’ (γ) when using the right
scaling parameters. Especially for low values of c for multiquadratic distance
functions or high values of c for Gaussian or inverse multiquadratic distance
functions (i.e. when the distance function is quite flat) this could improve
the accuracy of the approximation. Another benefit of the eRBF approach
is that although the equations seem quite complex, the problem still is a
linear problem and can thus be solved quite easily. A possible drawback of
the approach is that it assumes that a good value of c can be determined in
advance, whilst determining the parameter values is already a problem in itself
(Büche et al., 2005). According to Mullur and Messac (2006) the estimation
is not a problem since c = 1, γ = 1 provided consistently accurate results.

Praveen and Duvigneau (2009) suggests that one could estimate the value
of c by minimising the error found by applying the ‘leave-one-out’ approach.
Here one tries to estimate the value of a certain point i from the entire set
of evaluated solutions, by using all solutions except i in the RBF function.
Although this approach seems to make sense (one tries to minimise the er-
ror) it results in quite a complex problem, since for each i a problem of size
(n− 1) × (n− 1) is created. One could however decide to use only a small
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subset to estimate the value of c. Tanaka, Mizoguchi and Takami (2007)
use a ‘rule-of-thumb’ approach and determine c based on maximum distance
between two points, rmax and the dimension and size of the problem, according
to:

c =
0.5d
√
dn

r2max

(4.20)

Büche et al. (2005) use a similar approach and determines c using:

c = rmax(dn)
−1
d (4.21)

Since the leave-one-out method is computationally expensive (one needs to
build n RBF models) it seems that the approach of Mullur and Messac (2006),
choosing a fixed value of c, is quite useful. However it would be a good idea
to test different values of c and see whether the results are consistent.

Coulomb et al. (2003) identify another problem that arises when using RBF
in solving real-life problems, which is determining the distance between two
points in the solution space. From a mathematical point of view the solution
is quite simple, one uses the Euclidean distance:

rij =

√∑

d

(xdj − xdj )2 (4.22)

However in reality the scale of different dimensions could be important, meas-
uring in metres or millimetres does not give a different solution, but would
affect the distance calculated using Euclidean distances. Coulomb et al. there-
fore suggest the use of a normalised radius, which is defined by:

r2ij =

D∑

d=1

(
xdi − xdj

rd

)2

(4.23)

Where rd is a characteristic distance for dimension d. Coulomb et al. suggest
using the minimum and maximum value of xd, xdmin and xdmax, and the number
of intervals in dimension d, denoted by Id.5 Then rd can be determined using:

rd =
xdmax − xdmin

Id − 1
(4.24)

Radial Basis Functions are quite popular as a metamodelling method in recent
publications, although often researchers resolve to different methods (see e.g.
Büche et al., 2005; Emmerich, Giannakoglou & Naujoks, 2006; J. Knowles,

5This approach, where we need to determine the number of intervals, is especially con-
venient when optimising discrete problems. When continuous problems are considered other
normalisation techniques, e.g. dividing by the average value, can be applied.
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2006; Bhattacharya, 2008). Generally speaking are RBFs appraised for their
ability to approximate the behaviour of difficult multivariable problems (see
e.g. Hussain, Barton & Joshi, 2002; Coulomb et al., 2003; Büche et al., 2005;
Mullur & Messac, 2006; Tanaka et al., 2007; Zhou, Ong, Nair, Keane & Lum,
2007), which is part of the reason why they are being used in the design of
complex equipment (see: Karakasis & Giannakoglou, 2006; Karakasis, Koubo-
giannis & Giannakoglou, 2007; Messac & Mullur, 2008). Some however do not
fully agree and claim that simpler approaches such as RSM might be better
in some cases (Zhou, Ong, Lim & Lee, 2007).

The most common way of using RBF is to create a selection of solutions
that is going to be exactly evaluated (Georgopoulou & Giannakoglou, 2009).
This is also the way in which Karakasis et al. (2007) use RBF in their hier-
archical model. In fact they approximate each solution that is generated by
the EA with the RBF and select the best x% to be evaluated by the exact
model. Georgopoulou and Giannakoglou give much more power to the RBF,
in their opinion RBF should be used to determine the objective values for
solutions that are in areas that are well known,6 exact evaluations are then
only needed to extend the search area and maintain the diversity in solutions.
Finally Messac and Mullur (2008) have developed a method that focusses on
identifying the Pareto set by adding a set of pseudo points. These points
(that represent the corners of a m-dimensional box) are then given fitness val-
ues that are dependent on the distance towards the nearest evaluated solution.
By underestimating the fitness of these pseudo points and including them in
the eRBF method the approximation will strongly favour solutions that are
close to the already evaluated solutions (and proved to be good), however solu-
tions that are further away are more or less ignored. This method is therefore
suitable for problems where there is a clear relation between solution space
and objective space, i.e. solutions that are far away in solution space also are
far away in objective space.

RBF are generally appraised in literature, especially their capability of mim-
icking difficult behaviour by using little more than the distance to a couple of
near solutions. However in order to give good predictions in all parts of the
solutions space a careful spread of solutions should be maintained.

4.4 Kriging/DACE

Kriging is named after the South African mining engineer Krige, who de-
veloped the approach in the 1950s. However he failed to formalise the method,
something that was done by Matheron (1963). For now we follow the standard

6Determining whether a solution is in an area that is well known is dependent on the
number of solutions that are close in solution space. Georgopoulou and Giannakoglou (2009)
use a set of threshold values that is used to determine the number (and minimal number) of
solutions that are close.
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work by D. R. Jones, Schonlau and Welch (1998), in their explanation they
give good insight in why certain assumptions can be made.

D. R. Jones et al. start working from the basics of approximation, which
is regression. Now assume that x = (x1, . . . , xd) denotes a single solution, βh
are unknown coefficients, f(x) is a linear or nonlinear function of x and ǫ is
a normally distributed independent error term with mean zero and variance
σ2. Then the objective value can be determined using:

y(x) =
∑

h

βhfh(x) + ǫ (4.25)

Now D. R. Jones et al. (1998) state that the assumption of normally distrib-
uted independent error terms is ‘blatantly false’. When considering a con-
tinuous objective function it is likely that if two solutions (e.g. x(i) and x(j))
are close together, the errors ǫ(x(i)) and ǫ(x(j)) are also close together. This
behaviour suggests that instead of being independent the error terms are cor-
related, the closer they are together the higher the correlation. The Kriging
method therefore suggests the use of a specific distance function:

c
(
x(i),x(j)

)
=

d∑

h=1

θh

∥∥∥x(i)h − x
(j)
h

∥∥∥
ph

(4.26)

Here θh ≥ 0 and ph ∈ (1, 2) are scaling parameters for respectively the sensit-
ivity and the smoothness of the weighted distance curve. Then the correlation
of this relationship can be described by:

rij = Corr
[
ǫ(x(i)), ǫ(x(i))

]
= e−c(x(i),x(j)) (4.27)

D. R. Jones et al. conclude that this function is, due to the scaling parameters,
so powerful that it is possible to dispose the regression terms, except the
constant. This gives the model that is used in stochastic process approaches,
where ǫ(x) is normally distributed with mean 0 and variance σ2 but correlated
as described in equation 4.27:

y(x) = µ + ǫ(x) (4.28)

The approach from equation 4.26 – 4.28 has become quite popular under
the name DACE, an abbreviation of ‘Design and Analysis of Computer Ex-
periments’ which is the famous paper by Sacks, Welch, Mitchell and Wynn
(1989). The main goal is now to find the values of the 2 + 2d parameters
(µ, σ2, θ1, . . . , θd, p1, . . . , pd) of DACE using the maximum likelihood function
for non-independent variables:

L(x) =
1

(2π)n/2
√
|Σ|

e[−
1
2
(x−µ)Σ−1(x−µ)T ] (4.29)
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Here Σ is denoting the covariance matrix and thus, by substituting R as the
n×n matrix of rij with i, j = 1, . . . n and 1 as a n-vector of ones, the likelihood
can be calculated using:

L
(
µ, σ2,θ,p

)
=

1

(2π)n/2 (σ2)n/2
√

|R|
e

[

− (f−1µ)TR
−1(f−1µ)

2σ2

]

(4.30)

When θ and p are known the estimators of µ and σ2, µ̂ and σ̂2, can be
estimated using:

µ̂ =
1TR−1f

1TR−11
(4.31)

σ̂2 =
(f − 1µ̂)T R−1 (f − 1µ̂)

n
(4.32)

In order to obtain the expected value f̃(x) of a new point x we need the vector
rT = (rx1, . . . , rxn), after which:

f̃(x) = µ̂ + rTR−1 (f − 1µ̂) (4.33)

Finally due to the model used, the variance at a known point is zero, whilst
the variance at a point far away from all other data is estimated to be σ̂2. In
fact the error can be predicted at all points using:

s2(x) = σ̂2

[
1 − rTR−1r +

(
1 − 1TR−1r

)2

rTR−11

]
(4.34)

The derivation of equation 4.26 – 4.34 can be found in Sacks et al. (1989).

The Kriging method described above (using only one constant µ which is un-
known) is generally known as ordinary Kriging. Literature however does also
consider two other approaches, simple Kriging, where there is one constant
µ which is known, and universal Kriging, where there is a polynomial func-
tion included. Cressie (1990) concluded that the use of the ordinary Kriging
method and predicting µ by the best linear unbiased estimator µ̂ is to be
preferred over simple Kriging, because it is difficult to select a good value of
µ up front. Journel and E. (1989) compared the results of using ordinary and
universal Kriging and concluded that the use of higher order terms did not
improve the results. It therefore seems that the ordinary Kriging method, as
described above, is the most suitable method in nearly every case.

Probably one of the most difficult problems in Kriging is the estimation of the
parameters θh and ph (for µ and σ2 we already found reasonable estimators).7

7Note that we can substitute the values for µ̂ and σ̂2 from equations 4.31 and 4.32 into
equation 4.30. In that case we end up with an equation that is only dependent on θ and p.
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This is a problem that is also recognised by the developers of DACE (Sacks
et al., 1989), who suggest the use of maximum likelihood estimation (MLE).
The problem with this solution method however is that it is also a complex
problem (not convex) and thus cannot be solved to optimality in polynomial
time. Instead one has to resolve to gradient based methods, such as SA or
GA, to solve this problem, without knowing whether a global optimum has
been reached (Büche et al., 2005).

Dietrich and Osborne (1991) found an analytical solution to a similar prob-
lem, with the limitation that the covariance function has the form:

rij = θ0a (‖i− j‖) + θ1b (‖i− j|, l) (4.35)

Of course this severely limits the flexibility that was considered to be one of
the assets of Kriging and is therefore less suitable for more complex problems.

Therefore often an assumption is made on the value of ph. When ph = 1
the correlation (see equation 4.27) is reduced to an exponential function (equa-
tion 4.36), whereas ph = 2 gives a Gaussian function (equation 4.37).

e−
∑d

h=1 θh‖x
(i)
h

−x
(j)
h

‖ (4.36)

e−
∑d

h=1 θh‖x
(i)
h

−x
(j)
h

‖2 (4.37)

This leaves only one set of undefined parameters θ (in the case of universal
Kriging also a set β) which is a problem that can be solved much more con-
veniently. Martin and Simpson (2005), who use universal Kriging, mention
two approaches that could be used, Maximum Likelihood Estimation (MLE)
and Cross Validation (CV).

When applying MLE Martin and Simpson (2005) do not maximise the
likelihood function that was given earlier (see equation 4.30) but the natural
logarithm of this problem. The extra term is because they applied universal
Kriging, in which P is used to describe the coefficients of the higher order
polynomes:

ln(β, σ2θ) = −n

2
ln
(
2πσ2

)
− 1

2
ln (|R|)− 1

2σ2
(f −Pβ)T R−1 (f −Pβ) (4.38)

In that case the optimal values of β̂ and σ̂2 can be determined using:

β̂ =
(
PTR−1P

)−1
PTR−1f (4.39)

σ̂2 =
1

n

(
f −Pβ̂

)T
R−1

(
f −Pβ̂

)
(4.40)

The problem can then be solved by iteratively determining the values of β̂,
σ̂2, substituting these in equation 4.38 and then maximising that problem for
θ. After some iterations convergence is reached (i.e. the maximum likelihood
does not change much) and a solution has been found. It is important to note
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that when matrix R is singular, the determinant |R| = 0 at which point it is
impossible to determine the logarithm of the determinant.8

CV works slightly different, it assumes that all parameters are constant
(σ2,β,θ) and the error of these values is determined by creating n Kriging
models, which predict the value of point i based on the n− 1 other solutions.
Now assume a diagonal matrix Q where the values are the inverse of the
diagonal of R−1 (note: this implies a square matrix). Furthermore assume
g = R−1f and w = R−1P, the total error can then be described by:

e = Q (g − wβ) (4.41)

And the best estimate β̂ can be determined using:

β̂ =
(
wTQ2w

)−1
wTQ2g (4.42)

Again the solution can be determined by iteratively determining β̂ and sub-
stituting these values in equation 4.41, which can then be minimised for θ.

Finally Jeong, Obayashi and Yamamoto (2006) use a better defined iter-
ative approach (see Mardia and Marshall (1984) for a full derivation) in which
they try to maximise the shorter likelihood function:

ln
(
µ, σ2,θ

)
= −n

2
ln(σ2) − 1

2
ln(|R|) (4.43)

Then the vector θ can be updated using:

θnew = θold + B+∂ ln

∂θ
(4.44)

Given that tr indicates the sum over the diagonal, the partial derivative and
B can be determined using:

∂ ln

∂θk
= −1

2
tr

(
R+ ∂R

∂θk

)
− 1

2σ2
(f − 1µ)T R+ ∂R

∂θk
R+ (f − 1µ) (4.45)

Bij =
1

2
tr

(
R+∂R

∂θi
R+ ∂R

∂θj

)
(4.46)

Mardia and Marshall (1984) suggest that by using a Levenberg-Marquardt
parameter δ such that B+ δ ·diag(B) the solution becomes even more robust.

All three approaches require quite a lot of work to be done to find the
θ-vector. Both CV as well as the method proposed by Jeong et al. (2006) and

8We therefore modified the algorithm that searches the new ‘optimal’ values of θ in
such a way that, when |R| = 0 we do not use the true ln(|R|) but instead we use
lim|R|→0 ln(|R|) = −∞. Although this ensures that the algorithm does not ‘crash’ it can
cause the algorithm to be unsure in which direction to look for improvements at which point
the algorithm is aborted in a neat way (i.e. the algorithm continues with the next operation).
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Mardia and Marshall (1984) seem to require a lot of work (either by determin-
ing n Kriging models or by determining the derivatives of R) whereas the MLE
approach is quite straightforward. Furthermore Martin and Simpson (2005)
conclude that the MLE model performs better when there are a large number
of observations, something that is true in this research. It therefore seems
best to use the MLE approach, and use a numerical optimiser to determine
the values of θ in each iteration. We thus choose for the MLE approach and
use the numerical optimiser fmincon using the interior-point algorithm from
the Matlab R© Optimization ToolboxTM(The Mathworks Inc., 2010). Main be-
nefit of the interior-point algorithm is that it only requires a start value for
the variables (in our case θ and p), whereas other algorithms also require the
Jacobian and Hessian matrix (the vector of first-order derivatives and mat-
rix with second-order derivatives). Furthermore it is interesting to note that
Lophaven, Nielsen and Søndergaard (2002) developed a Kriging Toolbox for
Matlab R©, which contains the DACE approximation technique.

Another issue is the determination of the prediction error s2, Den Hartog,
Kleijnen and Siem (2006) suggest that the method as discussed in D. R. Jones
et al. (1998) underestimates the error, because one uses the same data set to
fit the model and predict σ̂2. One should therefore use bootstrapping (leave-
one-out) in order to determine the Mean Squared Error (MSE) of the model,
which can be used as a better predictor for σ̂2. However often it is more
important that one realises that the error is underestimated than knowing the
exact predicted error at a certain point. Especially since it requires a lot of
computational effort, such an approach should only be used when there is a
real need for good error predictors.

Kriging can of course be used to pre-evaluate solutions that are considered
by the GA, however there is also a more intelligent approach which tries to
determine the next point that should be evaluated using Expected Improve-
ment (EI). D. R. Jones et al. (1998) were amongst the first to combine this
method with DACE, although limiting themselves to single objective prob-
lems. Simply stated, the improvement I at a certain point is dependent on
the distribution of f̂ and the minimum value that has been observed so far
fmin. Then the EI can be determined using:

E [I(x)] =





(
fmin − f̂(x)

)
Φ
(
fmin−f̂(x)

s

)
+ sφ

(
fmin−f̂(x)

s

)
if s > 0

0 if s = 0

(4.47)
Note that Φ(·) and φ(·) represent the standard normal cumulative distribu-
tion function (cdf) and standard normal probability density function (pdf).
Sasena, Papalambros and Goovaerts (2002) improved this approach by adding
an attribute g which emphasises the uncertainty, thus creating a more global
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search. In this case the EI can be determined using:

E [Ig(x)] = sg
g∑

k=0

(−1)k
(

g!

k!(g − k)!

)(
fmin − f̂(x)

s

)g−k

Tk (4.48)

Where:

Tk = −φ

(
fmin − f̂(x)

s

)(
fmin − f̂(x)

s

)k−1

+ (k − 1)Tk−2 (4.49)

T0 = Φ

(
fmin − f̂(x)

s

)
(4.50)

T1 = −φ

(
fmin − f̂(x)

s

)
(4.51)

Because high values of g will leave the algorithm to only search globally,
Sasena et al. propose a cooling schedule in which g slowly decreases from 20
to 0, where in the latter case only solutions that have expected values below
the current minimum value are considered. Emmerich et al. (2006) expand
the method to a multiobjective case, where they focus on the Probability of
Improvement (PoI) instead of the EI. However in this case it is quite difficult
to determine ‘improvement’ and they therefore stick to calculating the integral
of the pdf over the valid solution space, i.e.:

PoI(x) =

∫

x∈V
φx (y) dy (4.52)

V := {y|y is non-dominated} (4.53)

Although the idea of finding the point at which EI is maximised is a good
one, it seems to be quite difficult to find such a point when dealing with a mul-
tiobjective problem. An interesting alteration of the methods discussed above
would be to determine a combined expected improvement, i.e. determining the
quadratic sum over the EIs of all objectives. The use of determining the value
of EI, or in fact any method to determine an interesting point, can for instance
be found in Kleijnen (2009) and Kleijnen, Van Beers and Van Nieuwenhuyse
(2010) who propose the sequential build of the set of points that are used to
determine the Kriging model. This means that at each iteration those points
are added that contribute the most to the model (either by finding a good
solution, or by evaluating areas that are unknown). Main drawback of cre-
ating a new Kriging model for each iteration is shown in the work by Gano,
Renaud, Martin and Simpson (2006) who specifically use a low-fidelity model
in order to save computational time that would otherwise be lost by fitting
a Kriging model. Dellino, Lino, Meloni and Rizzo (2009) proposes the use of
adaptive updating schedules, where the Kriging model is only updated when
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the error between the prediction and the true exact value became too large.
However in this case there is a risk, since it might very well be that the Kriging
model rejects several good solutions before the algorithm found out that the
Kriging model was wrong.

Although the approach was first developed for the mining industry, Kriging has
now also become popular in other sciences such as meteorology and statistics
(Cressie, 1990). The wide range of applications of Kriging has expanded
to structural and mechanical engineering, where the use of Kriging models
becomes more and more common practice (see e.g. El-Beltagy, Nair & Keane,
1999; Mehnen, Michelitsch, Lasarczyk & Bartz-Beielstein, 2007; Dellino et al.,
2009). The power of Kriging lies, according to Simpson et al. (2001), with the
fact that the method is extremely flexible and can easily be applied to problems
with up to 50 parameters. Emmerich et al. (2006) find that Kriging (especially
in multiobjective situations) forces algorithms to perform evaluations in less
explored regions, thereby preventing the algorithms from being misled by poor
predictions. J. Knowles (2006) concludes that a Kriging assisted GA generally
outperforms NSGA-II. However there are also some drawbacks to Kriging, for
instance R. Jin, Chen and Simpson (2001) finds that Kriging is very sensitive
to the sample that is provided, more than for instance RBF. Simpson et al.
(2001) find that the complexity of Kriging, it is not an easy method to grasp,
makes it less suitable in some occasions.

Kriging however can be applied in a number of different ways. Already
mentioned is the use of Kriging in determining the EI in order to find new,
possibly optimal, points (see e.g. D. R. Jones et al., 1998; Sasena et al., 2002;
Emmerich et al., 2006). Both Ratle (2001) and J. Knowles (2006) use Kriging
in combination with a GA. They let the Kriging model evaluate the solutions
that are provided by the GA and evaluate only the best solutions using the
exact model. After a couple of generations the Kriging model is updated using
the points that have been evaluated by the exact model in the past generations.
Li et al. (2009) give even more power to the Kriging model, if the error (as
estimated by the Kriging model) is small the value that is calculated by the
Kriging model is used, only when the predicted error is large, the exact model
is used to evaluate the solution.

The use of Kriging shows that the model is capable of modelling complex
problems, however when the number of objectives, parameters or solutions
becomes large, solving the Kriging model itself becomes a computational bur-
den.

4.5 Quality Measures

In order to select the best approximation method, one needs a clear definition
of ‘best’. However selecting the best method is not that easy since we should
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weigh approximation accuracy and computational effort. Furthermore it is
difficult to define approximation accuracy. We therefore limit ourselves to
finding good approximation methods, without trying to find the best one.

In literature we find three (quite common) definitions of approximation accur-
acy (see for instance: Lim, Ong, Jin & Sendhoff, 2007). The first is probably
the simplest definition and determines the average (absolute) error over all
predictions. This Mean Absolute Error (MAE) can be determined using:

MAE =
1

n

n∑

i=1

|fi − f̃i| (4.54)

The second definition is probably the best-known method (Y. Jin, Hüsken
& Sendhoff, 2003) and determines the average squared error, thereby giving
more weight to predictions that are further away from the true value. Giving
more weight to larger errors is in line with the common thought that minor
errors do not really matter, whereas major errors are so much the worse. This
Root Mean Square Error (RMSE) can be determined using:

RMSE =

√√√√ 1

n

n∑

i=1

(
fi − f̃i

)2
(4.55)

Note that both of these definitions focus solely on how well the true values
are approximated. However Y. Jin et al. (2003) propose the use of methods
that focus on predicting the behaviour of problems rather than solutions.
Therefore Y. Jin et al. as well as Lim et al. (2007) suggest the use of the sample
correlation coefficient r, which describes the relation between two data sets,
in this case the exact values and the approximates values. The value of r is
restricted to the range [−1, 1], where −1 means that the predictions and true
values take the opposite directions. Logically 1 means that the predictions
and true values take the same direction and thus indicate that the behaviour
of the predictions is similar to the behaviour of the true values. This sample
correlation coefficient can be determined using:

r =
n
∑n

i=1 fif̃i −
∑n

i=1 fi
∑n

i=1 f̃i√
n
∑n

i=1 f
2
i − (

∑n
i=1 fi)

2

√
n
∑n

i=1 f̃
2
i − (

∑n
i=1 f̃i)

2
(4.56)

In fact Y. Jin et al. (2003) go even further and propose a method that goes
back to determining false positives and false negatives (see Table 4.3 for the
definition of false positives and false negatives). This method is, in contrast to
the three previous quality measures, a multiobjective quality measure. It as-
sumes that one is able to determine, using the approximated objective values,
which of the children is going to be part of the next parent set (i.e. the parent
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set that is the result of the non-dominated sorting algorithm) and as such are
not dominated by other children or parents. If the expected set of dominating
children is indeed similar to the true set of dominating children (to be determ-
ined using the exact objective values) the approximation method appears to
provide objective values that lead to the right decisions (either accepting or
rejecting children to be part of the set of non-dominated solutions).

Approximation

dominated non-dominated

Exact
dominated OK false negative

non-dominated false positive OK

Table 4.3: Possible Outcomes Domination Quality Measure

Based on the concept introduced by Y. Jin et al. (2003) we developed our
own method to determine how good an approach is. Generally speaking one
can identify four different possible outcomes (see Table 4.3), which are de-
pendent on two indicators. The first is whether or not a solution is part of
the non-dominated set (when evaluated exactly), the second is whether the
approximation method indicated the solution to be part of the non-dominated
set.

From Table 4.3 it becomes clear that there are in fact three results, a
number of solutions that is predicted correctly, a number of false positives
and a number of false negatives. From an optimisation point of view, false
negatives are worse than false positives, since in the former case one disposes
good solutions, whereas in the latter case one only spends computational time
in vain. We could therefore decide to sort the approximation methods based
on false negatives, false positives and correct predictions, however it seems
more convenient to create a single predictor for the quality of the approx-
imation method. We therefore constructed a quality measure as described
in equation 4.57, where lower values indicate better solutions. This quality
measure is based on two concepts: a) we try to minimise the number of false
predictions; and b) we try to get as close as possible to the correct number
of rejected solutions.9 Given that minimising the number of false predictions
comes down to minimising the sum of false positives and false negatives and
getting close to the correct number of rejected solutions is equal to minim-
ising the difference between the false positives and false negatives10 the quality
measure can be defined as follows:

ϑ = false positives2 + false negatives2 (4.57)

9Note: these two concepts do not imply that false negatives are worse than false positives.
10Note: the latter part requires us to quadratise both parts of the quality measure, because

a negative difference is as bad as a positive difference.
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These four quality measures can clearly be categorised into two classes. The
first category consists of quality measures that determine how well an approx-
imation method estimates the value of a single objective function. Clearly
RMSE and MAE are members of this category (both focus on the distance
between the approximated and exact objective value), but r can also be used
to determine how well a certain method approximated the behaviour of the
data. In order to find the best approximation methods from an objective value
point of view, we first selected for each objective function the best solution, i.e.
the one with the lowest RMSE. This lowest RMSE was used as a normalisation
constant and for each approximation method the summed deviation from the
lowest RMSE was determined. Using RMSEo as RMSE for objective o of a
certain approximation method and RMSEmin

o as minimum RMSE of objective
o over all the approximation methods, the summed deviation (RMSEΣ) was
determined using:

RMSEΣ =
∑

o

(
RMSEo

RMSEmin
o

)
(4.58)

Besides RMSE and MAE also r is a good indicator to find approximation
methods that closely mimic the behaviour of the objective functions. We
therefore determine for each approximation method the average value of r
over the three objectives, noted by r̂.

The second category consists of measures that do not focus on how well a
single objective value is approximated, but focus on whether or not the right
decision is made. In this specific case this means whether or not a solution
would be correctly categorised as dominating (or non-dominating) when using
the approximated values. Clearly ϑ is a measure that determines whether the
right decisions are taken.

4.6 Methodology

From the explanation in sections 4.2 – 4.4 it becomes clear that each method
has a number of variables (methods that can be used, parameter settings,
initial values) that could potentially influence the results (and the quality)
of the approximations. It therefore seems appropriate to first investigate the
dependency of the approximation methods on the variable values. This is
why for each of the variables (per approximation method) a set of possible
values (or settings) is selected. The selected possible values per variable can be
found in Tables 4.4 – 4.6. This results in a total of 148 approximation method
variants.

In order to prevent the results to be biased due to a single unfortunate
dataset, we decided to average the results over ten datasets. Each dataset
consists of a part that is used by the approximation methods to learn and
a part of which the objective values should be approximated. The former is
called learning data and consists of the control values and the exact objective
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type maximum power

cubic 2
full 3

Table 4.4: Variable Values for Response Surface Method

type distance function c-value γ-value

RBF linear Tanaka et al. (2007) 1
eRBF cubic Büche et al. (2005) 5

thin plate spline 100 10
multiquadratic 10

Gaussian 1
inverse multiquadratic 0.1

0.01

Table 4.5: Variable Values for Radial Basis Functions

objective function optimise p-vector initial φ

Martin and Simpson (2005) yes 1E−9 5E−5

Mardia and Marshall (1984) no 1E−8 1E−5

5E−7 1E−4

1E−7 1E−3

5E−6 1E 0

1E−6 1E 3

Table 4.6: Variable Values for Kriging/DACE

values, the latter consists solely of control values and is called input data. The
corresponding exact objective values will be referred to as exact output, in
contrast to the approximated output, which is the result of the approximation
methods.

The performance of each of these approximation methods is measured us-
ing two different test networks. The first test network, that is described in
section 3.1, was used in the research of Wismans et al. (2009, 2010). Fur-
thermore we make use of a database of exact objective value evaluations (and
their corresponding measure settings) that was the result of the same study.
The values of the controls (x) are based on the characteristic parameters as
described in section 2.3. In order to reduce the risk of selecting a method
that only performs well on this specific network, we also developed a second
test network (with different properties), which is described in section 3.2. For
this test network we generated 2000 random solutions which were evaluated
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exactly and stored in a database.

From the databases we selected the first 100 solutions as learning data and
the next 100 solutions were selected as input data. An approximated output
was calculated using each approximation method and for each solution in the
input data. Using the exact output of this solution, for each approximation
method the quality measure values were calculated. The 200 solutions (100
input data, 100 output data) were removed from the databases in order to
prevent overlapping data. After 10 iterations the results were averaged, ap-
proximation methods that resulted in invalid quality measure values (e.g. Not
a Number11 or infinity) are considered to be unsuitable, since they do not
provide a (feasible) solution in every instance.

We first applied the approximation methods to Test Network I and drew
conclusions about the behaviour of the different approximation methods on
this test network. Next we employed the approximation methods to Test Net-
work II and checked whether the previous conclusions still hold. Because the
fourth quality measure (ϑ; equation 4.57) is a multiobjective quality measure,
we also wanted to investigate how this quality measure behaves for different
numbers of objective functions. We therefore applied this quality measure
also to a situation in which we only consider travel time (TTT; equation 1.1)
and climate (CO2; equation 1.2) and to a situation in which a fourth objective
function (road safety) was included.

Because of the categorisation that has been made in section 4.5 we can define
two groups of ‘best’ solutions. The first group consists of the approximation
methods that approximate the objective values best, the second group con-
sists of approximation methods that are good in predicting whether or not a
solution is part of the non-dominating set.

In order to find the best approximation methods from an objective value
point of view, we use RMSEΣ (see equation 4.58) and select (and rank) the
best 10 approximation methods per test network. The approximation methods
that were amongst the ten best solutions of both test networks were selected
as ‘best’ solutions and sorted based on the sum of the rank they received
for each individual test network. Since we also determined that r̂ is a good
indicator for the quality of the predictions, the best 10 solutions based on
r̂ per test network were selected and ranked. The approximation methods
that were amongst the ten best solutions of each test network were selected
as ‘best’ solutions and sorted based on the sum of the rank they received for
each test network.

The best approximation methods from a decision point of view should be
selected based on ϑ for two to four objectives. Therefore the approximation
methods are ranked based on ϑ for two, three and four objective functions

11Not a Number (NaN) is the result of undefined arithmetic operations such as subtracting
infinities, multiplication of infinity by zero, division of zero by zero, division of infinity by
infinity, etc.
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for each test network. For each test network the ten best approximation
methods are selected based on the sum of ranks for two three and four objective
functions. The ‘best’ approximation methods from a decision point of view are
those approximation methods that are in the top ten of each test network and
are sorted based on the sum of the rank they received for each test network.

Furthermore it is interesting to take a closer look at the errors (s2) that are
estimated by the Kriging/DACE approach. As explained in section 4.4, Kri-
ging/DACE is capable of estimating errors (s2) for each objective value for
each individual solution. This would offer (for instance) the possibility to
select only those solutions for exact evaluation that have a high uncertainty
(i.e. high expected error) according to Kriging/DACE. We therefore will in-
vestigate the error behaviour of the Kriging/DACE methods that score ‘best’
on approximating objective values.

What is important is that the errors that are provided by Kriging/DACE
are reliable, in that sense that predicted errors that are larger should indeed
correspond to solutions that have larger errors. We will therefore (for each
objective) sort all the solutions based on the predicted error and plot the true
error (i.e. the squared error which can be calculated using the approximation
and the exact objective value) against it. In order to reduce the effect of
incidental errors we calculate the average error over 50 solutions, resulting
in 20 points of data. If the Kriging/DACE error is indeed a good predictor
one would expect positive correlation. Using standard regression analysis we
will analyse whether there is indeed a positive correlation between the errors
predicted by Kriging/DACE and the true errors.

4.7 Results

Because we have examined in total 148 different variants of approximation
methods (4 RSM, 24 RBF, 72 eRBF and 48 Kriging/DACE), publishing de-
tailed information on all these variants would hardly contribute to a clear
decision. We therefore decided to publish the results in a different way. We
therefore start by discussing the results for each of the approximation methods
on both test networks in a general way, i.e. we discuss remarkable results and
try to discover trends as to which variants appear to provide consistently good
results. Furthermore we give an indication of the calculation times that were
necessary, since one of the purposes of this research is to accelerate the search
for the set of Pareto optimal solutions. Again, main goal of these two subsec-
tions (Test Network I and Test Network II) is to provide a global overview of
the results.

Furthermore we briefly investigated the sensitivity of the variants of ap-
proximation methods towards the number of objective functions that is used in
the problem (see: Comparing 2 – 4 Objectives). Again this subsection merely
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gives a general overview of the results and does not attempt to be an in depth
research into the effects.

The subsection Best Performing Variants provides for both of the two
categories of ‘best solutions’ (as defined in sections 4.5 and 4.6) the best scoring
variants of the approximation methods. In order to provide a clear overview of
the ‘best solutions’ the tables do not only include the five best scoring variants
for a specific quality measure, but also include variants that performed best for
other quality measures. Although this subsection does not draw a definitive
conclusion about which approximation method variant should be selected, it
does define a subselection from which the final variant should be picked.

Finally we will discuss the quality of the Kriging/DACE errors in Error
Estimations. Main goal of this subsection is to determine which (if any at all)
of the Kriging/DACE variants is capable of producing reliable error estimates,
in the sense that the true errors and error estimates should be positively
correlated. The conclusions drawn in this subsection are considered when the
definitive conclusion about the approximation methods is drawn in section 4.8.

Test Network I

For RSM we see that the calculation time varies between less than 1 second
for a cubic squared model to nearly 12 minutes for a full cubed model. The
calculation time of this latter approach might become an issue with realistic
networks with many DTM measures. Furthermore we see that a cubic squared
model outperforms all other RSM approximation methods at each quality
measure. This is for instance represented by the correlation coefficient (r)
which is on average 0.66 for RSM cubic squared, whereas the r for RSM full
cubed is on average only 0.06.12

For RBF we see calculation times are consistently less than 1 second, which
makes it a quite fast approach. The first conclusion that can be drawn is
that a Gaussian distance function gives results that are so far off that the
approximation method never rejects a proposal. Only for very small values
of c (either using the method of Tanaka et al. (2007) or a constant value
of 0.01) the approximation method gives valid results (i.e. real numbers),
although they still are not very good (r values around zero and sometimes
even negative).

For an inverse multiquadratic distance function exactly the opposite is
true, since large values of c improve the results. The optimal value of c (from
a RMSE point of view) is somewhere between the value of Büche et al. (2005),
which is about 20, and 100. The constant c-value of 100 does however give
better results on the ϑ quality measure and the correlation coefficient r (which
is on average 0.62).

12For some objective functions the value of r is even negative, indicating that the model
is completely unable to predict the results.
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For a multiquadratic distance function again the best results can be ob-
tained with large c-values although the optimal values vary between 10 and
100. If we therefore consider the ϑ quality measure it seems that the constant
value of 100 does provide the best results.

Something remarkable is that the very simple linear distance function gives
reasonable results, i.e. results that are better than most other RBF approxim-
ation methods. However the best multiquadratic and inverse multiquadratic
distance functions do outperform the linear distance function in respect to
RMSE, ϑ as well as r.

The calculations for the extended RBF (eRBF) take about 75 seconds with
very little variation between the different methods. The most remarkable
conclusion is that there is (nearly) no difference between the results of the
approximation methods that use linear, multiquadratic, Gaussian or inverse
multiquadratic distance functions (the latter only with c-values larger than
0.1) and that this conclusion holds for all studied values of γ.

Looking more closely at the results for the inverse multiquadratic distance
function, we found that smaller values of γ improved the results (something
that holds for all distance functions) and that smaller values of c also gave
much better approximations.

However of all eRBF approximation methods the one based on a cubic
distance function gave the best results when considering RMSE (although
cubic is outperformed by inverse multiquadratic when considering the newly
added c-values) and r (which is on average 0.67). For some reason the cubic
distance function is unable to give a good approximation for the noise objective
when γ = 1, for all other γ-values cubic seems to do perfectly fine.

The calculation times for DACE vary between less than 1 second and 6 minutes,
unfortunately both the very fast as well as the very slow approximation meth-
ods do not provide reliable results; they result in either a constant objective
value or provide a RMSE that is infinity.

The results show clearly that not optimising the value of p gives better or
at least equal results when compared to the same approximation methods that
do optimise p. Furthermore we see that there is very little difference between
using the method of Martin and Simpson (2005) or Mardia and Marshall
(1984) when determining the maximum likelihood, which could be expected,
because the difference exists solely of a constant value.

Unfortunately many of the start values of φ result in invalid approxim-
ated output for one or more objectives. However φ start values of 1E−6 and
1E−7 give (when not optimising p) good approximations (for some object-
ive functions even the best), with r values over 0.60. However the φ start
value of 1E−8 gives the best results for ϑ and is much faster than the other
two start values. This better result however comes at a cost, where a start
value of 1E−6 rejects 57% of the solutions, a start value of 1E−8 only rejects
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48%. This means that the latter would require nearly 21% more exact DTA
evaluations.

Test Network II

The calculation of the approximated output for RSM took less than 1 second
for the cubic squared and nearly 30 minutes for full cubed. The cubic squared
still gives the best approximations based on RMSE and r (r values are on
average 0.85), however a cubic cubed method seems to give slightly better
results for the ϑ with a r value of 0.83.

Calculation of an RBF approximation still takes less than 1 second, which
indicates that the method is not extremely nervous to the number of char-
acteristic distances. The conclusions that were drawn about the Gaussian
distance function still hold. However for the inverse multiquadratic distance
function now a constant c-value of 100 provides consistently the best results,
both for RMSE as well as ϑ with r values that are on average over 0.70. For
the multiquadratic distance function a constant c-value of 100 provides the
best results for both RMSE as well as ϑ except for the RMSE of CO2 were
the c-value provided by Büche et al. (2005) gives a better results. Again a
linear distance function gives reasonable results, although it has on average a
r value of only 0.18 and is being outperformed by the better multiquadratic
and inverse multiquadratic distance functions.

The calculations for an eRBF approximation took about 104 seconds for Test
Network II, with very little variation between the different methods.

Again we see that the linear, multiquadratic, Gaussian and inverse mul-
tiquadratic (for c-values larger than 0.1) give similar results with average r
values of 0.69. Again do the results improve when the value of γ decreases.
For the higher values of γ the cubic distance function outperforms the inverse
multiquadratic distance function with c-values based on Tanaka et al. (2007),
however for γ = 1 the result is exactly the opposite. Again this suggested that
the results might be improved if we use lower c-values.

For Test Network II the calculation times for DACE range from less than a
second to just over 5 minutes. However since these extreme values usually
occur when the approximation method is unable to give valid results, these
calculation times cannot be compared directly to the ones of Test Network I.

Again the approximation methods that do not optimise p outperform the
methods that do optimise p and again there is very little difference between
the likelihood function of Martin and Simpson (2005) or Mardia and Marshall
(1984). However in this case a φ start value of 1E−7 clearly is best, both from
the perspective of RMSE as well as ϑ and has a correlation coefficient r of
0.89.
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Comparing 2 – 4 Objectives

When comparing the results for two to four objectives for both test networks,
we see that more or less the same approximation methods perform best. How-
ever it is quite remarkable to notice that the eRBF approximation methods
perform sometimes quite well (at least some of the eRBF approximation meth-
ods), but that the same methods do sometimes perform worse than average. It
is however reassuring to see that there are a couple of approximation methods
that are always in the top ten in both test networks.

The values of the quality measures sometimes vary strongly when changing
the number of objective functions. There is however not a clear trend (either
increasing or decreasing), which indicates that the quality is not so much
dependent on the number of objective functions, but more on the difficulty of
the individual objective functions.

Best Performing Variants

If we focus on those approximation methods that are good at approximating
the objective values, we see that especially Kriging/DACE methods are cap-
able of good results. Whether it is on Test Network I or II, Kriging/DACE
methods with φ start values of 1E−7 or 1E−8 perform very good, independ-
ent of the likelihood function (Mardia and Marshall (1984) or Martin and
Simpson (2005)) that is being used. Table 4.7 gives the RMSE and MAE for
each objective for each test network.13 Also the RMSEΣ (over the situations
2 – 4 objective functions) is given.

When looking at the approximation methods that score best on the cor-
relation coefficient (r) we see that not only Kriging/DACE (and a rare RBF
function) are capable of approximating the behaviour, also the simple RSM
approach (cubic squared) as well as two (relatively simple) eRBF functions
appear to be amongst the best. Table 4.8 gives the r values per objective and
the average r̂ over all the objectives.

When looking at the approximation methods that are good at predicting the
final decision, we see that not only Kriging/DACE performs very well but
also RSM is able to produce good (and in some occasions the best) results.
This is especially interesting, because RSM is the approximation method that
is easiest to understand and very fast. It is quite remarkable that there is
not a single RBF approach that is able to provide consistently good results.
Table 4.9 gives the value of ϑ for 2 – 4 objective functions.

Furthermore we provide an overview of the calculation times of each of the
nine approximation method variants that are considered to be the ‘best’ based

13The approximation variants above the middle line are the best performing variants for
this quality measure, the variants under the middle line are approximation variants that
perform best on other quality measures and are added for completeness.
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TTT CO2 Noise RMSEΣ

RMSE MAE RMSE MAE RMSE MAE

DACE, Mardia, no, φ = 1E−7 188.17 145.10 1401665 1092351 0.08 0.06 3.04

DACE, Martin, no, φ = 1E−7 197.79 152.94 1386682 1085045 0.08 0.06 3.05
RBF, inverse multiquadratic, c = 100 228.39 178.68 1634048 1290823 0.09 0.07 3.51

DACE, Mardia, no, φ = 1E−8 227.72 176.08 1865659 1489833 0.09 0.07 3.75

DACE, Martin, no, φ = 1E−8 227.60 176.84 1865659 1489833 0.09 0.08 3.75

eRBF, γ = 5, cubic 239.66 187.06 1728236 1379024 0.19 0.14 4.92
RSM, cubic, squared 234.10 174.72 1819115 1073642 0.23 0.09 5.44
eRBF, γ = 1, cubic 206.32 160.13 1780328 1405631 0.24 0.18 5.47
RSM, cubic, cubed 410.04 224.68 3155573 1340989 0.71 0.17 13.39

(a) Test Network I

TTT CO2 Noise RMSEΣ

RMSE MAE RMSE MAE RMSE MAE

DACE, Mardia, no, φ = 1E−7 2452840 1949302 2105537 1623153 0.10 0.08 3.13

DACE, Martin, no, φ = 1E−7 2455398 1952094 2125148 1635014 0.10 0.08 3.13

DACE, Mardia, no, φ = 1E−8 2694163 2127465 2274658 1761309 0.11 0.09 3.41

DACE, Martin, no, φ = 1E−8 2682653 2122464 2293354 1779051 0.12 0.09 3.51
RBF, inverse multiquadratic, c = 100 2811575 2249812 3839874 3039226 0.19 0.15 4.91

RSM, cubic, squared 2182751 1711620 2745277 2160307 0.13 0.10 3.51
RSM, cubic, cubed 2428597 1920298 2975960 2381833 0.14 0.11 3.83
eRBF, γ = 5, cubic 2695499 2153628 3745959 2993796 0.17 0.14 4.70
eRBF, γ = 1, cubic 2980571 2375309 3621462 2870824 0.19 0.15 4.87

(b) Test Network II

Table 4.7: Best Methods for Approximating Objective Values (RMSEΣ)

TTT CO2 Noise r̂

eRBF, γ = 1, cubic 0.74 0.82 0.44 0.67
RSM, cubic, squared 0.68 0.84 0.47 0.66

DACE, Mardia, no, φ = 1E−7 0.75 0.81 0.43 0.66

DACE, Martin, no, φ = 1E−7 0.72 0.81 0.43 0.65
eRBF, γ = 5, cubic 0.69 0.83 0.37 0.63

RBF, inverse multiquadratic, c = 100 0.66 0.81 0.39 0.62

DACE, Martin, no, φ = 1E−8 0.69 0.77 0.38 0.62

DACE, Mardia, no, φ = 1E−8 0.69 0.77 0.36 0.61
RSM, cubic, cubed 0.55 0.76 0.31 0.54

(a) Test Network I

TTT CO2 Noise r̂

DACE, Mardia, no, φ = 1E−7 0.90 0.82 0.94 0.89

DACE, Martin, no, φ = 1E−7 0.90 0.81 0.94 0.89
RSM, cubic, squared 0.92 0.71 0.92 0.85
eRBF, γ = 5, cubic 0.89 0.58 0.86 0.77
eRBF, γ = 1, cubic 0.86 0.58 0.84 0.76

DACE, Martin, no, φ = 1E−8 0.89 0.80 0.93 0.87

DACE, Mardia, no, φ = 1E−8 0.88 0.80 0.94 0.87
RSM, cubic, cubed 0.90 0.68 0.91 0.83
RBF, inverse multiquadratic, c = 100 0.87 0.53 0.83 0.74

(b) Test Network II

Table 4.8: Best Methods for Approximating Objective Values (r̂).
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ϑ ∑
ϑ

2 Obj. Fun. 3 Obj. Fun. 4 Obj. Fun.

RSM, cubic, squared 200 648 841 1690

DACE, Martin, no, φ = 1E−7 216 769 813 1798

DACE, Mardia, no, φ = 1E−7 214 803 823 1840

DACE, Martin, no, φ = 1E−8 276 719 853 1848
RSM, cubic, cubed 206 681 963 1851

DACE, Mardia, no, φ = 1E−8 279 724 929 1932

RBF, inverse multiquadratic, c = 100 319 874 1046 2239
eRBF, γ = 1, cubic 203 1019 1063 2285
eRBF, γ = 5, cubic 247 925 1139 2311

(a) Test Network I

ϑ ∑
ϑ

2 Obj. Fun. 3 Obj. Fun. 4 Obj. Fun.

DACE, Martin, no, φ = 1E−7 504 281 615 1400

DACE, Mardia, no, φ = 1E−8 415 335 659 1409

DACE, Mardia, no, φ = 1E−7 524 287 638 1449

DACE, Martin, no, φ = 1E−8 454 346 650 1450
RSM, cubic, squared 552 450 623 1625
RSM, cubic, cubed 644 408 741 1794

eRBF, γ = 1, cubic 637 463 668 1768
RBF, inverse multiquadratic, c = 100 606 510 683 1799
eRBF, γ = 5, cubic 634 484 805 1923

(b) Test Network II

Table 4.9: Best Methods for Prediction Decisions (ϑ)

Test Network I Test Network II
calculation time (s) calculation time (s)

< 1 RSM, cubic, squared < 1
< 1 RSM, cubic, cubed < 1
< 1 RBF, inverse multiquadratic, c = 100 < 1
121 eRBF, γ = 1, cubic 104
124 eRBF, γ = 5, cubic 104

512 DACE, Martin, no, φ = 1E−7 169

541 DACE, Mardia, no, φ = 1E−7 173

169 DACE, Martin, no, φ = 1E−8 133

170 DACE, Mardia, no, φ = 1E−8 137

Table 4.10: Calculation times for Approximation Method Variants

on the previous analysis. Although it is not one of the stringent criteria, it
gives an indication of the computational effort of each of the variants. The
computations for Test Network I and Test Network II were not performed on
the same hardware and can therefore not be compared. It is however possible
to compare the results within a test network.

For convenience Figure 4.4 provides an overview of all nine methods that are
amongst the ‘best’ for one or more criteria. To ensure a clear overview, we
gave the best performing approach (of the nine approaches) score 1, the worst
performing approach score 0 and scaled all the other approximation variants
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(a) RMSE for Test Network I
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(b) RMSE for Test Network II
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(c) r for Test Network I
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(d) r for Test Network II
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(e) RMSEΣ, r̂ and
∑

ϑ for Test Network I
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Figure 4.4: Overview of Best Scoring Approximation Variants
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Figure 4.5: True vs Kriging/DACE Errors

linearly in the range (0,1).

It is interesting to find that both Kriging/DACE approaches with φ start
value 1E−7 seem to provide results that score consistently over 0.5, whereas
many of the other approaches score far below this value. Furthermore we
find that the most simple approach (RSM with cubic squared terms) performs
quite well, in fact it only scores below the 0.5 in one occasion (for the

∑
ϑ

criterion on Test Network II). What is also interesting to see is that solutions
that perform very poorly on RMSE and r (e.g. RSM cubic cubed for Test
Network I) can score very good on

∑
ϑ (see Figures 4.4a, 4.4c and 4.4e).

Error Estimations

The Kriging/DACE approximation methods that should be investigated are
the methods that use the likelihood function of either Mardia and Marshall
(1984) or Martin and Simpson (2005), with a start value of φ of 1E−7 or 1E−8

which do not optimise the values of p (i.e. the approximation methods that
showed to have consistently the lowest RMSE). The graphical result of the
analysis that is described in section 4.6 can be found in Figure 4.5.
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TTT CO2 Noise
a R2 a R2 a R2

Mardia, no, φ = 1E−7 1.36 0.19 1.55 0.00 0.76 0.00

Mardia, no, φ = 1E−8 2.79 0.57 2.12 0.00 2.50 0.26

Martin, no, φ = 1E−7 1.36 0.18 1.55 0.00 0.76 0.00

Martin, no, φ = 1E−8 2.81 0.51 2.25 0.00 2.45 0.11

Table 4.11: Values of a and R2 for Kriging/DACE methods

TTT CO2 Noise

b
(
×1012

)
a R2 b

(
×1012

)
a R2 b

(
×10−3

)
a R2

Mardia, no, φ = 1E−7 3.19 0.80 0.75 3.82 0.27 0.06 8.59 0.24 0.34

Mardia, no, φ = 1E−8 2.69 1.91 0.78 4.26 0.48 0.21 5.94 1.50 0.57

Martin, no, φ = 1E−7 3.21 0.80 0.74 3.96 0.24 0.04 8.50 0.25 0.34

Martin, no, φ = 1E−8 2.75 1.88 0.74 3.78 0.74 0.36 6.67 1.35 0.55

Table 4.12: Values of a, b and R2 for Kriging/DACE methods

From Figure 4.5 it seems that Kriging/DACE is able to produce quite reliable
errors, in fact for some objectives (TTT, noise) it seems that Kriging/DACE
produces follow more a less a straight line through the origin. Note that the
angle of the ‘straight line’ is different for the different approximation methods.
In fact, it seems that the angle (and as such the results of the approximation
methods) is strongly dependent on the value of φ, since the results for both
the method using the likelihood function of Mardia and Marshall (1984) and
the method using the likelihood function of Martin and Simpson (2005) is
more or less equal.

If we investigate these results more closely, by trying to find a straight line
through the points (a function of the form y = ax) we find the values for a
as shown in Table 4.11. This table also gives the coefficient of determination,
R2, which is a common statistical test that gives the fraction of the value
of y that can be explained by x. Note that the values of R2 are sometimes
zero, which is an indication that the model used (y = ax) is unsuitable for
this problem. Furthermore it is interesting to see that the predicted error is
generally speaking smaller than the true error (a > 1).

Because the y = ax model is unable to give good estimates for CO2 and
noise, we decided to also check another model (y = ax + b) which would
probably suite the results better. The results of fitting this model can be
found in Table 4.12. Although now all of the values of R2 are valid, some of
them still are not quite good. Generally speaking it appears that start values
of φ = 1E−8 are better able to approximate the errors than start values of
1E−7. That being said, it appears that φ = 1E−8 consistently underestimates
the errors for TTT and noise (a > 1) whereas all other errors are overestimated
(a < 1). At the same time the likelihood function by Mardia and Marshall
(1984) seems to outperform the one by Martin and Simpson (2005) although
the differences are quite small and for CO2 the results are exactly the opposite.
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4.8 Conclusions

This chapter started by investigating three different approximation techniques,
RSM, RBF and Kriging/DACE. At the end of this chapter we can conclude,
based on the selected quality measures and the results from the two test net-
works that there are few approximation techniques that truly look promising.

It is difficult to state that one approximation variant is ‘better’ than another
variant, simply because the research we did is too limited for such a firm
verdict. In the introduction of this chapter we stated that we would select
two approximation variants to be used in the remainder of this research. A
clear candidate would be the Kriging/DACE approximation method with the
objective function of Mardia and Marshall (1984) and φ = 1E−7. It has
provided the best results for RMSE (see Figures 4.4a and 4.4b) and proved
to score above average on r (see Figures 4.4c and 4.4d). Unfortunately the
results for the other criterion (making the right decision) were less convincing
since it scored amongst the best for Test Network I, but more or less failed
for Test Network II (see Figures 4.4e and 4.4f). One of the major benefits of
selecting this approximation variant (or any Kriging/DACE method for that
matter) is that it allows us to use in the remainder of this thesis techniques
that require error estimates.

Another very interesting (and promising) approximation variant is the
RSM approach which uses squared cubic terms. It proved to be consistently
good (although not the best) technique for RMSE and r (see Figure 4.4).
Unfortunately the results for making the right decisions are (as with the Kri-
ging/DACE approach) inconsistent. It proved to be the best for Test Network
I but performed quite poorly on Test Network II (see Figures 4.4e and 4.4f).
Another benefit of this approach is that it is really fast and easy to under-
stand, something that is highly appreciated when the approximation method
has to be explained to principals.

It is therefore that we decide to continue with the Kriging/DACE approxim-
ation technique with the objective function of Mardia and Marshall (1984),
and φ = 1E−7 and the RSM approach with squared cubic terms. In the next
chapter we will discuss and select different ways in which these approxima-
tion methods can be integrated with Genetic Algorithms. In chapter 6 we
will then integrate the results of this and the next chapter into two different
Approximation Method Assisted NSGA-II algorithms.



Chapter 5

Metamodel Assisted

Evolutionary Algorithms

The world the algorithm makes possible is retrograde in
its nature to the world of mathematical physics.
Its fundamental theoretical objects are symbols, and
not muons, gluons, quarks, or space and time fused
into a pilot knot.
Algorithms are human artifacts. They belong to the
world of memory and meaning, desire and design.

David Berlinski (1942 – )

In this chapter we will perform a literature search (section 5.1) into how
metamodels have been incorporated in EAs in order to accelerate the al-
gorithm or improve the results (these new algorithms are called Metamodel
Assisted Evolutionary Algorithms; MAEAs). The results of this literature
search can be used as a guideline when we have to decide how and where we
would like to use metamodels in our GA.

5.1 Literature Overview

Although literature about combining metamodels and GAs is readily on hand,
integrating metamodels and MOGAs is a much less explored area. Further-
more, most authors refrain from explaining how they integrated the two al-
gorithms. In fact, although literature provides a broad range of possibilities
that could be applied, literature that clearly explains how metamodels are
incorporated in MOGAs (or MOEAs) is quite rare.

Karakasis and Giannakoglou (2006) describe probably the most familiar and
intuitive approach, where a metamodel is used as an Inexact Pre Evaluation
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(IPE). This means that each generation of N new solutions (provided by the
GA) is first evaluated using this metamodel and only the best x% will be evalu-
ated with the expensive model. In their situation they define best by applying
the fitness evaluation of the GA on the estimated values for each solution,
although it is also possible to find other definitions of best (e.g. selecting only
those population members that are expected to be non-dominating). Because
of the intuitivity and simplicity of the approach it has been quite commonly
used in the past decades (see e.g. El-Beltagy et al., 1999; Karakasis et al.,
2007; Praveen & Duvigneau, 2009).

Emmerich et al. (2006) use a similar approach, although they define ‘best’
in a different way. In their opinion it is not so much the quality of the solution
with respect to reproduction, but the improvement a solution could make to
the metamodel that is relevant. They therefore make use of the Probability
of Improvement (PoI), that has been mentioned before (see section 4.4), to
determine which solutions should be evaluated with the exact model. The
work by Keane (2006) provides a very good description of how this approach
could be used in a multiobjective environment. D. R. Jones et al. (1998) as
well as Sasena et al. (2002) describe the PoI too, but in their opinion it is not so
much the probability of improving a solution but the Expected Improvement
(EI, mentioned earlier in section 4.4) that is of interest when deciding which
solutions should be evaluated, thereby incorporating also the magnitude of
the improvement

A different approach is followed by Yang, Yeun and Ruy (2002) who make
maximum use of the speed of the metamodel. They initialise the metamodel
using a set of exactly evaluated sampling points and use a MOGA and the
metamodel to determine an expected Pareto optimal set. From this set they
select solutions that should be evaluated exactly based on the maximin dis-
tance design criteria, i.e. they select those solutions which are farthermost
from all other solutions. After exactly evaluating those solutions, they update
the metamodel and estimate a new expected Pareto optimal set. If there is
very little difference between the two predicted Pareto optimal sets (with or
without the selected points) the algorithm ends, otherwise a new MOGA is
started to predict a new Pareto optimal set. The main difference with the ap-
proach of Karakasis and Giannakoglou (2006) and Emmerich et al. (2006) is
that they decide each iteration of MOGA which solutions should be evaluated
with the exact model, whereas Yang et al. wait until the entire MOGA, based
on the metamodel, has finished. There is something to say for letting MOGA
run a few generations before selecting the solutions one would like to evalu-
ate, since the solutions can improve significantly after a few runs. However
it requires a metamodel that is without major flaws, otherwise MOGA will
search in the wrong direction, whereas these flaws might have been corrected
already when the metamodel was updated with each new generation.

Li et al. (2009) combine metamodel assisted fitness evaluations and the
Design of Experiments (DoE) approach. This DoE approach selects new solu-
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tions that should be evaluated exactly, based on the knowledge they would
add to the understanding of the problem. By using the Kriging metamodel
they are able to predict the error for each solution that is suggested by the
MOGA, and they only perform an exact evaluation if the error at that specific
point is large. For all other solutions they accept the estimated values of the
metamodel. In comparison to Emmerich et al. (2006) and Karakasis and Gian-
nakoglou (2006) they rely heavier on the metamodel, since they do accept the
objective values that have been found by the metamodel in their Pareto op-
timal set. Besides evaluating all solutions with the exact model, Li et al. also
identify a number of solutions that could be considered interesting. Therefore
they perform a MOGA search on the metamodel, in order to identify those
points that maximise entropy of the solution. They show that the additional
point that maximises entropy can be found by maximising |R| under some
constraints that ensure that the new solution does indeed dominate existing
solutions. Although the approach seems to make sense, it does create a new
complex problem that has to be solved each iteration using another MOGA.
The question is whether this increase in complexity does pay off, or whether
simpler approaches are also able to improve the results of the algorithm.

Finally Georgopoulou and Giannakoglou (2009) create an even more com-
plex model, by combining the selection of specific approximation models, IPE
and local search into one algorithm. For each new solution that is provided
by MOGA they determine the closest known points and build an RBF model
based on these points in order to estimate the objective values for each solu-
tion. They separate the outliers and select, from the remaining solutions, a
couple of solutions worth an extra local search. Finally a number of solutions
from each of the sets (outliers, ‘ordinary solutions’ and solutions derived from
local search) is evaluated using the exact model. Although Georgopoulou and
Giannakoglou conclude that their algorithm outperforms others, the approach
seems to be very complex and requires quite a lot of computational effort. The
use of local search is also suggested by Khoo and Chen (2001) and Noman and
Iba (2008), unfortunately local search is of limited use when trying to find a
Pareto front, because there is not a single ‘best’ solution that can be found
by local search.

In conclusion we can say that literature provides a couple (although not too
many) possibilities to accelerate MOGAs with metamodels. The algorithms
range from quite straightforward to very complex, and whereas the former can
be applied in virtually every situation, the latter requires problems where it is
possible to apply other search algorithms to improve intermediate results. It
seems however that this list is not exhaustive and that alternative approaches
can be developed when considering the current NSGA-II algorithm.
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5.2 Assisting NSGA-II

In this section we will investigate how and where we can accelerate NSGA-II,
based on the literature review in the previous section. In NSGA-II there is in
fact only one location where it makes sense to incorporate ‘intelligence’ and
that is just before exactly evaluating the ‘children’ (solutions). If one would
incorporate intelligence before this point (i.e. when generating new solutions)
one would ‘destroy’ the ‘heart’ of the GA (which is finding new solutions
based on genetic mutation of two ‘parents’). Incorporating intelligence after
this point seems useless because then the time consuming exact evaluations
have already been performed.

If we only consider the approaches (or closely related variants) from section 5.1
we can categorise the ways in which we can incorporate intelligence using two
criteria. In order to do so, we left out the approach by Yang et al. (2002),
which uses only approximated objective values in the GA. The main reason
for leaving this approach out is that the problems that are under consideration
are very complex and we do require a regular update using exact evaluations.
Similarly the approach by Georgopoulou and Giannakoglou (2009) is left out,
because their approach is too complex. Especially the part in which a local
search is performed is not feasible with our problems, since this local search
approach is only applicable to single objective problems.

The first criterion then focusses on whether or not the approximated ob-
jective values are used in the GA. In some cases the GA continues assuming
that the approximated objective values are indeed the true objective values.
In that case solutions that have not been evaluated exactly can be used as
parents in a future iteration. The other possibility is to only continue using
exactly evaluated solutions, thus ensuring that the solutions that are used in
generating new offspring are ‘true’.

The second criterion is based on the data that is needed to obtain the
intelligence. Some approaches only require the use of the expected value of
the objective values others also require an estimate of the error. Clearly
approaches that require estimates of the error severely limit the approximation
methods that can be used, only Kriging/DACE is able to provide estimates
of the error.

Table 5.1 shows how the approaches from section 5.1 would be categorised.
It is interesting to see that most approaches require estimates of the error,
whilst in chapter 4 we showed that there is only one approximation technique
(Kriging/DACE) that is able to provide these estimates. Furthermore it is
interesting that there is only one approach that has that much confidence in
the approximation methods that it uses the values provided by these approx-
imations in future iterations in the GA. In the next paragraphs we will discuss
what the benefits and drawbacks of each of these approaches are.
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Required Estimates

both objective value and error objective value only

Use approximations

yes Design of Experiments (DoE)

no
Probability of Improvement (PoI)

Inexact Pre Evalution (IPE)
Expected Improvement (EI)

Table 5.1: Categorisation of MAEA approaches

The Design of Experiments (DoE) approach can be considered a useful one,
since it adds information to parts of the solution space where little is known
about the objective value, i.e. the predicted error is quite large. DoE thereby
tries to get a set of solutions that evenly spreads the knowledge over the solu-
tion space. However NSGA-II will immediately remove all knowledge that
is not on the Pareto front, thereby also removing solutions that did provide
additional knowledge to the ‘problem’. This could be prevented when using
two different sets of solutions, one to generate new children similar to the
one used now (named ‘parents’) and one that is used to generate the approx-
imation model (named ‘fitdata’). The main difficulty with this approach is
how to update the fitdata in such a way that the spread of solutions is max-
imised, whilst focussing on data that is around the Pareto front (parents).
During a brief brainstorm two possible solutions for this problem have been
found, the first is to change NSGA-II by adapting the approach of SPEA2+
(Zitzler, 2001; M. Kim et al., 2004) which does indeed contain two ‘archives’
and selects a specific archive as parentset based on the size of the Pareto
front.1 The second solution is by expanding the existing set of ‘parents’ by
including for each child that is evaluated the solution from the database of
previously evaluated solutions that is closest in solution space. In that way
we increase the knowledge in areas around solutions that have to be evaluated
(children). This however affects the time that is needed to create an approx-
imation model, because the calculation times of all approximation methods
discussed in chapter 4 are (more or less) squared proportional to the size of
the fitdata.

The main benefit of the Inexact Pre Evaluation (IPE) approach is that it
is intuitive, the idea of only evaluating solutions that one expects to be on the
Pareto front is clear and intelligible. The main drawback however, is that if
a solution is only just behind the Pareto front it is discarded, even if there is
a lot of uncertainty about the exact objective values of this solution. In that
sense it is a very rough and simplistic approach. This however also means

1One archive holds the best solutions sorted first on dominance and second on fitness
sharing in the objective space, whereas the other archive uses dominance as primary and
fitness sharing in the solution space as secondary sorting criterion.
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Algorithm 5.1 Inexact Pre Evaluation (IPE)

1. Initialisation – 6. Variation

see the generic NSGA-II algorithm on page 13

7. IPE - Function Approximation

Fit approximation model to Pg+1

Estimate objective values for Qg+1 and store as Q̂g+1

8. IPE - Fitness Assignment

Combine R̂g+1 = Pg+1 ∪ Q̂g+1

Determine fitness value by dominance and crowding distance

9. IPE - Selection

Select N best solutions (based on fitness) from R̂g+1 and store as Ag+1

Set Qg+1 = Ag+1 ∩ Q̂g+1

10. Function Evaluation
Determine objective values for all solutions in Qg+1

Set g = g + 1 and continue with step 2

that a lot of solutions will not be evaluated, which reduces calculation times
significantly. Furthermore the fact that only approximate objective values
are necessary makes it possible to combine this approach with any of the
approximation methods from chapter 4. Algorithm 5.1 shows how the IPE
approach can easily be incorporated into the original NSGA-II algorithm.

The Probability of Improvement (PoI) approach, more or less covers the
drawbacks of the IPE approach by taking into account the uncertainty around
the approximated values. It therefore allows solutions that are just behind
the Pareto front to be evaluated exactly, if the uncertainty of the objective
values in this point is large enough. This however requires this approach
to have estimates of the errors in objective values for each of the solutions,
something that can only be provided by the Kriging/DACE approximation
method.2 Roughly speaking there are three possible approaches to select the
‘best’ solutions for exact evaluation. The first is by allowing only the best n
solutions to be evaluated exactly, main benefit of this approach is that one
can determine the saving in calculation times up front. Drawback of this
approach is that it is possible that good solutions are discarded because they
are not amongst the best n solutions. The second approach is selecting only
solutions that have a PoI higher than x%, thus only allowing solutions that

2It is however not quite straightforward to calculate the PoI for problems with three
objective functions or more, Appendix C describes how this can be done.
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Algorithm 5.2 Probability of Improvement (PoI)

1. Initialisation – 6. Variation

see the generic NSGA-II algorithm on page 13

7. PoI - Function Approximation

Fit approximation model to Pg+1

Estimate objective values and errors for Qg+1 and store as Q̂g+1

8. PoI - Probability Calculation

Determine for each solution in Q̂g+1 the probability of improving the
Pareto front formed by Pg+1.

9. PoI - Selection

Sort the solutions in Q̂g+1 based on Probability of Improvement and
select the n best solutions and/or solutions with a PoI higher than x%
and store those in Qg+1

10. Function Evaluation
Determine objective values for all solutions in Qg+1

Set g = g + 1 and continue with step 2

are very likely to improve the Pareto front to be evaluated exactly. Main
drawback of this approach is that is is possible that the algorithm decides to
evaluate all solutions, thereby providing no computational benefits. The third
approach combines the previous two and selects only the solutions with a PoI
higher than x% with a maximum of n solutions. This approach ensures that
only solutions that are likely to improve the Pareto front are evaluated, whilst
also providing a fixed minimum reduction in computational effort. Drawback
of this latter approach is that it is possible that good solutions are removed
(based on the fixed number n) in one iteration, where in another iteration
no solution is evaluated (based on the percentage x). Concluding we state
that PoI allows us to use knowledge about the uncertainty, whilst providing
a guaranteed computational effort reduction. The combination of these two
aspects makes this a very interesting approach. Algorithm 5.2 shows that also
this approach con conveniently be incorporated into the NSGA-II algorithm.

Finally Expected Improvement (EI) is (as mentioned earlier) an enhance-
ment of PoI. The main advantage of EI over PoI is that it does not only
consider the probability of improving the Pareto front, but also the extend to
which the objective values are reduced. This means that a solution which has
a low probability of improving the Pareto front significantly might be preferred
over a solution that has a high probability of improving the Pareto front only
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marginally. However computing the true EI for multiobjective problems is,
although similar to the approach used to determine the PoI, somewhat diffi-
cult. The work by Keane (2006) provides quite convenient equations for both
PoI and EI for a biobjective case, but the more general approach described
in appendix C for determining the PoI for multiobjective problems cannot be
applied when determining EI. This makes this approach less suitable for most
realistic cases (i.e. cases with more than two objective functions).

5.3 Conclusions

Based on the discussion above, it seems that the DoE approach is less suitable
for this specific application. This is mainly because NSGA-II aims at selecting
those solutions that form the Pareto front in objective space, whereas a good
model for applying DoE requires a good spread in solution space. In section 5.2
we briefly mentioned some possible solutions to this problem, however given
the limited time available we decided not to develop these approaches and
thereby decided not to select Design of Experiments as one of the metamodels.

The second approach that is rejected as metamodel, is Expected Improve-
ment. The main reason is that it seems that, in order to be able to use the
EI approach, we require an algorithm that is able to compute this value for
multiobjective problems in an efficient way. Until such an algorithm has been
found EI requires a custom made algorithm (custom made for a specific num-
ber of objective functions), which makes this approach unattractive. Another
issue that should be taken care of before applying this approach is normalisa-
tion, otherwise it would be impossible to combine the expected improvements
for individual objectives.

However IPE, as a very intuitive approach, seems able to reduce calculation
times significantly. This reduction is achieved because only solutions that are
considered to be part of the Pareto front (by the approximation method) are
evaluated using the exact model. Another benefit is that it requires almost no
additional computations, again something that is beneficiary from a computa-
tional effort point of view. This is why the Inexact Pre Evaluation is selected
as one of the metamodels.

The second approach that is selected is the Probability of Improvement
approach. The main reason why this approach is selected is that it extends the
options of IPE, by incorporating uncertainty around the expected objective
values. This enables the algorithm to evaluate solutions that are close to the
Pareto front (but not part of the Pareto front) if we are uncertain of the
objective value. This does however come at a cost, because the number of
solutions that is exactly evaluated is likely to increase significantly.

In the next chapter we will combine the two metamodels that were selected
in this chapter and the two approximation techniques that were selected in
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chapter 4. A combinations of metamodels and approximation techniques will
be applied to our test networks and their performance will be measured.





Chapter 6

Accelerating NSGA-II

An algorithm must be seen to be believed.

Donald E. Knuth (1938 – )

This chapter starts where chapters 4 and 5 (Approximation Techniques and
Metamodel Assisted Evolutionary Algorithms) ended. In section 6.1 we com-
bine the results from these two chapters into three Approximation Method
Assisted NSGA-II algorithms (AMANs) which will be applied to the test net-
works from sections 3.1 and 3.2. The performance of each of these AMANs
will be measured using criteria which are developed in section 6.2 and we will
discuss the performance in section 6.3. Finally in section 6.4 we will select
one single approach that will be applied to the more realistic case of Almelo,
which is discussed in chapter 7.

6.1 Approximation Method Assisted NSGA-II

As mentioned above AMANs are a combination of an approximation method
and NSGA-II. In chapter 4 we found that a Response Surface Method (RSM)
with squared cubic interaction terms and Kriging/DACE with the object-
ive function of Mardia and Marshall (1984) and a φ start value of 1E−7 are
amongst the best approximation methods, when ‘making the right decision’
is the main objective (see section 4.8). Furthermore the Kriging/DACE ap-
proach also performs very good when the main objective is ‘approximating
objective values’.

We can now combine the two approximation methods with Inexact Pre
Evaluation (IPE) and Probability of Improvement (PoI), the approaches we
found to be promising in chapter 5. This results in three different AMANs,1

of which an overview can be found in Table 6.1.
1In theory we could have constructed a fourth AMAN. This fourth AMAN, however,

proved to be unfeasible, as we will explain later on.
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Approximation Techniques

Response Surface Method Kriging/DACE

MAEA approach
Inexact Pre Evalution IPE-RSM IPE-DACE

Probability of Improvement - PoI-DACE

Table 6.1: Overview of AMAN approaches

IPE-RSM, the AMAN from the top left corner of Table 6.1, is the combination
of the most simple approaches. One approximates the objective values using
cubic squared RSM and evaluates only those solutions that appear to be on
the Pareto front. In this case we will use only the solutions that are part of
the parent set as learning data.

IPE-DACE combines an intuitive approach in the usage of the data, with
a complex approximation model. We have shown that Kriging/DACE is cap-
able of predicting the objective values extremely well (section 4.7), note that
Kriging/DACE was also successful in predicting whether the solutions were on
the Pareto front. Because of the complexity of the approximation model, we
will only use parent solutions as learning data. Unfortunately this approach
does not make use of all the information that is generated by Kriging/DACE.

PoI-DACE does make use of the additional data, kriging errors, that are
generated by the Kriging/DACE approach. In this case the probability that
the solution will improve the Pareto front is determined for each of the solu-
tions. Now we have three possible ways of selecting solutions for exact evalu-
ation: a) one could select the best n solutions to be exactly evaluated, which
ensures that the computational effort can be predicted up front; b) one could
use only the solutions which have a predicted improvement of at least x%; or
c) one combines these two approaches. We decided to use option c for two
reasons. First because we only wanted to evaluate solutions that were likely
to improve the Pareto front (defined as solutions with a PoI larger or equal
to 50%). Second because we assume that over time more and more solutions
will meet the x% criterion,2 we like to restrict ourselves to using only the n
best solutions where n decreases over time (defined as 75 in the first itera-
tion and linearly decreasing to 25 in the last iteration, assuming an offspring
size of 100). An additional benefit is that we are sure that we will decrease
computational effort (actually the number of exactly evaluated solutions) by
50%.

PoI-RSM, the approach that should be found at the bottom left corner of
Table 6.1, cannot be considered a realistic AMAN. This because PoI requires
the knowledge about the error in objective values for a specific point and RSM

2Since we start with a completely random set of solutions, it is likely that the solutions
that are generated by the Genetic Algorithm move slowly towards the true Pareto front.
Afterall that is the concept on which Genetic Algorithms are based.
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is unable to deliver this information. Although we could device solutions
to this problem, e.g. using the average realised Root Mean Squared Error
(RMSE) from the previous iteration, we decided not to use this combination.

We will first apply the ‘ordinary’ NSGA-II to the two test networks (described
in sections 3.1 and 3.2), using 100 iterations. In each iteration we will generate
100 children from 100 parents. Using the same set of start parents as the
‘ordinary’ NSGA-II, we will apply the three AMANs that were described above
(IPE-RSM, IPE-DACE and PoI-DACE) to the same Test Networks, again 100
iterations in which 100 children are generated from 100 parents.

It is important to note that, due to the stochastic behaviour of Genetic
Algorithms, we cannot compare the results with absolute certainty. In order
to be truly able to compare the different AMANs we would need to perform
dozens (if not hundreds) of runs, before the we can conclude (with 95% cer-
tainty) that one approach is better than another. Due to time limitations
we are unable to peform such an extensive analysis, and we should therefore
discuss the results with care. Furthermore it is important to note that if we
would remove all stochasticity from the equation, e.g. by using only a single
iteration (which can then be the same for all approaches), the Pareto front
found by an AMAN (FAMAN ) can never outperform the Pareto front by the
Genetic Algorithm (FGA). This is because the set of solutions that form the
Pareto front of the AMAN is a subset of the set of solutions that form the
Pareto front of the Genetic Algorithm FAMAN ⊆ FGA, and thus it holds that
FAMAN � FGA.

After applying the different AMANs (and the ‘ordinary’ GA) to the two test
networks, we can compare the results using the criteria described in the fol-
lowing section.

6.2 Performance Measures

Before we can determine which performance measures are suitable, we have
to determine when we consider an AMAN to be better than another. One
of the ideas of the Genetic Algorithm approach is that we try to come as
close as possible to the true Pareto front. Since the location of this front is
unknown we cannot measure this ‘fitness’ directly. We can however determine
to what extend solutions are dominated by a Pareto front. We can therefore
state that a Pareto front that dominates a larger part of the objective space is
considered to be a better solution. Furthermore we would like the solutions to
be evenly spread in the objective space, since this increases the possibilities for
researchers and principals to choose a solution that they think is best for the
current situation. If all solutions (except one) are very close together, we still
know very little about the problem. We therefore can say that a Pareto front
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in which the solutions are more evenly spread in objective space is considered
to be a better solution.

Summarised we find that a Pareto front is ‘better’ when:

1. the volume of the objective space that is dominated by the Pareto front
is larger; and

2. the solutions are more evenly spread over the Pareto.

We will refer to performance measures for the first criterion as dominance
metrics or performance measures for dominance, and refer to performance
measures for the second criterion as diversity metrics or performance measures
for diversity.

It is interesting to note that these two criteria are also commonly used in
literature. For instance Deb (2001) identifies two major classes of performance
measures for multiobjective evolutionary algorithms: the first are the metrics
for convergence, the second the metrics for diversity. Deb uses the conver-
gence metrics to check if the new generation of the evolutionary algorithm
has improved enough to continue with the algorithm. The criteria for con-
vergence are however similar to the dominance criterion defined above. This
enables us to use performance measures that are developed for convergence as
performance measures for dominance.

The convergence metrics can be used to determine whether solutions im-
prove over time, and as such are useful to abort a Genetic Algorithm if there
is no improvement for some iterations. However, they can also be used to
compare the results of two different AMAN approaches. One should however
be cautious, if an AMAN approach scores better on a specific convergence
(dominance) metric it is not necessarily a better solution (Okabe, Jin & Send-
hoff, 2003), as we will show later on in this section. It is therefore important
to use a multitude of dominance metrics in order to be able to compare two
AMAN approaches.

The diversity metrics focus on how well the individual solutions are spread
in the Pareto front, and can therefore be used to determine to what extend
a Genetic Algorithm (or AMAN) allows global search. Here, however, one
should be careful, because the dimensions of the different objective functions
are usually different, which makes normalisation necessary. Finally Deb (2001)
also mentions a third class, which contains performance measures that measure
both convergence and diversity, they are however quite rare.

As starting point for the literature search we take the work by Grosan, Oltean
and Dumitrescu (2003) and to a lesser extend the work by Tan, Lee and Khor
(2001), who provide us with a good (and fairly recent) overview of dominance
(convergence) and diversity metrics. For a multitude of performance measures
related to the ones mentioned below we refer the interested reader to the work
by Okabe et al. (2003).
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Dominance Metrics

One of the most intuitive performance measures is the C-Metric (also known
as Coverage of Two Sets; CTS), as discussed in Grosan et al. (2003) and Tan
et al. (2001). The approach was developed by Zitzler and Thiele (1998, 1999)
and improved in the PhD thesis of Zitzler (1999).

The main idea behind the C-Metric is that a Pareto front A is more inter-
esting than Pareto front B if many solutions of B are (weakly) dominated by
A (denoted by A � B). In this case Pareto front A ‘covers’ Pareto front B. In
order to determine to what extend A covers B we therefore count the number
of solutions in B that are dominated by a solution from A and divide this by
the total number of solutions in B. Or in mathematical notation:

C(A,B) =
|b ∈ B/∃ a ∈ A : a � b|

|B| (6.1)

Now C(A,B) is the fraction of solutions in B that are covered by A, i.e. if
C(A,B) = 1 Pareto front B is completely within Pareto front A and thus A
is much better than B. Note that C(A,B) + C(B,A) is not necessarily equal
to one, which has two reasons. Firstly because solutions in which a = b are
included in both and secondly because Pareto fronts do not need to dominate
each other at all.

The S-Metric is also developed by Zitzler and Thiele (1998, 1999) and im-
proved in the PhD thesis of Zitzler (1999). Both Grosan et al. (2003) and
Tan et al. (2001) discuss the approach, although the latter refer to it as ‘Size
of Space Covered’. The definition of Tan et al. gives a good indication of the
concept behind the performance measure.

The S-Metric (also known as Size of Dominated Space, Size of Space
Covered; SSC, Hyperarea or Hypervolume; HV) determines the hypervolume
of the Pareto front, i.e. it determines the size of the area that is dominated by
a solution. This however requires the definition of a utopian point that is the
‘worst’ possible solution in all objectives. For a maximisation problem (with
objective values that are strictly positive) such a point can easily be found,
the origin is a utopian point. Clearly in this case a larger value of S indic-
ates a better solution (the size of the dominated area is larger).3 However
for a minimisation problem one would have to device a point that consists
of the theoretical maximum of each objective function. Unfortunately it is
impossible to find the true maxima for the objective values, which leaves us
with little other solution than selecting the maximum value for each of the
objectives as indicator for the utopian point. Note that (when comparing dif-
ferent AMAN approaches) this means selecting the maximum objective values
over the combined set of AMAN approaches. Furthermore we do not use the

3Note that the origin can be a very unrealistic utopian point when it is (physically)
impossible for the objective values to reach zero.
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Figure 6.1: Example of the S- and D-Metric performance measures

maximum values (fmax
i ) themselves, but 1.1×fmax

i denoted by fmax
i , in order

to ensure that if multiple solutions have the same maximum value in one of
the objectives, the one with the lower objective value scores better on the per-
formance measures. In order to determine the hypervolume for multiobjective
problems we use the Hypervolume by Slicing Objectives (HSO) algorithm of
While, Hingston, Barone and Huband (2006).

Figure 6.1 shows two Pareto fronts, front A is marked by black dots and
front B is marked by grey diamonds. Furthermore it shows the theoretical
maximum point, which is marked by a black star and the point that is used
for calculating the hypervolume marked by a black square. Then the S-Metric
for both Pareto fronts can be determined, S(A) = 22 (solid grey area) and
S(B) = 25 (hatched area). This suggests that Pareto front B is better, because
the size of the dominated area is larger.

The D-Metric (also known as Coverage Difference of Two Sets; CDTS) ap-
proach was designed because there are situations in which C-Metric is unable
to decide when a Pareto front is better than another (Grosan et al., 2003;
Okabe et al., 2003), for example in the case where C(A,B) = C(B,A) (see
Figure 6.1). However in such cases it still is possible to decide which Pareto
front is better, for Zitzler (1999) proposed a method using the S-Metric val-
ues that have already been obtained. The main idea is that the difference
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in S-Metric between the combined Pareto fronts S(A ∪ B) and the individual
S-Metric of the competitor S(B) is the unique contribution of Pareto front
A. We can now define D(A,B) as the unique contribution of A, when being
merged with B.

D(A,B) = S(A ∪ B) − S(B) (6.2)

Clearly the Pareto front which unique contribution D is larger, is a better
Pareto front. If we go back to the example from Figure 6.1 we find that
S(A ∪ B) = 30 (combination of the grey and hatched area) and thus we can
determine that D(A,B) = 5 and D(B,A) = 8. This indicates that the unique
contribution from B is larger and as such B is a better Pareto front. Note
that C(A,B) = 0.50 and C(B,A) = 0.50 which is exactly the reason why we
need the D-Metric in addition to the C-Metric.

Based on Zitzler (1999), Grosan et al. (2003) suggests that instead of the
absolute value of D, it is better to use the relative value of D, denoted by
Drel, which can be calculated using:

Drel(A,B) =
D(A,B)

V

where V =
o∏

i=1

(
fmax
i − fmin

i

) (6.3)

Here o is the number of objective functions and fmax
i and fmin

i represent the
(adapted) maximum and minimum value for objective function i over A ∪ B
respectively. In other words, V is the smallest cube possible that contains
all solutions in both A and B. The reason why the use of Drel might be
preferred over the use of D is that it puts the improvement of one Pareto
front over another into perspective: is a solution that adds less than 1% to
the dominated set really ‘better’ than the other solution? In our problem from
Figure 6.1 we find that V = (9 − 1) (8 − 1) = 56. and thus Drel(A,B) = 0.089
and Drel(B,A) = 0.143, of course this does not change the conclusion drawn
in the paragraph about D-Metric.

It is however necessary to make some comments on the S- and D-Metric per-
formance criteria. This is because both are sensitive to the range of the dif-
ferent objective functions, something that is best explained using an example.
Assume a maximisation problem in which we have a known point (1,1), fur-
thermore we found that the maximum value for objective one is 2 and for
objective two is 4. If we would now find a solution that optimises our problem
in objective one we find point (2,1) with a value for the S-Metric of 2. If we
would optimise the same problem for objective two, we find point (1,4) with a
value for the S-Metric of 4. This seems somewhat strange, because we cannot
state that solution (1,4) is indeed twice better than solution (2,1), in fact it
is more likely that both solutions are equally good since they optimise the
problem for one objective only.
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It is important to note that the order of magnitude of the different objective
functions is not important. If in the previous example the values for objective
one would be 1000 and 2000, we would find S2000,1 = 2000 and S1000,4 = 4000
and the conclusion would still be the same.

A solution to this problem could be found by normalising the objective
values, thus ensuring that all objective values are always on the interval [0, 1],
where the solution with the minimum objective value is normalised to 0 and
the solution with the maximum objective value is normalised to 1. This nor-
malisation will be indicated by the superscript N and could be performed
by:

xNi =
xi − fmin

i

fmax
i − fmin

i

(6.4)

Here xNi is the normalised objective value for objective i for the original
objective value xi. fmax

i and fmin
i are the (adapted) maximum and min-

imum for objective i over all solutions respectively. Going back to the ex-
ample of Figure 6.1, this would result in SN (A) = 0.3929, SN (B) = 0.4464,
SN (A ∪ B) = 0.5357 and thus DN (A,B) = 0.0893 and DN (B,A) = 0.1428.
Note that these figures (for D-Metric) do strongly resemble the results for Drel

when not applying normalisation, this is due to the fact that the range of both
objective functions is similar. When this normalisation is applied, the value
of Drel becomes irrelevant, because V = 1 and thus D = Drel.

Diversity Metrics

The first diversity metric discussed here is the spacing metric ∆ that was
introduced by Deb, Agarwal, Pratap and Meyarivan (2000) and is mentioned
in both Grosan et al. (2003) as well as Okabe et al. (2003). The ∆ measures
the distances between consecutive points on the Pareto front and aims to get
a distribution that is as even as possible. Deb et al. (2000) defines ∆orig

therefore according to:

∆orig =
df + dl +

∑N−1
i=1

∣∣di − d̄
∣∣

df + dl + (N − 1)d̄
(6.5)

Here df and dl represent the distance from the known extreme solutions to the
edges of the Pareto front under consideration. N is the number of solutions
in the Pareto front, di is the distance from solution i to solution i + 1 and d̄
is the average over all di. However in our situation the true extreme solutions
are often unknown, it is therefore that Grosan et al. (2003) decided to leave
out df and dl, thereby reducing the ∆orig to ∆:

∆ =

∑N−1
i=1

∣∣di − d̄
∣∣

∑N−1
i=1 di

(6.6)



6.2. Performance Measures 99

The major drawback of the approach by Deb et al. (2000) is that it can
only be applied to biobjective problems (Grosan et al., 2003; Okabe et al.,
2003), because in multiobjective problems it is not possible to determine which
solutions are consecutive (for an example see Figure 6.4b).

There is however another approach, and that is the application of ∆′ which was
introduced by Schott (1995), and is mentioned quite often in literature (Grosan
et al., 2003; Okabe et al., 2003; Tan, Khor & Lee, 2005). Schott introduced
the approach for a bi-objective problem, but it can easily be extended to the
multi-objective case. The original equation by Schott (1995) is:

fspacing = s2 =
1

N − 1

N∑

i=1

(
di − d̄

)2
(6.7)

where di = min
j,j 6=i

{∣∣∣f1
i − f1

j

∣∣∣+
∣∣∣f2

i − f2
j

∣∣∣
}

(6.8)

Here N is the total number of points in the Pareto front, fo
i is the value of

objective function o for point i and d̄ is the average value of di overall points
in the Pareto front. For clarity: di is the ‘Manhattan’ distance between i and
the nearest other point. Both Grosan et al. (2003) and Okabe et al. (2003)
decided not to use the s2 value but simply s which makes it more comparable
to ∆. Now define O as the number of objective functions, then the more
general definition is:

∆′ =

√√√√ 1

N − 1

N∑

i=1

(
di − d̄

)2
(6.9)

where di = min
j,j 6=i

O∑

o=1

∣∣∣fo
i − fo

j

∣∣∣ (6.10)

Unfortunately ∆′ also has a major drawback, which is that it tends to cluster
points on the Pareto front (Okabe et al., 2003). This problem is easiest un-
derstood using an example. In Figure 6.2 we see two sets of Pareto fronts,
A (black dots and squares) and B (grey diamonds), of a bi-objective optim-
isation problem. Clearly Pareto front B is better (more evenly) spread than
Pareto front A. This is represented by the performance measure ∆, since
∆(A) = 0.686 and ∆(B) = 0.075. Note that ∆ = 0 as well as ∆′ = 0 indicates
a solution where the distance between all points is exactly equal. However if
we use the ∆′ of Schott (1995) we find that ∆′(A) = 1.095 and ∆′(B) = 0.471.
Now it seems that (although there still is quite a big difference) that the two
Pareto fronts are more comparable. This is caused by the fact that the large
gap between the third and fourth point in Pareto front A is completely ignored
by ∆′.
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Figure 6.2: Example of the ∆ and ∆′ performance measure

Wismans, Van Berkum and Bliemer (2011) notice that if (in the example of
Figure 6.2) Pareto front A would be split in two parts (the three black dots
left of the gap are called A1 and the three black squares on the right are
called A2) both would score perfect on ∆ and ∆′. However when looking at
the entire set of solutions (the combination of A1, A2 and B) we clearly see
that the spread in reality is not so good, in fact, only local solutions have
been found. Wismans et al. (2011) therefore suggest adding the solutions that
contain the extreme values (that is, the minimum or maximum value for an
objective function known amongst all solutions) to each Pareto front, thereby
measuring the spread over the entire front. In Figure 6.2 we would therefore
include the solutions (2, 19) and (19, 1) in all the Pareto fronts. If we use ∇
and ∇′ to represent ∆ and ∆′, only now also including the extreme solutions,
we find that: ∇(A1) = 0.762, ∇(A2) = 0.991 and ∇(B) = 0.400. Furthermore
∇′(A1) = 8.660, ∇′(A2) = 11.258 and ∇′(B) = 2.278. Not only does this
show how wrong ∆ and ∆′ can be when the extreme values of Pareto fronts
are different, it also illustrates how ‘wrong’ the approach of Schott (1995) can
be when there is a large gap in a Pareto front.

Another issue that comes along with the approach of Wismans et al. (2011)
can best be illustrated using an example. If we consider Pareto front A1 and
Pareto front A′

1, which is Pareto front A1 plus the extreme solution (19, 1),



6.2. Performance Measures 101

from Figure 6.2 we find that ∇′(A1) = ∇′(A′
1). The performance measure

∇′ is thus unable to differentiate between these two solutions, which can be
considered a drawback. The approach is, however, better than the original
∆′, which would prefer the solution that did not include the extreme solution,
because ∆′(A1) < ∆′(A′

1).

Furthermore it is interesting to note that ∆′ is an absolute performance
measure (it is only dependent on the Pareto front under consideration) whereas
the ∇′ performance measure is relative, i.e. the performance of a specific Pareto
front is dependent of the other Pareto fronts which are under consideration.
It should also be noted that the difference between ∆′ and ∇′ is only marginal
if their are many points on the Pareto front.

Finally we have a problem that is similar to the problem we had with
the S- and D-Metric approaches. With the S- and D-Metric approaches we
found that the range of the objective functions would cloud the performance
measures, in this case however the order of magnitude of the different objective
values could substantially influence the results. This problem is caused by the
fact that noise always has objective values that are somewhere around 70,
whereas the objective values for TTT and CO2 can easily be in the millions,
billions, or even more. The difference between two solutions in noise would
therefore contribute only marginally (if anything at all) to the performance
in diversity. The solution to this problem is however similar to the solution
we deviced for the problem with the S- and D-Metric. We therefore decided
that, in order to reward AMANs with an even spread in objective space, we
also should apply the normalisation technique from the previous subsection
to ∇ and ∇′. Without repeating the procedure for normalisation again (see
equation 6.4) we can define ∇N and ∇N ′

.

Normalising ∇′ is extremely useful and can sometimes even reverse the
conclusions, something we can best explain using an example. Consider a
problem with three known solutions (1,1000), (2,200) and (10,100), i.e. we
have a problem where one objective function has objective values that are
hundredfold the objective values of the other objective function. In this non-
normalised case we find that d1 = 801 and d2 = d3 = 108, resulting in d̄ = 339
and finally ∇′ ≈ 400. The conclusion would thus be that the solutions are
extremely unevenly spread over the Pareto front. However if we would ignore
the magnitude of the different objective functions, we find that, just by looking
at the data, the solutions appear to be extremely well spread over the Pareto
front. This can easily be verified using the normalised objective values (0, 0.8),
(0.1, 0.1) and (0.8, 0). In that case we find that d1 = d2 = d3 = d̄ = 0.9 and
thus ∇N ′

= 0, which indicates a perfect spread over the Pareto front.

Other Performance Measures

Literature however also suggests a couple of performance measures that do not
measure the quality of the answer, but the quality of the algorithm instead.
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Tan et al. (2001) suggests the use of the Algorithmic Effort (AE) measure,
defined as:

AE =
Trun

Neval
(6.11)

Where Trun is a fixed amount of time and Neval is the number of function
evaluations the algorithm performs. Of course a higher number of evaluations
in the same amount of time would yield a ‘better’ algorithm. Since we do
not (explicitly) limit the amount of time an AMAN may use, we measure the
effort of the algorithm by determining the time the AMAN needed to finish
over the number of solutions that was exactly evaluated. As such it represents
the average time needed per exact evaluation. We therefore define AE’ as:

AE′ =
Tcalc

Neval
(6.12)

However it is also interesting to measure how many solutions are rejected
by the AMAN based on the approximation method. We therefore define the
Fraction of Accepted Solutions (FAS) as:

FAS =
Neval

Nproposed
(6.13)

Here Neval is the number of solutions that is exactly evaluated, whereas
Nproposed is the total number of solutions that is generated by the Genetic
Algorithm (i.e. the number of iterations multiplied by the number of children
that is generated in each iteration).

Furthermore it is interesting to combine the results of FAS and AE’ into a
single performance measure that gives a normalised (all AMANs are divided
by the same value Nproposed) indication of the total computational effort of an
AMAN:

FAS ·AE′ =
Neval

Nproposed
· Tcalc

Neval
=

Tcalc

Nproposed
(6.14)

Another more general performance measure is the Ratio of Non-dominated In-
dividuals (RNI), mentioned by (amongst others) Tan et al. (2001) and M. Kim
et al. (2004). This performance measure determines the fraction of solutions
in the total set of evaluated solutions that form the Pareto front. We therefore
define:

RNI =
NParetofront

Neval
(6.15)

In the next subsection we will select different measures from the dominance,
diversity and other performance measures, which will later be used to assess
the results of the different AMANs.
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Selecting Performance Measures

Unfortunately many of the performance measures assume that a true Pareto
front is known, and are based on determining the distance between the known
and true Pareto front (see e.g. Tan et al., 2001; Grosan et al., 2003; Okabe et
al., 2003; Tan et al., 2005). We therefore are limited to selecting performance
measures from the subsections above.

From the dominance metrics we first of all select C-Metric (equation 6.1).
Although we have shown that the C-Metric alone might not be enough to de-
termine the ‘best’ solution, it does provide valuable insight into how a solution
set contributes to the combined Pareto front.

We have shown that the value of the S-Metric in itself is not of much use
and we therefore decided to use only the resulting performance measure, the
D-Metric. Because of the large range differences that might be found in the
different objective function values, we reject the original D-Metric approach
and resolve to the normalisation technique that was proposed. We therefore
decided to use the DN derived from equation 6.2, using the normalisation
function described in equation 6.4.

From the divergence metrics it seems that the original performance measures
∆ and ∆′ are biased when the extreme solutions differ from Pareto front
to Pareto front. Especially in our case (considering discrete parameters and
many solutions) it seems unrealistic to assume that the extreme solutions of
two Pareto fronts are equal. Furthermore we have to consider the magnitude
of the objective functions and it therefore only seems fair to use the normalised
data to determine these performance measures. It is therefore that we use the
performance measure ∇N ′

, based on equation 6.10 including the known global
extreme solutions and applying the normalisation technique from equation 6.4.

From the performance measures for the algorithms, we propose to use the
AE’ (see equation 6.12) to measure the efficiency (how long does a single
exact evaluation take) of the different algorithms.

Furthermore the FAS (equation 6.13) gives (in combination with the AE’)
a good indication of the savings in calculation times, since it shows how often
an exact evaluation is unnecessary. For completeness we will also include the
FAS ·AE’ (equation 6.14) as indication for the total calculation time that the
algorithm has used.

Finally RNI (equation 6.15) shows the fraction of the exactly evaluated
solutions that form the Pareto front. Clearly a solution with a high RNI is
much more desirable than a solution with a low RNI. The former has contrib-
uted much more expensive computational time to the Pareto front than the
latter.

All this results in 7 performance measures in three categories: algorithmic
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performance (AE’, FAS, FAS · AE’ and RNI), dominance (C and DN ) and
diversity (∇N ′

). When analysing the performance of the AMANs the focus
however will be on the latter three performance measures because they are
derived from the two performance criteria that were defined on page 94.

6.3 Results

When comparing Genetic Algorithms, literature usually only compares the
n parents that were selected in the last iteration (see e.g. J. D. Knowles &
Corne, 2000b; Corne et al., 2001; Deb et al., 2002; M. Kim et al., 2004). In this
case however it seems more appropriate to compare the subsets of all exactly
evaluated solutions that form the Pareto front. After all each solution in the
Pareto front adds valuable information and, given the spread in solution space,
plotting more solutions gives a better overview of the ‘true’ Pareto front. In
order to make comparisons with other literature possible, we decided to plot
the performance of both the Pareto front as well as the 100 parents from the
last iteration.

It should be noted (again) that the results presented in this section are
obtained in a single run (i.e. each AMAN is ran only once), therefore minor
differences might simply be due to the randomness that is inherent to Genetic
Algorithms. In order to reduce the effect of the initial solution (i.e. the 100
parents that are used to generate offspring in the first iteration) we used the
same set of start solutions for all the AMANs and the GA.

We found that plotting all combinations of the AMANs and GA for the C-
Metric and D-Metric resulted in figures that were counterintuitive or incom-
prehensible. We therefore decided not to plot C(A,B) for all combinations of
A and B from the AMANs, instead we decided to compare the three AMANs
with the GA, by plotting C(AMAN,GA) − C(GA,AMAN), i.e. we subtract
the negative effect of the GA dominating solutions from the AMAN from
the positive effect of the AMAN dominating solutions from the GA. Clearly
a higher score on this performance measure, indicates a better AMAN ap-
proach.4 Similarly we decided not to plot D(A,B) for all combinations of
the GA and AMANs, but only D(AMAN,GA) −D(GA,AMAN), i.e. we we
subtract the negative effect of the area that is only dominated by the GA and
not by the AMAN from the positive effect of the area that is only dom-
inated by the AMAN and not by the GA. Again, a higher value on this
performance measure indicates a better solution. Note that the values of
D(AMAN,GA)−D(GA,AMAN) can indeed be used to compare the different

4Note that in reality (i.e. when all stochasticity would be excluded) the value of
C(GA,AMAN) would always be 1. This is due to the fact that when there is no stochasticity
FAMAN ⊆ FGA and thus FGA � FAMAN (where F denotes a Pareto front).



6.3. Results 105

AMANs, since:

D(AMAN,GA) −D(GA,AMAN) =

{S (AMAN ∪ GA) − S (GA)} − {S (AMAN ∪ GA) − S (AMAN)}
= S (AMAN) − S (GA)

(6.16)

We also decided not to plot the Rate of Non-dominated Individuals (RNI) but
the exact opposite, 1−RNI, instead. The main reason is that we could now
combine it into one figure with FAS, where for both performance measures a
lower value indicates a better performing AMAN.

Test Network I

If we start by looking at the results shown in Figures 6.3a and 6.3b (FAS, 1-
RNI, AE’ and FAS ·AE’), we find that the IPE-DACE approach has evaluated
less than 5% of the solutions and as a result is a very fast approach. This
could indicate two completely different things. Either the algorithm is by far
the best approach that can be found or the algorithm encountered a problem
and only produces approximations that are invalid, such as infinite objective
values. We need the results for the C- and D-metric to determine which of
the conclusions is right.

The results for the two other approaches (IPE-RSM and PoI-DACE) can
hardly be called surprising. IPE-RSM appears to be very fast by evaluating
only 35% of the proposed solutions whilst the computational effort per exact
evaluation (AE’) is only marginally larger than the computational effort of the
original GA. PoI-DACE, however, evaluates only half of the solutions, which
is consistent with the ’evaluate a maximum of n solutions’ constraint that
we applied to this approach. It does however also suggests that the effect of
the ’evaluate only the best x%’ constraint is marginal. Given the fact that
PoI-DACE evaluates 15% more solutions than IPE-RSM and the fact that the
average computational effort (AE’) is slightly larger, we obviously find that
the total computational effort (FAS · AE’) of PoI-DACE is much larger than
the one of IPE-RSM. It is also interesting to see that the results in RNI for
both approaches are more or less similar and better than the result of the
original GA.

For both the C- and D-metric (Figures 6.3c and 6.3d) we see that IPE-
DACE performs extremely poor and is completely dominated by the original
GA. We will discuss one of the possible reasons for these results later on. For
the other two approaches (IPE-RSM and PoI-DACE) we find that the results
for D(AMAN,GA) − D(GA,AMAN) are similar, whilst PoI-DACE appears
to be marginally better on C(AMAN,GA) − C(GA,AMAN), which makes it
difficult to decide which approach is better.

Finally we find ∇N ′
in Figure 6.3e which shows that the spread of IPE-

DACE is also quite bad. This is most likely caused by the extreme values
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Figure 6.4: Pareto front for Test Network I

(none of which were originally part of IPE-DACE) and the fact that the Pareto
front of IPE-DACE consists of only 17 solutions. We also see that the spread
in GA is slightly better than the spread in IPE-RSM and PoI-DACE, but
those differences are quite small. It should however be noted that due to the
large Pareto fronts of IPE-RSM and PoI-DACE (both consists of over 1,000
solutions) small differences should be regarded significant.

That these small differences are indeed significant can easily be seen if one
looks at the 3D plot and 2 dimensional projections of the Pareto front (Fig-
ure 6.4). It is immediately clear that the original Genetic Algorithm investig-
ates solutions in an area that is more or less ignored by the AMANs (in fact
by all the AMANs). It is however also interesting to see that this area is an
area which scores poorly on both TTT and CO2. This might suggest that
the AMANs converge faster to ‘better’ solutions, however it also suggests that
the AMANs have difficulties finding good solutions for the Noise objective.
Unfortunately it is impossible to draw definite conclusions on these topics,
simply because one example does not provide enough evidence.

Furthermore it is interesting to see that there clearly is a normative DTM
measure, which causes the ‘strokes’ in the Pareto front (clearly visible in Fig-
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ure 6.4b and 6.4d). Given the number of strokes it is likely that an ATS is
the normative DTM measure in this test network. It is this behaviour that is
(from a traffic engineering perspective) very interesting, because it indicates
that the performance on the different objective functions is strongly dependent
on a single DTM measure.

It is difficult to determine for sure why IPE-DACE performs so poor on the
C- and D-Metric. However based on debugging data that was saved whilst
running the IPE-DACE AMAN on Test Network I, we are able to give a
founded explanation. It appears that after a few iterations the solution (which
is matrix R) of the maximum likelihood function (see equation 4.30) becomes
nearly singular, causing the determinant of R to become 0. Although this
in itself is not a problem, it causes the objective function of the optimisation
function of Mardia and Marshall (1984) to become negative infinity since
ln(0) = −∞, at which point the optimisation algorithm does not know in
which direction to look for an improvement.

The most likely reason why a matrix R becomes singular is that two rows
(or two columns) become equal. This might occur if a solution i is very
far away in solution space from all parents j, indicated by a large kriging
distance c

(
x(i),x(j)

)
(see equation 4.26) and thus a very low correlation rij

(see equation 4.27). A solution that is far away from all other solutions is
unlikely, but might occur if for instance all parents have the same setting for
a couple of DTM measures. Any solution that does have another setting for
these DTM measures might be a solution that is far away from all parents.

As said before, when the matrix R becomes singular, the optimisation
algorithm is unable to determine for certain in which direction an improvement
might be found. This causes the optimisation algorithm to provide answers
that are unreliable, and tests in the earlier stages of this research have shown
that expected objective values of (near) infinity are not uncommon. The
conjecture is that during the first iterations (in which the position of the Pareto
front is uncertain) many potential good solutions are removed, because their
approximated position is behind the known Pareto front. This causes the set
of parent solutions to become a set in which many solutions are considered
to be far away from the parents, which causes unreliable predictions. Due to
these unreliable (overestimated) objective values very few solutions are exactly
evaluated. When using the Probability of Improvement approach this effect is
marginalised, because uncertain solutions also resort in high uncertainties (see
equations 4.33 and 4.34), which ensures that these solutions are evaluated.

Test Network II

In Test Network II we see again that PoI-DACE evaluates just under 50% of
the solutions using the exact model (see FAS in Figure 6.5a), partly due to
the fact that only in the first couple of iterations solutions are rejected based
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Figure 6.6: Pareto front for Test Network II

on the ‘evaluate the best x% solutions’ criterion. Furthermore IPE-RSM and
IPE-DACE perform more or less equally well by evaluting around 35% of the
solutions. Clearly in this test network, IPE-DACE is able to provide a reliable
Pareto front.

The fraction of the exactly evaluated solutions that form the Pareto front
(RNI) is for all approaches more or less similar. Furthermore we see that the
computational effort (AE’, see Figure 6.5b) is indeed as expected. Due to the
low values of FAS for both IPE-RSM as well as IPE-DACE the resulting total
computational effort (FAS · AE’) is similar and slightly lower than the com-
putational effort for the PoI-DACE approach. Yet the PoI-DACE approach is
still around 50% faster than the original GA.

For the C- and D-metric (Figures 6.5d and 6.5d) we find somewhat contra-
dictorily results. Whilst PoI-DACE is outperformed by the other two AMANs
on C(AMAN,GA)−C(GA,AMAN), it outperforms them on D(AMAN,GA)−
D(GA,AMAN), which is considered to be the most interesting performance
measure This will make it difficult to select the ‘best’ or probably ‘most prom-
ising’ approach. It is also interesting to find that, where in the first test net-
work the GA was sometimes outperformed by the AMANs, in this case the
GA always outperforms the AMANs.
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Finally we find that according to ∇N ′
in Figure 6.5e, PoI-DACE provides

us with results that are evenly spread over the objective space. In fact, PoI-
DACE provides results that are comparable to the original GA. It is interesting
to see that again IPE-RSM is not the best performing AMAN. Note that
the differences between PoI-DACE and GA might very well be significant, as
explained in the discussion about the results of Test Network I.

From Figure 6.6 it becomes immediately clear that in this case all AMANs
and GA are more evenly spread over the objective space. It should however
be noted that (just from sight) it appears that PoI-DACE is more often on
the edges of the objective space than other AMANs or the GA.

It is also interesting to see that in this test network we again can identify a
normative DTM measure. In this case however the DTM measure is probably
one with three settings, which can be derived from the three ‘strokes’ which are
clearly visible in Figure 6.6b, 6.6c and 6.6d. This suggests that the Variable
Speed Sign is the normative DTM measure.

100 Final Parents

For the 100 final parents we only have to determine the C-Metric, D-Metric
and ∇N ′

performance measures. The other performance measures (FAS, RNI
and AE’) are only relevant when comparing the entire process of the AMANs
or GA.

For Test Network I (Figure 6.7a, 6.7c and 6.7e) we find more or less the
same results as when we use the entire Pareto front (Figure 6.3). Note however
that in this case the value for C(AMAN,GA)−C(GA,AMAN) for IPE-RSM
is positive, whereas it was negative when using the entire Pareto front. It
is interesting to see that the results for the ∇N ′

performance measure, which
heavily depends on the number of solutions, are more or less the same. What is
also interesting to find, is that IPE-DACE scores more or less similar on all the
performance measures, whilst the Pareto front consists of only 17 solutions.
This means that, in order to obtain these results, we also had to use solutions
that are in the second or third front (i.e. solutions that are dominated by
solutions in the Pareto and second front respectively).

For Test Network II (Figure 6.7b, 6.7d and 6.7f) the conclusions do not
change much as well. For the C(AMAN,GA) − C(GA,AMAN) perform-
ance measure it is interesting to see that IPE-RSM now has a positive value,
whereas it was negative when the entire Pareto front was considered. This sug-
gests that IPE-RSM finds a cluster of solutions that were dominated by the ori-
ginal GA. Due to the crowding distance algorithm, many of these solutions are
removed when applying the non-dominated sorting algorithm (the crowding
distance algorithm is part of this algorithm), which could cause the better
score on this performance measure. For the D(AMAN,GA)−D(GA,AMAN)
performance measure little has changed. Finally we find for the ∇N ′

perform-
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Figure 6.8: Convergence of exactly evaluated solutions

ance measure that GA now performs worst, whereas it scored somewhat in
the middle when using the entire Pareto front. This might be caused (again)
by the crowding distance algorithm, which selects solutions that are furthest
away. In this case this could have caused massive gaps between some of the
solutions, thus resulting in a slightly higher ∇N ′

.

Convergence

Besides the scores on the performance measures it is also interesting to discuss
the converging behaviour of the AMANs. Figure 6.8 therefore displays the
number of exact function evaluations for each of the iterations in the NSGA-
II algorithm. Obviously the original GA (NSGA-II) evaluates 100 solutions in
every iteration. What is furthermore interesting to see is that both IPE-based
AMANs seem to have an initial phase (iteration 1 – 20) in which the number
of solutions they exactly evaluate slowly decreases from 55 to 30 – 40. After
this initial phase, both evaluate somewhere between 25 –40 solutions for the
remaining iterations, of course with the occasional peek up and down.

However the truly interesting part is the convergence of the PoI-DACE ap-
proach. In the first 20 iterations the selected minimal probability of improve-
ment of 50% appears to do its job, since only a limited number of solutions
is exactly evaluated. The most likely explanation for this behaviour is that
many of the proposed solutions are quite far behind the Pareto front and thus
the probability of them improving the Pareto front is only marginal. In the
remainder of the algorithm (iteration 20 – 100) the number of exactly evalu-
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ated solutions follows the ‘evaluate a maximum of n solutions’, which proves
the use of this criterion. It does however also indicate that all 8000 solutions
that are proposed in the last 80 iterations have a probability of improvement
that is larger than 50%.

It is this conclusion that needs some contemplation. The Kriging/DACE
approximation technique estimates two variables, the expected objective value
E(x) and the corresponding kriging error s(x). In order to explain the expec-
ted behaviour we will use the example shown in Figure 6.9. In Figure 6.9a
we see a possible solution with E(x) = 90 and s(x) = 20 and a Pareto front
which (in this one dimensional example) is located at 30. The probability of
this solution improving the Pareto front is marginal, P (x ≤ PF ) = 0.0013.
Over time we would expect that the proposed solutions would shift closer to
the Pareto front, as is the case in Figure 6.9b. Obviously the probability of
improvement increases significantly, which is in accordance with the beha-
viour that is observed in our test network during the first 20 iterations (see
Figure 6.8). However at the same time we would like the kriging error s(x) to
decrease, thereby improving the reliability of the expected objective values.
An example of this behaviour is shown in Figure 6.9c, this of course causes
the probability of improvement to decrease. We do however not perceive this
behaviour (reducing s(x) enough to reduce the Probability of Improvement)
when looking at the convergence of the PoI-DACE approach in Figure 6.8.

The reason why the convergence of PoI-DACE does not show this beha-
viour can be found in the roots of the Kriging/DACE approximation tech-
nique. The main idea behind Kriging/DACE is that solutions that are close
together in solution space are correlated. This concept is used because the
known values of the ‘learning data’ are needed to determine the objective val-
ues of the proposed solutions. However reducing the kriging errors requires
learning data that is close (in solution space) to the proposed solutions. The
current algorithm selects solutions that are non-dominated and far away from
other known solutions in objective space as learning data. These solutions are
not by definition evenly spread in solution space. Summarised, Kriging/DACE
needs learning data that is evenly spread in solution space, whereas the NSGA-
II algorithm (which is the heart of the AMANs) selects data that is evenly
spread amongst the Pareto front in objective space.

Although it is obvious that the current approach is suboptimal, we will
continue to use this approach in this thesis due to time limitations. We do
however provide two possible solutions for this problem. The first is to use
the concept introduced in SPEA2+ (Zitzler, 2001; M. Kim et al., 2004) which
is to use two ‘archives’ instead of one. Translated to the NSGA-II approach
we use, this means that we will still use the non-dominated sorting algorithm,
but now use two different crowding distance algorithms. The first is using
crowding distance in objective space (as we do now) in order to obtain a set of
‘best’ parent solutions, the second is using crowding distance in solution space,
thereby selecting solutions that are part of the Pareto front, but are scattered
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Figure 6.9: Example of expected behaviour of Probability of Improvement in
combination with Kriging/DACE

in solution space. This latter ‘archive’ can then be used as learning data for
the Kriging/DACE approximation function. The second possible solution to
the problem is not only using the parents as learning data, but also include
for all instances of offspring the known solutions from the database that is
closest to it in solution space. This would increase the learning data to the
number of parents plus the number of children at most. Due to the fact that
we now include for each child a solution that is close to it, we can reduce the
kriging error for this child. We did not test either of these solutions, due to
the aforementioned time limitations.

6.4 Conclusions

Choosing one AMAN from the three proposed AMANs (IPE-RSM, PoI-DACE
and IPE-DACE) is not a very simple task. When looking at their performance
on both test networks (Figure 6.3, 6.5 and 6.7) we see that sometimes A
outperforms B and sometimes the opposite holds.

The first decision made is to reject the IPE-DACE approach. In Test
Network I it became clear that the combination of IPE and DACE can give
very unreliable results. Although this might just be the case with this specific
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set of start solutions (due to time limitations we were unable to test this
approach on multiple instances) it seems too much of a gamble to select an
approach which has already failed on a test network.

When comparing IPE-RSM and PoI-DACE, we find that the results are not
conclusive. For FAS we find that IPE-RSM outperforms PoI-DACE (see Fig-
ure 6.3a and 6.5a), and the same holds for AE’ and FAS·AE’ (see Figure 6.3b
and 6.5b). However PoI-DACE performs better on the 1−RNI performance
measure (see Figure 6.3a and 6.5a).

For C-Metric, as a quite ambiguous performance measure, on Test Net-
work I PoI-DACE is to be preferred (see Figure 6.3c and 6.7a), whereas on
Test Network II exactly the opposite (IPE-RSM is to be preferred) holds (see
Figure 6.5c and 6.7b).

Looking at the D-Metric performance measure, which is considered to be
a good indicator, we find that on Test Network I IPE-RSM and PoI-DACE
perform more or less equal (see Figure 6.3d and 6.7c). However on Test
Network II PoI-DACE outperforms IPE-RSM significantly (see Figure 6.5d
and 6.7d).

Finally we find that looking at the spacing in objective space, PoI-DACE
is unanimously chosen as the best performing approach (see Figure 6.3e, 6.5e,
6.7e and 6.7f). Although the differences between PoI-DACE and IPE-RSM
appear to be small, we also showed that the meaning of these differences can
be very significant when looking at the resulting Pareto fronts.

Combining all these conclusions we might say that from an algorithmic per-
formance perspective IPE-RSM might be preferred if speed is the main object-
ive. When effectiveness is the most interesting PoI-DACE is to be preferred
since it has a better performance on 1−RNI.

However in order to select the definitive approach we have to return to
the two criteria that were set to select the different performance measures
(see page 94). We stated that the better AMAN is the one that a) maximises
the volume of the objective space that is dominated by the Pareto front; and
b) maximises the spread over the Pareto front. From the D-Metric we can
easily deduct that PoI-DACE outperforms IPE-RSM (or scores more or less
equal) on the first criterion. Furthermore we find that from a diversity point
of view (criterion two) PoI-DACE is to be preferred, since it outperforms
IPE-RSM on both test networks.

The main goal of this thesis is ‘accelerating the search for the Pareto op-
timal set found by multiobjective genetic algorithms for multiobjective network
design problems, in which externalities are the objectives and DTM measures
the decision variables, using function approximations’. Because we want to
find a comparable Pareto front, we decide to select PoI-DACE which scores
best on the dominance and diversity metrics, which measure the quality of the
resulting Pareto front. Furthermore it should be noted that whilst IPE-RSM
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outperforms PoI-DACE on (some) algorithmic performance measures, PoI-
DACE still is able to achieve these results with a calculation time reduction
of nearly 50%.

In the next chapter we will describe a more realistic test network and apply
both the original Genetic Algorithm and the proposed AMAN which combines
the Kriging/DACE approximation method with the Probability of Improve-
ment approach, in order to see whether the same results can be achieved on
a (much more) complicated network.





Chapter 7

Testcase Almelo

Results! Why, man, I have gotten a lot of results.
I know several thousand things that won’t work.

Thomas A. Edison (1847 – 1931)

The last research question we proposed in section 1.7 focusses on the per-
formance of the selected AMAN when it is applied to a realistic (‘real-life’)
network. In this chapter we will apply the selected AMAN (PoI-DACE) to
the case of Almelo. In section 7.1 we will describe the case environment and
the DTM measures that are present in this network. Section 7.2 will briefly
discuss the methodology.

In section 7.3 the results of both the original NSGA-II algorithm and the
AMAN are presented. Besides providing the results for the different perform-
ance measures (the ones defined in section 6.2) we will also try to assess the
results from a ‘traffic and transport engineering’ point of view (section 7.4).
Finally in section 7.5 we will decide whether the proposed AMAN is indeed
capable of presenting a solution that is qualitatively comparable to the solu-
tion of NSGA-II.

7.1 Network Description

Almelo is a city with just over 70,000 inhabitants in the eastern part of the
Netherlands. Almelo is located close to the A1 motorway (Amsterdam - Hen-
gelo - Germany) and the A35 motorway which continues as N35 (provincial
road) in the direction of Zwolle. The N36 on the western side of Almelo func-
tions as a ring road around Almelo towards the ‘hinterland’. As such Almelo
functions as a crossroad connecting regional roads like the N36, N349 and the
N743 to the A35 motorway (Possel, 2009). Figure 7.1 gives an overview of the
surroundings of Almelo.

119
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Figure 7.1: Overview of Almelo Area c© 2010 Google

For this research we use a road network that is similar to the one used by Possel
(2009), but is slightly larger. Where Possel uses the N36 up to Wierden, we
expanded the road network so it also includes the on- and of ramps of the N36
near Vriezenveen. Figure 7.2 shows a schematic representation of the road
network that is being used. The road network is a simplified representation
of the real situation, many of the minor roads are not considered in this test
case. Furthermore some minor changes were made to the road network and
the corresponding Origin-Destination matrix (OD-matrix). This was done to
reduce problems on the links that connect the centroids to the road network
and to create results (objective values) that are comparable to the results of
the ‘verkeersmilieukaart’.1

From previous analysis it has become clear that the major traffic problems
in the city of Almelo are (during morning peek hours) caused by inbound
traffic. One of the major difficulties with these traffic problems is that many

1The ‘verkeersmilieukaart’ is a graphical representation of the environmental effects (e.g.
CO2 emissions, noise, air quality etc.) of traffic, which is developed by Goudappel Cof-
feng BV, www.verkeersmilieukaart.nl.
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Figure 7.2: Road Network of Almelo

commuters do not have a lot of real alternatives. Of course one can take a
alternative route around the block, but that does not change the situation
much. We therefore have to resort to intervening at the point were people
enter the city centre, i.e. on the ring roads. It is therefore that we decided
to implement seven controlled Automated Traffic Control Systems (ATSs) on
the ring roads of Almelo. These ATSs are able to direct traffic by giving
priority to traffic that either continues on the ring road or turns into the
city centre. Furthermore we decided to implement two Variable Speed Signs
(VSSs) on the motorway A35, which might cause people to choose for the
other off ramp, thereby shifting the traffic to another part of the ring roads.
Figure 7.3 shows the seven controlled ATSs, indicated by the circles numbered
1–7, and the two sets of links were the VSSs are applied, represented using
the black (continuous/discontinuous) lines numbered 8 and 9.

In Appendix D the outflow capacity for the different settings for each of
the ATSs is shown, as well as the car speed limits for each of the VSSs.
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Figure 7.3: DTM measures on the Almelo network

7.2 Methodology

For this analysis we more or less follow the approach described in section 6.1.
We therefore start by applying the ‘ordinary’ NSGA-II algorithm to the Al-
melo network using a set of 100 start solutions. We perform 50 iterations in
which we generate 100 children from 100 parents and we repeat the whole
procedure for the AMAN which uses the PoI-DACE approach. Note that we
use the same set of start solutions for both approaches.

The cooling scheme for the PoI-DACE approach is based on the ‘evaluate
the best n solutions’ approach discussed before (see section 5.2). We start
by exactly evaluating 75 solutions in the first iteration and linearly decrease
the number of exactly evaluated solutions to 25 in the last iteration, thereby
halving the number of exact evaluations.
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In the previous chapter we developed alternative approaches to show the res-
ults for the C- and D-Metric (see section 6.3). The main reason for these
alternative presentations was that it allowed us to easily compare the differ-
ences between the different AMANs. However in this case we do not need
to compare different AMANs, but we compare two approaches and check
whether the results they produce are comparable. We therefore decided to
maintain the original performance measures C(GA,AMAN), C(AMAN,GA),
DN (GA,AMAN) and DN (AMAN,GA).

Similarly to what we did in the previous chapter we plot 1−RNI instead
of RNI for convenience (in Figure 7.4a lower values are now ‘better’).

7.3 Results

The results for the FAS, RNI, AE’ and FAS · AE’ performance measures can
hardly be called surprising. In Figure 7.4a we see that the Genetic Algorithm
does indeed evaluate all solutions whereas the PoI-DACE approach only eval-
uates half of them. Furthermore we find that the AMAN outperforms the GA
on RNI, which was expected based on the results found on Test Network I
and II (Figures 6.3a and 6.5a). We also see that the calculation times per ex-
act evaluation (AE’) increased by nearly 35% whilst the total computational
effort (FAS ·AE’) decreased by nearly 35% (Figure 7.4b). This shows that the
AMAN is indeed capable of accelerating the search for the Pareto front. The
question now is, however, how ‘good’ the Pareto front is that is found by the
AMAN when compared to the Pareto front found by the original GA.

For the C-Metric (Figure 7.4c) we see that the Pareto front found by the
Genetic Algorithm dominates the front found by the AMAN significantly, over
80% of the solutions found by the AMAN are (weakly) dominated. What is
however perhaps even more interesting is that the Pareto front found by the
AMAN dominates over 50% of the solutions found by the GA. A part of this
could be explained by the fact that there are solutions that are present in
both Pareto fronts, however this is not the case.2 It is therefore that we
have to conclude that this result is entirely due to the stochasticity that is
inevitably part of the Genetic Algorithms. Perhaps even more importantly,
this also means that if we correct C(GA,AMAN) it is not unlikely that only
25-30% is being dominated by the GA, the other 50% might very well be due
to stochasticity. It is therefore important to put these results into perspective
and further research, i.e. an exhaustive study in which dozens if not hundreds
of runs are performed, is necessary to be certain about the expected value of
C(GA,AMAN).3

2It would have been quite a coincidence if we would have found two solutions that are
exactly the same, given the size of the solution space Θ =

(

97 · 32
)6

= 6.3 · 1045.
3Note that it is possible to do such an extensive study on a much smaller problem, e.g.

the test networks used in this research.
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Figure 7.5: Pareto Front for the Almelo Network

For the D-Metric (actually DN -Metric) which is shown in Figure 7.4d, we
find that the unique contribution of the GA is about 3% of the total normalised
volume. Compared to the unique contribution of the AMAN, which is only
0.03% and thus 100 times smaller, this seems quite a significant contribution.
It is however necessary to put this conclusion in perspective. If we would
judge the unique contribution of the GA on its own merits, it is difficult to
state that the solution found by the Genetic Algorithm is indeed ‘better’. A
unique contribution of 3% is not tremendous and if we include the issue of
stocasticity again, we cannot conclude that the solution found by the GA is
statistically ‘better’ than the solution found by the AMAN.

Finally for the ∇N ′
(Figure 7.4e) we find that the diversity of the AMAN

is more even, although again the differences are not quite large. However
in this case we can state that we have seen the same result earlier, i.e. on
both test networks we saw that PoI-DACE outperforms the original GA on
diversity (see Figure 6.3e and 6.5e). It is however important to note that also
in these two instances the differences were marginal and as such we can hardly
conclude that the AMAN outperforms the GA by definition.

Looking at the plots of the Pareto fronts (Figure 7.5) is probably just as
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interesting as determining the performance statistics. We see that the two
Pareto fronts seem to come quite close and there are no clear outliers. What
is furthermore interesting is that in contrast to the two test networks where we
found clear ‘strokes’ of solutions which indicated a normative DTM measure,
we are now unable to distinguish such a DTM measure.

We can however identify a cloud of solutions that are found by the Genetic
Algorithm, but appear not to be part of the Pareto front found by the AMAN.
This becomes clear in Figure 7.5c where the solutions found by the GA form
a clear line that is closer to the origin than the solutions found by the AMAN.
These solutions can also be identified in Figures 7.5b and 7.5d although that is
more difficult. What is also interesting is that in the projection of CO2 versus
Noise (Figure 7.5c) we clearly see a thick line which describes the relation,
whereas for the other two projections are much more cloudy. This suggests
that there is a strong relation between CO2 and Noise, which is more or less
independent from TTT.

In conclusion we can state that, based on visual inspection, the Pareto
front found by the Genetic Algorithm appears to be slightly ‘better’ than the
one found by the AMAN. It is impossible to determine whether the difference is
due to the algorithm used or whether the stochasticity is the main contributor
to this (rather small) difference.

7.4 Traffic & Transportation Effects

From a traffic and transportation engineering point of view it is interesting to
see whether we can draw some general conclusions about the solutions that
form the Pareto front. If we e.g. find that specific solutions are never part of
the Pareto front, this could help us understand the network and allow us to
develop a generic control policy.

We therefore generated for each individual DTM measure a set of three box-
plots, one for each objective function. As input for the boxplots we used the
solutions from the Pareto fronts of the GA and AMAN that form the com-
bined Pareto front (358 solutions in total). We grouped the data based on the
setting of the DTM measure and the time period. A single solution therefore is
part of six bars, one per time period. Figure 7.6 contains an example boxplot
for ATS 1 for the TTT objective, appendix E contains the results for all the
DTM measures and all the objectives. Based on these boxplots we might be
able to identify relations between objectives and the setting of a specific DTM
measure. Note that we also need the control settings for the different DTM
measures (appendix D) before we can draw conclusions about the effects of
specific settings.

For Automated Traffic Control Signal 1 (ATS 1) we find that settings
g and h are rarely part of the Pareto front and setting i is never applied.
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This seems to suggest that settings with a higher outflow capacity for the
North-South direction are to be preferred over solutions with a high outflow
capacity in the East-West direction. Although the total travel time (TTT)
appears to be unaffected by the DTM measure, we also see a positive relation
between the CO2 emissions and ‘higher DTM settings’, i.e. solutions with a
higher outflow capacity reserved for the East-West direction. As expected the
relationship between Noise and ‘higher DTM settings’ is exactly opposite, a
noise reduction can be achieved by assigning a larger part of the capacity to
the East-West direction. Furthermore it is interesting to note that setting d
(in which about 2/3 of the capacity is assigned to the North-South direction)
is applied in nearly 46% of the cases, which suggests that this is a robust
solution.

For ATS 2 we see that all settings are applied quite often, although setting
a is applied in less than 5% of the cases and might therefore be considered
a less preferred solution. Furthermore it is difficult to find a clear relation-
ship between specific settings and the results for any of the three objective
functions.

For ATS 3 we find that the two ‘extreme’ settings (a and i) are rarely ap-
plied (2.3% and <1% respectively). What is however interesting is that we find
a small positive relationship between TTT and ‘higher DTM settings’, which
correspond with solutions that give high priority to traffic from the North. For
the CO2 this relationship is even stronger and obviously the Noise objective
has a negative relationship with ‘higher DTM settings’. The combination of
these results seems to suggest that if one decides to prioritise traffic from the
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North, thereby subordinating traffic from the East and South, traffic has to
queue (hence larger TTT) which reduces Noise but increases CO2 emissions.
Because TTT and CO2 emissions on one side and Noise on the other side show
opposing behaviour, it is difficult (if not impossible) to state that one solution
is ‘better’ than another. It does provide, however, an instrument that lets
principals clearly choose between TTT and CO2 at one end and Noise on the
other.

For ATS 4 it becomes immediately clear that choosing for a solution that
strongly limits the outflow from the North and South direction (i.e. less than
600 veh/hr) is not to be preferred, setting g is hardly chosen (<1% of the
solutions) and settings h and i are never selected in the Pareto front. Although
the spread over the other settings is much more equal, it appears that a
solution in which the North-South direction is assigned 1/3 and the East-
West direction the remaining 2/3 of the capacity appears to be the most used
solution. It is however difficult to find a clear relationship between the settings
and the objectives, the most likely explanation is that there are quite a lot of
alternatives, that are similar with respect to the objective functions.

For ATS 5 we find results that collaborate with the results from ATS 4.
From ATS 4 we can deduce that there is not much traffic in the North-South
direction (although there is some traffic, hence the fact that the ‘higher DTM
settings’ are rarely used), and for ATS 5 we find that assigning a large part
of the capacity for traffic from the southern direction is not a wise solution
(setting a and b are selected once and twice respectively, whereas setting c and
d are selected in less than 1.4% and 3.7% of the solutions respectively). All
other settings are selected in at least 14% of the solutions and are therefore
considered more or less equal. Again it is hard to find a relationship between
this DTM measure and the three objectives.

For ATS 6 we find again that solutions that severely limit the traffic flow
in North-South direction are hardly selected (setting i once, setting h in only
1% of the solutions). Furthermore we find that giving too much capacity to
this direction appears also not to be a solution that is frequently found in the
Pareto front, although this happens more often (about 5% of the solutions
contain setting a). The other settings are selected between 12.5% and 22.5%
of the cases, and are therefore considered to be equal in the sense that they
all might contribute to the Pareto front. Solutions in which about 1/3 of the
capacity is assigned to the North-South direction and the remaining 2/3 to the
East-West direction appear to be commonly found in the Pareto front.

For the last Automated Traffic Control Signal, ATS 7, we find that neg-
lecting the North-South direction appears to be undesirable, setting i is never
selected and setting h in less than 4% of the solutions. Although all other
solutions are frequently part of the Pareto front, it appears that solutions
in which all four directions are assigned a more or less equal portion of the
capacity (but a slightly larger portion for the North-South direction, such as
setting c and to a lesser extend b) are amongst the ‘best’, given that over 40%
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of the solutions contain setting b or c.

For the first Variable Speed Sign (VSS 8) we see that the behaviour is much
more whimsical than the behaviour of the ATSs. The most likely explanation
is that this is due to the fact that the VSS has only three settings. From
statistical analysis we find that the, in the Netherlands common, speed limit
of 120 km/hr is only part of 13% of the solutions, i.e. in most solutions it
appears to be best to reduce the speed limit. Furthermore we find a clear
negative relation between TTT and the speed limit (which is rather obvious).
However we also see a clear negative relation between the speed limit and CO2

emissions and a positive relation between the speed limit and Noise.

For the VSS 9, the results might be even more interesting. We find that
in less than 1% of the solutions the ordinary speed limit of 120 km/hr is
maintained. In fact we find that 42% of the solutions contain a 100 km/hr
speed limit whereas the majority of the solutions (57%) uses a speed limit of
only 80 km/hr. Furthermore we find the same relations between speed and
the objective functions as with VSS 8.

Summarised we can state that we have found two classes of conclusions. First
we find that some settings are hardly applied in the solutions that form the
Pareto front. It would be interesting to see how the Pareto front changes
when we reject the solutions that do use these settings, although in reality
we probably would have found comparable solutions (i.e. solutions that use
a setting that is allowed and is close to the setting we rejected). If we can
conclude that the Pareto front does not change that much, we might be able to
use these conclusions to determine an ‘optimal’ set of DTM control settings.
We therefore created three projections (Figure 7.7) in which we show the
solutions of the combined Pareto optimal sets (blue open circles) and the
solutions that remain when we leave out settings which appear in less than
1% of the solutions (called rare settings, represented by green dots). Since the
latter is a subset of the former, each green dot has a blue open circle around
it. We assumed that these rare settings would produce solutions that were on
the edges of the Pareto front, however based on Figure 7.7 we can state that
these solutions are the ‘best’ solutions based on the TTT and CO2 objectives,
given that many of the solutions are in the bottom left corner. If we also
include the Noise objective into the equation, the solutions that are rejected
appear to be less critical to the Pareto front. However in contrast to what we
expected, we cannot state that the contribution of these solutions is marginal.
Furthermore the number of rejected solutions is not as large as expected, this
is most likely due to the fact that extreme solutions on one DTM measure
also require extreme solutions on another DTM measure in order to create a
traffic flow that is acceptable (i.e. that is part of the Pareto front).

The second class of conclusions we can draw, consist of the relation between
settings (in fact outflow capacities) and the objective functions. In fact we can
identify two ATSs and two VSSs for which we can identify a clear relationship
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between the settings and the objective functions. Generally speaking we can
say that assigning more capacity to the East-West directions on ATS 1 leads
to higher CO2 emissions and thus reduce noise pollution. Similarly we can
conclude that assigning more capacity to the northbound traffic on ATS 3 will
increase travel time and CO2 emissions, whilst reducing the noise pollution.
For both ATSs the conclusions are relatively simple. reducing the speed limit
will increase travel time and CO2 emissions but (again and obviously) reduce
noise pollution.

A second analysis that was assumed to be of interest was comparing the set-
tings of different DTM measures that are likely to affect each other. We
therefore defined three sets of ATSs which we assumed to be strongly inter-
acting. We assumed that the setting of ATS 1 might influence the settings for
ATS 2 and ATS 7. Furthermore we assumed that ATS 4 and ATS 5 might
be strongly correlated in their ‘optimal’ settings. However after an extens-
ive data analysis we did not find any clear relationships between those DTM
measures. This can suggest that there are no clear relationships, however it
is more likely that we have insufficient data to find them. We expect that
letting the GA or AMAN run longer (thus finding solutions that are closer to
the true Pareto front) might improve the results of this analysis, by creating
sharper differences.

In this section we have tried to give an indication of the possibilities of ana-
lysing the Pareto front. We can conclude that analysing the Pareto front can
lead to valuable information about the generic behaviour of a road network.
Unfortunately we are unable to perform a full analysis, partly due to time
limitations, but mainly because it falls outside the scope of this research. We
do however think that a thorough analysis of a Pareto front (which might
include running a specific solution again on a macroscopic model, in order to
fully understand what is happening) is a useful exercise and could improve
the understanding of traffic on a specific road network.

7.5 Conclusions

In the introduction of this chapter we stated that ‘we will decide whether the
proposed AMAN is indeed capable of presenting a solution that is qualitatively
comparable to the solution of NSGA-II’. Obviously the AMAN outperforms
the Genetic Algorithm on the ‘other’ performance measures. We do however
find no hard evidence that the Pareto front found by the GA fully covers
the Pareto front found by the AMAN (C-Metric, Figure 7.4c) in fact we find
that the unique contribution of the GA with respect to the AMAN (D-Metric,
Figure 7.4d) is only marginal and it is not possible to say that the GA is really
‘better’ than the AMAN. Furthermore we find that the spread on the Pareto
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front found by the AMAN is slightly better than the spread found by the GA
(∇N ′

, Figure 7.4e).

Considering the fact that we have little evidence that shows that the Pareto
front found by the GA outperforms the Pareto front found by the AMAN, we
assume that the AMAN is able to provide similar results. It should however
be noted that further study on a simple network is needed (using dozens or
hundreds of runs) to check whether we can statistically show that the results
of the AMAN are comparable to the results of the GA.



Chapter 8

Conclusions

A conclusion is the place where you got tired thinking.

Martin H. Fisher (1879 – 1962)

After six months of literature study, testing, programming and data analysis,
we are finally able to present the results. We will start this chapter by present-
ing our final conclusion, which is based on the answers we found to our research
questions. Finally we will identify a number of areas in which further research
might lead to improved results or a better applicable Approximation Model
Assisted NSGA-II (AMAN) algorithm.

8.1 Accelerating the Search for Optimal Dynamic

Traffic Management

In the previous four chapters we have tried to find answers to the research
questions that were formulated in chapter 1. We therefore start our conclu-
sions by providing a brief answer to each of the research questions, after which
we can conclude whether we have achieved our research goal.

Approximation Techniques

The first research question, ’How can the objective values of the bilevel NDP
be approximated?’, focussed on how we can approximate objective values and
whether those approximated objective values are reliable. From three main ap-
proximation techniques (Response Surface Method; RSM, Radial Basis Func-
tion; RBF, Kriging/DACE) we derived 148 different variants using different
parameters or objective functions. After applying these variants to two test
networks we found that there are a couple of approximation variants that
look promising, i.e. they provide reliable estimates for both test networks.
Especially the Kriging/DACE approximation technique appeared to provide

133
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reliable results, independent of the objective function (Mardia and Marshall
(1984) or Martin and Simpson (2005)). We selected a single variant, Kri-
ging/DACE using the objective function of Mardia and Marshall (1984) and
φ = 1E−7 as start value for the optimisation procedure, although we have
insufficient evidence that this is indeed the single one best variant. Further-
more we found that the simplest RSM approximation variant that we studied
(RSM cubic squared) provided the best results on one test network. Because
of the simplicity and intuitiveness of this approach, we decided also to include
this approximation method in the remainder of this research.

In conclusion we can state that our research has shown that there are
indeed a few approximation techniques that are capable of estimating the
objective values of the bilevel NDP, although the differences between different
variants can be significant. More information about the methodology and the
complete results can be found in chapter 4.

Accelerating Genetic Algorithms

‘In what way can the genetic algorithm be accelerated?’ is our second research
question, which aims at trying to understand how approximated objective
values can be used in accelerating Genetic Algorithms. Literature provides
us with many different approaches, although most appear not to be suitable
for our problem, e.g. because they are too complicated or require even further
optimisation. We therefore selected two intuitive approaches, Inexact Pre
Evaluation (IPE) and Probability of Improvement (PoI). The former requires
only approximated objective values and only evaluates those solutions that
are expected to be part of the new Pareto front. The latter approach requires,
besides the estimated objective values, estimates of the error of the objective
values and determines for each solution the probability that it improves the
Pareto front, thereby enabling us to evaluate only solutions with a PoI of at
least x% or the n best solutions.

We can therefore conclude that the easiest way to accelerate a Genetic
Algorithm is by reducing the number of solutions that is exactly evaluated.
Our research showed that we can apply either a deterministic (IPE) or a
stochastic (PoI) approach. More information about those two approaches and
other solutions can be found in chapter 5.

Improving the Search for the Pareto Optimal Set

Next we combined the results of the previous two research questions, in order
to answer the third research question ‘Which improvement methods do indeed
improve the search for the Pareto optimal set?’ Combining the two approx-
imation variants and the two acceleration approaches resulted in three Ap-
proximation Method Assisted NSGA-II (AMAN) algorithms, one AMAN was
rejected because the approximation method could not deliver all information
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that is required by the acceleration approach. The three AMANs were applied
to the two test networks used before, and their performance was measured us-
ing a multitude of performance measures which were derived from literature.
Considering that an AMAN can never outperform the original NSGA-II, we
can conclude that the stochasticity that is part of the Genetic Algorithm has
clouded our results significantly. Unfortunately we do not have sufficient time
to perform the dozens (or perhaps even better, hundreds) of runs that are re-
quired to make a firm statement about the quality of the results that have been
found by the AMAN. We can therefore only draw preliminary conclusions, i.e.
the conclusions can be disputed.

The results, however, do suggest that two of the selected AMANs (IPE-
RSM and PoI-DACE) provide results that are similar to the results of the
original NSGA-II algorithm. It is clear that both approaches accelerate the
search for this Pareto front, since the computational effort is reduced with
50 to 60% (PoI-DACE and IPE-RSM respectively). Based on the results we
concluded that PoI-DACE was the most promising approach, which is why we
selected this approach to be tested on a more realistic road network.

We conclude that the developed AMANs are probably capable of provid-
ing a Pareto optimal set (Pareto front) that is comparable to the Pareto front
found by the original NSGA-II algorithm, whilst reducing computational ef-
fort by at least 50%. We therefore feel confident to state that it is likely
that AMANs are capable of improving the search for the Pareto optimal set,
although further research is needed before we draw definite conclusions. De-
tailed results and further analysis can be found in chapter 6.

Testcase Almelo

Finally we tried to find the answer to ‘How do these methods cope with real-
istic networks?’, which is our last research question. In order to answer this
question, we applied the selected AMAN (PoI-DACE) to the slightly adapted
network of Almelo. Using the same performance measures that were used for
answering the previous research question, we were able to draw some con-
clusions about the performance of the AMAN compared to the NSGA-II al-
gorithm. We find that PoI-DACE reduces computational effort by around
30-40%, which is somewhat lower than the predicted 50%. This is mainly
due to the fact that the Almelo network has much more variables, which in-
crease the calculation times for the optimisation procedure that is part of
Kriging/DACE. Although the results of the performance measures seem to
suggest that that the original NSGA-II algorithm outperforms the AMAN,
we can hardly draw any firm conclusions because of the significant effect of
stochasticity. This, again, shows how important it is to do a much more ex-
tensive study. From the projections of the Pareto fronts it seems that the
NSGA-II algorithm is able to find a Pareto optimal set that forms a layer
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around the Pareto optimal set that is found by the AMAN, although the
performance measures contradict this conclusion.

It seems that a firm, univocal conclusion cannot be drawn for this re-
search question. We evaluated the results of only a single run (which already
took nearly three weeks of calculation time) and the influence of uncertainty
(stochasticity) is simply to large. The results however do look promising and
we therefore urge the community to do further research in this field.

Final Conclusion

So, have we been successful in ‘accelerating the search for the Pareto op-
timal set found by multiobjective genetic algorithms for multiobjective network
design problems, in which externalities are the objectives and DTM measures
the decision variables, using function approximations’?

The answer to this question is not unambiguous. With Jerry R. Ehman1 we
‘choose not to “draw vast conclusions from ‘half-vast’ data”’. We can however
clearly state that a well selected approximation method is very well capable
of accelerating the NSGA-II algorithm. Rejecting all solutions however, can
also be considered an acceleration, which is why we needed to focus strongly
on the quality of the Pareto front that was found by the AMANs.

Summarising all that has been said above, we conclude the following:

‘based on our results it seems highly likely that the proposed AMANs
can achieve a Pareto front that is comparable to the one found by
the original NSGA-II algorithm, whilst reducing the computational
effort with 30%’.

8.2 Further Research

In retrospect we can easily conclude that not everything in this thesis has
received the attention that it should actually have had. In this section we
therefore identify subjects that require further research, either to improve the
quality of the results or to improve our understanding of the problem and/or
approach.

As mentioned quite frequently throughout this thesis there still is a lot of un-
certainty about the results. For many of our decisions and conclusions we have
used only one run of the AMANs and GA, which is statistically unacceptable.

1Jerry R. Ehman is an American astronomer who, in 1977, first detected the strong
narrowband radio signal known as the ‘Wow! signal’. At that time this ‘Wow! signal’ was
considered by many to be proof for extraterrestrial life. Jerry R. Ehman however, came to
the conclusion that he could neither accept nor reject the possibility that the signal was of
extraterrestrial origin.



8.2. Further Research 137

In order to provide more credible results at least a couple of dozen, if not a
couple of hundred, runs are necessary. It is therefore that we strongly suggest
that the different AMANs and the original NSGA-II algorithm are applied
dozens of times to a set of test networks, after which statistical techniques can
be applied to the performance measures that are defined in this thesis. It is
based on those statistical results that we can conclude whether an approach
is ‘better’ than another, but even then the famous saying of Evan Esar (1899
– 1995) ’Statistics: the only science that enables different experts using the
same figures to draw different conclusions’ still holds.

Another issue that we would like to bring to notice is that we have ex-
amined only a limited number of variants for each of our research questions.
We started of by only considering three approximation techniques (chapter 4)
and we selected our acceleration possibilities from a limited literature study
(chapter 5). As such, it is highly likely that we did not provide a full over-
view of the possibilities, in fact, providing a full overview is impossible. One
could, however, perform an additional literature study in order to expand our
overview to create a more comprehensive, and thus better, overview. This
would also reduce the risk of not having examined an approach that later ap-
pears to be one of the best alternatives available. Furthermore, and perhaps
even more importantly, we have examined only a limited number of variants
of approximation methods. Although we examined 148 different variants in
total, it still is possible that we did not find the best performing alternative.
It therefore might be an interesting exercise to see whether one of the variants
we consider to be amongst the best, can be fine tuned in order to increase the
performance.

In the AMAN we selected we applied the Probability of Improvement (PoI)
approach. However we showed that the convergence of this approach, when
using the x% selection criterion, was not in accordance with what we expec-
ted. It therefore seems appropriate to perform an in depth analysis of the
convergence of the PoI approach. Interesting subjects for this research would
be for instance how the approximate objective values and the corresponding
errors change over time (i.e. from generation to generation). This information
can then be used to make a more scientific decision on which values of x (in
x%) should be used, if x% should be used at all.

The last subject that, in our opinion, has not yet received the attention it de-
serves, is the analysis of the resulting Pareto fronts. In chapter 7 we started by
grouping the data and representing the information in boxplots, which could
be used to draw some conclusions about the general effects of the different
DTM measures. Furthermore we applied pairwise comparisons to find cor-
relation effects between DTM measures. Unfortunately this approach failed,
most likely due to a lack of data (our Pareto front consisted of only 385
solutions). It seems, however, that more could be done to increase our under-
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standing of the problem. This research might perhaps be the most important
recommendation, since it would greatly expand the possibilities of applying
the proposed approach in realistic cases.
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Appendix A

DTM Control Settings

Test Network I

This appendix contains a complete overview of Dynamic Traffic Management
control settings for Test Network I.

outflow capacity saturation flow free-flow speed speed at capacity number of lanes

500 500 80 60 1
600 600 80 60 1
700 700 80 60 1
800 800 80 60 1
900 900 80 60 1
1000 1000 80 60 1
1100 1100 80 60 1
1200 1200 80 60 1
1300 1300 80 60 1
1400 1400 80 60 1
1500 1500 80 60 1

(a) ATS - Regional Road to Regional Road

outflow capacity saturation flow free-flow speed speed at capacity number of lanes

500 500 80 60 1
600 600 80 60 1
700 700 80 60 1
800 800 80 60 1
900 900 80 60 1
1000 1000 80 60 1
1100 1100 80 60 1
1200 1200 80 60 1
1300 1300 80 60 1
1400 1400 80 60 1
1500 1500 80 60 1

(b) ATS - Regional Road to Local Road

Table A.1: DTM control settings for Test Network I
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152 DTM Control Settings Test Network I

Car

outflow capacity saturation flow free-flow speed speed at capacity number of lanes

2200 2200 120 80 2
2250 2250 100 80 2
2300 2300 80 75 2

Lorry

outflow capacity saturation flow free-flow speed speed at capacity number of lanes

2200 2200 80 75 2
2250 2250 80 75 2
2300 2300 80 75 2

(a) VSS - Two Lane Motorway

Car

outflow capacity saturation flow free-flow speed speed at capacity number of lanes

2100 2100 120 80 3
2150 2150 100 80 3
2200 2200 80 75 3

Lorry

outflow capacity saturation flow free-flow speed speed at capacity number of lanes

2100 2100 80 75 3
2150 2150 80 75 3
2200 2200 80 75 3

(b) VSS - Three Lane Motorway

outflow capacity saturation flow free-flow speed speed at capacity number of lanes

500 500 50 40 1
600 600 50 40 1
700 700 50 40 1
800 800 50 40 1
900 900 50 40 1
1000 1000 50 40 1
1100 1100 50 40 1
1200 1200 50 40 1
1300 1300 50 40 1
1400 1400 50 40 1
1500 1500 50 40 1

(c) ATS - City Centre

Table A.1: DTM control settings for Test Network I (cont.)



Appendix B

DTM Control Settings

Test Network II

This appendix contains a complete overview of Dynamic Traffic Management
control settings for Test Network II.

outflow capacity saturation flow free-flow speed speed at capacity number of lanes

200 200 50 40 1
300 300 50 40 1
400 400 50 40 1
500 500 50 40 1
600 600 50 40 1
700 700 50 40 1
800 800 50 40 1
900 900 50 40 1
1000 1000 50 40 1
1100 1100 50 40 1
1200 1200 50 40 1

(a) ATS 1 & 2 - Traffic Flow South - North

outflow capacity saturation flow free-flow speed speed at capacity number of lanes

1200 1200 50 40 1
1100 1100 50 40 1
1000 1000 50 40 1
900 900 50 40 1
800 800 50 40 1
700 700 50 40 1
600 600 50 40 1
500 500 50 40 1
400 400 50 40 1
300 300 50 40 1
200 200 50 40 1

(b) ATS 1 & 2 - Traffic Flow North - South

Table B.1: DTM control settings for Test Network II
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Car

outflow capacity saturation flow free-flow speed speed at capacity number of lanes

2200 2200 120 80 2
2250 2250 100 80 2
2300 2300 80 75 2

Lorry

outflow capacity saturation flow free-flow speed speed at capacity number of lanes

2200 2200 80 75 2
2250 2250 80 75 2
2300 2300 80 75 2

(a) VSS - Motorway

outflow capacity saturation flow free-flow speed speed at capacity number of lanes

2200 2200 120 80 2
2200 2200 120 80 3

(b) VLS - Motorway

Table B.1: DTM control settings for Test Network II (cont.)



Appendix C

Probability of Improvement

In this appendix we explain how the Probability of Improvement can be cal-
culated using the HyperVolume approach. In chapter 4 and 5 we referred
multiple times to the work by Emmerich et al. (2006) as one of the first to use
PoI. They define the PoI as follows:

PoI =

∫

y∈Hf

PDFx(y) dy (C.1)

Here PDFx is the probability density function for input x and Hf denotes
the non-dominated hypervolume for xmin. Which according to them is:

Hf = [−∞, fmin] (C.2)

This approach however does assume a single objective problem, and Emmerich
et al. (2006) focus in the remainder of their paper mainly on constrained
problems.

We therefore use the work of Keane (2006) who gives a clear explanation on
how the PoI can be calculated in a biobjective problem. Now let f i

o denote the
objective value of point i for objective function o, where point i ∈ P and P
contains all solutions of the Pareto front. Note that the value of f i

o is exactly
known, since it has been evaluated by the expensive model. Furthermore
we have a single point x of which we want to determine the probability of
improvement. For this point x we have determined the estimated objective
value ŷo for objective function o and the accompanying estimated error so.

Figure C.1 gives an overview of the situation if only a single solution is
known, i.e. P contains only a single solution. In this case we have three
possible ways of improving the solution (we assume a minimisation problem):
a) we only improve in objective 1; b) we only improve in objective 2; or
c) we improve in both objectives simultaneously. If we would now assume a
Normal distribution, we can calculate the PoI by adding the probability that
we improve the situation in objective one and the probability that we improve
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Improvement in objective 2 only
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Figure C.1: Pareto front for a biobjective problem with one known solution

the situation in objective 2 and subtracting the probability that we improve
both (because we have now calculated this probability twice). Thus in this
case we can easily determine the probability of improvement by:

PoI = Φ

(
f1
1 − ŷ1
s1

)
+ Φ

(
f1
2 − ŷ2
s2

)
− Φ

(
f1
1 − ŷ1
s1

)
Φ

(
f1
2 − ŷ2
s2

)
(C.3)

Keane (2006) now expands this approach to a more generic approach for prob-
lems where more points are known. Furthermore he recognises that there are
two ways to define an improvement in Pareto front. Figure C.2 shows that
there are solutions that strictly dominate the existing set of solutions (grey),
but also shows areas in which the so-called augmented solutions are located
(hatched). Note that these areas are (for quite a large part) overlapping.

Now let M denote the total number of solutions in P, i.e. in the Pareto
front, and for notation convenience we use:

Φi
o = Φ

(
f i
o − ŷo
so

)
(C.4)

Then Keane (2006) provides two functions to determine the PoI, equation C.5
gives the PoI if augmented solutions are accepted, equation C.6 gives the PoI
if only strictly dominating solutions are accepted. In order for this approach
to work, it is necesary that the points in the Pareto front are sorted based on
their objective value. Note that there is only a minor difference between the
two equations.

PoIaug = Φ1
1 +

M−1∑

i=1

{(
Φi+1
1 − Φi

1

)
· Φi

2

}
+
(
1 − ΦM

1

)
· ΦM

2 (C.5)

PoIdom = Φ1
1 +

M−1∑

i=1

{(
Φi+1
1 − Φi

1

)
· Φi+1

2

}
+
(
1 − ΦM

1

)
· ΦM

2 (C.6)
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Figure C.2: Strictly dominating and Augmenting solutions

We will explain the approach by Keane (2006) using an example in which we
want to determine the augmented PoI. For a new point (which position is
irrelevant) we determined for four known solutions (thus M = 4) the prob-
ability that the objective value of this new point is lower. Figure C.3 shows
the resulting values of φi

o for both objective functions (o ∈ (1, 2)) and all four
known points (i ∈ (1, . . . ,M)). Note that Figure C.3 is not entirely similar to
Figure C.1 and C.2. Instead of plotting the objective values on the axis, in
this case for each solution in P the probability that the selected solution x is
better is plotted, thereby creating a kind of unity square (all values are in the
range [0,1]).

Clearly the gray area in Figure C.3 indicates the area where solutions are
present that improve (augmenting) the current Pareto front. We can now
use equation C.5 to determine the size of this area. For the first term of
the equation φ1

1 we find that this is equal to area I, since the range for both
objective functions is [0, 1]. Now we let i run over 1, . . . ,M −1 and determine
the size of the second term in equation C.5 and we find for i = 1, 2, 3 the
following solutions:

(
φ2
1 − φ1

1

)
· φ1

2 which is equal to area II;
(
φ3
1 − φ2

1

)
· φ2

2

which is equal to area III; and
(
φ4
1 − φ3

1

)
·φ3

2 which is equal to area IV . Now
we can determine the last term, which is

(
1 − φ4

1

)
· φ4

2 which is equal to area
V . This shows that equation C.5 does indeed provide us with the size of the
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Figure C.3: Example for determining PoIaug using the approach by Keane
(2006)

area where improvements may be found. Because for each objective o it holds
that fo ∈ [0, 1] we find that the size of the area is equal to the probability of
improvement.

The question is now how we can change this approach to the case of multiob-
jective problems (i.e. more than two objective functions). First of all we select
the augmented PoI, because this allows us to ‘refine’ the Pareto front instead
of just finding solutions that are strictly dominating. Another benefit of se-
lecting the augmented PoI is that if we look at a problem with three objective
functions in a slightly different way (see Figure C.4) we notice that determ-
ining the PoI has a strong resemblance with determining the hypervolume of
a 3D model. Area I consists of the PoI that we need to determine, but area
II (displayed in grey) is a volume which can easily be determined using for
instance the algorithm by While et al. (2006).

By plotting the probabilities instead of the objective values (as done in the
example of Figure C.3) we create a unity cube (all values are in the range [0,1]).
If we would now inverse this cube, i.e. instead of plotting Φi

o we plot 1 − Φi
o,

we can easily use the Hypervolume by Slicing Objectives (HSO) algorithm of
While et al. (2006) for determining the probability that the solution x will not



Probability of Improvement 159

1
0

0.2

0.4

0.6

0.8

1

ob
je

ct
iv

e 
fu

n
ct

io
n
 3

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8

objective function 1objective function 2

Area II

Area I

Figure C.4: Probability cube for a problem with three objectives

improve the current Pareto front. Of course now it is easy to determine the
Probability of Improvement, which is 1 minus the volume of area II.





Appendix D

DTM Control Settings

Testcase Almelo

This appendix contains a complete overview of Dynamic Traffic Management
control settings for the testcase Almelo, as shown in Figure 7.3 of which a
copy is shown below in Figure D.1.

1
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5

6

7

8

9

Figure D.1: DTM measures on the Almelo network

For each of the ATS systems we have indicated the directions of flow using
North (N), East (E), South (S) and West (W), where North is assumed to be
the top of the figure.
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setting N E S W

a 2508 112 2508 201
b 2368 168 2368 302
c 2229 224 2229 402
d 2090 280 2090 503
e 1950 335 1950 604
f 1811 391 1811 704
g 1672 447 1672 805
h 1533 503 1533 906
i 1393 559 1393 1006

(a) Outflow capacities for ATS 1

setting N E S W

a 3622 279 2368 263
b 3421 418 2237 395
c 3220 557 2105 526
d 3019 697 1974 658
e 2817 836 1842 789
f 2616 975 1711 921
g 2415 1115 1579 1053
h 2214 1254 1447 1184
i 2012 1393 1316 1316

(b) Outflow capacities for ATS 2

setting N E S

a 201 1811 1811
b 302 1711 1711
c 402 1610 1610
d 503 1509 1509
e 604 1409 1409
f 704 1309 1309
g 805 1207 1207
h 906 1107 1107
i 1006 1006 1006

(c) Outflow capacities for ATS 3

setting N E S W

a 1316 1006 1316 1006
b 1184 1107 1184 1107
c 1053 1207 1053 1207
d 921 1308 921 1308
e 789 1409 789 1409
f 658 1509 658 1509
g 526 1610 526 1610
h 395 1711 395 1711
i 263 1811 263 1811

(d) Outflow capacities for ATS 4

setting N S W

a 604 1409 604
b 704 1308 704
c 805 1207 805
d 906 1107 906
e 1006 1006 1006
f 1107 906 1107
g 1207 805 1207
h 1308 704 1308
i 1409 604 1409

(e) Outflow capacities for ATS 5

setting N E S W

a 1316 1006 1393 1006
b 1184 1107 1254 1107
c 1053 1207 1115 1207
d 921 1308 975 1308
e 789 1409 836 1409
f 658 1509 697 1509
g 526 1610 557 1610
h 395 1711 418 1711
i 263 1811 279 1811

(f) Outflow capacities for ATS 6

Table D.1: DTM control settings for Almelo
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setting N E S W

a 1409 836 1174 836
b 1308 975 1090 975
c 1207 1115 1006 1115
d 1107 1254 922 1254
e 1006 1393 839 1393
f 906 1533 755 1533
g 805 1672 671 1672
h 704 1811 581 1811
i 604 1950 503 1950

(a) Outflow capacities for ATS 7

setting vmax;car

1 120
2 100
3 80

(b) Car speed limits for VSS 8

setting vmax;car

1 120
2 100
3 80

(c) Car speed limits for VSS 8

Table D.1: DTM control settings for Almelo (cont.)





Appendix E

Extensive Results for

Testcase Almelo

This appendix contains the extensive results for the traffic & transport analysis
done on the Almelo network.

Figure E.1 on pages 166–174 contains the boxplots for the different DTM
measures for all the objectives over all the settings and time periods. We
grouped the results per setting, which makes it easier to analyse the effects of
a specific setting.

165



166 Extensive Results for Testcase Almelo

1.05

1.15

1.25
x 10

4

T
T

T

1.10

1.20

a b c d e f g h i

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6time period

DTM setting

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.61

1.62
x 10

8

1.60

C
O

2

a b c d e f g h i

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6time period

DTM setting

66.4

66.5

66.6

66.7

66.8

N
oi

se

a b c d e f g h i

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6time period

DTM setting

(a) Effects of ATS 1

Figure E.1: Boxplots of the effects for all DTM measures
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Figure E.1: Boxplots of the effects for all DTM measures (cont.)
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Figure E.1: Boxplots of the effects for all DTM measures (cont.)
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Figure E.1: Boxplots of the effects for all DTM measures (cont.)
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Figure E.1: Boxplots of the effects for all DTM measures (cont.)
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Figure E.1: Boxplots of the effects for all DTM measures (cont.)
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Figure E.1: Boxplots of the effects for all DTM measures (cont.)
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Figure E.1: Boxplots of the effects for all DTM measures (cont.)
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Figure E.1: Boxplots of the effects for all DTM measures (cont.)
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