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Abstract

The growth of the Internet during the past years led to an increased demand for
capacities in long distance communication. This was partly met by techniques
for all optical multiplexing. One of the ways to multiplex optical signals is using
a circular optical microresonator. A circular cavity can act as an optical filter
by placing it between two straight waveguides. Light is launched into one of
these. If the input wavelength matches the cavity a resonance will occur and
the power will be transferred to the other waveguide. Otherwise, no resonance
occurs and the light will stay in the first waveguide.

This thesis treats ring and disc microresonators within a 2D model. The res-
onant electomagnetic fields supported by such a free circular cavity are deter-
mined in the form of whispering gallery modes. From the Maxwell equations
an ansatz for the electric field is derived and from that the resonances are cal-
culated. For this a Matlab program was written which solves for the complex
resonance frequency, but needs a good estimate as starting point. The simula-
tion results agree well with the results from [9] and [16].

Once all fields of the cavity and the waveguides are known their interaction has
to be determined. For this, a coupled-mode ansatz for the total fields is made,
with at first unkown amplitudes. The amplitude functions of the waveguide
modes are discretized into finite elements. A weak formulation of the Maxwell
equations is used to calculate the amplitudes of all fields. The formalism has
been implemented in Matlab. First, only solutions for two straight waveguides
were calculated. Coupling occurs if the two waveguides are close enough to each
other. The results including a disc or ring cavity match the results from [9]. In
all cases the results are as expected.
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Chapter 1

Introduction

Nowadays it is almost impossible to imagine a world without long distance
communication. There would be no Internet, no telephone, no radio or television
etc. Nevertheless optical based telecommunication is still a young area. The
first time a electronic message was sent over a long distance was in 1844, by
Samuel Morse. This led to the establishment of telegraphy. Years later, in 1876
Alexander Graham Bell found a way to transmit speach over long distances [20],
which resulted in the founding of the first telephone company two years later.

In the years that followed the number of telephone calls grew rapidly, about
halfway the twentieth century it became clear that the demand for communi-
cation capacity would soon be too large for the current facilities. A new way of
transmitting the signal had to be found. Several solutions where suggested, but
after a while it turned out that the use of optical fibres was the most feasible
[5]. This was, amongst others, made possible by the discovery of the laser in
the 1960’s.

The first optical fibres were not very suitable for long distance communication,
but when their possibilities were recognised a lot of research was done in this
area and is still in progress. Nowadays fibres can transmit millions of phone calls
simultaneously. However, the demand has grown very rapid as well. Not only for
phone calls, but the Internet grows rapidly and more and more people use it to
watch video. This ever growing demand asks for growth in the capacity as well.
The current fibres have a large capacity, but the modulation and multiplexing is
the bottleneck. This is still mainly done by transforming the optical signal into
an electrical signal, then modulate or multiplex it and then transform it back to
an optical signal [17]. This is not only elaborate, but also relatively slow, since
electrical modulation or multiplexing is much slower than optical modulation or
multiplexing. Optical modulation and multiplexing could be much faster and
there is a lot of research going on to make this possible on large scale. There are
several ways to do this. Two important fields of research are photonic crystals
and microresonators. Photonic crystals are promising, but at this moment still
difficult to fabricate [21]. The technology to fabricate microresonators is better
known, so at this moment they are a good candidate.
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1.1 Microresonator

One of the options for an optical filter is a microresonator. The coupling to
waveguides or other cavities can be either vertically [13], with the cavity above
the waveguides, or horizontally, with the waveguides in the plane of the cavity.
In this thesis only the simple 2D configuration as shown in figure 1.1 is consid-
ered. The coupling between the waveguides and the cavity is horizontal and it
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Figure 1.1: A disc microcavity coupled to two straight waveguides.

is assumed that the structure extends infinitely in the third direction. A signal
enters through the lower waveguide and will partly couple to the cavity. If the
wavelength corresponds to the cavity resonance, the field within the cavity will
build up and most of the power will go in there. This implies that almost noth-
ing will go through the lower waveguide. In the top waveguide the situation is
reversed. Due to the high power in the cavity part of the light will be coupled
into this waveguide. If the wavelength does not match, no resonance will occur.
As a result the field does not build up in the cavity and hence no power is
coupled to the upper waveguide. These kind of cavities can be used in several
ways. The simplest way is simply couple them to two waveguides as described
above. They can also be cascaded, this way it is possible to filter out exactly
one resonance frequency. Another options is to use them to create a filter array
by taking a waveguide in one direction and several waveguides perpendicular
to it. Cavities can be placed in the corners and couple different frequencies to
different perpendicular waveguides [21].

The aim of this project is to find the resonant frequencies, and hence wave-
lengths, for such a cavity. This is done by finding the modes of the free cavity
(i.e. cavity without adjacent waveguides). Once these resonances are found, the
cavity will be coupled to two straight waveguides. For this, a variant of coupled
mode theory will be used, together with a finite element discretization for the
mode amplitudes of both straight waveguides, based on [8].
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1.2 Different approaches

For the calculation of the resonances of a circular cavity two methods are well
known, both of them consider the problem in a different way. First there is
the bent waveguide approach, figure 1.2 shows how the problem is approached
in [10]. In this case a model for the fields of bent waveguide segments that
form the cavity is made. The total resonator from figure 1.1 then consists of
four parts, two bent-straight waveguide couplers and two bent waveguides. The
couplers are linked through the bent waveguides to form the resonator. As is
the case with straight waveguides, bent waveguides are analysed with a real
frequency. A bent waveguide will always be lossy. These losses are expressed
in the wavenumber. For straight waveguides this wavenumber is a real number,
but in a bent waveguide the wavenumber will be complex. A disadvantage of
this method is that Bessel functions of complex order occur, which are difficult
to calculate numerically.

r ϕ z

x

R

Figure 1.2: A bent waveguide, which is a piece of a circular cavity.

The other approach, a description in terms of whispering gallery modes, looks
at the entire cavity as shown in figure 1.3. This method is used in [16] and
[18] and will be used in this thesis. The only way to get resonance is if the
field after one roundtrip is exactly equal to the original field. This condition is
used to establish an expression for the fields. In this case, the solution will have
a complex frequency, where the imaginary part accounts for the losses. This
is why this approach is sometimes named the complex frequency approach.
Finding this complex frequency is complicated, because it is a search for a zero
in the complex plane and the respective function changes very gradually along
the imaginary axis, but rather rapidly along the real axis.

R
r ϕ z

x

Figure 1.3: The whispering gallery modes are found by considering the cavity
as a whole.
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Once the resonances of the cavity are found, the coupling between the wave-
guides and the cavity has to be determined. There are several ways to do this.
Mostly a bent-straight waveguide coupler is considered, which is analysed using
an approach based on coupled mode theory, see [11] and [18]. However [14]
makes use of a pertubation argument and [3] proposes an approach based on
Greens function.

The approaches described above are largely analytical. The structure can also
be analysed numerically, for instance with an FDTD method (Finite Differ-
ence Time Domain), see for instance [12] and [19]. Even in a 2D setting, the
calculations are very time consuming. More analytical approaches can reduce
this calculation time significantly [14]. These fully numerical methods are often
used to verify more analytical methods. For design purposes they take too much
time.

In this work a new way of modelling the resonator device is introduced. As men-
tioned before, the cavity fields will be modelled as whispering gallery modes and
the coupling will be estimated by a variant of coupled mode theory, in contrary
to approaches used in other publications, where the coupling is determined based
on fields of bent waveguides.

1.3 Outline

The remainder of this thesis is organized as follows. The second chapter de-
scribes the theory which is needed to find the guided mode of a single-mode
waveguide and the whispering gallery modes. This extends from the Maxwell-
equations to the actual calculation of such modes. Then, chapter 3 gives some
results from the calculations to find the resonances of ring and disc cavities.
Those results are compared with results from [16] and [9]. Chapter 4 deals with
the theory of the coupling between the fields of the cavity and the waveguides.
For this, the mode amplitudes of the waveguides are discretized in the horizontal
direction (i.e. along z, see figure 1.1) and then the problem is solved with a finite
elements method. Results are discussed in chapter 5. This includes coupling two
straight waveguides and coupling a microdisc cavity to two straight waveguides.
Finally, chapter 6 gives some conclusions and suggestions for further research.
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Chapter 2

Basics

This chapter is the theoretical basis of the thesis. Here the model properties
of both straight waveguides and circular cavities will be discussed. It starts in
section 2.1 with the Maxwell equations and it is described how they can be used
in this specific situation. Section 2.2 shows step by step how the electric field
of a straight waveguide can be determined. Section 2.3 does the same for a
disc and a ring. This model can easily be extended to circular cavities of more
layers.

2.1 The Maxwell equations

The first step in any problem in electromagnetics is to look at the Maxwell
equations. In this case the source and charge free version can be used.

The Maxwell equations are then given by

∇×E = −µ∂H
∂t

, (2.1a)

∇×H = ε
∂E
∂t
, (2.1b)

∇ ·H = 0, (2.1c)
∇ · εE = 0. (2.1d)

Here E denotes the electric field, H the magnetic field, ε indicates the per-
mittivity and µ the permeability. In relevant media µ ≈ µ0 holds at optical
frequencies, where µ0 is the permeability of vacuum.

Furthermore, it is assumed that the structure and the fields are constant in the
y-direction. Since all fields will be time harmonic the time dependence can be
described by e−iωt, with ω the frequency, which in general is a complex number.

The second step is to reduce these equations to a more convenient form. This
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can be done by filling in the time-derivatives and writing equations (2.1a) and
(2.1b) in components. In Cartesian coordinates this looks like ∂Ez

∂y −
∂Ey

∂z
∂Ex

∂z −
∂Ez

∂x
∂Ey

∂x −
∂Ex

∂y

 = iωµ0

Hx

Hy

Hz

 (2.2)

and  ∂Hz

∂y −
∂Hy

∂z
∂Hx

∂z −
∂Hz

∂x
∂Hy

∂x −
∂Hx

∂y

 = −iωε

ExEy
Ez

 . (2.3)

The problem treated here is constant along y and the solutions which are rele-
vant are invariant in the y-direction. Hence all y-derivatives will vanish. Now
these equations split up into two independent sets. The first involves Ey, Hx

and Hz and the second Ex, Ez and Hy. These are associated with TE and
TM polarization respectively. This thesis only deals with TE polarization. The
relevant equations are

Hx =
1

−iωµ0

∂Ey
∂z

, (2.4a)

Hz =
1

iωµ0

∂Ey
∂x

, (2.4b)

−iωεEy =
∂Hx

∂z
− ∂Hz

∂x
(2.4c)

=
−1
iωµ0

(
∂2Ey
∂z2

+
∂2Ey
∂x2

)
. (2.4d)

Rewriting the last equation gives

0 =
[
∂2

∂x2
+

∂2

∂z2
+ ω2µ0ε

]
Ey

=
[
∇2 + ω2µ0ε

]
Ey. (2.5)

Now write ε = ε0εr, with ε0 the vacuum permittivity, and εr = n2, with n the
refractive index of the material, to express this in terms of the speed of light
c2 = 1

µ0ε0
. Then equation (2.5) becomes[

∇2 +
ω2n2

c2

]
Ey = 0. (2.6)

In the structures treated in this thesis there will be jumps in the refractive index
profile. At such an interface some continuity conditions have to be satisfied. The
first condition is that the y-component of the electric field must be continuous
across the interface. The second condition states that all components of the
magnetic field should also be continuous.
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2.2 The fundamental mode of a straight wave-
guide

In this section a solution for the electric field of guided waves in a straight
waveguide, as shown in figure 2.1, is determined, with the restriction that the
refractive indices below and above the waveguide are equal. In this thesis only a

x = d

x = −d

z

x

n1

n2

n1

2d

Figure 2.1: A straight waveguide of thickness 2d, with refractive index n1 in the
cladding and n2 in the core.

solution corresponding to the fundamental mode will be considered. The field is
assumed to propagate in the z-direction with propagation constant β, described
by a z-dependence of eiβz, for a given real frequency ω. Substituting this into
equation (2.6) and replacing ω

c by the wavenumber k leads to[
∂2

∂x2
− β2 + k2n2

]
Ey(x) = 0. (2.7)

Of course, the total field looks like E(x, z, t) = Ey(x)ei(βz−ωt). Note that for
notational convenience the symbol Ey is re-used here for the x-dependent mode
profile.

Recall that at each interface, both the electric field and the component of the
magnetic field which is tangential to the interface should be continuous. Further-
more, to form a guided mode the field should be decaying in the areas outside
the waveguide and be confined to the waveguide. Since only the fundamental
mode is required, the search is for a solution of equation (2.7) which behaves
like a cosine in the waveguide region [6, 15].

Thanks to the symmetry the mode profile is a solution of equation (2.7) in the
form

Ey(x) =

 Beαx for x ≤ −d,
A cos(γx) for −d < x < d,
Be−αx for x ≥ d,

with α =
√
β2 − k2n2

1 and γ =
√
k2n2

2 − β2.

As mentioned before the Ey-field should be continuous at x = ±d. The same
holds for the z-component of the magnetic field, hence equation (2.4b) implies
that the x-derivative of Ey should also be continuous at x = d and x = −d. It
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is easy to see that the equations at x = d are exactly equal to those at x = −d.
This is due to the symmetry of the structure. In matrix form this can be written
as [

cos(γd) −e−αd
−γ sin(γd) αe−αd

] [
A
B

]
= 0.

Such a system of equations has a nontrivial solution if and only if

det
[

cos(γd) −e−αd
−γ sin(γd) αe−αd

]
= 0.

Remember that β, which is hidden in α and γ, is the primary unknown. Since it
is not possible to solve this equation analytically for β [2], a numerical solution
has to be found.

As soon as the value of β is known, the ratio between the constants A and B
can be calculated and the electric field can be determined everywhere up to
an arbitrary complex constant. In figure 2.2 an example of a snapshot of the
electric field of a waveguide is shown. Note that here only the real part of the
total field, including the time dependence, is shown at an arbitrary time, this is
the physical part. This will be the case in all of the figures in this thesis. For
positive β, in time this field moves in the positive z-direction. The field will
oscillate, but not decay in time.

Figure 2.2: The modal electric field of a waveguide with d = 0.2µm, n1 = 1.0,
n2 = 1.5 and λ = 1.05µm.
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2.3 Whispering gallery modes

This section explains how the electric field of a disc or ring cavity as shown in
figure 2.3 can be calculated. This model can also be used for structures with
more layers. The layers are numbered in increasing order from the inner layer
to the outer layer. Thus the layer containing the origin will be denoted as layer
1, the layer surrounding it as 2, etc.

r ϕ
R

n1

n2

r ϕR1

R2 n1

n2

n3

z

x

z

x

Figure 2.3: Left: A disc with radius R. Right: A ring with radii R1 and R2

The refractive indices are numbered in increasing order from the centre.

In this thesis the search is for a resonant solution, where the field should oscillate
harmonically in time. This oscillating behaviour is described by a time depen-
dence of e−iωt, in this case ω can be a complex number. Since the field of such
a cavity will always be lossy, the physically relevant solution should also decay
in time, hence the imaginary part of frequency ω should be negative. That way
the real part of −iωt will be negative and the desired decay in time is obtained.
The real part of ω should be close to a given target frequency. Sometimes the
target wavelength λ is given, the relation between λ and the real part of ω is
then Re(ω) = 2πc/λ.

Because of the circular symmetry in the structure it is an obvious choice to use
cylindrical coordinates (r, ϕ). To get the desired resonance the fields should be
exactly equal to the original fields after making one roundtrip. This results in
an angular dependence eimϕ of the electric field, where m is an integer. Hence
the electric field has the form E(r, ϕ, t) = Ey(r)ei(mϕ−ωt). Note that here the
symbol Ey has been re-used again.

Substitute all this into equation (2.6) to obtain the radial equation[
∂2

∂r2
+

1
r

∂

∂r
+
ω2n2

c2
− m2

r2

]
Ey(r) = 0.

Multiplication by r2 gives the Bessel equation[
r2
∂2

∂r2
+ r

∂

∂r
+ r2

ω2n2

c2
−m2

]
Ey(r) = 0. (2.8)
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Solutions of this equation are the Bessel functions J and Y . Based on the
boundary conditions, a suitable combination of the fundamental solutions J
and Y has to be chosen for each region. These conditions are:

• At the origin the fields should be finite.

• At each interface the continuity conditions mentioned in section 2.1 should
hold. This means that both the electric field and the component of the
magnetic field which is tangential to the interface should be continuous.
Using equation 2.1a, the second condition implies that the r-derivative of
Ey is continuous.

• In the outer layer the waves should be outgoing.

In equation (2.8) m only appears quadratically, hence the solutions for ±m are
identical. In this thesis the counter clockwise rotation is chosen with m positive.
In the layer which includes the origin the only possible solution is the Bessel
function of the first kind, since this is the only Bessel function which is finite in
the origin. So in this layer the field will be described by

Ey(r) = a1Jm(
ω

c
n1r). (2.9)

Here n1 is the refractive index of layer 1. The constant a1 is unknown for
the moment. In all the layers (possibly none) which are present between the
inner and the outer layer no further conditions are given, hence in this region a
combination of the Bessel functions of the first and second kind should be used.
The electric field will then be

Ey(r) = a2k−2Jm(
ω

c
nkr) + a2k−1Ym(

ω

c
nkr). (2.10)

Constants a2k−2 and a2k−1 are currently undefined, they will be determined
later on. Here k denotes the number of the layer, counting starts with one at
the inner layer.

In the outer region the requirement is that the waves should be outgoing. The
only solution which has this property for the time dependence considered here
is the Hankel function of the first kind. Hence in this region the electric field is
described by

Ey(r) = a2K−2H
(1)
m (

ω

c
nKr), (2.11)

where k = 1, ...,K and K is the number of layers.

As mentioned before at the boundaries both the electric and the magnetic field
should be continuous. From equation (2.1a) it is clear that the magnetic field
is a constant times the r-derivative of the electric field. These conditions are
needed to find all constants a1...a2K−2 from equations (2.9)-(2.11). All these
conditions can be written in the form Aa = 0, where a is the vector consisting
of all the constants aj and A is a matrix. This matrix has 2(K − 1) rows: two
rows for each interface, the first represents continuity conditions for the electric
field and the second continuity conditions for the magnetic field. On each row
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only the entries corresponding to the layers next to the interface are nonzero.
For two layers, thus the situation of the disc, this results in

A =

[
Jm(ωc n1R1) −H(1)

m (ωc n2R1)
ω
c n1J

′
m(ωc n1R1) −ωc n2H

(1)
m
′(ωc n2R1)

]
.

Here the prime denotes a derivative with respect to the argument. See appendix
B for more detail on these derivatives. For three layers, the ring, it looks like

A =


Jm(ωc n1R1) −Jm(ωc n2R1) −Ym(ωc n2R1) 0

ω
c n1J

′
m(ωc n1R1) −ωc n2J

′
m(ωc n2R1) −ωc n2Y

′
m(ωc n2R1) 0

0 Jm(ωc n2R2) Ym(ωc n2R2) −H(1)
m (ωc n3R2)

0 ω
c n2J

′
m(ωc n2R2) ω

c n2Y
′
m(ωc n2R2) −ωc n3H

(1)
m
′(ωc n3R2)

 .

This can easily be extended to more layers, just by adding extra rows with the
proper input. The matrix will always be square, because each additional layer
adds two rows, one for the electric and one for the magnetic field, and two
columns, since the extra layer will be a layer in the region between the inner
and the outer layer and thus has a component for the Bessel function of the
first and the second kind. The system Aa = 0 only has a nontrivial solution if
the determinant of A is zero. Using this requirement ω can be determined for a
given m.

This is not as simple as it seems. Since ω is a complex number, the search is
in fact for a combination of two real quantities. Furthermore, there are several
solutions which in some cases are very close to each other. This means it is
necessary to make a very good initial guess. In the configurations considered
in this report this is done by making a plot of |det(A)| and then manually
look where the required minimum is approximately located. This value is then
inserted in Matlab’s numerical iterative solver fsolve and if the guess is good
enough the right value for ω will be found.

Once ω is known the vector a can be calculated up to a constant and hence
the total electric field can be determined. Figure 2.4 shows an example of a
snapshot of the electric field of a disc.

As soon as the Ey(r) is known, the total field is determined by multiplying it
with ei(mϕ−ωt). As mentioned before, the general behaviour will be that the field
starts to rotate in a counter clockwise direction. Since the whispering gallery
modes are lossy by definition, the light will travel in an outward direction and
the fields in the cavity will decay in time.
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Figure 2.4: The electric field of a disc with n1 = 1.7, n2 = 1.6, r = 5.5µm and
λ ≈ 1.3µm.
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Chapter 3

Numerical results

This chapter gives some numerical results obtained with the Matlab code written
to solve for the resonant fields of discs and rings as explained in chapter 2. To
check whether this model and the accompanying code are correct, the results
are compared to reference results from the literature. This will also help to
get some intuition for the behaviour of such a cavity. Section 3.1 compares the
results mentioned in [16] to the results of this code. Section 3.2 looks at higher
order modes and compares these with the results from [9].

3.1 Ring and disc cavities

First the results from this program are compared to the results for the ring and
disc cavities from [16]. This article also makes use of whispering gallery modes,
so the results should correspond. All values for parameters are chosen exactly
equal to those in [16], however it is important to apply the proper definition
of the radius, since this is different from the definition used in this thesis. The
radius Rc given in that article is the radius of the centre of the ring, where the
ring has a thickness of 1µm. Using the notation of figure 2.3 this means that
R1 = Rc − 0.5µm and R2 = Rc + 0.5µm. For comparison reasons the radius R
of the disc is equal to R2.

The refractive index of the disc or ring is n = 1.7 and in the surrounding and the
interior of the ring n = 1.6. The resonances should be around the wavelength
λ = 1.3µm, which results in a real frequency of 1.45PHz. The tested structures
have radii of curvature between Rc = 5µm and Rc = 200µm. The value of m is
chosen equal to the value given in [16].

In table 3.1 the results for the disc are shown. The results agree well.
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Frequency from [16](PHz) Calculated frequency(PHz)
Rc(µm) m Re(ω) Im(ω) Re(ω) Im(ω)
5 42 1.4591 −5.428× 10−2 1.4560 −5.397× 10−2

10 82 1.4550 −2.016× 10−2 1.4544 −2.077× 10−2

20 162 1.4501 −4.662× 10−3 1.4497 −4.679× 10−3

30 243 1.4526 −1.136× 10−3 1.4520 −1.315× 10−3

40 323 1.4482 −2.580× 10−4 1.4480 −2.909× 10−4

50 404 1.4483 −5.102× 10−5 1.4480 −5.834× 10−5

60 485 1.4479 −9.161× 10−6 1.4480 −1.198× 10−5

80 648 1.4489 −2.407× 10−7 1.4498 −4.701× 10−7

100 811 1.4491 −5.447× 10−9 1.4501 −1.355× 10−8

200 1612 1.4497 −1.690× 10−13 1.4500 −5.011× 10−13

Table 3.1: Disc with varying radius. Whispering gallery modes with eigenfre-
quencies around 1.45 PHz.

Frequency from [16](PHz) Calculated frequency(PHz)
Rc(µm) m Re(ω) Im(ω) Re(ω) Im(ω)
5 42 1.4590 −5.428× 10−2 1.4559 −5.319× 10−2

10 82 1.4554 −2.113× 10−2 1.4544 −2.011× 10−2

20 162 1.4526 −5.748× 10−3 1.4508 −5.563× 10−3

30 242 1.4515 −2.013× 10−3 1.4520 −2.218× 10−3

40 322 1.4509 −7.507× 10−4 1.4510 −8.326× 10−4

50 402 1.4504 −2.819× 10−4 1.4500 −3.044× 10−4

60 482 1.4499 −1.044× 10−4 1.4500 −1.228× 10−4

80 642 1.4491 −1.368× 10−5 1.4490 −1.631× 10−5

100 813 1.4504 −1.685× 10−6 1.4500 −2.002× 10−6

200 1605 1.4499 −4.343× 10−11 1.4500 −7.707× 10−11

Table 3.2: Ring with varying radius. Whispering gallery modes with eigenfre-
quencies around 1.45 PHz.

Table 3.2 shows the results for the ring. Again the results agree very well. From
the smaller absolute value of the imaginary part of ω, it can be seen that the
light is a little bit better confined in the disc than in the corresponding ring.
The reason for this is the higher refractive index in the centre. Figure 3.3 shows
the electric field in both the disc and the ring with Rc = 10µm, the values for
m and ω can be found in table 3.1 and 3.2.

An extra indication for the correctness of the code is the continuity of the electric
field. Figure 3.1 shows that both the real and the imaginary part of the electric
field of the disc are continuous on the interface. Figure 3.2 shows that this is
also the case for the ring. These figures just serve as an example, this continuity
holds in all other cases as well. In principle also the continuity of the derivative,
or of the magnetic field components, would have to be checked.
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Figure 3.1: The real and imaginary part of the electric field of a whispering
gallery mode supported by a disc with radius of curvature Rc = 10µm, all other
parameters are as in table 3.1.
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Figure 3.2: The real and imaginary part of the electric field of a whispering
gallery mode supported by a ring with radius of curvature Rc = 10µm, all other
parameters are as in table 3.2.
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(a)

(b)

Figure 3.3: The electric field of (a) a disc, λ = 1.2951µm, and (b) a ring,
λ = 1.2946µm, with R = 10µm, m = 82.
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Calculated frequency(Phz)
mode m Re(ω) Im(ω) Calculated mc

Rω
mc
Rω from [9]

TE0 33 1.887 −1.481× 10−5 1.3107 + i1.029× 10−5 1.3106− i1.1294× 10−5

TE1 29 1.910 −2.381× 10−3 1.1380 + i1.419× 10−3 1.1348− i1.8862× 10−3

TE2 25 1.890 −1.616× 10−2 0.9913 + i8.476× 10−3 0.9902− i1.1676× 10−2

TE3 22 1.912 −2.892× 10−2 0.8622 + i1.304× 10−2 0.8558− i1.8832× 10−2

Table 3.3: Modes with different radial orders.

3.2 Higher order modes in a disc

To check whether the code also works for higher order modes, the structure on
page 44 of [9] was tested. This is a disc with a radius ofR = 4.0µm, the refractive
indices are n1 = 1.5 and n2 = 1.0. The desired wavelength is λ = 1.0µm, which
results in a real frequency of 1.8834PHz. Table 3.3 shows the results and gives
the values from [9] as reference. The latter ones are calculated using a bend
mode approach, this implies that m is a complex number and ω is real. The
results should be comparable, even though the way to obtain them is different,
because the physical situation is the same. It turns out that comparing mc

Rω gives
good results. An explanation for this comparison can be found in appendix A.

The modes are indicated with TE because of the polarization. The numbers of
the modes indicate the number of zero crossings within the cavity in the radial
direction.

The results fit quite well, the only big difference is the sign of the imaginary
part of mc

Rω . This difference is due to the use of eiωt for the time dependency
in [9], where this thesis assumes the time dependence to be e−iωt. The real part
of ω is in both cases positive, because the propagation direction is reversed.
However, the sign of the imaginary part of ω is determined by the fact that the
real part of the time dependence should describe decaying fields. Hence, in [9]
the imaginary part of ω should be positive, where in this thesis it has to be
negative. Figure 3.4 shows the electric field of all four described modes.
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(a) TE0

(b) TE1

Figure 3.4
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(c) TE2

(d) TE3

Figure 3.4: The electric field of the different modes from table 3.3. The col-
orscale is chosen individually for each figure, so the levels are not comparable.
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Chapter 4

Coupling the waveguides
and the cavity

This chapter explains how the waveguides and cavity from chapter 2 can be
coupled to form the resonator device shown in figure 4.1. Both parallel wave-
guides have the same properties like thickness 2d and refractive index ng and are
located at a distance g below and above the cavity. The device is excited in the
lower waveguide 1 from the left. A part PT of the incoming power PI is trans-
mitted to the right outlet of waveguide 1, another part PD will be transmitted
to the left outlet of the upper wavguide 2. A small part PR of the incoming
power will be reflected to the left outlet of waveguide 1 and a part PF will be
transmitted to the right outlet of waveguide 2. The cavity itself has radius R
and refractive index nc. The background index is nb. Section 4.1 explains how
the fields of the waveguides and the cavity are combined into an ansatz for the
field of the full device which contains unknowns. A variant of coupled mode
theory (CMT) then allows to determine these with a finite elements discretiza-
tion in the z-direction, as is explained by section 4.2. This approach is based
on [8].

4.1 Coupled mode theory

From chapter 2 the electric and magnetic fields of the waveguides and cavity are
known. In this analysis only the fundamental mode of each waveguide is taken
into account, just as in section 2.2. For the cavity several modes will be used,
but strongly radiating modes will be neglected. The fields of the waveguides are
of the form

ψ±n (x, z) =
[

Ẽ
H̃

]±
n

(x)e±iβz for n = 1, 2.

Here the plus sign indicates a mode propagating to the right and the minus a
mode propagating to the left. The subscript n denotes which waveguide the field
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Figure 4.1: The microdisc resonator as investigated in this chapter. The dashed
arrows indicate the direction of propagation. The distance between the cavity
and the waveguide is indicated with g

corresponds to. Ẽ is the electric part of the mode profile and H̃ the magnetic
part of the mode profile. For the cavity a similar notation is used, namely

ψM3 (x, z) =
[

Ẽ
H̃

]
M

(x, z).

The index M indicates the mode of the cavity. This can be either a counter
clockwise propagating mode with a positive angular wavenumber m or a clock-
wise propagating mode with a negative angular wavenumber.

Now the total field can be expressed as a sum of the former expressions[
E
H

]
(x, z) = f1(z)ψ+

1 (x, z) + b1(z)ψ−1 (x, z) + f2(z)ψ+
2 (x, z)

+b2(z)ψ−2 (x, z) +
∑
M

γMψ
M
3 (x, z). (4.1)

This approximation comes from coupled mode theory. It assumes that the
original fields of a component of the structure (i.e. a waveguide or cavity) are
not much disturbed by the presence of the other components. Except for the
functions f1, b1, f2, b2 and the coefficients γM everything on the right side of
equation (4.1) is known.

4.2 Finite elements

The aim is now to determine the unknown amplitudes in equation (4.1). For this
finite elements will be used in the z-direction. The quantities f1, b1, f2 and b2
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are functions of z, hence they will be discretized. The horizontal computational
window [z0, zN ] is divided in N pieces of length ∆z = (zN−z0)/N . Nodal points
are placed at zj = z0 +j∆z, with j = 0, .., N . For each node the piecewise linear
function αj(z) is given by

αj(z) =

 (z − zj−1)/∆z , if zj−1 ≤ z < zj ,
(zj+1 − z)/∆z , if zj ≤ z < zj+1,

0 , elsewhere,

with the exception that α0 = 1 for z < z0 and αN = 1 for z > zn.

Using these functions a first order discretization of f1(z) into linear finite ele-
ments is

f1(z) =
∑
j

f1
j αj(z).

The other amplitudes are discretized in the same way.

The next step is to collect all amplitudes f1
j , b1j , f

2
j and b2j , together with the

unknowns γM in a big set {ak}, or a vector a. The total field from equation
(4.1) now looks like [

E
H

]
(x, z) =

∑
k

ak

[
Ek

Hk

]
(x, z). (4.2)

Ek and Hk are an assembly of αj(z)ψ±n (x, z) and ψM3 (x, z). Next the Maxwell
equations in the frequency domain are considered in the form

∇×E− iωµ0H = 0 (4.3a)
−∇×H− iωεE = 0. (4.3b)

A weak formulation can be obtained by multiplying equation (4.3a) with the
complex conjugate (∗) of a trial field H′ and equation (4.3b) with the complex
conjugate of trial field E′, then add them and integrate the whole thing. The
resulting equation is∫ ∫ {

(H′)∗ · (∇×E)− (E′)∗ · (∇×H)− iωε(E′)∗ ·E

−iωµ0(H′)∗ ·H
}
dxdz = 0. (4.4)

This equality should hold for all trial fields E′ and H′.

Now the fields from equation (4.2) can be substituted for the E and H in
equation (4.4). If for the trial fields the modal elements El and Hl are used the
resulting integral should vanish for every l. Equation (4.4) then becomes

∑
k

Klkak = 0 for all l,

with
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Klk =
∫ ∫

{(Hl)∗ · (∇×Ek)− (El)∗ · (∇×Hk)− iωε(El)∗ ·Ek

−iωµ0(Hl)∗ ·Hk} dxdz. (4.5)

Since the input will only enter in the left side of waveguide 1, f1
0 should be equal

to 1 and b1N , f2
0 and b2N should be zero. Once these constants are substituted in

ak, the next step is to reorder ak such that the given entries, g are at the top,
followed by the unknowns u and build a matrix K which consists of all those
Klk in the order in which they appear in a. This results in a system Ka which
looks like [

Kgg Kgu

Kug Kuu

] [
g
u

]
= 0. (4.6)

Since the 4 elements of g are already given, this system has more equations than
unknowns and is overdetermined.

To overcome this, the system will be solved in a least square sense, by rewrit-

ing (4.6) into
[
Kgg

Kug

]
g = −

[
Kgu

Kuu

]
u or −Kgg = Kuu. Now the un-

known coefficients in u can be found by solving −K†uKgg = K†uKuu. Hence
u = −(K†uKu)−1K†uKgg. The symbol † indicates the adjoint.

The last step is to translate this solution back to the electric and magnetic
fields. This is done by substituting the coefficients in u and g into equation (4.2).
However, even without this back translation, the coefficients in u give important
information. For instance, the coefficient which belongs to the element related
to the drop port corresponds to the amplitude of the field at the left side of
waveguide 2, its square corresponds to the relative amount of dropped power
PD. If this number is large the cavity must be in resonance. Further away from
the resonance this number will be small. In the same way the PF , PT and PR
can be determined.
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Chapter 5

Results

This chapter shows some results of the program that implements the formalism
of the previous chapter. Section 5.1 gives some details on the implementation in
Matlab. Section 5.2 shows what happens if two straight waveguides are coupled.
In section 5.3 some results for the disc resonator are shown.

5.1 Some details of the Matlab program

The fields of the waveguides are calculated as mentioned in chapter 2. The
propagation constant is determined for the wavelength parameter, or real fre-
quency, as prescribed for the frequency domain formalism of chapter 4. This
parameter also appears in equations (4.3), (4.4) and (4.5). For the cavity one or
more resonances are determined using the program from section 2.3. The cavity
resonances are determined only once, for angular wavenumbers m and radial
orders such that the real parts of the frequency fall within the specified region
of interest. If the program is run for a different wavelength, no new resonances
are determined. Only whispering gallery modes which are well confined in the
cavity are considered. Their complex frequency is only used for the fields of the
cavity.

To calculate the integrals from equation (4.5) not only the electric and magnetic
fields are needed, but also their derivatives. How these are determined for the
cavity fields is described in appendix B. Once the electric and magnetic fields
and their derivatives are known to the program, the integrals in equation (4.5)
to fill the matrix from equation (4.6) can be determined. The integrals are
evaluated numerically, using the Matlab function dblquad. This function needs
the function which has to be integrated and the boundaries of the integration
domain as parameters. This domain is determined as follows.

Due to the finite element discretization for the waveguides the integral in equa-
tion (4.5) has to be calculated only over the interval where the function αj of
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both of the nodes corresponding to the indices k and l is unequal to zero. This
implies that the integral will automatically be set to zero if two nodes are not
adjacent or equal. If these indices correspond to two adjacent nodes, the inter-
val of integration will have a width of δz and if these indices correspond to the
same node the integration will be over a width of 2δz. This way the integration
in the z-direction does not have to go from z0 to zN and calculations can be
carried out much faster. Furthermore, this eliminates the possibility that the
initial steps taken by the function dblquad are too large and the parts which
are nonzero are missed, which otherwise might happen if δz is small.

Another thing which is used to improve the calculation time, is the assump-
tion that the fields of a waveguide are zero if the distance to the waveguide is
large. This can be done since the fields of the waveguides decay fast outside
the waveguide. For the cavity the interior fields from the centre of the cavity to
a suitable chosen radius are set to zero. This is allowed because for the whis-
pering gallery modes under consideration the fields are only large in the area
near the boundary of the cavity, and outside, as can be seen in figure 3.4. The
calculation domain is limited to the region where the waveguides are near the
circular cavity. This way the growing fields further away from the cavity can
not disturb the results.

Since the calculation of the matrix Klk is computationally heavy, this is not done
for every new wavelength. Instead only two matrices corresponding to wave-
lengths suitably distributed over the wavelength region of interest are evaluated
and the others are determined with simple linear inter- (extra-)polation. Sup-
pose A1 is the matrix corresponding to λ1 and A2 is the matrix corresponding
to λ2. Then the matrix corresponding to λ is estimated as

A(λ) =
λ− λ1

λ2 − λ1
[A2 −A1] +A1.

The matrix depends on the wavelength through the basis mode profiles on the
one hand and directly through equations (4.3a,b) on the other hand. Since the
fields of the waveguide vary only slowly with the wavelength, the matrix itself
will also change only slowly with the wavelength. This is why the estimate as
explained here will be good. Peaks and dips in the transmission will still be
found, since these are determined while solving the system (4.6). With this
approximation the spectral response of the structure can be calculated much
faster. Once an interesting feature has been found, the program can be run
again without the interpolation procedure to obtain a more precise result, if
necessary.

Although the formalism from chapter 4 and the limitations described above
are not very difficult, implementation is a bit more complicated. Bookkeeping
of the matrix elements needs some attention, to make sure that only the el-
ements which should be nonzero are filled and each element is filled with the
accompanying integral. Furthermore, one has make sure that all fields and their
derivatives are given correctly. This seems straightforward, but these fields are
quite complicated and mistakes might not always show.
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5.2 Coupling of two straight waveguides

As a first test for the program two straight waveguides are placed close to
each other. The horizontal computation window is discretized with N = 500
elements. Figure 5.1 shows the results. The light enters the lower waveguide
from the left and after a certain distance all of it is coupled into the upper
waveguide. Both waveguides have the same properties. Their refractive index
is ng = 1.5, the refractive index of the background is n = 1. The width of the
waveguides is 0.4µm and they are placed 0.6µm out of the centre, hence the
distance between them is 1.2µm. The wavelength is 1.05µm. According to [7]
the distance required for this, the coupling length, is 1038µm. This can also be
seen from the figure.

Figure 5.1: The absolute value of the electric field of two coupled straight wave-
guides.

If the same waveguides are placed 5.2µm out of the centre, thus the distance
between them is 10.4µm, there is no coupling and the field should (virtually)
stay in the first waveguide. This is confirmed by the program, see figure 5.2.

The program is not suitable for a configuration where the waveguides are placed
really close to each other, since it assumes that the superposition (4.1, without
cavity modes) is a good approximation of the field of the composite structure.
If the distance between two waveguides is very small, this assumption does not
hold anymore. The results will show an interaction, however the coupling length
will not be correct and thus the result will be useless.
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Figure 5.2: The absolute value of the electric field of two straight waveguides
at a larger distance.

5.3 Coupling the disc cavity and the waveguides

After testing the program with only waveguides, the next step is to apply it
to the kind of structures it was actually meant for, i.e. a circular disc cavity
between two parallel straight waveguides. All results in this section have a
computational window exactly equal to the size in the figures and a horizontal
discretization in N = 51 pieces. At first only one whispering gallery mode,
the one with m = 40, is taken into account and it can only propagate in one
direction, also the fields in the waveguides can only propagate in one suitably
chosen direction. The template (4.1) thus reads[

E
H

]
(x, z) = f1(z)ψ+

1 (x, z) + b2(z)ψ−2 (x, z) + γ40ψ
40
3 (x, z).

The result of a wavelength scan for that a simple model can be seen in figure 5.3.

Here both waveguides have thickness 0.4µm, g = 0.2µm and a refractive index
of 1.5. The disc cavity has a radius of 5µm and also a refractive index of 1.5.
The background refractive index equals 1. One can see that there is a dip in PT
and a peak in PD. Figure 5.4 shows the power in the cavity, which is high near
the resonance and low further away from it. This is exactly as was expected. In
figure 5.5a, a snapshot of the electric field far away from the resonance is shown,
figure 5.5b shows the same field, but now in resonance. Figure 5.6 shows how
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Figure 5.3: A scan of the normalized output power PT on the right of the lower
waveguide, waveguide 1, and PD on the left of the upper waveguide, waveguide
2.

the absolute value and the real and imaginary part of the functions f1 and b2
behave at the resonance wavelength.
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Figure 5.4: A scan of the coefficient γ40 of the whispering gallery mode with
angular wavenumber m = 40.
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(a)

(b)

Figure 5.5: A snapshot of the electric field at λ = 1.06µm (a), off resonance,
and λ = 1.043µm (b), in resonance.
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(a)

(b)

Figure 5.6: The absolute value and real and imaginary part of f1, λ = 1.043µm
(a) and b2, λ = 1.043µm (b).
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Since the previous results are good, also more realistic configurations will be
tried. As a first step, other whispering gallery modes of the cavity could be
added. One expects that further dips occur in the throughput and peaks in the
drop curves, each corresponding to one of the cavity resonances. In figure 5.7 a
scan with the same configuration as before is shown. In this case not only the
whispering gallery mode of angular order m = 40 is taken into account, but also
the ones with m = 39 and m = 41, all of the lowest radial order. The template
(4.1) then reads[

E
H

]
(x, z) = f1(z)ψ+

1 (x, z) + b2(z)ψ−2 (x, z) +
∑
M

γMψ
M
3 (x, z),

where M includes only the whispering gallery modes mentioned before.

Figure 5.7: A wavelength scan including three whispering gallery modes.

In a physical situation not only modes of the lowest radial order will be present,
but also fields of higher radial order if their resonance frequency falls within
the spectral interval of interest. Since these higher modes are more lossy, it
is likely that they will not couple as good as the principal modes. Still, they
have influence on the behaviour of the cavity. This is why figure 5.8 shows a
scan including the former whispering gallery modes and also three modes of
first radial order that exist in the same wavelength region, with angular order
m = 34, m = 35 and m = 36. Taking into account even higher order modes will
again change the results, but probably not as much as here, since they will not
contain a lot of power due to their losses. Figure 5.9 shows a snapshot of the
field at λ = 1.049.
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Figure 5.8: A wavelength scan for the microdisc including three modes of fun-
damental and three modes of first radial order.

The results compare well with the findings of [9] for the same structures. How-
ever, there is one striking difference. The power in the cavity fields levels on
both sides of the cavity as can be seen in figure 5.5b. This is not the case in [9].
In a physical situation this will also not be the case, the fact that it occurs here
has to do with the model. Since each whispering gallery mode has only one
constant coefficient γ the model is unable to make a difference between both
sides of the cavity.

To check whether the results do not depend too much on the size of the calcu-
lation window, the same scan is done with a larger calculation window. This
time the z-axis extends from −10µm to 10µ and the x-axis from −10.4µm to
10.4µm. Figure 5.10 shows the results, they look very similar to those from the
previous scan.
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Figure 5.9: A snapshot of the electric field of the microdisc with λ = 1.049.

Figure 5.10: A wavelength scan for the microdisc including three modes of
fundamental and three modes of first radial order, with a larger calculation
window than before.
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5.4 Coupling the ring cavity and the waveguides

The last section showed some simulation results using a disc cavity, where this
section shows some simulation results of a ring resonator. For this purpose
the program is extended, such that it is able to handle ring microresonators.
Since all fields are already known from chapter 2 this is not very complicated.
All parameters are kept as before in the disc simulations, the only difference is
that the disc is replaced by a ring with an inner radius R1 = 4.5 and an outer
radius R2 = 5. The centre of the ring has refractive index n = 1, just like
the exterior and the ring itself has a refractive index of n = 1.5, like the disc
had in the previous section. This change makes that the resonances shift, so the
resonance frequencies and angular wavenumbers m have to be determined again.
Figure 5.11 shows a scan of the output in both waveguides, including only the
whispering gallery mode with angular mode number m = 39. Figure 5.12 shows
snapshots of the electric field in and off resonance.

Figure 5.11: A wavelength scan of the ring resonator including only one mode.

As was done in the disc case, the program is now extended to be able to include
several modes of angular order. Figure 5.13 shows the results of such a scan
including the modes with angular wavenumbers m = 38, m = 39 and m = 40.
Again the results are very similar to those in[9].
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(a)

(b)

Figure 5.12: A snapshot of the electric field at λ = 1.0416µm (a), in resonance,
and λ = 1.06µm (b), off resonance.
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Figure 5.13: A wavelength scan of the ring resonator, including three modes of
fundamental radial order.
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Chapter 6

Conclusions and further
work

In this thesis a method to find the whispering gallery modes of a circular mi-
croresonator is explained. In principle this methods not only applies to a disc
or ring, but also to circular structures with more layers. No complicated evalu-
ations of Bessel functions of complex order have to be executed, as is required
in a model based on the bent waveguide approach. Finding the complex fre-
quency of the resonance is not very easy, due to the slow change in size of the
determinant of the matrix as a function of the imaginary part of the frequency,
as explained in chapter 2, but it can be done and has to be done only once
for each structure and integer angular mode order. The results of the model
explained here correspond well to the results found in literature, not only with
results from other publications using whispering gallery modes, but also with
results from the bent waveguide approach.

Using these whispering gallery modes a model for coupling a circular microres-
onator with two parallel straight waveguides was implemented. This model is
based on coupled mode theory and makes use of a finite elements discretization
of the modes supported by the straight waveguides. All of this was imple-
mented in Matlab and tested with both a disc and a ring resonator, at first
using only one whispering gallery mode. Since calculating the entire fields for
several wavelengths is very time consuming, a scan is made by interpolating
between wavelengths. The results from such a scan match very good with the
results from [9], which were confirmed by FDTD calculations. Expanding the
program such that it takes whispering gallery modes of higher radial order of
the cavity into account also gives good results.

Since so far all results are very good, the method described in this thesis can
be used as an alternative for time consuming FDTD calculations, at least for
configurations for which the assumptions underlying the coupled mode template
are valid.
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6.1 Further work

Knowing that the model as described in this thesis works well, it could be
interesting to do some more research on it. This can be done either to improve
it or to expand it. One aspect which could use some improvement is finding
the complex frequency of a whispering gallery mode. The way it is done now is
accurate, but demands a very good estimate of the user. It would be preferable
if this could be more automated, this would prevent human mistakes like typing
errors and increase the speed, since the user now has to search for a good initial
guess by hand.

The program might also be enhanced by allowing the light to propagate in both
directions. The model is able to handle such situations, however all results given
in this thesis assume light only propagates in one direction. It is likely that even
if it is allowed to propagate in both directions, by far the largest part will still
travel in the direction which is forced upon it now.

Another improvement would be expanding the program such that it can not
only handle this simple structure with two straight waveguides and one cavity,
but also more complicated structures. This could for instance include several
cavities, with either the same or different properties. In principle all building
blocks for such a structure are available, but combining them will give some
difficulties. The complication is that at present the resonator is supposed to be
originated at the origin. Of course it is possible to move it, but that will make
the translation from Cartesian to the correct cylindrical coordinates slightly
more difficult. Besides that, depending on the placement of the cavities, in
some or all cavities modes with both positive and negative angular wavenumber
m should be taken into account to get the desired results. This is not very
complicated since the program in principle already allows it, but calculation
times will grow.

One could also think about extending the model to the TM polarization. In
that case the fields as calculated in chapter 2 can not be used, but they have
to be replaced by fields that satisfy the other set of equations, those for Ex, Ez
and Hy. Once the fields of the waveguides and cavity are determined in this
case, the coupling can be estimated in the same way as is done in the TE case.

Thus far the whole model is 2D, but it should be possible to expand it into 3D.
However, in 3D the Maxwell equations do not split up to two polarizations, hence
it is impossible to calculate the mode profiles analytically. They can be replaced
by numerically calculated mode profiles in 3D. Obviously the 3D calculations
will be heavier than the 2D calculations, however, they will probably be much
easier than rigorous numerical calculations.
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Appendix A

The Q-factor

This appendix explains in some detail how the results from the complex fre-
quency model, as used in this thesis, can be compared to the results from the
bent waveguide approach, as used in [9] for instance. The key ingredient is
the so called Q-factor, short for quality factor. The Q-factor is a dimensionless
property which describes, as the name says, the quality of the cavity. A high
Q-factor implies low losses. This is a property of the structure, so it should be
independent of the approach.

The complex frequency approach uses, as the name indicates, a complex fre-
quency ω = ω′ + iω′′, where the bent waveguide approach deals with a real
frequency ωr. With the latter approach the propagation constant γ = β + iα
is a complex number. The angular mode number is γR and the integer angu-
lar mode number is given by βR. In the complex frequency approach this is
denoted with m.

For the complex frequency approach the Q-factor is defined by Q ≈ − ω′

2ω′′ and
for the bent waveguide approach it is Q ≈ β

2α [4, 16].

In a resonant configuration with approximately equal real frequency, ω′ ≈ ωr,
and integer angular mode number, m ≈ βR, and low losses, such that αω′′ ≈ 0,
they should produce the same Q-factor. Now

− ω′

2ω′′
=

βR

2αR

⇔− ω′

ω′′
=
βR

αR
⇔− αRω′ = βRω′′

⇔iβRω′′ + iαRω′ ≈ 0
⇔βRω′ + iβRω′′ + iαRω′ − αRω′′ ≈ βRω′ ≈ mωr
⇔(ω′ + iω′′)(β + iα)R ≈ mωr

⇔m

ω
≈ (β + iα)R

ωr
=
γR

ωr
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Thus the an equal Q-factor implies that m
ω and, in the bent waveguide approach,

γR
ωr

should be approximately equal. This justifies the comparison of mc
Rω as used

in chapter 2. Written in the quantities of the bent waveguide approach this is
exactly γ

k0
, with k0 = ω

c .
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Appendix B

Derivatives of the cavity
fields

On several places in this report derivatives of the cavity fields are used. This
appendix gives some insight in how they are calculated and implemented. The
first section gives the r-derivative of the electric field of the cavity, which is used
in chapter 2. The second and third section explain how the x- and z-component
of the magnetic fields are calculated, which are used in chapter 4.

B.1 Derivative with respect to r

To calculate the resonance frequency in section 2.3 the electric field has to be
differentiated with respect to r, in order to obtain continuity of the magnetic
field at the interfaces. For this, derivatives of Bessel functions are required.
These derivatives are given by

d

dx
yp(αx) =

α

2
[yp−1(αx)− yp+1(αx)] ,

where y can be either the Bessel function of the first or second kind or the
Hankel function of the first or second kind [1].

From this, all necessary derivatives can easily be calculated. As an example,
the r-derivative of the electric field in the centre region is given here. Recall
that in this region

Ey(r) = a1Jm(
ω

c
n1r).

Thus, in this case the r-derivative will be given by

d

dr
Ey(r) = a1

ωn1

2c

[
Jm−1(

ω

c
n1r)− Jm+1(

ω

c
n1r)

]
.

In this case the factor eimϕ can be omitted, since this does not influence the
r-derivative.
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B.2 Derivative with respect to x

Finding the derivative with respect to x is a bit more complicated, since x is
hidden in r and ϕ through the relations

r =
√
x2 + z2,

tan(ϕ) =
x

z
.

Now the factor eimϕ has to be taken into account, since it contains ϕ which
hides x. As an example the x-derivative of the same field as in the example in
section B.1 is given here. The original field was given as:

Ey(r, ϕ) = a1Jm(
ω

c
n1r)eimϕ

⇒ Ey(x, z) = a1Jm(
ω

c
n1

√
x2 + z2)eim tan−1( x

z ).

Differentiating with respect to x is not very difficult and gives

d

dx
Ey(x, z) = a1

[
ωn1x

(
Jm−1(ωc n1

√
x2 + z2)− Jm+1(ωc n1

√
x2 + z2)

)
c
√
x2 + z2

+
imJm(ωc n1

√
x2 + z2)

z(1 + x2

z2 )

]
eim tan−1( x

z ).

However, due to the division through z a singularity arises wherever z is equal
to zero. To overcome this, the former equation can be rewritten to

d

dx
Ey(x, z) = a1

[
ωn1x

(
Jm−1(ωc n1

√
x2 + z2)− Jm+1(ωc n1

√
x2 + z2)

)
c
√
x2 + z2

+
imzJm(ωc n1

√
x2 + z2)

z2 + x2

]
eim tan−1( x

z ).

Now only the origin has a singularity, this is not a problem, since the electric
field is approximately zero in and close to the origin, so its derivative will also
be zero. In the program from chapter 5 the centre of the cavity is disregarded
upto a suitably chosen radius. This decreases calculation time, since the integral
does not have to be calculated in a region where it is known that the function
is almost zero.
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B.3 Derivative with respect to z

Differentiating with respect to z is not very different from differentiating with
respect to x. In the example of above the z-derivative will be

d

dz
Ey(x, z) = a1

[
ωn1z

(
Jm−1(ωc n1

√
x2 + z2)− Jm+1(ωc n1

√
x2 + z2)

)
c
√
x2 + z2

−
imxJm(ωc n1

√
x2 + z2)

z2(1 + x2

z2 )

]
eim tan−1( x

z ).

Again the problem with the division through z arises, so the equation is rewritten
to

d

dz
Ey(x, z) = a1

[
ωn1z

(
Jm−1(ωc n1

√
x2 + z2)− Jm+1(ωc n1

√
x2 + z2)

)
c
√
x2 + z2

−
imxJm(ωc n1

√
x2 + z2)

z2 + x2

]
eim tan−1( x

z ).
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