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11..  IInnttrroodduuccttiioonn  

Everybody is familiar with digital synthesized music in general. Well known are MIDI-files, one or more 
tracks with sequenced notes that can be played on a computer or keyboard. Characteristics of music that is 
played by and synthesized on a computer are that it sounds mechanical and artificial. The striking 
difference that exists between a human and a machine performance is because of the computer’s inability 
to put expression into music. Expression is the quality that accounts for emotion in music and makes it 
interesting to listen to. This expression is realized by using the appropriate phrasing, style, interpretation 
and by applying variations in dynamics and tempo [1]. Although some of these factors can be realized by 
means of MIDI controls such as the aftertouch (force by which a key is struck), legato, release time (the 
time it takes for a tone to fade out) or attack time (the time it takes for a tone to fade in) these controls 
need to be programmed or recorded explicitly. The common MIDI sequencers offer no logic that deduces 
settings for these controls on basis of the musical structure for example. 

The mechanical nature of synthesized sound inspired many researchers the last decades to study 
expressive performance by quantitative or computational modeling. Computational modeling is an 
attempt at formulating hypotheses concerning expressive performance in such a precise way that they can 
be empirically verified (or disproved) on real measured performance data, as defined in [2]. In this article, 
4 approaches of computational music modeling were compared: analysis-by-synthesis (evaluation of rules 
brought forward by researchers by professional musicians), analysis-by-measurement (obtaining empirical 
evidence directly from measurements of human performances), applying mathematical musical music 
theory and the machine learning model (discovering significant regularities in musical performances via 
inductive machine learning and data mining techniques). The last model was adopted for this thesis as a 
way of obtaining an expressive knowledge base. 

In order to realize models that can synthesize expressive performances, three stages are distinguished: 

1. Capture low-level expressive characteristics of a large set of human performances 

2. Develop higher level rules and models on basis of the knowledge base from step 1 

3. Use these models to synthesize expressive performances 

In this thesis an experimental environment (Exprimulator) is presented that realizes the goal of step 1. It 
aids researchers with capturing these expressive characteristics. This thesis addresses the design, 
implementation and testing of this piece of software. Exprimulator was tested with guitar performances, 
that were transcribed (by capturing note onset, note duration and pitch) and annotated on a note-level 
scale with expressive labels. These expressive labels could in principle denote any playing technique a 
musician used to convey expression in the performance. However, in order to limit and focus the scope of 
this thesis one particular expressive dimension (the scale between two complementary playing techniques 
in which a musician can vary) was chosen as a proof of concept, namely the Right Hand Playing Position 
(RHPP). Variation in the striking position of the right hand is an important and commonly used form of 
expression for guitarists. It can effectuate any sound color between sharp and soft tones.  

The annotation phase is the main task of Exprimulator, which is globally achieved by training classifiers 
that can recognize different playing modes in an expressive dimension. By annotating songs performed by 
human musicians, an image is obtained how well classifiers perform in relation to each other. Through 
this comparison a selection of the best classifiers is obtained. For this subset it is determined if this 
performance dominance would also go for the recognition of other expressive dimensions in general. 

Describing audio data has a wide range of applications and purposes. A very popular and common 
application for meta-data are online multi-media querying systems that enables finding musical or video 
content by using content related query commands (for example searching on genre [3, 4] or query by 
humming [5, 6]), so that multimedia data can be searched though by a meaningful way for humans. These 
applications mostly involve high scale descriptors such as the genre of a musical piece or the used 
instruments. In this thesis, lower level annotation is computed from musical performances, such as the 
sequence of played pitches and note-level expressive annotation (RHPP).  
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In contrast to the numerous video annotators, musical annotators are scarce. The most important are: 
Timeliner [7], the Acousmograph1, MiXA [8], Marsyas [9], the CLAM Annotator [10] and Mucosa [11]. 
Timeliner is a pedagogical visualization and annotation tool for a musical library, whereas 
Acousmograph, Marsyas and the CLAM annotator do not offer (semi)-automatic annotation. Only MiXA 
and Mucosa incorporate automatic annotation, and aim towards collaborative annotation of existing 
music. The systems are mainly built in order to create online databases with musical transcriptions that 
can be queried with high-level descriptors of several dimensions (genre, melody, tonality, 
instrumentation, style, etc.). This contrasts with the note-level annotation that Exprimulator provides. An 
annotation tool that is more focused on the annotation on note-level (event level in the percussive 
context), is described in Exploration of techniques for automatic labeling of audio drum tracks’ 
instruments [12]. In this project it has been attempted to create a drum track from a performance that 
denotes the appropriate percussive instrument for a certain percussive event. The major difference 
between Exprimulator and the discussed annotators is however that outputted transcription is not the sole 
goal; it is part of a bigger context – namely that of creating expressive synthesized performances. 

In the major part of literature concerning extraction of expressive content or synthesis of expressive music 
(for example [13-17]) variation in dynamics, timing and melodic structure characteristics are regarded as 
the constituting elements of musical expression: 

• Rhythmical variation (tempo): Notes can be deliberately played too soon or late in order to express a 
certain feeling (rubato), or one can slow down (ritardando) or speed up (accelerando). 

• Volume variation (dynamics): Volume increase or decrease can build up certain suspense or release 
it. Variation in volume is indicated with for instance crescendo (play gradually louder) or diminuendo 
(play gradually softer). 

• Pitch variation (frequency): A musician can deliberately deviate from the prescribed pitch from the 
score, by means of a vibrato or glissando, for example. This form of expression can only be produced 
by a limited class of instruments, among which the string instruments. 

Albeit the importance of these factors is not denied, this thesis focuses more on the expressive modes that 
can be affected by applying different timbral playing techniques. This means that annotation takes the 
form of describing the concrete playing technique that is used, say sul tasto or appoyando. In this way 
emotive and subjective expressive labels such as tender, aggressive, sad, joyful, calm and restless [16] are 
avoided. The same applies to ambient labels such as  heavy, soft, hard, bright and dark [18]. Concrete 
labels show unambiguously how a certain tone was played and how it should be played in future. By 
definition, concrete labels specify a playing mode in one expressive dimension. On the other hand an 
emotive or ambient label gives a musician freedom to use any of the available expressive dimensions.  

In this thesis a method to obtain musical transcriptions annotated with expressive labels by means of 
machine learners is presented. To reduce the complexity of this problem the scope of the project has been 
narrowed and concretized to transcribing guitar performances. The transcription has been labeled with 
expressive labels concerning the right hand playing position (RHPP) of the guitarist. This proof of 
concept case has been executed in a dedicated environment called Exprimulator that facilitates several 
tasks such as creating optimal classifiers, transcribing, annotating and visualizing resulting (intermediary) 
data. 

1.1. Research questions 
In this thesis the following global question are answered: 

• Can scores be annotated with expressive annotation concerning the right hand playing position using 
a machine learning approach? 

• Is the achieved accuracy of annotating the RHPP dimension satisfying enough to make the presented 
methodology applicable for the recognition of other expressive dimensions? 

                                                           
1 http://www.ina.fr/grm/outils_dev/acousmographe/ 
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More detailed sub questions that are related to our specific test case of creating annotated transcriptions of 
guitar performances are stated below.  

o What expressive dimensions can be discerned on a guitar, and how can they be divided into 
classes (equivalent with playing techniques) so that recognition by machine learners is possible? 
(chapter 4) 

o Which audio features can be used as classifier input to determine the playing technique? 

o Given a set of classifiers, which one annotates musical performances most accurately and 
consistently? 

A question related to applicability of Exprimulator: 

• Does Exprimulator provide enough general freedom for researchers to develop sound classifiers for 
the annotation of musical transcriptions? 

1.2. Applications 
Exprimulator is designed as a general tool for sound classification and musical annotation. Therefore, it 
can serve as an initiation to a variety of future applications. 

1.2.1. Experimental environment 

Exprimulator can serve as a general environment for exploring feature data and different classifiers. 
Studies performed with the help of Exprimulator can be compared with each other, because they are 
similar in execution (same note segmentation, same classifier implementation, etc.). In this way 
Exprimulator serves as a test environment for carrying out musical sound classification experiments and 
eases re-execution of these experiments and storage of experimental results. 

1.2.2. Annotation of musical transcriptions 

Exprimulator can serve as a tool to make more descriptive transcriptions, than regular scores or MIDI 
files. Besides the basic annotation such as note duration, pitch and onset, Exprimulator provides 
additional information about the playing technique. This application can have its benefits for existing 
scores, as these often lack annotation concerning playing techniques. Furthermore, annotation can be 
provided for any expressive dimension, as long as playing modes defined within the dimension are 
recognizable by an appropriate combination of feature vectors and classifiers. The annotated 
transcriptions could be used for musicians who need more guidance in learning a score, or for online 
databases to enable searching on expressive characteristics. 

1.2.3. Initiation to expressive music synthesis 

Exprimulator can be used to create a large corpus of annotated musical guitar performances, from which 
expressive rules can be inferred. These rules can relate musical structure to playing techniques. For this 
application, a skilled guitarist has to perform a significant amount of songs that are to be transcribed and 
annotated. The now obtained corpus of songs can serve as a knowledge base to deduce rules that relate 
musical structural quantities (characteristic note sequences, characteristic sequences of note durations 
and/or dynamics) to expressive quantities. The intention of these rules is to expose ‘universal’ playing 
conventions that guitarists share. It is also likely that these rules can capture more specific trends such as 
the playing style, musical genre, the unique style of a musician or the mood of the musician. 

1.2.4. Tutoring guitar students 

Exprimulator can function as a tutor that guides a guitar student with playing songs with the appropriate 
playing technique. With help of classifiers that are trained with different playing modes that were 
performed by a skilled guitarist, feedback can be given to a student if a tone or a phrase was performed 
correctly. This feedback is given by means of a prescribed transcription that a pupil has to perform in 
front of a microphone. From this audio signal appropriate audio features are calculated and provided as 
input to the classifier which can recognize the playing technique the pupil played. This performed playing 
technique is then compared with the prescribed technique to provide feedback. 
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22..  AApppprrooaacchh  

The main goal of this thesis is to be able to recognize different expressive playing modes within an 
expressive dimension. This chapter outlines the steps taken to realize expression recognition. 

Recognition of expressive playing modes is valuable for the different applications proposed in the 
previous chapter, such as acquiring transcriptions annotated with expressive markup, deducing expressive 
rules or tutoring guitar students. Several machine learning approaches were chosen to classify a 
continuous expressive dimension into a discrete set of classes. For testing purposes, these machine 
learners had to recognize the expressive dimension RHPP. Corpora were recorded that contained 
sufficient repetitions of tones per distinguished class. In order to train a classifier to recognize different 
playing modes within the RHPP dimension suitable audio descriptors had to be calculated from the 
corpus’ tones. These audio descriptors were arranged in feature vectors that were used to train classifiers 
with different machine learning approaches. The accuracy of the classifiers was evaluated and compared 
by calculating the annotation accuracy over a song corpus consisting of a representative amount of human 
performances. 

Literature study formed an important part of this thesis to determine the ways how guitarists can perform 
musical expression. This survey was used to pick out a representative dimension for our research, in our 
case RHPP. Literature study was also conducted in order to obtain suitable audio descriptors and machine 
learners. 

2.1. Goals 
Below we list the necessary goals to answer the main research questions. These goals are evaluated in the 
experiments chapter 8 and the conclusions chapter 9. 

• Determining expressive playing modes and dimensions for a guitarist  

• Obtaining an optimal training corpus  

• Obtaining a selection of best performing classifiers 

• Obtaining optimal classifier configurations for the best performing classifiers 

• Obtaining suitable audio descriptors and feature vectors 

• Proving possibility of expressive playing mode recognition 

• Proving possibility of transcribing guitar performances and using expression recognition to annotate 
them 

• Obtaining transcriptions with an annotation performance of at least 80% 

2.2. Exprimulator 
The experiments (creating corpora, calculating feature vectors, transcribing and annotating guitar 
performances) have been conducted in a dedicated environment called Exprimulator. This environment 
has been developed in Matlab and combines the strengths and ease of the scripting language of Matlab 
with the wide selection of machine learning methodologies that WEKA offers and the audio descriptor 
calculation features of the MPEG-7 toolbox Matlab-XM. 

We used an easy configurable interface (the classifier GUI) to be able to visualize the classifier’s training 
corpus and feature vectors. This gives immediate manual insight how well a certain feature vector 
separates a class-configuration. Besides that, Exprimulator consists of a transcriber that transcribes and 
annotates songs using the classifiers of the classifier manager. To make matters more concrete, 
Exprimulator supports the following tasks: 
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1. Creation of a sound corpus consisting of tones played with different playing techniques (one 
realization of a specific playing technique equals a class in this occasion). 

2. Calculation of feature vectors for a configurable fraction of each tone. 

3. Creation of several types of classifiers that can be trained with the feature data from the preceding 
step 

4. Creating transcriptions (containing note onsets, durations and pitches) of guitar performances. 

5. Annotation of transcriptions with the classifiers of the third step. With help of this feature classifier 
performances can be mutually compared, if ascertained that expressive annotation is 
possible/satisfying at all (related to the main research question of section 1.1). 

These features have been implemented with the research questions and goal setting in mind. 
Configurability is the key aspect to realize the majority of the goals of the previous section. Configurable 
GUI controls have to be implemented to investigate the influence of different corpora, feature vectors and 
classifier settings on the annotation performance. An optimal experimental set-up for future work is 
expected to be found by varying these dimensions. 

In the following sections the sequential tasks Exprimulator performs in order to get to annotated 
transcriptions are described in more detail. 

2.3. Creating corpora 
In order to create a classifier that is able to distinguish nominal playing modes on a continuous expressive 
dimension, training material that exemplifies these classes have to be presented as input. Corpora have 
been created by playing tones with a certain expressive mode repetitively with a certain amount of jitter to 
reflect the natural inaccurateness of a guitarist. Subsequently, these recorded waveforms are segmented 
into individual tones and grouped in accordance with the class arrangement in the expressive dimension. 
The resulting corpus has to be easily adjustable by excluding tones that were played incorrectly. This 
manual revision of the corpus is realized by means of the possibility to visually and audibly review the 
individual corpus tones. 

2.4. Calculating feature vectors 
In order to derive sufficiently small feature vectors from the corpus’ tones that can serve as input for 
classifiers, appropriate audio descriptor algorithms have to be implemented. Literature on sound 
classification (preferably timbral sound classification [12]) has been explored to find candidate 
descriptors. After suitable ones are found they have to be either manually implemented or integrated from 
existing packages. Once audio descriptors are found that provided adequate class separation, calculation 
parameters have to be ascertained. Amongst these are the window size, fractions of tones over which the 
descriptors are calculated, hopsize, window type, etc. These parameters need to be accessible via the GUI 
of Exprimulator. With the parameters set, the feature vectors of all the tones of the corpus are calculated 
in one run. 

The resulting feature vectors are input in the classifiers as training material together with an index 
specifying the desired class. These feature vectors can be reviewed as a whole by plotting them grouped 
per class in different colors. Another way is to review individual feature attributes by creating a scatter 
plot wherein all the instances are plotted in a domain spanned by two selected feature attribute 
dimensions. These evaluation methods are used to judge the degree of separation power of the audio 
descriptors and to recalculate them with different settings if necessary. 

2.5. Training & evaluation of classifiers 
A majority of the classifiers the WEKA toolbox offers are presented in Exprimulator’s GUI to be trained 
by the created training corpus of the previous section. Various WEKA settings which are unique for each 
classifier have to be configurable via Exprimulator’s interface. Exprimulator has to provide the freedom 
to compose a unique corpus for each classifier (by including or excluding tones, or by changing the class 
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configuration). For comparison considerations, the corpora have been kept constant throughout the 
experiments though. 

The trained classifiers can be reviewed visually or statistically. Visual review provides insight in the 
trained model by plotting its structure, weights, or parameters. Statistical review means the prediction of 
the tones present in the song corpus by the trained classifiers, after which the correct prediction fraction is 
calculated. These measures are used as a guideline to optimize a classifier by fine-tuning its WEKA 
settings. The prediction performance is also used to obtain better performing classifiers. By defining a 
quantitative exclusion rule for the classifiers with the lowest performance, a reduced set of classifiers has 
been determined. This reduction spares evaluation time for future experiments.  

2.6. Transcribing & annotating song corpus 
A number of monophonic guitar performances have been recorded to create a song corpus like mentioned 
in the previous section. The songs are well-known melodies and contain different expressive playing 
modes that are also present in the training corpus. The playing modes that are subsequently used in the 
performances are annotated manually for comparison with the classifiers’ automatically predicted labels.  

In order to create a transcription the songs have been segmented at the note onsets to begin with; secondly 
the pitches of these segments (tones) have been calculated. For the individual tones the same feature 
vectors (section 2.4) are calculated as for the training corpus (2.3) after which they are presented to a 
trained classifier. The prediction outcome of a certain classifier is used to annotate the transcription. By 
annotating the song corpus with different classifiers the annotation performances are compared in order to 
reduce the set of classifiers. 
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33..  LLiitteerraattuurree  rreevviieeww  

The extensive amount of literature on sound classification has been used to make choices for the design of 
the machine learning methodology. Reviewing this literature helps to narrow down the possible ways to 
conduct this research and helps finding common approaches for sound classification. Finding a common 
approach comes down to the selection of common classifiers and audio descriptors primarily. Research on 
sound classification often has the character that a set of classifiers are compared by using some 
performance measure. Also feature selection methods are applied to obtain optimal audio descriptors. The 
results of such experiments can be used to the advantage of this project to exclude classifiers and audio 
descriptors that have been proved unsuccessful. In like manner, extra attention can be paid to classifiers 
which have been proven more successful.  

3.1. Audio descriptors 
Due to the fast growing body of multimedia content on the internet, the necessity for adequate storage 
with descriptive meta-data rises. This meta-data is necessary for humans to be able to retrieve media with 
content describing queries, instead of just a filename. The idea is to make the web just as searchable for 
multimedia content as it is for text. From the calculation of lower level acoustic properties of media 
content, higher level descriptors that are understandable and relevant for humans can be derived.  

In the scope of audio retrieval the need for these descriptors is just as urgent as in the fields of image and 
video retrieval. Examples of recent audio retrieval methods are query by genre, by humming, by 
spoken/sung content or by rhythm. Besides retrieval applications, audio descriptors are used for other 
tasks such as score following/aligning or the sole purpose of providing musical annotation, as in this 
thesis. For the latter purpose, classifiers are used to ‘convert’ low level descriptors to higher level 
annotation that has an expressive musical meaning. In order to find good candidates for audio descriptors, 
an investigation of the musical characteristics that need to be derived is necessary. As has been stated 
before, the forms of musical expression that this thesis focuses on are timbre related, as is the case with 
RHPP. Analysis of musical audio by timbre recognition is an approach that has been applied often in the 
scope of musical instrument [19], playing technique [20, 21] and genre [3] recognition. These applications 
are considered related to the RHPP recognition problem in principle, and are therefore scanned for 
commonly used audio descriptors. 

By scanning the relevant timbre related literature, in a lot of occasions the MPEG-7 standard have been 
used, a description framework in which several commonly used higher and lower descriptors are 
implemented. An important benefit of using a standard approach is the compatibility with other software 
that uses MPEG-7 and the uniformity by which the audio description algorithms are defined and 
implemented. This compatibility is ensured by the fact that MPEG-7 uses the widespread XML-scheme 
for describing the multimedia content. MPEG-7 has been used in several applications that are closely 
related to the ones of this thesis, namely the classification of musical instruments [22-26], musical sound 
recognition within one instrument [21], genre recognition [27], environmental sounds recognition [28-30] 
and music recommendation [31]. Although not all these applications are strictly related to expression 
recognition, the MPEG-7 descriptors are designed to be universal in their application. The following 
section outlines the descriptive strength of the MPEG-7 audio descriptors. 

3.1.1. MPEG-7 audio description 

MPEG-7, informally known as the Multimedia Content Description Interface, is an attempt to standardize 
meta-data provision for multimedia. The MPEG-7 standard contains the following sub tools: MPEG-7 
Visual – for describing video content; MPEG-7 Audio – for describing audio content; MPEG-7 
Multimedia Description Schemes – description tools that deal with generic features and multimedia 
descriptions; and MPEG-7 Descriptions Definition Language – the language that defines the syntax of the 
former description tools. The relevance and importance of MPEG-7 is stressed by summing up some of 
application areas and accompanying examples: broadcast media selection – for constituting custom radio 
or TV channels; journalism – searching speeches for politicians using their face or voice; or remote 
sensing – cartography, ecology, etc. 
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The MPEG-7 unit that is relevant in the light of timbre recognition is MPEG-7 Audio. The audio 
descriptors that can be calculated with this toolbox are divided in low-level descriptors (LLD’s), such as 
spectral, parametric or temporal features of the signal, and high-level Description Schemes (DS). The 
LLD’s describe sound characteristics such as harmonics, sharpness, pitch and timbre. They are applied to 
short time frames of the sound signal and yield either scalars or vectors, which can be aggregated using 
mathematical operators such as minimum, maximum, mean, and variance. The Description Schemes 
describe sound at a higher level and are more related to the way humans describe audio. Examples of 
these description schemes are Musical Instrument Timbre Description Tools, Melody Description Tools 
and Spoken Content Description Tools. The LLD’s are depicted in Figure 3.1, and grouped in seven 
categories. In the following, the MPEG-7 descriptors are outlined per category. 

Basic Descriptors 

The basic descriptors basically represent the shape of the waveform of an audio signal. The 
AudioWaveform is a representation of the waveform’s envelope. The AudioPower descriptor computes the 
average square of the waveform in a certain time frame, thereby describing the power of a signal over 
time. 

Basic Spectral 

This group describes basic properties of the audio signal’s spectrum. The AudioSpectrumEnvelope (ASE) 
is a logarithmic representation of the short-term power spectrum in frequency bands. The 
AudioSpectrumCentroid is the center of gravity of the ASE spectrum. The AudioSpectrumSpread 
describes the deviation of the ASE from its centroid. The last descriptor, AudioSpectrumFlatness, is a 
fingerprinting algorithm for determining the similarity between two sounds. 

Spectral basis 

The spectral basis descriptor group contains the AudioSpectrumBasis and AudioSpectrumProjection 
descriptor. The former transforms a signal’s spectrum to a lower dimensional representation, while the 
latter does the same for the ASE. Both descriptors aim at representing the spectra while preserving the 
maximum amount of information. 

Signal parameters 

This group contains the AudioFundamentalFrequency and the AudioHarmonicity descriptors. The first 
descriptor calculates the fundamental frequency curve of an audio signal. The second calculates the 
harmonic ratio (varying between 0 for noise to 1 for purely harmonic) as well as the upper limit of 
harmonicity. 

Timbral temporal 

The LogAttackTime descriptor calculates the time from the onset of a sound to the point where it reaches 
its maximum. The TemporalCentroid is the location in the signal where most of the energy is 
concentrated. 
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Figure 3.1: Low-level MPEG-7 audio descriptors 

As one might expect, in the discussed literature from section 3.1 concerning timbre recognition, the 
Timbral Temporal and Timbral Spectral categories play an important role. These categories describe the 
perceptual features that make two sounds having the same pitch and loudness sound different. The 
descriptors can be related to human notions such as ‘attack’, ‘brightness’ or ‘richness’. Because of these 
reasons these LLD’s would seem obvious candidates for the application of recognizing RHPP.  

3.2. Machine learning for sound classification 
Machine learning is a commonly applied methodology in the field of sound recognition and classification. 
The applications vary from environment recognition for PDA’s [29] and musical instrument recognition 
[25] to emotion  recognition [32]. The more closely related literature on timbre recognition from the 
previous section was scanned for common machine learning approaches.  

Most of the literature discusses around 6 different classifier approaches that fall in one the following 
categories: decision trees, Neural Networks, Bayesian learning, lazy learning, rule learning or Support 
Vector Machines (SVMs). The different classifiers are evaluated on test material so that their 
performances can be compared. It is worth noticing that in most of the projects no conclusions have been 
drawn about the best performing classifier, and results of mutual projects seem to contradict in case the 
same classifiers have been used. However, in general the used set of classifiers and experimental 
approach differs too much to compare one study with the other.  

A considerable amount of studies use the classifiers implemented in Waikato Environment for Knowledge 
Analysis (WEKA, see appendix B). Compatibility, standardization and robustness reasons motivate 
incorporation of WEKA classifiers within Exprimulator. Section 6.3 outlines in greater detail what 
classifiers are generally addressed in literature, along with the degree of similarity with this thesis. 
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44..  MMuussiiccaall  tthheeoorryy  

In order to start with recognition of musical expression, it is important to determine what dimensions of 
expression exist and – within the expressive dimensions (ED) – the playing modes that can be identified. 
This chapter starts with a general explanation of musical expression. Section 4.3 briefly summarizes per 
instrument category what the most important expressive dimensions are. The subsequent section outlines 
for the guitar what static and dynamic parameters influence the timbre of the guitar sound. Finally, in 
section 4.6 several EDs are defined by the scale between two complementary playing techniques. The 
playing modes that are a result of dividing the EDs are to be recognized by human ear or a machine 
learning methodology. 

4.1. Musical expression 
Expression can be defined as a quality that accounts for the specific emotional effect of music. When a 
musician plays with expression, the listener (1) may praise his musical sensitivity or that the musician has 
a keen sense of how the passage should be played. One can also say (2) that an expressive performance is 
one that recognizably embodies a particular emotion, and may cause alike emotional response in the 
listener2. 

4.1.1. Explicit and implicit characteristics 

Musical performances contain a lot of implicit characteristics (characteristics which are not the result of 
the explicit annotation of Table 4.1) beside explicit characteristics. The implicit characteristics are the 
result of the musician’s unique playing style, implicit musical style conventions and the acoustic 
properties of the guitar. Partly, these implicit characteristics are beyond the ability of the musician to 
control, such as the acoustical properties of an instrument. Besides that, from the characteristics that are 
controllable by the player, a large part is applied unconsciously. The part that is applied consciously can 
be regarded as musical expression. This project tries to capture the expressive part of implicit 
characteristics, by extracting them from recorded human performances. Combined with the explicit 
markup already present in a score file, rules can be obtained by finding relations between the explicit 
markup and the implicit characteristics extracted from the human performances. 

Explicit characteristics Implicit characteristics 
Note duration Note length deviation 
Note pitch Different timing 
Dynamics Timbral variation 
Vibrato Plucking style 
Plucking style  

Table 4.1: Explicit and implicit characteristics 

The distinction between implicit and explicit characteristic is not disjoint, i.e. most of the explicitly 
annotated characteristics (such as vibrato or portamento) can also be applied implicitly (i.e. applied to the 
player’s insight, when there is no explicit annotation present that tells the player to do so). Vibrato is a 
good example of an expression that is used a lot among guitarists and violinists in more places than those 
prescribed by explicit annotation. Very often it is applied unintentionally and/or unconsciously.  

                                                           
2 http://www.people.carleton.edu/~jlondon/musical_expression_and_mus.htm 
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Explicit annotation can be (un)consciously deviated from or supplemented as follows: 

Consciously deviating Deviating from annotation from score due to musician’s preferences 
Consciously adding Adding expression because of musician’s preferences or gaps in 

annotation 
Unconsciously deviating Deviation because of technical imperfection, misinterpretation of 

annotation or personal playing style 
Unconsciously adding Addition of expression because of musician’s personal style that is 

imprinted by years of practicing and therefore applied unconsciously 
Table 4.2: Deviation or suppletion of explicit annotation 

4.1.2. Relation between expression and playing techniques 

Musical expression is a subjective notion related to conveying an underlying emotional message of a song 
and bringing listeners into that desired emotional state. The subjective emotional message is not directly 
interpretable by a computer. Therefore the concept of musical expression is concretized to analyzable 
quantities such as playing techniques that are presented in section 4.6. Although the application of playing 
techniques that this project focuses on does not comprise the full arsenal a musician has at his disposal for 
transmitting an emotional message, it forms an important part. Playing techniques affect to a large extent 
the timbre that is produced when playing a song. Timbre, on its turn, is a concept that is strictly related to 
musical expression because a tone’s timbre is often explained in terms with an emotional load or terms 
related to the taste or touch sense. Examples of such terms are soft, harsh or muddy, which are commonly 
heard when music is described orally. Although the interpretation of these descriptions are not 
determinative either, timbre can be described in terms of measurable acoustic quantities equally well (see 
section 3.1, amongst others). This measurability enables computational analysis and annotation of 
performances with timbral markup.  

4.2. Communicating expression with annotation 
In expressing music, there are a lot of ambiguities that can 
limit the clarity by which a composer can convey his 
message. A composer initially starts with a musical piece 
with a certain message attached to it that should be 
conveyed through the score. At several stages, however, this 
conveying can be hampered. Firstly, the song meaning must 
be transcribed in musical notation, with restricted freedom 
of expression. A composer can choose to incorporate 
annotation with the following increasing levels of 
concreteness: 

• Emotive annotation (e.g. amoroso – loving): with this 
kind of annotation, the composer makes clear what 
emotional character a musical phrase should bear. 
The resulting musical performance should convey 
this specific emotion. This is the vaguest category of 
transcription.  

• Relative annotation (e.g. crescendo, ritardando): 
describes a change in tempo or volume in relation to 
the current playing conditions. Examples of these 
relative annotators are crescendo which means to play 
louder, or ritardando, referring to a slow down. It is 
not always clearly denoted what the pre- and post 
playing conditions are. 

• Technical annotation (e.g. appoyando, vibrato): 
describes mostly with fixed musical terms the 
technique that the musician has to apply. This 
technical annotation is limiting in the way that it is 

Figure 4.1: Communicating musical 
message from composer to listener 
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not detailed enough: a score mostly provides only the keyword ‘vibrato’ under the music bar, 
without any further clues for the musician how to fill in the unknown parameters, such as the speed 
and the amplitude of the modulation. 

• Absolute annotation: can be interpreted unambiguously, because it involves numeric quantities. 
Examples are metrical indicators such as the time signature (4/4 for example) or the tempo (in 
BPM).  

Figure 4.1 depicts the way through which a musical message or song meaning is normally transmitted 
from composer to listener through the musician and the media score and performance. It also depicts the 
actions that the actors have to undertake in order to come to the intended intermediate states and final 
state of mind. These actions require unique personal skills (the most important are depicted between the 
parentheses) that are the reason why the musical communication course is never the same. Within this 
thesis the computer performs the listener’s role to extract the initial score from the beginning of the 
course. In this way the communication course is executed in the reverse direction, without intervention 
from the musician. The intended characteristics for the computer to capture are quantitative parameters, 
but do not necessarily reconstruct the original score. 

4.3. Expressiveness per instrumental category 
For this thesis, expression recognition is demonstrated by using a guitar. The ultimate goal would be the 
realization of universal expression recognition for any musical instrument, but the ways to realize 
expression per instrument are in most cases too unique and specific. While the role of the guitar in this 
thesis is merely a demonstrating than a motivated choice, there are some benefits of this instrument. 
String instruments in general offer more expressive freedom than other categories mainly because both 
the pitch and the onset of a tone are directly controlled by human hand without mechanical intervention. 
This mechanical intervention is present for instance in a piano, where a hammer touches the string at a 
fixed location, thereby narrowing the control over the timbre. 

Other instrumental categories offer control over other expressive dimensions. For instance, with the 
family of wind instruments the envelope of a tone can be controlled to a great extent, thereby allowing a 
crescendo within a tone. This is an ability that only the bowed string instruments are capable of within the 
family of string instruments. For the other ‘plucking’ instruments, the sustain follows invariably a certain 
exponential decay function. An expressive mode that is important for the percussive instruments is the 
striking location. Whereas pitch is of no concern for the majority of percussionists, their attention is 
mostly directed towards the realization of different timbres by striking a cymbal, tom or snare drum on a 
unique location. 

4.4. Guitar anatomy 
Before proceeding to the discussion about expression in relation to the guitar, the guitar’s anatomy is 
displayed in Figure 4.2 to illustrate the naming of the different parts of the guitar. Through the course of 
this thesis these terms are frequently used. 
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Figure 4.2: Anatomy of an acoustic guitar3 

4.5. Timbre and guitar 
The concept of timbre is hard to define, in comparison to other psycho acoustical features such as pitch, 
duration and intensity. These latter can be scaled and organized hierarchically and notated, but timbre has 
a very complex definition and is multi dimensional in the time and spectral domain [33]. According to the 
ANSI definition timbre is that attribute of sensation in terms of which a listener can judge that two sounds 
having the same loudness and pitch are dissimilar. There are five timbral parameters to distinguish [34]: 

1. The range between tonal and noise like character. 

2. The spectral envelope. 

3. The time envelope in terms of rise, duration, and decay. 

4. The changes both of spectral envelope (formant-glide) and fundamental frequency (micro-
intonation). 

5. The prefix, an onset of a sound quite dissimilar to the ensuing lasting vibration. 

In order determine how the timbre of a guitar is constituted, a distinction is made between the unique 
static timbral properties of a guitar, and the dynamical timbral differences that can be effected by a 
musician. The next two subsections outline the most attributive components of static and dynamic timbre. 

4.5.1. Static timbral properties of the guitar (physical characteristics) 4,5,6 

Guitar builders can recognize the limitless factors that influence the sound of a guitar. While a musician 
can influence the sound of guitar by playing differently, every guitar also has from itself a unique sound 
color. The acoustic properties that define this static timbre are largely defined when building a guitar. It is 
important to be aware of these characteristics, as static sound differences between two guitars can make 
general dynamic timbre recognition impossible. Below the most important properties of a guitar are 
outlined that define its sound. 

 

                                                           
3 http://www.phys.unsw.edu.au/music/guitaracoustics/anatomy.html 
4 http://www.phys.unsw.edu.au/music/guitaracoustics/anatomy.html 
5 http://www.frets.com/FRETSPages/Musician/Strings/Strings/strings01.html 
6 http://www.wikipedia.org 
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Material composition 

The materials that are used for the construction of a guitar have direct consequences for its acoustic 
characteristics. The part that defines the guitar’s sound most dramatically is the body, especially the top 
plate. The majority of the guitar’s sound is namely produced when the vibrating energy from the strings 
are transferred via the bridge to this plate, causing it to resonate. The detail by which the top plate 
resonates is a key defining element for the guitar’s timbre. The traditional and up to date most commonly 
used material is wood, mostly tonewood like spruce, red cedar or mahogany. A common problem with the 
application of wood is that two plates of wood are never the same, due to natural variation. With this 
knowledge it is impossible to create two guitars with the same timbre. 

A variety of synthesized materials have been explored to imitate or replace existing woods. Examples of 
these materials are fiberglass, carbon fibre and polymers. The most important arguments for research of 
these materials are that synthetics are cheaper and believed to exhibit less variation. The latter assumption 
has not been validated yet, as the synthetics expose as much acoustic variation as wood. Furthermore the 
characteristics of the synthetics still cannot mimic those of wood, so the timbre of wood cannot even be 
approximated with synthetics. 

The strings, the initiators of the sound, exist in many variants. The choice of the string is a subjective one 
which is up to the musician. The most important difference exists between Spanish guitars and steel-string 
guitars. The top three strings of Spanish guitar are nylon strings, whereas the lower three are composite 
strings made of a silk fibre core wrapped with silver or gold-plated copper wire. Steel string guitars are 
equipped with plain steel string for the three highest strings and steel strings wounded with a wire of some 
metal alloy. The most commonly used alloys are bronze, phosphor bronze, nickel or silver plated copper. 
Sometimes the core is wrapped with silk filaments before wound by the steel wire. The used alloy has 
much effect on the sound and durability of the strings. 

Guitar’s anatomy 

When constructing a guitar there are many choices to be made that have large effect on the timbre. The 
most important part with respect to construction is – again – the guitar’s body. The back of the top plate 
of the body is supported by a grid of wooden strips, called braces (see Figure 4.2), which can be arranged 
in different geometries. The bracing technique is acoustically critical: it alters the stiffness-to-mass ratios 
and elastic moduli dramatically, thereby defining the guitar’s sound radiation. These braces are necessary 
to support the top plate, because it is relatively thin in comparison with its surface. The guitar’s sound 
hole, through which sound is transmitted to the exterior of the guitar, can vary in shape and size. This 
geometry is most important for the transmission of lower frequencies. Lower frequencies are namely 
produced by the ‘coupling’ between successively the strings, bridge, sound-board, ribs (sides of the 
guitar), back plate and ultimately the air cavity in the guitar’s body. If these elements have a strong 
interaction, the guitar is said to be strongly coupled. The higher frequencies are mainly realized by the 
coupling between the strings, bridge and top plate. The interaction strength can be tuned by a luthier 
according to taste: a certain amount is necessary for the transmission of vibration, but too much coupling 
causes harsh tones.  

4.5.2. Dynamic timbre control 

This paragraph describes how a musician can control the timbre by applying playing techniques with his 
hands (dynamic timbre control). Through investigation of these techniques, the expressive dimensions of 
section 4.6 can be defined.  

4.5.2.1. Right hand playing position 

By changing the plucking position of a string, the guitar can produce a rich palette of different timbres 
varying from a thin, metallic sound (near the bridge) to a thicker and smoother sound (above the fret 
board); see Table 4.3. Skilled musicians never play statically at one location on the string, but apply 
variations conforming the score’s annotation, prescribed dynamics or the mood of a phrase instead. 
Inherent to the technique is that all the tones of a polyphonic performance are affected. Varying the 
plucking position is a technique that is applied on a relatively high scale, meaning rather on sequences of 
notes than per note. The technique is commonly applied per musical sentence (sequence of notes forming 
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a melodically whole, marked by pauses). In this way, the distinction between sentences is emphasized and 
effects such as question-answering can be realized. Below is displayed how the playing style is related to 
psycho acoustic properties and physical properties. 

Playing style Psycho acoustic properties Physical properties 

At bridge Metallic, sharp Stronger higher harmonics 

On fret board Smooth, round Fundamental frequency stronger, less upper 
harmonic content 

Table 4.3: Right hand playing positions and resulting sound properties 

4.5.2.2. Right hand finger configuration 

Timbre variation can also be realized with a fixed right hand position, but then varying the finger 
configuration. A couple of variables are stated below that can change the sound [35]: 

1. The angle of contact between finger and the string: A slight rotation of the wrist can drastically 
affect the angle between the finger and the string. A guitarist can achieve a range of timbres in 
between striking the string with the right or left side of the finger nail. The sound is the smoothest 
at the edges and the most metallic when the nail is in line with the string. 

2. The amount of weight transmitted to the string via the finger: Involves channeling the weight 
of the entire arm to one finger, ranging from very light (the string barely flexes before it is released) 
to as much weight as possible without creating a distorted sound. 

3. The firmness of the first joint in the striking finger: This variable determines the firmness of the 
sound. As the first joint is loosened, the finger becomes less perpendicular to the string as the stroke 
is made. With more firmness on the other hand, the effected sound is more metallic, without having 
to move the right hand towards the bridge. 

4. The ratio of fingernail to flesh touching the string at release time: This ratio determines the 
degree of harmonic overtones the vibrating string produces. An attack with pure nail results in a lot 
of depth in the higher harmonic overtones, while a combination of flesh and nail produces a more 
full sound, with a wider range of overtones including the lower overtones and sub harmonics. 

5. The direction from where the string is touched: The string can be struck from below (tirando) or 
from above (appoyando). The appoyando technique realizes a louder and a fuller sound. 

4.5.2.3. Left hand finger configuration 

The left hand is not a common way to create different timbres with. A professional guitarist would 
attempt to find the optimal position to place a finger within a fret, in order to create the clearest sound. 
This means placing the finger as close as possible to the fret without extending it. Any placement further 
from the fret results in a buzzing sound, which is not considered as a way of intentionally realizing timbre 
within this thesis. 

However, sometimes tones are intentionally played in a certain fashion to create harmonics, which sounds 
radically different than an ordinary guitar tone. Basically, when playing harmonics, the fundamental 
frequency and some of its overtones are eliminated. This effect is obtained by slightly touching instead of 
pressing the string above the fret with the left hand. This can only be realized in certain fret positions, 
namely the ones that divide the string into halves, thirds or fourths. They double, triple or quadruple the 
pitch of the string’s base frequency respectively. One does not come across harmonics regularly in scores, 
and it is mostly used for aesthetic reasons or for special occasions (comparable with the scarce use of 
pizzicato). For this reason, it is hard if not impossible to induce expressive rules for the use of harmonics. 

4.6. Overview of expressive dimensions 
As a result of the preceding outline of dynamic timbre control, some dimensions are proposed on which 
different playing modes can be arranged. The dimensions are necessary to define because it is used as a 
guideline for the creation of a class distribution that defines the outputs of the classifiers in chapter 6. 
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These outputs are used on their turn as eventual annotation for the transcription. This means that the 
transcription contains annotation relating to the applied playing technique. 

The following are only a selection of the total amount of timbre comprising dimensions. A convenient 
property of these 5 defined dimensions is however, that they can be applied simultaneously. The 
dimensions are defined by two complementary playing techniques, indicated between the parentheses. 
The first four are continuous dimensions, meaning that there are an unlimited number of intermediate 
playing modes between the two extreme playing techniques. Fingering on the other hand is a discrete 
dimension. 

Degree of palm muting (Pizzicato – non-pizzicato) 

The degree of muting is a measure for the extent by which a guitar’s string is damped by slightly resting 
the side of the right hand on the strings near the bridge. This results in a buzzing tone that has a shorter 
sustain, less overtones and is softer. The amount of muting can be increased by applying more pressure on 
the strings, or by moving the side of the hand farther from the bridge. 

Plucking direction of fingers (Appoyando-Tirando) 

The playing techniques appoyando (rest stroke) and tirando (free stroke) refer to the direction the strings 
are pulled to. With tirando a bended finger is positioned below a string before it is plucked, thereby 
raising the string. With appoyando the opposite technique the string is ‘pushed’ downward before 
released, after which the striking finger rests on the adjacent string. Appoyando generally results in a 
fuller sound containing more harmonics, while a tirando tone is more metallic. 

Right hand playing position (RHPP) (sul tasto – sul ponticello) 

The Italian annotation sul tasto and sul ponticello refer to the playing position of the right hand, 
respectively on the fret board or at the bridge. Sul ponticello produces a characteristically glassy sound, 
which indicates that the tone contains more higher harmonics at the expense of fundamental harmonics. 
Below the position of the techniques in relation to the sound hole are indicated together with the 
unofficial intermediate label neutral. 

 

Figure 4.3: attack position of the string 

Dynamics (piano – forte) 

The timbre defining role of the dynamics-dimension is debatable. Volume, after all, is not regarded as a 
timbral dimension. However, in the case of a guitar the timbre of loud tones vary from soft ones in more 
dimensions than just the volume. This is because loud tones result in different resonance of the guitar’s 
body and sometimes a buzzing sound (a noise component). Moreover the preceding finger movement is 
larger for a tone played forte, thereby irrevocably affecting the timbre. 

Fingering (discrete dimension: thumb, index, middle or ring) 

The finger used for a certain tone is often prescribed when applying a strumming technique that requires 
finger alteration or if the score incorporates fingering annotation. Sometimes the fingering configuration 
is fixed because a chord needs to be played. Therefore in most occasions the fingering is more a technical 
convention than a free expressive choice. However, every finger has its unique mass, texture, shape, 

sul ponticello neutral sul tasto 
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striking angle and power, thereby creating a subtly unique timbre. Recognizing this dimension would 
therefore be most useful in the application of the tutoring system (section 1.2.4), when for example finger 
alteration is to be tutored. 

From the presented EDs, Exprimulator is tested with the RHPP. Variation in this ED results in distinctive 
classes of sound which can easily be recognized by ear. Therefore, manual evaluation is easier. 
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55..  DDeessiiggnn  ooff  EExxpprriimmuullaattoorr  

The experimental environment called Exprimulator has been designed, to meet the research goals and 
answer the research questions. While the tasks and responsibilities of this system already have been 
outlined briefly in chapter 2, this chapter goes more deeply into the underlying design and program 
requirements. 

In Figure 5.1 the event structure of the two components (the classifier manager and the transcriber) that 
comprise Exprimulator are illustrated. The scheme clearly shows the responsibilities of each component. 
The logical operation procedure prescribes the creation of a training corpus initially. This training corpus 
is a two dimensional wavetable, in which every training instance is categorized per class according to the 
class labels defined by the user. These class labels are used by the transcriber as annotation labels in a 
later stage. From every instance of this wavetable feature vectors can be calculated. Such a feature 
calculation function is denoted by θ(Tonea,i). The composition of this function in terms of calculated audio 
descriptors can be configured by the user. Once for every tone in the wavetable the feature vector is 
calculated, classifiers based on several machine learning approaches can be created and trained to 
recognize the defined class distribution. The trained classifiers are used in a later stage by the transcriber 
for the annotation of transcriptions. The transcriber starts by loading one or more recorded song 
performances of which a transcription can be created by tone segmentation and pitch calculation. This 
note segmentation also enables separate feature calculation of every tone. The composition of these 
feature vectors needs to correspond with the classifier that is intended to be used for annotation. The 
classifiers that are trained with an identical feature vector composition can now be used to provide 
annotation by predicting the class within an expressive dimension. 
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Figure 5.1: Structure of Exprimulator 
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In Figure 5.2 the procession of data structures managed by the classifier manager and the transcriber is 
illustrated. The user and processors can affect state transitions of these data structures which are denoted 
by dashed arrows.  

 

Figure 5.2: Interaction between entities and transitions 
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5.1. Requirements 
The goals and approach presented in chapter 2 give rise to the following requirements for the classifier 
manager and transcriber component of Exprimulator. The functional requirements that are necessary to 
come to annotated transcriptions are presented in section 5.1.1, whereas the next subsection states the 
functional requirements for Exprimulator’s to serve as an experimental tool. Section 5.1.3 presents some 
measures to ensure easy operation. At last non-functional requirements are given that have to ensure 
durability and extendibility of Exprimulator. 

5.1.1. Functional requirements for producing annotated transcriptions 

The final version of Exprimulator must be capable of performing the following tasks: 

• Creating training corpora by automatically splitting wave files containing repetitions of training tones 
into separate tones. 

• Ordering tones present in corpus in classes. This class layout is intended to be learned by the 
classifiers. 

• Creating, parameterizing and training classifiers. 

• Configurable calculation of feature vectors for tones present in training corpus. 

• Transcribing songs, i.e. detect note onsets and pitches. These detection algorithms must be 
parameterizable via Exprimulator’s GUI. 

• Calculating feature vectors for tones present in songs. Therefore the user has to be capable of 
specifying the intended classifiers by which annotating the song, in order to calculate the correct 
feature vectors. 

• Annotating songs with a trained classifier. 

• Setting desired annotation for notes of song, if this information is available for the recordings. 

• Displaying classifier performance by calculating percentage of correctly annotated notes. 

5.1.2. Functional requirements regarding experimenting and evaluation 

• Visualizing waveforms of corpus tones in order to be able to check wrong onset calculation. 

• Providing means to correct miscalculated or missed onsets by splitting and appending tones, or by 
repositioning the onset. 

• Flexibly including or excluding misplayed tones for the training of classifiers. 

• Providing insight into feature data by visualizing feature vectors grouped by class. 

• Providing insight into underlying model of classifiers by visualizing rules, statistics, decision trees or 
networks. 

• Visualizing annotated transcriptions in a representation resembling a MIDI sequence with textual 
annotation referring to the predicted classes. 

• Visualizing performance statistics per classifier that annotated a song (number of notes, correctly 
classified notes, annotation performance). 

• The waveforms of performed songs must be viewable together with the calculated note onsets. In this 
way falsely calculated note onsets can be detected. 

• Select notes in the waveform of a song performance. In this way certain fragments can be evaluated 
by listening or by observing the respective note statistics.  

• Evaluating and comparing the performance of classifiers. 
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5.1.3. Usability 

• Carrying out repetitive tasks efficiently for large amounts of data: tone segmentation, pitch 
calculation and calculation of feature descriptors of multiple tones of a training corpus, constructing 
and training multiple classifiers and annotation of multiple songs with multiple classifiers. 

• Sequential tasks must be automatized. For example, a common sequence of actions within the 
transcriber is transcribing � calculating feature vectors �  annotating. This sequence has to be 
aggregated in order to ease operation. 

5.1.4. Non-functional requirements 

• Exprimulator has to be general in its design so it can be applied to any musical note-level sound 
classification problem. The sound content that the classifier manager is intended to process must not 
be restricted to guitar sound. Therefore general purpose audio descriptors have to be implemented, so 
that in theory any set of sound classes can be recognized, provided that they are acoustically 
separable. The same applies to the transcriber: it has to be capable of transcribing any musical 
performance and not only guitar performances. 

• Exprimulator must be easily extendable and modifiable by consistent programming. 



6. Design machine learning methodology A machine learning approach for generating expressive musical transcriptions 
 

 

 27

66..  DDeessiiggnn  mmaacchhiinnee  lleeaarrnniinngg  

mmeetthhooddoollooggyy  

6.1. Design of training corpus 
The initial step for obtaining machine learners that recognize musical expression is to create a training 
corpus. This step is a crucial one as the class configuration embedded in the corpus is learned by 
classifiers when trained. This learned class configuration is hoped to represent the more general difference 
between playing techniques. Two training corpora were created to be able to realize playing technique 
recognition, and to test Exprimulator’s supporting features for realizing this goal. One initial training 
corpus with less training material was created to get a provisory idea about the adequacy of the corpus and 
ideas for improvements of the extensive corpus. The extended corpus was used for final experiments and 
ought to be representative enough for classifiers to annotate a larger amount of song performances. A 
more detailed description of these two corpora is given in section 7.2. The design of the corpora raises 
some primary questions. Important considerations for answering these questions are discussed below, 
whereas definitive answers are given in section 7.2.  

• What expressive dimension is to be recognized? 

Exprimulator allows for creation of corpora with any imaginable sound class configuration. However, 
this does not guarantee accurate recognition by a classifier of these sound classes in a later stage. 
Differences between the sound classes can be simply too subtle to recognize. A good initial guideline 
within our context is to check whether the sound classes can be distinguished by ear. If not, the 
chances of successful recognition are naturally smaller. It is also debatable if recognizing inaudible 
sound differences (if they exist at all) is desirable for annotating musical transcriptions. 

Furthermore, the context of recognizing musical expression narrows the possible sound class 
configurations. The sound classes need to have some relation with actual playing techniques that can 
be realized on a guitar. Moreover, the playing techniques need to be known and accepted by 
musicians to realize expression, and they should be arrangeable on one single expressive dimension. 

With respect to the goals of this thesis, it is necessary to find an expressive dimension that 
demonstrates the possibility of expression recognition. Therefore it is important to not choose a 
dimension that is too easy to classify, as this does not guarantee succession of more difficult 
recognition tasks. 

• How are classes distributed over the expressive dimensions? 

Dimensions are defined as the range of possible playing configurations between two complementary 
playing techniques; hence a training corpus for a playing dimension should contain at least the two 
classes of complementary playing techniques. In case there is a lot of timbral variation possible in 
between the two complementary playing techniques, intermediate classes can be created. In this 
manner the classifier can interpolate between the two extreme classes more smoothly. However, 
caution should be taken that these inner classes do contribute to a more accurate classifier, and that 
the distances between the classes are large enough to recognize. 

• What interfering dimensions should be incorporated in the training corpus to reflect real 
performances as much as possible? 

For this paragraph, we define an interfering dimension as any other dimension than the expressive 
dimension which has to be classified, and might disrupt correct expression recognition. This is 
formalized as follows: 

o },...,{},,...,{ 11 nm bbBaaA == : A and B are playing dimensions, defined by a set of labels 

denoting the playing modes that comprise the dimension. Dimension A and B can be applied 
simultaneously. 
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o atone denotes a tone realized by applying playing mode Aa∈ , while batone×  denotes a tone 

by applying playing mode Aa∈ simultaneously with playing mode Bb∈  

o ))(,( ajA tonecpred θ : The predicted playing mode within dimension A, by classifier jc  

given feature vector )( atoneθ . Correct prediction should yield label atonedes aA =)( , a 

manually defined supervision function. 

Using the preceding definitions, a playing dimension B is defined as interfering, if the following 
statement is true: 

)())(,()())(,(:, aAbajAaAajA tonedestonecpredtonedestonecpredBbAa ≠∧=∈∃∈∃ ×θθ
It is important to decide which interfering dimensions should be incorporated in the corpus to enable 
a classifier to generalize over these dimensions when test data is presented. The idea of this 
incorporation is to create a training corpus Φ  that contains variation in these dimensions, as follows: 

},,|{ CcBbAatone cba ←←←=Φ ×× , presuming that playing dimensions B and C are 

interfering dimensions. Examples of possible candidate interfering dimensions that a classifier 
irrevocably has to deal with are pitch, loudness, note duration, etc. An important issue is what ranges 
of these dimensions have to be incorporated in order for a classifier to generalize. Another point of 
interest is that the number of instances in the corpus grows rapidly if more playing dimensions are 

added ( CBA ⋅⋅=Φ ) 

• How many instances per class? 

The number of instances in a corpus is important for the classifier to be able to generalize, for the 
computation time and for the risk of overfitting. The idea behind incorporating more instances in a 
corpus is to improve the classifier’s ability to generalize over the natural variation and noise that test 
data bears in comparison with the training data. However, a corpus that is too big could bring along 
unnecessary practical work (human factors like recording and creation of corpus), long training times, 
unwanted effects such as overfitting and the trained models could become too complicated. In case 
one has a large enough corpus at his disposal, several decreasingly smaller fractions of the corpus can 
be created to discover an optimal size. In case the resulting performance curve still rises when 
extrapolated, it follows that the full reference corpus of which the fractions were formed was not big 
enough. 
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6.2. Feature vectors 
In chapter 3 the MPEG-7 standard was 
introduced as an elegant framework for audio 
description, because of its accurateness, 
compatibility, widespread use within audio 
content description and the unified 
implementation. However, not all the descriptors 
within the MPEG-7 toolbox are regarded useful 
within the context of this particular project, i.e. 
RHPP recognition. The most obvious set of 
descriptors to start with, would be a combination 
of Timbral Spectral and Timbral Temporal 
descriptors (see Figure 3.1). These are Log 
Attack Time, Temporal Centroid, Harmonic 
Spectral Centroid, Harmonic Spectral 
Deviation, Harmonic Spectral Spread, 
Harmonic Spectral Variation and Spectral 
Centroid. These descriptors help to describe 
notions as attack, brightness and richness in a 
quantitative way. 

To verify the suitability of these descriptors for the class configuration of the RHPP, the 
HarmonicSpectralDeviation, HarmonicSpectralSpread, HarmonicSpectralVariation and LogAttackTime 
descriptors were calculated from the initial training corpus of section 7.2.1. A glance at Figure 6.1 shows 
that a selection of these descriptors already yields delimited clusters of feature vectors. In this plot, the 
classes are grouped by colors; green depicts neutral instances, red sul ponticello and blue sul tasto. It 
must be kept in mind that this is only an informal evaluation of the audio descriptors, and no final 
conclusions can be drawn upon these results. Visually analyzing feature vectors shows at any rate that the 
MPEG-7 vectors cluster better than vectors with audio descriptors implemented by the author on basis of 
formulae from literature. 

6.2.1. Calculation of feature vectors 

Feature vectors consist of temporal and spectral MPEG-7 descriptors. These temporal descriptors are 
global descriptors calculated from a certain range (the beginning 229 ms) of a tone. For the spectral 
descriptors, the tone is segmented initially in blocks of 30ms (the standard in MPEG-7) of which spectra 
are calculated. Once for every block these descriptors have been obtained, the mean is calculated in order 
to have one value per descriptor that can be inserted in the feature vector (see Figure 6.2). 

Figure 6.1: Selection of MPEG-7 descriptors of 
initial training corpus 
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Figure 6.2: Construction of feature vector 

6.3. Classifiers 
In this section available classifier categories are outlined in order to determine which ones are the most 
appropriate for playing technique recognition. This ordering is analogue to the categories identified by the 
WEKA-toolbox. Once the general idea of the functioning and characteristics of these different machine 
learning approaches are clear, an overview of related work on sound classification is presented in section 
6.3.2. The related projects share the property that performances of different classifiers are compared for 
each sound classification task, together with an evaluation of the best performing classifier. 

6.3.1. Overview of classifier categories 

We start with outlining the characteristics, applications, disadvantages and advantages of a major 
selection of the WEKA classifiers. For this section the WEKA API [36] as well as Wikipedia [37] has 
been consulted. The general information provided in this section is not determinative for the WEKA 
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classifiers that are evaluated, but they can give an idea how well their characteristics match with the 
particular sound classification problem of this project. 

6.3.1.1. Decision trees 

Decision trees are hierarchical classifiers which arrange decisions in a tree configuration where nodes 
represent a decision (often based on a Boolean function on a selected feature attribute) that can result in 
several outcomes (mostly two outcomes, in case of binary decision trees), corresponding with the 
branches. 

Decision trees are built by starting with the entire set of training instances, and splitting these according to 
the most optimal partition according to some heuristic. These splits are represented by the tree’s branches. 
This process is recursively repeated for the subsets of the partitions, until either a subset is a subset of the 
target class, or there are a minimum number of instances in the subset. A drawback of decision trees is 
that they are tended to overfit training data, especially when the training data is noisy. A tree is overfitted 
if there exists some other tree that fits the training data less, but performs better on test instances. 
Overfitting a tree can be overcome by stopping to expand the tree earlier, or by removing nodes of a full 
grown tree if this does not result in decreased accuracy over a test set (pruning). 

Decision trees have several advantages: they are easy to interpret, and can be easily converted to a set of 
production rules. Decision trees are also general in the sense that no a priori assumptions are made on the 
nature of the data. Furthermore, little data preparation (like normalization, removing blank attribute 
values) is required. The disadvantages of decision trees are their sensitivity for noise in the training data. 
Slight variations can result in a selection of different attributes at the nodes of the trees, which can have 
significant influence on the descendant subtrees if this node is on a high level in the tree. Besides this, 
trees can become quite complex since the splits of the numeric training instances are binary. 

One commonly used decision tree in the field of machine learning and pattern recognition is the J48-tree 
[3, 38-40], which is a supervised classification algorithm. It is also used in the more related field of 
instrument recognition [26]. Logistic model trees combine the benefits of logistic regression models with 
decision trees, by integrating these logistic regression models at the leaves of the tree. The logistic models 
in the leaves are the result of refinement of the logistic models in the higher level nodes of the tree. In 
some cases, better performance can be achieved by constituting a forest consisting of several decision 
trees. The RandomForest classifier follows this approach, and consists of more than one RandomTree 
(RandomTree is a classifier that considers K random features at each node).  

6.3.1.2. Support Vector Machines (SVMs) 

While they were originally proposed by Boser, Guyon and Vapnik in 1992, SVMs gained popularity in 
the late 1990s. Support vector machines are based on structural risk minimization paradigm, which 
implies finding a hypothesis which guarantees the lowest true error. An SVM performs classification by 
building an N-dimensional hyper plane that separates instances in two categories most optimal, which 
means that the hyper plane is located at maximum distance of the training instances. This is why SVMs 
are also called maximum margin classifiers. 

Support vector machines are used for different pattern recognition tasks, such as speaker identification, 
face detection, text recognition [41], and genomic data. In various fields, SVMs are the best performing 
classifiers.  

SVMs can classify problems with a high feature dimension, and they are also protected against 
overfitting. Besides feature vectors, more complex data structures can serve as an input for SVMs, such as 
graphs, sequences and relational data. Drawbacks of SVMs are that they do not provide insight in the 
underlying model and they classify linearly. Furthermore, the appropriate kernel-function (that can be 
polynomial, radial basis or Gaussian radial) and parameters are hard to determine, meaning that this is 
often performed in a try-and-see manner. 

6.3.1.3. Neural networks 

A Neural Network is a configuration of interconnected neurons, which can approximate a particular 
function. It is inspired by biological nervous systems. Neural networks consist of several layers, the input, 
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output and one or more hidden layers that contain neurons with a certain bias function. The neurons of a 
particular layer can be connected to the neurons of the adjacent layer with weights that are determined in 
the training phase. 

Neural networks are successfully applied in speech recognition, image analysis (for example hand writing 
recognition) and adaptive control, and are used for the construction of software agents (in computer and 
video games) or autonomous robots. 

Neural networks have the advantage that through the parallel computation, they can realize fast 
prediction. On the other hand, there is no insight in the trained model, and the training process is 
relatively slow. Like SVMs, Neural Networks are hard to fine-tune, and there are no common 
methodologies to determine the number of layers and neurons. Unlike with SVMs, there is an increased 
risk of overfitting. 

6.3.1.4. Bayesian learning 

Bayesian networks are a widely used statistical classification approach, in the fields of speech recognition, 
sound- and text classification. In Bayesian networks, variables are typically arranged as nodes in a graph 
structure, where the edges specify the conditional dependencies between the variables. 

A simpler and more generic approach of the Bayes’ theorem is the Naive Bayes classifier. It assumes that 
the individual attributes of the feature vectors are independent (hence the adjective Naive). It predicts 
instances on basis of maximum likelihood. Despite its simplicity and the naive independence assumption, 
it tends work well and even outperforms other classifiers in some occasions. In cases the independence 
assumption is violated, it often predicts the correct maximum-probability class. It also is robust to noise as 
it is not focused on completely fitting the training data. This has also the drawback that there is no 
guaranteed consistency with the training data. 

6.3.1.5. Lazy learning 

Lazy learning is a technique also known as instance based learning that does not constitute a model on 
basis of training data, but predicts training instances on basis of the distance or similarity on the training 
instances. This distance is mostly measured by the Euclidian distance function. As follows, lazy 
classifiers do not incorporate an actual training phase, as they just memorize the instances. This implicates 
that in the prediction phase the actual distance computation occurs, resulting in a slower classification of 
test instances. Amongst classification applications, instance based learning can also be applied in case-
based planning and case-based reasoning in law and business. 

K* is an instance based learner that uses an entropic distance measure for determining the similarity 
between test and training instances. It is a very simple method, while remaining accurate at the same time. 
However, the K* classifier treats all attributes as equally important, which might skew classification 
results. Another drawback is that there is no model which can be evaluated. 

The k-Nearest Neighbour algorithm (k-NN) is a pattern recognition algorithm that assumes that instances 
generally are located in close proximity to other instances of the same class. It classifies instances on basis 
of their distance between k other training examples. The classifier is suitable for small amounts of training 
data and has a strong consistency: the algorithm is guaranteed to give an error rate no worse than twice 
the Bayes error rate. The algorithm is sensitive for noise however, as query-instances are compared with 
training instances. This effect of noise is reduced as the value for k is increased. 

6.3.1.6. Rule learning 

Closely related to decision trees are rule learners, which are applied to extract implication and correlation 
rules from large data sets. Rules can be obtained in numerous ways, for example by conversion of 
decision trees or Neural Networks. Decision trees can be converted to a set of rules by creating a rule for 
all the paths from the root to the leaf, which is followed by post-pruning where unnecessary antecedents 
are removed. Another approach is sequential covering, in which rules are learned one at a time, each rule 
covering a set of instances belonging to one class. This process is repeated for the other instances, until all 
instances are covered. Rules can be learned following the bottom-up or top-down approach. With the 
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bottom-up approach, a specific rule is used as a starting point in order to obtain a more generic one, as 
opposed to the top-down approach.  

The rules generated by a rule classifier are easily interpretable by humans. This is why rule learners are 
frequently used in data mining problems where understandable patterns need to be discovered in large 
amounts of data. It is commonly applied in linguistics (text classification, webpage classification) and 
game learning. It has also been used recently for the classification of chemical compounds as cancer 
causing, based on their molecular structure and chemical characteristics. 

Many existing rule learners are computationally expensive, especially on noisy data. Like decision trees, 
rule learners are sensitive for overfitting, which can also be overcome by pruning. 

6.3.2. Literature review of classifiers used for sound classifying problems 

In projects that are concerned with classifying sound on basis of timbre, several classifiers have been 
evaluated on their performance on large sets of training data. In the paper Audio-based gender 
identification using bootstrapping [38], a methodology for gender identification has been presented. 
Gender identification is useful for the improvement of speech recognition as well as video indexing. From 
the following six classifying approaches; Naive Bayes, Nearest Neighbor, Backpropagation Neural 
Network, Decision Tree, Support Vector Machine and Logistic Regression, the Neural Network 
consistently performed the best. Another speech related project, Robust Recognition of Emotion from 
Speech [32], evaluated the major WEKA-classifiers on classification of emotion from speech. Emotion 
has been classified on a rough level as positive or negative. On a low-level scale the positive category has 
been split in delight or flow (confident, encouragement), and the negative category in confusion or 
frustration. Because too little training was used, no significant performance differences between 
classifiers were found. 

In Retrieval of percussion gestures using timbre classification techniques [20] it has been attempted to 
recognize five distinct classes of drum timbres, realized by six different striking positions of a snare drum: 
rimshot, brush stroke, center, near-center, halfway, near-edge and edge. Class recognition has been 
attempted with three different classifiers: k-Nearest Neighbor decision trees, Support Vector Machines 
(SVMs) and Neural Networks. Amongst the two others, the decision tree performed consistently the best 
in several test cases, whereas the Neural Network achieved the highest performance in a specific test case. 
The recognition of percussion gestures is considered closely related to the recognition of the RHPP of this 
project. Another drum sound classification project is described in Automatic Classification of Drum 
Sounds: A Comparison of Feature Selection Methods and Classification Techniques [21]. Drum sounds 
brought forth by different types of kick- and snare drums, toms, hihats and cymbals were classified. For 
this task, a 1-Nearest Neighbour tree, K* instance-based classifier, C4.5-tree, PART rule learner and 
Canonical Discriminant Analysis were explored. For detailed sub-category classification K* appeared to 
be the best choice, whereas CDA performed better than the others for super-category classification.  

Besides the specific task of recognizing drum sounds, more generic classification has been explored in 
various projects relating instrument classification. In Blind Signal Separation of Similar Pitches and 
Instruments in a Noisy Polyphonic Domain [39], separation of two harmonic signals of different 
instruments was attempted, in a noisy environment. Four classifiers were compared to achieve this task: 
Tree J48, Logistic Regression Model, Bayesian Network, and Locally Weighted Learning. Locally 
Weighted Learning outperformed the other classifiers. Another instrument recognition project, 
Differentiated harmonic feature analysis on music information retrieval for instrument recognition [26], 
focused on the classification of the instrument families woodwind and string instruments. In the following 
stage, four woodwind instruments and four string instruments were classified with different classifiers. 
Bayesian Networks, Logistic Regression Model, Decision Tree J-48 and Locally weighted learning were 
compared, resulting in the best performance for the Logistic Regression Model for the instrument 
families, whereas the J48-tree performed equally well as the Logistic Regression Model for the 
recognition within the two instrument families. 

The recognition of musical genre can be regarded as classification on an even higher level than instrument 
recognition. Classification of musical genre; a machine learning approach, is a project which attempted 
to classify six musical genres from analysis of MIDI file features [3]. Naive Bayes, Voting Feature 
Interval, PART rule learning, J48-trees, Nearest Neighbor rule-learning and JRip rule learning were 
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explored, yielding Naive Bayes as the most promising classifier. In Musical Genre Classification 
Enhanced By Improved Source Separation Techniques [4], more specialized genres were classified (four 
Greek musical genres) by extraction of rhythmic, timbral and pitch features from audio signals. In a 
comparison between NN-classifiers and Multi layer perceptrons the latter outperformed the former. 

In Determination of the meter of musical audio signals: Seeking recurrences in beat segment descriptors 
[42] an algorithm for the determination of the meter (duple or triple) of musical audio signals is proposed. 
Kernel Density estimation, PART rule-induction, Neural Networks, 1-Nearest Neighbor (1-NN), C4.5-
trees and SVMs were compared on their performance. Naive Bayes performed the best compared to the 
other classifiers. 

As can be noticed, the classifiers being evaluated do not correspond amongst the different projects; 
neither do the outcomes of the most appropriate classifier. Besides that, the choice of the initial classifier-
set to test with is not motivated. Therefore, for our project we have decided to evaluate several classifiers 
which are the most commonly used in papers that classify similarly sound content as in this project (drum 
timbre is more related to our project than gender identification for instance). There should also be 
similarity in complexity of the training data.  

6.3.3. Selection of classifiers to test 

As there is not any consistently chosen classifier for the classification problems of the previous section, 
we have been decided to evaluate most of the WEKA classifiers on the classification of playing 
techniques. It requires little effort to integrate these classifiers with Exprimulator, as the WEKA API can 
be directly invoked from Matlab, as it is written in Java. Some classifiers are excluded because they 
cannot handle the feature vectors or class labels. The ID3-tree classifier only interprets nominal attributes, 
whereas the Lazy Bayesian Rules classifier cannot handle undiscretized training data. In the case of the 
m5-tree on the other hand, only numeric attributes can be interpreted as class labels. The remaining 
classifiers that are used are depicted in Table 6.1, and are referred to throughout this course as set C. 

WEKA category WEKA classifier name 
Decision trees J48 
Decision trees NBTree 
Decision trees LMT 
Decision trees DecisionStump 
Decision trees RandomForest 
Decision trees RandomTree 
Decision trees REPTree 
Lazy learning (instance based learning) IBk 
Lazy learning (instance based learning) LWL 
Lazy learning (instance based learning) KStar 
Bayes BayesNet 
Bayes NaiveBayes 
Bayes NaiveBayesSimple 
Functions MultilayerPerceptron 
Functions SMO 
Rule learning JRip 
Rule learning NNge 
Rule learning OneR 
Rule learning PART 
Rule learning Ridor 

Table 6.1: WEKA classifier used for performance comparison 
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6.3.4. Incontrollable interfering dimensions 

As there can be interfering playing dimensions caused by the musician like discussed in section 6.1, there 
are also several incontrollable factors that can disrupt expression recognition. Although these factors are 
not incorporated in the training corpus, it is important to be aware of them, in order to keep them as 
constant as possible. 

Recording settings 

In the recording setup there are many factors that can influence the classification process. Every human 
performance that is recorded in a different session than the one in which the training corpus was recorded, 
is likely to differ in sound because of different recording settings. These settings can involve equalizer 
configurations of the guitar, amplifier or recorder. Besides that, there is the possibility to transform the 
signal by applying amplifier effects such as chorus or reverb, which can also be realized by the recorder 
(a computer in this project). All these factors can influence expression recognition. In the most optimistic 
case the degree of generality of the classifier is high enough to ignore these differences. However, for this 
project, we try to overcome this potential problem by keeping the recording setup as stable as possible 
between independent recording sessions. A better solution is to record test data in the same recording 
session as training data. 

Instrument’s characteristics 

Another influencing factor is the instrument which is used to record performances. The goal of the 
eventual classifier is not to be able to generalize over different types of guitars, for example Spanish 
guitars and steel string guitars. The physical and acoustic properties of nylon strings (Spanish guitars) 
differ in such a degree from steel strings that it is unlikely if there can be a generalization at all. Our 
classifier was trained on steel string instruments and therefore the intention was to annotate steel string 
performances. However, within the category of steel strings, individual instruments can differ also 
drastically in sound characteristics. It is a challenge to generalize over as many different steel string 
guitars as possible, but this lies beyond the scope of this study. 

Inconsistencies within one instrument 

Within an instrument there are some factors that can 
influence sound characteristics. There is for example the 
difference in timbre between a fretted tone (a tone 
realized by pressing a fret on a string to create a different 
pitch) and an open string (no fret is pressed). Besides 
that, the two highest strings of a western guitar (B- and 
E-string) have different physical and acoustic properties 
than the other strings. Whereas the B- and the E-strings 

are made of plain steel, the other strings are made of a core wire, wound with a bronze wrap wire (see 
Figure 6.3). The reason of this wrapping is to give the strings more mass to realize lower tones. A side 
effect of this wrapping is however, difference in timbre. 

Where some of the factors discussed above are beyond our scope, it is nonetheless a challenge to discover 
whether a classifier can be made general enough to overcome these factors. Some factors, such as 
different equalizer setting or instruments might be relatively easy to overcome by calibration. In case 
feature vectors of instrument A can be projected on the ones of instrument B by a simple linear 
translation, then this translation function is easily obtained by calibration. However, the chances for a 
classifier that detects very subtle timbre differences to generalize over different instruments are low. 

A classifier should naturally be capable of generalizing the inconsistencies within one instrument for this 
project. If the classifier is not able to generalize between open string tones and fretted tones, there is the 
option to build separate classifiers for the two cases. However, this approach is impossible to maintain if 
too many of these inconsistencies occur when recognizing an expressive dimension. In that case, the 
possibility of overfitting should be investigated. For only a few inconsistencies, it loans to build separate 
classifiers, because the classifiers can be considered as offline systems that deserve some designing time 
to create optimal classifying results. This also means that there are no strict timing constraints for the 
training of the classifier. 

 

 
Figure 6.3: Plain steel string and wound 
steel string 
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77..  IImmpplleemmeennttaattiioonn  

7.1. Implementation of Exprimulator 
The interface of Exprimulator consists of two main components, the classifier manager and the 
transcriber. The features and possibilities of these sub systems are outlined in the following two 
subsections. 

7.1.1. Classifier manager 

The major tasks of the classifier manager are creating a training corpus, calculating the accompanying 
audio features and training classifiers that can be used as annotators by the transcriber. The corpus is 
created by loading raw wave files containing a continuous sequence of tones which are automatically 
segmented when loaded. The resulting separate wave fragments are called tones. Customizable feature 
vectors of every tone can be calculated which serve as training input for a selection of WEKA classifiers. 

Figure 7.1 shows the GUI of the classifier. The wave data that constitutes a training corpus is presented in 
the first two left list boxes. These boxes display respectively the loaded wavefiles (1) as well as the 
segmented tones that comprise the selected wavefile (2). When tones are not properly segmented, they 
can be split by means of the wave plot (7).  

 

Figure 7.1: Classifier GUI together with simulation output and classifier dialog 

The classifier manager also offers capabilities for deleting tones, or shifting the markers that indicate the 
note onsets. Besides visual inspection, all the separate tones can also be played back in order to detect 
tones that were not correctly played by the guitarist. Wavefiles and their tones can be grouped into 
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classes, which can be given names that are used by the transcriber to annotate songs, by means of dialog 
(5). In this example, the three classes used throughout this report are created (neutral, sul ponticello and 
sul tasto) by grouping the appropriate wave files. The customized class configuration can be assigned to a 
selected classifier of list box (4). The class configuration can be refined by including or excluding the 
tones using list box (2) (the asterisks denote inclusion). The resulting smaller training corpus leaves space 
for a test set that can be used for validation of the corpus. Once there is a classifier with an associated 
class layout, a selection of audio descriptors (3) can be used to calculate feature vectors of every tone that 
is present in the classifier’s corpus. The feature vectors of the selected tone(s) are viewed in plot window 
(8). They are calculated over a specified range, visible as a green rectangle in (7). After initialization, the 
selected classifier can be trained with and evaluated on its training corpus, with dialog (6). In this dialog 
all the tones present in the training corpus are listed and as predicted with the selected classifier, hence 
also excluded tones are predicted. Wrong predictions are denoted with an asterisk. 

All the classifiers with their training corpora configurations and feature data can be saved and loaded into 
Matlab-files, but the feature data can also be exported to the ARFF-file format that is compatible with 
WEKA.  

7.1.2. Transcriber 

The transcriber (Figure 7.2) is the part of Exprimulator that is responsible for transcription and annotation 
(Figure 7.3) of musical performances. A song corpus (2) is created by loading wave files that are 
segmented using the same procedure as the classifier manager, yielding the wave fragments visible in plot 
window (1). After tone segmentation the pitches visible in Figure 7.3 are calculated. For every song, any 
trained classifier from the classifier manager can now be loaded into the annotator box (3). Before an 
annotator can annotate a transcription, feature vectors of the song have to be computed. Naturally, these 
feature vectors have to be identical in composition to the ones that have been used for training the 
classifier. In this way they can be used as input for this classifier in order to predict a tone’s class, that is 
presented as textual annotation in Figure 7.3. Incorrectly annotated notes are displayed in red. This 
prediction checking can only be done after the intended annotation is set for every note (5). With this 
comparison between the desired and automatic annotation, the statistics visible at (4) can also be 
computed. It displays the index of the selected note (shaded blue in (1)), the desired and predicted 
annotation and the total number of notes in the selected song. Furthermore it specifies the annotation 
performance (percentage of correctly annotated notes), and the absolute number of falsely and correctly 
annotated notes. 

 

 

Figure 7.2: Transcriber GUI 
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Figure 7.3: Annotated transcription generated by the transcriber 

7.2. Creation of training corpora with Exprimulator 
This section starts with a presentation of the layout of the corpora by which Exprimulator has been tested 
in chapter 8. Firstly, an initial training corpus has been created with the intention to prove the adequacy of 
MPEG-7 features and WEKA classifiers for musical sound classification. Hereafter, a more extensive 
corpus was created that served as training material for classifiers which were tested on a larger set of 
representative songs. This larger song corpus should enable conclusions about performance deviation 
among classifiers. In the subsequent sections, the practical realization of the corpora is outlined and the 
questions raised in section 6.1 are answered.  

7.2.1. Test case: creating an initial training corpus with Exprimulator 

A basic training corpus has been built to test Exprimulator’s capabilities of creating corpora (see Figure 
7.4). It was also used to insure an adequate course of the subsequent stages in the Exprimulator-process 
(the calculation of feature vectors � the training of classifiers � the annotating of songs with the trained 
classifiers). For the initial performance test the major part of the WEKA classifiers was used. This gained 
insight in the suitability of the individual classifiers for classifying the RHPP dimension. It was also 
expected that this test would expose structural performance differences between categories of classifiers. 
The initial corpus was tested with only one song Au Claire de la Lune. Naturally, these test results could 
not be used to deduce conclusions about differences in classifier performances. The test was merely 
carried out to provide an indication if it would be possible for MPEG-7 feature vectors to provide an 
adequate annotation performance (> 80%) in combination with any WEKA-classifier. In relation to this 
initial corpus the following questions were asked, that are answered in section 7.3.3.1: 

1. Did Exprimulator adequately load and separate compound wave files into separate instances? 

2. Did the chosen MPEG-7 feature configuration in combination with the selected WEKA classifiers 
provide a satisfying annotation performance for the song Au Claire de la Lune? 

 

Figure 7.4: Initial training corpus 
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The corpus contained all the unique tones of the A-string and D-string, meaning the tones produced by the 
first five frets on the string as well as the open string. The inclusion of the chromatic range of tones that 
encompass the tones present in Au Claire de la Lune, is expected to ensure generalization over pitch by 
the classifier. The classifier is also expected to generalize over the timbral differences between fretted and 
unfretted tones (see section 6.3.4), and differences between strings. 

7.2.2. Test case: creating a definite training corpus with Exprimulator 

For the final tests presented in chapter 8, a more extensive corpus was created that spanned a wider range 
of tones, which enabled the annotation of songs with a larger range of tones (see Figure 7.5). Also the first 
six instead of five tones were incorporated per string, which enabled more flexibility in playing the songs. 

The corpus was meant to be tested with 10 songs, consisting of approximately 60 tones each. This would 
result in 600 test instances by which the training corpus (consisting of 540 instances) could be tested, 
which in turn would provide adequate proof to deduce conclusions about the ratios between mutual 
classifiers. 

In contrast to the initial training corpus, this time the tones were played without damping the other strings. 
When recording the initial training corpus, this artificial damping was applied to create a tone as clear and 
pure as possible without resonance of other strings. This effort was abandoned in order to reflect more 
accurate the way tones are played in the song performances. 

 

Figure 7.5: Definite training corpus 

7.2.3. Design decisions 

The design decisions that were made implicitly in sections 7.2.1 and 7.2.2 are accounted for in this 
section. 

• What expressive dimension was recognized? 

As discussed before, the RHPP was used as a proof of concept to illustrate the possibility of 
annotating musical scores with a machine learning approach. The expressive dimension was divided 
sound classes, such that the difference would be audibly by human ear. Besides, the right hand 
playing position is a playing technique that is commonly used among guitarists. It is also an accepted 
way of expression in classical musical pieces, proved by the existence of the Italian annotative labels 
sul tasto and sul ponticello.  

• How were classes distributed over the dimensions? 

The expressive dimension RHPP was divided in three classes: sul tasto – corresponding with playing 
left from the sound hole; sul ponticello – corresponding with playing right from the sound hole; and 
neutral – playing above the sound hole. The two extreme classes (sul tasto and sul ponticello) were 
the minimum classes required to span the RHPP dimension. The intermediate sound class neutral was 
chosen to reflect the standard RHPP, which is used often. Moreover, it enabled the classifiers to 
create a smoother interpolation function between audio features and RHPP. The creation of more 
intermediate classes was considered overkill, because there is no convention or annotation in musical 
literature that considers these playing positions. The resulting five sound classes would also be harder 
to distinguish from each other by human ear. 

• What interfering dimensions should be incorporated in the training corpus to reflect real 
performances as much as possible? 
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The corpus from section 7.2.2 incorporated the interfering dimensions pitch, playing position 
deviation and playing the same tone with an open string or fretted. These are considered as the most 
common and prevalent dimensions when performing a song. An important notion is to keep the 
interfering dimensions as low as possible, because the number of instances increases explosively with 
each dimension added (see next paragraph). 

• How many instances per class? 

The corpus from section 7.2.2 consisted of a total of 540 instances. This number was a result of the 
decision to incorporate interfering dimensions in the corpus. One of these dimensions was the pitch. 
A certain chromatic range of pitches had to be incorporated in order to insure generalization over 
pitch. 18 semitones, starting from A2 were considered to provide enough freedom for a guitarist to 
play melodies in. A natural jitter with respect to the median playing position of each class was added 
to resemble the inaccuracy of a guitarist when playing songs. 10 Of such slight playing position 
deviations were incorporated for each pitch. When multiplied, this resulted in 180 instances per class. 
The number of repetitions for the playing position jitter was a debatable choice. However it was 
expected that if a reduction of the corpus size – realized by reducing the number of repetitions of 

playing position jitter – with 20% (denoted by80φ , where the index signifies the percentage of the 

full corpus) resulted in a significantly poorer classifier performance, an increase of the corpus size 
would be beneficial. To be able to draw such extrapolation conclusions, the following set of corpuses 

was constructed: }{ 100908070605040302010 φφφφφφφφφφ ⊂⊂⊂⊂⊂⊂⊂⊂⊂=Φ . To 

obtain a performance curve, for each corpus the mean performance of all classifiers over the full song 
corpus ),( SCPerf was calculated. The set of corpuses was also used to evaluate the relation between 

the corpus size and the complexity of the trained rule and tree learners.  

7.2.4. Practical realization of the training corpus 

The corpus’ tones were recorded with Cubase SX 2.0. The recording settings of this session are described 
in section 7.2.5. The settings were kept constant throughout the recording of the songs by which the 
training corpus was tested. It would be optimal if these settings would not interfere with correct 
classification, but the influence of these settings is beyond the scope of this research. This is why the 
settings were kept as constant as possible, and the songs were recorded in the same recording session as 
the corpus instances. 

The tones of each string were recorded in separate compound wave files. This was convenient in order to 
keep the wave files manageable in size and recording mistakes would be more easily revisable. For 
another purpose, the corpus could be expanded or narrowed string-wise. The individual tones of a string 
were recorded by uninterruptedly recording notes of approximately 1 second each. This process was 
repeated for every playing mode of the RHPP and interfering dimensions that needed to be present in the 
corpus. The duration of 1 second was adequate for the calculation of feature vectors, which was executed 
over a range of the 10000 starting samples (= 0.23 sec.). Once for every string and playing technique a 
wave file was present, these were loaded into Exprimulator, which segmented the compound wave files 
into individual tones. The same segmentation process was used in a later stage to segment the tones of a 
performed song. In some exceptional cases two subsequent tones were not properly divided (for instance 
when playing sul tasto, which has a weaker onset). In these rare occasions, manual segmentation was used 
to divide these tones at locations where there appears to be an offset in the waveform. The resulted 
collection of separate tones was grouped into classes conforming the playing technique the tone was 
played with. This was done by assigning names to groups of appropriate instances manually. These names 
were used for the transcriber as annotation labels. 

7.2.5. Recording settings 

To ensure that the experiments can be revised, the technical details are given in this section. The 
performances and tones of the corpora were recorded with an acoustic steel-string guitar of the brand 
Lakewood with a B-Band pick-up that consisted of a microphone and a piëzo pick-up which were housed 
in the guitar’s body. The guitar was connected to an AER Compact 60 amplifier that in turn was 
connected to the computer’s sound card. The recordings had a sampling rate of sr = 44.100 Hz, a depth of 
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16 bits and were mono. These audio settings were kept constant throughout this study. The used sound 
card was an M-audio Audiophile 2496. 

Recording settings of the guitar equalizer: Bass +8db, Mid +8db, Treble +8db, Vol +8db. Rate UST/AST 
= 6/6. Recording settings of the guitar amplifier: Bass 12’, Middle 12’, Treble 12’, Gain 9’, Master 9’, 
Effect return 0’, contour: off. Tones were recorded with Cubase, every tone lasted for approximately 1 
second at least. 

7.3. Implementation of machine learning methodology 
This section describes the integration of the MPEG-7 audio toolbox with Exprimulator, as well as the 
selected audio descriptors with their calculation settings. For the WEKA classifiers it is outlined what 
parameters could be relevant with respect to their performance.  

7.3.1. Calculating feature vectors 

The feature vectors used for adequately describing the different sound classes of the RHPP were 
comprised of audio descriptors from the MPEG-7 audio toolbox. The algorithms for these descriptors 
were implemented for Matlab by Michael Casey from the University of London, in toolbox Matlab-XM. 
All the low level descriptors described in section 3.1.1 together with the description schemes, were 
implemented in this toolbox.  

Feature vector calculation started with finding a suitable range from the source wave signal of a corpus 
tone. As the RHPP is concerned with the way the guitar is struck, the attack section of a tone would seem 
an obvious fragment for feature calculation. The beginning of a tone was determined by the segmentation 
algorithm, and was set at the maximum of each tone. To also incorporate the small section preceding this 
maximum for feature calculation, a fixed offset of -200 samples from this maximum was taken. From this 
point, the first 10.000 samples were used as input for the algorithms. This equals a duration of 0.23 sec., 
which is approximately a fourth of the length of the tones present in the corpus. As feature vector 
calculation of the song corpus is the same as for the training corpus, also 0.23 sec. of the tones of the 
songs had to be taken. For the few tones shorter than 0.23 sec. feature calculation was skipped, because no 
appropriate feature vectors could be calculated from these tones. The calculation range was not shortened 
for this purpose, because this decreased the performance of the classifiers. A long term solution could 
involve the creation of additional classifiers trained with smaller fragments of the corpus tones, to be able 
to classify the exceptionally short tones. 

7.3.1.1. Settings for audio descriptor algorithms 

For the calculation of the four Timbral Spectral audio descriptors HarmonicSpectralCentroid, 
HarmonicSpectralDeviation, HarmonicSpectralSpread and HarmonicSpectralVariation, short term 
Fourier Transforms (STFT) over subsequent time frames had to be calculated. These STFTs were 
calculated over windows of 3089 samples, shifted each time with 1545 samples (an overlap factor of 2). 
In short, the STFT is used to break down a time frame of a signal in constituent sinusoids of different 
frequencies. The formula is given below: 

∑
∞

−∞=

−−=≡
n

njemntxmXxSTFT ωωω ][][),([]}({  

In this formula ][nx  and ][nω  denote respectively the current time frame to be transformed and the 

used window function, a symmetric ‘hill’ function. In our case, the hamming function is used as a window 
function, as displayed in Figure 7.6. 

In order to calculate the 4 Harmonic descriptors the harmonic peaks (multitudes of f0, the fundamental 

frequency) were calculated from the STFTs, resulting in an STFT of 
0f

sr
 values, in which sr is the sample 

rate. The resulting reduced STFT is used for the calculation of the centroid, deviation, spread and 
variation. As there were 5 time frames of size 3089 in 10.000 samples with a window shift of 1545, each 
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descriptor produced 5 values for the entire segment of 10.000 samples. The vectors were made a scalar by 
calculating the mean. 

In order to obtain the SpectralCentroid the power 
spectrum was calculated over the entire range of the 
calculation range of beginning 10.000 samples, with a 
resolution of 1024 Hz. From this spectrum the centroid 
was computed in the same way as for the harmonic 
STFT. 

For the calculation of the LogAttackTime and 
TemporalCentroid, the energy curve (waveform 
contour) was calculated, by down-sampling with factor 
3 and applying 20 Khz low-pass filter. This energy 
curve enabled the calculation of the logarithmic attack 
time as well as the temporal centroid. 

7.3.2. Settings for classifiers 

Presumably the default settings for the WEKA classifiers are not optimal for the recognition of playing 
techniques. Therefore, for a relevant set of best performing classifiers, the available tunable parameters 
that the WEKA API offers are explored. Adjustment of appropriate parameters might further increase 
annotation performance. Not all the parameters are considered relevant, thus only a selection is to be 
explored. 

Concerning Boolean parameters, if there is an optimal setting that is beneficial for the classifier, WEKA 
has set it as default this way. Therefore these parameters do not allow for much performance gain. 
Examples of such parameters are pruning and subtree raising for decision trees. Another is the use of 
normalization for lazy learning methods such as k-nearest neighbours and locally weighted learning. 
Disabling these features is not expected to yield performance gain. Nevertheless, it is investigated what 
the effects of pruning are, to get an idea of the degree to which overfitting occurs. 

Less obvious are the setting of numerical parameters and factors. These parameters motivate a more 
thorough exploration, as they can be attuned to a particular classification problem more closely. Examples 
of these are parameters that affect the structure of classifiers such as the number of trees for the 
RandomForest classifier or the number of hidden layers and neurons of a Neural Network. Other 
numerical parameters can be related to the mode of operation, such as the number of folds of cross 
validation for the REP-tree or the number of the number of used neighbors the k-nearest neighbours 
classifier uses for prediction. 

Finally there are more structural choices that can be made, such as those which affect the kernel function 
(polynomial or radial basis) of an SVM or the base classifier of the Locally Weighted Learner. For the 
LWL classifier the default base classifier is the rather primitive DecisionStump. It can be explored if more 
complex base classifiers can contribute to increased classification accuracy. 

7.3.3. Measurable results of experiments 

This section presents testing procedures that are discussed in the experimental chapter 8. These 
procedures are carried out with the set of classifiers from section 6.3.3, trained by the definite training 
corpus from 7.2.2 and tested with the song corpus of 8.1.1. The procedures include metrics to: 

• Cross validate the classifiers on the definite training corpus 

• Determine the classifier’s annotation performance 

• Determine the best classifier 

• Determine the classifier consistency 

• Determine the optimal corpus size 

• Discover causal relation between note characteristics and misclassification 

Figure 7.6: the Hamming function 
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• Interpret learned models 

Cross validation classifiers: 

Before proceeding to the testing of classifiers with actual performances, they can also be cross-validated 
by material of the corpus itself. Such an initial cross validation can indicate if the class configuration 
embedded in the training corpus is learnable by classifiers with the used feature vectors. In a later stage 
the cross validation performance of a classifier can be compared with the annotation performance on the 
song corpus, which reveals the classifier’s generalization capacity. 

Determination of the classifier’s annotation performance: 

The classifier’s annotation performance denotes the percentage of correctly classified tones of the song 
corpus by a classifier (misclassified tones are not taken into account). The annotation performance is used 
to determine the set of classifiers which perform significantly better than the rest.  

The annotation performance of classifier Cc∈  on song s is calculated as follows: 

∑

∑

∈

∈

−
⋅=

snote
i

snote
i

i

i

notecedUnclassifis

notecCorrect

scPerf
),(

),(

100),(  

where: 

otherwise

adesnotecpredifnotecCorrect AA

,0

)())(,(,1),( == θ
 

otherwise

nullnotecpredifnotecedUnclassifi A

,0

))(,(,1),( == θ
 

The circumstances, under which unclassified tones can occur, are outlined in section 7.3.3.2. 

The annotation performance of classifier c on a song corpus },...,{ 1 nssS = is defined as the mean of all 

the annotation performances of c on the songs in S 

{ } Ssi i
scPerfScPerf ∈= ),(),(  

This annotation performance over a song corpus is used for comparing classifiers; under the condition that 
song corpus S is large enough and contains representative songs. 

The standard deviation, { } )),(()),(( Ssi i
scPerfScPerf ∈= σσ , provides an indication of the consistency 

by which the classifier performed on the song corpus. 

Selection of best performing classifiers: 

For more thorough investigation of a small set of classifiers, we have to exclude classifiers that performed 
worse than a certain criterion. The best performing classifiers Best(C,S) are defined as those whose 
annotation performance does not lie beneath the annotation performance of the best classifier cmax minus 
its standard deviation: 
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The performances of the remaining classifiers that are not in Best(C,S) are too low to be increased by 
adjusting parameters, and are therefore considered to be not relevant for parameter tuning.  

Corpus evaluation: 

To determine an appropriate size for the training corpus, the annotation performance ),( ScPerf  is 

calculated for every classifier trained with the different corpus fractions defined in section 7.2.3. This 
sequence of performances is plotted against the corpus sizes to determine the location where the 
performance converges to a certain optimum. This convergence point should be located at the most 
optimal corpus. Differences between convergence points among different classifiers reveal differences in 
the quantity of training data that is necessary for generalization. 

Discovering relations between note characteristics and misclassification: 

By investigating the relation between duration, pitch and playing technique on one hand and relative 
frequency of misclassification on the other, exceptional note characteristics can be ascertained. A 
confusion matrix reveals whether all playing techniques are equally often misclassified or not. If this 
distribution appears to be skewed it is interesting to look at the playing technique which is misclassified 
most often, and the playing technique that is predicted most often incorrectly. This relation tells which 
playing techniques are most likely to be mixed up with each other. This confusion might be caused by 
unrepresentative training corpora or inadequate feature vectors.   

The relation between pitch/note duration and misclassification can be investigated to see whether 
exceptional cases deserve to be treated by separate classifiers. In case a certain set of pitches are 
misclassified more often relatively, this can be due to structural timbre differences. An example set of 
structurally different tones are for example open tones as opposed to fretted tones. If there is an increased 
chance of misclassifying short tones, this can be ascertained in like manner. This hypothesis that shorter 
tones are more likely to be misclassified can be supported by the notion that the timbre is more affected 
by a musician’s preparation on the subsequent tone. The same applies to influences of the preceding tone, 
because of reverberation and resonance. 

Interpretation of learned models: 

Classifiers can be interpreted by humans by visualizing the internal models. Particularly WEKA’s 
decision trees and rule learners can be analyzed by humans clearly. Investigating these models reveal the 
complexity of the trained classifier as well as the ranking of the used feature attributes the classifier was 
trained with. By comparing models of tree or rule classifiers with each another the predominant one can 
be adopted, if there is agreement at all. Strong agreement of a model amongst a major set of classifiers 
motivate rejection of ones that operate with different models. Such a rejection can only be justified under 
the assumption that the majority set has higher annotation performance. Another valuable deduction from 
classifier schemes could be the relationship between complexity of models (in terms of number of nodes 
and leaves) and annotation performance. This could give rise to limits that stipulates the maximum 
complexity of a tree or set of rules given a certain classification problem. In case a classifier exceeds such 
a limit, this might point out overfitting. 

7.3.3.1. Case test: performance test with initial training corpus 

For an initial impression of the performance of the WEKA classifiers we integrated several tree-
classifiers, instance-based classifiers and Neural Network-classifiers with Exprimulator. The classifiers 
were trained with the initial training corpus from 7.2.1 and trained with the song Au Claire de la lune, 
which was recorded in the same session as the training corpus. The results are presented in this section in 
order to check if the combination of the MPEG-7 audio descriptors with WEKA classifiers would lead to 
satisfying results, and adjust the feature vector composition if necessary. If not, performance gain would 
be achieved by tuning classifiers. 

No problems where encountered when constituting the corpus. The majority of the tones for the training 
corpus where segmented properly. In only a few occasions manual segmentation had to be performed. As 
for the transcription of Au Claire de la Lune, no manual segmentation had to be done, and the pitch 
detection was flawless.  
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Classifier name Description Classifier 
category 

Performance 
(correct notes 
/ total notes) 

J48 C4.5 decision tree Trees 70.5% 
NBTree Naive Bayes Tree Trees 81.8% 
LMT Logistic Model Tree Trees 90.9% 
DecisionStump  Trees 61.4% 
RandomForest  Trees 88.6% 
RandomTree  Trees 86.4% 
REPTree Fast decision tree learner Trees 81.8% 
IBk K-nearest neighbors classifier Lazy 86.4% 
LWL Locally-weighted learning Lazy 79.5% 
K* instance-based classifier Lazy 86.4% 
Bayes Network  Bayes 79.5% 
Naive Bayes  Bayes 68.2% 
Naive Bayes Simple  Bayes 70.5% 
MultilayerPerceptron  Functions 86.4% 
SMO Support vector machine Functions 79.5% 
Neural network Matlab Neural Network Functions 88.6% 
JRip propositional rule learner (Repeated Incremental 

Pruning to Produce Error Reduction) 
Rules 86.4% 

NNge Nearest neighbor Rules 63.6% 
OneR One rule learner Rules 63.6% 
PART Rule learner based on JRip and C4.5 Rules 77.3% 
Ridor RIpple-DOwn Rule learner Rules 75% 
Table 7.1: Performances of 21 classifiers trained with the initial training corpus, tested on one song 

Concerning the annotation performance of the classifiers, the results from Table 7.1 look promising. More 
than half the classifiers perform higher than 80%, with a maximum score of 90.9% for the Logistic Model 
Tree. This is remarkable, as standard settings were used for as well the feature vector calculation as the 
WEKA classifier parameters. As there are three possible outputs for a classifier, the ones from the table 
perform significantly better than a random classifier, which would predict 33.3% correctly.  

7.3.3.2. Exceptions in calculating feature vectors 

When computing the audio descriptors that comprise the feature vectors, exceptions can occur so that no 
value is acquired for an attribute within the feature vector. For the training of classifiers as well as 
prediction of test data one should decide whether to skip these exceptional instances or not.  

As a concrete example, the calculation of the LogAttackTime descriptor is considered, which cannot be 
calculated in case a tone has a ‘weak’ attack. In this occasion, the LogAttackTime procedure returns the 
null value. The issue is to decide whether to completely remove such an instance from the set of training 
instances, or to incorporate it with the specific attribute replaced by a null-value. The same decision has to 
be made for prediction. A test instance can be labeled as ‘unclassifiable’ if an exception occurs. Another 
approach is to substitute the missing feature attribute with for example the mean value of the remaining 
instances for this particular attribute. 

It is trivial that when the training data would incorporate the exceptional instances, this should also be the 
case with the test instances (hence no ‘unclassifiable’ labels are assigned when predicting). In like 
manner, when the training data does not incorporate the exceptional instances, the transcriber would have 
to label these instances as ‘unclassifiable’. For this project the former approach is chosen, as it is 
undesirable to have unannotated notes in a transcription. This decision is supported moreover by the 
notion that exceptional instances do not interfere the training of a classifier such that this would disrupt 
the prediction of ‘normal’ instances (3.5% of the training data are exceptional instances). Another 
argument for incorporation is the fact that the exceptions for the LogAttackTime descriptors take place 
more often in the sul tasto-class than the other classes, because instances of the sul tasto-class have less 
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strong attacks. Removal of the exceptional instances would mean that there would be less training 
instances for the sul tasto-class in relation to the other classes. 

Nevertheless, in case a tone is shorter than the range over which feature calculation is performed, the 
entire feature vector cannot be computed. In these occasions, labeling as ‘unclassified’ is inevitable within 
the current implementation of Exprimulator. As stated in section 7.3.3, these unclassified notes are not 
taken into account for the calculation of the annotation performance. 
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88..  EExxppeerriimmeennttss  aanndd  rreessuullttss  

8.1. Testing preparations 

8.1.1. Recording songs 

For the experiments presented in this chapter, 10 songs have been recorded containing 67 tones each on 
average. The length is kept as constant as possible, so that performance rates can be compared. The 
resulting test corpus contains enough test material (almost 700 tones) for a corpus containing 540 training 
instances. From well-known lyrical songs only one strophe and/or chorus are recorded. The lyrics are 
used as a guideline for applying the playing techniques (different techniques are applied sentence wise, 
see appendix D). The songs are not difficult to play, so that the guitarist can focus on how to play the 
notes. The songs are selected on their familiarity, length, note reach, note variation and melodic 
simplicity. It is ensured that only the notes present in the corpus are used. To realize this, the song is 
transposed to the key in which the maximum and minimum fall between the corpus range. Every song 
contains the three playing techniques that are applied conforming the lyric markup in appendix D. The 
following songs have been chosen: 

1. The Beatles – Let it be  

2. Billy Joel – Uptown girl 

3. Elvis Presley – Are you lonesome tonight  

4. Michael row the boat ashore (Afro-American spiritual)  

5. Davis and Charles Mitchell – You are my sunshine  

6. Rolling stones – paint it black 

7. Ella Fitzgerald – Every time we say goodbye 

8. The Beatles – Michelle  

9. The Beatles – Yesterday 

10. Neil Young – Heart of Gold 

Performances have to be sec in other retrospects: no unnecessary vibrato’s, pull-ons and pull-offs, etc. It 
is necessary to explicate this requirement because guitarists are tended to apply these decorations 
naturally and unconsciously. It is pursued to keep the performance as sec as possible at a relatively low 
pace, because short notes are not classified because of the fixed feature calculation range. The songs were 
recorded by the author. 

8.1.2. Transcription and annotation of guitar performances 

The recorded songs were automatically transcribed using onset and pitch detection. Not all of the note 
onsets in the songs were recognized, in these cases (about 4%) onsets were added manually. The manual 
onsets were set at the highest peak visible in the attack section of the tone, similar to the way the 
automatic song segmentation takes place. Once the onsets were obtained, pitches were calculated of the 
beginning 5000 samples of the tone. The pitch calculation proved to be flawless over the 10 recorded 
songs. 

According to the song markup of appendix D, the songs’ notes were manually annotated (the songs were 

also played according to this markup). This manual annotation is used by the )(tonedesRHPP  function 

(see section 6.1), to be able to compute the annotation performance in a later stage. Feature vectors were 
calculated using the settings by which the corpus’ features were calculated (i.e. same time range of wave 
signal, same audio descriptors and settings). After this data acquisition phase, the transcriber allows batch 
annotation of all the songs with all the classifiers trained with the classifier manager. In combination with 
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a procedure that extracts a performance matrix of all songs and classifiers, performance differences can be 
discovered quickly when classifier settings are changed.   

8.1.3. Creating classifiers 

The WEKA classifiers were trained with the corpus presented in section 7.2.2 using the standard WEKA 
settings. This is because the standard settings are mostly beneficial for the classifier, and enable the 
capabilities of the classifiers (settings such as subtree raising and pruning are enabled standard). For 
settings that would have major impact on the structure of the classifier, different configurations were 
compared to determine the most optimal. This parameter fine-tuning was only performed on the best 
performing classifiers.  

8.2. Results 
In this section the results of the metrics introduced in section 7.3.3 are presented. The training corpus is 
evaluated on its size by measuring the performance of different fractions of the corpus. After that the 
training corpus is evaluated on consistency by cross-validating all classifiers. The cross-validation process 
also enables us to eliminate the worst performing classifiers, and can also be compared with the classfier’s 
annotation performance on the song corpus. This gives insight in the generality of the classifiers. Once the 
best performing classifiers have been determined, the influence of some decisive classifiers parameters on 
the performance is outlined. 

8.2.1. Corpus size 

  The average performances of all 
classifiers over all 10 songs are 
plotted in Figure 8.1. The different 
corpus sizes are obtained by 
eliminating one or more of the 10 
repetitions of one tone. Remember 
that these 10 repetitions were the 
result of incorporating the 
interfering dimension natural 
playing position deviation in the 
corpus, as defined in section 7.2.3. 
A glance at Figure 8.1 shows that 
for the average classifier a corpus 
with only 3 repetitions of one tone 
for every class suffices, resulting in 
a corpus size of 162 tones (3 strings 
x 3 playing techniques x 6 tones per 
string x 3 repetitions per tone) 

instead of 540 tones. 

However, as can be deduced from Figure 8.2, a 30% corpus is not sufficient for every classifier. In this 
graph the average performances on the song corpus on five classifiers are displayed. Clearly visible are 
the different slopes and convergence locations. Only the J48-tree, the Support Vector Machine and the 
RandomForest classifier reach approximately their maximum performance after a corpus size of 30%. For 
the K* and k-Nearest Neighbour algorithm this point lies at 70%. Because of the fact that the Bayesian 
network reaches its peak at 100%, future experiments were executed with the full corpus. The slope of the 
performance curve of the Bayesian network justifies an evaluation of a bigger corpus in future. The 
dependency of Bayesian networks on the corpus size is explainable by the notion that classes are 
predicted on basis of chances which have been deduced from the training instances. The higher the 
number of instances, the more robust the calculated chance distribution is. 

In Figure 8.2 there is a remarkable peak at 90% of the corpus size for the RandomForest classifier. For 
some reason, this corpus size results in a valley for the J48-tree. 

Figure 8.1: Average performance of classifiers on full song 
corpus trained with different corpus sizes 
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Figure 8.2: Relation between corpus sizes and classifier performance 

To evaluate the effect of the corpus size on the complexity of the classifier’s model, the number of leaves 
of the J48-tree was plotted as well as the size of the tree, in Figure 8.3. The curves demonstrate an 
increasing complexity as the corpus size increases. This motivates the use of small corpora for decision 
trees, because Figure 8.2 tells that the performance of the J48-tree does not increase after a corpus size of 
40%. 
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Figure 8.3: Relation between corpus size and tree complexity 
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In an attempt to optimize the training corpus, instances that deviated significantly with respect to some 
feature attribute value (HarmonicSpectralSpread and HarmonicSpectralVariation) were removed. These 
instances appeared isolated in the scatter plots of Figure 8.10. Besides that it was evaluated by ear if the 
accompanying tones indeed did not belong in its current class. In these cases it appeared that the tones 
sounded differently because of the string that was not struck properly or the fret that was not pressed 
properly. These technical imperfections resulted in a noisy sound. After removal of five of these instances 
(less than 1% of the corpus), the majority of the classifiers had higher performance on the song corpus. It 
appeared that the tree and rule learners were most sensitive to these small corpus changes. The REP-tree 
performance for example increased 9.5% for this small corpus change. This high increase might indicate 
that the REP-tree was overfitted. Whether the trees and rules are apparently sensitive to noise in the 
training data, the instance-based learners (K*, Locally Weighted Learning and the 1-Nearest Neighbour 
algorithm) were not affected by the corpus change. This is because these classifiers use the proximity of 
an instance to other instances as a measure for prediction. Hence it is likely that the five excluded 
instances were never taken into account for prediction of the song corpus. 

8.2.2. Cross validating classifiers 

In Figure 8.4 the performances of all the classifiers were evaluated by performing 10-fold cross validation 
on the training corpus, with a split of 90% test and 10% training. The worst performing classifiers are the 
simple classifiers that only consider one feature attribute (DecisionStump), or one rule (OneRule). A 
closer look at the confusion matrix of DecisionStump learns that not a single tone is classified as sul 
ponticello, hence a performance worse than 66.67%. The DecisionStump should be a multi-class classifier 
(capable of classifying more than 2 classes), but apparently because of its simplicity (only one feature 
attribute is considered in the underlying tree), the performance is not adequate. Therefore, the 
DecisionStump classifier is not used in future experiments. Because Locally Weighted Learning standard 
has DecisionStump as a base classifier, it performs equally low (apparently LWL cannot boost the 
DesicionStump’s performance). This is why for this cross-validation experiment and the following 
experiments the standard base classifier of LWL is replaced by the Support Vector Machine. The 
OneRule and DecisionStump classifiers are excluded from further experiments, as it appears they cannot 
even classify corpus material adequately. The rest of the classifiers exhibit slight deviations relating to 
each other that are not decisive to exclude more classifiers. 
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Figure 8.4: Average performance of 10-fold cross validated classifiers  
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8.2.3. Annotation performance 

In this section the results of performances of the classifiers on the song corpus are evaluated. Automatic 
annotation of all the songs by the selected classifiers from the previous section resulted in Table 8.1, in 
which the annotation performance of every classifier for each song is displayed.  

The average performance over the entire song corpus for every classifier is listed in the last column, in 
which classifiers performing better than 78% are formatted bold. In like manner the average song 
annotation performance is displayed in the last row. These scores deviate more than the average 
performances of the classifiers. The songs Yesterday and Heart of Gold have the lowest annotation score. 
It is hard to ascertain what properties of these songs contribute to these low scores, but it is likely due to 
higher use of error prone playing techniques such as neutral or sul tasto. 
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J48 76,8% 76,9% 79,5% 80,4% 71,2% 81,2% 91,8% 71,4% 60,7% 66,1% 75,6% 

NBTree 69,6% 76,9% 85,2% 76,1% 80,8% 82,2% 83,7% 71,4% 55,4% 71,2% 75,3% 

LMT 82,1% 82,1% 78,7% 80,4% 71,2% 79,2% 87,8% 72,9% 75,0% 69,5% 77,9% 

RandomForest 75,0% 93,6% 84,1% 73,9% 75,3% 85,1% 87,8% 74,3% 75,0% 74,6% 79,9% 

RandomTree 55,4% 62,8% 71,6% 80,4% 67,1% 80,2% 71,4% 67,1% 69,6% 66,1% 69,2% 

REPTree 82,1% 85,9% 71,6% 60,9% 68,5% 79,2% 83,7% 71,4% 64,3% 62,7% 73,0% 

IBk 71,4% 80,8% 80,7% 84,8% 86,3% 81,2% 77,6% 78,6% 75,0% 74,6% 79,1% 

LWL 78,6% 84,6% 80,7% 73,9% 86,3% 86,1% 83,7% 81,4% 85,7% 69,5% 81,1% 

KStar 73,2% 85,9% 84,1% 82,6% 93,2% 81,2% 71,4% 84,3% 64,3% 74,6% 79,5% 

BayesNet 75,0% 87,2% 78,4% 93,5% 86,3% 81,2% 87,8% 72,9% 73,2% 59,3% 79,5% 

NaiveBayes 69,6% 67,9% 72,7% 76,1% 65,8% 83,2% 71,4% 62,9% 60,7% 52,5% 68,3% 

NaiveBayesSimple 73,2% 69,2% 73,9% 76,1% 64,4% 83,2% 71,4% 63,8% 60,7% 52,5% 68,8% 

MultilayerPerceptron 80,4% 80,8% 81,8% 78,3% 71,2% 82,2% 71,4% 67,1% 71,4% 69,5% 75,4% 

SMO 76,8% 80,8% 78,7% 76,1% 82,2% 84,2% 79,6% 80,0% 83,9% 62,7% 78,5% 

JRip 80,4% 82,1% 76,1% 69,6% 71,2% 82,2% 71,4% 80,0% 67,9% 61,0% 74,2% 

NNge 66,1% 75,6% 74,2% 71,7% 67,1% 82,2% 79,6% 65,7% 50,0% 52,5% 68,5% 

PART 80,4% 80,8% 83,0% 78,3% 72,6% 80,2% 81,6% 74,3% 64,3% 71,2% 76,7% 

Ridor 83,9% 82,1% 69,3% 76,1% 69,9% 80,2% 81,6% 72,9% 67,9% 71,2% 75,5% 
Mean classifier  
performance 75,0% 79,8% 78,0% 77,2% 75,0% 81,9% 79,7% 72,9% 68,1% 65,6% 75,3% 

Table 8.1: Annotation performances of classifiers on songs 
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In Figure 8.5, the standard deviation from Figure 8.4 is illustrated in relation to the annotation 
performance of the classifiers on the song corpus, together with the standard deviation. It is worthwhile 
noticing that the ratios between the classifiers’ annotation performances are quite similar to the ratios 
between the cross validation performances. This indicates that the cross validation metric is suitable for 
comparing classifiers with each other for a certain classification task, and is representative for the 
distribution of the annotation performances on test material. 
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Figure 8.5: Cross validation performance of Figure 8.4 together with annotation performance on 
song corpus with standard deviation 

From Figure 8.5 the consistency and generality of classifiers can be derived. The 1-Nearest Neighbour 
classifier (IBk) is regarded as the most consistent performing classifier, because of its lowest standard 
deviation of 0.046%. The cross-validation performance can be compared with the annotation performance 
to obtain a measure for the generality of the classifier. Therefore the cross-validation / annotation 
performance ratio is computed. This gives a measure for the decrease of performance on test data. 
Significantly better at generalizing were the Support Vector Machine (performance decrease of 4.11%) 
and the Bayesian Network (4.85%). The worst generalizing classifier is the RandomTree. This is 
supported by the observation that the RandomTree was also sensitive for instance removal as was 
illustrated in section 8.2.1. 

Striking is that the Simple Naive Bayes and Naive Bayes classifier significantly decrease in performance 
in comparison with the Bayesian Network. The cross validation performances are roughly the same. 
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8.2.4. Interpretation of learned models 

In this section, a selection of trained rule and 
tree classifiers are visualized, compared and 
analyzed. By examining in which order the 
feature attributes occur in the nodes of the trees 
and how many instances are divided under the 
node, a feature ranking can be obtained. In this 
section, the graphs of 4 trees, the J48-tree, 
NBTree (Naive Bayes tree), LMT-tree (Logistic 
Model Tree) and the REP-tree are visualized. In 
these trees, the feature attributes are located in 
the nodes, depicted by the abbreviations ft1 till 
ft7: 

ft1 HarmonicSpectralCentroid 
ft2 HarmonicSpectralDeviation 
ft3 HarmonicSpectralSpread 
ft4 HarmonicSpectralVariation 
ft5 TemporalCentroid  
ft6 LogAttackTime 
ft7 SpectralCentroid 
  

The branches of the tree represent the Boolean 
decisions that are made on basis of the value of 
the node’s feature attribute. In Table 8.2 the 
attribute ranking is given that was inferred from 
the trees. 

The J48-tree (see Figure 8.6) appeared to be the 
most complex tree. Its performance was not 
worse than the other trees however. In the 
NBTree (Figure 8.7) and the REP-tree (Figure 
8.9) some feature attributes are absent. 
Remarkable is that the SpectralCentroid misses 
in the NBTree while this attribute appears in the 
fourth position in the J48-tree. What’s more, the 
HarmonicSpectralCentroid (missing in the REP-
tree) is the third important attribute according to 
the J48 and LMT-tree. The two best performing 
trees, the J48-tree and the LMT-tree  (Figure 
8.8) seem to have the most similar feature 
ranking (5 corresponding attribute rankings), 
whereas amongst the other trees there seems to 
be little agreement. This can implicate that the 
descriptive strength of the attributes are 
approximately equally powerful. All trees have  

HarmonicSpectralSpread as the most descriptive attribute, which is also subscribed by the ranking 
methods of Table 8.3. These methods incorporate the classifier JRipper, from which the order of the rules 
and its comprising attributes, as well as the number of affected instances was determinative for the feature 
attribute ranking. The feature ranking for the Bayesian Network was obtained by calculating the 
annotation performance 7 times, each time omitting a different attribute. The descending order of 
annotation performances for each iteration determined the attribute ranking this time. The third method 
was performing attribute selection with the WEKA toolkit. This time the importance of a feature attribute 
was estimated by measuring the information gain with respect to the class. The last method presented in 

Figure 8.6: J48 tree 
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Table 8.3 presents the feature attribute-class correlation. To calculate this correlation the nominal classes 
were converted into the numerical equivalents -1, 0, and 1 for respectively sul ponticello, neutral and sul 
tasto. This was done under the assumption that there would be a linear correlation between the RHPP and 
the feature attributes. Just like with the trees, the miscellaneous attribute ranking methods did not agree on 
a consistent ranking method. 

ranking J48-tree NBTree LMT-tree 
1 HarmonicSpectralSpread HarmonicSpectralSpread HarmonicSpectralSpread 
2 HarmonicSpectralVariation HarmonicSpectralCentroid HarmonicSpectralVariation 
3 HarmonicSpectralCentroid TemporalCentroid HarmonicSpectralCentroid 
4 SpectralCentroid HarmonicSpectralVariation SpectralCentroid 
5 HarmonicSpectralDeviation LogAttackTime HarmonicSpectralDeviation 
6 TemporalCentroid HarmonicSpectralDeviation LogAttackTime 
7 LogAttackTime  TemporalCentroid 
 

ranking REP-tree 
1 HarmonicSpectralSpread 
2 HarmonicSpectralVariation 
3 SpectralCentroid 
4 HarmonicSpectralDeviation 
5 TemporalCentroid 
6  
7  
Table 8.2: Ranking of feature attributes by tree classifiers  

ranking JRipper Bayesian Network Attribute selection by info 
gain ranking 

1 HarmonicSpectralSpread HarmonicSpectralSpread HarmonicSpectralSpread 
2 HarmonicSpectralDeviation HarmonicSpectralDeviation LogAttackTime 
3 SpectralCentroid LogAttackTime SpectralCentroid 
4 HarmonicSpectralVariation HarmonicSpectralVariation TemporalCentroid 
5 LogAttackTime TemporalCentroid HarmonicSpectralVariation 
6 HarmonicSpectralCentroid SpectralCentroid HarmonicSpectralCentroid 
7  HarmonicSpectralCentroid HarmonicSpectralDeviation 
 

ranking Ranking on attribute – 
class correlation 

1 HarmonicSpectralSpread 
2 HarmonicSpectralDeviation 
3 SpectralCentroid 
4 TemporalCentroid 
5 HarmonicSpectralCentroid 
6 HarmonicSpectralVariation 
7 LogAttackTime 
Table 8.3: Feature attribute ranking with miscellaneous methods  
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Figure 8.7: Naive bayes tree 

 

Figure 8.8: Logistic model tree 
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Figure 8.9: REP-tree 

In Figure 8.10 six scatter plots are drawn that relate the most discriminating feature 
(HarmonicSpectralSpread according to the analyzed decision trees) against the remaining six feature 
attributes. Clearly visible is the separation of the sul ponticello instances, which are separated most 
distinctively from the instances of the other classes. This corresponds with results of the confusion matrix, 
in which sull ponticello is misclassified least often. The Sul tasto and neutral swarms are overlapping in 
all the scatter plots, but it can be judged by eye that HamonicSpectralSpread gives best distinction with 
HarmonicSpectralDeviation and HarmonicSpectralVariation. This is in accordance with 5 of the analyzed 
classifiers. 
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■ Sul ponticello 
■ Sul tasto 
■ Neutral 

 

(a) x: HarmonicSpectralSpread �y: HarmonicSpectralCentroid (b) x: HarmonicSpectralSpread �y: TemporalCentroid 

  

(c) x: HarmonicSpectralSpread �y: HarmonicSpectralDeviation (d) x: HarmonicSpectralSpread �y: LogAttackTime 

  

(e) x: HarmonicSpectralSpread �y: HarmonicSpectralVariation (f) x: HarmonicSpectralSpread �y: SpectralCentroid 

Figure 8.10: Feature attributes plotted against most discriminating feature 
(HarmonicSpectralSpread) 
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8.2.5. Relation between note characteristics and misclassification 

A confusion matrix is calculated to ascertain which playing technique is misclassified most often. The 
confusion matrix from Table 8.4 is the mean confusion matrix over the 20 classifiers. The confusion 
matrix was calculated by performing 10-fold cross-validation over the training set. The bold numbers 
above the heading labels denote how often a tone was incorrectly misclassified as the column’s class, 
whereas the bold numbers most right tell how often the row’s class was misclassified. The matrix tells us 
that sul ponticello is the least misclassified playing technique (12 misclassifications on average). Sul 
ponticello is also the least often incorrectly used as label. The playing techniques neutral and sul tasto are 
approximately equally often misclassified, whereas neutral is most often used as an incorrect label. This is 
easily explained by the notion that neutral is an intermediate class. The fact that sul tasto and neutral are 
more often mixed up, means that the distance of the feature vectors of the mutual classes is not linearly 
correlated with the physical distance on the guitar string between the classes. 
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 149 5 26 neutral 31 
 9 168 3 sul ponticello 12 
 27 6 147 sul tasto 33 
    actual class ↑  

Table 8.4: Average confusion matrix of 20 classifiers 

With a different approach, the relation between pitch and misclassification can be investigated. For every 
pitch is counted how often it occurs in the ten songs of the song corpus (Figure 8.11b), and how often a 
tone is calculated wrong more often than 10 times amongst the 18 classifiers (see Figure 8.11a). Division 
of the number of misclassifications by the total number of notes per pitch yields Figure 8.11c. This figure 
shows that midi note 53 has the highest chance of misclassification (F3), followed by midi note 45 (A2). 
Midi note 47 (B), 49 (C#3) and 56 (G#3) have higher chance of correct classification, but also occur less 
often in the songs absolutely.  

 

Figure 8.11: Number of misclassifications of pitches 

In order to find relations between note duration and misclassification, the notes are grouped in classes of 
0.3s wide, resulting in the distributions of Figure 8.12. It appears that a note duration d of 2.4s≤ d <2.7s is 
most likely misclassified. In general, longer notes are more likely to be misclassified than short notes, 
which is surprising as it was suspected that shorter notes would have higher chance on misclassification. 
This may be due because of the fact that the training corpus contained tones that are consistently 1s long. 
From the histogram can be derived that d<1s. has a relative low chance on misclassification. 
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Figure 8.12: Number of misclassifications per note duration 

8.2.6. Fine-tuning classifiers 

By default, the Locally Weighted Learner is trained with a DecisionStump tree as base classifier, resulting 
in an unsatisfying performance as was stated in section 8.2.2. Therefore LWL was trained with different 
base classifiers that had on its own a performance above average (Support Vector Machine, k-Nearest 
Neighbour decision tree, RandomForest and the Bayesian network). Unfortunately, a number of 
classifiers could not be incorporated as base classifier in the LWL, because they were not weighted 
instance handlers, such as the K* rule learner and the Logistic Model Tree. The performance results of 
these different classifier configurations that were allowed are denoted in Table 8.5. As expected, the 
performance increased significantly and also outperformed the used base classifiers on its own. The SVM 
appeared to be the most suitable match for the LWL. The LWL - RandomForest tree combination second 
best, but was very slow at prediction. This is explained by the fact that it is a 3 level meta-classifier as the 
RandomForest on its turn is comprised of multiple DecisionStumps. Through the course of this chapter, 
the SVM was used as a base classifier for the LWL classifier. 

Classifier (default parameter → altered parameter) Initial 
performance 
(default 
settings) 

Eventual 
performance 
(altered 
settings) 

Performance 
gain 

IBk (k = 1 → k = 2) 78,5% 77,3% -1,6% 
LMT (numBoostingIterations = 1 → 10) 77,9% 77,5% -0,6% 
RandomForest (numTrees = 10 → 17) 79,9% 81,7% 2,3% 
REPTree (numFolds=3 → 5) 73,0% 73,6% 0,8% 
REPTree (numFolds=3 → 7) 73,0% 73.7% 0,9% 
REPTree (numFolds=3 → 9) 73,0% 75,6% 3,6% 
REPTree (pruning=False → True) 73,0% 71,8% -1,7% 
J48 (pruning=False → True) 75,6% 76,3% 1,0% 
PART (pruning=False → True) 76,7% 76,3% -0,4% 
JRip (pruning=False → True) 74,2% 78,1% 5,3% 
LMT (LogitBoost=-1 → 5) 77,9% 77,4% -0,6% 
Functions.SMO (useRBF=False → True) 78,5% 64,9% -17,3% 
Functions.SMO (buildLogisticModels=False → True) 78,5% 79,2% 0,9% 
LWL (baseClassifier=DecisionStump → SMO) 61,1% 81,1% 32,7% 
LWL (baseClassifier=DecisionStump → IBk) 61,1% 78,1% 27,9% 
LWL (baseClassifier=DecisionStump → RandomForest) 61,1% 80,4% 31,6% 
LWL (baseClassifier=DecisionStump → BayesNet) 61,1% 79,1% 29,6% 
Table 8.5: Performance gain of different classifier settings related to default settings 

As one may suspect, pruning should be beneficial for the classifier performance on test sets, as branches 
which are the result of overfitting are removed. However, in the case of the J48-tree and the JRIPPER rule 
learner, disabling pruning resulted in an increased performance of respectively 1% (which is not 
considered a significant improvement), and 5.3% on average. Pruning reduced the number of rules for the 
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JRipper rule learner with 50%, and for the J48-tree with 13%. Not all the songs were consistently 
annotated better with the two unpruned classifiers, and the overall improvement is not significant. This is 
why pruning was enabled by default for the rest of the experiments in this thesis. Moreover, if trees and 
rules are to be compared, the settings should be as alike as possible. 

For the RandomForest classifier the optimal number of trees was determined by increasing this parameter 
until expanding did not result in better performance. As Figure 8.13 shows, RandomForest performs 
optimal when built with a decision forest consisting of 17 DecisionStump trees, with a performance of 
81,7%. This is a performance gain of 2.3% with respect to the default 10 trees a RandomForest consists 
of. The previously attempted incorporation of the default RandomForest (with 10 subtrees) within the 
LWL classifier, yielded a performance gain of 0,6%. Unfortunately, incorporation of a RandomForest 
with 17 subtrees within the LWL-classifier, resulted in performance loss (from 81,7% to 81,1%), whereas 
an increase would be expected.  
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Figure 8.13: Performance of RandomForest classifier with different amount of subtrees 
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99..  CCoonncclluussiioonnss  

The main goal of this thesis was to extract transcriptions with expressive annotation from human musical 
performances. As a proof of concept, a concrete expressive dimension – Right Hand Playing Position 
(RHPP) – was chosen to be recognized by several machine learning techniques. The developed classifiers 
were capable of classifying this expressive dimension in three classes: sul tasto, neutral and sul 
ponticello. This chapter summarizes the performance of these classifiers, and discusses whether this 
performance suffices for the proposed applications in the introductory chapter. To ensure a higher 
potential of success for future research, two questions are asked: 

• Do the performance results motivate future recognition of other expression modes? 

• How suitable is the Exprimulator environment for general sound classification and musical 
transcription? 

9.1. Performance evaluation 
The performance related experiments of the previous chapter were carried out to make choices about 
selection and parameterization of corpora, classifiers and feature vectors. These choices would raise the 
chance of success and reduce the execution time of future expressive sound classification experiments. In 
this section it is investigated if these choices can be made on basis of the experimental results from 
chapter 8. 

To start with classifier selection, performance evaluation on a test corpus of 10 songs did not result in a 
classifier that consistently performed better. Locally Weighted Learning with a Support Vector Machine 
as a base classifier performed the best on average (81.1%) on the song corpus, but considering the 
standard deviation it does not outperform other classifiers convincingly. However, to obtain a manageable 
set of classifiers for future experiments, an exclusion rule like proposed in 8.2.3 can be used. The rule in 
question identifies a set of classifiers that performs significantly worse than the best performing classifier. 
An excluded classifier has the property that its annotation performance is worse than that of the best 
classifier minus the standard deviation of the best classifier’s annotation performance. The following 
classifiers can be excluded by applying this rule: RandomTree, REP tree, Naive Bayes, Naive Bayes 
Simple and Nearest Neighbour. The remaining set of 13 classifiers is not a small set of best performing 
classifiers as one would desire. However, the reality is that the annotation performances of these 
classifiers lie too close to one another to apply more drastic exclusion.  

Fine-tuning parameters of the classifiers did result in improved performance, with a maximum of 5.3% 
for the JRip rule learner. However, this improvement did not lead to a position amongst the top classifiers 
(the five best performing classifiers). For RandomForest, a classifier in the top segment, increasing the 
number of random trees did result in an increase of 2.3%. The fact that none of the classifiers performed 
much better than 80%, and that there is not much performance deviation amongst the best performing 
classifiers, leads to the conclusion that the current feature vector configuration does not allow a better 
performance. Cross validation on the training corpus appeared to provide a good indication for the 
adequacy of classifiers on testing material, as they followed roughly the same trends as the performance 
distribution on the song corpus. The positive correlation between the cross validation performance and the 
test performance also means that the training material of the corpus appears to be representative for the 
tones that occur in melodic guitar performances. 

From the fractions Φ of the total corpus 100φ  defined in section 7.2.3, it appeared that 40φ  sufficed for 

the most of the classifiers. Only the Bayesian network could have benefited from a bigger corpus 

than 100φ , as the curve still showed a rising trend at100φ . The fact that most classifiers reached their 

performance maximum at40φ , proved that deliberate addition of positional jitter did contribute only to a 

certain extent to the performance. This contrasts to the incorporation of the full chromatic scale of pitches 
in the corpus, because the removal of only one pitch already results in performance loss. 
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A corpus that is as small as possible is desirable for the current design of Exprimulator, because the 
creation of a corpus for every expressive dimension is time consuming and expensive in terms of manual 
creation time, computation time and disk space. In the case of tree and rule learners smaller corpora 
appear to result in simpler models in terms of number of leaves and tree size. Simpler classifiers that 
annotate with a comparable performance to a more complex model are preferred because they are more 
easily interpreted, perform faster and are less likely suffer from overfitting. 

Because of the large degree of freedom of adjustable parameters for the calculation of feature vectors and 
the creation of classifiers, a fixed feature calculation algorithm was chosen. Therefore, standardized audio 
descriptors were used that already have been proven useful in literature on other audio classification tasks. 
The 7 timbre related MPEG-7 audio descriptors sufficed for RHPP recognition. For more subtle 
recognition tasks, additional audio descriptors can be added. It is worth noticing that the classifiers did not 
agree on the order of importance of the audio features. The classifiers only agree on the usage of 
HarmonicSpectralSpread as the most important feature. These disagreements could implicate that the 
remaining features did contribute approximately equally to the classification process. Together with the 
notion that the maximum classifier performance lies around 80% this motivates further exploration of 
suitable audio descriptors. 

Despite the fact that Exprimulator is capable of classifying sound classes of any type, it is wise to boost 
the recognition accuracy of the RHPP first before starting with recognizing other expressive dimensions. 
This is because it is believed that a higher annotation performance than 80% must be possible for 
recognizing the playing position, as the differences between the classes under consideration is clearly 
hearable for a human listener. Therefore, the annotation of a relatively clear expressive dimension must be 
improved first, before paying attention to more subtle differences such as the finger configuration 
(appoyando – tirando). Because fine-tuning the classifiers did not result in significantly higher 
performances, it must be explored in what degree the expansion of available calculable audio descriptors 
contributes to a better annotation performance. 

9.2. Evaluation of Exprimulator 
Exprimulator met the requirements presented in chapter 5, as can be concluded from section 7.1. Besides 
meeting primary requirements, it is important to determine how well Exprimulator aided the process of 
achieving the goals presented in section 2.1 and carrying out experiments. Exprimulator needs to facilitate 
an efficient, flexible, adjustable, transparent and general course of experiments. The efficiency is not 
concerned with optimizing the computation speed of processes, but with the capability to automate 
repetitive task that otherwise would have to be done manually. The flexibility is concerned about how 
easily the experimental setting can be varied by means of the GUI. For the adjustability of Exprimulator, 
it is evaluated how easily new features were implemented in code. Exprimulator must enable insight in 
calculated data such as feature vectors, transcriptions, etc. The generality is concerned with the usability 
of Exprimulator for other sound classification problems and other annotation tasks. This latter assessment 
is important as this thesis focused solely on the specific case of recognizing the RHPP. 

Efficiency: 

The following features of Exprimulator saved a lot of time during the execution of experiments: 

• Dividing performances and compound corpus files into separate tones. In the exceptional case a tone 
onset was not found, manual segmentation could be realized fast by clicking on the visual 
representation of the waveform. 

• Calculate feature vectors of a large amount of tones. Feature vectors of a specified range of all the 
tones in the training corpus can be calculated. 

• Training and initializing multiple classifiers. Classifiers of different types can be initialized and 
trained on the same training corpus in one run. 

• Transcription and annotation of multiple songs with multiple classifiers can also be realized in one 
run. 

Flexibility: 
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• Training corpora can be easily modified by excluding tones that are not played well. Another 
purpose, for which exclusion was used, was the creation of different corpus sizes. The effects of the 
different corpora were evaluated quickly because of the ability to initialize and train all the classifiers 
at once, and annotate the entire song corpus with the classifiers in one run. 

• The classifiers presented in this thesis were also fully configurable according to the available features 
offered by WEKA via the Java API.  

Adjustability: 

• Because the standardized MPEG-7 descriptors were considered more descriptive and elegant than 
earlier custom implemented descriptors based on formula from literature, the latter were replaced by 
the MPEG-7 descriptors. These programmatic code adjustments were easily made, because of the 
structured and modular design of Exprimulator. 

The incorporation of WEKA classifiers was also easily implemented within the current framework of 
Exprimulator. Matlab fulfilled a catalyzing role in achieving this. Firstly, the Java API of WEKA 
could be invoked in its entirety in Matlab and Java commands could be inserted within Matlab 
scripts. Secondly, fast iterative development was made possible by Matlab’s scripting engine, which 
enabled runtime additions and revisions of code sections. 

Transparancy: 

• Exprimulator provided visual insight in the entire process of calculating feature vectors, constructing 
classifiers and annotating musical performances. The feature vectors could be visualized by plotting 
them per class grouped by color, as well as making scatter plots of all the instances in which two 
feature attributes are plotted against each other (Figure 8.10). The underlying models of all the 
WEKA classifiers could be examined by drawing them (in case of some of the trees) or by outputting 
textual information about the structure of the classifier. The transcriptions made by note onset 
detection, pitch detection and expressive annotation were visualized in a score similar to a MIDI 
sequence (Figure 7.3). 

Generality: 

• The classifier manager module of Exprimulator does not place any restrictions on the type of content 
an audio signal carries, so in principle any sound class configuration imaginable can be constructed 
with the classifier manager. The transcriber module is more dedicated to the transcription of musical 
performances, as it outputs a note sequence, but speech signals share the property that they are 
dividable into fragments of any order (phonemes, syllables or words) according to any of these sound 
divisions. In this way there can be thought of a variety of applications for which Exprimulator could 
be used, such as the classification of environmental,  

It is also up to the user which and how expressive dimension are defined. Therefore performances of 
any instrument can be annotated with any form of distinguishable expression. 

• Exprimulator enforces a sequential way of operating in order to obtain the annotated transcriptions. 
This standardization ensures that future experiments are carried out consistently. 

To make Exprimulator useful for future research and other users it needs some improvements for the 
interface. Within this thesis the system was mostly used as an experimental tool to prove the possibility of 
creating annotated transcriptions. For that reason, not all of the program’s features are presented in an 
insightful and intuitive way. Particularly tasks that need to be rounded off sequentially (creating corpus � 
calculating features � initializing classifiers � training classifiers) need to be indicated more explicitly 
in Exprimulator’s GUI. In like manner the routine for annotating songs needs to be explicated: creating 
song corpus � transcribe songs � select classifier � calculate features � annotate song.  

Exprimulator proved to be a useful tool for realizing the goals of this thesis. It could also provide its 
service for future research, as the system is not restricted to sound content of any specific type. To ensure 
that any sound corpus can be classified according to some class configuration, the set of available 
calculable audio descriptors and their accompanying parameters can be extended. If besides these 
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additions Exprimulator’s GUI is improved, it would be easier operable by other users and motivate future 
research. 
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1100..  FFuuttuurree  wwoorrkk  

As a result of preceding conclusions, several extensions and optimizations that would be valuable for 
Exprimulator and the experimental set-up are proposed in this chapter. The optimizations and extensions 
incorporate ‘invisible’ additions and modifications to algorithms as well as added features to 
Exprimulator’s GUI. The last section of this chapter evaluates the adequacy of Exprimulator when applied 
in a bigger context, for more realistic applications. 

10.1. Annotating more realistic performances 
The songs that have been recorded for testing the classifiers (8.1.1) have been kept basic and simple to be 
able to focus on the core of the problem of recognizing an expressive playing mode. As a result, the 
performances have not much in common with the way a guitarist plays naturally. Below, the most 
important musical enrichments are listed which make a performance more credible, as well as possible 
solutions to achieve annotation of these more complex performances: 

• Monophonic � Polyphonic performances 

One of the most obvious enrichments of the performances of appendix D would be the use of 
polyphony (playing more than one tone simultaneously). This could bring along some serious 
difficulties for the recognition of timbre by machine learners, however. The current approach of 
incorporating every pitch in the training corpus cannot be used for recognizing polyphonic 
performances. The inclusion of polyphonic chords in the training corpus causes it to grow beyond 
acceptable limits. It is also questionable if it would result in adequate recognition, as chords can be 
played with any degree of arpeggio (not playing the notes of the chord simultaneously), which makes 
matters even more complex. A polyphonic transcription of the performance could help to guide the 
annotation task. The composite polyphonic spectrum of certain time frame can be dissected into 
individual tones according to the information of what tones are played at a certain time. These 
decomposed tones can be processed by a classifier that has been trained on a monophonic corpus like 
the one used for this thesis.  

• Recognizing one single expressive dimension at a time � Recognizing multiple expressive 
dimensions 

In the current version of Exprimulator, only one expressive dimension is recognized at a time. In 
reality, a guitarist can effect variation in multiple dimensions simultaneously (for example left 
handed playing modes can be applied independently of right handed playing modes). In case more 
two or more playing modes are present in an audio signal, the expressive dimensions in which they 
are arranged must be independently recognized. However, it is likely that there exists some 
correlation between two expressive dimensions for some audio descriptors within a feature vector. 
This correlation could disturb recognition of one of the expressive dimensions. 

An easy solution is to create a classifier that has been trained with a training corpus that contains 
classes conform the multiplication of the two dimensions (the multiplicated expressive dimensions 
RHPP and finger configuration yields for example: {sul tasto, neutral, sul ponticello} x { appoyando, 
tirando} = { sul tasto/ appoyando, neutral/ appoyando, sul ponticello/ appoyando, sul tasto/ tirando, 
neutral/ tirando, sul ponticello/ tirando}). An obvious drawback is that this results in an undesired 
amount of classes when more than two expressive dimensions are correlated. The increase of classes 
leads to less accuracy for a classifier. Moreover, the resulting feature vectors of the multiplied 
training corpus are not guaranteed to be linearly separable. Another disadvantage is that the classifier 
output is compound (it specifies the playing modes in two expressive dimensions), while annotation 
concerning only one expressive dimension might be needed. 

Besides a solution by means of the corpus layout, audio descriptors could be calculated unique time 
frames or frequency bands. Signal analysis could help in finding time sections (for example the attack 
or sustain section), or frequency bands (1-100Hz, .. , 900-1000Hz), in which varying a certain 
expressive dimension affects the most radical changes in relation to other dimensions. With this 
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approach, the calculation of a certain audio descriptor can be optimized for each expressive 
dimension in a unique way, to minimize mutual disturbance. Another obvious solution is to find a 
unique set of audio descriptors for each expressive dimension that results in the best classification. 

• Playing songs within a limited range of tones � Playing songs within the entire tonal range of the 
guitar 

Within the current experiments described in this thesis, only three strings of the guitar are used for 
the performances of appendix D (16 pitches chromatically from A2 till C4). A guitarist 
understandably wants to use the full scale of notes that can be realized on a guitar. In order to ensure 
that the corpus contains all the pitches, it has to grow with factor 2.25 (assuming the range of E2-E4 
is used). The incorporation of a higher number of pitches results in a lower annotation performance. 
This is because the classifier has to generalize over a larger amount of training instances which are 
more scattered in feature space. This trend has been proven by investigating the difference of using 
classifiers trained and tested with tones of two strings against those using three strings. A possible 
solution for this problem is to divide the entire chromatic scale into several subscales for which 
separate classifiers are trained. 

A related issue is the overlap of possible ways to realize one pitch (an E3 for example can be played 
on 4 strings, because on a guitar a tone can be realized on a lower string 6 frets further). There 
obviously exist timbral differences between these realizations, so it is not optimal to incorporate the 
different realizations of one pitch in one corpus. Therefore if one decides to create separate classifiers 
for subscales such as proposed in the previous paragraph, it is obvious to create classifiers per string. 
To determine which pitch belongs to which string, a hierarchy of classifiers can be constructed in 
which the highest level classifier determines the string that was struck (as each string has unique 
ratios between sub(harmonics)). The lowest level contains classifiers that perform the actual 
recognition of a playing mode in an expression dimension per string. 

• Dividing an expressive dimension in discrete classes � Regarding an expressive dimension as a 
continuous scale  

In musical scores it is common to denote expressive markup in a discrete way, as the example of 
RHPP illustrates (sul tasto – sul ponticello). In reality, a guitarist has the freedom to strike the string 
anywhere between the bridge and the location were a fret is pressed.  

For the proposed application of deducing expressive rules (section 1.2.3) from a corpus of annotated 
transcriptions, it can be desirable to annotate the transcriptions with markup that can lie in the entire 
range between two extreme playing modes within an expressive dimension. A scalar [0,1]∈ε  can 

specify the exact location within this range. This annotation refinement can already be realized with 
the current approach of offering discrete training classes to the classifiers. Classifiers that are not 
limited to outputting nominal classes (such as SVMs and MLPs) are able to interpolate between the 
classes contained in the training corpus so that in theory intermediate playing modes (such as 50% sul 
ponticello or 50% sul tasto, see 4.6) can be recognized if the classifier interpolates correctly. 

10.2. Extensions to Exprimulator 
In order to realize the annotation of the more complicated performances from section 10.1, the set of 
available calculable audio descriptors should be expanded, as also was concluded in section 9.1. The 7 
timbre related MPEG-7 features did not enable a performance annotation much higher than 80% for the 
RHPP, which justifies additional audio descriptors. Moreover, recognizing expressive dimension 
simultaneously might need unique descriptors per expressive dimension to avoid mutual disturbance. 
There are several timbral audio descriptors which can be considered for addition, that have not been 
evaluated in this thesis, such as the Median frequency or the Spectral flux. 

Besides the addition of new audio descriptors, existing ones can be made more optimal for separating a 
class configuration of a certain expressive dimension, by fine-tuning parameters that affect the calculation 
process of the descriptor. One should think of parameters concerning the window size over which a 
spectrum is calculated, the offset between two windows or the sample range within a tone that is being 
processed. Calculation of one descriptor can yield a vector or even a matrix of values, because of iteration 
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over multiple time frames and/or frequency bands. This brings along another configurable dimension: the 
choice of statistical measures (like mean, kurtosis, skewness, median, etc) to reduce these dimensions to a 
scalar. However, there is no necessity for the reduction to a scalar, if it is presumed that the entire vector 
contains descriptive power. This decisive freedom must be incorporated in Exprimulator’s GUI to enable 
better control over matching audio descriptors to expressive dimensions. 

10.3. Generalizing issues 
In section 6.3.4 several factors are outlined that can hamper the annotation performance. The most 
important factors are the use of different guitars, musicians and recording sessions. Even when only one 
guitar is used, the classifier performance can drop drastically, as was demonstrated by the replacement of 
the strings (section 10.4). In like manner, one musician can cause disturbance when he/she is in a different 
mood. Before trying to achieve to generalize these variables, there must be defined clear bounds to what 
extent a classifier has to generalize. For the recognition of RHPP for example, it is questionable if a 
classifier can generalize over electric and acoustic guitars, as these families of instruments differ too 
radical in timbre.  

The pursuit of making classifiers robust with respect to variable factors is a future goal to which much 
time can be devoted. Within the pursuit it is important to find a balance in constructing a classifier that is 
general as well as accurate. This means the use of a classifier that is least sensitive to overfitting (like 
SVM) as well as audio descriptors that are the least correlated with the variable factors.  

10.4. Annotation adequacy for future applications 
In the light of the applications that are proposed in section 1.2, the performances presented in chapter 8 
can be judged.  

One of the proposed applications was the supervision of guitar students to learn playing techniques. For 
this purpose, the recognition of Exprimulator in its present form is too sensitive to timbre changes due to 
different instrument properties or different recording sessions. This is illustrated by the fact that a song 
recorded in a different recording session than the corpus was recorded in, was annotated with scores not 
much higher than random annotation (33.33%). The only difference between these recording sessions was 
new strings on the guitar, which apparently disturbed the recognition process drastically. The strings were 
of the same brand (D’Addario), but were one level thicker, and produced a clearer sound because of their 
novelty. However the replacement of strings can effect radical timbral differences, more subtle recording 
session differences could also result in such drastic drops of performance. This example, in which only 
one guitar was used, illustrates that there lies still a challenge in recognizing playing techniques for 
multiple guitars and recording circumstances. An obvious solution to overcome this problem is to 
calibrate each different guitar by playing a few notes with the different playing techniques that a classifier 
has to recognize. This calibration could be used to obtain parameters for a transformation function that 
scales the feature vectors of the deviating instrument to coincide better with the ones of the training 
corpus. Besides this deficiency, also real time feature calculation should be made available so that a pupil 
can get feedback while playing. This is a challenging task, as note onset calculation, pitch detection, 
feature calculation and classifier prediction needs to be executed sequentially. The speed at which the 
current version of Exprimulator performs these tasks is not suitable for this purpose. 

For the proposed application of extracting rules from an annotated set of transcription that can be applied 
for more natural synthesis of music, a higher annotation performance is desired. 20% of misclassified 
notes could likely result in unfounded or incorrect rules. A higher annotation performance can be obtained 
by supervising a beginning fraction of the annotation process. This means that some songs of the corpus 
should be revised by the user in order to adjust and refine the classifiers in case errors were made. This 
involves a manual calibration process such as used in the previous paragraph; with the difference that this 
time no new training instances are used. The classifier then should be automatically adjusted on basis of 
corrections made by the user. 
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1111..  GGlloossssaarryy  ooff  mmuussiiccaall  tteerrmmss  

• Accelerando: Gradual increase of tempo 

• Annotator: A classifier within the context of the transcriber (i.e. that annotates the score with labels) 
is called an annotator. 

• Appoyando (rest stroke): Classical guitar technique of plucking a string by which the finger leans on 
the adjacent string after a string is struck 

• Class: A class corresponds in the context of this project to a specific playing technique. A group of 
classes can form training corpus by which a classifier can be trained.  

• Classifier: Any machine learning algorithm that can be trained to with audio features to recognize 
playing techniques within this context. 

• Crescendo: The gradual increase of sound volume 

• Descrescendo: The opposite of crescendo, i.e. the gradual decrease of sound volume 

• Expressive dimension: The scale between two complementary playing techniques in which a 
musician can vary 

• Flanger: A sound technical effect by which a short delayed copy of the source signal is added to the 
source. The duration of this delay is modulated cyclical. [37] 

• Fret: The mechanism on the guitar fret board that enables a guitarist to determine the length of the 
vibrating guitar string and thereby determining the pitch that the struck string brings forth. Each fret 
represents a semitone in the standard western system. 

• Glissando: Italian musical term that signifies the glide of one tone to another 

• Label: Textual annotation outputted by the annotator that corresponds with a certain playing 
technique 

• MIDI file:  a file format that contains a sequence of notes, along with several annotations such as 
timing, pitch, and effects. MIDI files can be played on any computer with a sound card as well as 
keyboards. 

• Note: A graphical representation in a notation system of a fixed pitch with a certain duration 

• Performed signal: The signal that is obtained by recording a guitar performance on the computer 

• Playing dimension: All the dimensions in which a musician can vary that comprise a musical 
performance. This covers dimensions such as pitch, loudness, note duration but also all the expressive 
dimensions. 

• Playing mode: = playing technique 

• Playing technique: A concrete way of playing within an expressive dimension by which the musician 
can convey expression. 

• Right hand playing position: An expressive dimension that is spanned by the playing modes sul tasto 
and sul ponticello 

• Rubato: Slight deviations in tempo to achieve expressiveness 

• Sample: The values that comprise a wave signal. They represent the voltage of the wave signal at a 
certain time frame 

• Sampler: A software or hardware program that is capable of playing samples at different frequencies. 
With a programmed sequence specified in for example a MIDI file and the appropriate samples, a 
complete song can be synthesized. 

• Staccato: A musical annotation which indicates that notes should be played apart from each other 

• Synthesized signal: The signal that is obtained by using by sampling guitar tones using pitches 
specified in a MIDI score that contains the same song as in the performed signal. 
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• Tirando (free stroke): Classical guitar technique which is the opposite of appoyando. When playing 
with tirando, a string is struck from below without leaning on the subsequent string. 

• Tone: The realization of a note with any musical instrument 

• Vibrato: Musical playing style that is caused by slightly variation of tone pitch 
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AAppppeennddiixx  AA::  PPiittcchh  ddeetteeccttiioonn  
A.1. Weighted Autocorrelation:  
The autocorrelation function picks peaks in the time domain to estimate the frequency, with the following 
formula: 
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This measures the extent to which a signal correlates with a shifted version of itself. Because a periodic 
signal correlates strongly when the offset equals the fundamental period, we expect to find a peak at this 
offset value. 

A.2. Harmonic Product Spectrum (HPS) [43]:  
The simplest method to implement, and does well on a wide range of conditions. The HPS algorithm 
measures the maximum coincidence for harmonics according to equation (1) for each spectral frame,  

(1) 

 

(2) 

 

where R  is the number of harmonics to be considered, and frequency iω  in the range of possible 

fundamental frequencies. The resulting periodic correlation array, )(ωY  , is searched for a maximum 

value, Ŷ ^, as is shown in equation (2). 

A.3. Maximum Likelihood [43]:  
Searches though a set of possible ideal spectra and chooses the one which best matches the shape of the 
input spectrum. The algorithm is based on a preconfigured pitch resolution. Such a discrete pitch 
estimation makes it less suitable for estimation of the pitch of a guitar, which can produce a continuous 
frequency range. Besides that, it is less tolerant to noise and weak signals than HPS. 

A.4. Subharmonic-to-harmonic ratio:  
Sun describes in his article [44] an algorithm that employs a logarithmic frequency scale and a spectrum 
shifting technique to obtain the amplitude summation of the harmonics and sub-harmonic, respectively. 
Through comparing the amplitude ratio of sub harmonics and harmonics with the pitch perception results, 
the pitch of normal speech as well as speech with alternate pulse cycles (APC) can be determined. The 
algorithm is optimized for speech signals, but should perform for musical signals as well. The algorithm is 
compared to several other pitch determination algorithms, and outperformed 7 of them (HPS included). 
Only the enhanced super resolution pitch determinator proved to be better at pitch determination. 
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AAppppeennddiixx  BB::  SSooffttwwaarree  ttoooollss  

B.1. Matlab 
Matlab is a computational environment that allows easy numerical manipulation of matrices, function and 
data plotting and algorithmic programming. Other strengths of Matlab are that it enables design of 
graphical interfaces and invocation of other programming languages like Java from within the scripting 
language. Matlab incorporates extensive toolboxes (relating to finance, statistics, aerodynamics, 
mechanics, etc.) that make it popular in various scientific fields. 

B.2. WEKA toolkit 
The WEKA toolkit is a collection of machine learning algorithms to solve data mining problems. It is 
freely available open source software, and is therefore easy adjustable and extendable with custom 
machine learning algorithms. It allows for analyzing, clustering, classifying and attribute selection of 
large datasets. The toolkit is platform independent because of its implementation in Java. A short review 
of sound classification research reveals that it has been used in many projects. 

B.3. Matlab-XM 
Matlab-XM is an unofficial toolbox written in Matlab’s scripting language that implemented all MPEG-7 
low level audio descriptors and high level description schemes. It also offers functionality to output audio 
meta-data to XML descriptions. The toolbox is maintained by Michael Casey from the University of 
London. 



0. References A machine learning approach for generating expressive musical transcriptions 
 

 

 75

AAppppeennddiixx  CC::  CCllaassss  ddiiaaggrraamm  

EExxpprriimmuullaattoorr  
The there are no actual objects present in Matlab like in object-oriented languages, we tried to display the 
structure of the data storage via this method.  
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AAppppeennddiixx  DD::  SSoonnggss  wwiitthh  iinntteennttiioonnaall  

ppllaayyiinngg  tteecchhnniiqquueess  
1. The Beatles – Let it be, starts with D3:  

find myself in times of trouble 
Mother Mary comes to me 
Speaking words of wisdom 
Let it be-e-e-e 
find myself in times of trouble 
Mother Mary comes to me 
Speaking words of wisdom 
Let it be-e-e-e 

2. Billy Joel – Uptown girl, starts with A3: 

Uptown girl 
Shes been living in her uptown world 
I bet she never had a back street guy 
I bet her mama never told her why 
I’m gonna try for an uptown girl 
Shes been living in her white bread world 
As long as anyone with hot blood can 
And now shes looking for a downtown man 
Thats what I am 
                                    

3. Elvis Presley – Are you lonesome tonight, starts with B2:  

Are you lonesome tonight 
do you miss me tonight 
Are you sorry we drifted apart 
Does your memory stray to a bright sunny day 
When I kissed you and called you sweetheart 
Do the chairs in your parlor seem empty and bare 
Do you gaze at your doorstep and picture me there 
Is your heart filled with pain, shall I come back again 
Tell me dear, are you lonesome tonight 

4. Michael row the boat ashore (Afro-American spiritual), starts with D3:  

Michael row the boat ashore, hallelujah 
Michael row the boat ashore, hallelujah 
Michael row the boat ashore, hallelujah 
Michael row the boat ashore, hallelujah 

5. Davis and Charles Mitchell – You are my sunshine, starts with A2:  

The other nite, dear,  
As I lay sleeping  
I dreamed I held you in my arms.  
When I awoke, dear,  
I was mistaken  
And I hung my head and cried 
 
You Are My Sunshine 
My only sunshine.  
You make me happy  
When skies are grey.  
You'll never know, dear,  
How much I love you.  

Sul tasto 

Neutral  

Sul ponticello 
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So please don't take my sunshine away 
6. Rolling stones – paint it black, starts with C3 

I see a red door and I want it painted black 
No colors anymore I want them to turn black 
I see the girls walk by dressed in their summer clothes 
I have to turn my head until my darkness goes 
I see a line of cars and theyre all painted black 
With flowers and my love both never to come back 
I see people turn their heads and quickly look away 
Like a new born baby it just happens every day 

7. Ella Fitzgerald – Every time we say goodbye, starts with E3 

Everytime we say goodbye, I die a little, 
Everytime we say goodbye, I wonder why a little, 
Why the gods above me, who must be in the know. 
Think so little of me, they allow you to go. 

8. The Beatles – Michelle, starts with E3:  

Michelle, ma belle. 
These are words that go together well, 
My Michelle. 
 
Michelle, ma belle. 
Sont les mots qui vont très bien ensemble, 
Très bien ensemble. 
 
I love you, I love you, I love you. 
That's all I want to say. 
Until I find a way 
I will say the only words I know that 
You'll understand.                        

9. The Beatles – Yesterday, starts with D3: 

Yesterday,  
All my troubles seemed so far away,  
Now it looks as though they're here to stay,  
Oh, I believe in yesterday.  
 
Why she  
Had to go I don't know, she wouldn't say.  
I said,  
Something wrong, now I long for yesterday. 

10. Neil Young – Heart of Gold (starts with C3): 

I want to live, 
I want to give 
Ive been a miner for a heart of gold. 
Its these expressions I never give 
That keep me searching for a heart of gold 
And Im getting old. 
Keeps me searching for a heart of gold 
And Im getting old. 

                                                           

 

 


