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1. Infroduction

Everybody is familiar with digital synthesized mu&n general. Well known are MIDI-files, one or raor
tracks with sequenced notes that can be playedcomauter or keyboard. Characteristics of musititha
played by and synthesized on a computer are thabunhds mechanical and artificial. The striking
difference that exists between a human and a magigrformance is because of the computer’s ingbilit
to put expression into music. Expression is theiguthat accounts for emotion in music and makes i
interesting to listen to. This expression is readiby using the appropriate phrasing, style, imeggion
and by applying variations in dynamics and temgoAlthough some of these factors can be realized b
means of MIDI controls such as the aftertouch @dog which a key is struck), legato, release tithe (
time it takes for a tone to fade out) or attacketifthe time it takes for a tone to fade in) thesetiols
need to be programmed or recorded explicitly. Ttimon MIDI sequencers offer no logic that deduces
settings for these controls on basis of the musitatture for example.

The mechanical nature of synthesized sound inspinesly researchers the last decades to study
expressive performance by quantitative or computali modeling. Computational modeling is an
attempt at formulating hypotheses concerning exgreperformance in such a precise way that thay ca
be empirically verified (or disproved) on real ma&sl performance data, as defined in [2]. In thicle,

4 approaches of computational music modeling wereparedanalysis-by-synthes{gvaluation of rules
brought forward by researchers by professional oiauss),analysis-by-measuremefabtaining empirical
evidence directly from measurements of human pewdoces) applying mathematical musical music
theoryand themachine learning mod€tiscovering significant regularities in musicalripemances via
inductive machine learning and data mining teche&jurhe last model was adopted for this thesis as a
way of obtaining an expressive knowledge base.

In order to realize models that can synthesizeesgive performances, three stages are distinguished
1. Capture low-level expressive characteristics @rgd set of human performances

2. Develop higher level rules and models on basis@knhowledge base from step 1

3. Use these models to synthesize expressive perfagsan

In this thesis an experimental environmdaggrimulato)) is presented that realizes the goal of step 1. It
aids researchers with capturing these expressiwracteristics. This thesis addresses the design,
implementation and testing of this piece of sofevdExprimulator was tested with guitar performances
that were transcribed (by capturing note onsete mhiration and pitch) and annotated on a note-level
scale with expressive labels. These expressivdslaimaild in principle denote any playing technicue
musician used to convey expression in the perfooaadowever, in order to limit and focus the scope
this thesis one particular expressive dimensioe $ttale between two complementary playing techsique
in which a musician can vary) was chosen as a pybobncept, namely the Right Hand Playing Position
(RHPP). Variation in the striking position of thight hand is an important and commonly used form of
expression for guitarists. It can effectuate anynsbocolor between sharp and soft tones.

The annotation phase is the main task of Expriroulathich is globally achieved by training classii
that can recognize different playing modes in goressive dimension. By annotating songs perfornyed b
human musicians, an image is obtained how wellsdlass perform in relation to each other. Through
this comparison a selection of the best classifisrebtained. For this subset it is determinedhis t
performance dominance would also go for the redemmof other expressive dimensions in general.

Describing audio data has a wide range of apptinatiand purposes. A very popular and common
application for meta-data are online multi-medi@&mying systems that enables finding musical or &ide
content by using content related query commandsdfample searching on genre [3, 4] or query by
humming [5, 6]), so that multimedia data can bedwead though by a meaningful way for humans. These
applications mostly involve high scale descriptetgh as the genre of a musical piece or the used
instruments. In this thesis, lower level annotatisrtomputed from musical performances, such as the
sequence of played pitches and note-level expressinotation (RHPP).
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In contrast to the numerous video annotators, ralsionotators are scarce. The most important are:
Timeliner [7], the AcousmographMiXA [8], Marsyas [9], the CLAM Annotator [10] ahMucosa [11].
Timeliner is a pedagogical visualization and antiota tool for a musical library, whereas
Acousmograph, Marsyas and the CLAM annotator dooffetr (semi)-automatic annotation. Only MiXA
and Mucosa incorporate automatic annotation, amad taiwards collaborative annotation of existing
music. The systems are mainly built in order tocatgeonline databases with musical transcriptioas$ th
can be queried with high-level descriptors of salvedimensions (genre, melody, tonality,
instrumentation, style, etc.). This contrasts with note-level annotation that Exprimulator progidan
annotation tool that is more focused on the animstabn note-level (event level in the percussive
context), is described irExploration of techniques for automatic labeling audio drum tracks’
instruments[12]. In this project it has been attempted toateea drum track from a performance that
denotes the appropriate percussive instrument faeréain percussive event. The major difference
between Exprimulator and the discussed annotasdnswever that outputted transcription is not thie s
goal; it is part of a bigger context — namely tbatreating expressive synthesized performances.

In the major part of literature concerning extrastof expressive content or synthesis of expressivsic
(for example [13-17]) variation in dynamics, timiagd melodic structure characteristics are regaeaged
the constituting elements of musical expression:

* Rhythmical variation (tempo): Notes can be delibeyaplayed too soon or late in order to express a
certain feeling ubato), or one can slow downifardando) or speed upaccelerandd

* Volume variation (dynamics): Volume increase orrdase can build up certain suspense or release
it. Variation in volume is indicated with for insteecrescenddplay gradually louder) odiminuendo
(play gradually softer).

» Pitch variation (frequency): A musician can deldtety deviate from the prescribed pitch from the
score, by means ofvdbrato or glissandg for example. This form of expression can onlypbaeduced
by a limited class of instruments, among whichdtig instruments.

Albeit the importance of these factors is not dénthis thesis focuses more on the expressive mibdes
can be affected by applying different timbral ptayitechniques. This means that annotation takes the
form of describing the concrete playing technighat is used, sagul tastoor appoyando In this way
emotive and subjective expressive labels sudkrader aggressivesad joyful, calmandrestlesg16] are
avoided. The same applies to ambient labels suchesssy, soft, hard, brighand dark [18]. Concrete
labels show unambiguously how a certain tone wageul and how it should be played in future. By
definition, concrete labels specify a playing madeone expressive dimension. On the other hand an
emotive or ambient label gives a musician freedomse any of the available expressive dimensions.

In this thesis a method to obtain musical transioms annotated with expressive labels by means of
machine learners is presented. To reduce the caiptE this problem the scope of the project hasib
narrowed and concretized to transcribing guitafgserances. The transcription has been labeled with
expressive labels concerning the right hand playogition (RHPP) of the guitarist. This proof of
concept case has been executed in a dedicatecbmmeént called Exprimulator that facilitates several
tasks such as creating optimal classifiers, tralpisy, annotating and visualizing resulting (intexdfrary)
data.

1.1. Research questions
In this thesis the following global question arewared:

* Can scores be annotated with expressive annotediocerning the right hand playing position using
a machine learning approach?

« Is the achieved accuracy of annotating the RHPRd&ion satisfying enough to make the presented
methodology applicable for the recognition of otegpressive dimensions?

! http://www.ina.fr/grm/outils_dev/acousmographe/
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More detailed sub questions that are related tspecific test case of creating annotated transenp of
guitar performances are stated below.

0 What expressive dimensions can be discerned ontar,gand how can they be divided into
classes (equivalent with playing techniques) st tbeognition by machine learners is possible?
(chapter 4)

0 Which audio features can be used as classifiett tgpdetermine the playing technique?

o Given a set of classifiers, which one annotatesicalgperformances most accurately and
consistently?

A question related to applicability of Exprimulator

» Does Exprimulator provide enough general freedonrdsearchers to develop sound classifiers for
the annotation of musical transcriptions?

1.2.  Applications

Exprimulator is designed as a general tool for soclassification and musical annotation. Therefdre,
can serve as an initiation to a variety of futupplecations.

1.2.1.  Experimental environment

Exprimulator can serve as a general environmentefgioring feature data and different classifiers.
Studies performed with the help of Exprimulator dsn compared with each other, because they are
similar in execution (same note segmentation, safassifier implementation, etc.). In this way
Exprimulator serves as a test environment for dagrput musical sound classification experimentd an
eases re-execution of these experiments and stofaggerimental results.

1.2.2.  Annotation of musical transcriptions

Exprimulator can serve as a tool to make more g®se transcriptions, than regular scores or MIDI
files. Besides the basic annotation such as notatidn, pitch and onset, Exprimulator provides
additional information about the playing technigdéis application can have its benefits for exigtin
scores, as these often lack annotation concernlisging techniques. Furthermore, annotation can be
provided for any expressive dimension, as long layimy modes defined within the dimension are
recognizable by an appropriate combination of featwectors and classifiers. The annotated
transcriptions could be used for musicians who neede guidance in learning a score, or for online
databases to enable searching on expressive atrdstcs.

1.2.3.  Inifiation to expressive music synthesis

Exprimulator can be used to create a large corpasimotated musical guitar performances, from which
expressive rules can be inferred. These rules elatermusical structure to playing techniques. thix
application, a skilled guitarist has to performigngicant amount of songs that are to be transetiand
annotated. The now obtained corpus of songs cam ser a knowledge base to deduce rules that relate
musical structural quantities (characteristic neégjuences, characteristic sequences of note chgatio
and/or dynamics) to expressive quantities. Theniiaa of these rules is to expose ‘universal’ phayi
conventions that guitarists share. It is also likblat these rules can capture more specific trendh as

the playing style, musical genre, the unique stfla musician or the mood of the musician.

1.2.4.  Tutoring guitar students

Exprimulator can function as a tutor that guidegudar student with playing songs with the apprafari
playing technique. With help of classifiers that d@rained with different playing modes that were
performed by a skilled guitarist, feedback can vemgto a student if a tone or a phrase was peddrm
correctly. This feedback is given by means of as@iibed transcription that a pupil has to perform i
front of a microphone. From this audio signal appiate audio features are calculated and provided a
input to the classifier which can recognize theyiplg technique the pupil played. This performedyjlg
technique is then compared with the prescribedniecie to provide feedback.
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2. Approach

The main goal of this thesis is to be able to rec different expressive playing modes within an
expressive dimension. This chapter outlines thesstaken to realize expression recognition.

Recognition of expressive playing modes is valudole the different applications proposed in the
previous chapter, such as acquiring transcripteomstated with expressive markup, deducing expressi
rules or tutoring guitar students. Several machie@ning approaches were chosen to classify a
continuous expressive dimension into a discreteofetlasses. For testing purposes, these machine
learners had to recognize the expressive dimenBbBiPP. Corpora were recorded that contained
sufficient repetitions of tones per distinguishdass. In order to train a classifier to recogniiféecent
playing modes within the RHPP dimension suitabldi@wescriptors had to be calculated from the
corpus’ tones. These audio descriptors were arthingéeature vectors that were used to train di@ssi
with different machine learning approaches. Thauesty of the classifiers was evaluated and compared
by calculating the annotation accuracy over a smmgus consisting of a representative amount ofdrum
performances.

Literature study formed an important part of ttisdis to determine the ways how guitarists caroperf
musical expression. This survey was used to pickaaepresentative dimension for our researchum o
case RHPP. Literature study was also conducteddierdo obtain suitable audio descriptors and nrechi
learners.

2.1. Goals

Below we list the necessary goals to answer the megearch questions. These goals are evaluatbd in
experiments chapter 8 and the conclusions chapter 9

« Determining expressive playing modes and dimensimna guitarist

e Obtaining an optimal training corpus

« Obtaining a selection of best performing classifier

* Obtaining optimal classifier configurations for thest performing classifiers
*  Obtaining suitable audio descriptors and featutors

* Proving possibility of expressive playing mode rguition

*  Proving possibility of transcribing guitar perfornt@s and using expression recognition to annotate
them

< Obtaining transcriptions with an annotation perfante of at least 80%

2.2. Exprimulator

The experiments (creating corpora, calculating uieatvectors, transcribing and annotating guitar
performances) have been conducted in a dedicatacoement called Exprimulator. This environment

has been developed in Matlab and combines thegshrerand ease of the scripting language of Matlab
with the wide selection of machine learning metHodies that WEKA offers and the audio descriptor
calculation features of the MPEG-7 toolbox MatlabtX

We used an easy configurable interface (the classBUl) to be able to visualize the classifieraining
corpus and feature vectors. This gives immediataualinsight how well a certain feature vector
separates a class-configuration. Besides that,ifxpator consists of a transcriber that transcribed
annotates songs using the classifiers of the fikissnanager. To make matters more concrete,
Exprimulator supports the following tasks:
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1. Creation of a sound corpus consisting of tones guawith different playing techniques (one
realization of a specific playing technique equafdass in this occasion).

Calculation of feature vectors for a configurabikcfion of each tone.

3. Creation of several types of classifiers that cartrbined with the feature data from the preceding
step

Creating transcriptions (containing note onsetsatiftns and pitches) of guitar performances.

Annotation of transcriptions with the classifierfstioe third step. With help of this feature claisif
performances can be mutually compared, if ascedhirthat expressive annotation is
possible/satisfying at all (related to the maireegsh question of section 1.1).

These features have been implemented with the ndsequestions and goal setting in mind.
Configurability is the key aspect to realize thejoniéy of the goals of the previous section. Configble
GUI controls have to be implemented to investigheeinfluence of different corpora, feature vectansl
classifier settings on the annotation performarfe.optimal experimental set-up for future work is
expected to be found by varying these dimensions.

In the following sections the sequential tasks kwplator performs in order to get to annotated
transcriptions are described in more detalil.

2.3. Creating corpora

In order to create a classifier that is able tdinimish nominal playing modes on a continuous esgive
dimension, training material that exemplifies thet®sses have to be presented as input. Corpoe hav
been created by playing tones with a certain egpresnode repetitively with a certain amount dgjitto
reflect the natural inaccurateness of a guita8sbsequently, these recorded waveforms are segmnente
into individual tones and grouped in accordancé e class arrangement in the expressive dimension
The resulting corpus has to be easily adjustablexnjuding tones that were played incorrectly. This
manual revision of the corpus is realized by meanthe possibility to visually and audibly revielet
individual corpus tones.

2.4. Calculating feature vectors

In order to derive sufficiently small feature vastdrom the corpus’ tones that can serve as input f
classifiers, appropriate audio descriptor algorghimve to be implemented. Literature on sound
classification (preferably timbral sound classifica [12]) has been explored to find candidate
descriptors. After suitable ones are found theyehavbe either manually implemented or integratechf
existing packages. Once audio descriptors are fohatdprovided adequate class separation, caloulati
parameters have to be ascertained. Amongst thesbamwindow size, fractions of tones over whicé th
descriptors are calculated, hopsize, window tyfe, Ehese parameters need to be accessible viaue

of Exprimulator. With the parameters set, the femtectors of all the tones of the corpus are ¢aled

in one run.

The resulting feature vectors are input in the sifeess as training material together with an index
specifying the desired class. These feature vecamsbe reviewed as a whole by plotting them grdupe
per class in different colors. Another way is teiesv individual feature attributes by creating atser
plot wherein all the instances are plotted in a diomspanned by two selected feature attribute
dimensions. These evaluation methods are useddtejthe degree of separation power of the audio
descriptors and to recalculate them with diffesattings if necessary.

2.5. Training & evaluation of classifiers

A majority of the classifiers the WEKA toolbox offeare presented in Exprimulator’'s GUI to be treine
by the created training corpus of the previousieect/arious WEKA settings which are unique for leac
classifier have to be configurable via Exprimul&anterface. Exprimulator has to provide the freed
to compose a unique corpus for each classifielir{blpyding or excluding tones, or by changing thessl

10
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configuration). For comparison considerations, tlogpora have been kept constant throughout the
experiments though.

The trained classifiers can be reviewed visuallystatistically. Visual review provides insight ihet
trained model by plotting its structure, weights,parameters. Statistical review means the prexhati
the tones present in the song corpus by the trailasdifiers, after which the correct predictioaction is
calculated. These measures are used as a guidelioptimize a classifier by fine-tuning its WEKA
settings. The prediction performance is also usedbtain better performing classifiers. By definiag
guantitative exclusion rule for the classifierstwihe lowest performance, a reduced set of classifias
been determined. This reduction spares evaludtionfor future experiments.

2.6. Transcribing & annotating song corpus

A number of monophonic guitar performances havenlseeorded to create a song corpus like mentioned
in the previous section. The songs are well-knowelodlies and contain different expressive playing

modes that are also present in the training corphe.playing modes that are subsequently usedein th

performances are annotated manually for comparstnthe classifiers’ automatically predicted ladel

In order to create a transcription the songs haenlsegmented at the note onsets to begin withndgc
the pitches of these segments (tones) have beenlatald. For the individual tones the same feature
vectors (section 2.4) are calculated as for thimitrg corpus (2.3) after which they are presented t
trained classifier. The prediction outcome of ataierclassifier is used to annotate the transcnptBy
annotating the song corpus with different classifile annotation performances are compared i twde
reduce the set of classifiers.

11
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3. Literature review

The extensive amount of literature on sound cleesgibn has been used to make choices for the esig
the machine learning methodology. Reviewing thisrditure helps to narrow down the possible ways to
conduct this research and helps finding commonaggbres for sound classification. Finding a common
approach comes down to the selection of commomifilxs and audio descriptors primarily. Reseanch o
sound classification often has the character thaet of classifiers are compared by using some
performance measure. Also feature selection metamelapplied to obtain optimal audio descriptotse T
results of such experiments can be used to thentatya of this project to exclude classifiers andi@au
descriptors that have been proved unsuccessflikdrmanner, extra attention can be paid to classif
which have been proven more successful.

3.1. Audio descriptors

Due to the fast growing body of multimedia contentthe internet, the necessity for adequate storage
with descriptive meta-data rises. This meta-dateetessary for humans to be able to retrieve meithe
content describing queries, instead of just a éitea. The idea is to make the web just as searcfable
multimedia content as it is for text. From the cddtion of lower level acoustic properties of media
content, higher level descriptors that are undedstile and relevant for humans can be derived.

In the scope of audio retrieval the need for thaeseriptors is just as urgent as in the fieldsrafge and
video retrieval. Examples of recent audio retriema¢thods are query by genre, by humming, by
spoken/sung content or by rhythm. Besides retrieygdlications, audio descriptors are used for other
tasks such as score following/aligning or the gmliepose of providing musical annotation, as in this
thesis. For the latter purpose, classifiers ared use‘convert’ low level descriptors to higher léve
annotation that has an expressive musical meahirgyder to find good candidates for audio desorgt

an investigation of the musical characteristic tiged to be derived is necessary. As has beesdstat
before, the forms of musical expression that thésis focuses on are timbre related, as is the wilse
RHPP. Analysis of musical audio by timbre recogmitis an approach that has been applied ofterein th
scope of musical instrument [19], playing technif@@ 21] and genre [3] recognition. These appioret
are considered related to the RHPP recognition lpnokin principle, and are therefore scanned for
commonly used audio descriptors.

By scanning the relevant timbre related literatimea lot of occasions the MPEG-7 standard haven bee
used, a description framework in which several comiyn used higher and lower descriptors are
implemented. An important benefit of using a staddgpproach is the compatibility with other softevar
that uses MPEG-7 and the uniformity by which thaliaudescription algorithms are defined and
implemented. This compatibility is ensured by thetfthat MPEG-7 uses the widespread XML-scheme
for describing the multimedia content. MPEG-7 haerbused in several applications that are closely
related to the ones of this thesis, namely thesiflaation of musical instruments [22-26], musisalund
recognition within one instrument [21], genre regitign [27], environmental sounds recognition [28-3
and music recommendation [31]. Although not allsthe@pplications are strictly related to expression
recognition, the MPEG-7 descriptors are designeteouniversal in their application. The following
section outlines the descriptive strength of theB@P7 audio descriptors.

3.1.1.  MPEG-7 audio descriptfion

MPEG-7, informally known as thilultimedia Content Description Interfacis an attempt to standardize
meta-data provision for multimedia. The MPEG-7 dtad contains the following sub tools: MPEG-7
Visual — for describing video content; MPEG-7 Audio for describing audio content; MPEG-7
Multimedia Description Schemes — description totblat deal with generic features and multimedia
descriptions; and MPEG-7 Descriptions Definitiombaage — the language that defines the syntaxeof th
former description tools. The relevance and impar¢aof MPEG-7 is stressed by summing up some of
application areas and accompanying examples: basadoedia selection — for constituting custom radio
or TV channels; journalism — searching speechespéiticians using their face or voice; or remote
sensing — cartography, ecology, etc.

12
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The MPEG-7 unit that is relevant in the light ombre recognition is MPEG-7 Audio. The audio
descriptors that can be calculated with this towlace divided in low-level descriptors (LLD’s), $uas
spectral, parametric or temporal features of tigmai and high-level Description Schemes (DS). The
LLD’s describe sound characteristics such as haigepsharpness, pitch and timbre. They are appdied
short time frames of the sound signal and yielbegiscalars or vectors, which can be aggregated) usi
mathematical operators such as minimum, maximunmgnmand variance. The Description Schemes
describe sound at a higher level and are moreecklat the way humans describe audio. Examples of
these description schemes desical Instrument Timbre Description Toolelody Description Tools
and Spoken Content Description ToolBhe LLD’s are depicted in Figure 3.1, and groupedséven
categories. In the following, the MPEG-7 descriptare outlined per category.

Basic Descriptors

The basic descriptors basically represent the shafpghe waveform of an audio signal. The
AudioWavefornis a representation of the waveform’s envelope AlldioPowerdescriptor computes the
average square of the waveform in a certain tiraendr, thereby describing the power of a signal over
time.

Basic Spectral

This group describes basic properties of the asigjnal’'s spectrum. ThAudioSpectrumEnvelog&SE)

is a logarithmic representation of the short-terrowgr spectrum in frequency bands. The
AudioSpectrumCentroids the center of gravity of the ASE spectrum. TAedioSpectrumSpread
describes the deviation of the ASEm its centroid. The last descriptohudioSpectrumFlatnesss a
fingerprinting algorithm for determining the simily between two sounds.

Spectral basis

The spectral basis descriptor group contains AldioSpectrumBasisnd AudioSpectrumProjection
descriptor. The former transforms a signal’'s spewtto a lower dimensional representation, while the
latter does the same for the ASE. Both descripaors at representing the spectra while preservieg th
maximum amount of information.

Signal parameters

This group contains thAudioFundamentalFrequenand theAudioHarmonicitydescriptors. The first
descriptor calculates the fundamental frequencywecwof an audio signal. The second calculates the
harmonic ratio (varying between 0 for noise to t farely harmonic) as well as the upper limit of
harmonicity.

Timbral temporal

The LogAttackTimedescriptor calculates the time from the onset sband to the point where it reaches
its maximum. TheTemporalCentroidis the location in the signal where most of the rgpeis
concentrated.

13
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Audio framework

Silence [ Timbral Spectral
HarmonicSpectralCentroid D
Timbral Temporal Harmonic_SpectraIDeviation D
LogAttackTime D HarmonlcSpectraISpregd D
HarmonicSpectralVariation D
SpectralCentroid D

TemporalCentroid D

Basic Spectral

AudioSpectrumEnvelope O Spectral Basis
AudioSpectrumCentroid D AudioSpectrumBasis D
AudioSpectrumSpread D AudioSpectrumProjection D

AudioSpectrumFlatness D

Signal Parameters
AudioHarmonicity D
AudioFundamentralFrequency O

Basic
AudioWaveform D
AudioPower D

Figure 3.1: Low-level MPEG-7 audio descriptors

As one might expect, in the discussed literatummfrsection 3.1 concerning timbre recognition, the
Timbral Temporalnd Timbral Spectraktategories play an important role. These catega@ssribe the
perceptual features that make two sounds havingséime pitch and loudness sound different. The
descriptors can be related to human notions suctit@ek’, ‘brightness’ or ‘richness’. Because bese
reasons these LLD’s would seem obvious candidarethé application of recognizing RHPP.

3.2.  Machine learning for sound classification

Machine learning is a commonly applied methodolwgthe field of sound recognition and classificatio
The applications vary from environment recognitfion PDA’s [29] and musical instrument recognition
[25] to emotion recognition [32]. The more closeblated literature on timbre recognition from the
previous section was scanned for common machimeifepapproaches.

Most of the literature discusses around 6 differdatsifier approaches that fall in one the follogvi
categories: decision trees, Neural Networks, Bayegtarning, lazy learning, rule learning or Suppor
Vector Machines (SVMs). The different classifierse aevaluated on test material so that their
performances can be compared. It is worth notitrag in most of the projects no conclusions hawnbe
drawn about the best performing classifier, andiltef mutual projects seem to contradict in céwse
same classifiers have been used. However, in dettegaused set of classifiers and experimental
approach differs too much to compare one study thighother.

A considerable amount of studies use the classiffaplemented in Waikato Environment for Knowledge

Analysis (WEKA, see appendix B). Compatibility, mtiardization and robustness reasons motivate
incorporation of WEKA classifiers within Exprimutat Section 6.3 outlines in greater detail what

classifiers are generally addressed in literatalang with the degree of similarity with this thesi
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4. Musical theory

In order to start with recognition of musical exgs®n, it is important to determine what dimensiohs
expression exist and — within the expressive dimoess(ED) — the playing modes that can be idemtifie
This chapter starts with a general explanation o$ioal expression. Section 4.3 briefly summarizess p
instrument category what the most important exjpvesgimensions are. The subsequent section outlines
for the guitar what static and dynamic parametefluénce the timbre of the guitar sound. Finally, i
section 4.6 several EDs are defined by the scaledam two complementary playing techniques. The
playing modes that are a result of dividing the EdDs to be recognized by human ear or a machine
learning methodology.

4.1.  Musical expression

Expression can be defined as a quality that acsdfantthe specific emotional effect of music. Wken
musician plays with expression, the listener (1y meaise his musical sensitivity or that the musichas

a keen sense of how the passage should be plapedcdd also say (2) that an expressive performiance
one th?t recognizably embodies a particular emotaod may cause alike emotional response in the
listenef.

4.1.1. Explicit and implicit characteristics

Musical performances contain a lot of implicit cheteristics (characteristics which are not the Itesfu
the explicit annotation of Table 4.1) beside explaharacteristics. The implicit characteristice dhe
result of the musician’s unique playing style, ifopl musical style conventions and the acoustic
properties of the guitar. Partly, these implicitacdcteristics are beyond the ability of the musidia
control, such as the acoustical properties of atrument. Besides that, from the characteristias dine
controllable by the player, a large part is applimdonsciously. The part that is applied conscipuah

be regarded as musical expression. This projeets ttb capture the expressive part of implicit
characteristics, by extracting them from recordemn&n performances. Combined with the explicit
markup already present in a score file, rules caroltained by finding relations between the explici
markup and the implicit characteristics extractearfthe human performances.

Explicit characteristics

Implicit characteristics

Note duration

Note length deviation

Note pitch Different timing
Dynamics Timbral variation
Vibrato Plucking style

Plucking style

Table 4.1: Explicit and implicit characteristics

The distinction between implicit and explicit chetexistic is not disjoint, i.e. most of the expligi
annotated characteristics (such as vibrato or pmtéo) can also be applied implicitly (i.e. appliedhe
player’s insight, when there is no explicit annmtatpresent that tells the player to do so). Vibrata
good example of an expression that is used a lonhgnguitarists and violinists in more places tHaose

prescribed by explicit annotation. Very often ijgplied unintentionally and/or unconsciously.

2 hitp://www.people.carleton.edu/~jlondon/musical ression and mus.htm
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Explicit annotation can be (un)consciously devidtedh or supplemented as follows:

Consciously devi

ating

Deviating from annotationnfrecore due to musician’s preferences

Consciously addi

ng
annotation

Adding expression because ofaiaunss preferences or gaps in

Unconsciously deviating

Deviation because of tecdinimperfection, misinterpretation of
annotation or personal playing style

Unconsciously adding

Addition of expression becafsausician’s personal style that is
imprinted by years of practicing and therefore agplunconsciously

Table 4.2: Deviation or suppletion of explicit anntation

4.1.2.

Relation between expression and playing techniques

Musical expression is a subjective notion relatedanveying an underlying emotional message ofng so
and bringing listeners into that desired emoticsiate. The subjective emotional message is notttire
interpretable by a computer. Therefore the conoépnusical expression is concretized to analyzable
quantities such as playing techniques that arespted in section 4.6. Although the application lafypg
techniques that this project focuses on does nopdse the full arsenal a musician has at his diapfor
transmitting an emotional message, it forms an itamb part. Playing techniques affect to a largeatx
the timbre that is produced when playing a sonmbFe, on its turn, is a concept that is stricthated to
musical expression because a tone’s timbre is afigtained in terms with an emotional load or terms
related to the taste or touch sense. Examplesobf teums areoft, harshor muddy which are commonly
heard when music is described orally. Although theerpretation of these descriptions are not
determinative either, timbre can be described im$eof measurable acoustic quantities equally (sek
section 3.1, amongst others). This measurabilitgbles computational analysis and annotation of
performances with timbral markup.

4.2.
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Figure 4.1: Communicating musica

message from composer to listener

Communicating expression with annotation

In expressing music, there are a lot of ambiguities can
limit the clarity by which a composer can conveys hi
message. A composer initially starts with a musjuake
with a certain message attached to it that showd b
conveyed through the score. At several stages, Verywthis
conveying can be hampered. Firstly, the song meamiust

be transcribed in musical notation, with restricfesedom

of expression. A composer can choose to incorporate
annotation with the following increasing levels of
concreteness:

« Emotive annotation (e.@moroso Hoving): with this
kind of annotation, the composer makes clear what
emotional character a musical phrase should bear.
The resulting musical performance should convey
this specific emotion. This is the vaguest categairy
transcription.

* Relative annotation (e.gcrescendo, ritardando)
describes a change in tempo or volume in relaton t
the current playing conditions. Examples of these
relative annotators aescendavhich means to play
louder, orritardando, referring to a slow down. It is
not always clearly denoted what the pre- and post
playing conditions are.

e Technical annotation (e.gappoyando, vibrafp
describes mostly with fixed musical terms the
technique that the musician has to apply. This
technical annotation is limiting in the way thatist
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not detailed enough: a score mostly provides ohty keyword vibrato' under the music bar,
without any further clues for the musician howitbif the unknown parameters, such as the speed
and the amplitude of the modulation.

« Absolute annotation: can be interpreted unambidyourecause it involves numeric quantities.
Examples are metrical indicators such as the tiilgpature (4/4 for example) or the tempo (in
BPM).

Figure 4.1 depicts the way through which a musioaksage or song meaning is normally transmitted
from composer to listener through the musician tredmediascoreandperformancelt also depicts the
actions that the actors have to undertake in ot@l@ome to the intended intermediate states aral fin
state of mind. These actions require unique petskiids (the most important are depicted betwesn t
parentheses) that are the reason why the musicaincmication course is never the same. Within this
thesis the computer performs the listener’s roleextract the initial score from the beginning oé th
course. In this way the communication course icetesl in the reverse direction, without interventio
from the musician. The intended characteristicstiier computer to capture are quantitative parameter
but do not necessarily reconstruct the originatesco

4.3. Expressiveness per instrumental category

For this thesis, expression recognition is demaist by using a guitar. The ultimate goal wouldtmee
realization of universal expression recognition fory musical instrument, but the ways to realize
expression per instrument are in most cases taguarand specific. While the role of the guitar hirst
thesis is merely a demonstrating than a motivatemice, there are some benefits of this instrument.
String instruments in general offer more expres$iegedom than other categories mainly because both
the pitch and the onset of a tone are directlyrotletd by human hand without mechanical intervemtio
This mechanical intervention is present for inseaita piano, where a hammer touches the strirgg at
fixed location, thereby narrowing the control ottee timbre.

Other instrumental categories offer control oveneotexpressive dimensions. For instance, with the
family of wind instruments the envelope of a toa@ de controlled to a great extent, thereby allgvan
crescendo within a tone. This is an ability thatydhe bowed string instruments are capable ofiwithe
family of string instruments. For the other ‘pluegi instruments, the sustain follows invariablyetain
exponential decay function. An expressive mode thamportant for the percussive instruments is the
striking location. Whereas pitch is of no conceon the majority of percussionists, their attentisn
mostly directed towards the realization of diffarémbres by striking a cymbal, tom or snare drumao
unique location.

4.4, Guitar anatomy

Before proceeding to the discussion about exprassiaelation to the guitar, the guitar’'s anatorsy i
displayed in Figure 4.2 to illustrate the namingha# different parts of the guitar. Through the rseuof
this thesis these terms are frequently used.
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Figure 4.2: Anatomy of an acoustic guitaf

4.5. Timbre and guitar

The concept of timbre is hard to define, in comgramito other psycho acoustical features such ab,pit
duration and intensity. These latter can be scatetlorganized hierarchically and notated, but teras
a very complex definition and is multi dimensioimathe time and spectral domain [33]. Accordinghe
ANSI definition timbre is that attribute of sensattiin terms of which a listener can judge that s@ands
having the same loudness and pitch are dissinditare are five timbral parameters to distinguist 3

1. The range between tonal and noise like character.
2. The spectral envelope.
3. The time envelope in terms of rise, duration, aeday.

4. The changes both of spectral envelope (formaneylidnd fundamental frequency (micro-
intonation).

5. The prefix, an onset of a sound quite dissimilah®ensuing lasting vibration.

In order determine how the timbre of a guitar imstduted, a distinction is made between the unique
static timbral properties of a guitar, and the dyiwal timbral differences that can be effected by a
musician. The next two subsections outline the ratisbutive components of static and dynamic tienbr

4.5.1.  Static timbral properties of the guitar (physical characteristics) 456

Guitar builders can recognize the limitless factbiat influence the sound of a guitar. While a roiasi
can influence the sound of guitar by playing défetty, every guitar also has from itself a uniqoersd
color. The acoustic properties that define thiicstanbre are largely defined when building a guitlt is
important to be aware of these characteristicstatsc sound differences between two guitars cakema
general dynamic timbre recognition impossible. Belthe most important properties of a guitar are
outlined that define its sound.

% http://www.phys.unsw.edu.au/music/guitaracousticafomy.html
* http://www.phys.unsw.edu.au/music/guitaracoustisafomy.html
® http://www.frets.com/FRETSPages/Musician/Stringstgs/strings01.html

® http://www.wikipedia.org
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Material composition

The materials that are used for the constructiom @fuitar have direct consequences for its acoustic
characteristics. The part that defines the guitao'snd most dramatically is the body, especially tp
plate. The majority of the guitar’'s sound is nametgduced when the vibrating energy from the sfing
are transferred via the bridge to this plate, cayst to resonate. The detail by which the top elat
resonates is a key defining element for the g@timbre. The traditional and up to date most comigno
used material is wood, mostly tonewood like sprued,cedar or mahogany. A common problem with the
application of wood is that two plates of wood aever the same, due to natural variation. With this
knowledge it is impossible to create two guitarthwie same timbre.

A variety of synthesized materials have been ewpldo imitate or replace existing woods. Examples o
these materials are fiberglass, carbon fibre anghprs. The most important arguments for reseafch o
these materials are that synthetics are cheapéebelimbed to exhibit less variation. The latterumsption
has not been validated yet, as the synthetics exassnuch acoustic variation as wood. Furtherntoe t
characteristics of the synthetics still cannot naitiose of wood, so the timbre of wood cannot dwen
approximated with synthetics.

The strings, the initiators of the sound, exisimany variants. The choice of the string is a suhje®ne
which is up to the musician. The most importantedédnce exists between Spanish guitars and staagst
guitars. The top three strings of Spanish guitarraflon strings, whereas the lower three are coitgos
strings made of a silk fibre core wrapped with ailer gold-plated copper wire. Steel string guitarns
equipped with plain steel string for the three leigthstrings and steel strings wounded with a wirome
metal alloy. The most commonly used alloys are beophosphor bronze, nickel or silver plated copper
Sometimes the core is wrapped with silk filamergfole wound by the steel wire. The used alloy has
much effect on the sound and durability of thengisi

Guitar's anatomy

When constructing a guitar there are many choiocdsetmade that have large effect on the timbre. The
most important part with respect to constructior isgain — the guitar’s body. The back of the ttaiep

of the body is supported by a grid of wooden strgadled braces (see Figure 4.2), which can benge

in different geometries. The bracing techniquecisustically critical: it alters the stiffness-to-gsaratios
and elastic moduli dramatically, thereby definihg guitar's sound radiation. These braces are seges
to support the top plate, because it is relatithly in comparison with its surface. The guitartisd
hole, through which sound is transmitted to theegat of the guitar, can vary in shape and sizds Th
geometry is most important for the transmissionavier frequencies. Lower frequencies are namely
produced by the ‘coupling’ between successively stréngs, bridge, sound-board, ribs (sides of the
guitar), back plate and ultimately the air cavitythe guitar's body. If these elements have a gtron
interaction, the guitar is said to s&rongly coupledThe higher frequencies are mainly realized by the
coupling between the strings, bridge and top plate interaction strength can be tuned by a luthier
according to taste: a certain amount is necessarthé transmission of vibration, but too much dowp
causes harsh tones.

4.5.2. Dynamic timbre confrol

This paragraph describes how a musician can cotfteotimbre by applying playing techniques with his
hands (dynamic timbre control). Through investigatof these techniques, the expressive dimensibns o
section 4.6 can be defined.

4.5.2.1. Right hand playing position

By changing the plucking position of a string, tngitar can produce a rich palette of different tieth
varying from a thin, metallic sound (near the béjigo a thicker and smoother sound (above the fret
board); see Table 4.3. Skilled musicians never glagically at one location on the string, but gppl
variations conforming the score’s annotation, pieed dynamics or the mood of a phrase instead.
Inherent to the technique is that all the tonesagiolyphonic performance are affected. Varying the
plucking position is a technique that is appliedaorelatively high scale, meaning rather on sege
notes than per note. The technique is commonlyieghjpler musical sentence (sequence of notes forming
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a melodically whole, marked by pauses). In this vthg distinction between sentences is emphasizéd a
effects such as question-answering can be real&eldw is displayed how the playing style is retate
psycho acoustic properties and physical properties.

Playing style | Psycho acoustic properties Physicalqperties

At bridge Metallic, sharp Stronger higher harmonics

On fret board | Smooth, round Fundamental frequendsonger, less upper
harmonic content

Table 4.3: Right hand playing positions and resultig sound properties

4.5.2.2. Right hand finger configuration

Timbre variation can also be realized with a fixéght hand position, but then varying the finger
configuration. A couple of variables are statedbethat can change the sound [35]:

1. The angle of contact between finger and the stringA slight rotation of the wrist can drastically
affect the angle between the finger and the strikguitarist can achieve a range of timbres in
between striking the string with the right or Isitle of the finger nail. The sound is the smoothest
at the edges and the most metallic when the naillise with the string.

2. The amount of weight transmitted to the string viathe finger: Involves channeling the weight
of the entire arm to one finger, ranging from végit (the string barely flexes before it is reledp
to as much weight as possible without creatingstodied sound.

3. The firmness of the first joint in the striking finger: This variable determines the firmness of the
sound. As the first joint is loosened, the fingecmes less perpendicular to the string as thkestro
is made. With more firmness on the other handeffexted sound is more metallic, without having
to move the right hand towards the bridge.

4. The ratio of fingernail to flesh touching the string at release time:This ratio determines the
degree of harmonic overtones the vibrating strirafpces. An attack with pure nail results in a lot
of depth in the higher harmonic overtones, whileoebination of flesh and nail produces a more
full sound, with a wider range of overtones inchglthe lower overtones and sub harmonics.

5. The direction from where the string is touched:The string can be struck from belotirgndo) or
from above §ppoyandd Theappoyanddechnique realizes a louder and a fuller sound.

4.5.2.3. Left hand finger configuration

The left hand is not a common way to create differimbres with. A professional guitarist would
attempt to find the optimal position to place agén within a fret, in order to create the cleasssind.
This means placing the finger as close as postibllee fret without extending it. Any placementthar
from the fret results in a buzzing sound, whichas considered as a way of intentionally realiZiingore
within this thesis.

However, sometimes tones are intentionally played certain fashion to create harmonics, which dsun
radically different than an ordinary guitar toneasially, when playing harmonics, the fundamental
frequency and some of its overtones are elimindtais effect is obtained by slightly touching irestieof
pressing the string above the fret with the lefachaThis can only be realized in certain fret poss,
namely the ones that divide the string into hal¥leisds or fourths. They double, triple or quadeufte
pitch of the string’s base frequency respectivélge does not come across harmonics regularly iresco
and it is mostly used for aesthetic reasons orsfmcial occasions (comparable with the scarce fise o
pizzicatg. For this reason, it is hard if not impossiblaértduce expressive rules for the use of harmonics.

4.6. Overview of expressive dimensions

As a result of the preceding outline of dynamichtiencontrol, some dimensions are proposed on which
different playing modes can be arranged. The difnessare necessary to define because it is used as
guideline for the creation of a class distributthiat defines the outputs of the classifiers in ¢thiap.
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These outputs are used on their turn as eventusdtation for the transcription. This means that the
transcription contains annotation relating to thpleed playing technique.

The following are only a selection of the total ambof timbre comprising dimensions. A convenient
property of these 5 defined dimensions is howeteat they can be applied simultaneously. The
dimensions are defined by two complementary playeahniques, indicated between the parentheses.
The first four are continuous dimensions, meanimat there are an unlimited number of intermediate
playing modes between the two extreme playing teghes. Fingering on the other hand is a discrete
dimension.

Degree of palm muting(Pizzicato—non-pizzicatp

The degree of muting is a measure for the extenwliigh a guitar’s string is damped by slightly negt
the side of the right hand on the strings nearbtfidge. This results in a buzzing tone that habatsr
sustain, less overtones and is softer. The amduntiting can be increased by applying more pressare
the strings, or by moving the side of the handhiarfrom the bridge.

Plucking direction of fingers (AppoyandeTirando)

The playing techniqueappoyanddrest stroke) antirando (free stroke) refer to the direction the strings
are pulled to. Withtirando a bended finger is positioned below a string beforis plucked, thereby
raising the string. Withappoyandothe opposite technique the string is ‘pushed’ deanmd before
released, after which the striking finger reststiba adjacent stringAppoyandogenerally results in a
fuller sound containing more harmonics, whilerando tone is more metallic.

Right hand playing position (RHPP) 6ul tasto- sul ponticellg

The Italian annotatiorsul tastoand sul ponticellorefer to the playing position of the right hand,
respectively on the fret board or at the bridgal ponticelloproduces a characteristically glassy sound,
which indicates that the tone contains more hidgte@monics at the expense of fundamental harmonics.
Below the position of the techniques in relationthe sound hole are indicated together with the
unofficial intermediate labeaieutral

/ A\
\
|
/
\ /
sul tasto neutral sul ponticello

Figure 4.3: attack position of the string

Dynamics (piano— forte)

The timbre defining role of the dynamics-dimensisrebatable. Volume, after all, is not regarded as
timbral dimension. However, in the case of a guitartimbre of loud tones vary from soft ones inreno
dimensions than just the volume. This is becausd tones result in different resonance of the gsita
body and sometimes a buzzing sound (a noise compomdoreover the preceding finger movement is
larger for a tone playefdrte, thereby irrevocably affecting the timbre.

Fingering (discrete dimensiorthumhb index middleor ring)

The finger used for a certain tone is often présctiwhen applying a strumming technique that reguir
finger alteration or if the score incorporates &rigg annotation. Sometimes the fingering confijara

is fixed because a chord needs to be played. Tdreraf most occasions the fingering is more a teethn
convention than a free expressive choice. Howeseery finger has its unique mass, texture, shape,
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striking angle and power, thereby creating a subtlique timbre. Recognizing this dimension would
therefore be most useful in the application ofttitering system (section 1.2.4), when for examjlgdr
alteration is to be tutored.

From the presented EDs, Exprimulator is tested thiehRHPP. Variation in this ED results in distinet
classes of sound which can easily be recognizeshhyTherefore, manual evaluation is easier.
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5. Design of Exprimulator

The experimental environment called Exprimulatos b&en designed, to meet the research goals and
answer the research questions. While the tasksresubnsibilities of this system already have been
outlined briefly in chapter 2, this chapter goesrendeeply into the underlying design and program
requirements.

In Figure 5.1 the event structure of the two congmis (the classifier manager and the transcrilber) t
comprise Exprimulator are illustrated. The schemearty shows the responsibilities of each component
The logical operation procedure prescribes thetiore®f a training corpus initially. This trainingprpus

is a two dimensional wavetable, in which everyriraj instance is categorized per class accordirigdo
class labels defined by the user. These classslatvel used by the transcriber as annotation labeds
later stage. From every instance of this wavetdbédure vectors can be calculated. Such a feature
calculation function is denoted Iyrone, ). The composition of this function in terms of ed&ted audio
descriptors can be configured by the user. Oncestry tone in the wavetable the feature vector is
calculated, classifiers based on several machinenitey approaches can be created and trained to
recognize the defined class distribution. The #diglassifiers are used in a later stage by tmsdréer

for the annotation of transcriptions. The transerilstarts by loading one or more recorded song
performances of which a transcription can be creéte tone segmentation and pitch calculation. This
note segmentation also enables separate featuralat@n of every tone. The composition of these
feature vectors needs to correspond with the ¢lasshat is intended to be used for annotatione Th
classifiers that are trained with an identical fieatvector composition can now be used to provide
annotation by predicting the class within an exgiresdimension.

4 i )
Classifier manager
Training corpus
Class a Class m
Tong, Tong
Tona, Tone,
Featuricalculation
Table containing feature vectors
Fts Class 1 Fts Class m v
6(Tona,) 6(Tong,) . o —
Train classifier > Classifier ’
O(Tone) ... 6(Tonen )
- /
4 . Predicting eixpressive label N
Transcriber Y
— _ Note transcription with
Song corpus (containing guitar expressive annotation
performances)
) - Corpus with k
Songi Note separatio Note Transcription expressive
- J

Figure 5.1: Structure of Exprimulator
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In Figure 5.2 the procession of data structuresamed by the classifier manager and the transcisber

illustrated. The user and processors can affeta stansitions of these data structures which aretbd
by dashed arrows.

Applying class !ayout by setting class names

U
Wave files grouped pesrer = i C O rp u S F d t
guitar string and class A el Init Layouted A eatu re a a

a N

Train classifier_y

: // I
@enter = MPEG:-7 feature calculator
‘ Classifier

o /

Transcribe song
> <y
Raw wave file of y .
> Init
recorded performance
Transribed Y

 J

Pitch calculator

i

7 » Feature data
Song

= Data structures Z
Annotatec
——Annotate song
= processors

Figure 5.2: Interaction between entities and trangions
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5.1.  Requirements

The goals and approach presented in chapter 2rigigeto the following requirements for the classifi
manager and transcriber component of Exprimulatbe functional requirements that are necessary to
come to annotated transcriptions are presente@dtios 5.1.1, whereas the next subsection states th
functional requirements for Exprimulator’s to sea&an experimental tool. Section 5.1.3 present®eso
measures to ensure easy operation. At last nonifunat requirements are given that have to ensure
durability and extendibility of Exprimulator.

S5.1.1. Functional requirements for producing annotated transcriptions
The final version of Exprimulator must be capatip@rforming the following tasks:

e Creating training corpora by automatically spligtiwave files containing repetitions of training ¢sn
into separate tones.

e Ordering tones present in corpus in classes. Thissclayout is intended to be learned by the
classifiers.

e Creating, parameterizing and training classifiers.
» Configurable calculation of feature vectors fordempresent in training corpus.

* Transcribing songs, i.e. detect note onsets andhgst These detection algorithms must be
parameterizable via Exprimulator’'s GUI.

» Calculating feature vectors for tones present ingso Therefore the user has to be capable of
specifying the intended classifiers by which antiotathe song, in order to calculate the correct
feature vectors.

« Annotating songs with a trained classifier.
e Setting desired annotation for notes of song,iff ithformation is available for the recordings.

« Displaying classifier performance by calculatinggemtage of correctly annotated notes.

5.1.2.  Functional requirements regarding experimenting and evaluation
* Visualizing waveforms of corpus tones in order ¢odble to check wrong onset calculation.

« Providing means to correct miscalculated or misseskts by splitting and appending tones, or by
repositioning the onset.

e Flexibly including or excluding misplayed tones fhe training of classifiers.
< Providing insight into feature data by visualiziiegiture vectors grouped by class.

< Providing insight into underlying model of classeif by visualizing rules, statistics, decision ¢ree
networks.

e Visualizing annotated transcriptions in a represton resembling a MIDI sequence with textual
annotation referring to the predicted classes.

* Visualizing performance statistics per classifieattannotated a song (number of notes, correctly
classified notes, annotation performance).

* The waveforms of performed songs must be viewalgether with the calculated note onsets. In this
way falsely calculated note onsets can be detected.

* Select notes in the waveform of a song performalimcthis way certain fragments can be evaluated
by listening or by observing the respective noatistics.

e Evaluating and comparing the performance of clessif
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5.1.3.  Usability

Carrying out repetitive tasks efficiently for larggmounts of data: tone segmentation, pitch
calculation and calculation of feature descriptmirsnultiple tones of a training corpus, construgtin
and training multiple classifiers and annotatiomuiitiple songs with multiple classifiers.

Sequential tasks must be automatized. For exangplepmmon sequence of actions within the
transcriber istranscribing = calculating feature vectors» annotating This sequence has to be
aggregated in order to ease operation.

5.1.4.  Non-functional requirements

Exprimulator has to be general in its design scaih be applied to any musical note-level sound
classification problem. The sound content thatdlassifier manager is intended to process must not
be restricted to guitar sound. Therefore genergigmre audio descriptors have to be implemented, so
that in theory any set of sound classes can begnimed, provided that they are acoustically

separable. The same applies to the transcribdrastto be capable of transcribing any musical
performance and not only guitar performances.

Exprimulator must be easily extendable and modiidly consistent programming.
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6. Design machine learning
methodology

6.1. Design of training corpus

The initial step for obtaining machine learnerst trecognize musical expression is to create aitrgin
corpus. This step is a crucial one as the clasdigeoation embedded in the corpus is learned by
classifiers when trained. This learned class coméition is hoped to represent the more generardifice
between playing techniques. Two training corporaieneeated to be able to realize playing technique
recognition, and to test Exprimulator’s supportiiegtures for realizing this goal. One initial triaig
corpus with less training material was createdeibagprovisory idea about the adequacy of the coamal
ideas for improvements of the extensive corpus. &tiended corpus was used for final experiments and
ought to be representative enough for classifierarinotate a larger amount of song performances. A
more detailed description of these two corporaivermyin section 7.2. The design of the corporaesis
some primary questions. Important considerationsaftswering these questions are discussed below,
whereas definitive answers are given in section 7.2

« What expressive dimension is to be recognized?

Exprimulator allows for creation of corpora withyaimaginable sound class configuration. However,
this does not guarantee accurate recognition bhassifier of these sound classes in a later stage.
Differences between the sound classes can be stmplyubtle to recognize. A good initial guideline
within our context is to check whether the sounaissés can be distinguished by ear. If not, the
chances of successful recognition are naturallyllemat is also debatable if recognizing inaudible
sound differences (if they exist at all) is desleafor annotating musical transcriptions.

Furthermore, the context of recognizing musical regpion narrows the possible sound class
configurations. The sound classes need to have selateon with actual playing techniques that can
be realized on a guitar. Moreover, the playing téghes need to be known and accepted by
musicians to realize expression, and they shoulartzangeable on one single expressive dimension.

With respect to the goals of this thesis, it is assary to find an expressive dimension that
demonstrates the possibility of expression recagmitTherefore it is important to not choose a
dimension that is too easy to classify, as thissdoet guarantee succession of more difficult
recognition tasks.

* How are classes distributed over the expressive dansions?

Dimensions are defined as the range of possiblgngaconfigurations between two complementary
playing techniques; hence a training corpus fotagipg dimension should contain at least the two
classes of complementary playing techniques. le thsre is a lot of timbral variation possible in
between the two complementary playing techniquetgrinediate classes can be created. In this
manner the classifier can interpolate between we éxtreme classes more smoothly. However,
caution should be taken that these inner classeodivibute to a more accurate classifier, and that
the distances between the classes are large etmugtognize.

e What interfering dimensions should be incorporatedin the training corpus to reflect real
performances as much as possible?

For this paragraph, we define an interfering dinmm&s any other dimension than the expressive
dimension which has to be classified, and mightugts correct expression recognition. This is
formalized as follows:

o A={a,...,a,}, B={b,....n}: AandB are playing dimensions, defined by a set of labels

denoting the playing modes that comprise the dimandimensionA and B can be applied
simultaneously.
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o tone denotes a tone realized by applying playing madd A, while tong,,, denotes a tone
by applying playing mod& [J A simultaneously with playing mode [l B

o pred,(c;,6(tong)): The predicted playing mode within dimension A, blassifier C;

given feature vectord(tone,). Correct prediction should yield labéles,(toneg) =a, a
manually defined supervision function.

Using the preceding definitions, a playing dimensidis defined as interfering, if the following
statement is true:

(el A [bOB: pred,(c;, O(tong )) = des, (tong ) LI pred,(c;, 8(tone,,)) # des, (tone))

It is important to decide which interfering dimemss should be incorporated in the corpus to enable
a classifier to generalize over these dimensionerwtest data is presented. The idea of this
incorporation is to create a training corp@s that contains variation in these dimensions, Hevis:

® ={tone,,,.|a —« Ab - B,c - C}, presuming that playing dimensior® and C are

interfering dimensions. Examples of possible caawdidinterfering dimensions that a classifier
irrevocably has to deal with are pitch, loudnesde rduration, etc. An important issue is what range
of these dimensions have to be incorporated inrdiatea classifier to generalize. Another point of
interest is that the number of instances in the@u®mgrows rapidly if more playing dimensions are

added (@] =|A [[BI([C])

e How many instances per class?

The number of instances in a corpus is importantHe classifier to be able to generalize, for the
computation time and for the risk of overfittinghd idea behind incorporating more instances in a
corpus is to improve the classifier’'s ability tongealize over the natural variation and noise téstt
data bears in comparison with the training datawéieer, a corpus that is too big could bring along
unnecessary practical work (human factors like méiog and creation of corpus), long training times,
unwanted effects such as overfitting and the tdhimedels could become too complicated. In case
one has a large enough corpus at his disposakadelecreasingly smaller fractions of the corpus ca
be created to discover an optimal size. In caserdlalting performance curve still rises when
extrapolated, it follows that the full referencemas of which the fractions were formed was not big
enough.
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6.2. Feature vectors

In chapter 3 the MPEG-7 standard was
introduced as an elegant framework for audio
description, because of its accurateness,
compatibility, widespread use within audio
content  description and the unified
implementation. However, not all the descriptors
within the MPEG-7 toolbox are regarded useful
within the context of this particular project, i.e.
RHPP recognition. The most obvious set of
descriptors to start with, would be a combination
of Timbral Spectral and Timbral Temporal
descriptors (see Figure 3.1). These &g

A ] Attack Time, Temporal Centroid, Harmonic
Spectral  Centroid, Harmonic  Spectral
Deviation, Harmonic  Spectral  Spread,

HarmumcS‘E&ctra\Deviatmn HarmumcSp:actralSpread HarmumicSpe‘:tra\Varia1ium LogAttackTime Harmor"c Spectral Varlatlon and Spectral
Figure 6.1: Selection of MPEG? descriptors o Centroid These descriptors help to describe
initial training corpus notions asattack brightnessand richnessin a

guantitative way.

To verify the suitability of these descriptors fdhe class configuration of the RHPP, the
HarmonicSpectralDeviation, HarmonicSpectralSpre&tdrmonicSpectralVariatiorand LogAttackTime
descriptors were calculated from the initial tragicorpus of section 7.2.1. A glance at Figureshdws
that a selection of these descriptors already yidielimited clusters of feature vectors. In thistpthe
classes are grouped by colors; green depietdral instances, redgul ponticelloand bluesul tasto It
must be kept in mind that this is only an infornesdaluation of the audio descriptors, and no final
conclusions can be drawn upon these results. \ljsaablyzing feature vectors shows at any rate tthet
MPEG-7 vectors cluster better than vectors withi@aescriptors implemented by the author on bakis o
formulae from literature.

6.2.1. Calculation of feature vectors

Feature vectors consist of temporal and spectraEGH? descriptors. These temporal descriptors are
global descriptors calculated from a certain rafthe beginning 229 ms) of a tone. For the spectral
descriptors, the tone is segmented initially inckkbof 30ms (the standard in MPEG-7) of which spect
are calculated. Once for every block these desasgtave been obtained, the mean is calculatedder o

to have one value per descriptor that can be mdéntthe feature vector (see Figure 6.2).
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229 ms

Segmented
audio signal

Audio spectrum

—————————a
—————————
—————————

I I L=
l Cal(%lation if MPE(i—? desciptors l
‘ ______ T=—====-- T=—====-- T=—====-- b B T ==== "

Descr 1 I | | i i Descr 1
Descr 2 : : : : | Descr2| MPEG-7 spectral
Descr 3 ' ' ' : | Descr 3 descriptors
Descr 4 ' ' ' : | Descr 4
Descr 5 : : : : ! Descr 5

______ S Sy

Statistical aggregations of vectors
ulation of mean, deviation, kurtost

N G i S

Feature vectc

Descr 6 Calculation of set of

Descr 7 temporal descriptors
A

Raw audio signal

Figure 6.2: Construction of feature vector

6.3. Classifiers

In this section available classifier categories @udined in order to determine which ones are rtest
appropriate for playing technique recognition. Tdridering is analogue to the categories identifigdhe
WEKA-toolbox. Once the general idea of the fundtignand characteristics of these different machine
learning approaches are clear, an overview ofadlatork on sound classification is presented iticec
6.3.2. The related projects share the propertyghdbrmances of different classifiers are compdoed
each sound classification task, together with aluation of the best performing classifier.

6.3.1.  Overview of classifier categories

We start with outlining the characteristics, apgiions, disadvantages and advantages of a major
selection of the WEKA classifiers. For this sectibe WEKA API [36] as well as Wikipedia [37] has
been consulted. The general information providedhia section is not determinative for the WEKA
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classifiers that are evaluated, but they can givadea how well their characteristics match witle th
particular sound classification problem of thisjpob.

6.3.1.1. Decision trees

Decision trees are hierarchical classifiers whidtargge decisions in a tree configuration where sode
represent a decision (often based on a Booleartifumon a selected feature attribute) that canlrésu
several outcomes (mostly two outcomes, in case iodry decision trees), corresponding with the
branches.

Decision trees are built by starting with the entiet of training instances, and splitting thesmuaiting to
the most optimal partition according to some heigrig hese splits are represented by the treeisdhes.
This process is recursively repeated for the sshsfethe partitions, until either a subset is asstilof the
target class, or there are a minimum number ofimtss in the subset. A drawback of decision trees i
that they are tended to overfit training data, ey when the training data is noisy. A tree ieditted

if there exists some other tree that fits the trajndata less, but performs better on test inst@ance
Overfitting a tree can be overcome by stoppingxjopaed the tree earlier, or by removing nodes aflla f
grown tree if this does not result in decreasedi@my over a test set (pruning).

Decision trees have several advantages: they ayeteanterpret, and can be easily converted teta®
production rules. Decision trees are also genariié sense that no a priori assumptions are madieeo
nature of the data. Furthermore, little data prapan (like normalization, removing blank attribute
values) is required. The disadvantages of decisias are their sensitivity for noise in the tragndata.
Slight variations can result in a selection of eliént attributes at the nodes of the trees, whichlave
significant influence on the descendant subtredBisf node is on a high level in the tree. Besiths,
trees can become quite complex since the spliiseoumeric training instances are binary.

One commonly used decision tree in the field of nvae learning and pattern recognition is the J48-tr
[3, 38-40], which is a supervised classificatiogaaithm. It is also used in the more related field
instrument recognition [26]. Logistic model treesrhine the benefits of logistic regression modets w
decision trees, by integrating these logistic regjien models at the leaves of the tree. The lagistidels

in the leaves are the result of refinement of tigistic models in the higher level nodes of the ti@
some cases, better performance can be achievednsyitating a forest consisting of several decision
trees. The RandomForest classifier follows thisrapagh, and consists of more than one RandomTree
(RandomTree is a classifier that considers K ranéeatures at each node).

6.3.1.2. Support Vector Machines (SVMs)

While they were originally proposed by Boser, Guyamd Vapnik in 1992, SVMs gained popularity in
the late 1990s. Support vector machines are basestroctural risk minimizationparadigm, which
implies finding a hypothesis which guarantees twelst true error. An SVM performs classification by
building anN-dimensional hyper plane that separates instancé&d categories most optimal, which
means that the hyper plane is located at maximwwtamie of the training instances. This is why SVMs
are also called maximum margin classifiers.

Support vector machines are used for differentepattecognition tasks, such as speaker identifinati
face detection, text recognition [41], and genodata. In various fields, SVMs are the best perfagmi
classifiers.

SVMs can classify problems with a high feature disien, and they are also protected against
overfitting. Besides feature vectors, more complata structures can serve as an input for SVM¢) aac
graphs, sequences and relational data. Drawbacky/bfs are that they do not provide insight in the
underlying model and they classify linearly. Furthere, the appropriate kernel-function (that can be
polynomial, radial basis or Gaussian radial) anchpeters are hard to determine, meaning that shis i
often performed in a try-and-see manner.

6.3.1.3. Neural networks

A Neural Network is a configuration of interconretttneurons, which can approximate a particular
function. It is inspired by biological nervous sysis. Neural networks consist of several layersirnpat,
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output and one or more hidden layers that contaurans with a certain bias function. The neurona of
particular layer can be connected to the neurorbeofidjacent layer with weights that are deterchine
the training phase.

Neural networks are successfully applied in speechgnition, image analysis (for example hand nygiti
recognition) and adaptive control, and are usedHerconstruction of software agents (in computet a
video games) or autonomous robots.

Neural networks have the advantage that through piwellel computation, they can realize fast
prediction. On the other hand, there is no insighthe trained model, and the training process is
relatively slow. Like SVMs, Neural Networks are Hato fine-tune, and there are no common
methodologies to determine the number of layersrendons. Unlike with SVMs, there is an increased
risk of overfitting.

6.3.1.4. Bayesian learning

Bayesian networks are a widely used statisticalstfi@ation approach, in the fields of speech redom,
sound- and text classification. In Bayesian netwpxlariables are typically arranged as nodes irapiy
structure, where the edges specify the conditidependencies between the variables.

A simpler and more generic approach of the Baye=ditem is the Naive Bayes classifier. It assumas th
the individual attributes of the feature vectore ardependent (hence the adjective Naive). It ptsedi
instances on basis of maximum likelihood. Desp#esimplicity and the naive independence assumption
it tends work well and even outperforms other dfeess in some occasions. In cases the independence
assumption is violated, it often predicts the cocirreaximum-probability class. It also is robushtmse as

it is not focused on completely fitting the traigimlata. This has also the drawback that there is no
guaranteed consistency with the training data.

6.3.1.5. Lazylearning

Lazy learning is a technique also known as instdrased learning that does not constitute a model on
basis of training data, but predicts training ins&s on basis of the distance or similarity ontth&ing
instances. This distance is mostly measured by Bhelidian distance function. As follows, lazy
classifiers do not incorporate an actual trainihngge, as they just memorize the instances. Thikciates

that in the prediction phase the actual distaneepedation occurs, resulting in a slower classifaaof

test instances. Amongst classification applicationstance based learning can also be appliedsa-ca
based planning and case-based reasoning in lalusidess.

K* is an instance based learner that uses an eotdiptance measure for determining the similarity
between test and training instances. It is a vienple method, while remaining accurate at the stime.
However, the K* classifier treats all attributes egually important, which might skew classification
results. Another drawback is that there is no madath can be evaluated.

The k-Nearest Neighbour algorithm (k-NN) is a patteecognition algorithm that assumes that instance
generally are located in close proximity to othestances of the same class. It classifies instantésisis

of their distance betwedqother training examples. The classifier is suitdbtesmall amounts of training
data and has a strong consistency: the algorithguasanteed to give an error rate no worse thacetwi
the Bayes error rat&he algorithm is sensitive for noise however, asrgtinstances are compared with
training instances. This effect of noise is reduasdhe value fok is increased.

6.3.1.6. Rule learning

Closely related to decision trees are rule learneingch are applied to extract implication and etation
rules from large data sets. Rules can be obtainedumerous ways, for example by conversion of
decision trees or Neural Networks. Decision tres loe converted to a set of rules by creatinge farl

all the paths from the root to the leaf, whichaidwed by post-pruning where unnecessary ante¢eden
are removed. Another approach is sequential coyeiinwhich rules are learned one at a time, eath r
covering a set of instances belonging to one clHss. process is repeated for the other instances,all
instances are covered. Rules can be learned foltpthie bottom-up or top-down approach. With the
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bottom-up approach, a specific rule is used aswirs point in order to obtain a more generic cae,
opposed to the top-down approach.

The rules generated by a rule classifier are easiérpretable by humans. This is why rule learraees
frequently used in data mining problems where ustdedable patterns need to be discovered in large
amounts of data. It is commonly applied in ling@gist(text classification, webpage classificationga
game learning. It has also been used recentlyherctassification of chemical compounds as cancer
causing, based on their molecular structure anchicizé characteristics.

Many existing rule learners are computationallyengive, especially on noisy data. Like decisioedre
rule learners are sensitive for overfitting, whign also be overcome by pruning.

6.3.2. Literature review of classifiers used for sound classifying problems

In projects that are concerned with classifyingreben basis of timbre, several classifiers havenbee
evaluated on their performance on large sets dhitig data. In the papeAudio-based gender
identification using bootstrapping@8], a methodology for gender identification hlasen presented.
Gender identification is useful for the improvemehspeech recognition as well as video indexingni
the following six classifying approaches; Naive Bsy Nearest Neighbor, Backpropagation Neural
Network, Decision Tree, Support Vector Machine anhogistic Regression, the Neural Network
consistently performed the best. Another speechteel project,Robust Recognition of Emotion from
SpeecH32], evaluated the major WEKA-classifiers on cifisation of emotion from speech. Emotion
has been classified on a rough level as positiveegative. On a low-level scale the positive catgdas
been split in delight or flow (confident, encouragmt), and the negative category in confusion or
frustration. Because too little training was useub, significant performance differences between
classifiers were found.

In Retrieval of percussion gestures using timbre dia@ssion techniqueq20] it has been attempted to
recognize five distinct classes of drum timbrealized by six different striking positions of a searum:
rimshot, brush stroke, center, near-center, halfwear-edge and edge. Class recognition has been
attempted with three different classifiers: k-Nearseighbor decision trees, Support Vector Machines
(SVMs) and Neural Networks. Amongst the two othéns, decision tree performed consistently the best
in several test cases, whereas the Neural Netvatiikeed the highest performance in a specificdase.
The recognition of percussion gestures is consilel@sely related to the recognition of the RHPRhadf
project. Another drum sound classification projectdescribed inAutomatic Classification of Drum
Sounds: A Comparison of Feature Selection Methaodk Glassification Techniqug@1]. Drum sounds
brought forth by different types of kick- and snarems, toms, hihats and cymbals were classified. F
this task, a 1-Nearest Neighbour tree, K* instabased classifier, C4.5-tree, PART rule learner and
Canonical Discriminant Analysis were explored. Hetailed sub-category classification K* appeared to
be the best choice, whereas CDA performed better tie others for super-category classification.

Besides the specific task of recognizing drum ssumaore generic classification has been explored in
various projects relating instrument classificatiom Blind Signal Separation of Similar Pitches and
Instruments in a Noisy Polyphonic DomajB9], separation of two harmonic signals of diffier
instruments was attempted, in a noisy environmeeotr classifiers were compared to achieve this: task
Tree J48, Logistic Regression Model, Bayesian Netwand Locally Weighted Learning. Locally
Weighted Learning outperformed the other clasgfieAnother instrument recognition project,
Differentiated harmonic feature analysis on musifoimation retrieval for instrument recognitid@6],
focused on the classification of the instrumentifi@s woodwind and string instruments. In the fallng
stage, four woodwind instruments and four stringtruntments were classified with different class#ier
Bayesian Networks, Logistic Regression Model, DeaisTree J-48 and Locally weighted learning were
compared, resulting in the best performance for ltbgistic Regression Model for the instrument
families, whereas the J48-tree performed equallyl we the Logistic Regression Model for the
recognition within the two instrument families.

The recognition of musical genre can be regardedaasification on an even higher level than inskat
recognition.Classification of musical genre; a machine learnaqgproach is a project which attempted
to classify six musical genres from analysis of Miide features [3]. Naive Bayes, Voting Feature
Interval, PART rule learning, J48-trees, Nearestghgor rule-learning and JRip rule learning were
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explored, yielding Naive Bayes as the most promgisalassifier. InMusical Genre Classification
Enhanced By Improved Source Separation Technigfijemore specialized genres were classified (four
Greek musical genres) by extraction of rhythmimhtial and pitch features from audio signals. In a
comparison between NN-classifiers and Multi layerceptrons the latter outperformed the former.

In Determination of the meter of musical audio sign&seking recurrences in beat segment descriptors
[42] an algorithm for the determination of the nig@uple or triple) of musical audio signals is posed.
Kernel Density estimation, PART rule-induction, MaluNetworks, 1-Nearest Neighbor (1-NN), C4.5-
trees and SVMs were compared on their performadag/e Bayes performed the best compared to the
other classifiers.

As can be noticed, the classifiers being evaluatednot correspond amongst the different projects;
neither do the outcomes of the most appropriatesiflar. Besides that, the choice of the initiassifier-

set to test with is not motivated. Therefore, far project we have decided to evaluate severasifias
which are the most commonly used in papers thasifiasimilarly sound content as in this projeatufd
timbre is more related to our project than gendkmiification for instance). There should also be
similarity in complexity of the training data.

6.3.3. Selection of classifiers to test

As there is not any consistently chosen classifiethe classification problems of the previoustiger

we have been decided to evaluate most of the WEKsifiers on the classification of playing
techniques. It requires little effort to integratese classifiers with Exprimulator, as the WEKAIA&Rn

be directly invoked from Matlab, as it is written Java. Some classifiers are excluded because they
cannot handle the feature vectors or class labbks.|D3-tree classifier only interprets nominatiatites,
whereas the Lazy Bayesian Rules classifier canantllle undiscretized training data. In the casehef t
mb5-tree on the other hand, only numeric attribuitas be interpreted as class labels. The remaining
classifiers that are used are depicted in Tableahd are referred to throughout this course a€.set

WEKA category WEKA classifier name
Decision trees J48

Decision trees NBTree

Decision trees LMT

Decision trees DecisionStump
Decision trees RandomForest
Decision trees RandomTree
Decision trees REPTree

Lazy learning (instance based learning)  IBk
Lazy learning (instance based Iearnin$) LWL
Lazy learning (instance based Iearnin@ KStar

Bayes BayesNet

Bayes NaiveBayes

Bayes NaiveBayesSimple
Functions MultilayerPerceptron
Functions SMO

Rule learning JRip

Rule learning NNge

Rule learning OneR

Rule learning PART

Rule learning Ridor

Table 6.1: WEKA classifier used for performance corparison
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6.3.4. Incontrollable interfering dimensions

As there can be interfering playing dimensions edusy the musician like discussed in section Gdret

are also several incontrollable factors that canugt expression recognition. Although these factoe

not incorporated in the training corpus, it is impat to be aware of them, in order to keep them as
constant as possible.

Recording settings

In the recording setup there are many factors ¢hatinfluence the classification process. Every &um
performance that is recorded in a different sesiian the one in which the training corpus was méed,

is likely to differ in sound because of differemicording settings. These settings can involve éxpral
configurations of the guitar, amplifier or recordBesides that, there is the possibility to tranmsfdhe
signal by applying amplifier effects such @wsorusor reverhy which can also be realized by the recorder
(a computer in this project). All these factors daftuence expression recognition. In the most rostic
case the degree of generality of the classifibigh enough to ignore these differences. Howewerthis
project, we try to overcome this potential problbynkeeping the recording setup as stable as pessibl
between independent recording sessions. A bettati@o is to record test data in the same recording
session as training data.

Instrument’s characteristics

Another influencing factor is the instrument whighused to record performances. The goal of the
eventual classifier is not to be able to generatizer different types of guitars, for example Sghni
guitars and steel string guitars. The physical aodustic properties of nylon strings (Spanish gsijta
differ in such a degree from steel strings thas itinlikely if there can be a generalization at @lur
classifier was trained on steel string instrumemtd therefore the intention was to annotate steielgs
performances. However, within the category of st&eings, individual instruments can differ also
drastically in sound characteristics. It is a oadle to generalize over as many different ste@igstr
guitars as possible, but this lies beyond the sodpieis study.

_J Inconsistencies within one instrument

influence sound characteristics. There is for eXartipe
difference in timbre between a fretted tone (a tone
realized by pressing a fret on a string to creatdfarent
pitch) and an open string (no fret is pressed).id&ss

Figure 6.3: Plain steel String and wound that, the two h|ghest StringS of a western gu|&rdnd

steel string E-string) have different physical and acoustic ertips

than the other strings. Whereas the B- and theiggst

are made of plain steel, the other strings are nefidecore wire, wound with a bronze wrap wire (see
Figure 6.3). The reason of this wrapping is to dive strings more mass to realize lower tones.d& si
effect of this wrapping is however, differenceimitre.

| .
i*'l‘ N ‘*’? Within an instrument there are some factors that ca

Where some of the factors discussed above are Heyanscope, it is nonetheless a challenge to désco
whether a classifier can be made general enougbvéocome these factors. Some factors, such as
different equalizer setting or instruments mightre&atively easy to overcome by calibration. Inecas
feature vectors of instrument A can be projectedtlma ones of instrument B by a simple linear
translation, then this translation function is Basbtained by calibration. However, the chancesdo
classifier that detects very subtle timbre differesito generalize over different instruments ane lo

A classifier should naturally be capable of geneirad the inconsistencies within one instrumenttfos
project. If the classifier is not able to genemllzetween open string tones and fretted tones fhehe
option to build separate classifiers for the tweesa However, this approach is impossible to mirita
too many of these inconsistencies occur when rdzimgnan expressive dimension. In that case, the
possibility of overfitting should be investigatdebr only a few inconsistencies, it loans to buigarate
classifiers, because the classifiers can be comsides offline systems that deserve some desidirrey

to create optimal classifying results. This alscamgethat there are no strict timing constraintstffier
training of the classifier.
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/. Implementation

7.1.  Implementation of Exprimulator

The interface ofExprimulator consists of two main components, the classifier agan and the
transcriber. The features and possibilities of ¢hessb systems are outlined in the following two
subsections.

7.1.1.  Classifier manager

The major tasks of the classifier manager are iorgat training corpus, calculating the accompanying
audio features and training classifiers that caruded as annotators by the transcriber. The cdgus
created by loading raw wave files containing a itwtus sequence of tones which are automatically
segmented when loaded. The resulting separate fragments are called tones. Customizable feature
vectors of every tone can be calculated which sasvaining input for a selection of WEKA classifi.

Figure 7.1 shows the GUI of the classifier. The eveata that constitutes a training corpus is ptesen

the first two left list boxes. These boxes disptagpectively the loaded wavefiles (1) as well as th
segmented tones that comprise the selected way@jilaVhen tones are not properly segmented, they
can be split by means of the wave plot (7).

<)} Classifier manager - Samples_2007_04_26.makt = DIE] <) Class configuration =|0] x|
File Feature Plot  Classifier  Transcriber  Miscellaneous L
nevtral, cortaining waves (1 2 3) =] Mewoclass
sul_porticelln, containing waves (4 5 6 — |
il i"‘f Ll I i I su\jﬂasm‘ containing wsgves ¢ a‘ a J Update class
Close all figures Calculate festures —_—
Delete class
I™ Don't use training/validation vectors T
Rename class
Plot features Update all listhoxes #rkleurons st hidden layer: 2 —
#Meurons 2nd hidden layer. 12 ‘
Epochs: 25
Mininum perfarmance; ]
Performance goal o~3
— iavefil Tones inwavefile ——— Features to calculate Classifier
M — S v Dizcard changes
- r
2 Meutrsl D_01 reel x| _Savechanges
3 Meutral G_D5 *wave 1) tohe #3 s 3:playing postion (trees LMT)
4 Sul ponticello &_01 * wave 1, tohe #4 4 playing postion (trees DecisionSturmp) n 3
5 Sul ponticello D_01 * wave 1, tone #5 5:playing postion (irees RandomForest) <) Simulation output ;IEILI
6 Sul porticelln G_03 *wave 1) tone #6 E:playing postion (trees RandonTree) Situlation of training corpus on basis of featurels):
7: Sultasto A_01 It wave 1, tone #7 g 7:playing postion (trees.REPTree) [HarmonicSpectralCentroid Harmanic SpectralDeviation Harmanics
6 Sultasto D_O1 " wwave 1) tone #5 AudinSpectrumCentroid @:playing postion Clazy 1Bk pectralSpread Harmonic Spectralvaristion, TemporalCertroid, LogAt
9 Sultasto G_01 it wave 1) tone #9 AucioSpectrumSpreadd 9: playing postion (azy LAWL) tackTime,SpectralCentroid)
* weave 1, tone #10 10:playing postion (lazy KStar) _j
*wave 1) tohe #11 11:playing postion (bayes Bayeshlet)
* wave 1) tone #12 1 2:playing postion (hayes NaiveBayes) _VJ
* wave 1, tone #13 13:playing position (hayes MaiveBayesSimple) ewtral 4_03 | tone#03 (class#1); classified as class#l
" wave 1 tone #14 1 4:playing postion (functions MutilaysrPerceptron ewtral &_03 |tone#0d (class#1); classified as class#l
" weave 1 ] 15:plaing posttion (functions SMO) Meutral 403 | tone#0s (chkess# ), classified as class#l
* wave 1 1 B:playing postion (rules JRip) Meutral &_03 | toneg08 (class#1), ol 55 Classit]
e 1| 1 7-playing posttion (rules Nhge) Meutral &_03 | tone#07 rclass#), as class#l
" wave 1, 1 ikl 1 8:playing postion (rules OneR) Meutral &_03 |tonef08 (class#1), a5 classi#l
" wave 1, tone #19 1 9:playing posttion (rules PART) Meutral &_03 | tone#09 (class#l ), o a3 class#l
 wvave 1) tone £20 20:playing postion (rules Ridor) Meutral &_03 | tone#10 (class#1 ), classified as class#1
" wave 1) tone #21 -'Ll _';J Meutral &_03 | tone#11 (class#1); classified a3 class#
;!i! [ wave 1, tore #22 hd M ET] | > j 4] | » _’j Neutral A_03 | tone#1 2 (class#1 ), classified s class#t
Meutral &_03 | tone#13 (class#1), classified as class#!
*wave 1, fone #1 feature "HarmaonicSpectralCentroid” Meutral £_03 | toned4 (class#1 ) classified as class#1
1 1500 Meutral &_03 |toned15 (class# ), classitied as class#1

500

|

Meutral &_03 [tone#16 (class#l ) classified as class#1
evtral 4 03 | toned1 7 (class#1); classified as class#l

/ Meutral &_03 [ tone#18 (class#l ) classified as class#1

183} 000 p, Meutral &_03 | tone#19 (class#l); classitied as class#t
¥ Fi Meutral A_03 | toned20 (cless#1 ), classified as class#l

¥ Meutral &_03 [toned21 (cless#l); classified as class#1

- / Meutral &_03 | tone#22 (class#1), classified as class#

! Meutral & 03 | toned23 (class#l ) classified as class#1

evtral 4_03 | tone#24 (class#1); classified as class#l
Meutral & 03 | toned25 (class#l ) classified as class#1

0.5 il L ,‘ Meutral £_03 |toned26 (class#l ), classified as class#l

Meutral &_03 | toned27 (class#l ), classified as class#s *

Meutral &_03 | toned28 (cless#l ) classified as class#1

mginmw 2707 Honad0 dolaeet] v claccition 2o cleeet]
4

List urtrained errars | List all errars

w5 Lizt untrainec List all Mr erors: 22

Figure 7.1: Classifier GUI together with simulationoutput and classifier dialog
The classifier manager also offers capabilitiesdieleting tones, or shifting the markers that iatécthe

note onsets. Besides visual inspection, all thersge tones can also be played back in order &ctet
tones that were not correctly played by the gudtaWWavefiles and their tones can be grouped into
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classes, which can be given names that are usétellyanscriber to annotate songs, by means daglial
(5). In this example, the three classes used thauigthis report are createdefutral sul ponticelloand
sul tastd by grouping the appropriate wave files. The costed class configuration can be assigned to a
selected classifier of list box (4). The class apnfation can be refined by including or excluditing
tones using list box (2) (the asterisks denoteusioh). The resulting smaller training corpus leaspace
for a test set that can be used for validationhef ¢orpus. Once there is a classifier with an astaat
class layout, a selection of audio descriptorcéd) be used to calculate feature vectors of ewery that
is present in the classifier’'s corpus. The feaugetors of the selected tone(s) are viewed in wlotdow
(8). They are calculated over a specified ranggbhd as a green rectangle in (7). After initiaiian, the
selected classifier can be trained with and evatlian its training corpus, with dialog (6). In thiiglog
all the tones present in the training corpus atedi and as predicted with the selected classhiEnce
also excluded tones are predicted. Wrong predistaoa denoted with an asterisk.

All the classifiers with their training corpora diurations and feature data can be saved and doiadie
Matlab-files, but the feature data can also be drpoto the ARFF-file format that is compatible hwit
WEKA.

7.1.2. Transcriber

The transcriber (Figure 7.2) is the part of Exprimbor that is responsible for transcription andatation
(Figure 7.3) of musical performances. A song corfRisis created by loading wave files that are
segmented using the same procedure as the class#igger, yielding the wave fragments visiblelot p
window (1). After tone segmentation the pitchesblésin Figure 7.3 are calculated. For every s@my,
trained classifier from the classifier manager caw be loaded into the annotator box (3). Before an
annotator can annotate a transcription, featuréoveof the song have to be computed. Naturallyseh
feature vectors have to be identical in compositiorthe ones that have been used for training the
classifier. In this way they can be used as inputtfiis classifier in order to predict a tone’ssslathat is
presented as textual annotation in Figure 7.3.rhactly annotated notes are displayed in red. This
prediction checking can only be done after thendézl annotation is set for every note (5). Witls thi
comparison between the desired and automatic aiomtahe statistics visible at (4) can also be
computed. It displays the index of the selectece n@haded blue in (1)), the desired and predicted
annotation and the total number of notes in thectet! song. Furthermore it specifies the annotation
performance (percentage of correctly annotatedshotand the absolute number of falsely and cosrectl
annotated notes.

R —— o ]3|
~

Fle Songoptions Features Annotate. Midi
‘ ‘ ‘

il

Mote # 1 Remove selecteti marker | Select previos note | Select next note
playing position (trees NETree)

Play selzction re you lonesame_05 slaying position trzes LIMT) Galteied aintaion s 1ol
IMichael row the bost_ [layirg position (tress DecisionStump) Desired annotation: nedtral

sunshine_ larying position (frees RandomForest) Number notes: 56 Set desired cluster
ol - pairt playing position (trees RandamTree) Correctly classified notes; 42,
Ell ~Every | Mlplaying postion (tre=s REPTree) 2 Unclassified nates: 0
The' Michel_ paying position (lazy I5K) Falssly classified notes: 14
IThe - vesterd: | " ¥

larying position (lazy LWL)
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haying position Chayves Bayeshist)
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Figure 7.2: Transcriber GUI
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Figure 7.3: Annotated transcription generated by tke transcriber

/.2. Creation of training corpora with Exprimulator

This section starts with a presentation of the Udad the corpora by which Exprimulator has beestete

in chapter 8. Firstly, an initial training corpuashbeen created with the intention to prove theaaey of
MPEG-7 features and WEKA classifiers for musicalirs classification. Hereafter, a more extensive
corpus was created that served as training mateniatlassifiers which were tested on a largerafet
representative songs. This larger song corpus gdhewhble conclusions about performance deviation
among classifiers. In the subsequent sectionspithetical realization of the corpora is outlinedlahe
guestions raised in section 6.1 are answered.

7.2.1.  Test case: creating an initial training corpus with Exprimulator

A basic training corpus has been built to test Ewplator's capabilities of creating corpora (segure
7.4). It was also used to insure an adequate caifrdee subsequent stages in the Exprimulator-m®ce
(the calculation of feature vectos the training of classifier® the annotating of songs with the trained
classifiers). For the initial performance test thajor part of the WEKA classifiers was used. Thamgd
insight in the suitability of the individual clafisrs for classifying the RHPP dimension. It wasaal
expected that this test would expose structurdbpmance differences between categories of classifi
The initial corpus was tested with only one séngClaire de la LuneNaturally, these test results could
not be used to deduce conclusions about differenteadassifier performances. The test was merely
carried out to provide an indication if it would Ipessible for MPEG-7 feature vectors to provide an
adequate annotation performance (> 80%) in combimatith any WEKA-classifier. In relation to this
initial corpus the following questions were askibdt are answered in section 7.3.3.1:

1. Did Exprimulator adequately load and separate camgavave files into separate instances?

2. Did the chosen MPEG-7 feature configuration in corabon with the selected WEKA classifiers
provide a satisfying annotation performance forgbegAu Claire de la Lun@

/ Sul ponticello \ / Neutral \ / Sul tasto \
A-string D-string A-string D-string A-string D-string
AZ (10x) D2 (10x) AZ (10x) D2 (10x) AZ (10x) D2 (10x)
AZ# (10) D2# (10x) AZ# (10) D2# (10x) AZ# (10x) D2# (10x)
BZ (10x) E2 (10) BZ (10x) E2 (10x) BZ (10x) E2 (10x)
C2 (10x) F2 (10x) C2 (10x) F2 (10x) C2 (10x) F2 (10x)
Ca# (10x) Fa# (10x) Ca# (10x) | | F2# (10x) C2# (10x) Fa# (10x)

o

/

Figure 7.4: Initial training corpus
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The corpus contained all the unique tones of thetrifeg and D-string, meaning the tones producethby
first five frets on the string as well as the optting. The inclusion of the chromatic range ofe®ithat
encompass the tones presenfin Claire de la Lungis expected to ensure generalization over piich b
the classifier. The classifier is also expecteddneralize over the timbral differences betweettddeand
unfretted tones (see section 6.3.4), and differebetween strings.

7.2.2. Test case: creating a definite training corpus with Exprimulator

For the final tests presented in chapter 8, a ragtensive corpus was created that spanned a vddger
of tones, which enabled the annotation of songl aviarger range of tones (see Figure 7.5). Aleditht
six instead of five tones were incorporated pengtiwhich enabled more flexibility in playing tlsengs.

The corpus was meant to be tested with 10 songsjsting of approximately 60 tones each. This would
result in 600 test instances by which the traindegpus (consisting of 540 instances) could be deste

which in turn would provide adequate proof to dedwonclusions about the ratios between mutual
classifiers.

In contrast to the initial training corpus, thisig the tones were played without damping the attigrgs.
When recording the initial training corpus, thisifasial damping was applied to create a tone asichnd
pure as possible without resonance of other striligs effort was abandoned in order to reflect enor
accurate the way tones are played in the songnpeafaces.

/ Sul ponticello \ / Neutral \ / Sul tasto \

A-string C-string G-string A-string C-string G-string A-string C-string G-string
AZ (10x) C3 (10x) G3 (10x) AZ (10x) C3(10x) G3 (10x) AZ (10x) L3 (10x) G3(10x)
AZ# (10x) C3# (10x) G3# (10x) AZ# (10x) C3# (10x) G3# (10x) AZ# (10x) C3# (10x) G3# (10x)
BZ (10x) E3 (10x) A3 (10x) BZ (10x) E3 (10x) A3 (10x) BZ (10x) E3 (10x) A3 (10x)
C3(10x) F3 (10x) B3 (10x) C3(10x) F3(10x) B3 (10x) C3(10x) F3(10x) B3 (10x)
C3# (10x) F3# (10x) B3 (10x) C3# (10x) F3# (10x) B3 (10x) C3# (10x) F3# (10x) B3 (10x)
C3(10x) G3(10x) C4 (10x) C3(10x) G3 (10x) C4 (10x) C3(10x) G3 (10x) C4 (10x)

Figure 7.5: Definite training corpus

7.2.3.  Design decisions

The design decisions that were made implicitly étt®ns 7.2.1 and 7.2.2 are accounted for in this
section.

« What expressive dimension was recognized?

As discussed before, the RHPP was used as a pfoobrzept to illustrate the possibility of
annotating musical scores with a machine learnp@ach. The expressive dimension was divided
sound classes, such that the difference would lifblguby human ear. Besides, the right hand
playing position is a playing technique that is coomly used among guitarists. It is also an accepted
way of expression in classical musical pieces, @ddvy the existence of the Italian annotative lsbel
sul tastoandsul ponticello

* How were classes distributed over the dimensions?

The expressive dimension RHPP was divided in thlegsessul tasto -corresponding with playing
left from the sound holesul ponticello— corresponding with playing right from the soumale; and
neutral —playing above the sound hole. The two extreme etaésil tastoandsul ponticelld were
the minimum classes required to span the RHPP dilmenT he intermediate sound classutralwas
chosen to reflect the standard RHPP, which is wdtgh. Moreover, it enabled the classifiers to
create a smoother interpolation function betweedicateatures and RHPP. The creation of more
intermediate classes was considered overkill, mrthere is no convention or annotation in musical
literature that considers these playing positidie resulting five sound classes would also bedrard
to distinguish from each other by human ear.

¢ What interfering dimensions should be incorporatedin the training corpus to reflect real
performances as much as possible?
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The corpus from section 7.2.2 incorporated therfating dimensions pitch, playing position
deviation and playing the same tone with an opengsbr fretted. These are considered as the most
common and prevalent dimensions when performin@ray.sAn important notion is to keep the
interfering dimensions as low as possible, becthes@umber of instances increases explosively with
each dimension added (see next paragraph).

e How many instances per class?

The corpus from section 7.2.2 consisted of a twt&40 instances. This number was a result of the
decision to incorporate interfering dimensionsha torpus. One of these dimensions was the pitch.
A certain chromatic range of pitches had to be ripomated in order to insure generalization over
pitch. 18 semitones, starting from A2 were con®ideto provide enough freedom for a guitarist to
play melodies in. A natural jitter with respectthe median playing position of each class was added
to resemble the inaccuracy of a guitarist when ippysongs. 10 Of such slight playing position
deviations were incorporated for each pitch. Whaeittiplied, this resulted in 180 instances per class
The number of repetitions for the playing positiitter was a debatable choice. However it was
expected that if a reduction of the corpus sizealized by reducing the number of repetitions of

playing position jitter — with 20% (denoted @, , where the index signifies the percentage of the

full corpus) resulted in a significantly poorer sddier performance, an increase of the corpus size
would be beneficial. To be able to draw such extia@pon conclusions, the following set of corpuses

was constructed: P ={g, U@, 0@, D@, U@, Ug, U@, D@, D@, 0@,. To

obtain a performance curve, for each corpus thenmpedormance of all classifiers over the full song
corpus perf (C,S) was calculated. The set of corpuses was also vsedaluate the relation between

the corpus size and the complexity of the trainde and tree learners.

7.2.4. Practical realization of the training corpus

The corpus’ tones were recorded with Cubase SXTh8.recording settings of this session are desdrib
in section 7.2.5. The settings were kept constardughout the recording of the songs by which the
training corpus was tested. It would be optimalthEse settings would not interfere with correct
classification, but the influence of these settirgg®eyond the scope of this research. This is tiley
settings were kept as constant as possible, ansiotigs were recorded in the same recording seasion
the corpus instances.

The tones of each string were recorded in sepamtgound wave files. This was convenient in order t
keep the wave files manageable in size and reaprdiistakes would be more easily revisable. For
another purpose, the corpus could be expandedrmywed string-wise. The individual tones of a gjrin
were recorded by uninterruptedly recording notesapproximately 1 second each. This process was
repeated for every playing mode of the RHPP aretfieiting dimensions that needed to be presentein th
corpus. The duration of 1 second was adequaténéocalculation of feature vectors, which was exettut
over a range of the 10000 starting samples (= 8e23). Once for every string and playing technique
wave file was present, these were loaded into Bxdetor, which segmented the compound wave files
into individual tones. The same segmentation pmeess used in a later stage to segment the tonas of
performed song. In some exceptional cases two quiesé tones were not properly divided (for instance
when playingsul tastg which has a weaker onset). In these rare occgsmanual segmentation was used
to divide these tones at locations where there agpt® be an offset in the waveform. The resulted
collection of separate tones was grouped into elag®nforming the playing technique the tone was
played with. This was done by assigning namesaags of appropriate instances manually. These names
were used for the transcriber as annotation labels.

7.2.5. Recording seftings

To ensure that the experiments can be revisedtetienical details are given in this section. The
performances and tones of the corpora were recondigdan acoustic steel-string guitar of the brand
Lakewood with a B-Band pick-up that consisted ofiiarophone and a piézo pick-up which were housed
in the guitar's body. The guitar was connected o AR Compact 60 amplifier that in turn was
connected to the computer’s sound card. The reagsdiad a sampling rate &ff= 44.100 Hz, a depth of
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16 bits and were mono. These audio settings wepe danstant throughout this study. The used sound
card was an M-audio Audiophile 2496.

Recording settings of the guitar equalizer: Basgbt+8/id +8db, Treble +8db, Vol +8db. Rate UST/AST
= 6/6. Recording settings of the guitar amplifiBass 12', Middle 12’, Treble 12’, Gain 9’, Mastet 9
Effect return 0’, contour: off. Tones were recordeith Cubase, every tone lasted for approximately 1
second at least.

7.3. Implementation of machine learning methodology

This section describes the integration of the MPE&u4dio toolbox with Exprimulator, as well as the
selected audio descriptors with their calculatiettisgs. For the WEKA classifiers it is outlined ath
parameters could be relevant with respect to thesiformance.

7.3.1.  Calculating feature vectors

The feature vectors used for adequately describivey different sound classes of the RHPP were
comprised of audio descriptors from the MPEG-7 audblbox. The algorithms for these descriptors
were implemented for Matlab by Michael Casey frdma University of London, in toolbox Matlab-XM.
All the low level descriptors described in sectidrl.1 together with the description schemes, were
implemented in this toolbox.

Feature vector calculation started with findinguétable range from the source wave signal of a usrp
tone. As the RHPP is concerned with the way théagis struck, the attack section of a tone woelens

an obvious fragment for feature calculation. Thgilieing of a tone was determined by the segmemtatio
algorithm, and was set at the maximum of each tdoealso incorporate the small section precediig th
maximum for feature calculation, a fixed offset-200 samples from this maximum was taken. From this
point, the first 10.000 samples were used as ifgouthe algorithms. This equals a duration of 0s28.,
which is approximately a fourth of the length oftlones present in the corpus. As feature vector
calculation of the song corpus is the same asherttaining corpus, also 0.23 sec. of the tonethef
songs had to be taken. For the few tones shoerQi23 sec. feature calculation was skipped, Isecao
appropriate feature vectors could be calculateoh fiitese tones. The calculation range was not siexte
for this purpose, because this decreased the paafare of the classifiers. A long term solution doul
involve the creation of additional classifiers trad with smaller fragments of the corpus toneget@ble

to classify the exceptionally short tones.

7.3.1.1. Seftings for audio descriptor algorithms

For the calculation of the four Timbral Spectraldi&u descriptors HarmonicSpectralCentroid
HarmonicSpectralDeviation HarmonicSpectralSpreadand HarmonicSpectralVariation short term
Fourier Transforms (STFT) over subsequent time émrhad to be calculated. These STFTs were
calculated over windows of 3089 samples, shiftethéame with 1545 samples (an overlap factor of 2).
In short, the STFT is used to break down a timenéaf a signal in constituent sinusoids of différen
frequencies. The formula is given below:

STFT{MI} = X(Mma) = X Xtlafn-mle"
n=-co
In this formula X[N] and a[N] denote respectively the current time frame torhesformed and the

used window function, a symmetric ‘hill’ functiom our case, theammingfunction is used as a window
function, as displayed in Figure 7.6.

In order to calculate the 4 Harmonic descriptoes llarmonic peaks (multitudes ff the fundamental
Sr

frequency)were calculated from the STFTSs, resulting in an BoF— values, in whiclsr is the sample
0

rate. The resulting reduced STFT is used for tHeutstion of thecentroid deviation spreadand
variation. As there were 5 time frames of size 3089 in 10 €8mples with a window shift of 1545, each
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descriptor produced 5 values for the entire segmmeh0.000 samples. The vectors were made a doglar
1 : : : : calculating the mean.

oer In order to obtain theSpectralCentroidthe power
Bl 1 spectrum was calculated over the entire range ef th
07f 1 calculation range of beginning 10.000 samples, \ith
06} 1 resolution of 1024 Hz. From this spectrum tiestroid

o | was computed in the same way as for the harmonic
il STFT.

03t 1 For the calculation of thelogAttackTime and
o2t 1 TemporalCentroid the energy curve (waveform
L | contour) was calculated, by down-sampling with dact

. , , , , 3 and applying 20 Khz low-pass filter. This energy
o 00 ] MO0 = nisec curve enabled the calculation of the logarithmimaek
Figure 7.6: the Hamming function time as well as the temporal centroid.

7.3.2.  Seftings for classifiers

Presumably the default settings for the WEKA cliéess are not optimal for the recognition of playin
techniques. Therefore, for a relevant set of bestopming classifiers, the available tunable par@mnse
that the WEKA API offers are explored. Adjustmeifitappropriate parameters might further increase
annotation performance. Not all the parameterscaresidered relevant, thus only a selection is to be
explored.

Concerning Boolean parameters, if there is an @tsatting that is beneficial for the classifierEWA

has set it as default this way. Therefore thesarpaters do not allow for much performance gain.
Examples of such parameters are pruning and sutdis@g for decision trees. Another is the use of
normalization for lazy learning methods suchkasearest neighbours and locally weighted learning.
Disabling these features is not expected to yieldgpmance gain. Nevertheless, it is investigatégtw
the effects of pruning are, to get an idea of thgrele to which overfitting occurs.

Less obvious are the setting of numerical parameded factors. These parameters motivate a more
thorough exploration, as they can be attuned taricplar classification problem more closely. Exdes

of these are parameters that affect the structfirelassifiers such as the number of trees for the
RandomForest classifier or the number of hidderersyand neurons of a Neural Network. Other
numerical parameters can be related to the modepefation, such as the number of folds of cross
validation for the REP-tree or the number of thenhar of used neighbors thenearest neighbours
classifier uses for prediction.

Finally there are more structural choices thatlmamade, such as those which affect the kernetibmc
(polynomial or radial basis) of an SVM or the batassifier of the Locally Weighted Learner. For the
LWL classifier the default base classifier is théher primitive DecisionStump. It can be explorechore
complex base classifiers can contribute to incréatsssification accuracy.

7.3.3.  Measurable results of experiments

This section presents testing procedures that #&eusbed in the experimental chapter 8. These
procedures are carried out with the set of clagsiffrom section 6.3.3, trained by the definiteniray
corpus from 7.2.2 and tested with the song corpp@slol. The procedures include metrics to:

e Cross validate the classifiers on the definiteniraj corpus
« Determine the classifier’s annotation performance

»  Determine the best classifier

« Determine the classifier consistency

« Determine the optimal corpus size

* Discover causal relation between note charactesisind misclassification
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e Interpret learned models
Cross validation classifiers:

Before proceeding to the testing of classifiershvaittual performances, they can also be crossatalid
by material of the corpus itself. Such an initiabss validation can indicate if the class configjora
embedded in the training corpus is learnable bysdi@rs with the used feature vectors. In a latage
the cross validation performance of a classifiar lba compared with the annotation performance en th
song corpus, which reveals the classifier's geiggtbn capacity.

Determination of the classifier's annotation perfomance:

The classifier’'s annotation performance denotespireentage of correctly classified tones of thegso
corpus by a classifier (misclassified tones aretalodn into account). The annotation performanaeesés
to determine the set of classifiers which perforgmificantly better than the rest.

The annotation performance of classifék] C on songsis calculated as follows:

> Correct(c, note)

Perf c.s :100 notg0s
(c,s) %51— > Unclassifed(c, note)

noteUIs

where:

Correct(c,note) = 1, if pred,(c,8(note) =des,(a)
0, otherwise

Unclassifed(c,note =1, if pred,(c,&(note) =null
0, otherwise
The circumstances, under which unclassified toa@soccur, are outlined in section 7.3.3.2.

The annotation performance of classifiesn a song corpu$S :{Sl,...,sn} is defined as the mean of all
the annotation performancesmén the songs i

Perf(c,S) ={Perf(c.s)]

sOS

This annotation performance over a song corpusas for comparing classifiers; under the condithwat
song corpusis large enough and contains representative songs.

The standard deviatioo,(Perf(c, S)) = o({Perf (c,s)}% 1s) » Provides an indication of the consistency
by which the classifier performed on the song cerpu
Selection of best performing classifiers:

For more thorough investigation of a small setlagsifiers, we have to exclude classifiers thatqared
worse than a certain criterion. The best performitagsifiersBest(C,S)are defined as those whose
annotation performance does not lie beneath thetation performance of the best classifigg, minus
its standard deviation:

cUBest(C,S) < Perf(c,S) = Perf(c,,,,S) - o(Perf(c,,,,S)) UcOC
tc=c,, UcOC
where

C=c,, = OcOC\c:Perf(c,S)>Perf(c,S)0cOC
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The performances of the remaining classifiers #rat not inBest(C,S)re too low to be increased by
adjusting parameters, and are therefore consideree not relevant for parameter tuning.

Corpus evaluation:

To determine an appropriate size for the trainiogpas, the annotation performandgerf(c,S) is

calculated for every classifier trained with thdfatient corpus fractions defined in section 7.Z8is
sequence of performances is plotted against thpusosizes to determine the location where the
performance converges to a certain optimum. Thisvemence point should be located at the most
optimal corpus. Differences between convergencatp@mong different classifiers reveal differences
the quantity of training data that is necessarygfareralization.

Discovering relations between note characteristicand misclassification:

By investigating the relation between durationcipiand playing technique on one hand and relative
frequency of misclassification on the other, exmeyl note characteristics can be ascertained. A
confusion matrix reveals whether all playing tecjugis are equally often misclassified or not. IEthi
distribution appears to be skewed it is interestmépok at the playing technique which is miscifisd
most often, and the playing technique that is mtedi most often incorrectly. This relation tellsigh
playing techniques are most likely to be mixed uphweach other. This confusion might be caused by
unrepresentative training corpora or inadequatifearectors.

The relation between pitch/note duration and mgsifecation can be investigated to see whether
exceptional cases deserve to be treated by sepelemsifiers. In case a certain set of pitches are
misclassified more often relatively, this can be da structural timbre differences. An example afet
structurally different tones are for example opames as opposed to fretted tones. If there is @edsed
chance of misclassifying short tones, this candmemained in like manner. This hypothesis thatteho
tones are more likely to be misclassified can hgpetted by the notion that the timbre is more aédc

by a musician’s preparation on the subsequent fbine.same applies to influences of the preceding,to
because of reverberation and resonance.

Interpretation of learned models:

Classifiers can be interpreted by humans by vigimgi the internal models. Particularly WEKA's
decision trees and rule learners can be analyzdtiimans clearly. Investigating these models retreal
complexity of the trained classifier as well as thaking of the used feature attributes the classifias
trained with. By comparing models of tree or rulassifiers with each another the predominant ome ca
be adopted, if there is agreement at all. Stromrgeagent of a model amongst a major set of classifie
motivate rejection of ones that operate with défgrmodels. Such a rejection can only be justifiader
the assumption that the majority set has higheotation performance. Another valuable deductiomfro
classifier schemes could be the relationship batveeenplexity of models (in terms of number of nodes
and leaves) and annotation performance. This cgiud rise to limits that stipulates the maximum
complexity of a tree or set of rules given a certdassification problem. In case a classifier exisesuch

a limit, this might point out overfitting.

7.3.3.1. Case test: performance test with initial training corpus

For an initial impression of the performance of M&EKA classifiers we integrated several tree-
classifiers, instance-based classifiers and NeNedork-classifiers with Exprimulator. The classif
were trained with the initial training corpus fron2.1 and trained with the sodgs Claire de la lung
which was recorded in the same session as thengatorpus. The results are presented in thisseati
order to check if the combination of the MPEG-7 iautkescriptors with WEKA classifiers would lead to
satisfying results, and adjust the feature vectonmosition if necessary. If not, performance gaould

be achieved by tuning classifiers.

No problems where encountered when constitutingctiipus. The majority of the tones for the training
corpus where segmented properly. In only a few gioes manual segmentation had to be performed. As
for the transcription ofAu Claire de la Luneno manual segmentation had to be done, and thh pitc
detection was flawless.
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Classifier name Description Classifier | Performance
category (correct notes
/ total notes)
J48 C4.5 decision tree Trees 70.5%
NBTree Naive Bayes Tree Trees 81.8%
LMT Logistic Model Tree Trees 90.9%
DecisionStump Trees 61.4%
RandomForest Trees 88.6%
RandomTree Trees 86.4%
REPTree Fast decision tree learner Trees 81.8%
IBk K-nearest neighbors classifier Lazy 86.4%
LWL Locally-weighted learning Lazy 79.5%
K* instance-based classifier Lazy 86.4%
Bayes Network Bayes 79.5%
Naive Bayes Bayes 68.2%
Naive Bayes Simple Bayes 70.5%
MultilayerPerceptron Functions | 86.4%
SMO Support vector machine Functions 79.5%
Neural network Matlab Neural Network Functions 88.6%
JRip propositional rule learner (Repeated Increalent | Rules 86.4%
Pruning to Produce Error Reduction)
NNge Nearest neighbor Rules 63.6%
OneR One rule learner Rules 63.6%
PART Rule learner based on JRip and C4.5 Rules %7.3
Ridor Rlpple-DOwn Rule learner Rules 75%

Table 7.1: Performances of 21 classifiers trainedith the initial training corpus, tested on one song

Concerning the annotation performance of the diass] the results from Table 7.1 look promisingoriel
than half the classifiers perform higher than 80#th a maximum score of 90.9% for the Logistic Mbde
Tree. This is remarkable, as standard settings wsed for as well the feature vector calculatiorhas
WEKA classifier parameters. As there are three iptessutputs for a classifier, the ones from thalda
perform significantly better than a random classijfivhich would predict 33.3% correctly.

7.3.3.2. Exceptions in calculating feature vectors

When computing the audio descriptors that comptisefeature vectors, exceptions can occur so that n
value is acquired for an attribute within the featwector. For the training of classifiers as wal
prediction of test data one should decide whethskip these exceptional instances or not.

As a concrete example, the calculation of ltlogAttackTimedescriptor is considered, which cannot be
calculated in case a tone has a ‘weak’ attackhig dccasion, théogAttackTimeprocedure returns the
null value. The issue is to decide whether to cetghy remove such an instance from the set ofitrgin
instances, or to incorporate it with the specificilaute replaced by a null-value. The same degisias to
be made for prediction. A test instance can beldabas ‘unclassifiable’ if an exception occurs. HArer
approach is to substitute the missing featurebaitei with for example the mean value of the renmgjini
instances for this particular attribute.

It is trivial that when the training data would arporate the exceptional instances, this shoulul lagsthe
case with the test instances (hence no ‘unclabifidabels are assigned when predicting). In like
manner, when the training data does not incorpdhetexceptional instances, the transcriber woakth

to label these instances as ‘unclassifiable’. Fos project the former approach is chosen, as it is
undesirable to have unannotated notes in a traigari This decision is supported moreover by the
notion that exceptional instances do not interfeeetraining of a classifier such that this wouldrdpt

the prediction of ‘normal’ instances (3.5% of thaining data are exceptional instances). Another
argument for incorporation is the fact that theeptions for theLogAttackTimedescriptors take place
more often in thesul tastaclass than the other classes, because instandhe il tastoclass have less
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strong attacks. Removal of the exceptional instangeuld mean that there would be less training
instances for theul tastaclassin relation to the other classes.

Nevertheless, in case a tone is shorter than thgeraver which feature calculation is performed th
entire feature vector cannot be computed. In thesasions, labeling as ‘unclassified’ is inevitabithin
the current implementation of Exprimulator. As sthin section 7.3.3, these unclassified notes ate n
taken into account for the calculation of the aatioh performance.
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8. Experiments and results

8.1. Testing preparations

8.1.1.  Recording songs

For the experiments presented in this chapter,ob@shave been recorded containing 67 tones each on
average. The length is kept as constant as possbl¢hat performance rates can be compared. The
resulting test corpus contains enough test matgialost 700 tones) for a corpus containing 54ihitng
instances. From well-known lyrical songs only ote@she and/or chorus are recorded. The lyrics are
used as a guideline for applying the playing teghes (different techniques are applied sentence, wis
see appendix D). The songs are not difficult toypko that the guitarist can focus on how to plag t
notes. The songs are selected on their familiatépgth, note reach, note variation and melodic
simplicity. It is ensured that only the notes prese the corpus are used. To realize this, thegsen
transposed to the key in which the maximum and mmimn fall between the corpus range. Every song
contains the three playing techniques that areieghlonforming the lyric markup in appendix D. The
following songs have been chosen:

1. The Beatles — Let it be

Billy Joel — Uptown girl

Elvis Presley — Are you lonesome tonight

Michael row the boat ashore (Afro-American dpi)
Davis and Charles Mitchell — You are my sunshine
Rolling stones — paint it black

Ella Fitzgerald — Every time we say goodbye

The Beatles — Michelle

© N gk~ 0D

The Beatles — Yesterday
10. Neil Young — Heart of Gold

Performances have to be sec in other retrospextannecessary vibrato’s, pull-ons and pull-offs, &t

is necessary to explicate this requirement becauserists are tended to apply these decorations
naturally and unconsciously. It is pursued to kdepperformance as sec as possible at a relatively
pace, because short notes are not classified ecétise fixed feature calculation range. The somge
recorded by the author.

8.1.2.  Transcription and annotation of guitar performances

The recorded songs were automatically transcritsdguonset and pitch detection. Not all of the note

onsets in the songs were recognized, in these ¢aBesat 4%) onsets were added manually. The manual
onsets were set at the highest peak visible inatteéck section of the tone, similar to the way the

automatic song segmentation takes place. Oncenbetowere obtained, pitches were calculated of the
beginning 5000 samples of the tone. The pitch ¢aticun proved to be flawless over the 10 recorded

songs.

According to the song markup of appendix D, thegsbnotes were manually annotated (the songs were

also played according to this markup). This maramadotation is used by thdegHPP(tone function

(see section 6.1), to be able to compute the atiootperformance in a later stage. Feature vestere
calculated using the settings by which the corpeatures were calculated (i.e. same time rangeavew
signal, same audio descriptors and settings). Alfisrdata acquisition phase, the transcriber albatch
annotation of all the songs with all the classffigmined with the classifier manager. In comboratiith
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a procedure that extracts a performance matriXl gbags and classifiers, performance differen@este
discovered quickly when classifier settings arencjedl.

8.1.3.  Creating classifiers

The WEKA classifiers were trained with the corpussented in section 7.2.2 using the standard WEKA
settings. This is because the standard settingsnastly beneficial for the classifier, and enalie t
capabilities of the classifiers (settings such alstree raising and pruning are enabled standamf). F
settings that would have major impact on the stmecof the classifier, different configurations wer
compared to determine the most optimal. This paramiine-tuning was only performed on the best
performing classifiers.

8.2. Results

In this section the results of the metrics intragtliin section 7.3.3 are presented. The trainingusis
evaluated on its size by measuring the performaricdifferent fractions of the corpus. After thaeth
training corpus is evaluated on consistency bysskadidating all classifiers. The cross-validatimocess
also enables us to eliminate the worst performlagsifiers, and can also be compared with the fadass
annotation performance on the song corpus. Thissgivsight in the generality of the classifiersc®the
best performing classifiers have been determiredirifluence of some decisive classifiers pararseiar
the performance is outlined.

8.2.1.  Corpus size
85.0% The average performances of all
classifiers over all 10 songs are
2 80,0% i : - - - ] plotted in Figure 8.1. The different
3 ) | Il corpus sizes are obtained by
%750% [ N I S eliminating one or more of the 10
2 oo ] repetitions of one tone. Remember
s that these 10 repetitions were the
5 65.0% - ] - - - - i - result of incorporating the
s » interfering  dimension natural
& 60,0% playing position deviationin the
g corpus, as defined in section 7.2.3.
g 55.0% A glance at Figure 8.1 shows that
50.0% for the average classifier a corpus

0 2 s 4 s e 7 s s 10 With only 3 repetitions of one tone

_ Corpus percentage - for every class suffices, resulting in
Figure 8.1: Average performance of classifieron full son¢c g corpus size of 162 tones (3 strings
corpus trained with different corpus sizes x 3 playing techniques x 6 tones per

string x 3 repetitions per tone)
instead of 540 tones.

However, as can be deduced from Figure 8.2, a 3®us is not sufficient for every classifier. Iristh
graph the average performances on the song corpiseoclassifiers are displayed. Clearly visible a
the different slopes and convergence locationsy @he J48-tree, the Support Vector Machine and the
RandomForest classifier reach approximately th@ximum performance after a corpus size of 30%. For
the K* and k-Nearest Neighbour algorithm this pdias at 70%. Because of the fact that the Bayesian
network reaches its peak at 100%, future experisnaete executed with the full corpus. The slopthef
performance curve of the Bayesian network justifesevaluation of a bigger corpus in future. The
dependency of Bayesian networks on the corpus isizexplainable by the notion that classes are
predicted on basis of chances which have been dddfrom the training instances. The higher the
number of instances, the more robust the calculeitadce distribution is.

In Figure 8.2 there is a remarkable peak at 90%hefcorpus size for the RandomForest classifier. Fo
some reason, this corpus size results in a vatlethe J48-tree.
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Figure 8.2: Relation between corpus sizes and clé&sr performance

To evaluate the effect of the corpus size on thepiexity of the classifier's model, the number e&ves

of the J48-tree was plotted as well as the siz¢heftree, in Figure 8.3. The curves demonstrate an

increasing complexity as the corpus size increabis. motivates the use of small corpora for decisi
trees, because Figure 8.2 tells that the performahthe J48-tree does not increase after a caipasof

40%.
60
50 2
—e— Number of leaves
—=— Size of tree
40

Complexity
w
o

20 A

10 4

10% 20% 30%

50% 60% 70% 80% 90% 100%

Corpus percentage

Figure 8.3: Relation between corpus size and tre@mplexity
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In an attempt to optimize the training corpus, anses that deviated significantly with respectdms
feature attribute valueHarmonicSpectralSpreadnd HarmonicSpectralVariationwere removed. These
instances appeared isolated in the scatter plofsgoire 8.10. Besides that it was evaluated byifeae
accompanying tones indeed did not belong in itseriirclass. In these cases it appeared that thes ton
sounded differently because of the string that natsstruck properly or the fret that was not prdsse
properly. These technical imperfections resulted moisy sound. After removal of five of these amtes
(less than 1% of the corpus), the majority of tlessifiers had higher performance on the song cripu
appeared that the tree and rule learners were srositive to these small corpus changes. The REeP-tr
performance for example increased 9.5% for thisllstoapus change. This high increase might indicate
that the REP-tree was overfitted. Whether the ti®sd rules are apparently sensitive to noise in the
training data, the instance-based learners (K*allpdNeighted Learning and the 1-Nearest Neighbour
algorithm) were not affected by the corpus chargps is because these classifiers use the proxiofity
an instance to other instances as a measure fdicpos. Hence it is likely that the five excluded
instances were never taken into account for priedicif the song corpus.

8.2.2.  Cross validating classifiers

In Figure 8.4 the performances of all the classifisere evaluated by performing 10-fold cross \aiah

on the training corpus, with a split of 90% testl &% training. The worst performing classifiers #re
simple classifiers that only consider one featutebaite (DecisionStump), or one rule (OneRule). A
closer look at the confusion matrix of DecisionSputearns that not a single tone is classifiedsials
ponticellg hence a performance worse than 66.67%. The Re&timp should be a multi-class classifier
(capable of classifying more than 2 classes), ppaeently because of its simplicity (only one featu
attribute is considered in the underlying tree)e therformance is not adequate. Therefore, the
DecisionStump classifier is not used in future expents. Because Locally Weighted Learning standard
has DecisionStump as a base classifier, it perfoemsally low (apparently LWL cannot boost the
DesicionStump’s performance). This is why for tlusss-validation experiment and the following
experiments the standard base classifier of LWlreiglaced by the Support Vector Machine. The
OneRule and DecisionStump classifiers are excldded further experiments, as it appears they cannot
even classify corpus material adequately. The oéshe classifiers exhibit slight deviations retafito
each other that are not decisive to exclude massdlers.
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Figure 8.4: Average performance of 10-fold cross Vidated classifiers
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8.2.3.  Annotation performance

In this section the results of performances ofdlassifiers on the song corpus are evaluated. Aatiom
annotation of all the songs by the selected cliessifrom the previous section resulted in Table &
which the annotation performance of every classftie each song is displayed.

The average performance over the entire song cdgousvery classifier is listed in the last colunim,
which classifiers performing better than 78% aremfatted bold. In like manner the average song
annotation performance is displayed in the last.rdlwese scores deviate more than the average
performances of the classifiers. The soMgsterdayandHeart of Goldhave the lowest annotation score.
It is hard to ascertain what properties of thesggsa@ontribute to these low scores, but it is jikidlie to
higher use of error prone playing techniques sm‘re&gtral orsul tast%)
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J48 76,8% 76,9% 795% 80,4% 712% 812% 91,8% 71,4% 60,7% 66,1% 75,6%
NBTree 69,6% 76,9% 852% 76,1% 80,8% 822% 83,7% 71,4% 554% 712% @ 753%
LMT 82,1% 82,1% 78,7% 80,4% 712% 792% 87,8% 729% 750% 69,5% @ 77,9%
RandomForest 75,0% 93,6% 84,1% 739% 753% 851% 87.8% 743% 750% 74,6% | 79,9%
RandomTree 55,4% 62,8% 71,6% 80,4% 67,1% 80,2% 714% 67,1% 69,6% 66,1% & 69,2%
REPTree 82,1% 859% 71,6% 60,9% 685% 79,2% 83,7% 71,4% 64,3% 62,7% & 73,0%
1Bk 71,4% 80,8% 80,7% 848% 86,3% 81,2% 77,6% 78,6% 750% 74,6% | 79,1%
LWL 78,6% 846% 80,7% 739% 86,3% 86,1% 83,7% 81,4% 857% 69,5% | 81,1%
KStar 73,2% 859% 84,1% 82,6% 932% 81,2% 714% 843% 64,3% 74,6% | 79,5%
BayesNet 75,0% 872% 78,4% 935% 86,3% 81,2% 878% 72,9% 73,2% 59,3% | 79,5%
NaiveBayes 69,6% 67,9% 72,7% 76,1% 658% 832% 714% 62,9% 60,7% 52,5% | 68,3%
NaiveBayesSimple 73,2% 692% 73,9% 76,1% 64,4% 832% 714% 63,8% 60,7% 52,5% & 68,8%
MultilayerPerceptron 80,4% 80,8% 81,8% 783% 712% 822% 714% 67,1% 71,4% 69,5% | 75,4%
SMO 76,8% 80,8% 78,7% 76,1% 822% 84,2% 79,6% 80,0% 83,9% 62,7% & 78,5%
JRip 80,4% 82,1% 76,1% 69,6% 712% 822% 714% 80,0% 67,9% 61,0% | 74,2%
NNge 66,1%  75,6% 742% 71,7% 67,1% 822% 79,6% 657% 50,00 52,5% = 68,5%
PART 80,4% 80,8% 83,0% 783% 72,6% 802% 81,6% 743% 643% 712% @ 76,7%
Ridor 83,9% 82,1% 693% 76,1% 69,9% 802% 81,6% 72,9% 67,9% 71,2%  75,5%
Mean classifier
performance 75,0% 79,8% 78,0% 772% 75,0% 81,9% 79,7% 72,9% 68,1% 656% 753%

Table 8.1: Annotation performances of classifiersmsongs
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In Figure 8.5, the standard deviation from Figurd & illustrated in relation to the annotation
performance of the classifiers on the song coragether with the standard deviation. It is wortiieh
noticing that the ratios between the classifierm@ation performances are quite similar to thésat
between the cross validation performances. Thigates that the cross validation metric is suitdble
comparing classifiers with each other for a certeiassification task, and is representative for the
distribution of the annotation performances on teaterial.

100,00%
90,00% 1 I M
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70,00% -
60,00%
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40,00%
30,00% -
20,00% -
10,00% -+

0,00% -+

Performance

>
g% N @ Cross validation performance

& o
e O .
Classifiers o@ (']\\0 B Annotation performance on song corpus

Figure 8.5: Cross validation performance of Figure8.4 together with annotation performance on
song corpus with standard deviation

From Figure 8.5 the consistency and generalitylagsifiers can be derived. The 1-Nearest Neighbour
classifier (IBK) is regarded as the most consispaforming classifier, because of its lowest stadd
deviation of 0.046%. The cross-validation perforo@nan be compared with the annotation performance
to obtain a measure for the generality of the diass Therefore the cross-validation / annotation
performance ratio is computed. This gives a measurehe decrease of performance on test data.
Significantly better at generalizing were the Suppgector Machine (performance decrease of 4.11%)
and the Bayesian Network (4.85%). The worst germingl classifier is the RandomTree. This is
supported by the observation that the RandomTreg also sensitive for instance removal as was
illustrated in section 8.2.1.

Striking is that the Simple Naive Bayes and Naiay&s classifier significantly decrease in perforogan
in comparison with the Bayesian Network. The cradilation performances are roughly the same.
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8.2.4. Interpretation of learned models

In this section, a selection of trained rule and
tree classifiers are visualized, compared and
analyzed. By examining in which order the
feature attributes occur in the nodes of the trees
and how many instances are divided under the
node, a feature ranking can be obtained. In this
section, the graphs of 4 trees, the J48-tree,
NBTree (Naive Bayes tree), LMT-tree (Logistic
Model Tree) and the REP-tree are visualized. In
these trees, the feature attributes are located in
the nodes, depicted by the abbreviations ft1 till
ft7:

Figure 8.6: J48 tree
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The branches of the tree represent the Boolean
decisions that are made on basis of the value of
the node’s feature attribute. In Table 8.2 the
attribute ranking is given that was inferred from
the trees.
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The J48-tree(see Figure 8.6) appeared to be the
most complex tree. Its performance was not
worse than the other trees however. In the
NBTree (Figure 8.7) and th&EP-tree (Figure
8.9) some feature attributes are absent.
Remarkable is that th&pectralCentroidnisses

in the NBTree while this attribute appears in the
fourth position in the J48-tree. What's more, the
HarmonicSpectralCentroi@imissing in the REP-
tree) is the third important attribute according to
the J48 and LMT-tree. The two best performing
trees, the J48-tree and théMT-tree (Figure
8.8) seem to have the most similar feature
ranking (5 corresponding attribute rankings),
whereas amongst the other trees there seems to
be little agreement. This can implicate that the
descriptive strength of the attributes are
approximately equally powerful. All trees have
HarmonicSpectralSpreads the most descriptive attribute, which is alsbsstibed by the ranking
methods of Table 8.3. These methods incorporatel#ssifier JRipper, from which the order of théesu
and its comprising attributes, as well as the nunobaffected instances was determinative for dadifre
attribute ranking. The feature ranking for the Baga Network was obtained by calculating the
annotation performance 7 times, each time omiténglifferent attribute. The descending order of
annotation performances for each iteration detezthithe attribute ranking this time. The third metho
was performing attribute selection with the WEKAltat. This time the importance of a feature atiti
was estimated by measuring the information gait wéspect to the class. The last method presented i
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Table 8.3 presents the feature attribute-claseladion. To calculate this correlation the nomidalsses
were converted into the numerical equivalents ;ardl 1 for respectivelgul ponticellg neutralandsul
tasta This was done under the assumption that therédWmaia linear correlation between the RHPP and
the feature attributes. Just like with the trelks,miscellaneous attribute ranking methods dicagote on

a consistent ranking method.

ranking | J48-tree NBTree LMT-tree
1 HarmonicSpectralSpread HarmonicSpectralSpread Hamio®pectralSpread
2 HarmonicSpectralVariation HarmonicSpectralCentroidHarmonicSpectralVariation
3 HarmonicSpectralCentroid| TemporalCentroid Harmomie&ralCentroid
4 SpectralCentroid HarmonicSpectralVariatign ~ Sped@anhtroid
5 HarmonicSpectralDeviation LogAttackTime HarmonioSpEDeviation
6 TemporalCentroid HarmonicSpectralDeviation LogAki@itne
7 LogAttackTime TemporalCentroid
ranking | REP-tree
1 HarmonicSpectralSpread
2 HarmonicSpectralVariation
3 SpectralCentroid
4 HarmonicSpectralDeviatior
5 TemporalCentroid
6
7
Table 8.2: Ranking of feature attributes by tree @ssifiers
ranking | JRipper Bayesian Network Attribute selectian by info
gain ranking
1 HarmonicSpectralSpread HarmonicSpectralSpread Hanin®pectralSpread
2 HarmonicSpectralDeviation HarmonicSpectralDeviatiphogAttackTime
3 SpectralCentroid LogAttackTime SpectralCentroid
4 HarmonicSpectralVariation HarmonicSpectralVariatignTemporalCentroid
5 LogAttackTime TemporalCentroid HarmonicSpectrals@on
6 HarmonicSpectralCentroid| SpectralCentroid Harmomie&ralCentroid
7 HarmonicSpectralCentroid| HarmonicSpectralDeviatior
ranking | Ranking on attribute —
class correlation
1 HarmonicSpectralSpread
2 HarmonicSpectralDeviatior
3 SpectralCentroid
4 TemporalCentroid
5 HarmonicSpectralCentroid
6 HarmonicSpectralVariation
7 LogAttackTime

Table 8.3: Feature attribute ranking with miscellareous methods
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Figure 8.7: Naive bayes tree
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Figure 8.8: Logistic model tree
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Figure 8.9: REP-tree

In Figure 8.10 six scatter plots are drawn thatateel the most discriminating feature
(HarmonicSpectralSpread according to the analyzstisibn trees) against the remaining six feature
attributes. Clearly visible is the separation o thul ponticello instances, which are separatedt mos
distinctively from the instances of the other césssThis corresponds with results of the confusiaitrix,

in which sull ponticello is misclassified leasterit The Sul tasto and neutral swarms are overlggpin
all the scatter plots, but it can be judged by & HamonicSpectralSpreagives best distinction with
HarmonicSpectralDeviatioandHarmonicSpectralVariationThis is in accordance with 5 of the analyzed
classifiers.
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8.2.5. Relation between note characteristics and misclassification

A confusion matrix is calculated to ascertain whpthying technique is misclassified most often. The
confusion matrix from Table 8.4 is the mean cordnsimatrix over the 20 classifiers. The confusion
matrix was calculated by performing 10-fold crosdidation over the training set. The bold numbers
above the heading labels denote how often a torsimerrectly misclassified as the column’s class,
whereas the bold numbers most right tell how oftenrow’s class was misclassified. The matrix tafs
that sul ponticellois the least misclassified playing technique (1lcfassifications on averagepul
ponticellois also the least often incorrectly used as labieé playing techniquaseutral andsul tastoare
approximately equally often misclassified, whereastral is most often used as an incorrect laldak B
easily explained by the notion that neutral ismtermediate class. The fact tlsai tastoand neutral are
more often mixed up, means that the distance ofdhtire vectors of the mutual classes is not tigea
correlated with the physical distance on the gusteng between the classes.

36 11 29
5 = 3
5| 8| =
[} = —

c = >
(@] n
o
5
Classified as» @

149 5| 26| neutral 31
9| 168 3| sul ponticello | 12
27 6| 147| sul tasto 33

actual clas$

Table 8.4: Average confusion matrix of 20 classifie

With a different approach, the relation betweeglpand misclassification can be investigated. erye
pitch is counted how often it occurs in the tengsoof the song corpus (Figure 8.11b), and how ddten
tone is calculated wrong more often than 10 tinmasragst the 18 classifiers (see Figure 8.11a). Dinis
of the number of misclassifications by the totainfuer of notes per pitch yields Figure 8.11c. Tlgsire
shows that midi note 53 has the highest chanceisflassification (F3), followed by midi note 45 (A2
Midi note 47 (B), 49 (C#3) and 56 (G#3) have higbleance of correct classification, but also ocessl|
often in the songs absolutely.

(&) notes predicted wrong = 10 times (b) total nurmber of notes per pitch (c) Relative chance misclassification per pitch
25 120 0.4

o = 035
20
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Figure 8.11: Number of misclassifications of pitche

In order to find relations between note duratiod amisclassification, the notes are grouped in elass
0.3s wide, resulting in the distributions of Fig@&@&2. It appears that a note duratibof 2.4%< d <2.7s is
most likely misclassified. In general, longer notee more likely to be misclassified than shortesot
which is surprising as it was suspected that shoxées would have higher chance on misclassitoati
This may be due because of the fact that the trgioorpus contained tones that are consistentlgrigs
From the histogram can be derived ttkals. has a relative low chance on misclassification
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(&) notes predicted wrong > 10 times (b} total number of notes per duration (c) Relative chance misclassification per duration
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Figure 8.12: Number of misclassifications per notduration

8.2.6.  Fine-funing classifiers

By default, the Locally Weighted Learner is traingith a DecisionStump tree as base classifier ltiagu

in an unsatisfying performance as was stated iticse8.2.2. Therefore LWL was trained with diffeten
base classifiers that had on its own a performaimee average (Support Vector Machiké\yearest
Neighbour decision tree, RandomForest and the Bayesetwork). Unfortunately, a number of
classifiers could not be incorporated as base ifiersén the LWL, because they were not weighted
instance handlers, such as the K* rule learnerthad ogistic Model Tree. The performance results of
these different classifier configurations that weailowed are denoted in Table 8.5. As expected, the
performance increased significantly and also ofibpered the used base classifiers on its own. Thgl SV
appeared to be the most suitable match for the LWie. LWL - RandomForest tree combination second
best, but was very slow at prediction. This is akpd by the fact that it is a 3 level meta-classis the
RandomForest on its turn is comprised of multipkciBionStumps. Through the course of this chapter,
the SVM was used as a base classifier for the LVal&sifier.

Classifier (default parameter— altered parameter) Initial Eventual Performance

performance | performance | gain

(default (altered

settings) settings)
IBk(k=1->k=2) 78,5% 77,3% -1,6%
LMT (numBoostinglterations = 4 10) 77,9% 77,5% -0,6%
RandomForest (numTrees =1017) 79,9% 81,7% 2,3%
REPTree (numFolds=3> 5) 73,0% 73,6% 0,8%
REPTree (numFolds=3> 7) 73,0% 73.7% 0,9%
REPTree (numFolds=3> 9) 73,0% 75,6% 3,6%
REPTree (pruning=False True) 73,0% 71,8% -1,7%
JA48 (pruning=False»> True) 75,6% 76,3% 1,0%
PART (pruning=False-> True) 76,7% 76,3% -0,4%
JRip (pruning=False»> True) 74,2% 78,1% 5,3%
LMT (LogitBoost=-1— 5) 77,9% 77,4% -0,6%
Functions.SMO (useRBF=False True) 78,5% 64,9% -17,3%
Functions.SMO (buildLogisticModels=False True) 78,5% 79,2% 0,9%
LWL (baseClassifier=DecisionStump SMO) 61,1% 81,1% 32, 7%
LWL (baseClassifier=DecisionStump IBK) 61,1% 78,1% 27,9%
LWL (baseClassifier=DecisionStump RandomForest)| 61,1% 80,4% 31,6%
LWL (baseClassifier=DecisionStump BayesNet) 61,1% 79,1% 29,6%

Table 8.5: Performance gain of different classifiesettings related to default settings

As one may suspect, pruning should be beneficiatie classifier performance on test sets, as besc
which are the result of overfitting are removedwdwer, in the case of the J48-tree and the JRIPRER
learner, disabling pruning resulted in an increapedformance of respectively 1% (which is not
considered a significant improvement), and 5.3%wegrage. Pruning reduced the number of rules for th
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JRipper rule learner with 50%, and for the J48-tvath 13%. Not all the songs were consistently
annotated better with the two unpruned classifiensl the overall improvement is not significantisTis
why pruning was enabled by default for the resthef experiments in this thesis. Moreover, if traed
rules are to be compared, the settings should békasas possible.

For the RandomForest classifier the optimal nunafd¢rees was determined by increasing this paramete
until expanding did not result in better performands Figure 8.13 shows, RandomForest performs
optimal when built with a decision forest consigtiof 17 DecisionStump trees, with a performance of
81,7%. This is a performance gain of 2.3% with eesfgo the default 10 trees a RandomForest consists
of. The previously attempted incorporation of thefadilt RandomForest (with 10 subtrees) within the
LWL classifier, yielded a performance gain of 0,6Mnfortunately, incorporation of a RandomForest
with 17 subtrees within the LWL-classifier, resdli@ performance loss (from 81,7% to 81,1%), wherea
an increase would be expected.

82,0%

81,5% - //\\\
81,0% AN

/ N—" N

80,5%
80,0% -

79,5% P4

Average performance

79,0% A
78,5%
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Number of trees

Figure 8.13: Performance of RandomForest classifiewith different amount of subtrees
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2. Conclusions

The main goal of this thesis was to extract trapfons with expressive annotation from human maisic
performances. As a proof of concept, a concreteessve dimension — Right Hand Playing Position
(RHPP) — was chosen to be recognized by severalimatearning techniques. The developed classifiers
were capable of classifying this expressive dimmmsin three classessul tastg neutral and sul
ponticella This chapter summarizes the performance of tlesssifiers, and discusses whether this
performance suffices for the proposed applicationghe introductory chapter. To ensure a higher
potential of success for future research, two goestare asked:

« Do the performance results motivate future recogmiof other expression modes?

e How suitable is the Exprimulator environment forngeal sound classification and musical
transcription?

9.1. Performance evaluation

The performance related experiments of the previthapter were carried out to make choices about
selection and parameterization of corpora, classifand feature vectors. These choices would these
chance of success and reduce the execution tirhguwé expressive sound classification experimdnts.
this section it is investigated if these choicea b® made on basis of the experimental results from
chapter 8.

To start withclassifier selectionperformance evaluation on a test corpus of 1@salid not result in a
classifier that consistently performed better. Uyc@#/eighted Learning with a Support Vector Machine
as a base classifier performed the best on avg@h&%) on the song corpus, but considering the
standard deviation it does not outperform othesgifaers convincingly. However, to obtain a manduea
set of classifiers for future experiments, an esidn rule like proposed in 8.2.3 can be used. Tiein
question identifies a set of classifiers that pen® significantly worse than the best performiragsifier.

An excluded classifier has the property that itacation performance is worse than that of the best
classifier minus the standard deviation of the lassifier's annotation performance. The following
classifiers can be excluded by applying this rid@ndomTree, REP tree, Naive Bayes, Naive Bayes
Simple and Nearest Neighbour. The remaining sdt3oflassifiers is not a small set of best perfognin
classifiers as one would desire. However, the tyeati that the annotation performances of these
classifiers lie too close to one another to appbyerdrastic exclusion.

Fine-tuning parametersf the classifiers did result in improved performoa, with a maximum of 5.3%
for the JRip rule learner. However, this improvetrmaid not lead to a position amongst the top cfassi
(the five best performing classifiers). For Randon#st, a classifier in the top segment, increasireg
number of random trees did result in an increas2 3. The fact that none of the classifiers penfzxt
much better than 80%, and that there is not mucfopeance deviation amongst the best performing
classifiers, leads to the conclusion that the curfeature vector configuration does not allow &dre
performance. Cross validation on the training cerpyppeared to provide a good indication for the
adequacy of classifiers on testing material, ag tbbowed roughly the same trends as the perforaan
distribution on the song corpus. The positive datien between the cross validation performancethad
test performance also means that the training iahigfr the corpus appears to be representativehier
tones that occur in melodic guitar performances.

From the fractions® of the total corpusg,, defined in section 7.2.3, it appeared tiggy sufficed for
the most of the classifiers. Only the Bayesian oektwcould have benefited from a bigger corpus
than@,,. as the curve still showed a rising trendggs. The fact that most classifiers reached their

performance maximum g, proved that deliberate addition of positionakjitdid contribute only to a

certain extent to the performance. This contrasthé incorporation of the full chromatic scalepitthes
in the corpus, because the removal of only onéd@iteeady results in performance loss.
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A corpus that is as small as possible is desirédnle¢he current design of Exprimulator, because the

creation of a corpus for every expressive dimensdime consuming and expensive in terms of manual
creation time, computation time and disk spacethin case of tree and rule learners smaller corpora
appear to result in simpler models in terms of nemtf leaves and tree size. Simpler classifiers tha

annotate with a comparable performance to a mongptax model are preferred because they are more
easily interpreted, perform faster and are lesdlikuffer from overfitting.

Because of the large degree of freedom of adjustadnlameters for thealculation of feature vectomnd

the creation of classifiers, a fixed feature cadtioh algorithm was chosen. Therefore, standardiastio
descriptors were used that already have been prasesful in literature on other audio classificatianks.
The 7 timbre related MPEG-7 audio descriptors eatfi for RHPP recognition. For more subtle
recognition tasks, additional audio descriptorslbamdded. It is worth noticing that the class#idid not
agree on the order of importance of the audio featuThe classifiers only agree on the usage of
HarmonicSpectralSpreads the most important feature. These disagreenuentisl implicate that the
remaining features did contribute approximatelyadlyuto the classification process. Together whik t
notion that the maximum classifier performance Besund 80% this motivates further exploration of
suitable audio descriptors.

Despite the fact that Exprimulator is capable afslfying sound classes of any type, it is wisbdost
the recognition accuracy of the RHPP first befdestsig with recognizing other expressive dimension
This is because it is believed that a higher ariwotaperformance than 80% must be possible for
recognizing the playing position, as the differend®tween the classes under consideration is glearl
hearable for a human listener. Therefore, the atioot of a relatively clear expressive dimensiorstre
improved first, before paying attention to more thuldifferences such as the finger configuration
(appoyando — tirandp Because fine-tuning the classifiers did not Kleso significantly higher
performances, it must be explored in what degreeettpansion of available calculable audio desarspto
contributes to a better annotation performance.

9.2. Evaluation of Exprimulator

Exprimulator met the requirements presented in ey as can be concluded from section 7.1. Bsside
meeting primary requirements, it is important tdetmine how well Exprimulator aided the process of
achieving the goals presented in section 2.1 angling out experiments. Exprimulator needs to ftatié

an efficient, flexible, adjustable, transpareand general course of experiments. The efficiency is not
concerned with optimizing the computation speedpafcesses, but with the capability to automate
repetitive task that otherwise would have to beedoranually. The flexibility is concerned about how
easily the experimental setting can be varied bgmaeof the GUI. For the adjustability of Exprimalgt

it is evaluated how easily new features were imgletead in code. Exprimulator must enable insight in
calculated data such as feature vectors, trangmgtetc. The generality is concerned with thebilisa

of Exprimulator for other sound classification plexins and other annotation tasks. This latter assa#s

is important as this thesis focused solely on ffexiic case of recognizing the RHPP.

Efficiency:
The following features of Exprimulator saved adbtime during the execution of experiments:

< Dividing performances and compound corpus filee s#parate tones. In the exceptional case a tone
onset was not found, manual segmentation could dadized fast by clicking on the visual
representation of the waveform.

« Calculate feature vectors of a large amount of soReature vectors of a specified range of all the
tones in the training corpus can be calculated.

* Training and initializing multiple classifiers. Glgifiers of different types can be initialized and
trained on the same training corpus in one run.

e Transcription and annotation of multiple songs withltiple classifiers can also be realized in one
run.

Flexibility:
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e Training corpora can be easily modified by exclgditones that are not played well. Another
purpose, for which exclusion was used, was thetioreaf different corpus sizes. The effects of the
different corpora were evaluated quickly becausthefability to initialize and train all the clafisis
at once, and annotate the entire song corpus hétllassifiers in one run.

e The classifiers presented in this thesis were falbp configurable according to the available faat
offered by WEKA via the Java API.

Adjustability:

* Because the standardized MPEG-7 descriptors wansidered more descriptive and elegant than
earlier custom implemented descriptors based anutar from literature, the latter were replaced by

the MPEG-7 descriptors. These programmatic codastdgnts were easily made, because of the
structured and modular design of Exprimulator.

The incorporation of WEKA classifiers was also Basnplemented within the current framework of

Exprimulator. Matlab fulfilled a catalyzing role ichieving this. Firstly, the Java APl of WEKA

could be invoked in its entirety in Matlab and Ja@anmands could be inserted within Matlab
scripts. Secondly, fast iterative development waslenpossible by Matlab’s scripting engine, which
enabled runtime additions and revisions of codémes

Transparancy:

« Exprimulator provided visual insight in the entpeocess of calculating feature vectors, constrgctin
classifiers and annotating musical performances. féhture vectors could be visualized by plotting
them per class grouped by color, as well as makioaiter plots of all the instances in which two
feature attributes are plotted against each otRegufe 8.10). The underlying models of all the
WEKA classifiers could be examined by drawing th@mcase of some of the trees) or by outputting
textual information about the structure of the sifisr. The transcriptions made by note onset

detection, pitch detection and expressive anngtatiere visualized in a score similar to a MIDI
sequence (Figure 7.3).

Generality:

e The classifier manager module of Exprimulator doetsplace any restrictions on the type of content
an audio signal carries, so in principle any socdlags configuration imaginable can be constructed
with the classifier manager. The transcriber modsileore dedicated to the transcription of musical
performances, as it outputs a note sequence, lagckpsignals share the property that they are
dividable into fragments of any order (phonemeHlables or words) according to any of these sound
divisions. In this way there can be thought of dets of applications for which Exprimulator could
be used, such as the classification of environnhenta

It is also up to the user which and how expresdiu@nsion are defined. Therefore performances of
any instrument can be annotated with any form stintjuishable expression.

e Exprimulator enforces a sequential way of operatingrder to obtain the annotated transcriptions.
This standardization ensures that future experisarg carried out consistently.

To make Exprimulator useful for future research atiger users it needs some improvements for the
interface. Within this thesis the system was massigd as an experimental tool to prove the po#gibil
creating annotated transcriptions. For that reasohall of the program’s features are presentednn
insightful and intuitive way. Particularly tasksattmeed to be rounded off sequentially (creatingus—>
calculating features> initializing classifiers=> training classifiers) need to be indicated morplieitly

in Exprimulator’'s GUI. In like manner the routinerfannotating songs needs to be explicated: cigeatin
song corpus> transcribe song® select classifiet> calculate feature® annotate song.

Exprimulator proved to be a useful tool for realzithe goals of this thesis. It could also proviide
service for future research, as the system isasiticted to sound content of any specific typeehsure
that any sound corpus can be classified accordingome class configuration, the set of available
calculable audio descriptors and their accompanyagameters can be extended. If besides these
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additions Exprimulator’s GUI is improved, it woute: easier operable by other users and motivateefutu
research.
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10. Future work

As a result of preceding conclusions, several eiteis and optimizations that would be valuable for
Exprimulator and the experimental set-up are pregas this chapter. The optimizations and exterssion
incorporate ‘invisible’ additions and modification® algorithms as well as added features to
Exprimulator’'s GUI. The last section of this chapggaluates the adequacy of Exprimulator when agpli
in a bigger context, for more realistic applicaton

10.1. Annotating more realistic performances

The songs that have been recorded for testingldissifiers (8.1.1) have been kept basic and sinaphe
able to focus on the core of the problem of recziggi an expressive playing mode. As a result, the
performances have not much in common with the waguiarist plays naturally. Below, the most
important musical enrichments are listed which makgerformance more credible, as well as possible
solutions to achieve annotation of these more cerpérformances:

¢ Monophonic> Polyphonic performances

One of the most obvious enrichments of the perfacea of appendix D would be the use of
polyphony (playing more than one tone simultanegusThis could bring along some serious
difficulties for the recognition of timbre by macie learners, however. The current approach of
incorporating every pitch in the training corpusniet be used for recognizing polyphonic
performances. The inclusion of polyphonic chordshia training corpus causes it to grow beyond
acceptable limits. It is also questionable if ituMbresult in adequate recognition, as chords @an b
played with any degree of arpeggio (not playingribtes of the chord simultaneously), which makes
matters even more complex. A polyphonic transaipif the performance could help to guide the
annotation task. The composite polyphonic spectaingertain time frame can be dissected into
individual tones according to the information of atttones are played at a certain time. These
decomposed tones can be processed by a clask#tdnas been trained on a monophonic corpus like
the one used for this thesis.

* Recognizing one single expressive dimension atnze t> Recognizing multiple expressive
dimensions

In the current version of Exprimulator, only onepeessive dimension is recognized at a time. In
reality, a guitarist can effect variation in mulépdimensions simultaneously (for example left
handed playing modes can be applied independefitiiglat handed playing modes). In case more
two or more playing modes are present in an audiga the expressive dimensions in which they
are arranged must be independently recognized. tawaet is likely that there exists some

correlation between two expressive dimensions éones audio descriptors within a feature vector.
This correlation could disturb recognition of orfele expressive dimensions.

An easy solution is to create a classifier that Ibesn trained with a training corpus that contains
classes conform the multiplication of the two dirsiens (the multiplicated expressive dimensions
RHPP and finger configuration yields for examplgul{tasto, neutral, sul ponticellx { appoyando,
tirando} = { sul tasto/ appoyando, neutral/ appoyando, sul patit/ appoyandosul tasto/ tirando,
neutral/ tirando, sul ponticello/ tirand® An obvious drawback is that this results in @mdesired
amount of classes when more than two expressiverdilons are correlated. The increase of classes
leads to less accuracy for a classifier. Moreotee, resulting feature vectors of the multiplied
training corpus are not guaranteed to be lineahagble. Another disadvantage is that the classifi
output is compound (it specifies the playing montetvo expressive dimensions), while annotation
concerning only one expressive dimension mightdeded.

Besides a solution by means of the corpus layadioadescriptors could be calculated unique time
frames or frequency bands. Signal analysis coufd indinding time sections (for example the attack
or sustain section), or frequency bands (1-100Hz, 900-1000Hz), in which varying a certain

expressive dimension affects the most radical cagng relation to other dimensions. With this
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approach, the calculation of a certain audio dpsmrican be optimized for each expressive
dimension in a unique way, to minimize mutual distince. Another obvious solution is to find a
unique set of audio descriptors for each expregdiivension that results in the best classification.

« Playing songs within a limited range of ton@sPlaying songs within the entire tonal range of the
guitar

Within the current experiments described in thissth, only three strings of the guitar are used for
the performances of appendix D (16 pitches chrarallyi from A2 till C4). A guitarist
understandably wants to use the full scale of nibtatscan be realized on a guitar. In order to Bnsu
that the corpus contains all the pitches, it hagrtav with factor 2.25 (assuming the range of E2-E4
is used). The incorporation of a higher numberitfhes results in a lower annotation performance.
This is because the classifier has to generaliez avarger amount of training instances which are
more scattered in feature space. This trend has jpesen by investigating the difference of using
classifiers trained and tested with tones of twings against those using three strings. A possible
solution for this problem is to divide the entirbrematic scale into several subscales for which
separate classifiers are trained.

A related issue is the overlap of possible wayetdize one pitch (an E3 for example can be played
on 4 strings, because on a guitar a tone can Bze@&an a lower string 6 frets further). There
obviously exist timbral differences between thesalizations, so it is not optimal to incorporate th
different realizations of one pitch in one corpliserefore if one decides to create separate dassif
for subscales such as proposed in the previougzga, it is obvious to create classifiers pemngtri

To determine which pitch belongs to which stringhiararchy of classifiers can be constructed in
which the highest level classifier determines thing that was struck (as each string has unique
ratios between sub(harmonics)). The lowest levettaios classifiers that perform the actual
recognition of a playing mode in an expression disngn per string.

« Dividing an expressive dimension in discrete clas®e Regarding an expressive dimension as a
continuous scale

In musical scores it is common to denote expressiaekup in a discrete way, as the example of
RHPP illustratesqul tasto — sul ponticel)oln reality, a guitarist has the freedom to #rtke string
anywhere between the bridge and the location wémet & pressed.

For the proposed application of deducing expressiles (section 1.2.3) from a corpus of annotated
transcriptions, it can be desirable to annotatermscriptions with markup that can lie in theirent

range between two extreme playing modes withinxgressive dimension. A scala&[1[0,1] can

specify the exact location within this range. Tamotation refinement can already be realized with
the current approach of offering discrete trainat@sses to the classifiers. Classifiers that ate no
limited to outputting nominal classes (such as S\évid MLPs) are able to interpolate between the
classes contained in the training corpus so thttdary intermediate playing modes (suctb@%o sul
ponticelloor 50% sul tastpsee 4.6) can be recognized if the classifierpatiates correctly.

10.2. Extensions to Exprimulator

In order to realize the annotation of the more clicaped performances from section 10.1, the set of
available calculable audio descriptors should heaeded, as also was concluded in section 9.1. The 7
timbre related MPEG-7 features did not enable fopmance annotation much higher than 80% for the
RHPP, which justifies additional audio descriptofdoreover, recognizing expressive dimension
simultaneously might need unique descriptors peressive dimension to avoid mutual disturbance.
There are several timbral audio descriptors whiah be considered for addition, that have not been
evaluated in this thesis, such as the Median fregjuer the Spectral flux.

Besides the addition of new audio descriptors,texjsones can be made more optimal for separating a
class configuration of a certain expressive dinmmsby fine-tuning parameters that affect the datoan
process of the descriptor. One should think of p&tars concerning the window size over which a
spectrum is calculated, the offset between two wivel or the sample range within a tone that is being
processed. Calculation of one descriptor can yaeléctor or even a matrix of values, because dtitn
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over multiple time frames and/or frequency bandss Brings along another configurable dimension: th
choice of statistical measures (likean kurtosis skewnesanedian etc) to reduce these dimensions to a
scalar. However, there is no necessity for the atolioi to a scalar, if it is presumed that the entiector
contains descriptive power. This decisive freedoustnibe incorporated in Exprimulator’s GUI to enable
better control over matching audio descriptorsxjoressive dimensions.

10.3. Generalizing issues

In section 6.3.4 several factors are outlined ttet hamper the annotation performance. The most
important factors are the use of different guitansisicians and recording sessions. Even when amdy o
guitar is used, the classifier performance can di@stically, as was demonstrated by the replacenfen
the strings (section 10.4). In like manner, oneimias can cause disturbance when he/she is irfereiift
mood. Before trying to achieve to generalize themgables, there must be defined clear bounds &t wh
extent a classifier has to generalize. For the geition of RHPP for example, it is questionableaif
classifier can generalize over electric and acougtiitars, as these families of instruments ditfey
radical in timbre.

The pursuit of making classifiers robust with regp® variable factors is a future goal to whichamu
time can be devoted. Within the pursuit it is intpat to find a balance in constructing a classifiet is
general as well as accurate. This means the usectissifier that is least sensitive to overfittifligge
SVM) as well as audio descriptors that are thetleagselated with the variable factors.

10.4. Annotation adequacy for future applications

In the light of the applications that are proposedection 1.2, the performances presented in ehapt
can be judged.

One of the proposed applications was sbpervision of guitar students to learn playinghteiques For
this purpose, the recognition of Exprimulator i firesent form is too sensitive to timbre changestd
different instrument properties or different redogdsessions. This is illustrated by the fact thatong
recorded in a different recording session thancttrpus was recorded in, was annotated with scares n
much higher than random annotation (33.33%). Thg difference between these recording sessions was
new strings on the guitar, which apparently distarkhe recognition process drastically. The stringee

of the same brand (D’Addario), but were one letaker, and produced a clearer sound because iof the
novelty. However the replacement of strings caratffadical timbral differences, more subtle reaayd
session differences could also result in such idrasops of performance. This example, in whichyonl
one guitar was used, illustrates that there lidk astchallenge in recognizing playing techniques f
multiple guitars and recording circumstances. Arwiobs solution to overcome this problem is to
calibrate each different guitar by playing a fewesowith the different playing techniques thatasslfier
has to recognize. This calibration could be usedhbiain parameters for a transformation functiocat th
scales the feature vectors of the deviating inséminto coincide better with the ones of the tragnin
corpus. Besides this deficiency, also real timeufeacalculation should be made available so thaipl

can get feedback while playing. This is a challaggiask, as note onset calculation, pitch detegction
feature calculation and classifier prediction netmde executed sequentially. The speed at whieh th
current version of Exprimulator performs these sasknot suitable for this purpose.

For the proposed application @ttracting rules from an annotated set of transtwip that can be applied
for more natural synthesis of musig higher annotation performance is desired. 20%hisclassified
notes could likely result in unfounded or incorrades. A higher annotation performance can beiobth

by supervising a beginning fraction of the annotaiprocess. This means that some songs of thesorpu
should be revised by the user in order to adjudtrafine the classifiers in case errors were mates
involves a manual calibration process such as imstte previous paragraph; with the difference thi
time no new training instances are used. The ¢lasshen should be automatically adjusted on basis
corrections made by the user.
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11. Glossary of musical terms

e AccelerandoGradual increase of tempo

« Annotator: A classifier within the context of the transcri{fee. that annotates the score with labels)
is called an annotator.

* Appoyando (rest strokelClassical guitar technique of plucking a stringvidyich the finger leans on
the adjacent string after a string is struck

» Class:A class corresponds in the context of this project specific playing technique. A group of
classes can form training corpus by which a clessifan be trained.

e Classifier: Any machine learning algorithm that can be trait@dvith audio features to recognize
playing techniques within this context.

e CrescendoThe gradual increase of sound volume
« DescrescendoTl he opposite ofrescendpi.e. the gradual decrease of sound volume

e Expressive dimensionThe scale between two complementary playing teghes in which a
musician can vary

* Flanger: A sound technical effect by which a short delagegy of the source signal is added to the
source. The duration of this delay is modulatedicgt [37]

* Fret: The mechanism on the guitar fret board that enablgsitarist to determine the length of the
vibrating guitar string and thereby determining giteh that the struck string brings forth. Eacét fr
represents a semitone in the standard westermsyste

e Glissando:ltalian musical term that signifies the glide ofedione to another

* Label: Textual annotation outputted by the annotator thatresponds with a certain playing
technique

« MIDI file: a file format that contains a sequence of notemgawith several annotations such as
timing, pitch, and effects. MIDI files can be playen any computer with a sound card as well as
keyboards.

« Note:A graphical representation in a notation systera fiked pitch with a certain duration
« Performed signalThe signal that is obtained by recording a gytnfformance on the computer

* Playing dimension:All the dimensions in which a musician can varyttikamprise a musical
performance. This covers dimensions such as giokness, note duration but also all the expressive
dimensions.

e Playing mode= playing technique

* Playing technigueA concrete way of playing within an expressive ditsion by which the musician
can convey expression.

* Right hand playing positiorAn expressive dimension that is spanned by thgmdamodessul tasto
andsul ponticello

* Rubato:Slight deviations in tempo to achieve expressigene

« Sample:The values that comprise a wave signal. They sgmrtethe voltage of the wave signal at a
certain time frame

« Sampler:A software or hardware program that is capablel@fing samples at different frequencies.
With a programmed sequence specified in for exarapMIDI file and the appropriate samples, a
complete song can be synthesized.

e StaccatoA musical annotation which indicates that notesutdhbe played apart from each other

« Synthesized signalThe signal that is obtained by using by samplingfag tones using pitches
specified in a MIDI score that contains the samegsas in the performed signal.
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« Tirando (free stroke)Classical guitar technique which is the opposftagpoyandoWhen playing
with tirando, a string is struck from below without leaningtbe subsequent string.

e Tone:The realization of a note with any musical insteunin
e Vibrato: Musical playing style that is caused by slighthriation of tone pitch
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Appendix A: Pitch detection

A.1. Weighted Autocorrelation:

The autocorrelation function picks peaks in theetilomain to estimate the frequency, with the foilgwv
formula:

1 N-1

NZ x(N)x(n+7)

n

This measures the extent to which a signal coaslatth a shifted version of itself. Because aqahci

signal correlates strongly when the offset equadsfindamental period, we expect to find a peakiat
offset value.

or) =

A.2. Harmonic Product Spectrum (HPS) [43]:

The simplest method to implement, and does welhomide range of conditions. The HPS algorithm
measures the maximum coincidence for harmonicsrditpto equation (1) for each spectral frame,

i (1)
Y(w) = UIX(CJ)I

Y=ma{¥(@)} @

where R is the number of harmonics to be considered, aaduincy &) in the range of possible

fundamental frequencies. The resulting periodiaedation array,Y (<) , is searched for a maximum

value,Y , as is shown in equation (2).

A.3. Maximum Likelihood [43]:

Searches though a set of possible ideal spectralzoases the one which best matches the shape of th
input spectrum. The algorithm is based on a pregordd pitch resolution. Such a discrete pitch
estimation makes it less suitable for estimationthef pitch of a guitar, which can produce a cortirsi
frequency range. Besides that, it is less tolei@nbise and weak signals than HPS.

A.4. Subharmonic-to-harmonic ratio:

Sun describes in his article [44] an algorithm thiaiploys a logarithmic frequency scale and a spectr
shifting technique to obtain the amplitude summatid the harmonics and sub-harmonic, respectively.
Through comparing the amplitude ratio of sub hariceand harmonics with the pitch perception results
the pitch of normal speech as well as speech Ji#hnate pulse cycles (APC) can be determined. The
algorithm is optimized for speech signals, but sth@erform for musical signals as well. The aldumitis
compared to several other pitch determination @lyms, and outperformed 7 of them (HPS included).
Only the enhanced super resolution pitch determirabved to be better at pitch determination.
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Appendix B: Software tools

B.1. Matlab

Matlab is a computational environment that alloasyenumerical manipulation of matrices, functiod an
data plotting and algorithmic programming. Otherssgths of Matlab are that it enables design of
graphical interfaces and invocation of other pragrang languages like Java from within the scripting
language. Matlab incorporates extensive toolboxesdat{ng to finance, statistics, aerodynamics,
mechanics, etc.) that make it popular in variousrgiic fields.

B.2. WEKA toolkif

The WEKA toolkit is a collection of machine leargimlgorithms to solve data mining problems. It is
freely available open source software, and is fbeeeeasy adjustable and extendable with custom
machine learning algorithms. It allows for analygirclustering, classifying and attribute selectimn
large datasets. The toolkit is platform independmttause of its implementation in Java. A shorierev

of sound classification research reveals thatstheen used in many projects.

B.3. Matlab-XM

Matlab-XM is an unofficial toolbox written in Mattés scripting language that implemented all MPEG-7
low level audio descriptors and high level desaipschemes. It also offers functionality to outputlio
meta-data to XML descriptions. The toolbox is maiméd by Michael Casey from the University of
London.
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Appendix C: Class diagram
Exprimulator

The there are no actual objects present in Maikabih object-oriented languages, we tried to digghe
structure of the data storage via this method.

«structx Classes . «struct» Songs «struct»Classifier
+filename  String +filename Sting [ === =—- S+ name String
+markers Marker +name String

4clusters Cluster o
+<array> features Feature -
+<array><array> ft_vectors Double
+<array> include Boolear

+<array> validation Boolear
+<array> test Boolear

‘ 4 network

+sample_offset Integer
+sample_begir Integer

|
|
+fs Integer |
|
|
|
|
|
|
|
|
|
i
| +sample_end Integer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+name String
+<array> wavedate Double

+fs Integer

4annotators  Annotator

+<array> wavedate Double

4 markers Marker

+time_beat Double

4 <array> note_sequence Integer
+<array><array> nmai Double
+<array> pitct  Double

¢

«struct: Marker

4begir Integer
41end Integer

«struct»Feature

+name String

«structx Annotator

4 classifier_name String

+annotatior  String
4+ desirec_clustel String | ___ «structsNetwork (Matlab class)

4 ft

«structx Cluster +

77777777 4 cluster_name String
+classes Integer
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Appendix D: Songs with intentional
playing techniques

1. The Beatles — Let it be, starts with D3:

find myself in times of trouble
Mother Mary comes to me
Speaking words of wisdom Neutral
Let it be-e-e-e
find myself in times of trouble
Mother Mary comes to me
Speaking words of wisdom
Let it be-e-e-e

2. Billy Joel — Uptown girl, starts with A3:

Sul tasto

Sul ponticello

Uptown girl

Shes been living in her uptown world

| bet she never had a back street guy

| bet her mama never told her why

I'm gonna try for an uptown girl

Shes been living in her white bread world
As long as anyone with hot blood can

And now shes looking for a downtown man
Thats what | am

3. Elvis Presley — Are you lonesome tonight, starth\Bi2:

Are you lonesome tonight
do you miss me tonight
Are you sorry we drifted apart
Does your memory strag a bright sunny day
When | kissed you and called you sweetheart
Do the chairs in your parlor seem empty and bare
Do you gaze at your doorstapd picture me there
Is your heart filled with pairshall | come back again
Tell me dear, are you lonesome tonight
4. Michael row the boat ashore (Afro-American spirfjuatarts with D3:

Michael row the boat ashqreallelujah
Michael row the boat ashqreallelujah
Michael row the boat ashqreallelujah
Michael row the boat ashqreallelujah
5. Davis and Charles Mitchell — You are my sunshitexts with A2:

The other nite, dear,

As | lay sleeping

| dreamed | held you in my arms.
When | awoke, dear,

| was mistaken

And | hung my head and cried

You Are My Sunshine
My only sunshine.

You make me happy
When skies are grey
You'll never know, dear,
How much | love you.
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10.

So please don't take my sunshine away
Rolling stones — paint it black, starts with C3

| see ared door and | want it painted black

No colors anymore | want them to turn black

| see the girls walk by dressed in their summethels

I have to turn my head until my darkness goes

| see a line of cars and theyre all painted black

With flowers and my love both never to come back

| see people turn their heads and quickly look away
Like a new born baby it just happens every day

Ella Fitzgerald — Every time we say goodbye, staith E3

Everytime we say goodbye, | die a little,

Everytime we say goodbye, | wonder why a little,
Why the gods above me, who must be in the know.
Think so little of me, they allow you to go.

The Beatles — Michelle, starts with E3:

Michelle, ma belle.
These are words that go together well,
My Michelle.

Michelle, ma belle.
Sont les mots qui vont trés bien ensemble,
Tres bien ensemble.

I love you, | love you, | love you.

That's all | want to say.

Until | find a way

I will say the only words | know that
You'll understand.

The Beatles — Yesterday, starts with D3:

Yesterday,

All my troubles seemed so far away,

Now it looks as though they're here to stay,
Oh, | believe in yesterday.

Why she

Had to go | don't knoyshewouldn't say.

| said,

Something wrongnow | long for yesterday.
Neil Young — Heart of Gold (starts with C3):

| want to live,

| want to give

Ive been a miner for a heart of gold.

Its these expressions | never give

That keep me searching for a heart of gold
And Im getting old.

Keeps me searching for a heart of gold
And Im getting old.
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