
A method to leverage legacy
Oracle Forms applications in an SOA

Jeroen Versteeg BSc
June 17, 2008

Master thesis J. Versteeg Bsc

A method to leverage legacy
Oracle Forms applications in an SOA

NAME Jeroen Versteeg
STUDENT NUMBER 0015768

PLACE AND DATE Utrecht, June 17, 2008

INSTITUTE University of Twente, Enschede, The Netherlands
FACULTY School of Management and Governance (SMG)
PROGRAMME Business Information Technology (MBI)

COMPANY Oracle Nederland B.V., De Meern

COMMITTEE dr. M.L. Ponisio
1st university supervisor
Electrical Engineering, Mathematics and Computer
Science (EEMCS)

dr. M.E. Iacob
2nd university supervisor
School of Management and Governance (SMG)

J.W. Sieben MBA
1st company supervisor
Consulting Manager, Oracle Consulting

A method to leverage legacy Oracle Forms applications in an SOA

iv

Summary

In the last couple of years, Service Orientated Architecture (SOA) has gained a
lot of momentum as a promising concept for IT systems. Vendors and
organizations are adopting this technology in hope of creating more flexible and
maintainable IT systems. While SOA looks like a very desirable architecture,
most organizations do not start with a clean slate, but instead have made large
investments in older technology, which usually does not integrate well with
SOA. Many of these organizations face a dilemma with respect to the choice
between keeping these outdated systems or replacing them with something new.

According to market research, thousands of organizations are facing this
problem with respect to applications that have been developed using the Oracle
Forms application development framework. Now that Oracle is adopting SOA
for new products (and newer version of existing products), customers feel
pressure to adopt SOA, and need to decide what to do with existing Forms
applications.

While a lot of research has been done on replacing or re-engineering legacy
systems, these approaches are often infeasible because of the costs and risks
involved. Because these approaches have been developed using a technical
viewpoint and hence do not take into account the particular business problems
that need to be solved, they often cannot predict the actual business benefits the
approach will deliver.

The decision support method presented in this thesis takes a business-oriented
viewpoint and helps organizations find a solution which solves the business
problems it is actually facing because of the system. To this end, the method
directs participants to analyze why exactly the system does not fulfill a
particular business requirement, and to find a solution that solves this problem.
Since this research acknowledges that legacy applications should be abandoned
in the medium to long term, the emphasis lies on finding solutions that either
require little investments in the legacy system, or enable a gradual transition
towards a more modern application.

The method has been validated using a small scale scenario based on a real
case. While the findings show the method fills a gap in Oracle's Unified Method
and is valid, more research is necessary to create a mature and well-tested
method.

v

Acknowledgments

It is safe to say that this research would not have reached its goal without the
help and support of a number people. First and foremost, I would like to thank
my supervisors Maria Laura Ponisio and Maria Iacob for their feedback and
their patience. I very much enjoyed discussing the direction of my thesis with
them during our meetings in Enschede as well as via email. Maria Laura
especially gave me guidance on which steps to take next, and perhaps most
importantly, the encouragement to carry on when I needed it most.

Secondly, I would like to thank Remco Rosbergen and Jan-Willem Sieben, my
supervisors at Oracle, for facilitating my project and introducing me to the right
experts. In particular I would like to thank Jan Kettenis for taking the time to
familiarize me with the OUM and to help develop my method, which is the
primary contribution of this research.

Apart from the people who helped me directly with the research project and the
thesis, there are number people who supported me personally during the
project. A big thanks goes out to my family and friends, who supported me
throughout the project and helped me cope with the personal issues I was facing
at the time.

I would also like to acknowledge Gerben's patience with me during the time
that I could contribute little to our company Asystance. It is because of his
dedication and hard work that the company we started six years ago now
provides us both with full-time employment and rewarding work.

Last but certainly not least I want to express my gratitude to all the friends I
have made in Enschede, for making the six years I have spent there an
enjoyable and unforgettable episode of my life.

Jeroen Versteeg, June 14, 2008

A method to leverage legacy Oracle Forms applications in an SOA

Table of Contents
Chapter 1: Introduction...7

1.1 About this research...8
1.2 Thesis structure...11

Chapter 2: Introduction to Oracle Forms and SOA...13
2.1 Legacy systems in general..13
2.2 Oracle Forms...14
2.3 Service Oriented Architecture..15
2.4 Comparison..15

Chapter 3: Business Drivers for SOA Adoption...19
3.1 Introduction...19
3.2 Current business drivers and trends..20
3.3 Advantages inherent in SOA..26
3.4 Advantages compared to Oracle Forms...28
3.5 Summary of advantages...29

Chapter 4: Leveraging Approaches..31
4.1 Introduction...31
4.2 Classification of modernization approaches..32
4.3 Decisional framework..35
4.4 Leveraging Oracle Forms..36
4.5 Replacing Oracle Forms..40
4.6 Existing methodologies...42

Chapter 5: Requirements...47
5.1 Legacy system quality...47
5.2 SOA maturity...51

Chapter 6: Method...53
6.1 Oracle Unified Method..53
6.2 Method description..55

Chapter 7: Validation...68
7.1 Scenario..68
7.2 Evaluation..74

Chapter 8: Conclusions and Recommendations...77
8.1 Answers to research questions...77
8.2 Open questions / future research..80
8.3 Recommendations..81

Appendix A: Introduction to Oracle Forms...i
Appendix B: Introduction to SOA..iv
Appendix C: Oracle SOA Maturity Model..vii
Appendix D: Oracle SOA Maturity Assessment Questionnaire...x
Bibliography..xiv

vi

Introduction

CHAPTER 1: INTRODUCTION

In recent years, academia and commercial IT vendors have both described Service Oriented
Architecture (SOA) as a desirable architecture for enterprise information systems (EIS) (see
[Kontogiannis 2007], [Papazoglou 2005]). Promises of automatically configuring Business to
Businesses (B2B) applications, lower maintenance costs, higher business agility and other radical
improvements are widely spread, creating a sense of hype around the concept. Like many other
technologies before it, SOA has raised great expectations about how it will revolutionize the
enterprise IT landscape.

Academics and IT vendors agree that SOA is the best architecture to support current business
drivers (see [Kontogiannis 2007]). If an organization would decide to set up its enterprise
architecture from scratch, it could surely be wise to invest in SOA technology. The same holds true
for investments in new applications, which should be “SOA ready”, even if the organization's
underlying enterprise IT architecture is not yet.

If we can learn a lesson from previous hypes surrounding IT technology, we see that once the dust
that was stirred up by the hype settles, expectations start to become more realistic, and pioneers
report the real benefits of that technology.

The SOA movement is just in this phase at the moment of writing. While the various (and
numerous) standards are still evolving, and research on the topic is continuing, vendors are already
selling mature products, and some early adopters are already starting to reap the benefits of the new
technology, while others face disappointing results [InfoWorld 2007].

The reality is that most enterprises already have large investments in applications designed around
“old” architecture principles. These systems are called legacy systems because they are “technically
obsolete mission critical elements of an organization's infrastructure – as they form the core of
larger enterprises' business processes – but are too frail to modify and too important to discard.”
[Papazoglou 2006]

7

Introduction

Organizations want to have the best of both worlds: reaping the benefits of an SOA, while keeping
long-term investments in legacy systems (which are mostly “well tested and tuned, and encapsulate
considerable business expertise“ [Cormella-Dorda 2000] because of these investments).
Unfortunately, there is a true generation gap between not only the architectures, but also between
the technologies used in legacy and state-of-the-art applications. So is it possible to bridge the gap
somehow?

1.1 About this research

1.1.1 Problem statement
One of the companies facing this challenge is Oracle Corporation, which has recently made the
strategic decision to adopt SOA standards for its entire product suite. The company already offers a
comprehensive suite of SOA middleware products and is committed to making all of its
applications SOA compatible in the near future.

Oracle Forms and SOA are distinct technologies (see chapter 2), and no clear migration path is
available to automatically move from Forms to SOA and Oracle's new development frameworks
(such as the Java-based Application Development Framework1).

According to a recent report by Gartner ([Gartner 2007]), the move away from Forms can be
delayed but not avoided entirely. Organizations should already start migrating towards modern
application development technologies like Java or .NET, because Forms is “ill-positioned for next
generation AD [application development] challenges”. In conclusion, the “thousands" of
applications built on Oracle Forms have to be migrated sooner or later.

But how can organizations “migrate” legacy systems to newer technology? According to Bisbal et
al., “given the bewildering array of LISs [Legacy Information Systems] in operation and the
problems they pose, it seems unlikely that a single generic migration method would be suitable for
all systems” [Bisbal 1999].

Papazoglou et al. elaborate on their definition of “legacy” (quoted above) by stating: “Although
there is strong corporate desire to replace legacy systems with modern technologies, the desire to
replace these legacy systems is offset by real world constraints, such as massive long-term
accumulated investments in the legacy systems and a significant loss of knowledge about the inner

1 See http://www.oracle.com/technology/products/adf/index.html

8

Many of its customers have invested heavily in Oracle Forms, an older
development framework for enterprise applications. These organizations now have
large, monolithic applications based on legacy technology. While Oracle promises
to support the technology for many years to come [ORACLE 2005], many business
will find competitive pressure will force them to modernize their legacy IT
applications to leverage the benefits that an SOA can offer long before vendor
support for the current systems ends. These organizations need guidelines on how
best to make the switch from old to new.

About this research

workings of these systems. The value of business logic in the legacy systems combined with the
huge investments companies have already made in the development of their existing systems, are a
powerful incentive to leverage these systems into modern business initiatives rather than replace
them or recreate them with modern technologies.” [Papazoglou 2006, p. 468]

1.1.2 Goal of this research
This thesis is based on a prescriptive design research. The goal of this research is to develop a
method that helps in leveraging legacy applications built on Forms in an SOA. In this context,
“leveraging” means any approach that delivers one or more of the benefits of SOA while not
completely abandoning the investments that have been made in the legacy application(s). This is not
to be confused with “maintenance”, which is usually concerned with keeping a system running or
correcting faults, without enhancing it to add value (see the definition on maintenance in section
4.1.1).

There are two reasons why SOA is the target architecture in the context of this research. The first is
Oracle's choice to adopt SOA, which means that customers who wish to keep using Oracle's
applications and middleware products also need to adopt SOA. The second reason is that a lot of
organizations today wish to adopt SOA anyway. This research does not concern itself with the
rationale behind this choice but instead accepts SOA as part of its context.

1.1.3 Research questions
The main research question is:

How can existing legacy IT applications be leveraged in a Service-Oriented Architecture,
and which factors influence the choice between possible alternatives?

The first part of the question is vague and abstract because there are many fundamentally different
ways to leverage legacy IT applications. Additionally, we have to find out exactly which
alternatives are possible.

The second part acknowledges that some factors will guide or even dictate the choice between
possible alternatives. Brooke and Ramage ([Brooke 2001]) state that business strategy must lead the
evaluation of legacy systems. This project recognizes the need to take the business driver for change
into account, and investigates the following factors:

● the organization's business driver to leverage the legacy application in an SOA
● the quality of the legacy application, and
● the organization's maturity with respect to the service-oriented businesses model and SOA

technology

In order to be able to answer the main research question, it has to be split into sub questions. The
answers to these questions will be compiled into a method (see [Hevner 2004]), which is the main
contribution of this thesis (see section 1.1.5).

● Which business drivers are better supported by SOA than by legacy applications, and why?
● How can legacy IT applications be leveraged in an SOA to better support business drivers?

9

Introduction

● Which requirements do leveraging approaches pose on an organization's SOA maturity and
the legacy system's quality?

● How can an organization's SOA maturity be measured?
● Which quality attributes of legacy systems are relevant with respect to this thesis?

○ How can these quality attributes be measured?

1.1.4 Scope
This research focuses on a particular kind of legacy, namely monolithic applications built around
Oracle Forms, a framework for building enterprise applications based on proprietary Oracle
technology. This focus will also increase the utility of the research, since generic approaches have
already been covered in the literature (e.g. [Lewis 2006], [Cormella-Dorda 2000], [Bergey 2001],
[Lewis 2005], [Brooke 2001]), whereas the application of these general concepts in detail is
lacking.

1.1.5 Contribution
The primary goal of the research project is to create a method that helps decision makers deal with
the challenge mentioned above. The method takes an organization's business driver as a starting
point and provides a recommendation on how to leverage the legacy application to meet business
requirements.

Since Oracle Forms applications should be abandoned eventually ([Gartner 2007]), the alternatives
for leveraging a legacy application considered in this thesis are short to medium term solutions
aimed at fulfilling one particular business requirement.

1.1.6 Research approach
To answer the first research question, SOA and “legacy” (in particular Forms) need to be compared
first. The next step is to identify which business drivers organizations currently face. With this
knowledge in place, an answer to the first research question can be given.

To answer the second question, a literature study will be conducted to study and integrate
knowledge on the topics of legacy system modernization and migration. The gathered knowledge
will be extended and / or specialized by conducting interviews with Oracle experts in the
Netherlands to integrate specialized knowledge on modernizing Oracle Forms applications.

After investigating which options are available to leverage Forms applications, interviews with
Oracle experts will be conducted to identify the requirements they pose and research how these can
be specified and measured.

Having now gathered all the necessary information, we develop the method described above.

10

About this research

Figure 1.1 presents the research model for this approach.

1.1.7 Acceptance criteria and validation
The goal of this research is “to develop a method that helps in leveraging legacy applications built
on Forms in an SOA”. The method also has to take into account the “business driver for change”.
Together with the general guidelines for design science described in [Hevner 2004], these
requirements form the basis of the validation criteria:

● Innovativeness: The method “must be innovative, solving a heretofore unsolved problem or
solving a known problem in a more effective or efficient manner.” [Hevner 2004]

● Applicability: The method needs to be applicable and complete. No steps or considerations
relevant to applying the method should be ambiguous or missing.

● Utility: The method must be useful to Oracle and its customers. This criterion can be split
into two sub-criteria.
○ The method has to fit both Oracle's existing methodologies and business strategy.
○ The method has to help the subject organization reach a decision about its short to

medium term strategy regarding the legacy application.

1.2 Thesis structure
The remainder of the thesis is structured as follows:

Chapter 2 provides a detailed discourse of both service oriented and legacy architectures and
compares the two in order to identify the key features that enable SOA to better support current
business drivers as discussed in the third chapter.

Chapter 3 presents the business benefits to adopt SOA, based on a literature study. First, a list of
common business drivers will be presented, followed by a discussion on how SOA is better
equipped to support these drivers than legacy architectures.

Chapter 4 presents an overview of the literature about approaches and techniques that can be used
to leverage or migrate legacy applications. The list of approaches is extended with those described
and employed by Oracle specialists.

Chapter 5 discusses which requirements the approaches place on the legacy application and the
organization, and which measurements can be made to evaluate which approaches are feasible.

11

Figure 1.1: Research model

Introduction

Chapter 6 first presents related work on decision support methods found in the literature. The
second section presents the method, which forms the main contribution of this thesis.

Chapter 7 contains the validation of the method based on a scenario.

Chapter 8 presents the conclusions and recommendations for Oracle and provides pointers for
further research.

Appendix A described the Oracle Forms application development framework in detail.

Appendix B provides a primer for the technologies and terminology behind the “Service Oriented
Architecture” (SOA) concept, and compares SOA architecture to (common) legacy architectures.

Appendix C lists the levels of Oracle's SOA maturity model and provides brief descriptions of
each.

12

Introduction to Oracle Forms and SOA

CHAPTER 2: INTRODUCTION TO
ORACLE FORMS AND SOA

This chapter compares Oracle Forms to SOA technology and identifies key differences that make
SOA the more desirable architecture.

2.1 Legacy systems in general

2.1.1 Definition
The term “legacy system” can be used for systems that are no longer supported (e.g. because the
hardware they run on is no longer manufactured, or because it is very difficult to find skilled
developers because the technology has become outdated), but this definition does not consider any
implications (e.g. maintenance costs are high, or the system is resistant to change). In this thesis,
Papazoglou's description of legacy is used, which was introduced in the first chapter and is
reproduced here for convenience.

Papazoglou goes on to state that “[t]he value of business logic in the legacy systems combined with
the huge investments companies have already made in the development of their existing systems,
are a powerful incentive to leverage these systems into modern business initiatives rather than
replace them or recreate them with modern technologies.”

13

Legacy systems can be defined as systems which are “technically obsolete
mission critical elements of an organization's infrastructure – as they form
the core of larger enterprises' business processes – but are too frail to modify
and too important to discard.” [Papazoglou 2006]

Introduction to Oracle Forms and SOA

This is exactly the situation that organizations with large systems built on Oracle Forms face. While
the technology is still supported (and will be for some time, according to Oracle2), the
characteristics of the framework make these systems difficult to change.

2.1.2 Architectures
Architectures of legacy systems often follow a single- or two-tier approach. A tier is a logical layer
of a system. The idea behind this is that these layers operate independently of another and expose
services to upper layers and consume services offered by lower layers (similar to the layers of the
OSI networking model). Dividing applications into multiple tiers is considered a good practice,
since it reduces coupling, thereby making it easier to change or replace one part of a system with
little or no effect to the other parts (see appendix A for more). The notion of “tiered architectures”
also helps to compare different architectures.

A two-tiered architecture usually consists of one tier that includes the presentation logic (which
creates user interfaces) as well as the data processing logic, and a separate tier that houses the
database, which is accessible through the network. A single-tier architecture combines these two
and usually runs on mainframes. The main characteristic of these architectures is the low cohesion
of the application's code. This makes them very time-consuming and difficult to maintain, since
local changes can have global effects, requiring extensive analysis of the code before making
changes and extensive testing after the changes have been made.

The client applications in two-tiered architectures are often called “fat clients” because they provide
rich functionality by handling input validation and data processing locally, in contrast to “thin
clients” which require servers to perform these tasks for them.

2.1.3 Problems
Most legacy architectures have several major drawbacks, as has been thoroughly discussed in the
literature ([Britton 2004], [Papazoglou 2006], [Alonso 2004]). The most important problems are
monolithic development and tight coupling, which both make maintenance complex and time-
consuming, and use of proprietary standards, which hinders system integration and requires
specialized development skills.

2.2 Oracle Forms
Oracle Forms is an application development framework for enterprise applications. It allows
developers to quickly create applications using the developer suite. Applications built on Oracle
Forms technology3 vary greatly in size, from applications with only a few dozen “screens” to
enormous systems consisting of several hundreds. Please refer to appendix A for a more detailed
introduction to Oracle Forms.

Oracle Forms applications fit the general description of legacy systems quite well. They also fit the
definition, since their architecture and other technical characteristics often make them difficult to

2 See http://www.oracle.com/technology/products/forms/pdf/10g/ToolsSOD.pdf
3 See http://www.oracle.com/tools/oracle_forms.html

14

Oracle Forms

modify. However, this is not necessarily true for every application. The maturity of the framework
and the development tools do make experienced developers very productive.

2.3 Service Oriented Architecture
The Open Group defines SOA as “an architectural style that supports service orientation. Service
orientation is a way of thinking in terms of services and service-based development and the
outcomes of services. A service:

● Is a logical representation of a repeatable business activity that has a specified outcome
(e.g., check customer credit; provide weather data, consolidate drilling reports)

● Is self-contained
● May be composed of other services
● Is a 'black box' to consumers of the service” [OPENGROUP 2006]

The term SOA is also used to refer to a set of standards, including SOAP, WSDL, UDDI, BPEL and
others, which describe how services can be described, invoked, published and integrated.

Appendix B contains a detailed description of SOA.

2.4 Comparison
To understand the key differences between Oracle Forms and SOA, we will compare different
aspects of each. We will compare commonly used technology, the division of the application among
tiers and integration technology.

2.4.1 Standardization
For the last decade, the programming language of choice for enterprise application development is
Java. The use of the language is so widespread that one could call it an industry standard. Sun, the
creator of the language, has also recently opened the specifications and source code for the
language, a move which will further increase compatibility between Java platforms.

However, in an SOA, which programming language is used to implement services shouldn't matter,
since services can be considered black boxes that only have to expose an API using standards. So
although the standardization of Java is good for lowering maintenance costs and other reasons, from
an architecture point of view, it doesn't matter in which languages the services are implemented,
and developers are free to chose different languages and even platforms (hardware, operating
systems) as long as the APIs of the services use standards.

The situation is completely different in legacy applications. Each application can use different
technologies, and integration and maintenance efforts have to consider these differences. The
problem is even worse when the technology is proprietary, such as Oracle's PL/SQL.

The bottom line is that SOA is based on open standards, where the Oracle Forms framework relies
on proprietary technology and standards. The former makes development easier and less time-

15

Introduction to Oracle Forms and SOA

consuming, since products from different vendors (should) work together and developers need no
knowledge of proprietary standards and technology.

2.4.2 Separation of concerns
A good practice in software engineering and systems architecture is separation of concerns, which
means that pieces of code that deal with closely related aspects should be isolated (or separated)
from code that deals with other aspects. This separation is important because it helps to keep
cohesion high and coupling low, which in turn makes modifications easier to carry out (see also
section 2.1.2).

While separation of concerns has always been a best practice, the technology, architecture and
standards used in many legacy applications do not enforce or even encourage strong separation of
concerns.

Separation of concerns is an important aspect in SOA. Multi-tier architectures, object and service
orientation, and modern development practices all advocate and encourage separation of concerns
(although they do not force it). This makes it difficult to migrate legacy systems to SOA, since the
architectures usually are fundamentally different.

This section discusses how separation of concerns is generally implemented and advocated in
legacy applications and SOA.

Difference between application and business logic
Application and business logic are two similar concepts. In this thesis, application logic will refer to
logic that is technical in nature and deals with processing information, while business logic is
abstract and is concerned with codifying business policies and rules.

Examples of application logic include code that deals with converting one currency to another, or
code that formats a machine-readable message to a human-readable form. Code that decides
whether a purchase order needs management approval based on the total price reflects a business
rule and hence is considered business logic.

However, due to the vague definitions, the coverage of both types of logic does overlap. The
distinction is an important one to make though, since each type of logic is (usually) dealt with in
different parts of an application in an SOA, where in most legacy systems, the distinction is not
made, and both types of logic reside in the same places.

Application logic
In an SOA, application logic should be implemented in a separate “middle tier” (which lies between
the data tier and the presentation tier) and decomposed into and exposed as services.

Legacy applications usually don't have a decomposition of logic into independent pieces that are
small enough to match the granularity of services in an SOA. As discussed in appendix A, the
applications also combine different kinds of logic (e.g. business and application logic) in the same

16

Comparison

pieces of code. This makes it even harder to reuse or change parts of these applications, since they
are not isolated from the rest of the application.

To make functionality reusable, legacy application developers often make use of stored procedures,
which are pieces of logic exposed through a function and embedded in the database. The advantage
of using stored procedures is that logic can be reused and exposed using a strict API. Stored
procedures can be wrapped and exposed as web services, which makes it easy to make the logic
reusable in an SOA.

Businesses logic
In legacy applications, business rules are usually embedded in the code (and possibly stored
procedures), together with the application and presentation logic. Depending of the definition of
business logic, even database constraints (like foreign key constraints) might be considered business
logic.

Just like application logic, business logic should be handled as a separate concern in an SOA. One
of the obvious locations for business logic is a BPEL model, but there are alternatives, like
(proprietary) rules engines (that expose their functionality as services) and database constraints.

The main point is that while businesses logic can be found in every layer of both architectures, it is
usually considered a best-practice to manage it as a separate concern. This is usually the case in
SOA applications, while in legacy systems, it is usually embedded in the application code and
interwoven with the rest of the logic (e.g. presentation logic). Additionally, business logic is
modeled explicitly in SOAs (see section 3.3.5), whereas legacy systems often contain business logic
distributed among the application or depend on users knowing which actions to take and in which
order.

Presentation logic
Legacy applications often use proprietary and platform-dependent interfacing technology, and,
again, the logic is integrated with the rest of the logic, as described above. The technology is also
usually designed for one particular client, for example desktop computers running Microsoft
Windows or “dumb terminals” connected to mainframe systems.

In an SOA, the presentation tier is separated from the other tiers and able to create different
interfaces for different clients. Platform-independent technologies like XHTML, CSS and XSLT are
employed to improve portability. Of course, platform-specific and proprietary technology can still
be used, but since the presentation tier is independent of the others, a new channel can be added
quickly.

This makes it possible to use two user interfaces without duplicating the underlying application and
business logic. For example, one interface could be designed for employees and provide all the
available functionality, while a simpler and more user-friendly interface is provided to end
customers.

17

Introduction to Oracle Forms and SOA

As should be clear from the above discussion, separation of concerns is often lacking in legacy
applications (which in turn might be one of the reason an application becomes legacy in the first
place). SOA, on the other hand, enables and encourages separation of concerns.

2.4.3 Integration technology
Legacy system integration (for EAI or B2B efforts) can be achieved using different techniques,
depending on the systems' (common) technology. One of the most common approaches for
interfacing legacy systems is to directly access that system's database by running SQL queries on it.
Another is to statically link systems' machine code at compile-time, which makes it impossible to
change any aspect of the integration at runtime. Both techniques create tightly coupled systems and
dependencies, which are considered bad practices because they make systems resistant to change.

A lot of alternatives have been developed (e.g. RPC, COM, CORBA - see [Britton 2004] and
[Alonso 2004]) in the form of middleware solutions to solve these problems, but none has gained
enough momentum to be widely deployed and used.

This is where web services promise fundamental improvements by providing interfacing technology
that is based on mature and platform-independent technologies and open standards (see appendix
B).

2.4.4 Summary
One of the design principles of SOA is clear separation of concerns. Applications are divided
among multiple tiers, each of which are independent of one another. This makes the resulting
architecture loosely coupled, and thus more flexible and easy to change when compared to most
legacy systems, which often have almost the exact opposite properties. This means it would be
beneficial if the method developed in this thesis helped in enforcing separation of concerns.

Legacy applications also mostly rely on proprietary and platform-dependent technologies, which
creates a highly heterogeneous ecosystem that makes integration efforts difficult and costly. Most
legacy systems also degenerate over time because the use of bad practices accumulates. This also
negatively affects maintainability.

Table 2.1 provides a summary of the key differences between legacy and SOA based systems. It
should be clear that the large differences make migrating legacy systems to SOA a difficult (and
expensive) undertaking.

Legacy (generalized) SOA
Standardization Proprietary technology and

standards
Open standards

Architecture Two-tiered; little emphasis on
separation of concerns

Multi-tiered; separation of
concerns strongly encouraged

Integration Static bindings and point-to-
point links create tightly
coupled systems

Dynamic bindings and use of
integration middleware allows
loosely coupled systems

Table 2.1: Overview of differences between legacy and SOA based systems

18

Business Drivers for SOA Adoption

CHAPTER 3: BUSINESS DRIVERS FOR
SOA ADOPTION

If we want to understand why SOA is considered the optimal IT architecture for today's enterprises
([Kontogiannis 2007]), we have to take a look at the business drivers it supports, and why it
supports these better than previous architectures. This chapter will answer both these questions. The
first part of this chapter provides an overview of current business drivers and opportunities
organizations face. Subsequently, the reasons why SOA supports these better are discussed, based
on high-level advantages of SOA over previous architectures.

3.1 Introduction
As described in the introduction (see section 1.1.3), the business driver is considered the starting
point or primary input for the method developed for this thesis. However, interviews with Oracle
experts have shown that, while one or more particular business drivers are the starting point for
most organizations to consider SOA adoption, it is only indirectly relevant to the choice between
leveraging alternatives for the legacy system. What is directly relevant for this choice is the way in
which the current system does not sufficiently support the business driver(s).

If we look at it this way, we see that particular business drivers pose different requirements on
organizations' IT systems. It is not the driver itself that directly influences the choice between
leveraging alternatives, but rather the requirement(s) this driver poses on the information systems.
To make this distinction explicit, we can differentiate between business drivers and IT drivers.

This change in perspective with regard to the method's input has been taken into account in the
method as presented in chapter 6.

The next section provides an overview of common business drivers. Since this research assumes
SOA adoption as a given, justifying the rationale for SOA adoption lies outside of the scope of this

19

Business Drivers for SOA Adoption

research. Consequently, the purpose of this discussion is not to promote SOA adoption or to make
the case for SOA, but rather to describe part of the context for this research.

Sections 3.3 and 3.4 evaluate how the requirements on IT systems identified in section 3.2 are
supported by SOA. This leads to a set of advantages of SOA over legacy systems in general and
Oracle Forms applications in particular, which is presented in section 3.5. It is this set that is used as
input for the method as described in chapter 6.

Since the set of SOA advantages is derived from a non-comprehensive list of businesses drivers, we
cannot be sure whether the set of advantages is comprehensive. However, by covering the most
common business drivers and by validating the set of advantages in interviews with Oracle's expert
business consultants, the general applicability of the method can be guaranteed. By ensuring the
method's extendability, its usefulness can be further improved. Please refer to section 8.2 for a
discussion of the final method's applicability and shortcomings.

3.2 Current business drivers and trends
As stated in the introduction (chapter 1), SOA is considered the de-facto standard for enterprise
applications [Kontogiannis 2007]. Unfortunately, the academic literature is not as verbose about
why this is so. It does list numerous technical advantages over previous (legacy) architectures (like
reusability of code, separation of concerns, etc) [Alonso 2004], but it does not describe the necessity
for these features from a business point-of-view, nor does it present solid empirical evidence to
prove any of the claimed advantages are actually achieved. To paraphrase using the terminology of
“Solution Selling” ([Bosworth 1994]), the literature does delve into the features and advantages of
SOAs, but the discussion and proof of their benefits is lacking.

The industry literature does discuss benefits of adopting SOA. However, we have to be skeptical
when investigating the claims, since the majority of the literature is made up of vendors' marketing
messages wrapped in commercial white papers and industry magazines, both of which lack a
neutral stance.

3.2.1 Frameworks
To take inventory of aspects that are important to organizations, this section investigates two
frameworks to compile a list of the most common business drivers. This list is used in sections 3.3
and 3.4 to show how SOA supposedly supports these drivers better than other architectures.

Strategic alignment
According to Henderson and Venkatraman's model of strategic alignment ([Henderson 1993], see
figure 3.1), strategic fit (“the need for any business strategy to address both external and internal
domains”) is critical for maximizing financial performance. The authors define an organization's
external domain as “the business arena in which the firm competes”, while its internal domain “is
concerned with choices pertaining to the logic of the administrative structure (functional or
divisional or matrix organization) and the specific rationale for the design and redesign of critical
business processes”.

20

Current business drivers and trends

On of the areas of the strategic alignment model that can be directly supported by IT architecture is
systemic competencies, found in the I/T strategy quadrant of the model. Systemic competencies are
“those attributes of I/T strategy (for example, system reliability, cost-performance levels,
interconnectivity, flexibility) that could contribute positively to the creation of new business
strategies or better support of existing business strategy”.

Generic business strategies: Cost Leadership and Differentiation
To remain competitive in an increasingly globalized and fast-changing market, Ward and Peppard
([Ward 2003]) propose organizations have to adopt one of two generic business strategies (or both):
the low-cost strategy and the differentiation strategy. However, “the majority of organizations have
to follow a differentiation strategy, since, theoretically at least, only one company can have cost
leadership of a product or service at any one time.” [Ward 2003] The authors admit that these two
options do not cover all available options and leave questions as to how these goals can be achieved.

They cite Treacy and Wiersma, who suggest that a significant range of the possibilities to achieve
market leadership (using differentiation) can be represented by three paths (see figure 3.2):

1. “Operational Excellence—enabling products and services to be obtained reliably, easily and
cost-effectively by customers. This implies a focus on business processes to outperform
others and can deliver both low costs and consistent quality of customer satisfaction.

21

Figure 3.1: Strategic Alignment Model (source: [Henderson 1993])

Business Drivers for SOA Adoption

2. Customer Intimacy—targeting markets very precisely and tailoring products and services to
the needs of particular customer groups. The purpose here is not just to 'satisfy' but to
'please' customers by understanding their needs and meeting them on every occasion.

3. Product Leadership—continuing product innovation meeting customers' needs. This implies
not only creativity in developing new products and enhancing existing ones, but also astute
market knowledge to ensure that they sell. The strategy involves delivering a continuous
stream of new products and/or services, where what is new is valued by the customers.”
[Ward 2003]

Regardless of an organization's businesses strategy, financial drivers are always important and
should be considered alongside any of the particular differentiation strategies mentioned above.

This section discusses which requirements these generic business strategies (including financial
drivers) place on information systems. The focus lies on Operational Excellence and Financial
drivers, since these two can be best supported by well-aligned IT.

3.2.2 Operational Excellence

From functional divisions to process orientation
For a long time now, organizations have been structured along functional lines, resulting in
departments which group related tasks and the required expertise in order to gain efficiency. This
view is challenged by the business process re-engineering movement, which seeks to focus on
horizontal business processes as the basis for organizational design. “In short, processes are
becoming the building blocks of organizations and seek to capture natural workflows.” [Ward 2003]
See figure 3.3 for a conceptual example.

Historically, departments have created information systems (often called “silos”) that strictly follow
the departments' boundaries and which often duplicate information required by different
departments [Britton 2004].

22

Figure 3.2: Dimensions of competency
(source: [Ward 2003])

Current business drivers and trends

Process orientation requires workflows that span different departments to be supported by different
information systems. Hence, integration between each of these systems' data and functionality
(termed Enterprise Application Integration or EAI) becomes a prerequisite. In light of the strategic
alignment model, this relates to operational integration, “the link between organizational
infrastructure and processes and I/S infrastructure and processes.” [Henderson 1993]

In terms of Teacy and Wiersma's 'paths to market leadership', process orientation mostly supports
Operational Excellence, but it can also support the other two paths.

Business Process Re-engineering and Business Process Management
To create efficient and effective business processes, organizations employ business process re-
engineering (BPR) and business process management (BPM). BPR is defined by Hammer and
Champy as “the fundamental rethinking and radical redesign of business processes to achieve
dramatic improvements in critical contemporary measures of performance, such as cost, quality,
service, and speed.” [Hammer 1993] BPM is often seen as the successor to BPR and focuses more
on continuous evolution of processes instead of one-time radical changes and information
technology support for processes.

Ward and Peppard state that it is not clear whether the role of information technology in BPR is the
driver, an enabler or one of the means of implementation. They suggest that to answer this question,
one first has to ask these two questions:

● How can business processes be transformed using IT (based on a full understanding of the
capabilities of IT)?

● How can IT support business processes?

23

Figure 3.3: Business process spanning multiple functional departments
(source: www.gemba.com)

Business Drivers for SOA Adoption

Without answering these questions in detail, we can say that, ideally, IT should suit BPR and BPM
by supporting both aspects.

Business agility through componentization and service orientation
The environment businesses operate in is constantly changing. “Mergers, acquisitions, and the
introduction of new technologies are examples of drivers for change in business environments.
Business agility refers to the ability of an enterprise to thrive in a continuously changing and
unpredictable environment.” [Elfatatry 2007] As environments change, businesses must reevaluate
their core competences and create new competitive advantages.

Henderson and Venkatraman state that an organizations strategic fit is dynamic “The choices made
by one business enterprise, or firm (if fundamentally strategic), will over time evoke imitative
actions, which necessitate subsequent responses.” [Henderson 1993] The systemic competencies are
an important aspect of I/T strategy when dealing with change and flexibility.

In order to be able to change fast, organizations need to be agile. Cherbakov et al. have recognized
that “corporations are naturally becoming componentized.” [Cherbakov 2005] This means that
instead of dividing business into business units and departments, they are divided into finer grained
parts, called business components. Each one corresponds to one business function. This enables
businesses to rapidly deconstruct and reconstruct to create new value nets on-demand. “In the on
demand environment, the component-based firm links its components efficiently and seamlessly
both internally and across the firm’s boundaries with best-of-breed components provided by
external partners.” [Cherbakov 2005]

This seamless integration is achieved through service orientation. Business components provide on
ore more unique services for consumption by other components. Interactions between components
are governed by contracts that specify costs, service levels and other agreements.

According to Cherbakov et al., this creates on-demand businesses that can adapt to changing needs
quickly. This is necessary to decrease the time-to-market for new products or services, which serves
the Operational Excellence and Product Leadership paths.

Componentization businesses are ideally supported by componentized information systems which
can be flexibly and easily integrated.

e-Business
Papazoglou and Ribbers define e-Business as “the application of information and communication
technologies to conducting business” [Papazoglou 2006]. According to the authors, e-Business can
lead to performance increases and cost reductions in various core business processes, among others:

● collaborative product development
● collaborative planning, forecasting and replenishment
● procurement order management
● operations and logistics

24

Current business drivers and trends

Papazoglou and Ribbers list eight requirements for e-Business, six of which are organizational
requirements and two involve IT. These latter two are “align business organizations with a flexible
IT architecture” and “establish ubiquity within standards”, both of which are well supported by
SOA.

3.2.3 Customer Intimacy
Providing above-average service to customers requires efficient business processes (see above) and
integration of information systems that store different data.

Another way of improving customer intimacy is to provide self-service applications to customers.
These can be used around the clock and from anywhere in the world, offering flexibility and
freedom. This enables customers to quickly file common requests or view personalized information,
for example. Not only does this increase customer satisfaction, it also helps to relieve the
organization's back-office workload, thereby cutting costs.

Self-service applications are ideally web-enabled and provide user-friendly interfaces.

3.2.4 Product Leadership
One way information systems can help to achieve Product Leadership is to support a low time-to-
market for products or services. This does not just mean being the first to introduce a new product,
but especially catching up with competitors (who enjoy the luxury of a head start). Likewise, short
time-to-market is not only important for new products or services, but also for implementing
changes to existing ones.

Intuitively, information systems that enable fast implementations of new functionality or
modifications to existing functionality can best support a low time-to-market strategy.

3.2.5 Financial performance
Whatever the environment or corporate strategy, reducing costs is always a top priority, especially
for commercial organizations. This is not only true for organizations that adopt a 'Cost Leadership'
strategy and so require lowest possible cost levels across the organization. All other organizations
benefit from lowering costs to increase profit and shareholder value, regardless of their business
strategies.

Studies report 60 - 90% of corporate IT budgets are spent on maintaining legacy applications
[Bennett 1999], so more efficient maintenance is a prime opportunity for cost reduction in IT
budgets. Other opportunities are lower costs for development of new systems and user training. Of
course, organizations can not only decrease costs on the IT budget itself, but the right IT can also
help to cut costs in other areas, for example through automation.

Some of the approaches mentioned above, like e-Business and self-service customer applications,
also cut costs, although this is more a side-effect or secondary goal and not the primary reason to
adopt these approaches. Still, they contribute indirectly to cost reductions.

25

Business Drivers for SOA Adoption

As first mentioned in section 3.2.1, Henderson and Venkatraman state that strategic fit is critical for
financial performance.

3.3 Advantages inherent in SOA
This section discusses which features inherent in SOA make it a very desirable architecture for
modern organizations by showing how it supports the requirements discussed in the previous
section.

3.3.1 Strategic alignment
The strategic alignment model introduced in section 3.2.1 acknowledges systemic competencies as
an important area of IT strategy. As example competencies, Henderson and Venkatraman list
“system reliability, cost-performance levels, interconnectivity [and] flexibility”, each of which is
promised to be well supported by SOA. The next sections describe in more detail how these
attributes are supported by SOA.

3.3.2 Integration and standardization
As discussed in the previous section, integration between applications is important for nearly every
business strategy. Most organizations have to deal with a collection of various information systems,
which can reside inside or outside of the organization. Reliable and flexible integration between
these systems is indispensable to create competitive advantages, high levels of process automation
and high levels of customer service, among other advantages.

The heterogeneity of these systems has historically made integration complex and expensive. SOA
is built on a wide range of open standards have been designed with flexibility in mind. IT vendors
acknowledge that integration has been a major problem with previous products because of the lack
of flexibility and standardization, and now are widely supporting and developing these new
standards.

Whether true out-of-the-box interoperability will be achieved remains to be seen, as vendors have
historically deviated from standards to differentiate themselves from competitors. On the other
hand, customers are now demanding standards compliance because of the problems that arise from
heterogeneity in information systems.

3.3.3 Flexible architecture
Flexibility of information systems is another desired attribute that serves a number of business
strategies. The most important one is business agility, the ability to change fast in order to meet
changing demands. According to Gartner analysts Roy Schulte, IT systems have historically been
“built to last” instead of being “built to change”.

SOA aims to address this problem by allowing systems to be componentized into independent
pieces (called services), which can be linked together easily and dynamically to create information
systems that support changing business processes. “[S]ervice-oriented systems are becoming the de-

26

Advantages inherent in SOA

facto approach to bridging the gap between business models and software infrastructure and
flexibly supporting changing business needs” [Kontogiannis 2007]

3.3.4 Low costs
Cost reduction is one of the key selling points for SOA technology. Not surprisingly, market
research by has shown cost reduction is currently the number one business driver for SOA adoption
[West 2006]. SOA promises to simplify legacy system maintenance, which currently drains large
parts of organizations' IT budgets (see section 3.2.5). According to an industry white paper by
webMethods, “reduced skills and effort to support business change [and] price/performance
optimization based on freedom to select platform, technology, and location independently”
[webMethods 2005] are two more ways SOA can reduce costs directly.

Vendors also claim that SOA can increase developers' productivity by stimulating reuse of code and
simplifying integration.

3.3.5 Business process support
As discussed in section 3.2.2, Ward and Peppard state that, to determine which role IT can play in
BPR and BPM, one first has to answer two questions first. This section explores the answers to both
of these questions.

Support for business process transformation
The first question is “how can business processes be transformed using IT (based on a full
understanding of the capabilities of IT)?” [Ward 2003].

Business processes can be modeled using specialized software tools to design, document and even
benchmark these processes. These tools are usually used by business users and focus on the
business process, with little or no regard for IT support. One common notation (or language) for
these models is the Business Process Modeling Notation (BPMN, see [OMG 2006]) (see figure 3.4
for an example model).

One of the technologies usually employed in SOAs are BPEL engines (BPEL stands for Business
Process Execution Language). These allow detailed models of business processes to be directly and

27

Figure 3.4: Example BPMN model (source: [WP 07a])

Business Drivers for SOA Adoption

automatically executed. Since BPEL and BPMN are similar, BPEL models can be based on BPMN
(or other) models of business processes. By extending the BPEL models to specify in detail which
software services to invoke, the abstract business model can now be executed.

The advantage to this approach is that business users who design processes and IT developers can
now work together to design, implement and maintain business processes and the supporting IT
systems. A secondary, but nonetheless very important, effect of using BPEL is that IT systems'
behavior and workflows are now modeled explicitly and centrally, instead of being embedded in
and distributed over the applications' code or even implicit in users' memories (or both). This means
processes and applications are transparent and far easier to change.

BPEL engines can also support implementing changes to processes on-the-fly. This means that
running instances will keep running according to the old version, while new instances use the newer
version. This allows for processes to be changed without halting the system and the resulting down-
time.

Another instrument which is supported by SOA is Business Activity Monitoring, or BAM. It is
defined as “provid[ing] real-time access to critical business performance indicators to improve the
speed and effectiveness of business operations.” [Gartner 2002] BAM can be used as an analytical
tool or benchmark for business processes to find bottlenecks or other opportunities for
improvement. BAM and its “relative” Business Intelligence (BI) are not exclusive to SOA, but
typical SOA architectures and middleware (such as BPEL engines) make it possible to use BAM
with little or no required modifications to applications, since their activities can be monitored “from
the outside” by tracking BPEL instances and other means, without requiring the application to
report its activities “by itself”.

Support for business processes
The second question posed by Ward and Peppard is “how can IT support business processes?”.
Next to the possibilities almost every IT system can offer in support of business processes – some
of which have already been explored in this chapter – only those that are unique to SOA are
discussed here.

Apart from the advantages described above, BPEL engines also allow users to monitor the progress
of running process instances and view information about closed or aborted instances. This
information can be used to reveal the status of particular instances and help when investigating
problems. Together with the information provided by BAM tools, SOA offer more control on and
more information about business processes, both of which can help organizations improve said
processes. One additional advantage is that this information also can also help organizations
monitor service level agreements (SLAs), both those of external services as well as those provided
by the organization itself.

3.4 Advantages compared to Oracle Forms
Aside from the advantages inherent to SOA described in the previous section, Oracle's SOA
solutions offer some additional advantages when compared to their Forms framework, which is

28

Advantages compared to Oracle Forms

discussed in detail in the next chapter. These differences provide additional reasons for customers to
switch to an SOA.

3.4.1 Application user interface usability
User interfaces for Oracle Forms are designed primarily for “power users” who often perform the
same activities. The usability is geared towards efficiency, not user-friendliness, and requires users
to be trained before they can use interfaces at all. This is especially problematic for applications
intended for users with little or no experience with Oracle Forms, like external business partners or
end customers.

User-friendly interfaces can be developed using a large number of technologies that are not tied to
SOA, or any enterprise IT architecture for that matter. Customers that wish to adopt Oracle's
modern application development framework (based on Java) need not automatically adopt SOA as
enterprise architecture.

Likewise, SOA does not restrict the choice of user interface technology. In fact, its architecture
even promotes the use of different presentation techniques for the same business logic by separating
the presentation from the business logic (see the previous chapter for more details). This means that
while SOA adoption is not required for organizations that wish to migrate to modern development
frameworks, it does offer some advantages. For example, SOA can be used to “connect” a modern
user interface developed in a new technology (Java) to existing businesses logic developed using
older technology (Forms). This enables a gradual migration between old and new development
frameworks and technologies. More examples for the usefulness of SOA with regard to “old” user
interfaces are discussed in chapter 2.

3.4.2 Integration
Oracle Forms applications offer no interface to other applications. The only means for integration is
to access the database directly. Apart from the implicit standardization issues (as discussed in
section 2.4.3), this approach makes it problematic or downright infeasible to integrate external
systems, since direct access to the database is undesirable from both technical and organizational
perspectives.

As has been discussed in section 3.3.2, SOA provides an ideal environment for application
integration, based on open standards and a focus on integration problems.

3.5 Summary of advantages
The primary goal of this chapter is to compile a list of features that enable SOA to better support
business drivers than legacy systems, and especially those built on Oracle Forms technology. This
list is used as input for the method described in chapter 6, and is based on the major advantages of
SOA presented in the previous sections. To make the list usable and comprehensive, a high level of
abstraction has been chosen.

The list consists of the following features that make SOA adoption desirable when considering
common business drivers:

29

Business Drivers for SOA Adoption

● Cost reduction. As has been shown in section 3.3.4, SOA adoption can result in improved
financial performance. Market research shows that cost reduction is currently the main
driver for SOA adoption.

● Integration support. One of the cornerstones of SOA is the focus on information system
integration aspects. The use of open interfacing standards and technologies aimed
specifically at supporting integration (like UDDI and BPEL) make SOA the ideal platform
for Enterprise Application Integration (EAI) and integration with external entities (e-
Business, especially B2B).

● Business process support. Section 3.3.5 discussed how SOA supports an organization's
BPM and BPR activities and offers a flexible IT architecture that can change along with
business processes. This flexibility creates business agility, which is required to gain and
maintain competitive advantages. Furthermore, BPEL and BAM software provide valuable
(real-time) information about running business processes which organizations can use to
monitor and benchmark these processes.

● User-friendly applications. User-friendly applications are not a property inherent to SOA.
More user-friendly interfaces can be developed using any one of a large set of technologies
and frameworks currently available. However, by providing a platform that enables gradual
migration and reuse of existing logic, SOA is an suitable enterprise architecture for
organization that wish to leave the Oracle Forms framework in favor of a more modern
framework.

It is important to note that these four high-level features of SOA are not entirely independent of
another. For example, SOA's focus on integration can lead to a decrease in maintenance effort for
applications that need to be integrated. This leads to increased business agility (because IT can
adapt faster) as well as to cost reductions (since developers need less time for maintenance). Figure
3.5 shows the dependencies.

30

Figure 3.5: Dependencies between advantages of SOA

Leveraging Approaches

CHAPTER 4: LEVERAGING APPROACHES

The third chapter has shown how SOA is better suited to support current business drivers like
business agility and improved financial performance. The discussion of the differences between
legacy architectures and SOA in chapter 2 should make clear that it is not possible to simply
transform or “migrate” legacy applications in order to get a system based on SOA. By definition
(see section 2.1.1), legacy applications cannot be abandoned or redesigned from scratch because of
the huge investments that have been made over the years.

But is it really necessary to make every application completely SOA-based? Sure, SOA offers a
number of advantages over legacy architectures. (One of these, cost reductions, is always beneficial,
regardless of business strategy or environment). However, since complete transformation is
generally infeasible, is it perhaps possible to partially transform legacy applications in a way that
makes them fulfill business requirements? This chapter investigates these possibilities.

The first three sections provide a theoretical background based on the literature on the subject. The
last three sections discuss actual approaches to leverage or replace legacy applications.

4.1 Introduction
The first chapter introduced the notion of “leveraging” legacy applications. This section will discuss
in detail what is meant by that.

4.1.1 Definitions
Before we start discussing modernization techniques and approaches, we should first define the
terminology that is (mis)used in the descriptions of the approaches discussed in the next section.
[Chikofsky] presents a taxonomy of terms (in the context of reverse engineering and design
recovery) that are used throughout the literature.

31

Leveraging Approaches

In this thesis, a important distinction is made between the terms “maintenance” (as defined below)
and “leverage”. The difference is that the latter aims to add value to a system, for example by
adding new functionality or improving its flexibility or reducing maintenance cost.

4.2 Classification of modernization approaches
[Papazoglou 2006] presents an overview of legacy modernization strategies, which can be divided
into invasive and non-invasive approaches. The discussion is presented in the context of e-Business
integration.

The authors begin by stating that applications consist of two conceptual parts: their environmental
part and their business part. The first manages the application's environment such as hardware,
operating system, communication infrastructure and database. The second “deals with its perceived
business functionality [and] contains the application's businesses rules and businesses process
flows.” In the context of this research, the environmental part does not need to be considered, since
legacy applications run on the same environment as SOA solutions.

Non-invasive approaches
Non-invasive approaches keep the existing application flow intact and result in new presentation
interfaces for the legacy system by employing screen-scraping or using the systems APIs or new

32

Software maintenance “is the modification of a software product after
delivery to correct faults, to improve performance or other attributes, or to
adapt the product to a changed environment” (according to ANSI/IEEE Std.
729-1983)

Reverse engineering is the process of analyzing a subject system to

● identify the system's components and their interrelationships and

● create representations of the system in another form or at a higher
level of abstraction

Reverse engineering does not involve changing the subject system or creating
a new system based on the reverse-engineered subject system. It is a process
of examination, not a process of change or replication.

Restructuring is the transformation from one representation form to another
at the same relative abstraction level, while preserving the subject system's
external behavior (functionality and semantics).

Re-engineering is the examination and alternation of a subject system to
reconstitute it in a new form and the subsequent implementation of the new
form. It generally includes some form of reverse engineering followed by
some form of forward engineering or restructuring.

Classification of modernization approaches

wrappers to access existing business functionality. Papazoglou et al. present three alternatives for
this approach: “refacing“, “repurposing“ and “presentation tier modernization techniques“.

Unfortunately, Papazoglou et al. do not provide detailed definitions or descriptions, making it hard
to tell the exact differences between the categories. What the approaches have in common is that
they do not change the legacy system, but only substitute or modernize the user interface in order to
make them fit into modern desktop environments or make them more user-friendly.

Invasive approaches
Invasive approaches actually modify the legacy system, which makes these approaches inherently
more powerful and flexible than non-invasive approaches. However, it also makes them costlier and
riskier, since production systems are modified, which can introduce errors. Papazoglou et al. discern
three alternatives:

● Maintenance, which is characterized by iterative and incremental changes to correct small
deficiencies or add minor enhancements.

● Replacement of the whole or parts of the legacy system by an an off-the-shelf product or a
newly developed custom system. This alternative is usually chosen when the legacy system
can not longer be maintained efficiently or when business needs change so much that the
costs of making the required changes are higher than the economic value of the system.

● Re-engineering and transformation (also called modernization). This entails analyzing the
legacy system to understand what it does and how it works, in order to modify some parts of
even redevelop them using newer technologies. The first step is very important since the
legacy system already partially satisfies business requirements.

The authors state that the use of the first two techniques is on the decline. Maintenance of large
legacy systems does not significantly improve their value, nor does it create maintainable assets.
Replacement is often infeasible because it means abandoning the large investments that have been
made (see the introduction to chapter 1 for more details). This leaves the last option as the most
viable alternative.

Modernization approaches
According to Papazoglou et al., re-engineering can be divided into two types: white-box and black-
box re-engineering.

● “White-box re-engineering concentrates on reverse engineering techniques to gain an
understand of the internal structure and operations of an application.” [Papazoglou 2006]
After the original program is sufficiently understood, it can be restructured at the application
and code level to decompose the system into self-contained pieces of code, or components.

● Black-box re-engineering aims to re-interface existing code (often based on wrapping) by
analyzing the inputs and outputs of the system instead of its source code. “In general, the
black-box approach is often preferred to white-box re-engineering because the technology
for interfacing and integration is developing much faster than the technology for program
analysis and understanding.” [Papazoglou 2006] On the contrary, Jha and Maheshwari ([Jha

33

Leveraging Approaches

2005]) argue that black box wrapping techniques are impractical because they usually
require white box techniques to be applied in order to sufficiently understand the legacy
system, so one might just as well go for white box approaches in conjunction with reverse
engineering.

By definition, re-engineering implies restructuring an existing asset, which can cost considerable
effort. Another modernization approach is legacy componentization, which aims at breaking up a
legacy system into isolated parts (called components) with well-defined interfaces.

“[L]egacy componentization involves surrounding the legacy system with a layer of component
software that hides the unwanted complexity of the old generation system and reveals a modern
interface to give it a new and improved functionality.” [Papazoglou 2006] This abstraction makes it
possible to use components using modern technology and programming environments. It also
allows for the legacy component to be replaced by a modern component without changing the the
rest of the system. This makes it possible to gradually replace legacy technology with modern
technology.

4.2.1 Evaluation of approaches

Non-invasive
Non-invasive approaches all apply mainly to modernizing interfaces based on mainframes and
terminals. This does not apply to Oracle Forms interfaces, which are already graphical in nature and
run on most modern desktop environments (and even on the web). However, since user-friendliness
is one of the requirements where Forms applications (may) need improvement, presentation tier
modernization techniques must be considered.

Papazoglou et al. also mostly use mainframe systems with terminal screen interfaces running on
legacy hardware as typical examples of legacy systems. This assumption does not hold for Oracle
Forms applications. As section 2.1.1 makes clear, by the definition used in this thesis, “legacy”
systems are not only those that run on unsupported hard- and software, but any systems that resist
change. Of course, the former type of system usually resists change automatically, for example
because skilled developers are scarce and hence expensive.

Oracle Forms applications are not legacy because the technology is outdated or unsupported (it
isn't). They are considered legacy because their architecture and technology resist change. This
implies that these applications do not necessarily need to be “migrated” to newer development
frameworks or newer hardware environments, but instead might be improved through non-invasive
techniques. This is another reason to consider non-invasive techniques.

Invasive
Since maintenance on the lowest level of abstraction does not improve the assets value for the long-
term and replacement is often not a viable alternative because of the huge investments made in
legacy assets, re-engineering and transformation are left as “the most appropriate approach to
legacy system integration.” Cormella-Dorda et al., in a survey of legacy system modernization

34

Classification of modernization approaches

approaches, elaborate on this conclusion by stating that interface modernization techniques like
screen scraping (which, according to the authors, are derogatorily called 'whipped cream on road
kill') do not improve the system's value, since, “from the IT department's perspective, the new
system is as inflexible and difficult to maintain as the legacy system.” [Cormella-Dorda 2000]

Papazoglou et al.'s conclusion about re-engineering and transformation as the most appropriate
options is drawn in the context of modernizing legacy systems for the purpose of e-Business
integration. We have to be careful not to generalize this conclusion to the context of leveraging
legacy systems in SOAs. Since integration is but one way to achieve this, we cannot disregard non-
invasive approaches, especially since they are often easier and cheaper to apply than invasive
approaches.

4.3 Decisional framework
De Lucia, Fasolino and Pompella [de Lucia 2001] present a decision framework, which
distinguishes several alternatives for the management of IT assets (based on [Verdugo 1988]), being
“ordinary maintenance, reverse engineering, restructuring, re-engineering, migration, wrapping,
replacement with COTS [common off-the-shelf system], and discarding”. To select one of these
approaches, two factors have to be considered first: the system's 'business value' and its 'technical
value', each of which is ranked on a two-score ranking scale, as shown in figure 4.1.

In the context of this research, the business value of the legacy systems is high because they support
essential business processes and because businesses have already invested heavily in these systems.

Technical
value

I II

High Evolution / Massive
Adaptive Maintenance

Ordinary Maintenance

III IV

Low

Elimination /
Replacement

Reverse Engineering /
Restructuring /
Transformation

Low High Business
value

Figure 4.1: Quadrant map for portfolio analysis (adapted from [de Lucia 2001])

Ranking the technical value on a binary scale is not as straight-forward as it might seem. The
monolithic architecture of Oracle Forms systems and the inherent tight coupling justify a “low”
ranking (which is why they are often considered “legacy” in the first place). However, the hardware
and software environment is still being actively developed and supported, and user-friendliness,
performance and scalability certainly do not pose any major problems or limitations. Surely a
“high” ranking is in order if these qualities are more important than loose coupling.

We can conclude the technical value depends on the reason to evolve the legacy system, and has to
be rated on an individual basis. For example, if integration and reuse of code are important reasons
to evolve the system, the technical value should be rated “low” because the monolithic architecture

35

Leveraging Approaches

significantly resists these goals. This is exactly the context in which Papazoglou et al. recommend
invasive approaches, which corresponds to the approaches shown in the quadrant labeled “IV” in
the figure above.

4.3.1 Evaluation
To elaborate on the discussion in section 4.2, we can also categorize the approaches described
above by looking at the characteristics of the resulting system (instead of the characteristics of the
approach).

The first category of approaches do not fundamentally change the system's architecture and/or base
technology, and hence do not address their root problems, making them short-term solutions
([Papazoglou 2006], [Jha 2005], [Zhang 2004]). To put it another way, they do not address the
problems that make the system to be considered “legacy” in the first place. As [Bianchi 2003] puts
it, “if the wrapped system needs to be evolved in some way, all the consequences of the aging
symptoms indicated in [Vis97] will re-emerge. Therefore, [...] the wrapping approach [...] does
nothing to solve the problem of maintenance of aged programs.”

The second category, which includes re-engineering, and discarding, does aim to address the
underlying root problems and results in systems that are not considered legacy anymore.

Another way to put this is to say that the first approaches address (one or more) symptoms of legacy
systems, while the latter address the root causes for these symptoms. If we think about it this way,
we can justify calling the first category short-term solutions, while the latter are long-term solutions.

Not surprisingly, we must conclude that the long-term solutions are always much costlier and
harder to implement, or even downright unrealistic, as is usually the case for the “discarding”
approach. In practice, however, given that the alternative long-term solutions are also very costly
(“[i]n general, the advocates of reengineering tend to underestimate the difficulty of reusing legacy
code” [Sneed 2001]), discarding should always be considered.

Jha and Maheswari have conducted a literature study and state that “there is a lack of literature on
successful modernization processes. Many modernization projects fail as outlined by the Standish
Group.” [Jha 2005] They go on to summarize that most organizations consider redevelopment
approaches risky, and that “the reverse engineering of procedural components of a large application
is still unsolved.”

The thing to take away from this discussion is that short-term solutions should be preferred to long-
term solutions in the method, because the former will deliver the business requirement faster, and
with less effort and risk.

4.4 Leveraging Oracle Forms
The preceding section has presented general approaches and techniques that can be employed to
modernize legacy applications or transform (re-engineer) them into a new form in order to mitigate
(or eliminate) their shortcomings. As has been discussed in section 3.1, the goal should not be to

36

Leveraging Oracle Forms

dogmatically adopt the latest technology or migrate to the latest environment, but rather to change
the system in a way that makes it fulfill business requirements.

A literature survey of detailed modernization approaches did not result in any descriptions that were
relevant to the particular problem covered in this thesis. A lot of papers deal with a fundamentally
different kind of legacy systems, e.g. written in COBOL or C and/or running on mainframe
systems. Unfortunately, the assumptions these papers make about legacy systems just do not hold
for Oracle Forms. Other papers describe very abstract techniques which cannot be readily applied
and which also have not been tested. In fact, none of the detailed techniques seem to have been
proven to work on industrial scale software or large projects [Bennett 1999].

The following section presents approaches and techniques that enhance the value of Forms
applications or leverage these in an SOA. The knowledge is largely based on interviews with Oracle
Forms experts working at the Dutch office in De Meern.

4.4.1 Cost reduction
The discussion in section 3.3.4 presented multiple ways in which SOA can reduce IT costs. Since
the technology underlying Oracle Forms is proprietary, customers do not have freedom of choice,
which eliminates one factor that can lead to decreases in costs (according to [webMethods 2005],
see section 3.3.4). It also means specialized developers are required to develop and maintain
applications. This problem will worsen with time as more and more Forms developers (in-house as
well as Oracle's and its partners') switch to modern development environments ([Gartner 2007]).

Unfortunately, Forms is fundamentally monolithic in nature, which is another reason maintenance
will always remain costly. Following Oracle's advice of keeping clients thin and centralizing logic
in the database can help to make applications more manageable, but even in optimal circumstances,
application logic is still tightly coupled with presentation logic.

It is possible however to lower costs by increasing developers' productivity through reuse of code
and simplifying integration. Both aspects can be partly supported by Forms – see the next section
for details.

Another way to lower costs is by making applications more user-friendly so end-users need less
training (or none at all). See section 4.4.4 for more details.

4.4.2 Integration
Zhang and Yang have done research on the topic of extracting logic from legacy systems and
describe “a component-based, service-oriented approach to recover services in legacy systems.”
[Zhang 2004] In the introduction to their paper, they distinguish two ways to leverage legacy
systems in an SOA, namely by making it either consume or provide services. The authors conclude
that the latter is more important to investigate because it offers more possibilities. This is certainly
true for this research, although we cannot disregard alternatives that employ the first approach,
since it will almost certainly always be the easier one.

37

Leveraging Approaches

Consuming services
Consuming (web) services from Oracle Forms is already supported “out of the box”4. Recent
versions of Forms have been integrated with Java, which allows Forms modules to call PL/SQL
functions which act as wrappers for Java classes. These Java classes in turn can be proxies that call
services (which in turn can be used to start BPEL process instances) and return the result, if any.

Providing services through componentization and wrapping
Oracle Forms can not provide services to other applications. It is possible however to wrap stored
procedures and PL/SQL functions with some Java code to make them callable as (web) services.

However, this requires the logic to be implemented in the database as callable functions or stored
procedures. Unfortunately, application logic in Oracle Forms can also be implemented in the client
application and may even be distributed among more than one module (see appendix A). While
Oracle has advised developers to centralize logic in the database and keep client applications as
“thin” as possible, developers have disregarded this advice.

To enable reuse of logic through callable services, the logic must first be moved from the
application tier to the database. This can be relatively easy when the logic is already isolated in PL/
SQL functions (in the client application), in which case they can be easily moved to the database,
and applications only need to be updated to call the same function at a different location.

However, when logic is not isolated but instead spread out over one or more modules, isolating and
moving the logic can take a lot of work and require a lot of modifications and testing.

Even in the cases where logic is already centralized in the database, the functionality of the
resulting services is predetermined bottom-up instead of in a top-down manner. This means that
instead of investigating which (coarse-grained) services are sensible or required and implementing
these, (fine-grained) services are built based on what functionality is readily available. This might
not always be desired in order to reuse services in the same or other applications (which is the
whole point of building services).

Fortunately, fine-grained bottom-up services can be used to create coarse-grained services by either
building composite services based on a few low-level services or by enhancing low-level services in
their Java implementation, for example by running a few extra queries or performing some
transformations, etc.

We can conclude that it is possible to create services by reusing logic built into Forms applications,
although these will likely be fine-grained and might require some initial effort to recover and isolate
the original PL/SQL logic and move it to the database tier.

4.4.3 Business process support
One of the major problems with regard to business processes and Forms applications is that
processes are modeled implicitly in the application's code (see section 2.4.2). For example, the
application might present different interfaces or enforce different data constraints, depending on

4 See http://www.oracle.com/technology/products/forms/pdf/10gR2/forms-soa-wp.pdf

38

Leveraging Oracle Forms

some value (e.g. a customer's membership status). This not only makes it difficult to change these
processes, it also means that just understanding what the current process is requires white-box
reverse engineering.

The situation is often even worse, when business processes are not even manifested in (and hence
enforced by) the application at all, but instead are only in the minds of one or more employees. In
this case, the application itself does not guide (or restrict) the user at all to make sure policies and
processes are enforced, but it is left up to the user to open the right screens in the proper order and
enter the necessary information. One needs only consider what happens to running processes when
the only employee who knows the process is on leave or sick (or leaves the company) to see why
this is problematic.

As described in section 3.3.5, SOA enables business process modeling and allows real-time
monitoring of processes through BPM, BPEL and BAM. Fortunately, there are a few alternative
solutions to tie Forms applications to BPEL and BAM engines.

Human workflow
The first is to employ Business Process Modeling to explicitly model current business processes.
These can be recovered by investigating application code and / or interviewing employees.
Alternatively, a new or revised process can also be designed from scratch in the case of BPR
projects. Of course, simply modeling business processes is always possible and provides only
limited benefits. Executing process models in BPEL engines delivers far greater benefits.

This can be achieved by using the “human workflow” functionality of BPEL engines to create
human task lists. By opening a “task” from the list, the user is taken to the corresponding screen in
the Forms application. Additionally, more information on the task can be displayed, and certain
input fields can be filled in by the application.

In this situation, the business process is modeled explicitly in BPEL (instead of implicitly in the
application or even not at all). The BPEL engine now guides users through the Forms application.

Depending on the design of the screens and the extent to which business process rules are already
hard-coded into the application, this approach can take from a little to a lot of effort to change the
Forms application to make it usable in this way.

Interfacing with BPEL
There are a few more alternatives to interface Forms applications with BPEL engines. For example,
it is possible to start BPEL processes by invoking a service, as discussed in the previous section.
Instead of using the BPEL engine's web service interface to communicate, the Java runtime in
Forms can also invoke the BPEL Java API directly5.

The BPEL engine can also invoke a service which modifies data in the database in some way which
is useful to a Forms application, for example to set the value of some number of fields to desired
values.

5 See http://www.oracle.com/technology/oramag/oracle/05-mar/o25forms.html

39

Leveraging Approaches

We can conclude that communication in both directions is possible, which enables a large number
of custom applications of this approach.

Business Activity Monitoring
BAM engines usually use information about BPEL process instances to present overviews and
allow monitoring. Alternatively, it is possible to send messages through into an Enterprise Service
Bus (ESB) to publish “events”, which can be monitored by a BAM engine. One example
application is to send an event message every time the “Save” button of a screen for new customer
orders is hit to monitor the number of orders.

4.4.4 User-friendly applications
As has been discussed in section 3.4.1, Oracle Forms user interfaces are geared towards “power
users” and are not particularly user-friendly. This is a problem if an application is supposed to be
used by business partners or end customers, as they can't be expected to be familiar with Oracle
Forms interfaces. In these cases, a new user interface has to be developed.

Unfortunately, since the presentation logic is tightly coupled with the rest of the logic in Oracle
Forms, it is not possible to develop a new interface which makes use of the logic implemented in
Forms modules. Fortunately, the componentization approach described in section 4.4.2 enables
limited reuse of code.

A different alternative has been developed by one of Oracle's customers. This technique allows to
integrate Forms applications (including their interfaces) to be seamlessly integrated6 in Oracle's
Java development environment, ADF. This allows developers to create modern interfaces using a
J2EE environment but integrate (parts of) Forms applications into these interfaces. Communication
between the environments is possible in both ways. This technique enables reuse of existing Forms
applications in modernized user interfaces and allows gradual migration towards a modern, Java-
based development environment.

4.5 Replacing Oracle Forms
The previous section presented some invasive and non-invasive approaches to leverage legacy
applications built on Oracle Forms technology in an SOA. While these do provide a number of
opportunities to leverage Forms applications in an SOA and mitigate the problems common to
“legacy” technology, none of the approaches result in a modern, easy to change and flexible
information system. Since the Oracle will only make small investments in Forms, and support for
the platform will cease eventually, Forms is on its way to become completely obsolete.

This is why, for the long term, Gartner recommends organizations to “[a]pproach Oracle Forms
within a 'containment' strategy [and] migrate to industry-dominant technologies [...] to align with
industry best practices in the future.” [Gartner 2007] In other words, applications developed with
Oracle Forms will have to be replaced by more modern applications sooner or later (Gartner
recommends organizations to migrate within five to ten years). This means that replacing the legacy

6 See http://www.oracle.com/technology/pub/articles/wilfred-adf-forms.html

40

Replacing Oracle Forms

application should always be considered in parallel to any of the leveraging approaches discussed in
the previous section.

This section introduces approaches that lead to long-term solutions by replacing the legacy system
altogether. These approaches can be divided into two major types. The first, called “Big Bang” or
“Cold Turkey”, entails buying or developing a new application from scratch and chose a date at
which to switch from the old application to the new application. This is a very risky approach and is
often infeasible [Bisbal 1999], which is why it won't be considered here. The second type uses an
incremental or gradual migration from the old application to the new. Only this type will be
considered in this section.

4.5.1 Purchase of standard software
The first option for replacing a legacy system is buying a new COTS (commercial off-the-shelf)
application. This alternative is usually cheaper and faster to implement than developing a new
system from scratch. However, the system may have to be thoroughly customized to fit the
organization and its business practices, which negates the advantages of buying a COTS.

The alternative is to change the organization to fit the application through business process redesign
(BPR). Because of its radical nature and the risk involved, BPR is an infamous approach known for
its high failure rate [Papazoglou 2006]. However, there may be cases where business processes are
outdated and / or wasteful and are only held in place because the legacy system cannot be changed.
In these situations, the replacement of the system might be a good opportunity to modernize and
optimize business processes as well.

This approach does little to leverage the investments made in legacy code, although it is still
possible to gather the requirements for the new system by studying and possibly reverse-
engineering the legacy system.

4.5.2 Development from scratch
The alternative to buying (and customizing) a new system is to develop one from scratch. The result
is a custom-built system which fits the organization. The downsides are cost and time compared to
buying a COTS system, and the cost of maintaining a custom application.

The remarks about BPR made in the previous section apply to this approach as well. If the new
system is developed to be an equivalent of the legacy system, bad business processes will remain.
The development of a new system is a good opportunity to change business processes, but care
should be taken to avoid radical changes. Depending on the situation, copying the legacy system's
functionality and changing it along with business processes afterwards might be a better alternative.

With regard to leveraging the value of the legacy system, redevelopment is better suited to reuse
legacy code. Legacy functionality implemented in the database can be componentized and wrapped
(see section 4.4.2), and can be reused in the new system. The literature features several frameworks
and methodologies for leveraging and re-engineering legacy systems. Two of these are the Options
Analysis for Re-engineering (OAR) [Bergey 2001] and the Service-Oriented Migration and Reuse
Technique (SMART) [Lewis 2005] (see section 4.6).

41

Leveraging Approaches

Development from scratch is also better suited for incremental replacement. Although a COTS
system can naturally be bought in one piece, customized and then taken into use gradually, the costs
of buying the system have to be made at the beginning of the project. Additionally, any change in
requirements later in the replacement process are costlier because the COTS has already been paid
for. This is opposed to a redevelopment approach, where the cost of development is spread out over
time, as are the decisions about which requirements the system must fulfill.

4.5.3 Migration
The previous two sections have already touched on the subject of migration from the old system to
the new. Bianchi et al. present three approaches, all similar to the original “Chicken Little Strategy”
described by Brodie and Stonebraker in 1995. This approach entails “gradually rebuild[ing] the
legacy system on the target platform using modern tools and technology. During migration, the
legacy and target system form a composite information system [...]” [Bianchi 2003]

The three approaches presented by Bianchi et al. differ on how to deal with the legacy database.
The reason for the difference in handling databases is the assumption that the legacy database
cannot be used for the new system. As has been shown in appendix B, the data tier used by Oracle
Forms applications is the Oracle database, which is not a “legacy” database, but instead is used for
modern applications as well. This means it is not necessary to migrate, duplicate and re-engineer the
data tier. Since the database does not require any special treatment, migrating from a Forms
application to a new application only involves the application tier.

We can conclude that the most suitable way of migration is to develop the new system on its target
platform, and use it in parallel with the legacy. New functionality can be developed and taken into
use in a step-by-step fashion, until the legacy system is completely replaced.

4.6 Existing methodologies
The literature contains a large number of methods for migrating or re-engineering legacy systems.
However, many consider complete migration the main goal, without evaluating which parts need to
be migrated or considering the business benefits of the migration. In short, the goal of many
methods is to migrate the legacy system to newer technologies and architectures, instead of
adopting a more pragmatic short-term view and consider which aspects or parts of a legacy system
resists business drivers, and find a lightweight solution to fulfill these drivers.

This section presents a brief overview of work related to the method presented in this thesis. Some
of the elements of the methods developed by other researchers have been used as a basis or
inspiration for the method presented in chapter 6.

42

Existing methodologies

4.6.1 Options Analysis for Re-engineering (OAR)
Bergey et al. have developed a method that can be used to identify and “mine” reusable parts of
legacy systems that can be used for organizations that wish to implement a new software system
(either COTS or developed from scratch). The authors describe “Options Analysis for
Reengineering (OAR) [as] a systematic, architecture-centric, decision making method for
identifying and mining software components within large, complex software systems. Mining
involves rehabilitating parts of an old system for reuse. OAR identifies potentially relevant
architectural components and analyzes the changes required to use them in a software product line
or new software architecture. In essence, OAR provides a set of mining options along with
estimates of the cost, effort, and risks associated with those options.” [Bergey 2001] An overview of
the method's activities is presented in figure 4.2.

The context of the OAR method is the development of a new system or product line, where legacy
system components can be re-used. This thesis acknowledges that re-engineering Oracle Forms
applications is the only viable long-term solution (see section 4.5), but focuses on less invasive
approaches to leverage these applications in the short to medium term. The techniques presented by
Bergey et al. to identify and evaluate legacy components for reuse are applicable to some
approaches presented in this thesis.

4.6.2 Service-Oriented Migration and Reuse Technique (SMART)
Lewis et al. have developed a technique “that helps organizations analyze legacy systems to
determine whether their functionality, or subsets of it, can be reasonably exposed as services in a
Service-Oriented Architecture (SOA). Converting legacy components to services allows systems to
remain largely unchanged while exposing functionality to a large number of clients through well-
defined service interfaces.” [Lewis 2005] The technique is called SMART, and is derived from the
OAR method described in the previous section.

43

Figure 4.2: Overview of OAR activities (source: [Bergey 2001])

Leveraging Approaches

The technique consists of five activities (see figure 4.3), starting with three data gathering activities
at the beginning of the project. The next step aims to analyze the gap between the current situation
and the desired situation. During the last step, a migration strategy is developed. The activities do
not have to be carried out sequentially, and iteration is also possible.

Smith, one of the authors, summarizes the activities in one of his papers:

1. “Establish Migration Context, which develops an understanding of the goals and
expectations of the SOA environment; the programmatic constraints, such as schedule and
budget, any previous reuse efforts; and an understanding of the legacy system at a high
level. Appropriate stakeholders and candidate services for migration are identified, together
with the business processes that they support.

2. Describe Existing Capability, which obtains data about existing legacy components,
architecture and design paradigms, complexity and coupling, dependencies, change history
and historic cost data.

3. Describe Target SOA State, which identifies how services would interact with each other
and with the target SOA environment, determines the target SOA state, and determines QoS
expectations and the execution environment for services.

4. Analyze the Gap, which identifies the gap between the existing state and future state, and
determines the level of effort and cost needed to convert legacy components into services. In
some cases, additional analysis methods such as evaluation of code quality and architecture
reconstruction may be needed.

5. Develop Migration Strategy, which develops one or more recommended strategies that
may include identification of specific components to migrate, recommendations on the
ordering of migration efforts, and specific migration paths to follow, such as wrapping vs.
rewriting code.”

As is the case with the OAR method, SMART assumes a target SOA, and the goal of the method is
to find and migrate reusable parts from legacy systems. While this is one of the approaches
described in section 4.4, this thesis also considers less invasive approaches as short-term solutions.

This is why neither of the two methods presented so far cover all the options that can be considered
when leveraging legacy applications as defined in this thesis. Both methods do however contain
elements that are relevant to the method developed for this thesis, which is discussed in section 6.2.

44

Figure 4.3: The activities of the SMART (source: [Lewis 2005])

Existing methodologies

4.6.3 Software As a Business Asset (SABA)
Brooke and Ramage ([Brooke 2001]) wrote a paper about their project, whose goal was “to develop
approaches to assist business to make decisions about legacy systems.” The authors recognized that
legacy systems consist of more than just a technical dimension, and its business environment must
be taken into account to understand the system. Instead of developing a rigid set of alternative
solutions, they thought it should be possible to “devise ways to help organisations identify the
nature of the legacy problem and to assist them in identifying alternative approaches to change.”

The result is an interdisciplinary approach, called Software as a business asset (SABA, see figure
4.4), which combines “technical expertise from the software engineering field with theory and
method from the organisational development arena.” Brooke and Ramage note that very few
research teams have worked this way, but instead have mostly focused on either one of the two
areas.

SABA is an iterative approach and requires at least one cycle. It starts with the organisational
scenarios tool (originally developed by Brooke in 2000), progresses to the technical scenarios tool
(TST) and then moves through the OST stage again, until, eventually, a preferred scenario and a
suitable solution have been selected. Since the approach is multi-disciplinary, Brooke and Ramage
recommend a participant group of about a dozen people, including (taken from [Brooke 2001]):

● Senior directors (preferably including someone at Board level)
● Managers from different organisational functions (including Human Resources)
● IT specialists (preferably including a software engineer)
● Front-line staff (including those at the external customer interface)
● End users (preferably including an external customer)

In the initial stage of the OST, the participants are asked to describe their personal view of the
legacy system. After this, the group is asked to develop several scenarios (see [Brooke 2001] for a
more detailed description), starting with the status quo, and moving on to scenarios that are
increasingly ambitious and radical in terms of the depth of structural change. Each of the scenarios
is analyzed against nine criteria (taken from [Brooke 2001]):

45

Figure 4.4: Overview of the SABA model (source: [Brooke 2001])

Leveraging Approaches

● Boundary: the unit of analysis (e.g. the whole organisation or one area)
● Vision: the overall business approach (e.g. specialised sales)
● Logic: organization rationale for the vision
● Structure: of the organisation
● Roles: organisational roles of people
● View of information: information as an objectified unit of resource (the resource view)

versus information as a subjectively interpreted phenomenon (the perceptual view)
● Costs: major costs, both financial and non-financial
● Benefits: both financial and non-financial
● Risks: major sources of risk

At the end of each iteration of the OST, the participants have identified and prioritized several
scenarios. The next step is to identify the IT technology required to fulfill each scenario.

In the next stage, the participants should identify the possibilities for technology change for each
scenario, resulting in a set of technological options. It is in this phase that existing systems (not all
of which need to be “legacy”) are considered, as are technical details about them, such as the
systems' languages, structures, documentation and software maintenance processes. The possible
solutions identified in the first step can be evaluated using the information captured in the second
step. Once a preferred solution has been selected, more detailed information about the solution has
to be gathered, including (but not limited to) costs, risks, tool investment, expertise.

At this point the business impact of the preferred scenario and its preferred solution should be
evaluated by a second iteration of the OST so business experts can consider the strategic
implications and the organization's readiness for the required change.

Brooke and Ramage remark that the subjectivity of the SABA approach is both a strength and a
challenge. “In particular, the OST is dependent for its exact form on the workshop design and
facilitation style of those using it. It is designed to be a tool-in-use, modifiable according to the
context.” [Brooke 2001] SABA does not always produce the same results, a property which the
authors count as a strength because it prepares organizations for change and also reflects the
changing business requirements of an organization.

46

Requirements

CHAPTER 5: REQUIREMENTS

The approaches to leverage and modernize Oracle Forms applications discussed in the previous
chapter cannot always be implemented. Every approach poses certain requirements, some of which
have already been mentioned in their descriptions. This chapter investigates the requirements that
need to be met in order to implement the approaches.

A comprehensive list of requirements would be insensibly large, containing anything from skilled
developers, budget, time and more – most of which are either trivial or well documented in both
academic and industry literature. Although every approach has its own requirements, interviews
with Oracle experts have shown that there are two key areas that play a significant role in assessing
the feasibility of any approach: the legacy system's quality and the organization's SOA maturity.
This chapter will describe both of these in detail and present a brief discussion of other
requirements.

5.1 Legacy system quality
The approaches for leveraging a legacy Oracle Forms application described in the previous chapter
pose requirements on the application itself. For example, some approaches require logic to be
isolated so it can be reused, while others require a recent version of Oracle Forms in order to call
Java code for integration purposes.

This section discusses which aspects of the legacy system might need to be considered to evaluate
the feasibility of a particular approach. The set of aspects is based on the non-comprehensive list of
approaches in presented section 4.4, and therefore might not be complete. Therefore, it might be
necessary to extend the set of aspects. To this end, this section first discusses how a quality model
can be used to formalize the set of aspects and define measurements for each.

47

Requirements

5.1.1 Quality model
ISO 9126 [ISO/IEC 2001] is a standard for measuring software quality aspects. It defines software
quality as “[t]he totality of features and characteristics of a software product that bear on its ability
to satisfy stated or implied needs.” [Fenton 1997] According to the standard, quality can be
(comprehensively) decomposed into six factors:

● Functionality
● Reliability
● Efficiency
● Usability
● Maintainability
● Portability

Each of these factors can be refined through multiple levels of subcharactersitics. Although the
standard itself does not address these, an annex to the standard (ISO 9126-1, see [SQA]) contains
examples for (only) the first level of refinement [Fenton 1997]. Furthermore, the QUINT2 model
([SERC 2005]) extends the ISO model with more characteristics and provides

Not all factors and subcharaceristics are relevant as requirements for the leveraging approaches.
Although the list of approaches in the previous chapter cannot be considered comprehensive, it is
still reasonably possible to identify a comprehensive subset of factors and subcharacteristics that
can be relevant to any leveraging approach. However, new leveraging approaches may very well
pose requirements on areas that are not covered here, in which case the subset will need to be
extended (also see section 8.2). The factors and subcharacteristics considered in this thesis are
presented in table 5.1 and form a subset of the ISO 9126-1 and QUINT2 model.

The subcharacteristics presented in table 5.1 can be refined further into measurable attributes. The
QUINT2 model defines multiple indicators for each attribute. The ISO 9126-2 and ISO 9126-3
standards (see [ISO/IEC 2001]) describe external an internal metrics, respectively.

Each leveraging approach can pose requirements on the legacy system's quality. The ISO 9126
quality model and its extensions (ISO 9126-1, QUINT2) can be used to refine the requirements and
guide the evaluation of the system's compliance to these requirements. Unfortunately, these models
are complex, large-scale and abstract, making them unfit to use directly in the context of the
problem addressed in this thesis.

For example, the QUINT2 model measures changeability with seven rather abstract indicators
(most of which are taken from the original ISO model), which are time-consuming to measure and
do not provide detailed measurements which can be used to evaluate the feasibility of a particular
leveraging approach.

48

Legacy system quality

Factor Subcharacteristics Description

Functionality Interoperability

A given software component or system
does not typically function in isolation.
This subcharacteristic concerns the
ability of a software component to
interact with other components or
systems.

Maintainability

Analyzability
Characterizes the ability to identify the
root cause of a failure within the
software.

Changeability Characterizes the amount of effort to
change a system.

Stability

Characterizes the sensitivity to change of
a given system that is the negative
impact that may be caused by system
changes.

Testability Characterizes the effort needed to verify
(test) a system change.

Reusability
Characterizes the potential for complete
or partial reuse in another software
product.

Table 5.1: Relevant factors of the ISO 9126-1 and QUINT2 models (sources: [SQA], [SERC 2005])

To allow quick (perhaps even partly automated) evaluation of a system's compliance to
requirements posed by a particular leveraging approach, a more specialized quality model could be
developed, based on the ISO and QUINT models. For example, when measuring changeability, a
metric could be developed that takes into account particular aspects of Oracle Forms applications
which are known to affect changeability, like the fraction of PL/SQL code isolated in reusable
procedures (as opposed to embedded into the main program code – see section 4.4.2).

Another benefit of developing specialized metrics is that it should be possible to write software that
analyzes a system's source code to either assist experts in measuring or even provide measurements
automatically. This would enable fast and cost-effective evaluations of requirements.

The development of such a specialized quality model lies outside the scope of this thesis.

5.1.2 Oracle Forms version
A lot of the solutions mentioned in the previous chapter require Java integration. Oracle Forms
supports Java integration from version 9i onwards. Legacy applications that have not yet been
upgraded to this version must do so in order to be able to invoke Java. This upgrade may require
substantial modifications to the application, as some methods and components have been
deprecated and are no longer available7.

7 See http://www.oracle.com/technology/products/forms/pdf/forms_upgrade_reference.pdf

49

Requirements

Oracle 9i is also the first version to support Web Forms (see appendix A), which is a requirement
for building more user-friendly applications (see section 4.4.4).

5.1.3 Isolation of reusable logic
As mentioned in section 4.4.2, logic which is part of an Forms application that needs to be invoked
as (part of) a service must be isolated as a stored procedure in the database. Applications that have
been designed as “fat clients” and do not feature strong separation of concerns often have their logic
embedded in and distributed among the application's code (in the client). In these cases, the logic
that needs to be reused first needs to be isolated and moved to the database tier to make it invokable
(for example by wrapping them in a Java web service). This can require significant modifications to
the legacy system's code, in which case the availability of good documentation of the system and
the business processes it supports can be beneficial (see next section).

Applications in which reusable code has already been isolated into reusable libraries (within the
application) only require minor modifications, as moving the code from the application to the
database tier and encapsulating it as a stored procedure does not involve large modifications to the
application.

Applications in which reusable code is has already been isolated and moved to the database as
stored procedures do not require any modifications at all.

5.1.4 Documentation
In order to evaluate which approaches are feasible and how much effort it might take to implement
them, documentation about the system is invaluable. Unfortunately, documentation is often
outdated or not available at all, because architects, designers and developers are usually accountable
and compensated for working software, and not writing and updating documentation.

Documentation can come in many forms, and depending on the approach, not all aspects might be
important. On the lowest level, the application's source code itself should be documented to
facilitate re-engineering and white box analysis techniques, which all require the code to be
understood, often by developers that did not write the code themselves, or who have done so a long
time ago and cannot remember the details of some particular piece of code.

On the next level, documentation about shared functions and libraries, the system's architecture (e.g.
UML activity and class diagrams) and file layout, integration with other systems and the like are
also essential for re-engineering projects. Since legacy applications are often monolithic in nature
and lack cohesion and modularity (see section 2.4.2), changes in one part of the system can cause
breakage in parts that were thought to be unrelated. Good documentation can help spot these
relations, thereby facilitating re-engineering projects and making estimates of required effort.

The “highest” level of documentation consists of documents describing the sytem's (functional and
non-functional) requirements, high-level architecture, etc. For example, these aspects might be
documented and modeled with formal documents like UML use cases or ArchiMate models, or
through informal written documentation. Documentation on this level is less important for re-

50

Legacy system quality

engineering parts of the system, but all the more important for getting an overview of the system
and the problems it solves, and the rationale behind its design and functionality.

5.2 SOA maturity
To measure an organization's “fit” to SOA principles and technology, a number of models and
frameworks have been developed by academia, commercial IT vendors and other organizations.
Among these are the the OASIS SOA Reference Model ([OASIS SOA]), the Open Group Service
Integration Maturity Model ([OG OSIMM]), the CBDI SOA Maturity Model ([CBDI SOA]) and
IBM's SOA Foundation ([IBM SOA]).

For the purposes of this thesis, Oracle's own SOA Maturity Model ([ORACLE SOA]) can be used
to specify and measure requirements posed by leveraging approaches. The reason for choosing this
model is that Oracle's consultants are already familiar with it, which makes the method easier to
apply, and thereby more valuable to Oracle.

Oracle's SOA Maturity Model is similar to the Software Engineering Institute's (SEI's) Capability
Maturity Model Integration (CMMI [CMMI]) framework. The CMMI is a process improvement
framework, which defines a list of best practices and assigns an organization into one of five levels
of “maturity” according to how many of the best practices are implemented in the organization. The
model can be used to guide improvements across an organization by pointing out which missing
processes should be implemented to reach the next level of maturity.

Oracle's SOA Maturity Model likewise defines five levels of “SOA maturity” (see figure 5.1 and
appendix C), which describe how well the organization is suited to the SOA paradigm. Oracle's

51

Figure 5.1: Oracle SOA Maturity Model

Requirements

model is mainly technology-driven, but includes organizational aspects as well. Like the CMMI, the
SOA Maturity Model can guide an organization's progress towards service orientation and help
define roadmaps for SOA adoption.

In the context of this thesis, Oracle's SOA Maturity Model can be used to specify requirements for
leveraging approaches and measure an organization's maturity to evaluate the feasibility of that
approach. For example, an approach that requires BPEL might require a SOA maturity level 2. An
organization that wishes to implement this approach would first have to carry out a SOA maturity
assessment to determine the requirement is fulfilled and the approach is feasible. Such an
assessment is carried out by filling in a questionnaire with questions regarding various “Focus
Areas” (see appendix D).

52

Method

CHAPTER 6: METHOD

This chapter presents a method that helps organizations reach a decision on how best to proceed
with their legacy systems. This method is the main contribution of this thesis.

The method is integrated into Oracle's methodology, the OUM. The next section will first introduce
the OUM and describe the method's place within the OUM. Section 6.2 contains the description of
the method.

6.1 Oracle Unified Method
The Oracle Unified Method (OUM) is an IT project framework based on the Unified Software
Development Process (also called Unified Process or UP) and UML. Its goal is to help
organizations “develop and implement technology-based business solutions with precise
development and rapid deployment.” [Oracle 2007] The solutions cover all of Oracle's IT products,
from its database and middleware products to its suite of business applications.

The OUM adopts the iterative and incremental characteristics of the UP and employs its four-step
approach (consisting of inception, elaboration, construction and transition) for project management.
The method is designed with scalability and adaptability in mind in order to support both plan-
driven (e.g. CMMI, Cleanroom and PSP) and agile (eXtreme Programming, Adaptive Software
Development) software development methods.

The OUM includes three so-called Focus Areas (source: [Oracle 2007]):

● The Manage Focus Area “provides a framework in which all types of projects can be
planned, estimated, controlled, and completed in a consistent manner.”

● The Envision Focus Area “comprises the areas of the Oracle Unified Method framework
that deal with development and maintenance of enterprise level IT strategy, architecture, and
governance.”

53

Method

● The Implement Focus Area “provides a framework to develop and implement technology-
based business solutions with precise development and rapid deployment.”

OUM divides projects into phases (each Focus Area has its own phases). In OUM, the most
elemental unit of work is a step. Steps are combined into tasks, each of which has a specified
output. Related tasks are grouped into processes. As an example, consider figure 6.1, which
illustrates the phases (“Initiate” and “Maintain and Evolve”) and processes for the Envision Focus
Area.

In OUM, a work product is the output of a task. A 'work product' is explicitly distinguished from a
'deliverable' “to eliminate the risk of having the method deliverables confused with the contractual
deliverables. A contractual deliverable is specifically referenced in the contract and often has a
payment schedule attached to its acceptance.” [Oracle OUM]

6.1.1 Place within OUM
One of the Envision Focus Area's objectives is to respond to critical business needs or pain points.
As this Focus Area is concerned with an organization's enterprise-level IT strategy and takes into
account its IT architecture and business objectives to develop and maintain strategic IT alignment,
the method presented in this chapter fits naturally into this Focus Area.

The second process of the Envision Focus Area is Enterprise Business Analysis (see figure 6.1),
which contains the task “Identify current architectural challenges” (EA.050). The goal of this task is
to “review the current situation, and identify the current deficiencies related to that situation. In
most situations, this view is on the enterprise level, but the scope engagement might also be limited
to a part of the enterprise. Ensure that your effort is in line with the given scope. Also, the scope
may be enterprise wide, but limited to a specific aspect of the architecture. For example, it may be
limited to map the architectural aspects related to data structures, or only to cover security aspects
of the architecture.” [Oracle OUM] The method presented in this chapter is closely related to this
task, as integrating legacy Oracle Forms applications in an SOA is usually considered an
architectural challenge.

54

Figure 6.1: Overview of the Envision Focus Area processes and phases (source: [Oracle OUM])

Oracle Unified Method

The next task is called “Identify architectural improvement options” (EA.060), which aims to
“investigate further the current-state architecture and the ways in which it constrains the business
[...] and determine possible options for improvement.” [Oracle OUM] The method presented in this
chapter supports this task very well by proposing a way to develop a solution for a particular
architectural challenge, namely integrating and leveraging a legacy Oracle Forms application in an
SOA.

6.2 Method description
In the terminology of the OUM, the method presented in this chapter would be called an approach,
and it would be carried out as part of a task (see previous section). The method description is
structured according to the OUM task template. This ensures the method can be easily integrated
into the OUM's Envision Focus Area material.

The method has been developed in collaboration with Jan Kettenis, an Oracle consultant who
contributes to the OUM, particularly to the Envision material. His feedback on the method were an
important part of its development, and ensured its fit into the OUM.

6.2.1 Overview
The premise of the method is that an organization has an Oracle Forms application that no longer
supports one or more businesses drivers. This business driver is the starting point for the method.
The method then directs experts to evaluate one or more possible solution alternatives to fulfill the
requirement this driver poses on the legacy system.

The solutions provide a way to use or modify the legacy system in such a way that it (better) fulfills
a desired requirement. This way, the existing system's value can be leveraged, and the business
requirement can be fulfilled in the short term. Section 4.4 presents a number of these solutions. This
list of solutions is not comprehensive, but it can (and should) be extended (see also the
recommendations in section 8.3).

Each solution has some requirements that need to be met before it can be put into practice.
Although there are a lot of different requirements, this method highlights two categories as
especially important: the legacy system's quality and the organization's SOA maturity, both of
which are described in chapter 5. If one or more of a solution's requirements is not met, several
options are available. The first is to take the necessary steps to meet the requirement, for instance by
improving a particular quality aspect of the legacy system. Another option is to evaluate other
alternatives, if any are available. Finally, the last option is to consider replacement of the system
(see section 4.5).

55

Method

Figure 6.2 shows a graphical overview of the method's inputs and output.

6.2.2 Stakeholders and participants
In order to make informed choices at each step of the method, it is important to involve different
stakeholders and experts on different domains. This section will discuss which knowledge has to be
available to make decisions during the application of this method.

Since the method not only starts by identifying a business problem that needs to be solved, but
requires decisions that can have long-term effect and which might require large commitments
(budget, time, etc), it is essential to involve management at the strategic as well as business unit
levels. To identify the requirement the problem poses on the legacy IT system and to find out why
the system does not fulfill it, people with more detailed technical knowledge of the system and the
organization's IT architecture should be involved in the discussion as well. All in all, a broad range
of expertise needs to be available.

For the application of the SABA method (see section 4.6.3), Brooke and Ramage recommend that
“[i]deally, a participant group should consist of about a dozen people and include:

● Senior directors (preferably including someone at Board level)
● Managers from different organisational functions (including Human Resources)
● IT specialists (preferably including a software engineer)
● Front-line staff (including those at the external customer interface)
● End users (preferably including an external customer)” [Brooke 2001]

The method presented in this section involves about the same expertise and is concerned with
decision-making on the same organizational levels and comparable time scale, so the
recommendation made by Brooke and Ramage is valid for this method as well. Since most steps in
the method require a broad range of knowledge as well as authority to make decisions, it is
beneficial to form a group of participants which are available most of the time.

Furthermore, the OUM also offers recommendations for selecting participants for its various
processes. These should be taken into account for every process that is referred to by the method
description.

56

Figure 6.2: Method model

Method description

6.2.3 Decision making process
This section describes how to carry out the steps that make up the method. An overview is
presented in figure 6.3. The first and last steps are part of the method but are not described in detail
here, since they lie outside the scope of this research, and are described in detail elsewhere in the
OUM and other literature.

The right half of figure 6.3 shows the steps that need to be taken to apply the method in the form of
an activity diagram. The left half shows which OUM processes and Focus Areas are related to each
step.

57

Figure 6.3: Activity diagram for method steps
(right-hand side shows task steps; left-hand side shows related OUM processes)

Method

A quick glance at the activity diagram shown shows that the method is iterative, just like the OUM
itself. The SABA method developed by Brooke and Ramage (see section 4.6.3) is also “applied in
an iterative way, so that technical options are tested out against the business needs. It is, thus, a
dynamic tool which seeks to mimic the nature of organisational change, as far as is practicable.”
[Brooke 2001] In order to reach a decision quickly, the method advises to first identify a preferred
solution, and only then consider its requirements. If one or more requirements are not met, the
organization can consider fulfilling them. If this is not desirable, a different solution should be
identified, thereby iterating the process.

An alternative would be to first consider all possible requirements (for example by thoroughly
measuring the legacy system's quality with all the metrics that have been presented in section 5.1)
prior to evaluating the possible solutions. This alternative however would eat up more time and
involve more people than strictly necessary, which would burden the decision making process,
making it less agile, slower and costlier.

Identify unsupported business driver (prerequisite)
The starting point of the method is the realization that the legacy system under consideration does
not fulfill a particular business driver. While identifying this business driver is a necessity for
applying the method, this step is not really part of it. Rather, it should be considered a prerequisite.

In the OUM's Envision Focus Area, the Enterprise Business Analysis process contains a task called
Identify Business Strategy (BA.010), which, as the name suggests, aims to identify an
organization's business strategy. After identifying the strategy, the next step would be to evaluate
which particular business driver is not supported by the legacy system.

Identify business requirement(s)

Approach
The next step is to analyze why exactly the legacy system does not support one or more particular
businesses drivers. It is important to realize the difference between the business driver and the
requirement it places on IT systems. The most common business drivers and their respective
requirements have been presented in chapter 3 and are summarized in table 6.1. Although this
discourse does not cover every possible business driver, it can serve as a foundation for evaluating
requirements that have not been explicitly mentioned.

After identifying the business requirement that the legacy system does not fulfill, the participants
should delve even deeper and discuss why the legacy system does not fulfill the requirement in
detail. This analysis is useful when identifying the preferred solution.

For example, if the legacy system does not support the organization's business agility strategy, the
first step would be to analyze why it cannot. One reason might be its lack of integration support,
which prevents the organization from quickly changing processes because required modifications to
the legacy systems interfaces with other systems take too long to change. A different reason might
be its lack of flexibility because processes and are hard-coded into the application, which make

58

Method description

them difficult to change. In these cases, the actual business requirements would be integration
support and flexibility, respectively.

Business driver Business requirement

Support for process orientation
(BPR, BPM, BAM)

Business process support
Flexibility
Integration support

Business agility, service orientation Flexibility
Integration support

e-Business Integration support
Flexibility

Customer intimacy User-friendly interfaces

Product leadership Integration support
Flexibility

Financial performance

User-friendly interfaces
Maintainability
Integration support
Flexibility

Table 6.1: Summary of business drivers and corresponding requirements

The critical aspect of this step is to start with a business viewpoint to identify a problem with the
legacy system. IT experts might be able to list number of problems and possible improvements, but
what really matters is how the system's shortcomings hinder the organization from reaching its
business goals.

Input
● Description of business driver(s) not (sufficiently) supported by legacy system

Activities
1. Identify unfulfilled business requirement(s)
2. Discuss in detail why the legacy system does not fulfill the requirement(s)

Tools and techniques
● Problem decomposition techniques
● Mind maps, brainstorms

Key participants
● Business experts and legacy application experts

Output
● Description of business requirement currently unsupported by legacy system

○ including the detailed technical reasons why it is not supported

59

Method

Identify preferred solution

Approach
The next step is to choose a solution that will fulfill the business requirement. It is important to
stress that such a solution need not increase the system's value for the long term. In fact, since it
should be replaced in the medium to long term anyway, it will likely be difficult to get a return on
large investments. The emphasis should be on finding a solution that adequately fulfills the business
requirement, or which, in other words, “eases the pain” the organization currently has.

Chapter 4 elaborates on enhancing the value of legacy systems. Section 4.4 in particular presents a
set of solutions which can enhance Oracle Forms applications in order to fulfill the requirements
summarized in table 6.1. By no means should this set be considered complete, so new solutions can
be considered too, of course.

The solution has to fit the organization's business and IT strategy (particularly any long-term plans
for the legacy application itself) and its IT architecture. It also should also be realizable with the
organization's IT developers' skills and. These aspects can be evaluated with various processes from
the Envision Focus Area, most notably Enterprise Architecture [EA] and IT Portfolio Management
[IP]. The Technical Scenarios Tool (TST, see figure 6.4) developed by Brooke and Ramage
([Brooke 2001]) can also help to make such a decision.

The OAR ([Bergey 2001], see section 4.6.1) and SMART ([Lewis 2006], see section 4.6.2) methods
can help to evaluate the cost and technical feasibility of approaches that require parts of the legacy
system to be componentized and wrapped as services (this approach has been discussed in section
4.4.2).

When some business requirements can be fulfilled in more than one way, a choice has to be made
between the alternative solutions. To make this choice, the expected costs and advantages of each
should be evaluated to find the most suitable approach. These aspects will often not fall into the
same categories and hence cannot be compared easily. In such a case, it can be important to involve
not only all the relevant stakeholders and experts, but also external consultants in order to make an
informed trade-off.

In some cases, none of the possible solutions might deliver the necessary improvements, or they
might all be infeasible to implement. For example, the required changes to the legacy system might

60

Figure 6.4: Technical Scenario Tool overview ([Brooke 2001])

Method description

be so costly to implement that the costs outweigh the possible benefits. The solutions to these cases
lie outside the scope of this thesis. One possible solutions is to replace the legacy system altogether,
which is briefly touched upon in section 4.5.

Input
● Output of previous step (“Identify business requirement(s)”)

Activities
1. Consider (existing and new) approaches that can make the legacy system fulfill the business

requirement
2. Evaluate effectiveness, feasibility and cost of solutions
3. Decide on preferred solution (if any)

Tools and techniques
● OAR (see section 4.6.1)
● SMART (see section 4.6.2)
● TST (see section 4.6.3)

Key participants
● Experts on legacy system
● IT architects

Output
● Proposal for legacy system modification approach

OR
● No proposal because no solution is feasible or effective

Evaluate requirements

Approach
Once a solution has been selected, its feasibility has to be tested by evaluating any requirements the
solution poses. In the context of this research, the organization's SOA maturity and the legacy
systems quality are the two main areas that need to be considered.

The legacy system quality can be evaluated using different measurements. Some are informal (for
example, the version of the Oracle Forms framework or the quality of its documentation), while
others can be measured formally using software quality metrics. A general software quality model
(based on the ISO-9126 standard) has been presented in section 5.1. Unfortunately, its metrics are
abstract and very general, which makes the general model impractical for the purpose of this
method. A quality model customized for the purpose of measuring attributes important for
leveraging approaches would be very valuable. However, developing such a model lies outside the
scope of this thesis (see recommendations in section 8.3).

The SOA maturity can be evaluated using Oracle's (or some other) SOA maturity model, which has
been introduced in section 5.2. However, this knowledge is already available within Oracle's SOA

61

Method

maturity model, and in the literature in the case of the IT system quality metrics ([Fenton 1997],
[SERC 2005]) and legacy reuse techniques ([Bennett 1999], [Sneed 2001], [Bergey 2001], [Lewis
2005]).

There are, of course, other requirements, like budget, time, and available knowledge and skills.
While these will obviously have to be considered along with those mentioned above, this method
does not consider these in greater detail because they are not unique to the particular problem this
method deals with. The OUM's Envision Focus Area contains some processes that can help to make
this evaluation (see the description of the previous task).

If all the requirements are already fulfilled, the solution can be implemented. If they are not, a
choice has to be made as to whether or not to fulfill the requirements before the solution can be
implemented or abandoned (see the next section).

Input
● Preferred solution proposal

Activities
1. Measure legacy system quality attributes
2. Measure organization's SOA maturity
3. Compare measurements to solution's requirements

Tools and techniques
● Oracle SOA maturity model
● Software quality model (including metrics)

Key participants
● Legacy system expert (for measurements of its quality)
● SOA expert on IT and organizational aspects (for SOA maturity assessment)

○ Can be external consultant

Output
● Conclusion on whether solution's requirements are fulfilled

○ Optionally: list of unfulfilled requirements

Consider fulfilling requirements

Approach
If the requirements for the preferred solution are not fulfilled, two choices are possible. The first is
to take steps to fulfill the requirements, for example by improving the organization's SOA maturity
or by improving a particular quality aspect of the legacy system. After the requirements have been
fulfilled, the solution can be implemented.

Since it might take a long time to change the organization's SOA maturity or the legacy system to
meet the requirements, it would prudent to re-evaluate the business requirement and the feasibility
of the solution before implementing it. For example, business requirements might have changed,

62

Method description

rendering the solution unnecessary, or a key developer familiar with the legacy system might have
left the organization, which might render the solution infeasible to implement.

The second choice is to abandon the solution, if fulfilling the requirements is not feasible (the cost
and implications of fulfilling the requirements do not outweigh the advantages that can be gained by
implementing the solution), or does not fit the organization's strategy. For example, if the solution
required the legacy system to be modernized where it was planned to be replaced out in the short to
medium term anyway, making the investment might not be sensible. In case a chosen solution is
abandoned, a different solution can be considered by iterating the method (see figure 6.3).

Input
● List of unfulfilled requirements

Activities
1. Evaluate fit (of fulfilling requirements) with business and IT strategy
2. Evaluate cost (in time, money, etc) of fulfilling requirements
3. Compare costs to expected benefits of preferred solution

Tools and techniques
(none)

Key participants
● Decision makers on strategic management level

Output
● Conclusion on whether requirements are to be fulfilled in order to implement solution

Propose or implement solution

Approach
When a suitable solution has been chosen and the organization meets all its requirements, the
solution can be implemented. Since the chosen solution will most likely be new to the organization
and its efficacy unproven, a small-scale prototype or proof-of-concept should be developed and
evaluated to test the solution. This adds another iterative loop to the method, since the chosen
solution may turn out to be infeasible to implement or unable to deliver the expected results.

The detailed description of the implementation of any of the solutions lies outside of the scope of
this thesis. Several legacy modernization approaches and frameworks are described in the literature,
for example the Options Analysis for Reengineering (OAR) [Bergey 2001] and the The Service-
Oriented Migration and Reuse Technique (SMART) [Lewis 2005], which have been presented in
section 6.1.

In the OUM, the implementation aspect is covered in detail by the Implement and Manage Focus
Areas. However, before a solution is implemented, it should first be proposed as a “candidate
project”. The Envision Focus Area contains a process called IT Portfolio Management (see figure
6.1), which “covers a ‘holistic’ view of the overall IT strategy of the enterprise. Its main purpose is

63

Method

to ensure that IT projects are aligned with the corporate strategy by maximizing the investment in
IT projects while minimizing the risks.“ [Oracle OUM] One of the tasks in this process, called
“identify candidate projects” (IP.020), verifies and prioritizes candidate projects. These tasks and
processes should be carried out first in organizations that use the OUM's Envision Focus Area.

Input
● Preferred solution

Activities
● Propose implementation project

OR
● Test solution using incremental development, prototype, proof-of-concept, etc

Tools and techniques
● Project management methods (SCRUM, PRINCE2, OUM, etc)
● Legacy reuse techniques (OAR, SMART)

Key participants
● Application developers (to test solution)

Output
● Implementation proposal

OR
● Evaluation of solution feasibility (based on small-scale solution, prototype, proof-of-

concept, etc)

End of method
At the end of the method, a solution need not necessarily have been found. In these cases, two
options are available. If the “pain” caused by the fact that the legacy system does not support one or
more business drivers is not too great, the organization could wait for a while and plan another
iteration of the method in the near future, for example half a year or one year later. By that time, the
context (business driver, budget, available developers) may have changed enough to change the
conclusion. For example, new solutions might be available, or currently unfulfilled requirements
might be met.

The second option is to consider replacement of the legacy system. Gartner recommends replacing
Oracle Forms application in the medium to long term because maintenance and modernization will
become increasingly difficult (see section 4.5). In cases where the legacy system already poses
immediate problems which cannot be solved without large investments, its replacement should be
considered as part of strategic IT Portfolio Management processes.

64

Method description

6.2.4 Project management
As is the OUM itself, this method is suited for both agile (e.g. SCRUM, see [Schwaber]) and
iterative, plan-based (e.g. PRINCE28) project management methodologies. Its iterative
characteristics lean more towards agile methods however.

For example, the method can be applied according to SCRUM. In the pregame phase, the business
requirement can be evaluated and a preferred solution can be identified. The solution's requirements
are also evaluated in the “pregame” phase. A proof-of-concept or prototype of the solution can be
implemented in a few sprints in the “game” phase. Depending on the result, the complete solution
can be implemented according to SCRUM's “game” phase, or the next iteration within the method
can identify a different solution.

The method can also be adapted to better suit plan-based methodologies. By evaluating the
requirements before choosing a solution, it should be possible to identify a feasible solution in one
or two sessions, without requiring iterations of the method just to identify a preferred solution.
However, since the solution is likely to be different to other software development projects the
organization has carried out, it would be a good idea to develop a proof-of-concept for the solution
and select a different solution if it does not deliver the expected results, thereby iterating the
method.

How best to apply and manage the method lies outside the scope of this thesis. However, the
method's relatively simple structure and its integration into OUM mean organizations should be
able to adapt the method to suit their preferred planning method.

6.2.5 Prerequisites
The first prerequisite has already been mentioned in the description of the first step of the method.
The starting point of the method is an organization's business driver which the legacy system under
scrutiny cannot fulfill. Identifying this business driver and translating it into an business
requirement which the system needs to support is critical to the success of the method. The OUM
contains two processes in the Envision Focus Area that can help to identify and formulate the
business requirement. These processes are Enterprise Business Analysis [BA] and Enterprise
Architecture [EA] (see figure 6.1).

The second prerequisite is an overview of the organization's current IT landscape. This overview
should include its IT architecture and its IT portfolio. These aspects are important to review before
a preferred solution can be identified, since the solution has to fit the organization's current and
future IT architecture and IT portfolio. The OUM's Enterprise Architecture [EA] and IT Portfolio
Management [IT] processes describe tasks that help identify and describe both aspects.

Additionally, the Organisational Scenario Tool developed by Brooke (see section 4.6.3 and [Brooke
2001]) can also be used. This techniques “begins with helping participants to describe their
organisation as it currently exists. A useful starting point is an icebreaker exercise, such as asking
participants to illustrate on paper their personal view of the legacy system” [Brooke 2001].

8 See http://www.ogc.gov.uk/methods_prince_2.asp

65

Method

Another obvious prerequisite is documentation about the legacy system, which should include
(among others): its (original) requirements (e.g. in the form of use cases), an overview of its
technical design and operating environment, a description of its ties to other IT systems and an
overview of its current use cases and end users. It is important for the system to be thoroughly
documented in order to identify the “gap” between its “current capabilities” and its “target state” (in
the terms of the SMART method presented in section 4.6.2).

6.2.6 Work product details
The output of the method is a decision on how to proceed with the legacy system. This decision
preferably is a proposal for a technical solution to enhance a legacy system's value for the short to
medium term. Such a solution can be proposed and evaluated as a candidate project and
implemented. In some cases it might be necessary to first fulfill a requirement for the solution, for
example by isolating business logic or enhancing the organization's SOA maturity.

Alternatively, if no feasible solution could be found, this too is an important result. This case
warrants an evaluation of the replacement options for the legacy system, since it is now clear that
the system cannot fulfill one or more business requirements and should be replaced in the medium
to long term anyway.

An important byproduct of the method is the (documented) rationale behind the decision. It is
important to reevaluate this rationale during the implementation of the solution, as changing
business requirements may invalidate the solution (see next section). In case no solution could be
found, the rationale provides a business oriented argument to replace the legacy system (as opposed
to an argument derived from a purely technical viewpoint).

6.2.7 Critical success factors
The single most important success factor for the method is evaluating and testing the solution. As
has been mentioned earlier, the solution will most likely be new for the organization, and its
developers will have little to no experience with its implementation. To reduce risk, developing a
prototype or proof-of-concept, together with incremental development of the complete solution is
necessary to continuously evaluate the solution and its implementation, and to check whether the
expected results are reached. Agile development methods are better suited to this approach than
plan-based methods, although the latter too can be used by using iterative, incremental
development.

Apart from reducing risk, incremental development also creates the opportunity to reevaluate the
situation after each (or after a few) iterations. It is important not to loose sight of the initial
motivation and rationale for implementing the solution, and to reevaluate its effectiveness when the
context changes. For example, the business requirement might change, making the solution
obsolete.

Another success factor is the participation of people that have enough knowledge (both
organizational and technical) and the authorization to make decisions. Since the method is iterative,
decisions should be made quickly in order to prevent long delays and to realize benefits early.

66

Method description

The discussion in section 4.5 posits that legacy systems should be replaced in the long-term. The
method presented in this chapter is aimed at providing business benefits for the short-term by
maximizing the investments in the legacy system. This means that small-scale and short-term
solutions should be preferred to large-scale and long-term solutions, in order to minimize
investments in the legacy system, and to minimize the organization's dependence on it.

67

Method

68

Validation

CHAPTER 7: VALIDATION

To validate the method presented in the previous chapter, it has been applied to one of Oracle's
customers, Eurotransplant, to create a scenario. The first section of this chapter starts by introducing
the organization and its business case and describes the application of the method to this case. The
second section presents an evaluation of the method based on the validation criteria and the
scenario.

7.1 Scenario
For the validation, an interview was conducted with Wilfred van der Deijl, IT architect at
Eurotransplant in Leiden. Eurotransplant is a non-profit organization of about 90 employees. It is
important to note that the organization has already chosen a solution to update its legacy
application, and has already started implementing this solution. This means that the scenario does
not start with a clean slate.

7.1.1 Introducing Eurotransplant

69

“The Eurotransplant International Foundation
(Eurotransplant) is responsible for the mediation and
allocation of organ donation procedures in Austria,
Belgium, Croatia, Germany, Luxemburg, the Netherlands
and Slovenia. In this international collaborative framework,
the participants include all transplant hospitals, tissue-
typing laboratories and hospitals where organ donations
take place. The Eurotransplant region numbers well over
124 million inhabitants.” [Eurotransplant]

Validation

Eurotransplant receives information about available organs directly from doctors from hospitals and
manages waiting lists. As soon as one or more organs become available, Eurotransplant matches
these against the patients on the waiting list. This process is complex and involves a lot of checks
and exceptions. After a match is made, the organization facilitates communication and
transportation between the donor's and receiver's institutions and arranges financial transactions.
The organization is not involved with the procedures surrounding the transplantation itself however.

7.1.2 Business case

The legacy application
Eurotransplant has a moderately large Oracle Forms application, consisting of about 300 modules
(or “screens”). This application was character-based in the 90s and was later migrated to a client-
server setup using Citrix software.

In 2002, Eurotransplant started a modernization project to redesign large parts of the application
because of their age. They evaluated whether to use Forms or JHeadstart9, a newer development
tool from Oracle for Java based applications. Since most users were more familiar with Forms
interfaces, they chose to continue developing using Forms. Some users however were not familiar
with Forms and preferred more modern web interfaces, so some parts of the application were rebuilt
using web interfaces based on Java with JHeadstart.

In order to be able to use two different frameworks to create user interfaces, Eurotransplant decided
to extract business logic from the older Forms applications and move it to the database, so both new
application frameworks (Forms and JHeadstart) could make use of the same logic. About halfway
through the redesign project, the developers and users started to see the benefits of the newer web
interfaces (created with JHeadstart) and decided to shift from Forms to JHeadstart. Unfortunately, a
big part of the application had just been rewritten using Forms, and the core parts of the system
can't use a mixed approach, since having users switch between applications (with different kinds of
interfaces) is just not practical, nor is it user-friendly. In 2004, the application was migrated to the
latest Forms version in order to support Web Forms (web interfaces for Forms modules, see
Appendix A).

In summary, Eurotransplant now had an application that used two types of interfaces and
technologies. Although they started with the decision to use mainly Forms, about halfway it was
decided a shift to web interfaces built with Java development tools would be preferable.

Business requirements
As has been discussed in section 3.4.1, the Forms interface is not considered very user-friendly,
since it relies on keyboard shortcuts and does not provide very intuitive interfaces. To make matters
worse, the Forms applications are (usually) designed for data entry, and do not guide or help the end
user to fill in the information necessary for any particular task. The 300 modules are all accessible
through one single menu, and the end user has to know which module to select. Since most of the
application's end users are not regular users, the user-friendliness of the application is one of its

9 See http://www.oracle.com/technology/products/jheadstart/index.html

70

Scenario

most important quality aspects. Hence increasing the user-friendliness of the application is an
important objective, preferably taken on in the short term.

Eurotransplant has also already decided to migrate away from Forms altogether in the long term for
two other reason. The first is that the current way of navigating the application is not only not user-
friendly, it also does not support the allocation process, nor does it leave a good audit trail. Since
the transparency and accountability of the allocation process are important for Eurotransplant, it
was decided that the application should support and guide the process, which at the time was
(and still is) done mostly on paper. After asking three consultancy companies for advice (one of
which was Oracle itself), implementing BPEL to model and support the allocation process was
chosen as the best solution. First, a proof-of-concept (POC) was developed to test the solution, after
which one process (for one particular organ) was put into production.

Even with a successful prototype for the process-orientation requirement, how to get from the
current situation (in which the application is used mostly for data entry) to the desired situation (in
which the application manages the process and guides the user) was still an important but open
question.

The second reason to move away from the Forms application is that its monolithic nature makes it
difficult to only offer parts of the application to new users. Eurotransplant wants more countries
to join its network. Most already have systems in place for all or most processes and do not want to
switch to Eurotransplant's, or they want to do a small scale test before they join the network.
Unfortunately, the application is currently not modular enough to provide only particular
services to prospective members. Additionally, Eurotransplant would like to offer services with
optional user interfaces. This would allow members' applications to either direct their users to
Eurotransplants web interface, or use their own user interface and send the necessary information to
Eurotransplant by calling a web service.

7.1.3 Method application

Identify unsupported business driver
The first step in applying the method is to identify the business driver the legacy does not support
(anymore).

In the case of Eurotransplant, some (very important) users were having trouble using the application
because its unconventional user interface. Furthermore, there were already plans to rewrite the
application in the medium to long term because of the required modularity and process orientation
mentioned above. The business drivers behind these “pains” are customer intimacy and process
orientation.

Identify business requirement(s)

Input
Unsupported business drivers:

71

Validation

● Customer intimacy

● Process orientation

Activities results
The current legacy system does not support customer intimacy because standard Oracle Forms user
interfaces are geared towards “power users” and take getting used to. A lot of the applications' end
users do not use the application often and are not familiar with Oracle Forms user interfaces in
general, and so cannot use the application efficiently. What is required is a new user interface,
preferably web-based, which is more intuitive and user-friendly. Unfortunately, Oracle Forms
applications can only use the native user interface technology.

As has been discussed in section 3.3.5, business processes embedded in legacy systems are often
hard to change and not transparent. When business processes are not embedded in software, they
usually are in people's heads, which makes these processes even less transparent, although they
might be easier to change. These are exactly the problems Eurotransplant faces with their Forms
application, and this is one of the reasons to implement BPEL.

Output
Unsupported business requirements:

● User-friendly interfaces (preferably web-based)
○ Currently not supported because Oracle Forms can only use “native” user interfaces

● Support for process orientation
○ Not supported because embedding processes in application is not feasible because of a

lack of transparency and flexibility

Identify preferred solution

Input
See output of previous step: list of unsupported business requirements

Activities results
Eurotransplant decided that the ideal way to leverage the existing Forms modules while rewriting
the application using the newer Java development tools (JHeadstart) would be to integrate the
Forms interfaces in the new web interfaces. This would not only make interfaces more user-friendly
because they could be rewritten using new web interface technology, it would also allow
incremental migration from the Forms based parts of the application to the newer Java based
framework, which was a medium to long term goal. This incremental migration meant that the most
important user interfaces could be made more accessible in the short term, which would ease the
“pain” soon.

To this end, Wilfred van der Deijl, in collaboration with Oracle developers, designed a mechanism10
that enables communication between Java Server Faces (JSF) components and Forms modules. This

10 See http://www.oracle.com/technology/pub/articles/wilfred-adf-forms.html

72

Scenario

in turn allows for (parts of) Forms modules' user interface elements to be almost seamlessly
integrated in web interfaces developed on Oracle's Java application framework.

Evaluating the feasibility of the solution took a while because the underlying technology had to be
developed and tested first. After initial tests and a prototype, the technique was deemed feasible to
implement and able to deliver the required results, both from a technical and financial perspectives.

Output
The proposal to leverage the legacy application was to use the technology that allows parts of the
legacy application's logic and user interfaces to be reused and integrated in a new application built
using modern technology. In the long term, the old parts would be incrementally replaced by new
software.

Evaluate requirements

Input
See output of previous step: proposal for leveraging approach

Activities results
The only requirement for this approach is that Forms had to be upgraded to a version that supports
Web Forms (see appendix A), because older versions cannot integrate with the Java runtime and so
cannot use the mechanism described above.

Apart from this requirement, isolation of businesses logic (see section 5.1.3) is beneficial for this
approach because it allows this logic to be reused in the new application, which lowers the required
development effort. One technique that can be used to achieve this isolation is discussed in section
4.4.2.

Eurotransplant's Forms application already fulfilled both of these requirements. The upgrade to
Web Forms had already taken place earlier, and the isolation of logic had already been started
because it would benefit the re-engineering project. This means that all requirements for the
preferred approach were fulfilled.

Since the approach does not necessarily require an SOA, it does not place any requirements on the
organization's SOA maturity.

Additionally to these requirements, the developers would need the skills necessary to develop using
both sets of technologies (Forms and Java based). This trivial requirement was not explicitly
considered as the developers mostly already had the necessary skills.

Output
All requirements are fulfilled.

73

Validation

Consider fulfilling requirements
This step was not necessary in Eurotransplant's case, as the requirements for the preferred solution
were already fulfilled (see previous step).

Propose or implement solution

Input
Output of step “Identify preferred solution”: proposal for leveraging approach

Activities results
The last step of the method is to either propose (and later evaluate) the solution, or implement it
directly. This thesis recommends an incremental or agile approach to test the feasibility of the
approach, and to reduce risk by first gaining some initial experience and evaluating the results
before starting a full blown implementation project.

This is what Eurotransplant did, too. Since the key technology (which enables communication
between Oracle Forms and Java) was brand new and not fully mature, the approach was “lab tested”
first just to see if the technique could work in practice.

After the technology had matured and was ready for production, the first “quick win” project was
started to test BPEL-driven processes and the integration of an “old” Forms interface in a new Java
based part of the application. In this setup, the BPEL engine “hands out” so-called human tasks,
which the end users can then carry out in a new (Java based) web interface that integrates and
reuses an old Forms module's interface.

Output
This small scale project was finished successfully and demonstrated the feasibility of the approach
and proved that the intended benefits could indeed be gained.

7.1.4 Work product (deliverable)
The method's work product (or end result) is the decision to continue the redevelopment of the main
application based on Oracle's new, Java-based, application development framework, and to reuse
the legacy application's logic and user interfaces by integrating these in the new application.

This approach has several benefits:

● It allows for quick delivery of tangible business benefits, in the form of user interfaces based
on newer and more user-friendly technology for those users that do not use Forms regularly
and therefore need intuitive interfaces.

● It also makes incremental migration possible.
○ This reduces risk compared to a Cold Turkey approach (see section 4.5),
○ but still allows for the old technology to be completely replaced in time.
○ Furthermore, the incremental migration allows for prioritization, which means those

parts of the application that are most critical can be migrated first.

74

Scenario

As a byproduct of the analysis of unsupported business requirements and the rationale for choosing
this particular solution, Eurotransplant has gained some insight about requirements for the new
application. Special care must be taken to ensure the new application's user-friendliness (to support
customer intimacy), and modularity and flexibility (to support process orientation).

7.2 Evaluation
This section evaluates the validation criteria first presented in section 1.1.7, and which are
reproduced in italics at the start of each of the following sections. Every criterion is discussed in a
separate section below. The evaluation is based on interviews with Jan Kettenis, Oracle consultant
and OUM contributor, and Wilfred van der Deijl, IT architect at Eurotransplant and speaker at
Oracle's OpenWorld 2007 conference.

7.2.1 Innovativeness
“The method “must be innovative, solving a heretofore unsolved problem or solving

a known problem in a more effective or efficient manner.” [Hevner 2004]“

According to Hevner et al. ([Hevner 2004]), design science should result in an artifact that is
innovative. The method developed in this thesis fulfills this requirement in more than one way.

First of all, the literature contains few (if any) methods that apply to the specific problem this thesis
addresses, namely leveraging a legacy system's value by finding a solution to make it fulfill a
particular business requirement in the short term. Many existing methods (e.g. OAR and
SMART, presented in section 5.6) take a technical viewpoint and assume a complete transformation
of the legacy system is needed. Others (e.g. SABA) do take into account businesses issues but still
consider large-scale and long-term solutions.

Apart from the literature, the method is also innovative with respect to the Oracle Unified Method,
which at this point does not yet address legacy systems in its IT strategy processes.

7.2.2 Applicability
“The method needs to be applicable and complete. No steps or considerations

relevant to applying the method should be ambiguous or missing.”

The second criterion for the validation is the applicability of the method. With respect to the
scenario based on the Eurotransplant case, the method did not leave out any relevant
considerations or steps, and the level of detail in the description of the steps was found to be
sufficient. While the recommendations for the project group participants are not very detailed or
strict, this is not considered a problem. Organizations usually already have enough experience
creating project groups that the pointers given in sections 6.2.2 and 6.2.7 provide enough guidance.

It is important to note though that the Eurotransplant case has two shortcomings for this evaluation.
The first is that the “preferred solution” originally took a very long time to mature. If the method
would have been applied in the original context, the step “Propose or implement solution” would
have taken more than a year, because the key technology necessary to implement the solution

75

Validation

needed to be developed first. Since the method aims to help find a solution for the short to medium
term, waiting this long to evaluate the feasibility of a solution means its problematic to even
consider this solution. However, the method could have ended with the conclusion that no feasible
solution was available at the time, but that it should be reiterated as soon as the key technology was
mature.

The second shortcoming is that a solution has already been chosen, so the scenario is biased by
hindsight. During the interview for the scenario, the step “identify preferred solution” only
considered the particular technique that had already been chosen. Nevertheless, now that the
solution is mature and publicized, organizations with a similar problem can (and probably will)
consider this particular solution, and can reach the same decision as Eurotransplant did by applying
the method.

7.2.3 Utility
The method must be useful to Oracle and its customers. This criterion is split into two sub-criteria.

Useful to Oracle
“The method has to fit both Oracle's existing methodologies and business strategy.”

By relating the method's activities and goals to other parts of the OUM, and by describing it using
the OUM task template, the method fits into the OUM's Envision material. Because of its focus on
legacy systems, an area that as of yet is not thoroughly addressed by the OUM, the method fills a
gap in the OUM.

Since there are so many Oracle Forms applications and many customers are looking to Oracle for a
structured approach on how to leverage or modernize these, the addition of the method developed
for this thesis to the OUM material increases the value of the OUM. Not only can this result in more
contracts for consultancy services (which in turn can drive licensing and development revenue), it
also shows Oracle's customers that it does not simply “abandon” Forms users, but is committed to
help them leverage their investments and eventually migrate to newer technologies. This means the
method has commercial value for Oracle.

Useful to customers
“The method has to help the subject organization reach a decision about

its short to medium term strategy regarding the legacy application.”

Business-oriented viewpoint
One “source” of the method's usefulness to organizations that have a legacy Oracle Forms
application (note that by definition not all Oracle Forms applications are legacy) lies in its business
benefit-oriented viewpoint. This viewpoint has two advantages.

The first is that the suggested projects actually do support business requirements, and hence
can show their potential for a return on investment (ROI). This is in contrast with projects that
result from a “technology push” viewpoint, where IT experts identify desirable IT projects from an

76

Evaluation

IT viewpoint, where the intended business benefit is often unclear or difficult to “sell” to decision
makers.

The second advantage is that projects can be started quickly because management is already
involved (as participant during the application of the method) in the decision-making and knows
which problems are solved. In turn, this means business benefits can be delivered quickly.

There is even a third, though indirect, advantage. The business-oriented reasoning about a legacy
application's shortcomings with respect to business requirements actually helps identify
requirements for new (replacement) applications. In a situation where no solution could be
found to make the legacy system support a particular business driver, the organization at least has
gained some knowledge about which requirements it should pose on any new application it acquires
or develops.

Facilitate SOA adoption and migration or replacement of legacy systems
By emphasizing solutions that are as less invasive as possible to support particular business drivers
in the short term, the method helps organizations disinvest in legacy applications and and find ways
to replace these applications in the long term. This thesis also advocates incremental approaches
because they can reduce risk compared to Cold Turkey approaches. In this way, the method can
facilitate SOA adoption, which is believed to provide numerous advantages (see sections 3.3 and
3.4) and provide a better strategic fit between IT and business strategy (see section 3.2).

77

Validation

78

Conclusions and Recommendations

CHAPTER 8: CONCLUSIONS AND
RECOMMENDATIONS

The goal of this research was to develop a method that helps organizations that face the problem of
legacy applications not fulfilling business requirements make a decision about how to deal with this
problem. The main research question was:

How can existing legacy IT applications be leveraged in a Service-Oriented Architecture,
and which factors influence the choice between possible alternatives?

The result of this design research is the method that is described in chapter 6. This novel approach
takes a business-oriented viewpoint and helps organizations identify a solution that leverages the
legacy application to fulfill a particular business requirement.

The method fits nicely into the Oracle Unified Method (OUM), which increases its value for
Oracle. Its applicability and usefulness have been validated by a creating scenario based on a real
business case.

This chapter presents the conclusion of this thesis. The first section provides answers to the research
questions posed in the introduction. The next section discusses questions that have not been
sufficiently answered and proposes future research. Finally, the last section presents
recommendations to Oracle and its customers.

8.1 Answers to research questions
This section provides brief answers to the research questions posed in the introduction.

79

Conclusions and Recommendations

Which business drivers are better supported by SOA than by legacy applications,
and why?
To answer this question, a list of common business drivers was compiled based on two frameworks
found in the literature. The next step was to analyze which requirements these business drivers pose
on IT applications, and which of these requirements are better supported by SOA and how. Table
8.1 summarizes the business drivers and their respective requirements.

Business driver Business requirement

Support for process orientation
(BPR, BPM, BAM)

Business process support
Flexibility
Integration support

Business agility, service orientation Flexibility
Integration support

e-Business Integration support
Flexibility

Customer intimacy User-friendly interfaces

Product leadership Integration support
Flexibility

Financial performance

User-friendly interfaces
Maintainability
Integration support
Flexibility

Table 8.1: Summary of business drivers and corresponding requirements

How can legacy IT applications be leveraged in an SOA to better support
business drivers?
Generally speaking, the answer is to modify the legacy system just enough to make it support the
requirement (see table 8.1) the business driver poses. Several approaches have been identified, each
of which deals with one (or more) of the requirements. Among these are:

● Isolating and wrapping business logic to a) componentize applications to increase
maintainability and b) support integration by providing services through standards-based
interfaces

● Interface with and call BPEL engines to support business process orientation
● Integrating legacy applications into new user interfaces to increase user-friendliness

Note that the list of approaches is most likely incomplete, which means the research question is
only partially answered. Creating a comprehensive list of leveraging approaches is an unrealistic
goal however, since some problems will most likely have unique solutions. The focus should be on
gathering reusable approaches and techniques. One of the recommendations made in the next
section is to create a “library” of approaches.

80

Answers to research questions

Which requirements do leveraging approaches pose on an organization's SOA
maturity and the legacy system's quality?
This research has not provided a general answer to this question. A more thorough answer to this
question can only be presented after specialists have created a “library” of approaches (see next
section) which includes detailed descriptions of their requirements.

We can conclude that every approach can pose unique requirements, although some requirements
are probably more common than others. For example, isolation of business logic and
maintainability should be important for almost every conceivable approach that requires
modification of the legacy system.

How can an organization's SOA maturity be measured?
Numerous SOA maturity models and frameworks are described in the academic and industry
literature (see pointers in section 5.2). Many of these include “assessments” or measurement
approaches. For Oracle customers, Oracle's SOA Maturity Model is an obvious choice.

Different models (or frameworks) have different viewpoints however, and so focus on different
aspects of an organization's SOA maturity. For example, Oracle's model is technology-oriented, so
using a more organizational-oriented model might result in important alternative (or additional)
outcomes. In the context of this research however, a technology-oriented SOA maturity model is a
good choice, since it is used to evaluate the feasibility of leveraging solutions, which pose
requirements that are more technical in nature as well.

Which quality attributes of legacy systems are relevant with respect to this thesis?
Section 5.1 presents a list of attributes that can be important for different leveraging approaches. In
short, maintainability, isolation of business logic, the version of the Oracle Forms framework, and
detailed documentation have been found to be relevant for the leveraging approaches considered in
this thesis.

It is important to note that this list is based on the incomplete list of approaches presented in chapter
4, and thus should itself not be considered complete. More quality attributes might be identified as
relevant after more approaches have been considered.

Subquestion: How can these quality attributes be measured?
This research has investigated a software quality model which could be used to measure quality
attributes, but found it too general to use in the context of the decision support method presented in
this thesis.

One of the recommendations made in the next section is to develop a specialized software quality
model, together with software tools to assist in making measurements, to help define and measure
relevant quality attributes.

81

Conclusions and Recommendations

8.2 Open questions / future research

8.2.1 Business drivers and leveraging approaches
The answers to the research questions presented above have already pointed out that this research
has not presented a definitive answer to the questions which business drivers are better supported by
SOA than by legacy applications and how legacy applications can be leveraged to support these
business drivers.

Chapter 3 investigates the first question by first using two frameworks to identify the most common
business drivers (see table 8.1). The next step is to identify which of these drivers are promised to
be better supported by SOA, and why. There are two issues with this approach, both of which pose
opportunities for further research. The first issue is that there are more business drivers than have
been identified. These could be uncovered by a thorough literature study. The second issue is the
discussion of how SOA can better support these business drivers. First of all, since not all business
drivers have been identified, this discussion is not complete. More importantly though, this research
does not provide any empirical evidence that SOA does indeed support business drivers better than
(most) legacy applications. Now that SOA adoption is becoming increasingly common, it should be
possible to gather this data and show which promises SOA can fulfill (and under which
circumstances), and which it cannot.

The second question has been dealt with in chapter 4. The approaches that have been gathered by
conducting interviews with experts and asking them how the business drivers could be supported by
modifying a legacy system. The first problem is that the list of business drivers is not complete, as
is pointed out above. The second problem is that even for the business drivers that were identified,
not every possible leveraging approach has been found. One of the recommendations made in the
last section of this chapter is to collaborate on building a “library” of approaches (see section 8.4.2).

8.2.2 Level of detail and comprehensiveness of requirements
The discussion of requirements relevant for leveraging legacy systems is based on the leveraging
approaches identified by conducting interviews with Oracle experts. Since this list of approaches is
certainly not comprehensive, and since the approaches' requirements have not been studied in detail,
it should be further investigated whether all the requirements relevant for any (or at least most)
approach(es) have been considered.

The only two areas that have been considered in chapter 5 are the legacy system's quality and the
organization's SOA maturity. Other requirements, like budget, time, skill of developers, have only
been briefly mentioned in the method description.

Further research is necessary to either identify other relevant requirements, or to show that the
requirements considered by this thesis are indeed sufficient.

8.2.3 Method validation
The method has been validated using only one scenario. To really establish its applicability and its
usefulness, some real case studies should be conducted with the a few of the many organizations

82

Open questions / future research

(thousands, according to [Gartner 2007]) that have a legacy Oracle Forms application and are
adopting SOA.

8.2.4 Generalize or specialize method to support similar problems
The method can be generalized to work with any legacy application in any IT architecture. Some
aspects, for example the requirements that need to be considered, will differ for other contexts, but
the short-term and business-oriented viewpoint is applicable to similar problems.

8.3 Recommendations
This section concludes the thesis with a few recommendations for Oracle and its customers.

8.3.1 Create specialized quality model
To enhance the value of the method and increase its utility, Oracle should develop a small and
specialized software quality model for legacy systems based on Oracle Forms technology. Such a
model, together with software tools that automate and / or facilitate inspection of application code,
could help any decision making process that requires significant modifications to an Oracle Forms
application by providing relevant information about its structure, quality and architecture. Section
5.1.1 has already touched upon such a model based on the ISO 9126 standard.

For example, one measurement for cohesion could be to count the number of references to a
particular database table in each module. In a system with high cohesion, the number of modules
would be small (ideally just one module), which makes it is easier to maintain and modify.

8.3.2 Share knowledge about leveraging approaches
The leveraging approaches presented in section 4.4 have been gathered by interviewing Oracle
specialists. Every specialist described at least one approach that had not yet been mentioned by
other specialists. Apparently, specialists do not yet systematically share knowledge on how best to
leverage Oracle Forms applications in particular situations.

The second recommendation thus is to create some sort of “repository” or “library” to share
knowledge about leveraging approaches between Oracle developers, customers, and partners. Such
a repository would support the decision making process and implementations of particular solutions
by providing a list of possible leveraging approaches, case studies, solutions to technical problems,
best practices, and other relevant information.

8.3.3 Replace Oracle Forms applications sooner rather than later
As has already been mentioned in section 4.5, Gartner recommends organizations to “[a]pproach
Oracle Forms within a 'containment' strategy [and] migrate to industry-dominant technologies [...]
to align with industry best practices in the future.” [Gartner 2007]

The method presented in this thesis aims to mitigate business “pains” caused by legacy systems in
the short to medium term. The definition of legacy used in this thesis (see section 2.1.1) stresses that

83

Conclusions and Recommendations

outdated technology alone does not make a system “legacy” – what does is its inability to change to
support requirements. In the long run however, virtually every Oracle Forms application will fit this
definition of legacy, because it will be increasingly harder to find developers experienced with the
technology, which in turn will make maintenance and modification projects more time-consuming
and increasingly expensive.

Hence, the final recommendation of this thesis is in line with Gartner's. Applications built on Oracle
Forms should be replaced sooner rather than later, because postponing the replacement will increase
the cost of it, for the reasons mentioned above.

Unfortunately, it is difficult to estimate the cost of immediate replacement, let alone estimate the
cost of replacement in the future. This makes it hard to make a decision on financial data alone,
since the return on investment (ROI) is almost impossible to predict accurately. Furthermore, since
most applications still fulfill most requirements, “preemptive replacement” is hard to justify.

84

Appendix A: Introduction to Oracle Forms
Architecture
Oracle Forms is based on a two-tiered architecture (see figure A.1, left-hand side), with a
database to make up the data tier and “fat client” applications for the application tier.

Recent versions of Oracle Forms also support an alternative architecture (called Web Forms),
which introduces a third tier (see figure A.1, right-hand side).

Data tier
The data tier is implemented on Oracle relational databases which contain all the enterprise's
data. These databases offer advanced functionality that goes beyond reliable data storage,
some of which are used by Forms applications.

Constraints
One of the more common database features are constraints, which allow administrators to
specify constraints on the data stored in the database to enforce relational integrity and
business rules. For example, it is possible to enforce that every order must refer to an existing
customer, and its “data payable” must be later than the date the order has been entered.

i

Figure A.1: Oracle Forms architectures

A method to leverage legacy Oracle Forms applications in an SOA

Stored procedures and triggers
Stored procedures are blocks of PL/SQL11 (Oracle's proprietary procedural extension to SQL)
code that can be called by applications. This enables reuse of code and modularization, much
like a function in most programming languages. When a stored procedure is associated with a
database table or an event (such as the insertion of a new tuple), it is called a trigger.

Application tier
The application tier is implemented in (one or more) Oracle Forms client application(s).
These applications are divided into modules, each of which is (usually) tied to a particular
business object, like customers, orders, employees, etc. Each module presents an interface for
dealing with a particular object, which ties the module tightly to the database table(s) the
object is stored in.

Each module contains an interface and all the logic required to control the interface and
perform data processing and other logic. All this logic is written in PL/SQL. The application
itself is divided into modules, each of which contains a proprietary interface description
which is interpreted by the Forms runtime engine to render a user interface, interface logic
(implemented in PL/SQL) to control the interface, and application (and business) logic that
processes data and sends ad-hoc SQL queries to the database or calls stored procedures.

To navigate the application, the user can use a menu that displays all modules accessible to
her, or let a module's interface logic open a new module.

While Oracle recommends keeping the clients as “thin” as possible by implementing as much
application logic in stored procedures in the database, customers do have a choice and some
have made applications that store the majority of the application logic in the client modules.

Client tier (Web Forms only)
Forms applications can be web-enabled by migrating them to a recent version of Oracle
Application Server (version 9i onwards), which will interpret the module code and send user
interface code to the client browser, which in turn renders it using a Java Applet. While this
approach does make it possible to make the application accessible over the web, and without
installing the client software, it does not create a separate presentation tier, since the interface
logic and the application logic are still integrated in the same pieces of code and are tightly
coupled.

Integration
In order for an external program to interface with an Oracle Forms application, it has to
connect to the database at runtime and query it directly using SQL statements (or invoking
stored procedures).

11 See http://www.oracle.com/solutions/application_development/pl_sql_dev.html

ii

There are several problems with this approach. First of all, the database has to be “open” to
connections from outside of its network, possibly even outside of the company's network.
This introduces maintenance and security issues.

Another problem problem with this approach is that the developers of the external program
have to use proprietary software to connect to the database and learn a proprietary language
(or “dialect” of SQL) to issue correct SQL statements (unless they are already familiar with
Oracle's SQL dialect).

Direct database connections are also highly undesirable from a maintenance perspective,
because the external program (which is usually developed by different people) has to be
changed when the database changes.

iii

A method to leverage legacy Oracle Forms applications in an SOA

Appendix B: Introduction to SOA
Architecture
Service Oriented Architectures follow a multi-tier (also called n-tier) approach to system
architecture. Instead of dividing the application in two layers, there are numerous layers that
each deal with a particular aspect. For a detailed discussion see [Alonso 2004]. [Papazoglou
2005] and [Kontogiannis 2007] present more abstract overviews of the concept and research
issues.

An SOA intrinsically follows a multi-tier architectural approach, which divides the
application across different layers. When used correctly, this approach results in lose
coupling, which simplifies maintenance and improves scalability, because each layer can be
modified or extended without affecting the others.

Dividing software into manageable and independent pieces serves the purpose of increasing
maintainability, since changes in a service do not affect other services (as long as the
Application Programming Interface does not change). It also allows changes to be made much
more rapidly to quickly align IT support with changing business needs.

Data tier
The “lowest” tier, the data tier, is very similar (or even identical) to its counterpart in legacy
architectures. It is made up of a database that stores data and offers APIs (like JDBC, ODBC
and proprietary libraries) that can be used to issue SQL statements or invoke stored
procedures to query and modify the data. The only difference is that while the database is
capable of storing and executing stored procedures and managing data constraints, SOA
purists would keep these out of the data tier and move them to the upper tiers in an SOA.
Nevertheless, (relational) legacy databases can usually serve as data tier for SOAs with
minimal or no adjustments, since the same software and data models are used in both cases.

Middle tier
Even though a different number of logically independent layers between the data and
presentation tier can usually be distinguished in an SOA, these are commonly referred to as

iv

Figure B.1: Oracle SOA Suite's middle tier (source: Oracle Corporation)

the middle tier. This layer is heavily supported by middleware, which consists of different
pieces of software that provide services like message delivery and queuing, transactions,
service registries and more (see [Britton 2004]). Figure B.1 depicts Oracle SOA Suite's
middle tier.

The actual application logic (and some business logic) is implemented in services, which are
“course-grained, discoverable software entit[ies] that exists as a single instance and interact
with applications and other services through a loosely coupled (often asynchronous),
message-based communication model” [Brown 2002]. Services can be written in any
programming language, as long as they can be invoked using standards (see section
“Integration” below). This means that a service consumer does not have to know (and hence
does not need to make any assumptions about) how a service is actually implemented, which
reduces coupling.

To support actual business processes, several services have to be invoked according to
complex flows (which can include constructs like branches, parallel execution and loops,
among others), where the output of one service may be used as input for the next. This
process of “service orchestration” can be modeled using the Businesses Process Execution
Language (BPEL). BPEL engines can then execute these models and automatically invoke
services and wait for asynchronous responses from other services. Each BPEL process can
itself be offered as a service and used in other BPEL processes.

The middle tier contains application servers, which can be used as deployment platforms for
both services as well as the BPEL engines, as well as numerous other middleware software
pieces like ESBs, message queues, transaction processors, etc (see [Britton 2004]).

Presentation tier
The “uppermost” tier is the presentation tier, which manages channel-specific device
dependencies (like communication protocols and user interfaces). For example, the
presentation tier is responsible for creating an HTML web page which it sends over HTTP to
an end user's browser, or it may create a voice message which is sent using VOIP or email.
The message's particulars (like contents, recipient) are specified by the services in the middle
tier – the presentation tier only only transforms the message into a device-dependent form and
sends it using the right protocols.

The presentation tier is also responsible for receiving input from different user channels, for
example an HTML form submission. These events are forwarded to the middle tier, which
can react on these, for example by starting new BPEL process instances (in the event of a
customer ordering a product using the company's website).

Integration
Integration is one of the cornerstones of SOA. While direct access to the database (as
described in section 2.4.3) is still technically possible, SOA promotes the use of novel
interfacing technology, based on open standards and the web. These standards include WSDL,
UDDI and SOAP, and communication takes place over HTTP. [Alonso 2004] provides a

v

A method to leverage legacy Oracle Forms applications in an SOA

detailed for a description of these standards. The advantages of these standards are that the
problems described in section 2.4.3 are mitigated or eliminated. See section 3.3.2 for more
details.

vi

Appendix C: Oracle SOA Maturity Model
Level 1: Opportunistic SOA
Level 1 organizations are early in their adoption of SOA. They recognize the potential and
have begun to work opportunistically to gain early success to garner additional support.

SOA knowledge is often contained within a small group in the IT organization, possibly
spread amongst several project teams. These groups are exploring technology and gaining
valuable education and experience with SOA technology.

IT teams may be using Web Service technology to share information between systems. The
teams have recognized the SOA value of technology standards and the opportunity for
widespread sharing and reuse of their efforts.

Level 1 is about building a foundation and their efforts are focused on getting systems to talk,
using standards to enable interoperability. They are working tactically to solve immediate
project challenges with little to no thought about larger enterprise SOA adoption.

While having limited enterprise SOA thinking, level 1 organizations may endeavor to
complete projects that include implementation of new SOA technology. These projects may
be of considerable enterprise value and may produce significant direct returns to the business.
However, without the proper support in place across other SOA dimensions, the projects
likely will produce fewer long-term enterprise SOA assets than desired.

In summary, level 1 organizations focus is on technology standards. The scope of efforts is
narrow, likely a single project or application. Some thinking may reach to an organization.
Ownership of SOA assets remains with the immediate project team. They are the producer
and consumer of most assets. This often will result in less clear service specifications since
services are produced and consumed within the team. Abstraction is often low as the team is
building foundation services that wrap existing applications. It is difficult with these first
projects to reach high-levels of abstraction and produce well-defined reusable business
services.

Level 2: Tactical SOA
SOA Level 2 is about expanding the foundation service portfolio and creating new services
through service collaboration. Level 2 organizations are taking steps to expand towards
enterprise SOA, while tactically using SOA on everyday projects. Services respond to events
and architects are planning the event portfolio alongside the service portfolio.

At level 2, organizations are beginning to benefit from reuse of existing core foundation
services. As their service portfolio is expanded, they are not only sharing data but now
sharing functions. As data services expand, the organization benefits from a single point of
access for data elements. As functions are shared, the ability to share business rules across
multichannel applications grows. Each of these improve quality, consistency for service
consumers.

vii

A method to leverage legacy Oracle Forms applications in an SOA

In contrast to level 1 where the SOA scope is narrow and application integration is often
point-to-point using new SOA technology, level 2 projects typically transition to more
complex integration solutions. These may include (but are not limited to) employing an
enterprise service bus, performing transformation across application and canonical models,
and including more than two applications in the integration scenarios.

Knowledge and experience are spreading as SOA is used across more projects. The
operations of SOA deployment environments expand from the core early adopter team to the
broader operations team.

In summary, level 2 organizations focus is expanding and collaborating. This involves
expanding the service portfolio, identifying key events for which services must respond, and
building new services through service collaboration.

Planning, knowledge, and experience are also expanding. IT is reaching beyond its walls to
collaborate with business analysts. Business analysts are preparing process models for the
important transition to level 3. As the service portolio expands, the information model is
being clarified.

Level 3: Strategic SOA
SOA Level 3 organizations are creating visible business impact. They have a well-defined and
deployed service portfolio available for reuse. Service orchestration is being used to automate
business processes which improves end-to-end processing time, increases productivity, and
reduces errors previously occuring within manual activities. Automated processes are
responding to, and creating new business events that enable monitoring to create new
opportunities for business visibility.

The scope of SOA activities has expanded to multiple organizations within the enterprise. The
portfolio includes services at the business service layer of the layered reference model
enabling not only sharing data and functions but sharing processes. IT is working with
business analysts to ensure that these business services are a clear digitial representation of
actual business process activities.

The level 3 organization has a reference model for deployment of shared services enabling
evolution of hardware silos to more flexible service-based, shared hardware usage.

The organization is also advancing along non-technology dimensions. Processes and
governance mechanisms are established for funding development of shared services, the
ownership of which is now being defined. In addition, informal internal SOA training
activities are ongoing as well as formal training to spread SOA knowledge across the
organization.

Level 4: Enterprise SOA
SOA Level 4 organizations continue to master their skills around business process automation
but go a step further to quantitatively manage their business services. As part of this

viii

evolution, the focus now shifts to monitoring, measurement and improvement across all levels
of the service-enabled business.

Level 5: Industrialized SOA
SOA Level 5 organizations are seen as industry leaders, know for their continuous innovation
and world-class business processes. They enjoy a well-developed service ecosystem toward
which the majority of their customers, partners, and suppliers have ultimately gravitated. They
employ broad and flexible business-to-business (B2B) service models as well as numerous
interaction channels for their expanding business-to-consumer (B2C) relationships.

ix

Appendix D: Oracle SOA Maturity Assessment Questionnaire
Focus Area 1 2 3 4 5
ARCHITECTURE Question
Role of Enterprise Architecture

Cataloging and Reuse

Planning and Guidance

INFRASTRUCTURE Question
Standards

Security and Monitoring

Management and Operations

How would you
describe the role of
architecture in your
organization?

We have some IT
people who call
themselves
architects, but no
formal architecture
team.

We have a dedicated
architecture team,
but their impact on
the enterprise is not
yet well understood.

We have been
investing heavily in
enterprise
architecture, but we
are only beginning to
realize its benefits.

Our enterprise
architecture team
continuously proves
its value through IT
metrics and business
results.

Our enterprise
architecture team
has transformed IT
into a growth engine
for the business.

To what extent are
services cataloged
and reused in your
environment?

We are still just
experimenting with
web services, and
thus haven't begun
cataloging or reusing
them.

There is no formal
catalog of services,
but reuse is still
happening through
informal
communication
channels.

We have a formal
and accepted method
for registering and
finding services in our
environment.

We enforce the use
of registries or
repositories at both
design time and
runtime, and we
carefully monitor the
reuse of services.

We are advanced
users of registries
and repositories,
using both
centralized and
federated models.

How extensive is
the planning and
guidance provided
by your
architectural team?

Our architects are an
informal group and
aren't really involved
in planning.

Our architects offer
good advice, but it is
hard to implement
their ideas, so we
rarely do their
bidding.

Our architects have a
fair degree of
authority, and they
have visibly
contributed to the
success of a few key
projects.

We have a
centralized team of
architects who are
involved across every
line of business.

Our chief architect
has a seat at the
board room table.

How would you
characterize your
organization's
commitment to
standards?

We have not yet
adopted a formal
stance regarding any
particular standards.

We have begun to
rationalize our IT
assets into what we
consider standards-
based versus non-
standard.

We have a clear
understanding and a
formal position on
which standards are
important to our
business and why.

The adherance to
standards plays a
critical role in the
planning and
budgeting process for
any and all IT
projects.

We actively invest in
emerging standards
that we feel may
impact our business
down the road.

How do you secure
and monitor your
data and business
logic today?

Most of our systems
have their own
separate security and
monitoring models,
and little has been
done to unify them.

Security is addressed
on a case-by-case
basis as services get
shared for the first
time.

We have just begun
to centralize identity
management into its
own layer of
abstraction, and we
are standardizing the
security models for
different service
types.

Centralized identity
management is fully
deployed, allowing
for greater flexibility
in access control
provisioning,
compliance, and
reporting.

We have completely
abstracted security,
identity, and
monitoring
operations out of our
existing systems in
order to simplify
development and
centralize control for
compliance purposes.

How would you
characterize the
management and
operations
environment in your
company?

Most of our systems
have their own
separate
management and
operations consoles,
and there is little
consolidation among
them.

We have developed
our own unique set of
automation
techniques to make
our systems more
manageable.

We have invested in
management tools to
bring IT systems
under a common
management
platform, but
coverage is not
complete.

Our management
platform is fully
deployed and offers
reasonable coverage,
but we are still
incapable of quickly
providing detailed
root cause analysis.

Management and
operations are
consolidated into a
unified console,
allowing for easy
troubleshooting and
monitoring of SLAs
and compliance
requirements.

Focus Area 1 2 3 4 5
DELIVERY

INFORMATION

Metadata Management

Question
Project vs. Enterprise Focus How does your IT

team typically fulfill
requirements for a
new application?

Each new application
is treated as an
independent new
project, with
resources assigned
as available.

New applications are
subject to review and
approval by an
architectural review
board.

An architectural
review board is
empowered to
mandate project
changes in the
interest of
maximizing cross-
enterprise benefits.

The disciplined
enterprise focus has
resulted in significant
service reuse, faster
time-to-market, and
less custom
development.

New application
development is
minimal, being
replaced by rapid
application assembly
resulting from a well-
stocked catalog of
services.

Skills and Methodologies in Place Which statement
best describes the
skills and
methodologies you
have in place?

We have not yet
performed a formal
assessment of our
teams' SOA skills and
methodologies.

We have assessed
our skillsets,
performed a gap
analysis, and begun
training for key SOA
technologies.

We have established
a baseline for skills
and methods, and it
is standardized
across the
enterprise.

We can certify and
measure that the
required skill levels
and methodologies
are in place across
the organization.

With a basis in
metrics, we formally
invest in new skills
and methods to
remain ahead of the
market.

Modeling and Abstraction
Techniques

To what extent are
modeling and
abstraction
techniques being
employed in your
environment?

Limited and
inconsistent across
projects, and
confined to IT.

Under development
and undergoing
standardization, but
still confined to IT.

Being employed in a
consistent manner
across all new
projects, and
beginning to involve
business analysts.

Being expanded to
include legacy
systems as well as
new development.

Model lifecycle begins
and ends with
business analysts.

Question
Data Standards and Canonical
Formats

How much work
has been done in
the area of data
standards and
canonical formats?

No data standards or
canonical data
formats are in place.

Design has begun on
data representation
standards and
canonical formats for
key business
documents.

Enterprise data
model is under
construction for key
business data.

Initial plan for data
standardization is
complete and fully
deployed.

Plan continuously
evolves to address
industry
requirements from all
our key customers
and partners.

To what extent do
you practice
metadata
management as
part of the IT
process?

Metadata
management is not
viewed as important,
and thus is not part
of current plans or
designs.

Design has begun on
a metadata
management solution
to address specific
business areas.

Plan is being
implemented for
specific types of
business data.

Plan for metadata
management is
complete and fully
deployed for all
business data
deemed critical to
our core processes.

Our data
management plan
can be regularly
measured, tuned,
tested, and
redeployed as
conditions change.

Single Source of Truth How would you
describe your
organization's
ability to provide a
single source of
truth for key data?

There is no common
data model in place
for any application.

A common data
model has been
constructed but is in
limited use by only
one or two
applications.

Multiple applications
are leveraging a
common data model
and sharing data
access logic.

Our most critical
applications are tied
into the common
data model, but data
duplication and
cleansing are still an
issue.

We have reliable
data hubs that
provide a single
source of truth while
also cleansing and
updating source
systems.

Focus Area 1 2 3 4 5
PROCESS Question
Process Automation

ORGANIZATION Question

Change Management

How would you
characterize your
organization's
effectiveness in
automating key
business processes?

Process automation
is difficult, and we
tend to automate
processes as a
tactical response as
opposed to a
strategic plan.

We are becoming
more proficient with
process modeling
techniques, but the
models are difficult to
impose on our
systems, which are
still brittle.

Our business process
modelers are aligning
more closely with our
integration
developers, and we
are enjoying success
as more shared
services become
available.

Process automation
techniques have
become standardized
in our environment,
and the benefits of
agility are being
noticed across most
lines of business.

Our automation and
instrumentation
capabilities have
advanced to the
point where
processes employ
self-diagnostics and
tuning for optimum
efficiency.

Composite Application
Development

How evolved is
your ability to
discover and
assemble services
into a composite
application?

Limited and
inconsistent across
projects, and
confined to IT.

Growing capabilities
for composite
application
development as the
repository of shared
services begins to
grow.

Repeatable success
being achieved with
specific processes
and lines of business.

Repeatable success
across all lines of
business as the
service catalog grows
and governance
strengthens.

Application
development has
transformed into
application assembly,
leading to rapid time
to market and ideal
levels of flexibility.

Process Measurement and
Scoring

To what extent do
you practice
process
measurement and
efficiency scoring as
part of the IT
process?

Process metrics are
either loosely defined
or not communicated
to IT.

Business and IT have
only just begun to
establish metrics for
key processes.

We have establish
meaningful metrics
for business and IT,
but only for a limited
set of processes.

We have establish
meaningful metrics
for business and IT
across all key
business processes.

Process metrics are
highly evolved and
serve as key
indicators for IT and
business alike.

IT Alignment with Business
Strategy

How would you
describe your IT
group's ability to
align with business
strategy?

Our IT group has
infrequent contact
with the business.

IT and business have
begun holding
planning meetings to
discuss the impact of
services on the
business.

IT and business
closely collaborate on
service modeling to
support key business
processes.

IT understands
business processes
extremely well and is
agile enough to
supply quick
resolution to most
new business
problems.

We rely heavily upon
IT not only for the
planning and
execution of critical
business strategy,
but for innovation
and differentiation in
the market.

What steps have
you taken to
prepare people in IT
and business for the
notion of shared
services?

The impact of SOA is
not well understood,
and so we spend
little time and effort
planning for its
eventual adoption.

We are just beginning
to learn from
experience how SOA
will change the way
we work.

Best practices are
being discovered and
published throughout
the organization.

Best practices are
being converted into
policies where
appropriate, and we
can track and model
the impact they are
having on the
business.

We possess a clear
understanding of
SOA's value to our
business and have
formalized a change
management
strategy for driving it
thoughout the
enterprise.

Business Involvement and
Understanding

To what extent is
the business
involved and aware
of the solutions
being enabled by
shared services?

The few services that
exist are confined to
a limited audience
within IT only.

The availability and
benefit of reusable
services is well
understood by IT, but
business people are
just beginning to
understand their
potential impact.

To gain greater
understanding and
commitment from
the business units,
we have begun to
capture and model
the business and IT
benefits we expect to
accrue from our
reusable service
layer.

Using our model of
expected benefits as
a guide, we are able
to monitor and report
on the tangible and
intangible benefits
that flow from shared
service layer.

Senior management
has a clear
understanding of the
costs and benefits of
SOA, and they are
fully committed to
evolving the shared
service model across
all levels of business.

Focus Area 1 2 3 4 5
GOVERNANCE Question
Funding and Accounting Which scenario best

describes your
organization's
funding and
chargeback model?

Each business unit
treats services as a
standalone cost
because there is no
service reuse in our
organization.

To drive efficiency
and reuse of shared
services, explicit
funding is provided in
the IT budget for a
centralized
architecture team.

Service reuse is
occurring across the
enterprise, but no
formal cost allocation
model has been
addressed yet.

We have developed a
budget complete with
service usage metrics
that allow us to
implement an
effective chargeback
model.

Careful metering of
shared service usage
allows us to develop
effective models for
capacity planning,
risk avoidance, and
budget distribution

Cross-Organizational Involvement How wide is the
scope of organized
SOA efforts within
your organization?

Confined to limited
groups of developers
in IT.

Service awareness is
pervasive throughout
IT.

Service awareness
spreading to business
process owners in
certain lines of
business.

Services becomes a
formal strategy
addressed by cross-
organizational review
boards.

The services strategy
is understood and
mandated across all
lines of business.

Policies, Reporting, and Exception
Handling

How are policies
created, enforced,
and reported on
within your
organization?

They are treated as
additional work for IT
and are handled on
an ad-hoc basis.

Roles and
responsibilities have
been formally
modeled to address
policy management
and reporting.

Individual business
units have
centralized their
policy enforcement,
reporting, and
exception handling.

A single centralized
team has purview
over policy,
compliance, and
exception handling.

A central policy team
can dynamically
implement rule and
policy changes
independent of
underlying IT
systems.

A method to leverage legacy Oracle Forms applications in an SOA

Bibliography
[Alonso 2004] G. Alonso, F. Kasati, H. Kuno, V. Machiraju. Web Services: Concepts,

Architectures and Applications. Springer, 1st edition, 2004.
[Bennett 1999] K.H. Bennett, M. Ramage, M. Munro. Decision Model for Legacy Systems.

IEE Proceedings Software, IET, 1999.
[Bergey 2001] J. Bergey, L. O’Brian, D Smith. Options Analysis for Reengineering (OAR):

A Method for Mining Legacy Assets. CMU/SEI-2001-TN-013, CMU Software
Engineering Institute, 2001.

[Bianchi 2003] A. Bianchi, D. Caivano, V. Marengo, G. Visaggio. Iterative Reengineering
of Legacy Functions. IEEE Transactions on Software Engineering, 2003, IEEE, 2003.

[Bisbal 1999] J. Bisbal, D. Lawless, B. Wu, J. Grimson. Legacy Information Systems:
Issues and Directions. , IEEE Software, 1999.

[Bosworth 1994] M.T. Bosworth. Solution Selling: Creating Buyers in Difficult Selling
Markets. McGraw-Hill, Inc., 1st edition, 1994.

[Britton 2004] C. Britton, P. Bye. IT Architectures and Middleware: Strategies for
Building Large, Integrated Systems. Addison-Wesley, 2nd edition, 2004.

[Brooke 2001] C. Brooke, M. Ramage. Organizational scenarios and legacy systems.
Internation Journal of Information Management, Elsevier Science Ltd., .

[Brown 2002] A. Brown, S. Johnston, K. Kelly. Using Service-Oriented Architecture and
Component-Based Development to Build Web Service Applications. , Rational Software
Corporation, 2002.

[CBDI SOA] D. Sprott. CBDi Forum Report: The SOA Maturity Model. 2005
[Cherbakov 2005] L. Cherbakov, G. Galambos, R. Harishankar, S. Kalyana, G.

Rackham. Impact of service orientation atthe business level. IBM Systems Journal,
IBM, 2005.

[Chikofsky] E.J. Chikofsky, J.H. Cross II. Reverse Engineering and Design Recovery: A
Taxonomy. , IEEE Software, 1990.

[CMMI] unknown. CMMI - Capability Maturity Model Integration. 2008,
http://www.sei.cmu.edu/cmmi/ (last accessed 26-05-2008)

[Cormella-Dorda 2000] S. Comella-Dorda, K. Wallnau, R.C. Seacord, J. Robert. A
Survey of Legacy System Modernization Approaches. CMU/SEI-2000-TN-003, CMU
Software Engineering Institute, 2000.

[de Lucia 2001] A. de Lucia, A.R. Fasolino, E. Pompella. A Decisional Framework for
Legacy System Management. Proceedings of the International Conference on Software
Maintenance (ICSM 2001), IEEE, 2001.

[Elfatatry 2007] A. Elfatatry. Dealing With Change: Components Versus Services.
Communications of the ACM, ACM, 2007.

[Eurotransplant] unknown. Eurotransplant homepage. 2007, http://www.eurotransplant.nl/
(last accessed last accessed 06-05-2008)

[Fenton 1997] N. E. Fenton, S. L. Pfleger. Software Metrics: A Rigorous and Practical
Approach. PWS Publishing, 2nd edition, 1997.

xiv

[Gartner 2002] D. W. McCoy. Business Activity Monitoring: Calm Before the Storm. ,
Gartner Inc., 2002.

[Gartner 2007] M. Driver. How to Maneuver Oracle Forms Into an Ideal Position for
Next-Generation Challenges. Gartner Inc., 2007

[Hammer 1993] M. Hammer, J Champy. Reengineering the Corporation: A Manifesto for
Business Revolution. Harper Business, edition, 1993.

[Henderson 1993] J.C. Henderson, N. Venkatraman. Strategic Alignment:
Leveraging Information Technology for Transforming Organizations. IBM Systems
Journal, Vol 38, IBM, 1993.

[Hevner 2004] A. R. Hevner, S. T. March, J. Park, S. Ram. Design Science in Information
Systems Research. MIS Quarterly, , 2004.

[IBM SOA] R. High, S. Kinder, S. Graham. IBM's SOA Foundation: An Architectural
Introduction and Overview. 2005

[InfoWorld 2007] Krill, P.. Industry report: SOA is overly hyped. 2007,
http://www.infoworld.com/article/07/08/20/soa-report_1.html (last accessed)

[ISO/IEC 2001] unkown. ISO/IEC 9126-1:2001 - Software engineering -- Product quality.
2001, http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=22749 (last accessed)

[Jha 2005] M Jha, P. Maheshwari. Reusing Code for Modernization of Legacy Systems.
Proceedings of the 13th IEEE International Workshop on Software Technology and
Engineering Practice (STEP'05), IEEE, 2005.

[Kontogiannis 2007] K. Kontogiannis, G. A., Lewis, D. B. Smith, M. Litoiu, H.
Müller, S. Schuster, E. Stroulia. The Landscape of Service-Oriented Systems: A
Research Perspective. International Workshop on Systems Development in SOA
Environments (SDSOA'07), IEEE, 2007.

[Lewis 2005] G. Lewis, E. Morris, L O’Brien, D. Smith, L. Wrage. SMART: The Service-
Oriented Migration and Reuse Technique. CMU/SEI-2005-TN-029, , 2005.

Lewis 2006: G. Lewis, E. Morris, D. Smith, Analyzing the Reuse Potential of Migrating
Legacy Components to a Service-Oriented Architecture, 2006

[OASIS SOA] D. Nickull. OASIS SOA Reference Model TC. 2008, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=soa-rm#technical (last accessed
26-05-2008)

[OG OSIMM] unknown. OSIM: The Open Group Service Integration Maturity Model.
2007, http://www.opengroup.org/projects/osimm/ (last accessed 26-05-2008)

[OMG 2006] unknown. BPMN 1.0 specification. 2006, http://www.bpmn.org/ (last
accessed)

[OPENGROUP 2006] Harding, C.. Definition of SOA. 2006,
http://opengroup.org/projects/soa/doc.tpl?gdid=10632 (last accessed last accessed
August 23rd, 2007)

[ORACLE 2005] unknown. Oracle Forms - Oracle Reports - Oracle DesignerStatement of
Direction - September 2005. 2005,
http://www.oracle.com/technology/products/forms/pdf/10g/ToolsSOD.pdf (last
accessed)

xv

A method to leverage legacy Oracle Forms applications in an SOA

[Oracle 2007] unknown. Oracle Unified Method 4.5. 2007
[Oracle OUM] unknown. Oracle Unified Method 4.5. 2006
[ORACLE SOA] M. Afshar. SOA Governance: Framework and Best Practices. 2007
[Papazoglou 2005] M. Papazoglou, W.-J. van den Heuvel. Service Oriented

Architectures: Approaches, Technologies and Research Issues. VLDB Journal,
INFOLAB Tilburg University, 2005.

[Papazoglou 2006] M.P. Papazoglou, P.M.A. Ribbers. e-Business: Organizational
and Technical Foundations. John Wiley & Sons, 1st edition, 2006.

[Papazoglou 2006, p. 468] Papazoglou, M.P., Ribbers, P.M.A.. e-Business: Organizational
and Technical Foundations. John Wiley & Sons, 1st edition, 2006.

[Schwaber] Ken Schwaber. SCRUM Development Process. ,
http://jeffsutherland.com/oopsla/schwapub.pdf (last accessed last accessed May 1st,
2008)

[SERC 2005] unknown. QUINT2 - The Extended ISO Model of Software Quality. 2005,
http://www.serc.nl/quint-book/ (last accessed)

[Sneed 2001] H. M. Sneed. Recycling software components extracted from legacy
programs. Proceedings of the 4th International Workshop on Principles of Software
Evolution, ACM, 2001.

[SQA] unknown. ISO9126 - Software Quality Characteristics. unknown,
http://www.sqa.net/iso9126.html (last accessed last accessed 12-03-2008)

[Verdugo 1988] G. Verdugo. Portfolio Analysis - Managing Software as an Asset.
Proceedings of InternationalConference Software Maintenance Management, Software
Maintenance assoc., 1988.

[Ward 2003] J. L. Ward, J. Peppard. Strategic Planning for Information Systems. John
Wiley & Sons, 3rd edition, 2003.

[webMethods 2005] unknown. The Business Case for SOA. 2005,
http://www1.webmethods.com/PDF/The_Business_Case_for_SOA.pdf (last accessed)

[West 2006] M. West, B. Guptill, M. Koenig. SOA Reality Check: Three Waves of
Adoption through 2012. Saugatuck Technology Inc., 2006

[WP 07a] unknown. Business Process Modeling Notation. 2007,
http://en.wikipedia.org/wiki/Business_Process_Modeling_Notation (last accessed last
accessd 22-11-2007)

[Zhang 2004] Z. Zhang, H. Yang. Incubating Services in Legacy Systems for Architectural
Migration. Proceedings of the 11th Asia-Pacific Software Engineering Conference
(APSEC’04), IEEE, 2004.

xvi

	Chapter 1:Introduction
	1.1About this research
	1.1.1Problem statement
	1.1.2Goal of this research
	1.1.3Research questions
	1.1.4Scope
	1.1.5Contribution
	1.1.6Research approach
	1.1.7Acceptance criteria and validation

	1.2Thesis structure

	Chapter 2:Introduction to Oracle Forms and SOA
	2.1Legacy systems in general
	2.1.1Definition
	2.1.2Architectures
	2.1.3Problems

	2.2Oracle Forms
	2.3Service Oriented Architecture
	2.4Comparison
	2.4.1Standardization
	2.4.2Separation of concerns
	Difference between application and business logic
	Application logic
	Businesses logic
	Presentation logic

	2.4.3Integration technology
	2.4.4Summary

	Chapter 3:Business Drivers for SOA Adoption
	3.1Introduction
	3.2Current business drivers and trends
	3.2.1Frameworks
	Strategic alignment
	Generic business strategies: Cost Leadership and Differentiation

	3.2.2Operational Excellence
	From functional divisions to process orientation
	Business Process Re-engineering and Business Process Management
	Business agility through componentization and service orientation
	e-Business

	3.2.3Customer Intimacy
	3.2.4Product Leadership
	3.2.5Financial performance

	3.3Advantages inherent in SOA
	3.3.1Strategic alignment
	3.3.2Integration and standardization
	3.3.3Flexible architecture
	3.3.4Low costs
	3.3.5Business process support
	Support for business process transformation
	Support for business processes

	3.4Advantages compared to Oracle Forms
	3.4.1Application user interface usability
	3.4.2Integration

	3.5Summary of advantages

	Chapter 4:Leveraging Approaches
	4.1Introduction
	4.1.1Definitions

	4.2Classification of modernization approaches
	Non-invasive approaches
	Invasive approaches
	Modernization approaches
	4.2.1Evaluation of approaches
	Non-invasive
	Invasive

	4.3Decisional framework
	4.3.1Evaluation

	4.4Leveraging Oracle Forms
	4.4.1Cost reduction
	4.4.2Integration
	Consuming services
	Providing services through componentization and wrapping

	4.4.3Business process support
	Human workflow
	Interfacing with BPEL
	Business Activity Monitoring

	4.4.4User-friendly applications

	4.5Replacing Oracle Forms
	4.5.1Purchase of standard software
	4.5.2Development from scratch
	4.5.3Migration

	4.6Existing methodologies
	4.6.1Options Analysis for Re-engineering (OAR)
	4.6.2Service-Oriented Migration and Reuse Technique (SMART)
	4.6.3Software As a Business Asset (SABA)

	Chapter 5:Requirements
	5.1Legacy system quality
	5.1.1Quality model
	5.1.2Oracle Forms version
	5.1.3Isolation of reusable logic
	5.1.4Documentation

	5.2SOA maturity

	Chapter 6:Method
	6.1Oracle Unified Method
	6.1.1Place within OUM

	6.2Method description
	6.2.1Overview
	6.2.2Stakeholders and participants
	6.2.3Decision making process
	Identify unsupported business driver (prerequisite)
	Identify business requirement(s)
	Approach
	Input
	Activities
	Tools and techniques
	Key participants
	Output

	Identify preferred solution
	Approach
	Input
	Activities
	Tools and techniques
	Key participants
	Output

	Evaluate requirements
	Approach
	Input
	Activities
	Tools and techniques
	Key participants
	Output

	Consider fulfilling requirements
	Approach
	Input
	Activities
	Tools and techniques
	Key participants
	Output

	Propose or implement solution
	Approach
	Input
	Activities
	Tools and techniques
	Key participants
	Output

	End of method

	6.2.4Project management
	6.2.5Prerequisites
	6.2.6Work product details
	6.2.7Critical success factors

	Chapter 7:Validation
	7.1Scenario
	7.1.1Introducing Eurotransplant
	7.1.2Business case
	The legacy application
	Business requirements

	7.1.3Method application
	Identify unsupported business driver
	Identify business requirement(s)
	Input
	Activities results
	Output

	Identify preferred solution
	Input
	Activities results
	Output

	Evaluate requirements
	Input
	Activities results
	Output

	Consider fulfilling requirements
	Propose or implement solution
	Input
	Activities results
	Output

	7.1.4Work product (deliverable)

	7.2Evaluation
	7.2.1Innovativeness
	7.2.2Applicability
	7.2.3Utility
	Useful to Oracle
	Useful to customers
	Business-oriented viewpoint
	Facilitate SOA adoption and migration or replacement of legacy systems

	Chapter 8:Conclusions and Recommendations
	8.1Answers to research questions
	Which business drivers are better supported by SOA than by legacy applications, and why?
	How can legacy IT applications be leveraged in an SOA to better support business drivers?
	Which requirements do leveraging approaches pose on an organization's SOA maturity and the legacy system's quality?
	How can an organization's SOA maturity be measured?
	Which quality attributes of legacy systems are relevant with respect to this thesis?
	Subquestion: How can these quality attributes be measured?

	8.2Open questions / future research
	8.2.1Business drivers and leveraging approaches
	8.2.2Level of detail and comprehensiveness of requirements
	8.2.3Method validation
	8.2.4Generalize or specialize method to support similar problems

	8.3Recommendations
	8.3.1Create specialized quality model
	8.3.2Share knowledge about leveraging approaches
	8.3.3Replace Oracle Forms applications sooner rather than later
	Constraints
	Stored procedures and triggers

