
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EPC To BPEL Transformations

Lucas O. Meertens

epctobpel@lmeertens.nl

 

Version: final (v

Edited: 1/22/2009

EPC To BPEL Transformations 

Lucas O. Meertens 

epctobpel@lmeertens.nl 

(v19) 

1/22/2009  



 

 

 

 

EPC To BPEL Transformations 

 

 

 

January 2009 

 

 

 

Graduation thesis of: 

Lucas O. Meertens 

Student number 0037141 

Business Information Technology 

University of Twente 

epctobpel@lmeertens.nl 

 

 

On behalf of: 

Sogeti Nederland B.V.  

Lange Dreef 17  

4131 NJ Vianen 

 

 

Under supervision of: 

Dr. M.E. Iacob (University of Twente, faculty of MB) 

S.M. Eckartz, MSc. (University of Twente, faculty of EEMCS) 

M. van Es (Sogeti Nederland B.V., division DSE) 



Lucas O. Meertens - EPC To BPEL Transformations       i 

Abstract 

Companies looking to improve their business processes can choose from several 

approaches. Almost all of these include modeling the processes. Implementing the modeled 

processes is the next step. Usually, developers create the required software, based on the 

models. However, often the resulting code does not meet the demands of the business. In 

order to improve the transition from business process models to code, Model-Driven 

Engineering (MDE) provides a promise by using model transformation. This promise consists 

of the ability to change business models into code automatically. 

This research investigates one of the possible model transformations. Namely, the 

transformation from Event-driven Process Chains (EPC) models to Business Process 

Execution Language (BPEL) specifications. Business modelers use EPC to create process 

models of the control flow. IT developers can use the resulting BPEL specifications as 

executable code, which contains the control flow. 

A conceptual model provides a method for evaluating model transformation. Ontology (the 

BWW model) and workflow patterns form its basis. According to the conceptual model, it is 

possible to transform most patterns and constructs from EPC to BPEL. However, one pattern 

is impossible to transform, and several constructs cause ambiguities. A conceptual mapping 

from EPC to BPEL offers one way to deal with these issues. 

To verify the conceptual model, and test what is possible in practice, several diagrams are 

transformed. The Oracle BPA Suite serves as the environment for these experiments. It is 

able to transform most of the workflow patterns and constructs, which the conceptual 

model predicts. It does this in a different, yet correct, way from the conceptual mapping. 

The only unexpected issue that arose was the inability to transform the OR-connector. 

Applying a case from practice illustrates more difficulties. It supplies several extra 

limitations, such as the incorrect transformation of a while-loop within a parallel structure. 

Eleven guidelines present a route to EPC models that are transformable by the Oracle BPA 

Suite. Creating structured diagrams is a means to work around most of the limitations. If 



Lucas O. Meertens - EPC To BPEL Transformations       ii 

structuring is impossible, decomposing the model into smaller diagrams is a solution. This 

can lead to irrational diagrams from a modeler’s point of view, though. 

This research contributes to theory and practice in three ways. First, it contributes to theory 

by expanding the knowledge of model transformation with the conceptual model. The 

second contribution is the validation the conceptual model for the specific case of EPC to 

BPEL transformation as done by the Oracle BPA Suite. The discovered limitations show what 

to expect during model transformation in practice. The third contribution is a list of 

guidelines, which modelers can apply to improve the feasibility of EPC to BPEL 

transformations. 

  



Lucas O. Meertens - EPC To BPEL Transformations       iii 

Samenvatting 

Organisaties hebben meerdere mogelijkheden om bedrijfsprocessen te verbeteren. De 

meeste methoden omvatten het modeleren van de processen. Implementeren van de 

gemodelleerde processen is het volgende doel. Op basis van de modellen bouwen 

ontwikkelaars meestal de benodigde applicaties. Helaas voldoet de gecreëerde code vaak 

niet aan de eisen van de organisatie. De belofte van Model-Driven Engineering (MDE) om de 

ontwikkeling van model naar code te verbeteren is gebaseerd op modeltransformatie. 

Hierbij worden bedrijfsprocesmodellen automatisch omgezet naar code. 

Dit onderzoek bekijkt een van de vormen van modeltransformatie, namelijk de 

transformatie van modellen in Event-driven Process Chains (EPC) naar Business Process 

Execution Language (BPEL) specificaties. Vanaf de bedrijfskant gebruiken modelleurs EPC 

om procesmodellen in kaart te brengen, die het gedrag binnen het proces beschrijven. 

Ontwikkelaars aan de ICT kant kunnen de resulterende BPEL specificaties, die het gedrag 

bevatten, gebruiken as uitvoerbare code. 

Het conceptueel raamwerk biedt een manier om modeltransformaties te analyseren. 

Ontologie (het BWW model) en procespatronen vormen de basis van het raamwerk. De 

meeste bouwstenen en patronen zijn transformeerbaar van EPC naar BPEL volgens het 

raamwerk. Eén patroon is niet transformeerbaar, en meerdere bouwstenen veroorzaken 

onduidelijkheid voor transformatie. Om met deze problemen om te gaan verschaft het 

raamwerk één mogelijke vertaling. 

Verscheidene diagrammen dienen als invoer voor transformatie, om het raamwerk te 

verifiëren en na te gaan wat in de praktijk mogelijk is. De Oracle BPA Suite dient als platform 

voor dit experiment. Transformatie van de meeste bouwstenen en patronen verloopt zoals 

het raamwerk voorspelt. Dat het platform de “OR-connector” (OF-verbinding) niet kan 

transformeren, is het enige onverwachte. Verder gebruikt het platform een andere, maar 

ook juiste, vertaling. In tegenstelling tot de onderdelen uit het raamwerk, veroorzaakt een 

voorbeeldstudie uit de praktijk meer problemen. Transformatie van de voorbeeldstudie 

levert meer beperkingen op, zoals de verkeerde transformatie van een lus binnen een 

parallelle samenstelling. 



Lucas O. Meertens - EPC To BPEL Transformations       iv 

Toepassing van elf voorschriften levert EPC modellen die de Oracle BPA Suite kan 

transformeren. De meeste beperkingen zijn omzeilbaar, door de EPC diagrammen te 

structureren volgens het principe, dat de laatst geopende verbinding als eerst gesloten 

wordt. Ontleden van het model in kleinere diagrammen is een oplossing, als structureren 

onmogelijk blijkt. Deze oplossing leidt mogelijk tot modellen, die onlogisch zijn vanuit het 

standpunt van een modelleur. 

Dit onderzoek draagt op drie manieren bij aan theorievorming en de praktijk. Ten eerste 

breidt het de kennis over modeltransformatie uit, in de vorm van het conceptuele raamwerk 

voor het analyseren van modeltransformaties. Ten tweede valideert het onderzoek dit 

raamwerk voor het geval van EPC naar BPEL transformatie, zoals de Oracle BPA Suite die 

uitvoert. Voor de praktijk betekent dit dat duidelijk is welke beperkingen te verwachten zijn 

bij transformatie. Ten derde verbeteren de elf voorschriften voor modelleurs de 

haalbaarheid van EPC naar BPEL transformaties. 

 



Lucas O. Meertens - EPC To BPEL Transformations       v 

Preface 

This thesis is part of the final assignment for a Master of Science degree in Business and 

Information Technology at the University of Twente. Several pleasant years, I have spent at 

the university, and I hope to spend some more there. The research for this assignment was 

conducted at Sogeti Nederland B.V. Most of my time during the past few months was spent 

at their office in Amersfoort or on the way to and from there. Sogeti provided me with the 

opportunity and resources required to do this research. 

I would like to thank my supervisors at the university, Maria Iacob and Silja Eckartz, and at 

Sogeti, Sander Bosma and Margot van Es, for providing me with ideas, motivation, guidance, 

and constructive criticism. Furthermore, I would like to thank my parents for supporting me 

throughout my study. Finally, I would like to thank my girlfriend, Woutske Hartholt, for 

putting up with me having so little time for her. 

 

Enschede, January 2009 

Lucas Meertens 

 



Lucas O. Meertens - EPC To BPEL Transformations       vi 

Table of Contents 

Abstract ....................................................................................................................................... i 

Samenvatting ............................................................................................................................ iii 

Preface ....................................................................................................................................... v 

Table of Contents ...................................................................................................................... vi 

1 Introduction ........................................................................................................................ 1 

1.1 Background .................................................................................................................. 1 

1.1.1 The worlds of business and IT .............................................................................. 1 

1.1.2 Sogeti (and the two worlds) ................................................................................. 2 

1.1.3 Model transformation ......................................................................................... 3 

1.2 Scope ........................................................................................................................... 3 

1.3 Outline ......................................................................................................................... 4 

2 Research Design .................................................................................................................. 5 

2.1 Research Objective ...................................................................................................... 5 

2.2 Research Questions ..................................................................................................... 6 

2.3 Research Model ........................................................................................................... 7 

2.4 Material for Investigation ........................................................................................... 8 

2.5 Research Strategy ........................................................................................................ 9 

3 Related research ............................................................................................................... 11 

3.1 Ontology .................................................................................................................... 11 

3.1.1 Ontology for information systems ..................................................................... 12 

3.1.2 The choice for the BWW model ......................................................................... 13 

3.2 Workflow patterns .................................................................................................... 14 

3.2.1 The source for patterns ..................................................................................... 14 

3.2.2 Evaluation of patterns ........................................................................................ 15 

3.2.3 Application ......................................................................................................... 15 



Lucas O. Meertens - EPC To BPEL Transformations       vii 

3.3 Event-driven Process Chain (EPC) ............................................................................. 16 

3.3.1 History ................................................................................................................ 16 

3.3.2 (Non-) local semantics ....................................................................................... 17 

3.3.3 Extensions .......................................................................................................... 17 

3.4 Business Process Execution Language (BPEL) ........................................................... 17 

3.4.1 History ................................................................................................................ 18 

3.4.2 Issues .................................................................................................................. 18 

3.4.3 Web services ...................................................................................................... 19 

3.4.4 Versioning .......................................................................................................... 19 

3.5 Model-Driven Engineering (MDE) ............................................................................. 19 

3.5.1 History ................................................................................................................ 20 

3.5.2 Levels of abstraction .......................................................................................... 20 

3.5.3 Round-Trip Engineering ..................................................................................... 21 

3.6 Model transformation ............................................................................................... 22 

3.6.1 Transforming to BPEL ......................................................................................... 23 

3.6.2 Transforming from EPC ...................................................................................... 23 

3.6.3 Transforming from EPC to BPEL ......................................................................... 24 

3.7 Oracle BPA Suite ........................................................................................................ 24 

3.7.1 Components ....................................................................................................... 25 

3.7.2 Integration ......................................................................................................... 25 

3.8 Discussion of treated literature ................................................................................ 26 

4 A framework to evaluate model transformation ............................................................. 27 

4.1 Ontological analysis of business process modeling languages ................................. 27 

4.1.1 Completeness and clarity ................................................................................... 27 

4.1.2 BPEL and the BWW model ................................................................................. 28 

4.1.3 EPC and the BWW model ................................................................................... 29 

4.1.4 Representational power of EPC versus BPEL ..................................................... 29 

4.2 (Business) Process patterns....................................................................................... 32 

4.2.1 Patterns in BPEL ................................................................................................. 32 



Lucas O. Meertens - EPC To BPEL Transformations       viii 

4.2.2 Patterns in EPC ................................................................................................... 33 

4.2.3 Limitations of transforming patterns from EPC to BPEL .................................... 33 

4.3 Discussion of encountered issues ............................................................................. 34 

4.3.1 Possible solutions ............................................................................................... 34 

4.3.2 Implementation ................................................................................................. 36 

4.3.3 Other considerations ......................................................................................... 36 

4.4 Conceptual mapping from EPC to BPEL .................................................................... 37 

4.4.1 EPC construct based mapping ........................................................................... 38 

4.4.2 Pattern-based mapping ..................................................................................... 39 

4.4.3 Ontology-based mapping ................................................................................... 46 

4.5 Concluding the conceptual model ............................................................................ 48 

5 Pattern Transformation Results ....................................................................................... 50 

5.1 Input: EPC diagrams .................................................................................................. 50 

5.2 Process: creating and transforming diagrams .......................................................... 51 

5.3 General BPEL code generation .................................................................................. 53 

5.4 Transformation of Patterns ....................................................................................... 54 

5.4.1 Diagram 1: WFCP 1 – Sequence ......................................................................... 54 

5.4.2 Diagram 2: WFCP 2 – Parallel Split & WFCP 3 - Synchronization ...................... 56 

5.4.3 Diagram 3: WFCP 4 – Exclusive Choice & WFCP 5 – Simple Merge ................... 57 

5.4.4 Diagram 4: WFCP 6 – Multi Choice & WFCP 7 – Synchronizing Merge ............. 59 

5.4.5 Diagram 5: WFCP 11 – Implicit Termination ...................................................... 61 

5.4.6 Diagrams 6 and 7: WFCP 10 – Arbitrary Cycles ................................................. 62 

5.5 Conclusion of pattern transformation ...................................................................... 63 

6 Validation: a composite case from practice ..................................................................... 65 

6.1 Case description: “Accounting close” ....................................................................... 65 

6.2 Transforming individual sub-processes..................................................................... 67 

6.3 Diagram 8: Prepare accounting close ....................................................................... 67 

6.4 Diagram 9: Determine cost levels ............................................................................. 68 



Lucas O. Meertens - EPC To BPEL Transformations       ix 

6.5 Diagram 10: Check final hour download ................................................................... 68 

6.6 Diagram 11: Preliminary rebilling .............................................................................. 69 

6.7 Diagram 12: Update report data ............................................................................... 69 

6.8 Diagram 13: Report ................................................................................................... 70 

6.9 Diagram 14: Full composite diagram – Accounting close ......................................... 70 

6.10 Conclusion of case transformation ........................................................................... 71 

7 Guidelines for modeling ................................................................................................... 73 

7.1 Criteria ....................................................................................................................... 73 

7.2 Limitation 1: Construct excess (OR-connector) ........................................................ 75 

7.3 Limitation 2: Construct overload and redundancy ................................................... 76 

7.4 Limitation 3: Pattern incompatibility (WFCP 10 - Arbitrary Cycle) ........................... 77 

7.5 Limitation 4: Multiple start events ............................................................................ 78 

7.6 Limitation 5: Degree of connectors ........................................................................... 78 

7.7 Limitation 6: Multiple end events ............................................................................. 79 

7.8 Limitation 7: Combination of constructs and structures .......................................... 80 

7.9 Limitation 8: Block-structured versus graph-structured ........................................... 80 

7.10 General guidelines ..................................................................................................... 82 

7.11 Applying the guidelines ............................................................................................. 82 

7.12 Validation of the guidelines in the composite case .................................................. 84 

7.12.1 Applying the guidelines while modeling ............................................................ 84 

7.12.2 Applying the guidelines to an existing model .................................................... 85 

8 Discussion ......................................................................................................................... 89 

8.1 Validity ....................................................................................................................... 89 

8.2 Limitations ................................................................................................................. 90 

8.3 Alternatives ............................................................................................................... 90 



Lucas O. Meertens - EPC To BPEL Transformations       x 

8.4 Further Research ....................................................................................................... 91 

8.5 Recommendations .................................................................................................... 92 

9 Conclusions ....................................................................................................................... 94 

9.1 Answers to research sub-questions .......................................................................... 94 

9.2 Answers to main research questions ........................................................................ 95 

9.3 Contributions ............................................................................................................. 97 

List of References ..................................................................................................................... 98 

Appendix A - Output BPEL diagrams ......................................................................................... I 

Appendix B - Output BPEL code ............................................................................................... XI 

Appendix C - Original case EPC diagrams ......................................................................... XXXIX 

Appendix D - Composite case EPC diagrams ........................................................................ XLV 

Appendix E - EPC diagrams of full case .................................................................................... LI 

Appendix F - Transformable, modified EPC diagrams ........................................................... LVI 

Appendix G - EPC diagrams decomposed from full model ..................................................... LX 



Lucas O. Meertens - EPC To BPEL Transformations       1 

1 Introduction 

Due to globalization and economic crisis, companies feel an increased market pressure. In 

response, they look for new ways of improving their business processes. To achieve 

processes that are more efficient, several established approaches are available. Examples 

are Business Process Management (BPM), Business Process Engineering (BPE), and Business 

Process Reengineering (BPR). Each of these approaches has their own set of supporting 

tools. A recent initiative introduced an extra means to support the existing approaches, by 

making the improved business process executable. This new approach goes under the name 

of Model-Driven Engineering (MDE) (Kent, 2002). The central idea of MDE is that models can 

transform into other models. While this idea sounds trivial, it allows transformation from 

business process models to executable models. This research handles a specific case of this 

model-to-model transformation. 

1.1 Background 

1.1.1 The worlds of business and IT 

This research classifies two separate worlds: The business world of the modelers, and the 

information technology (IT) world of the developers. This research defines the modelers as 

the people who create and manage the business process models. These models are their 

main artifacts. They are generally business architects, business modelers, requirements 

engineers, and process analysts. On the other hand, developers are the people who create 

and edit executable code and applications. The created code is their main artifact. 

Developers are generally programmers, software engineers, and software architects. While 

this is a coarse division, it serves the purpose of this research. 

From the business world point of view, the current volatile and competitive environment 

forces companies to be more flexible and agile. Long development and life cycles of IT 

systems are a hindering factor for such demands. Business needs to close the gap between 

strategy and IT (Peppard & Ward, 1999). MDE helps to close this gap by reducing human 

involvement and providing clearer artifacts to the IT world. This reduction requires less 

communication and leaves less room for errors. Tooling automatically validates and 

transforms a model into code. Therefore, agility and flexibility improve, as this needs less 



Lucas O. Meertens - EPC To BPEL Transformations       2 

coding. If the tooling also supports round-trip engineering, then it allows continuous process 

improvement to take place, as is required from a BPM perspective (Smith & Fingar, 2003). 

MDE provides the promise of achieving the business demands. 

From the IT world point of view, the demands of the business world often appear to be 

unreasonable. IT has to work within strict specifications, limited budget, and harsh 

deadlines. For developers, the constraints often mean that they compromise one of the 

three constraints to achieve the others. The concession results in either hurried, over-

budget, or sub-standard projects. MDE automates a large part of the process, and provides 

clearer artifacts. This frees up budget and time for the developers. Furthermore, 

maintenance is often a significant cost driver, due to poor development in the past and 

frequent changes to systems. Applying MDE allows modelers to change the systems 

correctly according to the business process. This saves work on the implementation of 

changes by maintenance. In conclusion, MDE enables IT to achieve the demands of 

business. 

1.1.2 Sogeti (and the two worlds) 

This research was conducted on behalf of Sogeti Nederland B.V. Sogeti provides IT services 

to businesses and public-sector organizations. Sogeti employs about 18,000 employees, of 

which about 3,400 work in The Netherlands. It is a wholly owned subsidiary of the 

international Capgemini organization. Sogeti Nederland B.V. has a divisional structure. Two 

of these divisions are of particular interest to this research, as they correspond to the two 

worlds of IT and business. 

The division Architecture & Business Solutions (A&BS) first looks at the business objectives 

of customers. Based on this, they examine which business processes, systems, and 

information the customers require. They use methodologies such as Architecture of 

Integrated Information Systems (ARIS) (Scheer & Schneider, 1992) and Dynamic 

Architecture (DYA) (Wagter, Van den Berg, Luijpers, & Van Steenbergen, 2001). As this 

division focuses on the business, its professionals are in the modeler category of the 

business world. 

The division Distributed Software Engineering (DSE) designs, develops, and maintains 

complex IT systems. They do this based on leading technology, such as the Oracle 



Lucas O. Meertens - EPC To BPEL Transformations       3 

development platform. Their aim is to deliver maintainable, future proof systems, which 

match the customer’s demands. The professionals working for DSE represent the developers 

of the IT world. 

1.1.3 Model transformation 

MDE is an approach with many aspects. Of these aspects, this research focuses on model 

transformation. This resides at the heart of MDE. The specific type of model transformation 

under investigation is the transformation from Event-driven Process Chain (EPC) (Scheer & 

Schneider, 1992) models to Business Process Execution Language (BPEL) specifications 

(OASIS, 2003). EPC models are the notation of ARIS for the control flow of business 

processes. The business world uses these to model part of their business processes, using 

tools such as IDS Scheer’s Architect. BPEL is the de facto standard for orchestrating web 

services. The IT world uses BPEL to model and execute the control flow from web service to 

web service, for example in a Service Oriented Architecture (SOA). For this, they use tools 

such as Oracle’s JDeveloper, part of the Oracle SOA Suite. 

For the direct transformation from EPC to BPEL, only two tools are available. These are the 

Oracle BPA Suite and IDS Scheer SOA Architect. The Oracle BPA Suite has the SOA Architect 

as basis, through an OEM license. Both tools have the same basis, but the Oracle BPA Suite 

is freely available in the form of an evaluation version. Therefore, this research uses only the 

Oracle BPA Suite for transformation. 

The Oracle BPA Suite includes the Business Process Architect component. This component 

allows specifying business processes, using de facto standards, such as BPMN and BPEL, as 

well as the EPC models from ARIS. The product descriptions promise that, with a click on a 

button, transformation is possible from modeled EPC business processes to BPEL 

specifications (Oracle, 2008). From there, it is possible to generate, orchestrate, and execute 

web services, with the Oracle SOA Suite (Oracle, n.d.). Oracle claims that their SOA Suite and 

BPA Suite together are an integrated environment, enabling round-trip engineering. 

1.2 Scope 

This research tackles the empirical problem of determining the quality of model 

transformation. For that reason, it creates a conceptual model to evaluate model 



Lucas O. Meertens - EPC To BPEL Transformations       4 

transformation. The focus is on transforming EPC models to BPEL specifications, especially 

discovering the feasibility of automated transformation from EPC to BPEL. The model is put 

to the test in the Oracle BPA Suite, by transforming a series of diagrams. If any limitations 

and difficulties arise during transformation, then guidelines help the modeler to solve and 

avoid them. These guidelines improve the feasibility of model transformation. Together, 

these parts lead to a conclusion on the feasibility of the transformation of EPC models to 

BPEL specifications. 

1.3 Outline 

The results consist of three main parts. Before handling these parts, chapter 2 provides the 

research design. The design copes with the research objective and questions, as well as the 

way in which the research answers them. Chapter 3 presents a review of existing literature 

on the topics of this research. This includes the evaluation criteria, the modeling languages, 

model transformation, and the Oracle BPA Suite. Chapter 4 provides the first part of the 

results, a conceptual model for the evaluation of model transformation. The conceptual 

model comprises two sets of evaluation criteria, ontology and patterns. Besides these 

criteria, it offers a conceptual mapping form EPC to BPEL. The second part of the results 

starts with chapter 5, which presents the results of transforming small EPC diagrams based 

on the two criteria. Then, chapter 6 presents the results of transforming a larger EPC model 

based on a case from practice. The third part of the results resides in chapter 7, which 

presents guidelines for modelers. These guidelines help modelers to create EPC models that 

successfully and correctly transform to BPEL. The limitations found in the previous chapters 

serve as a basis for the guidelines. The last two chapters finalize the research. Chapter 8 

discusses the research. It gives a view on the validity, points to issues for further research, 

and offers recommendations. Chapter 9 concludes the research, with answers to the 

research questions, and an evaluation of the contributions it made to theory and practice. 



Lucas O. Meertens - EPC To BPEL Transformations       5 

2 Research Design 

As the research explores a single type of transformation within a single product, several 

choices are clear from the start. The research aims at providing a profound examination of 

the EPC to BPEL transformation, in a qualifying manner. Studying existing literature on 

related topics forms a basis. The basis is used to build a conceptual model as theoretical 

research. Empirical investigation tests this theory. Finally, guidelines are devised based on 

the results. 

This chapter starts with a description of the research objective. Then, it specifies the 

research questions that require answers, in order to reach the research objective, as well as 

how to answer these questions. Finally, the chapter defines the materials used and explains 

the research strategy. 

2.1 Research Objective 

Within the scope of model transformation, this research contributes to three goals. First of 

all, it expands the knowledge about model-to-code transformation, especially the feasibility 

of EPC to BPEL transformations. The knowledge is achieved by comparing EPC to BPEL based 

on their ontological properties and their ability to represent standard workflow patterns. 

The acquired knowledge forms a general theoretical model on transformation. The second 

goal is to validate and explain this conceptual model in practice. Assessing results of 

transforming EPC models to BPEL specifications, as done by the Oracle BPA Suite, 

contributes to reaching this goal. Such a review reveals difficulties and limitations one can 

expect to face, during model transformation in general and with the Oracle BPA Suite in 

particular. The final goal is to improve the potential of success in such an endeavor. Based 

on the findings of the first two parts, a set of best practices and guidelines for EPC business 

modeling and models is devised to make progress towards unproblematic transformation. 

Together, these three parts help to derive the business impact of model transformation and 

the Oracle BPA Suite. 



Lucas O. Meertens - EPC To BPEL Transformations       6 

2.2 Research Questions 

In order to reach the objectives of this research, several questions require answers. Each of 

the main research questions corresponds to a limited fraction of the research model (see 

section 2.3). When all main research questions are answered, the research objectives are 

reached.  

1. To what extent is automated transformation from EPC models to BPEL specifications 

possible? 

a. To what ontology must business process modeling languages adhere? 

b. Which business process patterns are commonly used in business processes? 

c. How do the constructs of each language relate to the patterns and ontology? 

d. How do the constructs map from EPC to BPEL in theory? 

2. What are the effectiveness and the limitations of (partially) automated 

transformations from EPC models to BPEL specifications, as supported by the Oracle 

BPA Suite?  

a. What are the known limitations of such transformations? 

b. Which patterns, concepts, and constructs do not transform successfully? 

c. Are acceptable workarounds available for those cases? 

3. What modeling guidelines must modelers follow, to enable (partially) automated 

transformations from EPC models to BPEL specifications, as supported by the Oracle 

BPA Suite? 

a. What is the level of detail required for EPC diagrams, compared to that 

required by BPEL specifications? 

b. What type of information must EPC models include before transformation 

can take place? 

c. Are acceptable workarounds available for limitations that need them? 

d. How must EPC models be structured (e.g. composed of patterns and avoid 

patterns) to allow transformation? 

e. Is such a structuring acceptable? 

The main research questions match to the chapters in this document in the following way: 

The conceptual model in chapter 4 answers question 1 by comparing the two languages, 

based on ontology and patterns as criteria. The direct results of the empirical research in 



Lucas O. Meertens - EPC To BPEL Transformations       7 

chapters 5 and 6 reveal limitations. Confronting the empirical results to the conceptual 

criteria provides the evaluation of question 2. Finally, chapter 7 prescribes the guidelines 

that the last question asks for, based on the earlier findings. The remaining chapters discuss 

and conclude the overall findings, and evaluate the research. 

2.3 Research Model 

In order to conduct the research successfully, a research model is formulated. Figure 1 

provides a visual representation of this model. The following paragraphs specify a textual 

interpretation (Verschuren & Doorewaard, 1998).  

The research starts with a review of selected literature on modeling. The focal points are 

workflow patterns and ontology: the basis for the criteria. Further literature includes model 

transformation, MDE, and the two modeling languages. Furthermore, documentation of the 

chosen tool, Oracle BPA Suite, is inspected. The literature review leads to a selection of 

commonly used business process patterns and an ontological foundation, on which to 

compare EPC to BPEL. The two sources together compose the criteria, on which to judge the 

 

Figure 1: Research Model 



Lucas O. Meertens - EPC To BPEL Transformations       8 

effectiveness of transformation from EPC models to BPEL specifications. Known issues are 

collected from literature. The tool’s own specifications supplement the known issues. 

Possible workarounds provided in the literature are used to devise guidelines for modeling. 

The known issues and standard business process patterns both act as a starting point to 

create small EPC diagrams. In addition to the small diagrams, a larger, real-life case is used, 

composed of as many of the standard patterns as reasonable. The whole set of diagrams is 

transformed from EPC to BPEL specifications using the Oracle BPA Suite. Limitations and 

difficulties of the transformation are detected by comparing the resulting specifications to 

the original models. Confronting the limitations to the desired criteria set previously 

supplies a conclusion on the effectiveness of the transformation. Combining the limitations 

with possible workarounds leads to a set of guidelines, which modelers can apply to 

improve automated transformation. 

2.4 Material for Investigation 

Depending on the research sub-questions, material to research is selected. Different 

questions require different sources. The first main research question, which leads to criteria 

to judge transformations, calls for an investigation of prior research on workflow patterns, 

as well as ontology. The literature used for workflow patterns is mainly recent conference 

papers and articles from (IT) journals. One of the main authors in the field, Van Aalst  (Aalst, 

Hofstede, Kiepuszewski, & Barros, 2003) (Aalst, Barros, Hofstede, & Kiepuszewski, 2000), 

supplements this by an extensive collection of such patterns at 

http://www.workflowpatterns.com. The ontology is based on seminal work by Wand & 

Weber (1989), who applied a general ontology of Bunge (1977, 1979) to the field of IT. 

Specifications of BPEL and EPC applied in this literature are obtained from both 

documentation and related literature. In order to answer the second question and detect 

the limitations of the Oracle BPA Suite, three sources are relevant. At first, the literature on 

transformations reveals limitations in general, and the documentation of the Oracle BPA 

Suite notes those limitations that apply to the specific transformation under investigation. 

Secondly, to identify more limitations and confirm the ones found before, an experiment is 

conducted. The results of this experiment serve as basis for the second main research 

question, to determine the effectiveness of the transformation. Finally, the second question 

requires literature on MDE and model transformations, and documentation of the Oracle 



Lucas O. Meertens - EPC To BPEL Transformations       9 

BPA Suite. For the final main research question, the analysis of the experiment is most 

important in devising guidelines for modeling. Existing workarounds and guidelines are 

taken from the documentation of the Oracle BPA Suite and literature on model 

transformations. This literature functions to review the acceptability of the guidelines. Table 

1 lists the material, in combination with the sub-questions that require it. 

2.5 Research Strategy 

The research as a whole consist of three parts, as divided by the research objectives and 

questions. The first two parts are explanatory and predictive in nature (Gregor, 2006). At 

first, analyzing the content of prior literature and documentation establishes a general 

theoretical model on transformation. The model consists of criteria based on both ontology 

and workflow patterns. Basing the research on a stable foundation supports the theoretical 

soundness and avoids duplicating previous research. The theoretical model explains and 

predicts the features of model transformation. Secondly, in order to prove the established 

theory in practice, conducting an experiment produces empirical results. The experiment 

consists of the construction and transformation of process patterns. The patterns are 

constructed as EPC diagrams, according to the criteria learned from literature. The Oracle 

BPA Suite transforms the selected diagrams into BPEL specifications. The results of the 

experiment include the output specifications and any errors encountered. The results are 

analyzed to evaluate the effectiveness of the transformation by considering the, severity of, 

limitations and possible workarounds. Selecting and analyzing the patterns happens in a 

hierarchical fashion, where the different patterns are first constructed, transformed, and 

Table 1: Research material 

Sources Questions 

Documentation Language 

specifications 

1c, 1d, 3a 

BPA Suite 2a, 3a 

Experiment Input/Output/Result 2b 

Analysis 3a, 3b, 3c 

Literature Workflow patterns 1b, 1c, 2b, 2c, 

3d 

Model 

transformation 

1d, 2a, 2c, 3c, 

3a, 3b, 3c, 3d, 

3e 

Ontology 1a, 1c, 1d 



Lucas O. Meertens - EPC To BPEL Transformations       10 

analyzed individually, before they are analyzed as a whole. Besides these small patterns, a 

single, larger, composite case is set up to examine the applicability to practice. The diagram 

for this case follows the same course of investigation as the small pattern diagrams. Finally, 

the last part provides design and action theory (Gregor, 2006). Prescriptive guidelines are 

devised, based on the limitations and workarounds found in the previous sections. The 

larger case serves to validate the guidelines. The guidelines are applied to the case, and then 

the Oracle BPA Suite transforms the resulting model again. Devising the guidelines serves 

the purpose of improving the possibilities of arriving at executable BPEL specifications by 

transforming EPC diagrams. 



Lucas O. Meertens - EPC To BPEL Transformations       11 

3 Related research 

This chapter provides an overview of existing literature related to this research. It begins 

with elaborating the criteria, based on which to evaluate the model transformation. The 

conceptual model in chapter 4 uses these criteria, which originate from ontology (section 

3.1) and workflow patterns (section 3.2). For the same chapter, sections 0 and 3.4 introduce 

EPC and BPEL as the two modeling languages. Before dealing with the main subject of this 

research, section 3.5 introduces Model-Driven Engineering, to provide a background for the 

whole research. Model transformation is one of the key issues within MDE, and as the focal 

point of this research, section 3.6 investigates it next. Then, section 3.7 treats the tool that 

actually transforms from EPC to BPEL, the Oracle BPA Suite. Chapters 5 and 6 use it to 

obtain empirical results. Finally, section 3.8 draws some conclusions based on the literature. 

Together, these subjects cover all aspects of the research. 

3.1 Ontology 

In general, ontology is a branch of metaphysics concerned with the nature of being. 

Metaphysics, in turn, is the philosophy concerned with abstract concepts, such as the nature 

of existence or of truth and knowledge (Soanes & Hawker, 2005). It is the discipline 

concerned with theories of how the "world" may be viewed, conceived, or modeled 

(Falkenberg, et al., 1998). As part of this research, ontology provides a theoretical 

foundation, as it studies the way the world, in this case business processes, is viewed, and 

especially modeled. 

The Bunge-Wand-Weber (BWW) model (Wand & Weber, 1990) is selected as one of the two 

criteria in this research, the other being workflow patterns (described in the next section). 

This choice is based on extent of available literature on the BWW model, theoretical 

foundation, and general acceptance in the field of information systems. Due to this 

acceptance the BWW model was used to evaluate both EPC and BPEL already (Rosemann, 

Recker, Indulska, & Green, 2006). The prior research leaves the comparison of the two 

languages according to the BWW model for this research. 



Lucas O. Meertens - EPC To BPEL Transformations       12 

3.1.1 Ontology for information systems 

The specific ontology applied is the BWW model. It is an adoption of Bunge’s ontology 

(Bunge, 1977, 1979), specifically adapted for information systems by Wand and Weber 

(Wand & Weber, 1990). In the view of Bunge (1977), ontology is an attempt to categorize, in 

order to provide a mutual base for understanding. While two parties may agree to disagree, 

at least they agree on what they disagree. For modeling, this means anything can be 

expressed by a certain set of concepts, an ontology, and that agreement can be reached on 

these concepts. For example, in the case of EPC, two business analytics may disagree on the 

exact form of the business process (do we need an AND-split or an OR-split in this place in 

the process), but at least the notation (events, functions, arcs, and connectors) is agreed 

upon. 

Wand and Weber (1990) view an information system as a model (abstract artifact) of a real-

world system, as viewed by an individual. Information system development, in turn, is the 

transformation of this individuals view to the artifact (the information system) itself. They 

aim to specify the quality of the transformation from the individual’s view to the artifact. In 

simpler words: How good the representation is. 

Together, the views of Bunge and of Wand and Weber lead to a categorization of agreed 

upon concepts, based on which to evaluate a representation. The first column of  provides a 

list of these concepts. A representation is evaluated by checking which of these concepts its 

constructs are able to represent. Any deficiency found during evaluation renders the 

representation less complete. If the representation is also evaluated based on how it 

represents the concepts, a verdict can also be given on the representation’s clarity. The 

clarity is reduced by redundancy (more than one construct for a concept), overload (more 

than one concept for a construct), and excess (a construct that has no related concept). 

Besides this representation model, Wand and Weber (1989) originally proposed two other 

models: a state-tracking model and a good-decomposition model. As this research does not 

use the two other models, the term BWW model identifies only the representational model 

in this document. 



Lucas O. Meertens - EPC To BPEL Transformations       13 

3.1.2 The choice for the BWW model 

The choice for the BWW model is not without argument. The Scandinavian Journal of 

Information Systems (2006) published a debate on the BWW model. The main criticisms 

given in this debate (Wyssusek, 2006), include that the BWW model lacks ontological 

commitment, Bunge’s ontology is inappropriately used as a language, conceptual modeling 

is by definition not captured in ontology, and Wand and Weber missed or ignored several 

relevant parts. Both Wand and Weber, and other respected researchers provided their view 

on the critique (Wand & Weber, 2006). They managed to put aside these criticisms, 

although the debate remains open. 

Other ontologies, not BWW or even based on Bunge (for example the ideas of Guizzardi 

(2005)) or completely different evaluation approaches may be more suitable for analyzing 

models. Illustrative of this issue is that Wand and Weber (2006) themselves welcome 

suggestions about other ontologies that may be better in providing a foundation for 

conceptual modeling. Criteria for an applicable ontology are already described (Gehlert & 

Esswein, 2007). Still, this research uses the BWW model as one of the two criteria. This 

choice is based on general acceptance in the field of information systems, theoretical 

foundation, and extent of available literature on the BWW model. The following paragraphs 

further elaborate these points. 

The general acceptance of the BWW model is demonstrated by the amount of research that 

empirical validated the model (Bodart, Patel, Sim, & Weber, 2001) (Gemino & Wand, 2005) 

(Parsons & Cole, 2005) (Burton-Jones & Meso, 2006) and as it is the one generally used in 

similar cases. For example, it was used to assign semantics to UML (Everman & Wand, 

2001), evaluate UML (Opdahl & Henderson-Sellers, 2002), design an approach to evaluate 

reference models (Fettke & Loos, 2003), analyze the five views of ARIS (Green & Rosemann, 

2000), and compare process modeling techniques (including BPEL and EPC) (Rosemann, 

Recker, Indulska, & Green, 2006).  

The reasons for Wand and Weber (1990) to apply Bunge’s ontology to information systems 

point out the theoretical foundation. Firstly, they choose Bunge’s ontology because the 

ontology deals with familiar terms, such as system and event. Secondly, it has a great extent 



Lucas O. Meertens

of formalization and has a standard notation. Lastly, Bunge firmly rooted his ideas on prior 

ontological research. 

More literature focused on deriving new artifacts from the BWW model. In relation to th

research, several articles handled the evaluation of conceptual models by using the BWW 

model, including giving a framework of conceptual modeling 

method to validate conceptual models 

and pitfalls for conceptual modeling 

3.2 Workflow patterns

A second approach to evaluate and compare modeling languages

to other languages,

identified in architecture 

1977). The style applied there 

Johnson, & Vlissides, 1995)

literature, specifically the patterns by Van Aalst et al. 

Barros, 2003) (Aalst, Barros, Hofst

patterns for control flow, resources 

(Russell N. , Hofstede, Edmond, & Aalst, 2005)

Hofstede, 2006)

only deal with static flow of control, only static workflow control patterns (WFCP, further 

use of patterns refers to these specific patterns, unless explicitly stated otherwise) are the 

patterns considered as criteria for this research.

patterns. 

3.2.1 The source for patterns

The original source for patterns 

20 patterns. The patterns 

flow (patterns 1

Figure 2: Example pattern using CP

Lucas O. Meertens - EPC To BPEL Transformations  

of formalization and has a standard notation. Lastly, Bunge firmly rooted his ideas on prior 

ontological research.  

More literature focused on deriving new artifacts from the BWW model. In relation to th

research, several articles handled the evaluation of conceptual models by using the BWW 

model, including giving a framework of conceptual modeling 

method to validate conceptual models (Shanks, Tansley, & Weber, 2003)

and pitfalls for conceptual modeling (Weber, 2003)

Workflow patterns 

A second approach to evaluate and compare modeling languages

to other languages, is to identify their support for patterns. Patterns in general were first 

identified in architecture (Alexander, Ishikawa, Silverstein, Jacobson, Fiksdahl

. The style applied there was copied for use in other areas, including IT 

Johnson, & Vlissides, 1995). For this research, the applicable patterns appear in workflow 

literature, specifically the patterns by Van Aalst et al. 

(Aalst, Barros, Hofstede, & Kiepuszewski, 2000)

patterns for control flow, resources (Russell, Aalst, Hofstede, & Edmond, 2004)

(Russell N. , Hofstede, Edmond, & Aalst, 2005)

Hofstede, 2006). Both dynamic and static patterns were identified. As both EPC and BPEL 

only deal with static flow of control, only static workflow control patterns (WFCP, further 

atterns refers to these specific patterns, unless explicitly stated otherwise) are the 

patterns considered as criteria for this research.

The source for patterns 

The original source for patterns (Aalst, Hofstede, Kiepuszewski, & Barros, 2003)

20 patterns. The patterns fall into categories, ranging

flow (patterns 1-5), advanced branching and synchronization (6

: Example pattern using CP nets (from www.wo

     

of formalization and has a standard notation. Lastly, Bunge firmly rooted his ideas on prior 

More literature focused on deriving new artifacts from the BWW model. In relation to th

research, several articles handled the evaluation of conceptual models by using the BWW 

model, including giving a framework of conceptual modeling (Wand & Weber, 2002)

(Shanks, Tansley, & Weber, 2003), and possibilities 

(Weber, 2003). 

A second approach to evaluate and compare modeling languages, as well as their mappings 

is to identify their support for patterns. Patterns in general were first 

(Alexander, Ishikawa, Silverstein, Jacobson, Fiksdahl

copied for use in other areas, including IT (Gamma, Helm, 

. For this research, the applicable patterns appear in workflow 

literature, specifically the patterns by Van Aalst et al. (Aalst, Hofstede, Kiepuszewski, & 

ede, & Kiepuszewski, 2000). They defined workflow 

(Russell, Aalst, Hofstede, & Edmond, 2004)

(Russell N. , Hofstede, Edmond, & Aalst, 2005), and exception handling (Russel, Aalst, & 

. Both dynamic and static patterns were identified. As both EPC and BPEL 

only deal with static flow of control, only static workflow control patterns (WFCP, further 

atterns refers to these specific patterns, unless explicitly stated otherwise) are the 

patterns considered as criteria for this research. Figure 2 provides an example

(Aalst, Hofstede, Kiepuszewski, & Barros, 2003)

fall into categories, ranging from simple to complex: basi

5), advanced branching and synchronization (6-10), structural (11

nets (from www.workflowpatterns.com)

 14 

of formalization and has a standard notation. Lastly, Bunge firmly rooted his ideas on prior 

More literature focused on deriving new artifacts from the BWW model. In relation to this 

research, several articles handled the evaluation of conceptual models by using the BWW 

(Wand & Weber, 2002), a 

, and possibilities 

, as well as their mappings 

is to identify their support for patterns. Patterns in general were first 

(Alexander, Ishikawa, Silverstein, Jacobson, Fiksdahl-King, & Angel, 

(Gamma, Helm, 

. For this research, the applicable patterns appear in workflow 

(Aalst, Hofstede, Kiepuszewski, & 

. They defined workflow 

(Russell, Aalst, Hofstede, & Edmond, 2004), data 

(Russel, Aalst, & 

. Both dynamic and static patterns were identified. As both EPC and BPEL 

only deal with static flow of control, only static workflow control patterns (WFCP, further 

atterns refers to these specific patterns, unless explicitly stated otherwise) are the 

provides an example of one such 

(Aalst, Hofstede, Kiepuszewski, & Barros, 2003) considered 

from simple to complex: basic control 

10), structural (11-12), 

 

rkflowpatterns.com) 



Lucas O. Meertens - EPC To BPEL Transformations       15 

multiple instance (13-16), temporal (17), state-based (18), and cancelation patterns (19-20). 

In parallel to architectural patterns (Alexander, Ishikawa, Silverstein, Jacobson, Fiksdahl-

King, & Angel, 1977), each pattern has a description, synonyms, and examples. The complex 

cases include the problem (why it is hard to realize) and a possible implementation strategy. 

As criteria for transformation, only those patterns that EPC can model are applicable as 

criteria. 

The first set of patterns was later complemented. A new article added four advanced 

patterns (Aalst, Barros, Hofstede, & Kiepuszewski, 2000). Besides workflow control patterns, 

the previously mentioned data, resource, and operational patterns were defined. 

Additionally, several new patterns were conceived and recorded. A more recent article 

introduces many extra patterns, including relations between the patterns (Russell N. , 

Hofstede, Aalst, & Mulyar, 2006). The complete set of (known) patterns resides at 

http://www.workflowpatterns.com (which Van Aalst and Ter Hofstede maintain). 

3.2.2 Evaluation of patterns 

The patterns were researched in a number of ways. Formal definitions of the patterns were 

given in relation to three evaluation strategies languages use:  standard, safe (subset of 

standard based on or-join behavior), and synchronized (avoids arbitrary cycles and thus 

deadlocks) (Kiepuszewski, Hofstede, & Aalst, 2003). In order to verify and validate the 

patterns, they were transformed to Colored Petri Nets (Mulyar & Aalst, 2005). Additionally, 

the patterns were drawn on, to specify a Workflow Pattern Specification Language (Mulyar, 

Aalst, Hofstede, & Russell, 2006). With the aim to rank the patterns, two studies were 

conducted on the use of the patterns in practice (Vries & Ommert, 2001) (Vries & Ommert, 

2002). The above research improved the knowledge on patterns widely. 

3.2.3 Application 

The patterns were used for several purposes. Originally, they served to evaluate several 

workflow management systems (WfMS), based on suitability and expressive power (Aalst, 

Hofstede, Kiepuszewski, & Barros, 2003). Unfortunately, the system under investigation (the 

Oracle BPA Suite) was, rightfully (it is not a WfMS), not in the list of evaluated systems. 

However, another article investigated the Oracle BPEL Process Manager (Mulyar, 2005).  

shows the result of the evaluation. Furthermore, the patterns were used to evaluate 



Lucas O. Meertens

modeling languages, including U

BPMN (Wohed, Aalst, Dumas, Hofstede, & Russell, 2006)

Nüttgens, 2005)

leaves the comparison of the two languages, EPC and BPEL, according to the patterns, for 

this research. 

3.3 Event-driven Process Chain (EPC)

Event-driven Process Chains (EPC) is a business process modeling 

language, developed to model the control flow of business 

processes (Keller, Nüttgens,

of EPC are functions, events, connectors, and arcs.

exception of arcs (arrows), 

Functions are the elemental activities in a business process

triggers each function

always alternate, similar to places and transitions in Petri 

represent the control flow through the model

other. Connectors split and join t

the AND-, OR-, and XOR

block-based, such as BPEL. 

and semantics (Aalst, 1999)

3.3.1 History

Originally developed

in ARIS, EPC represents the center of the 

ARIS-House of Business Engineering

& Schneider, 1992)

four other aspects of the ARIS architecture 

use different modeling languages to 

present their information. 

different models of the ARIS

produces a holistic

It established this reputation thanks to its application in both the ARIS toolset and SAP, who 

Lucas O. Meertens - EPC To BPEL Transformations  

modeling languages, including UML (Wohed, Aalst, Dumas, Hofstede, & Russell, 2005)

(Wohed, Aalst, Dumas, Hofstede, & Russell, 2006)

ttgens, 2005), and BPEL (Wohed, Aalst, Dumas, & Hofstede, 2003)

leaves the comparison of the two languages, EPC and BPEL, according to the patterns, for 

driven Process Chain (EPC)

driven Process Chains (EPC) is a business process modeling 

developed to model the control flow of business 

(Keller, Nüttgens, & Scheer, 1992). The basic elements 

are functions, events, connectors, and arcs.

exception of arcs (arrows), Figure 3 shows the constructs.

ns are the elemental activities in a business process

triggers each function, and each function leads to a new event itself

always alternate, similar to places and transitions in Petri 

represent the control flow through the model

Connectors split and join the control flow. The EPC language has splits and joins of 

, and XOR-connector types. EPC is a graph

based, such as BPEL. Mapping the basic elements to Petri 

(Aalst, 1999). 

History 

developed for business processes 

represents the center of the 

House of Business Engineering (Scheer 

& Schneider, 1992), shown in Figure 4. The 

ther aspects of the ARIS architecture 

use different modeling languages to 

present their information. Coupling the 

different models of the ARIS-house 

a holistic, yet complex, view. EPC is a 

It established this reputation thanks to its application in both the ARIS toolset and SAP, who 

Figure 

     

(Wohed, Aalst, Dumas, Hofstede, & Russell, 2005)

(Wohed, Aalst, Dumas, Hofstede, & Russell, 2006), EPC (Mendling, Neumann, & 

(Wohed, Aalst, Dumas, & Hofstede, 2003). The prior research 

leaves the comparison of the two languages, EPC and BPEL, according to the patterns, for 

driven Process Chain (EPC) 

driven Process Chains (EPC) is a business process modeling 

developed to model the control flow of business 

The basic elements 

are functions, events, connectors, and arcs. With the 

shows the constructs. 

ns are the elemental activities in a business process. An internal or external 

leads to a new event itself. Events and functions 

always alternate, similar to places and transitions in Petri nets. Directed 

represent the control flow through the model, attach the functions and events to each 

he control flow. The EPC language has splits and joins of 

connector types. EPC is a graph-based language, as opposed to 

Mapping the basic elements to Petri nets formalized their syntax 

is a popular business process modeling language. 

It established this reputation thanks to its application in both the ARIS toolset and SAP, who 

 

Figure 3: EPC constructs

Figure 4: Five views of ARIS 

 16 

(Wohed, Aalst, Dumas, Hofstede, & Russell, 2005), 

(Mendling, Neumann, & 

. The prior research 

leaves the comparison of the two languages, EPC and BPEL, according to the patterns, for 

n internal or external event 

vents and functions 

irected arcs, which 

, attach the functions and events to each 

he control flow. The EPC language has splits and joins of 

age, as opposed to 

ets formalized their syntax 

popular business process modeling language. 

It established this reputation thanks to its application in both the ARIS toolset and SAP, who 

 

 

  

: EPC constructs 

 



Lucas O. Meertens - EPC To BPEL Transformations       17 

adopted it to model their workflows. EPC is chosen for this research because of the 

popularity it has among business analysts as a business process modeling language, while it 

nevertheless has little attention for use in execution of business processes by IT. 

3.3.2 (Non-) local semantics 

The semantics of the XOR-join are a particular issue for EPC. Local semantics for the XOR-

join were proposed first (Rittgen, 1999) (Aalst, 1999). More recently, non-local semantics 

were proposed (Nüttgens & Rump, 2002)  (Kindler, 2006) (Cuntz & Kindler, 2005). Non-local 

semantics imply that a join locks when one branch reaches the join. If another branch also 

ends (for example after an AND- or OR-split), then the join does not continue again. 

Similarly, the OR-join has non-local semantics in EPC too. After an OR-join, the next step 

only executes when all activated branches have reached the join. 

3.3.3 Extensions 

Several extensions to EPC were proposed. These proposals include modified EPC (modEPC) 

(Rittgen, 1999), extended EPC (eEPC) (Scheer, 1994), and YAWL EPC (yEPC) (Mendling, 

Neumann, & Nüttgens, 2005). Each of these extensions has its own use. The first extension 

was an attempt to provide formal semantics for EPC. It led to modEPC, which tries to retain 

the understandability of EPC, while having rigorous formal semantics. The second extension, 

eEPC, is applied in practice most often. As its name implies, it extends the functionality of 

EPC for business processes. For example, SAP uses it currently to model the control flow. 

The last extension came from the area of workflow patterns (see section 3.1). EPC was 

adapted to YAWL (Yet Another Workflow Language) (Aalst & Hofstede, 2005), so it could 

represent all workflow patterns. This research considers only classical EPC, as this is what 

the tool supports. 

3.4 Business Process Execution Language (BPEL) 

The Business Process Execution Language (BPEL) is a block-structured language. The basic 

building blocks include activities such as invoke, reply, receive, and assign. Besides activities, 

the language has a number of constructs to structure the control flow. The simplest ones 

are pick and flow, respectively an OR-split (choice) and an AND-split (parallelism). Joins are 

implicit. Scope is the main construct to represent hierarchy and reduce complexity. External 



Lucas O. Meertens

communication occurs through partnerLinks.

examples of some constructs

2007) references all constructs

3.4.1 History

BPEL is an eXtensible Markup Language (XML) based language. 

As the name implies, it is aimed at making business processes 

executable. Its first 

combination of Microsoft’s execution language XLANG and 

IBM’s execution language WSFL. Shortly after

and the second version (1.1)

in use now, was submitted to the standards body OASIS and 

approved as an official, open standard. Currently

version is 2.0 (OASIS, 2007)

version includes m

behind (OASIS, 2007)

3.4.2 Issues 

BPEL was created to accommodate both the internal, executable view of processes, in 

addition to the external, abstract view 

used (Aalst, Dumas, Hofstede, Russell, Verbeek, & Wohed, 2005)

lies in the power BPEL has to be executable, which makes it a hard language to learn. The 

targeted users for the abstract portion, business modelers, prefer to stick to languages in 

which they are able to easier and better expre

example, Business Process Modeling Notation (BPMN) 

and EPC. The BPEL specification does not impose any graphical representation or design 

methodology for the processes modeled in it. 

different representations, possibly leading to confusion. Some tried to use BPMN as the 

notation for BPEL. However, the attempts drew attention to various incompati

between executable specifications and abstract models

Formal semantics are not yet complete 

(Green & Rosemann, 1999)

Lucas O. Meertens - EPC To BPEL Transformations  

communication occurs through partnerLinks. 

examples of some constructs. The official specification 

references all constructs. 

History 

is an eXtensible Markup Language (XML) based language. 

As the name implies, it is aimed at making business processes 

executable. Its first specification (1.0) was built in 2002 as a 

combination of Microsoft’s execution language XLANG and 

IBM’s execution language WSFL. Shortly after,

and the second version (1.1) (OASIS, 2003), which is commo

, was submitted to the standards body OASIS and 

approved as an official, open standard. Currently

(OASIS, 2007), which was approved in 2007. 

version includes many improvements, but tool support still lag

(OASIS, 2007).  

 

BPEL was created to accommodate both the internal, executable view of processes, in 

addition to the external, abstract view (OASIS, 2007)

(Aalst, Dumas, Hofstede, Russell, Verbeek, & Wohed, 2005)

lies in the power BPEL has to be executable, which makes it a hard language to learn. The 

targeted users for the abstract portion, business modelers, prefer to stick to languages in 

which they are able to easier and better expre

example, Business Process Modeling Notation (BPMN) 

The BPEL specification does not impose any graphical representation or design 

gy for the processes modeled in it. 

different representations, possibly leading to confusion. Some tried to use BPMN as the 

notation for BPEL. However, the attempts drew attention to various incompati

between executable specifications and abstract models

Formal semantics are not yet complete (Reichert & Rinderle, 2006)

(Green & Rosemann, 1999) (Wohed, Aalst, Dumas, & Hofstede, 2003)

     

 Table 2 provides 

he official specification (OASIS, 

is an eXtensible Markup Language (XML) based language. 

As the name implies, it is aimed at making business processes 

specification (1.0) was built in 2002 as a 

combination of Microsoft’s execution language XLANG and 

, others joined in 

, which is commonly 

, was submitted to the standards body OASIS and 

approved as an official, open standard. Currently, the newest 

approved in 2007. This 

s, but tool support still lags 

BPEL was created to accommodate both the internal, executable view of processes, in 

IS, 2007). In practice, the abstract view is hardly 

(Aalst, Dumas, Hofstede, Russell, Verbeek, & Wohed, 2005). The cause for lack of use 

lies in the power BPEL has to be executable, which makes it a hard language to learn. The 

targeted users for the abstract portion, business modelers, prefer to stick to languages in 

which they are able to easier and better express themselves. These languages include, for 

example, Business Process Modeling Notation (BPMN) (Object Management Group, 2008)

The BPEL specification does not impose any graphical representation or design 

gy for the processes modeled in it. Consequently, different tool vendors 

different representations, possibly leading to confusion. Some tried to use BPMN as the 

notation for BPEL. However, the attempts drew attention to various incompati

between executable specifications and abstract models (Recker & Mendling, 2006)

(Reichert & Rinderle, 2006). BPEL 

(Wohed, Aalst, Dumas, & Hofstede, 2003) and

Table 2: BPEL constructs

Code 

<invoke />

<receive />

<reply /

<sequence>
</sequence>

<switch>
</switch>

<flow> 
</flow> 

<empty />

<scope> 
</scope>

 18 

BPEL was created to accommodate both the internal, executable view of processes, in 

the abstract view is hardly 

. The cause for lack of use 

lies in the power BPEL has to be executable, which makes it a hard language to learn. The 

targeted users for the abstract portion, business modelers, prefer to stick to languages in 

These languages include, for 

(Object Management Group, 2008) 

The BPEL specification does not impose any graphical representation or design 

ifferent tool vendors have 

different representations, possibly leading to confusion. Some tried to use BPMN as the 

notation for BPEL. However, the attempts drew attention to various incompatibilities 

(Recker & Mendling, 2006). 

. BPEL was analyzed 

and compared to 

: BPEL constructs 

Diagram 

<invoke />    

 

<receive /> 

 

<reply /> 

 

<sequence> 
</sequence> 

 

<switch> 
</switch> 

 

 
 

<empty /> 

 

 
</scope> 

 



Lucas O. Meertens - EPC To BPEL Transformations       19 

other languages (Shapiro, 2002) (Söderström, Andersson, Johannesson, Perjons, & Wangler, 

2002). Several attempts cover the semantics of a limited number of elements (Reichert, 

Rinderle, & Dadam, 2004). One of the things that received adequate attention is the control 

flow (Ouyang, Verbeek, Aalst, Breutel, Dumas, & Hofstede, 2007). As this research focuses 

on the transformation of the control flow, it suffices that the control flow semantics are 

formalized. 

3.4.3 Web services 

For web services, BPEL is the de facto standard as orchestration language. It describes when 

to call which service. In addition to using standard XML technology, such as XPath, BPEL 

closely relates to WSDL and SOAP. BPEL uses WSDL to specify message and port types, both 

for web services it communicates to, and to specify itself as a web service. BPEL makes use 

of SOAP as a messaging protocol. Together with UDDI, for discovery and publishing, these 

standards provide a basis for web services and service oriented architecture (SOA). 

3.4.4 Versioning 

The primer, which accompanies the BPEL version 2.0 specifications (OASIS, 2007), 

documents the differences between the BPEL versions. In short, the main improvements are 

improved data access with XPath, extension possibilities, extra scope options, new structure 

activities, clearer names for some old activities, adaptation and formalization of some 

proprietary extensions, and clarified usage of abstract processes. 

3.5 Model-Driven Engineering (MDE) 

Model-Driven Engineering (MDE) is a recent advance in software and system development. 

The central idea of MDE is that models can be used to make business processes executable. 

The model itself is executable, instead of being delivered, only as a source for inspiration or 

requirements, in order for programmers to create the real software (Bézivin, 2004). The goal 

for MDE is to increase both short- and long-term effectiveness of software and system 

development considerably. Given the definition of the software development process, as a 

problem-solving activity that transfers a set of problems into a set of executable solutions 

(Aksit, 2004); the process is easier when the models of the problem and solution (two 

different abstraction levels) are already executable. MDE offers a framework to clearly 



Lucas O. Meertens - EPC To BPEL Transformations       20 

define methodologies, develop systems at any level of abstraction, and organize testing and 

validation (Fondement & Silaghi, 2004). 

3.5.1 History 

Kent (2002) coined the term Model-Driven Engineering (MDE). However, its history starts 

earlier. Kent’s starting point was the Model-Driven Architecture (MDA), which he defined as 

an instance of MDE. With MDE, he tried to fill the gap left by MDA. Extra dimensions were 

introduced, mainly borrowed from Aspect Oriented Software Development. MDA is a 

registered trademark from the Object Management Group (OMG), who established it in 

2001 as a base architecture. It is the most widely known form of MDE. MDA aims to achieve 

architectural separation of concerns in a four-step approach. The first step is to design the 

business process as a Computation Independent Model (CIM), which describes how the 

system fits in its domain. The second step devises a Platform Independent Model (PIM), 

according to the CIM. The PIM specifies the system itself, without advancing to platform 

specific implementation details. The third step creates a Platform Specific Model (PSM) 

through, preferably automated, transformation from the PIM. Finally, the PSM is converted 

to an executable implementation, which happens through, once again preferably automatic, 

transformation. Together, these four steps complete the route from (business) model to 

code (Object Management Group, 2003). MDE can be viewed as a continuation from 

Computer Aided Software Engineering (CASE) tools, which have been used from the eighties 

onwards. 

3.5.2 Levels of abstraction 

MDE provides modelers with the ability to work at different levels of abstraction. It provides 

this ability by taking the view that, “everything is a model” (adjusted for MDE from the 

object-oriented “everything is an object”) (Bézivin, 2004). This view permits source code, as 

Table 3: A couple of acronyms related to MDE 

MDA Model Driven Architecture  

MDD Model Driven Development  

MDE Model Driven Engineering  

MDSD Model Driven Software Development  

MDSE Model Driven Software Engineering 

4GL Fourth Generation (Programming) Language 

SF Software Factories 



Lucas O. Meertens - EPC To BPEL Transformations       21 

well as conceptual models, to be seen as models, in turn allowing model transformation 

along the entire process chain of software and system development. 

Models exist at different levels of abstractions. Two dimensions for abstraction of models 

exist, one focusing on use of the model and the other on definition of the model. The first 

dimension is the obvious difference between the source code and any other model of the 

business process. Here it is clear that any subsequent business process model is more 

abstract, in order to be easier to understand or be applicable to more situations. The second 

dimension is the way models are defined. This dimension is presented in a four level 

architecture (Object Management Group, 2003), as depicted in Table 4. A model (M1) 

represents the real world (M0). A model is written in a certain modeling language (M2, 

meta-model). A meta-meta-model (M3) describes the modeling language. Finally, the meta-

meta-model also describes itself. This is of utmost importance for model transformations, as 

the ability to transform between different models depends on the clear definition of the 

modeling constructs used. 

3.5.3 Round-Trip Engineering 

As was already noticed in the eighties in the case of CASE tools, models have the tendency 

to get out-of-sync with the system. The cause for this problem is that the system is 

developed, without updates to the model, leading to maintenance problems. (Imagine the 

real life case, where a water pipeline is demolished, because a new road is constructed 

based on outdated infrastructural charts, which do not include the pipeline yet.) To avoid 

similar problems, not only transformation of models to (a representation closer to) source 

code must take place (also known as forward engineering), but also reverse engineering to 

update (abstract) models based on changes in concrete models, such as source code. This 

combination of reverse and forward engineering is known as round-trip engineering. It is 

Table 4: MDA "3+1"-level Architecture 

Level Name Description Example 

M3 Meta-meta-model A language to define a modeling 

language. Includes defining itself. 

MOF 

M2 Meta-model A modeling language. EPC; BPEL 

M1 Model The model itself. A process model “BP” 

M0 Instance An instance of the model. Process instance 

“BP1234” 



Lucas O. Meertens - EPC To BPEL Transformations       22 

more than a sequence of forward and reverse engineering, as the representations must stay 

synchronized. Information “lost” during the initial action, must be recoverable by the 

reverse action. Round-trip engineering enables modelers and developers to work on the 

same artifact, at different levels of abstraction. Round-trip engineering, consequently, 

facilitates the desirable separation of concerns (Sendall & Küster, 2004). 

3.6 Model transformation 

In this research, model transformation corresponds to the transfer of a model from one 

modeling language (meta-model) to another. From the MDE point of view that everything is 

a model, this also includes the transformation to and from source code (Bézivin, Farcet, 

Jézéquel, Langlois, & Pollet, 2003). Thus, in contrast to (Alanen, Lilius, Porres, & Truscan, 

2003) and sticking to MDA (Object Management Group, 2003), no distinction is made 

between model-to-model and model-to-code transformation. Transforming toward a more 

concrete model (for example code) is called forward engineering, while going toward a 

more abstract model is called reverse engineering. The specific focus is on mapping 

transformations, where each element of a source model maps to zero, one, or more 

elements in a target model (Alanen, Lilius, Porres, & Truscan, 2003). As opposed to update 

transformations, mapping transformations do not alter the source model. A classification of 

model transformation approaches was proposed (Czarnecki & Helsen, 2003). While 

transformation of models within a language is possible, this research only considers 

transformation of models between two languages, namely EPC to BPEL as provided by the 

Oracle BPA Suite.  

Model transformation resides at the heart of MDE (Sendall & Kozaczynski, 2003). 

Development tools must be able to transform models according to predefined, as well as 

user-made transformation rules, perhaps even suggesting the preferred kind of model to 

transform to in a given context. Based on existing tools and languages, criteria for a 

transformation language that the tools may use were studied (Sendall & Kozaczynski, 2003). 

For MDA, the language QVT (Query/Views/Transformations) was chosen (Object 

Management Group, 2008), which consists of three parts: core, relational, and operational. 

For each of the parts (partially complaint) implementations are available in tools, such as 

respectively MTF, Medini, and SmartQVT. Good hope for, eventual, success is given by the 

progress compilers made. While currently compilers are considered to transform code-to-



Lucas O. Meertens - EPC To BPEL Transformations       23 

code, the first code already is an abstraction from machine code. Machine code, in turn, is 

an abstraction (model) of bits and bytes. The history shows that what was previously 

deemed hard, impossible, or a typical human activity is now standard an automated 

process. The model transformation under consideration is regarded as a next step in “model 

becomes code”. 

Much research on model transformation has been conducted already. For sake of brevity, 

the section discusses only studies on transformation to BPEL and on transformation from 

EPC. Some transformations that do not fit in these two categories but are still of interest, 

include the transformation of graph-structured to block-structured diagrams (Mendling, 

Lassen, & Zdun, 2007) (Mendling, Lassen, & Zdun, 2006), and the reverse engineering of 

BPEL to EPC (Mendling & Ziemann, 2005). 

3.6.1 Transforming to BPEL 

Within the first category, the predominant transformation investigated is from BPMN to 

BPEL. The aim of BPMN stated in its specification, to provide a visualization for BPEL (Object 

Management Group, 2008), stirs the interest for this transformation. The BPMN 

specification, as well as other work by one of the authors of the original specification, 

specified a simple mapping (White, 2005). However, when trying to formalize the 

transformation several researchers ran into complications (Recker & Mendling, 2006) 

(Ouyang, Aalst, Dumas, & Hofstede, 2006) (Srikarsemsira & Roongruangsuwan, 2005). The 

problems found, include the difficulty of mapping a graph structure to a block structure, loss 

and lack of data, ontological (domain representation) mismatch, and pattern (process 

representation) mismatch. Workarounds and improvements for some of these problems 

were formulated (Hauser & Koehler, 2004) (Ouyang, Aalst, Dumas, & Hofstede, 2006) 

(Ouyang, Dumas, Aalst, & Hofstede, 2006). Other transformations to BPEL studied, include 

mappings from workflow nets (Aalst & Lassen, 2005), Petri nets (Koschmider & Mevius, 

2005) (and reverse (Hinz, Schmidt, & Stahl, 2005)), UML (Gardner, 2003), and even from 

requirements to BPEL via colored workflow nets (Aalst, Jorgensen, & Lassen, 2005). 

3.6.2 Transforming from EPC 

In the second category, from EPC transformations, transforming EPC to Petri nets was an 

important step towards formalization and verification of EPC (Aalst, 1999), as formalization 



Lucas O. Meertens - EPC To BPEL Transformations       24 

and verification tools are readily available for Petri nets. A transformation of private, 

internal EPC diagrams to public, external BPMN diagrams is explained, to improve business 

collaboration (Hoyer, Bucherer, & Schnabel, 2008). A (partial) transformation to UML is also 

elaborated, in order to link business processes to object orientation (Nüttgens, Feld, & 

Zimmermann, 1998). 

3.6.3 Transforming from EPC to BPEL 

Finally, the transformation that is most interesting to this research, involves both categories: 

from EPC to BPEL transformation. Two research articles were located on the subject. One is 

an article by authors of IDS Scheer (Stein & Ivanov, 2007). They provided a ten-step 

approach, from modeling to implementation and testing, for the transformation of EPC to 

BPEL for SOA. The approach includes the input of four different human roles. The other 

article is from the same authors who published the BPEL to EPC transformation mentioned 

above (Ziemann & Mendling, 2005). They provided a conceptual mapping from EPC to BPEL, 

based on the five limiting assumptions in Table 5. These assumptions are required, as EPC is 

more abstract than BPEL. 

3.7 Oracle BPA Suite 

The Oracle Business Process Analysis (BPA) Suite contains one of the solutions for 

transformation. For this research, the Oracle BPA Suite is chosen as transformation tool, as 

it is the only tool accessible providing EPC to BPEL transformation. Besides EPC to BPEL, it is 

also capable of BPMN to BPEL transformation. The Oracle BPA Suite is based on an OEM 

agreement for the ARIS Design Platform from IDS Scheer (Oracle, 2006). It combines the 

capacity of execution and monitoring of Oracle, with the strength of business modeling of 

IDS Scheer. Oracle offers the Suite as a component of Oracle Fusion Middleware. Besides 

modeling business processes, it also provides simulation and publishing of the process 

models. 

Table 5: EPC to BPEL transformation assumptions 

1 No new,  BPEL specific, EPC constructs 

2 Technical information has to be added, but control flow is complete 

3 A BPEL activity relates to an event + function in EPC 

4 EPC events are only significant for (X)OR splits 

5 No cyclic EPC models 



Lucas O. Meertens - EPC To BPEL Transformations       25 

3.7.1 Components 

The Oracle BPA Suite contains several components. For this research, the vital component is 

the Business Process Architect, wherein it is possible to specify business processes. Using on 

one hand, de facto standards, such as BPMN and BPEL, and, on the other hand, the EPC 

models from ARIS (Oracle, 2008) (Oracle, n.d.). This component is also able to simulate the 

business processes. Besides process modeling and simulation, the Business Process 

Architect provides transformation. This research does not use the other components. Table 

6 lists all components (Oracle, 2006). 

3.7.2 Integration 

Oracle believes that BPEL provides an important 

building block for Service Oriented Architectures 

(SOA) (Oracle, 2006). Together with the Oracle SOA Suite, the Oracle BPA Suite is claimed to 

be an integrated environment, enabling round-trip engineering (“closed-loop BPM” in 

Oracle’s terms) (Oracle, n.d.). To enable this, Oracle attempts to adhere to standards. In the 

case of this research, the most important standard is BPEL. The integration of the BPA Suite 

and the SOA Suite happens in the three steps depicted in Table 7. The process is iterative, 

with the business model as master: the business (analyst) owns the model. In order to 

support the full extent of Oracle’s BPM Lifecycle (see Figure 5, on the next page), use is 

made of the existing coupling within the SOA Suite (for example BAM for monitoring, and 

the BPEL engine for execution) (Oracle, 2006). 

Table 6: Oracle BPA Suite components 

Component Description 

Business Process 

Architect 

Standards-based tool for process modeling. It uses various standards-

based notations such as BPMN and EPC. 

Business Process 

Repository Server 

Server component for storing and sharing the process repository 

across multiple users in a collaborative environment 

Business Process 

Simulator 

Tool that simulates the process models based on a set of discrete 

events, to do "what if" analysis. 

Business Process 

Publisher 

Publishes process models to a large audience outside the core team 

designing the process models 

Oracle Extensions 

for SOA  

Allows bi-directional integration with the Oracle SOA Suite. 

Table 7: Three step integration 

Step 1 Business process modeling 

Step 2 Convert to Blueprint 

Step 3 Retrieve Blueprint in JDeveloper 



Lucas O. Meertens - EPC To BPEL Transformations       26 

Several articles cover an overview and 

analysis of the combination of the BPA 

Suite and the SOA Suite (Silver, 2008) 

(Butler Group, 2007). Another paper 

treats a comparison between a 

competing BPMS (Intalio) and the, pre-

integration, combination of Oracle SOA 

Suite and IDS Scheer’s SOA Architect 

(Scheithauer & Wirtz, 2008). 

3.8 Discussion of treated literature 

As can be concluded from the above, model transformations are at the core of MDE. It is 

possible to evaluate modeling languages based on their ability to represent real world 

concepts (ontology) and their ability to form certain patterns. A model transformation is 

theoretically feasible depending on those criteria. The two modeling languages, EPC and 

BPEL, are compared based on the BWW representational model and 20 workflow control 

patterns. Issues for model transformation are anticipated, due to mismatches found in the 

ontology and pattern comparison, as well as due to the graph-to-block structure 

transformation and different levels of abstraction. The specific transformation for this 

research is a model-to-model mapping transformation of (abstract) classical EPC to 

(concrete) BPEL 1.1, without any extensions, such as the other ARIS views. The resulting 

BPEL specification is considered as (executable) code for integration with the Oracle SOA 

Suite. The Oracle BPA Suite performs the model transformation, specifically the Business 

Process Architect component. It creates BPEL output from EPC diagram input. This research 

does not consider round-trip engineering, so it takes only one-way mapping into account. 

 
Figure 5: Oracle BPM Lifecycle 



Lucas O. Meertens - EPC To BPEL Transformations       27 

4 A framework to evaluate model transformation 

Before transforming models from one language (EPC) to another (BPEL), the two languages 

are compared. Firstly, this comparison happens based on ontology (section 4.1), to see 

which concepts both languages represent and how good the completeness and clarity of the 

languages are. Differences between the lists of concepts each language supports indicate 

limitations for  transformation. Secondly, section 4.2 defines a list of (business) process 

patterns, from which EPC models can be constructed. Prior research on the two languages in 

combination with such patterns, leads to expectations to which patterns can transform and 

which cannot. The resulting conceptual model answers main research question 1, as it 

describes to what extent automated transformation from EPC models to BPEL specifications 

is possible. Section 4.3 discusses the limitations and issues encountered, together with 

several possible solutions. As one of these solutions, section 4.4 provides a possible 

mapping from EPC to BPEL. Finally, section 4.5 summarizes and concludes the conceptual 

model. The conceptual model serves as a foundation for the remainder of the research: The 

transformation results in chapter 5 validate it, and it provides the theoretical limitations 

which the guidelines in chapter 7 attempt to solve. 

4.1 Ontological analysis of business process modeling languages 

An ontology attempts to capture the reality by precisely defining a set of concepts that 

specify the domain of the reality (Gruber, 1993). As such, the ontology provides a common 

vocabulary for users of the domain. For the domain of information systems (IS), a commonly 

used ontology is the BWW representation model. This ontology was derived from Bunge’s 

work on ontology in general (Bunge, 1977, 1979) and subsequently adapted for information 

systems (Wand & Weber, 1990). Constructs in business process modeling languages 

represent the concepts, which the BWW model defines. The leftmost column of  in section 

4.1.4 provides the (synthesized) concepts, which this research uses. This answers sub-

question 1a: It is the ontology, to which business processes must adhere. 

4.1.1 Completeness and clarity 

An evaluation of modeling languages compares the constructs specified by the language to 

the concepts defined by the BWW model. This reveals which concepts are missing, and 



Lucas O. Meertens - EPC To BPEL Transformations       28 

which constructs are confusing or overkill. 

Two main, resulting measures are 

completeness and clarity. The amount of 

concepts in the ontology, which have no 

representation in the language, defines 

the lack of completeness (deficiencies, 

Figure 6). Clarity is a combination of 

redundancy, overload, and excess of 

constructs. Redundancy of constructs 

means more than one construct in the 

language represent one concept in the ontology (Figure 7). Overload of constructs indicates 

that one construct in the language represents more than one concept in the ontology 

(Figure 8). For example, the EPC function construct represents a property in general, a 

process, or a transformation. Constructs that do not represent any concept of the ontology 

cause excess of constructs (Figure 9). For this research, it is not only important to compare 

the languages to the ontology, but also to see to what extent the results of the comparison 

match. 

4.1.2 BPEL and the BWW model 

Prior research was conducted to evaluate BPEL according to the BWW model already 

(Green, Rosemann, Indulska, & Manning, 2007). BPEL has the ability to represent 

approximately half (51.7%) of the concepts in the BWW model. While only half does not 

seem good, only ebXML and BPMN scored better in a comparative study (Rosemann, 

Recker, Indulska, & Green, 2006). The most eye-catching deficiencies are the lack of the 

thing concept and the inability to represent most facets of states (which accounts for the 

largest portion of the deficiencies, 6 out of 14). The BPEL specification contains quite a lot of 

constructs. While the positive side of this is that the completeness is quite good, the 

negative side is the lower clarity. Many constructs in BPEL map to a single concept in the 

BWW model. This redundancy is most obvious for the BWW concepts transformation, 11 

BPEL constructs, and event, 4 BPEL constructs. The amount of excess BPEL constructs is 

quite high too. These constructs are mainly control flow entities. On the other hand, the 

amount of overloaded constructs is very low. Only the Partners construct is overloaded. This 

 
Figure 6: Deficiency 

 
 Figure 7: Redundancy 

 
Figure 8: Overload 

  
Figure 9: Excess 



Lucas O. Meertens - EPC To BPEL Transformations       29 

construct is actually removed from BPEL in version 2.0 (OASIS, 2007). Table 8 and  in section 

4.1.4 show the results of the comparison from BPEL to the BWW model. 

4.1.3 EPC and the BWW model 

Prior research also evaluated EPC, according to the BWW model (Green & Rosemann, 2000). 

EPC can only represent 37.9% of all the BWW concepts. The poor representation of things is 

especially striking. This deficiency indicates that extension is necessary to model things, for 

example by using eEPC. The redundancy of EPC is remarkable: no concept in the BWW 

model is represented by more than one EPC construct. Then again, the overload of 

constructs is high, as EPC uses the constructs function and event almost solely to represent 

BWW concepts. The small amount of constructs in EPC directly receives the credit for these 

two observations. The three excess constructs are the connector entities used for modeling 

the control flow. Table 8 and  list the results of the prior research. 

4.1.4 Representational power of EPC versus BPEL 

The above elaborations and the overview provided in Table 8 and  expose several 

differences between EPC and BPEL. The completeness of the two languages differ, as it is 

clear that some constructs that are part of EPC are not part of BPEL, and vice versa. 

Moreover, the clarity of the languages is at odds, as a number of constructs is overloaded, 

redundant, and excess. A positive aspect is that not all deficiencies and lack of clarity are 

insuperable for the case of model transformation. In many cases, the difficulties depend on 

which language contains the problem. 

Table 8: Ontological excess and overload (adapted from 

(Recker, Rosemann, Indulska, & Green, 2006)) 

Excess Overload 

EPC BPEL 1.1 EPC BPEL 1.1 

AND-connector Empty Function Partners 

OR-connector Message property Event  

XOR-connector Message definition   

 Sequence   

 Flow   

 Scope   

42.9% 12.8% 28.6% 2.1% 



Lucas O. Meertens - EPC To BPEL Transformations       30 

Table 9: Ontological completeness and redundancy (adapted from (Recker, Rosemann, 

Indulska, & Green, 2006)) 

BWW Concept Completeness Redundancy 

 EPC BPEL 1.1 EPC BPEL 1.1 

Thing     

Class  x  1 

Kind     

Property x x * * 

State x x 1 1 

Conceivable State Space     

State Law x  1  

Lawful State Space     

Stable State x  1  

Unstable State     

History     

Event x x 1 4 

Conceivable Event Space     

Lawful Event Space     

External Event x x 1 1 

Internal Event x x 1 3 

Well-Defined Event x x 1 1 

Poorly Defined Event  x  2 

Transformation x x 1 11 

Lawful Transformation x x 1 3 

Acts On  x  1 

Coupling  x  1 

System  x  1 

System Composition  x  1 

System Environment     

System Structure  x  1 

Subsystem     

System Decomposition     

Level Structure x  1  

Degree of Completeness 37.9 % 51.7%   

Degree of Redundancy   0.0% 31.9% 

In case of a deficiency in the source language, EPC in this case, no difficulty exists in 

transformation to the target language, BPEL in this case, as there just is no need to map the 

missing concept. This situation, for example, arises with the transformation of the BWW 

thing concept: no such concept is available as construct in EPC, so it cannot be used in a 

model, and thus does not need to be transformed ever. This condition stands, even if the 



Lucas O. Meertens - EPC To BPEL Transformations       31 

target language has the deficiency too. On the other hand, problems do appear if the target 

language has a deficiency that the source language does not have. For transforming EPC to 

BPEL, this fact indicates problems for BWW concepts state law and stable state, as they 

have a representation in EPC (respectively, any split and an end event), and not in BPEL. 

Excess of constructs is possibly problematic for model transformation, if the excess occurs in 

the source language. Excess in the target language leads to no problems, as an excess 

construct in the target language is never used in the source language. This situation is 

similar to deficiency in the source language. Even if the source language has an excess 

construct, this may not be a problem, if it maps to an excess construct of the target 

language. Of the excess construct in EPC, the AND-, OR-, and XOR-connectors, only the OR-

connector is problematic (Kindler, 2006) for transformation from EPC to BPEL. The other 

two construct map to the excess flow construct of BPEL. 

If a construct is overloaded, a dilemma may emerge. If the overload of constructs occurs in 

the target language, multiple concepts from the BWW model map to the overloaded 

construct. For transformation, this abstraction is not problematic, but for round-trip 

engineering, extra data may need to be stored. On the contrary, mapping from one 

language to the other becomes ambiguous, if in the source language constructs are 

overloaded. A choice then has to be made, to map the overloaded language construct to 

one of the corresponding BWW concepts. In some circumstances, the appropriate concept 

might be clear from the context. However, in any case, this dilemma poses a challenge and 

the choice for a certain mapping is open to debate. As two of the most important constructs 

in EPC, function and event, are overloaded, this is a serious obstruction to unambiguous 

transformation from EPC to BPEL. 

Redundancy of constructs may lead to a similar dilemma as construct overload. The problem 

arises for redundancy only in the opposite situation as for overload, namely if the target 

language contains redundant constructs and the source language does not have similar 

overloaded constructs, but has the power to represent them. A choice once again has to be 

made, to which of the redundant constructs in the target language, the BWW concept has 

to map. If the right choice is not apparent from the context, then the mapping may be 

contested. BPEL has overloaded constructs for the BWW concepts event and 



Lucas O. Meertens - EPC To BPEL Transformations       32 

transformation, while EPC is capable of representing them in a 

single fashion. Defining transformation mappings from EPC to 

BPEL for events and transformations is, thus, prone to 

ambiguity. 

4.2 (Business) Process patterns 

This second part of the conceptual model considers process 

patterns. As EPC is a language to model the control flow of 

processes (Scheer & Schneider, 1992), use is made of control 

flow patterns, as opposed to data and resource flow patterns. 

Process patterns are also known as workflow patterns. In prior 

research, a list of such patterns was prepared already (Aalst, 

Hofstede, Kiepuszewski, & Barros, 2003) (Aalst, Barros, 

Hofstede, & Kiepuszewski, 2000). A full list of patterns is 

available from http://www.workflowpatterns.com. The patterns 

used in this research are the basic set of control flow patterns, 

which  at the end of the section provides. This answers sub-

question 1b: They are the standard patterns commonly used in 

business processes. 

4.2.1 Patterns in BPEL 

An evaluation of BPEL, by investigating which patterns it can represent, was done before, for 

BPEL in general (Wohed, Aalst, Dumas, & Hofstede, 2003), as well as for the Oracle BPEL PM 

(Mulyar, 2005). This illustrated that BPEL cannot model some patterns, presumably partly 

due to the deficiencies discovered when evaluating BPEL in respect to the BWW model. The 

most notable pattern that BPEL cannot model is Workflow Control Pattern (WFCP) 10: 

Arbitrary Cycles. Figure 10 shows an example of such a cycle. As opposed to structured 

cycles (for example while-loops), BPEL has no direct possibility to model unstructured cycles. 

The block structure of BPEL is the cause for the impossibility.  provides an overview of the 

supported patterns, according to the BPEL specifications, and as found in the Oracle BPEL 

PM. 

 

Figure 10: Example of an 

Arbitrary Cycle in EPC 



Lucas O. Meertens - EPC To BPEL Transformations       33 

Table 10: Capability of constructing workflow patterns 

4.2.2 Patterns in EPC 

An evaluation of EPC, according to which patterns are supported, was conducted before too 

(Mendling, Neumann, & Nüttgens, 2005). EPC directly supports most of the simplest 

patterns only. Most notably, EPC supports no multiple instantiation (MI) patterns at all. 

Besides MI, support for cancelation is missing. Due to its free graph structure, arbitrary 

cycles are possible.  shows which patterns EPC supports. 

4.2.3 Limitations of transforming patterns from EPC to BPEL 

Depending on the supported patterns of both languages, some transformations are 

troublesome. As with construct deficiencies and excess in respect to (the BWW) ontology, 

 Patterns EPC BPEL 

1.1 

Oracle 

BPEL  

WFCP 1 Sequence + + + 

WFCP 2 Parallel Split + + + 

WFCP 3 Synchronization + + + 

WFCP 4 Exclusive Choice + + + 

WFCP 5 Simple Merge + + + 

WFCP 6 Multi Choice + + + 

WFCP 7 Synchronizing Merge + + + 

WFCP 8 Multi-Merge - - - 

WFCP 9 Discriminator - - - 

WFCP 10 Arbitrary Cycles + - - 

WFCP 11 Implicit Termination + + + 

WFCP 12 MI without 

Synchronization 

- + + 

WFCP 13 MI with a Priori Design 

Time Knowledge 

- + + 

WFCP 14 MI with a Priori 

Runtime Knowledge 

- - + 

WFCP 15 MI without a Priori 

Runtime Knowledge 

- - +/- 

WFCP 16 Deferred Choice - + + 

WFCP 17 Interleaved Parallel 

Routing 

- +/- - 

WFCP 18 Milestone - - +/- 

WFCP 19 Cancel Activity - + +/- 

WFCP 20 Cancel Case - + + 



Lucas O. Meertens - EPC To BPEL Transformations       34 

patterns are hard to transform when the source language has support for them, but the 

target language lacks such support. Those patterns, which EPC can model directly and BPEL 

cannot, are also limitations to the effectiveness of the transformation. The only pattern in 

that category is WFCP 10: Arbitrary Cycles. 

4.3 Discussion of encountered issues 

In the previous sections, several issues are encountered, which point to challenges for 

transforming EPC models to BPEL specifications. For each of these issues, a solution must be 

proposed when trying to implement such a (partially) automated transformation. Table 11 

lists all of the encountered issues. 

4.3.1 Possible solutions 

For the encountered issues, many different solutions can be suggested to improve the 

transformation. Two of the most straightforward solutions in nearly any situation are to 

forbid the use of the problematic construct or pattern, or to leave that part of the 

transformation to a human developer. A third solution is to disregard the part. As is clearly 

illustrated for the case of overload, these solutions are often trivial and unacceptable. 

Applying the first solution to the overloaded EPC constructs event and function results in a 

model containing only connectors and arcs, effectively removing all significant meaning. The 

second solution, alternatively, leaves all actual transformation to the developer, 

consequently making the automated part trivial. The third solution results in an empty 

target diagram. 

The first solution, forbid the construct or pattern, may be one of the best solutions for the 

arbitrary cycles issue, though. It is possible to rewrite many of these unstructured cycles to 

Table 11: Conceptual issues for transformation 

Area Challenge 

Ontology Deficiency State law 

Stable state 

Excess OR-connector 

Overload EPC Event 

EPC Function 

Redundancy BWW Event 

BWW Transformation 

Patterns WFCP 10 Arbitrary Cycles 



Lucas O. Meertens - EPC To BPEL Transformations       35 

structured cycles (Zhao, Hauser, Bhattacharya, Bryant, & Cao, 2006). The same applies to 

the OR-connector, which is possible to rewrite as a combination of XOR- and AND-

connectors. Figure 11 shows this for the simplest case of two branches. Otherwise, a 

solution, such as using event-handlers, can be applied (Ouyang, Aalst, Dumas, & Hofstede, 

2006), possibly resulting in unreadable code. A comparable tradeoff, between correctness 

and readability, often needs to be settled upon. For fully automated transformation, 

correctness has the highest priority. If a developer still has to work with the resulting code, 

then readability of that code is also important. 

  

Figure 11: Rewriting an OR-connector to an combination of XOR and AND 

The second solution, leave part of the transformation to a human developer, is more 

appropriate for construct redundancy in the target language. While it is difficult for an 

automated algorithm to decide which of the redundant constructs to pick, a human 

developer can judge this by the context of the construct. This could be by the label given to 

a construct or annotations made by the business analyst. 

A third solution is to disregard constructs. For EPC to BPEL transformation, for example, this 

can be done for many of the EPC event constructs (Ziemann & Mendling, 2005), without loss 

of information. As with the other proposed solutions, it has to be used very selectively. 

As choices have to be made to select a solution, differences may arise between the 

specifications of EPC and BPEL, and their implementations in tools. The difference is visible 

for BPEL in case of the Oracle BPEL PM, as the differences between the last two columns of  

show, BPEL 1.1 versus Oracle BPEL. For EPC, the implementation for the OR-join connector 



Lucas O. Meertens - EPC To BPEL Transformations       36 

in the ARIS simulator illustrates it, which uses a time-out to avoid certain issues with the 

“vicious circle” (Kindler, 2006). 

In conclusion, the best solution depends on the situation. The results of the transformation, 

in Chapter 5, indicate that the Oracle BPA Suite applies all three solutions for different parts 

of the transformation. The conceptual mapping in section 4.4 provides a slightly different 

view. It attempts to minimize the input of human developers, so it either provides a 

mapping, including disregarding a construct, or forbids the pattern. The guidelines in 

Chapter 7 aim to avoid the need for any of the above solutions. In addition, they guide the 

modeler and developer to optimize the second solution. 

4.3.2 Implementation  

Five possible transformation strategies are documented to transform from graph-structured 

languages, such as EPC, to block-structured languages, such as BPEL (Mendling, Lassen, & 

Zdun, 2007). They are element-preservation, element-minimization, structure-identification, 

structure-maximization, and Event-Condition-Action (ECA) rules. Each of these strategies 

has its own application, due to inherent advantages and disadvantages. The mapping, which 

section 4.4 provides, uses the structure-maximization strategy. This allows for the most 

correct and economic-efficient mapping from EPC to BPEL possible, without adding 

elements to BPEL, as the ECA rules would require. Increased complexity is the drawback, as 

it requires the use of both the structure-identification and the element-preservation 

strategies. 

4.3.3 Other considerations 

Construct excess of control flow entities may be considered a problem of the BWW model, 

instead of a problem of the modeling language. Similar to this idea, the redundancy of the 

BWW concept transformation may be a reason to split transformation in disjoint sub-

entities. On the other hand, it is argued that neither the control flow entities, nor the 

subclasses of transformation are required to model the real world (Recker, Rosemann, 

Indulska, & Green, 2006). 

This research only uses the basic control flow patterns for pattern-based evaluation. The full 

list of 43 control flow patterns may be applied in the same manner. Few extra results are 



Lucas O. Meertens - EPC To BPEL Transformations       37 

expected though, as only three patterns are new for the EPC supported patterns. Of those, 

only the “generalized AND-join” is a troublesome pattern, in the sense that BPEL does not 

support it. No problems are expected if data and resource patterns are considered, as 

classical EPC has no support for data and resources. Thus, these patterns are never 

modeled. Modeling resources and data requires eEPC. 

As the goal of MDE is to arrive at executable code in the end, the requirements for the code 

must be considered. From the perspective of this research, the resulting BPEL specifications 

are regarded as the executable code. In order for BPEL specifications to be executable, they 

have to include several aspects. A data model may be necessary, for example. These 

conditions are beyond the scope of this research. 

4.4 Conceptual mapping from EPC to BPEL 

Based on the representational capabilities of the two modeling languages, EPC and BPEL, 

this section defines a conceptual mapping between them. However, several choices are 

made to provide a mapping that is as complete as reasonable. The need for these choices 

arises from the lack of clarity in each of the languages. As another solution can be chosen, 

the mapping is not normative. The subsequent sections explain the mapping in detail, 

including the choices and the reasons for picking a specific alternative. The basis of the 

conceptual mapping is buildup out of the EPC constructs (section 4.4.1), the patterns that 

can be constructed with EPC (section 4.4.2), and the BWW concepts that EPC is able to 

represent (section 4.4.3). The resulting conceptual mapping is the answer to sub-question 

1d. 

A successful conceptual mapping needs to meet several criteria. For this particular mapping, 

the obvious main criterion is that the mapping needs to be correct. Furthermore, the 

mapping aims to produce output that is general applicable, accurate, readable, and directly 

executable. These criteria motivate several of the reasons for picking particular alternatives. 

Tables 12, 18, and 19 provide the mapping. The text explains each of the individual 

mappings, starting with the relative straightforward mappings and ending with the complex 

ones, for which dilemmas arise. 



Lucas O. Meertens - EPC To BPEL Transformations       38 

4.4.1 EPC construct based mapping 

The three types of EPC constructs, event, connectors, and functions, can all be mapped to 

BPEL. The patterns and ontology-based mappings enclose this transformation in its totality. 

Therefore, this section focuses on the issues of the EPC constructs applicable to those 

mappings. 

Firstly, three BWW concepts overload the EPC construct event. The first one of those is the 

concept stable state. It is specified as the end event(s) in an EPC diagram. It is disjoint from 

the other two. The second concept, which an EPC event covers, is state. The EPC events, 

which denote the state concept, are only those that precede a function. As any event that 

succeeds a function, either precedes another function or is an end event, the state and 

stable state concepts cover all occurrences of an EPC event already. However, another 

concept is also interpreted as an EPC event, namely the concept external event. This is 

specifically the start event of an EPC diagram. As such, it overlaps with the representation of 

state. As state is not explicitly mapped (see section 4.4.3), this is not an issue. 

Secondly, the excess EPC constructs connectors are useful to represent splitting and joining 

of the control flow. Their application in patterns 2 until 7 clearly illustrates their usefulness. 

These patterns also define the mapping of the EPC connectors to BPEL constructs. 

Lastly, several concepts of the ontology overload the EPC construct function. All patterns 

also use this construct. As section 4.4.3 explains, the choice is made to map the EPC 

construct function to the BPEL construct empty. 

Table 12: Conceptual mapping of EPC constructs 

 EPC BWW issue Covered by 

EPC events 

 

Overloaded 

construct 

BWW stable state, BWW state, 

and BWW external event 

EPC connectors 

 

Excess constructs Patterns 2 until 7 

EPC functions 

 

Overloaded 

construct 

BWW transformation 



Lucas O. Meertens

4.4.2 Pattern

This section describes the conceptual mapping from EPC to BPEL based on th

control patterns

EPC to BPEL. Chapter 

Suite. 

WFCP 1 - Sequence

Of the pattern transformations, the first one is 

the simplest one. WFCP

an alternating sequence of events and 

functions in EPC, 

construct sequence.

alternating events and functions in EPC.

However, the EPC diagram contains the 

overloaded EPC constructs event and function. 

The overloaded constructs require a choice to be made between which concept is 

represented. A similar selection is 

constructs is chosen for the concepts event and transformation, as the

represents them both.

a deficiency for BPEL. This implies that they cannot be transformed to BPEL. No excess EPC 

constructs exist in the

mappings. This section continues with only the pattern

Table 13 provides t

code, which represents this pattern. The fragment 

shows two placeholder activities

sequence construct. 

diagram fragment.

Those constructs map to a receive construct and an invoke constru

4.4.3 describes this in more detail, together with the other ontology

Lucas O. Meertens - EPC To BPEL Transformations  

Pattern-based mapping 

This section describes the conceptual mapping from EPC to BPEL based on th

control patterns. These mappings include the expected results of the transformation from 

Chapter 5 describes the actual transformation, as d

Sequence 

Of the pattern transformations, the first one is 

the simplest one. WFCP 1 – Sequence, which is 

alternating sequence of events and 

functions in EPC, maps directly to the BPEL 

construct sequence.  shows a diagram of the 

events and functions in EPC. 

However, the EPC diagram contains the 

overloaded EPC constructs event and function. 

The overloaded constructs require a choice to be made between which concept is 

represented. A similar selection is required, in order to decide

is chosen for the concepts event and transformation, as the

represents them both. Two other concepts that 

a deficiency for BPEL. This implies that they cannot be transformed to BPEL. No excess EPC 

exist in the diagram. Section 4.4.3

mappings. This section continues with only the pattern

provides the simplest fragment of BPEL 

code, which represents this pattern. The fragment 

shows two placeholder activities, <empty />, within a 

sequence construct.  shows the corresponding BPEL 

diagram fragment. The figure does not show the transformation of the start and end events. 

Those constructs map to a receive construct and an invoke constru

describes this in more detail, together with the other ontology

     

This section describes the conceptual mapping from EPC to BPEL based on th

These mappings include the expected results of the transformation from 

he actual transformation, as done by the Oracle BPA 

Of the pattern transformations, the first one is 

Sequence, which is 

alternating sequence of events and 

to the BPEL 

a diagram of the 

However, the EPC diagram contains the 

overloaded EPC constructs event and function. 

The overloaded constructs require a choice to be made between which concept is 

, in order to decide which of the redundant BPEL 

is chosen for the concepts event and transformation, as the

Two other concepts that it represents, stable state and state law, are 

a deficiency for BPEL. This implies that they cannot be transformed to BPEL. No excess EPC 

4.4.3 provides solutions for these ontology

mappings. This section continues with only the pattern-based mappings. 

he simplest fragment of BPEL 

code, which represents this pattern. The fragment 

within a 

sponding BPEL 

The figure does not show the transformation of the start and end events. 

Those constructs map to a receive construct and an invoke construct, respectively. Section 

describes this in more detail, together with the other ontology-based mappings.

 

Figure 12: WFCP 1 - 

Sequence in EPC 

Figure 

Sequence in BPEL

Table 13: BPEL code fragment: 

Sequence 

<sequence name=”S
    <empty name=”
    <empty name=”
</sequence> 

 39 

This section describes the conceptual mapping from EPC to BPEL based on the workflow 

These mappings include the expected results of the transformation from 

one by the Oracle BPA 

The overloaded constructs require a choice to be made between which concept is 

which of the redundant BPEL 

is chosen for the concepts event and transformation, as the EPC diagram 

stable state and state law, are 

a deficiency for BPEL. This implies that they cannot be transformed to BPEL. No excess EPC 

provides solutions for these ontology-based 

The figure does not show the transformation of the start and end events. 

ct, respectively. Section 

based mappings. 

 

Figure 13: WFCP 1 - 

Sequence in BPEL 

: BPEL code fragment: 

<sequence name=”Sequence”>    
<empty name=”A” /> 
<empty name=”B” /> 



Lucas O. Meertens

WFCP 2 – Parallel Split & WFCP

Compared to WFCP

BPEL. They represent splitting and (re

a simple mapping to the BPEL construct flow.

In EPC, however, it is a composition of either an event followed by an AND

followed by two or more functions, or a function followed by an AND

two or more events. 

the second approach.

WFCP 3 – Synchroniz

represents it implicitly. 

analogous to the split, except with multiple events or functions before the AND

and a single function or event after the connector.

Table 14 provides t

code, which represents these patterns. The 

fragment shows tw

within their own

flow construct 

sequence constructs. Synchronization, WFCP

Figure 14: WFCP 2 

Split in EPC 

Figure 16: WFCP 3 

Synchronization in EPC

Lucas O. Meertens - EPC To BPEL Transformations  

Parallel Split & WFCP 3 – Synchronization

WFCP 1, the other patterns have a more complex representation in EPC and 

BPEL. They represent splitting and (re-)joining of the control flow. WFCP

a simple mapping to the BPEL construct flow. 

In EPC, however, it is a composition of either an event followed by an AND

followed by two or more functions, or a function followed by an AND

two or more events. Figure 14 shows the first 

the second approach. 

Synchronization always follows WFCP

implicitly. Figure 16 shows the pattern in EPC. 

the split, except with multiple events or functions before the AND

and a single function or event after the connector.

provides the simplest fragment of BPEL 

code, which represents these patterns. The 

fragment shows two placeholder activities, each 

within their own sequence construct. A single 

flow construct encapsulates each of the 

nstructs. Synchronization, WFCP

 
: WFCP 2 - Parallel 

Figure 15: WFCP 2 

Synchronization in BPEL

 
: WFCP 3 – 

Synchronization in EPC 

     

Synchronization 

he other patterns have a more complex representation in EPC and 

)joining of the control flow. WFCP 2 – Parallel Split has 

 Figure 15 shows the expected BPEL diagram. 

In EPC, however, it is a composition of either an event followed by an AND

followed by two or more functions, or a function followed by an AND-connector f

 approach, while Figure 25 (further on) 

follows WFCP 2 in BPEL, as closing the flow construct 

shows the pattern in EPC. EPC represents the join 

the split, except with multiple events or functions before the AND

and a single function or event after the connector. 

he simplest fragment of BPEL 

code, which represents these patterns. The 

o placeholder activities, each 

sequence construct. A single 

encapsulates each of the 

nstructs. Synchronization, WFCP 3, 

: WFCP 2 – Parallel Split & WFCP 3 

Synchronization in BPEL 

Table 14: BPEL code fragment: Flow

<flow name=”flow”>
  <sequence name=”Sequence
    <empty name=”A”
  </sequence> 
  <sequence name=”Sequence
    <empty name=”B”
  </sequence> 
</flow> 

 40 

he other patterns have a more complex representation in EPC and 

Parallel Split has 

the expected BPEL diagram. 

In EPC, however, it is a composition of either an event followed by an AND-connector 

connector followed by 

(further on) shows 

2 in BPEL, as closing the flow construct 

EPC represents the join 

the split, except with multiple events or functions before the AND-connector, 

 
Parallel Split & WFCP 3 – 

: BPEL code fragment: Flow 

”>    
<sequence name=”Sequence”> 

A” /> 

<sequence name=”Sequence”> 
B” /> 



Lucas O. Meertens

implicitly happens

diagram fragment.

WFCP 4 - Exclusive Choice

WFCP 4 – Exclusive

differences. Figure 

Firstly, the pattern

representation allows only a fu

cannot make decisions. Finally, a choice 

BPEL offers two of them for this pattern: switch and pick. Pick makes a choice for the thread 

to take based on an incoming event. Switch, on the other hand, decides based on variables 

or expressions. The distinction between event

from an EPC diagram. The choice is made to map to the switch construct. While both are 

correct, it is possible to rewrite 

incoming event set a variable, and not vice versa. Thus, choo

general applicable solution. 

be taken that the expression conditions

indeed mutually exclusive.

Figure 17: WFCP

Figure 19: WFCP

Lucas O. Meertens - EPC To BPEL Transformations  

happens when closing the flow construct. 

ram fragment. 

Exclusive Choice & WFCP 5 - Simple Merge

Exclusive Choice follows a similar path to WFCP

Figure 17 shows the first two clearly, while the last one is a mapping issue. 

Firstly, the pattern obviously uses another connector: the XOR

representation allows only a function construct to precede the connector, because events 

cannot make decisions. Finally, a choice has to be made for the BPEL construct to 

BPEL offers two of them for this pattern: switch and pick. Pick makes a choice for the thread 

on an incoming event. Switch, on the other hand, decides based on variables 

or expressions. The distinction between event

from an EPC diagram. The choice is made to map to the switch construct. While both are 

it is possible to rewrite any pick construct 

incoming event set a variable, and not vice versa. Thus, choo

general applicable solution. Figure 18 shows the BPEL diagram of this solution. 

be taken that the expression conditions, which

indeed mutually exclusive. 

 

: WFCP 4 - Exclusive Choice in EPC

 

: WFCP 5 - Simple Merge in EPC 

     

closing the flow construct. Figure 15 shows the corresponding BPEL 

Simple Merge 

Choice follows a similar path to WFCP 2, but has some notable 

shows the first two clearly, while the last one is a mapping issue. 

obviously uses another connector: the XOR-connector. Secondly, the EPC 

nction construct to precede the connector, because events 

to be made for the BPEL construct to 

BPEL offers two of them for this pattern: switch and pick. Pick makes a choice for the thread 

on an incoming event. Switch, on the other hand, decides based on variables 

or expressions. The distinction between event- and variable-based choices is not apparent 

from an EPC diagram. The choice is made to map to the switch construct. While both are 

any pick construct to a switch construct

incoming event set a variable, and not vice versa. Thus, choosing for switch allows for a 

shows the BPEL diagram of this solution. 

, which enable the threads following the switch,

Exclusive Choice in EPC 

Figure 18: WFCP 4 - Exclusive Choice

& WFCP 5 - Simple Merge in BPEL 

 41 

shows the corresponding BPEL 

but has some notable 

shows the first two clearly, while the last one is a mapping issue. 

connector. Secondly, the EPC 

nction construct to precede the connector, because events 

to be made for the BPEL construct to use, as 

BPEL offers two of them for this pattern: switch and pick. Pick makes a choice for the thread 

on an incoming event. Switch, on the other hand, decides based on variables 

is not apparent 

from an EPC diagram. The choice is made to map to the switch construct. While both are 

to a switch construct by letting the 

sing for switch allows for a 

shows the BPEL diagram of this solution. Care has to 

enable the threads following the switch, are 

 

Exclusive Choice 

Simple Merge in BPEL 



Lucas O. Meertens

Figure 19 shows

the choice construct; switch in this case.

two events and a single function.

Table 15 provides t

code, which represents these patterns. The 

fragment shows two placeholder activities, each 

within a branch of the switch construct. The first 

branch (and in the case of extra branches, those 

too) is a case construct. It contains a condition on 

which it fires, which is set to true in this example. The second (and in general, the last) 

branch is the otherwise construct. It fires if none of the other cases 

WFCP 5 – Simple Merge

never run in parallel, as the pattern

exclusive. Figure 

Figure 20: WFCP

Multi Choice in EPC

Figure 22: WFCP

Synchronizing Merge 

in EPC 

Lucas O. Meertens - EPC To BPEL Transformations  

s WFCP 5 – Simple Merge. It maps analogous to WFCP

choice construct; switch in this case. As with WFCP

two events and a single function. 

provides the simplest fragment of BPEL 

code, which represents these patterns. The 

fragment shows two placeholder activities, each 

within a branch of the switch construct. The first 

d in the case of extra branches, those 

too) is a case construct. It contains a condition on 

which it fires, which is set to true in this example. The second (and in general, the last) 

branch is the otherwise construct. It fires if none of the other cases 

Simple Merge implicitly happens by 

never run in parallel, as the pattern requires

Figure 18 shows the corresponding BPEL diagram fragment.

 

: WFCP 6 - 

Multi Choice in EPC 

Figure 21: WFCP 6 - Multi Choice & WFCP

in BPEL 

 

: WFCP 7 - 

Synchronizing Merge 

     

maps analogous to WFCP 3: it is the closing of 

As with WFCP 3, it has another representation with 

he simplest fragment of BPEL 

code, which represents these patterns. The 

fragment shows two placeholder activities, each 

within a branch of the switch construct. The first 

d in the case of extra branches, those 

too) is a case construct. It contains a condition on 

which it fires, which is set to true in this example. The second (and in general, the last) 

branch is the otherwise construct. It fires if none of the other cases evaluates to true

by closing the switch. To ensure that the threads 

requires, the case conditions must be mutually 

shows the corresponding BPEL diagram fragment. 

Table 15: BPEL code fragment: Switch

<empty name=”A” />
<switch name="Switch">
  <case condition="true()">
    <empty name=”B
  </case> 
  <otherwise> 
    <empty name=”C
  </otherwise> 
</switch> 

Multi Choice & WFCP 7 - Synchronizing 

 42 

3: it is the closing of 

3, it has another representation with 

which it fires, which is set to true in this example. The second (and in general, the last) 

valuates to true. 

the switch. To ensure that the threads 

, the case conditions must be mutually 

: BPEL code fragment: Switch 

/>    
witch"> 

<case condition="true()"> 
B” /> 

C” /> 

 

Synchronizing Merge 



Lucas O. Meertens - EPC To BPEL Transformations       43 

WFCP 6 - Multi Choice & WFCP 7 - Synchronizing Merge 

WFCP 6 – Multi Choice is less straightforward to map, as it has no direct representation in 

BPEL. In EPC, it is the same as WFCP 4, except that it uses an OR-connector. Figure 20 shows 

this. Applying a flow construct, in combination with link constructs, answers the lack of 

direct representation in BPEL. Table 16 shows the BPEL code for this solution. The flow 

construct in principle triggers all of its threads, but the link constructs contain expressions, 

which may limit the activation of the threads. Closing the flow construct from WFCP 6 

ensures the synchronization required for WFCP 7 – Synchronizing Merge. The flow construct 

waits until all threads are either completed or skipped due to the link expressions. The OR-

join, which Figure 22 shows, has non-local semantics, as section 3.3.2 explains. This is a 

correct, yet hard to read, mapping.  

The code fragment in Table 16 opens with a flow construct after the initial placeholder 

activity. This indicates that the three sequences it encapsulates run in parallel. However, 

due to the use of links, the first sequence (ControlSequence) serves as a control sequence, 

which enables or disables the other two sequences. A link works by pointing from a source 

to a target. If the transition condition in the source evaluates to true, then it enables the 

target sequence. Else, if the transition condition evaluates to false, it disables the target 

sequence. 

Table 16: BPEL code fragment: Flow with links / OR-connector 

<empty name=”A” />    
<flow name=”Flow”> 
  <links> 
    <link name=”linkB” /> 
    <link name=”linkC” /> 
  </links> 
  <sequence name=”ControlSequence”> 
    <source linkName=”linkB” transitionCondition=”true()”  /> 
    <source linkName=”linkC” transitionCondition=”false()” /> 
  </sequence> 
  <sequence name=”Sequence”> 
    <target linkName="linkB" /> 
    <empty name=”B” /> 
  </sequence> 
  <sequence name=”Sequence”> 
    <target linkName="linkC" /> 
    <empty name=”C” /> 
  </sequence> 
  </sequence> 
</flow> 



Lucas O. Meertens

For this example, the “false()”

“true()” expression in the other link cause 

the use of the link construct. It requires declaration of the links first. The links then 

reference each other by name.

The links are noticeably not visible in this diagram, created by Oracle JDeveloper. Explicitly 

adding the links makes the functionality of the links clear

WFCP 10 - Arbitrary Cycle

WFCP 10 –Arbitrary Cycles is the most complex pattern to map. In many cases, it has no 

(straightforward) representation in BPEL at all. For 

maps to the BPEL construct while. In all other cases, the pattern 

So, generally the pattern is forbidden, as section 

While EPC fully supports WFCP 10 inherently, by its directed graph structure, BPEL is only 

capable of a limited subset of cycles. The subset is build up out of those cycles, which are 

possible to represent using while

BPEL. On the other hand, 

Table 17 provides t

BPEL code, which represents 

shows the corresponding BPEL diagram 

fragment. The while construct contains 

Figure 23: WFCP 10 

Cycle (While-loop) in EPC

Lucas O. Meertens - EPC To BPEL Transformations  

For this example, the “false()” expression in linkC causes activity C

“true()” expression in the other link cause activity B

the use of the link construct. It requires declaration of the links first. The links then 

ence each other by name. Figure 21 shows the corresponding BPEL 

The links are noticeably not visible in this diagram, created by Oracle JDeveloper. Explicitly 

adding the links makes the functionality of the links clear

Arbitrary Cycle 

Arbitrary Cycles is the most complex pattern to map. In many cases, it has no 

(straightforward) representation in BPEL at all. For 

to the BPEL construct while. In all other cases, the pattern 

So, generally the pattern is forbidden, as section 

While EPC fully supports WFCP 10 inherently, by its directed graph structure, BPEL is only 

capable of a limited subset of cycles. The subset is build up out of those cycles, which are 

possible to represent using while-loops. Due to this, 

BPEL. On the other hand, the diagram in Figure 

provides the simplest fragment of 

BPEL code, which represents WFCP 10. 

shows the corresponding BPEL diagram 

The while construct contains 

 

: WFCP 10 - Arbitrary 

loop) in EPC Figure 24: WFCP 10 

     

expression in linkC causes activity C to be skipped, while the 

activity B to activate. The example also illustrates 

the use of the link construct. It requires declaration of the links first. The links then 

shows the corresponding BPEL diagram fragment. 

The links are noticeably not visible in this diagram, created by Oracle JDeveloper. Explicitly 

adding the links makes the functionality of the links clearer. 

Arbitrary Cycles is the most complex pattern to map. In many cases, it has no 

(straightforward) representation in BPEL at all. For simple (structured) cycles, the pattern 

to the BPEL construct while. In all other cases, the pattern needs modification

So, generally the pattern is forbidden, as section 4.3.1 proposes. 

While EPC fully supports WFCP 10 inherently, by its directed graph structure, BPEL is only 

capable of a limited subset of cycles. The subset is build up out of those cycles, which are 

oops. Due to this, the diagram in  is transformable to 

Figure 10 is impossible to transform.

he simplest fragment of 

  

shows the corresponding BPEL diagram 

The while construct contains 

 

: WFCP 10 - Arbitrary Cycle (While-

Table 17: BPEL code fragment: While

<empty name=”A” />    
<while condition=”false()”>
  <empty name=”B” />
</while> 

 44 

to be skipped, while the 

to activate. The example also illustrates 

the use of the link construct. It requires declaration of the links first. The links then 

diagram fragment. 

The links are noticeably not visible in this diagram, created by Oracle JDeveloper. Explicitly 

Arbitrary Cycles is the most complex pattern to map. In many cases, it has no 

simple (structured) cycles, the pattern 

needs modification in EPC. 

While EPC fully supports WFCP 10 inherently, by its directed graph structure, BPEL is only 

capable of a limited subset of cycles. The subset is build up out of those cycles, which are 

is transformable to 

is impossible to transform. 

-loop) in BPEL 

: BPEL code fragment: While-loop 

    
condition=”false()”> 

/> 



Lucas O. Meertens

activity B. This activity

this example, the content

set to “false()”. This is chosen, to avoid the live

expression to “true()”.

WFCP 11 - Implicit Termination

WFCP 11 – Implicit Termination is present in both 

events, which BPEL represents by 

requires the use of 

required. Due to this, the pattern is in theory only applicable if the main construct of the 

BPEL process is a flow construct and not a sequence construct. In practice,

split of control in BPEL is also converged back to one thread, rendering this pattern trivial.

Table 14 (earlier on) 

pattern. Closing the flow construct causes the 

activities within 

The activities are 

diagram fragment.

Figure 25: WFCP 11 

Termination in EPC

Lucas O. Meertens - EPC To BPEL Transformations  

activity repeats, as long as the condition in the while construct holds tru

this example, the content of the while construct 

. This is chosen, to avoid the live

expression to “true()”. 

Implicit Termination 

Implicit Termination is present in both 

events, which BPEL represents by closing the main process construct.

the use of a flow construct. For all other construct an explicit terminate construct is 

required. Due to this, the pattern is in theory only applicable if the main construct of the 

BPEL process is a flow construct and not a sequence construct. In practice,

split of control in BPEL is also converged back to one thread, rendering this pattern trivial.

(earlier on) provides the simplest fragment of BPEL code,

Closing the flow construct causes the 

activities within the flow construct can trigger

are either skipped or executed. 

ment. 

 

: WFCP 11 - Implicit 

Termination in EPC Figure 

     

, as long as the condition in the while construct holds tru

of the while construct never executes, because the cond

. This is chosen, to avoid the live-lock, which would be caused by setting the 

Implicit Termination is present in both EPC and BPEL. In EPC as multiple end 

the main process construct. However, BPEL 

a flow construct. For all other construct an explicit terminate construct is 

required. Due to this, the pattern is in theory only applicable if the main construct of the 

BPEL process is a flow construct and not a sequence construct. In practice, nevertheless, any 

split of control in BPEL is also converged back to one thread, rendering this pattern trivial.

he simplest fragment of BPEL code, which represents this 

Closing the flow construct causes the required implicit termination. When no 

can trigger or are active anymore, the flow terminates. 

either skipped or executed. Figure 26 shows the corresponding BPEL 

Figure 26: WFCP 11 - Implicit Termination in BPEL

 45 

, as long as the condition in the while construct holds true. In 

never executes, because the condition is 

lock, which would be caused by setting the 

. In EPC as multiple end 

However, BPEL 

a flow construct. For all other construct an explicit terminate construct is 

required. Due to this, the pattern is in theory only applicable if the main construct of the 

nevertheless, any 

split of control in BPEL is also converged back to one thread, rendering this pattern trivial. 

which represents this 

required implicit termination. When no 

anymore, the flow terminates. 

shows the corresponding BPEL 

 

Implicit Termination in BPEL 



Lucas O. Meertens

Pattern

WFCP

WFCP

WFCP

WFCP

WFCP

WFCP

WFCP

WFCP

WFCP

4.4.3 Ontology

The ontology-base

The patterns 2 until 7 cover the BWW concepts state law and lawful transformation. This is 

illustrated by the fact that 

as the patterns: a composition of events or functions

functions or event. In the same manner

consists of a series of events and functions.

The most straightforward BWW concept

EPC, the start event

receive that triggers the BPEL process. 

Subsequent receive str

external interactions.

The stable state, which the end event in EPC

BPEL. However, it is implicitly present

after the client receives the callb

Lucas O. Meertens - EPC To BPEL Transformations  

Table 18: Conceptual mapping of patterns

Pattern 

WFCP 1 - Sequence 

WFCP 2 - Parallel Split 

WFCP 3 - Synchronization 

WFCP 4 - Exclusive Choice 

WFCP 5 - Simple Merge 

WFCP 6 - Multi Choice 

WFCP 7 - Synchronizing Merge 

WFCP 10 - Arbitrary Cycle (While-loop)

WFCP 11 - Implicit Termination 

Ontology-based mapping 

based mapping both complements and overlaps the pattern

The patterns 2 until 7 cover the BWW concepts state law and lawful transformation. This is 

illustrated by the fact that EPC represents these two concepts 

patterns: a composition of events or functions

functions or event. In the same manner, WFCP

consists of a series of events and functions. 

The most straightforward BWW concept to map from EPC to BPEL is the external event. In 

EPC, the start event represents the external event

receive that triggers the BPEL process. The process receives t

Subsequent receive structures are not possible, as EPC is not capable of explicit extra 

external interactions. 

The stable state, which the end event in EPC

BPEL. However, it is implicitly present when the main construct is closed. Thi

receives the callback. The EPC end event maps to this call

     

: Conceptual mapping of patterns 

EPC BPEL 

See  

 

 
</flow

 

 
</switch

 

 
</flow

loop) 
See  

See Figure 25 </process

d mapping both complements and overlaps the pattern-based mapping. 

The patterns 2 until 7 cover the BWW concepts state law and lawful transformation. This is 

these two concepts with the same compositions 

patterns: a composition of events or functions, followed by a connector

WFCP 1 covers the concept level structure, which 

to map from EPC to BPEL is the external event. In 

the external event, which corresponds to the BPEL construct 

The process receives this trigger from the client. 

uctures are not possible, as EPC is not capable of explicit extra 

The stable state, which the end event in EPC represents, has no direct representation in 

when the main construct is closed. Thi

ack. The EPC end event maps to this callback. Depending on 

 46 

 

 

flow> 

 

switch> 

 

flow> 

 
process> 

based mapping. 

The patterns 2 until 7 cover the BWW concepts state law and lawful transformation. This is 

same compositions 

followed by a connector, followed by 

covers the concept level structure, which 

to map from EPC to BPEL is the external event. In 

, which corresponds to the BPEL construct 

his trigger from the client. 

uctures are not possible, as EPC is not capable of explicit extra 

, has no direct representation in 

when the main construct is closed. This happens only 

back. Depending on 



Lucas O. Meertens - EPC To BPEL Transformations       47 

the type of BPEL process, synchronous or asynchronous, the call back takes the form of the 

BPEL construct reply or invoke, respectively. As EPC diagrams do not represent this 

difference, a choice is made for the asynchronous variant (invoke). This improves 

executability for long running processes, as the calling process does not need to wait for the 

process to finish. 

The ability of EPC, to represent the state concept in the form of events, matches to BPEL 

variables. In order to be generally applicable and executable, this mapping is not done 

explicitly. The BPEL construct assign could have been used, but EPC diagrams do not specify 

which, if any, variables are accessed and modified. Thus, as the mapping is not known, it 

cannot be made explicit. 

Finally, the mapping of the BWW concept transformation covers the transformation of all 

leftover structures. In EPC, event�function�event represents all the other concepts. As 

EPC events are always part of another mapping (the BWW concepts state, stable state, and 

external event), only the construct function remains, which is interpreted as the BWW 

concept transformation. BPEL overloads this concept with, no less than, eleven constructs. 

Each of these constructs is applicable in its own context. However, it is not possible to 

obtain the context directly from an EPC diagram. Therefore, any mapping is contestable, 

Table 19: Conceptual mapping of BWW concepts 

BWW concept EPC BPEL 

Property Function Covered by transformation 

State Event (only triggers of 

functions) 

Variables (not explicitly mapped) 

State law Function(s) � connector � 

event(s) 

Covered by patterns 2 until 7 

Stable state Event (only end) Final callback to client (reply or invoke 

construct) 

Event Event � function � event Covered by transformation 

Internal event Event � function � event Covered by transformation 

External event Event (only start) First receive 

Well-defined event Event � function � event Covered by transformation 

Transformation Function Empty construct 

Lawful 

transformation 

Event � connector � 

function 

Covered by patterns 2 until 7 

Level structure Series of events and 

functions 

Covered by pattern 1 



Lucas O. Meertens - EPC To BPEL Transformations       48 

possibly incorrect, and inaccurate. To ensure that the BPEL process is readable and directly 

executable, a placeholder construct is chosen: the excess construct empty. This is 

inaccurate, but easy for a developer to change to the real implementation. 

4.5 Concluding the conceptual model 

The conceptual model, as presented in this chapter, provides the answers to main research 

question 1 and its sub-questions, as well as the first part of sub-question 2a. The conceptual 

model starts with discussing the ontology, to which business process modeling languages 

must adhere (sub-question 1a). The selected ontology is the BWW representation model. 

Wand and Weber (1990) adopted Bunge’s (1977, 1979) ontology, and adapted it for 

information systems. Table 8 presents the concepts of the BWW model. In combination with 

, it also shows how EPC and BPEL relate to the ontology (sub-question 1c). Neither EPC nor 

BPEL perfectly fulfill the properties completeness and clarity (see section 4.1.1), according to 

the BWW model. BPEL is unable to represent some aspects of state, of which EPC is capable. 

The second section of this chapter describes the commonly used business patterns, which 

business process modeling languages use (sub-question 1b). The selected patterns are the 

workflow control patterns (Aalst, Hofstede, Kiepuszewski, & Barros, 2003), which the first 

column of  lists. The other columns of that table reveal the capabilities of both languages to 

represent the patterns (sub-question 1c). BPEL is able to represent more patterns than EPC. 

However, EPC is able to represent one pattern, WFCP 10 – Arbitrary Cycle, which BPEL is not 

able to represent. 

The conceptual issues for model transformation, supplied in Table 11, partly answer sub-

question 2a, by indicating possible problems. The issues arise from lack of completeness and 

clarity, as well as the inability to represent patterns. Section 4.3 discusses possible solutions 

and implementations to the issues, as well as handling some extra issues. 

In order to answer sub-question 1d (How do the constructs map from EPC to BPEL in 

theory?), a conceptual mapping from EPC to BPEL is defined in section 4.4. The mapping 

advises how to accomplish the transformation from EPC diagrams to BPEL specifications. 

Several choices are made for this mapping, which may be made differently for tools 

implementing such a mapping. 



Lucas O. Meertens - EPC To BPEL Transformations       49 

As a whole, the conceptual model provides a foundation for the rest of the research. The 

next chapter uses the conceptual mapping and issues. There they form the basis of the 

expectations for the EPC to BPEL transformations by the Oracle BPA Suite. That chapter also 

empirically validates the model. Chapter 7 provides guidelines, in order to bypass the 

limitations, which the conceptual issues indicate. 



Lucas O. Meertens - EPC To BPEL Transformations       50 

5 Pattern Transformation Results 

This chapter describes the experiment, which is conducted for this research. It starts with 

the input to the experiment: relatively small EPC diagrams based on the process patterns of 

the conceptual model. These diagrams are created and transformed to BPEL, by using the 

Oracle BPA Suite. Subsequently, section 5.2 explains the process of creating and 

transforming the diagrams. Section 5.3 describes some general aspects of the 

transformations. Then, several sections follow that explain each EPC diagram, including the 

source patterns, the transformation results, and an analysis of the transformation results 

versus the expectations, on a per diagram basis. The conceptual mapping in the previous 

chapter provides the expectations of the transformations. This chapter gives an account of 

what is actually implemented. Finally, section 5.5 provides an overall analysis, in order to 

conclude the findings. 

5.1 Input: EPC diagrams  

The input for this empirical part of the research consists of several EPC diagrams. These 

diagrams are constructed based on the conceptual model in the previous chapter. In 

addition to the single pattern that is theoretically an issue for transformation, WFCP 10 – 

Arbitrary Cycles, all workflow control patterns, which EPC can model, are input for the 

transformation. These patterns are WFCP 1 to 7, WFCP 10, and WFCP 11. As is explained 

below, these patterns also include all aspects, which cause lack of clarity and completeness 

according to the BWW model. The subsequent sections elaborate and analyze each of the 

EPC diagrams in isolation. 

While representing the process patterns, the EPC diagrams also include the four ontological 

issues, which became apparent in chapter 4: excess, deficiency, overload, and redundancy. 

The diagrams of WFCP 6 and 7 include the excess EPC construct OR-connector, as the 

connector is used for multi choice and synchronizing merge (see section 4.4.2). As the BWW 

concept stable state maps to the obligatory EPC construct end event, each EPC diagram 

intrinsically represents the stable state. This concept is a deficiency of BPEL, together with 

the concept state law. The triple function�connector�event represents a state law in EPC 

(Green & Rosemann, 2000). It commonly occurs in case of any kind of control flow split, 

such as the ones in WFCP 2, 4, and 6. The overloaded EPC constructs, event and function, 



Lucas O. Meertens - EPC To BPEL Transformations       51 

naturally occur in all EPC diagrams too. The triple event�function�event represents the 

BWW concept event in EPC (Green & Rosemann, 2000). The triple is the simplest control 

flow conceivable in EPC. As BPEL has redundant constructs for the concept, it is an issue. 

This holds even stronger for the other BWW concept that BPEL provides redundant 

constructs for, transformation. This concept maps to the EPC construct function, which 

occurs in any EPC diagram. Therefore, the EPC diagrams in this chapter together cover all of 

the conceptual issues (see Table 11). 

5.2 Process: creating and transforming diagrams 

The EPC diagrams are created in the Business 

Process Architect component of the Oracle 

BPA Suite. The diagrams resemble the 

pattern definitions as strictly as possible. 

After creation, the “Share Blueprint with IT” 

option transforms the diagrams. This option 

is available in the tool, as part of the SOA 

functionality (see Figure 27). After clicking 

this option, the tool asks if it should validate 

the diagram before transformation. The 

validation of an EPC diagram consists of four structure rules (see Table 20), as well as a set 

of rules for service-oriented EPC. Independent of whether this validation is done, the tool 

Table 20: Structure rules for validation of EPC 

Rule Description 

All functions and events 

have only one incoming 

and outgoing connection 

This rule checks whether all functions and events have a 

maximum of one incoming or outgoing connection. 

Each path must begin and 

end with an event 

This rule checks whether all paths begin and end with an event. 

No objects without 

connections may exist 

This rule checks whether a model contains object occurrences 

without connections to other occurrences. Each object in a 

model must have one or more predecessors and/or successors. 

Number of outgoing or 

incoming connections at 

the rule 

This rule checks whether at each simple rule there are either 

exactly one incoming and a minimum of two outgoing 

connections, or a minimum of two incoming and exactly one 

outgoing connection. 

 
Figure 27: Share Blueprint with IT... 



Lucas O. Meertens - EPC To BPEL Transformations       52 

resumes with the possibility to enter a description or to enter the 

extended wizard. Clicking OK advances to the transformation. 

Exceptions may arise at this point. The sections below handle these 

for those cases where they arise. In case of successfully performed 

transformation, a confirmation notification appears. 

At this point, the transformation finished creating the models for IT. 

Together, these models comprise the shared Blueprint. The models 

include at least a BPEL process diagram, several BPEL allocation 

diagrams, and several UML class diagrams. Figure 28 shows an 

example of a BPEL process diagram of the “Prepare accounting close” 

process (see section 6.3), as the Oracle BPA Suite presents it. From 

top to bottom the diagram includes opening the process, a receive 

activity, two invoke activities, and closing of the process. Figure 30 on 

the next page shows the allocation diagram corresponding to the 

process, including namespace declaration to the left, variables at the 

bottom, and a partnerLink to the right. Figure 29 shows one of the 

UML class diagrams, in this case the callback of the process. 

It is possible to view all of the (automatically) created models in the 

Business Process Architect. However, it is more interesting to see 

how the development environment of IT, Oracle JDeveloper, receives 

them. In JDeveloper, the shared Blueprint can be loaded as a new 

BPEL project. JDeveloper then automatically creates the files needed 

to deploy the process to the Oracle SOA Suite as a web service. These files include at least a 

WSDL file and XSD schema corresponding to the BPEL process. The developer can choose to 

observe the BPEL process from a high level of abstraction with little editing possibilities in 

the Blue Print view, or he can choose to observe the process from the BPEL view with full 

editing possibilities. From both views, the Source Code view is also accessible. The source 

 
Figure 28: BPEL 

diagram in the 

Oracle BPA Suite 

 
Figure 29: UML diagram of the callback of "Prepare accounting close" 

Prepare_acc
ounting_close

Prepare_acc
ounting_close

Initiation_acc
ounting_close

CMS_Closed

Close_CMS

«interface»

«wsdlPortType»

http://xmlns.oracle.com/Prepare_accounting_close::Prepare_accounting_closeCallback

«wsdlOperation» +onResult(in onResultResponse: Prepare_accounting_closeResponseMessage)



Lucas O. Meertens - EPC To BPEL Transformations       53 

code is compared to results from earlier research on BPEL (Wohed, Aalst, Dumas, & 

Hofstede, 2003) and the Oracle BPEL PM (Mulyar, 2005), in order to analyze the model 

transformation as done by the Oracle BPA Suite. 

5.3 General BPEL code generation 

While the most interesting part of the resulting BPEL code is the fragment covering the 

pattern itself, the Oracle BPA Suite outputs nearly complete code. In addition to the pattern 

fragment, BPEL code requires some extra content, which this section explains. The extra 

content mainly consists of declarations required either by standards or for communication 

among activities (internal to the process) and among processes (external to the process). 

The document starts with the XML declaration, specifying that the document language is 

XML, and the version of XML it uses. Next, the root of the document (the main and first 

element, with the name “process”) includes the necessary namespace declarations. The 

next set of declarations is for communication. PartnerLink declarations, as the name implies, 

define the links to partners (other processes, services, or other entities the process 

communicates with), and the roles they play. These declarations specify at least the client 

partnerLink, which is the entity initiating the process and finally receiving the results by 

callback. The declared variables specify the messages that the process sends to and receives 

 
Figure 30: Allocation diagram of the process "Prepare accounting close" 

Prepare_accounting_closeProvider

My role

Prepare_accou
nting_closeRes
ponseMessage

Prepare_acc
ounting_close

Prepare_accou
nting_closeReq
uestMessage

Prepare_accounting_closeRequester

Partner role

Prepare_acc
ounting_close
Callback

http://xmlns.oracl
e.com/Prepare_a
ccounting_close

inputVariable

outputVariable

Prepare_acc
ounting_close

Prepare_acc
ounting_close

client



Lucas O. Meertens - EPC To BPEL Transformations       54 

from the partnerLinks, as well as any variables needed within the process. Finally, the 

document defines the orchestration logic, which is the part that actually includes the control 

flow. By default, a sequence construct encloses the whole control flow. Within this 

sequence, the first step is the trigger from the client partnerLink. A receive construct 

represents this trigger, which instantiates the process. The part containing the specific 

pattern fragment follows next. Before closing the enclosing sequence and ending the 

process, the last construct returns the result to the client partnerLink. Depending on 

whether the process is synchronous or asynchronous, respectively, a reply construct or an 

invoke construct fulfills this callback. 

The Oracle BPA Suite creates two auxiliary files too. The first one is a WSDL (Web Service 

Definition Language) file, which is a definition of the process as a web service. The file 

defines the communication protocol, which other processes or services need to apply to use 

the process. The second file defines the schema of the variables used. It is an XSD (XML 

Schema Definition) file, which specifies the type of each variable, for example a string, an 

integer, or a composite type. These files are required for successful deployment and 

execution. 

5.4 Transformation of Patterns 

This section describes the actual transformation of the diagrams. Each section only discusses 

the fragments relevant to the patterns. Only if unexpected results occur in the extra 

content, the sections treat that content. This keeps the focus on the conceptual issues. The 

full output BPEL diagrams are available in Appendix A - Output BPEL diagrams, and the BPEL 

specifications in Appendix B - Output BPEL code. 

5.4.1 Diagram 1: WFCP 1 – Sequence 

This EPC diagram (see ) represents the pattern WFCP 1 – Sequence: An activity in a workflow 

process is enabled after the completion of another activity in the same process. It is almost 

the simplest conceivable diagram possible in EPC. The diagram consists of a start event, 

followed by a sequence of two functions with an intermediary event between them, to 

finish with the end event. The input for the Oracle BPA Suite is the diagram in . 



Lucas O. Meertens - EPC To BPEL Transformations       55 

Results 

Besides the obligatory declarations explained in section5.3, 

the output BPEL specification consists of a series of scopes 

encompassed by the main sequence. Figure 31 shows these 

scopes within the main sequence. Each of the scopes 

contains a sequence construct, which in turn holds the other 

activities. Figure 32 shows this activity, within sequence, 

within scope. The first scope, named Start, includes a 

receive activity in its sequence, which is connected to the 

client partnerLink to trigger the process. The last scope, 

named End, includes an invoke activity, to return the result 

back to the client, in an asynchronous fashion. The 

intermediary scopes each include an invoke activity as well, 

as Figure 32 shows. These, however, do not connect to any 

partnerLink yet. Oracle JDeveloper shows this with the 

yellow, triangular error sign. JDeveloper shows less severe 

issues, such as unassigned variables, with a yellow warning 

flag. 

Inserted between the functional code are several 

annotations, in the form of BPEL extensions from Oracle. 

They do not appear in the diagram. The annotations provide extra data, such as creation 

time, descriptions, and identifiers. This data is assumedly used for identification, and 

possibly also for synchronization and round-trip engineering with the business diagram. 

Analysis 

While the results differ from the expectations on many 

points, the pattern still transforms successfully and 

manages to fulfill the EPC diagram. Most of the 

differences arise due to the choices made to resolve the 

clarity issues of overload and redundancy. Apparently, 

the choice was made to map the overloaded EPC 

 
Figure 31: BPEL diagram 1 

 
Figure 32: Invoke, within 

sequence, within scope 



Lucas O. Meertens - EPC To BPEL Transformations       56 

construct function to the BWW concept transformation. For this concept, BPEL has 

redundant constructs. The one chosen is the BPEL scope, including an invoke construct 

within a sequence, as Figure 32 shows. In a similar fashion, the start and end events are 

mapped to a scope, with respectively a receive construct and an invoke construct within 

their sequence. This last invoke indicates the choice for an asynchronous BPEL specification. 

The intermediary EPC event is dropped altogether. This was expected, as it only functions as 

a trigger from the first function to the second, which is implicitly present in the BPEL 

specification. The addition of annotations was not expected, but it does not influence the 

control flow in any respect. Another point, where the diagram differs from the expected 

pattern fragment (see Table 13), is the lack of a sequence directly surrounding the two 

function scopes. It was in place to ensure the sequential execution of the two functions. In 

the output BPEL specification, the main sequence construct takes care of the sequential 

processing already. Therefore, it does not change the semantics. 

5.4.2 Diagram 2: WFCP 2 – Parallel Split & WFCP 3 - Synchronization 

This EPC diagram, which Figure 33 shows, represents two 

patterns. The first pattern is WFCP 2 – Parallel Split (see Figure 

14): A point in the process, where a single thread of control 

splits into multiple threads of control, which can be executed in 

parallel, thus allowing activities to be executed simultaneously 

or in any order. This pattern is known commonly as the AND-

split. The second pattern, which this diagram models, is WFCP 3 

– Synchronization (see Figure 16): A point in the process where 

multiple parallel branches converge into one single thread of 

control, thus synchronizing multiple threads. It is an assumption 

of this pattern that after an incoming branch has been 

completed, it cannot be completed again while the merge is still 

waiting for other branches to be completed. Also, it is assumed 

that the threads to be synchronized belong to the same global 

process instance. WFCP 3 is known commonly as the AND-join. 

Often found at the other end of WFCP 2, it brings multiple 

threads, created by the AND-split, back to one. 

 
Figure 33: EPC diagram 2 

Start

A

Event

B

Event

D

End

Event

C

Event



Lucas O. Meertens

The diagram consists of a start event, followed by function

connector, which

separate threads. Each thread inclu

events of each thread lead to an

WFCP 3. From this connector, the process continues as a single flow with a last function

and finally the end eve

Results 

The output BPEL specification 

scopes (Start and A)

named AND_rule, and finally another two scopes

(D and End). The contents of the scopes are the 

same as with the previous diagram (see 

32). Therefore, this section only describers the 

part directly relevant to

structure, which 

sequences represent the two different threads. Each of 

and C). When the flow construct is cl

scope (D). 

Analysis 

The results are similar to what was expected. The only differences arise due to the 

aforementioned choice to map an EPC function to the BPEL scope structure. 

diagram handles 

connectors cause t

This results in BPEL only implicit modeling 

pattern though. The second issue is the appearance of the state law concept. BPEL has a 

deficiency here, and thus is unable to model state law. While 

concept, it causes no problems.

5.4.3 Diagram 

Analogous to the previous diagram, this EPC diagram 

shows the diagram.

Lucas O. Meertens - EPC To BPEL Transformations  

The diagram consists of a start event, followed by function

connector, which is the main construct for WFCP

separate threads. Each thread includes two events, with a function between them. The final 

events of each thread lead to another AND-

3. From this connector, the process continues as a single flow with a last function

and finally the end event. 

BPEL specification consists of two 

(Start and A), followed by a flow structure 

named AND_rule, and finally another two scopes

. The contents of the scopes are the 

with the previous diagram (see Figure 

Therefore, this section only describers the 

part directly relevant to the patterns: the flow 

, which Figure 34 shows. The flow structure includes two separate sequences. The 

sequences represent the two different threads. Each of 

. When the flow construct is closed, 

The results are similar to what was expected. The only differences arise due to the 

aforementioned choice to map an EPC function to the BPEL scope structure. 

diagram handles most issues that arise during the transformation already. 

connectors cause two new issues. The first is the fact that BPEL has no explicit AND

in BPEL only implicit modeling WFCP 3 

rn though. The second issue is the appearance of the state law concept. BPEL has a 

deficiency here, and thus is unable to model state law. While 

concept, it causes no problems. 

iagram 3: WFCP 4 – Exclusive Choice & WFCP 5 

Analogous to the previous diagram, this EPC diagram 

shows the diagram. The first pattern is WFCP 4 

     

The diagram consists of a start event, followed by function A. The function leads to an AND

is the main construct for WFCP 2. The connector splits the flow into two 

des two events, with a function between them. The final 

-connector, which is the main construct for 

3. From this connector, the process continues as a single flow with a last function

of two 

, followed by a flow structure 

named AND_rule, and finally another two scopes 

. The contents of the scopes are the 

Figure 

Therefore, this section only describers the 

the flow 

. The flow structure includes two separate sequences. The 

sequences represent the two different threads. Each of these sequences contains a scope (B 

osed, it passes the control on to the succeeding 

The results are similar to what was expected. The only differences arise due to the 

aforementioned choice to map an EPC function to the BPEL scope structure. 

issues that arise during the transformation already. 

. The first is the fact that BPEL has no explicit AND

WFCP 3 – Synchronization. BPEL still supports the

rn though. The second issue is the appearance of the state law concept. BPEL has a 

deficiency here, and thus is unable to model state law. While BPEL is unable to model 

Exclusive Choice & WFCP 5 – Simple Merge

Analogous to the previous diagram, this EPC diagram represents two patterns.

n is WFCP 4 – Exclusive Choice (see Figure 

Figure 34: BPEL diagram 2

 57 

. The function leads to an AND-

2. The connector splits the flow into two 

des two events, with a function between them. The final 

connector, which is the main construct for 

3. From this connector, the process continues as a single flow with a last function D, 

. The flow structure includes two separate sequences. The 

these sequences contains a scope (B 

to the succeeding 

The results are similar to what was expected. The only differences arise due to the 

aforementioned choice to map an EPC function to the BPEL scope structure. The previous 

issues that arise during the transformation already. The AND-

. The first is the fact that BPEL has no explicit AND-join. 

. BPEL still supports the 

rn though. The second issue is the appearance of the state law concept. BPEL has a 

BPEL is unable to model the 

Simple Merge 

two patterns. Figure 35 

Figure 17): A point in 

 
: BPEL diagram 2 



Lucas O. Meertens - EPC To BPEL Transformations       58 

the workflow process where, based on a decision or workflow 

control data, one of several branches is chosen. This pattern is 

known commonly as the XOR-split. The second pattern, which 

this diagram models, is WFCP 5 – Simple Merge (see Figure 19): 

A point in the workflow process where two or more alternative 

branches come together without synchronization. It is an 

assumption of this pattern that none of the alternative branches 

is ever executed in parallel. WFCP 5 is known commonly as the 

XOR-join. Often found at the other end of WFCP 4, it brings 

multiple threads, created by the XOR-split, back to one. 

The diagram consists of a start event, followed by function A. 

The function leads to a XOR-connector, which is the main 

construct for WFCP 4. As opposed to the previous diagram, an 

event cannot directly precede the connector, as events cannot 

make decisions. The connector splits the flow into two separate 

threads. Each thread includes two events, with a function 

between them. The final events of each thread lead to another XOR-connector, which is the 

main construct for WFCP 5. From this connector, the process continues as a single flow with 

a last function D, and finally the end event. 

Results 

The output BPEL specification is almost the same as the results from the previous diagram. 

In comparison with the previous diagram, a switch construct replaces the flow construct. 

 
Figure 35: EPC diagram 3 

Figure 36: BPEL diagram 3 

Start

A

Event

B

Event

D

End

Event

C

Event



Lucas O. Meertens - EPC To BPEL Transformations       59 

Figure 36 shows this. The switch construct contains two case constructs and an otherwise 

construct. Each of these constructs includes a sequence, which in turn contains a scope (B, 

C, and default). For the two case constructs, the scope contains an invoke construct similar 

to Figure 32. The scope of the otherwise construct contains an empty construct named 

default. The conditions for the case constructs are set to the two event names below the 

XOR-connector. When the switch construct closes, it passes the control on to the succeeding 

scope (D). 

Analysis 

The results are quite similar to what was expected. The most notable difference is the 

addition of a second case construct. It enables the condition for that branch to be set as 

well, instead of making it fire if the first case condition does not fire. Instead of providing 

the conditions with an executable expression, the conditions are set to the names of the 

events following the splitting connector in the EPC diagram. Presumably, this is done to help 

the developer create the right expressions, or alternatively let the diagram designer set 

them directly by naming the event. The third thread, triggered by the otherwise construct, 

does nothing by default. The process, thus, continues if none of 

the conditions evaluates to true. As was expected, the switch 

construct is chosen (see section 4.4.2). Setting the conditions to 

the event names makes this look remarkable, as the BPEL 

construct pick is the construct meant for choice based on events. 

5.4.4 Diagram 4: WFCP 6 – Multi Choice & WFCP 7 – 

Synchronizing Merge 

This EPC diagram, shown in Figure 37, represents two patterns. 

The first pattern is WFCP 6 – Multiple Choice (see Figure 20): A 

point in the workflow process where, based on a decision or 

workflow control data, a number of branches are chosen. This 

pattern is known commonly as the OR-split. The second pattern, 

which this diagram models, is WFCP 7 – Synchronizing Merge (see 

Figure 22): A point in the workflow process where multiple paths 

converge into one single thread. If more than one path is taken,  
Figure 37: EPC diagram 4 

Start

A

Event

B

Event

D

End

Event

C

Event



Lucas O. Meertens

synchronization of the active

alternative branches

pattern that a branch that has already been activated, cannot be activated again while

merge is still waiting for other bran

join. Often foun

split, back to one.

The diagram consists

connector, which is the main construct for WFCP 6. The connector splits the flow into 

separate threads. Each thread includes two events, with a function between them. The final 

events of each thread lead to a second OR

7. From this connector, the process continues as a single flow with a last function

finally the end event.

Results 

The Oracle BPA Suite suc

diagram. However, when attempting the 

transformation, an error message appears

(Figure 38). It explains the transformation is 

not possible to p

files, it becomes clear 

the transformation of the OR

Analysis 

As both EPC and BPEL are able to 

that this diagram 

connector avoided implementation. On the other hand, another issue is considered too. The 

(non-) locality arg

choice for one of the two solutions. As business modelers make this choice on an individual 

basis, the created diagrams 

implemented. Forbidding (the transformation of) the OR

described in section 

not support it, provides the hope that 

Lucas O. Meertens - EPC To BPEL Transformations  

synchronization of the active threads needs to take pla

alternative branches should re-converge without synchronization. It is an assumption of this 

that a branch that has already been activated, cannot be activated again while

merge is still waiting for other branches to complete

ften found at the other end of WFCP 6, 

split, back to one. 

The diagram consists of a start event, followed by

connector, which is the main construct for WFCP 6. The connector splits the flow into 

separate threads. Each thread includes two events, with a function between them. The final 

events of each thread lead to a second OR-con

7. From this connector, the process continues as a single flow with a last function

finally the end event.  

Oracle BPA Suite successfully validates the 

. However, when attempting the 

transformation, an error message appears

. It explains the transformation is 

not possible to perform because the model is invalid. Following the reference to the log 

files, it becomes clear that this version (10.0.3.4) of the Oracle BPA Suite does not support 

the transformation of the OR-rule (connector).

As both EPC and BPEL are able to represent the patterns in this diagram, it was expected 

that this diagram is transformable. Apparently, the lack of direct BPEL support for the OR

connector avoided implementation. On the other hand, another issue is considered too. The 

locality argument, described in section 

choice for one of the two solutions. As business modelers make this choice on an individual 

basis, the created diagrams render incorrectly,

implemented. Forbidding (the transformation of) the OR

described in section 4.3.1. The log message, which notes that 

, provides the hope that a future version does support it

     

threads needs to take place. If only one path is taken, the 

converge without synchronization. It is an assumption of this 

that a branch that has already been activated, cannot be activated again while

ches to complete. WFCP 7 is known commonly 

 it brings multiple threads, created by the OR

of a start event, followed by function A. The function leads to an OR

connector, which is the main construct for WFCP 6. The connector splits the flow into 

separate threads. Each thread includes two events, with a function between them. The final 

connector, which is the main construct for WFCP 

7. From this connector, the process continues as a single flow with a last function

cessfully validates the 

. However, when attempting the 

transformation, an error message appears 

. It explains the transformation is 

erform because the model is invalid. Following the reference to the log 

that this version (10.0.3.4) of the Oracle BPA Suite does not support 

rule (connector). 

the patterns in this diagram, it was expected 

transformable. Apparently, the lack of direct BPEL support for the OR

connector avoided implementation. On the other hand, another issue is considered too. The 

ument, described in section 3.3.2, forces the implementation to make a 

choice for one of the two solutions. As business modelers make this choice on an individual 

incorrectly, when their decision differs from the one 

implemented. Forbidding (the transformation of) the OR-connector provides a solution,

which notes that this version 

a future version does support it. 

Figure 38: Diagram 4 - Error message

 60 

ce. If only one path is taken, the 

converge without synchronization. It is an assumption of this 

that a branch that has already been activated, cannot be activated again while the 

commonly as the OR-

it brings multiple threads, created by the OR-

. The function leads to an OR-

connector, which is the main construct for WFCP 6. The connector splits the flow into two 

separate threads. Each thread includes two events, with a function between them. The final 

nector, which is the main construct for WFCP 

7. From this connector, the process continues as a single flow with a last function D, and 

erform because the model is invalid. Following the reference to the log 

that this version (10.0.3.4) of the Oracle BPA Suite does not support 

the patterns in this diagram, it was expected 

transformable. Apparently, the lack of direct BPEL support for the OR-

connector avoided implementation. On the other hand, another issue is considered too. The 

, forces the implementation to make a 

choice for one of the two solutions. As business modelers make this choice on an individual 

ision differs from the one 

connector provides a solution, as is 

this version (10.0.3.4) does 

 
Error message 



Lucas O. Meertens

5.4.5 Diagram 

Figure 39 shows this

Implicit Termination

be terminated when there is nothing else to be done. In other 

words, there are no active activities in the workflow and no other 

activity can be made active (and at the same time the workflow 

is not in deadlock). 

termination activity

multiple threads that do not converge back to one. If 

language does not support the pattern

rewrite the diagram, in 

back together, without changing the meaning of the diagram.

The diagram consists of a start event, followed by function

connector, which is the cause for multiple threads to occur. The 

into separate threads. Each thread includes an event, followed by a function, followed by 

the end event. 

Results 

The relevant part of this diagram is the flow 

construct, which 

encompasses two

these sequences encapsulates two scopes. The 

first scope (C and B)

invoke structure. The second scope

the invoke structure

that, the sequences, the flow, and the main 

construct are closed. The client, thus, receives 

callbacks: one for each of the end events.

Analysis 

The output BPEL specification differs from the expectations, in that it has 

constructs calling back to the client. This construction 

Lucas O. Meertens - EPC To BPEL Transformations  

iagram 5: WFCP 11 – Implicit Termination

shows this EPC diagram, which represents

Implicit Termination (see Figure 25): A given sub

be terminated when there is nothing else to be done. In other 

words, there are no active activities in the workflow and no other 

activity can be made active (and at the same time the workflow 

is not in deadlock). Termination does not require an explicit 

termination activity. This pattern occurs in processes with 

multiple threads that do not converge back to one. If 

language does not support the pattern, it is usually

diagram, in such a manner that the threads 

, without changing the meaning of the diagram.

The diagram consists of a start event, followed by function

connector, which is the cause for multiple threads to occur. The 

into separate threads. Each thread includes an event, followed by a function, followed by 

 

The relevant part of this diagram is the flow 

, which Figure 40 shows. The flow 

two separate sequences. Each of 

these sequences encapsulates two scopes. The 

(C and B) of each sequence contains an 

nvoke structure. The second scope (End) contains 

structure that calls back the client. After 

, the sequences, the flow, and the main 

construct are closed. The client, thus, receives 

callbacks: one for each of the end events. 

BPEL specification differs from the expectations, in that it has 

constructs calling back to the client. This construction 

     

Implicit Termination 

represents WFCP 11 – 

A given sub-process should 

be terminated when there is nothing else to be done. In other 

words, there are no active activities in the workflow and no other 

activity can be made active (and at the same time the workflow 

Termination does not require an explicit 

This pattern occurs in processes with 

multiple threads that do not converge back to one. If a modeling 

usually possible to 

such a manner that the threads come 

, without changing the meaning of the diagram. 

The diagram consists of a start event, followed by function A. The function leads to an AND

connector, which is the cause for multiple threads to occur. The connector splits the flow 

into separate threads. Each thread includes an event, followed by a function, followed by 

The relevant part of this diagram is the flow 

shows. The flow 

separate sequences. Each of 

these sequences encapsulates two scopes. The 

of each sequence contains an 

contains 

After 

, the sequences, the flow, and the main 

construct are closed. The client, thus, receives two 

BPEL specification differs from the expectations, in that it has 

constructs calling back to the client. This construction also represents the pattern 

Figure 39: EPC diagram 5

Figure 40: BPEL diagram 5

Start

Event

B

End

 61 

. The function leads to an AND-

connector splits the flow 

into separate threads. Each thread includes an event, followed by a function, followed by 

BPEL specification differs from the expectations, in that it has two invoke 

represents the pattern 

 
: EPC diagram 5 

 
: BPEL diagram 5 

Start

A

Event

C

End



Lucas O. Meertens - EPC To BPEL Transformations       62 

accurately, as the flow construct implicitly terminates after all 

callbacks complete. The question remains whether the client 

should receive a callback this often. If not, the business modeler 

needs to indicate this in the EPC diagram, by explicitly converging 

separated threads.  

5.4.6 Diagrams 6 and 7: WFCP 10 – Arbitrary Cycles 

The pattern, which is the input for diagrams 6 and 7, is WFCP 10 – 

Arbitrary Cycles (see ): A point where a portion of the process 

(including one or more activities and connectors) needs to be 

visited repeatedly without imposing restrictions on the number, location, 

and nesting of these points. The fact that this pattern requires (at least) two 

diagrams illustrates the difficulties, which arise due to it. Repeating a 

portion of the process is something, of which most modeling languages are 

capable. However, the requirement that no restrictions are imposed, 

especially on nesting, leaves any block-structured language unable to 

represent this pattern. Many different types of cycles exist. Two of these 

cycles are chosen to illustrate both a possible mapping, and an impossible 

mapping. 

Figure 41 shows the first diagram, which represents a simple repetition of a 

part of the process. This part is function B and the preceding event. The 

sub-pattern represented is known commonly as a while-loop. While a 

condition holds, the part within the while-loop is repeated. The while-loop 

is build from two XOR-connectors. The first connector simply passes the 

flow of control to the next connector, either from function A if the process 

is just started, or from function B after the first iteration. The bottom 

connector leads to the end event or starts the repeatable part of the 

process. 

The second diagram, which Figure 42 shows, represents a more complex 

cycle. The combination of XOR-connectors in this case leads to two cycles. 

The larger cycle, containing functions B and C, enters the smaller cycle. This 

 
Figure 41: EPC diagram 6 

 
Figure 42: EPC 

diagram 7 

Start

A

End

Event

B

Start

A

Event

B

Event

C

End



Lucas O. Meertens - EPC To BPEL Transformations       63 

specific diagram is impossible to rebuild using a combination of while-loops or other block-

structured constructs. That is possible if the two top XOR-connectors are in the opposite 

order, as the loops are properly nested then (the loop with function B is totally within the 

other loop). 

Results 

Diagram 6 successfully transforms. Figure 43 shows the part 

relevant to the pattern. After scope A, the while construct 

includes a single sequence, which encloses scope B. The 

content of scope B is similar to Figure 32. The name of the while 

construct is XOR_rule. Its condition is not set. JDeveloper shows 

this with the triangular, yellow error sign. When the while 

construct closes, it passes control to the final scope, including 

the callback to the client. 

Diagram 7 already fails at the validation, according to the rules for service-oriented EPC. The 

validation report informs that the structure is incorrect: The model contains one or more 

cycles whose structure is not correct. When attempting to transform the diagram, the same 

error appears as with the transformation of diagram 4 (see Figure 38). However, the 

corresponding log literally confirms the error of the validation report. 

Analysis 

The results are similar to what was expected. For diagram 6, apart from scopes representing 

the functions, the only difference is the missing condition for the while construct. While this 

lack makes direct execution impossible, it does show up as a warning in Oracle JDeveloper. 

This warning allows a developer to easily detect it and set an appropriate expression. As 

expected, diagram 7 fails to transform. Transformation of this diagram is theoretically 

impossible. 

5.5 Conclusion of pattern transformation 

In general, the transformation results of the patterns and BWW concepts are similar to what 

was expected. The most notable difference arises from the choice to model the BWW 

concept transformation to a BPEL construct scope, with an invoke structure in a sequence. 

Figure 32 shows this graphically, and Table 21 provides the transformations from each EPC 

 
Figure 43: BPEL diagram 6 



Lucas O. Meertens - EPC To BPEL Transformations       64 

construct to BPEL code. The choice for this mapping indicates that the tool does not aim to 

generate executable code directly, but always requires human interference. A developer 

decides to what partnerLink an invoke construct connects, or if the invoke has to change to 

another BPEL construct, which also represents the BWW concept transformation. The 

business analyst can pass descriptions to the developer by using the annotations. When the 

developer imports the BPEL code in Oracle JDeveloper, the use of the invoke construct 

without connected partnerLinks results in warnings. These warnings help the developer 

identify the issues, which he needs to work on. Identification of these issues does not occur 

with the use of the placeholder construct empty. As the transformation creates a scope 

construct, the developer can add implementation details within the scope, without 

bothering the business analyst, which only sees the named scopes in the Blue Print View. 

While less interesting from a control flow perspective, the added annotations were not 

expected. They greatly inflate the BPEL code, by providing extra data for each of the 

constructs, such as identifiers and creation/update times. As the annotations inflate the 

code, they reduced readability of the control flow. 

Another implementation choice is the use of an invoke construct at the end of the process, 

which calls back the client. It makes the process asynchronous, which better facilitates long 

running processes. 

Table 21: Transformation of BWW concepts, as done by the Oracle BPA Suite 

BWW concept EPC construct BPEL construct 

Transformation 

 

<scope> 
  <sequence> 
    <invoke /> 
  </sequence> 
</scope> 

External event 

 

<scope> 
  <sequence> 
    <receive /> 
  </sequence> 
</scope> 

Stable state 

 

<scope> 
  <sequence> 
    <invoke /> 
  </sequence> 
</scope> 

State 

 

- 

- - <bpelx:annotation /> 



Lucas O. Meertens - EPC To BPEL Transformations       65 

6 Validation: a composite case from practice 

In order to validate the feasibility of EPC to BPEL transformation in practice, a real life case 

serves as input for another series of transformations. The case under investigation is the 

closing of accounts in a large Dutch insurance organization. It involves several departments 

and many information systems but, as this research focuses on the control flow, these 

resource and organizational entities are not present in the diagrams. 

This chapter starts with an introduction to the case. Then, section 6.2 provides the steps to 

execute the transformation and the criteria for successfulness and correctness. The 

subsequent sections elaborate on the transformation of the individual sub-processes. 

Section 6.9 explains the transformation of the full composite case. Finally, section 6.10 

concludes the chapter with an overview of the resulting issues. 

6.1 Case description: “Accounting close” 

Within the insurance organization, the process represents the closing of accounts after the 

end of the month in order to bill customers. Originally, the process was modeled as a 

composition of several smaller business processes. Figure 44 shows this composition in the 

form of a Value Added Chain diagram (another of the ARIS diagram types). The main process 

consists of six sub-processes, which have the order indicated by the diagram. A monthly 

trigger enables the first sub-process “Check final hour download” (diagram 10). This sub-

process runs several checks to ensure the approved hours are posted, the download of the 

hours is finished, and the hours are complete. In parallel, “Prepare accounting close” 

Figure 44: Value Added Chain of Accounting Close 

Accounting close

Prepare
accounting

close

Determine
cost levels

Preliminary
rebilling

Check final
hour

download

Update
report data

Report



Lucas O. Meertens - EPC To BPEL Transformations       66 

(diagram 8) starts. It closes the Cost Management 

System (CMS), which is necessary to do the rebilling. 

When the CMS is closed, “Determine cost levels” 

(diagram 9) executes. This sub-process calculates and 

checks the accruals as well as the journals. Then it 

checks the realization versus the budget. When both 

“Check final hour download” and “Determine cost 

levels” are ready, the next two sub-processes start. 

“Preliminary rebilling” (diagram 11) calculates which 

costs (hours, direct, product, and overhead) to bill, it 

checks these costs, and possibly adjusts them. After 

that, it sends out the preliminary rebilling model to the 

customer. “Update report data” (diagram 12) loads the 

hours and costs in the CMS, possibly with some 

corrections. Then, the final sub-process starts: 

“Report” (diagram 13). As the name implies, this sub-

process creates and sends several reports. These 

include the invoices, FMR, and updated rebilling 

model. 

The individual sub-processes differ in size and 

complexity. For example, “Prepare accounting close” 

only consists of a single function, with a start and end 

event, as well as a process interface to indicate the process that follows it. On the other 

hand, “Determine cost levels” is far more complex. Its diagram contains multiple start 

events, incoming and outgoing process interfaces, multiple splits and joins, and even a cycle. 

Figure 45 shows the full composite case diagram. It shows all the sub-process combined. 

Together, the sub-processes cover all patterns and BWW concepts, which EPC is able to 

represent. Appendix D - Composite case EPC diagrams - provides EPC diagrams of the sub-

processes, and Appendix E - EPC diagrams of full case - provides a detailed EPC diagram of 

the full process. 

 

Figure 45: Full case diagram 

Initiation
accounting

close

Close CMS

CMS Closed

WD-4 7.00hr

Check
execution
posting...

Successful
execution
posting...

Unsuccessfu
l execution
posting...

Request new
Clarity DB

New Clarity
DB available

Check if hour
download is

running

Hour
download is

running

Check if
download has

finished

Hour
download
finished

Check hour
completeness

Hours are
complete

Hour
donwload is
not running

Manually start
hour

download

Hour
download
started...

Hour
download not

finished

Hours are
incomplete

Initiation
determinatio
n investment

Determine
realization

investments

Realization
investments
determined

Determine
accruals

investme...

Accruals
investments

n-1...

Determine
accruals

investments n

Accruals
investments
n determined

Determine
accruals
costs n-1

Accruals
costs n-1

determined

Determine
accruals
costs n

Accruals
costs n

determined

Fill out
transistory

cost template

Transistory
cost

template...

Check budget
vs realization

Adjustments
unnecessary

Check journal
entries

Journal
entries

checked

Process
journal
entries

Journal
entries

processed

Adjustments
necessary

Execute
adjustments

Adjustments
executed

Determine
hours to rebill

Hours to
rebill

determined

Determine
direct costs

to rebill

Direct costs
to rebill

determined

Determine
product costs

to rebill

Product
costs to rebill

determined

Determine
overhead &

result to rebill

Overhead &
result to
rebill...

Check
preliminary
rebilling...

Preliminary
rebilling

model is...

Send out
preliminary
rebilling...

Preliminary
rebilling

model sent

Preliminary
rebilling

model is...

Adjust
preliminary
rebilling...

Preliminary
rebilling

model is...

Load hours in
CMS

Hour table is
correct

Load costs in
CMS

Cost table is
correct

Update
reporting data

Hours table is
incorrect

Adjust hour
table

Hours table
adjusted

Cost table is
incorrect

Execute
adjustments

2

Journal
entries

adjusted

Master files
adjusted

Error table
adjusted

Reporting
data updated

Create
invoices

Invoices
created

Prepare files
for reporting

Preparation
finished

FMR created

Create FMR

Updated
rebilling

model sent

Update
rebilling
model

Updated
rebilling

model filled

Check
updated
rebilli...

Updated
rebilling
model...

Send out
updated
rebillin...

Updated
rebilling
model...

Adjust
updated
rebilli...

Updated
rebilling
model...



Lucas O. Meertens - EPC To BPEL Transformations       67 

6.2 Transforming individual sub-processes 

Before attempting to transform the full process, the sub-processes are transformed one by 

one. Some of the diagrams transform successfully without changes, while others need 

modification first. It is not always possible to preserve the semantics in case of modification. 

An example of this is the use of the OR-connector in “Update report data”. Replacing the 

OR-connector with a XOR-connector slightly changes the semantics. 

Successful transformation, according to 

the Oracle BPA Suite (Figure 46), does 

not always indicate that the control 

flow in BPEL is the same as in EPC. In 

the case of “Preliminary billing”, for 

example, the multiple start events 

result in exclusion of one branch of the 

EPC diagram. While the transformation happened successfully, this is clearly not correct. 

Therefore, successful indicates that the Oracle BPA Suite performs the transformation, and 

correct indicates that the resulting BPEL retains the meaning of the input EPC diagram. 

While successfulness is apparent from the message in Figure 46, correctness is checked by 

manually evaluating the resulting BPEL. 

6.3 Diagram 8: Prepare accounting close 

The simplest of the sub-processes, “Prepare accounting close” (Figure 

47), transforms successfully and the resulting BPEL code is correct as 

well. However, the pre-transformation step of validation catches the 

process interface that refers to the following process, as offending the 

rule “Each path must begin and end with an event” (see section 5.2). As 

the Oracle BPA Suite considers the process interface as a variant of 

function, indeed, the process does not end with an event. Apparently, 

this is not an issue for transformation, as it is still successful and 

correct. In order to avoid the offence, however, the process interfaces 

are stripped from the rest of the diagrams before validation. Semantics 

do not change due to this modification. 

 
Figure 46: Successful according to the tool 

 
Figure 47: EPC 

diagram 8 

Initiation
accounting

close

Close CMS

CMS
Closed

Determine
cost levels



Lucas O. Meertens - EPC To BPEL Transformations       68 

6.4 Diagram 9: Determine cost levels 

The sub-process that follows is “Determine cost levels”. With the process interfaces 

stripped, the diagram successfully transforms to BPEL. A review of the resulting BPEL, 

nevertheless, reveals that the code is not correct. One of the top branches following from 

the event “CMS Closed” is missing. Due to that, the BPEL code does not represent several 

events and functions from the EPC diagram. The rest of the process is correct. 

 
Original 

 
Join start 

 
Extra AND-joins 

Figure 48: Modifying the structure of diagram 9 

The input diagram is modified by adding a single start event, followed by a function and an 

AND-split, which leads to the original start events. Figure 48 shows the structural changes, 

without events and functions. Transformation of the modified diagram is successful too. 

However, the BPEL code now displays peculiar results. The two AND-splits where the 

accruals are determined do not merge before “Fill out transitory cost template”. This causes 

that function to be executed twice (at the end of each of the two flows), instead of once. 

The rest of the process continues correctly. A solution to the above problem is to add 

another two AND-connectors to join the control flows separately for the costs part and the 

investments part, before joining those two again. The corresponding diagram transforms 

successfully, as well as producing correct BPEL output. Furthermore, the semantics are still 

nearly intact. The only thing, which is no longer explicit, is the fact that part of the process 

can start when not all start events are triggered. In BPEL, correlation could make this explicit 

again (OASIS, 2003). 

6.5 Diagram 10: Check final hour download 

Before the next step in the process occurs, the other top-level branch must complete. This is 

the sub-process “Check final hour download”, which initiates based on a schedule. With the 

process interfaces stripped, the diagram transforms successfully and correctly to BPEL, 



Lucas O. Meertens - EPC To BPEL Transformations       69 

including a while-loop. One remark can be made on the way the XOR-connector transforms: 

Just as with the pattern transformation, it contains an extra branch “default”, in case none 

of the other branches fire. 

6.6 Diagram 11: Preliminary rebilling 

 The next two sub-processes require the previous two sub-processes, as the Value Added 

Chain diagram in Figure 44 shows. The first is “Preliminary rebilling”. The transformation 

shows similarity with the transformation of “Determine cost levels”. While the 

transformation is successful, the resulting BPEL is not correct. Due to the multiple start 

events, one of the starting branches is not included in the BPEL code. The same solution as 

applied in the other sub-process, applies here too. It again results in successful and correct 

transformation, with loss of the fact that part of the process could already start when not all 

events are triggered yet. 

6.7 Diagram 12: Update report data 

The second sub-process is “Update report data”. This sub-process 

contains OR-connectors, due to which the diagram cannot 

transform (see section 5.4.4). A combination of XOR- and AND-

connectors could replace the OR-connectors, while retaining their 

non-local semantics. As the replacement results in an exponential 

increase in elements, XOR-connectors simply replace the OR-

connectors (see Figure 49). This results in slightly different 

semantics, but preserves the control flow structure better. 

With this solution and the process interfaces stripped, the diagram successfully transforms 

to BPEL. The resulting code captures all functions and both the loops, but the two branches 

do not execute simultaneously, but after each other. This sequential processing is incorrect. 

Combining the branches at the top with an AND-connector, as was done with previous sub-

process, reveals a new obstacle. The Oracle BPA Suite seems to have difficulties when AND-

connectors enclose a while-loop. This glitch in the tool results in BPEL code that starts fine, 

but after the while-loops close, the full sub-process is attached to the loop sequentially. 

Each one of those full sub-processes individually could have been the correct process. With 

the purpose to make the composite process transformable as a whole, the two while-loops 

 
OR 

 
XOR 

Figure 49: OR to XOR 



Lucas O. Meertens - EPC To BPEL Transformations       70 

are reduced to the single functions (see Figure 50) for 

loading hours and costs in the CMS. For the business 

process, this entails that the process does not handle the 

exceptions, which the loops took care of. This rigorous 

modification has no further effect on the control flow. 

6.8 Diagram 13: Report 

The final sub-process is “Report”. The transformation of the 

corresponding EPC diagram is both successful and correct. 

This includes the while-loop and implicit termination. No 

need for modification exists for this sub-process. 

6.9 Diagram 14: Full composite diagram – Accounting close 

Combining the modified, individual sub-processes, which 0 – shows, creates the full 

composite diagram 15 in Appendix E - EPC diagrams of full case. Combining the sub-

processes happens based on the process interfaces, and as the Value Added Chain diagram 

in Figure 44 shows. Successful transformation requires several modifications, similar to 

those in the sub-processes. First, adding a single start event and function followed by an 

AND-connector combines the multiple start events. This connector splits the control flow to 

the start of both “Prepare accounting close” and “Check final hour download”. Due to this 

combination of start events, it is only implicit that the two sub-processes can start 

independently. Connecting the first function of “Determine cost levels” to the final event of 

its predecessor “Prepare accounting close” achieves the coupling between them. However, 

combining all events named “CMS Closed”, instead of leaving multiple occurrences of them, 

improves it further. In the other branch emerging from the combined start event, similar 

issues to the ones in “Update report data” arise. After the AND-split, the while-loop 

structure causes errors and incorrect BPEL code. Therefore, this while-loop is removed from 

the diagram. The open end events do not cause trouble, and neither does the loop toward 

the end of the sub-process.  

At this point in the process, two sub-processes are required for each of the two following 

sub-processes. Thanks to the combination of the multiple start events of the sub-processes 

 

 

Figure 50: Reduce loop 



Lucas O. Meertens - EPC To BPEL Transformations       71 

to a single event, it is possible to combine these with the end events of the predecessors, in 

a simple manner. That is, by using a combination of two AND-connectors. The first one 

combines the control flow, which comes from the end events, and the second one splits the 

control flow to each of the branches, which contain the sub-processes. As with the 

combination of multiple start events, some of the semantics are lost. Before the new sub-

processes may start at all, both preceding sub-processes need to be totally finished. 

Previously, part of the sub-processes could already start on completion of one of the 

predecessors. 

The sub-process “Preliminary rebilling” and “Update report data” are attached as described 

above. The first sub-process is also the end of the branch. As the implicit termination 

pattern works fine, no need exists to combine the end events. The second branch still 

requires attaching the sub-process “Report”. Combining its first event with the end event of 

its predecessor accomplishes the attachment in a trivial fashion.  

The resulting diagram 14, which is available in Appendix A - Output BPEL diagrams, 

transforms from EPC to BPEL code both successful and correct. Of course, the EPC diagram 

is modified in many places.  

6.10 Conclusion of case transformation 

Both the individual sub-processes and the full composite case diagram require modifications 

to transform successfully and correctly. The modifications are required, either because part 

of the transformation is theoretically impossible, or because the Oracle BPA Suite does not 

(yet) support the structure or construct. The modifications change the semantics in a way 

that may not be acceptable in practice. On the other hand, the modifications are required to 

make the process executable. Thus, they can be seen as guidelines for modelers, who need 

to model an executable process. 

Due to the modifications, the case diagram no longer 

covers the patterns associated with the OR-connectors 

(WFCP 6 - Multi Choice and WFCP 7 -Synchronizing 

Merge). As Table 22 shows, the number of entities 

decreased due to the modifications. The exclusion of 

Table 22: Entity statistics 

 Original 

diagram 

Modified 

diagram 

Functions 36 35 

Events 50 43 

Connectors 31 28 

Arcs 130 117 



Lucas O. Meertens - EPC To BPEL Transformations       72 

several loops is the main cause for the reduction. 

As opposed to the transformation of the patterns, the case from practice shows more 

limitations than theory predicted. Several things that should be possible, according to 

theory, are not possible for the transformation in the Oracle BPA Suite. This mainly includes 

diagrams with while-loops. The loops are possible, but often in practice cause unexpected, 

incorrect results. Multiple start events may lead to similar issues. They are possible, but 

under certain circumstances, branches are missing. Due to time constraints, it was not 

investigated what those circumstances are. 

While two of the individual sub-processes without modifications transformed successfully 

and correctly, combining them with the others still results in difficulties. For a modeler this 

means that small diagrams with couplings to others are usually better than large composite 

diagrams. Clearly, “The whole is more than the sum of its parts” (Aristotle). This especially 

holds for the limitations revealed while transforming the EPC diagrams in this case. 



Lucas O. Meertens - EPC To BPEL Transformations       73 

7 Guidelines for modeling 

The previous chapter presents the results of several EPC to BPEL transformations. Especially 

the results of the composite case, taken from practice, illustrate the limitations of those 

transformations. This chapter focuses on ways for modelers to avoid these situations, and 

how best to deal with them when they, necessarily, occur anyway. Together with an 

approach to apply this, it is methodological support for EPC to BPEL transformation 

feasibility. Each limitation receives attention, in the form of guidelines for (business) 

modelers, who wish to transform their models from EPC to BPEL. Whenever possible, 

workarounds provide the easiest solution to a problem. If no workaround is available, other 

forms of guidelines take their place. Depending on the situation, the modeler needs to find 

the balance between several criteria. The guidelines provide rules based on the criteria 

required for transformation from EPC to BPEL. 

The first section of this chapter specifies criteria for modeling in general, based on a 

framework. It also defines the specific criteria, which are required for the transformation at 

hand. The following sections each focus on one of the discovered limitations. These sections 

provide the actual guidelines. They start with the limitations encountered in both the theory 

and the experiment, continue with limitations encountered in the composite case, and 

finish with guidelines that do not directly solve encountered limitations, but improve the 

feasibility of transformation anyway. The last sections of this chapter provide validation of 

the guidelines, by applying them to the case from practice, provided in the previous chapter. 

7.1 Criteria 

The quality of models is a point of discussion, which received (too) little attention 

throughout the past decades (Moody, 2005). Modelers create models based only on 

experience and sometimes some form of training. The resulting models often display poor 

characteristics. They may be hard to read, are ambiguous, are on the wrong level of 

abstraction, and occasionally even turn out to be incorrect. However, in practice these 

models may still be useful. This makes it hard to define the quality for models. 

This research adopts the perspective that a good model is fit for its purpose. Thus, the 

quality of a model depends on its usability in the situation at hand. Therefore, it is necessary 



Lucas O. Meertens - EPC To BPEL Transformations       74 

to be able to evaluate models from different points of view. The Guidelines of Modeling 

(GoM) (Becker, Rosemann, & Uthmann, 2000) provide a framework for such evaluation, 

which is tailored for process models in general. The framework defines six principles: 

correctness, relevance, economic efficiency, clarity, comparability, and systematic design. 

The first three of the principles are preconditions for model quality, while the last three are 

optional properties. Table 23 defines each of the principles. 

For this research, the most applicable principles provide criteria for the (results of the) 

guidelines. Applicable, in this case, relates to improving the feasibility of the EPC to BPEL 

transformation, as done by the Oracle BPA Suite. Prioritizing the guidelines results in 

“perspective-specific guidelines” (Becker, Rosemann, & Uthmann, 2000). These guidelines 

are the answer to main research question 3. 

To improve the feasibility of the transformation, correctness is the single most important 

principle. Relevance and economic efficiency serve to make a better model, but they are 

inferior to the correctness of the model. The need for a computer to interpret the model is 

the direct cause for the importance of the principle of correctness. As opposed to humans, a 

computer is hardly able to use any context, to correct possible errors in either syntax or 

semantics. Any of those errors result in the impossibility to transform correctly, or even 

transform at all. Lack of relevance and lack of economic efficiency, on the other hand, 

mainly cause the model to become overly complex and overly large, respectively. This might 

cause difficulties, but mainly due to the modeler or developer loosing the overview and, 

thus, making mistakes. Their mistakes influence the correctness of the model. 

Table 23: Principles for guidelines (adapted from (Becker, Rosemann, & Uthmann, 2000)) 

Principle Description Priority 

Correctness Consistent and complete against its meta-model (syntactic), 

and structural and behavioral consistent with the reality it 

models (semantic). 

1 

Relevance No elements that can be removed without loss of meaning. 2 

Economic 

efficiency 

Cost/benefit reasoning for the use of structures and constructs. 3 

Clarity Readable, understandable, and useful. 4 

Comparability Follow the same set of guidelines, to be consistent. 5 

Systematic 

design 

Well defined integration of different views. 6 



Lucas O. Meertens - EPC To BPEL Transformations       75 

The optional principles are merely secondary criteria. The optional principle clarity is helpful 

to the modeler and the developer, in order to improve communication between them and 

make validation of the model easier. Improved communication may improve the manual 

parts of the transformation, but clarity does not directly influence the transformation. 

Comparability is mainly useful in cases where (reference) models are adapted:  the changes 

should then be easily visible. The same is applicable when attempting round-trip 

engineering. Comparability makes it easier for the modeler to see what the developer 

changed, and vice versa. The final optional principle, systematic design, is not applicable to 

the transformation under investigation, as it focuses on the control flow. Would the 

transformation incorporate other views, for example the data view of ARIS, then the 

principle becomes important. 

7.2 Limitation 1: Construct excess (OR-connector) 

The theory, in section 4.3, already indicates that the OR-connector is an issue. The 

transformation results of both the small diagrams and the composite case demonstrate that 

the Oracle BPA Suite does not transform this construct, indeed. Two possible solutions exist, 

as presented in section 4.3.1. The first solution changes the structure from OR-connectors to 

a combination of AND-connectors and XOR-connectors. The second solution is to forbid the 

construct. Each approach has its own advantages and disadvantages. In view of a model, 

which already correctly represents the real world, only the first solution truly adheres to the 

principle of correctness. On the other hand, it goes against the principle of economic 

efficiency, as it creates an exponential amount of constructs. In contrast, the second 

solution is economically more efficient. In addition to that, it often is also correct. 

Forbidding the OR-connector is not as problematic as forbidding several other constructs 

and structures, as a XOR-connector can replace the OR-connector usually. In neither case, 

the OR-connector is still present in the EPC diagram after applying the guideline, which 

improves the feasibility of the transformation. Avoiding the OR-connector is also advocated 

as a guideline for process modeling in general (Mendling, Reijers, & Aalst, 2008) (Gruhn & 

Laue, 2006), as the OR-connector has ambiguous semantics. The modeler still has the choice 

to replace the OR-connector with a XOR-connector, or a combination of XOR-connectors 

and AND-connectors. For most cases, the XOR-connector is the best option. However, for 



Lucas O. Meertens - EPC To BPEL Transformations       76 

cases with few branches where correctness is crucial (and the OR-connector was correct), 

the combination with the AND-connector is possible. 

Guideline 1 Do not use the OR-connector. 

7.3 Limitation 2: Construct overload and redundancy 

The theory in section 4.3 also indicates that the overloaded EPC constructs, function and 

event, are an issue according to the BWW model. The small diagram transformations show 

that events transform only in special cases, and that functions transform to scopes, 

including a BPEL invoke construct enclosed by a sequence (see Figure 32). For both the 

event and function constructs, the resulting BPEL code is not directly executable. A human 

developer has to add several implementation details (for example links to the other 

services), which may include changing the BPEL construct type to which the redundant 

BWW concept transformation (EPC construct function) is mapped. In order to make the 

right decision, the developer needs extra information. This can be provided in the form of 

annotations, attached documentation (Becker, Rosemann, & Uthmann, 2000), but also by 

using clear, descriptive labels for the EPC constructs. The use of “verb-object” labels is 

advocated (Mendling, Reijers, & Aalst, 2008). While primary aimed at improving the clarity 

of a model, it improves the correctness of the final (executable) BPEL code. 

Guideline 2 Use clear, descriptive labels. 

Developers often also attempt to use the context of a construct to make their decisions. This 

includes the events surrounding a function or connector. For example, a developer could 

decide to call a web service synchronous, because the label of the subsequent event is 

“reply received”, which clearly indicates that the process has to wait for the reply. Besides 

applying guideline 2, the modeler should pay attention to alternating events and functions 

in the EPC diagram. Besides being a modeling rule of EPC anyway (thus, the only correct 

way), it also improves the clarity of the model for the developer.  

Guideline 3 Alternate functions and events. 

For events after a XOR-connector, the label is even more important. In this case, the Oracle 

BPA Suite maps the label to the expression conditions of the switch construct (see section 

5.4.3). This allows the modeler to specify the conditions directly, if (and only if) he possesses 



Lucas O. Meertens - EPC To BPEL Transformations       77 

enough knowledge of the expression language (XPath). If his knowledge of the expression 

language is not enough, the labels of the events must clearly specify when to take which 

path. Because the transformation uses the events as expressions, events must always 

directly follow a XOR-split. In combination with the alternation of events and functions, this 

leads to the quote, “Events do not decide, functions do”. Ordering the branches can help, 

but this must be agreed upon with the developer. Otherwise, the ordering has no meaning. 

It should be kept in mind that the transformation adds a default/otherwise branch to the 

split (BiZZdesign, 2006). 

Guideline 4 Always follow XOR-splits with events. 

7.4 Limitation 3: Pattern incompatibility (WFCP 10 - Arbitrary Cycle) 

The final limitation, which turned up in both theory and practice, is workflow control 

pattern 10 – Arbitrary Cycle. EPC supports this pattern, but BPEL does not, which makes 

transformation hard or even impossible. The only cycles, which BPEL is able to represent, 

are the while-loop and, its variant, the do-while-loop. None of the other cycles has a direct 

representation in BPEL, but does have one in EPC. As section 4.3.1 proposes, several 

solutions exist. Letting a human developer decide, is not a feasible solution in this case, as 

even they are unable to perform the transformation, if it is impossible. Besides the 

complexity of transforming Arbitrary Cycles, they are considered an “anti-pattern”, as they 

are often the cause for multiple instantiation (MI) and deadlocks (Koehler & Vanhatalo, 

2007). 

Guideline 5 Avoid loops. 

Forbidding all cycles would be infeasible too, as many business processes rely on iteration. 

Often, they require feedback-loops of some kind. Not being able to model those loops 

would greatly influence the correctness and relevance of the model. Therefore, the simple 

while-loop is possible. All other loops are forbidden. If such a loop exists in the original EPC 

diagram anyway, it is often possible to rewrite it to a while-loop in combination with other 

connectors (Kiepuszewski, 2003). Use clear labels (guideline 2) to communicate the loop-

condition to the developer. 

Guideline 6 If loops are necessary, then use only while-loops with a single exit.  



Lucas O. Meertens - EPC To BPEL Transformations       78 

7.5 Limitation 4: Multiple start events 

Diagrams 9 and 11 illustrate difficulties with multiple start events. This structure, which is 

possible in EPC, is possible in BPEL as well. However, several cases show that the 

transformation does not always happen correctly. The diagram transforms successfully, but 

not correctly, as only a single branch of the structure exists in the resulting BPEL code. A 

general solution for this is to merge the start events. In the case where all start events are 

required, adding an AND-connector before the branches achieves the merge. In case the 

process starts and is able to end when only one start event fires, a XOR-connector before 

the branches realizes it. The type of connector must match a connector further in the 

diagram. The connectors require at least a new, artificial start event to precede them, as an 

EPC diagram cannot start with a connector. Literature supports the use of only one start 

event, for the need of “structured” diagrams (Kiepuszewski, 2003), avoiding the anti-pattern 

“dangling inputs” (Koehler & Vanhatalo, 2007), reducing error probability (Mendling, 

Reijers, & Aalst, 2008), and because a process with multiple triggers often indicates multiple 

processes (BiZZdesign, 2006). 

Guideline 7 Avoid multiple start events. 

7.6 Limitation 5: Degree of connectors 

Diagrams 9 and 11 require the addition of several AND-

connectors. Besides the multiple start events, the large 

amount of incoming arcs at one of the existing AND-

connectors causes the need. It illustrates that the degree 

of incoming arcs at a join must match the degree of 

outgoing arcs at the corresponding split. The validation of the structure fragment fails due 

to the rule “Process parallel flows, inclusive decision paths and exclusive decision paths are 

well-formed” (see Table 20). Still, it is possible to transform the diagram successfully. 

However, the resulting BPEL code is incorrect. The same happens when disobeying the rule 

“Number of outgoing or incoming connections at the rule”. This rule limits connectors to 

being either a split or a join, not both: A connector either has a single incoming and multiple 

outgoing arcs, or a single outgoing and multiple incoming arcs. For example, the diagram 

fragment in Figure 51 is erroneous. Validation catches the error, but it still transforms 

successfully, yet with unexpected, incorrect resulting code. In general, minimizing the 

 

Figure 51: Erroneous connector 



Lucas O. Meertens - EPC To BPEL Transformations       79 

routing paths per element solves these problems (Mendling, Reijers, & Aalst, 2008). 

Applying this guideline usually violates the principles of economic efficiency and relevance, 

but that effect is inferior to correctness. As a side effect, the guideline also improves clarity. 

Guideline 8 Minimize the amount of arcs attached to a construct. 

7.7 Limitation 6: Multiple end events 

As with multiple start events, multiple end evens are possible in both EPC and BPEL. 

Moreover, analogous to multiple start events, multiple end events sometimes transform 

correctly and sometimes do not. The implicit termination of WFCP 11 and diagram 13 

illustrate the case where the transformation goes well. The multiple callbacks to the client 

are questionable already, though. At first, the transformation of the multiple end events in 

the sub-process depicted in diagram 10 seems to be fine too. When coupled to the rest of 

the process in diagram 14, however, an ambiguity in the semantics presents itself. The 

original EPC diagram already contains the ambiguity, as it is not clear what happens when 

taking the “dead-end” branches. Questions arise, such as: Should the process stop? With or 

without throwing an error? What does the client receive as callback? Does the client receive 

a callback at all? Does the process require human interference?  

For the process in diagram 10, the branch with event “Hours are incomplete” probably 

indicates that the process should stop, and requires human interference. The other dead-

end branch, ending with the event “Hours download started manually”, rather seems to 

indicate a modeling error. The branch should probably reconnect to the main flow, at the 

event “Hours download is running”, which is the logical consequence of starting the 

download. This last example demonstrates how style checking can improve models (Gruhn 

& Laue, 2006). 

Semantics of dead-end branches are not clear in general (Dongen, Jansen-Vullers, Verbeek, 

& Aalst, 2007). Several possibilities exist to avoid the problem. The first solution is to 

communicate clearly with the developers what is supposed to happen. Modelers can 

improve communication by providing clear labels (guideline 2) and linking to 

documentation. In cases of explicit termination or throwing errors, they can agree with the 

developers to use certain conventions to indicate this. For example, the modelers could 

append an event labeled “explicit termination”, or “throw error” to dead-end branches. For 



Lucas O. Meertens - EPC To BPEL Transformations       80 

automated transformation, improving communication is not an option. Another solution is 

required to arrive at correct BPEL code. The second solution is to rejoin all (dead-end) 

branches back to one end event. While converging branches is not always easy, it is the best 

way to arrive at correctly working BPEL code. It also improves communication with the 

developer, as the meaning is no longer ambiguous. In addition, it also solves the issue with 

multiple callbacks to the client. 

Guideline 9 Avoid multiple end events. Join them. 

7.8 Limitation 7: Combination of constructs and structures 

The obstacle encountered in diagram 12 is a wicked problem. It does not have a clear cause, 

and therefore no simple solution. Splitting the process into multiple processes provides a 

workaround for this problem, where while-loops in combination with parallel processing 

cause unexpected, incorrect BPEL code. As combining sub-processes also causes this 

problem in diagram 14, splitting them again solves the problem. Literature also advocates 

the reduced granularity, as short processes are often more usable (Olsen, 2006). Besides 

usability, research indicates that larger diagrams include more errors (Mendling, Neumann, 

& Aalst, 2007). Based on those observations, it is advised to decompose diagrams, and keep 

them below 50 elements (Mendling, Reijers, & Aalst, 2008). When calling sub-processes 

from the main process, the BPEL code must make a synchronous call to the sub-process. 

This ensures the sub-process completes before the process continues. Communication (of 

data) between sub-processes may be difficult with this solution. EPC has no construct to 

pass the flow of control to a sub-process, which its extension, eEPC, has. The modeler has to 

indicate it by annotations and labeling a function and events appropriately. Several 

examples of possible sub-processes appear in the composite case diagram. They include the 

removed loops around “Check execution posting process”, “Load costs in CMS”, and “Load 

hours in CMS”. In most cases, the source model describes them as sub-processes or variants 

already. 

Guideline 10 Decompose processes containing problematic structures, such as loops. 

7.9 Limitation 8: Block-structured versus graph-structured 

One limitation remains that the diagram transformations do not reveal directly. Yet, it is the 

underlying source for some of the limitations. As chapters 3 and 4 mention, the 



Lucas O. Meertens - EPC To BPEL Transformations       81 

transformation from EPC to BPEL is hard, because the source language is graph-structured 

and the target language is block-structured. The impossibility to transform arbitrary cycles 

(see section 5.4.6), and the ambiguities of dead-end branches (see limitation 6) confirm the 

difficulty. 

Categories for the degree of freedom in modeling languages exist, ranging from standard, 

through safe and structured, to synchronizing (Kiepuszewski, 2003). Graph-structured 

languages usually fall within the standard category, which allows for a high degree of 

freedom. That is the case for EPC. Block-structured languages fall within the structured 

category per definition. They enjoy a lower degree of freedom, as is the case with BPEL. The 

same difference arose in programming languages, where the use of structured 

programming is now preferred to the use of “spaghetti”-programming. The difference in 

freedom causes the problems. 

Structured languages require that all splitting connectors match a joining connector of the 

same type, and vice versa. The connectors must nest properly, according the last-in first-out 

(LIFO) rule. For example, if an AND-split precedes a XOR-split, the XOR-split must close first, 

and then the AND-split must close too. In this way, every structure is contained within 

another structure. Structures do not partly overlap. Viewing the structures as a balanced 

bracket formula can help. Most of the diagrams in 0 - are structured, thanks to the 

measures taken to transform them successfully and correctly. Several of the above 

guidelines also serve to create better-structured diagrams. 

Using only structured models is a severe restriction. Fortunately, most unstructured 

diagrams also possess a structured form. Combining multiple start events is an example of 

it. Duplicating constructs and combining/dividing connectors are other ways to obtain 

structured diagrams. Literature provides a vast amount of information on structuring 

unstructured diagrams, including which cases are possible and impossible to adjust 

(Kiepuszewski, 2003), and how adjust arbitrary cycles to structured diagrams (Zhao, Hauser, 

Bhattacharya, Bryant, & Cao, 2006). 

Guideline 11 Create structured models. 



Lucas O. Meertens - EPC To BPEL Transformations       82 

7.10  General guidelines 

Successful and correct transformation requires the above guidelines. Modelers should use 

other guidelines too. For example, it is good practice to check back on the resulting BPEL 

diagram (and code), after the transformation finished. The difference between successful 

and correct transformation signifies the importance of this check. Other issues, dedicated to 

BPEL, include the choice between synchronous and asynchronous processes, and the 

otherwise/default addition to XOR-splits. In order to arrive at correct, executable BPEL code, 

it is important to communicate between the modeler and the developer. Agreeing on 

modeling conventions provides a good start for improving communications (Becker, 

Rosemann, & Uthmann, 2000). The conventions can include basic things, such as using one 

main route in the diagram and the use of labels. The choice between horizontal and vertical 

modeling also has an impact on clarity. The use of process management methodologies, 

such as ARIS (Scheer & Schneider, 1992) or Pronto (Noorman, 2008), can also play an 

important role, both in communicating and in the modeling process. However, as the above 

is not strictly necessary for the transformation from EPC to BPEL, these guidelines are 

beyond the scope of this research. 

7.11  Applying the guidelines 

Table 24 lists the guidelines conceived in this chapter. The guidelines are prioritized, 

according to their importance for successful and correct transformation. The imperative 

words Must, Should, Could, and Would describe the guidelines, descending in importance. 

Guidelines 1, 6, and 11 are necessary for successful and correct transformation. For 

Table 24: List of guidelines 

Nr. Priority Order Guideline 

1 Must 1 Do not use the OR-connector. 

2 Would 11 Use clear, descriptive labels. 

3 Could 10 Alternate functions and events.  

4 Should 9 Always follow XOR-splits with events. 

5 Could 2 Avoid loops. 

6 Must 3 If loops are necessary, then use only while-loops with a single exit. 

7 Should 4 Avoid multiple start events. 

8 Could 6 Minimize the amount of arcs attached to a construct. 

9 Should 5 Converge multiple end events. 

10 Should 8 Decompose processes containing problematic structures. 

11 Must 7 Create structured models. 



Lucas O. Meertens - EPC To BPEL Transformations       83 

example, offending the first guideline results in an error, instead of transformation of the 

diagram. Guideline 2, on the other hand, only serves for communication, and is not 

necessary for transformation. For example, naming a function differently does not change 

the control flow. 

It is possible to apply the guidelines in any order. The order in which the limitations arose is 

the only reason for the numbering. However, it is best to follow the order that the third 

column of Table 24 shows. In that order, the first six guidelines solve issues for 

transformation that are relatively simple to solve. These issues are the OR-connector, loops, 

multiple start/end events, and constructs with a too high degree. Solving these issues also 

makes the next steps easier. 

These next two steps (guidelines 11 and 10) solve harder issues for transformation. For 

guideline 11, several algorithms exist to create structured models from unstructured ones. 

The Event-Condition-Action algorithm is an example (Ouyang, Dumas, Breutel, & Hofstede, 

2006). The algorithm boils down to finding the smallest structured element, then collapsing 

that to a single activity, and finding the element that is smallest then. The algorithm repeats 

until no structured elements exist anymore. When the algorithm reaches that point, 

guideline 11 provides a way to solve any unstructured parts by splitting that part. As a rule 

of thumb, guideline 11 should split the process at the point where most issues arise. After 

splitting the process, guideline 10 may be useful again. Instead of using such an algorithm, 

however, it is easier to model in a structured way from the start. 

The final three guidelines are mainly for communication. These steps require that the other 

steps are complete already, iteration may be necessary otherwise. For example, 

decomposing the process in guideline 10 can break the alteration of events and functions. 

The above steps can be viewed as a normalization algorithm. It is a model transformation on 

its own, as it transforms one EPC model, which cannot transform correctly, to another EPC 

model, which can. Further details and (partial) automation of the algorithm remain an issue 

for future research. 



Lucas O. Meertens - EPC To BPEL Transformations       84 

7.12  Validation of the guidelines in the composite case 

This section applies the guidelines to the case. If the resulting diagram transforms 

successfully and correctly, then that validates the guidelines. Two ways exist to apply the 

guidelines to the case. The next two sections describe those ways. The first way is to start 

from the simplest form possible, and build a structured, transformable process from scratch. 

The second way is to take the case as a whole, and apply the guidelines as the previous 

section describes. 

7.12.1 Applying the guidelines while modeling 

This way of applying the guidelines starts with the individual, original diagrams. These are 

even simpler than the ones in diagrams 8 until 13. They are decomposed already. All 

exceptions are modeled as alternatives to the main flow. These exceptions include all seven 

of the loops, both the decisions, and a sequence. This results in sixteen diagrams in total, 

which Appendix C - Original case EPC diagrams - shows. 

Guideline 1 only applies to “Load costs in CMS”. It is the alternative of “Update report data”, 

which contains the OR-connector. As section 6.7 suggests, a XOR-connector replaces the OR-

connector. The next guidelines, 5 and 6, are present in the diagrams already. The six 

diagrams containing the main control flow have no cycles. The simpler diagrams only 

contain while-loops. The two guidelines on multiple start events and end events, 7 and 9, 

are skipped, as these events do not lead to issues in these diagrams. Guideline 8 has two 

issues to solve. The first is in “Determine cost levels”. The solution is similar to the one in 

section 6.4, where extra AND-joins combine the control flow in a structured way. The 

difference is that the branches do not connect with an extra AND-split at the top. The 

second place is “Preliminary rebilling”. In parallel to the other place, and section 6.6 an extra 

AND-join solves the issue. It is not necessary to apply guideline 11, as all the diagrams are 

structured. Therefore, guideline 10 is surplus, as no problematic structures exist anymore. 

The final three guidelines are all present in the diagrams too. The syntax of EPC enforced 

this already. The resulting sixteen diagrams all transform successfully and correctly. 

This section shows that applying the guidelines while modeling is relatively easy. The 

resulting model has many dependencies though. A developer has to fill the implementation 

details for each connection between the diagrams. As a result, the benefits are limited. 



Lucas O. Meertens - EPC To BPEL Transformations       85 

7.12.2 Applying the guidelines to an existing model 

This second way of applying the guidelines starts from the full diagram. Coupling all the 

original diagrams 8 until 13, based on the Value Added Chain diagram in Figure 44, and the 

process interfaces, produces the full diagram 15. Appendix E - EPC diagrams of full case - 

contains this diagram. This full case diagram contains all the exceptions, which had separate 

diagrams in the previous sections. 

For this diagram, guideline 1 works at the same place and in the same manner as the 

previous section. Two XOR-connectors replace the two OR-connectors. The diagram fulfills 

the next two guidelines, 5 and 6. All loops are while-loops. However, most of these loops 

cause issues later on in the process. As they are in place, it is not possible to avoid them 

anymore. 

The next two guidelines, 7 and 9, deal with multiple start events and end events. In this full 

case diagram, both are an issue. Adding an extra AND-split and a single start event joins the 

branches at the start in a simple way. Figure 52 shows this. The multiple branches at the end 

cause more difficulties. Similar to the start branches, adding and AND-join merges the 

branches from “Preliminary rebilling” and “Report”. The branches from “Check hour 

download” are harder to merge. The first one indicates an error in the model. Instead of 

stopping when the event “Hour download started manually” occurs, the process should 

continue to “Check if download has finished”. Figure 53 shows how to fix this. Adding an 

extra XOR-join after the freshly created AND-join merges the second loose end. Finally, an 

extra end event follows this connector. These steps solve the multiple start events and end 

events. 

 

Figure 52: Join multiple start events 



Lucas O. Meertens - EPC To BPEL Transformations       86 

Guideline 8 requires the addition of several AND-connectors, in order to reduce the degree 

of some existing connectors. Besides the two issues that the previous section solves, 

combining the start events and end events caused new issues there. Adding an AND-join to 

join the branches of “Report” solves the issue at the end. Similar, adding an extra AND-split 

to combine the branches of “Determine cost levels” and “Prepare accounting close” solves 

the issue at the start. 

The next guideline, 11, is the hardest to apply. The previous guideline structures part of the 

diagram already, but it is impossible to structure the entire diagram. Therefore, guideline 10 

is required too. The left side of Figure 54 shows the diagram without any functions and 

events. This shows the organization of the model. In order to apply guidelines 10 and 11, all 

structured parts are collapsed. This results in the organization that the right side of Figure 

54 shows. This figure shows what parts are impossible to structure (Kiepuszewski, 2003).  

Guideline 10 serves to decompose the diagram into parts, which are possible to structure. In 

this case, the best place to start decomposing the model is where most issues arise. Cutting 

the diagram across lines A and B in Figure 54 produces a top, middle, and bottom diagram. 

Figure 55 shows each of these. In these diagrams, process interfaces indicate the places 

  
Figure 53: Fixing a loose end 



Lucas O. Meertens - EPC To BPEL Transformations       87 

where the diagrams communicate with the other diagrams. Appendix D - Composite case 

EPC diagrams - provides larger versions of the diagrams. 

The top diagram includes some modifications. It no longer includes the top two AND-splits, 

as the multiple start events needed these. Extra events at the bottom ensure the alteration 

of events and functions. That fulfills the final three guidelines. 

The middle diagram is more complex. Removing the loops is required too, as they present 

the problem encountered in section 6.7. The loops do not transform properly when AND-

connectors enclose them. Removing the loops produces the same sub-diagrams as in the 

previous section. A series of AND-joins combines the branches at the bottom. The branch, 

which originates from the XOR-split, connects to them. For this branch, an extra function is 

added to indicate that there is a serious error, which a human needs to solve. Adding an 

extra end event at the end and duplicate events at the start is enough to satisfy the three 

final guidelines. 

Figure 54: Structure of the full case, with only connectors and arcs 



Lucas O. Meertens - EPC To BPEL Transformations       88 

The bottom diagram requires removal of the final 

XOR-connector, because the top diagram already 

resolves it. As with the middle diagram, removing the 

loops is required. For this diagram, applying the final 

three guidelines require the addition of a function 

before the final end event, and the addition of 

duplicate events before the process interfaces at the 

top. Both are required for the alternation of events 

and functions. 

The resulting model has ten diagrams. Seven of these 

are the same as in the previous section; they are the 

while-loops. The other three are the top, middle, and 

bottom diagram in Figure 55. The resulting ten 

diagrams all transform successfully and correctly. 

This section illustrates that applying the guidelines to 

an existing model is much harder than applying them 

while modeling from scratch. Especially, solving 

unstructured models is hard. It requires the choice to 

be made on where to cut the diagram, so that the 

decomposed parts are structured diagrams. The 

decomposition may be irrational from a business 

point of view. That is the situation for this case. The 

original model was decomposed into parts logically 

done by different departments. The diagrams from 

the decomposed model cover different departments, 

while they split at points within a department. 

 

 

 
Figure 55: Decomposed full diagram

Initiation
accounting

close

Close CMS

CMS
Closed

Check
journal
entries

Journal
entries

checked

Process
journal
entries

Journal
entries

processed

CMS
Closed 1

CMS
Closed 2

CMS
Closed

Journal
entries

processed

WD-4 7.00hr

Check
execution
posting...

Successful
execution
posting...

Check if hour
download is

running

Hour
download is

running

Check if
download has

finished

Hour
download
finished

Check hour
completeness

Hours are
complete

Hour
donwload is
not running

Manually start
hour

download

Hour
download
started...

Hours are
incomplete

Initiation
determinatio
n investment

Determine
realization

investments

Realization
investments
determined

Determine
accruals

investme...

Accruals
investments

n-1...

Determine
accruals

investments n

Accruals
investments
n determined

Determine
accruals
costs n-1

Accruals
costs n-1

determined

Determine
accruals
costs n

Accruals
costs n

determined

Fill out
transistory

cost template

Transistory
cost

template...

Check budget
vs realization

Adjustments
unnecessary

Journal
entries

processed

Determine
hours to rebill

Hours to
rebill

determined

Determine
direct costs

to rebill

Direct costs
to rebill

determined

Determine
product costs

to rebill

Product
costs to rebill

determined

Load hours
in CMS

Hour table is
correct

Load costs
in CMS

Cost table is
correct

Right to left
bottom

Right to
right bottom

Left to right
bottom

Left to left
bottom

End top

Escalate to
human

CMS
Closed 1

CMS
Closed 2

CMS Closed
Journal
entries

processed

CMS Closed

Hours to
rebill

determined

Direct costs
to rebill

determined

Product
costs to rebill

determined

Determine
overhead &

result to rebill

Overhead &
result to
rebill...

Check
preliminary

rebilling model

Preliminary
rebilling

model is...

Send out
preliminary
rebilling...

Preliminary
rebilling

model sent

Hour table is
correct

Cost table is
correct

Update
reporting data

Reporting
data updated

Create
invoices

Invoices
created

Prepare files
for reporting

Preparation
finished

FMR created

Create FMR

Updated
rebilling

model sent

Update
rebilling
model

Updated
rebilling

model filled

Check
updated

rebilling model

Updated
rebilling
model...

Send out
updated
rebillin...

Extra End

Function

Right to left
bottom

Right to
right bottom

Hour table is
correct

Cost table is
correct

Left to right
bottom

Left to left
bottom Hours to

rebill
determined

Direct costs
to rebill

determined

Product
costs to rebill

determined



Lucas O. Meertens - EPC To BPEL Transformations       89 

8 Discussion 

This section provides a discussion of the research, in the form of an evaluation and future 

actions. The first part describes the validation and limitations of the research, as well as 

alternative paths that were beyond the scope of this research. The second part includes 

possibilities for further research and recommendations for practice. 

8.1 Validity 

Rigorous prior research provides the foundation for the conceptual model. Both workflow 

patterns and the BWW model proved their use individually. They did this in the areas of 

language evaluation, and transformation. Together, they are a more complete model. The 

prediction the model made, about the transformation of the small diagrams, shows its 

correctness for the case of EPC to BPEL transformation. As these predictions from theory 

match the results obtained during the empirical research, the conceptual model is internally 

valid. The research does not directly provide external validity of the conceptual model. 

However, it is highly probable that the model applies to transformations in different 

languages too, as both of its parts, ontology and patterns, were used individually for other 

languages (Recker, Rosemann, Indulska, & Green, 2006) (Wohed, Aalst, Dumas, Hofstede, & 

Russell, 2005). 

The results of the model transformations, as chapters 4 and 5 give them, are valid only for 

the Oracle BPA Suite. It is even limited to the version (10.0.3.4) used. Other tools and newer 

versions may transform the diagrams in another way. For example, they could support the 

OR-connector, or forbid WFCP 10 – Arbitrary Cycle in its totality. Internal validity is present, 

as the research tests all elements of the conceptual model and the results match to the 

expectations. The case extends the validity, as it shows that the results also hold in practice. 

Applying the guidelines to the case provides empirical validation of them. The results prove 

the internal validity of the guidelines, as the resulting diagrams are transformable. As the 

guidelines are only applied to a single case, external validity of the guidelines is low. Several 

of the guidelines may apply to general (business process) modeling, but some of them are 

more specific. For example, alternating functions and events is typical for EPC, and using 

only while-loops is specific to the transformation to BPEL.  



Lucas O. Meertens - EPC To BPEL Transformations       90 

8.2 Limitations 

This research knows several limitations. A tight scope is the cause for most of the 

limitations. The next section reflects this further, as it names alternatives that did not fit 

within the scope. That section also discusses the effects of not taking the alternatives. 

Access to some sources was difficult too, as some of the main research on EPC only exists in 

German. Due to this, some information may be misunderstood or missed altogether. Due to 

time constraints, there is no further empirical validation of the guidelines. Only a single case 

from practice illustrates their application. 

The mapping of EPC to BPEL in the conceptual model (section 4.4) is not normative. The 

choice for a specific mapping of constructs that lack clarity causes this limitation. While logic 

provides reasoning for the choices made, they lack absolute objectivity. It is not possible to 

overcome this limitation. It will be present for any mapping of constructs lacking clarity. 

While the combination of workflow patterns and the BWW model provides a complete 

conceptual model, the two criteria also overlap on some points for the transformation from 

EPC to BPEL. For example, the BWW concept lawful transformation overlaps with the 

workflow patterns where the control flow joins, such as WFCP 3 - Synchronization. 

Removing the overlap improves (the clarity of) the model. 

As section 3.1.2 discusses, the choice for the BWW model to evaluate a business process 

modeling language is debatable, as it has excess on several parts, and is incomplete on some 

others. For transformation, this is less of an issue. The combination with workflow patterns 

solves the incompleteness, as the workflow patterns fill the gaps. Evaluation of both 

languages solves the excess, as only the comparison is important for transformation. 

8.3 Alternatives 

This section provides several alternative paths the research could have taken. It did not, 

because of the limited scope enforced by time constraints. The alternatives are options for 

further research in addition to those specified in the next section. 

No other tool that provides EPC to BPEL transformation was found other than the Oracle 

BPA Suite, and IDS Scheer’s SOA Architect, which is its basis. Other tools may exist, or have 



Lucas O. Meertens - EPC To BPEL Transformations       91 

been developed since. Such a tool could serve for a comparison of capabilities and further 

validation of the conceptual model. 

While no other tool was found for direct EPC to BPEL transformation, transformation from 

EPC to BPEL is also possible by a diversion. It is possible to go from EPC to another language, 

and then from that other language to BPEL. Theory development shows promise in this 

area, especially if using EPML (EPC Markup Language) and AML (ARIS Markup Language) as 

the other language (Mendling & Nüttgens, 2004). Some tools are available that do the 

individual steps. 

The research shows what the Oracle BPA Suite is capable of, and what it cannot do. 

However, it is also interesting to know why it cannot do certain things. The conceptual 

model explains most of the difficulties discovered in the pattern transformations, but the 

difficulties in the case transformation have other causes too. They are specific to the 

implementation of the transformation in the Oracle BPA Suite. Instead of guidelines for 

modelers, the research could have offered advice for implementation changes. 

8.4 Further Research 

As this research deals with a restricted scope, it does not handle several possibly interesting 

research topics. These are beyond its scope, but have a direct relation to the research.  

This research handles transformation from EPC to BPEL. Much research on transformation 

from BPMN to BPEL also exists. A comparison of the two transformations based on the 

conceptual model is now a possibility. The comparison could lead to a more founded choice 

for the use of BPMN or EPC over the other. It may also shed light on general issues of BPEL, 

which need improvement. 

One of the two criteria in this research is the BWW model. As section 3.1.2 discusses, other 

approaches to evaluate a modeling language are possible too. A comparison of such 

approaches is an item for further research. 

Besides ontology, this research bases its conceptual model on the basic workflow control 

patterns. Further research can also handle the other workflow patterns in the same manner. 

This includes the advanced control flow patterns, as well as the data and resource patterns. 



Lucas O. Meertens - EPC To BPEL Transformations       92 

Several sources (Mulyar, 2005) use the BPEL link construct much more. The use of this 

construct allows for a transformation, which is applicable for more cases. This is good for 

automatic transformation. However, it has several drawbacks. Especially for 

understandability, the method may be unacceptable. 

The main limitation for applying this research in practice is that the Oracle BPA Suite does 

not deliver executable code. In order to arrive at executable code, the modeler has to 

provide more than just the modeled control flow. Executable code needs at least a data 

model, and the interaction with partners. Therefore, a question for further research is 

“What does transformation to executable code require from the input model?” This 

research answers it for the control flow. 

8.5 Recommendations 

Implications of this research for Sogeti exist for both the divisions DSE and A&BS. 

Professionals in A&BS do most of the modeling. In the BPM Lifecycle (see Figure 5), they are 

responsible for modeling and simulating. ARIS EPC is one of their competencies. The 

guidelines provided in chapter 7 apply for the modelers in A&BS, who work with EPC. 

Several of the guidelines apply always, while some apply when transforming to BPEL only. 

The modelers generally know and use the guidelines that apply always, already. The case 

from practice illustrates this. The main recommendation for Sogeti is to use the guidelines 

when applicable. 

On the other side, the professionals in division DSE take care of the development. They work 

on the BPEL code, which the transformation produces. Within DSE, the Oracle units are the 

key target. Filling the implementation details, which the tool leaves open, is the developers 

work. Besides implementation, they take care of deployment and execution, within the BPM 

Lifecycle. The main lessons learned from this research for the developers are the limitations 

and workarounds of the transformation from EPC to BPEL in the Oracle BPA Suite. Knowing 

the limitations helps the developer see where problems arise, so they can solve them. The 

workarounds are possible solutions to the limitations. 

Communication between the modelers and the developers is important. While the plain 

diagrams cover a lot of information already, they still contain ambiguities. Within the 

diagrams, annotations and labeling improve communication. However, other means of 



Lucas O. Meertens - EPC To BPEL Transformations       93 

communicating are helpful too. As long as the business process diagrams are not directly 

executable, human interference and interpretation is necessary. Interpretation naturally 

leads to misunderstanding. Communication has to limit that. 

The implications for business differ depending on the point of view taken. From the A&BS 

(modeler) perspective, the promise of MDE is great. Model transformation prevents certain 

restraining steps in the BPM Lifecycle. However, this research shows that it is hard to realize 

the promise completely. The implementation of the Oracle BPA Suite includes several 

issues, which require interference of a developer. This reduces the benefits of automatic 

transformation. Additionally, the costs of following the guidelines can be high. The 

restrictions placed on control flow and decomposition may be unreasonable. On the other 

hand, the benefits gained from partial automated transformation may already outweigh the 

costs. The benefits are in reduced human work in both development and communication. 

The costs are in the license for the tool and the human work required adapting the EPC 

model for transformation. The balance between costs and benefits depends on the 

individual case. 

From the DSE (developer) perspective, the use of the Oracle BPA Suite results in two 

reactions. Firstly, if the promise of MDE with fully automated transformation works, then 

the developers are no longer necessary. Secondly, if the promise does not fully work, gaps 

exist for the developers to fill. This research indicates that the second case is the current 

situation. The implementation of the transformation in the Oracle BPA Suite forces the use 

of developers. For the developers this is an opportunity. They can offer their specialization 

anytime businesses use the Oracle BPA Suite. 



Lucas O. Meertens - EPC To BPEL Transformations       94 

9 Conclusions 

This chapter sums up the findings of this research. It does this by handling the answers to 

the research sub-questions first, as the previous chapters answer them. The answers appear 

in the order in which chapter 2 presents the questions. Then, section 9.2 answers the main 

research questions. Finally, section 9.3 shows how the answers to the research questions 

contribute to the research objectives. 

9.1  Answers to research sub-questions 

According to literature, business process modeling languages must adhere to the Bunge-

Wand-Weber (BWW) representational model (Wand & Weber, 1990). For the case of 

transforming EPC to BPEL, the model makes several issues clear. These issues are lack of 

completeness and lack of clarity of the modeling languages. Some parts of these issues can 

cause difficulties for the transformation. Table 11 in section 4.3 lists these difficulties. 

Workflow patterns are the most commonly used patterns in business processes (Aalst, 

Hofstede, Kiepuszewski, & Barros, 2003). EPC and BPEL are able to represent different sets 

of these patterns. For transformation, the only situation leading to difficulties is where the 

source language is able to represent a pattern that the target language cannot. For the case 

of transforming EPC to BPEL, only workflow control pattern (WFCP) 10 causes difficulties. 

WFCP 10 is the Arbitrary Cycle. 

Section 4.4 presents a conceptual mapping from EPC to BPEL. As several design choices are 

made, the mapping is not normative and other mappings are possible. Tables 12, 18, and 19 

list the mapping. Most noticeable in the mapping is that WFCP 10 is forbidden in general, as 

it has no mapping for all cases.  

The Oracle BPA Suite serves as the tool for transforming EPC to BPEL. Known constraints for 

transformation include the difficulties encountered in the conceptual model. With the 

exception of the OR-connector and the Arbitrary Cycle, the Oracle BPA Suite successfully 

and correctly transformed all patterns. The used version of the tool (10.0.3.4) does not 

support the OR-connector, which WFCP 6 and 7 require. The Arbitrary Cycle, WFCP 10, has 

no general mapping from EPC to BPEL. The tool is only able to transform a subset of the 

pattern, the while-loop. 



Lucas O. Meertens - EPC To BPEL Transformations       95 

Workarounds exist for the patterns that failed transformation. In case of the OR-connector, 

it is always possible to rewrite it to a combination of XOR-connectors and AND-connectors. 

However, this leads to an exponential increase in constructs. Often, it is better to replace it 

simply by the XOR-connector. It is possible to rewrite many Arbitrary Cycles to a form BPEL 

is able to represent. If rewriting only requires restructuring of the model, this is not an issue. 

However, rewriting often requires the process to be split into sub-processes. This is usually 

unacceptable, as the model becomes too hard to understand. 

Classic EPC diagrams capture only the control flow of the business process. Transformation 

of the control flow to BPEL requires nothing extra from a diagram, which the modeling of a 

correct EPC diagram does not already require. Of course, an exception to this are the 

difficulties encountered before. In order to obtain executable code through transformation, 

extra data is required. That goes beyond the scope of this research. 

Several limitations arose during the transformation of the larger, composite case. Besides 

the difficulties found before, a lack of structured modeling was the main issue. 

Workarounds exist for all limitations. The guidelines in Table 24 (section 7.11) capture them. 

The most important guidelines are to avoid the OR-connector, use only while-loops if using 

loops at all, and create structured models. Applying the guidelines leads to models that 

transform successfully. 

Guideline 10 provides a means to transform complex and hard-to-transform diagrams. As 

with some of the other guidelines, this may lead to diagrams that are no longer fit for any 

other purpose. They may even be too hard to understand, especially for the developer but 

also for the modeler who decomposed the diagram. Often, this is not acceptable. The 

balance between the need for (automated) transformation and understandability must be 

rated on a case-to-case basis. 

9.2  Answers to main research questions 

Automated transformation from EPC diagrams to BPEL specifications is possible to a large 

extent. Chapter 4 provides a mapping from EPC to BPEL. This indicates which concepts, 

constructs, and patterns can transform from EPC to BPEL. According to this theory, several 

difficulties exist for the transformation. Table 11 in section 4.3 lists these issues. The 

mapping already deals with most of the issues. For one issue, only a mapping for some cases 



Lucas O. Meertens - EPC To BPEL Transformations       96 

exists. This is the Arbitrary Cycle of WFCP 10. The transformation of this pattern is not 

always possible, according to theory. All other patterns can transform. The mapping also 

handles all issues that arose during ontological evaluation of the languages. The issues of 

lack of clarity and lack of completeness of the two languages are either not significant for 

the transformation, or require a choice to be made. By picking alternatives for these 

choices, the mapping solves the issues, but is not normative. 

The effectiveness of automated transformation in the Oracle BPA Suite is lower than what 

was expected based on the theory. The theoretical limitations and possibilities, which the 

conceptual model describes, are put to the test in chapters 5 and 6. The pattern diagrams 

include all found issues. With the exception of the OR-connector, the results of the pattern 

transformations are nearly exact what the conceptual model predicted. This version 

(10.0.3.4) of the Oracle BPA Suite forbids the OR-connector, so a workaround is necessary. 

Further differences from the expected results arose due to the choices made in the 

conceptual mapping. 

Based on the pattern transformation alone, the Oracle BPA Suite was able to transform 

nearly everything that is theoretically possible. It only failed in case of the OR-connector. 

However, the results of transforming a case from practice greatly reduced this effectiveness. 

Many new issues arose when attempting to transform the composite case. The lack of 

structured modeling is the main cause for this. Other issues include the use of multiple start 

events and end events, and loops nested within a parallel flow. Structuring the diagrams is 

the workaround solving most issues. Usually, splitting diagrams into sub-processes can solve 

the remaining, complex issues, which structuring diagrams cannot solve. This workaround is 

often not acceptable, as it results in unreadable, hard-to-understand models.  

Chapter 7 presents a list of guidelines in Table 24. Following these guidelines results in EPC 

diagrams, which the Oracle BPA Suite can automatically transform to BPEL specifications. 

This provides methodological support for EPC to BPEL transformation feasibility. These BPEL 

specifications are not directly executable, as implementation details are missing. These 

details require the addition of data models among other things. That is beyond the scope of 

this research, which only handles the control flow. As applying guideline 10 may lead to 

unreadable models, this may only be acceptable in case no humans need to work with the 



Lucas O. Meertens - EPC To BPEL Transformations       97 

results anymore. In this research, that is never the case, as a developer still has to complete 

the implementation details. 

9.3  Contributions 

This research contributes in three ways. First, it contributes to theory by expanding the 

knowledge of EPC to BPEL model transformation. The conceptual model in chapter 4 

captures this knowledge. It provides a framework for evaluating the possibilities of a 

transformation between two languages. The BWW model and the workflow control patterns 

form the basis of the framework. The conceptual mapping from EPC to BPEL and the list of 

issues for this transformation are a specific instance of the model. 

The second contribution lies in the validation and application of the framework for the 

specific case of EPC to BPEL transformation as done by the Oracle BPA Suite. The 

transformation results in chapter 5 demonstrate that the conceptual model is correct. 

Chapter 6 reveals more limitations, by applying the transformations to a case from practice. 

Some of these limitations are specific to (version 10.0.3.4 of) the Oracle BPA Suite. 

Together, the theoretical and practical limitations show what to expect during model 

transformation in practice. 

The final contribution is a list of guidelines, in chapter 7. This is a methodological 

contribution to practice. The guidelines are specific for EPC modeling and models, which are 

meant for transformation to BPEL. Modelers can apply these guidelines to improve the 

feasibility of EPC to BPEL transformations. When they apply all the guidelines, the Oracle 

BPA Suite can transform the models successfully and correctly. 



Lucas O. Meertens - EPC To BPEL Transformations       98 

List of References 

Aalst, W. M. (1999). Formalization and Verification of Event-driven Process Chains. 

Information and Software Technology , 41 (10), 639-650. 

Aalst, W. M., & Hofstede, A. H. (2005). YAWL: Yet Another Workflow Language. Information 

Systems , 30 (4), 245-275. 

Aalst, W. M., & Lassen, K. B. (2005). Translating Workflow Nets to BPEL. Eindhoven, The 

Netherlands: Eindhoven University of Technology. 

Aalst, W. M., Barros, A., Hofstede, A. H., & Kiepuszewski, B. (2000). Advanced Workflow 

Patterns. In O. Etzion, & P. Scheuermann (Ed.), Proceedings of the 7th International 

Conference on Cooperative Information Systems (pp. 18-29). London, UK: Springer-Verlag. 

Aalst, W. M., Dumas, M., Hofstede, A. H., Russell, N., Verbeek, H., & Wohed, P. (2005). Life 

After BPEL? In Formal Techniques for Computer Systems and Business Processes (pp. 35-50). 

Berlin / Heidelberg, Germany: Springer. 

Aalst, W. M., Hofstede, A. H., Kiepuszewski, B., & Barros, A. (2003). Workflow Patterns. 

Distributed and Parallel Databases , 14 (1), 5-51. 

Aalst, W. M., Jorgensen, J., & Lassen, K. B. (2005). Let's Go All the Way: From Requirements 

Via Colored Workflow Nets to a BPEL Implementation of a New Bank System. In R. 

Meersman, & Z. Tari (Eds.), On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, 

and ODBASE (Vol. 3760/2005, pp. 22-39). Berlin / Heidelberg, Germany: Springer-Verlag. 

Aksit, M. (2004). The C'7 for Creating Living Software: A Research Perspective for Quality-

Oriented Software Engineering. Turkish Journal of Electrical Engineering & Computer 

Sciences , 12 (2), 61-96. 

Alanen, M., Lilius, J., Porres, I., & Truscan, D. (2003). Realizing a Model Driven Engineering 

Process. Turku, Finland: Turku Centre for Computer Science. 

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., & Angel, S. (1977). 

A pattern language. New York, USA: Oxford University press. 



Lucas O. Meertens - EPC To BPEL Transformations       99 

Becker, J., Rosemann, M., & Uthmann, C. v. (2000). Guidelines of Business Process 

Modeling. In W. M. Aalst, J. Desel, & A. Oberweis (Eds.), Business Process Management, 

LNCS 1806 (pp. 30-49). Berlin / Heidelberg, Germany: Springer-Verlag. 

Bézivin, J. (2004). In Search of a Basic Principle for Model Driven Engineering. UPGRADE , 5 

(2), 21-24. 

Bézivin, J., Farcet, N., Jézéquel, J.-M., Langlois, B., & Pollet, D. (2003). Reflective Model 

Driven Engineering. Proceedings of the 6th International Conference on the Unified Modeling 

Language: Modeling Languages and Applications (UML 2003) (pp. 175-189). San Francisco, 

USA: Springer. 

BiZZdesign. (2006). Handboek BPEL. Enschede. 

Bodart, F., Patel, A., Sim, M., & Weber, R. (2001). Should Optional Properties Be Used in 

Conceptual Modelling? A Theory and Three Empirical Tests. Information Systems Research , 

12 (4), 384-405. 

Bunge, M. (1977). Treatise on Basic Philosophy (Volume 3), Ontology I: The Furniture of the 

World (Vol. 3). Dordrecht, The Netherlands: Reidel. 

Bunge, M. (1979). Treatise On Basic Philosophy: Volume 4: Ontology II: A World of Systems 

(Vol. 4). Dordrecht, The Netherlands: Reidel. 

Burton-Jones, A., & Meso, P. N. (2006). Conceptualizing systems for understanding: an 

empirical test of decomposition principles in object oriented analysis. Information Systems 

Research , 17 (1), 38-60. 

Butler Group. (2007). Oracle BPM. Hull, UK: Butler Direct Ltd. 

Cuntz, N., & Kindler, E. (2005). On the Semantics of EPCs: Efficient Calculation and 

Simulation. In W. M. Aalst, B. Benatallah, F. Casati, & F. Curbera (Ed.), Proceedings of the 3rd 

International Conference on Business Process Management (BPM 2005) (pp. 398-403). Berlin 

/ Heidelberg: Springer. 

Czarnecki, K., & Helsen, S. (2003). Classification of Model Transformation Approaches. 

Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of the 

Model Driven Architecture, (pp. 1-17). Anaheim. 



Lucas O. Meertens - EPC To BPEL Transformations       100 

Dongen, B. v., Jansen-Vullers, M., Verbeek, H., & Aalst, W. M. (2007). Verification of the SAP 

reference models using EPC reduction, state-space analysis, and invariants. Computers in 

Industry , 58 (6), 578-601. 

Everman, J., & Wand, Y. (2001). Towards Ontologically Based Semantics for UML Constructs. 

In H. Kunii, S. Jajodia, & A. Sølvberg (Eds.), ER 2001, LNCS 2224 (Vol. 2224, pp. 354-367). 

Berlin / Heidelberg, Germany: Springer-Verlag. 

Falkenberg, E. .., Hesse, W., Lindgreen, P., Nilsson, B., Oei, J., Rolland, C., et al. (1998). A 

Framework of Information Systems Concepts. International Federation for Information 

Processing. 

Fettke, P., & Loos, P. (2003). Ontological evaluation of reference models using the Bunge-

Wand-Weber model. Proceedings of the Ninth Americas Conference on Information Systems, 

(pp. 2944-2955). Tampa, USA. 

Fondement, F., & Silaghi, R. (2004). Defining Model Driven Engineering Processes. 

Proceedings of the 3rd Workshop in Software Model Engineering (WiSME 2004).  

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of 

Reusable Object-Oriented Software. Reading, USA: Addison-Wesley. 

Gardner, T. (2003). UML Modelling of Automated Business Processes with a Mapping to 

BPEL4WS. Proceedings of the First European Workshop on Object Orientation and Web 

Services at ECOOP. Darmstadt, Germany. 

Gehlert, A., & Esswein, W. (2007). Toward a formal research framework for ontological 

analyses. Advanced Engineering Informatics , 21 (2), 119-131. 

Gemino, A., & Wand, Y. (2005). Complexity and clarity in conceptual modeling: comparison 

of mandatory and optional properties. Data & Knowledge Engineering , 55 (3), 301-326. 

Green, P., & Rosemann, M. (1999). An Ontological Analysis of Integrated Process Modelling. 

Proceedings of the 11th International Conference on Advanced Information Systems 

Engineering (CAiSE 1999) (pp. 225-240). Londen, UK: Springer-Verlag. 

Green, P., & Rosemann, M. (2000). Integrated Process Modeling: An Ontological Evaluation. 

Inforamtion Systems , 25 (2), 73-87. 



Lucas O. Meertens - EPC To BPEL Transformations       101 

Green, P., Rosemann, M., Indulska, M., & Manning, C. (2007). Candidate interoperability 

standards: An ontological overlap analysis. Data & Knowledge Engineering , 62 (2), 274-291. 

Gregor, S. (2006). The Nature of Theory in Information Systems. Mangement Information 

Systems Quarterly , 30 (3), 611-642. 

Gruber, T. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge 

Acquisition , 5 (2), 199-220. 

Gruhn, V., & Laue, R. (2006). How Style Checking Can Improve Business Process Models. In J. 

Barjis, U. Ultes-Nitsche, & J. C. Augusto (Ed.), Proceedings of the 4th International Workshop 

on Modelling, Simulation, Verification and Validation of Enterprise Information Systems 

(MSVVEIS 2006) (pp. 47-56). Paphos, Cyprus: INSTICC Press. 

Guizzardi, G. (2005). Ontological Foundations for Structural Conceptual Models. Enschede, 

The Netherlands: Centre for Telematics and Information Technology, University of Twente. 

Hauser, R., & Koehler, J. (2004). Compiling Process Graphs into Executable Code. 

Proceedings of the Third International Conference on Generative Programming And 

Component Engineerin (GPCE 2004) (pp. 317-336). Vancouver, Canada: Springer. 

Hinz, S., Schmidt, K., & Stahl, C. (2005). Transforming BPEL to Petri Nets. In W. M. Aalst, B. 

Benatallah, F. Casati, & F. Curbera (Ed.), Proceedings of the 3rd International Conference, 

BPM 2005 (pp. 220-235). Berlin / Heidelberg: Springer-Verlag. 

Hoyer, V., Bucherer, E., & Schnabel, F. (2008). Collaborative e-Business Process Modelling: 

Transforming Private EPC to Public BPMN Business Process Models. In A. t. Hofstede, B. 

Benatallah, & H.-Y. Paik (Eds.), Business Process Management Workshops: BPM 2007 

International Workshops, BPI, BPD, CBP, ProHealth, RefMod, Semantics4ws, Brisbane, 

Australia, September 24, 2007 : Revised Selected Papers (4928/2008 ed., pp. 185-196). Berlin 

/ Heidelberg, Germany: Springer. 

Keller, G., Nüttgens, M., & Scheer, A.-W. (1992). Semantische Prozessmodellierung auf der 

Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Saarbrücken, Germany: Institut für 

Wirtschaftsinformatik Saarbrücken. 



Lucas O. Meertens - EPC To BPEL Transformations       102 

Kent, S. (2002). Model Driven Engineering. Proceedings of the Third International Conference 

on Integrated Formal Methods (pp. 286-298). London, UK: Springer-Verlag. 

Kiepuszewski, B. (2003). Expresiveness and Suitability of Languages for Control Flow 

Modelling in Workflows, PhD Thesis. Brisbane, Australia: Queensland University of 

Technology. 

Kiepuszewski, B., Hofstede, A. H., & Aalst, W. M. (2003). Fundamentals of control flow in 

workflows. Acta Informatica , 39 (3), 143-209. 

Kindler, E. (2006). On the semantics of EPCs: Resolving the vicious circle. Data & Knowledge 

Management , 56 (1), 23-40. 

Koehler, J., & Vanhatalo, J. (2007). Process Anti-Patterns: How to Avoid the Common Traps 

of Business Process Modeling. IBM WebSphere Developer Technical Journal , 10 (2 & 4). 

Koschmider, A., & Mevius, M. (2005). A Petri Net Based Approach for Process Model Driven 

Deduction of BPEL Code. In R. Meersman, Z. Tari, & P. Herrero (Eds.), On the Move to 

Meaningful Internet Systems 2005: OTM Workshops (pp. 495-505). Berlin / Heidelberg, 

Germany: Springer. 

Luftman, J., Kempaiah, R., & Nash, E. (2006). Key issues for IT executives 2005. MIS Quarterly 

Executive , 5 (2), 81-99. 

Mendling, J., & Nüttgens, M. (2004). Transformation of ARIS Markup Language to EPML. 

Proceedings of the 3rd GI Workshop on Event-Driven Process Chains, (pp. 27-38). 

Luxembourg. 

Mendling, J., & Ziemann, J. (2005). Transformation of BPEL Processes to EPCs. Proceedings 

of the 4th GI Workshop on Event-Driven Process Chains (EPK 2005) , 167, 41-53. 

Mendling, J., Lassen, K. B., & Zdun, U. (2007). On the transformation of control flow 

between block-oriented and graph-oriented process modeling languages. International 

Journal of Business Process Integration and Management (2). 

Mendling, J., Lassen, K. B., & Zdun, U. (2006). Transformation Strategies between Block-

Oriented and Graph-Oriented Process Modelling Languages. In F. Lehner, H. Nösekabel, & P. 



Lucas O. Meertens - EPC To BPEL Transformations       103 

Kleinschmidt (Ed.), Multikonferenz Wirtschaftsinformatik 2006, Band 2 (pp. 297-312). Berlin: 

GITO-Verlag. 

Mendling, J., Neumann, G., & Aalst, W. M. (2007). Understanding the Occurrence of Errors 

in Process Models Based on Metrics. In R. Meersman, & Z. Tari (Ed.), Proceedings 15th 

International Conference on Cooperative Information Systems (CoopIS 2007) (pp. 113-130). 

Vilamoura, Portugal: Springer-Verlag. 

Mendling, J., Neumann, G., & Nüttgens, M. (2005). Towards Workflow Pattern Support of 

Event-Driven Process Chains (EPC). In M. Nüttgens, & J. Mendling (Ed.), Proceedings of the 

2nd Workshop XML4BPM, (pp. 23-38). Karlsruhe, Germany. 

Mendling, J., Reijers, H., & Aalst, W. M. (2008). Seven Process Modeling Guidelines (7PMG).  

Moody, D. L. (2005). Theoretical and practical issues in evaluating the quality of conceptual 

models: current state and future directions. Data & Knowledge Engineering , 55 (3), 243-

276. 

Mulyar, N. A. (2005). Pattern-based Evaluation of Oracle-BPEL (v.10.1.2). BPMcenter.org. 

Mulyar, N. A., & Aalst, W. M. (2005). Patterns in Colored Petri Nets. Eindhoven: Eindhoven 

University of Technology. 

Mulyar, N. A., Aalst, W. M., Hofstede, A. H., & Russell, N. (2006). Towards a WPSL: A Critical 

Analysis of the 20 Classical Workflow Control-flow Patterns. BPMcenter.org. 

Noorman, B. (2008). White Paper - Pronto: BPM-aanpak Sogeti. Vianen: Sogeti Nederland 

B.V. 

Nüttgens, M., & Rump, F. J. (2002). Syntax und Semantik Ereignisgesteuerter Prozessketten 

(EPK). In J. Desel, & M. Weske (Ed.), Proceedings of Prozessorientierte Methoden und 

Werkzeuge für die Entwicklung von Informationssystemen (PROMISE 2002) (pp. 64-77). 

Potsdam, Germany: Gesellschaft für Informatik. 

Nüttgens, M., Feld, T., & Zimmermann, V. (1998). Business Process Modeling with EPC and 

UML: Transformation or Integration? (M. Schader, & A. Korthaus, Eds.) The Unified Modeling 

Language - Technical Aspects and Applications , 250-261. 

OASIS. (2007). A Primer: Web Service Business process Execution Language Version 2.0.  



Lucas O. Meertens - EPC To BPEL Transformations       104 

OASIS. (2003). Business Process Execution Language for Web Sevices Version 1.1.  

OASIS. (2007). Web Service Business process Execution Language Version 2.0.  

Object Management Group. (2008). Business Process Modeling Notation, Version 1.1.  

Object Management Group. (2003). MDA Guide Version 1.0.1.  

Object Management Group. (2008). Meta Object Facility (MOF) 2.0 

Query/View/Transformation Specification. Object Management Group. 

Olsen, T. G. (2006). Defining Short and Usable Processes. (K. Johnstun, Ed.) CROSSTALK The 

Journal of Defense Software Engineering , 19 (6), 24-28. 

Opdahl, A. L., & Henderson-Sellers, B. (2002). Ontological Evaluation of the UML Using the 

Bunge-Wand-Weber Model. Software and Systems Modeling , 1 (1), 43-67. 

Oracle. (2006). Business Process Management and WS-BPEL 2.0. What’s next for SOA 

Orchestration? An Oracle White Paper. Redwood Shores, USA: Oracle Corporation. 

Oracle. (n.d.). Oracle Business Process Analysis Suite Data Sheet.  

Oracle. (2006, December). Oracle Business Process Analysis Suite:Overview & Product 

Strategy. Retrieved October 14, 2008, from Oracle BPA Suite: 

http://www.oracle.com/technology/products/bpa/ORACLE_BPA_SUITE_OVERVIEW_1206.p

df 

Oracle. (2008). Oracle Business Process Architect Quicke Start Guide, Release 10.1.3.4.  

Ouyang, C., Aalst, W. M., Dumas, M., & Hofstede, A. H. (2006). Translating BPMN to BPEL. 

BPM Center Report BPM-06-02, BPMcenter. org . 

Ouyang, C., Dumas, M., Aalst, W. M., & Hofstede, A. H. (2006). From Business Process 

Models to Process-oriented Software Systems: The BPMN to BPEL Way. BPMcenter.org. 

Ouyang, C., Dumas, M., Breutel, S., & Hofstede, A. H. (2006). Translating Standard Process 

Models to BPEL. In E. Dubois, & K. Pohl (Ed.), Proceedings of the 18th International 

Conference on Advance Information Systems (CAiSE'06) (pp. 417-432). Luxembourg: 

Springer. 



Lucas O. Meertens - EPC To BPEL Transformations       105 

Ouyang, C., Verbeek, E. (., Aalst, W. M., Breutel, S., Dumas, M., & Hofstede, A. H. (2007). 

Formal semantics and analysis of control flow in WS-BPEL. Science of Computer 

Programming , 67 (2-3), 162-198. 

Parsons, J., & Cole, L. (2005). What do the pictures mean? Guidelines for experimental 

evaluation of representation fidelity in diagrammatical conceptual modeling techniques. 

Data & Knowledge Engineering , 55 (3), 327-342. 

Peppard, J., & Ward, J. (1999). 'Mind the Gap': diagnosing the relationship between the IT 

organisation and the rest of the business. Journal of Strategic Information Systems , 8 (1), 

29-60. 

Recker, J., & Mendling, J. (2006). On the Translation between BPMN and BPEL: Conceptual 

Mismatch between Process Modeling Languages. Proceedings 18th International Conference 

on Advanced Information Systems Engineering , 521-532. 

Recker, J., Rosemann, M., Indulska, M., & Green, P. (2006). Business process modeling: A 

maturing discpline. BPMcenter.org. 

Reichert, M. U., & Rinderle, S. B. (2006). On Design Principles for Realizing Adaptive Service 

Flows with BPEL. Proceedings of EMISA 2006 (pp. 133-146). Hamburg, Germany: Köllen 

Verlag. 

Reichert, M., Rinderle, S., & Dadam, P. (2004). On the Modeling of Correct Service Flows 

with BPEL4WS. Proceedings of EMISA 2004 (pp. 117-128). Köllen Verlag. 

Rittgen, P. (1999). Modified EPCs and Their Formal Semantics. Technical report 99/19. 

Koblenz, germany: University of Koblenz-Landau. 

Rosemann, M., Recker, J., Indulska, M., & Green, P. (2006). A Study of the Evolution of the 

Representational Capabilities of Process Modeling Grammars. In E. Dubois, & K. Pohl (Ed.), 

Proceedings of the 18th Conference of Advanced Information Systems Engineering - CAiSE 

2006 (pp. 447-461). Luxembourg: Springer. 

Russel, N., Aalst, W. M., & Hofstede, A. H. (2006). Workflow Exception Patterns. Proceedings 

of the 18th Conference on Advanced Information Systems Engineering (CAiSE'2006) (pp. 288-

302). Berlin / Heidelberg: Springer. 



Lucas O. Meertens - EPC To BPEL Transformations       106 

Russell, N., Aalst, W. M., Hofstede, A. H., & Edmond, D. (2004). Workflow Resource Patterns: 

Identification, Representation and Tool Support. Proceedings of the 17th Conference on 

Advanced Information Systems Engineering (CAiSE’05) (pp. 216-232). Berlin / Heidelberg: 

Springer. 

Russell, N., Hofstede, A. H., Aalst, W. M., & Mulyar, N. A. (2006). Workflow control-flow 

patterns: A revised view. BPMcenter.org. 

Russell, N., Hofstede, A. H., Edmond, D., & Aalst, W. M. (2005). Workflow Data Patterns: 

Identification, Representation and Tool Support. Proceedings of the 24th International 

Conference on Conceptual Modeling (ER05) (pp. 353-368). Berlin / Heidelberg: Springer. 

Scheer, A.-W. (1994). Business Process Engineering, ARIS-Navigator for Reference Models for 

Industrial Enterprises. Berlin: Springer-Verlag. 

Scheer, A.-W., & Schneider, K. (1992). ARIS: Architecture of Integrated Information Systems. 

Springer. 

Scheithauer, G., & Wirtz, G. (2008). Case Study: Applying Business Process Management 

Systems. Proceedings of the 20th International Conference on Software Engineering & 

Knowledge Engineering (SEKE'2008) (pp. 12-15). San Fransisco, USA: Knowledge Systems 

Institute Graduate School. 

Sendall, S., & Kozaczynski, W. (2003). Model Transformation: The Heart and Soul of Model-

Driven Software Development. IEEE Software , 20 (5), 42-45. 

Sendall, S., & Küster, J. (2004). Taming Model Round-Trip Engineering. OOPSLA/GPCE: Best 

Practices for Model-Driven Software Development . 

Shanks, G., Tansley, E., & Weber, R. (2003). Using ontology to validate conceptual models. 

Communications of the ACM , 46 (10), 85-89. 

Shapiro, R. (2002). A Comparison of XPDL, BPML and BPEL4WS. ebPML.org. 

Silver, B. (2008). The BPMS Report: Oracle BPM Solution v10.1.3. Aptos, USA: Bruce Silver 

Associates. 

Smith, H., & Fingar, P. (2003). Business Process Management: The Third Wave. Tampa, USA: 

Meghan-Kiffer. 



Lucas O. Meertens - EPC To BPEL Transformations       107 

Soanes, C., & Hawker, S. (2005). Compact Oxford English Dictionary of Current English (3rd 

ed.). Oxford, UK: Oxford University Press. 

Söderström, E., Andersson, B., Johannesson, P., Perjons, E., & Wangler, B. (2002). Towards a 

Framework fro Comparing Process Modelling Languages. Proceedings of the 14th 

International Conference on Advanced Information Systems Engineering (CAiSE 2002) (pp. 

600-611). Berlin / Heidelberg: Springer-Verlag. 

Srikarsemsira, W., & Roongruangsuwan, S. (2005). Integration of BPEL Designer in Specific -

Vendor UML Modeling Tool. Proceedings of the Fourth International Conference on 

eBusiness, (pp. 22.1-5). Bangkok, Thailand. 

Stein, S., & Ivanov, K. (2007). EPK nach BPEL Transformation als Voraussetzung für 

praktische Umsetzung einer SOA. Software Engineering , 105, 75-80. 

The Standish Group. (2007). CHAOS Report 2007: The Laws of CHAOS. West Yarmouth, USA: 

The Standisch Group International. 

The Standish Group. (1995). The CHAOS Report. West Yarmouth, USA: The Standish Group 

International. 

Verschuren, P., & Doorewaard, H. (1998). Het ontwerpen van een onderzoek (2nd ed.). 

Utrecht, The Netherlands: LEMMA. 

Vries, K. d., & Ommert, O. (2001). Advanced Workflow Patterns in Practice (1): Experiences 

Based on Pension Processing. Business Process Magazine , 7 (6), 15-18. 

Vries, K. d., & Ommert, O. (2002). Advanced Workflow Patterns in Practice (2): Experiences 

Based on Judicial Processes. Business Process Magazine , 8 (1), 20-23. 

Wagter, R., Van den Berg, M., Luijpers, J., & Van Steenbergen, M. (2001). DYA® : snelheid en 

samenhang in business- en ICT-architectuur. Den Bosch: Tutein Nolthenius. 

Wand, Y., & Weber, R. (1989). An Ontological Evaluation of Systems Analysis and Design 

Methods. In E. Falkenberg, & P. Lindgreen (Ed.), Information System Concepts: An In-depth 

Analysis. Proceedings of the IFIP TC 8/WG 8.1 Working Conference on Information System 

Concepts, (pp. 79-107). Amsterdam, The Netherlands. 



Lucas O. Meertens - EPC To BPEL Transformations       108 

Wand, Y., & Weber, R. (1990). An Ontological Model of an Information System. IEEE 

Transactions on Software Engineering , 16, 1282-1292. 

Wand, Y., & Weber, R. (1990). Mario Bunge's Ontology as a Formal Foundation for 

Information Systems Concepts. In G. D. Paul Weingartner, Studies on Mario Bunge's Treatise 

(pp. 132-149). Atlanta: Rodopi. 

Wand, Y., & Weber, R. (2006). On Ontological Foundations of Conceptual Modeling: A 

Response to Wyssusek. (O. Henfridsson, K. Kautz, B. E. Munkvold, & M. Rossi, Eds.) 

Scandinavian Journal of Information Systems , 18 (1), 127-138. 

Wand, Y., & Weber, R. (2002). Research Commentary: Information Systems and Conceptual 

Modeling—A Research Agenda. Infromation Systems Research , 13 (4), 363-376. 

Weber, R. (2003). Conceptual Modeling and Ontology: Possibilities and Pitfalls. Journal of 

Database Management , 14 (3), 1-20. 

White, S. (2005). Using BPMN to Model a BPEL Process. BPTrends , 3 (3), 1-18. 

Wohed, P., Aalst, W. M., Dumas, M., & Hofstede, A. H. (2003). Analysis of Web Services 

Composition Languages: The Case of BPEL4WS. Proceedings of the 22nd International 

Conference on Conceptual Modeling (pp. 200-215). Chicago, USA: Springer. 

Wohed, P., Aalst, W. M., Dumas, M., Hofstede, A. H., & Russell, N. (2006). On the Suitability 

of BPMN for Business Process Modelling. In S. Dustdar, J. L. Fiadeiro, & A. Sheth (Ed.), 

Proceedings of the 4th International Conference on Business process Management (BPM 

2006) (pp. 161-176). Berlin / Heidelberg: Springer. 

Wohed, P., Aalst, W. M., Dumas, M., Hofstede, A. H., & Russell, N. (2005). Pattern-Based 

Analysis of the Control-Flow Perspective of UML Activity Diagrams. In L. Delcambre, C. Kop, 

H. C. Mayr, J. Mylopoulos, & O. Pastor (Ed.), Proceedings of the 24th International 

Conference on Conceptual Modeling (ER05) (pp. 63-78). Berlin / Heidelberg: Springer-Verlag. 

Wyssusek, B. (2006). On Ontological Foundations of Conceptual Modelling. (O. Henfridsson, 

K. Kautz, B. E. Munkvold, & M. Rossi, Eds.) Scandinavian Journal of Information Systems , 18 

(1), 63-80. 



Lucas O. Meertens - EPC To BPEL Transformations       109 

Zhao, W., Hauser, R., Bhattacharya, K., Bryant, B., & Cao, F. (2006). Compiling business 

processes: untangling unstructured loops in irreducible flow graphs. International Jounral of 

Web and Grid Services , 2 (1), 68-91. 

Ziemann, J., & Mendling, J. (2005). EPC-Based Modelling of BPEL Processes: a Pragmatic 

Transformation Approach. Proceedings of the 7th International Conference on the Modern 

Information Technology in the Innovation Processes of the industrial enterprises. Genoa, 

Italy. 

 



Lucas O. Meertens - EPC To BPEL Transformations       I 

Appendix A -  Output BPEL diagrams 

Diagram 1: WFCP 01 – Sequence (expanded) 

 



Lucas O. Meertens - EPC To BPEL Transformations       II 

Diagram 1: WFCP 01 – Sequence (collapsed) 

 



Lucas O. Meertens - EPC To BPEL Transformations       III 

Diagram 2: WFCP 02 – Parallel Split & WFCP 03 – Synchronization 

(expanded) 

 



Lucas O. Meertens - EPC To BPEL Transformations       IV 

Diagram 2: WFCP 02 – Parallel Split & WFCP 03 – Synchronization 

(collapsed) 

 



Lucas O. Meertens - EPC To BPEL Transformations       V 

Diagram 3: WFCP 04 – Exclusive Choice & WFCP 05 – Simple Merge 

(expanded) 

 



Lucas O. Meertens - EPC To BPEL Transformations       VI 

Diagram 3: WFCP 04 – Exclusive Choice & WFCP 05 – Simple Merge 

(collapsed) 

 



Lucas O. Meertens - EPC To BPEL Transformations       VII 

Diagram 5: WFCP 11 – Implicit Termination (expanded) 

 



Lucas O. Meertens - EPC To BPEL Transformations       VIII 

Diagram 5: WFCP 11 – Implicit Termination (collapsed) 

 



Lucas O. Meertens - EPC To BPEL Transformations       IX 

Diagram 6: WFCP 11 – Arbitrary Cycle (expanded) 

 



Lucas O. Meertens - EPC To BPEL Transformations       X 

Diagram 6: WFCP 11 – Arbitrary Cycle (collapsed) 

 
 



Lucas O. Meertens - EPC To BPEL Transformations       XI 

Appendix B -  Output BPEL code 

Diagram 1: WFCP 01 - Sequence 
  1  <?xml version="1.0" encoding="UTF-8"?> 
  2  <!--Generated by Oracle BPA Suite--> 

  3  <process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-

process/" xmlns:bpelx="http://schemas.oracle.com/bpel/extension" 

xmlns:tns="http://xmlns.oracle.com/WFCP_01" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

expressionLanguage="http://www.w3.org/TR/1999/REC-xpath-19991116" 

name="WFCP_01" queryLanguage="http://www.w3.org/TR/1999/REC-xpath-19991116" 

targetNamespace="http://xmlns.oracle.com/WFCP_01"> 

  4    <bpelx:annotation> 

  5      <bpelx:pattern patternName="bpelx:generated"/> 

  6      <bpelx:analysis> 

  7        <bpelx:property name="Description"></bpelx:property> 

  8        <bpelx:property name="BusinessProcessIdentifier">7400f9c0-c20c-

11dd-23b1-005056c00001</bpelx:property> 

  9        <bpelx:property name="LastUpdateDate">12/9/08 6:12:22 

PM</bpelx:property> 

 10        <bpelx:property name="BPELProcessIdentifier">862a7d41-c614-11dd-

23b1-005056c00001</bpelx:property> 

 11        <bpelx:property name="Filter">dd838074-ac29-11d4-85b8-

00005a4053ff</bpelx:property> 

 12      </bpelx:analysis> 

 13    </bpelx:annotation> 

 14    <partnerLinks> 

 15      <partnerLink myRole="WFCP_01Provider" name="client" 

partnerLinkType="tns:WFCP_01" partnerRole="WFCP_01Requester"/> 

 16    </partnerLinks> 

 17    <variables> 

 18      <variable messageType="tns:WFCP_01RequestMessage" 

name="inputVariable"/> 

 19      <variable messageType="tns:WFCP_01ResponseMessage" 

name="outputVariable"/> 

 20    </variables> 

 21    <sequence> 

 22      <bpelx:annotation> 

 23        <bpelx:analysis> 

 24          <bpelx:property name="BusinessId">Sequence_7400f9c0-c20c-11dd-

23b1-005056c00001</bpelx:property> 

 25          <bpelx:property name="LastUpdateDate">12/9/08 6:12:17 

PM</bpelx:property> 

 26        </bpelx:analysis> 

 27      </bpelx:annotation> 

 28      <scope name="Start"> 

 29        <bpelx:annotation> 



Lucas O. Meertens - EPC To BPEL Transformations       XII 

 30          <bpelx:pattern patternName="bpelx:StartEvent"/> 

 31          <bpelx:analysis> 

 32            <bpelx:property name="BusinessId">Scope_7cd19910-c20c-11dd-

23b1-005056c00001</bpelx:property> 

 33            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 34          </bpelx:analysis> 

 35        </bpelx:annotation> 

 36        <sequence> 

 37          <bpelx:annotation> 

 38            <bpelx:analysis> 

 39              <bpelx:property name="BusinessId">Sequence_7cd19910-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 40              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 41            </bpelx:analysis> 

 42          </bpelx:annotation> 

 43          <receive createInstance="yes" name="Start" 

operation="initiate" partnerLink="client" portType="tns:WFCP_01" 

variable="inputVariable"> 

 44            <bpelx:annotation> 

 45              <bpelx:documentation></bpelx:documentation> 

 46              <bpelx:analysis> 

 47                <bpelx:property 

name="CreateInstance">true</bpelx:property> 

 48                <bpelx:property name="BusinessId">Receive_7cd19910-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 49                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 50                <bpelx:property name="Documentation"></bpelx:property> 

 51                <bpelx:property name="Label">Start</bpelx:property> 

 52              </bpelx:analysis> 

 53            </bpelx:annotation> 

 54          </receive> 

 55        </sequence> 

 56      </scope> 

 57      <scope name="A"> 

 58        <bpelx:annotation> 

 59          <bpelx:pattern patternName="bpelx:automated"/> 

 60          <bpelx:analysis> 

 61            <bpelx:property name="BusinessId">Scope_7cd19911-c20c-11dd-

23b1-005056c00001</bpelx:property> 

 62            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 63          </bpelx:analysis> 

 64        </bpelx:annotation> 

 65        <sequence> 



Lucas O. Meertens - EPC To BPEL Transformations       XIII 

 66          <bpelx:annotation> 

 67            <bpelx:analysis> 

 68              <bpelx:property name="BusinessId">Sequence_7cd19911-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 69              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 70            </bpelx:analysis> 

 71          </bpelx:annotation> 

 72          <invoke name="A"> 

 73            <bpelx:annotation> 

 74              <bpelx:documentation></bpelx:documentation> 

 75              <bpelx:analysis> 

 76                <bpelx:property name="Documentation"></bpelx:property> 

 77                <bpelx:property name="BusinessId">Invoke_7cd19911-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 78                <bpelx:property name="Label">A</bpelx:property> 

 79                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 80              </bpelx:analysis> 

 81            </bpelx:annotation> 

 82          </invoke> 

 83        </sequence> 

 84      </scope> 

 85      <scope name="B"> 

 86        <bpelx:annotation> 

 87          <bpelx:pattern patternName="bpelx:automated"/> 

 88          <bpelx:analysis> 

 89            <bpelx:property name="BusinessId">Scope_7cd19915-c20c-11dd-

23b1-005056c00001</bpelx:property> 

 90            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 91          </bpelx:analysis> 

 92        </bpelx:annotation> 

 93        <sequence> 

 94          <bpelx:annotation> 

 95            <bpelx:analysis> 

 96              <bpelx:property name="BusinessId">Sequence_7cd19915-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 97              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 98            </bpelx:analysis> 

 99          </bpelx:annotation> 

100          <invoke name="B"> 

101            <bpelx:annotation> 

102              <bpelx:documentation></bpelx:documentation> 

103              <bpelx:analysis> 

104                <bpelx:property name="Documentation"></bpelx:property> 



Lucas O. Meertens - EPC To BPEL Transformations       XIV 

105                <bpelx:property name="BusinessId">Invoke_7cd19915-c20c-

11dd-23b1-005056c00001</bpelx:property> 

106                <bpelx:property name="Label">B</bpelx:property> 

107                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

108              </bpelx:analysis> 

109            </bpelx:annotation> 

110          </invoke> 

111        </sequence> 

112      </scope> 

113      <scope name="End"> 

114        <bpelx:annotation> 

115          <bpelx:pattern patternName="bpelx:automated"/> 

116          <bpelx:analysis> 

117            <bpelx:property name="BusinessId">Scope_7cd19917-c20c-11dd-

23b1-005056c00001</bpelx:property> 

118            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

119          </bpelx:analysis> 

120        </bpelx:annotation> 

121        <sequence> 

122          <bpelx:annotation> 

123            <bpelx:analysis> 

124              <bpelx:property name="BusinessId">Sequence_7cd19917-c20c-

11dd-23b1-005056c00001</bpelx:property> 

125              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

126            </bpelx:analysis> 

127          </bpelx:annotation> 

128          <invoke inputVariable="outputVariable" name="End" 

operation="onResult" partnerLink="client" portType="tns:WFCP_01Callback"> 

129            <bpelx:annotation> 

130              <bpelx:documentation></bpelx:documentation> 

131              <bpelx:analysis> 

132                <bpelx:property name="Documentation"></bpelx:property> 

133                <bpelx:property name="BusinessId">Invoke_7cd19917-c20c-

11dd-23b1-005056c00001</bpelx:property> 

134                <bpelx:property name="Label">End</bpelx:property> 

135                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

136              </bpelx:analysis> 

137            </bpelx:annotation> 

138          </invoke> 

139        </sequence> 

140      </scope> 

141    </sequence> 

142  </process> 



Lucas O. Meertens - EPC To BPEL Transformations       XV 

Diagram 2: WFCP 02 – Parallel Split & WFCP 03 – Synchronization 
  1  <?xml version="1.0" encoding="UTF-8"?> 
  2  <!--Generated by Oracle BPA Suite--> 

  3  <process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-

process/" xmlns:bpelx="http://schemas.oracle.com/bpel/extension" 

xmlns:tns="http://xmlns.oracle.com/WFCP_02and03" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

expressionLanguage="http://www.w3.org/TR/1999/REC-xpath-19991116" 

name="WFCP_02and03" queryLanguage="http://www.w3.org/TR/1999/REC-xpath-

19991116" targetNamespace="http://xmlns.oracle.com/WFCP_02and03"> 

  4    <bpelx:annotation> 

  5      <bpelx:pattern patternName="bpelx:generated"/> 

  6      <bpelx:analysis> 

  7        <bpelx:property name="Description"></bpelx:property> 

  8        <bpelx:property name="BusinessProcessIdentifier">7af06080-c20d-

11dd-23b1-005056c00001</bpelx:property> 

  9        <bpelx:property name="LastUpdateDate">12/9/08 6:13:16 

PM</bpelx:property> 

 10        <bpelx:property name="BPELProcessIdentifier">a78c0583-c614-11dd-

23b1-005056c00001</bpelx:property> 

 11        <bpelx:property name="Filter">dd838074-ac29-11d4-85b8-

00005a4053ff</bpelx:property> 

 12      </bpelx:analysis> 

 13    </bpelx:annotation> 

 14    <partnerLinks> 

 15      <partnerLink myRole="WFCP_02and03Provider" name="client" 

partnerLinkType="tns:WFCP_02and03" partnerRole="WFCP_02and03Requester"/> 

 16    </partnerLinks> 

 17    <variables> 

 18      <variable messageType="tns:WFCP_02and03ResponseMessage" 

name="outputVariable"/> 

 19      <variable messageType="tns:WFCP_02and03RequestMessage" 

name="inputVariable"/> 

 20    </variables> 

 21    <sequence> 

 22      <bpelx:annotation> 

 23        <bpelx:analysis> 

 24          <bpelx:property name="BusinessId">Sequence_7af06080-c20d-11dd-

23b1-005056c00001</bpelx:property> 

 25          <bpelx:property name="LastUpdateDate">12/9/08 6:13:11 

PM</bpelx:property> 

 26        </bpelx:analysis> 

 27      </bpelx:annotation> 

 28      <scope name="Start"> 

 29        <bpelx:annotation> 

 30          <bpelx:pattern patternName="bpelx:StartEvent"/> 

 31          <bpelx:analysis> 



Lucas O. Meertens - EPC To BPEL Transformations       XVI 

 32            <bpelx:property name="BusinessId">Scope_7cd19910-c20c-11dd-

23b1-005056c00001</bpelx:property> 

 33            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 34          </bpelx:analysis> 

 35        </bpelx:annotation> 

 36        <sequence> 

 37          <bpelx:annotation> 

 38            <bpelx:analysis> 

 39              <bpelx:property name="BusinessId">Sequence_7cd19910-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 40              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 41            </bpelx:analysis> 

 42          </bpelx:annotation> 

 43          <receive createInstance="yes" name="Start" 

operation="initiate" partnerLink="client" portType="tns:WFCP_02and03" 

variable="inputVariable"> 

 44            <bpelx:annotation> 

 45              <bpelx:documentation></bpelx:documentation> 

 46              <bpelx:analysis> 

 47                <bpelx:property name="BusinessId">Receive_7cd19910-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 48                <bpelx:property 

name="CreateInstance">true</bpelx:property> 

 49                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 50                <bpelx:property name="Documentation"></bpelx:property> 

 51                <bpelx:property name="Label">Start</bpelx:property> 

 52              </bpelx:analysis> 

 53            </bpelx:annotation> 

 54          </receive> 

 55        </sequence> 

 56      </scope> 

 57      <scope name="A"> 

 58        <bpelx:annotation> 

 59          <bpelx:pattern patternName="bpelx:automated"/> 

 60          <bpelx:analysis> 

 61            <bpelx:property name="BusinessId">Scope_7cd19911-c20c-11dd-

23b1-005056c00001</bpelx:property> 

 62            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 63          </bpelx:analysis> 

 64        </bpelx:annotation> 

 65        <sequence> 

 66          <bpelx:annotation> 

 67            <bpelx:analysis> 



Lucas O. Meertens - EPC To BPEL Transformations       XVII 

 68              <bpelx:property name="BusinessId">Sequence_7cd19911-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 69              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 70            </bpelx:analysis> 

 71          </bpelx:annotation> 

 72          <invoke name="A"> 

 73            <bpelx:annotation> 

 74              <bpelx:documentation></bpelx:documentation> 

 75              <bpelx:analysis> 

 76                <bpelx:property name="Documentation"></bpelx:property> 

 77                <bpelx:property name="BusinessId">Invoke_7cd19911-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 78                <bpelx:property name="Label">A</bpelx:property> 

 79                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 80              </bpelx:analysis> 

 81            </bpelx:annotation> 

 82          </invoke> 

 83        </sequence> 

 84      </scope> 

 85      <flow name="AND_rule"> 

 86        <bpelx:annotation> 

 87          <bpelx:pattern patternName="Flow"/> 

 88          <bpelx:analysis> 

 89            <bpelx:property name="BusinessId">Flow_7cd1991d-c20c-11dd-

23b1-005056c00001</bpelx:property> 

 90            <bpelx:property name="Label">AND_rule</bpelx:property> 

 91            <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 

 92          </bpelx:analysis> 

 93        </bpelx:annotation> 

 94        <sequence> 

 95          <bpelx:annotation> 

 96            <bpelx:analysis> 

 97              <bpelx:property name="BusinessId">Sequence_7cd19927-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 98              <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 

 99            </bpelx:analysis> 

100          </bpelx:annotation> 

101          <scope name="B"> 

102            <bpelx:annotation> 

103              <bpelx:pattern patternName="bpelx:automated"/> 

104              <bpelx:analysis> 

105                <bpelx:property name="BusinessId">Scope_7cd19915-c20c-

11dd-23b1-005056c00001</bpelx:property> 



Lucas O. Meertens - EPC To BPEL Transformations       XVIII 

106                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

107              </bpelx:analysis> 

108            </bpelx:annotation> 

109            <sequence> 

110              <bpelx:annotation> 

111                <bpelx:analysis> 

112                  <bpelx:property name="BusinessId">Sequence_7cd19915-

c20c-11dd-23b1-005056c00001</bpelx:property> 

113                  <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

114                </bpelx:analysis> 

115              </bpelx:annotation> 

116              <invoke name="B"> 

117                <bpelx:annotation> 

118                  <bpelx:documentation></bpelx:documentation> 

119                  <bpelx:analysis> 

120                    <bpelx:property 

name="Documentation"></bpelx:property> 

121                    <bpelx:property name="BusinessId">Invoke_7cd19915-

c20c-11dd-23b1-005056c00001</bpelx:property> 

122                    <bpelx:property name="Label">B</bpelx:property> 

123                    <bpelx:property name="LastUpdateDate">12/4/08 

3:11:10 PM</bpelx:property> 

124                  </bpelx:analysis> 

125                </bpelx:annotation> 

126              </invoke> 

127            </sequence> 

128          </scope> 

129        </sequence> 

130        <sequence> 

131          <bpelx:annotation> 

132            <bpelx:analysis> 

133              <bpelx:property name="BusinessId">Sequence_7cd19934-c20c-

11dd-23b1-005056c00001</bpelx:property> 

134              <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 

135            </bpelx:analysis> 

136          </bpelx:annotation> 

137          <scope name="C"> 

138            <bpelx:annotation> 

139              <bpelx:pattern patternName="bpelx:automated"/> 

140              <bpelx:analysis> 

141                <bpelx:property name="BusinessId">Scope_7cd19931-c20c-

11dd-23b1-005056c00001</bpelx:property> 

142                <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 



Lucas O. Meertens - EPC To BPEL Transformations       XIX 

143              </bpelx:analysis> 

144            </bpelx:annotation> 

145            <sequence> 

146              <bpelx:annotation> 

147                <bpelx:analysis> 

148                  <bpelx:property name="BusinessId">Sequence_7cd19931-

c20c-11dd-23b1-005056c00001</bpelx:property> 

149                  <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 

150                </bpelx:analysis> 

151              </bpelx:annotation> 

152              <invoke name="C"> 

153                <bpelx:annotation> 

154                  <bpelx:documentation></bpelx:documentation> 

155                  <bpelx:analysis> 

156                    <bpelx:property 

name="Documentation"></bpelx:property> 

157                    <bpelx:property name="BusinessId">Invoke_7cd19931-

c20c-11dd-23b1-005056c00001</bpelx:property> 

158                    <bpelx:property name="Label">C</bpelx:property> 

159                    <bpelx:property name="LastUpdateDate">12/4/08 

3:16:49 PM</bpelx:property> 

160                  </bpelx:analysis> 

161                </bpelx:annotation> 

162              </invoke> 

163            </sequence> 

164          </scope> 

165        </sequence> 

166      </flow> 

167      <scope name="D"> 

168        <bpelx:annotation> 

169          <bpelx:pattern patternName="bpelx:automated"/> 

170          <bpelx:analysis> 

171            <bpelx:property name="BusinessId">Scope_7cd1992a-c20c-11dd-

23b1-005056c00001</bpelx:property> 

172            <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 

173          </bpelx:analysis> 

174        </bpelx:annotation> 

175        <sequence> 

176          <bpelx:annotation> 

177            <bpelx:analysis> 

178              <bpelx:property name="BusinessId">Sequence_7cd1992a-c20c-

11dd-23b1-005056c00001</bpelx:property> 

179              <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 

180            </bpelx:analysis> 



Lucas O. Meertens - EPC To BPEL Transformations       XX 

181          </bpelx:annotation> 

182          <invoke name="D"> 

183            <bpelx:annotation> 

184              <bpelx:documentation></bpelx:documentation> 

185              <bpelx:analysis> 

186                <bpelx:property name="Documentation"></bpelx:property> 

187                <bpelx:property name="BusinessId">Invoke_7cd1992a-c20c-

11dd-23b1-005056c00001</bpelx:property> 

188                <bpelx:property name="Label">D</bpelx:property> 

189                <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 

190              </bpelx:analysis> 

191            </bpelx:annotation> 

192          </invoke> 

193        </sequence> 

194      </scope> 

195      <scope name="End"> 

196        <bpelx:annotation> 

197          <bpelx:pattern patternName="bpelx:automated"/> 

198          <bpelx:analysis> 

199            <bpelx:property name="BusinessId">Scope_7cd19917-c20c-11dd-

23b1-005056c00001</bpelx:property> 

200            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

201          </bpelx:analysis> 

202        </bpelx:annotation> 

203        <sequence> 

204          <bpelx:annotation> 

205            <bpelx:analysis> 

206              <bpelx:property name="BusinessId">Sequence_7cd19917-c20c-

11dd-23b1-005056c00001</bpelx:property> 

207              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

208            </bpelx:analysis> 

209          </bpelx:annotation> 

210          <invoke inputVariable="outputVariable" name="End" 

operation="onResult" partnerLink="client" 

portType="tns:WFCP_02and03Callback"> 

211            <bpelx:annotation> 

212              <bpelx:documentation></bpelx:documentation> 

213              <bpelx:analysis> 

214                <bpelx:property name="Documentation"></bpelx:property> 

215                <bpelx:property name="BusinessId">Invoke_7cd19917-c20c-

11dd-23b1-005056c00001</bpelx:property> 

216                <bpelx:property name="Label">End</bpelx:property> 

217                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 



Lucas O. Meertens - EPC To BPEL Transformations       XXI 

218              </bpelx:analysis> 

219            </bpelx:annotation> 

220          </invoke> 

221        </sequence> 

222      </scope> 

223    </sequence> 

224  </process> 

Diagram 3: WFCP 04 – Exclusive Choice & WFCP 05 – Simple Merge 
  1  <?xml version="1.0" encoding="UTF-8"?> 
  2  <!--Generated by Oracle BPA Suite--> 

  3  <process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-

process/" xmlns:bpelx="http://schemas.oracle.com/bpel/extension" 

xmlns:tns="http://xmlns.oracle.com/WFCP_04and05" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

expressionLanguage="http://www.w3.org/TR/1999/REC-xpath-19991116" 

name="WFCP_04and05" queryLanguage="http://www.w3.org/TR/1999/REC-xpath-

19991116" targetNamespace="http://xmlns.oracle.com/WFCP_04and05"> 

  4    <bpelx:annotation> 

  5      <bpelx:pattern patternName="bpelx:generated"/> 

  6      <bpelx:analysis> 

  7        <bpelx:property name="Description"></bpelx:property> 

  8        <bpelx:property name="BusinessProcessIdentifier">40350490-c20e-

11dd-23b1-005056c00001</bpelx:property> 

  9        <bpelx:property name="LastUpdateDate">12/9/08 6:14:35 

PM</bpelx:property> 

 10        <bpelx:property name="BPELProcessIdentifier">d758a7a1-c614-11dd-

23b1-005056c00001</bpelx:property> 

 11        <bpelx:property name="Filter">dd838074-ac29-11d4-85b8-

00005a4053ff</bpelx:property> 

 12      </bpelx:analysis> 

 13    </bpelx:annotation> 

 14    <partnerLinks> 

 15      <partnerLink myRole="WFCP_04and05Provider" name="client" 

partnerLinkType="tns:WFCP_04and05" partnerRole="WFCP_04and05Requester"/> 

 16    </partnerLinks> 

 17    <variables> 

 18      <variable messageType="tns:WFCP_04and05ResponseMessage" 

name="outputVariable"/> 

 19      <variable messageType="tns:WFCP_04and05RequestMessage" 

name="inputVariable"/> 

 20    </variables> 

 21    <sequence> 

 22      <bpelx:annotation> 

 23        <bpelx:analysis> 

 24          <bpelx:property name="BusinessId">Sequence_40350490-c20e-11dd-

23b1-005056c00001</bpelx:property> 



Lucas O. Meertens - EPC To BPEL Transformations       XXII 

 25          <bpelx:property name="LastUpdateDate">12/9/08 6:14:31 

PM</bpelx:property> 

 26        </bpelx:analysis> 

 27      </bpelx:annotation> 

 28      <scope name="Start"> 

 29        <bpelx:annotation> 

 30          <bpelx:pattern patternName="bpelx:StartEvent"/> 

 31          <bpelx:analysis> 

 32            <bpelx:property name="BusinessId">Scope_7cd19910-c20c-11dd-

23b1-005056c00001</bpelx:property> 

 33            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 34          </bpelx:analysis> 

 35        </bpelx:annotation> 

 36        <sequence> 

 37          <bpelx:annotation> 

 38            <bpelx:analysis> 

 39              <bpelx:property name="BusinessId">Sequence_7cd19910-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 40              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 41            </bpelx:analysis> 

 42          </bpelx:annotation> 

 43          <receive createInstance="yes" name="Start" 

operation="initiate" partnerLink="client" portType="tns:WFCP_04and05" 

variable="inputVariable"> 

 44            <bpelx:annotation> 

 45              <bpelx:documentation></bpelx:documentation> 

 46              <bpelx:analysis> 

 47                <bpelx:property name="BusinessId">Receive_7cd19910-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 48                <bpelx:property 

name="CreateInstance">true</bpelx:property> 

 49                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 50                <bpelx:property name="Documentation"></bpelx:property> 

 51                <bpelx:property name="Label">Start</bpelx:property> 

 52              </bpelx:analysis> 

 53            </bpelx:annotation> 

 54          </receive> 

 55        </sequence> 

 56      </scope> 

 57      <scope name="A"> 

 58        <bpelx:annotation> 

 59          <bpelx:pattern patternName="bpelx:automated"/> 

 60          <bpelx:analysis> 



Lucas O. Meertens - EPC To BPEL Transformations       XXIII 

 61            <bpelx:property name="BusinessId">Scope_7cd19911-c20c-11dd-

23b1-005056c00001</bpelx:property> 

 62            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 63          </bpelx:analysis> 

 64        </bpelx:annotation> 

 65        <sequence> 

 66          <bpelx:annotation> 

 67            <bpelx:analysis> 

 68              <bpelx:property name="BusinessId">Sequence_7cd19911-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 69              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 70            </bpelx:analysis> 

 71          </bpelx:annotation> 

 72          <invoke name="A"> 

 73            <bpelx:annotation> 

 74              <bpelx:documentation></bpelx:documentation> 

 75              <bpelx:analysis> 

 76                <bpelx:property name="Documentation"></bpelx:property> 

 77                <bpelx:property name="BusinessId">Invoke_7cd19911-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 78                <bpelx:property name="Label">A</bpelx:property> 

 79                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 80              </bpelx:analysis> 

 81            </bpelx:annotation> 

 82          </invoke> 

 83        </sequence> 

 84      </scope> 

 85      <switch name="Switch"> 

 86        <bpelx:annotation> 

 87          <bpelx:pattern patternName="XOR"/> 

 88          <bpelx:analysis> 

 89            <bpelx:property name="BusinessId">Switch_7cd1993a-c20c-11dd-

23b1-005056c00001</bpelx:property> 

 90            <bpelx:property name="Label">Switch</bpelx:property> 

 91            <bpelx:property name="LastUpdateDate">12/4/08 3:19:41 

PM</bpelx:property> 

 92          </bpelx:analysis> 

 93        </bpelx:annotation> 

 94        <case condition="Event"> 

 95          <bpelx:annotation> 

 96            <bpelx:pattern patternName="Case"/> 

 97            <bpelx:analysis> 

 98              <bpelx:property name="BusinessId">Case_573402e2-c20e-11dd-

23b1-005056c00001</bpelx:property> 



Lucas O. Meertens - EPC To BPEL Transformations       XXIV 

 99              <bpelx:property name="LastUpdateDate">12/4/08 3:19:41 

PM</bpelx:property> 

100              <bpelx:property 

name="ConditionExpression">Event</bpelx:property> 

101            </bpelx:analysis> 

102          </bpelx:annotation> 

103          <sequence> 

104            <bpelx:annotation> 

105              <bpelx:analysis> 

106                <bpelx:property name="BusinessId">Sequence_573402e2-

c20e-11dd-23b1-005056c00001</bpelx:property> 

107                <bpelx:property name="LastUpdateDate">12/4/08 3:19:41 

PM</bpelx:property> 

108              </bpelx:analysis> 

109            </bpelx:annotation> 

110            <scope name="B"> 

111              <bpelx:annotation> 

112                <bpelx:pattern patternName="bpelx:automated"/> 

113                <bpelx:analysis> 

114                  <bpelx:property name="BusinessId">Scope_7cd19915-c20c-

11dd-23b1-005056c00001</bpelx:property> 

115                  <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

116                </bpelx:analysis> 

117              </bpelx:annotation> 

118              <sequence> 

119                <bpelx:annotation> 

120                  <bpelx:analysis> 

121                    <bpelx:property name="BusinessId">Sequence_7cd19915-

c20c-11dd-23b1-005056c00001</bpelx:property> 

122                    <bpelx:property name="LastUpdateDate">12/4/08 

3:11:10 PM</bpelx:property> 

123                  </bpelx:analysis> 

124                </bpelx:annotation> 

125                <invoke name="B"> 

126                  <bpelx:annotation> 

127                    <bpelx:documentation></bpelx:documentation> 

128                    <bpelx:analysis> 

129                      <bpelx:property 

name="Documentation"></bpelx:property> 

130                      <bpelx:property name="BusinessId">Invoke_7cd19915-

c20c-11dd-23b1-005056c00001</bpelx:property> 

131                      <bpelx:property name="Label">B</bpelx:property> 

132                      <bpelx:property name="LastUpdateDate">12/4/08 

3:11:10 PM</bpelx:property> 

133                    </bpelx:analysis> 

134                  </bpelx:annotation> 



Lucas O. Meertens - EPC To BPEL Transformations       XXV 

135                </invoke> 

136              </sequence> 

137            </scope> 

138          </sequence> 

139        </case> 

140        <case condition="Event"> 

141          <bpelx:annotation> 

142            <bpelx:pattern patternName="Case"/> 

143            <bpelx:analysis> 

144              <bpelx:property name="BusinessId">Case_573402f1-c20e-11dd-

23b1-005056c00001</bpelx:property> 

145              <bpelx:property name="LastUpdateDate">12/4/08 3:19:41 

PM</bpelx:property> 

146              <bpelx:property 

name="ConditionExpression">Event</bpelx:property> 

147            </bpelx:analysis> 

148          </bpelx:annotation> 

149          <sequence> 

150            <bpelx:annotation> 

151              <bpelx:analysis> 

152                <bpelx:property name="BusinessId">Sequence_573402f1-

c20e-11dd-23b1-005056c00001</bpelx:property> 

153                <bpelx:property name="LastUpdateDate">12/4/08 3:19:41 

PM</bpelx:property> 

154              </bpelx:analysis> 

155            </bpelx:annotation> 

156            <scope name="C"> 

157              <bpelx:annotation> 

158                <bpelx:pattern patternName="bpelx:automated"/> 

159                <bpelx:analysis> 

160                  <bpelx:property name="BusinessId">Scope_7cd19931-c20c-

11dd-23b1-005056c00001</bpelx:property> 

161                  <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 

162                </bpelx:analysis> 

163              </bpelx:annotation> 

164              <sequence> 

165                <bpelx:annotation> 

166                  <bpelx:analysis> 

167                    <bpelx:property name="BusinessId">Sequence_7cd19931-

c20c-11dd-23b1-005056c00001</bpelx:property> 

168                    <bpelx:property name="LastUpdateDate">12/4/08 

3:16:49 PM</bpelx:property> 

169                  </bpelx:analysis> 

170                </bpelx:annotation> 

171                <invoke name="C"> 

172                  <bpelx:annotation> 



Lucas O. Meertens - EPC To BPEL Transformations       XXVI 

173                    <bpelx:documentation></bpelx:documentation> 

174                    <bpelx:analysis> 

175                      <bpelx:property 

name="Documentation"></bpelx:property> 

176                      <bpelx:property name="BusinessId">Invoke_7cd19931-

c20c-11dd-23b1-005056c00001</bpelx:property> 

177                      <bpelx:property name="Label">C</bpelx:property> 

178                      <bpelx:property name="LastUpdateDate">12/4/08 

3:16:49 PM</bpelx:property> 

179                    </bpelx:analysis> 

180                  </bpelx:annotation> 

181                </invoke> 

182              </sequence> 

183            </scope> 

184          </sequence> 

185        </case> 

186        <otherwise> 

187          <bpelx:annotation> 

188            <bpelx:pattern patternName="Case"/> 

189            <bpelx:analysis> 

190              <bpelx:property name="BusinessId">7cd1993a-c20c-11dd-23b1-

005056c00001_Case_default</bpelx:property> 

191              <bpelx:property name="LastUpdateDate">12/4/08 3:19:41 

PM</bpelx:property> 

192              <bpelx:property name="ConditionExpression">STALE, 

WITHDRAWN, ERRORED, EXPIRED</bpelx:property> 

193            </bpelx:analysis> 

194          </bpelx:annotation> 

195          <sequence> 

196            <bpelx:annotation> 

197              <bpelx:analysis> 

198                <bpelx:property 

name="BusinessId">Sequence_default</bpelx:property> 

199                <bpelx:property name="LastUpdateDate">12/4/08 3:19:41 

PM</bpelx:property> 

200              </bpelx:analysis> 

201            </bpelx:annotation> 

202            <scope name="default"> 

203              <bpelx:annotation> 

204                <bpelx:pattern patternName="bpelx:automated"/> 

205                <bpelx:analysis> 

206                  <bpelx:property name="BusinessId">Scope_d827b771-c614-

11dd-23b1-005056c00001</bpelx:property> 

207                </bpelx:analysis> 

208              </bpelx:annotation> 

209              <sequence> 

210                <bpelx:annotation> 



Lucas O. Meertens - EPC To BPEL Transformations       XXVII 

211                  <bpelx:analysis> 

212                    <bpelx:property name="BusinessId">Sequence_d827b771-

c614-11dd-23b1-005056c00001</bpelx:property> 

213                    <bpelx:property name="LastUpdateDate">12/9/08 

6:14:32 PM</bpelx:property> 

214                  </bpelx:analysis> 

215                </bpelx:annotation> 

216                <empty name="default"> 

217                  <bpelx:annotation> 

218                    <bpelx:analysis> 

219                      <bpelx:property name="BusinessId">Empty_d827b771-

c614-11dd-23b1-005056c00001</bpelx:property> 

220                      <bpelx:property name="LastUpdateDate">12/9/08 

6:14:32 PM</bpelx:property> 

221                    </bpelx:analysis> 

222                  </bpelx:annotation> 

223                </empty> 

224              </sequence> 

225            </scope> 

226          </sequence> 

227        </otherwise> 

228      </switch> 

229      <scope name="D"> 

230        <bpelx:annotation> 

231          <bpelx:pattern patternName="bpelx:automated"/> 

232          <bpelx:analysis> 

233            <bpelx:property name="BusinessId">Scope_7cd1992a-c20c-11dd-

23b1-005056c00001</bpelx:property> 

234            <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 

235          </bpelx:analysis> 

236        </bpelx:annotation> 

237        <sequence> 

238          <bpelx:annotation> 

239            <bpelx:analysis> 

240              <bpelx:property name="BusinessId">Sequence_7cd1992a-c20c-

11dd-23b1-005056c00001</bpelx:property> 

241              <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 

242            </bpelx:analysis> 

243          </bpelx:annotation> 

244          <invoke name="D"> 

245            <bpelx:annotation> 

246              <bpelx:documentation></bpelx:documentation> 

247              <bpelx:analysis> 

248                <bpelx:property name="Documentation"></bpelx:property> 



Lucas O. Meertens - EPC To BPEL Transformations       XXVIII 

249                <bpelx:property name="BusinessId">Invoke_7cd1992a-c20c-

11dd-23b1-005056c00001</bpelx:property> 

250                <bpelx:property name="Label">D</bpelx:property> 

251                <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 

252              </bpelx:analysis> 

253            </bpelx:annotation> 

254          </invoke> 

255        </sequence> 

256      </scope> 

257      <scope name="End"> 

258        <bpelx:annotation> 

259          <bpelx:pattern patternName="bpelx:automated"/> 

260          <bpelx:analysis> 

261            <bpelx:property name="BusinessId">Scope_7cd19917-c20c-11dd-

23b1-005056c00001</bpelx:property> 

262            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

263          </bpelx:analysis> 

264        </bpelx:annotation> 

265        <sequence> 

266          <bpelx:annotation> 

267            <bpelx:analysis> 

268              <bpelx:property name="BusinessId">Sequence_7cd19917-c20c-

11dd-23b1-005056c00001</bpelx:property> 

269              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

270            </bpelx:analysis> 

271          </bpelx:annotation> 

272          <invoke inputVariable="outputVariable" name="End" 

operation="onResult" partnerLink="client" 

portType="tns:WFCP_04and05Callback"> 

273            <bpelx:annotation> 

274              <bpelx:documentation></bpelx:documentation> 

275              <bpelx:analysis> 

276                <bpelx:property name="Documentation"></bpelx:property> 

277                <bpelx:property name="BusinessId">Invoke_7cd19917-c20c-

11dd-23b1-005056c00001</bpelx:property> 

278                <bpelx:property name="Label">End</bpelx:property> 

279                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

280              </bpelx:analysis> 

281            </bpelx:annotation> 

282          </invoke> 

283        </sequence> 

284      </scope> 

285    </sequence> 



Lucas O. Meertens - EPC To BPEL Transformations       XXIX 

286  </process> 

Diagram 6: WFCP 10 – Arbitrary Cycle (while-loop) 
  1  <?xml version="1.0" encoding="UTF-8"?> 
  2  <!--Generated by Oracle BPA Suite--> 
  3  <process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-
process/" xmlns:bpelx="http://schemas.oracle.com/bpel/extension" 
xmlns:tns="http://xmlns.oracle.com/WFCP_10_while" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
expressionLanguage="http://www.w3.org/TR/1999/REC-xpath-19991116" 
name="WFCP_10_while" queryLanguage="http://www.w3.org/TR/1999/REC-xpath-
19991116" targetNamespace="http://xmlns.oracle.com/WFCP_10_while"> 
  4    <bpelx:annotation> 
  5      <bpelx:pattern patternName="bpelx:generated"/> 
  6      <bpelx:analysis> 
  7        <bpelx:property name="Description"></bpelx:property> 
  8        <bpelx:property name="BusinessProcessIdentifier">75302ad0-c605-
11dd-23b1-005056c00001</bpelx:property> 
  9        <bpelx:property name="LastUpdateDate">12/9/08 5:05:53 
PM</bpelx:property> 
 10        <bpelx:property name="BPELProcessIdentifier">3c1ebc11-c60b-11dd-
23b1-005056c00001</bpelx:property> 
 11        <bpelx:property name="Filter">dd838074-ac29-11d4-85b8-
00005a4053ff</bpelx:property> 
 12      </bpelx:analysis> 
 13    </bpelx:annotation> 
 14    <partnerLinks> 
 15      <partnerLink myRole="WFCP_10_whileProvider" name="client" 
partnerLinkType="tns:WFCP_10_while" partnerRole="WFCP_10_whileRequester"/> 
 16    </partnerLinks> 
 17    <variables> 
 18      <variable messageType="tns:WFCP_10_whileResponseMessage" 
name="outputVariable"/> 
 19      <variable messageType="tns:WFCP_10_whileRequestMessage" 
name="inputVariable"/> 
 20    </variables> 
 21    <sequence> 
 22      <bpelx:annotation> 
 23        <bpelx:analysis> 
 24          <bpelx:property name="BusinessId">Sequence_75302ad0-c605-11dd-
23b1-005056c00001</bpelx:property> 
 25          <bpelx:property name="LastUpdateDate">12/9/08 5:05:49 
PM</bpelx:property> 
 26        </bpelx:analysis> 
 27      </bpelx:annotation> 
 28      <scope name="Start"> 
 29        <bpelx:annotation> 
 30          <bpelx:pattern patternName="bpelx:StartEvent"/> 
 31          <bpelx:analysis> 
 32            <bpelx:property name="BusinessId">Scope_7cd19910-c20c-11dd-
23b1-005056c00001</bpelx:property> 
 33            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 
PM</bpelx:property> 
 34          </bpelx:analysis> 
 35        </bpelx:annotation> 
 36        <sequence> 
 37          <bpelx:annotation> 
 38            <bpelx:analysis> 
 39              <bpelx:property name="BusinessId">Sequence_7cd19910-c20c-
11dd-23b1-005056c00001</bpelx:property> 



Lucas O. Meertens - EPC To BPEL Transformations       XXX 

 40              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 
PM</bpelx:property> 
 41            </bpelx:analysis> 
 42          </bpelx:annotation> 
 43          <receive createInstance="yes" name="Start" 
operation="initiate" partnerLink="client" portType="tns:WFCP_10_while" 
variable="inputVariable"> 
 44            <bpelx:annotation> 
 45              <bpelx:documentation></bpelx:documentation> 
 46              <bpelx:analysis> 
 47                <bpelx:property 
name="CreateInstance">true</bpelx:property> 
 48                <bpelx:property name="BusinessId">Receive_7cd19910-c20c-
11dd-23b1-005056c00001</bpelx:property> 
 49                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 
PM</bpelx:property> 
 50                <bpelx:property name="Documentation"></bpelx:property> 
 51                <bpelx:property name="Label">Start</bpelx:property> 
 52              </bpelx:analysis> 
 53            </bpelx:annotation> 
 54          </receive> 
 55        </sequence> 
 56      </scope> 
 57      <scope name="A"> 
 58        <bpelx:annotation> 
 59          <bpelx:pattern patternName="bpelx:automated"/> 
 60          <bpelx:analysis> 
 61            <bpelx:property name="BusinessId">Scope_7cd19911-c20c-11dd-
23b1-005056c00001</bpelx:property> 
 62            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 
PM</bpelx:property> 
 63          </bpelx:analysis> 
 64        </bpelx:annotation> 
 65        <sequence> 
 66          <bpelx:annotation> 
 67            <bpelx:analysis> 
 68              <bpelx:property name="BusinessId">Sequence_7cd19911-c20c-
11dd-23b1-005056c00001</bpelx:property> 
 69              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 
PM</bpelx:property> 
 70            </bpelx:analysis> 
 71          </bpelx:annotation> 
 72          <invoke name="A"> 
 73            <bpelx:annotation> 
 74              <bpelx:documentation></bpelx:documentation> 
 75              <bpelx:analysis> 
 76                <bpelx:property name="Documentation"></bpelx:property> 
 77                <bpelx:property name="BusinessId">Invoke_7cd19911-c20c-
11dd-23b1-005056c00001</bpelx:property> 
 78                <bpelx:property name="Label">A</bpelx:property> 
 79                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 
PM</bpelx:property> 
 80              </bpelx:analysis> 
 81            </bpelx:annotation> 
 82          </invoke> 
 83        </sequence> 
 84      </scope> 
 85      <while name="XOR_rule"> 
 86        <bpelx:annotation> 
 87          <bpelx:pattern patternName="While"/> 
 88          <bpelx:analysis> 



Lucas O. Meertens - EPC To BPEL Transformations       XXXI 

 89            <bpelx:property name="BusinessId">While_a818b2f4-c605-11dd-
23b1-005056c00001</bpelx:property> 
 90            <bpelx:property name="Label">XOR_rule</bpelx:property> 
 91            <bpelx:property name="LastUpdateDate">12/9/08 4:28:50 
PM</bpelx:property> 
 92          </bpelx:analysis> 
 93        </bpelx:annotation> 
 94        <sequence> 
 95          <bpelx:annotation> 
 96            <bpelx:analysis> 
 97              <bpelx:property name="BusinessId">Sequence_a818b2f4-c605-
11dd-23b1-005056c00001</bpelx:property> 
 98              <bpelx:property name="LastUpdateDate">12/9/08 4:28:50 
PM</bpelx:property> 
 99            </bpelx:analysis> 
100          </bpelx:annotation> 
101          <scope name="B"> 
102            <bpelx:annotation> 
103              <bpelx:pattern patternName="bpelx:automated"/> 
104              <bpelx:analysis> 
105                <bpelx:property name="BusinessId">Scope_7cd19915-c20c-
11dd-23b1-005056c00001</bpelx:property> 
106                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 
PM</bpelx:property> 
107              </bpelx:analysis> 
108            </bpelx:annotation> 
109            <sequence> 
110              <bpelx:annotation> 
111                <bpelx:analysis> 
112                  <bpelx:property name="BusinessId">Sequence_7cd19915-
c20c-11dd-23b1-005056c00001</bpelx:property> 
113                  <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 
PM</bpelx:property> 
114                </bpelx:analysis> 
115              </bpelx:annotation> 
116              <invoke name="B"> 
117                <bpelx:annotation> 
118                  <bpelx:documentation></bpelx:documentation> 
119                  <bpelx:analysis> 
120                    <bpelx:property 
name="Documentation"></bpelx:property> 
121                    <bpelx:property name="BusinessId">Invoke_7cd19915-
c20c-11dd-23b1-005056c00001</bpelx:property> 
122                    <bpelx:property name="Label">B</bpelx:property> 
123                    <bpelx:property name="LastUpdateDate">12/4/08 
3:11:10 PM</bpelx:property> 
124                  </bpelx:analysis> 
125                </bpelx:annotation> 
126              </invoke> 
127            </sequence> 
128          </scope> 
129        </sequence> 
130      </while> 
131      <scope name="End"> 
132        <bpelx:annotation> 
133          <bpelx:pattern patternName="bpelx:automated"/> 
134          <bpelx:analysis> 
135            <bpelx:property name="BusinessId">Scope_7cd19917-c20c-11dd-
23b1-005056c00001</bpelx:property> 
136            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 
PM</bpelx:property> 



Lucas O. Meertens - EPC To BPEL Transformations       XXXII 

137          </bpelx:analysis> 
138        </bpelx:annotation> 
139        <sequence> 
140          <bpelx:annotation> 
141            <bpelx:analysis> 
142              <bpelx:property name="BusinessId">Sequence_7cd19917-c20c-
11dd-23b1-005056c00001</bpelx:property> 
143              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 
PM</bpelx:property> 
144            </bpelx:analysis> 
145          </bpelx:annotation> 
146          <invoke inputVariable="outputVariable" name="End" 
operation="onResult" partnerLink="client" 
portType="tns:WFCP_10_whileCallback"> 
147            <bpelx:annotation> 
148              <bpelx:documentation></bpelx:documentation> 
149              <bpelx:analysis> 
150                <bpelx:property name="Documentation"></bpelx:property> 
151                <bpelx:property name="BusinessId">Invoke_7cd19917-c20c-
11dd-23b1-005056c00001</bpelx:property> 
152                <bpelx:property name="Label">End</bpelx:property> 
153                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 
PM</bpelx:property> 
154              </bpelx:analysis> 
155            </bpelx:annotation> 
156          </invoke> 
157        </sequence> 
158      </scope> 
159    </sequence> 
160  </process> 
 

Diagram 5: WFCP 11 – Implicit Termination 
  1  <?xml version="1.0" encoding="UTF-8"?> 
  2  <!--Generated by Oracle BPA Suite--> 

  3  <process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-

process/" xmlns:bpelx="http://schemas.oracle.com/bpel/extension" 

xmlns:tns="http://xmlns.oracle.com/WFCP_11" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

expressionLanguage="http://www.w3.org/TR/1999/REC-xpath-19991116" 

name="WFCP_11" queryLanguage="http://www.w3.org/TR/1999/REC-xpath-19991116" 

targetNamespace="http://xmlns.oracle.com/WFCP_11"> 

  4    <bpelx:annotation> 

  5      <bpelx:pattern patternName="bpelx:generated"/> 

  6      <bpelx:analysis> 

  7        <bpelx:property name="Description"></bpelx:property> 

  8        <bpelx:property name="BusinessProcessIdentifier">f31b3480-c20e-

11dd-23b1-005056c00001</bpelx:property> 

  9        <bpelx:property name="LastUpdateDate">12/9/08 6:19:31 

PM</bpelx:property> 

 10        <bpelx:property name="BPELProcessIdentifier">883d8951-c615-11dd-

23b1-005056c00001</bpelx:property> 

 11        <bpelx:property name="Filter">dd838074-ac29-11d4-85b8-

00005a4053ff</bpelx:property> 

 12      </bpelx:analysis> 



Lucas O. Meertens - EPC To BPEL Transformations       XXXIII 

 13    </bpelx:annotation> 

 14    <partnerLinks> 

 15      <partnerLink myRole="WFCP_11Provider" name="client" 

partnerLinkType="tns:WFCP_11" partnerRole="WFCP_11Requester"/> 

 16    </partnerLinks> 

 17    <variables> 

 18      <variable messageType="tns:WFCP_11RequestMessage" 

name="inputVariable"/> 

 19      <variable messageType="tns:WFCP_11ResponseMessage" 

name="outputVariable"/> 

 20    </variables> 

 21    <sequence> 

 22      <bpelx:annotation> 

 23        <bpelx:analysis> 

 24          <bpelx:property name="BusinessId">Sequence_f31b3480-c20e-11dd-

23b1-005056c00001</bpelx:property> 

 25          <bpelx:property name="LastUpdateDate">12/9/08 6:19:28 

PM</bpelx:property> 

 26        </bpelx:analysis> 

 27      </bpelx:annotation> 

 28      <scope name="Start"> 

 29        <bpelx:annotation> 

 30          <bpelx:pattern patternName="bpelx:StartEvent"/> 

 31          <bpelx:analysis> 

 32            <bpelx:property name="BusinessId">Scope_7cd19910-c20c-11dd-

23b1-005056c00001</bpelx:property> 

 33            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 34          </bpelx:analysis> 

 35        </bpelx:annotation> 

 36        <sequence> 

 37          <bpelx:annotation> 

 38            <bpelx:analysis> 

 39              <bpelx:property name="BusinessId">Sequence_7cd19910-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 40              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 41            </bpelx:analysis> 

 42          </bpelx:annotation> 

 43          <receive createInstance="yes" name="Start" 

operation="initiate" partnerLink="client" portType="tns:WFCP_11" 

variable="inputVariable"> 

 44            <bpelx:annotation> 

 45              <bpelx:documentation></bpelx:documentation> 

 46              <bpelx:analysis> 

 47                <bpelx:property 

name="CreateInstance">true</bpelx:property> 



Lucas O. Meertens - EPC To BPEL Transformations       XXXIV 

 48                <bpelx:property name="BusinessId">Receive_7cd19910-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 49                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 50                <bpelx:property name="Documentation"></bpelx:property> 

 51                <bpelx:property name="Label">Start</bpelx:property> 

 52              </bpelx:analysis> 

 53            </bpelx:annotation> 

 54          </receive> 

 55        </sequence> 

 56      </scope> 

 57      <scope name="A"> 

 58        <bpelx:annotation> 

 59          <bpelx:pattern patternName="bpelx:automated"/> 

 60          <bpelx:analysis> 

 61            <bpelx:property name="BusinessId">Scope_7cd19911-c20c-11dd-

23b1-005056c00001</bpelx:property> 

 62            <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 63          </bpelx:analysis> 

 64        </bpelx:annotation> 

 65        <sequence> 

 66          <bpelx:annotation> 

 67            <bpelx:analysis> 

 68              <bpelx:property name="BusinessId">Sequence_7cd19911-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 69              <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 70            </bpelx:analysis> 

 71          </bpelx:annotation> 

 72          <invoke name="A"> 

 73            <bpelx:annotation> 

 74              <bpelx:documentation></bpelx:documentation> 

 75              <bpelx:analysis> 

 76                <bpelx:property name="Documentation"></bpelx:property> 

 77                <bpelx:property name="BusinessId">Invoke_7cd19911-c20c-

11dd-23b1-005056c00001</bpelx:property> 

 78                <bpelx:property name="Label">A</bpelx:property> 

 79                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

 80              </bpelx:analysis> 

 81            </bpelx:annotation> 

 82          </invoke> 

 83        </sequence> 

 84      </scope> 

 85      <flow name="AND_rule"> 

 86        <bpelx:annotation> 



Lucas O. Meertens - EPC To BPEL Transformations       XXXV 

 87          <bpelx:pattern patternName="Flow"/> 

 88          <bpelx:analysis> 

 89            <bpelx:property name="BusinessId">Flow_f4be3626-c20e-11dd-

23b1-005056c00001</bpelx:property> 

 90            <bpelx:property name="Label">AND_rule</bpelx:property> 

 91            <bpelx:property name="LastUpdateDate">12/4/08 3:23:42 

PM</bpelx:property> 

 92          </bpelx:analysis> 

 93        </bpelx:annotation> 

 94        <sequence> 

 95          <bpelx:annotation> 

 96            <bpelx:analysis> 

 97              <bpelx:property name="BusinessId">Sequence_f4be3633-c20e-

11dd-23b1-005056c00001</bpelx:property> 

 98              <bpelx:property name="LastUpdateDate">12/4/08 3:23:42 

PM</bpelx:property> 

 99            </bpelx:analysis> 

100          </bpelx:annotation> 

101          <scope name="C"> 

102            <bpelx:annotation> 

103              <bpelx:pattern patternName="bpelx:automated"/> 

104              <bpelx:analysis> 

105                <bpelx:property name="BusinessId">Scope_7cd19931-c20c-

11dd-23b1-005056c00001</bpelx:property> 

106                <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 

107              </bpelx:analysis> 

108            </bpelx:annotation> 

109            <sequence> 

110              <bpelx:annotation> 

111                <bpelx:analysis> 

112                  <bpelx:property name="BusinessId">Sequence_7cd19931-

c20c-11dd-23b1-005056c00001</bpelx:property> 

113                  <bpelx:property name="LastUpdateDate">12/4/08 3:16:49 

PM</bpelx:property> 

114                </bpelx:analysis> 

115              </bpelx:annotation> 

116              <invoke name="C"> 

117                <bpelx:annotation> 

118                  <bpelx:documentation></bpelx:documentation> 

119                  <bpelx:analysis> 

120                    <bpelx:property 

name="Documentation"></bpelx:property> 

121                    <bpelx:property name="BusinessId">Invoke_7cd19931-

c20c-11dd-23b1-005056c00001</bpelx:property> 

122                    <bpelx:property name="Label">C</bpelx:property> 



Lucas O. Meertens - EPC To BPEL Transformations       XXXVI 

123                    <bpelx:property name="LastUpdateDate">12/4/08 

3:16:49 PM</bpelx:property> 

124                  </bpelx:analysis> 

125                </bpelx:annotation> 

126              </invoke> 

127            </sequence> 

128          </scope> 

129          <scope name="End"> 

130            <bpelx:annotation> 

131              <bpelx:pattern patternName="bpelx:automated"/> 

132              <bpelx:analysis> 

133                <bpelx:property name="BusinessId">Scope_7cd19917-c20c-

11dd-23b1-005056c00001</bpelx:property> 

134                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

135              </bpelx:analysis> 

136            </bpelx:annotation> 

137            <sequence> 

138              <bpelx:annotation> 

139                <bpelx:analysis> 

140                  <bpelx:property name="BusinessId">Sequence_7cd19917-

c20c-11dd-23b1-005056c00001</bpelx:property> 

141                  <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

142                </bpelx:analysis> 

143              </bpelx:annotation> 

144              <invoke inputVariable="outputVariable" name="End" 

operation="onResult" partnerLink="client" portType="tns:WFCP_11Callback"> 

145                <bpelx:annotation> 

146                  <bpelx:documentation></bpelx:documentation> 

147                  <bpelx:analysis> 

148                    <bpelx:property 

name="Documentation"></bpelx:property> 

149                    <bpelx:property name="BusinessId">Invoke_7cd19917-

c20c-11dd-23b1-005056c00001</bpelx:property> 

150                    <bpelx:property name="Label">End</bpelx:property> 

151                    <bpelx:property name="LastUpdateDate">12/4/08 

3:11:10 PM</bpelx:property> 

152                  </bpelx:analysis> 

153                </bpelx:annotation> 

154              </invoke> 

155            </sequence> 

156          </scope> 

157        </sequence> 

158        <sequence> 

159          <bpelx:annotation> 

160            <bpelx:analysis> 



Lucas O. Meertens - EPC To BPEL Transformations       XXXVII 

161              <bpelx:property name="BusinessId">Sequence_f4be362d-c20e-

11dd-23b1-005056c00001</bpelx:property> 

162              <bpelx:property name="LastUpdateDate">12/4/08 3:23:42 

PM</bpelx:property> 

163            </bpelx:analysis> 

164          </bpelx:annotation> 

165          <scope name="B"> 

166            <bpelx:annotation> 

167              <bpelx:pattern patternName="bpelx:automated"/> 

168              <bpelx:analysis> 

169                <bpelx:property name="BusinessId">Scope_7cd19915-c20c-

11dd-23b1-005056c00001</bpelx:property> 

170                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

171              </bpelx:analysis> 

172            </bpelx:annotation> 

173            <sequence> 

174              <bpelx:annotation> 

175                <bpelx:analysis> 

176                  <bpelx:property name="BusinessId">Sequence_7cd19915-

c20c-11dd-23b1-005056c00001</bpelx:property> 

177                  <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

178                </bpelx:analysis> 

179              </bpelx:annotation> 

180              <invoke name="B"> 

181                <bpelx:annotation> 

182                  <bpelx:documentation></bpelx:documentation> 

183                  <bpelx:analysis> 

184                    <bpelx:property 

name="Documentation"></bpelx:property> 

185                    <bpelx:property name="BusinessId">Invoke_7cd19915-

c20c-11dd-23b1-005056c00001</bpelx:property> 

186                    <bpelx:property name="Label">B</bpelx:property> 

187                    <bpelx:property name="LastUpdateDate">12/4/08 

3:11:10 PM</bpelx:property> 

188                  </bpelx:analysis> 

189                </bpelx:annotation> 

190              </invoke> 

191            </sequence> 

192          </scope> 

193          <scope name="End"> 

194            <bpelx:annotation> 

195              <bpelx:pattern patternName="bpelx:automated"/> 

196              <bpelx:analysis> 

197                <bpelx:property name="BusinessId">Scope_7cd19917-c20c-

11dd-23b1-005056c00001</bpelx:property> 



Lucas O. Meertens - EPC To BPEL Transformations       XXXVIII 

198                <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

199              </bpelx:analysis> 

200            </bpelx:annotation> 

201            <sequence> 

202              <bpelx:annotation> 

203                <bpelx:analysis> 

204                  <bpelx:property name="BusinessId">Sequence_7cd19917-

c20c-11dd-23b1-005056c00001</bpelx:property> 

205                  <bpelx:property name="LastUpdateDate">12/4/08 3:11:10 

PM</bpelx:property> 

206                </bpelx:analysis> 

207              </bpelx:annotation> 

208              <invoke inputVariable="outputVariable" name="End" 

operation="onResult" partnerLink="client" portType="tns:WFCP_11Callback"> 

209                <bpelx:annotation> 

210                  <bpelx:documentation></bpelx:documentation> 

211                  <bpelx:analysis> 

212                    <bpelx:property 

name="Documentation"></bpelx:property> 

213                    <bpelx:property name="BusinessId">Invoke_7cd19917-

c20c-11dd-23b1-005056c00001</bpelx:property> 

214                    <bpelx:property name="Label">End</bpelx:property> 

215                    <bpelx:property name="LastUpdateDate">12/4/08 

3:11:10 PM</bpelx:property> 

216                  </bpelx:analysis> 

217                </bpelx:annotation> 

218              </invoke> 

219            </sequence> 

220          </scope> 

221        </sequence> 

222      </flow> 

223    </sequence> 

224  </process> 



Lucas O. Meertens - EPC To BPEL Transformations       XXXIX 

Appendix C -  Original case EPC diagrams 

Determine cost levels 

 

Initiation
determinatio
n investment

Determine
realization

investments

Realization
investments
determined

Determine
accruals

investme...

Accruals
investments

n-1...

Determine
accruals

investments n

Accruals
investments
n determined

CMS Closed

Determine
accruals
costs n-1

Accruals
costs n-1

determined

Determine
accruals
costs n

Accruals
costs n

determined

Fill out
transistory

cost template

Transistory
cost

template...

Check budget
vs realization

Adjustments
unnecessary

Preliminary
rebilling

Update report
data

CMS Closed

Check journal
entries

Journal
entries

checked

Process
journal
entries

Journal
entries

processed

Prepare
accounting

close

Prepare
accounting

close



Lucas O. Meertens - EPC To BPEL Transformations       XL 

Check final hour download 

 

Prepare accounting close 

 
 

Report 

 

WD-4 7.00hr

Check
execution
posting...

Successful
execution
posting...

Check if hour
download is

running

Hour
download is

running

Check if
download has

finished

Hour
download
finished

Check hour
completeness

Hours are
complete

Update report
data

Preliminary
rebilling

Initiation
accounting

close

Close CMS

CMS
Closed

Determine
cost levels

Reporting
data updated

Create
invoices

Invoices
created

Prepare files
for reporting

Preparation
finished

FMR created

Create FMR

Updated
rebilling

model sent



Lucas O. Meertens - EPC To BPEL Transformations       XLI 

Update report data 

 

Preliminary rebilling 

 

Hours are
complete

Load hours in
CMS

Hour table is
correct

Adjustments
unnecessary

Load costs in
CMS

Cost table is
correct

Update
reporting data

Reporting
data updated

Report

Determine cost
levels

Check final
hour download

Hours are
complete

Determine
hours to rebill

Hours to
rebill

determined

Adjustments
unnecessary

Determine
direct costs

to rebill

Direct costs
to rebill

determined

Determine
product costs

to rebill

Product
costs to rebill
determined

Determine
overhead &

result to rebill

Overhead &
result to
rebill...

Check
preliminary
rebilling...

Preliminary
rebilling

model is...

Send out
preliminary
rebilling...

Preliminary
rebilling

model sent

Determine cost
levels

Check final
hour download



Lucas O. Meertens - EPC To BPEL Transformations       XLII 

Check budget vs realization 

(while-loop alternative) 

 

Check execution posting 

process (while-loop alternative) 

 
 

Check hour completeness 

(choice alternative) 

 

Transistory
cost

template...

Check budget
vs realization

Adjustments
unnecessary

Journal
entries

processed

Adjustments
necessary

Execute
adjustments

Adjustments
executed

WD-4 7.00hr

Check
execution
posting...

Successful
execution
posting...

Unsuccessfu
l execution
posting...

Request new
Clarity DB

New Clarity
DB available

Hour
download
finished

Check hour
completeness

Hours are
complete

Hours are
incomplete



Lucas O. Meertens - EPC To BPEL Transformations       XLIII 

Check if hour download is 

running (choice alternative) 

 

Check preliminary rebilling 

model (while-loop alternative) 

 

Check updated rebilling model 

(while-loop alternative) 

 
Check if download has finished 

(while-loop alternative) 

 

Successful
execution
posting...

Check if hour
download is

running

Hour
download is

running

Hour
donwload is
not running

Manually start
hour

download

Hour
download
started...

Overhead &
result to
rebill...

Check
preliminary
rebilling...

Preliminary
rebilling

model is...

Preliminary
rebilling

model is...

Adjust
preliminary
rebilling...

Preliminary
rebilling

model is...

Updated
rebilling

model filled

Check
updated
rebilli...

Updated
rebilling
model...

Updated
rebilling
model...

Adjust
updated
rebilli...

Updated
rebilling
model...

Hour
download is

running

Check if
download has

finished

Hour
download
finished

Hour
download not

finished



Lucas O. Meertens - EPC To BPEL Transformations       XLIV 

Create and send updated 

rebilling model (sequence 

alternative) 

 

Load costs in CMS (while-loop 

alternative) 

 
Load hours in CMS (while-loop 

alternative) 

Reporting
data updated

Updated
rebilling

model sent

Update
rebilling
model

Updated
rebilling

model filled

Check
updated
rebilli...

Updated
rebilling
model...

Send out
updated
rebillin...

Adjustments
unnecessary

Load costs in
CMS

Cost table is
correct

Cost table is
incorrect

Execute
adjustments

2

Journal
entries

adjusted

Master files
adjusted

Error table
adjusted

Hours are
complete

Load hours in
CMS

Hour table is
correct

Hours table is
incorrect

Adjust hour
table

Hours table
adjusted



Lucas O. Meertens - EPC To BPEL Transformations       XLV 

Appendix D -  Composite case EPC diagrams 

Value Added Chain diagram 

 
 

Diagram 8: Prepare accounting close 

 

Accounting close

Prepare
accounting

close

Determine
cost levels

Preliminary
rebilling

Check final
hour

download

Update
report data

Report

Initiation
accounting

close

Close CMS

CMS
Closed

Determine
cost levels



Lucas O. Meertens - EPC To BPEL Transformations       XLVI 

Diagram 9: Determine cost levels 

 

Initiation
determinatio
n investment

Determine
realization

investments

Realization
investments
determined

Determine
accruals

investme...

Accruals
investments

n-1...

Determine
accruals

investments n

Accruals
investments
n determined

Prepare
accounting

close

CMS
Closed

Determine
accruals
costs n-1

Accruals
costs n-1

determined

Determine
accruals
costs n

Accruals
costs n

determined

Fill out
transistory

cost template

Transistory
cost

template...
Check budget
vs realization

Adjustments
unnecessary

Preliminary
rebilling

Update report
data

Prepare
accounting

close

CMS
Closed

Check journal
entries

Journal
entries

checked

Process
journal
entries

Journal
entries

processed

Adjustments
necessary

Execute
adjustments

Adjustments
executed



Lucas O. Meertens - EPC To BPEL Transformations       XLVII 

Diagram 10: Check final hour download 

  

WD-4
7.00hr

Check
execution
posting...

Successful
execution
posting...

Unsuccessfu
l execution
posting...

Request new
Clarity DB

New Clarity
DB available

Check if hour
download is

running

Hour
download is

running

Check if
download has

finished

Hour
download
finished

Check hour
completeness

Hours are
complete

Update report
data

Preliminary
rebilling

Hour
donwload is
not running

Manually start
hour

download

Hour
download
started...

Hour
download not

finished

Hours are
incomplete



Lucas O. Meertens - EPC To BPEL Transformations       XLVIII 

Diagram 11: Preliminary rebilling 

 

Check final
hour download

Hours are
complete

Determine
hours to rebill

Hours to
rebill

determined

Determine cost
levels

Adjustments
unnecessary

Determine
direct costs

to rebill

Direct costs
to rebill

determined

Determine
product costs

to rebill

Product
costs to rebill
determined

Determine
overhead &

result to rebill

Overhead &
result to
rebill...

Check
preliminary
rebilling...

Preliminary
rebilling

model is...

Send out
preliminary
rebilling...

Preliminary
rebilling

model sent

Preliminary
rebilling

model is...

Adjust
preliminary
rebilling...

Preliminary
rebilling

model is...



Lucas O. Meertens - EPC To BPEL Transformations       XLIX 

Diagram 12: Update report data 

 

Check final
hour download

Hours are
complete

Load hours in
CMS

Hour table is
correct

Determine cost
levels

Adjustments
unnecessary

Load costs in
CMS

Cost table is
correct

Update
reporting data

Reporting
data updated

Report

Hours table is
incorrect

Adjust hour
table

Hours table
adjusted

Cost table is
incorrect

Execute
adjustments

2

Journal
entries

adjusted

Master files
adjusted

Error table
adjusted



Lucas O. Meertens - EPC To BPEL Transformations       L 

Diagram 13: Report 

 

Reporting
data updated

Create
invoices

Invoices
created

Prepare files
for reporting

Preparation
finished

FMR created

Create FMR

Updated
rebilling

model sent

Update
rebilling
model

Updated
rebilling

model filled

Check
updated
rebilli...

Updated
rebilling
model...

Send out
updated
rebillin...

Updated
rebilling
model...

Adjust
updated
rebilli...

Updated
rebilling
model...



Lucas O. Meertens - EPC To BPEL Transformations       LI 

Appendix E -  EPC diagrams of full case 

Value Added Chain Diagram 

 

Accounting close

Prepare
accounting

close

Determine
cost levels

Preliminary
rebilling

Check final
hour

download

Update
report data

Report



Lucas O. Meertens - EPC To BPEL Transformations       LII 

Diagram 14: Transformable, modified composition 

 

Initiation
accounting

close

Close CMS

CMS Closed

Initiation
determinatio
n investment

Determine
realization

investments

Realization
investments
determined

Determine
accruals

investme...

Accruals
investments

n-1...

Determine
accruals

investments n

Accruals
investments
n determined

Determine
accruals
costs n-1

Accruals
costs n-1

determined

Determine
accruals
costs n

Accruals
costs n

determined

Fill out
transistory

cost template

Transistory
cost

template...

Check budget
vs realization

Adjustments
unnecessary

Check journal
entries

Journal
entries

checked

Process
journal
entries

Journal
entries

processed

Adjustments
necessary

Execute
adjustments

Adjustments
executed

extra

WD-4 7.00hr

Check
execution
posting...

Successful
execution
posting...

Unsuccessfu
l execution
posting...

Request new
Clarity DB

New Clarity
DB available

Check if hour
download is

running

Hour
download is

running

Check if
download has

finished

Hour
download
finished

Check hour
completeness

Hours are
complete

Hour
donwload is
not running

Manually start
hour

download

Hour
download
started...

Hour
download not

finished

Hours are
incomplete



Lucas O. Meertens - EPC To BPEL Transformations       LIII 

 

Create
invoices

Invoices
created

Prepare files
for reporting

Preparation
finished

FMR created

Create FMR

Updated
rebilling

model sent

Update
rebilling
model

Updated
rebilling

model filled

Check
updated
rebilli...

Updated
rebilling
model...

Send out
updated
rebillin...

Updated
rebilling
model...

Adjust
updated
rebilli...

Updated
rebilling
model...

Load hours in
CMS

Hour table is
correct

Load costs in
CMS

Cost table is
correct

Update
reporting data

Reporting
data updated

Determine
hours to rebill

Hours to
rebill

determined

Determine
direct costs

to rebill

Direct costs
to rebill

determined

Determine
product costs

to rebill

Product
costs to rebill
determined

Determine
overhead &

result to rebill

Overhead &
result to
rebill...

Check
preliminary
rebilling...

Preliminary
rebilling

model is...

Send out
preliminary
rebilling...

Preliminary
rebilling

model sent

Preliminary
rebilling

model is...

Adjust
preliminary
rebilling...

Preliminary
rebilling

model is...



Lucas O. Meertens - EPC To BPEL Transformations       LIV 

Diagram 15: Composition of original model 

 

Initiation
accounting

close

Close CMS

CMS Closed

WD-4 7.00hr

Check
execution
posting...

Successful
execution
posting...

Unsuccessfu
l execution
posting...

Request new
Clarity DB

New Clarity
DB available

Check if hour
download is

running

Hour
download is

running

Check if
download has

finished

Hour
download
finished

Check hour
completeness

Hour
donwload is
not running

Manually start
hour

download

Hour
download
started...

Hour
download not

finished

Hours are
incomplete

Initiation
determinatio
n investment

Determine
realization

investments

Realization
investments
determined

Determine
accruals

investme...

Accruals
investments

n-1...

Determine
accruals

investments n

Accruals
investments
n determined

Determine
accruals
costs n-1

Accruals
costs n-1

determined

Determine
accruals
costs n

Accruals
costs n

determined

Fill out
transistory

cost template

Transistory
cost

template...

Check budget
vs realization

Check journal
entries

Journal
entries

checked

Process
journal
entries

Journal
entries

processed

Adjustments
necessary

Execute
adjustments

Adjustments
executed

Hours are
complete

Adjustments
unnecessary



Lucas O. Meertens - EPC To BPEL Transformations       LV 

 

Determine
hours to rebill

Hours to
rebill

determined

Determine
direct costs

to rebill

Direct costs
to rebill

determined

Determine
product costs

to rebill

Product
costs to rebill
determined

Determine
overhead &

result to rebill

Overhead &
result to
rebill...

Check
preliminary
rebilling...

Preliminary
rebilling

model is...

Send out
preliminary
rebilling...

Preliminary
rebilling

model sent

Preliminary
rebilling

model is...

Adjust
preliminary
rebilling...

Preliminary
rebilling

model is...

Load hours in
CMS

Hour table is
correct

Load costs in
CMS

Cost table is
correct

Update
reporting data

Hours table is
incorrect

Adjust hour
table

Hours table
adjusted

Cost table is
incorrect

Execute
adjustments

2

Journal
entries

adjusted

Master files
adjusted

Error table
adjusted

Reporting
data updated

Create
invoices

Invoices
created

Prepare files
for reporting

Preparation
finished

FMR created

Create FMR

Updated
rebilling

model sent

Update
rebilling
model

Updated
rebilling

model filled

Check
updated
rebilli...

Updated
rebilling
model...

Send out
updated
rebillin...

Updated
rebilling
model...

Adjust
updated
rebilli...

Updated
rebilling
model...



Lucas O. Meertens - EPC To BPEL Transformations       LVI 

Appendix F -  Transformable, modified EPC diagrams 

Modified diagram 8: Prepare 

accounting close 

 

Modified diagram 10: Check 

final hour download 

  

Initiation
accounting

close

Close CMS

CMS Closed

WD-4 7.00hr

Check
execution
posting...

Successful
execution
posting...

Unsuccessfu
l execution
posting...

Request new
Clarity DB

New Clarity
DB available

Check if hour
download is

running

Hour
download is

running

Check if
download has

finished

Hour
download
finished

Check hour
completeness

Hours are
complete

Hour
donwload is
not running

Manually start
hour

download

Hour
download
started...

Hour
download not

finished

Hours are
incomplete



Lucas O. Meertens - EPC To BPEL Transformations       LVII 

Modified diagram 11: 

Preliminary rebilling 

 

Modified diagram 12: Update 

report data 

 

Hours are
complete

Determine
hours to rebill

Hours to
rebill

determined

Adjustments
unnecessary

Determine
direct costs

to rebill

Direct costs
to rebill

determined

Determine
product costs

to rebill

Product
costs to rebill
determined

Determine
overhead &

result to rebill

Overhead &
result to
rebill...

Check
preliminary
rebilling...

Preliminary
rebilling

model is...

Send out
preliminary
rebilling...

Preliminary
rebilling

model sent

Preliminary
rebilling

model is...

Adjust
preliminary
rebilling...

Preliminary
rebilling

model is...

Funciton

Join start

Hours are
complete

Load hours in
CMS

Hour table is
correct

Adjustments
unnecessary

Load costs in
CMS

Cost table is
correct

Update
reporting data

Reporting
data updated

Function

Join start



Lucas O. Meertens - EPC To BPEL Transformations       LVIII 

Modified diagram 9: Determine cost levels 

 

Initiation
determinatio
n investment

Determine
realization

investments

Realization
investments
determined

Determine
accruals

investme...

Accruals
investments

n-1...

Determine
accruals

investments n

Accruals
investments
n determined

CMS Closed

Determine
accruals
costs n-1

Accruals
costs n-1

determined

Determine
accruals
costs n

Accruals
costs n

determined

Fill out
transistory

cost template

Transistory
cost

template...

Check budget
vs realization

Adjustments
unnecessary

Check journal
entries

Journal
entries

checked

Process
journal
entries

Journal
entries

processed

Adjustments
necessary

Execute
adjustments

Adjustments
executed

CMS Closed

Function

JoinStart



Lucas O. Meertens - EPC To BPEL Transformations       LIX 

Unmodified diagram 13: Report 

 
 

Reporting
data updated

Create
invoices

Invoices
created

Prepare files
for reporting

Preparation
finished

FMR created

Create FMR

Updated
rebilling

model sent

Update
rebilling
model

Updated
rebilling

model filled

Check
updated
rebilli...

Updated
rebilling
model...

Send out
updated
rebillin...

Updated
rebilling
model...

Adjust
updated
rebilli...

Updated
rebilling
model...



Lucas O. Meertens - EPC To BPEL Transformations       LX 

Appendix G -  EPC diagrams decomposed from full model 

Top diagram 

 

Initiation
accounting

close

Close CMS

CMS
Closed

Check
journal
entries

Journal
entries

checked

Process
journal
entries

Journal
entries

processed

CMS
Closed 1

CMS
Closed 2

CMS
Closed

Journal
entries

processed



Lucas O. Meertens - EPC To BPEL Transformations       LXI 

Middle diagram 

 

WD-4 7.00hr

Check
execution
posting...

Successful
execution
posting...

Check if hour
download is

running

Hour
download is

running

Check if
download has

finished

Hour
download
finished

Check hour
completeness

Hours are
complete

Hour
donwload is
not running

Manually start
hour

download

Hour
download
started...

Hours are
incomplete

Initiation
determinatio
n investment

Determine
realization

investments

Realization
investments
determined

Determine
accruals

investme...

Accruals
investments

n-1...

Determine
accruals

investments n

Accruals
investments
n determined

Determine
accruals
costs n-1

Accruals
costs n-1

determined

Determine
accruals
costs n

Accruals
costs n

determined

Fill out
transistory

cost template

Transistory
cost

template...

Check budget
vs realization

Adjustments
unnecessary

Journal
entries

processed

Determine
hours to rebill

Hours to
rebill

determined

Determine
direct costs

to rebill

Direct costs
to rebill

determined

Determine
product costs

to rebill

Product
costs to rebill
determined

Load hours
in CMS

Hour table is
correct

Load costs
in CMS

Cost table is
correct

Right to left
bottom

Right to
right bottom

Left to right
bottom

Left to left
bottom

End top

Escalate to
human

CMS
Closed 1

CMS
Closed 2

CMS Closed
Journal
entries

processed

CMS Closed



Lucas O. Meertens - EPC To BPEL Transformations       LXII 

Bottom 

 

Hours to
rebill

determined

Direct costs
to rebill

determined

Product
costs to rebill
determined

Determine
overhead &

result to rebill

Overhead &
result to
rebill...

Check
preliminary

rebilling model

Preliminary
rebilling

model is...

Send out
preliminary
rebilling...

Preliminary
rebilling

model sent

Hour table is
correct

Cost table is
correct

Update
reporting data

Reporting
data updated

Create
invoices

Invoices
created

Prepare files
for reporting

Preparation
finished

FMR created

Create FMR

Updated
rebilling

model sent

Update
rebilling
model

Updated
rebilling

model filled

Check
updated

rebilling model

Updated
rebilling
model...

Send out
updated
rebillin...

Extra End

Function

Right to left
bottom

Right to
right bottom

Hour table is
correct

Cost table is
correct

Left to right
bottom

Left to left
bottom Hours to

rebill
determined

Direct costs
to rebill

determined

Product
costs to rebill
determined


