

Finding a customer specific model driven development
methodology
The CAPE Groep Case

Pieter van de Braak
26-7-2010

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 2 van 81

COLOPHON

Title: Finding a customer specific model driven development methodology

Date: 26-7-2010

Author: P.N. van de Braak

Under supervision of:

CAPE Groep B.V.
Kosteeweg 13
7447 AJ Hellendoorn
Phone: Tel. +31(0)54-8656065
Fax: +31(0)548-656512

Universiteit Twente
Business Information Technology
P.O. box 217
7500 AE Enschede
Phone: +31(0)53-4894995
Fax: +31(0)53-4892159

Graduation committee:

M. Iacob (University of Twente)
M. van Sinderen (University of Twente)
P. Verkroost (CAPE Groep)
R. ter Brugge (CAPE Groep

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 3 van 81

CONTENTS

1. Introduction .. 5

1.1 Background .. 5
1.2 Research context ... 5

1.2.1 CAPE Groep ... 5
1.2.2 Mendix .. 5
1.2.3 Market ... 6

1.3 Reason for research .. 6
1.4 Structure of report ... 7

2. Research design .. 7
2.1 Project charter ... 7
2.2 Problem statement .. 8
2.3 Research goal .. 8
2.4 Research approach ... 8
2.5 Research scope ... 8
2.6 Research questions .. 9
2.7 Structure of research .. 9
2.8 Research method... 9

3. State of the art .. 10
3.1 Software engineering .. 10

3.1.1 Origin of software engineering .. 10
3.2 Models in software engineering ... 11

3.2.1 Model transformations .. 12
3.3 Model driven development ... 13

3.3.1 History of model driven development ... 13
3.3.2 Model driven architecture ... 15

3.4 Software development methods .. 16
3.4.1 Agile development methods... 17
3.4.2 Agile and MDD ... 17

3.5 Contracts .. 17
3.5.1 Applying contracts .. 19
3.5.2 Project triangle .. 21

3.6 Risks and opportunities .. 21
3.6.1 What is risk? .. 22
3.6.2 Uncertainties and risks ... 22
3.6.3 Risk properties .. 23
3.6.4 Risk management .. 24
3.6.5 Risk management process ... 24
3.6.6 Risk identification .. 25
3.6.7 Risk prioritization .. 25
3.6.8 Risk management strategies .. 25

3.7 Project characteristics .. 26
3.7.1 CRM concepts .. 27
3.7.2 Characteristics of customers in Software engineering projects 27
3.7.3 Other characteristics ... 28
3.7.4 Characteristics of the customer in software contracts 29
3.7.5 Concluding ... 29

4. Conceptual Framework ... 33
4.1 Framework Overview .. 33
4.2 Model driven development method ... 35

4.2.1 A base model driven development method .. 35
4.2.2 Overview ... 35
4.2.3 Phases .. 36
4.2.4 Roles and responsibilities .. 40
4.2.5 Parameters of the development method ... 42

4.3 Risk identification .. 43
4.3.1 Business analyst risks .. 44
4.3.2 Tester risks .. 44
4.3.3 Iteration time risks ... 44

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 4 van 81

4.3.4 Location risks .. 44
4.3.5 Initial requirements risks .. 44

4.4 Customer identification .. 45
4.4.1 Conclusion ... 50

4.5 Risk determination .. 50
4.6 Risk Management .. 51

4.6.1 Business cases .. 52
4.6.2 Risk management strategies .. 52
4.6.3 Conclusion ... 53

4.7 Selecting a suitable contract .. 53
4.7.1 Agile software development contract ... 54
4.7.2 Choosing a contract type ... 55
4.7.3 Conclusion ... 56

5. Validation .. 57
5.1 Internal and external validity .. 57
5.2 Validation approach .. 57

5.2.1 Validation through illustration ... 57
5.2.2 Validation through experts ... 57

5.3 Validation process ... 57
5.4 Results .. 58

5.4.1 General results .. 58
5.4.2 In depth results .. 58

5.5 Recommendations ... Fout! Bladwijzer niet gedefinieerd.
6. Conclusion & Recommendations .. 62
Appendices ... 68
Appendix A: Software manifesto principles .. 69
Appendix B: Agile methods .. 70
Appendix C: Critical success factors in agile projects .. 72
Appendix D: Interview ... 74

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 5 van 81

1. INTRODUCTION
The goal of this first chapter is to create a clear picture of the context in which this research has been
conducted and how it came to be. Paragraph 1.1 shortly describes the background of the problem
which is then followed up by paragraph 1.2 that describes the context of the research then paragraph
1.3 will describe the reason for this research and 1.4 gives an overview of how this report is
structured.

1.1 Background

Software development has been a field of discussion ever since the introduction of it. There have
been many different methodologies and silver bullets that claimed to reduce risk, cost and time of the
projects. For some this was true however, as technology is constantly growing, new methodologies
are required to fully reap the benefits of these new technologies.

One of the new technologies that has been introduced in the past 10 years is model driven
engineering. Model driven engineering has had a rough start, but the last few years it has seen large
growth. Model driven engineering is the development of software based on the use of models.
Spurred by the business side who require better fitting and new software, at a faster pace,
programmers use models that are more easily understood by the business than programming code.
Model driven engineering has proven that it can provide software much faster than a classical coding
project. Practice shows that model driven engineering can not only provide software on a quicker
pace but that it also allows for easy feedback to the clients making it more efficient. This however
implies that it requires a different approach as the majority of the effort now is placed in the designing
(modelling) of an application rather than coding it. How can this new technique be best supported by a
development methodology and what influences this?

Software development methodologies can help to structure the development, making it more efficient.
But customers can be a nasty barrier that has to be overtaken. Customers sometimes choose the
opposite way of what is recommended and thus it requires adaptation from the developer to facilitate
a successful project.

In this thesis we conduct research to finding and aligning a software development methodology with
the customer that can utilize the advantages of model driven engineering.

1.2 Research context

1.2.1 CAPE Groep

This research takes place at CAPE Groep in Enschede, the Netherlands. CAPE Groep is an advisory
company which operates in the domains of construction, transportation and logistics and naval
construction. CAPE Groep consists of two divisions: CAPE Consulting and CAPE System
Integrations.

CAPE Consulting mainly focuses its effort on advising companies during the selection of new
software but it also supports companies during the implementation of software, does process
optimizations and deals with project management. They position themselves between software
suppliers and the customer and support the implementation from start till end.

CAPE System Integrations provides integration services ranging from board computers to ERP
systems. They provide integration of existing systems with new or with old software. This is done on
basis of off-the-shelve before custom made. However if no fitting solution is available on the market
they also play the role of application supplier and provide their own solution. Since 2007 CAPE Groep
started to build their software solutions based on the Mendix platform. Mendix is a software platform
which is provided by the equally named company.

1.2.2 Mendix

Mendix was founded in 2005 and started as a spin-off from the Technical University of Delft and the
Erasmus University of Rotterdam. The name Mendix comes from the verb „to mend‟: “To repair, to

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 6 van 81

restore, to improve and to correct”. Their goal is to improve business applications by making it much
easier to measure, extend, integrate, build and adapt business processes.

Mendix provides a model-driven enterprise application platform that enables business analysts to
build service-oriented business applications that can be integrated and adapted in many existing IT &
business environment. Key benefits are increased flexibility, accelerated application delivery and
reduced complexity. Mendix positions itself as a provider of a software factory. They do undertake
software projects of their own but they try to keep this to a minimum.[1]

1.2.3 Market

As said earlier CAPE Groep operates in three different markets: The construction, transportation and
logistics, and naval construction market. However, for this research we focus on their main market
which is transportation and logistics. About 80% of all projects of CAPE Groep have their roots in the
transportation and logistics market. Figure 1 shows the positions of CAPE Groep and Mendix, in the
transportation and logistics market.

Figure 1: Market situation

1.3 Reason for research

A research thesis is always structured around a main problem. A problem is defined as a gap
between experience and desire of a stakeholder. This means that a problem can be seen as a
difference between what is desired and what is reality [2]

In 2007 CAPE Groep started with developing their own software solutions. Two example projects that
will be used in this thesis are the order entry portal of HST and the Board computer portal at
Mammoet Road cargo. Both projects were model driven development projects in which CAPE applied
the Mendix platform and in both projects CAPE Groep experienced some lag and delay because of
discordance with the customer on the form of contract. Furthermore, CAPE Groep noticed that
applying the same development method with different customers lead to varying results. These
varying results lead to the demand for a development methodology that could be adapted to the
customer. CAPE Groep believes that if they align their development methodology better with the
customers their projects will require less effort to produce the same outcome.

CAPE Groep is interested in how their development methodology affects the development time
among different customers and how different types of contract affect development. So how does the

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 7 van 81

communication, the development method and the contract between the developer and customer
influence development? And how can this be improved?

Among other things this research makes use of the practical experience derived from already finished
projects at CAPE Groep. In these projects we search for occurrences where influence of the customer
is exerted on CAPE Groep and the development process. However, not only the occurrence itself is
important but also the causes behind it are of paramount importance, because knowing why and how
a customer reacts to a certain situation allows for timely interaction and can reduce the risk of
annoyance both at the side of the customer and the project developer. After all, an ounce of
prevention is worth a pound of cure.

This research is conducted in the context of model driven development.

1.4 Structure of report
This report is structured around six chapters. This chapter provides a small summary of the problems
that are present and tries to explain the reason for this research. Chapter two describes the structure
behind this research by identifying the process that is used during the research and by clarifying the
research questions. In the following chapter the theory and background information, that was required
to perform this research, is fully discussed. Among others are the topics: Software development,
Model driven development, Development methods, Customers in software development and
Contracts. All of these topics are combined in chapter four to create the framework. This framework is
validated in chapter five, which discusses the framework among several experts from CAPE Groep.
Finally chapter six concludes this research with conclusions and recommendations for future
research.

2. RESEARCH DESIGN
This chapter will further elaborate on the research question that is answered within this research.
Paragraph 2.1 will introduce the project charter that is the charter in which this thesis will conduct its
research. Then paragraph 2.2 will discuss the problem at hand, followed up by the project goal and
scope. Then as last the research question will be summed up and a structure of this paper is made to
show what subjects are covered in which chapter.

2.1 Project charter

According to the CHAOS research from Standish Group there are many reasons as to why software
projects fail or exceed their budget, the most important being lack of executive support. However, in
their top 10 they also include the formal methodology on the 8

th
 place. They state that using a formal

methodology can increase the chance of success by 16%. This shows that, although not the most
important aspect, having a formal development methodology significantly increases the chance of
bringing a project to a successful end[3].

As said in the introduction, a good methodology helps structuring the overall process of the project
and ensures that fewer mistakes are made. Mistakes such as bad testing of software or
miscommunication due to bad specification. To reduce these mistakes it is important for a software
developer to make a good forecast of the situation to ensure that proper and timely intervention can
be realized. This research will specifically handle the development of software using model driven
technologies and look at the influence of the customer on this process.

Model driven technologies can be more flexible than classical development technologies or pure code
generating technologies. The reason that they are more flexible is that they can produce results faster
and enable easier and quicker communication between customer and developer.

During this research, knowledge of managing and developing with model driven technologies that is
obtained by CAPE Groep in previous projects is used. Within these projects a distinction will be made
between the different project characteristics customer type, contract type and development method.

Possible connections that are found between the development methodologies and the project
characteristics can help with choosing a good fitting development methodology in future projects.
Thus, the research provides insight in the backgrounds of common problems and properties of model
driven software development and will prescribe a project methodology for a given customer. The
research can be seen as a diagnostic research.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 8 van 81

2.2 Problem statement

Based on the project charter the following problem statement has been made:

„How can model driven software projects become more efficient by aligning development with the
customer and contract type‟

2.3 Research goal

The goal of the project is to improve the efficiency of model driven development projects by aligning
the customer with the contract, and the development method.

2.4 Research approach

The main research question will be validated and answering following a few steps. First a literature
study will be conducted concerning model driven development. This will provide the research with its
scope by defining the outer bounds.

Second the literature study will provide the definition of a software development methodology and we
will identify what different development methods are applicable for model driven development.

From here on literature on customers in model driven software projects will provide us with the
insights required to map the customers with the development method.
Finally a study in contracts for software projects is done so that these can be mapped between the
development methods and customer types.

Combined, the above studies will provide the information needed to create a framework that allows
mapping of the customers to the contract and the development method. This framework will be
validated by experts from CAPE Groep.

Misalignment between customer

and the project
Decrease of project efficiency

Budget overflow

Depreciation of relationship

Bad reputation

Bad communication

Ambiguous project incentives

(unknown/conflicting)

Inexperienced Customer

Wrong or ambuigious

requirements

Enforce non fitting contract

structure

Extra meetings

Extra work

Figure 2: Initial problem identification

2.5 Research scope

In order to keep the project manageable within the predefined time limitations it is important to define
what falls within the research but also what falls outside of the scope. We define the outer limits as
follows.

This research only focuses on software development that makes use of model driven development.
Although software development is discussed it is only touched to show how model driven
development evolved.

The project will only focus on problems that occur with the developing of software. Although this might
sometimes overlap with project management it will not focus on general project management.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 9 van 81

2.6 Research questions

1. What types of contracts are used in the software engineering field?
2. How does the customer influence software development projects?
3. How can a development method of MDD be aligned with the customer?
4. How can the efficiency of software projects be measured?

2.7 Structure of research

Figure 3 shows an overall structure that is required for this research to produce its outcomes
according to [4].

The subjects which are contained within the dotted line are the parts that require theoretical research.
The other parts are the practical parts considering the CAPE Groep Case.

2.8 Research method

This paragraph describes which methods are used to obtain the information required to answer the
research questions.

Table 1: Research methods

Research question Approach

What types of contracts are used in the software
engineering field?

Literature study

How does the customer influence software
development projects?

Literature study, MDD conference, Mendix
essentials, unstructured interviews

How can a development method of MDD be
aligned with the customer?

Literature study

How can the efficiency of software projects be
measured?

Literature study, unstructured interviews

Figure 3: Structure of research

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 10 van 81

3. STATE OF THE ART
This chapter will try to give more insight in the terminology of software engineering and model driven
development. It will then continue to explore the used contracts in software engineering followed up
by the influence of customer on a software engineering. These insights form the foundation that is
necessary to understand and support this research. The most important concepts that will be
thoroughly investigated are model driven development, development methods, customer
characteristics and contract types.

3.1 Software engineering

This research aims to increase the efficiency in model driven software development projects. Before
we start, let us first take a look at the definition of software engineering.

According to [5] software development is the set of activities that results in software products.
Software development may include research, new development, modification, reuse, re-engineering,
maintenance, or any other activities that result in software products.

Software development thus not only consists of coding, but also of the planning and managing of
processes that result into software products. When compared against different definitions of software
engineering we find that engineering and development is actually the same thing.

The first definition of software engineering dates back from 1968, given at the first NATO conference
[6]:

Software engineering is the establishment and use of sound engineering principles in order to obtain
economically software that is reliable and works efficiently on real machines.

Some other definitions respectively given by [7-9] are:

Software engineering refers to the disciplined application of engineering, scientific, and mathematical
principles and methods to the economical production of quality software.

(1)The application of a systematic, disciplined, quantifiable approach to the development, operation,
and maintenance of software; that is, the application of engineering to software. (2) The study of
approaches as in (1).

Software engineering is the establishment and use of sound engineering principles and good
management practice, and the evolution of applicable tools and methods, and their use as
appropriate, in order to obtain – within known but adequate resources limitations – software that is of
high quality in an explicitly define sense.

These definitions use rather different words to describe the field. However, the essentials are the
same. Software engineering is a practice that makes use of formal and disciplined methods to
research, create, operate and maintain software. Software engineering can thus be seen as a very
broad field. This is why it is so important that development methods are applied to structure its
content.

3.1.1 Origin of software engineering
As stated earlier software engineering originates from 1968 when at a NATO conference the term was
introduced to gain access to engineering funding. However, software was already being made long
before this conference.

In the early fifties applications were created by hardware providers. The programs were relatively
small and often written by just one person. The problems that had to be solved were mostly of
technical nature. If a program contained any errors, the programmer studied a dump of memory and
then tried to fix the error in the output. Sometimes, the execution of the program would be followed by
binary reading machine registers at the console.[10]

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 11 van 81

In the 1960‟s people started to realize that programming, which was what software engineering was
all about at that time, had become too complex. Programs were becoming very large and it was
increasingly difficult to debug applications. This is why new programming languages were introduced
that made the code more readable, by introducing a higher abstraction level, so that errors were more
easily detected and software was created faster. At the same time, more and more programmers
were involved in software projects.

Software engineering reached a point at which computers were rapidly evolving but software
development wasn‟t. This lead to the software crisis as it was named by Dijkstra in 1972. To head this
crisis again new programming languages were introduced such as FORTRAN, COBOL and ALGOL,
which tried to reduce the complexity of software projects by adding extra structure to the programming
languages. But also programming methods were introduced to structure the development process
and the management of resources. In 1970 Royce talks about a structured and sequential approach
that introduces the phases of requirements elicitation and application design. This model would later
come to be known as the waterfall model. Software development methods will be further discussed in
paragraph 3.4 [11]. With the introduction of the personal computer, the field of information technology
became available to the large public making it grow faster than before.

With the growing availability not only large companies were able to attract IT but also smaller
companies started to use IT. With a rapidly expanding market IT was once again growing abundantly
and with this abundant growth came again more complexity. A great example is the crash of the long-
distance network of AT&T in the United States, which paralyzed some of the world‟s key financial and
business institutions. The costs for this crash were estimated in the hundreds of millions of dollars.
Yet the root cause was tracked to a C program that was missing a “break” statement – a kind of
coding error which is not uncommon at all and very difficult to detect once a program surpasses a
million lines of code [12].
With the growth of IT, applications became larger and larger making it harder to check for these type
of errors. In the book The mythical man-month, Fred Brooks identifies two types of complexity.
Essential complexity: complexity which is inseparable from the problem. A famous example of this in
logistics is the travelling salesman problem. The other type of complexity is accidental complexity,
which is the complexity that is a direct consequence of the resources and methods that are used to
approach a problem. For example, construct a house without the use of bricks and cement or to build
a bridge while only using reed.

Accidental complexity is one of the reasons why models were introduced in the world of software
engineering.

3.2 Models in software engineering
Models are a very broad concept and they have been used in many engineering fields before being
applied to the software engineering field. Examples that are known to most are blueprints of buildings
or charts of landscapes. Over the passing ages these models have been used and have been
perfected to become a reliable tool in construction and engineering. With the introduction and
adaptation to model driven engineering, models start to get a more prominent role in software
engineering and so now their development has started to shift as well. To understand how these
models have developed and what they mean we start by looking at them from a more general
perspective. After all, when applying a model driven development approach, models are used in much
the same way as in other engineering disciplines [13].

A general definition of a model is given by Starfield, a model is a representation of a concept. The
representation is modelled with a purpose. The model purpose is used to abstract the irrelevant
detailsfrom reality [14].

This implies that models are used to model or portray only part of reality to reduce the complexity.
This is supported by Seidewitz who states that a model is an abstraction (also called representation or
denotation) of an object system (also called system under study) expressed in some language. Where
an interpretation of a model gives the meaning of the model relative to the object system [13].

Models thus not only provide the ability to abstract a certain piece of a system under study. But they
can also be interpreted to determine or predict some values of the system under study. It should be
noted that the system under study can also be another model.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 12 van 81

Eventhough there are many different definitions of a model all sources agree that models are used to
abstract and simplify reality. Models provide abstractions of a physical system that allow engineers to
reason about that system by ignoring extraneous details while focusing on the relevant ones.
Hughes created a graphical picture to represent this process shown in Figure 4.

Figure 4: Model denotation demonstration and interpretation

In the figure the object system is the reality that is being denoted by a model. This model can be used
to calculate or to demonstrate values so that it can be updated. At any given time the model can be
interpreted to update the reality that is under observation. For a more precise description of how
modelling works we refer to [13].

Following the above conclusions, models are mostly used as a description of a system under study.
However, in software engineering models have so far been used as a specification rather than
description. For example a weather forecast that provides the current wind speeds at a given location
is a descriptive model. While a model, based on the weather forecast and used to calculate the
optimal route for an airplane, is a specification model. This is also true in software engineering; a
class diagram specifies what the software should look like. It is more often a design rather than
description. Because it requires a lot of effort to keep both the models as the code up to date, the
models are often used to create a general architecture but later discarded and not used anymore.

Within the class diagram example, the implementation of the class diagram depends on the
interpretation of the programmer of the model. With interpretation we mean the mapping of the
model‟s elements to the elements of the system under study such that we can determine the truth
value of statements in the model from the system under study [13]. In other words, the interpretation
of the model gives the model meaning in relation to the system under study.

If this relation is invertible then a representation of the system under study can be made, in which all
statements about the system under study are true under the current mapping. These mappings form a
model of the model-to-model relations and are called model transformations in model driven
development.

3.2.1 Model transformations
The mapping of elements between two different models is called a model transformation. Model
transformations are rules that transform models or transform data from one model to another. It is
also possible that a model transformation transforms a model to executable code. [15] Schmidt
discusses three types of model transformations that are used in model driven development;
refactoring transformations, model-to-model transformations and model-to-code transformations.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 13 van 81

Refactoring transformations reorganize a model based on predefined criteria. In this case the output
is a revision of the original model, called the refactored model. An example could be as simple as
adding prefixes to each element name in a model. These transformation are also called endogenous
transformations or rephrasing transformations [16].

Model-to-model transformations convert information from one model or models to another model or
set of models, typically where the flow of information is across abstraction boundaries. An example
would be the conversion of a java model to an XML model. These transformation are also called
exogenous transformations or translation transformations [16].

Model-to-code transformations are a form of model-to-model transformations, with the distinction that
the code that is generated is not seen as model. This of course depends on the definition of a model.
These transformations convert a model element into a code fragment. Model-to-code transformations
can be developed for nearly any form of programming language or declarative specification. An
example of model-to-code transformations would be the generation of Data Definition Language
(DDL) code from a logical data model expressed as a UML class diagram [[17]].

Another distinction that can be made between the different transformations is horizontal versus
vertical transformations. A horizontal transformation is a transformation where the source and target
models reside at the same abstraction level. Typical examples are refactoring (an endogenous
transformation) and migration (an exogenous transformation). A vertical transformation is a
transformation where the source and target models reside at different abstraction levels. A typical
example is the refinement of a platform independent model, e.g. a UML class diagram, to a platform
specific model, e.g. java classes [18].

Summarizing, model transformations allow models to be supplemented with additional information or
allow the translation of one type of model into another type of model. Model transformations can be
executed manually but also automatically. These automated transformations are the strength behind
model driven development or model driven engineering.

3.3 Model driven development
So far we have only described models and model transformations. Although these are the basis of
model driven development it is still unclear what model driven development is and why it has such a
potential.

Model driven development uses models as a basis rather than code. Even though code is also a
model at some level, code is often not understandable for a lot of business people. Because of this,
there exists a gap between the business analysts and the developers in traditional development.
Model driven development can fill this gap so that communication between business analysts and
developers runs smoother.

3.3.1 History of model driven development
Model driven development or model driven engineering is an approach to application development
that uses the concepts of models and transformation to create an application based on an abstract
representation.

In current software development projects tools are used to automate model transformations but this
wasn‟t always the case as the concept of models is not new to the field of software engineering.

Ever since the beginning of software engineering models have been used to visualize the code and to
help to communicate about the code. There are tools to help clarify functionality and to provide a
better overview to the programmers. Examples of these type of models were use case scenario‟s and
use case diagrams. Later on with the introduction of object oriented languages came models such as
the class diagram and entity relationship diagrams. However because these models were not formally
linked to the code they were often incomplete or inaccurate [12].
Due to lack of this official link it became too much of a burden to keep the models up to date during
development. This led to incompatible models and is the main reason that software models are still
mostly used as a design artefact during early development of the application [12, 19-20].

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 14 van 81

Figure 5: From model based to model driven [21] [22]

Figure 5 shows the progress of the usage of models over time, ranging from none at all, to model
based development, towards full model driven development by use of model execution.

Currently most developers either use only code or sometimes hand sketched models that have no
formal link to the code. They rely solely on their code to model their application in the form of
packages and classes. When displaying their application to the business they tend to form a graphical
model, often done in UML, which is often translated by hand. While this method has proven itself over
the past decade it can be difficult to understand key characteristics of the system as each person has
a different interpretation of non-formal models.[21]

A more formal approach is when developers use the approach of code visualization. As developers
create or analyze an application they often want to visualize the code through some graphical notation
that aids their understanding of the code‟s structure or behaviour. With code visualization a visual
application generates the graphical model based on the code. It may even be possible to manipulate
the graphical model as an alternative to editing the text-based code, so that the visual rendering
becomes a direct representation of the code. Some tools that are able to create these visual
representations or “diagrams” are for example IBM WebSphere Studio and Borland Together. The
later functionality is also called roundtrip engineering. [22]

In this thesis we are especially interested in the newest developments in model driven engineering
called model execution. Rather than in the other situations the model instead of the code is now the
basis of the application. From the model, code is generated that can be executed directly, by run time
environments. This has a great advantage over the more classical forms of software engineering
because now it becomes possible for the business side to model their requirements in a formal way
and store their knowledge in the model. In a way they are programming the application, in some
cases it might even be possible for the business to program an application themselves. This
increases the overall development speed as less interaction between the actual programmers or
technical side and the functional side is required. [15]

A different view on the development of model driven development is presented by Hailpern & Tarr.
They create an analogy between Julius Caesars observation of the Gaul and the types of model
driven developers. They identify three types of model driven developers the sketchers, the
blueprinters and the model programmers.[20]

The sketchers focus on the use of modelling languages to increase and facilitate the understanding of
the code. They do not talk about the code they are going to work on, they just explain the most
important issues by use of models and code the rest themselves.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 15 van 81

Blueprinters are experienced developers that draw out very detailed application designs and create
an analogy between the architecture and application design. They then leave the implementation of
the design up to less experienced designers.

Model programmers also support the use of modelling languages but with executable semantics.
Model programmers can be best identified with roundtrip engineering and model execution. They
make use of executable code either in form of a high-level programming language or by direct
execution of the model. The model-programming camp is typified by the supporters of the object
management group (OMG) vision of a standard called model driven architecture (MDA)[20].

3.3.2 Model driven architecture
Simplistically models are nothing more than an abstract view on something. But with this definition
programming languages such as java and FORTRAN are also a model. While this is true, model
driven development has a different view on models. The Model Driven Architecture guide from the
Object Management Group provided a new definition for a model. The MDA guide states that a model
of a system is a description or specification of that system and its environment for some certain
purpose. A model is often presented as a combination of drawings and text. The text may be in a
modeling language or in a natural language [18].

MDA is a standard for model driven development that was introduced by the object management
group (OMG) in 2000.

It is based around three goals; portability, interoperability and reusability. To achieve these goals they
make a clear distinction between three types of viewpoints: The platform specific viewpoint, platform
independent viewpoint and computation independent viewpoint. These viewpoints provide an
approach that separates the system from the platform on which it runs. Each of these viewpoints can
contain different models that can be linked to each other with help of transformations.

The computation independent viewpoint focuses on the environment of the system, and the
requirements for the system; Models created in the computation independent viewpoint are called
computation independent models or sometimes domain models. These models are made in a
vocabulary that is understandable to the domain experts. This plays an important role in dealing with
the knowledge gap between the domain experts and the design experts.

A computation independent model (CIM) is a view of a system from the computation independent
viewpoint. A CIM does not show details of the structure of systems. A CIM is sometimes called a
domain model and a vocabulary that is familiar to the practitioners of the domain in question is used in
its specification. It is assumed that the primary user of the CIM, the domain practitioner, is not
knowledgeable about the models or artefacts used to realize the functionality for which the
requirements are articulated in the CIM. The CIM plays an important role in bridging the gap between
those that are experts about the domain and its requirements on the one hand, and those that are

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 16 van 81

experts of design and construction of the artefacts that together satisfy the domain requirements on
the other hand.

The platform independent viewpoint focuses on the operation of a system while hiding the details
necessary for a particular platform. A platform independent model shows that part of the complete
specification that does not change from one platform to another. Models from this viewpoint form the
bridge between the business side and the technical side. Where domain experts are able to create
models for the computation independent models, technicians and implementation experts create the
platform independent models. The latter are then transformed to the platform specific models by use
of transformation rules. The platform independent models thus play the role of translator between the
implementation and the requirements specification.

A platform independent view may use a general purpose modelling language, or a language specific
to the area in which the system will be used. A common technique in creating a platform independent
model (PIM) is to use a technology-neutral virtual machine e.g. the java virtual machine. A virtual
machine is a set of parts and services (communications, scheduling, naming, etc.), which are defined
independently of any specific platform and which are realized in platform-specific ways on different
platforms.[18] In the java example, the virtual machine translates the java code to a byte code which
can be read by almost any platform. A virtual machine can be seen as a platform that is running on
top of a platform. Logically a java model is then specific to the java platform. However because the
virtual machine itself is platform independent so is the java code i.e. A→B & B→C then A→C. [18]

The platform specific viewpoint combines the platform independent viewpoint with an additional focus
on the detail of the use of a specific platform by a system. For example the transformation of values
stored in a model to a MYSQL database would require a different platform specific model then a
transformation to a PostgreSQL database [20]. The platform specific model (PSM) thus store
information how the application is stored on a targeted platform. The PSM is the most static model as
it will only change when the platform changes.

In basis the separation of these viewpoints ensure that certain pieces of code are not required to be
rewritten every time a new model is created. This is because the transformations are static and stay
the same, unless the modelling language is unable to model something i.e. if the modeller is unable to
model its needs in the model.

There are commercial tools that fully automate the transformation between the so called platform
specific models and the platform independent models. They provide the user with the ability to create
several CIM‟s and PIM‟s in a domain understandable environment which then translates these models
to run time code via platform independent and platform specific models. Examples of these tools are
Mendix and OLIVANOVA [1, 23]

3.4 Software development methods
Software development is a complex human activity which like many others has to be managed in
order for it to go smoothly[24]. This is one of the reasons why software development methods were
introduced in the early seventies.

Software development methods are methods that structure software projects in the sense that they
provide planning, role distribution and often a format for work products. Because software projects are
so diverse and are also applied in many different fields many different software development methods
have been developed over the years. Examples are the waterfall method, scrum, crystal and rapid
application development. Because software development methods have been developed in many
different fields there is no one clear definition of what a software development method entails.

Software methods were first introduced in the seventies to provide more structure to the large
software projects of that time. The waterfall method, introduced by Royce, is one of the most
renowned[11]. It prescribes several stages that are common for most software projects. Because it
was the first development method that was recognized most developing methodologies show the
same stages. These stages are system requirements, software requirements, analysis, program
design, coding, testing and operations. Even though Royce mentions the possibility of feedback from
one step to another, the purpose of the waterfall model was to capture the concept of the application
up front and to try to create the application based on this specification.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 17 van 81

The waterfall method and evolutions of this method are often referred to as heavyweight, plan-driven
or full life cycle methods. With this we mean, methods which try to specify the whole application up
front [25]. Many researchers believe that these heavy weight methods are too inflexible to cope with
current business environments and point out that this is the main reason why so many projects fail.
They have adopted their view to newly introduced ideas about software engineering [26-27]. This
group is focusing its attention to making software engineering more agile. With an increasing group of
proponents and researchers, agile methods prove to be a promising technique.

3.4.1 Agile development methods
Agile development methods have coexisted next to classical development methods ever since the
mid 80‟s. Qumer and Henderson offer the following definition for the agility of any entity:

„„Agility is a persistent behaviour or ability of a sensitive entity that exhibits flexibility to accommodate
expected or unexpected changes rapidly, follows the shortest time span, uses economical, simple and
quality instruments in a dynamic environment and applies updated prior knowledge and experience to
learn from the internal and external environment.‟‟

Agility thus provides the ability to adapt to unknown changes which is exactly what was missing in the
heavyweight methods. However, agile software development is more. In 2001 a small group of
software practitioners wrote a manifesto on agile software development [26]. This manifesto consists
of twelve principles that form the basis of agile software development and can be found in Appendix
A: Software manifesto principles.

Taken together with the notion of agility and of development method, an agile software development
method can be defined as [25] :

“A software development method is said to be an agile software development method when a method
is people focused, communications-oriented, flexible, (ready to adapt to expected or unexpected
change at any time), speedy (encourages rapid and iterative development of the product in small
releases), lean (focuses on shortening timeframe and cost and on improved quality), responsive
(reacts appropriately to expected and unexpected changes), and learning (focuses on improvement
during and after product development)‟‟.

The main values of agile development are summarized by Warsta as individuals and close
interactions, customer collaboration, iterative development and response to change [28].

3.4.2 Agile and MDD

Model driven development provides the user with an easy way to abstract and visualize an
application. By introducing the three view separation of CIM, PIM and PSM by OMG, it becomes
easier to cross the gap between the IT

3.5 Contracts
This research aims to increase efficiency of a software development projects by aligning the
development method of the software with the preferences and properties of the customer. One of the
most, important components that is used during the development of not just software but in any
development project is the contract.

A contract can be seen as a specific job or work order, often temporary or of fixed duration and
usually governed by a written agreement [29]. In software engineering contracts are usually set up in
the acquisition phase of the project. They are used to setup a project organization [30]. They are
required to reduce the risk of possible friction between the developer and the client(s).

Another reason why contracts are used is to spread the risk between the involved parties in a project.
For example when two projects with exactly the same content are done at two different companies A
and B. Then the project might be more expensive at A than at B because of a different project setting
between the two companies.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 18 van 81

While no contract is the same, Whang concludes that the core of a contract consists of; product
definition, intellectual property protection and payment structure [30].

Figure 6: abstract contract

The product definition includes the description of what is supposed to be delivered at what point
during the project. Software contracts specify the product in great detail. The product definition
specifies the requirements for the software but often also hardware and documentation is mentioned.
The software specification mainly consists of lengthy functional specifications that define the tasks
and input/output of the application. Also it often specifies boundaries like the operating system,
database environments or programming language. Very often a preliminary study has already been
done so that a technical design document and a full requirements document are also attached. If this
hasn‟t been done the contract will also have a list of services that the developer should provide during
the development like, requirements analysis, interviews, design , programming, testing,
implementation, support, training etc.

As software is not a physical entity that can be exchanged between two persons there always exists a
potential danger that disputes will arise over its ownership. Since the same solution (with minor
tweaks) could be used for a different or even competing company. Another example of a possible
danger is a trade secret that might need to be revealed to the developer who also has contact with
direct competitors of the client. To avoid these kinds of disputes contracts also often specify what
content can be used by whom and who owns this knowledge. This part of the contract is called the
intellectual property protection.

The payment structure describes how payments should be done and when they should be made.
Most contracts try to specify an amount that the software is delivered in and couple this amount to a
time to be delivered for a given cost. Some examples of this itemization are software licenses or
service level agreements. Payment schedules are usually tied to the development phase i.e. after the
completion of a certain phase a payment has to be made for that part of the project.

These three contract components together form the contract which can also be seen as a scale of risk
that determines who carries what risk. Often uncertainty is covered by a fee of money, for example, if
the developer does not deliver he will have to pay a fee. Or if the customer provides a very uncertain
business case it could result into a wrong delivery which as Whang states could lead to legal actions
from the customer. Hence that the contract should be structured in such a way that it tries to align the
incentives of the customer with those of the developer.

Often contracts are categorized by their payment method. Turner identifies five different type of
contracts by their payment structure [31].

 Cost plus (Time & materials)

 Re-measurement based on a schedule of rates

 Re-measurement based on a bill of quantities

 Re-measurement based on a bill of materials

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 19 van 81

 Fixed price

However, they state that the project management body of knowledge, an ANSI norm for project
management, only recognizes one type of re-measurement contract which is the re-measurement
based on a schedule of rates. Which is why they only validated their theory with 3 contract types. Both
of these categorizations are found to be too specific, as the difference between these contracts are
not likely to influence the customer behaviour enough to realign the development method. We thus
require a different categorization. Before we further abstract the types of contracts we will first
elaborate and support our hypothesis above by explaining what these contracts entail with an
example of a car garage.

With a cost plus contract, the garage is paid for all incurred costs plus an extra fee to ensure a profit.
The agreed profit margin can be a percentage of the total costs or a fixed margin. In this example it
would mean the garage owner is paid for all hours his repair crew made plus all incurred costs for
materials like paint, glass or bolts and screws.

The re-measurement contract based on a schedule of rates is a contract that, as with the cost plus
contract, calculates the cost afterwards but does this so on an average cost per rate. This means that
hours worked by the repair crew are measured and paid for by a predefined agreed price per, hour
per x amount of screws or bolts.

Re-measurement based on a bill of quantities does not differ much from the re-measurement based
on a schedule of rates. However instead of calculating the price for all hours and materials, an
average price is taken for the size of an activity. For example if a car needs a painting job, the price
could also be calculated by an average price per square meter, no matter what paint is used. So the
price is paid in square meters rather than in litres of paint.

The re-measurement based on a bill of materials is the most abstract of all three re-measurement
contracts. It calculates an average price for a whole activity. For example if you take away your car to
a garage, you can choose to let it have a standard check-up and pay an average price for this check-
up based on the type of car and the size of the car.

The fixed price contract is probably the oldest contract form that is used in software engineering. It
calculates a price upfront for which a definite set of requirements has to be delivered. Thus if you
would like to have a dragon painted on your car it calculates upfront the price of the estimated amount
of paint, the estimated amount of working hours and the estimated amount of time the painting area is
in use. From this a standard price is calculated, all hours, materials and time that is spent over budget
are costs and risk for the garage owner.

3.5.1 Applying contracts

From the perspective of the developer it seems that a time and materials contract would always be
the best choice as it will cover any cost of efficiency decrease. If the garage owner would take twice
as long to paint the car of his client it would still be paid for.

However Turner and Simister provide us with a different perspective on this as they explain using the
transaction cost concept. They define the transaction cost as the cost of planning, adapting and
monitoring task completion. In short the costs of managing the contractual relationship [31].

In a perfect world each contract would provide the same out-turn costs however, as Turner explains
due to opportunism by the developer and human errors from the client this is not the case.

Thus Turner states that the total cost for the customer equals the out-turn cost plus the transaction
costs and that the transaction costs will differ between the different contract types for a certain
product.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 20 van 81

Figure 7: Transaction cost versus uncertainty of product[31]

This idea provides a way to choose a type of contract, namely the cheapest type of contract for the
uncertainty of the product. However there is a flaw in this theory, it assumes that transaction costs
and out-turn costs are not associated and we believe that this wrong. Different types of contract may
incentivize developers differently. For example, if the garage owner had all the time in the world to
paint the dragon he will most likely put more effort into beautifying the picture. Thus providing a better
result.

This is why Turner extends his theory with the concept of goal alignment, stating that: “The most
significant issue to consider when choosing a governance structure for the contract is the need to
achieve goal alignment between the client and contractor. And to reduce the chance and benefit for
opportunism by the client or contractor.” [31] To support this claim he proposes a framework that is
shown in Figure 8.

Uncertainty in the process stands for uncertainty about how to solve the problem, e.g., should paint
be used or can it be done with stickers. Uncertainty of the product is often seen as the responsibility
of the developer.

Uncertainty in the process stands for uncertainty about what the problem is and how it can be solved,
e.g., what will the dragon look like, how large should the dragon be. Uncertainty of the process is
often seen as the responsibility of the customer.

There are 3 points to note:

 Figure 8 is based on the goals and methods matrix from Turner. [32]

 Turner states that it‟s not fair for the contractor to bear the risk of an uncertain process when
applying a fixed price contract in an uncertain process. While indeed this could lead to loss of
profit, the developer could also gain extra profits from this as he could find a more innovative
solution for the process. As turner formulates it “The contract does not need to be fair, it just
needs to be clear”. In other words as long as the developer is aware that the situation is
unclear he can choose for a fixed price contract if he thinks the solution is easy.

 The last note is that the fourth quadrant of high product uncertainty and low process
uncertainty is not researched. This quadrant will be further explored as software contracts
often fall in this quadrant.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 21 van 81

Figure 8: Selection of contract types [31]

3.5.2 Project triangle

The Contract can also be seen as a way to govern the project storing important decisions about the 4
quadrants present in the project triangle presented in Figure 9.

Figure 9: Project triangle

The project triangle was originally introduced as a project management tool covering the three
dimensions of project management; Scope, Cost and Schedule. These three dimensions together
ensure a certain quality to be delivered. The quality is depicted by the surface of the triangle. Thus if
a contract specifies a certain quality of a project than if one of the dimensions changes during the
project for example scope, one of the others will have to change as well. In practice a rule of thumb
prescribes that the customer is allowed to fix two dimensions so that the developer can determine the
third.

3.6 Risks and opportunities
In this thesis research is conducted towards formulating a development approach and a form of
contract based on a type of customer or previous experiences with a customer. As explained in the
previous paragraph a contract is an agreement that is used to establish mechanisms that help to

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 22 van 81

avoid and cope with future conflicts. Conflicts are often the result of a risk that is present in a project.
This is why in this paragraph the concept of risk is further explained.

3.6.1 What is risk?

Everyone is familiar with the famous board game called risk, but what does it mean? What is risk and
how is it involved in software development.

The term risk is commonly known as an undertaking that is dangerous and could result into harm. The
formal definition provided by the Webster dictionary is “expose to a chance of damage or injury”.
Boehm translates this definition into a concept of risk management, namely risk exposure, also called
risk impact or risk factor [33]. He continues by extracting the following risk exposure formula:

Risk exposure = chance on impact * impact on stakeholder

To translate this to our game board, what is the risk of losing an attack from South Africa to
Madagascar? First the chance on loss has to be calculated, e.g. Madagascar has two armies and is
allowed to attack with one and South Africa has one defending army. This leads to a chance of loss of
p= (21/36) =59%. Considering that if Madagascar loses he will lose 50% of his armies the risk
exposure is quite large, and could be even bigger if Central Africa is also threatening Madagascar.

While real time issues are often not as easily specified as our example above, it is often possible to
provide some estimation on the chance that a risk occurs and on the cost that the impact of the risk
has. From the given example we can also conclude that a risk has a certain cause, an effect and a
chance to occur. If the risk example was played by a computer who randomly decides on his moves
the example would look like the following.

To further clarify how this translates to the world of software engineering some examples are
provided.

What is the risk that the business owner of the customer will (effect) leave the project during its
execution because of (cause) illness?

What is the risk that the project will be (effect) delayed when the project owner (cause) leaves the
project team?

3.6.2 Uncertainties and risks

The source of any risk lies in the uncertainties that are present during a software project. Unlike many
people think, an uncertainty is not actually the same thing as a risk. A risk is a possible outcome of an
uncertain situation. For example, the economic stability of a company influences the continuation of
large projects. Whenever a crisis occurs projects can get postponed or cancelled. But, when the
company flourishes it might increase its budget for the project and expand the scope leading to an
opportunity. Uncertainties thus provide two outcomes an opportunity and a risk. To further clarify the
difference between risk and opportunities we provide you the image below.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 23 van 81

Figure 10: uncertainty causes opportunities and risks

In construction projects we also find a clear distinction between risk and opportunities. An example of
an opportunity is: A project experiences delay due to an archaeological find. If during this period of
delay the house prices are rising more than the rate of interest they will increase in value which
increases the value of the project.

However these situations are not very predictable and cannot or should not be taken into account.
Rather than counting on opportunities it is better to try to minimize the risks. In classical software
engineering projects this is done in a similar way. To reduce the risks of software engineering large
plans and descriptions are made and hence the name of plan driven software development.
Reducing risks can also lead to an improved chance of the risk turning into an opportunity.

3.6.3 Risk properties

Risks can be categorized based on their own specific properties. These properties are important
when trying to manage these risks.

Occurrence

This indicates in what period the risk could possibly occur and thus when special attention or counter
measures should be taken. Sometimes these measurements have to be taken upfront in order to
counter the risk. Furthermore, there are different ways that a risk can occur. For example the risk can
be seasonable, meaning that it only occurs during a certain season and can thus be taken into
account. The other extreme is that the risk is instant, which shows no warning upfront and so no
counter measures can be taken.

Dependency
Events that carry certain risks with them are not always independent, they can be mutually
dependant. In total there are three types of dependencies:

 Independent risks

 Mutually exclusive risks (either one of the risks can happen but never together at the same
time)

 Dependant risks
o Additional risks can occur as a result of implemented risk management measures.
o Residual risks can occur after the implementation of risk management measures

when the risk cannot be fully countered. To get a clear picture of what risks are
dependant a cause & effect diagram can be applied.

Impressionableness
This is the measure of influence that the project manager can bring to bear to the source of the risk
based on the four risk management strategies: avoid, transfer, reduce and accept. These strategies
will be further discussed in paragraph 3.6.8. The size of the risk determines the necessity to risk
management while impressionableness determines the possibility to management.

Chance
The likeliness of the risk occurring is quantified by its chance. As shown in paragraph 3.6.1the term
chance can point to both the likeliness of the cause of the risk to take place as to the likeliness of the

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 24 van 81

effects of the risk. To quantify a chance Boehm suggests a three-way distribution. The table below
shows this categorization of Boehm.[33]

Qualitative Quantitative Chance

Frequent P ≥ 0,7 85%

Probable 0,3 ≤ P < 0,7 50%

Improbable P < 0,3 15%

Table 2: Example table of qualitative risks versus quantitative

Impact
Where the property chance describes the likeliness of the risk, the impact pictures the extent of the
consequences of the risk in the project control concepts: time, money, scope and quality. The terms
impact and chance form the basics of risk management as they determine the scope of what to
manage. Risks can be influenced by chancing their chance or their impact.

3.6.4 Risk management
Risk management is part of project management methods and aims at controlling risks that could
possibly occur during the project. There are many different risk management strategies that can occur
at different strategic levels. In this research risk management is used to determine how the developed
method should be adapted. As said in paragraph 3.4 a development method can be seen as a form of
risk management as it is often used out of fear to prevent certain risks.
Risk management is not a new concept, many software developers like Boehm and Talbot have
dedicated their research to software risks and their management. However, still software projects fail
as new techniques such as model driven development are introduced. Furthermore, risks are often
not addressed appropriately.

3.6.5 Risk management process

The process of risk management is a process that never ends during a project. Because a project is
continuously exposed to new risks, a project manager should always be alert.[34] The goal of risk
management is first that it needs to identify and analyze risks up front. This is also the most important
part in our thesis. A second part which plays a lesser role is that a good risk management strategy
also continues to monitor and control the risks. While risks in general will reduce over time, new risks
might show up which if left uncontrolled could destroy a project. According to Boehm Risk
management is build out of 2 phases; risk assessment and risk control. Each of these phases has 3
sub phases. The whole process can be seen in Figure 11.

Figure 11: Risk management phases[34]

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 25 van 81

3.6.6 Risk identification
As said before the first task of risk management is to identify the risks that are present during a
project. This is also emphasized in literature by Well-Stam, who applies the RISMAN method [35].

Risk identification is the mapping of possible risks that may occur within a project. Normally the goal
of this process would be to determine all the risks that could occur during a project. There are several
risk management methods that also incorporate a risk identification phase. It is not uncommon that
risk identification happens multiple times during a project. Some risk identification techniques are:

 Check lists

 Decision driver analysis

 Assumption analysis

 Problem decomposition

 Interviews

 Swat analysis

Each of these methods can reveal risks and can thus be used to identify risks that are present in a
project. However, the risk identification process as a whole is not being questioned in this research.
This research focuses more on finding a development method, thus finding a way how to adept to
known risks rather than identifying these risks. As turner states it, it is important to focus on the top
20% of the risks that together form 80% of the impact.

3.6.7 Risk prioritization
Another important step for our research is risk prioritization. Risk prioritization appoints a value to a
given risk so that each risk can be measured relatively to all other risks. Not all risks have an equal
chance or an equal impact. There are many statistic models that can be applied to calculate risks
however these are left out of scope. Rather we research models that make use of relative scales.

3.6.7.1 Risk exposure
The first model is used by Boehm and uses the two variables risk exposure and risk reduction
leverage. The risk exposure, explained in paragraph 3.6.1, stands for the probability that a certain
impact takes place. Risk reduction leverage is a function that is defined by Risk exposure before –
Risk exposure after / Risk reduction costs. With the risk reduction leverage the usefulness of a certain
risk management solution can be calculated.

However this approach does have its difficulties. One difficulty is the problem of making accurate
estimates of the probability and the loss or impact of a risk. Checklists that make use of a qualitative
measure such as shown in Table 2 provide some help in assessing the probability, but it is clear that
the probability ranges in four categories are far from accurate.[34] As said earlier statistical models
might provide an outcome here, however even Boehm deems these models to difficult and states that
it might just as well be simpler to use a simpler course in which an estimation between 1 and 10 is
given to risk chance and impact.

3.6.7.2 100 dollar bill
Another good model that listens to a relative measure and has had many applications in science is
the 100 dollar bill method. With this method the stakeholders divide a hundred points over the set of
risks. The more points a risk gets the more important that risk is. If the amount of objects to be
evaluated surpasses 20 then the amount of points can be increased to 1000 or 10000, so the points
can be distributed more fair. However, increasing the amount of points should be done with care. Too
many points will cause the stakeholder to be less accurate.[36]

3.6.8 Risk management strategies
When risks have been identified and prioritized, they can be managed by use of the four risk
management strategies. These strategies are Accept, Share, Reduce and Avoid and are discussed
below.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 26 van 81

Figure 12: Risk management strategies

Avoid
Avoidance of risks is aimed at eliminating the uncertainty that is driving the risk. In order to avoid the
uncertainty it first has to be known what is causing this uncertainty. The removal of a cause or
breaking of the cause and effect relation takes away the possibility of the uncertainty of taking effect
and thus the risk as a whole.
An indirect avoiding approach entails that the project is directed along a different route, in which
possible impact of the uncertainty does not matter anymore. For example if a project is planned in a
year that a company has bad results it could be postponed to a later year when the company has
better results. This would avoid the risk of getting a low budget on the development project.
Avoidance is however not always possible as it can lead that main targets are not reached or that new
even bigger risks occur. Risk avoidance always happens before the risk has actually occurred.[35]

Share
The risk strategy of sharing is aimed at sharing or shifting the ownership of the risk to the customer or
to a third party. This strategy can be used for financial risks such as planning exceeding or budget
exceeding. It is important to realize that carrying a risk does have its financial benefits. The party that
carries the risk is likely to be paid a fee in the contract or is compensated in another way. It should be
noted that if risks are shared, all sharing parties should have a risk procedure in case the risk occurs.
Otherwise the risk might ruin the project.
Examples of risk sharing are the risks of additional travelling costs that are paid by the customer. Or
the risk of when a party exceeds a delivery deadline because of external influences.
Risk sharing is usually part of a fixed price contract as in a time & materials contract almost all risks
are carried by the customer.

Reduce
In practice most risks cannot be avoided or shared with other parties this is why reducing risk is the
most applied risk management strategy. It is a strategy that is aimed to contain the impact or the
chance of a risk so that its effects are reduced. The development method that is introduced in our
framework in paragraph 4.1 is mostly based on the reduction of development risks by adapting the
development method. Reduction can take place both before the risk takes place as after it has
occurred.

Accept
After all risks have been covered there are some risks left that are either too improbable or just have
no impact. These risks are to be accepted, no adaption or change is done. However, these risks
should still be contained by identifying them early to ensure that they do not get out of control in case
of occurring. If the impact of a risk might become larger than initially thought additional measure are
required. When accepting risks it is important to have a risk aware culture and a risk management
program at hand. [35]

3.7 Project characteristics

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 27 van 81

Every software project is unique in a way that it has a different combination of characteristics like size,
customer experience, requirements ambiguity. The variation of these characteristics is what this
research is about, in this paragraph we will explore the characteristics of the customer that might
influence the development process or the form of contract.

3.7.1 CRM concepts
As with any engineering product the customers form the backbone of a software development project.
They provide the developer with requirements on the to be developed system and often more.
However, what fits best to a certain customer is not always clear. How can one recognize a customer
from another and which properties and wishes from a customer have affect on the development of
software and the contract. To achieve this some concepts of customer relationship management are
applied. Galgreath en Rogers defined a customer relationship leadership model in which they show
how management can facilitate the implementation of customer relationship management (CRM)
concepts. They define CRM as follows:

“Activities a business performs to identify, qualify, acquire, develop and retain increasingly loyal and
profitable customers by delivering the right product or service, to the right customer, through the right
channel, at the right time and the right cost. CRM integrates sales, marketing, service, enterprise
resource planning and supply-chain management functions through business process automation,
technology solutions, and information resources to maximize each customer contact. CRM facilitates
relationships among enterprises, their customers, business partners, suppliers, and employees.”[37]

In this context we are especially interested in the identification of a customer which can later be used
to qualify them for a certain form of contract and development method. To identify the customer a
customer profile can be used. A customer profile is a set of data describing specific customer
characteristics.[38] Hence that it is possible to have multiple profiles on different data of the same
customer. To find a fitting contract and MDD project method a customer profile can be used to identify
and then qualify the customer.

3.7.2 Characteristics of customers in Software engineering projects
To identify a customer a set of characteristics is needed on which the customer can be identified. To
determine what characteristics are important we need to take a step back and first look at what is
important for a software project.

To define what is important for a software project we take a look at the literature of success criteria.
Critical success factors for a software project provide the most important aspects that are required for
a successful project. Literature formulates multiple factors that can influence the success of a project.

The Standish Group published a report in 1994 called the CHAOS report that among other things
identifies the 10 main success factors in software engineering. This report was updated in 2000 and
contained the following factors: Executive support, user involvement, experienced project manager,
clear business objectives, minimized scope, standard software infrastructure, firm basic requirements,
formal methodology, reliable estimates, other [3].

A comparable research was conducted by Tsun Chow and Dac-Boo who analyzed critical success
factors in agile projects [39]. Because model driven development seems much better fitted with agile
development methods then with plan driven life cycles, we have chosen to apply the list of Chow.

They identified five categories of success factors namely organizational, people, process, technical
and project. Because this research is focused on the customer, only the categories people and
organizational will be used. Table 3 shows all failure and success factors in both categories. A full list
of all success factors can be found in appendix C.

Category Failure factors

Organizational

 Lack of executive sponsorship

 Lack of management commitment

 Organizational culture too traditional

 Organizational culture too political

 Organizational size too large

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 28 van 81

 Lack of agile logistical arrangements

People

 Lack of necessary skill-set

 Lack of project management competence

 Lack of team work

 Resistance from groups or individuals

 Bad customer relationship

Category Success factors

Organizational Strong executive support

 Committed management team

 Cooperative organizational culture instead of
hierarchal

 Oral culture placing high value on face-to-face
communication

 Organizations where agile methodology is
universally accepted

 Collocation of the whole team

 Facility with proper agile-style work environment

 Reward system appropriate for agile

People

 Team members with high competence and
expertise

 Team members with great motivation

 Managers knowledgeable in agile processes

 Managers who have light-touch or adaptive
management style

 Coherent, self-organizing teamwork

 Good customer relationship

Table 3: Success and failure factors[39] [15]

The success factors that the customer introduces to a project can be used to identify a customer.
When one of these factors is not present it introduces an uncertainty to the project. How to deal with
this uncertainty will be discussed in chapter 3.6.4.

3.7.3 Other characteristics
We identified other characteristics that can be used to identify a customer in a software engineering
project however, they are more abstract and hard to measure or they fall into a different area of
research. Because of this they will only be mentioned for the sake of completeness.

3.7.3.1 Customer Incentives
Whenever a customer initiates a software project, he has a certain goal in mind. That is the client had
his reason to pursue this project and to let the developer develop it. This could be simply because the
developer is the cheapest or because it is a well known developer or because the developer develops
in the neighbourhood. Whatever the reason to pursue the project is, It is not uncommon for these
goals to be opposite between the developer and the customer e.g. the developer wants to earn as
much money as possible where the customer wants to pay as little as possible. Whenever these
incentives of both parties are not clearly stated it becomes impossible to reach the optimal agreement
i.e. contract. We omitted these incentives from our research as we find them too hard to measure. It is
near to impossible to know the true incentives of a customer for conducting a project under a certain
condition. And even if it is known it is even harder to check whether or not the known incentive is true.
In a small book called Getting to YES, Roger Fisher explains this phenomena and provides some tips
on how to cope with aligning incentives during negotiations[40].

3.7.3.2 Customer perceptions
Other aspects of a customer that can influence the development of software are the psychological
senses of an individual. Usually in any projects, software projects not excluded, a developer or builder
deals with a contact person which has the following sense that he uses to interpret the progress of the
project. These senses are the following:

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 29 van 81

- Visual memories (visualisation)
- Auditory memories (sound)
- Kinaesthetic memories (experiences)
- Olfactory memories (smells)
- Gustatory memories (taste)

Although most of these can affect the judgement of the contact person, we choose to ignore them as
viable input parameters in our thesis. We have chosen to leave these out of scope as we find them
too hard to measure and because they form more of a psychological profile of a person.

3.7.4 Characteristics of the customer in software contracts
Besides the influence of the customer on the development of software we also want to investigate
how the customer influences the choice of contract during a software project and which contract fits
best with a certain customer.
Gopal conducted research to the likeliness of a fixed price or time and materials contract in a offshore
software project outsourcing [41]. Although software outsourcing does provide its own endeavours we
do think that some of their conclusions are applicable in this research. They made an eleven fold of
hypothesis of which the following were found true:

 Perceptions of higher client management information system (MIS) experience are associated
with higher probabilities of a fixed price contract.

 Larger clients are associated with higher probabilities of a fixed price contract

 Perceptions of greater project importance to the client are associated with higher probabilities
of a time and materials contract.

From these, three important client characteristics can be distilled that can be used in determining the
type of contract. These are client experience, client size and clients interest in project.

3.7.5 Concluding
From the text above we can conclude the following. In software project there are multiple properties of
a customer that show an influence on a software development contract and project. These factors can
be used indirectly to determine what kind of customer a developer is dealing with. They are split into
two different categories, organizational and people, which stand for the organization as a whole and
the people that work for the organization, usually the contact persons or the persons that are part of
the development team.

Because the failure and success factors are often opposite to each other they listen to one common
property, this allows the two factors to be taken together. When adding the customer characteristics
for a contract to the list we get Table 4.

Category Properties

Organizational

 Management support

 Organizational structure

 Organizational culture

 Organizational size

 Agile logistical arrangements

 Interest in project

People

 People skill set

 Customer relationship

 Resistance from groups or individuals

Table 4: Customer properties

Management support

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 30 van 81

Management support is often trumped as one of the most important success factor in information
system implementation. Even though it seems a very important point in implementation, literature is
not univocal about its meaning and its influence on the implementation.

Upper management support is simply the support that the upper management shows for the
implementation of a certain solution or application. It seems apparent that upper management is
supporting a project, otherwise it probably would not have been initiated in the first place. This is
usually the case in small companies where upper management is always involved with most projects
or at least with the financial flows in the company. However, in medium to large companies this
becomes less apparent. KPMG shows in a literature study that involvement of upper management
together with a solid business case, is one of the foundations for good management support.[42]

Two important effects of management support on a project are the selection of a project team and on
the financial support of a project. Because on a lower level the developer needs to confer often with
his client, it can lead to failure if he is speaking with the wrong business owner. This in turn can lead
to wrong requirements ultimately leading to a non fitting software solution.
Furthermore, the executives often provide the funds that are required for the project. If they do not
support the project they might not provide all necessary funding for the developer to realise the
project as customer might want it. Or upper management might force the developer into a fixed price
contract, for the developer it is thus important to know whether or not they have management support
at their client. The Chaos report also marked this as the most important success factor in software
projects [3].

Organizational structure
The organizational structure of a company is a hierarchy that mainly consist of managerial entities or
layers that are present in a company. It is often depicted as an organizational chart which can display
many things ranging from managers to departments. In this research however we are only interested
in the flatness of the structure. With the flatness we mean the amount of managers that are involved
with the authorization of decision taking but are not directly involved in the project. We find that the
organizational structure can either be flat or hierarchical. As model driven development is about
having a lot of interaction, the development is slowed down by large hierarchical structures. When a
large hierarchical structure is present it usually leads to bureaucratic decision making which can
influence the speed of the development cycle.
For example, when a request for change (RFC) is ordered by the customer, the developer will reply
with the cost of the change. If the customer has a very bureaucratic style of governance than the
contact person will first have to query his superior which will have to query his superior, before it can
be approved.

Organizational culture
Culture is a very broad concept and while it seems logical that it might influence the development
approach of a developer in some way it is not evident how the culture influences the development. As
Nerur remarks that the Organizational culture has a big impact on the social structure of
organizations, which in turn influences the behaviour and actions of people. They also state that the
organizational culture has considerable influence on the decision-making process, problem-solving
strategies, innovative practices, information filtering, social negotiations, relationships, and planning
and control mechanisms. Agile methods depend on quick, responsive and cooperative teams where
face-to-face communication will often be preferred over other means of communication [43] , thus the
way the customer communicates within its own organization influences the development.

Agile logistical arrangements
Model driven development is applied best when the customer and developer have a high level of
cooperation. As mentioned before this can be achieved by iterative development which requires good
communication and many confers between the developer and the customer. This requires that the
customer and the developer need to be able to confer at the location of the customer as on the
location of the developer. Examples of good agile logistical arrangements are conference rooms and
open spaces where the whole team can work together to create a fitting solution. The agile
arrangements also include network limitations and limitations to employees throughout the building.

Interest in project

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 31 van 81

During the bargaining process over the contract the choice of contract depends on multiple inputs.
One of these is the relative bargaining power of the two parties. This decreases for the customer
when the developer knows the amount of interest that the customer has in the project. Assuming that
the parties are risk averse, a high interest would increase the chance of a times and material contract.

However, this situation assumes that the parties are always as much risk averse as possible. Rather
than applying a contract that might actually fit best to a customer it assumes that the developer will
always lobby for a times and materials contract which might not be true in all cases.

Organizational size
Large organizations often have a hierarchical structure and traditionally a more bureaucratic
governance structure. But more over if the client is much bigger than the developer, it will have a lot
more to bring to the table. Meaning that when contractual negotiations start, the developer is often
pushed into a corner where they are forced to choose for a fixed price contract. Even though fixed
price is not necessarily a bad thing, applying a contract without awareness of its consequences can
prove fatal to the customer relationship and to the project. What we understand under a fixed price
project and what its consequences are, is discussed in paragraph 3.5.

In comparison to smaller companies, large companies often have a medium to high maturity in
software development in general. This would imply that large companies often perform better during a
software development project. However they also have some values that contradict with the main
drive behind agile development. As mentioned in the agile manifesto, being agile is all about being
quick and responsive to the customer which of course is hard to achieve when you need to confer
every week with 250 people. This is also concluded by Alistar and Cockburn who conclude that “agile
development is more difficult for larger teams”, but they do cite occasional successful projects with
over 250 people involved showing that the size is not critical to the development.[44]

People skill set
The skill set of the people at the customer who are working with the developer is a very important
characteristic, and probably one of the most hardest to measure because it can be measured from
many different angles. Among others some examples are the experience with MDD projects,
experience with requirements analysis and experience with teams.

Because agile and model driven development is focused on collaboration with the customer and
working in teams it is important that the people that participate in the project are experienced enough.
While people can of course be involved in a project without actively participating, i.e. interviewed or
provide requirements.

Tightly coupled with the customer culture, if the contact person or the person who is part of the
developer team is known with multi disciplinary teams he is likely to perform and communicate better.
This means that more responsibility can be delegated towards the customer.

Customer relationship
Customer relationships provide a lot of input to the way development takes place. For example if the
customer has a good relation with the developer communication is likely to go a lot smoother. The
opposite however is also true, if a customer and a developer cannot get along or have large
conflicting interests, cooperation and communication between the two parties will be stiff.

But the customer relationship also tells us something about how known the customer and his
processes are. If the customer is totally new his processes are likely to be unknown as well. CAPE
Groep argues however, that whenever a customer performs in the same markets as other customers
they do have knowledge about their processes, or at least about their domain. Thus it is not only
important if the customer is known, but also if the market the customer operates in is known.

Resistance from groups or individuals
Resistance from groups or individuals is a property that occurs often during big implementations or
organizational changes. Whether these are small changes or big ones, as soon as a person feels
threatened he might show resistance to the change. However, Dent argues that the resistance that
these people show is not against the change perse. People can show resistance to loss of status or
loss of job or loss of pay, which is something completely different than the change on its own. He

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 32 van 81

states that “Strategies for overcoming resistance to change are offered regardless of the change
intended.” And that to overcome this, developers should apply targeted actions. “If the anticipated
change will result in the loss of status by some employees, then the field must research and develop
strategies for dealing with the loss of status. Likewise, if the change will result in the loss of jobs, that
issue must be dealt with. Labelling these difficult problems as resistance to change only impedes the
change effort.” [45] If this resistance is not challenged it could lead to the loss of productivity and
delay in the development or even worse.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 33 van 81

4. CONCEPTUAL FRAMEWORK
This chapter proposes a conceptual framework based on the research and state of the art literature
provided in chapter 3. The framework is validated and where necessary adapted based on a
validation that will be further discussed in chapter 5.

This chapter will combine the knowledge found in chapter three into a framework that can be used to
align the development method with the customer and the type of contract. First an overview of the
framework is presented. Then, the various steps that are present in the framework are described and
explained.

4.1 Framework Overview
This paragraph will provide an overview of the process of the framework that has been derived from
experience at CAPE Groep.
The goal of this thesis as discussed in chapter 2 is to improve the efficiency of model driven
development projects by aligning the development method with the customer and the contract. In
order to achieve this, the process of setting up a development method was derived from experience of
CAPE Group. Figure 13 displays the different steps that are taken to determine how to set up the
development method and the contract.

Process 2:

Risk identification

Process 3:

Choose risk

management strategy

Process 4:

Adapt base method

Process 5:

Determine contract

Process 1:

Customer classification

Figure 13: Framework processes

The framework starts with identifying a customer and determining their risk profile. Based on his own
business case the developer has to determine how to deal with those risks. When the developer
knows how to deal with each risk he can determine how to adapt the development method. The last
step is to determine a favourite contract type for the developer that fits the risks of the customer.

As shown in Figure 14, each process step is a transformation of one or more pieces of input. How
each of these inputs is transformed will be discussed per process separately. Most of input of each
process has been developed during this research. However, the methods to derive the data for these
inputs have been proven in previous researches.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 34 van 81

Model driven development method framework

Input Proces Output

Risk identification

Base development

method
Risk profile

Choose risk

management

strategy

Customer profile

Risk management

strategy

Determine

adaption's to

method

Development

method

Determine

contract

Remaining risks

Contract

Business case

Customer

classification

Figure 14: Framework overview

The first step in the framework is the identification of the customer. This is done based on a set of
customer characteristics that have been merged during this research. With the help of these
characteristics a developer can sketch a profile that should represent a given customer. The method
does not introduce customer classes as we think that customers are too diverse to be classified by
standard classes.

Based on the customer profile the developer can identify the influence on a set of risks that are
present during a model driven development project that uses the base model driven development
method. The base model driven development method is a development method that functions as a
start off point. It has several parameters that are left open to differ between customers. The risks that
are identified all apply to the base method and can be classified by means of their impact and chance
on occurrence. There is no need to be exact for each risk as long as they are relative to each other.
When the developer has identified his risks he can determine which risks are to be addressed by the
development method and which don‟t. Based on the risk value that each risk has the developer can
determine how to fill in each parameter in the model driven development method. This leaves some
residual risks that can be taken into account during the picking of a right form of contract or by other
risk management strategies.

Because no project is the same the developer needs to determine how to deal with each risk
separately. The method supports this by suggesting four risk management strategies out of which the
developer can choose. A driver for the developer to pick a strategy for each risk is his business case.
The business case describes the reason and goal for the project and is thus a good direction of how

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 35 van 81

the developer wants to develop. The method does not support a risk management measure for each
type of risk, these will have determined in future research.

After the risk management strategy has been determined and the development method has been
chosen a form of contract that fits both can be selected. First 3 new types of contract are explored
that are applicable for model driven development projects.

4.2 Model driven development method
Before the processes are explained we first explore the basis of this framework, the model driven
development method. This method will be used as a start off point to which the risks that the customer
introduces to the project. The method is based on the agile mindset but it also incorporates the
possibility to change to a less agile or more rigid approach.

4.2.1 A base model driven development method
Model driven development is still in its early phases and while many projects have adopted a form of
model driven development, no agile approach to model driven development could be found. Thus a
base development method is introduced based upon existing practices. First an identification of the
whole development process is made based on the MDA guide. These processes are supplemented
with roles and work products that need to be present in an agile approach. The base development
method assumes some basic techniques that are always need to be present in a model driven
development project.

4.2.2 Overview
A development method is a very abstract concept that can filled in many different ways. It can provide
a standard project setup or a large decision tree specifying each thought of scenario. This
development method is based on the agile mindset which is about specifying less and thus only
provides the layout of the development trajectory. It does not provide any details on how a work
product should look like or what methods are best applied to get the best results.

Figure 15 shows the model driven development method that we propose. It is based upon the agile
development methods XP, Scrum and Crystal [25, 28]. The MDA guide is used for its work products in
MDD projects and for the activities required to run a model driven project [18]. The roles that are
required during an MDD process are gathered from experience from CAPE Groep and from the agile
methods.

Figure 15: Model driven development method

Presumptions and common practices
The development method is based on techniques and practices common to model driven
development and agile development. Agile methods are based around the idea that by doing fast
deliveries mistakes are detected early and that by close collaboration requirements and
communication are improved.

When comparing the most used agile methods, they all show a development trajectory that consists
of roughly 3 phases: an initial identification phase, a development phase and a closing phase. Each
development starts with an initial identification of requirements that is expanded during the project.
Model driven development can augment this process by storing the requirements directly in a CIM. In
our development method we presume that each MDD project has a way of storing requirements in

Domain analysis

Update modelling languages

Create model transformations

Meta models

Model transformations

Preperation phase

Gather initial requirements

Create initial architecture

CIM

PIM

Plan development

Development planning

Pre-development phase

Plan iteration

Iteration planning

Analysis Design Testing

PIMCIM Test cases

Bug foundChange in requirements

Development iteration

Customer acceptance

Start new iteration

New/Change
requirements

No new requirements

Development phase

Maintenance phase

Interest in project
Implementation

System testing

Implementation phase

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 36 van 81

one or more models. After the initial identification of the requirements the development cycle starts. In
Scrum and XP these cycles are called pair programming iteration and sprint [27]. At the end of each
development cycle the application is presented to the customer who can then accept an
implementation or choose to continue the development in a new iteration. Agile development is also
known as iterative development for this reason.
When an iteration is complete, the product is judged and accepted by the customer. If the product is
deemed complete it will enter the implementation phase. It should be noted that a product does not
necessarily have to be the whole project, rather the project can be implemented in multiple sub
products. Both XP and Scrum press the importance of implementing software projects in multiple
phases. This is also supported by the agile principle that states that “Working software is the primary
measure of progress.”

 In addition to the development of the application, the development of the models needs to be
managed as well. This is why an additional phases next to the three standard phases has been
added, the preparation phase.

Below a full description of all phases is given. Each phase has a certain amount of activities in which
an actor with the accompanying role participates. Thus each phase has actors with roles, activities
and responsibilities. Furthermore, each activity can produce one or more deliverables.

4.2.3 Phases
This paragraph will explore all phases that are present in the model driven development method.

Preparation phase
When a developer starts out with a model driven project he will require a type of modelling language,
or a tool to model in. We assume that the developer is already in possession of such a language and
thus our development method does not describe how one should create a language. However,
modelling languages can get outdated or unfit for a certain solution and thus do require maintenance,
which is what is done in the preparation phase.

Models, which are the basis of model driven development, are modelled in a modelling language. This
modelling language is the limit of that which can be modelled in a model. Because models are applied
to abstract part of a reality, they are often limited and only allow to model that part of reality. For
example, a model with only rooms and doors cannot be used to model a bridge. Thus a certain model
is applicable to a certain domain. Even a general modelling language such as UML can sometimes be
insufficient which is why it will need to be extended. Some criticize that UML is to general which
makes it unfit for specialized solutions. However in our method we do not care whether the modellers
use UML, DSL factories or another form of modelling. Figure 16 shows the layout of the preparation
phase. It starts with a domain analysis in which the modelling languages is analysed whether or not it
is sufficient or not. If the modelling language is not sufficient enough to create the application, the
developer will require updating its Meta models and model transformation definitions. When these are
up to date the developer can continue to the pre development phase if the models cannot be updated
in time or are not able to model the needs of the customer the developer has to decide whether or not
to continue with the project.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 37 van 81

Figure 16: Preparation phase

Domain analysis
During the domain analysis the modellers and business analysts determine whether the existing
modelling languages are sufficient enough to model the application. If not is not so, the modellers will
have to work together with the DSL expert to create a new modelling language which is sufficient for
creating the application.

Update modelling languages
When the modelling languages are not sufficient enough the modellers will have to specify their exact
needs as to why the current modelling languages are not sufficient and what they would like to have
added. The DSL expert can then update the modelling languages accordingly.

Update model transformations
After the modelling languages have been updated the transformations between the different modelling
languages will have to be updated by the DSL expert. These transformations ensure that the new
functionality is linked between the different modelling languages.

Pre development
After a project is acquired and it is certain that the modelling languages are able to model the needs
of the customer, the development trajectory needs to be planned. An overall planning is made to map
out the outlines of the development trajectory. How this planning is made should be determined by the
developer, this will not be discussed in this thesis.

Then the initial requirements need to be mapped in a computational independent model(s). It is
possible to have multiple models to store the requirements in. This will be done by the business
analysts so that the model architect can then create an initial architecture based on the requirements.
Existing agile methods such as Scrum and XP allow the customer to update the CIM equivalents.
They have a continuous process that keeps updating the requirements. In our method this task is
handled by the computational independent models that store the requirements and can be accessed
at any time. The task of filling the initial requirements models can be executed by both customer as
the developer. However because the modelling does require some modelling experience this
introduces a risk to the project. This risk will be addressed later in paragraph 4.3.

Domain analysis

Update modelling languages

Create model transformations

Meta models

Model transformations

Preperation phase

Interest in project

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 38 van 81

The initial architecture forms the basis of the application, where it will fit in the IT infrastructure and
what the application will look like. With the help of model checking these requirements can later be
mapped to the actual application in a platform independent model.

Figure 17: Pre-development phase

Plan development
The pre-development phase starts with the plan development. During this activity the whole
development is planned e.g. the milestones are planned. This activity is executed by the project
manager of the developer and the project manager of the customer.

Gather initial requirements
When the development has been planned the initial requirements can be gathered, these
requirements can be stored directly into a computational independent model. If the model driven
development environment does not support this, it should be done separately, for example in a
standard office requirements document. The gathering of initial requirements is executed by the
business analysts.

Create initial architecture
When the first requirements have been provided the architect can create the initial architecture. The
architecture depicts the basics of the domain model, or the application design. In the object oriented
world this would compare to the database design which forms the basis of the application. Decisions
that need to be taken into account are the place of the application in the application grid of the
customer and the amount of users.

Development
During the development phase the actual development takes place. It is during this phase that the
application is modelled and tested. As in all agile methods an iterative approach is chosen, that
enables feedback from the customer so that the development can cope with changing requirements
and increase their quality. An iteration can vary in length depending on the amount of features that
need to be delivered but also on the wishes of the customer. Quick deliveries allow for quick feedback
and thus better requirements and it also provides more support among as results are shown early.
However, very short iterations also provide an increase in management overhead. Both Scrum and
XP define a maximum of 1 month per iteration, thus on average we would suggest a 2 week iteration
that might shift depending on the customer and the amount of functionality that needs to be
implemented.

The development phase is split into three separate processes analysis, design and testing. During the
analysis process the requirements are interpreted and translated into models. The process then flows
over into the design process which is a combination of the programming and design phase. Model
driven development allows programmers to program using models, eliminating the need for a
separate coding phase. Model driven development also provides the ability of model checking which
checks if fields are filled and if the models meet their specification. This allows the modellers to see
whether or not the requirements are met and if a model is technically sound. The latter allows the

Gather initial requirements

Create initial architecture

CIM

PIM

Plan development

Development planning

Pre-development phase

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 39 van 81

decrease of the amount of technical testing, functional testing still is required though and thus use
cases need to be made to test the application.

Figure 18: Development phase

In many agile software development methods the customer is often part of the development team.
After a part of the application is found well enough to be tested by the customer, the customer tests
the application to provide new requirements and feature requests. These can then be taken into
account in a new iteration planning. During the whole development cycle the customer is allowed to
gather requirements that can be discussed during the plan iteration activity.

Plan iteration
During the planning of the iteration the requirements that are to be covered during the iteration are
discussed. The iteration planning that is produced describes all of these requirements. The planning
of the iteration is executed by both the project managers of the project. If the model driven
environment allows it and the customer has enough experience the requirements could also be
directly stored into a computational independent model. This would drop the need for the analysis
activity.

Analysis
When the iteration has been planned the requirements that were gathered need to be translated to
the computational independent model. The requirements that are stored in the iteration planning are
then put into the model. This activity is executed by the business analysts.

Design
As soon as the computational models or requirements models are filled, the modellers can start
modelling the logic and layout of the application. The architecture should be nearly finished as this is
largely covered by the architect during the activity create initial architecture.

Testing
Whenever a piece of functionality is finished during an iteration it needs to be tested by a tester
preferably someone else next to the modeller. Whenever someone tests their own code they are not
likely to perform any unexpected behaviour and thus not really test the application. It is also possible
to let the customer test the application. If any bugs are found or if during the iteration small
requirement changes are made the design can be altered and should be tested again. If the customer
is not testing the application they should provide test cases to ensure that all functionality is fully
tested.

Test deployment
Should the testing in the iteration not be performed by the customer, the customer will need to be able
to perform tests locally. Thus a test version of the application needs to be deployed as soon as an

Plan iteration

Iteration planning

Analysis Design Testing

PIMCIM Test cases

Bug foundChange in requirements

Development iteration

Customer acceptance

Test deploymentStart new iteration

New/Change
requirements

No new requirements

Development phase

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 40 van 81

iteration is finished. This test deployment will also allow the customer to further test the application
during the next iteration. The test deployment can be performed by a modeller or by the architect.

Customer acceptation
When all requirements of the iteration are covered and the application is deployed on the test
environment the customer can accept or reject the iteration. When it is accepted the next iteration can
be planned or if it was the final acceptation the application can be deployed. Customer acceptation is
executed by both the project managers.

Implementation

Figure 19: Implementation phase

The implementation phase starts when part of application is accepted and ready to be implemented at
the customer. This requires extra testing and checking of the performance of the system and the
integration with other systems. Depending on the development planning multiple implementation
phases can occur.

Implementation
The application is implemented partly or as a whole on the production environment of the customer.
This activity requires extensive testing and is often executed with a fade-out time. How this is
executed should be discussed with each customer separately. The implementation should be
executed by the architect or by an experience modeller.

System testing
As soon as the implementation is finished the system and system integration should be tested to
ensure that they are working. The type of tests and the extensiveness of the tests is different among
different customers and should thus be discussed with each customer separately. System testing can
be performed by the architect or a modeller but can also be outsourced to the customer.

4.2.4 Roles and responsibilities
The roles described in each of the activities above are further explained in this paragraph. Each role
performs at least one core activity that cannot be performed by any other role. The roles are based on
practices of MDD and MDA and agile projects [17-18, 44, 46].

Project manager
A project always has two project managers, one at the side of the customer and one at the side of the
developer. In a smaller development team the project manager is part of the actual development team
where in larger projects he might have a separate role. The main activity of the project manager is
managing of the project. All activities that cover planning are performed by the project manager.

Model architect

Maintenance phase

Implementation

System testing

Implementation phase

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 41 van 81

The architect is an experienced modeller. The core activity of the architect is to provide the initial
architecture of the application, additional tasks of the architect would be the implementation or
deployment of the application and the system testing. A project should have one model architect at
the side of the developer.

Business analyst
The business analyst is the main communication channel between the modellers and the business.
They should be able to use the modelling tool to model the requirements in the computational
independent models and understand the modelling language of the platform independent models. The
role of business analyst can be performed both by the developer as by the customer. Each project
should have at least one business analyst.

Modeller
The modeller models and designs the application in the platform independent models. They can be
seen as the programmers of classical development projects. The modellers are technical persons that
make design decisions about the application. Each project should have at least one modeller. While it
would be possible to let the customer assume the role of modeller, we would not suggest this. Letting
the customer make design decisions might change or even ruin a project unexpected. Often
modellers are also testers. If the project team is very a small a modeller might even be a business
analyst.

Tester
The tester does functional testing to check whether the functionality meets the requirements. Both the
customer and the developer can fulfil this role. Every project should have at least one tester.

DSL expert
The DSL expert is responsible for keeping the modelling languages up to date. Whenever a modelling
language requires an update this will be done by the DSL expert. This also includes the
transformations between the modelling languages. Each project should have one DSL expert or
someone responsible for updating the modelling languages. As model driven tools are sometimes
purchased rather than developed the DSL expert could be also a third party.

RACI
To get a better picture of the role that each role plays during the development method we introduce a
RACI table shown in Table 5. RACI stands for responsible, accountable, consulted and informed and
provides a separation of responsibilities for a set of tasks. The responsibilities drawn are a
recommendation based on responsibilities as drawn by Warsta. [27]

 Project
manager

Model
architect

Business
analyst

Modeller Model
programmer

Tester DSL
expert

Domain
analysis

A C R C I

Update
modelling
language

 I C A,R

Update model
transformations

 A,R

Plan
development

A,R C C C I

Gather initial
requirements

I A, R

Create initial
architecture

 R

Plan iteration A R C

Analysis R R

Design A R R

Testing I I I A,R

Deploy test A,R

Customer
acceptation

A,R I C I I

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 42 van 81

Implementation I A,R

System testing A R

Table 5: Responsibilities in the base development method.

4.2.4.1 Deliverables
The Development method as shown in Figure 15 shows 4 phases each containing several activities of
which some produce several work products. This paragraph further explains each deliverable, what
they contain and how they are used.

Meta models
Whenever the current modelling language is not sufficient enough to provide the application that the
customer wants the modelling language or meta-models need to be updated. Assuming that the
developer wants to pursue the project with the model driven approach and not develop with a different
technology. The meta-models that are produced during the preparation phase ensure that both the
business analysts as the modellers are able to produce the CIMs as the PIMs. The Meta models are
created or updated by a DSL expert.

Model transformations
Once the Meta models are complete the transformations between the Meta models are likely to be
updated as well. This will ensure that any of the new content that is used is linked between the
different layers i.e. from CIM to PIM to PSM. As the Meta models the model transformations are
created by the DSL expert.

CIM PIM
The CIM and PIM models form the code of the application where the CIM models store the
requirements and the PIM models model the architecture and the logic behind the application. During
each activity has a work product CIM or PIM, multiple models can be generated. It should be noted
that the actual code or PSMs are not modelled because they are not created by human activity, rather
they are generated by the model driven tools. For a full explanation of what these models are see
paragraph 3.3.2.

Development planning
The development planning is the main project planning that contains all important deadlines for work
products to be delivered. The planning is agreed upon by the project manager of both the customer
as the developer.

Iteration planning
Each iteration starts with the planning of the iteration. During this planning the project managers of the
customer and developer agree upon the requirements that are to be covered in the iteration.

4.2.5 Parameters of the development method

A development method in its own way can be seen as a form of risk management or risk prevention. It
is often based on bad experiences from the past or opportunities that were missed. This is also the
reason that many companies apply equal development methods in a different way. If one important
lesson can be taken from this fact, it is that a development method is never perfect and cannot be
followed to the letter in all situations. This is why we introduce dimensions in which the development
method can be adapted to different types of customers and contracts. To realize this we have to
define a set of dimensions along which the development method can shift between developers and
customers.
When looking at the definition of our development method we specified three parts: the roles, the
activities and the deliverables. Any adaption‟s that happen to the development method have to relate
directly to any of those three. Based on the agile success factors and the model driven development
practices we explored in paragraph 3.7.2 and 3.3 we came up with the following dimensions.

Agile development should be performed with the customer especially now that model driven
development provides an opportunity to close the gap between business and IT. However, sometimes
the customer might not be up to this, or might not want to free his resources to work in such a way.
This means that the customer cannot always be part of the actual development team and thus cannot
always perform the modelling of requirements or test the application during development. Another

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 43 van 81

example is when the customer wants to perform some tasks but the developer thinks the customer is
not ready to do so. Thus the ability of the customer to assume an active role in the project also
depends on his capabilities to fulfil them. It is also possible that some responsibilities of the developer
are directed to the customer. If the customer is not up to the job there are two choices the developer
can take, one is to provide training the customer to perform the job and the second is to perform the
job themselves.

The second dimension is the location at which the development takes place. The agile manifesto
states that one of the key aspects of agile development is face-to-face communication. But in order
for this communication to happen frequently it would require the developer to develop on site at the
customer. While this on its own is easily reached it can be hindered by numerous factors. We call
these factors agile arrangements. A good location can provide quicker communication and thus if the
customer cannot provide an agile location the developer could choose to develop at another location.

The third dimension is the time that the development takes. While a maximum of one month per
development cycle or iteration is agreed upon by most agile methods, they do not agree on an
average cycle time. Within this month however it can take longer or shorter. Shorter development
iterations allow for quick feedback and a higher support among the customer employees. But the
customer needs to be able to keep up and shorter iterations also provide a higher amount of
management overhead. By default our development method assumes an iteration time of 2 weeks.

The last dimension is the amount of requirements documentation that is created at the start of the
project. In general agile is renowned for the art of documenting less. While to some documenting
might be seen as a waste of time, others swear by full documentation. Both approaches are preferred
in different situations. In our method we let the developer decide on how much to document. We do
propose that they decide on this with help of the FURPS+ method.

It can be noted that each parameter can be filled with either a customer directed solution or with a
developer directed salutation. This can also be seen as the same distinction that exists between agile
development and classical development. In basis these parameters thus allow one to define how agile
his method should be. Table 6 shows a summary of the parameters.

Method parameters Agile Classic

Role distribution Customer Developer

Iteration time 1-2 weeks 2-4 weeks

Location Customer Developer

Requirements documentation Few documentation Full documentation

Table 6: Method parameters

Even though agile is favoured above classical development in general, it might sometimes be needed
to adept to a more classical approach to avoid certain risks or simply because it would be too
expensive to do it otherwise. To choose between the different possibilities of the parameters we
require a way to determine if the customer and the contract are suitable for the agile approach. A
grounded decision between both ways can only be made if the outcomes or the risks of both ways are
known. Thus the possible outcomes of both approaches need to be discovered. The following
paragraph will explore the customer properties and couple these to known software risks. Those risks
can then be mapped to the parameters. When both mappings are made it becomes possible to
determine the risks by means of the customer properties.

4.3 Risk identification
Like in any software project there are many risks that can occur during a model driven software
project. Some are specific to model driven development, where others are more applicable to MDD.
Also some occur very often but with minor effects while others occur almost never but with great
effects. This also entails that some risks are very dangerous to a project while others can be
neglected. Because it is simply too hard and too costly to manage all risks we set up a check list of
the most important risks for each method parameter. This will be done equally for both the agile setup
as for the classical setup. In the ideal situation none of the given risks would occur. It should be taken
into account that in practice this is near to impossible as some risks are bound to happen when others
are shut out. Table 7 displays an overview of all the risks for each development parameter.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 44 van 81

Method parameters Risks

Business analyst role Missing requirements, unclear requirements, badly modelled requirements,
bad cooperation

Tester role Bugged release, missing functionality, bad cooperation, refuse solution

Iteration time Changing requirements

Location Bad facilities, bad cooperation, large travel distance

Initial requirements Gold plating, non fitting end product, unknown modelling restrictions

Table 7: Model driven development risks

4.3.1 Business analyst risks
The business analyst does the analysis and documentation of the requirements during a project. Thus
if his role is performed poorly it is likely that the requirements he produced are also poor. Hence, that
most risks that are connected to the business analyst affect the requirements. Requirements could be
missing or unclear, but also they could be badly modelled. With MDD as we defined it, the
requirements are modelled in the CIM. If the business analyst has never modelled before it is likely for
him to model the requirements wrong. Another risk that is connected to a role description is bad
cooperation. When a team configuration is not setup well it will lead to bad cooperation between the
customer and the developer. Especially if the developer and customer have different ideas on how to
lead a team it could lead to problems within the project team.

4.3.2 Tester risks
The testers in a project team ensure that functionality is present and is working as intended. If testing
is performed poorly it can result in bugged releases and missing functionality that need to be restored
it should be noted that no matter who performed this task it will result in delay of the project. Also
because this parameter is a role it can result in bad cooperation depending on the how well the
customer and developer can work together.
At last there is also the factor of resistance, if a customer is part of the development because he can
test the application they feel involved with the process. In overall involvement causes less resistance
and thus reduces the chance to refuse the solution.

4.3.3 Iteration time risks
Iteration time depends how long it takes until the developer delivers part of functionality and hence
how often he will have feedback from the customer. When iteration times change it influences the
chance and impact of changing requirements. The shorter iterations become the more likely it is that
the developer will introduce changing requirements. As Whang states it, “Prospective users cannot
evaluate a system before they actually 'see' the system. “[30] While we think that it might be possible
for users to evaluate a system before hand, we also think that showing them is surely to reveal some
shortcomings of a system. Thus creating shorter iteration times will increase the amount of errors
found early on but will also increase the amount of changing requirements. Discovering errors early
on will reduce the impact of changing requirements, however due to the shorter iterations the
likeliness of the occurrence will increase. It thus becomes important to determine up front if a user is
able to specify his requirements into detail so that the risk of faulty specifications and accompanying
changing requirements can be determined.

4.3.4 Location risks
Agile developers are keen of developing at the developer as this would result into better
requirements. If a requirement is unclear the developer is able to instantly ask the customer what a
certain requirement entails. However, this weights heavily upon the available facilities and employees.
When the facilities are so that the developer is separated from the customer he will not be able to
request the information and hence the development would only be slowed down. This is worsened if
the customer is geographically located far away. The longer the distance the more travelling hours a
developer makes which are associated with high costs and also with increased development time, as
time spend travelling is not spend developing.

4.3.5 Initial requirements risks
The point that is often seen as the main difference between agile development and classical
development are the initial requirements. Where agile development makes use of a small initial
document that only identifies the main requirements, classical development tries to identify all
requirements so that no changes will be required afterwards. Both versions have their down sides, but
the most important risks connected to this choice are gold plating and a non fitting end product. If the

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 45 van 81

requirements are not documented well from the beginning and the customer changes wishes some
extra functionality it could lead to the developer constantly building extra functionality that is not
needed, this is called gold plating. The second risk is that if all requirements are fixed up front then
the developer might deliver a product that the customer does not need. As stated by Whang, a
customer often does not know what they actually need before they see it. Thus fully fixing the
requirements can also be risky.

Last, the initial requirements are also influence by the risk of MDD restrictions. When the
requirements are known, it is often known to the developer how to develop the application. Thus the
developer will know up front if the application can be modelled with the current models and
transformations. If the requirements are not stored however, the developer might have a hard time
envisioning the end product and thus is not able to see if the project might require an addition of
models and model transformations.

4.4 Customer identification
As described in paragraph 3.7.1 a customer profile can be used to identify and categorize a customer.
Based on the customer properties we explored in paragraph 3.7.5 we introduce a customer profile
that allows a developer to measure the customer and identify the risk that the customer introduces to
a model driven development project. Rather than making each parameter measurable we introduce a
relative measure, so that each developer can decide on their own if the parameter is sufficient or not.
Each parameter is thus good enough for the developer to apply the development method as
presented in the following paragraph. Because the desired values for these parameters can differ
between different customers we did not specify a targeted value.

For each parameter risks are identified and examples are provided on how to measure the parameter.
The possible outcomes allow the developer to make a grounded decision on how to fill in his
development method. In order to create a full customer profile first a risk analysis is done to find the
most common risks that might be solved by the development method. These risks have been
gathered from experience at CAPE Groep and from literature describing agile practices and software
risks.[47] [48]

Management support
Management decides about a lot of things in the project, it is thus important for them to support the
project. When this is not present management can appoint the wrong business owner to the project,
because he might have time off, or they could limit the budget leading both to a decrease of efficiency
and possibly to failure of the project. It is not without cause that in software development literature,
many sources appoint management support as a top tier risk [3, 47-48]. Another direct effect is that
when top management is not supporting the solution it might show on the end users, discouraging
them to use a solution that management is not even supporting. However, if management support is
present the budget is likely to become larger as is the support among employees of the customer. A
good way to measure if management support is present is by using interviews and by testing how well
the business case is set up. As Whittaker concludes, the involvement of management and the
business case determine whether or not management support is present [42].

Organizational structure
The risks of an organizational structure is that when this becomes too large and hierarchical the
structure delays the communication and hence the agility of the project. Furthermore, as was
discussed in the initial problem identification, extra communication reduces the efficiency of projects.

Because the model driven development method we introduce is agile, it requires being fast and
working in collaboration with the customer. The organizational structure pictures the hierarchy of the
company. When doing a project in a large company with a hierarchical structure it can delay the
taking of decisions and the development in overall. While no changes or agreements can be made to
change the organizational structure, its disadvantages can be compensated by having people in the
development team who are allowed and dare to take decisions. Having good management support is
also required for this as management decides on who is in the project team what their authority is.
When the organizational structure is flat and allows for easy communication between layers, it
becomes more useful to develop together with the customer. Also developing at the customer
becomes more profitable. While the communication does not have to be bad in hierarchical

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 46 van 81

companies it is important to identify this. This can be done based on the amount of managers per
employee.

Organizational culture
Unlike the organizational structure the culture of the customer is not easily measureable. It cannot be
detected by the amount of managers or their behaviour rather, it has to be observed.

What can be detected is the level of trust and authorization that the business owners have during a
project. The less authorization he has the higher level of bureaucracy. A higher level of bureaucracy
leads to slower development. As Nerur remarks, the Organizational culture has a big impact on the
social structure of organizations, which in turn influences the behaviour and actions of people. They
also state that the organizational culture has considerable influence on the decision-making process,
problem-solving strategies, innovative practices, information filtering, social negotiations,
relationships, and planning and control mechanisms. Agile methods depend on quick, responsive and
cooperative teams, face-to-face communication will often be preferred over other means of
communication [43] , thus the way the customer communicates within its own organization influences
the cooperation and communication that takes place during the development.

Agile arrangements
Model driven development is applied best when the customer and developer have a high level of
cooperation. As mentioned in chapter 3.7 this can be achieved by iterative development which
requires good communication and many confers between the developer and the customer. This
requires that the customer and the developer need to be able to confer at the location of the customer
as on the location of the developer. Examples of good agile logistical arrangements are conference
rooms and open spaces where the whole team can work together to create a fitting solution. The agile
arrangements also include network limitations and limitations to employees throughout the building. If
these are not present they will slow down development at the location of the customer. Also the
communication is disturbed as face-to-face communication might not be possible or only partly be
possible.

General IT experience
When the customer has no or not much general IT experience he is not likely to have done any
requirements gathering before. When the customer has not provided any requirements before it is
likely that his requirements are going to change during development. Furthermore, if not enough
requirements are frozen during the development a customer with no general IT experience might
constantly change his wishes leading to endless development. General IT experience also influences
the risk of under-funding, when the customer has no IT experience at all he might want to much for
what is actually possible during the development. The amount of IT experience cannot be changed
but can be measured by the presence of an IT department as the previously done projects by the
business owner.

Modelling experience
Model driven development is often able to provide quick results when it comes to layout. This
however could make a customer believe that the application is nearly finished when it is actually only
a shell. If a customer has no modelling experience his expectations might become abnormally large
because of the seen progress. This is worsened if the customer has no knowledge of the modelling
technique. Thus the modelling experience of the customer introduces a danger of having false
expectations which could result in a lower budget.

Another risk that is introduced by the modelling experience is that the customer will model the
requirements wrongly. This is only the case when the customer is given the role of business analyst.
This could be countered by providing the customer with training or by letting the developer do the
requirements analysis during development.

Teamwork
The risk of working in a team when the customer is not used to this, is that the communication in the
team is bad or that the cooperation between the customer and the developer is bad. For example, if
the customer decides to introduce new requirements in the model but does not notify the developer of
this update it will not be noted and the development will be delayed. Furthermore, if decisions taken
by management of the customer are not relayed to the developer it can cause overhead on meetings.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 47 van 81

The more experience the customer has with teamwork projects the less the risk of overhead, bad
communication and cooperation. Teamwork can be measured by a simple interview asking if the
customer ever works in multidisciplinary teams.

Customer relationship
As with teamwork the relationship that the developer has with the customer determines the amount of
trust the developer has in the customer. However, it determines more for example, a customer could
be a known but entering a new market and thus develop new processes. The processes will also be
new to the developer and hence the development might take longer. The other extreme would be an
unknown customer in an unknown market. This would require a lot of devotion from the developer to
get to know the market and the customer. If both the developer and the customer would operate
under such circumstances it is important to gain some domain knowledge during development
otherwise poor requirements could be the result.

Besides the customer being new or not the relationship with known customers also differentiates
between different customers. While one customer might be considered as an almost a strategic ally,
another one could be known for deliberately holding back on information or for always driving a hard
bargain. All of these factors influence how the cooperation fares between the customer and the
developer.

Resistance from groups or individuals
Resistance is a hard to measure parameter as it is not likely to be noticed upfront. Never the less the
parameter should still be considered. If any form of resistance occurs it could cause a refusal of the
solution by its end users. Thus it is important that the developer and the customer together identify
any resistance and deal with it properly. One example would be to involve the end users and
enlighten them with the goal of the application. Users can also be involved during the testing period
so that they can actually provide feedback during the development. Thus additional end users might
be involved during the testing period.

Customer
properties

Customer
characteristics

Risks

Management
support

 Business
Owners

 Business
Case

 Project team

 Low support among employees

 Low budget

Organizational
structure

 Size

 Hierarchy
 Slow decision making

Organizational
culture

 Working
hours

 Work style

 Decision
power

 Bad cooperation

 Slow decision making

 Slow communication

Agile
arrangements

 Facilities

 Employee
access

 Network
access

 Slow communication

 Slow development

 Slow analysis of requirements

General IT
experience

 Amount of
similar IT
projects done

 Unclear requirements

 Low budget

 Frequently changing requirements

Modelling
experience

 Experience
with software
modelling

 Wrongly modelled requirements

 Wrong expectations

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 48 van 81

Teamwork
 Projects in

daily
operation

 Slow communication

 Bad cooperation

Customer
relationship

 Market

 Experience
with customer

 Not enough domain knowledge

 Bad cooperation

Resistance of
groups or
individuals

 Amount of
users

 Type of Users

 Management
support

 Refuse solution

Table 8: Customer profile

Table 8 provides an overview of the customer profile that has be derived from the customer properties
and their characteristics. Each of these properties has been supplemented with risks that are a direct
result of those properties.

Now that both the risks of the customer as those from the development method have been introduced
in Table 6 and Table 7 they can be linked to see which customer properties influence what
development method parameter. With help of this link a developer should be able to make an
educated guess about each risk based on the characteristics of a customer. It is not surprising that
some risks are unique and it thus seems that they do not influence the development method or they
are not caused by the customer. It could also be that they are not identified in one of the two
identifications. Table 9 shows the mapping between the customer properties and the development
parameters.

Customer property Risks Development parameter

Management support

Organizational structure Bad cooperation
Tester role, Business analyst
role, Location

Organizational culture Bad cooperation
Tester role, Business analyst
role, Location

Agile arrangements
Bad facilities, Bad cooperation,
large travel distance, Unclear
requirements

Location, Business analyst

General IT experience
Changing requirements,
Unclear requirements,
Missing requirements

Iteration time, Initial
requirements

Modelling experience Badly modelled requirements Business analyst role

Teamwork Bad cooperation
Tester role, Business analyst
role, Location

Resistance of groups or
individuals

Refuse solution
Tester role

Table 9: Mapping of customer properties to development parameters

The first thing that one might notice when looking at Table 9 is that management support is left empty.
During the pairing of risks between the properties and the parameters none of the risks matched each
other which left us to believe that the management support does not directly influence the choice of
development method. However, because most checklists in literature do identify it as a mayor critical
success factor in the development we will leave it in our customer profile.

The next thing revealed, is that the following are not mapped: risks bugged release, missing
functionality, gold plating, unknown modelling restrictions and non fitting end product. Thus for each of
these risks a deeper identification has to be made to identify a possible customer property for them.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 49 van 81

Bugged release
A bugged release is caused by bad testing. As stated by Davis not detecting errors early may
contribute to skyrocketing software costs. [49] Thus releasing a bugged version will cause an increase
in costs due to extra labour in digging up bugs that might not be repairable. In order reduce the costs
of software projects it is important to test the application well before release. Besides functional
testing it is also important to test the application technical. However, due to the nature of model driven
development it can be greatly reduced. Whenever a model and its model transformation have been
proven it will only be reused thus decreasing technical flaws compared to a total new design.
Furthermore, technical testing should always be done by the developer as he is responsible and is
likely to have the most knowledge of this. Functional testing however can be performed by both the
developer and the customer but as said above is a point that should not be underestimated. It will
increase the involvement of the customer but can decrease the level of tests. In order to get a good
idea if the customer is up to the job the developer could ask for experience with comparable projects
placing the risk at general IT experience.

Missing functionality
As with the bugged release, missing functionality is also caused by bad testing. Whenever a tester
does not perform his job well it might be that functionality is overlooked by both the developer and the
tester. Likewise, this chance will increase if the customer has never before performed a comparable
project. Thus missing functionality can also be added to general IT experience.

Gold plating
Gold plating has always been a great risk in software engineering. Already in 1989 did Boehm identify
this as a top 10 software risk. Gold plating is caused when the customer constantly requests new
functionality or when they constantly request upgrades of existing functionality. In either way the
software project will not near its end and has a chance of complete failure. Another possibility is when
the developer is not given any hard limit in his budget. This could result in the developer loosing track
of his true scope what could also result in gold plating. Because this framework is based on the risks
that the customer introduces the later is left out of scope but we do emphasize that developers should
always keep track of their scope. Taking that the former into account, gold plating can be determined
by general IT experience, one could even say that it is directly caused by the chance that
requirements are going to chance during development. The more likely they are to change, the higher
the chance of gold plating. If the requirements are set it is easier to keep track of what should and
what should not be developed. This does however not completely remove the chance of gold plating
as the developer could still lose sight of the scope.

Unknown modelling restrictions
Model driven development is based on the idea that components or models can be reused during
projects. This leads to a more robust form of development and also leads to faster development as
less testing is required over time. Furthermore, adaptation‟s can be made quicker due to the fact that
alternatives already exist. But as soon as a part is discovered that cannot be modelled yet the
question arises whether this should be added to the models or not. If an application needs to be
created that currently cannot be modelled the model languages or Meta models needs to be updated.
This will increase development time as the developer cannot build the functionality for the application
yet. If the requirements are known up front then the developer is more likely to reveal any
shortcomings of his model driven development method then when the requirements are determined
iterative. Determining if the customer is sure about his requirements can be done based on his
experience with comparable projects.

Non fitting end product
When a product is developed with fixed requirements it has a chance to become an unused product
because it is not useful to the customer. This is the case when the customer thought he needed
something when he actually needed something else. Like the other unmapped risks a non fitting end
product can also be measured by the general it experience of a customer. The more often they have
performed comparable IT projects and the more often they have been involved with implementations
the more knowledge they are likely to have of this. More knowledge will result in a higher chance of
providing good requirements that will not change too much to make a product unusable.

Customer property Customer Risks Development

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 50 van 81

characteristics parameter

Organizational
structure

 Size

 Amount of
managers

Bad cooperation

Tester role, Business
analyst role, Location

Organizational culture

 Working hours

 Work style

 Decision power

Bad cooperation

Tester role, Business
analyst role, Location

Agile arrangements

 Facilities

 Employee
access

 Network access

Bad facilities, Bad
cooperation, large
travel distance, Unclear
requirements

Location, Business
analyst

General IT experience
 Amount of

similar IT
projects done

Changing
requirements, Unclear
requirements,
Missing requirements,
Missing functionality,
Gold plating,
Unknown modelling
restrictions,
Non fitting end product

Iteration time, Initial
requirements, Tester
role, Business analyst

Modelling experience
 Experience with

software
modelling

Badly modelled
requirements

Business analyst role

Teamwork
 Projects in daily

operation
Bad cooperation

Tester role, Business
analyst role, Location

Resistance of groups or
individuals

 Amount of users

 Type of Users

 Management
support

Refuse solution

Tester role

Table 10: Final risk mapping

4.4.1 Conclusion
A mapping between the customer properties and the development parameters has been made based
on the risks that both share. Table 10 shows the final risk mapping. The following paragraph will
explain how these risks can be calculated and how this influences the choice of the development
parameters.

4.5 Risk determination
The customer and risk profile presented in the previous paragraph provide the ability to selective
judge a customer based only on the characteristics that influence the development method. In order
to calculate the risks a choice has to be made whether to use the 100 dollar bill method or the risk
exposure method. The later is chosen as the 100 dollar bill method makes it more subject to the
developer. Furthermore, by choosing for the risk exposure method this framework could be expended
with actual models to calculate the risk rather than determining them.

To determine the risk with help of risk exposure the developer has to determine the impact and the
chance of each risk separately for each situation. For example, if the customer is going to be a
business analyst how much risk is there on missing requirements? This can be determined by the
amount of similar IT projects done by the customer. If the customer has performed similar IT projects
then the chance of him missing any requirements will likely be low. The same risk has then to be
determined by the classical counterpart. Here we assume that the developer knows out of his own
experience how well he is in determining requirements thus how likely it is for him to miss a
requirement.

Say that in this case the customer has a lot of experience and thus the chance of him missing a
requirement is estimated at 15%. The impact of missing a requirement is estimated at € 2000 this
comes to a risk exposure of 2000*0, 15 = 300. Say that the developer is also an experience developer
who has the same odds as the customer then this would result in the following.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 51 van 81

Method
parameters

Risk Agile risk exposure Classical risks
exposure

Business
analyst role

Missing requirement 300 300

Table 11: Risk exposure

However, now we need to add the chance of unclear requirements. Unclear requirements are
determined by general IT experience as the agile arrangements. Because both the developer and the
customer are evenly experience the chance of unclear requirements remains the same. However, if
the agile arrangements are poor at the customer, it is likely that the customer will have less trouble
with unclear requirements. As he is likely to have less trouble with asking question internally rather
than the developer. Thus the impact in case the developer is larger, let‟s say that the customer has an
impact of €2000 where the developer has an impact of €3000 with a chance of both 15%. This will
result in the following:

Method
parameters

Risk Agile risk exposure Classical risks
exposure

Business
analyst role

Missing requirements 300 300

Business
analyst role

Unclear requirements 300 450

Total 600 750

Table 12: Risk exposure calculation

In this case the classical choice becomes more risky then the agile choice and thus less attractive for
both the developer and the customer.

4.6 Risk Management
When the risks have been identified and their exposure has been determined a grounded decision
can be made on how to fill in the development parameters. However, this still leaves us with the
remaining risks as each choice in the parameter still has its own risks.
In order to manage these residual risks, certain counter actions or agreements have to be determined
and executed. One way to steer these counter actions is by use of the project dimensions identified in
paragraph 3.5.2. These project dimensions Money, Scope, Time and Quality can be adapted to cover
certain risks. In order to clarify this each dimension has been supplemented with an example.

Money
If a risk has a risk exposure of €300,- the developer could ask the customer to pay that €300,- in order
to cover the risk. In reality risks will never be fully covered this way because otherwise projects would
become way too expensive.

Scope
If the developer has a large chance of deadline overruns due to an undefined scope, he could fix the
requirements and with that the scope to reduce the risk.

Time
If the developer is short of time, he could push back the deployment schedule and so create more
time to release his deadline.

It should be noted that all of these measures are bound to the agreements which have been laid down
in the contract between the developer and the customer.

For each risk the developer has to determine how he wishes to handle and manage them. Depending
on what is acceptable for the developer, he will react in a certain way. By determining what is
acceptable and thus when a risk is properly managed or is being accepted there are numerous
factors that play a role. The following are the most important ones: (Inter) national laws, politics,
image and a personal risk attitude. The personal risk attitude is often dependant on the business case
that the developer has on a certain project.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 52 van 81

4.6.1 Business cases
The business case captures the reason for initiating the project. Of course there are an unlimited
amount of business cases to define. However in this context we have identified 3 different types of
business cases that we found suitable. These are: earning money, earning a customer, and learning
from a project

Earning money
When the developer has a long term relationship with a customer this will result in mutual trust but
often higher costs as the customer is likely to pay for a service.

Earning a customer
Often when a developer wishes to grow via a customer they want to gain a customer‟s trust by
accepting lower prices for a project and by accepting more risks.

Learn from project
Whenever and a customer want to achieve something new and innovative or when the developer
wants to allow new employees to learn from a project they are likely to agree upon longer
development times or increased costs.

Each of these business cases can be mapped to one of the four risk management strategies
introduced in paragraph 3.6.4: Prevent, reduce, accept and share.

4.6.2 Risk management strategies

When a developer wants to earn money he is likely to accept as few risks as possible and thus avoid
them as much as possible. If risks cannot be avoided he will try to share them, and then reduce them
before finally accepting them.

When a developer wants to learn from a project he likely does so in collaboration with the customer. It
is not uncommon that a customer also wants to learn something from a project. This will make it
easier to share the risk together with the customer by and thus if the risk would ever come to pass the
costs would be split. For every risk that the customer is not willing to share the developer can then
use the same sequence as with the earning money business case.

When the developer wants to gain a customer or earn the customer he is likely to accept more risks.
However, assuming that no one is keen of risks we do assume that he will still try to reduce them for
his own gain as much as possible. If it is not possible to further reduce a risks that is still too high a
customer should try to avoid the risk. If that is not possible he should try to share the risk. When trying
to gain a customer, the customer should be least troubled by risks and hence why sharing is used as
last resort.

Figure 20: Risk management strategy.

When a developer has selected his risk management strategy he is able to determine how to deal
with each risk separately. As this thesis is about aligning the development method and the contract

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 53 van 81

with the customer, proposing a full risk management for each theory is left out of scope and is left for
future research.

4.6.3 Conclusion
A developer can choose between three business cases for each development project that allow him
to steer how he manages his risk. For each business case, earning money, earning customer and
learn from project a risk management strategy is proposed that gives him a guideline on how to
manage his risks.

4.7 Selecting a suitable contract

Now that a development method for MDD projects is clear and a way has been found to identify the
customer, a preference for a type of contract needs to be determined. Customers often have their
own preference for a type of contract even for the start of a project. I.e. they often prefer a fixed price
contract. But this might not be the best applicable contract. Because the customer is the project
initiator and the ultimate decision maker, it‟s preference for a form of contract influences the final
contract greatly. This is why we will introduce a framework that allows the developer to determine a
type of contract based on presented risks. With this framework he might be able to persuade a
customer of a more fitting and fair contract. It should be kept in mind however, that a customer does
not always have such a preference or that he will not reveal it.
In order to select a contract we first need to make a distinction between them. To make a distinction
between the different types of contract we revisit the framework of Turner.
Looking back at the framework from Turner we see that it proposes three types of contracts for three
quadrants. However, it also possesses a fourth quadrant which is left empty. Turner states that most
of the software projects are likely to fall in this quadrant.

Figure 21: Four quadrants of Turner

While we do not dispute this, we do think that the other contract forms are viable for some software
engineering projects.

Both re-measurement contracts as fixed price contracts can be applied as long as the customer is
really sure what he wants and the developer knows what he is doing. This is because software can
also exist out of standard packages or custom of the shelves products. While these will still need
some configuration these are still standard products and thus will most often have a low uncertainty to
their requirements. Thus if an application is specified upfront as a standard product a re-measurement
contract or fixed price contract can be applied. This of course depends, if the developer is aware of
the process how to deploy and what techniques to use. For example, a client wants a customer
management system however he wants to use a different programming language then the developer
is used to work with. This introduces an uncertainty to the process as the developer does not know
how a development project with a different programming language goes. Hence that if the developer
is unknown to the development process he cannot specify the rates and thus it is not recommended

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 54 van 81

to use a re-measurement contract then. What turner does not encompass in his model is that where
he applies a re-measurement contract it would be perfectly possible to use a fixed price contract
instead. Because all factors are known, it would thus be an easy task to specify the maximum costs in
a fixed price contract. Another example would be if the developer would engage in a project that he
has never done before. This would also increase the uncertainty about the development process.
The third quadrant has uncertainty for both the process and the product, meaning that the customer is
not truly sure about his requirements and neither is the developer aware of how to undertake the
development. If this is the case there are two options: either the customer finds a new developer or
they cooperate under a Time and Material contract. The time and material contract will ensure that the
customer will put all his effort into getting the requirements clear while the developer has all the
resources he needs to gain insight into the development processes. This also entails that the
developer will not be hold back. However, such a type of contract requires a lot of trust and according
to turner, it requires that both parties have the availability and capability to undertake the project. Last
Turner also states that the project must be risky otherwise it can best be managed by another type of
contract.

Each of those three contracts can thus be applied in a software engineering contract, but most of the
time a software developer will find himself in the fourth quadrant. Often customers have no clue of
what it is that they exactly want or need, while the developer has a standard set of development rules
to which he develops. Because of that, the fourth quadrant is the focus of this thesis.

4.7.1 Agile software development contract

The fourth quadrant has a certain process and an uncertain product. Thus it is known to both the
developer and the customer how the development will take place but not what the application should
look like. Thus the methods to tackle the problem are known (i.e. model driven development tools and
methods) but the definition of this problem is not. Due to this nature, software projects can most of the
times be seen as wicked problems. However, during a project a customer often learns from examples
and input and which provides him the ability to create stable requirements. Thus over time the
problem becomes less wicked. This is exactly what thought of agile development is about.
Many practitioners still believe that fixing all requirements is the best way to go. However this would
not strive with the agile approach we suggest to use for model driven development. As the agile
approach is based on the idea that requirements can and will change. But as identified in 4.3
constantly changing requirements can form a hazard to MDD projects as well as it will lead to a delay
of development.

On the other hand, not fixing any requirements would provide the flexibility to the developer but would
leave the customer in the dark about the actual costs of the application, assuming that he will sit out
the project until he has a result that satisfies his needs rather than his wishes.

Thus the important thing to do is to find a way in between where some requirements are frozen while
others can be bend. This is also what we proposed in the development method. As said in chapter 3.5
two aspects of a contract are that it can be seen as an agreement between two or more parties and
as a setup of a project organization. Thus the contract is a guide to the finish of a project. The project
square defines the dimensions among which a project manager can steer the project. Thus a contract
must define what these dimensions are, or how they influence the project. The four dimensions are
Time, Money, Scope and quality.

When looking at the contract types of time & materials and fixed price from the perspective of the
project square one can conclude that the fixed price has everything fixed while times and materials
has nothing fixed. *It should be noted that the dimension quality is dropped from the comparison.
Quality in the project square stands for quality of the end product. We assume that any developer will
fix quality at all time. If quality would not be fixed, it would be left to the developer whether or not the
quality of an application is suitable which could leader to not working applications.

 Time Money Scope

Fixed price Fixed Fixed Fixed

Time & materials - - -

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 55 van 81

The disadvantage of having nothing fixed is obviously that the customer has no control on the total
cost. While disbanding during the project is an option available to the customer this is the worst
scenario for both parties. On the other hand the disadvantages of having everything fixed are that the
developer has no vent to reduce the pressure on his resources if any changes occur in the
requirements. This can be handled by introducing a risk fee that covers possible additional costs, but
as customers are likely to claim more if they have to pay more this will end up in a vicious circle.

The solution to this is actually quite simple and already applied in some agile contracts. By not fixing
all project dimensions but only allow two of the dimensions to be fixed the developer will have his
steam vent. This provides the following three types of contracts:

 Time Money Scope

Time boxing Fixed Fixed

Scope boxing Fixed Fixed

Scope budgeting Fixed Fixed

Time boxing
During a time boxing contract, a certain amount of money is agreed upon to be spend up to a time
limit. However, how much is developed during this time can be variable. This would seem unfair to the
customer as in theory the developer could develop nothing during this time period and still get paid.
Thus in order to keep this contract attractive for both parties it is important to keep small iteration
loops in which the customer can see the progress of the development. It should be noted that the
feedback cycle of the contract is not the same as development iteration. However they are not
mutually exclusive and could be merged for practical purposes.

Scope boxing
A scope boxing contract is based upon the idea that during a certain time period a certain scope has
to be developed. The amount of resources used to develop this scope can vary. Thus increasing the
resources increases the costs but will allow for a quicker development. This form of contract comes in
handy when the customer wants the development to be done before a deadline. To ensure that the
delivery of the application is not postponed both the contracting parties need to agree upon a deadline
fee. If the developer cannot deliver the application at the given deadline he will have to pay that fee.
How high that fee is should depend on the value of the application and on the days that the
application is late.

Scope budgeting
Just as in a fixed price contract scope budgeting deals with a fixed scope for a fixed amount of
money. However, the time that the project needs to be delivered can vary. While this form of contract
might not seem viable in many situations, it could be that the developer is running low on capacity and
thus needs to postpone the delivery of the project. While this might seem an unreliable form of
contract the customer should realise that the developer does not like to postpone the project as it will
also delay the payment of the project.

4.7.2 Choosing a contract type
In order to make a choice between the contract types we need to determine which contract type is
most attractive for both the developer as the customer. To do this we can link the contract types with
the risk via the steering mechanisms or project dimensions: Time, Scope and Money.

The risks that are identified in the risk profile can also be mapped to the project management
dimensions, just like the contract forms. This will allow the developer to make grounded decisions
about which contract form is the most suitable in a given situation. The project dimension that has the
most risks associated with it should not be fixed. This will ensure that these risks can be reduced or
changed by shifting the steering mechanism.

To realize this we need to link all risks to a steering mechanism. The following figure shows a list of all
risks connected to a steering dimension. If the risk would occur it would result in a negative effect on
that steering element. For example, bad facilities would cause development to go slower due to
communication delays or because it is harder to develop due to a lack of a good network connection.
This thus directly increases your development time and the chance to exceed the deadline. If the

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 56 van 81

chances are highest that the deadline will be exceed it would be wise not to set a deadline and thus
not fix that dimension of the contract.

Risk

Project

dimension

Non fitting

Scope

Exceed Time
Exceed of

Budget

Bad cooperation

Bad facilities

Traveling hours

Unclear

requirements

Changing

requirements

Missing

requirements

Missing

functionality

Gold plating

Unknown

modelling

restrictions

Non fitting end

product

Badly modelled

requirements

Figure 22: Risk mapping to project dimensions

4.7.3 Conclusion
The framework of Turner suggests 3 types of contracts spread over 3 quadrants. He explicitly stated
that his framework was only viable for construction and that in because of large uncertainties about
the problem software engineering required a different type of contract. To cross this gap we provided
three new types of contracts Time boxing, Scope boxing and Scope budgeting. The new contract
forms are based on the project dimensions scope, money and time. Each contract form fixes two out
of the three dimensions. This will ensure that the customer will get what he wants while the developer
has a vent to loosen the pressure when insecurity is at hand.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 57 van 81

5. VALIDATION

In the previous chapter the framework to decide on how to fill in the development has been explored.
Together with the model driven development method this framework should allow a developer to
adapt the base development method to the characteristics of the customer. Also the framework
suggests a method to determine what type of contract is best suitable in case of the customer and the
development method. In this chapter the framework is validated on its usefulness in practice as on
soundness and it‟s process

5.1 Internal and external validity
There are two types of validity, internal validity and external validity. [2] The external validity of a
solution points to the extent to which the solution is valid under different circumstances.

According to Wieringa a solution is internally valid if “it is true that interaction among the solution
elements and domain elements provide a certain outcomes” and that “The outcomes will take the
stakeholders closer to their goal”.

The internal validity thus points to the soundness of the solution where the external validity points out
the applicability of the solution. In our case this means that our framework has to be found usable by
developers at CAPE Group and it has to be found valid so that the method will produce a model
driven development approach that will increase the efficiency of the project.

5.2 Validation approach
The goal of this research was to develop a framework that would prescribe a development method
that was aligned with the customer and the contract, to increase efficiency. In order to align the
customer with the development approach and the contract, the framework makes use of risk
exposure. By determining how much risk a customer introduces to a project the developer can align
his development method and propose a fitting contract.

To truly measure whether the risk exposure can be used to increase efficiency of model driven
development projects multiple use cases or real projects would be required. However, due to a lack of
time we choose for to validate the framework via illustration and an expert panel. These methods
were merged into one large interview to save time. The interview can be found in APPENDIX D:
INTERVIEW.

5.2.1 Validation through illustration
Validation through illustration is a technique that applies small examples and illustrations of the
solution. Based on these examples a selected group can validated whether the results are wanted or
correct. Also the usability can be checked by determining if the users are able to follow the steps
taken in the solution and they understand how the solution is produced.

5.2.2 Validation through experts
Validation through an expert panel is comparable with the first validation method but differs in the fact
that it is used to check the soundness of the solution. For this part in the validation the experts were
asked to check if they could find any steps missing from the framework, as for the identified risks.
Besides on completeness the experts were also questioned to see if all steps taken are logical.

The expert panel consisted of a group of 5, ranging from medior to senior software consultants who
all have performed multiple model driven development projects. Validation on opinion is seen as less
useful than a case study. However, due to deadline reasons we choose for the first.

5.3 Validation process
Due to a lack of time it was not possible to do two validation sessions with all experts. Thus both
methods were merged into one large interview. To ensure that the experts understood the framework,
a detailed explanation was given prior to the interview. Also during the interview an explanation was
given of each input, process and output element of the framework. Questions about these elements
were asked both before and after the explanation to also check the applicability and usefulness of the
framework.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 58 van 81

The interview consisted of 94 question, these questions can roughly be split into two types of
questions: Yes/No questions and, explanatory questions. The yes/no questions were asked to confirm
the usability soundness and logic of the process. If one of these was answered with an unexpected
answer the interviewee was directed to an explanatory question.

In total there were 24 questions on the usability of the framework, 15 questions on the soundness of
the framework and 10 on the logic of the framework. In total five interviews were held, all with experts
from CAPE Groep.

5.4 Results
The interviews provided some new insights in both the usability as on the soundness of the
framework as a whole. We will first describe the feedback in general before we will discuss the results
in depth.

5.4.1 General results
In general all interviews provided good feedback on the usefulness as on the ease of use of the
framework. Most experts did not understand the framework out of the blue, but after some small initial
explanation they immediately understood the purpose of the framework. Furthermore, most experts
also understood and agreed upon the process of the framework.

In terms of soundness the interviews showed varying results. Some experts stated that they just did
not know whether the set of risks was complete. While others stated that they did not miss anything
and that the most important risks are covered. But in overall

The applicability also showed some shortcomings, unlike the expectations the experts did not mind at
all judging the risks with only some characteristics given to guide them. However, they did not fully
understand how these risks lead to the actual changes in the development method. Also some did not
understand how the development method was influenced by the project dimensions.

In overall they found the big advantage of the framework to be:

 Insight in the customer

 A guide line for the model driven development process

 A guide line to choose a contract type

One issue with the interviews itself was that due to the fact that each interview contained a lot of
explanation about the framework itself they were very lengthy which resulted in a loss of
concentration in the end.

5.4.2 In depth results

The interviews were structured around the different steps that exist in the framework. Were the first
part checked the general idea and process of the framework. As said above, this was found to be
useful and sound. The next part was the development method.

5.4.2.1 Development method
This part of the framework is the core of the framework as it is the main output that is presented to the
developer. It is thus needs to be validated thoroughly on all three aspects.

The development method is based on existing developments such as scrum, XP and RUP. But rather
than using 3 phases a fourth phase is included that tries to detect if any adaptions on the models or
model transformations are needed. All experts deemed this a logical step but three of the five experts
thought that this phase required an end point if there was chosen that the models were not updated
and that the project was not done due to a lack of technical excellence to solve the problem.

This results in process as found in Figure 23.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 59 van 81

Figure 23: New preparation phase

Besides the preparation phase also four out of the five experts agreed that during the pre-
development phase the requirements should be extracted before a development planning is made.
Because the planning is based on the content that needs to made, the requirements are needed to
plan the actual development. This creates the following process:

Figure 24: Improved pre-development phase

One expert also suggested renaming the phase to planning phase. However, because the phase not
only plans but also builds architecture we kept the name.

Two experts also suggest that the current process around testing was not performed optimally
because planning was not required after the system went live. Also they suggested that customers do
normally not accept a unit but rather a whole deployment. Thus acceptation was put outside of the
loop and system test in front of the customer acceptation. This allows the client to first test the system
before they have to accept it and results in the following process.

Domain analysis

Update modelling languages

Create model transformations

Meta models

Model transformations

Preparation phase

Interest in project

Cancle project

Gather initial requirements

Create initial architecture

CIM

PIM

Plan development

Development planning

Pre-development phase

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 60 van 81

Figure 25: New development and implementation phase

All experts agreed upon all the deliverables of the development method. Only one suggested that the
application that is developed also needed to be added.

The roles were also not complete according to 3 out of 5 experts. They all missed the business owner
or process owner. A business owner is a customer role who is responsible for the requirements of a
certain process. He is likely to provide the most requirements to the business analyst.

5.4.3 Customer profile
The experts were glad with the possibilities that the profile gave them but were not sure on how to
apply it. Most of them found the profile complete enough but did suggest some improvements on the
customer characteristics. They thought that amount of managers should be hierarchy and that culture
required a maturity level. Two also thought that the amount of working hours that an employee is
allowed to spend on a project should be part of culture.

While the customer profile will never be an exhausting profile of all the aspects of the customer that
influence the development we do feel that these aspects are important and added them to the list.
This results in the following changes to the customer profile

Customer
properties

Customer characteristics

Organizational
structure

 Size

 Hierarchy

Organizational
culture

 Working hours

 Flexibility

 Decision power

 Available project hours

Table 13: Changes to customer profile

5.4.4 Risks
After the customer profile the risks and risk identification process were validated. Surprisingly most
experts agreed that the most important risks were covered. One stated that he had trouble validating
the completeness of the risks. However, because there are an unlimited amount of risks we do not
worry nor state that this list is complete. As long as the most important risks to model driven
development are covered.

The experts also agreed with the risk identification in which the risks are identified relatively of each
other. Some even stated that this would be “the only way to make these kinds of estimates”. While we
do think that there are other possibilities we have left our risk identification process as is due to its
ease of use. However, we do see possibilities for future research.

Implementation

Implementation phase

Plan iteration

Iteration planning

Analysis Design Testing

PIMCIM

Bug foundChange in requirements

Development iteration

Customer acceptance

CIM

System test

Start new iteration

New/Change
requirements

Development phase

Maintenance phase

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 61 van 81

Because there are multiple definitions of risk strategies we also validated this to see if they were
found complete. Two of the five pointed out that at CAPE Groep they used a different model that has
a 5

th
 category of risk management called contingency risk management. However, one of those also

stated that this could be seen as a reduction of the risk and was thus not that important to the
framework.

5.4.5 Business cases
The business case provides a guideline to the developers to choose a risk management strategy.
Most experts like the idea of using such a guide line and also thought it helpful. However, they also
thought that these business cases were far from exhaustive and required some further research to
determine what the other possible business cases can be. They did say that these were good enough
to start with.

5.4.6 Remaining risks and contract types
The remaining risks are coupled to the project dimensions to be able to determine a type of contract.
Most experts really liked this idea and thought that it was clear and even applicable. They were then
asked if the contract types that are developed during this research are applicable and logical. All
experts agreed upon these types of contracts applicable in software engineering. They even found it
logical that quality is always fixed. One expert made the additional comment that this was “especially
the case within CAPE Groep because CAPE strives to deliver the highest quality, with an exception
on a proof of concept or a pilot project.”

5.5 Conclusion
We have validated the development method and the framework by interviewing five experts and
providing them with examples and illustrations of the framework. This showed that even though the
development method had some flaws in its process the framework itself is very useful in aligning the
development method and the contract with the customer. It also showed that the customer profile is
not exhausting and that more research is required to find a good way to determine the risks that the
customer introduces.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 62 van 81

6. CONCLUSION & RECOMMENDATIONS
In this final chapter all results of this research will be combined in a set of conclusions and
recommendations. Paragraph 6.1 gives an overview of the conclusions that can be drawn from this
research and tries to answer the research question that have been asked at the start of this research.
This will be followed by the recommendations to users and future researchers in paragraph 6.2.

6.1 Conclusions
During this master thesis research has been conducted to aligning a customer in a model driven
development project to the development method and the contract. The problem statement that was
central to this research was the following:

“How can model driven software projects become more efficient by aligning development with
the customer and contract type?”

In order to answer this research question the four central questions have been answered that together
resulted in the framework that has been developed.

What types of contracts are used in the software engineering field?
There are many different ways to define a contract. In this research we chose to define a contract as
an agreement between two parties is used to set up a project organization. A contract has three main
elements, a payment type, intellectual property and a product definition. Because in software
engineering a product might not always be well defined from the beginning it is important to be able to
adept a contract to certain changes. This can be done by mapping the contract to the project
dimensions: Scope, Time and Money. In this research we defined three different types of contract that
each fixed two out of the three dimensions. This provided the following types of contracts:

 Time Money Scope

Time boxing Fixed Fixed

Scope boxing Fixed Fixed

Scope budgeting Fixed Fixed

Other contract types that can be applicable to software engineering but not in combination with our
method are: Fixed price, Re-measurement and Time and Materials.

How does the customer influence software development projects?
To determine how the customer influences the software project we researched critical success factors
that had to be present at the customer. These critical success factors were coupled to characteristics
that on their own provide handles to the developer to identify a customer. The customer profile
consists of the following properties and characteristics:

Customer property Customer characteristics

Organizational structure
 Size

 Hierarchy

Organizational culture

 Working hours

 Flexibility

 Decision power

Agile arrangements

 Facilities

 Employee access

 Network access

General IT experience  Amount of similar IT projects done

Modelling experience  Experience with software modelling

Teamwork  Projects in daily operation

Resistance of groups or
individuals

 Amount of users

 Type of Users

 Management support

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 63 van 81

It is notably that these characteristics are not made measureable and that these characteristics are
not exhausting either. It was concluded during the validation that while they are neither exhausting nor
measureable they are still useful in the process of identifying a customer.

How can a development method of MDD be aligned with the customer?
In order to align the customer with the development method first a base development method has
been introduced. This development method has five parameters that can change between an agile
approach and a more classical approach. These five parameters are:

Method parameters Agile Classic

Role distribution Customer Developer

Iteration time 1-2 weeks 2-4 weeks

Location Customer Developer

Requirements documentation Few documentation Full documentation

 To map the development method with the customer, a risk exposure level can be used. The risk
exposure level is a function of risk impact * risk chance. Thus for each parameter a set of risks has
been identified which were mapped to the customer profile. This mapping was done based on the
risks that were identified as results of failing the critical success factors that made up the customer
profile. This mapping resulted in the following:

Customer property
Customer

characteristics
Risks

Development
parameter

Organizational
structure

 Size

 Hierarchy
Bad cooperation

Tester role, Business
analyst role, Location

Organizational culture

 Working hours

 Flexibility

 Decision power

Bad cooperation

Tester role, Business
analyst role, Location

Agile arrangements

 Facilities

 Employee
access

 Network access

Bad facilities, Bad
cooperation, large
travel distance, Unclear
requirements

Location, Business
analyst

General IT experience
 Amount of

similar IT
projects done

Changing
requirements, Unclear
requirements,
Missing requirements,
Missing functionality,
Gold plating,
Unknown modelling
restrictions,
Non fitting end product

Iteration time, Initial
requirements, Tester
role, Business analyst

Modelling experience
 Experience with

software
modelling

Badly modelled
requirements

Business analyst role

Teamwork
 Projects in daily

operation
Bad cooperation

Tester role, Business
analyst role, Location

Resistance of groups or
individuals

 Amount of users

 Type of Users

 Management
support

Refuse solution

Tester role

It should be noted that the risks that are identified are measured based on the characteristics that the
customer profile has. However, because these characteristics are not made quantitative they are hard
to measure.

How can the efficiency of software projects be measured?
To define how efficiency is used in software engineering we first have to look at the problem that was
identified within CAPE Groep. We identified that customers often requested a non fitting contract form

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 64 van 81

and due to that more discussions arise. Efficiency can thus be defined as the time and money spend
developing a certain scope. To measure the efficiency within a software project the project steering
dimensions can be used. The more scope that has been made with the same amount of money and
time the more efficient a project is.

6.2 Recommendations
In this paragraph recommendations will be given on two different levels. The first will be on the use of
framework and development method. The second paragraph will contain recommendations regarding
future research.

6.2.1 Use of framework
We performed an extensive research to develop a framework that allows the alignment of the
development method with the contract and the customer. The main recommendations regarding the
use of this framework are the following:

Train project managers in determining the risks, let them apply the framework first in a mirror project
that runs parallel to a real project. This way they will not only learn the framework but are also able to
validate the framework more extensively.

Create standard questionnaires that can be used during the initiation of the project to determine the
risks. While it is hard to determine standard questionnaires due to large differences between
customers, it might be possible to determine a type of customer or a type of market and create a
questionnaire for this market.

Validate the framework more extensively by using the framework in upcoming projects and compare
them to results of previous projects. This allows the efficiency increase to be measured based on the
used resources in earlier project compared to the new projects.

Make use of the risk exposure levels not only to determine what the development method should be
but also to persuade a customer into choosing the right contract type.

Make the project member aware of the risks involved in a project and enable a culture that talks about
risks to make it easier to identify possible risks in the future. This does not stop at the developer,
when the customer is more open about his limits it will be easier for both of them to determine risks.
The more risks identified the better they can be managed.

6.2.2 Future research

This research has delivered a theoretical model that has been validated by 5 different experts. Based
on their opinion the framework has been adapted to reflect a more realistic model. However as no real
cased studies have been performed neither a lab demo it is too soon to conclude that the framework
will always work. To further improve the framework, it will need to be put to use by practitioners. By
applying it to real life examples and projects new risks can be found. The list of risks is far from
exhausting and can be updated by use. Besides on the actual event of a risk future research should
also focus on finding out why these risks occur and how they can be determined up front.

Another reason to further apply this framework is that it has only been validated by 5 experts who
where all working for the same company. While not necessarily, it could be that information has been
missed because of that. This is strengthened by the fact that the interviews all were very lengthy
which led to a decrease in concentration of the experts. In overall more validation is necessary to
assure the quality of this research.

One of the initial goals of this research was to increase efficiency by increasing the alignment
between the customer, the contract and the development method. While the latter three have all been
achieved within this research, no actual results about the increase of efficiency could be determined.
This could either be because they are not present, but more likely it are the time limitations that
prevent any results to show. Future research could focus itself on finding out if efficiency is indeed
increased and if so, how much it increases.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 65 van 81

Next to the efficiency increase also more studies are need to determine a good way to identify the
risks more accurate. Currently the risks are only determined but if a better link could be made
between the characteristics of the customer and the occurrence of a risk, the risks might actually be
calculated which would provide a more reliable observation of the customer.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 66 van 81

BIBIBLIOGRAPHY

[1] Mendix. (2009, Mendix platform. Available: http://www.mendix.com
[2] R. J. Wieringa, Problem analysis and solution design chapter 6. Enschede: University of

Twente, 2008.
[3] Standish_Group. (2001, Extreme Chaos. Available:

http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf
[4] H. Verschuren and P. Doorewaard, in Het ontwerpen van een onderzoek, ed Utrecht: Lemma,

1995, pp. 19-79.
[5] J. McCarthy, Dynamics of software development: Microsoft Press, 2006.
[6] P. Naur and B. Randell, "Software Engineering," Garmisch, 1968.
[7] W. S. Humphrey, "The Software Engineering Process: Definition and Scope," ACM SIGSOFT

Software Engineering Notes, 1989.
[8] IEEE, "Standard glossary of software engineering terminology," ed, 1990.
[9] A. Macro and J. Baxton, The craft of software engineering: Addison-Wesley, 1989.
[10] H. v. Vliet, Software engineering principles and practice: Wiley, 2007.
[11] W. W. Royce, "Managing the development of large software systems," in Proceedings IEEE

WESCON, 1970.
[12] B. Selic, "Model-Driven Development: Its Essence and Opportunities," presented at the

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing, 2006.

[13] E. Seidewitz, "What Models Mean," IEEE Software, vol. 20, pp. 26-32, 2003.
[14] A. M. Starfield, "A Pragmatic Approach to Modeling for Wildlife Management," Wildlife

Management, vol. 61, pp. 261-270, 1997.
[15] D. C. Schmidt, "Guest Editor's Introduction: Model-Driven Engineering," Computer, vol. 39,

pp. 25-31, 2006.
[16] T. Mens and P. Van Gorp, "A Taxonomy of Model Transformation," Electronic Notes in

Theoretical Computer Science, vol. 152, pp. 125-142, 2006.
[17] O. Pastor, Model-driven architecture in practice : a software production environment based on

conceptual modeling, 2007.
[18] OMG, "Model driven Architecture Guide," in The Basic Concepts, ed: Object Management

Group, 2003, p. 62.
[19] J. Bézivin, "In Search of a Basic Principle of Model Driven Engineering," Novatica Journal,

2004.
[20] B. Hailpern, "Model-driven development: The good, the bad, and the ugly," IBM Systems

Journal, vol. 45, p. 451, 2006.
[21] S. Beydeda, Model-Driven Software Development, 2005.
[22] J. den Haan. (2009, October). From Process Design to Process Automation. The enterprise

architect. Available: http://www.theenterprisearchitect.eu/
[23] CARE-Tech. (2009, OlivaNova. Available: http://www.care-t.com/
[24] M. Jackson, "Software development method," in A classical mind: essays in honour of CAR

Hoare, A. W. Roscoe, Ed., ed: Prentice Hall, 1994, pp. 211-230.
[25] A. Qumer and B. Henderson-Sellers, "An evaluation of the degree of agility in six agile

methods and its applicability for method engineering," Information & Software Technology,
pp. 280-295, 2008.

[26] W. Cunningham, "Manifesto for agile software development," in Manifesto for Agile Software
Development, ed, 2001.

[27] J. Warsta. (2002, Agile Development Methods: Review and Analysis.
[28] P. Abrahamsson, Salo, O., Ronkainen, J., Warsta, J., "Agile software development methods

review and analysis," VTT Publications, vol. 478, pp. 3-178, 2002.
[29] "Allwords," in Allwords, ed, 2009.
[30] S. Whang, "Contracting for Software Development," Management Science, pp. 307-324,

1992.
[31] J. R. Turner and J. S. Simister, "Project contract management and a theory of organization,"

International journal of project management, pp. 457-464, 2001.
[32] J. R. Turner and R. A. Cochrane, "Goals-and-methods matrix: coping with projects with ill

defined goals and/or methods of achieving them," International journal of project
management, vol. 11, pp. 93-102, 1993.

http://www.mendix.com/
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf
http://www.theenterprisearchitect.eu/
http://www.care-t.com/

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 67 van 81

[33] W. B. Barry. (1991) Software Risk Management: Principles and Practices. 32-41. Available:
http://doi.ieeecomputersociety.org/10.1109/52.62930

[34] B. Boehm, "Software risk management," ed, 1989, pp. 1-19.
[35] D. v. Well-Stam, Lindenaar, F., Kinderen, S. van, , Risicomanagement voor projecten; De

RISMAN-methode toegepast. . Utrecht. ISBN 2003.
[36] P. Berander and A. Andrews, "Requirements Prioritization," ed, 2005, pp. 69-94.
[37] J. Galbreath, "Customer relationship leadership: a leadership and motivation model for the

twenty-first century business," The TQM magazine, vol. 11, p. 161, 1999.
[38] P. Schubert and P. Risch, "Customer profiles, personalization and privacy.," In Proceedings

of CollECTeR Europe, 2005.
[39] T. Chow and D. Cao, "A survey study of critical success factors in agile software projects,"

The Journal of Systems and Software, pp. 961–971, 2008.
[40] R. Fisher, Getting to yes, 1981.
[41] A. Gopal, "Contracts in Offshore Software Development:An Empirical Analysis," Management

Science, 2002.
[42] B. Whittaker, "What went wrong? Unsuccessful information technology projects," Information

Management & Computer Security, vol. 7, pp. 23-30, 1999.
[43] S. Nerur, et al., "Challenges of migrating to agile methodologies," Commun. ACM, vol. 48, pp.

72-78, 2005.
[44] A. Cockburn, "Agile software development, the people factor," Computer, vol. 34, p. 131,

2001.
[45] E. B. Dent and S. G. Goldberg, "Challenging "Resistance to Change"," Journal of Applied

Behavioral Science, vol. 35, pp. 25-41, March 1, 1999 1999.
[46] B. Selic, "The pragmatics of model driven development," IEEE Software vol. 20, pp. 19-25,

2003.
[47] J. J. Jiang, "A measure of software development risk," Project Management Journal, vol. 33,

p. 30, 2002.
[48] L. Wallace and M. Keil, "Software project risks and their effect on outcomes," Commun. ACM,

vol. 47, pp. 68-73, 2004.
[49] A. M. Davis, Software requirements: analysis and specification: Prentice Hall Press, 1990.

http://doi.ieeecomputersociety.org/10.1109/52.62930

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 68 van 81

APPENDICES

Appendix A: Software manifesto principles
Appendix B: Agile methods
Appendix C: Critical success factors in agile projects

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 69 van 81

APPENDIX A: SOFTWARE MANIFESTO PRINCIPLES

Our highest priority is to satisfy the customer
through early and continuous delivery
of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they need,
and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

Continuous attention to technical excellence
and good design enhances agility.

Simplicity--the art of maximizing the amount
of work not done--is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts
its behaviour accordingly.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 70 van 81

Appendix B: Agile methods

Method Key points Special features Identified
Shortcomings

ASD Adaptive culture,
collaboration, mission-
driven component based
iterative development

Organizations are seen
as adaptive systems.
Creating an emergent
order out of a web of
interconnected
individuals.

ASD is more about
concepts and culture
than the software
practice.

AM Applying agile principles
to modelling: Agile
culture, work organization
to support
communication,
simplicity.

Agile thinking applies to
modelling also.

This is a good add-on
philosophy for modelling
professionals. However,
it only works within other
methods.

Crystal Family of methods. Each
has the same underlying
core values and
principles. Techniques,
roles, tools and
standards vary.

Method design principles.
Ability to select the most
suitable method based
on project size and
criticality

Too early to estimate:
Only two of four
suggested methods exist.

DSDM Application of controls to
RAD, use of time boxing,
empowered DSDM
teams, active consortium
to steer the method
development.

First truly agile software
development method,
use of prototyping,
several user roles:
“ambassador”, “visionary”
and “advisor”.

While the method is
available, only
consortium members
have access to white
papers dealing with the
actual use of the method.

XP Customer driven
development, small
teams, daily builds

Refactoring – the
ongoing redesign of the
system to improve its
performance and
responsiveness to
change.

While individual practices
are suitable for many
situations, overall view &
management practices
are given less attention.

FDD Five-step process,
object-oriented
component (i.e., feature)
based development. Very
short iterations: from
hours to 2 weeks.

Method simplicity, design
and implement the
system by features,
object modelling.

FDD focuses only on
design and
implementation. Needs
other supporting
approaches.

OSS Volunteer based,
distributed development,
often the problem domain
is more of a challenge
than a commercial
undertaking.

Licensing practice;
source code freely
available to all parties.

OSS is not a method
itself; ability to transform
the OSS community
principles to commercial
software development.

PP Emphasis on
pragmatism, theory of
programming is of less
importance, high level of
automation in all aspects
of programming.

Concrete and empirically
validated tips and hints,
i.e., a pragmatic
approach to software
development.

PP focuses on important
individual practices.
However, it is not a
method through which a
system can be
developed.

RUP Complete SW
development model
including tool support.
Activity driven role
assignment.

Business modelling, tool
family support.

RUP has no limitations in
the scope of use. A
description how to tailor,
in specific, to changing
needs is missing.

SCRUM Independent, small, self- Enforce a paradigm shift While Scrum details in

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 71 van 81

organizing development
teams, 30-day release
cycles.

from the “defined and
repeatable” to the “new
product development
view of Scrum.”

specific how to manage
the 30-day release cycle,
the integration and
acceptance tests are not
detailed.

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 72 van 81

Appendix C: Critical success factors in agile projects

Failure factors

Organizational

1. Lack of executive sponsorship

2. Lack of management commitment

3. Organizational culture too traditional

4. Organizational culture too political

5. Organizational size too large

6. Lack of agile logistical arrangements

People

7. Lack of necessary skill

8. Lack of project management competence

9. Lack of team work

10. Resistance from groups or individuals

11. Bad customer relationship

Process

12. Ill-defined project scope

13. Ill-defined project requirements

14. Ill-defined project planning

15. Lack of agile progress tracking mechanism

16. Lack of customer presence

17. Ill-defined customer role

Technical

18. Lack of complete set of correct agile practices

19. Inappropriateness of technology and tools

Success factors

Organizational

1. Strong executive support

2. Committed sponsor or manager

3. Cooperative organizational culture instead of hierarchal

4. Oral culture placing high value on face-to-face communication

5. Organizations where agile methodology is universally accepted

6. Collocation of the whole team

7. Facility with proper agile-style work environment

8. Reward system appropriate for agile

People

9. Team members with high competence and expertise

10. Team members with great motivation

11. Managers knowledgeable in agile process

12. Managers who have light-touch or adaptive management style

13. Coherent, self-organizing teamwork

14. Good customer relationship

Process

15. Following agile-oriented requirement management process

16. Following agile-oriented project management process

17. Following agile-oriented configuration management process

18. Strong communication focus with daily face-to-face meetings

19. Honoring regular working schedule – no overtime

20. Strong customer commitment and presence

21. Customer having full authority

Technical

22. Well-defined coding standards up front

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 73 van 81

23. Pursuing simple design

24. Rigorous refactoring activities

25. Right amount of documentation

26. Regular delivery of software

27. Delivering most important features first

28. Correct integration testing

29. Appropriate technical training to team

Project

30. Project nature being non-life-critical

31. Project type being of variable scope with emergent requirement

32. Projects with dynamic, accelerated schedule

33. Projects with small team

34. Projects with no multiple independent teams

35. Projects with up-front cost evaluation done

36. Projects with up-front risk analysis done

Appendix D: Interview

Onderdeel Vraag Antwoord Aantekeningen

Algemeen

 Is het framework zonder introductie duidelijk?

 Mist er op het eerste oog iets in het framework?

 Zo ja, wat dan?

Is het framework na korte uitleg nog steeds
duidelijk?

 Zo nee, wat niet?

Volgt het framework een logisch process of zijn er
stappen die je anders zou doen?

 Zo nee, wat is er niet logisch en waarom niet?

1. Base development
method

Is het doel van de stap basis ontwikkel methode
duidelijk?

 Zo niet wat niet en hoe zou dit duidelijker kunnen?

1A. Fase plan

 Is het doel van de Preparation fase duidelijk?

 Zijn de activiteiten duidelijk in de preparation fase?

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 75 van 81

 Zo niet wat niet en hoe zou dit duidelijker kunnen?

 Is de volgorde van de activiteiten logisch?

 Zo nee waarom niet?

 Missen er nog activiteiten?

 Zo ja welke ontbreken er?

 Is het doel van de Pre-development fase duidelijk?

Zijn de activiteiten duidelijk in de Pre-development
fase?

 Zo niet wat niet en hoe zou dit duidelijker kunnen?

 Is de volgorde van de activiteiten logisch?

 Zo nee waarom niet?

 Missen er nog activiteiten?

 Zo ja welke ontbreken er?

 Is het doel van de Development fase duidelijk?

Zijn de activiteiten duidelijk in de Development
fase?

 Zo niet wat niet en hoe zou dit duidelijker kunnen?

 Is de volgorde van de activiteiten logisch?

 Zo nee waarom niet?

 Missen er nog activiteiten?

 Zo ja welke ontbreken er?

 Is het doel van de Implentation fase duidelijk?

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 76 van 81

Zijn de activiteiten duidelijk in de implementatie
fase?

 Zo niet wat niet en hoe zou dit duidelijker kunnen?

 Is de volgorde van de activiteiten logisch?

 Zo nee waarom niet?

 Missen er nog activiteiten?

 Zo ja welke ontbreken er?

Ontbreken er in de gehele methode activiteiten die
gedurende een MDD traject plaats moeten vinden?

 Zo ja, welke stappen ontbreken er en waarom?

1B. Rollen

Is het van iedere rol duidelijk wat zijn of haar
verantwoordelijkheden/taken zijn?

 Zo nee, van welke rol niet?

Zijn deze rollen dekkend of ontbreken er nog rollen
of verantwooredelijkheden?

 Zo Nee, wat ontbreekt er?

1C. Deliverables

Is het van iedere deliverable duidelijk wat deze
precies inhoudt?

 Zo nee, welke is onduidelijk en waarom?

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 77 van 81

Missen er nog deliverables of onderdelen die
gedurende het ontwikkel traject opgeleverd dienen
te worden?

 Zo ja welke ontbreken er en waarom?

2. Customer identification

 Is het doel van de deze stap duidelijk?

 Zo nee, waarom niet?

Is het duidelijk waarom er gebruik is gemaakt van
deze klant eigenschappen?

Is de keuze voor deze klant eigenschappen
logisch?

 Zo nee, waarom niet?

 Ontbreken er nog klant eigenschappen?

 Zo ja, welke eigenschappen ontbreken en
waarom?

 Zijn de gekoppelde klant karakteristieken duidelijk?

 Zo nee, welke niet?

 Zijn de gekoppelde klant karakteristieken dekkend?

 Zo nee, welke ontbreken er?

3. Risk identification

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 78 van 81

 Is het doel van de deze stap duidelijk?

 Zo nee, waarom niet?

Zijn de Risico's dekkend genoeg of ontbreken hier
nog belangrijke risico's?

 Zo ja welke ontbreken er en waarom?

Is het duidelijk hoe deze risico's beoordeeld moeten
worden?

 Zo nee, wat ontbreekt hieraan en waarom?

4. Business case

 Is deze stap logisch en benodigd?

 Zo ja waarom is deze stap belangrijk?

5. Risk management
strategy

 Is het doel van deze stap duidelijk?

 Zo nee, waarom niet, wat was er verwacht?

Zijn de vier type risico management strategien
duidelijk?

 Zo nee, welke niet en waarom niet?

Zijn de vier type risico management strategien
compleet of ontbreekt er hier nog een?

 Zo nee, welke ontbreekt en waarom moet deze er
bij?

6. Adaption base method

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 79 van 81

Is de manier waarop deze stap wordt uitgevoerd
duidelijk?

 Zou je de stap op de zelfde manier uitvoeren?

 Zo nee hoe zou de stap anders uitgevoerd kunnen
worden?

Is de mogelijke aanpassing voor ieder risico
duidelijk?

 Zo nee welke niet?

Zijn de mogelijke aanpassingen voor ieder risico
logisch?

 Zo nee welke niet?

 Zijn de mogelijke aanpassingen compleet?

 Zo nee, welke ontbreken er hier en waarom?

7. Remaining risks

 Is deze output duidelijk?

De risico's worden hier uitgezet tegen de project
management variabelen is deze stap logischerwijs
te volgen?

 Zo niet waarom niet en hoe zou dit anders
kunnen?

8. Fixed project
dimensions

Met het bepalen van de project dimensies wordt het
contract nader ingevuld, is dit duidelijk en logisch?

 Finding a customer specific model driven development methodology

CAPE Groep & University of Twente Pagina 80 van 81

 Zo nee, waarom niet?

Het bepalen van de project dimensies wordt gedaan
aan de hand van de overgebleven risico's. Deze
worden opgeteld en degene die het meeste risico
overheeft heeft de minste voorkeur om gefixed te
worden. Is dit een juiste benadering of kan dit niet
zomaar gesteld worden?

 Zo nee, waarom niet?

Kwaliteit wordt altijd gefixed, is dit een juiste
stelling?

9. Afsluiting

 Ontbreekt er iets aan dit framework

 Zo ja, wat ontbreekt er nog?

 Heb je nog vragen gemist in het interview?

 Zo ja, welke?

