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Abstract

As current radio telescopes get bigger and bigger, so does the demand for
processing power. General purpose processors are considered infeasible for
this type of processing which is why this thesis investigates the design of
a dataflow architecture. This architecture is able to execute the operations
which are common in radio astronomy.

The architecture presented in this thesis, the FlexCore, exploits regularities
found in the mathematics on which the radio telescopes are based: FIR filters,
FFTs and complex multiplications. Analysis shows that there is an overlap in
these operations. The overlap is used to design the ALU of the architecture.
However, this necessitates a way to handle state of the FIR filters.

The architecture is not only able to execute dataflow graphs but also uses
the dataflow techniques in the implementation. All communication between
modules of the architecture are based on dataflow techniques i.e. execution is
triggered by the availability of data. This techniques has been implemented
using the hardware description language VHDL and forms the basis for the
FlexCore design. The FlexCore is implemented using the TSMC 90 nm tech-
nology.

The design is done in two phases, first a design with a standard ALU
is given which acts as reference design, secondly the Extended FlexCore is
presented. The Extended FlexCore incorporates the ALU which exploits the
regularities found in the mathematics. The ALU of the Extended FlexCore is
able to perform a four point FIR filter, a complex multiplication or an FFT
butterfly operation in a single clock cycle. The Extended FlexCore uses an
Explicit State Store (ESS) to handle stateful operations like a four point FIR
filter.

The standard FlexCore and the Extended FlexCore are compared by exe-
cuting a FIR filter, FFT and complex multiplications. The comparison shows
that the Extended FlexCore is significantly more energy efficient per operation
than the reference FlexCore.

Finally, an indication of the energy efficiency of the Extended FlexCore is
given in comparison with other architectures. It is shown that the FlexCore
lies, in terms of energy per operation, between the ASICs and the general
purpose ARM processor.
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Introduction

A way to summarise the developments in radio astronomy is ”the bigger, the
better”. Especially radio telescopes like LOFAR reach sizes over 1500 kilome-
ter across[1],[2]. An even bigger telescope, SKA, is planned to be operational
in 2023. SKA will have a total collecting area of 1 square kilometer and has
a diameter of more than 3000 kilometer[3],[4]. All these telescopes use a huge
number of antennas to receive the signals. All these signals are combined into
sky pictures by a technique called beamforming.

With the increase in size and number of antennas, so does the demand for
processing power to handle all the data coming from these antennas. Conven-
tional processors like von Neumann architectures are considered infeasible for
these types of applications in terms of processing power and energy consump-
tion which is why the radio astronomy community uses ASICs and FPGAs
[5],[6],[7].

In this thesis, an implementation of the dataflow architecture proposed by
Kenneth Rovers [8], the FlexCore, is presented. Parts of the algorithms used
in radio astronomy are used to evaluate the FlexCore to see whether dataflow
architectures are suitable for applications like radio astronomy.

1.1 Research goals

The goal of this thesis is to implement the FlexCore using the hardware de-
scription language VHDL. After that, the design should be synthesized using
ASIC tooling such that numbers like area and power consumption can be ex-
tracted. The FlexCore is a dataflow architecture where execution is triggered
by the availability of data instead of a program counter (dataflow execution).
The corresponding models used for analysis of execution based on availability
is called dataflow analysis.

The FlexCore itself also uses data triggered execution for all the inter-
nal modules of the design. The FlexCore can therefore also be considered a
dataflow graph. All the connections in this graph (connections between the
modules of the architecture) use buffers with feedback for communication.
This feedback prevents overflows of the buffers and is called backpressure[9].
Before implementing the FlexCore, dataflow graphs with backpressure should
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CHAPTER 1. INTRODUCTION 2

be implemented using VHDL first. This will form the basis on which the de-
sign of the whole FlexCore is based. The corresponding research question is:
How can dataflow graphs with backpressure be implemented in VHDL and
what will be the lower bound of the buffer sizes?

The reason for trying to combine dataflow architectures and beamforming
is that dataflow programs lie closer to the mathematical description of the
program than for example von Neumann architectures. However, dataflow ar-
chitectures introduce overhead due to the fine grain parallelism[10]. An impor-
tant way of increasing energy efficiency is exploiting locality of reference[11].
The main research question for this thesis is: How can the granularity of
dataflow execution be increased by exploiting locality of reference in the LO-
FAR beamforming application?

1.2 Thesis structure

Background information is given in chapter 2 about the concepts that will be
used throughout this thesis. First an introduction on dataflow graphs will be
given, followed by how these are executed in dataflow architectures. Finally,
more information is given on beamforming and how this is implemented on
the LOFAR radio telescope.

As dataflow principles are the major part of the design of the FlexCore,
they are first implemented in hardware using the hardware description lan-
guage VHDL. Chapter 3 shows how dataflow graphs are implemented using
VHDL and how much buffering of data is required. In order to exploit lo-
cality of reference by increasing the granularity, the mathematical operations
used for radio astronomy are investigated in chapter 4. Regularities in the
algorithms of beamforming are used to merge the basic components of these
algorithms together into a single module of the processor.

In order to evaluate these ideas, two implementations of the FlexCore
are made. The first implementation, referred to as standard FlexCore, is a
standard dataflow architecture as described in literature[12]. The standard
FlexCore is used as reference implementation to evaluate the Extended Flex-
Core which incorporates the regularities found in the beamforming applica-
tion. Chapter 5 starts with the implementation of the standard FlexCore
and elaborates on the techniques used to design this processor (dataflow). In
section 5.3 the Extended FlexCore is presented exploiting the mathematical
transformations from chapter 4.

Both designs have been implemented using 90 nm technology. Also several
algorithms have been executed on both designs such that an indication of
power usage can be given. The results of this can be found in chapter 6 and
are compared to other architectures in chapter 7.

Finally the results are discussed in chapter 8 followed by the conclusion in
chapter 9.
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Background

Before diving into dataflow graphs, dataflow machines and beamforming, some
background information about dataflow graphs, dataflow architectures and
beamforming is needed. This chapter gives the background information on
which the rest of this thesis is based. First a basic explanation on dataflow
graphs is given in section 2.1. This is used in section 2.2 where the inner
working of dataflow machines is explained. Section 2.3, gives the information
on beamforming which is the application of which parts should run on the
FlexCore. Finally, section 2.4, explains the tool flow for building an ASIC.

2.1 Dataflow graphs

Data Flow Graph (DFG)s are mathematical representations of programs[13].
Execution of these programs is not driven by a sequence of instructions but
by the availability of data. The most well known type of dataflow graphs are
Synchronous Data Flow (SDF) graphs[14]. Dataflow graphs are the basis for
the work presented in this thesis.

The operations that should be performed during execution of a dataflow
graph are represented by nodes. Nodes can be of any granularity, ranging from
simple operations like addition and multiplication to complete FFT operations
and processors. Nodes in a dataflow graph are connected by arcs which do
not only represent the dependencies between nodes but which are also the
locations where data is stored. The packets containing data are so called
tokens. Figure 2.1 shows the terminology displayed graphically.

x2 +

node

arc

token

Figure 2.1: Simple dataflow graph for x2 + x2

The execution of a dataflow node is triggered by the availability of tokens.
When all required inputs for a node are available the node becomes enabled.
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CHAPTER 2. BACKGROUND 4

An enabled node consumes tokens on the input(s) and produces tokens on the
output(s). This process is called firing. Only enabled nodes may fire which is
called the firing rule i.e. the firing rule states that a node may only execute
when all required tokens are available on the input(s).

A B 3

+
n1

/

n2

result

(a)

A B 3

+
n1

/

n2

result

(b)

A B 3

+
n1

/

n2

result

(c)

A B 3

+
n1

/

n2

result

(d)

Figure 2.2: Firing rules in dataflow graphs

Figure 2.2 shows four events during execution of a dataflow graph created
from the formula result = A+B

3 . Node n1 (the adder) is the first to receive
a token but is not yet enabled because it requires two tokens. At a later
time (figure 2.2b) the second token has arrived as well and node n1 becomes
enabled. Node n2 (the divider) also receives a token but remains disabled until
n1 has produced its result. Figure 2.2c shows the time where n1 has produced
a result and therefore enables node n2. When n2 fires it consumes the tokens
on the inputs and produces a token containing the result (figure 2.2d).

A graph whose nodes only consume and produce a single token per input
and output during firing are called Homogeneous Synchronous Data Flow
(HSDF) graphs [15]. Homogeneous dataflow graphs are a subset of Syn-
chronous Data Flow (SDF) graphs[14] which can produce and consume several
tokens at once. The work presented in this thesis however only involves Ho-
mogeneous Synchronous Data Flow (HSDF) graphs.

The time between two events in a Synchronous Dataflow Graphs can be
arbitrary. A pure implementation of such graphs therefore does not require
a global clock because all the synchronization is enforced by the firing rules.
More information can be found in the literature report which is included in
appendix B. More theoretical information on dataflow graphs can be found in
[15] and [16].

2.2 Dataflow architectures

The machines able to directly execute dataflow graphs are called dataflow
machines. These machines use the firing rule as explained in the previous
section to start execution of nodes. The first dataflow machine was developed
by Dennis at MIT[17] and is called the MIT static dataflow processor.
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Dataflow machines are usually divided in two groups, the static dataflow
machines and dynamic dataflow machines. In static dataflow machines, the
DFG being executed does not change. In a dynamic dataflow machine how-
ever, the DFG is able to change during execution. Dynamic dataflow machines
are able to perform more advanced features like procedure calls. More infor-
mation about different dataflow machines can be found in the literature report
in appendix B and in [12].

The architectures presented in this thesis use principles from both static
and dynamic dataflow machines. Figure 2.3 shows the general structure of
a static dataflow machine. The dataflow graph is usually stored in a special
memory. This memory also supports storage of tokens. As can be seen in
figure 2.3 every incoming token from the left triggers the enabling unit to
detect whether a node from the DFG becomes enabled. If this is not the
case, the token will be stored in the memory. When a node becomes enabled,
i.e. there is a match, both operands and instruction for that particular node
are combined in a packet and sent to the functional unit which executes the
instruction with the given operands. After the instruction has been completed,
the result is sent to the enabling unit again. Resulting tokens may enable other
nodes from the DFG which completes the cycle.

enabling unit

memory for tokens and nodes

functional unit

Figure 2.3: Basic structure of a static dataflow machine.

The matching procedure in static dataflow machines requires special hard-
ware for every possible node in the DFG. The hardware has three registers:
one for the instruction and two for the operands (the in-degree of nodes is
usually two). When both operand registers contain a value, a match is found.
Static dataflow machines like the MIT static dataflow machine therefore have
a matching circuit for every node[17]. More information about static dataflow
machines can be found in the literature report in appendix B.

Soon after the static machines came the dynamic versions which used gen-
eral memories as found in von Neumann architectures. The architectures were
however inefficient in matching because they used hashing functions for that
[18]. This resulted in low utilization of the functional unit and therefore de-
graded the performance of the whole processor. By using a so called Explicit
Token Store (ETS)[19] the slow hashing parts could be removed. Both imple-
mentations of the FlexCore use an ETS for matching of tokens.
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ETS

A more efficient way of matching instead of using hashing functions is an
Explicit Token Store (ETS) which was introduced in a machine called the
Monsoon[19]. The ETS was specifically designed for efficient execution of
procedure calls. The central idea behind ETS is to allocate large blocks of
memory for complete procedures but let the addressing details of single vari-
ables in the program be determined at compile time. Both FlexCores do not
support procedure calls but do make use of the addressing techniques that
should be applied at compile time. Therefore this explanation will only focus
on the addressing part, a complete view of the ETS can be found in literature
report of appendix B.

The addressing for an ETS is performed by the compiler. Every node in
the dataflow graph is assigned a unique address. This address is then used
for both the instruction in the program memory and tokens that have to be
stored before a match occurs. Consider the following dataflow graph.

A B3

− n0

+
n2

/

n1
Out0Out1

〈n2.R 5〉

addr instr dests

0 SUB n1.R,n2.R
1 ADD out
2 DIV out

Program memory

addr p value

0 false
1 true 5
2 true 5

Token memory

Figure 2.4: Example of ETS-principle.

Figure 2.4 shows an example dataflow graph with the corresponding mem-
ory contents of a dataflow machine. All nodes of the DFG are assigned a
unique address that is used in both the token memory and the program mem-
ory. The program memory contains the instruction that corresponds to the
operation in the DFG and a set of destinations. Node n0 for example is as-
signed address 0 and has two destination nodes (right input of n1 and n2)
which use the produced result.

When a token is sent to an input of a node, the address of that node
is used to select an element from the token memory. The field p from that
element represents the presence bit. This bit indicates whether the node,
corresponding to the address of the incoming token, has one operand available
on one of the inputs. When this is the case, the bit should be set to true.
When there are no tokens available, the bit should be false. When the bit
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is false no token is on any input so the incoming token should be stored in
the token memory(see address 1 and 2). If the bit was set to true it means
that the incoming token causes a match. The value of the previously stored
token should then be fetched from the token store. Both the incoming token
and the one from the token store form the operands for the instruction that is
addressed by the incoming token. The instruction has a set of destinations to
which the result is sent. These resulting tokens may enable other nodes which
completes the cycle.

2.3 Beamforming

Beamforming is a technique used in radio astronomy to combine signals from
several antennas. Using this technique, a much better directivity can be
achieved. Signals which would normally be undetectable due to noise, can
now be received if enough antennas are used. Beamforming uses the fact that
the antennas are separated from each other by a certain distance. Signals
from a certain angle therefore do not arrive at the same time. Adding the
proper delay to the received signals makes the system directive. Figure 2.5
shows this process graphically.

a0 a1 aN−2 aN−1

∆t

dd0 dd1 ddN−2 ddN−1∑

Out

Figure 2.5: Beamforming

Figure 2.5 shows an array of N antennas which are combined with de-
lays d0 . . . dN−1. Signals (the wavefront shown with dashed lines) arrive first
at antenna a0 then at a1 and eventually at aN−1. By selecting the delays
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such that all received signals are in phase again, the sum of all signals has
a much better signal quality than a signal from a single antenna. There are
several techniques to perform beamforming[20] and to implement the delays
as shown in figure 2.5. LOFAR uses frequency beamforming to implement
these delays[2].

From Fourier theory it is known that a delay can be implemented by
multiplying the Fourier transform of the signal with a complex phase shift
(equation (2.1)). More information on Fourier theory can be found in [21],[22].

f(t− τ) ↔ f̂(ω)e−iωτ (2.1)

f(t) is a signal in the time domain being delayed with time τ . The time
domain signal f(t) has a corresponding signal f̂(ω) in the frequency domain.
f̂(ω) = F(f(t)) i.e. f̂(ω) can be found by taking the Fourier transform of the
time domain signal f(t). The signal f(t) is now delayed by multiplying it with
a complex phase shift e−iωτ .

Delaying a signal by using a phase shift only works perfectly for sinusoid
functions. However when the bandwidth of the signal f(t) is small enough,
the phase shift can still be used. To determine if the bandwidth of the signal is
”small enough”, a measure called the Fractional Bandwidth (FB)[23] is used.
The Fractional Bandwidth is a number that gives a comparison between the
bandwidth of an incoming signal and the center frequency of that signal.
When this number is less than 1%, the signal is considered narrowband and
the phaseshift can therefore be applied to implement delays. The formula to
calculate the Fractional Bandwidth is given in equation (2.2).

FB =
fh − fl
fh+fl

2

< 0.01 (2.2)

Where fh is the highest frequency occurring in the signal and fl is the
lowest frequency. The numerator fh − fl is the bandwidth and denominator
fh+fl

2 is the center frequency.
Now consider a narrowband signal f(t) which is concentrated around fre-

quency ω0, by using the delay property of equation (2.1) the f(t) becomes:

F(f(t)− τ) = f̂(ω) ∗ e−iωτ

Because f(t) is a narrowband signal, the ω of the complex exponent in
the frequency domain can be replaced with a constant ω0 which is the center
frequency of the narrow band signal f(t). The whole complex exponent in the
frequency domain is now constant and can be moved to the time domain:

f̂(t) ∗ e−iωτ = f̂(t) ∗ e−iω0τ︸ ︷︷ ︸
constant

→ f(t− τ) = f(t) ∗ e−iω0τ

Concluding, a narrowband signal can be delayed by multiplying the signal
with a constant complex number.
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Beamforming in LOFAR

The signals that LOFAR receives are not narrowband and simply multiplying
the signal with a complex number therefore doesn’t work. Instead, for every
antenna, the signal is first split into 1024 spectral components. Each of these
components now has a relatively small bandwidth compared to their frequency
i.e. the Fractional Bandwidth is less then 1% and complex multiplications for
phase shifts per band are therefore possible.

Splitting the signal into spectral components is implemented by a so called
filterbank. A filterbank is a FIR filter combined with an FFT to derive the
spectrum of a signal coming from the antenna. The filter first preprocesses
the signal such that unwanted signals are filtered out. The filtered signal is
then fed to a 1024 point FFT which calculates the spectrum of the signal.
Every component of this spectrum is then multiplied with a complex number
which implements the phase shift. This process is shown in figure 2.6.

FIR filter FFT
compl.
mults

Out

Figure 2.6: implementing delay by FFT

This implementation however suggests that for every sample from the an-
tenna, a whole new FFT should be calculated. The FFT is a block based
operation which means the the input signal is split into blocks and the FFT is
applied to every block. The FFT in LOFAR is therefore executed once in every
1024 input samples (recall that the length of the FFT is 1024 points). The FIR
filter in front of the FFT can also be optimized because not all samples have
to be filtered completely. A more efficient architecture which combines the
filter and FFT is called a polyphase filterbank[22] which exploits the fact that
the FFT is block based. Figure 2.7 shows the LOFAR polyphase filterbank.

FIR0

FIR1

FIR1022

FIR1023

1024
point
FFT

×

×

×

×

Figure 2.7: Polyphase filterbank
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Figure 2.7 shows that the filter of figure 2.6 is split into several components.
Each of these components is again a standard FIR filter but with a different
set of coefficients. The set of filters is fed using a big switch. This switch
distributes the samples of the input signal among the filters which send their
results to the FFT which is still the same as the one of figure 2.6. The FFT
is now executed when a whole block of 1024 samples is complete. That is
also the moment where the big switch starts at the begin position again. The
results from the FFT are forwarded to the set of complex multiplications which
implement the phase shifts. More information on beamforming of LOFAR
can be found in the work of Gerard Bos[24] where he made a mapping of the
LOFAR application to a multicore SoC.

2.4 Tool flow

Creating an Application-specific Integrated Circuit (ASIC) of the FlexCore
consists of several steps and requires several tools. First the FlexCore is
implemented using VHDL and compiled and simulated using ModelSim[25].
When the design behaves correctly, it is synthesized with Synopsis Design
Compiler[26] which translates the VHDL description of the architecture into
cells which will be used in the ASIC. The design is synthesized using the
TSMC 90 nm low power cell library. To verify whether synthesis is successful,
the design is simulated again using ModelSim.

The collection of cells produced by synthesis are physically positioned and
connected using the place and route tool Cadence Encounter[27]. The result
contains a full description of the ASIC for production. Again, the result of
place and route is verified using ModelSim. The last step is to determine
power consumption. This is done using Synopsis Primetime[28] which uses all
the signal changes from simulation, the power information from the cell library
and the wire information from place and route to calculate the expected power
consumption.

Another term that will show up in this thesis is clock gating. Clock gating
is a technique to save dynamic energy consumption in an ASIC[29]. Clock-
gating is applied to flipflops where the clock is disabled on a group of flipflops
when no state change occurs. The tooling recognizes state changes based on a
signal, for example a write enable, and adds a clock gate. The clock is disabled
when the enable signal is false and enabled when true.



3

Dataflow graphs in VHDL

The main goal of this thesis is to design a dataflow architecture, the FlexCore.
The FlexCore itself can be seen as a dataflow graph. By describing the archi-
tecture as a dataflow graph, the design of the nodes representing the modules
of the processor should become easier. By applying the rules from dataflow,
the synchronization of data should also be easier to implement. Before build-
ing a complete processor using dataflow graphs, the principles of dataflow
(firing based on availability of data) and backpressure are implemented using
VHDL[30]. This chapter shows how dataflow graphs with backpressure can
be implemented in VHDL.

3.1 Dataflow graphs with backpressure

Dataflow graphs allow an infinite number of tokens to be stored on the arcs.
This is in hardware not feasible because buffers are always finite in size. To
prevent overflows resulting in data loss, a technique called backpressure is used
to implement arcs with a finite amount of storage. This section describes how
backpressure and buffering using FIFOs can be implemented and section 3.2
shows how a dataflow graph can directly be implemented in VHDL. All nodes
of the dataflow graphs described in this thesis consume/produce only one token
per execution on an input/output. All graphs are therefore Homogeneous
Synchronous Data Flow (HSDF) graphs which is sufficient for the design of
the FlexCore.

P

node

F C
token

arc

Figure 3.1: Simple DFG

Consider a simple dataflow graph without backpressure as depicted in
figure 3.1 containing three nodes connected by two arcs. In reality all arcs
allow only a limited number of tokens to be stored. However the producer
(node P ) receives no feedback from the arc connecting node P and F and
therefore always assumes that there is storage available. When node F runs

11
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at a slower rate than node P , the arc in between will eventually overflow and
data will be lost. The firing rule of a dataflow node should therefore not only
be dependent on the availability of incoming tokens but also on the space
available on the arc to which outputs are connected. The producer therefore
feels ”pressure” which limits the production rate.

By introducing feedback about the available space on the arcs, the nodes
producing data are restricted in the number of tokens that can be produced
and consumed. The feedback signal, called full, indicates whether there is
space on the arc. Tokens may only be produced when there is space on the
arc. When there is no space available anymore the full signal is asserted and
the producing node should stop producing tokens. The firing rule of the nodes
then states that a node may only fire if all required inputs are available and
if there is space available on all arcs where tokens will be produced.

The firing rule is encoded in a state machine containing two states. Every
dataflow node contains such a statemachine. When the firing rule is not
satisfied, a node should be in the waiting state. When the rule is satisfied, the
node goes into the processing state. Note again that all nodes produce and
consume only one token per in or output, as the graphs are HSDF graphs.
Figure 3.2 shows this state machine.

wait proc

∀in.¬empty(in)∧
∀out.¬full(out)

∃in.empty(in)∨
∃out.full(out)

∃in.empty(in)∨
∃out.full(out)

∀in.¬empty(in)∧
∀out.¬full(out)

Figure 3.2: State machine implementing the firing rule

The initial state of the node is the wait state and the processing state
is denoted with proc. The node may only go to or stay in the processing
state when the firing rule is satisfied. All required inputs must have data
available on the arcs and all arcs connected to the outputs may not be full :
∀in.¬empty(in) ∧ ∀out.¬full(out).

3.2 Implementation

Figure 3.3 shows the implementation of the dataflow graph shown in figure 3.1
with backpressure. A node can send a token by placing the value on the data
channel and asserting the write signal. Based on the value of the full signal
the node may start sending a token. Tokens are stored in FIFOs inside the
destination-node which are the implementation of arcs in dataflow graphs.
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P F C

write

data

full

write

data

full

clk

rst

Figure 3.3: Data Flow Graph implementation with backpressure signals

The FIFO has data and command signals for both reading and writing
tokens. The FIFO is a purely synchronous system[31] i.e. all read and write
operations are executed at the rising edge of the clock signal. There are also
4 status-signals available which are used to generate the feedback-signals to
the nodes. Figure 3.4 shows a FIFO with all the signals.

FIFO

write

data

read

data

empty

aempty

full

afull

clk

rst

Figure 3.4: FIFO implementation

The write and read signals are synchronous command-signals for reading
and writing tokens. These commands are only executed at the rising edge
of the clock. The full and empty signals are asserted when the FIFO is full
or empty. The signal afull is asserted by the FIFO when there is only one
place available(almost-full). A similar signal is asserted when the FIFO is
almost empty (aempty). The empty signals are used in the firing rule to check
the availability of tokens on the input i.e. a node may not execute if any
of the required arcs is empty. Note that full and empty cannot be omitted
because the FIFO may become completely full or empty. This is caused by
backpressure when a dataflow node does not read until an arc is completely
filled, or does not write until an arc is completely empty. Without the full
and empty signals of the FIFO, the next state cannot be predicted correctly
and the Data Flow Graph deadlocks.

Arcs from dataflow graphs are implemented using the mentioned FIFO
combined with two additional modules called next state predictors. These
state predictors predict, based on the status signals of the FIFO and the
read and write signals, what the next state of the node should be. The full
and the empty signals are predicted by the Full Predictor (FP) and Empty
Predictor (EP) respectively. All status signals from the FIFO, the full and
empty signals and the read and write are single bit signals. The number of
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bits for the data signals depends on what type of data should be stored on
the arcs. Figure 3.5 shows the implementation of the arc.

FIFO

FP EP

fu
ll

af
u
ll

em
p
ty

ae
m

p
ty

data data

full empty

write read

Figure 3.5: Arc with next-state prediction

The arc depicted in figure 3.5 shows the two predictors FP and EP . These
are pure combinatorial blocks which means that the full and empty signals are
valid before the next rising edge of the clock. These signals are then used by
the state machines of the nodes to implement the firing rule. The expression
of equation (3.1) predicts when the FIFO is full and equation (3.2) predicts
when it is empty.

full = (¬read ∧ full) ∨ (¬read ∧ write ∧ afull) (3.1)

empty = (¬write ∧ empty) ∨ (¬write ∧ read ∧ aempty) (3.2)

Every node in the dataflow graph implemented in VHDL, is composed of
an arc on every input, a combinatorial block which performs the operation
and a state machine which implements the firing rule with backpressure. Fig-
ure 3.6 shows the components in a complete dataflow node. All the inputs are
constructed using arcs such that tokens can be stored. Note that tokens are
now stored inside of the dataflow node instead of on the edge in between two
dataflow nodes. On arcs, backpressure guarantees that tokens cannot be lost
and is implemented using the full signals. The firing rule with backpressure
is implemented using a simple state machine shown in figure 3.2. This state
machine uses the empty signals from all the input arcs and the full signals
from the destination node as control signals.

The operation of a dataflow node is implemented using a combinatorial
circuit (denoted with Comb. circuit in figure 3.6) which can be anything like
addition, multiplication, subtraction etc. Applications can be implemented
by connecting the VHDL implementations of the nodes with signals together.
As the arcs are implemented inside of the dataflow nodes, synchronization is
performed automatically.
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Arc1

Arc2

Comb.
circuit

State
machine

Figure 3.6: Components in dataflow node with backpressure

3.3 FIFO-size for full throughput

Consider the implementation of a simple dataflow graph containing two nodes
shown in figure 3.7. The size of the FIFO contained within the arc can be
one element. Both producer and consumer change their state based only on
the state of the arc. During startup of the system, the arc is empty and
both state machines (SM1 and SM2) are in the waiting state. The producer
makes a transition to the processing state because the arc is empty. The
consumer remains in the waiting state because the arc contains no tokens yet.
After a rising edge of the clock, the predictors in the arc predict that the
producer should go to the waiting state and the consumer should go to the
processing state. After yet an other rising edge, the predictors produce the
reverse prediction, now the consumer should wait while the producer should
go to the processing state. The effective performance of a node containing
a combinatorial function is therefore one token per two clock cycles. This is
because there is only one position available and both nodes can not read and
write at the same time. Although it is possible to achieve full performance
with only a single position in the arc, it requires a combinatorial path through
all nodes. An example is a pipeline, the whole pipeline should stall if there is
no storage available anymore.

Producer Consumer

SM1 arc SM2

data

write

full

data

empty

read

Figure 3.7: Dataflow graph for full performance

Figure 3.8 shows the timing behavior of the dataflow graph shown in fig-
ure 3.7. Before the first rising edge of the clock, both state machines are in
the waiting state. During the rising edge, the state machine of the producer
(SM1) goes to the processing state (proc) because the arc is not full. The
state machine of the consumer (SM2) remains in the waiting (wait) state as
long as the arc is empty. When the producer is in the proc state, the predictor
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clk

SM1-state wait proc wait proc wait

write

full

SM2-state wait proc wait proc

read

empty

Figure 3.8: Toggling behavior when size of FIFO is 1.

in the arc informs the producer to go to the wait state again because the arc
will be full in the next state. After the second rising edge of the clock, the
consumer is in state proc. The empty prediction in the arc makes sure that,
during the third rising edge of the clock, SM2 goes to state wait again.

Because the FIFO can contain at most one token, both the producer and
consumer have to wait before the arc is available for them. This results in the
toggling behavior as shown in figure 3.8. The arc is the bottleneck because
it will be full after a single write. The maximum throughput is therefore
restricted to one token per two clock cycles.

By increasing the size of the FIFO to two, the toggling disappears. The
full-signal generated by the full-predictor now remains false because the con-
sumer starts reading during the writing of the second token. Writing a token
to the arc and reading a token at the same time has no effect on the number of
tokens stored in the arc. The producer and consumer can therefore continue
at full speed of one token per clockcycle. Figure 3.9 shows that after one clock
cycle both the full and empty signal remain low. Both SM1 and SM2 can
therefore remain in the proc state which results in full performance.

clk

SM1-state wait proc

write

full

elements in arc 0 1

SM2-state wait proc

read

empty

Figure 3.9: Full throughput when size of FIFO is 2.

Appendix A shows an example dataflow node that includes all the concepts
explained in this chapter. The code of the ALU for the standard FlexCore (the
first implementation of the FlexCore architecture) is given, which includes the
arcs for buffering of tokens on the input and the firing rule.



4

Analysis of algorithms

A shown in the chapter with the background information, the beamformer
used in LOFAR consists of three major algorithms, Fast Fourier Transformation
(FFT)s, complex multiplications and Finite Impulse Response (FIR)-filters.
In chapter 6, these algorithms are used to analyse the performance of both
implementations of the FlexCore. First, this chapter explores the regulari-
ties that can be found in these algorithms. The goal is to exploit locality of
reference by reducing the communication overhead caused by the matching
procedure as explained in the chapter on background information (chapter 2).
The overlap among the three algorithms is used to design an Arithmetic Logic
Unit (ALU) which is able to perform the three algorithms. The three algo-
rithms are analysed and than combined into a single dataflow graph which
will form the major part of the ALU.

4.1 Complex multiplication

Complex multiplications are used in both the FFT and phase shifts. Consider
a complex multiplication Z = Z1 × Z2 where Z1 = a+ ib and Z2 = c+ id are
both complex numbers. By writing down the multiplication in the canonical
form(equation (4.1)), the number of real valued operations can be found.

Z = Z1×Z2 ⇒ (a+ib)×(c+id) = ac+iad+ibc−bd = ac−bd+i(ad+bc) (4.1)

a

b

c

d

×

×

×

×

−

+

<(Z)

=(Z)

ac

bd
bc

ad

Figure 4.1: DFG of complex multiplication
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Both the real part <(Z) = ac− bd and the imaginary part =(Z) = ad+ bc
require two real valued multiplications which makes a total of four multiplica-
tions, one addition and one subtraction. The corresponding DFG is depicted
in figure 4.1.

4.2 FFT

As shown in the background information of chapter 2 and in [24], the Fast
Fourier Transformation (FFT) is the algorithm which splits the spectrum in
small parts such that phase shifts can be easily implemented. An FFT is a
computationally efficient implementation (Nlog2(N) operations for N input
samples instead of N2) of the Discrete Fourier Transform (DFT). In this
section, the FFT is derived from the definition of the DFT. From the FFT
the basic building block, called a butterfly operation[21], is derived which is
the smallest FFT possible. The butterfly operation will be combined with a
partial FIR filter and the complex multiplication in section 4.4 to form an
ALU which can execute them all.

First consider the definition of the DFT shown in equation (4.2). This
function operates on blocks of N samples from which a spectrum of N points
is calculated.

X̂k =
N−1∑
n=0

xne
− 2πi

N
nk =

N−1∑
n=0

xnW
kn
N , where k = 0, . . . , N − 1 (4.2)

Where the complex factor W
kn
N is called a twiddle factor[21]. The sum of

equation (4.2) can be split in an odd and even part:

X̂k =

N/2−1∑
m=0

x2mW
k2m
N +

N/2−1∑
m=0

x2m+1W
k(2m+1)

N (4.3)

By looking only at the first part of the spectrum and using the identity

W
k2m
N = W

km
N/2 , the definition of the FFT can be found as shown in equa-

tion (4.4).

X̂k =

N/2−1∑
m=0

x2mW
km
N/2 +W

k
N

N/2−1∑
m=0

x2m+1W
mk
N/2 , k = 0, . . . ,

N

2
− 1 (4.4)

The second half of the spectrum is given by equation (4.7) using the fol-
lowing equalities:

W
m(k+N/2)

N/2 = W
mN/2
N/2 W

mk
N/2 = W

mk
N/2 (4.5)

W
k+N/2
N = W

N/2
N W

k
N = −W k

N (4.6)
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X̂k+N/2 =

N/2−1∑
m=0

x2mW
km
N/2−W k

N

N/2−1∑
m=0

x2m+1W
mk
N/2 , k = 0, . . . ,

N

2
−1 (4.7)

By using N = 2 in equation (4.4) and equation (4.7), the smallest FFT
possible, the butterfly operation, can be found. This gives two complex results
X̂0 and X̂1.

X̂0 =

2/2−1∑
m=0

x2mW
km
2/2 +W

k
N

2/2−1∑
m=0

x2m+1W
mk
2/2 = x0 +W

k
N x1 (4.8a)

X̂1 =

2/2−1∑
m=0

x2mW
km
2/2 −W k

N

2/2−1∑
m=0

x2m+1W
mk
2/2 = x0 −W

k
N x1 (4.8b)

This formula can be directly translated into a dataflow graph as shown
in figure 4.2a which gives the butterfly structure. Because the twiddle factor
can be implemented using a complex multiplication, the graph of figure 4.1 is
reused. Figure 4.2b shows the butterfly structure for real valued signals using
the graph for complex multiplications. The total number of operations re-
quired to execute a butterfly operation is four multiplications, three additions
and three subtractions.

x0

x1 W
k
N −

+

X̂1

X̂0

(a) Butterfly of complex signals

<(x0)

=(x0)

<(x1)

=(x1)

<(W )

=(W )

×

×

×

×

−

+ −

−

+

+

=(X̂1)

<(X̂1)

=X̂0)

<(X̂0)

Compl. multiplication

(b) Butterfly of real valued signals

Figure 4.2: Complex and real valued dataflow graph og the butterfly operation

4.3 FIR filter

The FFT in the filterbank is preceded by FIR filters which enhance the signals
before being processed by the FFT. Combined with downscaling, a filterbank
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is constructed[22],[24]. A FIR filter is a linear combination of the current and
previous samples as shown in the following recurrence equation:

yn =

N−1∑
i=0

Ci × xn−i (4.9)

N is the number of filter taps and N −1 is the order of the filter. Analysis
of FIR filters is usually done in the Z domain where a FIR filter is expressed
as a polynomial. Equation (4.10) shows the polynomial of a FIR filter.

H(z) = CN−1 ∗ ZN−1 + CN−1 ∗ ZN−1 + ...+ C1 ∗ Z−1 + C0 (4.10)

This function is called the transfer function of a filter and it shows the
sum from equation (4.9) implemented in the Z domain. Every term Cn ∗
Z−n represents a coefficient being multiplied with a delayed input sample.
Multiplying a signal with Z−n corresponds to delaying the input signal with
n samples. Equation (4.10) can be translated into a dataflow graph as shown
in figure 4.3 which is called the standard form [21].

×C0

z−1

×

+

C1

In
z−1

×

+

CN−2

z−1

×

+

CN−1

Out

Figure 4.3: FIR Filter

Any valid mathematical rearrangement of the transfer function of equa-
tion (4.10) gives the same filter response but results in another structure of the
dataflow graph. The rearrangement shown in equation (4.11) of the transfer
function results in the dataflow graph of figure 4.4 which is called the trans-
posed form[21].

H(z) = C0 + Z−1(C1 + Z−1(C2 + ...+ Z−1(CN−2 + Z−1CN−1)...)) (4.11)

The advantage of the transposed form is that the longest combinatorial
path is only a combination of one multiplier and one adder. The longest
combinatorial path in the standard form starts at the input, passes trough
the first multiplier and then passes trough all adders on the bottom. The
combination of a multiplication, adder and register of the transposed form
are the basic building blocks of filters: a filter tap. The transposed form also
shows overlap with the complex multiplication of figure 4.1 which is used to
merge the three algorithms to one single graph as shown in section 4.4.
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×CN−1

z−1 +

×CN−2

In

z−1 +

×C1

z−1 +

×C0

Out

Filter-tap

Figure 4.4: FIR Filter in transposed form

Partitioning and sequential execution

By partitioning the filter into smaller slices, they can be executed sequentially.
This process is called folding [32]. The size of each slice is chosen to be
4 taps such that the number of multiplications is the same as for complex
multiplications. Every tap consists of a multiplier and adder i.e. a single
slice consist of 4 multipliers and 4 adders. The number of multiplications is
therefore the same for filtering, complex multiplication and the butterfly. An
example of a sliced FIR filter is shown in figure 4.5.

12 taps FIR
In

Out

(a) 12 taps FIR

P 4 FIR 4 FIR 4 FIR C
a0 a1 a2

a5a4a3

(b) Sliced FIR

Figure 4.5: Slicing of FIR filter

The 12-tap FIR filter shown in figure 4.5a is partitioned in d124 e = 3 slices
as shown in figure 4.5a. These slices are executed sequentially by an ALU
which is able to execute a single slice at once. The results of a slice are
forwarded to the next slice or the output. The input data for a slice comes
either from another slice or from the input of the filter.

Figure 4.6 shows the flow of tokens in the sequentialized filter. Every arc
in the dataflow graph of figure 4.5b is translated into a buffer an of figure 4.6.
In order to support two incoming and two outgoing streams of data for the
four taps FIR, the arcs are divided into two groups (a0−2 and a3−5) that
can be used in parallel. A single multiplexer is used to select between the
producer P and the FIR which are the only producers for a0−2. The data
from group a3−5 is forwarded to the lower input of the FIR or the consumer
C. The upper input of the FIR accepts only data from a0−2 and the lower
output only produces data for a3−5, this all follows from the dataflow graph
of figure 4.5b.

The execution of the dataflow graph of figure 4.5b is performed in 5
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Figure 4.6: Sequential execution of FIR filter.

phases1, one phase for every node. During phase 1, only the producer P
is active and sends data to arc a0 via multiplexers m0 and m2. Note that P
may send any number of tokens to the arc as long as it fits in the arc and
when all other nodes in the graph consume and produce the same number of
tokens. In phase 2 (figure 4.6b), the tokens sent into a0 are used by the first
filter slice.

During phase 2 the first filter slice is active which consumes all tokens in
arc a0 (selected by multiplexer m3) and produces tokens in arc a1 and a3. As
can be seen in figure 4.6b, a1 and a3 are selected by multiplexers m2 and m4.
m0 now selects the upper output of the FIR slice instead of the producer P .
Note that the lower input of the slice is not shown here but it can be fed with
a stream of zeros.

During phase 3 a FIR slice is executed which requires two input arcs and
two output arcs. Again, the input arcs are selected by m3 and m5 and the
output tokens are forwarded by m2 and m4. Corresponding to the DFG of
figure 4.5b, tokens are consumed from a1 and a3 and and the resulting tokens
are sent to arc a2 and a4 such that the last FIR slice can consume these again.

The tokens produced in phase 3 are consumed by the last filter slice in
phase 4 (figure 4.6b). Multiplexers m3 and m5 are now selecting a2 and a4
which contain the tokens produced in the previous phase. These tokens are
now consumed by the slice which produces output tokens which are sent to a
single arc, a5. During the last phase, figure 4.6e, multiplexers m1 and m5 are
configured such that tokens from a5 can be consumed by the consumer C.

Every time a new slice is scheduled the corresponding set of 4 coefficients
has to be supplied too. Although the flow of tokens can be implemented
like shown in figure 4.6, the filter-state is not preserved. Every slice contains

1Note that phase 1 and 5 can be combined in a single phase as no multiplexers and arcs
are used in both phases
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four delay elements (z−1) which contain intermediate results from previous
slice executions. This means that every slice has a corresponding state which
has to be loaded before it may consume tokens and execute. The ALU that
executes the FIR operation therefore must be able to load the complete state
of the slice first. By adding a multiplexer in front of every register (z−1), the
state can be loaded using the StateIn inputs as depicted in figure 4.7. The
state comes from a module outside of the ALU which will be introduced in
section 5.3.

z−1 +

×

Cn+0

StateInn+0

StateOutn+0

z−1 +

×

Cn+1

StateInn+1

StateOutn+1

z−1 +

×

Cn+2

StateInn+2

StateOutn+2

z−1 +

×

Cn+3

StateInn+3

StateOutn+3

Outt

OutbInb

Int

Figure 4.7: FIR slice with state loading

As shown in figure 4.7 the state of a FIR slice is loaded using the StateInn
inputs. During loading of the state, the input of the registers is connected to
the StateInn input. During normal execution the multiplexers are in the
upward position such that the slice of figure 4.7 resembles the transposed FIR
structure of figure 4.4. When the next slice should be executed, the changed
state of the current slice has to be stored. For this, the StateOutn outputs
are used. Again, the state of the slices is stored outside of the ALU.

4.4 Merge of algorithms

The analysis of the three beamforming algorithms has shown that they all
require four multiplications and a number of additions and subtractions. In
terms of operations, the butterfly is the most complex graph ( 4 multiplica-
tions, 3 additions and 3 subtractions). The complex multiplication is part of
the butterfly, but the 4 taps FIR cannot be found in the butterfly because of a
missing addition. By modifying a subtractor from the butterfly operation such
that it can execute both subtraction and addition, the FIR slice also matches
with the butterfly in terms of operations. The three algorithms can now be
merged into a single graph which exploits the overlap in operations. Figure 4.8
shows the resulting graph with additional multiplexers for switching between
different functionality.
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Figure 4.8: Merged DFGs for ALU design

Figure 4.9 shows the graph configured as a FIR slice. Note again that
executing a filter slice requires two phases, first the slice-state is loaded using
the Staten signals while execution happens during the second phase. The
state can be loaded by setting every multiplexer in front of a register (z−1),
in the down position. During normal execution the multiplexers are in the
upward position as shown in figure 4.9. The inputs Int,b, coefficients C0,1,2,3

and outputs Outt,b match with the slice shown in figure 4.7.

+/- + + +

× × × ×

z−1 z−1 z−1 z−1

− −

Inb

Int

Staten+0

StateInn+1

StateInn+2

StateInn+3

C0 C1 C2 C3

Outt Outb

Figure 4.9: Configuration for FIR slice

By selecting the multiplexers as depicted in figure 4.10, the graph is con-
figured as a complex multiplier. Z1 is presented on the inputs while Z2 is
presented as constants for the multipliers. Note that both the real and imag-
inary part of Z2 are duplicated as input constants. A complex multiplication
contains no state so the registers and the multiplexers in front of them are



CHAPTER 4. ANALYSIS OF ALGORITHMS 25

not used. The result Z is presented on the output using two multiplexers.
The remaining outputs from the subtractors are only used in the butterfly
operation.

− + + +

× × × ×

z−1 z−1 z−1 z−1

− −

=(Z1)

<(Z1)

<(Z2) =(Z2) <(Z2) =(Z2)

<(Z) =(Z)

Figure 4.10: Configuration for complex multiplication Z = Z1 × Z2

Figure 4.10 shows the configuration when the butterfly operation is se-
lected. The twiddle factor of the butterfly operation is implemented using a
complex multiplication so the constants are duplicated again over the mul-
tipliers. Also the butterfly operation is state-less so the registers with the
corresponding multiplexers are not used. This selected mode shows the exe-
cution of the graph of figure 4.2b.
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Figure 4.11: Configuration for butterfly
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FlexCore architecture

This chapter presents the design of the FlexCore. The FlexCore has been
designed in two phases: first a standard dataflow architecture including back-
pressure has been designed to act as reference design. This is presented in
section 5.1 and section 5.2. During the second phase elaborated in section 5.3,
the architecture is extended such that the merged dataflow graph presented
in chapter 4 can be used as ALU for efficient execution of beamforming oper-
ations.

5.1 Overview of architecture

Figure 5.1 shows an overview of the FlexCore with its modules. The FlexCore
has a similar circular structure as the early dataflow architectures presented in
[12],[17] and [19]. It consists of three main modules, the Router which routes
internal tokens of the FlexCore and tokens from the NoC, the Dispatcher
which implements the firing of nodes based on the availability of tokens and
the ALU which performs the actual calculations.

The router manages the flow of tokens from the NoC and for the processor
itself. Every token that should be processed by the Router has a value and a
destination-address. Based on this address the router can determine whether
to send an incoming token to the dispatcher or to the NoC. Tokens flowing
trough the processor have the following format:

token = {globalAddress, localAddress, inputAddress︸ ︷︷ ︸
destination

, value} (5.1)

As shown in the expression above, the address consists of three parts. The
globalAddress is used by the router to determine whether a token should
be sent to the dispatcher or to the NoC. A global address is assigned to
the FlexCore, this means that the router forwards an incoming token to the
dispatcher when globalAddress of that token is equal to the address assigned
to the FlexCore. When this is not the case the router sends it to the NoC.
The localAddress field is used to address nodes of the DFG according to the

26
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ETS principle explained in figure 2.3. inputAddress indicates to which input
of the node in the DFG, the token should be sent. The value field of the token
contains the actual data. All data values in the FlexCore are 16 bit signed
numbers which is a common wordlength for DSP applications[33],[34]. The
general architecture of the FlexCore is shown in figure 5.1.

Dispatcher

NoC Router

Presencebit
Memory

Program
Memory

Token
Store

ALU

progr.
interface

d
es

t.

d
es

t.

va
lu

e

FlexCore

Figure 5.1: FlexCore architecture overview

The dispatcher is responsible for matching tokens and sending them with
an instruction to the ALU. The router sends tokens to the dispatcher which
implements the ETS principle. The dispatcher itself is constructed using three
sub modules: the presence bit memory, program memory and token store.

The presence bit memory uses only the local address from the incoming
token. Based on this local address a presence bit is fetched from the memory.
This bit is sent to both the program memory and the token store. During
every access of a presence bit, the value is inverted. When the presence bit
being sent out contains true, a match is found and an instruction is dispatched
on the ALU.

The program memory accepts both the local address from the incoming
token as well as the presence bit produced by the presence bit memory. When
the presence bit contains the value true, the instruction addressed by the local
address should be scheduled. This instruction is stored in a memory where ev-
ery location contains the instruction and several destination addresses. These
destination addresses are the nodes to which the result of the operation should
be sent as explained in figure 2.3. When the presence bit is false, the instruc-
tion should not be scheduled. Therefore both the address and the presence
bit are removed from the arc and no tokens are produced by the program
memory.

The token store is triggered in the same way as the program memory, it
produces only a token on the output when the presence bit token contains a
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value true. The token store accepts three inputs, a presence bit, the value of
the incoming token and the local destination address of that token. When the
presence bit is false no match has occurred so the incoming token is stored
in the memory of the token store addressed by the local destination address
from the incoming token. When both operands are available i.e. a match
occurs, a presence bit containing true is received by the token store. The
token store sends both the incoming token and the previously stored token
to the ALU. When two tokens are sent to the same input of a node, the
dispatcher interprets this as a match which is not the case. The input data
should be restricted such that this situation will never occur.

The ALU performs all the calculations and accepts the instruction and
destination(s) from the program memory. The operands are received from
the token store. When the operands and the instruction are available in the
FIFOs, the firing rule is satisfied and the ALU starts the execution. The
resulting value is sent sequentially to all destinations (max. 4), the operations
may take 4 clockcycles to complete from which only one cycle is needed for
the calculation.

5.2 Implementation

ALU

The first design of the FlexCore contains a small ALU which is only able to
perform additions, subtractions and multiplications. The ALU has two inputs,
one for receiving instructions and one for the operands. As with every input of
a dataflow node, backpressure and buffering is supported by using arcs. The
firing rule and execution of this module is implemented by a statemachine.
The execution may only start when there is an instruction on the instruction
arc instr. arc, when a set of operands1 is available in the operands arc ops. arc
and if there is still space available on the arc to which the result will be sent
(Router). The firing condition then becomes:

fire = ¬empty(instr. arc) ∧ ¬empty(ops. arc) ∧ ¬full(Router) (5.2)

The general structure of the ALU and the firing rule implemented by the
state machine shown in figure 5.2.

The ALU can execute nodes from a dataflow graph with up to four des-
tinations. The result, produced by the operation, is therefore sent to all the
nodes in the dataflow graph to which an output of the producing node is
connected. The output of the ALU however only allows one token per clock
cycle to be sent to the router. The tokens are therefore sent sequentially to
all destinations.

1The two operands for the instruction are sent in a single token.
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Figure 5.2: Implementation of ALU

The number of destinations destCnt is encoded in the instruction which
has the following format: (instr, destCnt, dest0, dest1, dest2, dest3) where instr
can be mult, add or sub and destCnt must be in {1, 2, 3, 4}. The statemachine
iterates over destCnt destinations to which the result will be sent. Every time
the statemachine leaves the proc state, a pointer pointing to the current desti-
nation is updated. Updating the pointer is performed by updateP tr() shown
in algorithm 1.

Algorithm 1: Implementation of updateP tr()

if curDest = destCnt then1

curDest← dest02

else3

curDest← curDest+ 14

After a reset of the FlexCore, curDest is initialized to dest0, i.e. during the
first cycle the first destination is always selected. After the first cycle a tran-
sition is made in the statemachine where updateP tr() is executed. Depending
on the number of destinations, destCnt, the next destination is selected or
the first(dest0) for the next execution of the ALU. When the result is sent to
the last destination, both input arcs will be read such that storage is freed for
the next instruction and operands.

Dispatcher

The dispatcher is not a complete dataflow node like the ALU but is a wrapper
around the presence bit memory, program memory and the token store. It
is however constructed in such a way that the behavior from outside is the
same as any other dataflow node. The design therefore remains consistent
with HSDF. As can be seen in figure 5.1 the dispatcher has only one input
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which is used by all three modules inside of the dispatcher. The full signal
from dispatcher to router must therefore be dependent on full signals from
all modules in the dispatcher. The input of the dispatcher is full when any
of the full signals of the internal modules are set. The following approach is
applied to the signal coming from the presence bit memory: the full signal
going into the presence bit memory should be set when either the full signal
from program memory or token store is set. The outputs of the dispatcher
are simply forwarded signals from the program memory and token store. This
requires no additional logic.

Presence bit memory

Detecting a match is performed by the presence bit memory. For binary (only
two inputs per node) dataflow graphs only a single bit is needed per node in
the DFG[19]. Initially, all presence bits in the memory are reset when the
whole FlexCore is reset. This means that for all nodes in the DFG, no token
has yet been received. When a token arrives at one of the inputs, the bit is
set. Based on the presence bit and a new incoming token addressed to the
same node, a match is found and the presence bits memory will inform the
program memory and token store.

wait
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fire¬fire/invertBit(dest)

¬fire

fire/invertBit(dest)

(a) Statemachine
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chine
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Figure 5.3: State machine and internal structure of the presence bit memory

The presence bit memory has only a single input, the destination address
of the token sent from router to dispatcher is used. This address is, conform
to the dataflow model, stored in an arc (see structure of the module in fig-
ure 5.3b). The firing rule and reading from the arcs is implemented by the
statemachine shown in figure 5.3a. The firing rule states:

fire = ¬empty(dest. arc) ∧ ¬full(Program memory/Token store) (5.3)
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For every incoming destination address, the bit pointed by that address is
inverted. Although only a single bit for every node in the DFG is required,
the number of tokens that can be stored on an arc of the DFG is restricted
to one. A match is found when an address of the presence bit memory is
addressed twice. The input to which the token should be sent is ignored to
save hardware. The inputs to which the tokens forming a match should be
sent, is determined in the token store.

Program memory

The program memory selects an instruction when a match is found in the
presence bit memory. Which node should be executed is determined by the
destination address from the token sent from router to dispatcher. When the
presence bit memory reports that no match is found, the program memory
simply does not send an instruction to the ALU. Additional to the dataflow
in- and outputs, the program memory has an external programming interface.
This is used by the testbench to load the dataflow graph (the program that
should be executed) into the FlexCore. The internal structure of the program
memory can be seen in figure 5.4b.
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Figure 5.4: State machine and internal structure of the program memory

The state machine shown in figure 5.4a is only used to implement the firing
rule. The actual selecting of the memory is performed combinatorially during
the proc state. When the presence bit memory sends a token containing true
i.e. a match is found, the instruction addressed by the incoming destination
address is sent to the ALU. When false is received, the address is ignored and
nothing is sent to the ALU. An instruction in the program memory has the
following format: (instr, destCnt, dest0, dest1, dest2, dest3), which is exactly
the same as the instruction input of the ALU. Again, the firing rule depends
on the in- and outputs. The firing rule for the program memory therefore is:
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fire = ¬empty(dest. arc) ∧ ¬empty(presbit arc) ∧ ¬full(ALU) (5.4)

Token store

The token store is responsible for storing tokens on the arcs of a DFG until
all tokens for a node are available. The nodes of the DFG always have two
inputs, the token store therefore only has to be able to store one token per
node. When the second token of a node arrives, a match is found and the
incoming token combined with the token with the same address (destination
in the DFG) form the set of operands. Tokens triggering a match therefore
never have to be stored but are directly forwarded to the ALU. The token
store always stores the first arriving token for a node, independent to which
input the token is sent. Only the value contained within the token is stored in
the token store because the input can be determined when the second token
arrives. Because of this, the standard FlexCore only supports two input nodes
in the DFG, the input to which the first token should be sent is the inverse
of the input to which the second is sent: If the first token is sent to the left
input of the destined node, the second token is sent to the right input and vice
versa. This imposes a restriction on the arrival of tokens: only one token can
be stored on an arc. This is caused by the fact that the token store can only
store one token per node and the presence bit memory reports a match when
two tokens with the same address arrive (independent of whether the are sent
to the same input). The order in which two operands for a node arrive is
not restricted, a function order() makes sure the the operands are sent to the
correct input.

The statemachine for the token store is like all others: processing starts
only when the firing rule is satisfied. The token store requires three incoming
tokens: a presence bit, the destination of the incoming token and the value.
The firing rule then becomes:

fire = ¬empty(presbit arc) ∧ ¬empty(dest. arc) ∧
¬empty(val. arc) ∧ ¬full(ALU) (5.5)

The general architecture of the token store is shown in figure 5.5b. Based
on the presence bit coming from the presence bit memory, the incoming value
is stored at the address read from dest. arc. when the presence bit memory
reports that no match occurred, the incoming token is stored. When a match
does occur for the same node in the DFG the previously stored token combined
with the incoming one are sent to the ALU as operands. As explained in the
beginning of this section, the order of arrival for tokens is not known until
runtime. An order module is introduced to guarantee the correct order of
arrival of the operands. Algorithm 2 shows the functionality of the token
store.
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Figure 5.5: State machine and internal structure of the token store

Algorithm 2: Algorithm for the token store

while true do1

while ¬fire do2

wait;3

if presbit = true then4

write← true;5

operandsOut← order(dest, value, loadFromRAM(dest));6

else7

write← false;8

operandsOut← ∅;9

storeInRAM(value, dest);10

Router

The router is the only module in the FlexCore without a statemachine. This
is because the firing rule depends on the destination to which an incoming
token should be sent. If for example a token should be sent to the dispatcher,
the firing rules require that there is space at the input of the dispatcher.
When a token should be sent out of the processor, firing does not depend
on the dispatcher but on the router output. In order to avoid a complex
statemachine, the routing is performed combinatorially.

The local input of the router has a higher priority than the input from
outside the core. This means that local communications caused by tokens
flowing between nodes of the DFG are less influenced by tokens from outside
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the core. Tokens from outside the core can only enter if there is space in the
input of the router. Because the local input of the router has priority over the
external input, external tokens are accepted only if temporarily no tokens are
in the local input. This means that the dispatcher is able to accept data from
outside of the core again. Figure 5.6 shows the structure of the router.

comb.
ext.
arc

local
arc

Figure 5.6: Combinatorial implementation of firing rule in router

For the availability of tokens in the arcs, three basic cases can be distin-
guished: there is data available in the local arc, there is data in the external arc
or there is no data at all. The algorithm of the router in shown in algorithm 3.

Algorithm 3: Algorithm for routing tokens

if ¬empty(localArc) then1

if localToken.dest = local ∧ ¬full(Dispatcher) then2

dataToDispathcer ← localToken;3

else if localToken.dest = external ∧ ¬full(External) then4

dataRouterOut← localToken;5

else if ¬empty(extArc) ∧ ¬full(Dispatcher) then6

dataToDispathcer ← extToken;7

else8

wait for data;9

5.3 Extended architecture for beamforming ALU

In order to include the DFG of the merged algorithm shown in figure 4.8 (the
DFG that combines a complex multiplication, butterfly and a FIR slice into a
single graph), the architecture requires some changes. First a match cannot be
found based on a single presence bit. The number of required input tokens is
now dependant on the number of inputs of a node in the DFG. For example, a
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FIR slice and a complex multiplication require two inputs while the butterfly
operation requires four inputs. Note that the complex multiplication requires
two inputs because the second complex operand is supplied as a constant from
the program memory. Secondly a FIR slice has state which has to be supplied
to the ALU every time a slice is executed. After execution the FIR slice has a
new state and it should be stored for subsequent execution of the same slice.

First the required changes to the dispatcher are elaborated in order to
support the matching for different numbers of inputs. This is followed by
the handling of state from FIR slices. After that the implementation of the
modules is explained. The extended architecture is shown in figure 5.7.
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Figure 5.7: Extended FlexCore

Overview

The general structure of the extended FlexCore is very similar to the architec-
ture shown in figure 5.1, except the naming and additional modules. Tokens
from outside of the FlexCore are sent to the router which forwards these to the
dispatcher. The matching process takes place in the dispatcher by checking
whether all operands are available. When this is the case, the Presencelist
memory reports a match which is sent to both the Program memory and the
Token store. The program memory may now schedule a node from the DFG
onto the ALU. Depending on the instruction, a corresponding state is required
(currently only a FIR-slice has state) and is fetched from the Explicit State
Store (ESS). The state for an instruction is therefore always available before
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the instruction is scheduled. The operands for the instructions are stored in
the Token Store until a match is found. All operands, the instruction and
an optional state are then sent to the ALU which performs the instruction.
Several tokens at once are produced by the ALU which are sent sequentially to
the router by the Serializer. The router of the standard FlexCore is therefore
reused.

Changes to Dispatcher

Because the number of inputs for nodes of a DFG for the extended FlexCore
may differ, the matching cannot be based on a single presence bit anymore.
When a node has four inputs, four operands must be available while a two
input node only requires two operands. The presencelist memory therefore
must know if the addressed node has four or two inputs. This is solved by
adding an additional field (type) to the elements of the presencelist memory.
This type field represents how many inputs that particular node has and is
set during programming of the FlexCore. Every element now consist of a
type field and a list of bits where every bit represents the availability of an
operand. The extended FlexCore uses the same addressing scheme from ETS
as the standard FlexCore.

The Explicit State Store (ESS) is added to the dispatcher to hold the
state information for certain nodes in the DFG. When the program memory
encounters a FIR slice, the state address for that instruction is sent to the
ESS. The ESS then selects the state for the slice and sends it to the ALU.
After execution, the state of the slice is changed and the ALU sends it back
to the ESS for the next execution of the same node.

Another difference with the standard FlexCore is that instructions now
also contain coefficients for the FIR slices, and complex numbers for complex
multiplications and twiddle factors. This is done to restrict the number of
inputs for nodes in the DFG and therefore simplifying the matching (a maxi-
mum of four tokens now have to be matched instead of six). All elements in
the program memory now have a set of four coefficients.

Implementations

Presencelist memory

Instead of single bits, the presencelist memory contains a list of bits for match-
ing (one bit for every input). Based on a type field the presencelist memory
can determine whether all operands are available. A single element has the
following structure: (type, (bit0, bit1, bit2, bit3)) where type can be twoInputs
or fourInputs. When type = twoInputs, the incoming token and the first
two bits form the condition for a match. A match is found when the incoming
token is destined to the first input and second bit is set or the other way
around. When type = fourInputs, the whole list of bits is used. A match



CHAPTER 5. FLEXCORE ARCHITECTURE 37

occurs when all bits, except the one destined by the incoming token, are set.
The presencelist memory sends a token containing true to the program mem-
ory and token store when a match is found or false otherwise. The interface
of the presencelist memory to other modules is not changed. The algorithm
of the presencelist memory is shown in algorithm 4.

Algorithm 4: Algorithm for the presencelist memory

while true do1

while ¬fire do2

wait;3

addr ← dest.address;4

inp← dest.input;5

if mem[addr].type = twoInputs then6

if inp ∪ inputsAvailable = {input0, input1} then7

presbitOut← true;8

inputsAvailable← ∅;9

else10

presbitOut← false;11

inputsAvailable← inputsAvailable ∪ inp;12

else13

if inp ∪ inputsAvailable = {input0, input1, input2, input3}14

then
presbitOut← true;15

inputsAvailable← ∅;16

else17

presbitOut← false;18

inputsAvailable← inputsAvailable ∪ inp;19

First the presence list memory waits for an incoming destination from the
router. When this is available, the local address and the input are extracted
from the the destination token (addr and inp on line 4 and 5). The address
is used to select the presence list corresponding to the addressed node. De-
pending on the type field, there should either be two or four tokens available
to form a match. Handling the match is performed in the same way as the
token store of the standard FlexCore. A match is found when the input desti-
nation of the incoming token combined with the set of already received tokens
(inputsAvailable) is the complete set for the given type. When a match is
found, a presence bit with value true is sent to the program memory and the
token store (line 8 and 15). After sending this presence bit, the set of available
tokens on inputs is reset (line 9 and 16) such that new tokens can be received
to form a new match for that particular node. When no match is found, the
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presence bit sent out, contains the value false and the input of the incoming
token is added to the set inputsAvailable.

Program Memory

The main difference between the program of from the standard FlexCore and
the Extended FlexCore is the support for state. The states of nodes are
however located in an other module: the Explicit State Store (ESS). A state
is selected using a state address which is sent to the ESS using an additional
output of the program memory. A second difference is that the coefficients and
twiddle factors are stored in the program memory. This is done to simplify the
matching, no matching is needed for constants, and to keep the coefficients
close to the ALU, where they are needed. Although the program memory
elements are much larger due to the additional set of coefficients, it should
be more efficient from a locality of reference point of view. The coefficients
stay close to where they will be used instead of being sent from outside of the
FlexCore. The new instruction format now has the following form:

instr = (operation, dest0, dest1, dest2, dest3, stateAddr,

coef0, coef1, coef2, coef3) (5.6)

The Extended FlexCore only supports complex multiplications, butter-
fly operations and FIR slices. The operation field of the above format can
therefore only be cmult, bfly or fir. Following the operation are four pos-
sible destinations like in the instruction of the standard FlexCore, however
the number of destinations is fixed per operation(both fir and cmult have
two outputs while bfly has four). The stateAddr field is the address of the
state which corresponds to the given instruction. Currently only FIR slice
nodes have state but this could be extended for other stateful operations like
an integrator. The last four fields are the coefficients which are used for all
operations as constant operands. The algorithm performed by the program
memory is shown in algorithm 5.

As can be seen on line 7 of algorithm 5, the fir instruction is the only
instruction having a corresponding state. The address of the state is encoded
in the instruction and is sent to the Explicit State Store when a fir node is
requested.

Token store

Instead of only two inputs, the Extended FlexCore also supports nodes with
four inputs (the butterfly operation). After a match is found by the pres-
encelist memory, the token store selects four operands at the same time and
sends these to the ALU. The token store contains a memory with an address
space four times as large as required to address all possible nodes of a DFG.
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Algorithm 5: Algorithm for the program memory of the Extended
FlexCore

while true do1

while ¬fire do2

wait;3

if presbit = true then4

instrWord← mem[dest.localAddress];5

instrOut← instrWord;6

if instrWord.instr = fir then7

stateAddrOut← instrWord.stateAddr;8

Every input of every dataflow node therefore has a unique address. Ordering
of tokens is not needed anymore because they are stored at the right addresss
in the memory. This address can be found by taking the localAddress, shift-
ing it two bits to the left and adding the inputAddress to it. Every time a
token needs to be stored the address of the location where the token will be
stored is found this way.

The order of arrival is, the same as with the standard FlexCore, not known
until runtime. When the token causing a match, enters the token store, it has
to be combined in the right order with the already stored tokens. The token
store always sends four tokens containing the operands to the ALU at the
same the time. Only those tokens required for calculations are used by the
ALU, the rest is ignored.

Algorithm 6 shows how the incoming operands are ordered before they are
sent to the ALU. First the local address and the input are extracted from
the destination part of the incoming token. The addresses are used to select
operands from the memory of the token store. Depending on the value of the
presence bit, the incoming token has to be stored or combined with the already
stored tokens to form the set of operands. Line 7 shows that the value of the
incoming token is stored in a memory addressed by both the local address and
the input. By using both the local and the input address all possible inputs of
all nodes can be addressed and used to store tokens. When a match is found
(the presence bit has value true), the incoming token is combined with the
stored ones to form the complete set of operands. Based on the input of the
token forming the match, the ordering of operands is determined as can be
seen from line 10 and further.

Explicit State Store

The Explicit State Store (ESS) holds the states for all the FIR slices. When a
slice should be executed, the program memory sends the address of the state
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Algorithm 6: Algorithm showing the ordered sending of operands to
the ALU

while true do1

while ¬fire do2

wait;3

addr ← dest.localAddress;4

inp← dest.input;5

if presbit = false then6

mem[addr, inp]← val;7

operandsOut← ∅;8

else9

switch inp do10

case input011

operandsOut←12

{val,mem[addr, input1],mem[addr, input2],mem[addr, input3]};
case input113

operandsOut←14

{mem[addr, input0], val,mem[addr, input2],mem[addr, input3]};
case input215

operandsOut←16

{mem[addr, input0],mem[addr, input1], val,mem[addr, input3]};
case input317

operandsOut←18

{mem[addr, input0],mem[addr, input1],mem[addr, input2], val};

belonging to that particular slice to the ESS. The ESS then selects the state
with that address and sends this to the ALU. After execution of a FIR slice
the state is changed and has to be stored again in the ESS. The ESS has an
additional input where the new state of a slice is received. This new state is
stored in the ESS such that the next execution of the same FIR slice uses the
new state.

The firing rule of the ESS is a little bit different compared to the rest of the
modules in dispatcher. Although the ESS has two inputs, only one of them
needs to have a token available to trigger execution. Execution is triggered
when either a state address is available or a new state from the ALU . The
firing rule for the ESS then becomes:

fire = (¬empty(state addr. arc) ∧ ¬full(ALU)) ∨ ¬empty(new state arc)
(5.7)

The state machine of the Explicit State Store is shown in figure 5.8a, which
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is the same as most other modules in the FlexCore. The internal structure of
the ESS is shown in figure 5.8b.
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Figure 5.8: Implementation of the Explicit State Store

As shown in figure 5.8b, the ESS accepts both addresses from the program
memory and new states from the ALU. An address from the program memory
results in a fetch of a state from the memory (line 7 of algorithm 7). This
state is then simply forwarded to the ALU. When, after execution of a FIR
slice, the state is changed, the changed state is sent to the ESS. When the
changed state comes available on the new state arc, the state will be stored
(line 5 of algorithm 7). The ALU also includes the address where this changed
state should be stored.

Algorithm 7: Algorithm of Explicit State Store showing storing and
fetching of states

while true do1

while ¬fire do2

wait;3

if ¬empty(newState) then4

storeState(newState.stateAddr, newState.stateV alues) ;5

if ¬empty(stateAddr) ∧ ¬full(stateOut) then6

stateOut← fetchState(stateAddr) ;7

The ESS enforces a restriction on the arrival of tokens to the same FIR
slice of the dataflow graph. The changed state of a FIR slice must be stored in
the ESS before that same slice is enabled again. If the same slice is enabled too
soon after the previous execution, the new state is not yet stored in the ESS.
The old state is therefore used for the new execution and incorrect results
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follow. By analysing the loop formed by the ESS and ALU, a delay of three
cycles is required in between to accesses of the same slice.

These three clock cycles are found by taking the following path: program
memory → ESS, ESS → ALU and ALU → ESS. This path crosses three
modules and therefore passes three times an arc. Every arc requires a clock
cycle before the input single has passed through. After three cycles the state
of a slice is stored in the ESS and the state of the same slice may be fetched
again.

ALU

The biggest differences between the standard FlexCore and the Extended Flex-
Core can be found in the ALU. Instead of a single operation like add, multiply
or subtract, the ALU of the Extended FlexCore can execute complete butterfly
operations, complex multiplication or FIR slices. The internal structure has
already been determined in section 4.4 where the algorithms for beamforming
are merged into a single graph with multiplexers. This merged graph forms
the basis for the ALU. Additional logic is added to include the arcs and firing
rule. The general structure of the ALU of the Extended FlexCore is shown in
figure 5.9.
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Figure 5.9: Structure of ALU in Extended FlexCore

When the ALU performs a butterfly or complex multiplication only the
instr. in and ops. in inputs are used and the results are produced on output
resultsOut. However, when a FIR slice is received as instruction, both the
state in input and the newStateOut output are also required. The firing
rule is therefore dependent on the instruction i.e. data dependant like the
router. The ALU therefore has no state machine and the firing rules are
implemented combinatorially. The firing rule is split into two parts: one for
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the FIR instruction and one for the others instructions :

firF ire = ¬empty(state in) ∧ ¬empty(instr. in) ∧ ¬empty(ops. in)

∧ ¬full(new state) ∧ ¬full(results) (5.8)

otherF ire = ¬empty(instr. in) ∧ ¬empty(ops. in) ∧ ¬full(results) (5.9)

Based on the instruction received in the instr. in arc, the ALU deter-
mines combinatorially which firing rule should be used. When that firing rule
is satisfied, the instruction can be executed and the results are put on the
resultsOut output. If a FIR slice is executed, the ALU also produces a new
state which should be stored in the ESS. Algorithm 8 shows the algorithm
with the basic functionality of the ALU.

Algorithm 8: Algorithm of Arithmetic Logic Unit showing the two
firing rules

if instr. in = fir then1

if firF ire = true then2

(resultsOut, newStateOut)←3

mergedDFG(instr. in, state in, ops. in);

else4

(resultsOut, newStateOut)← ∅;5

else6

newStateOut← ∅;7

if otherF ire = true then8

resultsOut← mergedDFG(instr. in, ∅, ops. in);9

else10

resultsOut← ∅;11

As can be seen on line 2 and 8 of algorithm 8, the ALU uses two firing
rules. When a firing rule is not satisfied, no data is sent (line 5 and 11) to any
output like any other module.

The function mergedDFG() of algorithm 8 is the merged dataflow graph
introduced in section 4.4. This dataflow graph is however statefull i.e. there
are registers in the dataflow graph, which allows streaming data in addition
to single sampled tokens. The Extended FlexCore has no support for tokens
with more than a single value per token. The state of a FIR slice is therefore
not placed in registers of the merged DFG but is placed on the state in input
by the ESS. The same holds for the changed state after executing a FIR
slice: the changed state is now put on an output of the ALU instead stored in
registers. The changed state is received by the ESS such that it can be used
for the next execution. The resulting DFG without registers, being used in
the comb block of figure 5.9, is shown in figure 5.10.
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Figure 5.10: ALU for extended FlexCore

The main advantage of removing the registers is that no additional clock
cycle is required to load the state. As can be seen in figure 5.10, all processing
is now combinatorial and is performed in a single clock cycle. Depending on
the instruction, the multiplexers are selected such that the graph performs
a fir, bfly or cmult operation. Also the functionality of a0 depends on the
instruction, only for a fir instruction it should behave like an adder. a0 is
therefore an adder-subtractor[35].

The operands from the token store arrive at the inputs in0−3 of which
some may be unused because the operation requires only two inputs (fir and
cmult). When a FIR slice is executed, the StateIn0−3 supply the current
state of the slice. The StateOut0−3 forward the changed state to the ESS for
the next execution of that slice. The outputs on which the results are placed
(Out0−3), are grouped into a single parallel bus connected to the Serializer.
The Serializer then sends every value on such an output sequentially to the
router.

Serializer

The serializer is introduced to send the 4 results from the ALU sequentially
to router. The router therefore only needs a single token input. The router
of the standard FlexCore is therefore reused in the Extended FlexCore. The
serialization process works the same as in the ALU of the standard FlexCore,
the results are sent sequentially to the router. In the Extended FlexCore the
serialization process is in a separate module (the serializer) to simplify the
implementation and testing. The behavior seen from the router is however
still the same.
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The number of tokens that have to be sent by the serializer depends on
the instruction that produces these tokens. A FIR slice for example has two
outputs and therefore produces two tokens. The butterfly operation however
has four outputs and will therefore also produce four tokens. The serializer
therefore not only receives the resulting tokens but also the instruction that
produced those tokens. Based on this instruction, the serializer sends either
two or four results to the router.

The input of the serializer has the following format:

tokenIn = {instr, token3, token2, token1, token0} (5.10)

A token tokenn is a standard token containing a destination address and
a value. The format of a standard token can be found in equation (5.1) at the
beginning of this chapter. The process of sending the result tokens sequentially
is shown in algorithm 9.

Algorithm 9: Iterating over result tokens from the ALU

if curToken = token3 ∨ (instr ∈ {fir, cmult} ∧ curToken = token1)1

then
curToken← token02

else3

curToken← curToken+ 14

The algorithm uses a pointer called curToken to iterate over all the results
tokens from the ALU. When the last possible token (curToken), is sent, the
pointer is reset as shown on line 2. The last token to be sent of a bfly
instruction is token3 while for the cmult and fir instruction, token1 is the
last one. When not all tokens have been sent, the pointer forwards to the next
token (line 4).
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Results

This chapter gives the results derived during synthesis and simulation of both
FlexCore designs. First the synthesis results are given in section 6.1. In
section 6.2, power numbers are derived using several test-applications. The
test-applications are: a FIR filter, an FFT and a set of complex multipli-
cations. Section 6.3 elaborates on the performance of the test-applications
on both architectures. The last section, section 6.4, gives a summary of the
results.

6.1 Synthesis

Both the standard FlexCore and the Extended FlexCore have been synthesized
for ASIC using the 90 nm TSMC low power1 libraries. Both designs also
have been synthesized for a Xilinx FPGA. First the synthesis results for the
ASIC implementations of the FlexCore are described followed by the FPGA
synthesis.

ASIC synthesis

Initially, both designs were synthesized with a clock frequency of 150 MHz.
Although this was no problem for the standard FlexCore, timing violations
occurred in the Extended FlexCore. The clock frequency was therefore lowered
to 100 MHz in order to make a fair comparison between both designs, which
should be valid assuming that the energy consumption scales linearly with
the clock frequency. For both designs the longest combinatorial path is in the
ALU. 100 MHz is a rather low clock frequency but this is caused by the lack
of pipelining, this will be further elaborated in the discussion (chapter 8). The
area numbers derived from the synthesis results are shown in table 6.1.

As can be seen in table 6.1 the dispatcher requires most of the area (over
90%) due to all the memories. The ALU requires about 6% of the total area.
The increase of area of the dispatcher is caused by the larger instructions and
the bigger token store (three tokens can be waiting for a node instead of one).

1General purpose libraries are not used as they are less energy efficient

46
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Part Standard FlexCore Extended FlexCore

ALU 11 ∗ 10−3 mm2 5.8% 36 ∗ 10−3 mm2 6.4%
Dispatcher 172 ∗ 10−3 mm2 91.7% 507 ∗ 10−3 mm2 91%

Presence memory 4 ∗ 10−3 mm2 2.2% 18 ∗ 10−3 mm2 3.2%
Program memory 118 ∗ 10−3 mm2 63.2% 297 ∗ 10−3 mm2 53.4%
Tokenstore 49 ∗ 10−3 mm2 26.3% 180 ∗ 10−3 mm2 32.4%
Expl. State store - - 12 ∗ 10−3 mm2 2.1%

Serializer - - 9 ∗ 10−3 mm2 1.7%
Rest (router,clock) 4 ∗ 10−3 mm2 2.5% 5 ∗ 10−3 mm2 0.9%

Total 187 ∗ 10−3 mm2 100% 557 ∗ 10−3 mm2 100%

Table 6.1: Area results from ASIC synthesis
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Figure 6.1: Area of different modules in both designs of the FlexCore

The area of the router is included in Rest because it was synthesized into a lot
of small cells. The router could therefore not be recognized as a single module
anymore. Also the area of the clock network is included in the rest part. The
numbers of table 6.1 are shown graphically in the plot of figure 6.1.

Both implementations of the FlexCore are synthesized without real ASIC
memories. The reason for this is that the available memories only have syn-
chronous read and write interfaces. Both implementations rely however on
asynchronous read to select the element in the memories within one cock cy-
cle. In order to support ASIC memories, the read process should be split in
to phases: first read in the address using the standard dataflow process, fol-



CHAPTER 6. RESULTS 48

lowed by sending this address to the memory such that the memory element
is available after a rising edge of the clock.

Clock gating was initially enabled during synthesis of both designs. How-
ever this turned out to be a problem for the Extended FlexCore. After synthe-
sis of the Extended FlexCore the design did not work anymore. By disabling
clock gating this issue was resolved. In order to make a fair comparison, clock
gating is disabled for both the standard and the Extended FlexCore.

FPGA synthesis

Both the standard and the Extended FlexCore have also been synthesised
for an FPGA. The designs are synthesised for a Xilinx 6VLX240TLFF1156
FPGA using Mentor Graphics Precision[36]. As with the ASIC synthesis, the
longest combinatorial path is located in the ALU for both the standard and
the Extended FlexCore. Table 6.2 shows the synthesis results.

Standard FlexCore Extended FlexCore

Function generators 937 4025
CLB slices 235 1007
DFFs/Latches 175 713
Block RAMs 0 0
DSP blocks 1 4
max. clock frequency 178 MHz 102 MHz

Table 6.2: Area results from synthesis for FPGA

As can be seen in table 6.2, the Extended FlexCore requires about four
times as much logic resources as the standard FlexCore. The maximum clock
frequency is determined by the longest combinatorial path in the ALU but still
reaches over 100 MHz. The tooling was however not able to infer block RAMs
for the memories in the dispatcher. This has the same reason as for the ASIC
synthesis: the memories require both a synchronous read and write interface
while the design relies on asynchronous read. Block RAMs have registers on
the output which makes them completely synchronous. The tooling therefore
uses the Function Generators (look up tables) as small memories but this
requires more logic resources.

6.2 Power consumption

The power consumption is determined by executing several test applications
on both FlexCores and comparing those results. The test applications are
executed during the simulation after place and route such that power con-
sumption by wires is also taken into account. Only the power consumption
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during calculations is presented, the power consumption during programming
is ignored. During the simulation of the test applications, all changes of sig-
nals are stored in a so called Value Change Dump (VCD) file. Finally, power
consumption is determined using Synopsis Primetime which uses the VCD file
and combines this with the design from place and route and the library files
containing the power information.

FIR filter

Both implementations of the FlexCore have been tested with a 16 taps FIR
filter. For the standard FlexCore, a much bigger dataflow graphs is needed
than for the Extended FlexCore. A 16 taps FIR filter requires 16 multipliers
and 15 adders. The registers are implemented by placing initial tokens on
the edges between the adders. The graph for the standard FlexCore requires
15+16 = 31 nodes while the Extended FlexCore requires only d164 e = 4 nodes
to implement the filter(recall that the FIR slice of the Extended FlexCore
executes four taps at once).

Both FlexCores are programmed with the FIR dataflow graph before mea-
suring the energy consumption. The filter is executed by determining the step
response with one additional sample. The filter is therefore executed seven-
teen times and startup effects of the FlexCore should thus be averaged away.
Executing the FIR DFGs on the processors running at 100 MHz results in
power numbers shown in table 6.3.

Part Standard FlexCore Extended FlexCore

ALU 835 µW 4.3% 2.8 mW 4.9%
Dispatcher 14.4 mW 73.6% 42 mW 73.5%

Presence memory 412 µW 2.1% 1.5 mW 2.6%
Program memory 9.2 mW 47% 23.2 mW 40.6%
Tokenstore 4.8 mW 24.6% 16.1 mW 28%
Expl. State store - - 1.3 mW 2.2%

Serializer - - 1.1 mW 1.8%
Rest (clock) 4.77 mW 22.1% 12.1 mW 19.8%

Total 20 mW 100% 57 mW 100%

Table 6.3: Power consumption for executing FIR filters

Table 6.3 shows that the standard FlexCore consumes an average power
of 20mW while the Extended FlexCore consumes 57mW . In both designs
the dispatcher consumes most power while the ALU in both designs consumes
less then 5% of the total power. The power results are shown graphically in
figure 6.2.
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Figure 6.2: Power consumption during execution of FIR filter

The standard FlexCore requires 1050 cycles to complete the step response
of the whole filter. By using the fact that the 100 MHz clock has a pe-
riod of 10 ns, the average time to execute a single filter tap therefore takes

1050∗10ns
16taps∗17samples = 39ns. By multiplying this with the power consumption, the
energy required for a single filter tap is found. A single filter tap executed on
the standard FlexCore consumes 39ns ∗ 20mW = 0.78nJ of energy.

The Extended FlexCore on the other hand, requires only 193 cycles to
complete the step response with one additional sample. The average execution
time for a single filter tap is therefore 193∗10ns

16taps∗17samples = 7ns per sample. A
single filter tap executed on the Extended FlexCore requires 7ns ∗ 57mW =
0.40nJ of energy.

Although the Extended FlexCore uses more power(57mW versus 20mW )
executing a filter tap on it is more energy efficient. When the energy for a
single filter tap executed by the standard FlexCore is defined as 100%, the
percentage of energy saved by using the Extended FlexCore becomes:

0.78−0.4
0.78 ∗ 100% = 49%

FFT

Both designs have been tested with a four point FFT. For the standard
FlexCore, a much bigger dataflow graphs is needed. For a four point FFT,
N
2 ∗ log2(N) = 4 butterfly operations are required. A butterfly operation
consists of ten basic dataflow nodes(four multiplications, three additions and
three subtractions). A butterfly operation for the standard FlexCore requires
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4∗10 = 40 nodes in the DFG while the Extended FlexCore requires only four.
Both FlexCores are programmed with the FFT dataflow graph before mea-

suring the energy consumption. The FFT is executed ten times in order to
average away startup effects. Executing the FFT DFGs on the processors
running at 100 MHz results in power numbers shown in table 6.4.

Part Standard FlexCore Extended FlexCore

ALU 976 µW 4.9% 2.1 mW 3.7%
Dispatcher 14.7 mW 73.2% 42 mW 74.4%

Presence memory 408 µW 2% 1.4 mW 2.6%
Program memory 9.25 mW 46.2% 23.1 mW 41%
Tokenstore 5 mW 25% 16.5 mW 29.2%
Expl. State store - - 971 µW 1.7%

Serializer - - 965 µW 1.7%
Rest (clock) 4.32 mW 21.9% 11.9 mW 20.2%

Total 20 mW 100% 57 mW 100%

Table 6.4: Power consumption for executing FFTs

Table 6.4 shows that the standard FlexCore consumes an average power
of again 20mW while the Extended FlexCore consumes 57mW . Again, the
dispatcher consumes most power while the ALUs in both designs consume
less then 5% of the total power. The power results are shown graphically in
figure 6.3.

The standard FlexCore requires 882 cycles to execute the four point FFT
ten times. Executing a single butterfly operation requires 882∗10ns

40butterflies = 221ns,
by using a clock period of 10 ns. By multiplying this with the power consump-
tion, the energy required for a single butterfly is found. The energy required
for a single butterfly operation is thus 221ns ∗ 20mW = 4.4nJ .

Only 241 cycles are required for the Extended FlexCore to complete the ten
FFTs. This results in an average execution time for a single butterfly operation
of 241∗10ns

40butterflies = 60.3ns. The amount of energy required to execute a single
butterfly operation on the Extended FlexCore is thus 60.3ns∗57mW = 3.4nJ .

Although the Extended FlexCore uses more power(56mW versus 20mW )
executing butterfly operations on it is more energy efficient. By defining the
energy for a single butterfly executed by the standard FlexCore as 100%, the
percentage of energy saved by using the Extended FlexCore is

4.4−3.4
4.4 ∗ 100% = 23%.

Complex multiplications

The last test application is a chain of four complex multiplications. This chain
is executed on both architectures and consist of 4 ∗ 6 = 24 dataflow nodes
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Figure 6.3: Power consumption during execution of FFT

for the standard FlexCore and 4 dataflow nodes for the Extended FlexCore.
Every complex multiplication consist of four multiplications one addition and
one subtraction.

Both FlexCores are programmed with the chain dataflow graph before
measuring the energy consumption. The chain is executed ten times in order
to average away startup effects. Executing the chain on the processors running
at 100 MHz results in power numbers shown in table 6.5.

Part Standard FlexCore Extended FlexCore

ALU 1.1 mW 5.4% 3.2 mW 5.5%
Dispatcher 14.7 mW 72.8% 42.6 mW 72.9%

Presence memory 399 µW 2% 1.51 mW 2.6%
Program memory 9.24 mW 45.7% 23.1 mW 39.7%
Tokenstore 5.1 mW 26% 16.9 mW 29%
Expl. State store - - 1 mW 1.8%

Serializer - - 1.2 mW 2%
Rest (clock) 4.2 mW 21.8% 11 mW 19.6%

Total 20 mW 100% 58 mW 100%

Table 6.5: Power consumption for executing complex multiplications

Table 6.5 shows that the standard FlexCore consumes an average power of
20mW while the Extended FlexCore consumes 58mW . Also for the complex
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Figure 6.4: Power consumption during execution of complex multiplication
chain

multiplications, the dispatcher of both designs consumes most power. The
ALU in both designs consume a little bit more than 5% of the total power,
again in agreement with the other test applications. The power results are
shown graphically in figure 6.4.

The standard FlexCore requires 494 cycles to complete the complex mul-
tiplication chain ten times. The average time to execute a single complex
multiplication is 494∗10ns

40compl.mults = 124ns per operation. The energy required
for a single butterfly operation can be found by multiplying the average time
to execute a butterfly operation with the average power consumption of the
standard FlexCore: 124ns ∗ 20mW = 2.5nJ .

116 cycles are required by the Extended FlexCore to complete the ten
complex multiplication chains. The average execution time for a single com-
plex multiplication is therefore 116∗10ns

40compl.mults = 29ns. The energy to execute a
single butterfly operation on the Extended FlexCore is 29ns∗58mW = 1.7nJ .

Also for complex multiplications the Extended FlexCore turns out to be
more energy efficient. By defining a single complex multiplication executed
by the standard FlexCore as 100%, the amount of energy saved by using the
Extended FlexCore is 2.5−1.7

2.5 ∗ 100% = 32%.

6.3 Performance evaluation

This section elaborates on the utilization of the ALU of both the standard
and the Extended FlexCore. The utilization is determined for the same ap-
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plications which were used to find the energy consumption: FIR filter, FFT,
and butterfly. Also performance numbers are given in terms of operations per
clock cycle.

FIR filter

A 16 taps FIR filter is used as dataflow graph to evaluate the performance of
both FlexCores. The step response of this FIR filter is determined followed
by feeding it one additional sample (to check whether the state remain correct
after a full step response). The DFG for the standard FlexCore consists of
15∗2+1 = 31 nodes (recall that the first filter tap only consist of a multiplier,
see figure 4.4). The DFG for the Extended FlexCore consist only of 16/4 = 4
nodes.

The standard FlexCore is fed with data such that the step response with
an additional sample is determined. The step response is found by feeding the
FIR filter 16 tokens all containing the value 1. Every node in the DFG of the
standard FlexCore should therefore be executed 17 times. This means that
the ALU should be executing an instruction for 31 ∗ 17 = 527 cycles. 1050
cycles were required to execute this FIR application. The utilization of the
ALU of the standard FlexCore is therefore 527

1050 ∗ 100% = 50%.
The DFG for the Extended FlexCore is fed the same data so it should also

be executed 17 times. The DFG of the Extended FlexCore consist of 4 nodes
(4 filter slices). The ALU should therefore be active for 17∗4 = 68 cycles. 193
were required to execute the DFG on the Extended FlexCore. The utilization
of the ALU of the Extended FlexCore is therefore 68

193 ∗ 100% = 35%.
The standard FlexCore requires 1050 cycles to execute the FIR application

consisting of 16 ∗ 17 = 272 filter taps. This results in a performance of 272
1050 =

0.26 taps per clock cycle. The Extended FlexCore on the other hand requires
only 193 cycles to execute 272 filter taps. This results in a performance of
272
193 = 1.4 taps per clock cycle.

FFT

Also the FFT is used to evaluate the performance of both FlexCore imple-
mentations. A dataflow graph of a four point FFT is made and executed on
both the standard and the Extended FlexCore. A four point FFT consist of
four butterfly operations. This is implemented with 40 nodes for the standard
FlexCore and 4 for the Extended FlexCore.

Both FlexCores are fed with data such that the FFT is executed 10 times.
A butterfly operation on the standard FlexCore consist of 10 nodes. The ALU
should therefore perform 4∗10∗10 = 400 instructions. 882 cycles were required
to execute the FFT ten times. This results in a utilization of 400

882∗100% = 45%.
The same data is also fed to the FFT implementation on the Extended

FlexCore but now the dataflow graph consist only of four butterfly operations.
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The number of butterfly operations is therefore 40. As the Extended FlexCore
required only 241 to execute the FFT ten times, the resulting utilization of
the ALU will be 40

241 ∗ 100% = 17%.
The standard FlexCore requires 882 cycles to execute the FFT application

consisting of 40 filter butterfly operations. This results in a performance of
40
882 = 0.05 butterfly operations per clock cycle. The Extended FlexCore on
the other hand requires only 241 cycles to execute 40 butterfly operations.
This results in a performance of 40

241 = 0.17 butterfly operations per clock
cycle.

Complex multiplications

The last test performed on both the standard and the Extended FlexCore
is the chain of multiplications. The chain consists of four cascaded complex
multiplications which is implemented using 4 ∗ 6 = 24 nodes on the standard
FlexCore and 4 nodes on the Extended FlexCore.

Again, both FlexCores are fed with data such that the chain is executed
ten times. The ALU of the standard FlexCore should therefore be executing
instructions for 24 ∗ 10 = 240 clock cycles. 494 clock cycles were required to
execute the chain ten times on the standard FlexCore. The utilization of the
ALU is therefore 240

494 ∗ 100% = 49%.
The DFG for the Extended FlexCore is also fed the same data and is

therefore also executed 10 times. The DFG for the Extended FlexCore however
consists only of 4 nodes. The ALU is therefore occupied for 4 ∗ 10 = 40 clock
cycles. 116 cycles were required to execute the complex multiplication chain
10 times, the resulting utilization of the ALU is therefore 40

116 ∗ 100% = 34%.
The standard FlexCore requires 494 cycles to execute the FFT applica-

tion consisting of 40 complex multiplications. This results in a performance of
40
494 = 0.08 complex multiplications per clock cycle. The Extended FlexCore
on the other hand requires only 116 cycles to execute these 40 complex multi-
plications. This results in a performance of 40

116 = 0.34 complex multiplications
per clock cycle.

6.4 Summary

The synthesis results show that for both implementations of the FlexCore,
the dispatcher requires more than 90% of the total area mainly consisting of
memories. The area required by the ALUs is about 6% while the rest is used
by the router and clock network.

Also energy numbers have been determined for the FIR filter, FFT and
complex multiplications. Again, the dispatcher requires most energy, about
73% of the total energy consumption is used in the dispatcher. The amount
of energy required for basic operations (filter tap, butterfly and complex mul-
tiplication) is shown in table 6.6.
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Application Standard FlexCore Extended FlexCore Gain

FIR 0.78nJ 0.40nJ 49%
FFT 4.5nJ 3.4nJ 23%
compl. mult. 2.5nJ 1.7nJ 32%

Table 6.6: Energy savings for test applications on both architectures

For both designs of the FlexCore, the utilization of the ALU has been de-
termined for all test applications. The results are shown in table 6.7. It clearly
shows that the utilization of the ALU is much lower compared to the standard
FlexCore. Recall that the path from ALU to router to dispatcher only allows
a single token to be sent per clock cycle. The dispatcher can only process a
single operand per clock cycle. This means that an operation requiring four
operands, is scheduled at most once per four clock cycles. All operations on
the standard FlexCore require only two operands which is why the utilization
of the ALU is close to 50% for all test applications. The utilization on the
Extended FlexCore is lower because there are nodes having more inputs which
all have to be processes sequentially by the dispatcher. The performance can
be increased by making a dispatcher which can process several tokens in a
single clock cycle. Also the path from ALU to router to dispatcher needs then
support for several tokens per clock cycle.

Application Standard FlexCore Extended FlexCore

FIR 50% 35%
FFT 45% 17%
compl. mult. 49% 34%

Table 6.7: Utilization of ALUs

All performance numbers in terms of basic operations (filter tap, butterfly
or complex multiplication) per clock cycle are extracted from both implemen-
tations and shown in table 6.8. Also the speedup by using the Extended
FlexCore instead of the standard FlexCore is given.

Application Standard FlexCore Extended FlexCore speedup

FIR 0.26 1.4 1.4/0.26 = 5.4
FFT 0.05 0.17 0.17/0.05 = 3.4
compl. mult. 0.08 0.34 0.34/0.08 = 4.3

Table 6.8: Performance numbers for test applications
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Comparison with other architectures

Here, the FlexCore is put in perspective by comparing it with other architec-
tures in terms of energy per operation. Comparing architectures is however a
tricky business, the following explanation should therefore be seen as an indi-
cation. The following calculations are based on the results shown in [37]. For
each architecture the amount of energy per butterfly operation is determined
such that the architectures can be ordered by efficiency. Only the absolute
power numbers are shown i.e. no technology scaling is applied.

The main architecture described in [37] is the Montium Tile Processor.
This is a coarse grain reconfigurable architecture especially developed for
streaming applications[38]. The energy consumption for the Montium is de-
termined by executing a single 64 points FFT on it. By including the energy
for communication, the amount of energy Etotal required to execute a 64 point
FFT on the Montium is Etotal125nJ as found in [38].

The whole 64 point FFT is executed once by feeding it a block of 64
samples. The FFT consists of 64

2 log2(64) = 192 butterfly operations. The
amount of energy for a single butterfly operation EBF then becomes:

EBF =
Etotal

number of butterflies
=

125nJ

192BFs
= 0.65nJ/BF

The next architecture investigated in [37] is the FASRA(FFT algorithm
specific reference architecture) ASIC. The FASRA performs a 1024 point FFT
on a block of 1024 input samples. This means that 1024

2 log2(1024) = 5120
butterfly operations are performed. For the whole FFT, 1938nJ of energy is
required. The amount of energy required for a single butterfly operation EBF
then becomes:

EBF =
Etotal

number of butterflies
=

1938nJ

5120BFs
= 0.379nJ/BF

The FASRA architecture has also been implemented on a Xilinx XC2VP2
FPGA. A 64 point FFT is executed consisting of 192 butterfly operations.
For the FASRA FPGA implementation, the numbers in [37] are given in terms
of µW/MHz where a butterfly operations is executed every clock cycle. At
a clock frequency of 1 MHz, a single clock cycle lasts 1µs. The total power
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consumption is 12155 µW/MHz. The amount of energy EBF for a single
butterfly operation can now be found by multiplying the time for a single
butterfly TBF with the total power Ptotal:

EBF = Ptotal ∗ TBF = 12155µW/MHz ∗ 1MHz ∗ 1µs = 12.2nJ/BF

The last architecture investigated in [37] is a general purpose processor, the
ARM920T. The ARM920T requires 0.25mW/MHz when executing a single
instruction per clock cycle. A single butterfly operation however requires 21
clock cycles. The total power number is 21 times higher: 21×0.25mW/MHz =
5.25mW/MHz. At a butterfly execution rate of 1 MHz, a single butterfly
operation lasts 1µs. The energy of a single butterfly operation EBF is:

EBF = Ptotal ∗ TBF = 5.25mW/MHz ∗ 1MHz ∗ 1µs = 5.25nJ/BF

All the numbers for the architectures, including the Extended FlexCore,
are shown in table 7.1 and figure 7.1.

ASIC Montium Extended FlexCore ARM920T FPGA

nJ/BF 0.379 0.65 3.4 5.25 12.2

Table 7.1: Energy per butterfly operation on different architectures
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Figure 7.1: Energy required for executing a butterfly operation on a particular
architecture
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Discussion & Future work

Although both the standard and the Extended FlexCore have been imple-
mented, there are still a few issues. The first issue is the scalability of certain
programs which should run on the architectures (a 1024 point FFT of LOFAR
for example requires a lot of nodes in the dataflow graph and therefore a lot
of memory). The second issue is that the ALU is not yet pipelined. Currently
all modules of both designs should produce a result within a single clock cycle.
The resulting clock frequency is therefore much lower because of long com-
binatorial paths in the ALU. Another issue is that both designs do not use
memories for ASIC but let the tooling create memories using only flip flops.
This results in more area and higher power consumption. Clock gating had
to be turned off during synthesis because it broke the design of the Extended
FlexCore.

8.1 Scalability

Both the standard FlexCore and the Extended FlexCore have to be pro-
grammed in such a way that the program memory contains a complete static
dataflow graph. This size of the dataflow graph depends highly on the scala-
bility of the algorithms.

Consider an N point FFT. An FFT can be constructed using N
2 log2(N)

butterfly operations. To implement a 1024 point FFT, 1024
2 log2(1024) = 5120

butterfly operations are required. The Extended FlexCore therefore requires
5120 memory locations in the presence list memory, program memory and
tokenstore to support a dataflow graph containing this many nodes. The
standard FlexCore requires even more nodes. The standard FlexCore has
no support for a complete butterfly operation, it is constructed using just
multiplications, additions and subtractions. To execute a 1024 point FFT on
the standard FlexCore, 1024

2 log2(1024) ∗ 10 = 51200 nodes are required (recall
that a butterfly operation can be constructed using 10 basic operations).

Both the standard FlexCore and the Extended FlexCore use an address
width of 7 bits to address nodes in the memories of the dispatcher. This allows
a maximum size of 27 = 128 nodes for the dataflow graph. The area used by
the dispatcher is already 90% of the total area and dissipates 70% of the total
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power. To support a 1024 point FFT, almost all area and memory will be
spent on memory and not on calculations. The architecture therefore requires
something to support repetition of parts of the dataflow graph. The FFT does
not scale very well on the current implementation of the FlexCore.

Instead of changing the architecture to a complete dynamic dataflow archi-
tecture, the FFT could be implemented as a pipelined FFT[39]. A pipelined
FFT combines the butterfly operations of every stage to a single butterfly. All
the butterfly operations in a stage are then executed sequentially. In between
are so called commutators with memories which implement the addressing of
data in the FFT. By adding support for these commutators and memories,
a pipelined FFT is supported which reduces the number of required dataflow
nodes to log2(N). The scalability is not really a problem for the FIR filter
and complex multiplications because they scale linearly with the number of
coefficients which are usually all unique.

8.2 Pipelining

Although the complete architecture can be considered to be pipelined because
the modules are separated by FIFOs, the modules themselves are currently
not pipelined. The longest combinatorial path is for both implementations of
the FlexCore located in the ALU. The resulting clock frequency was therefore
limited to 150 MHz and 100 MHz respectively. All other modules contain
mostly memory hence pipelining the ALUs should increase the maximum clock
frequency significantly. Pipelining should be implemented on the lowest level
of the dataflow implementation such that it can easily be used on a higher level.
Because pipelined modules are not supported, memories for ASIC cannot be
used. This is because they are completely synchronous as explained in the
synthesis results (section 6.1).

8.3 ASIC memories

Currently the memories are implemented by the tooling which implements
them using flipflops. Most memories (including those available during the de-
sign of the FlexCore) for ASICs only support synchronous read. Both imple-
mentations of the FlexCore require however an asynchronous read interface.
Reading from these ASIC memories therefore requires an additional cycle.
This additional cycle should be implemented by pipelining the modules con-
taining memories. The standard FlexCore has also been synthesised for an
FPGA where the problem with the asynchronous read also occurred. Several
FPGA tools (Precision, Xilinx ICE and Altera Quartus ) were all unable to
implement the memories using blockRAM and implemented them as registers
from the logic blocks of the FPGA[40].
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8.4 Clock gating

For the standard FlexCore the synthesis tooling was able to detect parts (es-
pecially the memories) of the design that could be clock gated and applied it
successfully. During synthesis of the Extended FlexCore however, the tooling
was able to apply clock gating but it broke the design. During post synthesis
simulation the design did not work anymore (debugging showed that signal
remained invalid even if the data was sent correctly to the FIFOs). In order to
make a fair comparison between both designs, clock gating had to be disabled
for both the standard FlexCore and the Extended FlexCore which results in
higher power dissipation of mainly the memories. After disabling clock gating
both designs worked flawlessly.

8.5 Streaming

Currently the dispatcher processes a single token per firing. The architecture
can however be extended such that streams of several samples are supported.
Matching is then based on complete streams instead of single tokens. The
dispatcher is only active when a new stream arrives that has to be matched.
As the dispatcher requires most power, applying matching on streams should
reduce the complete power consumption significantly.

8.6 Programming

Although the FlexCore is now programmed by hand using the architecture’s
instruction set, changing a compiler to support the FlexCore should not be
hard. The compiler should be able to create a dataflow graph consisting of
FIR slices, butterfly operations and complex multiplications. There already
exist several programming languages that are used for dataflow architectures:
Id[13], LUCID[41] and parallel Haskell (pH)[42].
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Conclusions

Multiple algorithms of the LOFAR telescope have been analyzed and regu-
larities have been revealed. These regularities are exploited in the Extended
FlexCore, a dataflow architecture designed especially for executing the beam-
forming operations of LOFAR. The Extended FlexCore is compared with the
standard FlexCore and a significant (23%, 32% and 49%) energy efficiency
gain is found. Both implementations of the FlexCore rely heavily on dataflow
principles for internal communication. These dataflow principles were first
implemented using VHDL and later used as basis for building both FlexCore
implementations.

Dataflow graphs

Dataflow graphs have been directly implemented in VHDL. Every input of
a node in such a dataflow graph is implemented using a FIFO with space
for at least two elements. It has been shown that two elements is the lower
bound to achieve a full throughput of one token per clock cycle. Making
designs using these dataflow principles should also be scalable because the
longest combinatorial path covers only two dataflow nodes. Using dataflow
graphs as a design method for both FlexCore implementations has shown to
be very useful as synchronization is performed by dataflow principles while
functionality of the modules can be considered local.

Analysis of algorithms

The beamforming algorithm for the LOFAR telescope has been analyzed and
have revealed regularities and overlap among the operations. Beamforming is
performed mainly by FIR filters, FFTs and complex multiplications. An ALU
is designed which combines these algorithms into a single piece of hardware.
The ALU is able to execute a FIR slice of four filter taps, a complex multipli-
cation or a butterfly operation in a single clock cycle. It has also been shown
how a long FIR filter can be executed by splitting it into slices and executing
these sequentially.
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Implementation of both FlexCores

Two implementations of the FlexCore have been made. The standard Flex-
Core is a dataflow architecture based on the Explicit Token Store (ETS) prin-
ciple to implement the matching procedure. This implementation is used
as reference design for comparison with the second implementation, the Ex-
tended FlexCore. The Extended FlexCore includes the ALU designed during
the analysis of the beamforming algorithms and supports FIR slices, complex
multiplications and butterfly operations. To handle the state of the FIR slices
an additional module, the Explicit State Store (ESS), is introduced.

Both designs of the FlexCore have been implemented using the TSMC
90 nm low power library. Place and route has been performed for both de-
signs after which the power consumption is determined by executing several
applications on both architectures. The simulations have shown that the Ex-
tended FlexCore consumes significantly less energy per operation compared
to the standard FlexCore. The Extended FlexCore consumes 23%, 49% and
32% less energy for executing the FFT, FIR filter and complex multiplication
application respectively.

The research question as how the granularity of dataflow execution can
be increased to increase efficiency, can be answered as follows: By combining
common sub graphs in the dataflow graphs of the LOFAR beamforming ap-
plication into a larger ALU, the power consumption is reduced significantly.
By using a bigger ALU the amount of tokens that should be processed by
the dispatcher is reduced and the performance is increased. Even though the
Extended FlexCore required almost three times as much power, the amount
of energy required per operation has shown to be significantly less than the
reference implementation, on the standard FlexCore.
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List of Acronyms

ALU Arithmetic Logic Unit

ASIC Application-specific Integrated Circuit

DFT Discrete Fourier Transform

DFG Data Flow Graph

DSP Digital Signal Processing

EP Empty Predictor

ESS Explicit State Store

ETS Explicit Token Store

FB Fractional Bandwidth

FFT Fast Fourier Transformation

FIFO First In First Out

FIR Finite Impulse Response

FP Full Predictor

FPGA Field Programmable Gate Array

HSDF Homogeneous Synchronous Data Flow

LOFAR LOw Frequency ARray

NoC Network on Chip

RAM Random Access Memory

SDF Synchronous Data Flow

SKA Square Kilometer Array
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VHDL example code

The following listing shows an example on how dataflow nodes are imple-
mented in VHDL. Here the ALU of the standard FlexCore is given because
it includes the buffering of input data using arcs, a functional module with
performs the calculations and a statefull part (the current destination pointer
iterating over all destination of the dataflow node).

1 library ieee ;
2 use ieee .std_logic_1164 .all ;
3 use ieee .numeric_std .all ;
4 library work ;
5 use work .FlexCore_pkg .all ;
6

7 entity ALU is

8 generic (
9 data_width : natural := 16; −−16 bit fixed point operations

10 valid_dests_width : natural := 2; −−two bits for number of destinations
11 opcode_width : natural := 2; −−number of bits for an instruction
12 dest_addr_width : natural := 4 −−width of the destination address
13 ) ;
14 port (
15 clk , rst : in std_logic ;
16

17 −−the dataflow input for operands
18 operands_in_data : in std_logic_vector( 2∗data_width−1 downto 0 ) ;
19 operands_in_write : in std_logic ;
20 operands_in_full : out std_logic ;
21

22 −−the dataflow input for instruction
23 destinstr_in_data : in std_logic_vector( opcode_width +

valid_dests_width + 2∗∗valid_dests_width∗dest_addr_width−1 downto 0
) ;

24 destinstr_in_write : in std_logic ;
25 destinstr_in_full : out std_logic ;
26

27 −−output for destination and the result
28 destres_out_data : out std_logic_vector( dest_addr_width+data_width−1

downto 0 ) ;
29 destres_out_write : out std_logic ;
30 destres_out_full : in std_logic

31 ) ;
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32 end entity ;
33

34 architecture ALU_arch of ALU is

35

36 component InternalArc

37 generic (
38 data_width : natural

39 ) ;
40 port (
41 rst , clk , wrt , rd : IN STD_LOGIC ;
42 datain : IN STD_LOGIC_VECTOR( data_width−1 downto 0 ) ;
43 full : OUT STD_LOGIC ;
44 dataout : OUT STD_LOGIC_VECTOR( data_width−1 downto 0 ) ;
45 empty : OUT STD_LOGIC

46 ) ;
47 end component ;
48

49 component CBPStateMachine

50 port

51 (
52 clk , rst , proc_cond : in std_logic ;
53 cur_state : out cnstate

54 ) ;
55 end component ;
56

57 signal ops_fifo_out : std_logic_vector( 2∗data_width−1 downto 0 ) ;
58 signal destinstr_fifo_out : std_logic_vector( opcode_width +

valid_dests_width + 2∗∗valid_dests_width∗dest_addr_width−1 downto 0 ) ;
59 signal ops_fifo_rd , destinstr_fifo_rd , ops_fifo_empty ,

destinstr_fifo_empty : std_logic ;
60 signal destPtr : unsigned( valid_dests_width−1 downto 0 ) ;
61 signal instr : instruction ;
62 signal valid_dests : std_logic_vector( valid_dests_width−1 downto 0 ) ;
63 signal destination0 , destination1 , destination2 , destination3 ,

curDestination : std_logic_vector( dest_addr_width−1 downto 0 ) ;
64 signal operand1 , operand2 : std_logic_vector( data_width−1 downto 0 ) ;
65 signal aluState : cnstate ;
66

67 begin

68 Aops : InternalArc

69 generic map( data_width => 2∗data_width )
70 port map(
71 rst => rst ,
72 clk => clk ,
73 wrt => operands_in_write ,
74 rd => ops_fifo_rd ,
75 datain => operands_in_data ,
76 full => operands_in_full ,
77 dataout => ops_fifo_out ,
78 empty => ops_fifo_empty

79 ) ;
80

81 Adestinstr : InternalArc

82 generic map( data_width => opcode_width + valid_dests_width + 2∗∗
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valid_dests_width∗dest_addr_width )
83 port map(
84 rst => rst ,
85 clk => clk ,
86 wrt => destinstr_in_write ,
87 rd => destinstr_fifo_rd ,
88 datain => destinstr_in_data ,
89 full => destinstr_in_full ,
90 dataout => destinstr_fifo_out ,
91 empty => destinstr_fifo_empty

92 ) ;
93

94 −−sp l i t the input buses to operands instruction and destination
95 instr <= SLVToInstruction( destinstr_fifo_out( destinstr_fifo_out ’high

downto destinstr_fifo_out ’high−opcode_width+1 ) ) ;
96 valid_dests <= destinstr_fifo_out( 4∗dest_addr_width + valid_dests_width−1

downto 4∗dest_addr_width ) ;
97 destination0 <= destinstr_fifo_out( 4∗dest_addr_width−1 downto 3∗

dest_addr_width ) ;
98 destination1 <= destinstr_fifo_out( 3∗dest_addr_width−1 downto 2∗

dest_addr_width ) ;
99 destination2 <= destinstr_fifo_out( 2∗dest_addr_width−1 downto

dest_addr_width ) ;
100 destination3 <= destinstr_fifo_out( dest_addr_width−1 downto 0 ) ;
101 operand1 <= ops_fifo_out( data_width−1 downto 0 ) ;
102 operand2 <= ops_fifo_out( ops_fifo_out ’high downto data_width ) ;
103

104 −−process that handles the current destination pointer
105 process( clk , rst , valid_dests , destinstr_fifo_empty , ops_fifo_empty ,

destres_out_full , aluState , destPtr )
106 begin

107 if( rst = ’0 ’ ) then

108 aluState <= waiting ;
109 destPtr <= "00" ;
110 else

111 if( rising_edge( clk ) ) then

112 −−check wether the f i r ing rule i s sat i s f i ed −> state transitions
113 if( ( destinstr_fifo_empty = ’0 ’ ) and ( ops_fifo_empty = ’0 ’ ) and

( destres_out_full = ’0 ’ ) ) then

114 −−f i r ing rule sat ies f ied
115 aluState <= processing ;
116 else

117 −−f i r ing rule NOT saties f ied
118 aluState <= waiting ;
119 end if ;
120 −−on exit of of processing state :modify pointer
121 if( aluState = processing ) then

122 if( destPtr = unsigned( valid_dests ) ) then

123 destPtr <= "00" ;
124 else

125 destPtr <= destPtr + 1;
126 end if ;
127 end if ;
128 end if ;
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129 end if ;
130 end process ;
131

132 −−comb. process that handles the read and write signals
133 process( aluState , destPtr , valid_dests )
134 begin

135 case aluState is

136 when waiting =>
137 −−waitong so no read and no write
138 destinstr_fifo_rd <= ’0 ’ ;
139 ops_fifo_rd <= ’0 ’ ;
140 destres_out_write <= ’0 ’ ;
141 when processing =>
142 if( destPtr = unsigned( valid_dests ) ) then

143 −−last destination of l i s t
144 destinstr_fifo_rd <= ’1 ’ ;
145 ops_fifo_rd <= ’1 ’ ;
146 else

147 −−NOT last destination of l i s t : do not clear f i f o yet
148 destinstr_fifo_rd <= ’0 ’ ;
149 ops_fifo_rd <= ’0 ’ ;
150 end if ;
151 destres_out_write <= ’1 ’ ;
152 end case ;
153 end process ;
154

155 curDestination <=
156 destination0 when destPtr = "00" else

157 destination1 when destPtr = "01" else

158 destination2 when destPtr = "10" else

159 destination3 ;
160

161 process( aluState , instr , operand1 , operand2 , curDestination )
162 begin

163 if( aluState = processing ) then

164 case instr is

165 when add =>
166 destres_out_data <= curDestination & std_logic_vector( signed(

operand2 ) + signed( operand1 ) ) ;
167 when sub =>
168 destres_out_data <= curDestination & std_logic_vector( signed(

operand2 ) − signed( operand1 ) ) ;
169 when mult =>
170 destres_out_data <= curDestination & std_logic_vector( resize(

signed( operand2 ) ∗ signed( operand1 ) , data_width ) ) ;
171 when others =>
172 destres_out_data <= ( others => ’0 ’) ;
173 end case ;
174 else

175 destres_out_data <= ( others => ’0 ’) ;
176 end if ;
177 end process ;
178 end ALU_arch ;
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Literature report

This appendix includes the literature report. The literature report was written
to become familiar with the concepts of dataflow architectures.
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1

Introduction

Current and future radio telescopes rely for a great part on digital signal pro-
cessing. The large dishes are replaced by a large number of small antennas
from which the signals are digitized. This allows large arrays and electronic
beamsteering such that pointing the telescope to specific areas of the sky is
performed using software instead of mechanically steering dishes. All these
techniques require a lot of processing power and with it a large amount of en-
ergy. Future telescopes like the Square Kilometre Array (SKA) require a huge
amount of processing power which makes conventional processor architecture
infeasible.

In the seventies a different approach to processing was developed called
Dataflow-architecture. Instead of looking at the control of a program the
dataflow approach is looking at the data-dependencies. All independent op-
erations can be executed in parallel, dataflow processors can exploit this and
can therefore achieve high performance. Because the operations performed
in radio-astronomy are relatively simple but have a high level of parallelism,
dataflow-like architectures seem a natural path to take. An open research
question therefore is whether dataflow architectures can meet the demands in
processing power and energy efficiency.

First a wide knowledge of dataflow architectures has to be gained. This
literature report gives an overview of the developments in dataflow architec-
tures. The aim is to use the developments in dataflow architectures to design a
System-on-Chip core which very efficiently performs beamforming operations
in, for example, radio astronomy and Radar.

This report starts with an introduction to the dataflow architecture con-
cept followed by an exploration of static and dynamic dataflow architectures.
Afterwards an overview of the recent developments of dataflow architectures
is given. Chapter 6 shows the problems occurring in dataflow architectures
and some solutions addressing these problems. The report concludes with the
problem statement for the master-thesis in chapter 7.

1
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Introduction to dataflow graphs

While conventional von Neumann machines are programmed using control-
statements and load/store-instructions, dataflow architectures are data-driven.
This means that dependencies in the dataflow graph determine the order of
execution. The architectures directly execute these dataflow graphs contain-
ing all the operations and their dependencies. These graphs expose much more
parallelism than the sequential style of a von Neumann architecture because
only mathematical dependencies are present in dataflow graphs.

2.1 Dataflow graphs

Dataflow programs are expressed in graphs where the operators are called
nodes and edges arcs(the dependencies among operations). The data-packets
which are being transferred over these arcs are called tokens. Nodes are enabled
if all the required input-tokens, according to the enabling-rule, are available.
A node fires when it executes its operation by consuming its input-tokens and
producing one or more output-tokens.

A B 3

+
n1

/

n2

result

(a)

A B 3

+
n1

/

n2

result

(b)

A B 3

+
n1

/

n2

result

(c)

A B 3

+
n1

/

n2

result

(d)

Figure 2.1: Firing rules in dataflow graphs

Figure 2.1 shows four asynchronous events in a dataflow graph created
from the formula result = A+B

3 . Node n1 (the adder) is the first to receive a
token but is not yet enabled because it requires two input-tokens. At a later
time (Figure 2.1b) the right operand has arrived as well and node n1 becomes
enabled. Node n2 (the divider) also receives a token but remains disabled

2
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until n1 has produced its result. Figure 2.1c shows the point in time where n1

has produced its result and therefore enables n2. When n2 fires it consumes
the tokens on its inputs and produces an output-token containing the result.
This is depicted in Figure 2.1d.

These graphs are completely asynchronous meaning that the time between
two events can be arbitrary. A pure implementation of such graphs therefore
does not require a global clock because all the synchronization is enforced by
the firing rules.

2.2 Conditional dataflow graphs

Conditional execution or loop structures require special types of nodes to
handle boolean tokens coming from comparator nodes. There are two types
of nodes required to support conditional constructs; branch and merge nodes.
Branch nodes direct tokens to a certain path in the graph based on a boolean
condition-token. A merge combines two paths together by simply forwarding
any token that is on any of the inputs.

In

Branch Cnd

OutT OutF

t f

(a)

InL InR

Merge Cnd

Out

(b)

Figure 2.2: Conditional nodes: Branch and Merge.

Figure 2.2 shows the branch and the merge nodes as they are used in
dataflow graphs. The branch node in figure 2.2a forwards the input token to
the left when a control token with value true is present at the Cnd-input, the
value is forwarded to the right output otherwise. A merge node is shown in
Figure 2.2b which can either be deterministic or non-deterministic( determin-
istic requires a control token ). When the conditional input is available the
firing rule states that an output is only produced when both a control-token
and a corresponding input-token are available.

Using these merge and branch nodes, also loops can be constructed. Great
care has to be taken designing these loops in order to avoid race conditions.
Several techniques have been proposed to ensure safety of the graphs [Vee86].
One technique is the locking-method which merges two loops together as de-
picted in Figure 2.3a.

Figure 2.3a shows a graph containing the safe implementation of the fol-
lowing loop: while(P (x)) (x, y) := F (x, y). The x and y tokens loop trough
the graph in pairs and can therefore not outrun each other. Firing rules of F ,
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X

Y

Merge

BranchF P

newX

newY

ft

(a) Safe loop

F BranchBranch

P MergeMerge

XY

newXnewY

(b) Unsafe loop

G H

i1 i2

o1 o2

F

2

(c) Internal of F

Figure 2.3: Safe and unsafe loop constructs

merge and branch ensure that every x and y token is accepted and produced
at the same time.

Figure 2.3b on the other hand shows a graph with two loops outrunning
each other. The node F is a subgraph, the implementation is given in Figure
2.3c. If node G is slow compared to H, H will fire before G. The resulting
token created by H leaves the subgraph and enters the loop for x-tokens again
(right side of graph). If the function P (x) still returns true the x-token enters
the subgraph from the bottom. G is still processing its tokens so the loop for
the y-tokens is still stalled. The token that entered the subgraph is sent to
both G and H. Node H is now enabled so it accepts the new token while the
token going to G has to wait.

When node H is several times faster than G, several x-tokens have run
trough the x-loop before G finally produces a token. Because G is also depen-
dant on x-tokens they will accumulate at the right input of G. This is depicted
in Figure 2.3c which shows the number of waiting tokens on the input. The
graph is unsafe because a new x-token will arrive before G accepts the token
on the arc. Due to this accumulation an infinite amount of storage is needed if
the complete graph would receive an infinite amount of x and y tokens. Two
methods exist to overcome this problem, these are elaborated in the following
sections.

2.3 Acknowledge method

An alternative to locked loops is using ack tokens which require an additional
arc from the destination back to the source node. This ack ensures that there
can be only one token on an arc and guarantees therefore safety of the graph.
When a source sends a token to the destination node and the arc is free, the
destination node sends back an acknowledge. When there is no space left on
the arc the destination node does not send back an acknowledge, so the source
buffers output-token until the arc is free again.
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F G

(a)

F G

(b)

F G

ack

(c)

Figure 2.4: Successful acknowledge

During the first phase of execution in Figure 2.4, all arcs are free while node
F produces a token. In the second phase the token is successfully placed on the
arc. In phase 3 this is acknowledged by node G which sends an acknowledge
back to the source.

F G

(a)

F G

(b)

F G

no ack

(c)

Figure 2.5: Failing acknowledge

When an arc is already occupied and the source tries to send a token, it
is lost. The sender therefore doesn’t receive an acknowledge and is has to
try again at a later time. The result-token is saved in the sender until an
acknowledge is received. This is depicted in Figure 2.5.

2.4 Tagging method

Distinguishing different iterations of loops is often realized using tags. These
tags are used to make sure that only tokens with the same tag are accepted
by receiving nodes. A tag is attached to every token to make sure that tokens
of different loops do not interfere. The enabling rule then states that a node
is enabled only if each input arc contains a token with the same tag. Again,
such a machine is safe when no arc will ever contain more than one token with
the same tag.

InL

Merge

BranchF

D

P

D−1 L−1 Out
ft

Figure 2.6: Tagging to implement loops
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Figure 2.6 shows the dataflow graph of a simple loop. It contains four
nodes that handle the different iteration-contexts using tags. The first node
L creates a new loop-context by attaching a tag to tokens entering the loop.
These tags ensure that tokens inside the loop are unique in the graph. The
tokens in the loop can then be distinguished from tokens of the graph outside
of the loop. Loop-in-loop constructs can also be made using these loop-tags(
on every start of a loop a new loop-context is allocated ). When a loop
is completed the previous context is restored by a special node L−1. Again
different iterations of the loop have to be distinguished in order to prevent race
conditions, the nodes D and D−1 are responsible for that. In every iteration
of the loop tokens have a unique tag attached to them by the D-node which
creates a unique context for each iteration. This allows different iterations of
the loop to run in parallel because all tokens of different loops also have a
different tag. When the loop is completed the iteration-context is restored,
this usually corresponds to resetting a loop-counter.

2.5 Procedure calls

Tagging can also be used to implement procedure calls. When a call is made, a
new tag-space(context) is allocated such that the nodes and arcs of the callee
body are separated from the rest of the graph. This also enables recursive-
procedure-calls. Machines using this tagged-token principle are called tagged-
token-machines.

q a

A Begin

func. body

EndA−1

result

Context C Context C ′

Figure 2.7: Using contexts to implement procedure calls.

Figure 2.7 shows a dataflow graph of a procedure call. The procedure is
invoked from context C by the node A which creates a token with value a (the
argument) with destination q (address of the function). Node A then creates
a new context C ′ for the tokens in the called procedure. The argument a with
the new tag arrives at the first node of the called procedure denoted by begin.
The nodes in the procedure only accept tokens with a tag corresponding to
the new context. Often a special node at the end of the procedure is used to
transfer the return-value, the End-node. This return-value eventually arrives
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at the A−1-node which restores the context C completing the procedure call.
The context-nodes can also be used for implementing recursive procedure

calls. Every call results in the creation of a new context in which the graph
of the called function executes. Every call instance of the graph is therefore
unique. The following example code shows an implementation of recursion, it
calculates 3n.

Listing 2.1: Recursion in C: 3n

int pow3( int n )

{

if( n>0 )

return 3*pow3( n-1 );

else

return 1;

}

Figure 2.8 shows the three stages for calculating 32 which is an unfolded
translation of the code in Listing 2.1. When executing the above program,
three nested calls will occur. These calls can be translated to a dataflow
graph where the arguments enter from above and results leave at the bottom.
Every call from within a function-call is implemented using an outgoing arc
connected to the top-node of the next call.

n

A

> 0 −1

1

Merge

×3

A−1

result

2

9

C1

A

> 0 −1

1

Merge

×3

A−1

1

3

C2

A

> 0 −1

1

Merge

×3

A−1

1

0

1

C3

Figure 2.8: Unfolded dataflow graph for calculating 32.

As can be seen in figure 2.8, the calculation of 32 starts by sending the argu-
ment n = 2 to the first instance of the procedure-body. When the parameter-
token enters the procedure-body, a new context C1 is created. All the nodes
in context C1 now only accept tokens with a tag corresponding to context C1.
After the context creation, the node > 0 (similar to a branch node) sends the
token to node −1 if the accepted value is bigger than 1, and to the constant
node 1 otherwise. The token has a value 2 and is directed to subtraction node
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−1. A new token is produced containing the value 1 which enters the next
instance of the graph.

The tokens entering the second instance follow the same path because the
value contained in the tokens is not yet zero. The token leaving this second
instance has passed trough the −1 node making its value equal to zero. When
it enters the third instance of the graph the > 0-node triggers constant-node
1 to create a token. This token is then accepted by the A−1-node trough the
merge-node. The A−1-node restores the previous context. The token leaving
A−1 therefore belongs to the context C2.

The token with value 1 leaving the instance with context C3 is now ac-
cepted by the ×3-node of the second (C2) instance. This triggers the creation
of a token with value 3 which passes trough the merge-node of C2 before
the first context( C1 ) is restored. The token leaving the second instance of
the procedure body now has a tag corresponding to the context of the first
instance( C1 ).

In the first instance the token also passes trough the ×3-node which com-
pletes the calculations. The context before the recursive-procedure-call is
restored so the result-token has a tag corresponding to context of the caller-
graph. This result-token can now be used in the caller graph.

n

Merge

A

> 0 −1

1

Merge ×3

A−1

result

Figure 2.9: Folded implementation of recursive procedure-call.

Because all the different instances of the recursive procedures have a dis-
tinct context and the same structure, the instances can be merged. Tokens
produced by the −1-node have to be fed back to the input and tokens pro-
duced on the output have to be transferred into the ×3-node. Figure 2.9 shows
the resulting merged graph.

The argument entering the graph causes a new context to be allocated,
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before its value is decreased by one. This token re-enters the graph from the
top which causes again a new context-creation. This sequence of operations
is repeated until the token leaving the −1-node has a value 0. The > 0-node
then triggers the creation of a constant token trough node 1 which is accepted
by the merge and sent to the node A−1.

For every token entering the graph trough the top merge-node a new con-
text is created while the previous one is still active. This results in a stack of
contexts. Only the context on top of that stack is active so all the nodes in
the graph then only accept tokens with a tag corresponding to that context.
The same stack of contexts enforces several invocations of the lower part of
the graph.

Tokens on the bottom of the graph are fed back trough the ×3-node if they
have a tag corresponding to the current context. Via the merge-node these
tokens cause the previous context to be restored( the context on top of the
stack is popped off). After the previous context has been restored the resulting
token is again sent to the A−1-node via the ×3 and the merge. The sequence
of context-restores continues until the context, which was active before the
procedure-call, is restored. Every time the loop on top of the graph is passed,
the same amount of contexts are created. Therefore the same amount of loop-
iterations on the bottom of the graph have to be executed such that the stack
of contexts is reduced to the size it had before the recursive call was made.
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Static dataflow architectures

The first machines to implement direct dataflow execution were static dataflow
machines. These machines use either the lock-method or acknowledges as
described in section 2.2 and 2.3.

First the structure of a basic static dataflow architecture is described fol-
lowed by an implementation. The implementation described in section 3.2 is
the MIT static dataflow machine. This should give a basis on static dataflow
architectures which will be extended in chapter 4 where tagged token ma-
chines are described. These machines allow more advanced dataflow graphs
like loops and procedure-calls.

3.1 Basic static dataflow

Static dataflow processors only support dataflow graphs without dynamical
constructs like procedure-calls and recursion. A basic static dataflow machine
has a structure like the one depicted in Figure 3.1.

enabling unit

memory for tokens and nodes

functional unit

Figure 3.1: Basic structure of a static dataflow machine.

Nodes of a dataflow graph are stored in memory in the form of instruc-
tions. Instructions are described with an operand-code and a list of destination
nodes. When a node has several destination nodes it produces a set of tokens
that can be processed in parallel. Nodes accepting several input-tokens require
additional control to make sure that when the node is executed all the required
data is available. The unit performing this control is called the enabling-unit.

10
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The actual firing of nodes is done in the function-unit which contains modules
like multipliers, adders, etcetera.

The basic execution-flow as depicted Figure 3.1 starts with some initial
tokens from the token-memory or from outside the machine. Tokens enter
the enabling-unit and are stored in the token-memory. When all required
tokens for a certain node are available, the execution may start. The enabling-
unit is responsible for determining whether enabling-rules are satisfied. When
the enabling-rule is satisfied the input-tokens and the node description are
extracted from memory and packed into an execution-packet. This packet
consists of the input-tokens, the operand-code and a list of destinations. This
packet is sent to the functional unit which executes the operation determined
by the operand code. The resulting token(s) leave the functional unit and
enter the enabling unit again which completes the dataflow cycle.

3.2 MIT static dataflow processor

The first static dataflow machine being developed was the MIT static dataflow
machine [DM75]. The structure of the MIT static dataflow machine depicted
in figure 3.2 has a very similar circular structure compared to the scheme of
Figure 3.1.

operation-unit 1

...

operation-unit n

instruction-cell 1

instruction-cell n

Memory

A
rb

itratio
n
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etw

.D
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Figure 3.2: Structure of MIT static dataflow processor.

Dataflow programs written for the MIT static dataflow machine reside in
the memory in so called instruction-cells. These cells contain three registers;
one for the opcode and two registers for operands. According to the firing
rule a register-cell becomes enabled when all the operands are available. This
means that every instruction-cell has effectively its own matcher. The cell
then informs the arbitration-network that there is data to be transmitted
to the operation-units (modules at the top of Figure 3.2). An operation-
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packet containing operands and instruction is sent to the correct operation-
units by the arbitration-network. The arbitration-network can determine the
destination (operation-unit) of the packet based on the opcode.

When an operation-unit fires, the resulting value is put in a packet to-
gether with one or more destination addresses. The distribution-network then
makes sure the value is transferred to the correct instruction-cells. Operands of
instruction-cells are addressed using the address contained in the packets pro-
duced by the operation-units. The result-values filling the operand-registers
may enable new instructions which are then transferred to the operation-units
again. This completes the cycle in which the data flows.

Several instruction-cells may become enabled at the same time and the
arbitration-network is responsible to efficiently transfer all the packets to the
correct operation-units. Several arbiters in the arbitration-network decide
which instructions are extracted from the memory in a round-robin fash-
ion. These packets then pass trough switches which direct the packets to
the operation-units based on the opcode.

Conditional structures

In order to support loops and other conditional constructs, the MIT static
dataflow processor uses gating which allows nodes to accept tokens based on
a conditional token. Merge nodes are also available, although these are not
physically implemented but integrated in the distribution-network. A branch-
node can be composed of two gates as depicted in Figure 3.3.

In

Branch Cnd

OutT OutF

t f

T F

In

OutT OutF

Cnd

Figure 3.3: Branch made with gates.

The branch-equivalent in the above figure accepts a token and duplicates
it, so an incoming token is sent to both gates. The T-gate only passes the
incoming token to the output when it has received a control-token with value
true. F-gates do the opposite: the input token is forwarded when a control-
token contains false as value.

While in conventional dataflow graphs the branch and merge nodes are
available as operation nodes, the MIT static dataflow machine has no direct
implementation of these nodes. The gates are embedded in the operand reg-
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isters of the instruction-cells. Also nodes performing decisions like comparing
reside at a special location.

operation-units

decision-units

instruction-cell 1

instruction-cell n

Memory

A
rb

itratio
n

n
etw

.D
is

tr
ib

u
ti

o
n

n
et

w
.

control netw.

Figure 3.4: Processor with gating by decision-units.

Instructions that have to be processed by decision-units are selected and
transferred by the arbitration-network. These decision-units produce only bi-
nary results which bypass the operation-units and go directly to the instruction-
cells and act as control-packets. The gates are integrated in the instruction-
cells i.e. depending on the mode of the operand register, an incoming operand
is only accepted if also a control-packet is received.

opcode

operand1

operand2

instruction-cell
...

memory

Gating configuration

Figure 3.5: Structure of MIT static dataflow processor.

The operand-registers can be configured in four modes which are shown
in Table 3.1. These modes control whether the incoming tokens are gated or
not.

When an operand register is not gated tokens are accepted by the default
firing rule. In true-mode an additional requirement must be satisfied. Not
just all the input-tokens must be available but also a control-token must be
available on the control port of the operand before it can fire. Depending on
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no The associated operand is not gated.

true An arriving operand is accepted when a control-
token containing true is accepted, the operand
is discarded otherwise.

false An arriving token is accepted in combination
with a false-valued control-token.

cons The operand is a constant value.

Table 3.1: Possible gating configurations.

the mode(true of false) the operand register only accepts tokens if the required
control-packet has the correct value. When an operand register is configured
in the cons-mode it doesn’t accept tokens at all. The constant value residing
in the operand-register is fixed and can only change during reprogramming of
the processor.

Enhanced memory management

Generic dataflow graphs are often unbalanced which means that a lot of in-
structions need to be available in the memory while only a few are actively
used. The MIT static dataflow processor has an additional memory in which
the non-active instructions are stored while the instruction-cell act as cache.
When an incoming token should be processed by an instruction-cell that is
not yet available it is fetched from the instruction memory.
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Tagged token machines

In order to support more advanced programming concepts like procedure-calls
and recursion, dynamic dataflow machines were developed. These machines
are called tagged token machines and use tags to distinguish different dataflow
paths as described in section 2.4.

First the basic elements of a tagged token machine are explained followed
by three implementations. Although around a dozen implementations have
been made, the processors give a sufficient overview until the beginning of the
nineties.

4.1 Basic tagged token machine

Figure 4.1 shows the basic components of a tagged token machine. A compar-
ison of this structure with the basic structure of a static dataflow machine of
Figure 3.1 shows that the enabling unit is now split into two stages. Because
recursive constructs are allowed which require multiple active contexts as de-
scribed in section 2.4, the space required on the arcs can get arbitrary large.
This is because multiple tokens with different tags can be present on a single
arc. Storing these tokens in the nodes is therefore not practical which is why
a token-memory is introduced. The same concept also applies to the nodes:
some graphs can get very large which is why the nodes of the dataflow graph
are dynamically assigned to functional-units by the fetching-unit.

matching unit

token memory

fetching unit

nodes memory

functional unit

Figure 4.1: Basic structure of a tagged token machine.

The matching unit accepts tokens and checks whether the node that should

15
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process this new token is enabled. Most machines limit the maximum num-
ber of inputs for a node to two which simplifies the matching unit. Tokens
addressed to nodes with only a single input are ignored by the matcher and
forwarded directly to the fetching-unit. Only tokens that are addressed to
nodes with two inputs have to be matched. The matching-unit combines the
destination and tag into an address and checks whether there is a token at
that address of the token-memory. If that is the case the incoming token
and the one in memory are passed on to the fetching-unit. The fetching-unit
combines the incoming tokens into a packet with the node-description which
is sent to the functional unit. The functional unit produces new tokens which
are fed into the matcher completing the dataflow cycle. The combination of
node and tag into an address forms a huge address-range called the matching-
space. Managing this space has a direct effect on the performance of the
matching unit which determines for a great part the overall performance of
the architecture.

4.2 Manchester tagged token machine

Around 1976 the development of the Manchester tagged token machine began
[GKW85] at the university of Manchester. The overall architecture of this
machine is shown in the following figure.

token-
queue

matching
unit

token-memory

fetching unit

node-memory

preprocessor

PE
...

PE

functional-unit

Figure 4.2: Basic structure of the Manchester tagged token machine .

Figure 4.2 shows the circular pipeline as it is implemented in the Manch-
ester tagged token machine. It consists of four stages: token-queue, match-
ing unit, fetching-unit and the functional unit. The communication between
the units is asynchronous while internally they are synchronous. The token-
queue is a FIFO buffer for smoothing the irregular arrival of tokens from the
functional-unit. Tokens leaving the queue enter the matching-unit which only
sends complete combinations of tokens to the fetching-unit. The nodes in
the Manchester tagged token machine have either one or two inputs which
simplifies matching.

The fetching-unit accepts the complete sets of tokens and combines these
into an executable packet with a description of the destination-node. The
maximum number of destinations of a node is also limited to two. If an
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argument of a node is constant, the fetching-unit alters the packet such that
the constant is placed on one of the inputs of the node.

The functional-unit consists of a preprocessor followed by several processing-
elements. Execution-packets are sent to the Processing Element (PE)s by
a distribution-network and result-tokens are sent to the token-queue by an
arbiter located before the token queue. The preprocessor executes instruc-
tions that require access to counter memory. Examples of these counters are
loop-iteration-counters and activation-frame-counter. The activation-frame-
counter is used to create unique tags in order to support unique contexts.

Matching and tag-space

Matching is only required for tokens that have to be accepted by nodes with
two inputs. During matching, the machine searches its memory for a token
with the same destination and tag. The matching-unit verifies whether the
destined node of the token has one or two inputs. Tokens for nodes with one
input are simply forwarded but tokens destined for nodes with two inputs
have to be matched. Matching is done based on an address created from the
destination and tag. This address is used to determine whether that location
in the token-memory is occupied.

Consider a single node ni with 2 inputs that has to process a token-pair t1
and t2 which behaves according to the firing rule as explained in section 2.1.
Initially no tokens are on the arcs of the node which corresponds to an empty
token-memory-location. When either t1 or t2 arrives at the matcher it is stored
in the token-memory at the address calculated from the destination and tag.
After a while the second token also arrives which has the same destination
and tag which results in the same address of the token-memory. The matcher
then has two tokens with the same tag and destination which corresponds to
an enabled node in the dataflow graph. These two tokens are then put in a
packet and sent to the fetch-unit.

The address-space generated by combining destination and tag is too large
to be physically implemented. Even if it could be implemented, the occu-
pation would be very sparse. The Manchester tagged token machine uses
a hashing algorithm implemented in hardware to generate addresses for the
token-memory. The cell destined by this address has room for one token in-
cluding the destination and tag. An extra bit is used to indicate whether
the location is occupied. The biggest disadvantage of hashing in this case is
that different incoming tokens can yield the same address after hashing. If a
match fails, the token still has to be stored. If the hash-function yields the
address of an already occupied location, another location with that address
has to be found. In the Manchester tagged token machine this is implemented
by using 16 parallel memory banks. When all these 16 locations are occupied
and the hash-function yields again the same address, the token is stored in the
overflow-unit. The overflow-unit is a memory containing a linked list of the
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overflow-tokens. Searching for a match in this linked list is very slow. Another
one-bit memory with the same address range as the token-memory is used to
indicate whether a memory-location has overflown.

The tag attached to tokens consists of two parts: the activation-name and
an index. The activation-name is similar to a context described in section 2.4.
Indices in loops are also used in the same way as described in section 2.4. The
sizes of these fields are determined at runtime while the total size is fixed.
This distinction only exists inside the processing-elements. This split in tags
allows programs with a lot of recursion and programs with a lot of different
iterations to run efficiently on the architecture.

4.3 MIT tagged token machine

Around the same time as the start of the Manchester tagged token machine
the MIT also started a project based on the tagged token principle. The
resulting machine is the MIT tagged token machine [AN90]. Figure 4.3 shows
the structure of a single processing element.

Figure 4.3: One processing element of the MIT tagged token architecture
(reprinted from [AN90] ).

As can be seen in Figure 4.3 the overall structure is the same as the gen-
eral structure depicted in Figure 4.1. Tokens coming from the communication
network outside of the processing element enter the Wait-Match unit from
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above. Programs being executed on the MIT tagged token machine are trans-
lated into several dataflow graphs called code-blocks. The code-blocks reside in
memory as an arbitrary linear sequence except for call and linkage addresses.
The nodes of the graphs in the MIT tagged token machine are also limited to
two inputs just like the Manchester tagged token machine .

Instructions are formed by several fields: the opcode, literals or constant
and several destinations. All addressing is relative inside a code-block such
that relocating the code to a new processing element is relatively simple. All
destination addresses for tokens are therefore also relative to the address of
the node producing this token. Because the whole program resides in memory,
a way to determine the current code-block is required. The MIT tagged token
machine uses a special register for this: the Code Block Register (CBR). It
holds the address of the first node of the graph described by the current code-
block. The full address can then be found by adding the relative address to
the address contained in the CBR.

Token-matching in the MIT tagged token machine is done in the same
way as with the Manchester tagged token machine. An incoming token is
simply forwarded to the instruction-fetch unit when it is destined to a single-
input-node and is matched if the destined node has two inputs. Based on
the destination and tag an address is generated which points to a location
that may contain the other required token of the pair. When that location is
empty, the incoming token is stored in memory while a match occurs if the
location is occupied. Both tokens are then sent to the instruction-fetch unit.

Once inside the instruction-fetch unit, a packet is created based on the
destination and tag of the token. Literals and constants are also inserted into
the packet by the same unit. Figure 4.3 also shows a register called Data Base
Register (DBR). This register contains an absolute address of the constant-
memory and is used in the program in the same way as the CBR. Constants
are addressed relative to the address contained in the DBR.

The actual operations are performed using two Arithmetic Logic Unit
(ALU)s. The left ALU of Figure 4.3 performs all the standard operations
of the dataflow graph while the right ALU (contained in the Compute tag
unit) creates a new tag for the result-token. The form-token unit combines
the result of the calculation with the tag to form the result-token. This token
may be sent to another PE or back into the current PE which completes the
cycle of the architecture.

I-structures

In [AN90] a description of the I-structure is given which adds support for
memory semantics(load/store operations). An I-structure can be seen as a
memory controller connected to conventional memory. This means that not
only tokens may contain data but also this global memory can be used in
the same way as in von Neumann architectures. One important difference is
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that locations in I-structures can be written only once(per code-block). These
single-assignment semantics support a higher level of determinacy compared
to conventional memory operations. Figure 4.4 shows an I-structure and the
states in which an element of such a structure can be.

Command

I-Structure

Result

(a) Basic I-structure

absent

waiting present error

read write

write write

(b) Possible states of element

Figure 4.4: I-structure with single-assignment semantics.

An I-structure is controlled by read or write commands. The consumer of
the result-tokens has to wait until the requested element becomes available.
The initial state of the elements is set using an initialization command. Figure
4.4b shows the states of an element in the I-structure. During initialization,
the state is set to absent and remains that way until a read or write com-
mand arrives. When a read-command arrives, the state changes to waiting
which indicates that the result has to be sent to the destination as soon as the
write-command arrives. A read before the element is written is therefore de-
ferred until the element becomes present. A write-command directly after the
initialization does obviously not produce a result-token. Because I-structures
have single-assignment semantics a write after write is not allowed and results
in a runtime-error.

A j

comp. adr.

I-Fetch

I-structure

result

< a READ c.t >

< c.t value >

(a) Read element

A j value

comp. adr.

I-Store

I-structure< a WRITE value >

(b) Write element

Figure 4.5: Read and write of I-structure.

Figure 4.5 shows the dataflow graphs to implement read and writes using
an I-structure. The examples show how the element with index j of array A is
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accessed. A is the address of the first element of the array and j is the offset
so the address of A[j] can be found by adding j to the base address of A. This
address then triggers the creation of a read or write command which is sent
to the I-structure.

Reading an element from the array as depicted in Figure 4.5a, starts with
calculating the address and triggering a fetch using the I-Fetch-unit. This unit
sends the actual command to the I-structure as a token < a,READ, c.t >
where a is the address and c.t is the context with target t to which results
have to be sent. The result-token < c.t value > then leaves the I-structure
and can then be consumed by target t.

Writing to an element of the array is done the same way except this doesn’t
produce any results. The write-procedure depicted in Figure 4.5b starts again
with the address calculation which triggers the I-Store unit to send its com-
mand. A command is created by the I-Store-unit which accepts an address
and the value.

I-structures do not reduce latencies which occur with communication to
large memories. Instead dataflow architectures mask these delays by perform-
ing tasks of an other part of the dataflow graph. Because context-switches
are relatively cheap in dataflow architectures, waiting nodes are temporarily
replaced by nodes that can process data. When the requested data from an I-
Structure finally becomes available, the requesting node is scheduled again so
the data can be processed by the node. The time a node has to wait for data
from memory is therefore not wasted but used by other dynamically scheduled
nodes.

4.4 Monsoon

The monsoon processor is a general purpose dataflow architecture [Pap90]
developed at the MIT as the successor of the MIT tagged token machine.
The Monsoon supports loops and recursion using tags. It consists of several
PEs and I-structures connected by a packet-switched-network. The network
routes tokens based on the tag which uniquely defines to which PE the token
has to be sent. Dataflow graphs to be run on the Monsoon are partitioned
in code-blocks bound to PEs. These code-blocks are executed on the highly
pipelined PEs as shown in Figure 4.6.

On each cycle the PE accepts a token which enters the Instruction-Fetch
unit. Based on the tag and destination of the incoming token, an instruction
can be directly addressed and fetched. The tokens are stored and fetched from
the Frame-Store based on bitvalues in the Presence-Bits-Memory indicating
whether a token is available or not. When all the required tokens are available,
the actual operations of the nodes can be performed by the ALU. Parallel to
this, a new tag is computed such that the Form-Token-unit can create a
result-token. This token is multiplexed based on the destination. When the
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Figure 4.6: Overview of Monsoon architecture (reprinted from [Pap90]).

destination is local the token is sent by the recursive path directly to the
fetch-unit. Non-local tokens are sent to the inter-processor-network. Efficient
matching is done using an Explicit Token Store (ETS) which will be explained
in the following section.

Explicit token store

Tokens entering the matcher implicitly claim storage when no match occurs.
When there is not enough storage available in the token-store, deadlocks might
occur. The Monsoon uses an ETS to solve this problem. The central principle
of ETS is to dynamically allocate large blocks while the internal details about
storage are determined at compile-time. When a code-block is activated an
activation-frame is allocated to provide storage for all the tokens that are
produced during the execution of the whole block. Arcs in the dataflow graph
are therefore statically mapped to slots in the activation frames similar to
register assignment in von Neumann architectures.

As can be seen in Figure 4.7, the frame-memory is the token-store of the
ETS-principle so incoming tokens that do not match are stored in it. After
storing the token the presence-bit is set from absent(a) to present(p). All
the locations in the frame-memory are determined during compile-time so
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Figure 4.7: Example of ETS-principle.

during execution all the addresses of the tokens are constants which simplifies
matching.

Figure 4.7 also shows an example-graph based on the ETS-principle. The
subtracter in the graph has just produced two tokens while the token coming
from the constant 3 still has to be received. The figure also shows instruction-
memory and the frame-memory. When a token enters the instruction-fetch-
unit the destination is read from the tag( depicted in the figure as FP.IP ).
The first part of the tag FP is the Frame-Pointer which is the address of the
first memory location that is allocated for frame-memory. FP also determines
the total context of the graph running on one PE. The IP part of the tag is
the Instruction-Pointer which is the address of the instruction residing in the
instruction-memory that should accept the incoming token.

Every instructions contains three fields: the opcode, a memory-offset and
at most two destinations. The opcode determines the operation of the node
that either requires zero,one or two operands. Matching is only needed when
a node requires two operands. The memory-offset determines where matching
should take place inside the frame-memory. This offset is relative to the frame-
pointer FP which remains constant during the execution of a code-block. The
last field of an instruction denoted with dests contains destination addresses.
All the addresses are relative to the current instruction address. For example
the subtracter in the dataflow graph has two destinations, the divider and
the adder. The add-instruction comes directly after the sub-instruction so
the relative offset is +1 while the div-instruction comes after that. Relative
to the add-instruction it has an offset of +2. When a token is destined to a
two-input-node an extra label is required in order the determine whether the
token has to be sent to either the left or the right input. In the dests-field
+1L means send to the next instruction on the left input while +1R means
to the right input.
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When the graph of Figure 4.7 is executed on the Monsoon, the token on
the arc between − and + enters the instruction-fetch-unit. Here the ADD is
fetched together with the matching-offset and the destination. The matching
offset is then used to check whether the presence-bit is set. In this example
example it is not yet set, but if it was, the corresponding value would be fetched
from frame-memory. The incoming token combined with the one fetched from
memory satisfy the firing-rule so the instruction is scheduled. The result-
tokens from the scheduled operations are fed back into the fetch-unit which
completes the dataflow cycle.



5

Recent developments

A lot of research on dataflow architectures has been done from the begin-
ning of the seventies to the beginning of the nineties. But after that activ-
ities decreased and was directed towards Reduced Instruction Set Computer
(RISC) architectures, because of new production-technologies. These tech-
nologies made it possible to easily increase the performance by increasing
the clock-frequency. Increasing the clock-frequency any further seems to be
stopped [AHKB00] and is known as the ”frequency wall”. Dataflow architec-
tures are therefore becoming more interesting. This chapter gives an overview
about the current developments on dataflow architectures.

First the WaveScalar is described which is the only real dataflow architec-
ture described in this chapter. The second architecture is the XPP which ac-
tually is not a dataflow architecture but a coarse-grain-reconfigurable architec-
ture with dataflow concepts. This chapter ends with the TRIPS architecture
which is a mixture between dataflow and von Neumann based architectures.

5.1 WaveScalar

The WaveScalar Instruction Set Architecture (ISA) is a scalable and high per-
formance architecture with traditional memory semantics [SMSO03] developed
at the university of Washington. All the instructions on the WaveScalar are
executed inside of the memory system and communicate with its dependant
instructions in a dataflow fashion. Because modern superscalar processors
do not scale well due to slow communication [AHKB00], complexity and its
implicit serial execution, the WaveScalar takes a different approach. Instead
of focusing on maximum utilization, the WaveScalar’s goal is to minimize
communication costs such that communication latencies are reduced. The
WaveScalar has completely abandoned the program counter while keeping the
memory ordering of a conventional von Neumann architecture. By removing
the Program Counter, a central bottleneck is removed because all the PEs do
not have to communicate with a single sequential component anymore.

The WaveScalar is a cache-only computer architecture consisting of a col-
lection of processing elements. Conceptually the instructions execute directly
in the memory and execute all in parallel in a dataflow manner. In practice

25



26 CHAPTER 5. RECENT DEVELOPMENTS

the instructions are cached and executed by an intelligent cache system called
the WaveCache. The WaveCache loads these instructions from a memory into
the processing units where they can remain for several clock cycles.

Waves and memory ordering

The compiler for the WaveScalar partitions the dataflow-graph into several
blocks called Waves. These waves are similar to blocks used in the Monsoon
architecture described in section 4.4. The WaveScalar processor executes one
such wave at a time. Each instruction in a wave is executed only once per wave-
activation. Waves can therefore have no internal loops. Loops and other con-
ditional construct are implemented by conditionally executing whole waves.
Control can therefore only enter the wave at a single point. These properties
of waves makes it easier for the compiler to manage the memory ordering. The
compiler partitions the applications in maximal(the largest possible amount
of parallel instructions without loops) waves to reduce overhead.

Tagging is implemented in the WaveScalar by using wave-numbers and
these numbers are attached to every data-value flowing trough the processor.
Wave-numbers enable a single-functional unit to handle tokens from differ-
ent loop-iterations for example. A special instruction called Wave-Advance
accepts a token, increments its wave-number by one, and then outputs the
tokens with the same value but with the incremented wave-number. On top
of each wave is a wave-advance node for every input that accepts tokens from
other waves. Tokens entering a new wave are assigned a new wave-number.
All the tokens in the new wave have the same wave-number because they can
only come from a single preceding wave. This is due to the rule that waves
have a single point of entry. Loops are implemented by feeding tokens leaving
the wave back in to the same wave. This does not introduce hazard because all
the token pass trough a wave-advance node first. These wave-advance nodes
therefore allow complete distributed wave-management and are controlled by
software.

Traditional imperative programming languages provide total load-store
ordering. The WaveScalar supports this by using wave-ordering. Wave or-
dered memory keeps track of memory operations by using annotations. Every
memory-instruction is annotated with a unique number(location in the wave)
and its relation with other memory instructions(predecessor and successor).
When these instructions are executed, the annotations are used to enforce the
correct order (to prevent data hazards).

The compiler locates the load/store instructions and assigns a unique num-
ber in breadth-first order. Next the compiler extracts the dependencies among
the operations and constructs a graph. Every node in this graph represent a
load or store operation and every edge represents a dependency among the con-
nected operations. After constructing the graph, the operations are labeled.
This label contains the unique number of the node, the predecessor and the
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successor. When there is no unique successor or predecessor, a wildcard ”?”
is assigned.

LD A R1

LD B R2

ADD R1 1 R3

ST R3 C
ADD R2 R1 R4

ST R4 D

ST< 1′4′? >

mo4

LD<?′1′? >

mo1

LD<?′2′5 >

mo2

ST<?′5′? >

mo5

NOP< 1′3′5 >

mo3

Figure 5.1: Memory ordering using annotations.

The memory controller may not execute any operation, before the oper-
ation it depends on is executed. When the memory controller cannot decide
whether to execute a memory-operation based on the current and previous
accepted labels, a gap is found. The memory controller can be sure that there
exist no gap, when for each memory operation m in the graph:

• either m’s successor number is them same as the the unique number of
the operation arriving directly after m,

• or when m has multiple successors (wildcard ”?”), the operation arriving
after m has predecessor m.

Graphs violate the second rule when there exist an edge connecting an
operation m1 and m2 where m1 has several dependent operations and m2

depends on several operations. An example of this is shown in Figure 5.1.
This violation can be avoided by inserting an NOP operation that has no
effect on the memory but solves the undecidability of the memory controller.

Figure 5.1 shows an example of wave ordered memory operations. The
graph is a representation of the dependencies among the memory operations
that can be found in the program on the left. The value fetched from the
memory location A is used by two ADD instructions. The ADD instructions
store the results in C and D which makes the operations mo4 and mo5 de-
pendent on operation mo1. The second ADD instruction is also dependent
on operation mo2 which is the reason why mo5 has no unique predecessor.
Because mo1 has no unique successor, it uses a wildcard as successor. The
successor of mo1 and the predecessor of mo5 both contain a wildcard which is
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a violation of the second rule about gaps. The memory controller can there-
fore not know if mo1 is executed and might decide to execute mo5 before mo1.
This gap is filled by the NOP operation mo3 (the dashed node). The graph
is functional the same but both rules about the gaps are now satisfied.

The WaveCache

The eventual implementation of the WaveCache should contain about 2000
PEs grouped in clusters of 16. A physical physical prototype in silicon has not
been build but an array of FPGA boards is used. Each PE has an instruction-
cache of 8 instructions. The input size of the queues for receiving tokens
is 2 tokens per instruction. The input-queues are indexed relative to the
current wave-number and a small multiported RAM holds presence-bits for
each possible element in the input-queues. The matching-unit uses these bits
to determine whether enough tokens have arrived for executing an instruction.
Each cluster of PEs has an L1-cache which can access DRAM trough an L2
cache. Figure 5.2 shows the architecture.
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Control
Output C
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Processing Element Cluster

Input Queues

Figure 5.2: WaveCache overview (reprinted from [SMSO03]).

Within a cluster, the PEs communicate via a set of shared buses and
PEs in the same cluster receive results at the end of a clock-cycle. The size
of the cluster has its influence on performance: a large cluster needs more
wiring within the cluster and introduces a higher wire-delay while smaller
clusters result in more intra-cluster wiring. Changing the cluster size has
only a marginal effect on the total performance: even with a cluster size of
one element the performance (instructions per second) is reduced by only
51% [SMSO03].

The WaveScalar has distributed storebuffers(memory units supporting wave-
ordered memory) and each set of four clusters is assigned to such a buffer. Each
wave is bound to a storebuffer during execution, by means of a special instruc-
tion (Mem-Coordinate) that acquires the buffer. When acquired, the name of
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this buffer is transferred to every node performing a memory-operation in the
current wave.

In the paper describing the WaveScalar [SMSO03] a performance analysis
is done by comparing it with an aggressively configured superscalar-processor
(Alpha processor). The WaveScalar outperforms the von Neumann architec-
ture with a factor of 2-7 in terms of instructions per second. This performance
is achieved without speculative execution of conditional constructs. Branch
prediction allows an additional increase in performance of a factor of 1.5. The
evaluation was performed using benchmarks for the superscalar processor. The
parts of these benchmark that are responsible for 95% of the execution time
are translated using a binary translator for the WaveScalar. Programs are
loaded in the main instruction memory where the WaveCache automatically
fetches the instructions for execution trough the instruction cache.

5.2 PACT XPP

The eXtreme Processing Platform (XPP) is a runtime-configurable data pro-
cessing architecture. While this architecture is not a real dataflow machine
it does contain a lot of principles of dataflow architectures. The processor
consists of several grids of processing elements which are connected via a
packet-switched-network. The XPP is designed for digital signal processing
applications. The chip is running at a clock-frequency of 150 MHz and should
be able to perform 57.6 GigaOps/s [BEFM+03], where an operation is an add,
multiply or shift for example.

The XPP combines arrays of processing elements with configurations.
These configurations are direct mappings of nodes from a dataflow graph onto
physical processing elements. The configuration selects the functionality of the
processing elements and configures the paths that connects these processing
elements together. The processing elements in the XPP are ALUs support-
ing arithmetic and logical operations. During execution, the configuration
remains unchanged. When the execution is completed the following configu-
ration can be be applied. Since a configuration should be active for a large
number (hundreds/thousands) of cycles, a reconfiguration does not introduce
a lot of overhead. The results produced during execution are stored inside
First In First Out (FIFO) buffers or in distributed memories. Subsequent
configurations can then use these results for further processing.

Architecture

The processing elements in the XPP are called Processing Array Element
(PAE)s. They consists of ALUs and buffering for data and are grouped in
Processing Array Cluster (PAC)s. A complete XPP device contains four PACs
which are connected to a Supervising Configuration Manager (SCM). This
central configuration-manager is connected to local Configuration Manager
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(CM)s attached to the PACs. This enables simultaneous execution of different
applications on different part of the architecture.

(a) XPP device (b) PAC with CM

Figure 5.3: Different levels of the XPP (reprinted from [BEFM+03]).

Figure 5.3a shows an overview of the XPP-architecture. The central
configuration-manager shown in the middle is the SCM which is the over-
all configuration-unit and is connected to an external configuration memory.
A complete reconfiguration is always initiated from the SCM. The local CMs
can also perform reconfigurations without interrupting the applications run-
ning on other PACs.

Figure 5.3b shows the internal structure of a PAC with its CM. The CM
consist of a statemachine and internal RAM used for caching configurations.
The CM is connected to the PAEs by a dedicated configuration-bus. All PAEs
are connected by horizontal and vertical buses such that they can communicate
with PAEs of other PACs.

Figure 5.4: Structure of PAE (reprinted from [BEFM+03]).

Figure 5.4 shows the internal structure of a PAE. It consists of an ALU
with buffering and two memory-blocks for storing data from other PAEs. Ev-
ery ALU has a small configuration register with a statemachine that controls
which operation the ALU has to perform. PAEs are self-synchronizing in the
dataflow sense. Execution starts once all the inputs are available. The results
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are forwarded by the packet-network that can transmit one packet per cycle.
Operations in the ALU can also trigger reconfigurations.

Configuration

Applications running on the XPP usually consist of several phases that should
be executing sequentially. The whole flow of configurations is handled by the
SCM while local configurations are performed by the CM local to a PAC. The
CMs local to PACs cache configurations so using these configurations several
times yields higher configuration-performance.

The XPP also supports differential-configurations which are changes to
a complete configuration. Typical examples are changes of coefficients and
changes in the dataflow paths. Often not all PAEs in a PAC are used. This
allows parts of an other configuration to be loaded in parallel. When the
running configuration terminates the partial configuration is completed after
which it starts to run.

The XPP can be programmed using the PACT proprietary Native Map-
ping Language (NML). This is a structural language that directly describes
the functionality of the PAEs. The instantiation and the connections between
PAEs is implemented similar to the use of components in (Very High Speed
Integrated Circuit) Hardware Description Language (VHDL). Reconfigura-
tions of the processors need to be explicitly defined in the program. This is
implemented using special modules that start a reconfiguration on acceptance
of a token. The application written in NML is translated to an XPP-binary
by the compiler called xmap. This is a direct mapping of modules from the
application to PAEs of the chip.

There is also a Vectorizing C compiler available which translates functions
to NML modules. Only a subset of the C language can be translated to
NML (a special I/O library is needed for streaming data). Loops in the input
program are unrolled and pipelined such that they can be directly translated
to NML. The resulting NML can then be compiled using xmap and executed
on the device.

5.3 TRIPS architecture

The TRIPS architecture is a scalable and high performance architecture de-
veloped at the University of Texas Austin [BKM+04]. TRIPS is a highly
parallel architecture with additional configuration options to address Instruc-
tion Level Parallelism (ILP), Thread Level Parallelism (TLP) and Data Level
Parallelism (DLP) [SNL+03]. The current prototype has two processors each
containing sixteen PEs.
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EDGE

The TRIPS architecture uses Explicit Data-Graph Execution (EDGE) which
is a compilation technique to exploit parallelism for highly parallel architec-
tures like the TRIPS [SGM+06]. EDGE is based on direct instruction commu-
nication which means that instructions send their results directly to dependant
instructions. The required storage is determined a compile time in the same
way as with an ETS. Single shared units like register-files are therefore not
needed and it therefore removes an important bottleneck. The instructions
execute in dataflow order meaning instructions only have a reference to de-
pendent instructions instead of register addresses.

EDGE is based on block-based execution where the blocks are constructed
by the compiler. These blocks are issued and executed dynamically while
the locations of the instructions inside those blocks are statically assigned
to the PEs. These blocks are called Hyperblocks and contain the dataflow
graph of a selected part of the input-program. Hyperblocks are made as
large as possible by the compiler to express more parallelism. Loops are not
available in hyperblocks but are formed around them such that only complete
hyperblocks can be executed in one iteration.

Control-flow graph Unrolled CFG Hyperblocks Generated code Scheduled code

Front end
• parsing
• generate CFG

High-level transformations
•  loop unrolling
•  loop peeling, flattening
•  inlining

Hyperblock formation
•  if-conversion
• predication

Code generation
• register allocation
• block validation, cutting
• back-end optimization

Scheduler
•  inserts moves
• places instructions
• generates assembly

Figure 5.5: Compilation for EDGE (reprinted from [BKM+04]).

Figure 5.5 shows the different phases of compilation. First the program
is translated into a control-flow-graph to determine dependencies. After this
phase, the compiler can distinguish different threads in the program. The com-
piler then decides on which core these should be executed to exploit TLP. In
the second phase the compiler optimizes away overhead by inlining and unrolls
loops to expresses more parallelism. In this phase DLP and ILP are exposed as
independent nodes in the dataflow graph. During the third phase, the nodes
in the dataflow graphs are grouped in large hyperblocks. The hardware depen-
dent part starts in phase four where the code for the TRIPS is generated. The
required amount of buffering on the arcs of the dataflow graph is calculated
and assigned statically to registers. The last phase schedules the execution
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of the hyperblocks and maps the instructions directly to PEs. The compiler
also tries to exploit both DLP and ILP by placing independent instructions
on different PEs. Dependent instructions are placed as much as possible on
the same PE such that communication delays between PE can be avoided.

Architecture

The TRIPS architecture is a set of blocks consisting of an array of processing
elements designed for achieving good performance out of applications contain-
ing a lot of ILP. The hyperblocks formed by compilation of a program are
directly executed by the group of processing elements of the TRIPS. These
processing elements are grouped in cores forming, with memory, the complete
architecture.
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Figure 5.6: Overview of the TRIPS architecture (reprinted from [SNL+03]).

Figure 5.6 shows the TRIPS chip as it was planned to be implemented. The
chip consists of four processing-cores combined with five memory-cores. These
cores are interconnected by a routing network. The memory-cores implement
L2-cache functionality combined with a memory-controller which connects to
external DRAM-memory.

The second figure zooms in on a single TRIPS-core and shows sixteen
processing elements aligned in a 4×4 grid. This grid executes one hyperblock
at a time. All instructions and data are initially fetched from external memory
but reside in the ICache and DCache units during execution of a hyperblock.
Intermediate values produced by the processing elements are stored in register-
files located at the top of the core. Switching to an other hyperblock when
the current one is completed is controlled by the Block-control module. This
module receives an event when a hyperblock is completed and decides which
hyperblock should follow. The TRIPS architecture also supports speculative
execution. This is implemented by the Next-Block-Predictor which is similar to
a branch-predictor in von Neumann architectures. The Block-Control-module
fetches new hyperblocks based on predictions from the Next-Block-Predictor.

The rightmost scheme shown in Figure 5.6 shows a processing element
consisting of an integer-ALU, a floating-point-unit and a reservation-station.
The reservation station behaves as matcher, it schedules instructions when all
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required operands are available. The instructions are initially placed inside the
PE before starting the execution of a hyperblock so they can be scheduled very
quickly. After execution, the PE forwards the result to the local reservation-
station or a station of an other PE in the grid. Results can be sent to any PE
in the grid using the data-network that connects all nodes together.
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Problems with dataflow architectures

Although the dataflow-principle seemed simple to implement, the first archi-
tectures showed that keeping the utilization high was difficult. The main
bottleneck was matching and managing the token storage which had a large
impact on the total performance [Vee86]. Because associative memories were
very expensive finding the correct token in token-memory was done by hashing
which turned out to be relatively slow and introduced problems with overflows:
real applications often required a lot of token storage such that memories filled
up quickly. As a result the utilization of the PEs did not exceed 25% of the
available processing power [Vee86]. Hashing required an additional memory,
the overflow memory, which stores the overflow-tokens in a linked list struc-
ture. For every overflow the whole linked list had to be searched which is not
only slow but also dependent on the number of tokens that are already stored
in it.

The complexity of matching was partly solved with ETS. Now the compiler
determined the amount of token-storage and the location where the matching
of tokens takes place in the token-store. Due to direct addressing, the slow
hashing and the overflow-unit could be removed due to analysis at compile-
time.

An other problem with early dataflow architectures is that they ignore
storage hierarchy which causes a lot of outstanding memory-requests . These
cannot all be masked by scheduling of an other part of the dataflow-graph
[HHLL93]. Scheduling based only on the firing-rule of dataflow graphs ignores
knowledge available at a higher level of the program. For example, instructions
of a second thread are scheduled before the first thread completes. Completing
the first thread before starting the next may reduce the amount of token
storage required.

It has been argued [CSE93] that dataflow machines could not hold enough
data near the processor to achieve substantial parallelism. That was based
on the assumption that creating a lot of processing elements on a single chip
was hard and getting fast memory near the PE was expensive. With current
technology, these problems do not apply anymore as has been shown with the
WaveScalar and TRIPS architecture.

High utilization of the PEs depends on how much parallelism can be ex-
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pressed in the programming language. Imperative language like C, C++ and
Java are by their nature sequential and restrict therefore the amount of par-
allelism. This led to the development of new programming languages like Val
and Id which yield more parallelism [JHM04].

6.1 Common approaches to problems

Current dataflow architectures use EDGE or a similar technique to exploit the
parallelism available in the programs. As described in section 5.3 EDGE first
takes the program and expands it(unrolling loops and inlining procedures)
to expose as much parallelism as possible. These expanded graphs are par-
titioned in blocks without conditional constructs in order to achieve higher
utilization. The conditional constructs are implemented using conditional ex-
ecution of whole blocks. Although different names are used for the grouping
of instructions ( Blocks [Pap90], Hyperblocks [BKM+04], Waves [SMSO03]),
the basic principle is the same for the recent architectures( WaveScalar and
TRIPS ).

Another common solution among current dataflow (like) machines is to
determine the token-storage at compile time. The locations of tokens that
have to be stored are fixed at runtime which means that hashing and overflow
memories are not required anymore. Matching is reduced to checking a single
bit in a presence memory. This explicit token store ETS is usually imple-
mented using one or several registers. ETS is one of the steps performed in
EDGE.
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Problem statement

The purpose of this literature report was to get insight in dataflow architec-
tures. An overview of the developments in dataflow architectures has been
given starting with the first static dataflow machine (MIT static dataflow
machine described in 3.2) until the recent developments on the TRIPS archi-
tecture( section 5.3 ).

The eventual goal within the CAES research group of the University of
Twente is to develop a System on Chip (SoC) that can efficiently perform
beamforming operations used in radio astronomy and radar applications. This
chip is a tiled reconfigurable architecture with processing cores connected by
a Network on Chip (NoC). The type of processing core used in this SoC is
the FlexCore proposed in [RvdK+09]. How this processing element should be
implement is still an open question.

In my master thesis I am going to implement the FlexCore in VHDL such
that the architecture can be synthesized and evaluated. The question of how
this core should be implemented can be split in two parts.

The first part is to determine which principles should be used to implement
the matching and routing of data trough the core. The resulting core is then
evaluated such that more can be said about the performance in terms of
processing-power, area and energy consumption.

The second sub-question is how the granularity of the processing elements
should be altered such that the overhead, introduced in the first part, is accept-
able? If for example the adders and multipliers are replaced by larger blocks
such as butterfly operations or complete Fast Fourier Transform (FFT)s, what
effect does it have on the performance?

The problems encountered during the development of dataflow architec-
tures described in chapter 6 are important guidelines. Important aspects are:

• Matching (should there be one specific module or should these be dis-
tributed)

• Utilization (how well are the ALUs occupied)

• Datastructures (streams from streaming applications)

• Memory-hierarchy (storage of tokens and (partial) streams)
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